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Abstract. The concept of association measure generalizing the Pearson  
correlation coefficient is introduced. The methods of generation of association 
measures by means of pseudo-difference associated to some t-conorm and by 
similarity measures are proposed. The association measure can be introduced on 
any set with involutive reflection operation and suitably defined similarity 
measure. The methods of construction of association measures by Minkowski 
metric and data standardization using the aggregation functions are considered. 
The cosine similarity and the Pearson’s correlation coefficient are obtained as 
partial cases of the proposed general methods. 
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1 Introduction 

The Pearson correlation coefficient plays an important role in data analysis giving 
possibility to measure possible direct and inverse relationships between variables. It is 
considered as a measure of the strength of linear relationship between variables but it 
is not always suitable for measuring possible associations between variables in gener-
al case [1] and for measuring associations between time series shapes [2]. It arises the 
problem of creation of association measures suitable for different applications.  An 
axiomatic definition of time series shape association measures generalizing the prop-
erties of correlation coefficient has been considered in [4]. In [3], the general methods 
of construction of association measures satisfying to the axioms of time series shape 
association measure have been proposed. In the present work the results of [3] are 
extended in several directions. First, the problem of definition and construction of 
association measures is considered here from the more general point of view of the 
theory of aggregation functions [6]. It gives possibility to extend the methods of gen-
eration of association measures using the concept of pseudo difference associated 
with some t-conorm.  Second, the concept of association measure is extended from 
the set of time series on a general domain where some involutive mapping together 
with a similarity measure related with this mapping can be introduced. It gives possi-
bility to extend the class of association measures that can be considered and generated 



 Association Measures and Aggregation Functions 195 

on wide class of objects different from time series. The cosine similarity and the Pear-
son correlation coefficient are obtained as particular cases of the proposed approach.  

The paper has the following structure. Section 2 gives definitions of t-conorms and 
pseudo-differences. Section 3 introduces the concept of the association measure and 
proposes the methods of construction of these measures on the sets with involutive 
reflection operation and suitably defined similarity measures. Section 4 considers a 
set of n-tuples of real values (vectors, time series or samples) where association 
measures can be defined and discusses the methods of standardization of n-tuples. 
Section 5 shows how dissimilarity measures and the Minkowski distance together 
with standardizations can be used for constructing association measures considered in 
Section 3. The cosine similarity and the Pearson’s correlation coefficient are obtained 
from the general methods of construction of association measures using standardiza-
tion transformation and Minkowski distance. Conclusions are given in Section 6. 

2 Basic Definitions 

Consider some definitions from [5-7]. 
A t-conorm is a function S:[0,1]2→ [0,1] such that for all a,b,cϵ[0,1] the following 

axioms are satisfied: 

 S(a,b) = S(b,a), (commutativity) 

 S(a,S(b,c)) = S(S(a,b),c), (associativity) 

 S(a,b) ≤ S(a,c), whenever b ≤ c, (monotonicity) 

 S(a,0)= a. (boundary condition) 

From the definition of t-conorms it follows for all aϵ[0,1]: 

 S(1,a) = S(a,1) = 1,         S(0,a)= a. 

An element aϵ]0,1[ will be referred to as a nilpotent element [5] of S if there exists 
some bϵ]0,1[  such that  S(a,b)=1. A t-conorm S has no nilpotent elements if and 
only if on [0,1] it is fulfilled: 

 from S(a,b) = 1 it follows a = 1 or b = 1.  

Consider simplest t-conorms: 

 SM(a,b) = max{a,b}, (maximum) 

 SL(a,b) = min{a+b, 1}, (Lukasiewicz t-conorm) 

 SP(a,b) = a+b-ab. (probabilistic sum) 
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It is clear that the maximum and the probabilistic sum have no nilpotent elements but 
the Lukasiewicz t-conorm has.   

Let S be a t-conorm. The S-difference is defined by [6]: 

 ܽ ௌ ܾ ൌ ݂݅݊ሼܿ א ሾ0,1ሿ|ܵሺܾ, ܿሻ ൒ ܽሽ 

for any a,b in [0,1]. 

 From the properties of t-conorms it follows:  

 1 ௌ 0 ൌ 1, 

 1 ௌ ܾ ൌ 1, if b < 1 and t-conorm S has no nilpotent elements. 

Let S be a t-conorm. The pseudo-difference associated to S is defined by [6]: 

 ܽሺെሻௌܾ ൌ ۔ە
ܽ       ۓ ௌ ܾ,            ݂݅ ܽ ൐ ܾെ ቀܾ ௌ ܽቁ , ݂݅ ܽ ൏ ܾ            0,               ݂݅ ܽ ൌ ܾۙۘ

ۗ
 

for any a,b in [0,1]2. Equivalently 

 ܽሺെሻௌܾ ൌ ሺܽ݊݃݅ݏ െ ܾሻሺ݉ܽݔ ሺܽ, ܾሻ ௌ ݉݅݊ ሺܽ, ܾሻሻ. 

