
A Massive Parallel Cellular GPU Implementation

of Neural Network to Large Scale Euclidean TSP

Hongjian Wang, Naiyu Zhang, and Jean-Charles Créput

IRTES-SeT, Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France
{hongjian.wang,naiyu.zhang,jean-charles.creput}@utbm.fr

Abstract. This paper proposes a parallel model of the self-organizing
map (SOM) neural network applied to the Euclidean traveling sales-
man problem (TSP) and intended for implementation on the graphics
processing unit (GPU) platform. The plane is partitioned into an ap-
propriate number of cellular units, that are each responsible of a certain
part of the data and network. The advantage of the parallel algorithm
is that it is decentralized and based on data decomposition, rather than
based on data duplication, or mixed sequential/parallel solving, as often
with GPU implementation of optimization metaheuristics. The process-
ing units and the required memory are with linear increasing relationship
to the problem size, which makes the model able to deal with very large
scale problems in a massively parallel way. The approach is applied to
Euclidean TSPLIB problems and National TSPs with up to 33708 cities
on both GPU and CPU, and these two types of implementation are com-
pared and discussed.

Keywords: Neural network, Self-organizing map, Euclidean traveling
salesman problem, Parallel cellular model, Graphics processing unit.

1 Introduction

A classical and widely studied combinatorial optimization problem is the Eu-
clidean traveling salesman problem (TSP). The problem is NP-complete [1]. The
self-organizing map (SOM), originally proposed by Kohonen [2], is a particular
kind of artificial neural network (ANN) model. When applied in the plane, SOM
is a visual pattern that adapts and modifies its shape according to some under-
lying distribution. The SOM has been applied to the TSP since a long time [3–5]
and it was shown that this artificial neural network model is promising to tackle
large size instances since it uses O(N) memory size, where N is the instance size,
i.e. the number of cities. In the light of its natural parallelism, we propose a par-
allel cellular-based SOM model to solve the Euclidean TSP and implement it on
the graphics processing units (GPU) platform. From our knowledge, we did not
find such type of SOM application to the Euclidean plane and implementation
on GPU in the literature.

In recent years, the graphic hardware performance is improved rapidly and
GPU vendors make it easier and easier for developers to harness the computation

F. Castro, A. Gelbukh, and M. González (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Massive Parallel Cellular GPU Implementation of Neural Network 119

power of GPU. Some methods for computing SOM on GPU have been proposed
[6,7]. All these methods accelerate SOM process by parallelizing the inner steps
in each basic iteration, of which mainly focus on two aspects as follows, firstly, to
find out the winner neuron in parallel, secondly, to move the winner neuron and
its neighbors in parallel. In our model, we use each parallel processing unit to do
SOM iterations independently in parallel to a constant part of the data, instead
of using many parallel processing units to cooperatively accelerate a sequential
SOM procedure iteration by iteration. The processing units and the required
memory are with linear increasing relationship to the problem size, which makes
the model able to deal with very large scale problems in a massively parallel way.
The theoretical computation time of our model is based on a parallel execution of
many spiral search of closest points, each one having a time complexity in O(1) in
average when dealing with a uniform, or at most a bounded data distribution [8].
Then, one of the main interests of the proposed approach is to allow the execution
of approximately N spiral searches in parallel, where N is the problem size.
Thus, what would be done in O(N) computation time in average for a sequential
spiral search able to find N closest points, is performed in constant time O(1)
theoretical complexity for a parallel algorithm in the average case, for bounded
distributions. This is what we intend by “massive parallelism”, the theoretical
possibility to reduce average computation time by factor N , when solving a
Euclidean NP-hard optimization problem.

The rest of this paper is organized as follows. We briefly introduce the Eu-
clidean traveling salesman problem and the self-organizing map in Section 2.
After that, we present our parallel cellular-based model in Section 3 and give
the detailed GPU implementation in Section 4. Our experimental analysis on
both small and large scale problems is outlined in Section 5, before we summa-
rize our work and conclude with suggestions for future study.

