
Using Monte Carlo Tree Search to Solve

Planning Problems in Transportation Domains

Otakar Trunda and Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměst́ı 25, Praha, Czech Republic

otaTrunda@gmail.com, bartak@ktiml.mff.cuni.cz

Abstract. Monte Carlo Tree Search (MCTS) techniques brought fresh
breeze to the area of computer games where they significantly improved
solving algorithms for games such as Go. MCTS also worked well when
solving a real-life planning problem of the Petrobras company brought by
the Fourth International Competition on Knowledge Engineering Tech-
niques for Planning and Scheduling. In this paper we generalize the ideas
of using MCTS techniques in planning, in particular for transportation
problems. We highlight the difficulties of applying MCTS in planning, we
show possible approaches to overcome these difficulties, and we propose
a particular method for solving transportation problems.

Keywords: planning, search, Monte Carlo, logistic, transportation.

1 Introduction

Planning deals with problems of selection and causally ordering of actions to
achieve a given goal from a known initial situation. Planning algorithms assume
a description of possible actions and attributes of the world states in some mod-
eling language such as Planning Domain Description Language (PDDL) as its
input. This makes the planning algorithms general and applicable to any plan-
ning problem starting from building blocks to towers and finishing with planning
transport of goods between warehouses. Currently, the most efficient approach
to solve planning problems is heuristic forward search. The paper [13] showed
that classical planners are not competitive when solving a real-life transportation
planning problem of the Petrobras company [15]. The paper proposed an ad-hoc
Monte Carlo Tree Search (MCTS) algorithm that beat the winning classical
planner SGPlan in terms of problems solved and solution quality. This brought
us to the idea of generalizing the MCTS algorithm to a wider class of planning
problems. A sampling based approach has already been investigated in the field
of planning [17] (in a simplified form). The Arvand planner [9] proved that the
idea of using random-walks to evaluate states in deterministic planning is viable.

Monte Carlo Tree Search algorithm is a stochastic method originally pro-
posed for computer games. MCTS was modified for a single-player games and it
is also applicable to optimization problems. However, there are still difficulties
when applying to planning problems, namely existence of infinite sequences of

F. Castro, A. Gelbukh, and M. González (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 435–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

436 O. Trunda and R. Barták

actions and dead-ends. In this paper we identify these difficulties and we discuss
possible ways to overcome them. We then show how to modify the MCTS algo-
rithm to be applicable to a planning problem specification enhanced by so called
meta-actions. We demonstrate this idea using transportation problems which
are natural generalizations of the Petrobras domain [15].

The paper is organized as follows. We will first give a short background on
planning and Monte Carlo Tree Search techniques and we will highlight possi-
ble problems when applying MCTS in planning including a discussion how to
resolve these problems. We will then characterize the transportation planning
domains and show how to identify them automatically. After that we will de-
scribe the modifications necessary to apply MCTS to solve planning problems
in transportation (and possible other) domains. The paper will be concluded by
experimental comparison of our approach with the LPG planner [6].

2 Background

2.1 Planning

In this paper we deal with classical planning problems, that is, with finding a
sequence of actions transferring the world from a given initial state to a state
satisfying certain goal condition [5]. World states are represented as sets of pred-
icates that are true in the state (all other predicates are false in the state). For
example the predicate at(r1, l1) represents information that some object r1 is at
location l1. Actions describe how the world state can be changed. Each action a
is defined by a set of predicates prec(a) as its precondition and two disjoint sets
of predicates eff+(a) and eff−(a) as its positive and negative effects. Action
a is applicable to state s if prec(a) ⊆ s holds. If action a is applicable to state s
then a new state γ(a, s) defines the state after application of a as

γ(a, s) = (s ∪ eff+(a))− eff−(a)

Otherwise, the state γ(a, s) is undefined. The goal g is usually defined as a set of
predicates that must be true in the goal state. Hence the state s is a goal state
if and only if g ⊆ s.

The satisficing planning task is formulated as follows: given a description of
the initial state s0, a set A of available actions, and a goal condition g, is there
a sequence of actions (a1, . . . , an), called a solution plan, such that ai ∈ A, a1 is
applicable to state s0, each ai s.t. i > 1 is applicable to state γ(ai−1, . . . γ(a1, s0)),
and g ⊆ γ(an, γ(an−1, . . . γ(a1, s0)))?