The following pseudo-differences are associated with t-conorms SM, SL and SP  
respectively: 

 ܽሺെሻெܾ ൌ ቐ    ܽ,     ݂݅ ܽ ൐ ܾെܾ,     ݂݅ ܽ ൏ ܾ    0,     ݂݅ ܽ ൌ ܾቑ, 

 ܽሺെሻ௅ܾ ൌ ܽ െ ܾ, 

 ܽሺെሻ௉ܾ ൌ ሺܽ െ ܾሻ/ሺ1 െ min ሺܽ, ܾሻሻ.  

3 Association Measures  

Suppose X is a set with a mapping N:X→ X satisfying for all elements x from X the 
property: 

 N(N(x)) = x.  (involutivity) 

This mapping will be called a reflection operation.  
As an example of a set with a reflection operation one can consider the set X= [0,1]  

with an involutive negation N, defined, e.g. by [7]: N(x) = 1-x, the set of fuzzy sets X 
with an involutive negation of  fuzzy sets, the set of vectors  or time series of the 
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length n with real valued elements x= (x1,…,xn) and reflection operation N(x)=(-x1, 
…, -xn) etc. 

Suppose A is a function A:XμX→ [-1,1] satisfying for all x and y from X the  
properties:  

 A(x,y) = A(y,x), (symmetry) 

 A(x,x) = 1, (reflexivity) 

and N is a reflection operation on X. The function A will be called an association 
measure (with respect to N) if for all x from X such that A(N(x),x) ≠  1, it is fulfilled: 

 A(N(x),x) = –1, (inverse reflexivity) 

 A(N(x),y) = –A(x,y). (inverse relationship) 

Generally, a function SIM:XμX → [0,1] satisfying for all x and y from X the proper-
ties:  

 SIM(x,y) = SIM(y,x), (symmetry) 

 SIM(x,x) = 1, (reflexivity) 

will be referred to as a similarity measure.  
Suppose SIM for all x, y satisfies some of the following properties:  

 SIM(N(x),y) = SIM(x,N(y)), (permutation of reflections) 

 SIM(N(x),x) < 1, (weak similarity of reflections) 

 SIM(N(x),x) = 0. (non-similarity of reflections) 

It is clear that from the non-similarity of reflections it follows the weak similarity of 
reflections. Below it is a generalization of the result from [3] on pseudo-differences 
and reflection operation N. 

Theorem 1. Suppose SIM is a similarity measure satisfying the property of permuta-
tion of reflections and S is a t-conorm. Then the function:  

 ASIM(x,y) = SIM(x,y)(–)S SIM(x,N(y)) 

defined for all y such that SIM(N(y),y)≠ 1 is an association measure if one of the fol-
lowing is fulfilled: 

1. SIM satisfies the non-similarity of reflections; 
2. SIM satisfies the weak similarity of reflections and t-conorm S has no nilpotent 

elements. 

Since maximum SM and probabilistic SP t-conorms has no nilpotent elements but 
Lukasiewicz t-conorm SL has, from the Theorem 1 the following specific methods for 
construction of association measures can be obtained.  
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Corollary 2. Suppose SIM is a similarity measure satisfying the property of permuta-
tion of reflections. For all y such that SIM(N(y),y)≠ 1 the association measure can be 
defined as follows. If SIM satisfies the non-similarity of reflections then the function:  

 ASIM,L(x,y) = SIM(x,y)– SIM(x,N(y)) 

is an association measure. If SIM satisfies the weak similarity of reflections then the 
following functions are association measures:  

,ݔௌூெ,ெሺܣ  ሻݕ ൌ ቐܵܯܫሺݔ, ,ݔሺܯܫܵ ݂݅                  ,ሻݕ ሻݕ ൐ ,ݔሺܯܫܵ ܰሺݕሻሻെܵܯܫሺݔ, ܰሺݕሻሻ,      ݂݅ ܵܯܫሺݔ, ሻݕ ൏ ,ݔሺܯܫܵ ܰሺݕሻሻ0,                                ݂݅ ܵܯܫሺݔ, ሻݕ ൌ ,ݔሺܯܫܵ ܰሺݕሻሻ ቑ, 

,ݔௌூெ,௉ሺܣ ሻݕ ൌ ሺܵܯܫሺݔ, ሻݕ െ ,ݔሺܯܫܵ ܰሺݕሻሻሻ/ሺ1 െ min ሺܵܯܫሺݔ, ,ሻݕ ,ݔሺܯܫܵ ܰሺݕሻሻሻሻ. 