2 Background

2.1 Traveling Salesman Problem

The travelling salesman problem (TSP) can be simply defined as a complete
weighted graph G = (V,E, d) where V = {1, 2, · · · , n} is a set of vertices (cities),
E = {(i, j)|(i, j) ∈ V ×V } is a set of edges, and d is a function assigning a weight
(distance) dij to every edge (i, j). The objective is to find a minimum weight
cycle in G which visits each vertex exactly once. The Euclidean TSP, or planar
TSP, is the TSP with the distance being the ordinary Euclidean distance. It
consists, correspondingly, of finding the shortest tour that visits N cities where
the cities are points in the plane and where the distance between cities is given
by the Euclidean metric.

2.2 The Kohonen’s Self-organizing Map

The standard self-organizing map [2] is a non directed graph G = (V,E), called
the network, where each vertex v ∈ V is a neuron having a synaptic weight vector



120 H. Wang, N. Zhang, and J.-C. Créput

wv = (x, y) ∈ �2, where �2 is the two-dimensional Euclidean space. Synaptic
weight vector corresponds to the vertex location in the plane. The set of neurons
N is provided with the dG induced canonical metric dG(v, v

′) = 1 if and only if
(v, v′) ∈ E, and with the usual Euclidean distance d(v, v′).

In the training procedure, a fixed amount of Tmax iterations are applied to
a graph network (a ring network in TSP applications), the vertex coordinates
of which being randomly initialized into an area delimiting the data set. Here,
the data set is the set of cities. Each iteration follows three basic steps. At
each iteration t, a point p(t) ∈ �2 is randomly extracted from the data set
(extraction step). Then, a competition between neurons against the input point
p(t) is performed to select the winner neuron n∗ (competition step). Usually, it
is the nearest neuron to p(t). Finally, the learning law (triggering step) presented
in Equation 1 is applied to n∗ and to the neurons within a finite neighborhood
of n∗ of radius σt, in the sense of the topological distance dG, using learning
rate α(t) and function profile ht. The function profile is given by the Gaussian
in Equation 2. Here, learning rate α(t) and radius σt are geometric decreasing
functions of time. To perform a decreasing run within Tmax iterations, in each
iteration t, coeffients α(t) and σt are multiplied by exp(ln(χfinal/χinit)/Tmax)
with respectively χ = α and χ = σ, χinit and χfinal being respectively the
values in starting and final iteration. Examples of a basic iteration with different
learning rates and neighborhood sizes are shown in Fig.1.

wn(t+ 1) = wn(t) + α(t) × ht(n
∗, n)× (p(t)− wn(t)) . (1)

ht(n
∗, n) = exp(−dG(n

∗, n)2/σ2
t ) . (2)

(a) (b) (c) (d)

Fig. 1. A single SOM iteration with learning rate α and radius σ. (a) Initial configu-
ration. (b) α = 0.9, σ = 4. (c) α = 0.9, σ = 1. (d) α = 0.5, σ = 4.

3 Parallel Cellular Model

3.1 Cell Partition

It is intuitive that TSP and SOM can be connected by sharing the same Eu-
clidean space. As a result, the input data distribution of SOM is the set of cities
of TSP. The application consists of applying iterations to a ring structure with a
fixed number of vertices (neurons) M . Specifically, M is set to 2N , N being the
number of cities. After training procedure, the ring transforms into a possible
solution for the TSP along which a determined tour of cities can be obtained.



A Massive Parallel Cellular GPU Implementation of Neural Network 121

Fig.2 illustrates an example of training procedure on the pr124 instance from
TSPLIB [9] at different steps of a long simulation run. Black dots are the city
points of TSP. Small red circles and the black lines that connect them constitute
the ring network of neurons. Execution starts with solutions having randomly
generated neuron coordinates into a rectangular area containing cities, as shown
in Fig.2(a). After 100 iterations, the ring network as shown in Fig.2(b) has
roughly deployed towards cities. After 10000 iterations, the ring network has
almost completely been mapped onto cities, as shown in Fig.2(c).

