
F. Castro, A. Gelbukh, and M. González (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 64–80, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Study of Genetic Algorithms
to Solve the School Timetabling Problem

Rushil Raghavjee and Nelishia Pillay

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Pietermaritzburg Campus, KwaZulu-Natal, South Africa

{raghavjee,pillayn32}@ukzn.ac.za

Abstract. This paper examines the use of genetic algorithms (GAs) to solve the
school timetabling problem. The school timetabling problem falls into the cate-
gory of NP-hard problems. Instances of this problem vary drastically from
school to school and country to country. Previous work in this area has used
genetic algorithms to solve a particular school timetabling problem and has not
evaluated the performance of a GA on different problems. Furthermore, GAs
have not previously been applied to solving the South African primary or high
school timetabling problem. The paper presents a two-phased genetic algorithm
approach to solving the school timetabling problem and provides an analysis of
the effect of different low-level construction heuristics, selection methods and
genetic operators on the success of the GA approach in solving these problems
with respect to feasibility and timetable quality. The GA approach is tested on
a benchmark set of “hard” school timetabling problems, the Greek high school
timetabling problem and a South African primary and high school timetabling
problem. The performance of the GA approach was found to be comparable to
other methods applied to the same problems. This study has also revealed that
different combinations of low-level construction heuristics, selection methods
and genetic operators are needed to produce feasible timetables of good quality
for the different school timetabling problems. Future work will investigate me-
thods for the automatic configuration of GA architectures of both phases.

Keywords: Timetabling, genetic algorithms, combinatorial optimization, evolu-
tionary computation.

1 Introduction

Genetic algorithms have been successfully applied to solving combinatorial optimiza-
tion problems such as university course and examination timetabling problems[1], the
travelling salesman problem [2], and the bin packing problem [3] amongst others.
Given the success in these domains, this paper presents an investigation of genetic
algorithms in solving the school timetabling problem.

The school timetabling problem (STP) involves the scheduling of resources, or
combinations of resources, to timetable slots in such a manner that the hard con-
straints of the problem are met and the soft constraints minimized [4]. Resources for
this problem include classes, teachers and venues, amongst others. The requirements

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 65

of the problem include a specification of the number of times a particular teacher
must meet a class. Some versions of the problem do not require venue allocations to
be made while others include this constraint. Resources are allocated as class-teacher
(or class-teacher-venue) tuples to the different timetable periods. The hard constraints
of a problem are constraints that must be satisfied by a timetable in order for it to be
operable. A timetable meeting all the hard constraints of the problem is said to
be feasible. Examples of hard constraints include all class-teacher meetings must be
scheduled the required number of times in the specified venue; no clashes, i.e. a re-
source, namely, a teacher, class, or venue, must not be scheduled more than once in a
timetable period. The soft constraints on the other hand measure the quality of the
timetable. These constraints define characteristics that we would like the timetable to
possess but which may not always be possible. The aim is to minimize the number of
soft constraints violated and this value is a measure of the quality of the timetable, i.e.
the fewer soft constraints violated the better the timetable quality. A common soft
constraint is daily limits on the number of lessons taken by a class on a particular
subject and the number of lessons taught by a particular teacher. The hard and soft
constraints differ from one timetabling problem to the next to such an extent that in
some cases what may be defined as a hard constraint for one problem is a soft con-
straint for another and vice versa.

Genetic algorithms take an analogy from Darwin's theory of evolution. The stan-
dard genetic algorithm presented by Goldberg [5] implements the processes of initial
population, evaluation, selection and regeneration by means of genetic operators.
Elements of the population are represented as binary strings and each element, called
a chromosome, is randomly created. A measure of how close a chromosome is to the
solution is referred to as the fitness of a chromosome. The fitness is used to select
parents to create offspring of the successive generation. Fitness proportionate or rou-
lette wheel selection is traditionally used to choose parents. The reproduction, muta-
tion and crossover operators are usually used to create the offspring of each genera-
tion. As the field has developed, variations of the standard genetic algorithm have
emanated. These include the representation of chromosomes which now range from
binary strings and character strings to matrices, depending on the problem domain.
The effectiveness of tournament selection over fitness proportionate selection has also
been established. In addition to this, instead of probabilities of each genetic operator
being attached to each chromosome, application rates are set globally and applied in
the creation of each generation, e.g. 40% of each generation will be created using
mutation and 60% by means of crossover. Furthermore, implementation of genetic
algorithms with just mutation has also proven to be effective [6].

Various methods have been applied to solving different versions of the school
timetabling problem including tabu search, integer programming, constraint pro-
gramming and constraint satisfaction methods, simulated annealing, neural networks,
GRASP, tiling algorithms, the walk down jump up algorithm, bee algorithms and the
cyclic transfer algorithm [4]. Hybrid approaches have also been applied to solving the
school timetabling problem. Successful combinations of methods include randomized
non-ascendant search (RNA) and tabu search, tabu search and the Floyd-Warshall
algorithm, tabu search and graph colouring algorithms, beam search and branch and
bound techniques, simulated annealing and very large neighbourhood search [4].

