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Abstract. Cardiovascular diseases (CVDs) are the worldwide leading
cause of deaths. Based on ultrasound, primary assessment of CVDs is
measurement of carotid intima-media thickness and brachial endothelial
function. In this work we propose improvements to a state of the art
automatic methodology for arterial lumen detection, based on graphs
and edge detection, fundamental for cited tests. We propose a bayesian
approach for segmenting the graph minimum spanning tree created with
points between edges. Lumen is located applying three criteria on seg-
mented trajectories: length, darkness, and our proposal, minimum vari-
ance. In 294 sonograms having manually established measurements, from
a 1,104–sonogram set, mean and standard deviation error in brachial
near wall detection was 14.6µm and 17.0µm, respectively. For far wall
they were 15.1µm and 14.5µm, respectively. Our methodology main-
tains superior performance to results in recent literature that the original
methodology presents, but surpasses it in overall accuracy.

Keywords: automatic detection, ultrasonography, carotid, brachial,
lumen, bayesian, variance, graphs, polynomial fitting.

1 Introduction

Cardiovascular diseases (CVDs) are the worldwide leading cause of deaths [26].
The most disturbing pathology associated with CVDs is atherosclerosis, a pro-
gressive degeneration that reduces the arterial lumen (AL) and causes arterial
wall thickening. Progressive development of this disease has been correlated with
increased risk of CVDs [16].

Based on ultrasound, primary markers for CVDs and atherosclerosis assess-
ment are measurement of the carotid intima-media thickness (IMT) [1], and
measurement of the brachial artery endothelial function (BAEF) [4].

The IMT and BAEF tests require the detection of carotid and brachial lu-
men, respectively, in order to run properly. Calderon et al. [2] proposed in 2013 a
graph-based algorithm for automatic AL detection in ultrasound images (USIs).
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The algorithm first determines edges of the ultrasound image (USI), and then
creates a graph with intermediate points between consecutive detected edge
points (in a column basis). Later, it calculates the graph minimum spanning
tree (MST), and does a segmentation process of those trajectories likely to be
the true AL, using only a criterion based on distance between connected nodes.

Trajectory representing the true AL is selected from those segmented ones,
based on a linear combination of a length and a darkness criteria.

Calderon et al. pointed out that their algorithm has superior performance to
results reported in recent literature in this area. Nevertheless, in this paper we
propose solution to two deficiencies their algorithm has.

Remainder of this paper is organized as follows: Section 2 presents a brief
review of recent work in the area; Section 3, poses problems whose solution we
propose in this article; Section 4, details the bayesian hypothesis test used for
validating the trajectories segmentation process referred to in Section 3; Section 5
describes the minimum variance criterion (MVC) that is used to discriminate
the true AL in those cases where the length criterion presents the inconsistencies
explained in Section 3; Section 6, summarizes the methodology presented in this
research for automatic AL detection in USIs; Section 7, describes tests performed
and results obtained when methodology presented in Section 6 is applied on an
USI set; and, Section 8, summarizes conclusions reached with work carried out.

2 Previous Work

In the absence of atherosclerotic plaque, B–mode ultrasound shows the wall of
an artery as a regular pattern that correlates with anatomical layers. In the
USI, the AL may be observed as a dark region flanked on its top and bottom by
bright light stripes, which will turn out as edges considering the intensity profile
of the pixels. Under this assumption, works presented in literature for arterial
vessel segmentation apply different methods to locate these contrasting zones,
and thus, determining both the lumen and different arterial measurements.

Early work is based on edge detection [17,22] and, later, on image gradient
[12,20,8]. Methods included in these categories are fast in their calculation but
sensitive to noise, artery morphology, and require manual intervention to get
good results.

Other approaches apply linear programming [18,23] in order to establish a
cost function based on a linear combination of several weighted measurements
calculated from the USI, to segment the artery and the layers that it is made
of. It has also been proposed [11] to apply this method at different USI scales to
reduce computational cost. Techniques in this category can be fully automated,
which limits variability in final results [24,9] due to skills and operator fatigue.
However, they require system training and are sensitive to image noise, which
directly affects the cost function.

The most used technique for arterial segmentation is the active parametric
contours [25] or snakes, which adapts a deformable linear model to the border
between the AL and the intima layer. Most of the published works [13,16,5]
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adopt the snakes formulation presented in [25]. Application of this method has
not been fully automated; besides, is very sensitive to noise, requires tuning of
those parameters that define the snakes, and results depend on chosen starting
points as well as their number.