(a) (b) (c)

Fig. 2. Different steps of training procedure on the pr124 instance

In order to implement the parallel level at which parallel execution will take
place, we introduce a supplementary level of decomposition of the ring network
plane and input data. We uniformly partition the Euclidean space into small cells
with the same size that constitute a two-dimensional cellular matrix. The scale
of cell partition is decided by the number of cities. Specifically, the size of each
dimension is set to �√N × λ�, where N is the number of cities and parameter
λ, which we set to 1.1 in the later experiments, is used to adjustment. The
three main data structures of the parallel model are illustrated in Fig.3. This
intermediate cellular matrix is in linear relationship to the input size. Its role will
be to memorize the ring network in a distributed fashion and authorize many
parallel closest neuron searches in the plane by a spiral search algorithm [8]. Each
cell is then viewed as a basic training unit and will be executed in parallel. Thus,
in each parallel iteration we conduct a number of parallel training procedures
instead of carrying out one only. Each cell corresponds to a processing unit or
GPU thread.

Each processing unit, that corresponds to a cell, will have to perform the
different steps of the sequential SOM iteration in parallel. A problem that arises
is then to allow many data points extracted at first step by the processing units,
at a given parallel iteration, to reflect the input data density distribution. As a
solution to this problem, we propose a particular cell activation formula stated
in Equation 3 to choose those cells that will execute or not the iteration. Here, pi
is the probability that the cell i will be activated, qi is the number of cities in the
cell i, and num is the number of cells. The empirical preset parameter δ is used to
adjust the degree of activity of cells/processing units. As a result, the more cities
a cell contains, the higher is the probability this cell to be activated to carry out



122 H. Wang, N. Zhang, and J.-C. Créput

Fig. 3. Parallel cellular model

the SOM execution at each parallel iteration. In this way, the cell activation
depends on a random choice based on the input data density distribution.

pi =
qi

max{q1, q2, . . . , qnum} × δ . (3)

3.2 Cellular-Based Parallel SOM

Based on the cell partition, the parallelized SOM training procedure carries out
four parallel steps: cell activation step, extraction step, competition step and
triggering step. Then, this parallel process is repeated Tmax times. Note that
Tmax now represents the number of parallel iterations.

For each processing unit which is associated to a single cell, a cell is acti-
vated or not depending on the activation probability. If the cell is activated,
the processing unit will continue to perform the next three parallel operations,
otherwise it does nothing and directly skips to the end of the current iteration.

In the parallel extraction step, the processing unit randomly chooses a city
from its own cell, unlikely the original sequential SOM which randomly extracts
a point from the entire input data set.

In the competition step, the processing unit carries out a spiral search [8]
based on the cell partition model to find the nearest neuron to the extracted
city point. The cell in which this point lies will be searched first. If this cell is
empty of neuron (ring node), then the cells surrounding it are searched one by
one in a spiral-like pattern until a neuron is found. Once one neuron is found, it is
guaranteed that only the cells that intersect a particular circle, which is centered
at the extracted point and with the radius equal to the distance between the
first found neuron and the extracted point, have to be checked before finishing
searching. When performed on a uniform data distribution, or bounded den-
sity distribution [8], a single spiral search process takes O(1) computation time
according to the instance size. Then, one of the main interests of the method
would be to perform O(N) (the cell number) spiral searches in parallel, then
in a theoretical constant time O(1) for bounded density distribution, if O(N)
physical cores were available. This is what we call “massive parallelism”.



A Massive Parallel Cellular GPU Implementation of Neural Network 123

In the triggering step, each processing unit moves its closest neuron and several
neurons within a finite neighborhood toward the extracted city, according to
the rule of Equation 1. All the processing units share one unique ring network
of neurons in the Euclidean space. The coordinates of neurons are therefore
stored into a shared buffer which is simultaneously accessed by all the parallel
processing units.

