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Preface

The Mexican International Conference on Artificial Intelligence (MICAI) is a
yearly international conference series organized by the Mexican Society of Arti-
ficial Intelligence (SMIA) since 2000. MICALI is a major international AT forum
and the main event in the academic life of the country’s growing Al community.

MICALI conferences publish high-quality papers in all areas of AI and its
applications. The proceedings of the previous MICAI events have been published
by Springer in its Lecture Notes in Artificial Intelligence (LNAI) series, vols.
1793, 2313, 2972, 3789, 4293, 4827, 5317, 5845, 6437, 6438, 7094, 7095, 7629, and
7630. Since its foundation in 2000, the conference has been growing in popularity
and improving in quality.

The proceedings of MICAI 2013 are published in two volumes. The first vol-
ume, Advances in Artificial Intelligence and Its Applications, contains 45 papers
structured into five sections:

Logic and Reasoning

Knowledge-Based Systems and Multi-Agent Systems
Natural Language Processing

Machine Translation

Bioinformatics and Medical Applications

The second volume, Advances in Soft Computing and Its Applications, contains
45 papers structured into eight sections:

— Evolutionary and Nature-Inspired Metaheuristic Algorithms
— Neural Networks and Hybrid Intelligent Systems

— Fuzzy Systems

— Machine Learning and Pattern Recognition

— Data Mining

— Computer Vision and Image Processing

— Robotics, Planning and Scheduling

— Emotion Detection, Sentiment Analysis, and Opinion Mining

The books will be of interest for researchers in all areas of Al, students specializ-
ing in related topics, and for the general public interested in recent developments
in AL

The conference received 284 submissions by 678 authors from 45 countries:
Algeria, Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Bulgaria,
Canada, Chile, China, Colombia, Cuba, Czech Republic, Egypt, Finland, France,
Germany, Hungary, India, Iran, Ireland, Italy, Japan, Mauritius, Mexico, Mo-
rocco, Pakistan, Peru, Poland, Portugal, Russia, Singapore, South Africa, South
Korea, Spain, Sweden, Switzerland, Thailand, Tunisia, Turkey, UK, Ukraine,
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Uruguay, and USA. Of these submissions, 85 papers were selected for publi-
cation in these two volumes after a peer-reviewing process carried out by the
international Program Committee. In particular, the acceptance rate was 29.9%.

MICALI 2013 was honored by the presence of such renowned experts as Il-
dar Batyrshin of the IMP, Mexico; Erik Cambria of the National University
of Singapore; Amir Hussain, University of Stirling, UK; Newton Howard, Mas-
sachusetts Institute of Technology, USA; and Maria Vargas-Vera, Universidad
Adolfo Ibafiez, Chile, who gave excellent keynote lectures. The technical program
of the conference also featured tutorials presented by Roman Barték (Czech Re-
public), Ildar Batyrshin (Mexico), Erik Cambria (Singapore), Alexander Garcia
Castro (Germany), Alexander Gelbukh (Mexico), Newton Howard (USA), Ted
Pedersen (USA), Obdulia Pichardo and Grigori Sidorov (Mexico), Nelishia Pil-
lay (South Africa), and Maria Vargas-Vera (Chile). Four workshops were held
jointly with the conference: the First Workshop on Hispanic Opinion Mining
and Sentiment Analysis, the 6th Workshop on Hybrid Intelligent Systems, the
6th Workshop on Intelligent Learning Environments, and the First International
Workshop on Semantic Web Technologies for PLM.

In particular, in addition to regular papers, the volumes contain five invited
papers by keynote speakers and their collaborators:

— “Association Measures and Aggregation Functions,” by Ildar Batyrshin

— “An Introduction to Concept-Level Sentiment Analysis,” by Erik
Cambria

— “The Twin Hypotheses. Brain Code and the Fundamental Code Unit: To-
wards Understanding the Computational Primitive Elements of Cortical
Computing,” by Newton Howard

— “Towards Reduced EEG Based Brain-Computer Interfacing for Mobile Robot
Navigation,” by Mufti Mahmud and Amir Hussain

— “Challenges in Ontology Alignment and Solution to the Contradictory Evi-
dence Problem,” by Maria Vargas-Vera and Miklos Nagy

The authors of the following papers received the Best Paper Award on the basis
of the paper’s overall quality, significance, and originality of the reported results:

1%% place: “A Bayesian and Minimum Variance Technique for Arterial Lumen Seg-
mentation in Ultrasound Imaging,” by Sergio Rogelio Tinoco-Martinez,
Felix Calderon, Carlos Lara-Alvarez, and Jaime Carranza-Madrigal
(Mexico)

274 place: “The Best Genetic Algorithm I. A Comparative Study of Structurally
Different Genetic Algorithms,” by Angel Kuri-Morales and Edwin
Aldana-Bobadilla (Mexico)

“The Best Genetic Algorithm II. A Comparative Study of Structurally
Different Genetic Algorithms,” by Angel Kuri-Morales, Edwin Aldana-
Bobadilla, and Ignacio Lépez-Pena (Mexico)
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3 place: “A POS Tagger for Social Media Texts Trained on Web Comments,”
by Melanie Neunerdt, Michael Reyer, and Rudolf Mathar (Germany)®

The authors of the following paper selected among all papers of which the first
author was a full-time student, excluding the papers listed above, received the
Best Student Paper Award:

1%% place: “A Massive Parallel Cellular GPU Implementation of Neural Network
to Large Scale Euclidean TSP,” by Hongjian Wang, Naiyu Zhang, and
Jean-Charles Créput (France)

We want to thank all the people involved in the organization of this conference.
In the first place, the authors of the papers published in this book: It is their
research work that gives value to the book and to the work of the organizers.
We thank the track chairs for their hard work, and the Program Committee
members and additional reviewers for their great effort spent on reviewing the
submissions.

We are grateful to Dr. Salvador Vega y Leén, the Rector General of the
Universidad Auténoma Metropolitana (UAM), Dr. Romualdo Lépez Zérate, the
Rector of the UAM Azcapotzalco, Dr. Luis Enrique Norefia Franco, Director of
the Fundamental Science and Engineering Division, M.Sc. Rafaela Blanca Silva
Lépez, Head of the Systems Department, M.Sc. Roberto Alcdntara Ramirez,
Head of the Electronics Department, and Dr. David Elizarraraz Martinez, Head
of the Fundamental Science Department, for their invaluable support of MICAT
and for providing the infrastructure for the keynote talks, tutorials and work-
shops. We are also grateful to the personnel of UAM Azcapotzalco for their
warm hospitality and hard work, as well as for their active participation in the
organization of this conference. We greatly appreciate the generous sponsorship
provided by the Mexican Government via the Museo Nacional de Antropologia,
Instituto Nacional de Antropologia e Historia (INAH).

We are deeply grateful to the conference staff and to all members of the local
Organizing Committee headed by Dr. Oscar Herrera Alcantara. We gratefully ac-
knowledge the support received from the following projects: WIQ-EI (Web Infor-
mation Quality Evaluation Initiative, European project 269180), PICCO10-120
(ICYT, Mexico City Government), and CONACYT-DST (India) project “An-
swer Validation through Textual Entailment.” The entire submission, reviewing,
and selection process, as well as preparation of the proceedings, was supported
for free by the EasyChair system (www.easychair.org). Last but not least, we are
grateful to the staff at Springer for their patience and help in the preparation of
this volume.

October 2013 Félix Castro
Alexander Gelbukh
Miguel Gonzélez Mendoza

! This paper is published in a special issue of the journal Polibits and not in this set
of books.
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Abstract. Genetic Algorithms (GAs) have long been recognized as
powerful tools for optimization of complex problems where traditional
techniques do not apply. However, although the convergence of elitist GAs to a
global optimum has been mathematically proven, the number of iterations
remains a case-by-case parameter. We address the problem of determining the
best GA out of a family of structurally different evolutionary algorithms by
solving a large set of unconstrained functions. We selected 4 structurally
different genetic algorithms and a non-evolutionary one (NEA). A schemata
analysis was conducted further supporting our claims. As the problems
become more demanding, the GAs significantly and consistently outperform
the NEA. A particular breed of GA (the Eclectic GA) is superior to all
other, in all cases.

Keywords: Global optimization, Genetic algorithms, Unconstrained functions,
Schemata analysis.

1 Introduction

Optimization is an all pervading problem in engineering and the sciences. It is,
therefore, important to rely on an optimization tool of proven efficiency and
reliability. In this paper we analyze a set of optimization algorithms which have not
been analyzed exhaustively before and achieve interesting conclusions which allow us
to recommend one such algorithm as applicable to a large number complex problems.
When attempting to assess the relative efficiency of a set of optimization algorithms
one may take one of two paths: a) Either one obtains closed models for the algorithms
thus allowing their parametric characterization [1], [2], [3] or b) One selects a set of
problems considered to be of interest and compares the performance of the algorithms

F. Castro, A. Gelbukh, and M. Gonzilez (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 1-15, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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when measured vs. such a set. Modeling an algorithm is frequently a complex task
and, more importantly, even slight changes in the algorithm lead to basically different
models [4], thus making the purported characterization impractical. The second
option, therefore, seems better suited for practical purposes. However, although there
are many examples of such an approach (for instance see [5], [6], [7]) it is always true
that a) The nature of the algorithms under study and their number are necessarily
limited and b) The selection of the benchmarking functions obeys to subjective
criteria. In this paper we choose to establish the relative efficiency of a set of genetic
algorithms (GAs) which are structurally different from one another as will be
discussed in the sequel. We have selected a set of such GAs and, for completeness,
we have also included a particular non-evolutionary algorithm (the Random Mutation
Hill Climber or RMH) whose efficiency has been reported in previous works [8], [9].
Many GAs are variations (i.e. different selection criteria [10], crossover strategies
[11], population size [12], 13] relationship between Pc and Pm, [14], [15], etc.) of the
initial one proposed by Holland (the so-called “Simple” or “Canonical” Genetic
Algorithm [CGA] [16]) which do not significantly improve on CGA’s overall
performance. For benchmarking purposes the mentioned variations are not useful
since they all share the same basic algorithmic structure. However there are GAs
where the strategies to a) select, b) identify and c¢) recombine candidate solutions
differ from the CGA’s substantially. The purported changes impose structural
differences between these algorithms which have resulted in remarkable performance
implications. We have selected four GAs with this kind of diverse characteristics. We
begin, in Section 2, by introducing the necessary notation; then presenting some
concepts and definitions. In Section 3 we describe the five algorithms in our work. In
section 4 we present the functions and results for a suite of problems that traditionally
have been used for benchmarking purposes of optimization algorithms [17] [18]. In
Section 5 we present our general conclusions.

2 Preliminaries

Throughout we use the following notation and definitions: A: Set of selected
optimization algorithms; A; : The i-th optimization algorithm (i.e. A;€ A); X : Vector
in R"; Q: Feasibility region of the space R"; B: Set defined as B={01};
Iteration number such that 1<t<G;re N, G: Upper bound on the number of
iterations of A;. Without loss of generality our discussion will be focused on
numerical optimization problems. One such problem f is defined as:

Minimize f(x)

Subjectto hi(x)=0 i=1,..m (1)

gi(X)<0 i=m+1..p

where  f{x):R" >R is the objective function, A (X)=0 and g,(¥)<0 are

constraint functions defining Q . This means that if a vector X complies with all
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constraints it belongs to Q. In a problem without constraints, such as the ones
discussed here, all vectors x lie within Q .

We briefly pause to define what we understand as a genetic algorithm. Elsewhere
[20], it has been argued that an algorithm is “genetic” when it exhibits implicit
parallelism. Instead, we list the characteristics an iterative algorithm must have to be
considered “genetic”. Implicit parallelism is a consequence of these.

Definition 1:
A genetic algorithm is one which satisfies the following conditions:
1. It works on an n-dimensional discrete space D defined in N' rather than in
R,
2. It traverses D searching an approximation of the optimum vector x of (1) by

simultaneously analyzing a finite set S(¢)e D of candidate solutions.
3. The elements of S(¢) = {s,(¢),5,(?),....s,(t)} are explicitly encoded in some

suitable way.
4. The information regarding the partial adequacy of the elements in S(#) is

extracted by solving the optimization problem for all s;(#) .
5. The qualified elements of S(¢) are analyzed to select an appropriate subset

in order to improve the search in the problem's space.
Selected sections of the codes of s;(f) are periodically combined.

7. Selected elements of the codes of the s;(¢) are periodically and randomly
altered.
8. A subset of the best solutions of S(#) is preserved for all the future steps of

the algorithms.
9. The algorithm cycles through steps 4-8 until a stopping condition is met.

The algorithms selected for this study satisfy all of the characteristics above and,
therefore, may be aptly considered to be genetic in a broader sense then the one
implied by the frequently cited “bio-inspired” analogy. In fact, this analogy, attractive
as it may seem, frequently distracts the attention of the user from the basic efficiency
elements which any optimization algorithm should incorporate. These issues must
supersede other considerations when determining the desirability of one algorithm
over others.

Consequently, set A includes the following GAs:

a) An elitist canonical GA (in what follows referred to as TGA [eliTist
GA)) [21].

b) A Cross generational elitist selection, Heterogeneous recombination, and
Cataclysmic mutation algorithm (CHC algorithm) [22].

¢) An Eclectic Genetic Algorithm (EGA) [23].

d) A Statistical GA (SGA) [24] [25].
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3 Selected Genetic Algorithms

It is frequent to cite the variations of the GAs by their “popular name”. However, in
so doing one incurs in the risk of not being precise on the details of the algorithm.
One of the basic tenets of this paper is that even small variations lead to potentially
important differences in their behaviors. For this reason, we now include the pseudo-
codes of the algorithms in our study. Keep in mind that our results refer to their
precise implementation and no others. As a case in point, when discussing SGA (the
Statistical GA) it may be easy to confuse it with EDA (Estimation of Distribution
Algorithm). However, in EDA no mutation is explicitly included, whereas in SGA it
is (see the code below)

In the description of the algorithms which follows a) We denote the arguments
X =(x{,...,x;) with x; and the corresponding fitness function f(x)= f(x,...,x;)
with f{x;), b) The function f{x;) to be optimized is numerical, c) We aim to minimize
f(x;), and d) The arguments x; of the fitness function f{x;) are encoded in binary.

