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Abstract. This work proposes an Estimation of Distribution Algorithm
(EDA) that incorporates an explicit separation between the exploration
stage and the exploitation stage. For each stage a probabilistic model
is required. The proposed EDA uses a mixture of distributions in the
exploration stage whereas a multivariate Gaussian distribution is used
in the exploitation stage. The benefits of using an explicit exploration
stage are shown through numerical experiments.

Keywords: Estimation of Distribution Algorithm, Exploration stage,
Exploitation stage.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [10] are metaheuristics designed
for searching good solutions in optimization problems. Similar to other meta-
heuristics of Evolutionary Computation (EC), EDAs are iterative algorithms
based on the use of populations. However, an important characteristic of EDAs
is the incorporation of probabilistic models in order to represent the dependen-
cies among the decision variables of selected individuals. Once a probabilistic
model is learnt by an EDA, it is possible to replicate dependencies in the new
population by sampling from the model.

Algorithm 1 shows a pseudocode for EDAs. According to step 4, the de-
pendencies among decision variables are taken into account by means of the
probabilistic distribution Mt. Step 5 shows how the dependence structure of the
selected individuals is transferred to the new population, which greatly modifies
the performance of an EDA.

As shown in Algorithm 1, step 4 involves an important and critical proce-
dure in EDAs. For this reason, much of the research in EDAs has been focused
precisely on proposing and enhancing new probabilistic models with many contri-
butions in discrete and continuous domains [9,12,3]. Some of these probabilistic
models are based on Bayesian and Markov networks [14,5,11]. Other EDAs have
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Algorithm 1. Pseudocode for EDAs

1: Initialize the generation counter t←− 0
Generate the initial population P0 with N individuals at random.

2: Evaluate population Pt using the cost function.
3: Select a subset St from Pt according to the selection method.
4: Estimate a probabilistic modelMt from St.
5: Generate the new population Pt+1 by sampling from the modelMt

Assign t←− t+ 1.
6: If stopping criteria are not reached go to step 2.

used Gaussian assumptions [6,7,1,2], such as Gaussian kernels, Gaussian mix-
ture models and the multivariate Gaussian distribution. The interested reader is
referred to [8,4] for knowing more about the probabilistic models used in EDAs.

Although the active research in EDAs has been oriented to model adequately
dependencies among decision variables [13], the generation of individuals in the
exploration stage has not been investigated. This observation gives an opportu-
nity for proposing a new exploration procedure and for studying its effects in
EDAs.

The structure of the paper is the following: Section 2 describes the proposal
of this work, Section 3 shows some preliminary results of the implementation of
the exploration stage, Section 4 presents the experimental setting to solve five
test global optimization problems, and Section 5 resumes the conclusions.

2 The Exploration Stage

According to Algorithm 1, the initial population is generated at random. This
means that the first population is generated by sampling from the uniform distri-
bution. However, once the first population is generated, the following populations
are generated by sampling from a probabilistic model Mt which is in general
different than the uniform distribution. A common practice in EDAs is that the
probabilistic model Mt is selected beforehand from a family of probabilistic dis-
tributions. Therefore, the immediate transition between the uniform distribution
and the probabilistic model Mt could affect the performance of the exploration
stage. This work investigates the effects of having an explicit separation between
the exploration stage and the exploitation stage.

The proposal of incorporating an explicit exploration stage in EDAs requires
the support of an adequate estrategy. Firstly, the number of generations for
the exploration stage must be defined in advance. For example, the number of
generations can be given by a fixed number. Secondly, a probabilistic model is
needed in order to generate populations in the exploration stage. The natural
choice for exploration purposes is a probabilistic distribution with high variance.
However, the progress of the exploration stage must be reflected in the variance
of the probabilistic model.