After all the parallel processing units have finished their jobs in one single
iteration, the learning rate α and radius σ are decreased, getting ready for the
next parallel iteration.

To establish our cellular-based parallel SOM model, the scale of cell parti-
tion is �√N × λ�2, with N the number of cities. Hence, the number of parallel
processors needed is O(N). Since only one ring network is stored in memory,
the memory complexity is also O(N). Moreover, the parallel spiral search by
every processor takes constant time O(1) theoretically for bounded density dis-
tribution. For Tmax parallel iterations, the maximum number of single SOM

iterations is Tmax × �√N × λ�2, which corresponds to the extreme case where
all the processing units are activated at the same time.

4 GPU Implementation

4.1 Platform Background

We use GPU to implement our parallel model with the compute unified device
architecture (CUDA) programming interface. In the CUDA programming model,
the GPU works as a SIMT co-processor of a conventional CPU. It is based on
the concept of kernels which are functions written in C executed in parallel by
a given number of CUDA threads. These threads will be launched onto GPU’s
streaming multi-processors and executed in parallel [10]. Hence, we apply CUDA
threads as the parallel processing units in our model.

All CUDA threads are organized into a two level concepts: CUDA grid and
CUDA block. A kernel has one grid which contains multiple blocks. Every block
is formed of multiple threads. The dimension of grid and block can be one-
dimension, two-dimension or three-dimension. Each thread has a threadId and a
blockId which are built-in variables defined by the CUDA runtime to help user
locate the thread’s position in its block as well as its block’s position in the
grid [10, 11].

4.2 CUDA Code Design

In the CUDA program flow in Algorithm 1, Lines 2, 4, 7, 8, 11, and 13 are
implemented with CUDA kernel functions that will be executed by GPU threads
in parallel. The kernel function in Line 2 is used for calculating each cell’s density
value, i.e. the number of city points in each cell. After all the cells’ density values
are obtained, the maximum one is found. This last work in Line 3 is done on CPU
since it is done only one time and does not directly concern the main behavior.



124 H. Wang, N. Zhang, and J.-C. Créput

Note that computing a maximum value is a trivial job even when done on GPU.
Then, the cells’ activation probabilities are computed according to the activation
formula of equation 3 by the kernel function of Line 4. In each iteration of the
program, each cell needs two random numbers: one is used for cell activation and
the other is used to extract input point in the activated cell. With respect to the
large scale input instances with huge cellular matrix and numerous iterations,
the random numbers generated via kernel functions shown in Line 7 and Line
8 are stored in a fixed size area due to the limited GPU global memory. Every
time these random numbers are used out, a new set of random numbers are
generated at the beginning of the next iteration, depending on a constant rate
factor called memory reuse set rate. The random number generators we use in
Line 7 and Line 8 are from Nvidia CURAND library [10]. Line 10 and Line
11 concern the cell refreshing. Each cell has data structures where to deposit
information of the number and indexes, in the neuron ring, of the neurons it
contains. This information may change during each iteration, but it appears
that it can be sufficient to make the refreshing based on a refresh rate coefficient
called cell refresh rate. The cell contains are refreshed via kernel function in
Line 11. Note that neurons’ locations are moved in the plane at each single
iteration, whereas the indexes in cells are refreshed based on a lower rate. Then,
the parallel SOM process takes place with kernel function of Line 13 (see below).
After the parallel SOM process is done, the SOM parameters will be modified
getting prepared to do the next iteration.

Algorithm 1. CUDA program flow

1: Initialize data;
2: Calculate cells’ density values;
3: Find the max cell density value;
4: Calculate cells’ activated probabilities;
5: for ite← 0 to max ite do
6: if ite % memory reuse set rate == 0 then
7: Set seeds for random number generators;
8: Generate random numbers;
9: end if
10: if ite == 0 ‖ ite % cell refresh rate == 0 then
11: Refresh cells;
12: end if
13: Parallel SOM process;
14: Modify SOM parameters;
15: end for
16: Save results;

Overall, the host code (CPU side) of the program is mainly used for flow con-
trol and the entire GPU threads synchronization by sequentially calling separate
kernel functions. For all the kernel functions, one thread handles one cell and
the number of threads launched by each kernel is no less than the number of
cells.