Let G =number of generations; n=number of individuals; I(n)=the n-th

individual; L =length of the chromosome; P, =probability of crossover;
Py, = probability of mutation.

By “Generation of a random population” we mean that, for a population of n
individuals each of whose chromosome’s length is L we make
fori=1ton
forj=I1toL
Generate a uniform random number 0 < p < 1.
If p<0.5 make bitj < 0 ; else make bitj «—1.

endfor
endfor

3.1 Elitist Canonical GA (TGA)

This is the classical CGA with two provisions: a) The best individual is kept along the
whole process forming part of the evolving population and b) In step 3 of the
algorithm

@(x;) = f (x| min(f (x) 1 +avg(l f (x;)1) (A.D)

is used. These two steps ensure that no fitness value is negative making the
proportional selection scheme always feasible (see [28, 29, 30]).

0. Make k < 1.
1. Generate a random population

2. Select randomly an individual from the population (call it best).
Make f(best) «— oo .
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3. Evaluate.
fori=lton
Evaluate f{x;) .
Make f(x;) < @(f(x;)).
If f{x;) < f{best) make best € x; and f{best) € f(x;)
endfor
4. If k = G return best and stop.
5. Selection

Make F = Zn:f(xi)

i=1

fori=1ton; PS; =

7]( (Ifi ) ; Endfor

for i =1 to n; Select I(i) with probability PS;.; endfor
6. Crossover
fori=1tonstep?2
Randomly select two individuals (say /(X) and I(Y)) with probabilities PSx
and PSy, respectively.
Generate a uniform random number 0 < p <1.
If p <P C do
e Randomly select a locus ? of the chromosome; Pick the leftmost L-
{ bits of I(X) and the rightmost £ bits of I(Y) and concatenate them
to form the new chromosome of 1(X). Pick the leftmost L- ¢ bits of
I(Y) and the rightmost £ bits of the previous I(X) and concatenate
them to form the new chromosome of 1(Y)
Make I1(0)) <« I(X); IG+1) < I(Y).
endfor
7. Mutation
fori=1ton
Select (i)
forj=1toL
Generate a uniform random number 0 < p <1.
If p <Py make bit e%
endfor
endfor
8. Make k < k +1 and go to step 3.

3.2 Cross Generational Elitist Selection, Heterogeneous Recombination and
Cataclysmic Mutation GA (CHC)

This algorithm focuses on maintaining diversity while retaining the characteristics of
the best individuals. Inter-generational survival-of-the-fittest is attempted by unbiased



6 A.F. Kuri-Morales and E. Aldana-Bobadilla

parent selection. Furthermore it tries to maintain diversity implementing the so-called
HUX crossover (Half, Uniform X-over) and introducing cataclysmic mutations when
the population’s diversity falls below a pre-defined threshold (see [20]).

0. Make
{0

threshold < L/ 4
1. Generate a random population.
2. Evaluate f{x;) Vi
3. f(best) < min(f(x; )) Vi
best — I1(il f(x;) is best)
4. 0 « 0 +1

If ¢ = G return best and stop.

5. Copy all individuals from population P into set C
6. [HUX Crossover]
Let Bit,, denote the y-th bit of individual x

fori=Iton/2

Randomly select individuals Iy and Iy from C
hammingXY < 0
forjé<—1toL

if bitj(Iy) # bitj( Iy); DiffXY[j]=true;

hammingXY <— hammingXY+1; else DiffXY[j]=false; f

endfor
if (hammingXY/2 < threshold)

eliminate C(X) and C(Y) from C

else
mutated <— 0
while (mutated<hammingXY/2)
J €—random number between 1 and L
if DifXY[j]
Interchange the j-th bit of Ix and Iy
mutated <— mutated+1; DiffXY[j] < false
endwhile
endfor

Evaluate f(x;) in C( i) Vi
Make P’=P U C
Sort P’ from best to worst
P’ « Best n individuals from P’; f (best) < f(x; ); best < P,
ifP= P’

threshold < threshold-1

if threshold=0

fori=2ton
Select the i-th individual
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forj=1toL
Generate a uniform random number 0 < p <1

If p<0.35 make bit; « bit;

threshold < L/4
P« P;goto4

3.3  Eclectic GA (EGA)

This algorithm uses deterministic selection, annular crossover, uniform mutation and
full elitism (a strategy akin to g+ A4 selection of evolutionary strategies [31]). The

probabilistic nature of EGA is restricted to parameters P. and Py. In EGA avoidance
of premature convergence is achieved by a two-fold strategy. First, the 2n individuals
from the last two generations are ordered from best to worst and only the best n are
allowed to survive. Then the individuals are deterministically selected for crossover
by mixing the best with the worst (/ with n), the second with the second worst (2 and
n-1, . . .,), and so on. In this way n new individuals are generated. As the iterations
proceed, the surviving individuals become the top elite of size n of the whole process.
Annular crossover (equivalent to two-point crossover) is preferred because it makes
the process less dependent on a particular encodings. This algorithm was first reported
in [26] and included self-adaptation and periodic cataclysmic mutation. Later studies
[27] showed that neither of the two mechanisms was necessary. EGA is relatively
simple, fast and easy to program.

0. B2M < |VnL X Py —| ( Expected number of mutations per generation)

l.i <1
2. Generate a random population
3. Evaluate the population.
4. [ Duplicate Population]
forj=1ton
I(n+j) <= I(j)
fitness(n+j) <— fitness(j)
endfor
5. [ Deterministic Selection Annular Crossover]
for j=1 to n/2
Generate a uniform random number 0 < p <1

If p< P,
Generate a random number 1< p < L/2
Interchange the semi-ring starting at locus p between I(j)
and I(n-j-1)
endif
endfor
5. [Mutation]
for j=1 to B2M
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Generate uniform random numbers 0 < p, p, <1

Mutate Bit [ p,L] of I([ pin])

endFor
6. [Evaluate the New Individuals]
Calculate fitness(x;) for i=1,...,n
7. [u+ A Selection]
Sort the 2n individuals by their fitness, ascending
8.1 « i+l

if i =G return I(1) and stop

Goto 3

3.4  Statistical GA (SGA)

In this case the algorithm takes advantage of the fact that the average behavior of
traditional TGA may be achieved without actually applying the genetic operators but,
rather, statistically simulating their behavior [24]. SGA starts by generating the initial
population’s (Py) individuals randomly. The fitness for each individual is calculated

as per (A.1). It is then easy to determine its relative fitness ®(x) < f(x;)/ Z f(x;)
j

which, immediately, induces a partial ordering in the population according to the

value of ®(x). Once this is done, the so-called probabilistic genome (PG) is

calculated. In this genome, the probability that the k-¢4 bit of a genome attains a value
of 1 is derived from

P, :Z(Djbjk k=1,.,L (A.2)
7

where by denotes the k-th bit of the j-th individual. Notice that Py actually represents
the weighted expected number of times that bit k will take the value / as a function of
the fitness of the i-th population. This is equivalent to defining a set of probability
distribution functions (pdfs); one for each of the L bits in the genome. These pdfs are

Bernoulli distributed and, initially, may have rather large variances (o). Every new
population is generated by sampling from the j-¢h distribution to compose its new N
individuals. The i-th population consists of individuals that respond to the average
behavior of the (i-1)-th. Every new population is also Bernoulli distributed but with
an increasingly small o . Eventually the pdfs of the final population will have a
Bernoulli distribution with ¢ =0, implying approximate convergence. In a strict
sense, the SGA avoids the need to include explicit mutation provisions. Preliminary
tests showed that premature convergence is avoided if such provisions are made. The
whole process may be seen as a search for a crisp encoding of the solution with a set
of fuzzy bits. Each bit is progressively de-fuzzyfied in consecutive generations.
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0. Make k «<1;
B2M < (nL X Py, —| ( Expected number of mutations per generation)
1. Generate a random population
2. Select randomly an individual from the population (call it best). Make f{best) ¢— oo .
3. [Get probabilistic genome]
PopFit < 0
fori=Iton
Evaluate f(x;)
If fixi)<f(best)
best « I(i); fibest) < f(x;)
endif
Make f(x;) < @(f(x;)); PopFit < PopFit + f(x;)
Endfor
for i=lton
RelFit; < f(x;)/PopFit;
endfor
fori=IltoL
PG,‘ — 0,’
forj=1ton
if bity = 12 PG; <~ PG+RelFit;
endFor
endFor
4. [Get new population]
[Probabilistic Individuals]
fori=1ton
forj=1toL
Generate a uniform random number 0 < p <1
if p< PG; D Bit; < 1, else Bit; < 0
endFor
endFor
[Mutate Individuals]
fori=I to B2M
Generate uniform random numbers 0< p,, p, <1

Mutate Bit [ p, L] of I([ pin])
endFor

5. k< k+1
If k = G return best and stop; else Go to step 3

3.5 Random Mutation Hill-Climber (RMH)

This algorithm is the only non-evolutionary one considered in this study. In general, a
“hill-climber” is an algorithm which attempts, iteratively, to improve on its best found
value by refining the last attempt.
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1. [Generate the individual]
fori=IltoL
Generate a uniform random number 0 < p <1.

If p < 0.5 make bit; < 0; else make bit; < 1.

endfor
Make best < 1(0)
BestFit < oo
2. [Iterate]
fori=1toG
[Evaluate the individual]
fi) « fitness (x;)
if fitness(i)<BestFit = best < 1(x;); BestFit < fitness(x;)
[Mutate]
Generate a uniform random number 1<k < L ; Make bit, « bit;

endfor

For the case of RMH, S(¢) is a unitary set such that S(¢#) ={s(t)} where s(z)is

also a binary encoded candidate solution which is chosen at random and whose fitness
is evaluated. We explored the behavior of the A;’s taking snapshots of their progress
in steps of 50 generations up to 800. A GA works with several candidate solutions
that allow it to explore different regions of € in parallel. On the other hand, the
RMH works with a single candidate solution that allows it to explore a single region
of Q. The number of iterations of RMH needed for convergence, for this reason,
differs significantly from that of a GA. For benchmarking purposes, therefore, we
established the following standard.

1) Let M be the number of candidate solutions for a GA. Thus, for A; it holds
that | S(t) =M

2) The upper bound on the number of iterations of a RMH is set to M xXG .

3) The upper bound on the number of iterations of any GA is setto G .

Any A; will, therefore, approach the solution to a problem fin at most G iterations.
For a detailed discussion of the algorithms see Appendix A.

4 Selected Functions

In this section we discuss the behavior of the algorithms for selected functions whose
minima are known and, therefore, allow us to establish a measure of effectiveness
relative to the best value found by the algorithm. The evaluation of all algorithms in A
is based on a set of unconstrained functions (UF) which have some properties
(multimodality, non-convexity, non-linearity, etc.) that make them good choices for
benchmarking purposes,
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For reasons of space we may only succinctly present 6 of the 23 functions
considered in this study. 1) Hansen Function. Unimodal; it is defined in a n-

dimensional space Vne N :

4 4

f(n,x):Z(i+l)cos(ix0+i+1)2(j+l)cos((j+2)x1+j+1). Qis |x 1£10;
i=0 j=0

the known minimum is -176.54. 2) De Jong’s Function. Continuous, convex and

unimodal: f(x) = le-z .Qis =5.12<x; £5.12, i=1,..,n;the known minimum is
i=1
0:  3) Rotated hyper-ellipsoid function. Continuous, convex and unimodal:
, 2
f(x)zZ(z x.i} . Q is 65536 <= x; <= 65536; the known minimum is O.
i=1 \_j=I
4) Rosenbrock's valley function. The global optimum lies inside a long, narrow,
parabolic shaped flat valley. To find the valley is trivial. However convergence to the
global optimum is difficult and hence this problem has been frequently used to test
n—1
the performance of optimization algorithms: f(x) = Z[lOO(x,- H —x,-z)2 + (l—x,-)z.
i=l
Qis -2.048<x; £2.048, i=1,.,n; the known minimum is 0. 5) Rastrigin's
function. It is based on the function of De Jong with the addition of cosine
modulation in order to produce frequent local minima. The function is highly

multimodal: f(x) =10n+ Z:[xi2 —10cos(2mx;). Q is—5.12<x; <5.12, i=1,...,n;
i=l

the known minimum is 0. 6) Schwefel's function. It is deceptive in that the global

minimum is geometrically distant, over the parameter space, from the next best local

minima. Therefore, the search algorithms are potentially prone to convergence in the

wrong direction: f(x) = Z[—xi sin(/l x; IT. Q is =500<x; <500, i=1,...,n; the
i=1
known minimum is -418.9828n.
All 23 functions have known optima. This allows us to define a relative measure of
performance for A; as follows:

J Yj

oA, f) ="

J

@

where y;* is the known optimum of f; and y; is the best value found by A;.
We ran every algorithm 100 times for every problem and obtained its average
performance. We obtained this average performance for all A, with G = 800. We got

snapshots of the process every 50 generations. In Figure 1 we show the corresponding
results.
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Fig. 1. Average Performance for UF

Notice that in these functions all of the GAs outperform the RMH only marginally,
with the exception of EGA which is considerably better. Also notice that TGA (the

canonical GA) is able to reach an acceptable value only after a large number of
generations. From a further analysis we determined how the algorithms identify larger

order schemata. We indicate that A, is better than A/_ when the order of the schemata

of A, is larger than the order of the schemata of A;. (see Fig. 2). Consistent with the
previous results, TGA is the slowest algorithm to identify schemata of higher order.
That is, the sluggish nature of TGA is due to the fact that it spends many more
generations in identifying the better individuals in terms of their schemata order.