66 R. Raghavjee and N. Pillay

The school timetabling problem differs from school to school and country to coun-
try. However previous work has used genetic algorithms to find a solution to a spe-
cific school timetabling problem. The study presented in this paper evaluates genetic
algorithms over different types of school timetabling problems. A two-phased ap-
proach, employing a GA in the first phase to evolve feasible timetables and a GA in
the second phase to improve the quality of timetables generated in the first phase, is
evaluated in solving the school timetabling problem.

The GA approach was tested on four different types of school timetabling prob-
lems, namely, the set of “hard” artificial timetabling problems made available by [6],
the Greek high school timetabling problem, a South African primary and high school
timetabling problem. It was found that combinations of different construction heuris-
tics, selection methods and mutation operators were needed to generate feasible time-
tables of good quality for different problems. Hence, there appears to be a need for
the automatic configuration of the GA architectures of both phases for the school
timetabling problem. This will be examined as part of future work.

The contributions made by the study presented in the paper are: an evaluation of
genetic algorithms over a set of different problems with varying characteristics, the
identification and evaluation of low-level construction heuristics for this domain, and
an evaluation of GAs in solving the South African school timetabling problems. The
following section provides an overview of previous work using evolutionary algo-
rithms to solve the school timetabling problem. The two-phased GA approach is pre-
sented in section 3. The methodology used to evaluate this approach is outlined in
section 4 and section 5 discusses the performance of this approach in solving the dif-
ferent school timetabling problems. A summary of the findings of the study and future
extensions of this work are presented in section 6.

2 Genetic Algorithms and School Timetabling

There has been a fair amount of research into using genetic algorithms to solve differ-
ent types of school timetabling problems including generated problems [7, 8, 9], the
Italian [10], Brazilian [11], German [12], Turkish [13], Greek [14] and Bosnian [15]
school timetabling problem. Each element of the population is generally a two-
dimensional array representing the timetable [8, 10, 13]. The fitness of an individual
is the number of constraint violations [15] or the weighted sum of the constraint viola-
tions [10, 14]. Either fitness proportionate selection [8, 9, 12, 14] or tournament selec-
tion [15] is used to choose parents for each generation. The genetic operators applied
to create the offspring of each generation are reproduction, mutation and crossover.

GAs have also been used in combination with other techniques to obtain solutions
to school timetabling problems. The h-HCCA genetic algorithm is used by Nurmi et
al. [16] to evolve timetables for Finnish schools. This GA incorporates the use of hill-
climbing in the mutation operator and simulated annealing to select timetable periods
to allocate tuples to. The GA implemented by Zuters et al. [17] uses a neural network
to calculate the fitness of the population. A combination of genetic algorithms and a
non-random ascent method (RNA) produced better results in solving a set of high
school timetabling problems than applications of these methods separately [18].

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 67

3 The Two-Phased GA Approach

A two-phased approach is taken in solving the school timetabling problem. The first
phase uses a genetic algorithm to produce feasible timetables (Phase I), the quality of
which is improved in the second phase by a second genetic algorithm (Phase II).
Trial runs conducted revealed that a two-phased approach, with different GAs dealing
with hard and soft constraints, was more effective than using a single GA to evolve
both feasible and good quality timetables. Previous work [1] applying genetic
algorithms to solving the examination timetabling problem has also revealed the ef-
fectiveness of a two-phased approach, with each phase employing different GAs to
optimize hard and soft constraints.

Both GAs begin by creating an initial population of individuals, i.e. timetables,
which are iteratively improved over successive generations with respect to either fea-
sibility or quality. The number of individuals remains constant over all generations.
Each successive generation involves evaluation of the population, selecting parents
and applying mutation operators to the parents to create the next generation. The
stopping criterion for both GAs is a set number of generations. The processes of ini-
tial population generation, evaluation, selection and regeneration are described in the
following subsections.

3.1 Initial Population Generation

A majority of the studies in section 2 have used a matrix representation for each
chromosome. Thus, in this study each element of the population is also a matrix
representing a school timetable with each row corresponding to a timetable period and
each column a class to be taught. The teacher teaching the class in the particular pe-
riod (and the venue in which the lesson is to be taught if venue allocation is part of the
problem) is stored at the intersection of each row and column.

The requirements, i.e. class-teacher meetings of a problem are defined in terms of
class-teacher or class-teacher-venue (if venue allocation is included) tuples. For ex-
ample, (C1,T4) is a tuple indicating that teacher T4 must teach class C1 and
(C3,T1,V1) specifies that class C3 must be taught by teacher T1 in venue V1. If
teacher T4 has to meet with class C1 five times in the school week, (C1, T4) will
occur five times in the list of tuples to be allocated.