A Massive Parallel Cellular GPU Implementation of Neural Network 125

The parallel SOM kernel function of Line 13 of Algorithm 1 is further illus-
trated by Algorithm 2. Firstly, it locates the cell’s position by its threadId and
blockId. Then, the thread checks if the cell is activated or not, by comparing
the cell’s activated probability to a random number with value between 0 and
1. If the cell is activated, the thread randomly selects a city point in the cell
by using a second random number with value between 0 and the cell’s density
value (number of cities in that cell). After that, the thread performs a spiral
search within a certain range on the grid for finding the closest neuron to the
selected city point. The maximum number of cells a thread has to search equals
(range× 2 + 1)2. After finding the winner neuron, the thread carries out learn-
ing process via modifying positions of the winner neuron and its neighbors. All
the neurons’ locations are stored in GPU global memory which is accessible to
all the threads. Like all the multi-threaded applications, different threads may
try to modify one same neuron’s location at the same time, which causes race
conditions. In order to guarantee a coherent memory update, we use the CUDA
atomic function which performs a read-modify-write atomic operation without
interference from any other threads [10].

Algorithm 2. GPU parallel SOM kernel flow

1: Locate cell position associated to current thread
2: Check if the cell is activated;
3: if the cell is activated then
4: Randomly select a city point in the cell;
5: Perform a spiral search within a certain range;
6: Modify positions of the winner neuron and its neighbors;
7: end if

5 Experimental Analysis

5.1 Warp Divergence Analysis

In the CUDA architecture, a warp refers to a collection of 32 threads that are
“woven together” and get executed in lockstep [11]. At every line in kernel func-
tion, each thread in a warp executes the same instruction on different data.
When some of the threads in a warp need to execute an instruction while others
in the same warp do not, this situation is known as warp divergence or thread
divergence. Under normal circumstances, divergent branches simply result in per-
formance degradation with some threads remaining idle while the other threads
actually execute the instructions in the branch. The execution of threads in a
warp with divergent branches are therefore carried out sequentially, resulting in
performance degradation.

According to our trial tests, the most time consuming kernel function is the
parallel SOM kernel. One of the reasons is that there exists warp divergence
when this kernel is being executed because it has an unpredictable spiral search
process in it. The spiral search is carried out in each cell of the search range, one



126 H. Wang, N. Zhang, and J.-C. Créput

by one, and it stops immediately when the thread finds a nearest neuron. As a
result, different threads may stop at different times. Also, the more cells each
thread is going to search in, the severer this problem gets. Hence, different search
range settings have different influences on warp divergence. When the block size
is set to 256 which is usually enough to fulfill the streaming multi-processor
with adequate warps for the GPU device with CUDA capability 2.0, the highest
branch efficiency (ratio of non-divergent branches to total branches [10]) of all
executions with search range set to 1, 2, and 3 is 90.1%, 87.2%, and 85.9%
respectively as collected by NVIDIA Visual Profiler. In theory, the less threads
are put in one block, the less warp divergence occurrences will appear. Extremely,
if there is only one thread in a block, then there will definitely not be warp
divergence. However, the decrease of threads in each block implies the decrease
of the CUDA cores usage associated to each streaming multi-processor. In order
to analyze the tradeoff between performance and number of threads in a block,
we have tested a set of different combinations of grid size and block size for the
parallel SOM kernel. The configuration which makes the kernel run fastest is
with block size of 8 with highest branch efficiency of 96.9%.

5.2 Comparative Results on GPU and CPU

During our experimental study, we have used the following platforms:

– On the CPU side: An Intel(R) Core(TM) 2 Duo CPU E8400 processor run-
ning at 2.67 GHz and endowed with four cores and 4 Gbytes memory. It
is worth noting that only one single core executes the SOM process in our
implementation.