35
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20
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200 400 600 200

[teration

1000

—a— CHC
—+— RNMH
—%— SGA
—a— TGA
—8—EGA

Fig. 2. Average order of the schemata for UF
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Conclusions

The table for the suite of unconstrained problems (see Table 1) show that EGA
outperforms the rest of the algorithms; in this case, notably so. TGA is, by far, the
worst of the algorithms. Again RMH’s behavior is close to SGA’s and CHC’s.

Table 1. Average minimum for the suite of unconstrained problems

Algorithm Average Minimum Relative Efficiency
EGA 0.0635 100.00%
SGA 0.1260 50.43%
RMH 0.1491 42.60%
CHC 0.1501 42.32%
TGA 0.2272 27.96%

The best algorithm is EGA. Considering the wide size and variety of the set of

problems we can say that, with high probability, the EGA is the best global
optimization algorithm in our study.

In concluding:

1. In all experiments, the EGA exhibited the best performance. We know that
EGA is a good alternative in problems with hard search spaces (e.g. non-
convex, constrained or highly dimensional spaces) .

2. From a large set of runs it is possible to obtain a practical estimate of the
schemata found by the algorithms.

3. The analysis of schemata order of the algorithms leads to results consistent
with the previous one.

4. A similar analysis including other optimization techniques (e.g. Simulated
annealing, Evolution strategies, Ant colony optimization, Particle swarm
optimization, Differential evolution, etc.) may be easily implemented.
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Abstract. Genetic Algorithms (GAs) have long been recognized as po-
werful tools for optimization of complex problems where traditional techniques
do not apply. In [1] we reported the superior behavior, out of 4 evolutionary al-
gorithms and a hill climber, of a particular breed: the so-called Eclectic Genetic
Algorithm (EGA). EGA was tested vs. a set (TS) consisting of large number of
selected problems most of which have been used in previous works as an expe-
rimental testbed. However, the conclusions of the said benchmark are restricted
to the functions in TS. In this work we extend the previous results to a much
64 )

31
larger set (U) consisting of ¢ = 'Z] (2 . ]]><]050 unconstrained func-
1=

tions. Randomly selected functions in U were minimized for 800 generations

each; the minima were averaged in batches of 36 each yielding X; for the i-th
batch. This process was repeated until the ;i ’s displayed a Gaussian distribu-

tion with parameters 4 and o . From these, the parameters u and o

describing the probabilistic behavior of each of the algorithms for U were cal-
culated with 95% reliability. We give a sketch of the proof of the convergence
of an elitist GA to the global optimum of any given function. We describe the
methods to: a) Generate the functions; b) Calculate # and o for U and c) Eva-
luate the relative efficiency of all algorithms in our study. EGA’s behavior was
the best of all algorithms.

Keywords: Genetic algorithms, Unbiased functions, Statistical validation.
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1 Introduction

Optimization is an all pervading problem in engineering and the sciences. It is, there-
fore, important to rely on an optimization tool of proven efficiency and reliability. In
this paper we compare a set of optimization algorithms which were analyzed in [1]
over a set of unconstrained selected functions in R X R . Here we extend our study in
two ways: First, we consider a, for all practical purposes, unlimited reservoir of un-
constrained functions. Second, we use the same basic reservoir so that the functions
correspond to RXR , RxR?and R xR >. The results may be generalized for
R X R " In analogous comparative studies in the past (for instance see [2], [3], [4]) it
is always true that a) The nature of the algorithms under study and their number are
necessarily limited and b) The selection of the benchmarking functions obeys to sub-
jective criteria. We know that any elitist GA will find the global optimum. The time
(iterations) the GA has to spend is, however, not bounded. Therefore it seems appro-
priate to seek the fastest GA, in general. We analyze a set whose functions are
a) Representative , b) Large enough, c¢) Automatically generated and d) Randomly

selected. We may apply statistical methodologies to extract the probabilistic behavior
of the algorithms under study with arbitrary reliability. The results from an analysis
following the previous guidelines will enable us to ascertain which of the GAs is fast-
est, i.e. the best, for most functions likely to be found in practice.

In [5] it is shown that elitist GAs always converge to a global optimum. The basic
idea hinges on the following: a) Because GAs perform the search in a discrete space,
the number of possible points to examine is finite; b) Any combination of individuals
in the population may be thought of as a state in a Markov chain (MC), ¢) Via muta-
tion, there is a non-zero probability that the GA will reach all possible states in the
MC and d) If the best individual is retained throughout the process, when the GA is
stopped, the best individual will correspond to the best possible solution to the prob-
lem. This is true iff there is no sink state (i.e. if there is always a non-zero probability
of exiting a given state of the MC). Holland’s original GA [6] did not include elitism.
But most practical implementations do. In fact, any elitist algorithm, even if it is not
evolutionary, satisfying the condition of exhaustive visits to all possible states, will,
by the same token, reach a global optimum. A case in point is the so-called Random
Mutation Hill Climber or RMH (for which see [1, 7, 8]). If we keep track of the best
value, however, the behavior of the algorithm may be illustrated as in Figure 1. In this
case, even if the process looses its aim in the final stages of the evolutionary search,
the best value is retained and, eventually, the best overall value will be reached.

It is easy to see that, given the above, the only basic difference in speed between a
RMH (for example) and a GA has to reside in the crossover operator. The crossover
component of a GA is actually responsible for the convergence speed of the process.
Because of this we want to analyze several possible alternative GAs in trying to de-
termine which is most effective. The GAs considered were the following:
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Global Best Value is

/ Optimum Retained

Best Calculated
Value

Value

Generation

Fig. 1. Convergence with Elitism

a) An elitist canonical GA (in what follows referred to as TGA [eliTist
GAD [7].

b) A Cross generational elitist selection, Heterogeneous recombination, and
Cataclysmic mutation algorithm (CHC algorithm) [9].

¢) An Eclectic Genetic Algorithm (EGA) [12].

d) A Statistical GA (SGA) [10] [11].

For a detailed description and the pseudo-code of all the algorithms see [1]. Be-
cause we found that EGA was the best, we consider of interest to reproduce it here.
When this algorithm was first reported it included self-adaptation and periodic cata-
clysmic mutation. Later studies [13] showed that neither of the two mechanisms was
compulsory. EGA is relatively simple, fast and easy to program. In what follows, the
next variables are used: n = number of individuals; L - length of the chromosome in
bits; Py, > Probability of mutation; Pc > probability of crossover; I(i) = the i-th
individual; G > number of generations.

Pseudo-Code of the Eclectic GA (EGA)
0. B2M < |VnL X Py —| ( Expected number of mutations per generation)
l.i ¢ 1
2. Generate a random population
3. Evaluate the population.
4. [ Duplicate Population]
forj=1ton
I(n+j) < I(j)
fitness(n+j) <— fitness(j)
endfor
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5. [ Deterministic Selection Annular Crossover]
for j=1 to n/2
Generate a uniform random number 0 < p <1

If p< P,
Generate a random number 1< p < L/2
Interchange the semi-ring starting at locus p between I(j)
and I(n-j-1)
endif
endfor
5. [Mutation]
for j=1 to B2M

Generate uniform random numbers 0 < p,, p, <1

Mutate Bit [ p,L] of I([ pin )

endFor
6. [Evaluate the New Individuals]
Calculate fitness(x;) for i=1,...,n
7.[u+ A Selection]
Sort the 2n individuals by their fitness, ascending
8.1 « i+l

if i = G return I(1) and stop

Goto3

The rest of the paper is organized as follows: in Section 2 we show how to extract the
mean value u and the standard deviation ¢ from the minima of the functions in U.

In Section 3 we describe how the functions in U may be generated and evaluated in
RXR, RxR Zand R xR °. In Section 4 we present our conclusions.

2 Statistical Determination of the Best Algorithm in U

A thorough experimental test of a given set of algorithms (A) implies running a large
series of minimization trials. The probability that A; reaches some minimum value
(which we denote by x) is unknown. These x will vary for every problem and will

distribute with mean p and standard deviation ¢ which are also unknown. We shall
approximate these values by sampling U. It is, therefore, of utmost importance that
we select sample S adequately; both in its nature and its size. Typically, the size of S
is determined from assumptions (directly or indirectly) depending on the form of the
population’s ( x ’s distribution). We followed a method which does not necessitate
from such assumptions. It relies on the knowledge that any sampling distribution of
means (sdom) will eventually become Gaussian. Therefore, we generate a succession
of problems to optimize (i.e. minimizing, every time, 36 problems of U) and calculate

the corresponding mean X . The iterations will be stopped only after the x’s are
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distributed normally. Normality was considered to have been reached after dividing
the results in deciles when a) ¥ 2<3.28 and b) O;, the number of observations in the

i-th decil, is 5 or more. We rely on the following theorems.
Theorem 1

Any sampling distribution of means (sdom) is distributed normally for a large enough
sample size n. [ The Central Limit Theorem)].

Remark: It is considered that any n>20 is satisfactory. We have chosen n=36.
Theorem 2
In a normal distribution (with mean 4y and standard deviation oy ) approximately
one tenth of the observations lie in the intervals: gy -50% to Uux-1290%; Ux-
1290'}? to Ux _0'850-Y ;o My -0.85 Oy tO,UY_O.SS Ox; Hx -0.53 Oy tO,UY_
0260%; Ux-0260% to iy and the positive symmetrical.

Remark: These deciles divide the area under the normal curve in 10 unequally
spaced intervals where the expected number of observed events will be one tenth.

Theorem 3
The relation between the population distribution’s parameters g4 and o and the

sdom’s parameters (U y andOoy isgivenby 4=y and 0= «/;-0')7.

Theorem 4
The proportion of any distribution found within k standard deviations of the mean is,

at least, I-1/k°. That is, p(u—ko < y; Su+ko) >1-1/k*.

We selected k = 3.1623, which guarantees that our observations will lie within the
selected interval with p > 0.90.

The question we want to answer is: How small should y * be in order for us to as-
certain normality? Remember the y * test is designed to verify whether two distribu-

tions differ significantly so that one may reject the null hypothesis, i.e. the two popu-
lations are statistically NOT equivalent. This corresponds to large values of y *and is

a function of the degrees of freedom. In this case, if we wanted to be 95% certain that
the observed Xxj’s were NOT normally distributed, we would demand that
7 2=14.0671. However, this case is different. We want to ensure the likelihood that

the observed behavior of the ;Ci ’s IS normal. In order to do this we performed the

following Monte Carlo experiment. We set a desired probability P that the ;Cl‘ s are
normal. We establish a best desired value of y 2 which we will call X ves- We make

NS « 50. We then generate NS instances of N(0,1) and count the number of times the
value of the instance is in every decile. We calculate the value of the corresponding
V4 2 and store it. We thusly calculate 100,000 combinations of size NS. Out of these

combinations we count those for which ¥ ’< Z vest AND there are at least o0,,;, =5

observations per decile. This number divided by 100,000 (which we shall call p) is
the experimental probability that, for NS observations, y > “performs” as required.
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We repeat this process increasing NS up to 100. In every instance we test whether p >
P. If such is the case we decrement the value of % ,., and re-start the process. Only

when p < P does the process end. The probability that y 2 exceeds X bes: @S a func-

tion of the number of problems being minimized (M) is shown in Figure 2. Every
point represents the proportion of combinations satisfying the required conditions per
100,000 trials. For this experiment, y ., = 3.28. We obtained an approximation to a

_eb—cM
Gompertz model with $=0.0023 and r=0.9926. It has the form p = ae ¢ ;

where a=0.046213555, b=12.40231200, c¢=0.195221110. From this expression
we solve for M, to get M = {b - ln[ln(a / p)]}/ C . As may be observed, p<0.05 for
M > 85, which says that the probability of obtaining y >< 3.28 by chance alone is
less than five in one hundred. Therefore, it is enough to obtain 85 or more ;Ci ’s to
calculate # and ¢ with 95% reliability.

0% 1
08®
P o
nﬂ"'é

o

r—tpalacksy — 77— 77— 17—
451 54.9 64.7 74.5 B4.3 941 103.9

M

Fig. 2. Probability of ¥ *and O;>5 as a function of the number of problems solved

In what follows we describe the algorithm which results from all the foregoing
considerations.

Algorithm for the Determination of the Distribution’s Parameters
Select an optimization algorithm A.
1. Make G < number of generations.

Generate a random binary string. This is one possible f; (x) .
Minimize f;(x) iterating A, G times.

Store the best minimum value &; .

Repeat steps (2-4) 36 times.

A
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36
6. Calculate the average best value K ;= (1/36) .le(i .
1=

7. Repeat steps (5-6) 50 times.
8. Calculate Y and O .

9. Repeat step (7) 85 times. The sdom’s distribution is normal with p=0.95.
10. Calculate i =, and o =60, . We have inferred the expected best value

kx and the standard deviation for this algorithm.
From T4:

P(u—-3.16230 < k £ 4 +3.16230) = 0.90 (1)

We have found a quantitative, unbiased measure of A;’s performance in RxN .
These values for the different A;’s allow us to make a fair unbiased assessment of their
behavior.

3  Generation of U for RXR"

Once we have determined how to extract the parameters of the pdf for the algorithms
we need an unbiased and automated way to obtain the problems to solve. We started
by using Walsh’s polynomials for R x R . Next we used a monomial basis to, like-

wise, do so for RX R, RxR 2 Rx R >. The behavior of the algorithms for all three

cases was analyzed. The distributions were statistically equivalent. An induction prin-
ciple leads to the conclusion that the observed behavior will be similar for R xR ".

3.1  Generation of Unbiased Functions Using Walsh Polynomials

A reservoir of 250,000 randomly generated binary strings of length L
(32 I L1£1024 ) may be interpreted as a set of 250,000 functions in Rx R . Call this

set “U”. By “unbiased” we mean that, because the functions in U are randomly gen-
erated, there is no bias in their selection. To generate functions automatically we
resort to Walsh functions ¥ ;(x) which form an orthogonal basis for real-valued
functions defined on (0,1)/', where x is a bit string and { s its length. Henceforth,
any function f{x) thusly defined can be written as a linear combination of the ;s

yielding a Walsh polynomial.