This work proposes the incorporation of a mixture of distributions for the
exploration stage. The mixture is formed with the uniform distribution and
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with a distribution based on a modified histogram. The uniform distribution
allows to generate individuals with high variance. The histogram is a statistics
tool for density estimation and its implementation is well known. The histogram
is used as a model for the selected individuals in each generation within the
exploration stage. However, in order to favor the generation of individuals with
high variance, we propose the use of a histogram with similar height for all bars.
Figure 1 illustrates this idea. The total area of each histogram, (a) and (b), is
normalized to 1.
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(a) Histogram (b) Modified histogram

Fig. 1. The modified histogram (b) is based on the initial histogram (a) and its rectan-
gles have the same height

The expression for the proposed mixture of distributions is given by:

Et = wt · U + (1− wt) · H ,with wt ∈ [0, 1]. (1)

The mixture (1) offers the following characteristics:

1. The initial weight of the uniform distribution U is the highest possible
whereas the weight of the modified histogram H is the lowest. This allows
to start the exploration stage with individuals sampled from a distribution
of high variance.

2. According to the advance of the exploration stage, the weight of the uniform
distribution U is decreased whereas the weight of the modified histogram H
is increased.

Algorithm 2 shows the inclusion of a procedure for the exploration stage in
EDAs. It can be noted that the number of 100 generations (step 2) and the
rule for decreasing the weight wt (step 7) are defined in this way to indicate
the extension of the exploration stage. Both the number of generations and the
expression for the weight can be changed by other values. On the other hand, it
can be also note that the exploitation stage has elitism whereas the exploration
stage has not elitism. However, the best individuals found during the process
of the exploration stage are used as the initial population for the exploitation
stage.
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Algorithm 2. Pseudocode for EDA with explicit exploration

1: Exploration stage
Initialize the weight wt ←− 1

2: for t = 1→ 100 do
3: Generate the population Pt with N individuals by sampling from the model Et

(see Eq. (1))
4: Evaluate population Pt using the cost function.
5: Select a subset St from Pt according to the selection method.
6: Estimate a modified histogram H from St.
7: Assign wt ←− 1− (t/100).
8: Select the best N individuals from all the previous generations and record them

in B.
9: end for
10: Exploitation stage

Assign Pt ←− B.
11: Evaluate population Pt using the cost function.
12: Select a subset St from Pt according to the selection method.
13: Estimate a probabilistic modelMt from St.
14: Generate the new population Pt+1 by sampling from the modelMt

15: Set Pt+1 with the best N individuals from Pt+1 ∪ Pt

Assign t←− t+ 1.
16: If stopping criteria are not reached go to step 2.

3 Preliminary Results

In order to gain some insight about how the inclusion of the exploration stage
modifies the performance of an EDA, we compare two EDAs in two test pro-
blems. The comparison is done through the Estimation of Multivariate Normal
Algorithm (EMNA) and the EMNA with the exploration stage (EMNA+E). The
test problems are the Rosenbrock and Sphere functions. These test functions are
described in Fig. 2.

The benchmark test suite includes separable functions and non-separable func-
tions, from which there are unimodal and multimodal functions. In addition, the
search domain is asymmetric. All test functions are scalable. We use test prob-
lems in 10 dimensions. Each algorithm is run 30 times for each problem. The
population size is 100 and the maximum number of generations is 150.

A graphical comparison between EMNA and EMNA+E is shown in Figure 3.
According to these graphical results, the EMNA has a better performance than
the EMNA+E in the first 100 generations. However, after the exploration stage
is done, the performance of the EMNA+E outperforms the performance of the
EMNA.

4 Experiments

Five test problems are used to compare an EDA with exploration against a typi-
cal EDA without explicit exploration. These algorithms are, respectively, the
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Fig. 2. Names, mathematical definition, search domains, global minimum and proper-
ties of the test functions

EMNA+E and the EMNA. The multivariate Gaussian distribution is incorpo-
rated as probabilistic model to the EMNA and the same distribution is used for
the exploitation stage in the EMNA+E. Algorithm 1 is the basis for the EMNA
whereas Algorithm 2 is the corresponding basis for the EMNA+E. In order to
make a fair comparison, the elitism in the exploitation stage of EMNA+E is also
included in the EMNA.