Assume that each action a has some cost c(a). An optimal planning task is
about finding a solution plan such that the sum of costs of actions in the plan is
minimized. Formally, the task is to find a sequence of actions (a1, . . . , an), called

an optimal plan, minimizing
n∑

i=1

c(ai) under the condition g ⊆ γ(an, γ(an−1, . . .

γ(a1, s0))). In this paper we deal only with the optimal planning task so for
brevity we will be talking about planning while we will mean optimal planning.

Using Monte Carlo Tree Search to Solve Planning Problems 437

In practice, the planning problem is typically specified in two components: a
planning domain and a planning problem itself. The planning domain specifies
the names of predicates used to describe world states. For example, at(?movable,
?location) means that we can use relations at between movable objects and loca-
tions (typing is used to classify objects/constants). Similarly, instead of actions
the planning domain describes so called operators that are templates for actions.
A particular action is obtained by substituting particular objects (constants) to
the operator. We will give examples of operators specified in the PDDL language
later in the text. The planning problem then specifies a particular goal condition
and an initial state and hence it also gives the names of used objects (constants).

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a stochastic optimization algorithm that
combines classical tree search with random sampling of the search space. The
algorithm was originally used in the field of game playing where it became very
popular, especially for games Go and Hex. A single player variant has been devel-
oped by Schadd et al. [11] which is designed specifically for single-player games
and can also be applied to optimization problems. The MCTS algorithm suc-
cessively builds an asymmetric tree to represent the search space by repeatedly
performing the following four steps:

1. Selection – The tree built so far is traversed from the root to a leaf using
some criterion (called tree policy) to select the most urgent leaf.

2. Expansion – All applicable actions for the selected leaf node are applied and
the resulting states are added to the tree as successors of the selected node
(sometimes different strategies are used).

3. Simulation – A pseudo-random simulation is run from the selected node
until some final state is reached (a state that has no successors). During the
simulation the actions are selected by a simulation policy,

4. Update/Back-propagation – The result of the simulation is propagated back
in the tree from the selected node to the root and statistics of the nodes on
this path are updated according to the result.

The core schema of MCTS is shown at Figure 1 from [3].
One of the most important parts of the algorithm is the node selection crite-

rion (a tree policy). It determines which node will be expanded and therefore
it affects the shape of the search tree. The purpose of the tree policy is to solve
the exploration vs. exploitation dilemma.

Commonly used policies are based on a so called bandit problem and Upper
Confidence Bounds for Trees [1,7] which provide a theoretical background to
measure quality of policies. We will present here the tree policy for the single-
player variant of MCTS (SP-MCTS) due to Schadd et al. [11] that is appropriate
for planning problems (planning can be seen as a single-player game where moves
correspond to action selection).

438 O. Trunda and R. Barták

Fig. 1. Basic schema of MCTS [3]

Let t(N) be the number of simulations/samples passing the node N , vi(N)
be the value of i-th simulation passing the node N , and v̄(N) be the average
value of all simulations passing the node N :

v̄(N) =

t(N)∑

i=1

vi(N)

t(N)

The SP-MCTS tree policy suggests to select the children node Nj of node N
maximizing the following function:

v̄(Nj) + C ·
√

2 ln (t(N))

t(Nj)
+

√
√
√
√
√
√

t(Nj)∑

i=1

vi(Nj)2 − t(Nj) · v̄(Nj)2

t(Nj)

The first component of the above formula is a so called Expectation and it
describes an expected value of the path going through a given node. This sup-
ports exploitation of accumulated knowledge about quality of paths. The second
component is a Bias. The Bias component of a node Nj slowly increases ev-
ery time the sibling of Nj is selected (that is every time the node enters the
competition for being selected but it is defeated by another node) and rapidly
decreases every time the node Nj is selected, that is the policy prefers nodes that
have not been selected for a long time. This supports exploration of unknown
parts of the search tree. Bias is weighted by a constant C that determines the
exploration vs. exploitation ratio. Its value depends on the domain and on other
modifications to the algorithm. For example in computer Go the usual value
is about 0.2. When solving optimization problems, the range of values for the
Expectation component is unknown opposite to computer games, where Expecta-
tion is between 0 (loss) and 1 (win). Nevertheless it is possible to use an adaptive

Using Monte Carlo Tree Search to Solve Planning Problems 439

technique for adjusting the parameter C in order to keep the components in the
formula (Expectation and Bias) of the same magnitude [2]. The last component
of the evaluation formula is a standard deviation and it was added by Schadd et
al. [11] to improve efficiency for single-player games (puzzles).