31
)= 2 0w @)

+1 if z(xAj)=0

where l//j(x):{_l i e ) =1 3)
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XA j is the bitwise AND of x and j; 7z (x) denotes the parity of x; and @; € R.
Therefore, the index j and argument x of y/;(x) must be expressed in comparable

binary. We, therefore, used 16 bits to represent x in a Py ;s(x) format. This means that
we used one sign bit, 0 integers and 15 bits in a fixed point format for every term in
the x’s of (2). Consequently, we also used 16 bits for the indices j of (2). That implies
that —0.999969482421875 < x < +0.999969482421875 and 0 < j <65,535. For ex-

ample, consider ¥ 43 (0.00048828125) = —1. To see why, notice that j=61,680, in

binary, is 1111000011110000. Also, x=0.00048828125 (with Py ;s(x) format), cor-
responds to 0000000000010000. And xA j = 0000000000010000 for which
7(0000000000010000) =1. The length of the binary strings for the coefficients was

also made 16 and, hence, —0.999969482421875 < w; <+0.999969482421875 .
Therefore, any Walsh monomial @;y/; is uniquely represented by a binary string of

length 32. Finally, we allow at least one but no more than 32 non-zero terms in (2).
This last conditions is mathematically expressed by including an o; term which may
only take two values (1 or 0) depending on whether the term appears. Given this, we
have

32
Y=Y a0 )
]Z_:, Vet kgl 3)

1 if the j—thtermis present

where o, ={

0 if the j—th term is not present

Denoting with 7 the number of non-zero terms in 3 we see that a full ( 7 =32) func-
tion’s binary representation is 1,024 bits long. We denote the space of all possible
functions defined by (3) with U and its cardinality with &. It is easy to see that

3 64 i 50
= .21(2 ) =11x107" . The method outlined provides us with an unlimited
=

reservoir of functions in Rx R . Equally importantly, the random selection of a num-
ber 7 and the further random selection of 7 different indices and 7 different @;’s

yields a uniquely identifiable function from such reservoir. The pool of Walsh func-
tions was randomly generated at the beginning; the f(x)’s which the algorithms

were required to minimize were all gotten from the same pool, thus allowing us to test
the algorithms in a homogeneous functional environment.

3.2 Generation of Unbiased Functions from a Monomial Basis

Although it is possible to extend Walsh polynomials to higher dimensions, we found
it more convenient to appeal to a monomial basis for the remaining cases, as follows.
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3.2.1 The Case y=f(x)
For the same functions in U we generated 150 random values 0<x; <1 and calcu-

lated y; = f(x;) for i=1,...,150. The sample consists of 150 binary strings of length

16. We stored these binary strings in a set we shall call B. Likewise, we stored the
resulting y;’s in a set we shall call F. Notice that x;,y, € . Then we obtained the

least squares approximating polynomial of degree 7. We will denote this set of ap-
proximated polynomial functions as Ub.

We minimized enough polynomials in U, for the distribution of the means to be
normal. We did this for each of the algorithms in our study. The results of the mini-
mization process are shown in Figure 3.

Ay * goodness-of-fit test did not justify us to reject the null hypothesis HO: “The

distributions of the Walsh basis functions (WBF) and the monomial basis functions
(MBF) are similar”. Hence, we conclude that the statistical behaviors of the
algorithms when faced with problems defined with WBF and MBF are analogous. A
quality index Q = mean value of the minima with p = 0.95 was defined for all the
algorithms in our study. To visually enhance the difference between algorithms, we
represent the values of Q in a logarithmic scale. Since some of the Q’s are negative,
we first scaled them into the interval [3 ,1) , where 0 << 1. Q*is defined as follows:

Q= log ol [ Q-min(Q)]/[max(Q)-min(Q)](1-6)+6}
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Fig. 3. Behavior of the algorithms minimizing unbiased polynomial y=f{x) functions

3.2.2  The Case z=f(x,y)

In this case we considered the binary strings of set B. They were split into two binary
string sets of length 8 each, with Py;. Then the leftmost 8 bits were mapped into R
(which we now call x) and the rightmost 8 bits were also mapped into R (which we
shall call y). These (x;y;) pairs were stored in matrix XY. The values of the indepen-
dent variable z were those of set F. Our aim is to find polynomials of the form
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z=f{(x,y). In general, the problem is to find a set of (m) coefficients on a set of (n) in-
dependent variables expressed as a linear combination of monomials of the n va-

riables of degree up to d e d,, such that the absolute difference between an approx-
imating function and the observed data is minimized. This problem is considerably
more complex than the case y=f{x). Furthermore, m grows exponentially as n and d;
do. For instance, if n=2 and d;=d,=7, m=64; likewise, for n=3, a’1 = d2 = d3 =7
we have that m=512. This is the so-called called curse of dimensionality. Both prob-
lems were circumvented by applying the Ascent Algorithm (AA) [14]. The purpose

of this algorithm is to express the behavior of a dependent variable (y) as a function of
a set of n independent variables (v).

y=f,V0500V,)

“)
y=r)
The approximant is defined to have the following form:
y=c¢ X +c X +..+c,X, (®)]

X; denotes a combination of the independent variables. That is, X; = fi(v). According
to the way these combinations are defined one may obtain different approximants.
Now, from the universal approximation theorem [15], any function of n variables may
be approximated with at most

k P
T=.Z ]]: (J_)~”~
= R !
i (2,._1),([ k mHD,
=l 2j-Dn!

terms of degree k. The expression of T yields numbers of the order of 10'? even for
small n. Obviously it makes no sense to try to approximate any function with a poly-
nomial of these many terms. Therefore, we use a GA to select the best subset of the
terms we decide to consider to make the problem reasonably expressible.

(6)

Genetic Polynomials

The basic reason to choose AA is that it is not dependent on the origin of the X; in (5).

We decided them to be the monomials of a full polynomial
dl dn . .

y :zz iy .v,™ . But it makes no difference to the AA whether the X;
i=0 i,

are gotten from a set of monomials or they are elements of arbitrary data vectors. To

avoid the problem of the coefficient’s explosion we define the number (say ) of de-

sired monomials of the approximant and then focus on slecting which of the p possi-

ble ones these will be. There are C(p, f) possible combinations of monomials and
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even for modest values of p and B an exhaustive search is out of the question. This
optimization problem may be tackled using a genetic algorithm (GA), as follows.

The genome is a binary string of size p. Every bit in it represents a monomial.
These monomials are ordered as per the sequence of the consecutive powers of the
variables. If the bit is ‘1’ it means that the corresponding monomial remains while if it
is a ‘0’ it means that such monomial is not to be considered. All one has to ensure is

that the number of 1’s is equal to . Assume, for example, that y = f(v1 Vo v3) and
that d;=1, d,=d;=2. In such case the powers assigned to the 2x3x3 =18 positions
of the genome are

000,001,002,010,011,012,020,021,022,100,101,102,110,111,112,120,121,122.
For the case where =6 the genome 110000101010000001 corresponds to the poly-
nomial in (7).

_ 2 2 2 22
P(v,v5,v3) = oo +Con1V3 +CoooVa~ +ConaV2 V3 +Cig1ViV3 +CinViVy V3 (7

The initial population of the GA consists of a set of binary strings of length p in which
there are only B 1’s. The RMS error

| &
ERums =, NZ(fi_yi)z (®)
i=1

is calculated for each tested polynomial and, at the end of the process, the one exhi-
biting the smallest such error is selected as the best approximant for the original data
set. That is, for every genome the terms corresponding to the 1’s are calculated. These
take the place of the X in (5). Then the AA is applied to get the corresponding coeffi-
cients. To each combination of B 1’s there corresponds a set of B coefficients mini-

mizing &4y =max(l f; —y; 1) Vi. For this set of coefficients &€, is calculated.
This is the fitness function for the GA. In the end, we retain the coefficients which
best minimize £, (from the GA) out of those which best minimize &,,,, (from

the AA).
In our experiments, we set d;=d,=4 and B =6. We obtained an expression of the
form:

2= X, te, X, +e; X5+, X, +es X5 e X 9

where ¢;’s value is either O or 1 as determined by the GA and

4 4
X =22 6%y’ (10)

i=0 j=0

Following the above procedure we found a polynomial for each of the functions in
xyz. We denote this new set of approximated polynomial functions as U;. Once the
distribution of the means is normal, as before, we inferred the mean 4 and the stan-

dard deviation ¢ of the pdf of the minimum values reached by each of the algorithms
in our study. The results of the minimization process are shown in Figure 4.
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Fig. 4. Behavior of algorithms minimizing unbiased polynomial z=f{x,y) functions

3.2.3 The Case w=f(x,y,z)

In this case we considered the binary strings of set B but they were now split into
three binary sets of lengths 5-5-6 with Py 4, Po4, Py s respectively. Then the leftmost 5
bits, the middle 5 bits and the rightmost 6 bits were, likewise, mapped into R . We
call the corresponding variables x, y and z. These (x;y;,z;) triples were stored in matrix
XYZ. The values of the independent variable w were those of set F. Our aim is to find
a polynomial of the form w=f{x,y,z). Following a process entirely similar to the one
described above, we now defined d/=d2=d3=4 with B=6 and obtained

w=c X+, Xy 3 X5+, X, +05Xs +cgXg an
but now
4 4 4 o
X, = ZZZgijcijx’y’z (12)
i=0 j=0 k=0

Again we found a polynomial for each of the functions now in wxyz. We denote this
new set of approximated polynomial functions with U,. We minimized enough poly-
nomials in U, for the distribution of the means to be normal. Again we inferred the
mean 4 and the standard deviation ¢ of the pdf of the minimum values reached by

each of the algorithms. The results of the minimization process are shown in Figure 5.
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Fig. 5. Behavior of algorithms minimizing unbiased polynomial w=f{x,y,z) functions

4 Conclusions and Future Work

The results of our study show:

1) All the algorithms have a very similar behavior. We had to use a logarithmic
scale on the quality (Q*) of the results to make them apparent.

2) Remarkably, the RMH turns out to be as efficient as any of the GAs except for
EGA.

3) Their behavior as the search space grows from RxXR , to Rx R to Rx R is
statistically indistinguishable.

4) We may expect, from an induction principle, that the algorithms behave
similarly in J®#x R ".

5) Even though all algorithms eventually approach similar minima, they do so with
evidently different rates. For example, TGA does not reach adequate values until the
very last generations.

6) SGA turns out to be the worst algorithm albeit it is the fastest (in CPU time) of
all the A,.

7) As in [1], where the minimized functions were hand-picked, EGA is the best
algorithm of all.

8) EGA reaches its best minima in a relatively short number of generations.
Therefore, it is guaranteed to reach the best solution without having to specify a large
G.

In a paper to appear soon, we show that EGA works above par even when faced
with constrained problems. Intuitively this should be the case since even constrained
problems have to be, somehow, transformed into unconstrained ones. In the end, it
appears that, for very simple problems, RMH is enough to reach acceptable solutions
given enough time. However, when faced with more demanding ones, EGA seems to
be the best alternative: it is better and faster.
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Abstract. In this article the possibility of saving evaluations during
the running of the genetic algorithm is investigated. The study begins
with the presentation of the concept on inheritance, already proposed
in literature. The article develops further this idea with the addition of
the concept of confidence, enabling the possibility of new schemes of in-
heritance, such as dynamic ones. The intuition of this enhancement is
mathematically explored. The performance of the new schemes is com-
pared via experimentation, leading to some interesting results.

1 Introduction

The genetic algorithm (GA) can be used as a powerful optimization technique
suitable for a wide range of applications. A brief description follows: Several solu-
tions are proposed as a population of candidates; these are efficiently recombined
using suitable operators to make the population converge into the optimal solu-
tion. Schemata theorem provides an explanation to GA dynamics, establishing
landmark concepts such as “building-blocks” or “Implied parallelism”.

The properties which are the foundations of GA advantages are also the base
of their hindrances. Assuming a population of N individuals evolved along M
generations, a total of M N evaluations should be needed to find the optimal
solution. Some of them can be avoided with little effort. For example, if the new
individual is identical to some of the parents, its evaluation is not necessary. The
possibility of further savings implies an interesting question.

The literature describes some of the efforts taken into the direction of an
answer. For example, Goldberg [2] provides useful guidelines to determine popu-
lation size and number of generations. Although it is true the proper selection of
GA parameters is essential to good performance, these approaches do not take
into account the possibility “to do more with less.” It is the objective of this
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© Springer-Verlag Berlin Heidelberg 2013
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article the exploration of promising ways to make an efficient search with some
given M N computation time.

This work is organized in the following manner: In the first part, the concept
of inheritance is introduced. Then the concept of confidence is proposed as a
way to improve inheritance performance. Then, confidence-based schemes are
presented. In the second part, the GA and the inheritance-based algorithms are
compared with the use of benchmark problems. Finally, the results are discussed
in the conclusion.

2 About Inheritance

In the direction of improving the efficiency of GA, the work of Smith [6] is found.
In that report, the concept of inheritance is explained for the first time. From the
ideas of Goldberg ([2] and [3]), it is clear that noise is inherent to the operation
of GAs. The idea behind inheritance is that noise can be purposely induced into
the run of GA for the sake of evaluation-saving. In the work of Grefenstette
[4], the possibility to use approximate function evaluations instead of the real
objective functions is investigated.

The key idea of inheritance sustains that parent fitness can be used to com-
pute a good enough estimation of child fitness value. Recalling the schemata the-
orem, it is clear an individual contains several schemata (according to Goldberg
[1], around the order of O(N?) in an entire population), when crossover takes
place, parents common schemata will pass unmodified to the child. Therefore,
an approximation based on parents evaluation will be an estimation of common
schemata average fitness. When the parents are more alike, the estimation will
be a better approximation of the child’s real fitness value. At the light of this
idea, parents not common schemata passed down to the child will be a source
of noise. Then, the use of approximate evaluation will induce a source of noise
besides the ones already present in the GA dynamics.

