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Abstract. Genetic Algorithms (GAs) have long been recognized as 
powerful tools for optimization of complex problems where traditional 
techniques do not apply.  However, although the convergence of elitist GAs to a 
global optimum has been mathematically proven, the number of iterations 
remains a case-by-case parameter. We address the problem of determining the 
best GA out of a family of structurally different evolutionary algorithms by 
solving a large set of unconstrained functions. We selected 4 structurally 
different genetic algorithms and a non-evolutionary one (NEA). A schemata 
analysis was conducted further supporting our claims. As the problems 
become more demanding, the GAs significantly and consistently outperform 
the NEA. A particular breed of GA (the Eclectic GA) is superior to all 
other, in all cases. 

Keywords: Global optimization, Genetic algorithms, Unconstrained functions, 
Schemata analysis. 

1 Introduction 

Optimization is an all pervading problem in engineering and the sciences. It is, 
therefore, important to rely on an optimization tool of proven efficiency and 
reliability. In this paper we analyze a set of optimization algorithms which have not 
been analyzed exhaustively before and achieve interesting conclusions which allow us 
to recommend one such algorithm as applicable to a large number complex problems. 
When attempting to assess the relative efficiency of a set of optimization algorithms 
one may take one of two paths: a) Either one obtains closed models for the algorithms 
thus allowing their parametric characterization [1], [2], [3] or b) One selects a set of 
problems considered to be of interest and compares the performance of the algorithms 
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when measured vs. such a set. Modeling an algorithm is frequently a complex task 
and, more importantly, even slight changes in the algorithm lead to basically different 
models [4], thus making the purported characterization impractical. The second 
option, therefore, seems better suited for practical purposes. However, although there 
are many examples of such an approach (for instance see [5], [6], [7]) it is always true 
that a) The nature of the algorithms under study and their number are necessarily 
limited and b) The selection of the benchmarking functions obeys to subjective 
criteria. In this paper we choose to establish the relative efficiency of a set of genetic 
algorithms (GAs) which are structurally different from one another as will be 
discussed in the sequel. We have selected a set of such GAs and, for completeness, 
we have also included a particular non-evolutionary algorithm (the Random Mutation 
Hill Climber or RMH) whose efficiency has been reported in previous works [8], [9]. 
Many GAs are variations (i.e. different selection criteria [10], crossover strategies 
[11], population size [12], 13] relationship between Pc and Pm, [14], [15], etc.) of the 
initial one proposed by Holland (the so-called “Simple” or “Canonical” Genetic 
Algorithm [CGA] [16]) which do not significantly improve on CGA’s overall 
performance. For benchmarking purposes the mentioned variations are not useful 
since they all share the same basic algorithmic structure. However there are GAs 
where the strategies to a) select, b) identify and c) recombine candidate solutions 
differ from the CGA’s substantially. The purported changes impose structural 
differences between these algorithms which have resulted in remarkable performance 
implications. We have selected four GAs with this kind of diverse characteristics. We 
begin, in Section 2, by introducing the necessary notation; then presenting some 
concepts and definitions. In Section 3 we describe the five algorithms in our work. In 
section 4 we present the functions and results for a suite of problems that traditionally 
have been used for benchmarking purposes of optimization algorithms [17] [18]. In 
Section 5 we present our general conclusions. 

2 Preliminaries 

Throughout we use the following notation and definitions: A : Set of selected 
optimization algorithms; iA : The i-th optimization algorithm (i.e. AAi ∈ ); x : Vector 

in nℜ ; Ω : Feasibility region of the space nℜ ; B : Set  defined as }1,0{=B ; t: 

Iteration number such that ∈≤≤ tGt ;1 ℕ; G: Upper bound on the number of 

iterations of iA . Without loss of generality our discussion will be focused on 

numerical optimization problems. One such problem f is defined as: 
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where ℜ→ℜn)xf( :  is the objective function, 0)( =xhi
  and 0)( ≤xgi

  are 

constraint functions defining Ω . This means that if a vector x  complies with all 
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constraints it belongs to Ω . In a problem without constraints, such as the ones 
discussed here, all vectors x  lie within Ω .  