Other proposals consists in calculating local statistics on intensity of the USI
pixels, coupled with the establishment of an acceptance/rejection threshold on
membership of these pixels to the AL area [5]. It has also been proposed to
improve this technique [14,6] using a fuzzy k-means classifier as an initialization
stage for a snakes-based method to refine the detection process.

Hough transform has also been proposed for the arterial segmentation [10,21].
In longitudinal USIs the goal is to delineate dominant lines of the boundary
between lumen and arterial walls, and in transversal USIs, the goal is to delineate
the same boundary, but outlined as a circumference. Although Hough transform
calculation is fast, it is effective only when processing images in which the artery
appears in a straight and horizontal way.

Finally, a recent work has proposed a fully automated technique for arterial
detection [16] based on local maxima in pixels intensity of the USI, applying
a linear discriminant to these seed points, with a fuzzy k-means classifier as a
refinement stage.

Next section outlines deficiencies of the methodology proposed by Calderon
et al. for AL detection in USIs, and whose solution we propose in this article.

3 Problem Statement

Work presented by Calderon et al. in [2] faces difficulties in recognizing an AL
in an USI that has noticeable discontinuities or cuts at the edges. To illustrate
this, Fig. 1(a) shows trajectories likely to be selected as the true AL in a test
USI, applying this algorithm.

When the graph MST is segmented, based on distance-between-connected-
nodes criterion, trajectory that belongs to the true AL is broken into several
ones (2 and 3 in Fig. 1(a)). In consequence, trajectory 1 is mistakenly chosen as
the true AL. The solution proposed for this problem is to validate segmentation
process by the hypothesis testing detailed in Section 4.

Equally important, when length criterion value li for two or more trajectories
that represent options likely to be selected as the real AL are above a certain
threshold ucl, algorithm of Calderon et al. is unable to select the correct choice.

To illustrate this, we take the USI in Figure 1(b) as an example. Trajectory 0 in
this figure has 0.98661, 0.95766, and 1.94427 as values for the length, darkness, and
their linear combination criteria, respectively. Trajectory 4 has 1.0, 0.87787, and
1.87787 as values for the same criteria. If we select the true AL based on length cri-
terion, trajectory 4 would be correctly selected as the AL. If we select the true AL
based on darkness criterion, trajectory 0 would be incorrectly selected as the AL.
Finally, selection of Calderon et al. is based on the maximum linear combination
of both criteria, i.e., trajectory 0 is selected as the AL, which is incorrect for this
specific USI. To solve the problem above, without affecting overall performance
of methodology, the MVC, explained in Section 5, is proposed.
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Calderon et al. indicate that, for the whole set of test USIs, combination of
length and darkness criteria produces the best results to select the real AL.

The following section describes in detail the procedure for validating the seg-
mentation process that is used as part of the methodology for automatic AL
detection presented in this paper.

4 Hypothesis Testing

To reduce over-segmentation produced by the methodology of Calderon et al.,
we propose to validate this segmentation process using a hypothesis testing [19].

Given point sets D1 = {pi}, pi = [xi, yi]
T and D2 = {pj}, pj = [xj , yj]

T ;
such that D1 ∩ D2 = ∅, of size N1 and N2, respectively; which have associated
corresponding polynomial approximations f(xi; a1) and f(xj ; a2) given by:

f(x; a) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ amxm . (1)

One of the following hypotheses has to be demonstrated:

H0: Sets D1 and D2 are partitions of the same set D (D = D1 ∪D2), therefore,
they can be characterized by a unique polynomial approximation f(x, a).

H1: SetsD1 andD2 are not partitions of the same set, therefore, they are charac-
terized by polynomial approximations f(x1, a1) and f(x2, a2), respectively.

Decision criterion will be probabilistic, so that hypothesis H0 will be valid if
and only if (2) holds. Otherwise, the fulfilled hypothesis will be H1.

P (H0 | D1, D2) > P (H1 | D1, D2) . (2)

Applying Bayes’ theorem and assuming that probability of both hypotheses
is the same, P (H0) = P (H1), the final decision criterion can be expressed as (3).