The original idea is to estimate a fraction of the population each generation.
For the sake of this article, let a be the fraction of the population that is esti-
mated, therefore, randomly chosen a/N individuals will inherit their evaluations
from their parents. In the work of Smith [6], the average of parents fitness is
proposed as a good estimator of child fitness. Also, the weighted sum of fitness,
based on cross-point, is proposed in that report. Expressions for both ways of
inheritance estimation appear in equations 1 and 2.

o (fm*?-fm)’ ()

= (kepr + (1 —K)epa) . (2)

In equation 2, k represents the normalized crossover point. From Smith [6], an
expression of the evolution of schemata fitness over time when inheritance is
applied can be found to be
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fe(t+1) (H,) = |:fe(t)2+ f

o =i, 0
Equation 3 means the overall effect of inheritance is to drift estimations to the
mean value of common schemata present in population. From this equation,
the use of equation 1 as a way to compute inheritance seems reasonable. For the
sake to remain supported over the developed theory, this work will use equation
1 to compute inheritance.

3 About Confidence

It should be clear the use of inheritance makes the GA work under uncertainty.
Since crossover is a stochastic operator, there is the possibility an individual
inherits its fitness from parents who are heirs themselves. As more ancestors
are selected to inherit evaluation, there is less certitude about the child’s fitness
estimation. It seems reasonable to think there is a trade-off among uncertainty
and the quality of the solution. Besides, it is clear there is a relationship among
uncertainty and speed. To achieve higher evaluation savings, a higher a value is
needed, and this will cause higher uncertainty in the evaluations which could be
harmful if not handled properly.

There could be several ways to compute confidence. Basically, confidence
should be a quantity which decreases when inheritance takes places and should
be a function of parents confidence. Following the same ideas of inheritance an
analogous expression for confidence can be proposed

cc=5<0pl;rcp2>. (4)

In equation 4, the parameter 8 € (0, 1) and can be understood as a decay factor.
This expression implies confidence is inherited in a similar way as estimations
do.

Although the precision of estimation is not directly computed by confidence,
some correlation between confidence and estimation error is expected. In figure
1, this relationship is shown for the case of inheritance-based GA. The feature of
confidence was added to the GA, even the information provided is not used at the
moment. Figure 1 suggests the existence of negative correlation between error
and population mean-confidence. Therefore, confidence can be used someway to
lead the algorithm into better performance.

It could be hypothesized, as correlation becomes higher, the performance of
a confidence-based GA will improve. In the ideal case, where real evaluations
could be obtained without computation, inheritance-based GA would behave as
a GA with variable population. It is not the case for regular inheritance-based
GA, as estimations induce noise into the algorithm, making it harder to find the
optimal solution. A good estimation of confidence would lead inheritance-based
GA into the direction of a variable-population GA.
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Expected Error During GA Running Time (p = -0.88)
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Fig.1. An example of expected relationship between absolute-mean error and mean
confidence for a inheritance-based GA. The samples are taken from the results of 10
different runs. From the graph can be inferred some negative relationship between the
variables. The correlation coefficient p = —0.88.

3.1 A Model of Confidence

It is possible to modify an inheritance-based GA to perform confidence estima-
tion and then investigate the effects of uncertainty, even if confidence itself is
not used in someway to control the process. It is possible to derive an equation
of the evolution of mean population confidence during runtime by realizing the
following facts:

— Evaluated individual have a confidence of 1.

There are (1 — )N individuals in the population which are evaluated.

Estimated individuals will have a confidence computed by equation 4.

Individuals not selected to crossover (p, < 1) will retain their original confi-

dence value.

— There is the possibility for the crossover of identical parents. In this case,
their children will be also identical to their parents. These individuals will
retain their original confidence value.

All these effects can be summarized in the following equation

Cy = [pe1Ci—1 + pe2Ci1 + (1 — pe)Ceo1] ar + (1 — ). (5)

In equation 5, C; is the mean population confidence value for time t. p.; rep-
resents the probability of crossover which lead to children who are different to
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their parents. On the other hand, p.o represents the probability of crossover
which lead to children identical to parents. Therefore, p. = pe1 + pe2. The exact
values of p.; and p.o are a function of the quantity of individuals in population
that share the same schemata.

Although equation 5 is not so difficult to solve under certain conditions, empir-
ical observations made clear that the final state and the steady-state are actually
the ones of some interest. In the final state of the algorithm the population con-
verges to the (hopefully) optimal solution. In this case, p.1 — 0 and pe2 — pe.
Performing the required operations leads to the result

Cu = 1. (6)

On the other hand, the steady-state expression can be found by realizing the
steady-state happens early during runtime and it is broken when population
converges to a single solution. At that moment p.; — pc, pez — 0 and Cyy =
C¢ = C;_1. Under these assumptions the C,, can be expressed as

l1-«a . (7)
1—a(l —pe(l=5))

From equations 6 and 7, it can be concluded the algorithm begins with ab-
solute certainty of evaluations (every individual is evaluated as a first step) and
then confidence will drop until some stable value. As good building-blocks dom-
inate the population, individuals start to be more alike with each generation.
This causes the confidence of new individuals to raise, as individuals identical to
their parents do not suffer confidence degradation. Eventually the new offspring
will be identical to the final solution and they will preserve their confidence value
of 1. If the GA is given enough time to converge completely, all individuals in
the populations will be identical with confidence value of 1.

Css =

4 Applying Confidence to Inheritance

The information about uncertainty provided by confidence can be used to control
inheritance. Several schemes could be devised. In this article the possibility to use
the mean population confidence C; as the proportion of estimated individuals,
«, will be explored. This is reasonable because of the correlation between error
and mean population confidence. Also, both confidence and « are defined in the
range [0, 1]. If the value of mean confidence is high, this will imply uncertainty
is low and there is room for more estimations. In the other case, if confidence is
too low, this will imply an urgency for more evaluations.

The effect on this scheme can be analyzed in the manner shown in the past
section. In this case, Cs,; and o« can be used interchangeably. The analysis of the
final state leads again to a final confidence of 1. For this new case, equation 5
should be modified to
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Cy = [pe1BCi—1 + pe2Ci1 + (1 = pc)Ci—1] Com1 + (1 — Ci—1). (8)

Under the same assumptions applied for equation 5, the steady-state mean con-
fidence value can be found to be
~ 1
Tl Vpe(1-6)

It could be useful to see the plots of equations 7 and 9. As an example,
let us take the values of @« = 0.5 and p. = 1. The plot is shown in figure 2.
There is no intersection different from the cases when § =0 and 8 = 1. In this
case, it is clear the confidence-controlled GA will work with higher confidence
than a regular inheritance-based GA. It is possible to choose any value of 5 to
outperform the inheritance GA and to enjoy higher confidence level. The same
applies for lower values of a.

As another example, the plot for the case of a = 0.7 and p. = 1 is presented
in figure 3. In this case, there is an intersection when 5~ 0.81. It is possible to
outperform the inheritance GA by choosing a higher value of S, although, the
algorithm will work with lower confidence than the inheritance GA. Is it possible
for the confidence GA to outperform inheritance GA while working with lower
confidence level? This will be clarified in the experiments section.

9)

Confidence for different Inheritance-Based Schemes
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Fig. 2. Mean Confidence plots for « = 0.5 and p. =1
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Confidence for different Inheritance-Based Schemes
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Fig. 3. Mean Confidence plots for « = 0.7 and p. = 1

5 Experiments

To make a fair comparison, the following experiment is suggested: After a com-
mon test problem is selected, the algorithms to compare should be selected. In
this case, the GA, and inheritance-based GA and the confidence-controlled GA
will be tested. The base of comparison will be the GA. The population size and
number of generations will be configured in order to make them able to complete
the test successfully, finding the optimal solution every run. The test consist in
running each algorithm a fixed amount of times (100 times for these experiments)
to compute the best-so-far curve based in the average of these tests. Crossover
probability p. and mutation probability p,, will be selected as 1 and 0, respec-
tively. The particular parameters of each algorithm ( « for inheritance-based
GA and g for confidence-controlled GA) will be adjusted in order to make the
respective algorithm able to find the optimum in every single run. The common
parameters will be the same for the three algorithms.

The benchmark problems selected are the following: The onemax problem,
which has been an important benchmark in several publications, as the report
of Smith [6] or Sastry [5]. Looking for another problem, one with inherent non-
linear nature, the sphere problem (found among others in the compendium by
Tang [7]) is proposed. This can be defined as

D
f@) =3 o (10)

In equation 10, D is the quantity of dimensions considered in space. Considering
a string of £ bits, the problem would have £/D bits per dimension.
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6 Results

In figures 4, 5, and 6, the results of the proposed experiments can be found.
The final configuration of parameters for each algorithm can be found in tables
1, 2, and 3. The purpose of the values of p. and p,, is to analyze the effects of
confidence and inheritance without disturbances from other sources. The values
of quantity of generations M and population size N were selected to enable the
GA to find the optimum in every run. The standard deviation of the final value
of each best-so-far curve shown is 0.

Table 1. Parameters Configuration for 20-bits Onemax Problem

Algorithm Pe pm M N Parameter p — value
GA 1 0 5060 NA 0
Inheritance-Based 1 0 5060 a=0.5 2.59 x 10713
Confidence-Controlled 1 0 50 60 S =0.6 NA

Table 2. Parameters Configuration for 40-bits Onemax Problem

Algorithm Pe pm M N Parameter p — value
GA 1 0 120120 NA 0
Inheritance-Based 1 0 120120 «a=0.4 0

Confidence-Controlled 1 0 120120 8 =10.6 NA

Table 3. Parameters Configuration for 8 dimensions, 32-bits Sphere Problem

Algorithm Pe pm M N Parameter p— value
GA 1 0 80 200 NA 0
Inheritance-Based 1 0 80200 «=0.7 291 x 1078
Confidence-Controlled 1 0 80200 B =0.8 NA

Under the described conditions both inheritance-based GA and confidence-
controlled GA performed better than the simple GA, as expected. In all the
experiments the performance of the confidence GA was higher than the other
ones. The best-so-far curve of the confidence GA practically dominates along the
whole run. Due to the conditions of the test, even a small difference is significant.

It can be said all these algorithms can be configured to work faster. For
example, it is possible to configure the inheritance GA for higher estimation
levels, making it able to achieve the promised performance saving of 70% (Smith
[6]). Nevertheless, that configuration would make the inheritance GA unable to
abide to the conditions of the proposed experiments. The results suggest the
use of confidence leads to a more robust algorithm. Under these conditions, the
performance is more in accordance with the results reported by Sastry [5], which
are more conservative.
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An important fact is that the values of @ and 3 allowed the confidence GA to
work with higher confidence than the inheritance GA for every test presented.
It should be noted the parameters were not chosen to attain a higher confidence
beforehand, but to allow the algorithms to abide to experiment conditions. The
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cases of @ = 0.4 and o = 0.5 are clear. In the case of a = 0.7, the difference
is small, although undeniable. This could explain why the best-so-far curves
of confidence GA are clearly better for the onemax problem but tighter for
the sphere problem. In the sphere problem, the trade-off between working with
higher a value (faster algorithm) and working with higher confidence difference
(better estimation precision) is more critical.

Finally, in tables 1 to 3, the p-value of a statistical t-test is presented. The
null hypothesis Hy holds the mean value of the best-so-far curve stabilization
time (the moment the curve reaches its maximum)of the confidence-controlled
algorithm is the same than the other algorithms (not real improvement). H;
holds the other algorithms have higher stabilization time, therefore, confidence-
controlled savings are significant. It is considered a significance value ayest =
0.05. From the results, it is clear the statistical evidence is enough to say the other
algorithms have higher stabilization time, then, they are slower. It can be said
the confidence-controlled scheme actually helps to save unnecessary evaluations.

7 Conclusions

In this article, the concept of inheritance in GA was extended by considering
the concept of confidence. Confidence was conceived as a measurement of the
uncertainty caused by the estimation of ancestral lines along the GA run. It was
shown that population average confidence is related to estimation error. The
hypothesis of a highly correlated confidence measurements can lead to a vari-
able population GA was stated. Some mathematical results about the proposed
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scheme performance were found. The experimental results suggest the proposed
confidence-controlled GA is a more robust approach than regular inheritance-
based GA. The results were object of statistical testing, showing the results are
significant.

The possibility of better definitions of confidence and their use are still open
questions. The conjecture about how high correlation between error and confi-
dence can lead to better performance is remarked. There is still room for future
work and development.
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Abstract. This paper introduces a new evolutionary algorithm for solv-
ing multi-objective optimization problems. The proposed algorithm sim-
ulates the infection of the endosymbiotic bacteria Wolbachia to improve
the evolutionary search. We conducted a series of experiments to com-
pare the results of the proposed algorithm to those obtained by state of
the art multi-objective evolutionary algorithms (MOEAs) at solving the
ZDT test suite. Our experimental results show that the proposed model
outperforms established MOEAs at solving most of the test problems.

Keywords: Evolutionary Algorithms, Genetic Algorithms, Multi-
Objective Optimization, Wolbachia.

1 Introduction

Over the last few years, our research efforts have been directed towards the con-
struction of computational simulation models that would be useful to increase
our knowledge on the dynamics of populations of disease vectors and its po-
tential application to the control of vector borne diseases such as malaria and
dengue [6]. A promising biological strategy for the control of such diseases is the
release of mosquitoes infected with the Wolbachia bacteria into wild populations
for controlling the dengue disease [12] [5]. The Wolbachia bacteria comprises a
collection of fitness and reproduction altering mechanisms that can induce the
rapid establishment of immune populations replacing the native ones [4]. The
Wolbachia bacteria infection is considered a safer approach than the use of trans-
genic mosquitoes for population replacement because no DNA modification is
involved|[7].