Initially, the timetables of the population of the first generation of the GA for
Phase I were created by randomly allocating tuples to timetable periods. However,
this is not very effective as the search space represented by the initial population was
too large. This led to the derivation of a sequential construction method (SCM) to
create each element of the initial population. The SCM creates n timetables. The
most appropriate value for n is problem dependant. Each timetable is created by sort-
ing the tuples to be allocated to the timetable according to the difficulty of scheduling
the tuple. Low-level construction heuristics are used to assess this difficulty. Each
tuple is scheduled in a feasible timetable period, i.e. a period to which the tuple can be
allocated without resulting in any hard constraint violations. If there is more than one
feasible period available the tuple is allocated to the minimal penalty period, i.e. the
period which produces the lowest soft constraint cost. If more than one minimal pe-
nalty period exists, a period is randomly selected from these. If there are no feasible

68 R. Raghavjee and N. Pillay

periods available the tuple is scheduled in a randomly selected slot. Each timetable is
evaluated and its fitness is determined. In Phase I the fitness is the number of hard
constraints violated. The SCM returns the fittest of the n timetables. If there is more
than one timetable with the same fitness, the soft constraint cost is used as a second-
ary measure.

One of the contributions of this work is the identification of a set of low-level con-
struction heuristics that can be used to measure the difficulty of scheduling a tuple.
Low-level construction heuristics generally used for the university examination and
course timetabling problems are the graph colouring heuristics largest degree, largest
colour degree, largest weighted degree, largest enrollment and saturation degree [1].
Due to the differences in these problems and the school timetabling problem the larg-
est colour degree, largest weighted degree and largest enrollment are not relevant to
the STP. The largest degree and saturation degree have been adapted for the STP and
other low-level construction heuristics have been identified for this domain. The fol-
lowing low-level heuristics have been defined for this purpose:

• Random – In this case a construction heuristic is not used and tuples to be al-
located are randomly chosen from the list of unscheduled tuples.

• Largest degree – Tuples with a larger number of class-teacher meetings are
scheduled first. Once a tuple is allocated the largest degree of the remaining
tuples with the same class and teacher (and venue if applicable) is reduced
by one. For example, suppose that teacher T3 is required to meet class C1 in
venue V4 four times a week. There will be four occurrences of the tuple
(C1, T3, V4) in the list of tuples to be allocated and all four occurrences will
have a largest degree of 4. Suppose one occurrence is scheduled, leaving
three occurrences in the list of unscheduled tuples. The largest degree of
three remaining tuples will be reduced by one giving each occurrence a larg-
est degree of 3.

• Saturation degree – The saturation degree of a tuple is the number of feasi-
ble, i.e. a period that will not result in hard constraint violations if the tuple is
scheduled in it, timetable periods which the tuple can be scheduled in at the
current point of the construction process. Tuples with a lower saturation de-
gree are given priority. At the beginning of the timetable construction
process all tuples have the same saturation degree, i.e. the number of timeta-
ble periods for the problem. For example, suppose that the tuple (C1,T3) has
been allocated. The saturation degree of all tuples containing either C1
and/or T3 will be reduced by one.

• Class degree – Tuples containing a class that is involved in the most class-
teacher meetings is given priority.

• Teacher degree – Tuples containing the teacher involved in the most number
of class-teacher meetings are given priority.

• Consecutive periods – Tuples that need to be scheduled in consecutive pe-
riods, i.e. doubles and triples, are given priority and scheduled first.

• Sublclass/co-teaching degree – Tuples that have co-teaching or subclass re-
quirements are given priority and allocated to the timetable before the other
tuples.

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 69

• Period preferences – Tuples that have to be scheduled in specific periods are
scheduled first and hence given priority over the other tuples. For example,
if all Mathematics lessons must be scheduled within the first four periods for
certain grades all the tuples for these lessons will be given priority.

• Teacher availability – Tuples containing teachers that are available for the
least number of days are given priority.

One of these low-level heuristics is usually used to sort tuples. Alternatively, a
combination of low-level heuristics can be applied to sort the list of tuples. In this
case a primary heuristic and one or more secondary heuristics can be used for sorting
purposes. For example, if saturation degree is employed as a primary heuristic and
period preferences as a secondary heuristic, the tuples will firstly be sorted in ascend-
ing order according to the saturation degree. If two tuples have the same saturation
degree, the tuples with a larger number of period preferences will be scheduled first.
The initial population of the GA in Phase II is the population of the last generation of
Phase I. All the timetables in this population are usually feasible.

3.2 Evaluation and Selection

Evaluation of the population on each generation involves calculating a fitness meas-
ure for each individual, i.e. timetable. The fitness of a timetable is the number of hard
constraint violations in Phase I and the number of soft constraint violations in Phase
II. Thus, in both phases we aim to minimize the fitness of an individual. The fitness
of the elements of the population is used by the selection method to choose the par-
ents of the next generation.

The tournament selection method is used to select parents. This method randomly
selects t elements of the population where t is referred to as the tournament size. The
element of the tournament with the best fitness, i.e. the lowest fitness measure, is
returned as a parent.

During trial runs a variation of the tournament selection method, called a sports
tournament method, proved to be more effective in the evolution of solutions to the
school timetabling problem than the standard tournament selection method. The pseu-
do code for the sports tournament selection is depicted in Figure 3. The selection me-
thod takes an analogy from sport such as cricket where the best team may not always
win. Instead of always returning the fittest element of the tournament this method
firstly randomly selects the first element of the tournament and in comparing the suc-
cessive elements of the tournament randomly decides to leave the current_champion
unchanged, replace the current_champion with the contender, even if the contender is
not fitter, or replace the current_champion with the contender if the contender is fitter
(standard tournament selection). The two-phased GA approach will use either the
tournament or sports tournament selection for both GAs of both phases and the choice
of selection method is problem dependant.