– On the GPU side: A Nvidia GeForce GTX 570 Fermi graphics card endowed
with 480 CUDA cores (15 streaming multi-processors with 32 CUDA cores
each) and 1280 Mbytes memory.

Table 1. Experiment parameters

αinit αfinal σinit σfinal iterations δ CRRa SSRb MRSRc

GPU1 1 0.01 12 1 100000 1 1 1 1000
CPU1 1 0.01 12 1 100000 ×N − 100 1 −
GPU2 1 0.01 100 1 100000 1 1 3 1000
CPU2 1 0.01 100 1 10000 ×N − 100 3 −

1 Tests of small size instances. 2 Tests of large size instances.
a Cell refresh rate. b Spiral search range. c Memory reuse set rate.

We have done our tests with two groups of instances from either National
TSPs (http://www.math.uwaterloo.ca/tsp/world/countries.html) and TSPLIB
database [9]. One group consists of four small size instances from 124 cities to
980 cities, while the other consists of four large size instances from 8246 cities
to 33708 cities. The parameter settings for the two groups are shown in Table



A Massive Parallel Cellular GPU Implementation of Neural Network 127

1. As discussed in Section 3.2, Tmax × �√N × λ�2 parallel SOM operations will
be carried out as an extreme case by the GPU SOM program, with N the input
instance size and λ set to 1.1. For the tests of small size instances, we set the total
number of sequential iterations of the CPU version to Tmax×N , in order to make
the total SOM operations approximately similar between GPU version and CPU
version, and to reach similar quality results. Whereas for the tests with large size
instances, we set it to Tmax ×N/10, also to achieve similar quality results and
because GPU operations depend on the cell activation probabilities and may be
less than N at each GPU parallel iteration.

(a) (b)

Fig. 4. Test results of small size instances

(a) (b)

Fig. 5. Test results of large size instances

All the tests are done on a basis of 10 runs per instance. For each test case is
reported the percentage deviation, called “%PDM”, to the optimum tour length
of the mean solution value obtained, i.e. %PDM = (mean length−optimum)×
100/optimum. As well, is reported the percentage deviation from the optimum
of the best solution value found over 10 runs, called “%PDB”. Finally, is also
reported the average computation time per run in seconds, called “Sec”.



128 H. Wang, N. Zhang, and J.-C. Créput

Table 2. Test results of small size instances

GPU CPU
Problem Optimal %PDM %PDB Sec %PDM %PDB Sec
pr124 59030 2.52 1.07 3.30 4.73 1.85 9.88
pcb442 50778 5.18 3.41 4.00 5.26 3.24 42.13
u724 41910 6.19 4.96 4.64 6.29 4.67 85.61
lu980 11340 5.47 3.40 4.47 8.97 4.58 125.88

Average 4.84 3.21 4.10 6.31 3.59 65.88

Table 3. Test results of large size instances

GPU CPU
Problem Optimal %PDM %PDB Sec %PDM %PDB Sec
ei8246 206171 8.31 7.12 71.38 7.33 6.88 614.36
fi10639 520527 6.93 6.49 66.63 8.94 8.10 952.35
d15112 1573084 8.20 7.66 109.28 7.35 7.14 1761.23
bm33708 959304 6.07 5.85 254.22 7.28 7.04 7936.33

Average 7.38 6.78 125.38 7.73 7.29 2816.07

As shown in Fig.4 and Fig.5, and in Table 2 and Table 3, respectively for
the two instance groups, our GPU parallel SOM approach outperforms its coun-
terpart CPU sequential version both on small size and large size instances, for
similar tour length results. For small size instances, the ratio of CPU time by
GPU time (called acceleration factor) varies from roughly factor 3 to factor 28,
as the instance size grows. For large size instances, it varies from roughly factor
9 to factor 31 for the maximum size instance with up to 33708 cities. We think
that the acceleration factor augmentation indicates a better streaming multi-
processor occupancy as the instance size grows. We can note that the execution
time of GPU version increases in a linear way with a very weak increasing coeffi-
cient, when compared to the CPU version execution time. We consider that such
results are encouraging in that the parallel SOM model should really exploit the
benefits of multi-processors, as the number of physical cores will augment in the
future.