P (D1, D2 | H0) > P (D1, D2 | H1) . (3)

In order to use decision criterion (3), probabilities P (D1, D2 | H0) and
P (D1, D2 | H1) need to be estimated. We begin by estimating P (D | H0), given
that D is a single data set; for this, we assume that any polynomial with parame-
ters a has the same probability of being selected, therefore, it follows a uniform
distribution, P (a | H0) = k1; and that errors between approximation f(xi, a)
and the actual measurements yi, follow a Gaussian model given by (4).

P (D | a,H0) = k1 exp

(
−E(a)

2σ2

)
= k1 exp

(
−
∑N

i=1 (f(xi; a)− yi)
2

2σ2

)
. (4)

Then, P (D | H0) can be written, considering the total probability law, as:

P (D | H0) = k1k2

∫
Ω

exp

(
−E(a)

2σ2

)
dma . (5)

where Ω is the function domain, which is integrated in m dimensions.
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In order to solve (5), we determine the Taylor series expansion at point a∗,
which is the least squares solution for E(a), and integrate the exponential func-
tion in m dimensions [19], which give us:

P (D | H0) = k1k2

√
(4πσ2)m

|∇2E(a∗)| exp
(
−E(a∗)

2σ2

)
. (6)

For calculation of probability P (D1, D2 | H1), assume that data sets D1 and
D2 were generated by independent models, so that it can be written as:

P (D1, D2 | H1) = P (D1 | H0)P (D2 | H0) . (7)

Probabilities P (D1 | H0) and P (D2 | H0) are calculated using (6), and the
obtained result for (7) is given by (8):

P (D1, D2 | H1) =
k21k

2
2(4πσ

2)m√|∇2E(a∗1)||∇2E(a∗2)|
exp

(
−E(a∗1) + E(a∗2)

2σ2

)
. (8)

Sets D1 and D2 will be join if P (D | H0) > P (D1, D2 | H1).
Next section describes the MVC, referred to in Section 3, for selecting the AL

in those cases where the length criterion is inconsistent.

5 Minimum Variance Criterion

For AL selection cases where length criterion value exceeds a threshold ucl for
two or more trajectories, we propose to use a MVC as a third discrimination
criterion for selecting the true AL.

According to a radiologist observations and criteria, it can be considered that
an AL has a smooth curvature in an USI, thus, when image edges are detected,
the number of outlier edge points will be fewer as compared to the number in
detected edges of channels or anatomical structures that resemble it. One way
to calculate this is using the sample variance of the edge points.

We will do the variance calculation over the elements of a set Su, comprised
of the trajectories set whose number of edge points is greater than 95% of the
number of points corresponding to the anatomical structure in the USI with the
greatest number of them.

For our noise model given by (4), sample variance for the j-th anatomical
structure in the USI can be calculated as:

σ2
j =

1

Nj − 1

Nj∑
i=1

(
f(xi; a

∗
j )− yi

)2
. (9)

MVC points out that the true AL is the one trajectory, given by (10), having
the minimum value of the sample variance:

min
j

j∗ = σ2
j , j ∈ {1, 2, . . . , |Su|} . (10)
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Note that the MVC is used only in those cases where more than one trajectory
exists, i.e., that |Su| > 1. Otherwise, linear combination of length and darkness
criteria is used, as proposed by Calderon et al.

For USI in Fig. 1(b), we have that trajectories 0 and 4 have similar values of
length criterion, but sample variance calculated with (9) gives us σ0 = 2.2321
and σ4 = 0.3649. It follows from the aforementioned that the selected true AL
is given by trajectory 4.

Figure 1(c) shows the USI in Fig. 1(b), with the superimposing of the edges
of the detected AL, based on the MVC.

The following section describes the methodology of Calderon et al. with
changes we propose, for the AL segmentation in USIs.

6 Methodology

Detection procedure begins with an automatic histogram-based clipping of the
USI, which removes information not necessary for the AL segmentation process.
Resulting image is referred to as the original image I.

An USI I is defined as a set of pixels I(pi), which represents a gray tone in a
point having coordinates pi = [xi, yi]

T, over image grid R of size NCols ×NRows.
Next, and under the assumption that the AL in an USI is presented as a dark

region flanked on its top and bottom by much clearer areas, edges of image I
are detected using Canny’s algorithm [3]. These detected edges are represented
as a set B, containing NB coordinate points bi = [xi, yi]

T such that:

B = {bi ∈ R | g(bi) = 1, ∀bi ∈ R} (11)

where g is a binary image of same size as I, defined in (12).

g(bi) ≡ g(xi, yi) =

{
1 if bi is an edge,
0 otherwise.