3.3 Regeneration

One or more mutation operators are applied to chosen parents to create the offspring
for each generation. Section 3.3.1 presents the mutation operators used by the GA in

70 R. Raghavjee and N. Pillay

Phase 1 and section 3.3.2 those used by the GA in Phase 2. A certain percentage of
mutation operations are usually reduced to reproduction, i.e. the offspring is a copy of
the parent. Thus the reproduction operator is not used to reduce the possibilities of
cloning. Previous studies have found the use of a crossover operator usually results in
violation of the problem requirements, e.g. allocation of the same tuple to the same
period. Thus, application of the crossover operator is usually followed by a repair
mechanism being applied to rectify the side effects [7, 9]. This is time consuming and
results in an increase in runtimes. Hence, Bedoya et al. [8] do not implement a cros-
sover operator. The same approach is taken in this study.

3.3.1 Phase 1 Operators
The following three mutation operators are available for the GA for Phase 1:

• Double violation mutation (2V) – This operator locates two tuples assigned
to periods which have resulted in hard constraint violations and swaps these
tuples. This swap may result in no change in the fitness of the timetable, i.e.
the swap has not removed the violations or may improve the fitness by re-
sulting in one or both of the violations being eliminated.

• Single violation mutation (1V) – This mutation operator selects a tuple caus-
ing a hard constraint violation and swaps it with a randomly selected tuple.
This could result in a further violation worsening the fitness. Alternatively,
the swap may remove the constraint violation improving the fitness of the
timetable or have no effect.

• Random swap – This operator selects two tuples or two sets of consecutive
tuples randomly and swaps the locations of the tuples or sets in the timetable.

Each of these operators performs s swaps and the best value for s is problem de-
pendant. Versions of these operators incorporating hill-climbing is also available.
The hill-climbing versions of these operators continue mutating the parent until an
offspring fitter than the parent is produced. In order to prevent premature convergence
of the GA and long runtimes, a limit l is set on the number of attempts at producing a
fitter individual. If this limit is reached the last offspring created is returned as the
result of the operation. The performance of the different mutation operators with and
without the incorporation of hill-climbing will be tested for the different school time-
tabling problems. This is discussed in section 4.

3.3.2 Phase 2 Operators
This section describes the four mutation operators that are used by the GA in Phase 2
of the approach. As in the first phase, each mutation operator performs s swaps, with
the best value for s being problem dependant. Swaps producing hard constraint viola-
tions are not allowed. The four mutation operators for Phase 2 are:

• Random swap – This operator randomly selects two tuples and swaps their
positions in the timetable.

• Row swap - Two rows in the timetable are randomly selected and swapped,
changing the period that the tuples in both the rows are scheduled in.

• Double violation mutation – Two tuples causing soft constraint violations are
chosen and swapped. This can have no effect on the fitness or improve the
fitness by eliminating one or both of the violations.

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 71

• Single violation mutation – The position of a tuple causing a soft constraint
violation is swapped with that of a randomly selected tuple. As in the first
phase this could result in a further violation, have no effect or remove the
soft constraint violation.

• Subclass+co - teaching row swap (1VSRS) – The row containing a tuple that is
violating a subclass or co-teaching constraints is swapped with another row.

As in the first phase, versions of these operators including the use of hill-climbing are
also implemented. In this case the mutation operator is applied until an offspring at least
as fit as the parent is produced. Again to prevent premature convergence and lengthy
runtimes a limit is set on the number of attempts at producing such an offspring.

4 Experimental Setup

This section describes the school timetabling problems that the GA approach pre-
sented in the previous section is evaluated on, the genetic parameter values used and
the technical specifications of the machines the simulations were run on.

4.1 School Timetabling Problems

The school timetabling problem varies from school to school due to the different edu-
cational systems adopted by different countries. Thus, there are different versions of
the school timetabling problem. In order to thoroughly test the two-phased GA ap-
proach and to evaluate it in a South African context, the approach was applied to four
school timetabling problems:

• A set of hard benchmark school timetabling problems
• The Greek high school timetabling problem
• A South African primary school timetabling problem
• A South African high school timetabling problem

Each of these problems is described in the following subsections.

4.1.1 Benchmark Timetabling Problems
Abramson [7] has made available five artificial timetabling problems [19]. These
problems are “hard” timetabling problems (hence the hdtt) as all periods must be
utilized with very little or no options for each allocation. The characteristics of the
problems are listed in Table 1. Each school week is comprised of five days with six
periods a day with a total of 30 timetable periods.

Table 1. Characteristics of the artificial school timetabling problems

Problem Number of teachers Number of Venues Number of Classes
hdtt4 4 4 4
hdtt5 5 5 5
hdtt6 6 6 6
hdtt7 7 7 7
hdtt8 8 8 8

72 R. Raghavjee and N. Pillay

All five problems have the following hard constraints:

• All class-teacher-venue tuples must be scheduled the required number of
times.

