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Universidade de São Paulo – São Carlos, SP – Brasil

{igorab,mcmonard}@icmc.usp.br, {lais.carmo,caiocesar}@usp.br

Abstract. Parameter selection greatly impacts the classification accu-
racy of Support Vector Machines (SVM). However, this step is often
overlooked in experimental comparisons, for it is time consuming and re-
quires familiarity with the inner workings of SVM. Focusing on Gaussian
RBF kernels, we propose a grid-search procedure for SVM parameter se-
lection which is economic in its running time and does not require user
intervention. Based on probabilistic assumptions of standardized data,
this procedure works by filtering out parameter values that are not likely
to yield reasonable classification accuracy. We instantiate this procedure
in the popular WEKA data mining toolbox and show its performance
on real datasets.

1 Introduction

Support Vector Machines (SVM) [1] is a supervised learning method that has
been used to achieve state-of-the-art classification results in many domains of
application. It is usually among the methods that are experimentally evaluated
when a new application or learning method is being proposed.

A crucial step when applying SVM is the selection of its parameters. In order
to do it properly and efficiently, it is required an understanding of how these
parameters affect SVM classification. Hence, users not familiarized with SVM
tend to skip parameter selection, often resorting on default parameters of the
implementations of their choice. The problem with this approach is that there
are no default parameters for SVM.

There has been some effort to introduce procedures for SVM parameter se-
lection that are both easy-to-use and principled [2,3]. However, they currently
involve checking a large range of parameter candidates, which can be quite time
consuming. What is more, there is an emphasis in fine-grained parameter selec-
tion, which may be overkill.

In this work we intend to make SVM parameter selection automatic and
economic in its running time. In order to do that, we try to exclude parameter
values that are not likely to provide good classification accuracy. After that,
we try to investigate parameter candidates that are essentially different, that
is, lead to different classification results. A key step to our procedure is data
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standardization, which is a common data pre-processing task that is also useful
for bringing all data features (attributes) to the same scale.

The machine learning community has much aided users by making available
a wide variety of learning algorithms through open source packages. A popular
environment which is widely used by machine learning experts and non-experts
is the Waikato Environment for Knowledge Analysis (WEKA) [4]. It contains a
wide variety of machine learning methods and also provides graphical user inter-
faces for easy access. Due to its popularity, we use it in this work to instantiate
and illustrate the proposed SVM parameter selection procedure.

The remainder of this paper is organized as follows. In Section 2 we review
SVM parameters and how they affect classification performance. In Section 3 we
express caution on the use of default parameters in SVM. In Section 4 we present
the proposed parameter selection procedure for SVM. In Section 5, we instantiate
the proposed procedure in WEKA and conduct illustrative experiments. We
conclude in Section 6.

2 Essential Parameters of SVM

This section reviews the parameters that most affect the generalization abil-
ity of Support Vector Machines1. It is not intended to be a tutorial on SVM
classification, as good references on the subject already exist [5].

Given n training examples (x1, y1), . . . , (xn, yn), where x ∈ Rd and Y =
{+1,−1}, the optimization problem that emerges from SVM is usually written
as follows

max
α1,...,αn

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj k(xi,xj)

subject to
n∑

i=1

αiyi = 0,

0 ≤ αi ≤ C,

where the constant C > 0 and the kernel function k(x,x′) are parameters to be
defined. After solving this problem for fixed C and k, the output variables αi

are used to derive the function f(x) used to classify unseen data

f(x) = sign

(
n∑

i=1

αiyi k(x,xi) + b

)

, (1)

where b is also computed from αi.
Let us first tackle the so-called generalization parameter C. When a learning

algorithm selects a function f(x) from a set of functions F using training exam-
ples, it does so by means of an inductive principle. In the case of SVM, induction
is performed by the Structural Risk Minimization principle [6], which controls

1 Besides the parameters discussed in this section, there may be other parameters
related to specific SVM solvers that do not greatly affect generalization.
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two factors: 1) the number of training errors made by f(x) and 2) the capacity
(diversity) of the set of functions F . In order to obtain a function f(x) that de-
livers good classification accuracy on test examples, both factors should be small.
As these factors are contradictive, a balance has to be found by controlling the
parameter C.

The effect of C in SVM is clearer from its primal optimization problem, which
for simplicity we show for the linear case

min
w,b,ξ1,...,ξn

‖w‖2 + C
n∑

i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0.