We briefly pause to define what we understand as a genetic algorithm. Elsewhere 
[20], it has been argued that an algorithm is “genetic” when it exhibits implicit 
parallelism. Instead, we list the characteristics an iterative algorithm must have to be 
considered “genetic”. Implicit parallelism is a consequence of these. 

 
Definition 1: 
A genetic algorithm is one which satisfies the following conditions: 

1. It works on an n-dimensional discrete space D defined in   rather than in 

.  
2. It traverses D searching an approximation of the optimum vector x  of (1) by 

simultaneously analyzing a finite set DtS ∈)( of candidate solutions.  

3. The elements of )}(),...,(),({)( 21 tstststS n=  are explicitly encoded in some 

suitable way. 
4. The information regarding the partial adequacy of the elements in )(tS  is 

extracted by solving the optimization problem for all )(tsi . 

5. The qualified elements of )(tS  are analyzed to select an appropriate subset 

in order to improve the search in the problem's space. 
6. Selected sections of the codes of )(tsi  are periodically combined. 

7. Selected elements of the codes of the )(tsi are periodically and randomly 

altered. 
8. A subset of the best solutions of )(tS  is preserved for all the future steps of 

the algorithms. 
9. The algorithm cycles through steps 4-8 until a stopping condition is met. 

 
The algorithms selected for this study satisfy all of the characteristics above and, 

therefore, may be aptly considered to be genetic in a broader sense then the one 
implied by the frequently cited “bio-inspired” analogy. In fact, this analogy, attractive 
as it may seem, frequently distracts the attention of the user from the basic efficiency 
elements which any optimization algorithm should incorporate. These issues must 
supersede other considerations when determining the desirability of one algorithm 
over others. 

Consequently, set A includes the following GAs: 

a) An elitist canonical GA (in what follows referred to as TGA [eliTist 
GA]) [21]. 

b) A Cross generational elitist selection, Heterogeneous recombination, and 
Cataclysmic mutation algorithm (CHC algorithm) [22]. 

c) An Eclectic Genetic Algorithm (EGA) [23]. 
d) A Statistical GA (SGA) [24] [25]. 
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3 Selected Genetic Algorithms 

It is frequent to cite the variations of the GAs by their “popular name”. However, in 
so doing one incurs in the risk of not being precise on the details of the algorithm. 
One of the basic tenets of this paper is that even small variations lead to potentially 
important differences in their behaviors. For this reason, we now include the pseudo-
codes of the algorithms in our study. Keep in mind that our results refer to their 
precise implementation and no others. As a case in point, when discussing SGA (the 
Statistical GA) it may be easy to confuse it with EDA (Estimation of Distribution 
Algorithm). However, in EDA no mutation is explicitly included, whereas in SGA it 
is (see the code below) 

In the description of the algorithms which follows a) We denote the arguments 
),...,( 1 kxxx =  with xi and the corresponding fitness function ),...,()( 1 kxxfxf =  

with f(xi), b) The function f(xi) to be optimized is numerical, c) We aim to minimize 
f(xi), and d) The arguments xi of the fitness function f(xi) are encoded in binary. 

Let ≡G number of generations; ≡n number of individuals; ≡I(n) the n-th 

individual; ≡L length of the chromosome; ≡CP probability of crossover; 

≡MP probability of mutation. 

By “Generation of a random population” we mean that, for a population of n 
individuals each of whose chromosome’s length is L we make 

for i = 1 to n 
 for j=1 to L 

                                                   Generate a uniform random number 10 <≤ ρ . 

                                                    If <ρ  0.5  make 0←jbit ; else make 1←jbit . 

 endfor 
  endfor 

3.1 Elitist Canonical GA (TGA) 

This is the classical CGA with two provisions: a) The best individual is kept along the 
whole process forming part of the evolving population and b) In step 3 of the 
algorithm 

( )|)(||))((|)()( iiii xfavgxfminxfx ++=ϕ                           (A.1) 

is used. These two steps ensure that no fitness value is negative making the 
proportional selection scheme always feasible (see [28, 29, 30]). 

 
0. Make 1←k . 
1. Generate a random population 
2. Select randomly an individual from the population (call it best).  

Make f(best) ∞← . 
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3. Evaluate. 
 for i=1 to n  

Evaluate f(xi) . 
Make ))(()( ii xfxf ϕ← . 

