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Abstract. Active contour model is an image segmentation technique
that uses the evaluation of internal and external forces to be attracted
towards the edge of a target object. In this paper a novel image segmen-
tation method based on differential evolution and active contours with
shape prior is introduced. In the proposed method, the initial active
contours have been generated through an alignment process of reference
shape priors, and differential evolution is used to perform the segmen-
tation task over a polar coordinate system. This method is applied in
the segmentation of the human heart from datasets of Computed To-
mography images. To assess the segmentation results compared to those
outlined by experts and by different segmentation techniques, a set of
similarity measures has been adopted. The experimental results suggest
that by using differential evolution, the proposed method outperforms
the classical active contour model and the interactive Tseng method in
terms of efficiency and segmentation accuracy.

Keywords: Active Contour Model, Differential Evolution, Human
Heart, Image Segmentation, Shape prior.

1 Introduction

In clinical practice the Computed Tomography (CT) scanning is an effective
method for the monitoring and diagnosis of cardiac disease. The process carried
out by cardiologists can be subjective and time-consuming because it is based
on a visual examination followed by a manual delineation of the human organ.
Due to this, the application of automatic image segmentation methods plays an
important and challenging role.

In recent years, numerous approaches have been introduced for the automatic
medical image segmentation such as, region growing in pelvic injuries [1], tem-
plates for atlas in radiotherapy [2], watershed transform for tumors in mammo-
grams [3], and active contour model in mammographic images [4] and human
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prostate [5]. The active contour models (ACM) was introduced by [6] and it
consists of an energy-minimizing spline composed of control points also called
snaxels. This spline evolves through time according to the shape of a target
object by evaluating internal and external forces. The traditional ACM imple-
mentation presents two shortcomings, firstly, the initialization of snaxels must
be close to the target object, otherwise, failure of convergence will occur and,
secondly, ACM is prone to be trapped into local minima because of the presence
of noise. To solve these shortcomings some improvements have been suggested
to adapt different methods working together with ACM including graph cut [7],
statistical methods [8], population-based methods such as genetic algorithms
[9,10] and particle swarm optimization (PSO) [11,12]. The performance of the
ACM with population-based methods is suitable since the ACM becomes more
robust, stable and efficient in the local minima problem.

Differential Evolution (DE) is a population-based method proposed by [13,14]
similar to evolutionary algorithms. DE has become very popular to solve opti-
mization problems with nonlinear functions with low computational time. In
the classical implementation, the efficiency of the obtained results directly de-
pends of three main parameters such as population size, differentiation factor
and crossover rate. As DE is easy to implement, not computationally expensive
and robust in the presence of noise, it has been used in many real-world appli-
cations including text summarization [15], job shop scheduling problem [16] and
parameter estimation for a human immunodeficiency virus (HIV) [17].

In this paper, we introduce a novel image segmentation framework based on
the theory of Active Contour Models with shape prior and Differential Evolu-
tion. The proposed framework is an adaptation of [18], here we use DE instead
PSO to perform the optimization task increasing the exploitation capability re-
garding the classical Active Contour Model and the interactive Tseng method.
Additionally, this framework uses the alignment process proposed in [19] to ob-
tain an initial shape contour of the target object, which is scaled to different
size to generate potential solutions. This proposed framework is applied in the
segmentation of the human heart on Computed Tomography images from differ-
ent patients, and the segmentation results are evaluated according to different
similarity measures with respect to regions outlined by experts.

The paper is organized as follows. In Section 2, the fundamentals of the classi-
cal implementation of ACM and Differential Evolution are introduced. In Section
3 the proposed image segmentation framework is presented, along with a set of
similarity measures. The experimental results are discussed in Section 4, and
from the similarity analysis conclusions are given in Section 5.

2 Background

In this section, the fundamentals of the Active Contour Model and Differential
Evolution optimization method are described in detail.
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2.1 Active Contour Models

The traditional Active Contour Model (ACM) is a parametric curve that can
move within a spatial image domain where it was assigned [6]. This curve is
defined by p(s, t) = (x(s, t), y(s, t)), s ∈ [0, 1], where it evolves through time t to
minimize the total energy function given by the following:

Esnake =

∫ 1

0

[Eint(p(s, t)) + Eext(p(s, t))]ds (1)

This energy function consists of two energies, the internal energy Eint to
maintain the search within the spatial image domain and to control the shape
modification of the curve, and the external energy Eext, which is defined by the
particular gradient features of the image. On the other hand, the computational
implementation of the traditional ACM uses a set of n discrete points {pi|i =
1, 2, . . . , n}, and the energy function is given by (2), which evaluates the actual
control point to minimize the ki index in the Wi searching window using (3).