Note that large values of C put more emphasis on the minimization of the slack
variables ξi, which leads to correct separation of the training examples but risks
overfitting. On the other hand, small values of C put more emphasis on the
minimization of ‖w‖, which leads to maximization of the margin of separation
and, consequently, minimization of the capacity of the set of functions being
considered [6]. This latter case, however, may lead to underfitting. Figure 1
illustrates this trade-off.

Fig. 1. Typical linear SVM scenario. The value of C used in the left is larger than the
one used in the right.

We now turn our attention to the kernel function parameter k(x,x′), which
induces the set of functions F from where the function f(x) is picked. Two kinds
of kernel functions have been extensively employed: the Gaussian RBF and the
linear types. Since most domains require non-linear classification, the former is
often more appropriate2. Another important property of the Gaussian RBF type
is its universal function approximation ability [7].

In fact, Gaussian RBF kernels form a family of kernel functions parameterized
by a parameter γ > 0

k(x,x′) = exp (−γ ‖x− x′‖2).
2 An exception occurs when the number of dimensions d (features) of the training
examples greatly exceeds the number of training examples n (d � n).
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This means that by choosing γ, we are effectively choosing a kernel function for
SVM. The effect of choosing increasingly larger values of γ is to make the kernel
an identity evaluator, that is

k(x,x′) = 1, if x = x′,
k(x,x′) ≈ 0, if x �= x′.

On the other hand, choosing very small values of γ has the effect of making
k(x,x′) ≈ 1 for any x and x′. Figure 2 illustrates the effect of γ in SVM.
Note how a large value of γ allows for more diversity in the set of functions
implemented by SVM.

Fig. 2. SVM decision function using Gaussian RBF kernels. The value of γ used in the
right is larger than the one used in the left. (Source: [3])

3 A Word of Caution about Default Parameters

The aim of machine learning algorithms is the autonomous building of mod-
els from datasets. However, learning algorithms do not necessarily provide good
results without being properly tuned. In other words, besides choosing an ap-
propriate learning algorithm for the specific learning domain, it is also necessary
to set the algorithm parameters. Nevertheless, manual tuning of the algorithm
parameters can frequently be very time-consuming, as well as requiring good
knowledge of the learning algorithm.

As there is an increasing number of non-expert users of machine learning
tools who require off-the-shelf solutions, these environments always offer default
parameter values to execute the algorithms. However, while the default param-
eter values may be reasonably appropriate for some learning algorithms such
as decision trees, in which, for example, the generalization default parameter
(confidence limit3) is usually set to 25%, this is not the case for most learning
algorithms. For example, most implementations of the standard k-NN algorithm
usually take k = 1 as the default number of neighbors. As the learning domain

3 The smaller the confidence limit, the higher the chances of pruning the tree.
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is not known in advance and k = 1 entails less running time, this is the usual
default value used in most implementations, although other values can dramat-
ically improve the results.

This is also the case of other algorithms, such as SVM, which also strongly
depends on parameter selection. It is worth noting that quite different default
values are used in different implementations. For example, in WEKA and LIB-
SVM4[8,2] the default value of C is 1. In SVMlight5 the default value is the
average of (x ·x)−1, while in SVMTorch6[9], the default value is 100. Moreover,
WEKA and SVMlight use the linear kernel as default, while LIBSVM uses RBF.

In other words, default values are offered such that non-expert users can
initially experiment how the software performs right out of the box. However,
a typical machine learning scientist would at least try to improve the expected
performance of a learning algorithm over a few parameters. In case there is
a need of an optimal model, the search should be conducted over all possible
parameters.

To illustrate our point, let us consider UCI’s Monk-1 and Monk-2 artificial
datasets [10], both from the same domain, with no missing feature values. Each
dataset consists of 432 examples described by 7 features and classified as ⊕ or
	. Monk-1 is a balanced dataset (50% ⊕, 50% 	), while Monk-2 is slightly
unbalanced (67% ⊕, 33% 	). Thus, the error of the simplest algorithm that
always predicts the majority class will be 0.50 for Monk-1 and 0.33 for Monk-2.
Using WEKA, we executed John C. Platt’s Sequential Minimal Optimization
(SMO) algorithm for training a support vector machine [11]. SMO was executed
with its default parameters, which are the linear kernel and C = 1. We randomly
select 2/3 of the corresponding dataset as a training set and 1/3 as a test set.
The results are shown in Table 1, where Error is the error rate (proportion of
correctly classified instances); B.Error is the balanced error (mean of the positive
and negative error rates), and AUC is the area under the ROC curve [12]. Recall
that AUC = 0.5 correspond to random guessing. Thus, no realistic classifier
should have an AUC less than 0.5.