As part of our results, we have implemented and tested a collection of com-
puter simulation models for a variety of gene drive mechanisms such as transpos-
able genes and the maternal effect dominant embryonic arrest (MEDEA) in order
to explore the conditions required to the replacement of a wild population with
a transgenic one for disease control purposes [8] [9]. So far, these computational
tools have proven to be useful for understanding the dynamics of the interacting
populations and posses several advantages over experimental approaches.

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICATI 2013, Part II, LNAI 8266, pp. 41-51, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Conversely, we believe that these biological mechanisms could be simulated to
improve the efficiency of evolutionary algorithms. So far, we have developed a ge-
netic algorithm that incorporates Wolbachia infection and tested its performance
on the optimization of a collection of continuous functions. Our preliminary ex-
perimental results suggested that Wolbachia infection could prevent evolving
populations from sticking in local optima [10].

In this work, we explore how the proposed model performs at solving complex
multi-objective optimization problems. Our prediction is that the Wolbachia in-
fection could help to improve the performance of the evolutionary algorithm
by infecting the non-dominated solutions among the entire population and thus
improving the dynamics of convergence to the Pareto front. In this paper, we
present a collection of experiments with the most widely used benchmark of
multi-objective functions (ZDT) using the proposed model [3]. The results are
then compared with those yielded by the state of the art multi-objective evolu-
tionary algorithms (MOEAs) NSGAII, SPEA2, MOEA /D and MODE-LD+SS.
The results presented here suggest that Wolbachia infection improves the per-
formance of the MOEASs in terms of the Pareto front obtained.

2 Background

2.1 Wolbachia

Wolbachia pipientis is a bacteria that is pervasive among insect species. It is
estimated that about half of the insect species are infected by this bacteria.
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Fig. 1. Cytoplasmic incompatibility in Wolbachia. Filled circles correspond to individ-
uals infected with Wolbachia.
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Wolbachia possess the capability of spreading rapidly in an uninfected pop-
ulation due to the induction of an specific biological mechanism known as cy-
toplasmic incompatibility [5]. This mechanism causes the death of the offspring
when an uninfected female mates with an infected male. In all other cases the
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offspring will survive but the infection status of the progeny is determined by
the infection status of their parents(See figure 1).

Wolbachia bacteria provides the infected host with some advantages such as
immunity to virus infection that contributes to increase the host’s fitness. This
attribute contributes to the rapid invasion of the host population. Similar bio-
logical mechanisms have been embedded into evolutionary algorithms to assist
them achieve better results. In the evolutionary algorithms literature, several
mating restrictions have been proposed to help maintain the genetic variabil-
ity in the population an thereby favoring the balance between exploration and
exploitation of the solution space. However, despite of its usefulness in natural
organisms, the cytoplasmic incompatibility mechanism has not been explored
within genetic algorithms until recently [10].

3 Materials and Methods

The computer model we propose here is a MOEA but we introduce several
variations that make it resemble more to natural populations. The first one is the
structure of the population that mimics in a more realistic way the spread of the
individuals of the population in the environment. In our MOEA, the population
is located on a two dimensional grid array so as to model geographic proximity.
The second is related with the individual itself. The reproduction process we are
introducing is a little different from the reproduction in a canonical MOEA. We
incorporated the cytoplasmic incompatibility caused by the Wolbachia bacteria
in the reproduction process when generating each new population. Finally, we
simulated a Wolbachia infection during reproduction in the population to allow
us to achieve better solutions and in some cases, in less generations.
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3.1 Representation of Individuals

Each individual of the population was represented by a set of attributes that
try to resemble the Wolbachia infection process. In particular, we represented
the chromosome as an array of floating point numbers of the same length as the
dimensions of the problem we want to optimize. Each one of the numbers in the
chromosome was forced to lie within a desired range in order for the individual
to remain a feasible solution. It is important to point out that all of the genetic
operators used enforce this property. Probably the most important difference
between how we modeled the individuals of the population in contrast to a
canonical MOEA is that in our algorithm every individual has a gender: male or
female. We wanted to emulate a natural population as close as possible not only
in its structure, but in the reproduction process so we decided to include this
important feature to restrict sexual reproduction between individuals of different
gender.

In our model, location of the individuals is very important especially in the
reproduction process so we maintain a record of the position of every individual
within the population using two variables. The Wolbachia infection is simulated
by a boolean variable that indicates whether the individual is infected or not;
once the individual is infected it cannot be disinfected. The fitness of the in-
dividual is maintained in a vector of variables that represent the evaluation of
the functions we want to optimize using the values in the chromosome of the
individual. Finally, for selection purposes, two variables are used to determine
if an individual belongs to the Pareto front. The first variable represents the
number for individuals of the population that dominates it. The second variable
represents the number of individuals that it dominates.

3.2 Population Structure

The structure of the population was modeled by a two dimensional symmetric
toroidal array similar to those used in cellular genetic algorithms [1] (See figure
2). The position of the individuals in the grid is relevant because we are not only
restricting reproduction between individuals by gender. We are also restricting
the possible mates within a neighborhood.

We are proposing the neighborhood restriction to favor the exploration of
the search space. It is known that MOEAs not possessing a proper balance
between exploration and exploitation tend to get stuck in local optima or to
diverge from optima. It is important to mention that the composition of the
initial population is about half males and half females. The composition can
vary randomly generation by generation but the proportion of females and males
remains approximately even along the whole simulation.

As with the gender, we used this population structure to keep the reproduc-
tion process as close as possible of how it occurs in natural populations where
the geographic location of the individuals poses spatial constraints on the re-
production of individuals. It is known that the best adapted individuals of a
population are often clustered together in the center of the population while the
less favored ones segregate from the optimal clusters.
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3.3 Wolbachia Infection

Every generation, a portion of the population is infected with the Wolbachia
bacteria. To select these individuals from the rest of the population we use a
very well known criteria in multi-objective optimization called non-dominance.
In particular, we are using weak non-dominance. Those individuals in the Pareto
front are the ones that become infected. We selected these individuals because
they are the best solutions found hitherto so we want them to produce more
offspring than the less favored ones. Overall, we tried to move towards an equi-
librium between exploration and exploitation. The gender and neighborhood
mating restrictions were used to enforce exploration. By using Wolbachia infec-
tion we are encouraging the spread of the best solutions to assert exploitation
as well.

3.4 Genetic Operators

Selection. As mentioned previously, we used two restrictions in the selection
process. The first one is the gender restriction and the second one is the neighbor-
hood restriction. These restrictions are enforced as follows. To produce offspring,
it is required to mate individuals with different gender. The first parent we se-
lected from the population was the female. The selection is done randomly so
each female had the same chance to be selected.

After we have selected the female, we selected the male. The neighborhood
restriction took place at this point. Only males that are within the neighborhood
of the female could be eligible for reproduction(See figure 2). The size of the
neighborhood depends on the benchmark function and can be consulted in table
1. We used a tournament between the males to pick the best of them based on
two criteria. The first one was its Pareto ranking —the number of individuals that
strongly dominated it. If two or more males were tied on this criteria we chose
the one that strongly dominated more individuals of the population. If two or
more males tied on these criteria, one of these male was selected randomly.

Crossover. The first step before performing the crossover was to verify if the
parents were infected with Wolbachia. As described before, if the male was in-
fected but the female did not, crossover is not needed since cytoplasmic incom-
patibility would kill all of the offspring. If the offspring is feasible, we used a
one-point crossover operation. After the chromosome is obtained, the infection
attribute of the offspring is set according to the parent’s infection status. The
canonical MOEA usually recombines parents with a probability around 60% to
75%. In our algorithm, we performed crossover with a 100% of probability. We
did that to increase exploration during the evolutionary search.

Mutation. Weimplemented a single point mutation for our computer model [11].
Given that our chromosome is not binary but an array of floating point numbers,
the mutation was a little different. First, we generated a random number for ev-
ery position in the chromosome. If this number was above a certain threshold, the
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chromosome was mutated at that locus. To perform the mutation we generated a
random number between 0 and 0.1. Then, this number was added or subtracted
from the number at the position of the chromosome depending on a bit flip. If the
mutated number fell off the feasible range of the function, we changed it to the
closest valid number possible. The range of the random number generated for the
mutation was obtained empirically so we used the values that produced the best
results in our experiments.

3.5 Pareto Front

To calculate the Pareto front we used the criterion of weak non-dominance. At
every generation, the non-dominated solutions were saved in a one-dimensional
array separated from the population. The individuals in the Pareto front were
infected with Wolbachia and included in the population so that they can partici-
pate in the reproduction process. After the reproduction, the new non-dominated
solutions were added to the Pareto front array. If one of the individuals that were
already in the Pareto front resulted to be dominated by a newcomer, the domi-
nated one was taken out of the Pareto front array. At the end of the simulation,
the hyper-volume was calculated using the current Pareto front individuals [3].

4 Experiments and Results

In this section, we present the results we obtained by testing our algorithm
with the ZDT benchmark functions; ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. We
decided to use this suite because it has proven to be a very useful and reliable
tool to measure the effectiveness and efficiency of evolutionary algorithms for
multi-objective optimization [3]. To measure the quality of the solutions we are
using the S-metric —also known as hyper-volume. This quality indicator is wide
used because it measures in a single value how good a Pareto front is [14]. At the
end of the section, we compare our algorithm against state of the art MOEAs:
SPEA2, NSGAII, MOEA and MODE-LD+SS [3]. A general algorithm used in
all the experiments is described in Algorithm 1:

4.1 ZDT Test Suite

Originally proposed by Zitzler, Deb and Thiele, this suite comprises six functions,
all of them are bi-objective. The functions do not scale with the number of
objectives [13]. For this paper, we tested our algorithm with five out of the six
functions. We left out function ZDT5 because it defines a boolean function over
binary strings and for this study we are not using binary encoded solutions. In
all of the experiments, we used the same parameters that can be found in table 1,
unless otherwise specified.
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Algorithm 1.

1 - Create Initial Population
2 - Calculate Pareto Ranking
3 - Store Pareto Front
4 - Infect Individuals of Pareto Front with Wolbachia
while Generations < 100 do
5 - Mix Individuals in Pareto Front with Population
while Mosquitoes < PopulationSize do
6 - Select parents
if Offspring is feasible then
7 - Calculate number of offspring
while N < Numberofof fspring do
8 - Perform crossover
9 - Perform mutation
10 - Calculate fitness of the offspring
end while
end if
11 - Calculate Pareto Ranking
12 - Store Pareto Front
13 - Infect Individuals of Pareto Front with Wolbachia
end while
end while

Table 1. ZDT test suite parameters

Parameter Value
Population 100
Generations 150
Mutation Probability 10%
Tournament Size 15
Maximum Offspring 1
Neighborhood Size 5
Crossover Probability 100%

Hyper-Volume Reference Point (1.05,1.05)

ZDT1. This function possesses a convex Pareto-optimal front. We employed
a chromosome length of 30. Each value in the chromosome was restricted in
the range of [0,1]. Figure 3(a) shows the Pareto front obtained at the end of the
simulation. As can be seen in the figure, the solutions are well distributed among
the Pareto front.

ZDT?2. This function possesses a non-convex Pareto-optimal front. In this exper-
iment, we used again a chromosome length of 30 and a range of [0,1] for the values
in the chromosome as the experiment above. Figure 3(b) shows the Pareto front
obtained after the simulation. The individuals are relatively well distributed in the
Pareto front but a bit of crowding can be observed near the beginning.
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Fig. 4. ZDT Results

ZDT3. The Pareto-optimal front of this function is convex, disconnected and
have five segments in total. As with the other two experiments, the chromosome
length is 30 and the range of the values in the chromosome is [0,1]. As can
be seen in figure 4(a), our algorithm was able to find the five segments of the
Pareto-optimal and the spread of the solutions is good. Although, the algorithm
found just a few individuals of the Pareto-optimal.



WIGA: Wolbachia Infection Genetic Algorithm for Solving MOPs 49

ZDT6 Pareto Front

f2

0.0

(a) ZDT6 PF

Fig. 5. ZDT Results

ZDT4. This function possesses a Pareto-optimal front that is identical in shape
to that of the ZDT1 but is a much more complicated function because the
solution space contains 21° local Pareto fronts. The chromosome length used for
this problem is 10. The ranges of the values within the chromosome are [0,1]
for the first variable and [-5,5] for the rest. Additionally, in contrast with the
other functions of the test suite, we are using 200 generations. The increase in
the number of generations is due to the difficulty of this particular problem. All
the other parameters are the same(See table 1). Figure 4(b) shows the Pareto
front obtained by our algorithm. The spread of the solutions is good but they
are a little bit far from the Pareto-optimal front.

ZDT6. This function is very similar to ZDT2. It possesses a non-convex Pareto-
optimal front. It has two major complications though: The first one is a deformity
in the search space. The second one is a difference in the density of the solutions
in the function fitness landscape. The number of variables in the chromosome
is 10 and the values it can take vary between [0,1]. As shown in figure 5(a) our
algorithm could surpass the difficulties and find solutions very near or in the
Pareto-optimal front. The solutions are well spread, although there are some
empty spaces between the solutions.

4.2 Summary of Results

Table 2 shows a summary of the results of the functions used in this paper. The
results for the NSGAIL, SPEA2, MOEA /D and MODE-LD+SS algorithms were
reported in [2]. The upper value is the average hyper-volume of 30 independent
runs. The lower value is the standard deviation. The values in bold highlight the



50 M. Guevara-Souza and E.E. Vallejo

Table 2. The values in the table represent the average hyper-volume obtained by all
the algorithms after 30 runs with their respective standard deviation

Summary of Results
Function NSGAII SPEA2 MOEA /D MODE-LD+SS WIGA

7ZDT1 0.757357 0.761644 0.749964  0.763442 0.8305106
0.000928 0.000556 0.009777  0.000112 0.0303432
ZDT2 0.422221 0.321971 0.387237  0.430358 0.4422294
0.001263 0.171286 0.061361  0.000141 0.0376425
ZDT3 0.61148 0.615533 0.608377  0.616381 0.703495
0.008038 0.000416 0.015638  0.00015 0.104415
ZDT4 0.217626 0.287359 0.745887 0.74177 0.6537009
0.192914 0.188726 0.009983  0.058697 0.0803251
ZDT6 0.345949 0.392697 0.39772 0.411054 0.5091942
0.008772 0.002336 0.002886  0.000003 0.1084696

best result of every test function. As can bee seen, our algorithm produced the
best results in 4 out of the 5 test problems. The standard deviation is a little
higher in most cases due to the difference between runs, sometimes the algorithm
got very superior results and in the rest of the runs, the results were just above
or the same as the other algorithms.