3 MCTS for Planning

The planning task can be seen as the problem of finding a shortest path in
an implicitly given state space, where transitions/moves between the states are
defined by the actions. The reason why classical path-finding techniques cannot
be applied there is that the state space is enormous. From this point of view
planning is very close to single-player games though there are some notable
differences.

3.1 Cycles in the State-Space

MCTS uses simulations to evaluate the states. Hence, from the planning per-
spective, we need to generate solution plans – valid sequences of actions leading
to a goal state. Unlike the SameGame and other game applications of MCTS,
planning problems allow infinite paths in the state-space (even though the state-
space is finite) and this is quite usual in practice since the planning actions are
typically reversible. This is a serious problem for the MCTS algorithm since it
causes the expected length of the simulations to be very large and therefore only
a few simulations can be carried out within a given time limit. There are several
ways how to solve this problem.

1. Modifying the state-space so that it does not contain infinite paths. In general
this is a hard problem itself as it involves solving the underlying satisficing
planning problem, which is intractable.

2. Using a simulation heuristic which would guarantee that the simulation will
be finite and short. Such a heuristic is always a contribution to the MCTS al-
gorithm since it makes the simulations more precise. Obtaining this heuristic
may require a domain-dependent knowledge, but there exist generally appli-
cable planning heuristics.

3. Setting an upper bound on the length of simulations. This approach has two
disadvantages: the upper bound has to be set large enough so that it would
not cut off the proper simulations. Still if most of the simulations end on
the cut-off limit, then every one of them would take a long time to carry out
which would have a bad impact on the performance. Furthermore it is not
clear how to evaluate the cut-off simulations.

3.2 Dead-Ends

The other problem is existence of plans that do not lead to a goal state. We use
the term dead-end to denote a state such that no action is applicable to this state

440 O. Trunda and R. Barták

and the state is not a goal state. Note that dead-ends do not occur in any game
domain since in games any state that does not have successors is considered a
goal state and has a corresponding evaluation assigned to it (like Win, Loss, or
Draw in case of Chess or Hex, or a numerical value in case of SameGame for
example). In planning, however, the evaluation function is usually defined only
for the solution plans leading to goal states. A plan that cannot be extended
doesn’t necessarily have to be a solution plan and it is not clear how to evaluate
the simulation that ended in a dead-end. Possible ways to solve this issue are:

1. Modifying the state-space so that it would not contain dead-ends.
2. Using a simulation heuristic which would guarantee that the simulation

never encounters a dead-end state.
3. Ignoring the simulations that ended in dead-end states. If the simulation

should end in a dead-end we just forget it and run another simulation (hoping
that it would end in a goal state and gets properly evaluated). This approach
might be effective if dead-ends are sparse in the search space. Otherwise we
could be waiting very long until some successful simulation occurs.

4. Finding a way to evaluate the dead-end states.

3.3 Dead Components

A dead component is a combination of both previous problems – it is a strongly
connected component in the state-space that does not contain any goal state.
This is similar to the dead-ends problem except that we can easily detect a dead-
end (since there are no applicable actions there) but it is much more difficult
to detect a dead component since we would have to store all visited states (and
search among them every time) which would make the simulation process much
slower and the algorithm less effective.

4 Transportation Domains

As we mentioned earlier, modifying the planning domain so that its state-space
wouldn’t contain infinite paths and dead-end states requires to actually solve
the underlying satisficing problem. The MCTS algorithm has been used to solve
satisficing problems such as Sudoku however the method is much better suited
for optimization problems. Since the problem of satisficing planning is difficult
and in general intractable we have decided to restrict the class of domains which
our planner addresses. Based on good results with the Petrobras domain [13],
we chose to work with the transportation domains. This kind of domains seems
to be well suited for the MCTS method since:

1. it is naturally of an optimization type (typically fuel and time consumption
are to be minimized),

2. the underlying satisficing problem is usually not difficult,
3. transportation problems frequently occur in practice.