Table 1. Results of SVM classification using the default parameters in WEKA— linear
kernel and C = 1

Dataset Error B.Error AUC

Monk-1 0.340 0.341 0.659
Monk-2 0.340 0.500 0.500

It can be observed that the results are poor for Monk-1 and extremely poor for
Monk-2. Trying to improve these results, several other values of the parameter

4 A Library for Support Vector Machines
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

5 http://svmlight.joachims.org/
6 http://www.torch.ch/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/
http://www.torch.ch/
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Table 2. Results of SVM classification using the Gaussian RBF kernel and parameters
(C = 64, γ = 0.1)

Dataset Error B.Error AUC

Monk-1 0.088 0.087 0.913
Monk-2 0.150 0.172 0.828

C in [10−6, 10−5, . . . , 106] were tested, but without success. The reason is that
for both datasets the relationship between class values and features is nonlinear.
This situation cannot be handled by a linear kernel.

In such situations, a kernel which nonlinearly maps examples into a higher
dimensional space must be used. Several nonlinear kernels have been proposed
in the literature. Among them, the Gaussian RBF kernel is a reasonable choice
as explained in Section 2. Table 2 shows the results of using the RBF kernel in
WEKA with the assignment of parameters C = 64 and γ = 0.1.

Comparing the results from Table 1 and 2, the improvement obtained by using
RBF with a good pair of (C, γ) values is extremely high. Observe that for Monk-
1, the error went from 0.340 down to 0.088, 3.86 times lower. For Monk-2 the
error went from 0.340 down to 0.150, 2.27 times lower. Moreover, for Monk-1 and
Monk-2 respectively, the B.Error was 3.92 and 2.91 times lower. Furthermore,
the AUC improved 38% and 67% respectively.

Considering that the RBF kernel can handle datasets having linear as well
as non-linear relationship between class values and features, non-expert SVM
users may be tempted to report SVM classification results using the RBF kernel
with default parameter values. To illustrate the significant differences while using
default and optimized SVM-RBF parameters (C, γ), we execute SMO again on
datasets Monk-1 and Monk-2, and add two other real world binary datasets:
Parkinson and Ionosphere [10]. The first one consists of 197 examples (25% ⊕,
75% 	) described by 23 features, and the second one consists of 351 examples
(64% ⊕, 36% 	) described by 34 features. Thus, the majority error rate will be
25% for Parkinson and 36% for Ionosphere.

As before, the experiments were carried out using 2/3 of the corresponding
dataset as training set and 1/3 as test set. Table 3 shows the results obtained by
executing SMO using the RBF kernel with WEKA default parameters, as well
as with other parameters that showed better results.

Table 3. Results of SVM classification using the Gaussian RBF kernel with the default
values in WEKA (C = 1, γ = 0.01) and with other parameter values

Dataset Error B.Error AUC Error B.Error AUC (C, γ)

Monk-1 0.510 0.493 0.507 0.088 0.087 0.913 (64, 0.1)
Monk-2 0.340 0.500 0.500 0.150 0.172 0.828 (64, 0.1)

Parkinson 0.212 0.500 0.500 0.091 0.120 0.838 (64, 10)
Ionosphere 0.322 0.424 0.576 0.076 0.082 0.918 (2, 1000)
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As it can be observed, the improvement obtained by SMO using RBF with
other parameters (C, γ) is exceedingly good. For Monk-1 and Monk-2, using the
RBF kernel with WEKA default parameters yields an accuracy that is not better
than the majority error classifier. For Monk-1, the error went from 0.510 down
to 0.088, 5.80 times lower, and the B.Error went from 0.493 down to 0.087,
5.67 times lower. For Monk-2 the error went from 0.340 down to 0.150, 2.27
times lower, and the B.error went from 0.500 down to 0.172, 2.91 times lower.
Moreover, for Monk-1 and Monk-2 the AUC improved 80% and 67% respectively.