6 Conclusion

In this paper we propose a cellular-based parallel model for the self-organizing
map and apply it to the large scale Euclidean traveling salesman problems. We
did not find in the literature GPU implementations to such large size problems
with up to 33708 cities. We think that this is because current GPU applications
to the TSP concern memory consuming algorithms, such as ant colony, genetic



A Massive Parallel Cellular GPU Implementation of Neural Network 129

algorithm or k-opt local search, which generally require O(N2) memory size.
Whereas, our approach is dimension with O(N) memory size. We implement our
model on a GPU platform and compare the results with its counterpart CPU
version. Test results shows that our GPU model has linear increasing execution
time with a very weak increasing coefficient when compared to the CPU version,
for both small size instances and large size instances.

Future work should deal with verification of effectiveness of the algorithm
as the number of physical cores augments. More precisely, we should verify the
possibility to design a weakly linear increasing, or ideally a near constant time
algorithm, for bounded or uniform distributions, when the number of physical
cores really increases as the instance size increases. It should be of interest also
to study more CUDA programming techniques, for a better memory coalescing,
or the use of shared memory. Moreover, implementations of the model to other
parallel computing systems are also potential areas of research.

References

1. Papadimitriou, C.H.: The euclidean travelling salesman problem is np-complete.
Theoretical Computer Science 4, 237–244 (1977)

2. Kohonen, T.: Self-organizing maps, vol. 30. Springer (2001)
3. Angeniol, B., de La Croix Vaubois, G., Le Texier, J.Y.: Self-organizing feature

maps and the travelling salesman problem. Neural Networks 1, 289–293 (1988)
4. Cochrane, E., Beasley, J.: The co-adaptive neural network approach to the eu-

clidean travelling salesman problem. Neural Networks 16, 1499–1525 (2003)
5. Créput, J.C., Koukam, A.: A memetic neural network for the euclidean traveling

salesman problem. Neurocomputing 72, 1250–1264 (2009)
6. McConnell, S., Sturgeon, R., Henry, G., Mayne, A., Hurley, R.: Scalability of self-

organizing maps on a gpu cluster using opencl and cuda. Journal of Physics: Con-
ference Series 341, 012018 (2012)

7. Yoshimi, M., Kuhara, T., Nishimoto, K., Miki, M., Hiroyasu, T.: Visualization of
pareto solutions by spherical self-organizing map and its acceleration on a gpu.
Journal of Software Engineering and Applications 5 (2012)

8. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for clos-
est point problems. ACM Transactions on Mathematical Software (TOMS) 6, 563–
580 (1980)

9. Reinelt, G.: Tsplib a traveling salesman problem library. ORSA Journal on Com-
puting 3, 376–384 (1991)

10. NVIDIA: CUDA C Programming Guide 4.2, CURAND Library, Profiler User’s
Guide (2012), http://docs.nvidia.com/cuda

11. Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional (2010)

http://docs.nvidia.com/cuda

	A Massive Parallel Cellular GPU Implementation
of Neural Network to Large Scale Euclidean TSP
	1 Introduction
	2 Background
	2.1 Traveling Salesman Problem
	2.2 The Kohonen’s Self-organizing Map

	3 Parallel Cellular Model
	3.1 Cell Partition
	3.2 Cellular-Based Parallel SOM

	4 GPU Implementation
	4.1 Platform Background
	4.2 CUDA Code Design

	5 Experimental Analysis
	5.1 Warp Divergence Analysis
	5.2 Comparative Results on GPU and CPU

	6 Conclusion
	References