If  f(xi) < f(best) make best  xi and f(best)  f(xi) 
     endfor 
4.  If  k = G return best and stop. 
5. Selection 

Make 
=

=
n

i
ixfF

1

)(   

for i = 1 to n; 
F

xf
PS i

i
)(

= ; Endfor 

  for i =1 to n; Select I(i) with probability PSi.; endfor 
6. Crossover 
for i = 1 to n step 2 

Randomly select two individuals (say I(X) and I(Y)) with probabilities PSX 
and PSY, respectively. 

Generate a uniform random number 10 <≤ ρ . 

 If ≤ρ PC do 

• Randomly select a locus   of the chromosome; Pick the leftmost L-

  bits of I(X) and the rightmost   bits of I(Y) and concatenate them 
to form the new chromosome of  I(X); Pick the leftmost L-   bits of 
I(Y) and the rightmost   bits of the previous I(X) and concatenate 
them to form the new chromosome of  I(Y) 

Make )()( XIiI ← ; )()1( YIiI ←+ . 

endfor 
7. Mutation 
for i = 1 to n 

 Select I(i) 
 for j=1 to L 

Generate a uniform random number 10 <≤ ρ . 

 If ≤ρ PM  make jj bitbit ← . 

 endfor 
endfor 
8. Make 1+← kk  and go to step 3. 

3.2 Cross Generational Elitist Selection, Heterogeneous Recombination and 
Cataclysmic Mutation GA (CHC) 

This algorithm focuses on maintaining diversity while retaining the characteristics of 
the best individuals. Inter-generational survival-of-the-fittest is attempted by unbiased 
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parent selection. Furthermore it tries to maintain diversity implementing the so-called 
HUX crossover (Half, Uniform X-over) and introducing cataclysmic mutations when 
the population’s diversity falls below a pre-defined threshold (see [20]). 

 
0. Make  

0←  
4/Lthreshold ←  

1. Generate a random population. 
2. Evaluate f(xi) i∀  
3. i))min(f(xbestf i ∀←)(  

     est)bisxfiI best i )(|(←   

4.  ←  +1 

    If    = G return best and stop. 
5. Copy all individuals from population P into set C 
6. [HUX Crossover] 
Let xyBit  denote the y-th bit of  individual x 

for i=1 to n/2 
Randomly select individuals IX and IY from C 

 0←hammingXY  

 for j ← 1 to L 
  if  bit j (IX) ≠ bit j( IY); DiffXY[j]=true; 
                          hammingXY ← hammingXY+1; else DiffXY[j]=false; f 
 endfor 
 if (hammingXY/2 ≤ threshold) 

 eliminate C(X) and C(Y) from C 
else 

  mutated ← 0 
  while (mutated<hammingXY/2) 

j ← random number between 1 and L 
if DiffXY[j] 

  Interchange the j-th bit of IX and IY 

  mutated ← mutated+1; DiffXY[j] ← false   
endwhile 

endfor 
Evaluate f(xi) in C( i) i∀  
Make P’= CP ∪  
Sort P’ from best to worst 

P’ ←  Best n individuals from P’; )(xfbestf 1←)( ; ← best 'P1  

if P =  P’ 
 threshold ← threshold-1 
 if threshold=0 

for i=2 to n  
 Select the i-th  individual 
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  for j=1 to L 
Generate a uniform random number 10 <≤ ρ  

If ≤ρ  0.35  make jj bitbit ←  

threshold ← L/4 
P ← P’; go to 4 

3.3 Eclectic GA (EGA) 

This algorithm uses deterministic selection, annular crossover, uniform mutation and 
full elitism (a strategy akin to λμ +  selection of evolutionary strategies [31]). The 

probabilistic nature of EGA is restricted to parameters PC and PM. In EGA avoidance 
of premature convergence is achieved by a two-fold strategy. First, the 2n individuals 
from the last two generations are ordered from best to worst and only the best n are 
allowed to survive. Then the individuals are deterministically selected for crossover 
by mixing the best with the worst (1 with n), the second with the second worst (2 and 
n-1, . . .,), and so on. In this way n new individuals are generated. As the iterations 
proceed, the surviving individuals become the top elite of size n of the whole process. 
Annular crossover (equivalent to two-point crossover) is preferred because it makes 
the process less dependent on a particular encodings. This algorithm was first reported 
in [26] and included self-adaptation and periodic cataclysmic mutation. Later studies 
[27] showed that neither of the two mechanisms was necessary. EGA is relatively 
simple, fast and easy to program. 