Also for Parkinson and Ionosphere, SMO with default parameters does not
do better than the majority error classifier. However, the classification results
yielded by the other parameters are very good. For Parkinson, the error and the
B.Error were 2.33 and 4.24 times lower respectively, while the AUC improved
67%. For Ionosphere, the error and the B.Error were 2.66 and 4.24 times lower,
while the AUC improved 59%

4 Economic Grid-Search Procedure

It was shown in the last section that using default SVM parameters may yield
unsatisfactory classification accuracy. This fact is well-known within the SVM
community. As a consequence, for a fixed kernel function, it is desirable to investi-
gate the accuracy provided by SVM with respect to several parameter candidates
of C. As to the kernel function, the Gaussian RBF is usually recommended, as
explained in Section 2. This way, it is also desirable to investigate the accuracy
provided by different candidates of the RBF parameter γ.

The most used method for selecting parameter candidates in the SVM-RBF
context is the grid-search procedure with k-fold cross-validation [2,3]. Given a
set C = {C1, C2, . . . , Cm} of m candidates of C and a set Γ = {γ1, γ2, . . . , γ�} of
� candidates of γ, an accuracy figure is obtained on the training data for each
parameter combination (Ci, γj) ∈ C×Γ through k-fold cross-validation. The pair
with the highest cross-validation accuracy is then selected and an SVM classifier
trained with this parameter combination is used for classifying unseen data.

Despite its popularity in the SVM community, the described procedure poses
a computational problem, since k × m × � calls to an SVM solver (e.g SMO)
need to be made, with k generally equal to 10. The problem is worsened when
each call to the solver is already expensive, for instance when tens of thousands
of examples are available and/or data is very high-dimensional. This means that
the candidate sets should be chosen very carefully as to have as few effective
candidates as possible.

In what follows, we propose sets of 5 candidates each, which amounts to 25 pa-
rameter combinations. Computationally speaking, this is a much better scenario
than what is usually considered. For instance, in [2] the following candidate sets
are suggested for a coarse grid-search procedure: C = {2−5, 2−3, . . . , 215} and
Γ = {2−15, 2−13, . . . , 23}, which amounts to 110 combinations.
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4.1 Candidates of γ

In order to choose candidates of γ, the distribution of the values ‖xi − xj‖2
should be taken into consideration. One possible approach is to pick candidates
that revolve around the inverse of the mean value of ‖xi − xj‖2. This way, we
avoid choosing a too small or too large candidate of γ. In this work we take
advantage of a data pre-processing step to approximate such mean value using
a formula, thus avoiding its calculation from data.

When employing SVM classification using RBF kernels, it is very desirable to
bring all features of the dataset to the same scale, since features ranging in larger
intervals tend to dominate the calculation of distances in the RBF kernel. A
popular procedure to tackle the scaling problem is data standardization: for each
feature, the mean and standard deviation value is computed; then, each feature
value is subtracted by the corresponding mean and divided by the corresponding
standard deviation. The effect of conducting this procedure on data is that every
feature will have an average value of μ̂ = 0 and standard deviation σ̂ = 1. By
assuming that each feature follows a Normal distribution with mean μ = 0 and
variance σ2 = 1, we can come up with an approximation for the mean value of
‖xi − xj‖2.
Proposition. Let x = (x1, . . . , xd) and z = (z1, . . . , zd) be two random vectors
such that xj and zj follow a Normal distribution with mean μ = 0 and variance
σ2 = 1 (standard Normal variables). Then the random variable ‖x− z‖2 follows
a Gamma distribution with shape parameter s = d

2 and scale parameter θ = 4.

Proof. If xj and zj are standard normal variables, then the random variable
(xj − zj) follows a Normal distribution with mean μ = 0 and variance σ2 = 2.

Thus,
(

xj−zj√
2

)
is also a standard normal variable. By definition, the sum of

the squares of d independent standard normal variables follows a Chi-squared
distribution with d degrees of freedom — χ2(d). Thus, the random variable

A =
∑d

j=1

(
xj−zj√

2

)2

is χ2(d). Note that

‖x− z‖2 =

d∑

j=1

(
xj − zj

)2
= 2A.

The Chi-squared distribution and the Gamma distribution are related in the
following way: if B is χ2(ν) and c > 0, then cB is distributed according to a
Gamma distribution with shape parameter s = ν

2 and scale parameter θ = 2c. As

‖x− z‖2 = 2A and A is χ2(d), it follows that ‖x− z‖2 is distributed according
to a Gamma distribution with s = d

2 and θ = 4.