In the following section, we will consider the set X of n-tuples of real values x= 
(x1,…,xn) of the length n with the reflection operation N(x)= -x = (-x1,…,-xn). In this 
case a symmetric and reflexive function A will be an association measure if for all x 
from X such that A(-x,x) ≠  1, it is fulfilled: 

 A(-x,x) = –1, (inverse reflexivity) 

 A(-x,y) = –A(x,y). (inverse relationship) 

The corresponding properties of similarity measures related with reflection operation 
will have the following notations:  

 SIM(-x,y) = SIM(x,-y), (permutation of reflections) 

 SIM(-x,x) < 1, (weak similarity of reflections) 

 SIM(-x,x) = 0. (non-similarity of reflections) 

Generally we do not require as in [3] that association measure satisfies for any real 
value q the following property: 

 A(x+q,y) = A(x,y). (translation invariance) 

But this property will be considered as necessary if X is a set of time series x= 
(x1,…,xn) [3]. The association measure will be referred to as scale invariant if for all 
positive real values p it is fulfilled [3]: 

 A(px,y) = A(x,y). (scale invariance) 

It is clear that ASIM is translation or scale invariant if SIM satisfies the corresponding 
properties.  
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4 Standardization 

For any n-tuples x, y and real values p,q define x+y = (x1+y1, …, xn+yn), px+q= (px1+q, 
…,pxn+q). Denote q(n) a constant n-tuple with all elements equal to q. We will write x= 
const if x = q(n) for some q, and x ≠ const if xi≠ xj for some i≠j from {1,…,n}. From 
definitions above it follows: px+q = px+q(n). 

A transformation F:Rn→ Rn is said to be a standardization if for all xϵRn it is  
fulfilled F(x) ≠ const if x ≠ const: 

 F(F(x)) = F(x),  (idempotence) 

 F(q(n)) = 0(n),    for any real value q. 

A n-tuple x is said to be in a standard form wrt a standardization F if F(x) = x.  

As it follows from the definition, a standardization F transforms any x into a stan-
dard form F(x). We will say that F(x) satisfies r-normality for some r =1,2,…. if:  
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A transformation E:Rn→ R is said to be an estimate if E(q(n))=q for any real value q.  

It is clear that any aggregation function [6] is an estimate.  
We will use the following terminology, if for all n-tuples x,y, for any real value q  

and for any positive value p > 0, F satisfies the properties: 

 F(x+q) = F(x)+q, (translation additivity) 

 F(x+q) = F(x), (translation invariance) 

 F(x+y) = F(x)+F(y), (additivity) 

 F(px) = pF(x),  p> 0, (scale proportionality) 

 F(px) = F(x). (scale invariance) 

Note that in literature the translation additivity is often referred to as shift invariance 
or translation invariance, the scale proportionality is referred to as scale invariance or 
homogeneity of degree 1. It is clear that from the additivity of F it follows its transla-
tion additivity. The same terminology will be used for E. 

Proposition 3. The following transformations are standardizations: 

1. F1(x)= x-E1(x), if E1 is a translation additive estimate.  
F1 is translation invariant and E1(F1(x))= 0. 
 

2. F2(x)= x/E2(x), for x ≠ const, if  E2 is a scale proportional estimate and E2(x) > 0 
for all x.  

F2 is scale invariant and E2(F2(x))= 1.  
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If ܧଶሺݔሻ ൌ ඥ∑ ௜|௥௡௜ୀଵೝݔ| , then F2(x) satisfies the r-normality property.  
If ܧଶሺݔሻ ൌ ∑ ௜௡௜ୀଵݔ , then F2(x) satisfies the normality property: ∑ ሻ௜ݔሺܨ ൌ 1௡௜ୀଵ . 
 

3. F3(x)= (x-E13(x))/E23(x), if  E13 is a translation additive and scale proportional es-
timate, E23 is a translation invariant and a scale proportional estimate, and E23(x)> 
0, for all x.  

F3 is translation and scale invariant, E13(F3(x)) = 0.  

If r
n

i

r
ii xExxE /1

1
1323 ))(()( 

=
−=  then F3(x) satisfies the r-normality property. 

An estimate E is said to be a mean if it satisfies the condition [6]:  

 min{x1,…, xn} ≤ E(x) ≤ max{x1,…, xn}.  