 
0. B2M ←  MPnL ×   ( Expected number of mutations per generation) 

1. i ←  1 
2. Generate a random population 
3. Evaluate the population.  
4. [ Duplicate Population] 
for j = 1 to n 
 I(n+j) ←  I(j) 
 fitness(n+j) ←  fitness(j) 
endfor 
5. [ Deterministic Selection Annular Crossover] 
for j=1 to n/2 

Generate a uniform random number 10 <≤ ρ  

If cP≤ρ  

Generate a random number 2/1 L<≤ ρ  

Interchange the semi-ring starting at locus ρ between I(j) 

 and I(n-j-1) 
endif 

endfor 
5. [Mutation] 
for j=1 to B2M 
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Generate uniform random numbers 1,0 21 <≤ ρρ  

 Mutate Bit  L2ρ  of I(  n1ρ ) 

endFor 
6. [Evaluate the New Individuals] 
Calculate fitness(xi) for i=1,…,n 
7. [ λμ +  Selection] 

Sort the 2n individuals by their fitness, ascending 
8. i ←  i+1 
   if  i = G return I(1) and stop 
  Go to 3  

3.4 Statistical GA (SGA) 

In this case the algorithm takes advantage of the fact that the average behavior of 
traditional TGA may be achieved without actually applying the genetic operators but, 
rather, statistically simulating their behavior [24]. SGA starts by generating the initial 
population’s (P0) individuals randomly. The fitness for each individual is calculated 

as per (A.1). It is then easy to determine its relative fitness ←Φ
j

jj xfxfx )(/)()(  

which, immediately, induces a partial ordering in the population according to the 
value of )(xΦ . Once this is done, the so-called probabilistic genome (PG) is 

calculated. In this genome, the probability that the k-th bit of a genome attains a value 
of 1 is derived from 

LkbP
j

jkjk ,...,1=Φ=   (A.2) 

where bjk denotes the k-th bit of the j-th individual. Notice that Pk actually represents 
the weighted expected number of times that bit k will take the value 1 as a function of 
the fitness of the i-th population. This is equivalent to defining a set of probability 
distribution functions (pdfs); one for each of the L bits in the genome. These pdfs are 

Bernoulli distributed and, initially, may have rather large variances ( 2σ ). Every new 
population is generated by sampling from the j-th distribution to compose its new N 
individuals. The i-th population consists of individuals that respond to the average 
behavior of the (i-1)-th. Every new population is also Bernoulli distributed but with 
an increasingly small σ . Eventually the pdfs of the final population will have a 
Bernoulli distribution with 0≈σ , implying approximate convergence. In a strict 
sense, the SGA avoids the need to include explicit mutation provisions. Preliminary 
tests showed that premature convergence is avoided if such provisions are made. The 
whole process may be seen as a search for a crisp encoding of the solution with a set 
of fuzzy bits. Each bit is progressively de-fuzzyfied in consecutive generations.  
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0. Make 1←k ; 
   B2M ←  MPnL ×  ( Expected number of mutations per generation) 

1. Generate a random population 
2. Select randomly an individual from the population (call it best). Make f(best) ∞← . 
3. [Get probabilistic genome] 
 PopFit ←  0 

 for i=1 to n  
Evaluate f(xi)  
If f(xi)<f(best) 
 best ←  I(i); f(best) ←  f(xi) 

  endif 
Make ))(()( ii xfxf ϕ← ; PopFit  ←  PopFit + f(xi) 

     Endfor 
 for  i=1 to n 
  RelFiti ←  f(xi)/PopFit; 
 endfor 
 for i=1 to L 
  PGi ←  0;      

  for j=1 to n 
   if bitji = 1 PGi ←  PGi+RelFitj 
  endFor 
 endFor 
4. [Get new population] 
 [Probabilistic Individuals] 
 for i = 1 to n 
  for j = 1 to L 