(12)

Later, a column c of image g, a vector of 0s and 1s like (13), is built.

g(c, . . .) = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0 . . .]T . (13)

Representation of these edges is done by storing their coordinates in an or-
dered array. For edge column in (13), its representation is given by (14):

B̂c = {[c, 3]T , [c, 5]T , [c, 9]T , [c, 13]T , [c, 16]T , . . .} = {b̂k, b̂k+1, b̂k+2, . . .} (14)

and the ordered representation of all edges of image I, equivalent to (11), is (15):

B̂ = {B̂1, B̂2, . . . , B̂c . . . , B̂NCols
} = {b̂1, b̂2, b̂3, . . . , b̂k, b̂k+1, b̂k+2 . . .} . (15)

With this, there will be a couple of points < b̂i, b̂i+1> in each column of the
image with all edges, candidates to be the AL limits.
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Methodology continues discarding pairs of consecutive edge points whose sep-
aration distances are below a preset threshold AMin. Thus, set of points BL is
defined, based on the ordered set of points B̂ ≡ B, as follows:

BL = {b̂1, b̂2, . . . , b̂i, b̂i+1 . . . | (ŷi+1 − ŷi) ≥ AMin, x̂i = x̂i+1} . (16)

BL set is a subset of edge set B, therefore, lumen search universe is reduced.
It is also defined V, the set of points half of the way between the likely lumen

limits given by the set BL, as:

V = {vi | vi = b̂i + b̂i+1

2
, x̂i = x̂i+1, ∀b̂i ∈ BL} . (17)

In this way, for a point vi exists an associated pair < b̂i, b̂i+1> such that
b̂i < vi < b̂i+1, and the three of them are in the same column of image g.

Figure 1(d) shows points of sets BL and V, superimposed on image I. Points
of set V are the options likely to be selected as the center of the real lumen.

Subsequently, an undirected graph G = {V,A} is built from point set V,
defined in (17). V represents the graph nodes set, and A the set of graph edges.
Initially all nodes are connected, and the weight of each graph edge, Aij , is the
Euclidean distance d(vi, vj) between points of set V the edge connects.

Afterwards, the undirected graph is segmented and classified using weights
d(vi, vj), supporting these cutting process by the bayesian hypothesis test from
Section 4. The minimum spanning tree (MST) G+ for graph G, is calculated
using Kruskal’s algorithm. Figure 1(g) shows an example of created G+.

In order to take the true AL trajectory out from the graph, a set S of NG

subgraphs is defined in (18). This set is the result of segmentingG+, when cutting
graph edges whose distances d(vi, vj) > pMax (a cutoff threshold), and that meet
hypothesis H1 (from Section 4) for nodes corresponding to subgraphs G+

i and
G+

j that are connected by graph edge Aij . Otherwise, when fulfilled hypothesis
is H0, graph edge Aij is kept intact, even when distance d(vi, vj) exceeds pMax.
Cuts are carried out using a depth-first traversal on G+.

S = {G+
1 , G

+
2 , . . . , G

+
NG

} . (18)

Figure 1(g) shows the graph MST, created with points indicating options
likely to be selected as the center of the true AL for a test USI. Double-headed
arrow marked as H1 is an example of graph edge that exceeds distance threshold
pMax, and that meets hypothesis H1; so to be cut. Single-headed arrow H0 is an
example of a graph edge that exceeds distance threshold pMax, but that meets
hypothesis H0; so that should remain intact.

Process continues removing short trajectories that exist due to noise or muscle
tissue layers in the USI. Hence, subgraphs G+

i which have a total node number
below a threshold NMin are eliminated from set S, defining subgraph set S+ as:

S+ = S − {G+
i ∈ S | NSi < NMin}, i ∈ {1, 2, . . . , NG} (19)

being NSi the node number of subgraph G+
i .
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Options likely to be the true AL has been decreased considerably up to this
point, but there are still more than one option, so that the real AL is selected
using the length, minimum variance, and darkness criteria.