The test problems used in the experiments are the Ackley, Griewangk, Rast-
rigin, Rosenbrock, and Sphere functions. Fig. 2 describe the test functions. The
algorithms are tested in different dimensions and asymmetric search domain.
Each algorithm is run 30 times for each problem. The population size is ten
times the dimension (10 ∗ d). The maximum number of evaluations is 100,000.
However, when convergence to a local minimum is detected the run is stopped.
Any improvement less than 1×10−6 in 25 iterations is considered as convergence.
The goal is to reach the optimum with an error less than 1× 10−4.

The results in dimensions 4, 6, 8, 10, 15 and 20 for non-separable functions
are reported in Table 1, whereas the results for separable functions are reported
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Fig. 3. The horizontal axis represents the generation and the vertical axis represents
the fitness in logarithmic scale (base 10). (a) The fitness performance of EMNA. (b)
The fitness performance of EMNA+E. (c) The dashed line is used for the average per-
formance of EMNA and the solid line is used for the average performance of EMNA+E.

in Table 2. Both tables report descriptive statistics for the fitness values reached
in the all runs. The fitness value corresponds to the value of a test problem.
For each algorithm and dimension, the minimum, median, mean, maximum,
standard deviation and success rate are shown. The minimum (maximum) value
reached is labelled best (worst). The success rate is the proportion of runs in
which an algorithm found the global optimum.

Besides the descriptive results shown in Tables 1 and 2, a hypothesis test is
conducted to properly compare the performance of EMNA+E against EMNA.
The statistical comparisons are for the algorithms with the same test prob-
lem and the same dimension. The t-test is employed to compare the fitness
average between EMNA+E and EMNA. When a hypothesis test indicates that
EMNA+E is significantly better than the EMNA, the corresponding average in
in Tables 1 and 2 is marked with an asterix (*).

Another measure that can help in the comparisons of the algorithms is the
success rate. Tables 1 and 2 show respectively the success rate in each dimension
for non-separable and separable functions. If the success rate of EMNA+E is
greater than the success rate of EMNA, it is marked with a dagger (†).
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Table 1. Descriptive results of the fitness for non-separable functions

Algorithm d Best Mean Median Worst Std. Success
Dev. Rate

Ackley

EMNA

4 1.86E-7 5.28E-1 1.42E-3 4.30E+0 1.11E+0 0.40
6 5.01E-5 1.57E+0 8.50E-1 5.60E+0 1.72E+0 0.00
8 1.65E-2 3.20E+0 3.22E+0 9.14E+0 2.41E+0 0.00
10 6.86E-1 3.85E+0 3.12E+0 8.53E+0 1.97E+0 0.00
15 1.34E+0 5.21E+0 5.54E+0 8.36E+0 1.60E+0 0.00
20 4.81E+0 7.09E+0 7.34E+0 1.00E+1 1.33E+0 0.00

EMNA + E

4 2.71E-7 6.29E-3** 9.24E-7 1.49E-1 2.77E-2 0.60 †
6 6.46E-7 4.57E-2** 2.22E-3 5.76E-1 1.14E-1 0.23 †
8 7.26E-7 1.57E-1** 2.69E-2 1.32E+0 3.11E-1 0.03 †
10 7.12E-6 3.59E-1** 1.60E-1 1.59E+0 4.42E-1 0.00
15 2.15E-2 1.96E+0** 1.81E+0 3.25E+0 8.35E-1 0.00
20 2.10E+0 3.84E+0** 3.66E+0 6.44E+0 1.23E+0 0.00

Griewangk

EMNA

4 5.26E-2 1.64E+0 1.68E-1 1.28E+1 3.31E+0 0.00
6 9.41E-2 3.58E+0 4.67E-1 3.39E+1 7.25E+0 0.00
8 2.49E-1 9.65E+0 5.24E+0 9.45E+1 1.73E+1 0.00
10 9.86E-1 1.33E+1 8.47E+0 5.01E+1 1.36E+1 0.00
15 7.46E+0 5.97E+1 5.46E+1 1.21E+2 2.44E+1 0.00
20 6.36E+1 1.08E+2 1.06E+2 2.03E+2 3.05E+1 0.00