Generate a uniform random number 10 <≤ ρ  

   if ≤ρ  PGj  Bitij ←  1; else Bitij ←  0 

  endFor 
 endFor 
 [Mutate Individuals] 
 for i=1 to B2M 

Generate uniform random numbers 1,0 21 <≤ ρρ  

  Mutate Bit  L2ρ  of I(  n1ρ ) 

 endFor 
5. k ← k+1 
   If k = G return best and stop; else Go to step 3 

3.5 Random Mutation Hill-Climber (RMH) 

This algorithm is the only non-evolutionary one considered in this study. In general, a 
“hill-climber” is an algorithm which attempts, iteratively, to improve on its best found 
value by refining the last attempt. 
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1. [Generate the individual] 
for i=1 to L 

Generate a uniform random number 10 <≤ ρ . 

If <ρ  0.5  make 0←ibit ; else make 1←ibit . 

endfor 
Make best ←  I(0) 
          BestFit ←  ∞  
2. [Iterate] 
for i = 1 to G 

[Evaluate the individual] 
 f(i) ←  fitness (xi) 

if  fitness(i)<BestFit  best ←  I(xi); BestFit ←  fitness(xi) 
[Mutate]  

           Generate a uniform random number Lk ≤≤1 ; Make kk bitbit ←  

endfor 
 
For the case of RMH, )(tS  is a unitary set such that )}({)( tstS =  where )(ts is 

also a binary encoded candidate solution which is chosen at random and whose fitness 
is evaluated.  We explored the behavior of the Ai’s taking snapshots of their progress 
in steps of 50 generations up to 800. A GA works with several candidate solutions 
that allow it to explore different regions of Ω  in parallel. On the other hand, the 
RMH works with a single candidate solution that allows it to explore a single region 
of Ω . The number of iterations of RMH needed for convergence, for this reason, 
differs significantly from that of a GA. For benchmarking purposes, therefore, we 
established the following standard. 

1) Let M  be the number of candidate solutions for a GA. Thus, for Ai it holds 
that MtS =|)(|  

2) The upper bound on the number of iterations of a RMH is set to GM × . 
3) The upper bound on the number of iterations of any GA is set to G . 

Any iA  will, therefore, approach the solution to a problem f in at most G iterations. 

For a detailed discussion of the algorithms see Appendix A. 

4 Selected Functions 

In this section we discuss the behavior of the algorithms for selected functions whose 
minima are known and, therefore, allow us to establish a measure of effectiveness 
relative to the best value found by the algorithm. The evaluation of all algorithms in A 
is based on a set of unconstrained functions (UF) which have some properties 
(multimodality, non-convexity, non-linearity, etc.) that make them good choices for 
benchmarking purposes, 
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For reasons of space we may only succinctly present 6 of the 23 functions 
considered in this study. 1) Hansen Function. Unimodal; it is defined in a n-
dimensional space Ν∈∀n : 

)1)2cos(()1()1cos()1(),(
4
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4

0
0 +++++++= 
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the known minimum is -176.54. 2) De Jong’s Function. Continuous, convex and 

unimodal: 
=

=
n

i
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0:  3) Rotated hyper-ellipsoid function. Continuous, convex and unimodal: 
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4) Rosenbrock's valley function. The global optimum lies inside a long, narrow, 
parabolic shaped flat valley. To find the valley is trivial. However convergence to the 
global optimum is difficult and hence this problem has been frequently used to test 

the performance of optimization algorithms: 222
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1
1 )1()(100[)( ii

n

i
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=
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Ω is nixi ,...,1,048.2048.2 =≤≤− ; the known minimum is 0.  5) Rastrigin's 

function. It is based on the function of De Jong with the addition of cosine 
modulation in order to produce frequent local minima. The function is highly 

multimodal: )2cos(10[10)(
1

2
=

−+=
n

i
ii xxnxf π . Ω is nixi ,...,1,12.512.5 =≤≤− ; 

the known minimum is 0. 6)  Schwefel's function. It is deceptive in that the global 
minimum is geometrically distant, over the parameter space, from the next best local 
minima. Therefore, the search algorithms are potentially prone to convergence in the 

wrong direction: ]||sin([)(
1

i

n

i
i xxxf 

=

−= . Ω is nixi ,...,1,500500 =≤≤− ; the 

known minimum is -418.9828n.  
All 23 functions have known optima. This allows us to define a relative measure of 

performance for iA  as follows: 
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where *jy  is the known optimum of jf  and jy  is the best value found by iA .  