• There must be no class clashes, i.e. a class must not be scheduled more than
once in a period.

• There must be no teacher clashes, i.e. a teacher must not be scheduled more
than once in a period.

• There must be no venue clashes, i.e. a venue must not be allocated more than
once to a timetable period.

4.1.2 The Greek School Timetabling Problem
The GA approach is applied to two Greek school timetabling problems, namely, that
made available by Valouxis et al. [20] and Beligiannis et al. [21]. The problem pre-
sented by Valouxis et al. involves 15 teachers and 6 classes. There are 35 weekly timet-
able periods, i.e. 5 days with 7 periods per day. The hard constraints of the problem are:

• All class-teacher meetings must be scheduled.
• There must be no class or teacher clashes.
• Class free/idle periods must be scheduled in the last period of the day.
• Each teacher’s workload limit for a day must not be exceeded.
• Class-teacher meetings must be uniformly distributed over the school week.

The soft constraints for the problem are:

• The number of free periods in the class timetable must be minimized.
• Teacher period preferences must satisfied if possible.

The GA approach is also tested on six of the problems made available by Beligian-
nis et al. [21]. The characteristics of these problems are depicted in Table 2. There
are 35 timetable periods per week.

Table 2. Characteristic of the Beligiannis Problem Set

Problem Number of Teachers Number
of Classes

Number of
Co-Teaching/Sublcass Re-
quirements

HS1 11 34 18
HS2 11 35 24
HS3 6 19 0
HS4 7 19 12
HS5 6 18 0
HS6 13 35 20

The hard constraints for the problem are:

• All class-teacher meetings must be scheduled.
• There must be no class or teacher clashes.
• Teachers must not be scheduled to teach when they are not available.

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 73

• Class free/idle periods must be scheduled in the last period of the day.
• Co-teaching and subclass requirements must be met.

The problem soft constraints are:

• The number of idle/free periods for teachers must be minimized.
• Free periods must be equally distributed amongst teachers.
• The workload for a teacher must be uniformly distributed over the week.
• Classes should not be taught the same subject in consecutive periods or more

than once in a day if possible.

4.1.3 South African Primary School Problem
This problem involves 19 teachers, 16 classes and 14 subjects. There are a maximum
of 11 weekly timetable periods. However, different grades have a different number of
daily periods ranging from 9 to 11. The hard constraints for the problem are:

• All required class-teacher meetings must be scheduled.
• There must be no class or teacher clashes.
• Certain subjects must be taught in specialized venues, e.g. Technology in the

computer laboratory.
• Mathematics must be taught in the mornings (specified in terms of valid pe-

riods).
• All co-teaching requirements must be met.
• All double period requirements must be met.

The problem has one soft constraint, namely, the lessons per class must be uniformly
distributed throughout the school week.

4.1.4 South African High School
The South African high school problem that the GA approach is applied to involves
30 classes, 40 teachers and 44 subjects. The hard constraints for the problem are:

• All required class-teacher meetings must be scheduled.
• There must be no class or teacher clashes.
• All sub-class and co-teaching requirements must be met.

The soft constraints for the problem are:

• Teacher period preferences must be met if possible.
• Period preferences for classes must be met if possible.

4.2 Genetic Parameter Values

Trials runs were conducted to determine the most appropriate values for the following
genetic parameters:

74 R. Raghavjee and N. Pillay

• SCM population size (n) – The SCM is used to create each element of the
population. It creates n timetables, the fittest of which is included in the GA
population of Phase I.

• GA population size
• Number of generations
• Tournament size
• Number of mutation swaps
• Number of generations

Table 3 lists the values tested for each of these parameters.

Table 3. Ranges for each parameter value

Parameter Tested range Note:
SCM size 1 to 100 Only applicable in Phase 1
Population
size

200 to 1000 Constant population size adopted for every generation

Tournament
size

5 to 20 Applicable to tournament selection for Phase 1 and Phase
2

Swaps 20 to 200 Applicable to mutation operators for Phase 1 and Phase 2
Generations 20 to 75 Applicable to Phase 1 and Phase 2

When testing each parameter value, 30 runs were performed. In order to test the

impact that each parameter has on the performance of the genetic algorithm, all other
parameter values, construction heuristics, selection methods and genetic operators
were kept constant. The most appropriate values found for each problem are listed in
Table 4.