Using Monte Carlo Tree Search to Solve Planning Problems 441

Knowing that the domain is of the transportation type we can use domain
analysis techniques to gather more information about the domain structure and
dynamics. This higher level information is then exploited during the planning
process/simulation (as described in the next chapter).

We introduce the term Transportation component denoting a part of the plan-
ning domain that has a typical transportation structure. The transportation
component describes some vehicles, locations, and cargo and specifies actions
for moving the vehicles between the locations and for transporting the cargo
by loading and unloading it by the vehicles. We also assume that the goal is to
deliver cargo to specific destinations. We have created a template that describes
such a structure – the template describes relations between the symbols that
are typical for the transportation domains. By symbols we mean names of the
predicates, types of the constants, and names of the operators.

For example consider the following two operators (specified in PDDL) origi-
nating from two different planning domains:

(: a c t i on load
: parameters (? a − a i r p l a n e ?p − person

? l − l o c a t i o n)
: p r e cond i t i on (and (at ?a ? l) (at ?p ? l))
: e f f e c t (and (not (at ?p ? l))

(in ?p ?a)))

(: a c t i on get
: parameters (? v − v e h i c l e ? c − cargo

?d − de s t i n a t i o n)
: p r e cond i t i on (and (isCargoAt ? c ?d)

(i sVeh i c l eAt ?v ?d))
: e f f e c t (and (not (isCargoAt ? c ?d))

(i s I n s i d e ? c ?v))))

Even though these operators use different predicates, relations between the
symbols (get, vehicle, cargo, destination, isCargoAt, isVehicleAt, isInside) are
exactly the same as the relations between (load, airplane, person, location, at,
at, in).

The example shows that the structure of the domain (which is what we want to
capture) does not depend on the symbols used but only on the relations between
the symbols. This gives us means to define a generic transportation structure and
then we can check whether some given domainmatches this predefined structure.
For example, the action get in the above example can be seen as a template of
loading and we can say that the action load matches this template.

A transportation component is defined by the names of operators for load-
ing (denoted Op-L), unloading (Op-U) and moving (Op-M) actions, the names
of predicates describing positions of the vehicles (denoted Veh-At) and of the
cargo (Carg-At, Carg-In), as well as the types of constants that represent ve-
hicles (Type-Veh), cargo (Type-Carg) and locations (Type-Loc). Moreover there
has to be a certain relationship between these symbols. Operator Op-L has to

442 O. Trunda and R. Barták

have a predicate with the name Cargo-At among its positive preconditions and
negative effects and a predicate with the name Cargo-In among its positive ef-
fects. Both these predicates has to share some variable that has to have a type
Type-Cargo. Also it has to have a predicate with the name Veh-At in its positive
preconditions and this predicate has to share some variable with the predicate
Cargo-In mentioned above. This variable has to have a type Type-Veh. Finally
the two predicates with names Veh-At and Cargo-At in the operator definition
have to share some variable that has a type Type-Loc. In the above example of
two loading operators, we have the following matchings:

Op-L load get
Veh-At at isVehicleAt

Cargo-At at isCargoAt
Cargo-In in isInside
Type-Veh airplane vehicle
Type-Carg person cargo
Type-Loc location destination

The reader can easily verify that the required relations between the symbols
hold. In a similar way we can define the templates for unloading and moving
operators. A complete description of all the variables and constraints of the
templates as well as more examples of transportation components can be found
in [14].

We say that a planning domain contains a transportation component if it
is possible to substitute symbols from the domain description (names of the
operators, predicates, and types) to all three operator templates such that all the
constraints hold. It is possible that the domain contains more types of vehicles
or cargo or more operators for loading, unloading, and moving. For example in
the Zeno-Travel domain [10] the planes can travel at two different speeds – the
domain contains two different operators for moving - Fly and Fly-Fast. In these
cases we say that the domain contains more than one transportation component.
It is also possible that the transportation component is embedded within a more
complex structure in the planning domain. For example we may assume that
hoist is necessary to load cargo to a vehicle. Then the predicates may have
arity larger than two (hoist holds cargo at given location), the operators may
have more than three parameters (hoist is included), and they may have more
preconditions (vehicle is empty) and effects (hoist will be empty after the action,
while the vehicle will be full). Such operators can still fit the template as we do
not require the domain to be isomorphic to the template but rather only to
match the template.