We ran every algorithm 100 times for every problem and obtained its average 

performance. We obtained this average performance for all iA  with G = 800. We got 

snapshots of the process every 50 generations. In Figure 1 we show the corresponding 
results.  
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Fig. 1. Average Performance for UF 

Notice that in these functions all of the GAs outperform the RMH only marginally, 
with the exception of EGA which is considerably better. Also notice that TGA (the 
canonical GA) is able to reach an acceptable value only after a large number of 
generations. From a further analysis we determined how the algorithms identify larger 

order schemata. We indicate that iA is better than 
j

A   when the order of the schemata 

of  Ai is larger than the order of the schemata of  Aj. (see Fig. 2). Consistent with the 
previous results, TGA is the slowest algorithm to identify schemata of higher order. 
That is, the sluggish nature of TGA is due to the fact that it spends many more 
generations in identifying the better individuals in terms of their schemata order. 

 

Fig. 2. Average order of the schemata for UF 
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5 Conclusions 

The table for the suite of unconstrained problems (see Table 1) show that EGA 
outperforms the rest of the algorithms; in this case, notably so. TGA is, by far, the 
worst of the algorithms. Again RMH’s behavior is close to SGA’s and CHC’s. 

Table 1. Average minimum for the suite of unconstrained problems 

Algorithm Average Minimum Relative Efficiency 

EGA 0.0635 100.00% 

SGA 0.1260 50.43% 

RMH 0.1491 42.60% 

CHC 0.1501 42.32% 

TGA 0.2272 27.96% 

 
The best algorithm is EGA. Considering the wide size and variety of the set of 

problems we can say that, with high probability, the EGA is the best global 
optimization algorithm in our study.  

 
In concluding: 
 

1. In all experiments, the EGA exhibited the best performance. We know that 
EGA is a good alternative in problems with hard search spaces (e.g. non-
convex, constrained or highly dimensional spaces) . 

2. From a large set of runs it is possible to obtain a practical estimate of the 
schemata found by the algorithms. 

3. The analysis of schemata order of the algorithms leads to results consistent 
with the previous one. 

4. A similar analysis including other optimization techniques (e.g. Simulated 
annealing, Evolution strategies, Ant colony optimization, Particle swarm 
optimization, Differential evolution, etc.) may be easily implemented. 

References 

1. MacKay, B.: Mathematics and Statistics Models, http://serc.carleton.edu/ 
introgeo/mathstatmodels/index.html 

2. Mooney, D., Swift, R., Mooney, D.: A Course in Mathematical Modeling. Cambridge 
University Press (1999) 

3. Kolesárová, A., Mesiar, R.: Parametric characterization of aggregation functions. Fuzzy 
Sets Syst. 160(6), 816–831 (2009) 

4. Back, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary 
programming, genetic algorithms, ch. 4, pp. 149–159 (1996) 

5. Coello, C.: A comprehensive survey of evolutionary-based multiobjective optimization 
techniques. Knowledge and Information Systems 1, 269–308 (1998) 

6. De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems, Diss. PhD 
thesis, Dept. of Computer and Comm. Sciences, Univ. of Michigan, Ann Arbor, MI (1975) 



14 A.F. Kuri-Morales and E. Aldana-Bobadilla 

7. Endre, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. 
IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999) 

8. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996) 
9. Mitchell, M., Holland, J., Forrest, S.: When Will a Genetic Algorithm Outperform Hill 

Climbing? In: Advances of Neural Information Processing Systems, vol. 6, pp. 51–58. 
Morgan Kaufmann (1994) 

10. Baker, J.: Adaptive selection methods for genetic algorithms. In: Grefenstette, J. (ed.) 
Proceedings of the 1st International Conference on Genetic Algorithms and their 
Applications, pp. 101–111. Lawrence Earlbaum Associates, N.J. (1985) 

11. Spears, W.M., Anand, V.: A Study of Crossover Operators in Genetic Programming. In: 
Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409–418. Springer, 
Heidelberg (1991) 

12. Bäck, T.: Self-Adaptation in Genetic Algorithms. In: Varela, F., Bourgine, P. (eds.) 
Toward a Practice of Autonomous Systems: Proceedings of the First European Conference 
on Artificial Life, pp. 263–271. MIT Press (1991) 

13. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press (1996) 
14. De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. 