5 Conclusion

This paper shows how the simulated infection of the Wolbachia bacteria con-
tributes to improve the performance of genetic algorithms for solving multi-
objective problems. The proposed mechanism seems to produce a synergic inter-
action with the proposed mating restriction mechanism to provide an appropriate
balance between exploration and exploration during the evolutionary search. To
test our algorithm we used the ZDT test suite that is the the most used in the
literature. The computer model proposed, in fact, provided better hyper-volume
values in most cases. Sometimes, these results were achieved in less generations
than the other MOEAs presented here.

Given the good results obtained in our experiments, the next step is to test our
algorithm with more benchmark functions like the DTLZ test suite, the WFG
test suite and the Okabe functions [3]. This will help us determine in what kind
of problems our algorithm would be a good alternative. Further, these additional
experiments would contribute to understand the capabilities and limitations of
the proposed approach at solving multi-objective problems generally.

Another avenue we are considering to explore is to apply the proposed model
in real life problems. Also, additional comparisons between our algorithm and
other state of the art MOEAs, would be valuable to continue to asses the
effectiveness and efficiency of the proposed Wolbachia infection mechanism.
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In addition, we believe that formal statistical analyses would be needed to sup-
port the validity of the results shown here and to corroborate the robustness of
the computer model proposed.

All in all, we believe that population replacement strategies that have been
proven its effectiveness in controlling vector borne diseases are a promising alter-
native worth to consider in order to improve the performance of the evolutionary
algorithms for solving multi-objective optimization problems, in general.
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Abstract. Surface approximation using splines has been widely used in
geometric modeling and image analysis. One of the main problems as-
sociated with surface approximation by splines is the adequate selection
of the number and location of the knots, as well as, the solution of the
system of equations generated by tensor product spline surfaces. In this
work, we use a hierarchical genetic algorithm (HGA) to tackle the B-
spline surface approximation problem. The proposed approach is based
on a novel hierarchical gene structure for the chromosomal representa-
tion, which allows us to determine the number and location of the knots
for each surface dimension, and the B-spline coefficients simultaneously.
Our approach is able to find solutions with fewest parameters within of
the B-spline basis functions. The method is fully based on genetic algo-
rithms and does not require subjective parameters like smooth factor or
knot locations to perform the solution. In order to validate the efficacy of
the proposed approach, simulation results from several tests on smooth
surfaces have been included.

1 Introduction

Surface approximation is a recurrent problem in geometric modeling, data anal-
ysis, image processing and many other engineering applications. In this regard,
surface approximation aims to construct a surface that represents the best esti-
mation of an unknown function from given a data set of noisy values. To tackle
this problem, several methods have been proposed in the literature. For instance,
the Shepard’s method [1], the finite element methods [2, 3] and the tensor prod-
uct spline [4-7] are the most widely used and successful methods.

The Shepard’s method, also known as the original inverse distance weighted
interpolation method deals with this issue through a continuous interpolation
function from the weighted average of the data. The finite element method is
a numerical approach for solving differential equations. This method consists of
assuming the piecewise continuous function for the solution and obtaining the
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parameters of the functions in a manner that reduces the error in the solution.
The tensor product spline is another method commonly used to approximate
surfaces. It is a generalization of the spline approximations, which aims to get
smooth functions from scattered points.

Since we consider a spline based approach, we remark the fact that the main
issue associated with the surface approximation through splines is to find the best
set of knots, where the term “best” implies an adequate choice in the number
and location of the knots. To perform this task, in [4], the author provides a
survey on the main algorithms used to carry out this task, which are based on
regression spline methods and their respective optimizations.

Unlike the authors mentioned above, we tackle the B-spline surface approx-
imation problem by using the hierarchical genetic algorithm. To be more spe-
cific, we consider a hierarchical structure to represent both, the model structure
(number and knots location) as a binary encoding and the model parameters
(spline coefficients) as a real encoding. Thus, we search for the best B-spline
based surface model using a novel fitness function. As a result, our method can
simultaneously determine the number and position of the knots as well as B-
spline coefficients. In addition, our approach is able to find solutions with fewest
parameters within the B-spline basis functions.

This paper is organised as follows: the notation and description of B-spline
surfaces are presented in section 2, followed by the description of our approach
in section 3. In section 4 we present some numerical results and we conclude in
section 5.

2 Surface Approximation by Tensor Product Splines

We can describe the problem of surface approximation as follows: given a set

of noisy measurements in a rectangular domain described as z; ;, i = 1,..., N,
j=1,..., N, and expressed in the following form:
zig = J (@i, y;) + € (1)

where f is an unknown functional relationship that we wish to estimate, the
term ¢; ; represents the zero-mean random errors and z; ; is a sample at (z;, y;).
Therefore, the goal is to find the best estimation of the function f.

In this study, we assume that f is a smooth surface that can be well ap-
proximated in the interval [a,b] X [¢, d] by a B-spline surface. The B-spline sur-
faces are constructed as a tensor product of univariate B-spline basis functions.
The B-spline surface is modeled using the following considerations: let us define
{u1,...,un} as a set of m points placed along the domain of the variable z and
{v1,...,v,} be a set of n points placed along the domain of the variable y, which
are called interior knots. Thus, the knot vectors are defined as follow:

u:ul_k:,...,:uo:a<u1<...<um<b:um+1:...:um+k (2)
ViU =, ..,=00=C< V] <...<VUp < d=10Upt1 =...= Upyqi

with these assumptions, the function f can be now written as a tensor product:
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m-+k n+l
flz,y) = Z Zpi,jBi,k(x)Bj,l(y) (3)

i=1 j=1
where P; ; are the B-spline coefficients and B; i(x), B;,:(y) are the B-spline basis
functions of order k and [ respectively defined over the knot vectors u and v.
The B-spline basis functions are denoted by the following recurrence relations:

Bia(z) = {

1, ift; <z < tit1
0, otherwise

(4)

and ; ;

Bu(a)=, “ 7" Buo@)+ " Biiea@) (5)

livk—1 — Litk — tit1

If £ and [ are specified beforehand, f can be completely specified by 8 =
{u,v, P}, where u and v are the knot vectors and P is the coefficient ma-
trix. Now, the problem is to find the number and location of the interior knots
{u1,...,Um,v1,...,v,} and then estimate the coefficients P; ;. This problem
cannot be solved with simple standard methods due to fact that is a high-
dimensional nonlinear optimization problem. A more detailed discussion about

B-splines can be found in [8, 9].

3 B-spline Surface Approximation Using HGA

Compared to conventional GA [10], the main difference with the HGA is the
structure of the chromosome. From the biological viewpoint, the genetic struc-
ture of a chromosome is formed by a number of gene variations arranged in a
hierarchical manner. In the light of this issue, Man et. al. [11] proposed a hierar-
chical structure of chromosome to emulate the formulation of a biological DNA
structure. The computational chromosome in an HGA consists of two types of
genes, which are known as control genes and parametric genes.

Typically, control genes are represented as a binary encoding, while parametric
genes are coded as real numbers. The purpose of control genes is to enable or to
disable the parametric genes, which is particularly important to determine the
genetic structure of the chromosome.

In this paper, we use an HGA to determine simultaneously the number and
positions of the knots (model structure) and the B-spline coefficients (model
parameters) by minimizing a fitness function. In this approach, the main char-
acteristics to consider are: (1) the chromosome encoding of potential solutions,
(2) the fitness function, to evaluate the fitness of the chromosomes and (3) the
operators to evolve the individuals.

3.1 Chromosome Encoding

We use a fixed length binary string to represent the number and the locations
of the interior knots {u1, ..., Um,v1,...,v,}, and real numbers to represent the
P B-spline coefficients. We represent the chromosome of an individual as:
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0= {b1,...,bm,bms1,..., bernaTl—k/Z,l—l/Qa sy T1—k/2,n41/25
ey Pmatk/2,1-1/25 - - - 7Tm+k/2,n+l/2}

where each b; is a control bit and r; ; is a real value (coefficient).

Here, each control bit enables or disables one of the interior knots and one of
the coefficients simultaneously. We establish one-to-one correspondences between
the interior knots and the coefficients to be activated at the same time. The
real values represent the coefficients of the B-spline. The general structure of a
chromosome is graphically shown in Figure 1.

Interior knots

v U2 Un
ct t t F—t—+— i d
Control bits | b1 I L. I b ‘
Pogag|ooo| Piga |- P | | Piosry
a
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]
=
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Real Values

Fig. 1. General structure of a chromosome

This representation scheme does not allows us to duplicate knots, it because
our interest is on smooth functions. However, it can be extended to handle
discontinuous functions if we introduce an additional type of gene.

3.2 Fitness Function

To evaluate the fitness of each individual 6, the fitness function F' is formulated
as a sum of three terms and is given by the following equation:

F(@) =w1RSS +weSSD + w3sPKS (6)

where each term of the equation is described as follows:

(a) The first term is the residual sum of squares (RSS). It is used as a measure
of the deviation between the observed data set and the estimated function
f- The RSS is calculated as follows:

RSS:ZZ{ZZ-J *f(xiayj)}z (7)
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(b) The second term is the sum of the squared differences (SSD), which is the
discrete approximation of the gradient. This term is used to penalize high
sums of gradients to generate smooth solutions. The SSD is given by the
next equation:

SSD = ZZ{ (wi,v;) f(ffz;l,yj)]QJr[f(%,yj)*f(iﬂi,yjﬂ)}z} (8)

i=1 j=1

(c) The last term is a penalty function for knot structure (PK.S). It is computed

as follows:
m n d —c
PKS = + 9
Z +1 — Uz) ; (Ui+1 - Ui)2 ( )

In equation 9, PKS tries to favor solutions with uniform distributions of knots
for each dimension. In other words, it penalizes solutions with knots very

close, which generates over fitting of the function. Therefore, the individuals
with fewest knots and better distribution are favoured.

3.3 Operators

Selection Operator. The roulette wheel method is used as a selection op-
erator. In this method, each individual is assigned to one of the slices in the
roulette wheel. This selection strategy favors best fitted individuals but also
gives a chance to the less fitted individuals to survive. To prevent premature
convergence, the sigma scaling method [12] is used. This method tries to keep
the selection pressure relatively constant over all evolution process, and it is
calculated according to:
_ fFoet —(F—c-o)if ( Fot >F —c-0)
Frew = {0 otherwise (10)

where Fjeq is the new scaled fitness value, Fye; is the current fitness value, F
is the average fitness, o is the standard deviation of the population and c is a
constant to control the selection pressure. In addition, elitism is used in order to
keep elite individuals in the next population to prevent losing the best solution
found.

Crossover Operators. The uniform crossover operator is used for the binary-
valued chromosome and the simulated binary crossover operator (SBX) is used
for the real-valued chromosome [13]. These crossover operators are applied with
the same crossover probability. In the uniform crossover method, two parents are
chosen to be recombine into a new individual. Each bit of the new individual is
selected from one of the parents depending on a fixed probability. On the other
hand, in SBX method, two new individuals ¢; and ¢ are generated from the
parents p; and ps using a probability distribution.
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The procedure used in SBX is the following: first, a random number u between
0 and 1 is generated. Then the probability distribution g is calculated as:
(2u) 1 ifu<05

B = 1 nil .
(2(171‘)) otherwise

(1)

where 7 is a non-negative real number that controls the distance between par-
ents and the new individuals generated. After obtaining 3, new individuals are
calculated according to:

c1 = 0.5[(1+ B)p1 + (1 — B)pa]
(12)
c2 = 0.5[(1 = B)p1 + (1 + B)p2]

Mutation Operators. For the binary-valued chromosome, the bit mutation
method is used. In this method, each bit is inverted or not depending on a
mutation probability. For the real-valued chromosome each numeric value 7 is
changed depending on the same mutation probability according to:

vi =i + 6(rand — 0.5) (13)

where ¢ is the maximum increment or decrement of the real value and rand is a
function that generates a random value between 0 and 1.

4 Numerical Results

We carried out numerical simulations to evaluate the performance of our ap-
proach. Thus, in order to perform these tests, we defined an experimental set
of five bivariate functions, whose equations are given in Table 1 and graphi-
cally shown in Figure 2. These test functions were taken from previous works
[14, 15, 4] as a reference to validate our method.

Table 1. Experimental set of five bivariate functions

Function 1: f(z,y) =10.391{(z — 0.4)(y — 0.6) + 0.36}

Function 2:  f(=z,y) = 24.234{r%(0.75 — %)}, 7% = (z — 0.5)% + (y — 0.5)?

Function 3:  f(z,y) = 42.659{0.1 + £(0.05 + #* — 102292 + 59*)},2 =2 — 0.5, =y — 0.5
Function 4:  f(z,y) = 1.3356[1.5(1 — z) + e?* Vsin{3n(z — 0.6)2} + eB@ =05 sinfdr(y — 0.9)?}]

Function 5: f(z,y) = 1.9[1.35 + e®sin{13(z — 0.6)?}e " Ysin(7y)])
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4.1 Simulation

A data set of 1024 noisy points was generated for each function in a uniform
grid. The functions were evaluated over the interval [0, 1] x [0, 1] and translated
to make the range non-negative in order to facilitate comparisons among them.
The noisy data sets were generated according to 1, with a zero-mean normal
noise and o known. The signal noise ratio (SNR) is defined as SD(f)/o and it
was set in 3. Note that the SNR is roughly equal to 3, it because we considered
a small number of samples. The generated noisy data for the five functions are
shown in Figures 3(a), 3(c), 3(e), 4(a) and 4(c).