Notice that the transportation component is defined by the values of some
variables which have to satisfy certain constraints defined by the template.
Hence, we can search for the components automatically in the domain descrip-
tion using constraint programming (CP) techniques [4]. The names of operators
(like Op-L or Op-M), the names of the predicates (like Veh-At or Carg-In) and
the types (like Type-Loc) in the definition of the transportation component can
be seen as CP variables. The domains of these variables are derived from the

Using Monte Carlo Tree Search to Solve Planning Problems 443

planning domain description. For example the domain of the variable Op-L is
a set of all names of operators defined in the planning domain, the domain of
the variable Type-Veh is a set of all types used in the planning domain and so
on. Finding all the transportation components is equivalent to finding all the
solutions of this Constraint Satisfaction Problem. This step might be computa-
tionally demanding but it is done only once as preprocessing before the actual
planning starts. The transportation component is defined by relations between
symbols including types. Therefore this domain analysis technique can only be
used on domains that support typing. This however is not a restriction since the
types can be automatically derived from the domain description even if they are
not given explicitly [16].

5 MCTS in Planning for Transportation Domains

Recall that one of the main components of the MCTS algorithm is simulation
– looking for a solution plan from a given state. As these simulations are run
frequently to evaluate the states, it is critical to make the simulations short
(i.e. with low expected number of steps/actions) and to ensure that most of the
simulations will reach the goal (i.e. low probability of reaching a dead-end or a
dead component) so that the sampling would be fast and effective. We achieve
this by modifying the state space based on the analysis of the planning domain.

We modify the planning domain by replacing the given action model with so
called meta-actions (will be explained later). Meta-actions are learned during
planning and their purpose is to rid the domain of cycles and dead-ends. The
proposed model of meta-actions is theoretically applicable to all types of domains
however in our planner we only use it for a specific type of planning domains
where the learning technique is reasonably fast.

5.1 Meta-actions

Meta-actions (or composite actions) consist of sequences of original actions. The
purpose of using Meta-actions instead of the original actions is to prevent some
paths in the state-space from being visited during the simulation phase of the
MCTS algorithm. The original action model allows every possible path in the
search space to be explored by the planner though many paths are formed of
meaningless combinations of actions which do not lead to the goal. For example
the sequence load − unload− load − unload − . . . is a valid plan, but does not
bring us closer to the goal. If the simulation visits such a path, it might spend
a lot of time in cycles or end up in a dead-end. We use the meta-actions to
eliminate as many meaningless paths as possible which makes the Monte-Carlo
sampling process efficient enough to be worth using.

Each meta-action represents a sequence of original actions. If we want to
apply the meta-action, we apply all the actions in the sequence successively. If
we represent the state-space as a directed graph where vertices represent states
and edges represent actions then the meta-actions correspond to paths in this
graph. Our modification of the state-space can be seen as follows:

444 O. Trunda and R. Barták

1. Identify important paths in the graph (learn the meta-actions).
2. Remove all original edges from the graph (we no longer use the original

actions once we learned the meta-actions).
3. Add new edges to the graph. Edge is added from u to v if there exists a

meta-action A such that v = γ(A, u).

The planning/simulation is then performed on this new search space. Notice
that by removing the original actions, we may effectively remove some valid
plans from being assumed. Our goal is to create the meta-actions in such a way
that the important paths in the state-space would be preserved (especially paths
representing optimal solutions should be preserved) and paths leading to cycles
or dead-ends would be eliminated.

5.2 Example of the Meta-actions Model

We will first give examples of two meta-actions constructed for the Zeno-Travel
Domain [10]. The original domain description contains actions Fly, Load and
Unload. The following two meta-actions were learned by the planner (the learning
method will be described later).