Ei,j = Eint + Eext (2)

Esnake =

n∑
i=1

Ei,ki , ki = argmin
j

(Ei,j), j ∈ Wi (3)

Because of the traditional ACM presents the drawbacks of initialization and
local minima, Chan & Vese [20] proposed the integration of a shape prior con-
straint within the traditional ACM. This method is given by the following:

ET = w1E1 + w2E2 + w3E3 (4)

where ET is the total energy function composed of the energies E1, E2, E3 and
their weighting factors w1, w2, w3. E1 represents the active contour, E2 is the
shape energy defined as the difference between the active contour and the shape
template expressed as follows:

E2 =

∫
Ω

(
H(φ)−H(ϕT (B

T ))
)2

dxdy (5)

where Ω represents the image domain, H(·) is the Heaviside function, φ is the
signed distance function, ϕT is the deformed template and BT is the transfor-
mation matrix consisting of translation [tx, ty]

T in the horizontal and vertical
axes, the scaling factor [s] and the rotation angle parameter [θ], as follows:

BT =

⎡
⎣1 0 tx
0 1 ty
0 0 1

⎤
⎦

︸ ︷︷ ︸
M(a,b)

×
⎡
⎣ s 0 0
0 s 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
H(s)

×
⎡
⎣ cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
R(θ)

(6)
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Finally, the energy E3 represents the image-based force with an image inten-
sity I and the gradient operator ∇ calculated as follows:

E3 =

∫
Ω

(∇H(φ)−∇I)2dxdy (7)

The three energies are iteratively evaluated until the difference between the
previous and actual segmented object becomes stable. Although the initialization
drawback of the traditional ACM is solved through the Chan & Vese method, this
method remains prone to be trapped into local minima. A suitable alternative to
overcome this drawback is to use population-based methods such as Differential
Evolution, which is described in the following Section.

2.2 Differential Evolution

Differential evolution is a stochastic real-parameter method proposed by [13,14]
to solve numerical global optimization problems. DE consists of a set of potential
solutions, called individuals X = {x1, x2, . . . , xNp}, where Np is the population
size. The individuals are iteratively improved by using different variation op-
erators, and the solution is chosen to be the individual with the best fitness
according to an objective function.

The main idea of the DE method consists of the mutation, crossover and se-
lection operators based on the floating-point encoding. The mutation operator
is used to create a mutant vector Vi,g+1 at each generation g based on the distri-
bution of the current population {Xi,g|i = 1, 2, . . . , Np} through the following
strategy,

Vi,g+1 = Xr1,g + F (Xr2,g −Xr3,g), r1 �= r2 �= r3 �= i (8)

where F is the differentiation factor, and r1, r2 and r3 represent the indexes of
three different individuals and uniformly selected from the set {1,. . . ,Np}. The
second operator is the crossover, which uses (9) to create the trial vector Ui,g+1

as follows:

Ui,g+1 =

{
Vi,g+1, if r ≤ CR
Xi,g , if r > CR

(9)

where r represents a uniform random value on the interval [0, 1], which is com-
pared with the CR (crossover rate) parameter. If r is bigger than CR, the current
information of individual Xi,g is preserved, otherwise the information from the
mutant vector Vi,g+1 is copied to the trial vector Ui,g+1. Subsequently, the se-
lection procedure is applied by using (10). This procedure selects according to a
fitness function, the better one between the trial vector Ui,g+1 and the current
individual Xi,g.

Xi,g+1 =

{
Ui,g+1, if f(Ui,g+1) < f(Xi,g)
Xi,g , otherwise

(10)
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According to the previous description, the traditional DE method is described
below.

1. Initialize number of generations G, population size Np, value of differentia-
tion factor F , and value of crossover rate CR.

2. Initialize each individual Xi.
3. For each individual Xi,g , where g = {1, . . . , G}:

(a) Calculate Vi,g+1 by using the mutation step (8).
(b) Assign Ui,g+1 according to the crossover operator (9).
(c) Update Xi,g+1, if Ui,g+1 is better than Xi,g by applying the selection

step (10).
4. Stop if the convergence criterion is satisfied (e.g., stability or number of

generations).

3 Proposed Image Segmentation Framework

The proposed framework based on the theory of Active Contour Models and Dif-
ferential Evolution is described in Section 3.1. Moreover, to evaluate the perfor-
mance of the segmentation results, the Jaccard and Dice indexes are introduced
in Section 3.2.