Table 4. Parameter values for each data set

Problem SCM Population
Size

Tournament
Size

Swaps per
Mutation

Genera-
tions

HDTT4 50 1000 10 200 50
HDTT5 50 1000 10 200 50
HDTT6 50 1000 10 200 50
HDTT7 50 1000 10 200 50
HDTT8 50 1000 10 200 50
Valouxis 50 1000 10 100 50
HS1 – HS4,
HS6

25 750 15 200 50

HS5 50 750 10 20 75
Lewitt 20 500 10 200 50
Woodlands 20 750 10 150 75

4.3 Technical Specifications

The GA system was developed using Visual C++ 2008. The random number genera-
tor function available in C++ is used to generate random numbers. A different seed is

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 75

used for each run of the genetic algorithm approach. Simulations (trial and final)
were run on several machines:

• Intel Core 2 Duo CPU @ 2.40 GHz, 2.00 GB RAM, Windows XP, Windows

7 Enterprise OS.
• Intel Core I7 870 CPU @ 2.93 GHz, 4.00 GB RAM, Windows 7 64-bit OS.
• Intel Core I7 860 CPU @ 2.80 GHZ, 4.00 GB RAM (3.49 Usable), Windows

7 32-bit OS.
• Pentium Dual Core @ 2GHZ, 2.00 GB RAM, Windows XP.

5 Results and Discussion

The two-phased genetic algorithm approach was able to evolve feasible solutions of
good quality for all problems. Different combinations of construction heuristics, se-
lection method and genetic operators were found to produce the best quality solution
for each problem. The GA approach was run using different combinations of these
components. In order to test the impact that each component has on the performance
of each genetic algorithm, all other genetic algorithm components and parameter
values are kept constant. Thirty runs were performed for each component. The statis-
tical significance of the performance of the different construction heuristics, selection
methods and genetic operators was ascertained using hypothesis tests1 (tested at the
1%, 5% and 10% levels of significance). The combination producing the best result
for each problem is listed Table 5. Note that if hill-climbing was used with the genetic
operator this is indicated by HC and if it was not used by NH.

The use of saturation degree as a primary heuristic produced the best results for all
except one problem. A secondary heuristic was needed for all of the real world prob-
lems especially problems involving subclass and co-teaching constraints. For the Ab-
ramson data set double violation mutation without hill-climbing appears to be the
most effective during Phase 1. For the real world problems single violation mutation
with hill-climbing produced the best results for a majority of the problems. Hill-
climbing was not needed in Phase 2 to produce the best soft constraint cost for any of
the problems with single violation mutation proving to be the most effective for a
majority of the problems. The sports tournament selection method appears to be effec-
tive in the GA implemented in Phase 1 focused on optimizing the hard constraint
costs while the standard tournament selection appears to have produced better results
in Phase 2, which improves the quality of timetables, for most of the problems. It is
evident from Table 5 that different combinations of low-level constructive heuristics,
selection method and mutation operators is needed to solve each problem. Future
work will investigate whether there is a correlation between the architecture of the
GAs of each phase and the characteristics of the different problems as well as me-
thods for the automatic configuration of the GA architectures of both phases for the
school timetabling problem.

1 Throughout the paper hypothesis tests conducted test that the means are equal and the Z test is

used.

76 R. Raghavjee and N. Pillay

Table 5. Summary of best heuristics, methods and operators for each data set

 PHASE 1 PHASE 2
Problem Primary

Heuristic
Secondary
Heuristics

Selection
Method

Genetic
Operators

Selection
Method

Genetic
Operator

HDTT4 Saturation
Degree

None Std/Sports 2VNH N/A N/A

HDTT5 Saturation
Degree

None Sports 2VNH N/A N/A

HDTT6 Saturation
Degree

None Sports 2VNH N/A N/A

HDTT7 Saturation
Degree

None Sports 2VNH N/A N/A

HDTT8 Saturation
Degree

None Standard 2VNH N/A N/A

Valouxis Saturation
Degree

Teacher De-
gree
Teacher avail-
ability

Sports 1VHC Sports Random
Swap

HS1 Saturation
Degree

SubClass/Co-
Teaching
degree

Sports 1VHC Standard Single
Violation

HS2 Saturation
Degree

SubClass/Co-
Teaching
degree

Sports 1VHC Standard Single
Violation

HS3 Saturation
Degree

SubClass/Co-
Teaching
degree

Sports 1VHC Standard Single
Violation

HS4 Saturation
Degree

SubClass/Co-
Teaching

Sports 1VHC Sports Single
Violation

HS5 Largest
Degree

SubClass/Co-
Teaching
degree

Sports 1VNH Standard Random
Swap

HS7 Saturation
Degree

SubClass/Co-
Teaching
degree

Sports 1VHC Standard Single
Violation

Lewitt Saturation
Degree

Consecutive
Periods

Standard Hybrid
(2VHC,
1VHC,
Random
Swap)

Sports Random
Swap

Wood-
lands

Saturation
Degree

SubClass/Co-
Teaching
degree

Standard 1VHC Standard 1VSRS

The performance of the GA approach was compared to other methods applied to

the same set of problems. For the first set of problems, namely, the benchmark hard
problems made available by Abramson [7], the GA approach was compared to the
following:

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 77

• SA1 – A simulated annealing method implemented by Abramson et al. [22].
• SA2 – A simulated annealing algorithm implemented by Randall [23].
• TS – A tabu search employed by Randall [23].
• GS – The greedy search method used by Randall [23].
• NN-T2 – A neural network employed by Smith et al. [24].
• NN-T3 – A second neural network employed by Smith et al. [24].