(: a c t i on f l y+load
: parameters (? a − a i r p l a n e ?p − person

? from ? to − l o c a t i o n)
: p r e cond i t i on (and (at ?a ? from)

(at ?p ? to))
: e f f e c t (and (not (at ?a ? from))

(not (at ?p ? to)) (at ?a ? to)
(in ?p ?a)))

(: a c t i on f l y+unload
: parameters (? a − a i r p l a n e ?p − person

? from ? to − l o c a t i o n)
: p r e cond i t i on (and (at ?a ? from)

(in ?p ?a))
: e f f e c t (and (not (at ?a ? from))

(at ?a ? to) (not (in ?p ?a))
(at ?p ? to)))

In this example the original state-space contains many infinite paths – for
example performing action fly without ever loading anything or repeatedly per-
forming actions load-unload. The modified state-space which uses meta-actions
doesn’t contain these paths. It still contains some infinite paths but their number
is greatly reduced.

5.3 Learning the Meta-actions

Let us suppose that we have already found the transportation components in the
planning domain. Every meta-action we create belongs to some transportation

Using Monte Carlo Tree Search to Solve Planning Problems 445

component and we shall describe the learning algorithm using the terms from the
definition of a transportation component. In particular, we will use terms such
as vehicle, cargo, loaded cargo, operator Move and so on even though we do not
know the exact symbols that play these roles in the particular planning domain
(for example Move can be called fly in the particular domain). The operators,
types, and predicates might have different names in each particular transporta-
tion planning domain but their meaning is still the same. The term operator
Load for example refers to the operator that plays the role of loading in the
particular domain. We can use this assumption since we have already assigned
meaning to these symbols by identifying the transportation components.

To recognize the important paths we use a landmark-based approach where
we first find the state landmarks in the domain (landmark is a set of states such
that every solution plan has to visit at least one of these states) and then we
find paths between the nearest landmarks. These paths will be stored in a form
of meta-operators and used during the simulation phase of MCTS (instantiated
to meta-actions).

Assuming the transportation domains where the goal is to deliver some cargo
simplifies the process of identifying landmarks. Basically, we have two types of
landmarks. In order to deliver cargo, it has to be loaded in some vehicle and
then unloaded. For every cargo that has not yet been delivered the set of all
states where this cargo is loaded in some vehicle represents a state landmark of
the problem. Similarly for a cargo that is loaded the set of all states where this
cargo is not loaded represents a state landmark. We create the meta-actions by
finding the shortest paths between two consecutive landmarks. For finding the
shortest paths we use an exhaustive search where we assume that the domain
is simple enough for this process to be tractable - i.e. the paths between the
landmarks are short and simple. Having the sequence of actions, we do lifting to
obtain a sequence of operators that then define the meta-operator.

Let us summarize the whole learning technique. Suppose that during the sim-
ulation phase the MCTS algorithm visits a state where no known meta-action
is applicable. Then the learning procedure is initiated which works as follow.

1. select some transportation component randomly
2. select some not delivered cargo from this component randomly
3. if this cargo is not loaded, find the shortest path (paths) to some state where

it is loaded; otherwise (i.e. if it is already loaded) find the shortest path to
some state where it is not loaded. These paths consist of original actions.

4. create meta-actions from these sequences, lift them to meta-operators, and
store them for future use.

In the Zeno-Travel domain these shortest paths only contained two actions and
the meta-actions were fly+load and fly+unload. In the Petrobras domain how-
ever the paths might be longer. In this case meta-actions of a length up to four
were found, namely undock+navigate+dock+load and undock+navigate+dock+
unload.

The method of exploiting meta-actions can be described as follows. We find
optimal sub-plans for sub-goals that need to be achieved to reach the expected

446 O. Trunda and R. Barták

”big” goal (for example load yet-unloaded cargo by first flying to the cargo
location and then loading it), we encapsulate these sub-plans into meta-actions
and generalize the meta-actions to meta-operators by lifting, and finally we use
these meta-operators when planning for the ”big” goal. This can be in principle
done for any planning domain, but identifying the landmarks and finding sub-
plans is in general a hard problem.