3.1 Scaled Active Contours Driven by Differential Evolution

Because of the disadvantages of the classical active contour model discussed
above, Differential Evolution and scaled templates have been adopted. These
templates are acquired from an alignment process of reference images to over-
come the initialization drawback and DE is used to solve the local minima prob-
lem. Since the methodology of the proposed framework allows directly apply the
optimization method in the segmentation problem, the advantages of robustness,
efficiency and low computational time are inherently preserved. In Figure 1 the
segmentation process performed by the proposed framework is described below.

The proposed framework consists on three steps. Firstly, the construction of
a shape template by using an alignment process of a set of reference images is
required. This alignment process consists in the estimation of the parameters
[a, b, s, θ]T according to [19] as follows:

⎡
⎣ x̃
ỹ
1

⎤
⎦ = M(a, b)×H(s)×R(θ)×

⎡
⎣x
y
1

⎤
⎦ (11)

where M(a, b) represents the translation matrix on the horizontal x and vertical
y axes, H(s) is the scale matrix and R(θ) is the rotation matrix. The product of
these matrices is used to apply the gradient descent method in order to minimize
the following energy function:

Ealig =

n∑
i=1

n∑
j=1,j �=i

{∫ ∫
Ω(Ĩ

i − Ĩj)2dA∫ ∫
Ω(Ĩ

i + Ĩj)2dA

}
(12)
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Fig. 1. Process of the proposed image segmentation method

where Ω represents the image domain and Ĩ represents the transformed image.
The final procedure in this step involves obtaining the final shape template,
which is acquired through the maximum shape boundary from the whole set of
superimposed transformed images.
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Secondly, a preprocessing stage is performed. We use a 2D median filter (3×3
window size) to remove the noise from image. Then, the Canny edge detector is
applied with the parameters σ = 1.3, Tl = 10.0 and Th = 30.0 experimentally
tuned to preserve the real edges of the human heart from the background image.
Subsequently, the Euclidean distance map (EDM) [21] is computed as poten-
tial surface to perform the optimization task. The EDM assigns high potential
values to image pixels located far from the human heart, and low potential val-
ues (ideally zero) to pixels located close to the heart. On the resulting EDM,
the automatic initialization process is performed through the maximum mutual
information between the final template and the current test image. The n ini-
tial scaled active contours are generated by scaling the final template from the
previous alignment process. The number of scaled active contours has to be con-
sidered assuming that the human heart is confined within them. These scaled
contours must be discretized by a number m of control points to smooth and
adapt the resulting contour to the shape of the target object.

To perform the optimization process, the control points are assigned as in-
dividuals to conform m populations P . Each population is composed of control
points of different contours with the same position label. The final step of the
proposed framework consists on the numerical optimization followed by the im-
age segmentation result. The numerical optimization is performed on the Eu-
clidean distance map (range [0,255]), which represents the fitness function in
the optimization process. Differential Evolution is applied for each population
Pi separately in order to minimize the nearest edge sectional solution. If the
DE strategy for each population Pi is finished, the final segmentation result is
acquired by connecting the best individual of each population to each other.

The proposed image segmentation framework can be implemented by using
the following procedure:

1. Align reference images according to [19] and obtain final template.

2. Perform maximum mutual information to positioning the final template.

3. Initialize parameter n of scaled active contours and parameter m of control
points.

4. Initialize the DE parameters: generations, differentiation factor and crossover
rate.

5. Generate m populations assigning the control points as individuals.

6. For each population Pi:

(a) Apply restriction of the search space to ignore improper solutions.

(b) Evaluate each individual in fitness function (EDM).

(c) Calculate Vi,g+1 by using the mutation step (8).

(d) Assign Ui,g+1 according to the crossover operator (9).

(e) Update Xi,g+1, if Ui,g+1 is better than Xi,g by applying the selection
step (10).

7. Stop if the convergence criterion is satisfied (e.g., stability or number of
generations).
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3.2 Validation Metrics

To assess the performance of the proposed framework on medical images, Jac-
card and Dice indexes have been adopted to analyze the segmentation results
between the regions outlined by experts and the regions obtained by computa-
tional methods.

The Jaccard J(A,B) and Dice D(A,B) indexes are similarity measures used
for binary variables [3], which are defined in the range [0, 1] and they are com-
puted using (13) and (14), respectively. In our tests, A represents the regions
outlined by experts (ground truth) and B represents the automatic segmented
region by computational methods.

J(A,B) =
A ∩B

A ∪B
(13)

D(A,B) =
2(A ∩B)

A+B
(14)

In these indexes, if the regions A and B are completely superimposed the
obtained result is 1.0, otherwise, if these two regions are completely different the
obtained result is 0.