EMNA + E

4 4.95E-2 1.27E-1** 1.23E-1 2.43E-1 5.09E-2 0.00
6 1.49E-1 2.86E-1** 3.01E-1 4.10E-1 7.07E-2 0.00
8 3.36E-5 3.59E-1** 3.53E-1 6.70E-1 1.96E-1 0.00
10 1.37E-3 5.08E-1** 1.89E-1 2.90E+0 7.50E-1 0.00
15 1.54E+0 9.27E+0** 7.03E+0 2.73E+1 7.28E+0 0.00
20 4.32E+0 2.97E+1** 3.04E+1 6.46E+1 1.49E+1 0.00

Rosenbrock

EMNA

4 3.32E-7 3.01E+0 1.23E+0 4.32E+1 7.76E+0 0.03
6 3.26E-5 1.24E+1 4.28E+0 1.19E+2 2.34E+1 0.00
8 1.26E-1 7.82E+2 4.61E+1 1.22E+4 2.31E+3 0.00
10 7.24E+0 3.24E+3 1.28E+2 3.71E+4 8.25E+3 0.00
15 4.36E+2 3.14E+4 1.47E+4 1.64E+5 4.50E+4 0.00
20 7.12E+2 1.05E+5 6.40E+4 5.45E+5 1.30E+5 0.00

EMNA + E

4 4.13E-5 1.77E+0 1.37E+0 9.71E+0 2.01E+0 0.00
6 1.01E+0 4.53E+0* 4.01E+0 1.32E+1 2.12E+0 0.00
8 2.05E+0 1.56E+1* 8.20E+0 4.44E+1 1.38E+1 0.00
10 7.03E+0 3.51E+1* 1.29E+1 2.72E+2 5.09E+1 0.00
15 1.46E+1 1.35E+2** 7.45E+1 1.31E+3 2.37E+2 0.00
20 7.73E+1 8.23E+2** 4.00E+2 4.26E+3 8.83E+2 0.00

* denotes EMNA+E is significantly better than the EMNA, at α = 0.05
** denotes EMNA+E is significantly better than the EMNA, at α = 0.01
† denotes that the EMNA+E has greater success rate than the EMNA
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Table 2. Descriptive results of the fitness for separable functions

Algorithm d Best Mean Median Worst Std. Success
Dev. Rate

Rastrigin

EMNA

4 3.57E-7 4.74E+0 3.69E+0 2.09E+1 4.86E+0 0.07
6 1.99E+0 1.24E+1 1.04E+1 3.32E+1 6.76E+0 0.00
8 9.95E+0 3.10E+1 2.72E+1 8.77E+1 1.63E+1 0.00
10 2.17E+1 5.01E+1 4.81E+1 1.01E+2 1.94E+1 0.00
15 6.45E+1 1.15E+2 1.07E+2 2.16E+2 3.83E+1 0.00
20 1.35E+2 2.37E+2 2.27E+2 4.58E+2 7.26E+1 0.00

EMNA + E

4 1.30E+0 3.91E+0 3.92E+0 7.91E+0 1.36E+0 0.00
6 4.79E-7 1.08E+1 1.04E+1 1.57E+1 3.30E+0 0.03 †
8 1.30E+1 1.99E+1** 1.92E+1 2.75E+1 4.15E+0 0.00
10 8.26E-2 3.27E+1** 3.39E+1 4.58E+1 8.23E+0 0.00
15 5.16E+1 7.22E+1** 7.38E+1 8.48E+1 9.23E+0 0.00
20 8.67E+1 1.20E+2** 1.22E+2 1.54E+2 1.45E+1 0.00

Sphere

EMNA

4 4.46E-7 3.70E+3 3.13E+1 4.83E+4 9.38E+3 0.17
6 9.20E-7 1.27E+4 4.76E+3 1.02E+5 2.08E+4 0.03
8 1.16E-2 3.66E+4 2.90E+4 2.02E+5 4.52E+4 0.00
10 1.14E+4 9.86E+4 7.30E+4 3.09E+5 8.14E+4 0.00
15 9.27E+4 2.04E+5 1.94E+5 3.65E+5 7.13E+4 0.00
20 1.43E+5 3.94E+5 3.80E+5 6.51E+5 1.42E+5 0.00