The hard constraints for this set of problems are listed in section 4. The minimum
(best cost - BC) and average (average cost – AC) hard constraint costs for each of
these methods and the GA approach is listed in Table 6. In this study the average is
taken over thirty runs. The best results are highlighted in bold. The GA approach has
produced the minimum for all of the problems and the best average for three of the
problems. For the remaining two problems, the average obtained is very close to the
best results.

Table 6. Comparison for the Abramson Data Set

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

SA1
BC: Unknown
AC: Unknown

BC: 0
AC: 0.67

BC: 0
AC: 2.5

BC: 2
AC: 2.5

BC: 2
AC: 8.23

SA2 BC: 0
AC: 0

BC: 0
AC: 0.3

BC: 0
AC: 0.8

BC: 0
AC: 1.2

BC: 0
AC: 1.9

TS
BC: 0
AC: 0.2

BC: 0
AC: 2.2

BC: 3
AC: 5.6

BC: 4
AC: 10.9

BC: 13
AC: 17.2

GS
BC: 5
AC: 8.5

BC: 11
AC: 16.2

BC: 19
AC: 22.2

BC: 26
AC: 30.9

BC: 29
AC: 35.4

HNN1
BC: 0
AC: 0.1

BC: 0
AC: 0.5

BC: 0
AC: 0.8

BC: 0
AC: 1.1

BC: 0
AC: 1.4

HNN2
BC: 0
AC: 0.5

BC: 0
AC: 0.5

BC: 0
AC: 0.7

BC: 0
AC: 1

BC: 0
AC: 1.2

GA
approach

BC: 0
AC: 0

BC: 0
AC: 0

BC: 0
AC: 0

BC: 0
AC: 1.067

BC: 0
AC: 1.733

The GA approach was also applied to the school timetabling problem presented by

Valouxis et al. [20]. In the study conducted by Valouxis et al. constraint program-
ming was used to solve this problem. The timetables induced by both methods were
run through an evaluator developed by the authors which assessed the hard and soft
constraint costs. Feasible timetables were produced by both methods. The timetable
produced by constraint programming had 45 soft constraint violations while that pro-
duced by the GA approach had 35.

The timetables generated by the evolutionary algorithm implemented by Beligian-
nis et al. [21] are compared to those produced by the GA approach. Again an evalua-
tor developed by the authors was used to assess the hard and soft constraint cost of all
timetables for comparison purposes. Both methods produced feasible timetables for
the 6 problems tested. The soft constraint costs of the timetables are listed in Table 7.

78 R. Raghavjee and N. Pillay

Table 7. Comparison with the Beligannis data set [21]

Problem Evolutionary Algorithm GA Approach
HS1 139 96
HS2 175 99
HS3 61 34
HS4 102 59
HS5 43 40
HS6 226 117

The timetable used by the South African primary school is induced by a package.

The timetable produced by the package is manually changed to meet the hard and soft
constraints. The current timetable used by the school does not meet all the double
period requirements while the best timetable evolved by the GA approach satisfies
these. The best timetable produced by the GA for the South African high school prob-
lem is a feasible timetable and has the same soft constraint cost, namely a cost of two,
as the timetable currently being used by the school. From the above comparisons it is
evident that the performance of the GA approach is comparable and in some cases
better, than other methodologies applied to the same problems.

6 Conclusion and Future Work

This study has presented a two-phased genetic algorithm approach for solving the
school timetabling problem. In previous work a genetic algorithm was developed to
solve a particular problem whereas this study has evaluated genetic algorithms as a
means of solving different school timetabling problems. The paper has also defined
low-level construction heuristics for this domain. The performance of a methodology
on a variety of problems is important as the school timetabling problem varies drasti-
cally from one school to the next. The two-phased genetic programming approach
was tested on four different types of problem sets involving a total of 13 different
problems. This approach was able to produce feasible timetables for all problems.
The soft constraint cost of these timetables were found to be comparable to and in
some cases better than other methodologies applied to the same problems. Different
combinations of genetic algorithm components, namely, construction heuristics, se-
lection methods and genetic operators were needed to produce the best results for the
different problems. Thus, future work will focus on identifying the correlation be-
tween different combinations and problem characteristics and methods for the auto-
matic configuration of the GA architecture for both phases of the GA approach in
solving the school timetabling problem. This research will investigate the use of case-
based reasoning and an evolutionary algorithm, to explore a space of strings
representing the GA components to find the optimal combination, as options for au-
tomatic GA architecture configuration. The study has also revealed that GAs can
successful solve both the South African primary and high school timetabling.

 A Study of Genetic Algorithms to Solve the School Timetabling Problem 79

References

1. Pillay, N., Banzhaf, W.: An Informed Genetic Algorithm for the Uncapacitated Examina-
tion Timetabling Problem. Applied Soft Computing 10, 45–67 (2010)

2. Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic Algorithms
for the Travelling Salesman Problem: A Review of Representations and Operators. Artifi-
cial Intelligence Review 11(2), 129–170 (1999)

3. Ponce-Perez, A., Perez-Garcia, A., Ayala-Ramirez, V.: Bin-Packing Using Genetic Algo-
rithms. In: Proceedings of CONIELECOMP 2005: 15th International Conference on Elec-
tronics, Communications and Computers, pp. 311–314. IEEE Press (2005)

4. Pillay, N.: A Survey of School Timetabling. Annals of Operations Research (February
2013), doi:10.1007/s10479-013-1321-8

5. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley Longman Publishing Co. (1989).