In Section 4, the segmentation results obtained from the proposed framework
on computed tomography images are analyzed by the similarity metrics.

4 Experimental Results

In this section, the proposed image segmentation framework is applied for seg-
menting the human heart in Computed Tomography images. The computa-
tional simulations are performed with an Intel Core i3 with 4Gb of memory
and 2.13Ghz using the GNU Compiler Collection (C++) version 4.4.5.

In Figure 2(a) a CT image of the human chest is illustrated, in order to have
better understanding of the segmentation task. Figure 2(b) shows the resulting
Euclidean distance map of the test image, in which the optimization process
is applied. In Figures 2(c) and (d) the human heart outlined by expert 1 and
expert 2 are presented to have reference ground truth for the experiments with
the proposed methodology.

In Figure 3 the human heart segmentation results on a subset of Computed
Tomography images are introduced. The whole dataset is composed of 144 CT
images with size 512 × 512 pixels from different patients. In Figure 3(a) the man-
ual delineations of the human heart made by cardiologists are presented. Figure
3(b) illustrates the segmentation results obtained via the traditional implemen-
tation of Active Contour Model, where the fitting problem and local minima
problem are clearly shown. The ACM parameters were set according to [11] as
45 control points, α = 0.017, β = 0.86 and γ = 0.45, obtaining an average ex-
ecution time of 0.172s per image. Figure 3(c) presents the segmentation results
obtained through the interactive Tseng method, in which, each control point is
provided interactively by the user. The parameters of this implementation were
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(a) (b)

(c) (d)

Fig. 2. CT image: (a) test image, (b) Euclidean distance map of test image, (c) human
heart outlined by expert 1 and (d) human heart outlined by expert 2

set as 45 control points, window size 30×30 pixels, and for each control point
9 particles are created, given an average execution time of 0.214s per image.
Even though the use of a square matrix in the Tseng method obtained suitable
segmentation results, this method presents problems to fit the real human heart
boundary accurately. Finally, in Figure 3(d) the segmentation results obtained
by using the proposed segmentation framework presents an appropriate human
heart segmentation. This method avoid the local minima and it fits the human
heart accurately with parameters set as number of scaled contours = 9, number
of control points = 45, iterations = 10, crossover rate = 0.9, and the differentia-
tion factor = 0.5, obtaining an average execution time of 0.223s per image. The
differentiation factor was experimentally tuned to perform local exploitation and
reduce the number of improper solutions.

From the aforementioned dataset of CT images, in Table 1 the average of the
segmentation results obtained by the classical ACM, interactive Tseng method
and our proposed framework is compared to those regions delineated by cardiol-
ogists. The similarity results suggest that the proposed method can lead to more
efficiency in human heart segmentation with respect to the comparative meth-
ods, which can significantly help cardiologists in clinical practice. The quality
of the human heart segmentation results obtained with the proposed framework
depends on parameter selection. We used a experimentally tuned value as dif-
ferentiation factor to perform local exploitation, and the constant parameters in
our experiments are suitable for other images, since the DE method is directly
applied to minimize one edge sectional solution for each polar area.
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(a)

(b)

(c)

(d)

Fig. 3. CT images (human heart segmentation): (a) manual delineation by experts,
(b) results of traditional ACM, (c) results of interactive Tseng method and (d) results
of proposed implementation
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Table 1. Average similarity measure with the Jaccard and Dice indexes among the hu-
man heart segmented by the traditional ACM, interactive Tseng method, our proposed
method, and the regions outlined by experts of the CT dataset

Comparative Similarity Measure
Studies Jaccard index (J) Dice index (D)

ACM vs Experts 0.6666 0.8000
Tseng vs Experts 0.8000 0.8888

Proposed method vs Experts 0.8367 0.9111

5 Conclusions

In this paper, a novel image segmentation framework based on the theory of
active contour models with shape prior and differential evolution has been intro-
duced. The proposed framework uses an alignment process to generate different
scaled contours according to the shape of the target object. Subsequently, dif-
ferential evolution is used to perform the segmentation task within constrained
polar sections. This novel framework was used to segment the human heart from
Computed Tomography images allowing to overcome the local minima problem
and the sensitivity to initial position regarding the comparative methods. To
assess the segmentation results obtained through the proposed framework, Jac-
card and Dice indexes were used. According to the experimental results, the
proposed framework is suitable to the human heart segmentation, since the ex-
ploitation capability of differential evolution is efficient to overcome the local
minima problem to fit the heart boundary accurately.
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