Most of the means [6] are translation additive and scale proportional estimates and 
they can be used for generation standardizations considered above. Below are exam-
ples of standardizations F(x) = f(x), where the arithmetic mean is denoted by 
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5 Dissimilarity Measures 

A dissimilarity measure D(x,y) is a real valued function satisfying for all n-tuples x 
and y the properties: 

 D(x,y) = D(y,x), 

 D(x,y) ≥ D(x,x) = 0. 

D will be called normalized if it takes values in [0,1].  
Define dissimilarity measure by Minkowski metric and a standardization F:  
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Dr,F satisfies permutation of reflections property Dr,F(-x,y) = Dr,F(x,-y) if standardiza-
tion F used in Minkowski distance is an odd function, i.e. it satisfies: F(-x)= –F(x). 
Standardization F2 defined in Proposition 3 is an odd function. Standardizations F1 
and F3 from Proposition 3 will be odd functions if the estimates E1 and E13 are odd 
functions [3].  

If U is a strictly decreasing nonnegative function such that U(0) = 1 then the func-
tion  SIMD(x,y)= U(Dr,F(x,y)) with odd standardizations F will be a similarity meas-
ure satisfying permutation of reflections property. The property of a weak similarity 
of reflections SIMD(-x,x) < 1, will be fulfilled because  Dr,F(x,-x) > 0 for odd standar-
dizations F. Such SIMD(x,y)= U(Dr,F(x,y)) can be used for generating association 
measures ASIM,M and ASIM,P  considered in Corollary 2 and generally for ASIM from 
Theorem 1  when t-conorm S has no nilpotent elements. For example, we can use one 
of the following definitions of SIM, where D= Dr,F  and C is a positive constant: 

,ݔ஽ሺܯܫܵ  ሻݕ ൌ ஼஽ሺ௫,௬ሻା஼, 

,ݔ஽ሺܯܫܵ  ሻݕ ൌ ଵ௘ವሺೣ,೤ሻ. 
Consider the method of construction of association measure ASIM,L from Corollary 2 
by means of standardizations F2 or F3 from Proposition 3. If it exists some positive 
constant H such that H ≥ D(x,y) for all x,y, and W is a strictly increasing function such 
that W(0) = 0, W(H) ≤ 1, then a similarity measure can be defined as follows:  

 SIMD(x,y)= 1- W(D(x,y)).  

Such similarity measure will satisfy non-similarity of reflections property if for all n-
tuples x,y the following will be fulfilled: D(-x,x) = H ≥ D(x,y), H > 0, and W(H) = 1. 
If D is normalized then one can define similarity measure by:  

 SIMD(x,y)=1 - D(x,y).  

Such similarity measure satisfies non-similarity of reflections property if D(-x,x)=1. 

Proposition 4. Suppose Dr,F(x,y) is a dissimilarity measure defined by Minkowski 
distance, F is an odd standardization satisfying r-normality and W is a strictly increas-
ing function such that W(0)= 0, W(2) = 1, then the function: 

 ASIM,L(x,y) = W(Dr,F(x,-y))-W(Dr,F(x,y)), (1) 

defined for all x,y≠ const, is an association measure.  

The simplest functions W(Dr,F(x,y)) considered in Proposition 4 have the form:  
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where p is a positive constant. For p = 1 we have:  
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 ASIM,L(x,y) = 0.5(Dr,F(x,-y)-Dr,F(x,y)). 

For p = r the association measure defined by (1), (2) has the form: 
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Corollary 5. A shape association measure defined by (1), (2) with parameters p=r= 2 
coincides with a cosine similarity measure: 

 Acos,F(x,y) = cos(F(x),F(y)). 

Corollary 6. The shape association measure Acos,F(x,y) = cos(F(x),F(y)) with standar-
dization  
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coincides with the sample Pearson’s correlation coefficient: 
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6 Conclusions 

The paper introduces the concept of association measure in the rapidly developed area 
of aggregation functions. The operation of pseudo-difference associated to t-conorm S 
considered in the theory of aggregation functions [6] gives possibility to generalize 
the methods of construction of association measures considered in [3] and to propose 
new methods of construction of such measures. The pseudo-differences associated to 
t-conorms without nilpotent elements play an important part in these methods. Such t-
conorms are dual to t-norms without zero devisors have been considered in the theory 
of t-norms [5,7]. The main results are given for a wide class of sets with a reflection 
operation and a suitably defined similarity measure. It gives possibility to introduce 
association measures on feature spaces, in fuzzy logic, on the set of fuzzy sets, etc. 
The obtained results can be used for generation of association measures in various 
application areas, for example, is time series data mining [3]. Possible extensions of 
considered results can be based on the methods of definition of similarity measures 
used for generation of association measures. These similarity measures can be given 
by indistinguishability operators [9], by metrics related with the Archimedian norms 
[10], by some shape function [8] or kernel function etc. 
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