Doctoral Dissertation, University of Michigan (1975) 
15. De Jong, K.A., Spears, W.M.: An Analysis of the Interacting Roles of Population Size and 

Crossover in Genetic Algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. 
LNCS, vol. 496, pp. 38–47. Springer, Heidelberg (1991) 

16. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, 
Ann Arbor (1975) 

17. Pohlheim, H.: GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with 
MATLAB Documentation, Version 3.80 (released December 2006), http://www. 
geatbx.com/docu/index.html 

18. Digalakis, J., Margaritis, K.: An experimental study of Benchmarking functions for genetic 
algorithms. Intern. J. Computer Math. 79(4), 403–416 (2002) 

19. Vose, D.: Generalizing the notion of schema in genetic algorithms. Artificial 
Intelligence 50(3), 385–396 (1991) 

20. Eshelman, L.: The CHC Adaptive Search Algorithm. How to Have Safe Search When 
Engaging in Nontraditional Genetic Recombination. In: Rawlins, G. (ed.) FOGA-1, pp. 
265–283. Morgan Kaufmann (1991) 

21. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions 
on Neural Networks 5(1), 96–101 (1994) 

22. Eshelman: Op. cit. (1991) 
23. Rezaee Jordehi, A., Hashemi, N., Nilsaz Dezfouli, H.: Analysis of the Strategies in 

Heuristic Techniques for Solving Constrained Optimisation Problems. Journal of 
American Science 8(10) (2012) 

24. Sánchez-Ferrero, G.V., Arribas, J.I.: A Statistical-Genetic Algorithm to Select the Most 
Significant Features in Mammograms. In: Kropatsch, W.G., Kampel, M., Hanbury, A. 
(eds.) CAIP 2007. LNCS, vol. 4673, pp. 189–196. Springer, Heidelberg (2007) 

25. Kuri-Morales, A.: A statistical genetic algorithm. In: Proc. of the 3rd National Computing 
Meeting, ENC 1999, Hgo., México, pp. 215–228 (1999) 

26. Kuri-Morales, A., Villegas-Quezada, C.: A universal eclectic genetic algorithm for 
constrained optimization. In: Proceedings of the 6th European Congress on Intelligent 
Techniques and Soft Computing, vol. 1 (1998) 



 The Best Genetic Algorithm I 15 

27. Kuri-Morales, A.F.: A methodology for the statistical characterization of genetic 
algorithms. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) 
MICAI 2002. LNCS (LNAI), vol. 2313, pp. 79–88. Springer, Heidelberg (2002) 

28. Back, T.: Evolutionary algorithms in theory and pactice: evolution strategies, evolutionary 
programming, genetic algorithms, ch. 4, pp. 149–159 (1996) 

29. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996) 
30. Vose, D.: The Walsh Transform and the Theory of the Simple Genetic Algorithm. In: Pal, 

S., Wang, P. (eds.) Genetic Algorithms for Pattern Recognition. CRC Press (1996) 
31. Rowhanimanesh, A., Sohrab, E.: A Novel Approach to Improve the Performance of 

Evolutionary Methods for Nonlinear Constrained Optimization. Advances in Artificial 
Intelligence (2012) 


	The Best Genetic Algorithm I
	1 Introduction
	2 Preliminaries
	3 Selected Genetic Algorithms
	3.1 Elitist Canonical GA (TGA)
	3.2 Cross Generational Elitist Selection, Heterogeneous Recombination and Cataclysmic Mutation GA (CHC)
	3.3 Eclectic GA (EGA)
	3.4 Statistical GA (SGA)
	3.5 Random Mutation Hill-Climber (RMH)

	4 Selected Functions
	5 Conclusions
	References