6 Experimental Results

We have compared our technique with the LPG planner [6] – a state-of-the-art
domain-independent optimal planner for PDDL2.2 domains and the top per-
former at IPC4 in plan quality. We used two domains for comparison: the Zeno-
Travel domain as an example of an artificial IPC domain – one of the simplest
transportation domains possible, and the simplified Petrobras domain, which is
much closer to real practical problems. The simplified Petrobras domain is sim-
ilar to the originally proposed Petrobras domain [15] with the difference that
the cargo no longer has any weight assigned to it, loading and unloading takes a
fixed amount of time (no longer depends on the weight) and the ships can hold
arbitrarily many cargo (no longer have a capacity limit). Also the plan quality
is only measured by the fuel consumption and makespan (the original domain
used several other vaguely defined criteria).

We have generated 40 random problems from both domains with the increas-
ing size of the problems. The LPG planner optimized the fuel consumption
while the MCTS planner optimized weighted sum of both fuel consumption and
makespan. Every problem had a time limit assigned according to its size. The
smallest problems had the time limit of 5 minutes, the largest ones had a limit
of 40 minutes. The best solutions found within the time limit are reported. The
experiments were conducted on the same computer – Asus A8N-VM CSM with
processor AMD Opteron (UP) 144 @ 1800MHz (8 cores) and 1024MB of physical
memory.

6.1 Zeno-Travel Domain

The results of the experiments with the Zeno-Travel domain are shown in
Figure 2. Both planners were able to solve all the problems. In plan quality
the LPG planner outperformed the MCTS planner by approximately 10 percent
overall (measured by the sum of fuel consumption and makespan).

6.2 Simplified Petrobras

In the case of simplified Petrobras domain both planners were again able to
solve all the problems within the given time limit. The results of experiments
are shown in Figures 3(a), 3(b) and 4.

The LPG planner outperformed the MCTS in fuel consumption as Figure 3(a)
shows. The MCTS planner on the contrary outperformed LPG in makespan

Using Monte Carlo Tree Search to Solve Planning Problems 447

Fig. 2. Results of the experiments in the Zeno-Travel domain

(see Figure 3(b)). Figure 4 shows the results according to the weighted sum
of both these criteria. We used the combined objective function 1 ∗ fuel + 4 ∗
makespan so that both criteria are comparable and equally important in the
sum. In this case MCTS slightly outperformed the LPG by approximately 5
percent overall.

(a) Fuel consumption (b) Makespan

Fig. 3. Results of the experiments in the simplified Petrobras domain

6.3 Discussion

The preliminary experimental results show that the simple MCTS planner is
competitive with the complex LPG planner. The LPG planner found simpler
plans with less parallelism and less vehicles used. Therefore it had better fuel
consumption but worse makespan. The MCTS planner on the contrary found
more sophisticated plans using more vehicles and more actions.

The MCTS planner performed better on the more complicated domain (com-
pared to LPG) which we believe is caused by the use of meta-actions. Meta-
actions can capture complex paths in the state-space and allow to use these
paths again during the planning. In the Zeno-Travel domain the planner only
learned 2 meta-operators while in the simplified Petrobras the number of learned
meta-operators was 12.

448 O. Trunda and R. Barták

Fig. 4. Results of the experiments in the simplified Petrobras domain - weighted sum
of makespan and fuel consumption

The MCTS technique combined with the learning of meta-actions proved to
be competitive with standard planning software even though it is still only a
prototype and still has a potential for further improvement. We believe that by
efficient implementation, integration of other techniques [12] or by hybridization
with other algorithms [8] the performance can be further increased.

7 Conclusions

In this paper we showed that an ad-hoc MCTS planner from [13] can be gen-
eralized to a wider range of planning domains while keeping its efficiency. We
characterized transportation planning domains using templates of three typi-
cal operations (loading, moving, unloading), we showed how to automatically
identify these operations in the description of any planning domain and how to
exploit the structure found for learning macro-operations that speed-up MCTS
simulations. The resulting MCTS planner is already competitive with the state-
of-the-art planner LPG thought the implementation of the MCTS planner is
not fine-tuned. Due to space limit, the paper focused on explaining the main
concepts of the method, the formal technical details can be found in [14].