Length criterion calculates total node number on each subgraph G+
i ∈ S+,

normalized between [0, 1], according to the following equation:

li =
NSi

max(NS1 , NS2, . . . , NS|S+|)
, i ∈ {1, 2, . . . , |S+|} . (20)

Now, if at the time of calculating length criterion li for each subgraph G+
i ,

it happens that more than one li > ucl, the MVC (Section 5) will be used to
determine the correct AL of the USI. Otherwise, the AL selection will be based
on a linear combination of both length and darkness criteria.

For the darkness criterion the average value μj of gray tones of the corre-
spondig area for each subgraph G+

j ∈ S+ is calculated. To this end, each sub-
graph is traversed in each of its points vi, sweeping in a column basis at intervals
[b̂i, b̂i+1] (according to (17)) of the original image I, as formulated next:

μj =
1

NS+
j

∑
∀vi∈G+

j

⎡
⎣ 1

ŷi+1 − ŷi + 1

∑
∀p∈[b̂i,b̂i+1]

I(p)

⎤
⎦ , ∀j ∈ {1, 2, . . . , |S+|} (21)

being NS+
j
the node number in subgraph S+

j .

Once the average is calculated, the darkness criterion is:

oi = 1− μi

max(μ1, μ2, . . . , μ|S+|)
, ∀i ∈ {1, 2, . . . , |S+|} . (22)

Darkness criterion, just as the length one, is normalized to range [0, 1] so they
can be combined. That is, the subgraph corresponding to the center of the true
AL is the one with the maximum value of the sum of both criteria:

max
i

i∗ = (li + oi), ∀i ∈ {1, 2, . . . , ∣∣S+
∣∣} . (23)

Figures 1(e) and 1(h) show two examples of arterial USIs with superimposed
edges corresponding to detected lumen in each case. In Fig. 1(e), corresponding
to Fig. 1(a), an example of detection based on length and darkness criteria is
shown. In Fig. 1(h), corresponding to Fig. 1(b), an example of detection based
on MVC is shown.

Last step of proposed technique for AL detection fits a polynomial f(x, a)
of degree m, by means of the least squares method, to each of the point sets
belonging to the edges of the detected AL. That is, to the sets of edge points
<b̂i∗ , b̂i∗+1>, related to the points vi∗ ∈ G+

i∗ .

Polynomial fitting is performed to the set of edge points b̂i∗ first, belonging
to the edge fN(x̂) between the lumen and the near wall of the artery; and, later,

to the set of edge points b̂∗i+1, belonging to the edge fF(x̂) between the lumen
and the far wall of the artery.
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In order to strengthen the polynomial fitting against noise in the USI, estima-
tion of the polynomial model parameters is directed by means of the RANdom
SAmple Consensus (RANSAC) algorithm.

Figure 1(f) shows the image with the fitted polynomial approximations by
the least squares method and the RANSAC algorithm, on points of the AL
edges shown in Fig. 1(e). Robust polynomial approximations, corresponding to
Fig. 1(h), are shown in Fig. 1(c).

Once described the proposed AL detection methodology, the section below
details tests and results obtained from its application.

7 Tests and Results

Tests were carried out on same database of USIs provided to Calderon et al. by
the laboratory Centro Unión of Morelia, Michoacán, México. This database con-
sists of 1,104 longitudinal B–mode ultrasound two-dimensional images of carotid
and brachial arteries. All images were transferred to the computer through a
DICOM communication port and logarithmically compressed to an 8-bit gray-
scale (256 gray shades). Axial resolution of the USIs is 76.9μm per pixel.

Parameters of the methodology were adjusted as follows: AMin = 20 pixels,
pMax = 10 pixels, NMin = 100 nodes, fitting polymonials degree m = 3, σ = 32.0
for bayesian hypothesis testing, and threshold ucl = 0.95.

Initial test was to apply our methodology on each of the 1,104 USIs in the
database then verify, qualitatively, the percentage of them in which correct pat-
tern of a dark area flanked up and down by clearer areas was selected. In this test,
51 failures in the 1,104 USIs were found. Meanwhile, the algorithm of Calderon
et al. failed in 85 of the same 1,104-USI set. This is, with proposed solutions
to problems detailed in Section 3, our method accurately detected the AL in 34
pictures more than the original algorithm.