EMNA + E

4 7.18E-8 6.21E-3* 8.64E-7 1.61E-1 2.94E-2 0.53 †
6 2.08E-7 1.25E+0** 3.66E-4 2.58E+1 4.70E+0 0.33 †
8 4.99E-7 9.94E+1** 6.34E+0 2.11E+3 3.83E+2 0.03 †
10 3.29E-2 9.01E+2** 1.24E+2 7.68E+3 1.82E+3 0.00
15 1.16E+3 3.25E+4** 3.12E+4 8.48E+4 2.22E+4 0.00
20 7.24E+3 1.26E+5** 1.20E+5 2.28E+5 6.04E+4 0.00

* denotes EMNA+E is significantly better than the EMNA, at α = 0.05
** denotes EMNA+E is significantly better than the EMNA, at α = 0.01
† denotes that the EMNA+E has greater success rate than the EMNA

Tables 1 and 2 show a total of 30 comparisons. Out of the 18 comparisons for
the non-separable functions, the EMNA+E excels in 17 cases. Similarly, out of
the 12 comparisons for the separable functions, the EMNA+E excels in 10 cases.
These results give an evidence of the benefits achieved by the incorporation of
the exploration stage in EDAs. However, regarding the number of evaluations,
Tables 3 and 4 show that EMNA+E requires more function evaluations than the
EMNA.
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Table 3. Descriptive results of the number of evaluations for non-separable functions

Algorithm d Best Mean Median Worst Std.
Dev.

Ackley

EMNA

4 1.52E+3 2.07E+3 2.20E+3 2.56E+3 3.78E+2
6 3.42E+3 4.11E+3 4.02E+3 5.58E+3 4.19E+2
8 5.52E+3 6.34E+3 6.12E+3 8.48E+3 6.95E+2
10 7.60E+3 8.80E+3 8.35E+3 1.54E+4 1.56E+3
15 1.17E+4 1.52E+4 1.46E+4 2.16E+4 1.93E+3
20 2.02E+4 2.37E+4 2.33E+4 2.94E+4 2.22E+3

EMNA + E

4 5.04E+3 5.46E+3 5.20E+3 6.00E+3 4.00E+2
6 8.64E+3 9.45E+3 9.60E+3 9.90E+3 3.94E+2
8 1.24E+4 1.34E+4 1.34E+4 1.38E+4 2.52E+2
10 1.69E+4 1.73E+4 1.72E+4 1.80E+4 2.31E+2
15 2.73E+4 2.81E+4 2.78E+4 2.99E+4 6.78E+2
20 3.86E+4 4.01E+4 4.00E+4 4.22E+4 9.20E+2

Griewangk

EMNA

4 1.40E+3 2.64E+3 2.52E+3 5.32E+3 9.65E+2
6 2.34E+3 4.64E+3 3.90E+3 1.01E+4 1.85E+3
8 4.00E+3 8.52E+3 8.92E+3 1.17E+4 2.22E+3
10 5.20E+3 1.01E+4 1.03E+4 1.38E+4 1.93E+3
15 8.40E+3 1.33E+4 1.43E+4 1.56E+4 2.00E+3
20 1.28E+4 1.81E+4 1.78E+4 2.38E+4 2.15E+3

EMNA + E

4 5.00E+3 5.95E+3 5.64E+3 8.92E+3 9.07E+2
6 7.98E+3 9.30E+3 9.15E+3 1.20E+4 1.00E+3
8 1.10E+4 1.39E+4 1.29E+4 2.04E+4 2.96E+3
10 1.42E+4 2.11E+4 2.11E+4 2.58E+4 2.54E+3
15 2.25E+4 2.75E+4 2.81E+4 3.08E+4 2.32E+3
20 3.64E+4 3.75E+4 3.70E+4 4.04E+4 1.22E+3

Rosenbrock

EMNA

4 1.64E+3 2.70E+3 2.60E+3 3.52E+3 3.73E+2
6 3.84E+3 4.71E+3 4.47E+3 6.30E+3 6.22E+2
8 3.52E+3 6.91E+3 6.68E+3 9.92E+3 1.11E+3
10 7.80E+3 1.05E+4 1.01E+4 1.71E+4 1.84E+3
15 1.25E+4 1.69E+4 1.66E+4 2.42E+4 2.31E+3
20 1.60E+4 2.45E+4 2.46E+4 2.88E+4 2.49E+3