A universal MCTS planner would require a fast technique for solving the un-
derlying satisficing problem which does not seem possible for arbitrary planning
domain. It can however be used in the domains where the underlying problem is
easy to solve and a complex objective function is used in the optimization prob-
lem. Transportation domains are a good example of such domains. We believe
that there are many more planning domains that have this property (especially
those that are practically motivated) and therefore MCTS techniques may be-
come a new and efficient way to address such problems.

Acknowledgment. Research is supported by the Czech Science Foundation
under the project no. P103-10-1287.

Using Monte Carlo Tree Search to Solve Planning Problems 449

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47(2-3), 235–256 (2002)

2. Baudǐs, P.: Balancing MCTS by Dynamically Adjusting Komi Value. ICGA Jour-
nal 34, 131–139 (2011)

3. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search: A New
Framework for Game AI. In: Proceedings of the 4th Artificial Intelligence for Inter-
active Digital Entertainment conference (AIIDE), pp. 216–217. AAAI Press (2008)

4. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc. (2003)
5. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.

Elsiever Morgan Kaufmann, Amsterdam (2004)
6. Gerevini, A., Saetti, A., Serina, I.: Planning in PDDL2.2 Domains with LPG-

TD. In: International Planning Competition, 14th International Conference on
Automated Planning and Scheduling (IPC at ICAPS) (2004)

7. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

8. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M., Schulte, C.: Hybridizing Con-
straint Programming and Monte-Carlo Tree Search: Application to the Job Shop
Problem (unpublished)

9. Nakhost, H., Müller, M.: Monte-Carlo exploration for deterministic planning. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1766–1771 (2009)

10. Olaya, A., López, C., Jiménez, S.: International Planning Competition (2011),
http://ipc.icaps-conference.org/ (retrieved)

11. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Chaslot, G.M.J.B., Uiter-
wijk, J.W.H.M.: Single-player Monte-Carlo tree search. In: van den Herik, H.J., Xu,
X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 1–12. Springer,
Heidelberg (2008)

12. Schadd, M.P.D., Winands, M.H.M., van den Herik, H.J., Aldewereld, H.: Address-
ing NP-Complete Puzzles with Monte-Carlo Methods. In: Proceedings of the AISB
2008 Symposium on Logic and the Simulation of Interaction and Reasoning vol. 9,
(2008)

13. Toropila, D., Dvořák, F., Trunda, O., Hanes, M., Barták, R.: Three Approaches to
Solve the Petrobras Challenge: Exploiting Planning Techniques for Solving Real-
Life Logistics Problems. In: Proceedings of ICTAI 2012, pp. 191–198. IEEE Con-
ference Publishing Services (2012)

14. Trunda, O.: Monte Carlo Techniques in Planning. Master’s thesis. Faculty of Math-
ematics and Physics, Charles University in Prague (2013)

15. Vaquero, T.S., Costa, G., Tonidandel, F., Igreja, H., Silva, J.R., Beck, C.: Planning
and scheduling ship operations on petroleum ports and platform. In: Proceedings
of the ICAPS Scheduling and Planning Applications Workshop, pp. 8–16 (2012)

16. Wickler, G.: Using planning domain features to facilitate knowledge engineering. In:
Proceedings of the Workshop on Knowledge Engineering for Planning and Schedul-
ing (KEPS 2011), pp. 39–46 (2011)

17. Xie, F., Nakhost, H., Müller, M.: A Local Monte Carlo Tree Search Approach
in Deterministic Planning. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI 2011), pp. 1832–1833 (2011)

http://ipc.icaps-conference.org/

	Using Monte Carlo Tree Search to Solve
Planning Problems in Transportation Domains
	1 Introduction
	2 Background
	2.1 Planning
	2.2 Monte Carlo Tree Search

	3 MCTS for Planning
	3.1 Cycles in the State-Space
	3.2 Dead-Ends
	3.3 Dead Components

	4 Transportation Domains
	5 MCTS in Planning for Transportation Domains
	5.1 Meta-actions
	5.2 Example of the Meta-actions Model
	5.3 Learning the Meta-actions

	6 Experimental Results
	6.1 Zeno-Travel Domain
	6.2 Simplified Petrobras
	6.3 Discussion

	7 Conclusions
	References