6. Beasley, D., Bull, D.R., Martin, R.R.: An Overview of Genetic Algorithms: Part 1 and Part
2, Research Topics. University Computing 15(4), 170–181 (1993)

7. Abramson, D., Abela, J.: A Parallel Genetic Algorithm for the Solving the School Time-
tabling Problem. In: Proceedings of the Fifteenth Australian Conference: Division of In-
formation Technology, C.S.I.R.O. pp. 1–11 (1991)

8. Bedoya, C.F., Santos, M.: A Non-Standard Genetic Algorithm Approach to Solve Con-
strained School Timetabling Problems. Eurocast, 26–37 (2003)

9. Calderia, J.P., Ross, A.C.: School Timetabling Using Genetic Search. In: The Proceedings
of the International Conference on the Practice and Theory of Automated Timetabling
(PATAT 1997) pp. 115-122 (1997)

10. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for High School Timetabling. In:
Computational Optimization and Applications, vol. 9, pp. 275–298. Kluwer Academic
Publishers (1998)

11. Filho, G.R., Lorena, L.A.N.: A Constructive Evolutionary Approach to School Timetabl-
ing. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl,
G.R., Tijink, H. (eds.) EvoWorkshop 2001. LNCS, vol. 2037, pp. 130–139. Springer, Hei-
delberg (2001)

12. Wilke, P., Gröbner, M., Oster, N.: A Hybrid Genetic Algorithm for School Timetabling.
In: McKay, B., Slaney, J.K. (eds.) AI 2002. LNCS (LNAI), vol. 2557, pp. 455–464. Sprin-
ger, Heidelberg (2002)

13. Yigit, T.: Constraint-Based School Timetabling Using Hybrid Genetic Algorithms. In: Ba-
sili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 848–855. Sprin-
ger, Heidelberg (2007)

14. Beligiannis, G.N., Moschopoulos, C.N., Likothanassis, S.D.: A Genetic Algorithm Ap-
proach to School Timetabling. Journal of the Operational Research Society 60(1), 23–42
(2009)

15. Srndic, N., Dervisevic, M., Pandzo, E., Konjicija, S.: The Application of a Parallel Genetic
Algorithm to Timetabling of Elementary School Classes: A Coarse Grained Approach. In:
Proceedings of ICAT 2009 -2009 22nd International Symposium on Information, Commu-
nication and Automation Technologies, pp. 1–5. IEEE (2009)

16. Nurmi, K., Kyngas, J.: A Framework for School Timetabling Problem. In: Proceedings of
the 3rd Multidisciplinary International Scheduling Conference: Theory and Application
(2007)

80 R. Raghavjee and N. Pillay

17. Zuters, J.: Neural Networks to Enrich Fitness Function in a GA-Based School Timetabling
Model. Proceedings of WSEAS Transactions on Information Science and Applica-
tion 4(2), 346–353 (2007)

18. Cedeira-Pena, A., Carpente, L., Farina, A., Seco, D.: New Approaches for the School
Timetabling Problem. In: Proceedings of the 7th Mexican Conference on Artificial Intelli-
gence (MICAI 2008), pp. 261–267 (2008)

19. Beasley, J.F.: OR Library, http://people.brunel.ac.uk/mastjjb/jeb/
orlib/tableinfo.html (accessed May 25, 2011)

20. Valouxis, C., Housos, E.: Constraint Programming Approach for School Timetabling.
Computers and Operations Research 30, 1555–1572 (2003)

21. Beligiannis, G.N., Moschopoulos, C.N., Kaperonis, G.P., Likothanassis, S.D.: Applying
Evolutionary Computation to the School Timetabling Problem: The Greek Case. Comput-
ers and Operations Research 35, 1265–1280 (2008)

22. Abramson, D., Dang, H.: School Timetable: A Case Study in Simulated Annealing. In:
Applied Simulated Annealing Lecture Notes in Economics and Mathematical Systems, ch.
5, pp. 103–124 (1993)

23. Randall, M.: A General Meta-Heuristic Based Solver for Combinatorial Optimization
Problems. Computational Optimization and Applications 20(2), 185–210 (2000)

24. Smith, K.A., Abramson, D., Duke, D.: Hopfield Neural Networks for Timetabling: Formu-
lations, Methods, and Comparative Results. Computers and Industrial Engineering 44,
285–305 (2003)

	A Study of Genetic Algorithmsto Solve the School Timetabling Problem
	1 Introduction
	2 Genetic Algorithms and School Timetabling
	3 The Two-Phased GA Approach
	3.1 Initial Population Generation
	3.2 Evaluation and Selection
	3.3 Regeneration

	4 Experimental Setup
	4.1 School Timetabling Problems
	4.2 Genetic Parameter Values
	4.3 Technical Specifications

	5 Results and Discussion
	6 Conclusion and Future Work
	References