Later tests were carried out on the 294 USIs from general set which have mea-
surements manually established by a radiologist. Process consisted in applying
our technique to each image to get polynomial aproximations fN(x̂) and fF(x̂),
for near and far arterial walls, respectively. Finally, error between manually es-
tablished points [xN, yN]

T, [xF, yF]
T ; and the estimated ones fN(xN), fF(xF);

were calculated. Results for these tests are presented in Table 1.

Table 1. Error in measurements of the lumen-intima interface

Near Wall Far Wall

Average 14.6µm (1.8 pixels) 15.1 µm (1.9 pixels)
Standard Deviation 17.0µm (2.2 pixels) 14.5 µm (1.9 pixels)

Calderon et al. pointed out that based on results reported in recent literature
on the AL detection area, the automatic technique that achieves best perfor-
mance [15] has an average error on the far wall of 35.0μm ± 32.0μm. Besides,
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Fig. 1. (a) Options likely to be selected as the AL. (b) Inconsistency example.
(c) Edges detected based on MVC (with polynomial fitting). (d) Points belonging to
sets BL and V. (e) Edges detected based on length and darkness criteria. (f) Polynomial
fitting. (g) MST. (h) Edges detected based on MVC.
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the semiautomatic technique best performed [7] has an average error on the same
wall of 21.0μm ± 13.0μm. In relation to the arterial near wall, they pointed out
that only in work presented in [14] the obtained average error is given, which is
of 75.0μm ± 56.3μm.

Based on results shown in Table 1, methodology presented in this paper main-
tains superiority of proposed technique by Calderon et al. over reported perfor-
mance in recent studies for automatic [15] and semi-automatic [7] detection of
the arterial far wall, as well as detection of the arterial near wall [14]. Moreover,
our methodology produces an average improvement of 0.3μm in locating of the
arterial far wall, over results of Calderon et al. On the other hand, in the near
wall, our approach produces an average reduction of 0.7μm. However, this result
is generated at the expense of correctly detecting the AL in 34 USIs beyond those
from the original methodology. Besides, additional number of images consists of
USIs with features that generate greater difficulty in the discrimination process
of the AL; which is markedly accounted for in results reported for our algorithm,
and detection failures for the algorithm of Calderon et al.

It is worth mentioning that the algorithmic complexity of the hypothesis
testing in (6) and (8) comes from the least squares solutions, which are of
O(m2(N1+N2)). Calculation of Hessian determinants in (6) and (8) are ofO(m3)
but, given that in our tests m = 3, we consider only the former. Also, calculating
the MVC in (9) is of O(m2Nj), coming from the least squares fitting, as well.
Meanwhile, the stages of the methodology with bigger complexity order, the
edge detection and the MST calculation, have corresponding O(k2sNColsNRows)
(being k2s the size of the convolutional kernel) and O(N2 log(N)), respectively.

Considering the above and that the edge detector is applied to the whole USI,
that the MST is calculated from all the USI borders, and that the hypothesis
testing and the MVC are calculated for only a few trajectories, it follows that
the complexity we added to the methodology of Calderon et al. is not significant
because O(k2sNColsNRows) > O(N2 log(N)) >> O(m2(N1 + N2)) + O(m2Nj)
due to NColsNRows >> N1, N2, Nj.

8 Conclusions

We presented a technique for automatic arterial lumen detection in carotid and
brachial ultrasound images, which proposes a bayesian and a minimum variance
criteria to address some flaws in methodology by Calderon et al. in [2].

Methodology in this work, as well as the original one, is robust to arterial
morphology and orientation in an ultrasound image but, unlike the original, is
robust with relation to discontinuities or cuts in the arterial edges. However, it
is vulnerable to arterial pathologies or abnormal echogenic characteristics.

It should be noted that both our proposal and the original one, find the limit
of their application in the edge detection algorithm. If this algorithm is unable to
detect the arterial edges, for instance due to noise, the arterial lumen detection
methodology will also be unable to select the correct arterial lumen.

Finally, in a laptop with an Intel R© CoreTM i5 at 2.30GHz processor, 4GB of
memory, and software developed (but not yet speed-optimized) with the Open
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Java Development Kit 7, on a Debian GNU/Linux system with a 64-bit kernel
version 3.2.0, our technique processes each ultrasound image in a variable time
up to 30 seconds. Nevertheless, we believe that real-time execution is possible,
by means of process optimization and parallel processing use.
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