EMNA + E

4 5.48E+3 6.19E+3 6.16E+3 7.04E+3 2.64E+2
6 9.78E+3 1.02E+4 1.00E+4 1.14E+4 4.09E+2
8 1.37E+4 1.44E+4 1.44E+4 1.57E+4 5.07E+2
10 1.79E+4 1.90E+4 1.88E+4 2.11E+4 9.03E+2
15 2.49E+4 3.13E+4 3.14E+4 3.47E+4 1.85E+3
20 3.64E+4 4.39E+4 4.29E+4 5.38E+4 4.02E+3
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Table 4. Descriptive results of the number of evaluations for separable functions

Algorithm d Best Mean Median Worst Std.
Dev.

Rastrigin

EMNA

4 1.44E+3 2.49E+3 2.26E+3 5.80E+3 9.40E+2
6 2.46E+3 4.27E+3 3.93E+3 8.64E+3 1.42E+3
8 2.96E+3 5.50E+3 5.40E+3 1.16E+4 1.96E+3
10 4.30E+3 7.18E+3 6.90E+3 1.37E+4 2.44E+3
15 7.05E+3 1.11E+4 1.03E+4 2.58E+4 3.91E+3
20 8.60E+3 1.65E+4 1.49E+4 2.64E+4 5.04E+3

EMNA + E

4 5.00E+3 5.73E+3 5.60E+3 8.80E+3 8.19E+2
6 7.62E+3 9.21E+3 8.82E+3 1.51E+4 1.53E+3
8 1.08E+4 1.28E+4 1.28E+4 1.45E+4 1.07E+3
10 1.33E+4 1.58E+4 1.51E+4 2.65E+4 2.54E+3
15 2.01E+4 2.37E+4 2.34E+4 2.96E+4 2.43E+3
20 2.84E+4 3.36E+4 3.38E+4 4.04E+4 3.16E+3

Sphere

EMNA

4 1.24E+3 2.51E+3 2.82E+3 3.32E+3 6.04E+2
6 2.46E+3 4.68E+3 4.80E+3 5.16E+3 5.30E+2
8 6.32E+3 7.07E+3 7.12E+3 7.44E+3 2.51E+2
10 9.00E+3 9.48E+3 9.50E+3 9.90E+3 2.05E+2
15 1.49E+4 1.60E+4 1.61E+4 1.64E+4 2.78E+2
20 2.28E+4 2.34E+4 2.34E+4 2.40E+4 2.73E+2

EMNA + E

4 4.60E+3 5.21E+3 4.76E+3 6.08E+3 5.54E+2
6 7.86E+3 9.19E+3 9.60E+3 1.02E+4 9.05E+2
8 1.14E+4 1.40E+4 1.42E+4 1.46E+4 5.57E+2
10 1.77E+4 1.85E+4 1.86E+4 1.90E+4 3.72E+2
15 3.00E+4 3.04E+4 3.05E+4 3.11E+4 2.39E+2
20 4.22E+4 4.27E+4 4.26E+4 4.32E+4 2.98E+2

5 Conclusions

This work has introduced an explicit exploration stage for EDAs. In particu-
lar, the numerical implementation of the exploration stage has been done with
continuous decision variables in a well known EDA (EMNA). According to the
numerical experiments, the explicit separation between the exploration stage
and the exploitation stage (EMNA+E) can help achieving better fitness values.
Nonetheless, the benefit of including an exploration stage requires an increase of
function evaluations.

An important contribution of this paper is the design of a probabilistic model
for the exploration stage. The goal of the proposed model in the exploration
stage is to provide a new tool for finding an set of individuals that can be used
as initial population in the exploitation stage.

Although the statistical comparisons clearly indicate that the EDA with the
exploration stage has better performance than the typical EDA, the success
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rate shows that more experiments are necessary in order to identify where the
exploration stage have a positive impact in EDAs.
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