When a random variable follows a Gamma distribution, its mean value cor-
responds to the product sθ. Under the conditions stated in the aforementioned
proposition, it follows that the mean value of ‖x− z‖2 is 2d. Thus, whenever we

standardize the features of our dataset, we expect the average value of ‖xi − xj‖2
to be about twice the number of features in the dataset.
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Considering u = 1
2d , we propose as candidates of γ the values u

4 ,
u
2 , u, 2u, 4u.

For d ≥ 4, this range of values is enough to cover at least 90% of the distri-
bution of ‖xi − xj‖2 when the features are standardized. This means that our
parameter candidates effectively iterates over the range of most probable values
of ‖xi − xj‖2.

4.2 Candidates of C

Now, let us consider the candidates of C. It can be observed from the general
SVM optimization problem in Section 2 that this parameter is an upper bound
on the values of the αi variables. In Equation (1), we see that these αi variables
are used to calculate the decision function. Note that if C is too small, say 2−5,
the product αiyi k(x,xi) will also be very small, since 0 ≤ k(x,xi) ≤ 1 when
k(x,xi) is a Gaussian RBF. Under usual conditions, the sum over i will also
be small, that is, far from either +1 or −1. Thus, the SVM solver will set b
so as to classify every training example to the majority class, which results in
underfitting. That way, it makes sense to remove from our candidate list small
values of C.

We propose considering C = 20 as the first candidate, and the subsequent
candidates 21, 22, 23, 24. We stop at 24 for the following reason. If we used C = 24,
then, for any xj and xi such that k(xj ,xi) = exp(−γ ‖xj − xi‖) ≥ 2−4, it would
be feasible to have the product αjyj k(xj ,xi) close to either +1 or -1. Considering
the probabilistic setting described previously and the proposed candidate set Γ ,
we would expect k(xj ,xi) ≥ 2−4 to occur at least 90% of the time when d ≥ 4.
Thus, we would see little difference in the way the training examples are classified
by taking C = 25 or a larger value.

5 Illustrative Experiments in Weka

In what follows, we instantiate our procedure for SVM parameter selection in the
WEKA data mining environment7. Given training examples (x1, y1), . . . , (xn, yn)
and test data x∗

1, . . . ,x
∗
m, where x ∈ Rd and Y = {+1,−1}, the two steps of the

procedure are:

Data standardization. For each feature value xj
i of the example xi in the

training set, the corresponding standardized value is computed as
xj
i−avg(xj)

std(xj) .

For each feature value x∗j
i of x∗

i in the test set, the corresponding standard-

ized value is computed as
x∗j
i −avg(xj)

std(xj) . Note that the scaling factors used to

standardize the test set are those of the training set.

Grid-search. Given C = {20, 21, 22, 23, 24} and Γ = {u
4 ,

u
2 , u, 2u, 4u}, where

u = 1
2d , a grid-search procedure with cross-validation is performed on the

candidate pairs in C × Γ .

7 We use version 3.6.9 of WEKA.
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These two steps can be easily carried out using WEKA on a wide variety of
datasets (including datasets with categorical features, which are automatically
transformed into numerical ones by the SMO implementation in WEKA). After
loading the training and the test set into WEKA, we choose the meta-classifier
GridSearch. Figure 3 shows how to configure GridSearch to perform our pa-
rameter selection procedure for SVM. Among these settings, there is an option
that enables data standardization as described previously.

Alternatively, the user may download the configuration file at

“http://www.icmc.usp.br/~igorab/gridSearchSMO.conf”.

It can be loaded using the Open button on the configuration window of
GridSearch. After that, it remains to set the option YBASE to the value 1

2d ,
where d is the number of features (excluding the class attribute) in his/her
dataset.

Now, we illustrate our procedure for parameter selection in WEKA. For com-
parison, we run the same experiments using the candidate values suggested in [2]
for a coarse grid-search procedure over a large range of values. The candidates

Fig. 3. Configuration options for instantiating the proposed procedure of SVM param-
eter selection using the GridSearch meta-classifier. Note that both standardization and
the RBF kernel should be enabled on SMO configuration window.

http://www.icmc.usp.br/~igorab/gridSearchSMO.conf
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Table 4. Results of SVM classification after parameter selection using the coarse grid-
search suggested in [2] (110 candidate pairs) and the procedure proposed in Section 4
(25 candidate pairs)

Coarse Grid-Search Our Procedure

Dataset Error B.Error AUC (C, γ) Error B.Error AUC (C, γ)

Monk-1 0.000 0.000 1.000 (215, 2−03) 0.000 0.000 1.000 (24, 1.67 E−1)
Monk-2 0.184 0.246 0.754 (215, 2−01) 0.150 0.172 0.828 (24, 3.33 E−1)
Parkinson 0.076 0.100 0.900 (215, 2−03) 0.076 0.100 0.900 (24, 9.10 E−2)
Ionosphere 0.067 0.071 0.929 (215, 2−03) 0.101 0.110 0.890 (24, 1.47 E−2)
Monk-3 0.000 0.000 1.000 (215, 2−03) 0.007 0.006 0.994 (24, 8.33 E−2)
Arcene 0.191 0.193 0.807 (215, 2−15) 0.191 0.189 0.811 (24, 1.25 E−5)
Breast-colon 0.019 0.019 0.981 (201, 2−15) 0.019 0.019 0.981 (23, 1.14 E−5)
Lung-uterus 0.129 0.130 0.870 (215, 2−15) 0.118 0.118 0.882 (24, 1.14 E−5)

are C = {2−5, 2−3, . . . , 215} and Γ = {2−15, 2−13, . . . , 23}, which amounts to 110
parameter pairs. Everything else is kept intact, including data standardization.

In addition to the datasets used in Section 3, we use another four datasets,
all of them with no missing attribute values: Monk-3, from the same domain as
Monk-1 and Monk-2, consisting of 432 examples (47% ⊕,53% 	) described by 7
features; Arcene [10], consisting of 200 examples (44% ⊕, 56% 	) described by
10000 features; Breast-colon, consisting of 630 examples (54% ⊕, 46% 	), and
Lung-uterus, consisting of 250 examples (50% ⊕, 50% 	), both described by
10937 features and fetched from the Gene Expression Machine Learning Repos-
itory (GEMLeR8). As before, each dataset is randomly split in a training set
containing 2/3 of the examples and a test set containing 1/3 of the examples.

Note from Table 4 that in most datasets our procedure of parameter selection
yields practically equal or better accuracy than the coarse grid-search procedure
of [2]. Only in one dataset, Ionosphere, does our procedure perform worse. On the
other hand, our procedure performs better in Monk-2. The small improvements
observed in Arcene and Lung-uterus can be credited to the fine-grained nature
of our parameter search.

The selected value of γ for each dataset is not so different across the two
selection procedures, which shows that our strategy for selecting candidates of
γ is working well. However, for Ionosphere, our strategy did not include a can-
didate of γ as good as the best one found by the coarse grid-search procedure.
Nevertheless, when dealing with large datasets, our strategy is justified even if
the results are not optimal, since a more exhaustive search may be unfeasible.

It is important to observe that in [2] it is advocated to perform a fine-grained
grid-search with candidates revolving around the best parameter found by the
coarse grid-search procedure. What we are effectively showing with our results
is that such a coarse grid-search procedure, which is time consuming, can be
avoided by previously selecting the candidates through a careful analysis of how
the parameters affect SVM classification.

8 http://gemler.fzv.uni-mb.si/

http://gemler.fzv.uni-mb.si/
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6 Conclusion

In this work we proposed an economic grid-search procedure for SVM parameter
selection using Gaussian RBF kernels. This procedure works by first standard-
izing the data and then using probabilistic assumptions to select five candidates
of the generalization parameter C and five candidates of the RBF parameter
γ. By considering all combinations of candidates, our procedure investigates 25
candidate pairs, which is a small number compared to the number of candidate
pairs usually suggested in the literature.

We instantiated our procedure in the WEKA data mining toolbox, making it
very easy to be used by non-experts. Using the same environment, we conducted
experiments on several datasets. The results show that our procedure for pa-
rameter selection was as effective as a traditional grid-search procedure, though
using less computational resources.

As future work, we intend to investigate a smarter way of selecting parameter
candidates of C. Currently, the candidates of C do not change when we consider
different candidates of γ. However, we believe it is possible to select better and
fewer candidates of C if this selection is done after we fix a candidate of γ.
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