In the numerical tests, our approach was configured as follows: we used cubic
B-spline functions, i.e. ¥ = 4, [ = 4 and interior knots as a subset of design
points. The population was randomly initialized at the beginning. Each control
gene b; was randomly selected from [0, 1] and each real gene r; was considered
as a random real number defined over the range [min(z ;), maz(z ;)| of the
measurements z; ;.

Table 2. Parameters used for the HGA

Parameter Value
Population size 90
Crossover probability 0.85
Mutation probability 0.008
Number of elite individuals 9

The HGA parameters were experimentally tunned and they are presented in
Table 2. The population was evolved during 3000 generations in all cases.

4.2 Results

To evaluate the performance of our approach, we used the mean square error
(MSE) given by:

MSE = S {f(e) — S} (14)
i=1

where f is the real function and f is the estimated function given by the pro-
posed method. For each test function, the MSE is calculated and the results
are summarized in Table 3. The test and the obtained functions are graphically
shown in Figures 3(b), 3(d), 3(f), 4(b) and 4(d).

In order to compare the obtained results, we performed a comparison against
the LOWESS (Locally Weighted Scatter Smoothing) method [16]. For this, we
made use of the Curve Fitting Toolbox provided by MATLAB. In this simulation
(the Matlab one), the default parameters were considered.
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show the noisy data used as inputs. The figures in the right side show the approximate
surfaces (outputs) by HGA.



B-spline Surface Approximation Using Hierarchical Genetic Algorithm 61

Table 3. Mean-squared error (MSE) for test functions

Test Function LOWESS HGA

1 0.0032 0.0022
2 0.0049 0.0038
3 0.0470 0.0134
4 0.0237 0.0122
5 0.0345 0.0188
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Fig. 4. Numerical results for test functions 4 and 5. On the left side, the figures show
the noisy data used as inputs. The figures in the right side show the approximate
surfaces (outputs) by HGA.
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5 Conclusions

In this paper, we proposed an efficient hierarchical genetic algorithm to tackle
the B-spline surface approximation problem. The method introduced a novel
hierarchical gene structure for the chromosomal representation, thus allowing us
to find simultaneously the best model with fewest knots, optimal knot locations
and coefficients of the B-spline surface. It is important to highlight the fact that
the method does not require subjective parameters like smooth factor or knot
locations to perform the solution.

To test our method, we performed several tests on benchmark functions as
well as a comparison with the LOWESS method, which is provided with the
Matlab Curve Fitting Toolbox. Numerical results show that our method re-
sponds successfully to the problem of surface approximation. In terms of vi-
sualization (qualitatively), the obtained results are comparable to the original
surfaces. Comparative tests demonstrated a better performance of our method
than the LOWESS method over all the proposed tests. Given the performance
characteristics of the proposed approach, our future work will be to apply this
method over an experimental data set. We are interesting on extending our
approach to experiment with variable length chromosome and different basis
functions.
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Abstract. This paper examines the use of genetic algorithms (GAs) to solve the
school timetabling problem. The school timetabling problem falls into the cate-
gory of NP-hard problems. Instances of this problem vary drastically from
school to school and country to country. Previous work in this area has used
genetic algorithms to solve a particular school timetabling problem and has not
evaluated the performance of a GA on different problems. Furthermore, GAs
have not previously been applied to solving the South African primary or high
school timetabling problem. The paper presents a two-phased genetic algorithm
approach to solving the school timetabling problem and provides an analysis of
the effect of different low-level construction heuristics, selection methods and
genetic operators on the success of the GA approach in solving these problems
with respect to feasibility and timetable quality. The GA approach is tested on
a benchmark set of “hard” school timetabling problems, the Greek high school
timetabling problem and a South African primary and high school timetabling
problem. The performance of the GA approach was found to be comparable to
other methods applied to the same problems. This study has also revealed that
different combinations of low-level construction heuristics, selection methods
and genetic operators are needed to produce feasible timetables of good quality
for the different school timetabling problems. Future work will investigate me-
thods for the automatic configuration of GA architectures of both phases.

Keywords: Timetabling, genetic algorithms, combinatorial optimization, evolu-
tionary computation.

1 Introduction

Genetic algorithms have been successfully applied to solving combinatorial optimiza-
tion problems such as university course and examination timetabling problems|[1], the
travelling salesman problem [2], and the bin packing problem [3] amongst others.
Given the success in these domains, this paper presents an investigation of genetic
algorithms in solving the school timetabling problem.

The school timetabling problem (STP) involves the scheduling of resources, or
combinations of resources, to timetable slots in such a manner that the hard con-
straints of the problem are met and the soft constraints minimized [4]. Resources for
this problem include classes, teachers and venues, amongst others. The requirements

F. Castro, A. Gelbukh, and M. Gonzilez (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 64-80, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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of the problem include a specification of the number of times a particular teacher
must meet a class. Some versions of the problem do not require venue allocations to
be made while others include this constraint. Resources are allocated as class-teacher
(or class-teacher-venue) tuples to the different timetable periods. The hard constraints
of a problem are constraints that must be satisfied by a timetable in order for it to be
operable. A timetable meeting all the hard constraints of the problem is said to
be feasible. Examples of hard constraints include all class-teacher meetings must be
scheduled the required number of times in the specified venue; no clashes, i.e. a re-
source, namely, a teacher, class, or venue, must not be scheduled more than once in a
timetable period. The soft constraints on the other hand measure the quality of the
timetable. These constraints define characteristics that we would like the timetable to
possess but which may not always be possible. The aim is to minimize the number of
soft constraints violated and this value is a measure of the quality of the timetable, i.e.
the fewer soft constraints violated the better the timetable quality. A common soft
constraint is daily limits on the number of lessons taken by a class on a particular
subject and the number of lessons taught by a particular teacher. The hard and soft
constraints differ from one timetabling problem to the next to such an extent that in
some cases what may be defined as a hard constraint for one problem is a soft con-
straint for another and vice versa.

Genetic algorithms take an analogy from Darwin's theory of evolution. The stan-
dard genetic algorithm presented by Goldberg [5] implements the processes of initial
population, evaluation, selection and regeneration by means of genetic operators.
Elements of the population are represented as binary strings and each element, called
a chromosome, is randomly created. A measure of how close a chromosome is to the
solution is referred to as the fitness of a chromosome. The fitness is used to select
parents to create offspring of the successive generation. Fitness proportionate or rou-
lette wheel selection is traditionally used to choose parents. The reproduction, muta-
tion and crossover operators are usually used to create the offspring of each genera-
tion. As the field has developed, variations of the standard genetic algorithm have
emanated. These include the representation of chromosomes which now range from
binary strings and character strings to matrices, depending on the problem domain.
The effectiveness of tournament selection over fitness proportionate selection has also
been established. In addition to this, instead of probabilities of each genetic operator
being attached to each chromosome, application rates are set globally and applied in
the creation of each generation, e.g. 40% of each generation will be created using
mutation and 60% by means of crossover. Furthermore, implementation of genetic
algorithms with just mutation has also proven to be effective [6].

Various methods have been applied to solving different versions of the school
timetabling problem including tabu search, integer programming, constraint pro-
gramming and constraint satisfaction methods, simulated annealing, neural networks,
GRASP, tiling algorithms, the walk down jump up algorithm, bee algorithms and the
cyclic transfer algorithm [4]. Hybrid approaches have also been applied to solving the
school timetabling problem. Successful combinations of methods include randomized
non-ascendant search (RNA) and tabu search, tabu search and the Floyd-Warshall
algorithm, tabu search and graph colouring algorithms, beam search and branch and
bound techniques, simulated annealing and very large neighbourhood search [4].
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The school timetabling problem differs from school to school and country to coun-
try. However previous work has used genetic algorithms to find a solution to a spe-
cific school timetabling problem. The study presented in this paper evaluates genetic
algorithms over different types of school timetabling problems. A two-phased ap-
proach, employing a GA in the first phase to evolve feasible timetables and a GA in
the second phase to improve the quality of timetables generated in the first phase, is
evaluated in solving the school timetabling problem.

The GA approach was tested on four different types of school timetabling prob-
lems, namely, the set of “hard” artificial timetabling problems made available by [6],
the Greek high school timetabling problem, a South African primary and high school
timetabling problem. It was found that combinations of different construction heuris-
tics, selection methods and mutation operators were needed to generate feasible time-
tables of good quality for different problems. Hence, there appears to be a need for
the automatic configuration of the GA architectures of both phases for the school
timetabling problem. This will be examined as part of future work.

The contributions made by the study presented in the paper are: an evaluation of
genetic algorithms over a set of different problems with varying characteristics, the
identification and evaluation of low-level construction heuristics for this domain, and
an evaluation of GAs in solving the South African school timetabling problems. The
following section provides an overview of previous work using evolutionary algo-
rithms to solve the school timetabling problem. The two-phased GA approach is pre-
sented in section 3. The methodology used to evaluate this approach is outlined in
section 4 and section 5 discusses the performance of this approach in solving the dif-
ferent school timetabling problems. A summary of the findings of the study and future
extensions of this work are presented in section 6.

2 Genetic Algorithms and School Timetabling

There has been a fair amount of research into using genetic algorithms to solve differ-
ent types of school timetabling problems including generated problems [7, 8, 9], the
Italian [10], Brazilian [11], German [12], Turkish [13], Greek [14] and Bosnian [15]
school timetabling problem. Each element of the population is generally a two-
dimensional array representing the timetable [8, 10, 13]. The fitness of an individual
is the number of constraint violations [15] or the weighted sum of the constraint viola-
tions [10, 14]. Either fitness proportionate selection [8, 9, 12, 14] or tournament selec-
tion [15] is used to choose parents for each generation. The genetic operators applied
to create the offspring of each generation are reproduction, mutation and crossover.
GAs have also been used in combination with other techniques to obtain solutions
to school timetabling problems. The h-HCCA genetic algorithm is used by Nurmi et
al. [16] to evolve timetables for Finnish schools. This GA incorporates the use of hill-
climbing in the mutation operator and simulated annealing to select timetable periods
to allocate tuples to. The GA implemented by Zuters et al. [17] uses a neural network
to calculate the fitness of the population. A combination of genetic algorithms and a
non-random ascent method (RNA) produced better results in solving a set of high
school timetabling problems than applications of these methods separately [18].
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3 The Two-Phased GA Approach

A two-phased approach is taken in solving the school timetabling problem. The first
phase uses a genetic algorithm to produce feasible timetables (Phase I), the quality of
which is improved in the second phase by a second genetic algorithm (Phase II).
Trial runs conducted revealed that a two-phased approach, with different GAs dealing
with hard and soft constraints, was more effective than using a single GA to evolve
both feasible and good quality timetables. Previous work [1] applying genetic
algorithms to solving the examination timetabling problem has also revealed the ef-
fectiveness of a two-phased approach, with each phase employing different GAs to
optimize hard and soft constraints.

Both GAs begin by creating an initial population of individuals, i.e. timetables,
which are iteratively improved over successive generations with respect to either fea-
sibility or quality. The number of individuals remains constant over all generations.
Each successive generation involves evaluation of the population, selecting parents
and applying mutation operators to the parents to create the next generation. The
stopping criterion for both GAs is a set number of generations. The processes of ini-
tial population generation, evaluation, selection and regeneration are described in the
following subsections.

3.1 Initial Population Generation

A majority of the studies in section 2 have used a matrix representation for each
chromosome. Thus, in this study each element of the population is also a matrix
representing a school timetable with each row corresponding to a timetable period and
each column a class to be taught. The teacher teaching the class in the particular pe-
riod (and the venue in which the lesson is to be taught if venue allocation is part of the
problem) is stored at the intersection of each row and column.

The requirements, i.e. class-teacher meetings of a problem are defined in terms of
class-teacher or class-teacher-venue (if venue allocation is included) tuples. For ex-
ample, (C1,T4) is a tuple indicating that teacher T4 must teach class Cl and
(C3,T1,V1) specifies that class C3 must be taught by teacher T1 in venue V1. If
teacher T4 has to meet with class C1 five times in the school week, (C1, T4) will
occur five times in the list of tuples to be allocated.

Initially, the timetables of the population of the first generation of the GA for
Phase I were created by randomly allocating tuples to timetable periods. However,
this is not very effective as the search space represented by the initial population was
too large. This led to the derivation of a sequential construction method (SCM) to
create each element of the initial population. The SCM creates n timetables. The
most appropriate value for n is problem dependant. Each timetable is created by sort-
ing the tuples to be allocated to the timetable according to the difficulty of scheduling
the tuple. Low-level construction heuristics are used to assess this difficulty. Each
tuple is scheduled in a feasible timetable period, i.e. a period to which the tuple can be
allocated without resulting in any hard constraint violations. If there is more than one
feasible period available the tuple is allocated to the minimal penalty period, i.e. the
period which produces the lowest soft constraint cost. If more than one minimal pe-
nalty period exists, a period is randomly selected from these. If there are no feasible
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periods available the tuple is scheduled in a randomly selected slot. Each timetable is
evaluated and its fitness is determined. In Phase I the fitness is the number of hard
constraints violated. The SCM returns the fittest of the n timetables. If there is more
than one timetable with the same fitness, the soft constraint cost is used as a second-
ary measure.

One of the contributions of this work is the identification of a set of low-level con-
struction heuristics that can be used to measure the difficulty of scheduling a tuple.
Low-level construction heuristics generally used for the university examination and
course timetabling problems are the graph colouring heuristics largest degree, largest
colour degree, largest weighted degree, largest enrollment and saturation degree [1].
Due to the differences in these problems and the school timetabling problem the larg-
est colour degree, largest weighted degree and largest enrollment are not relevant to
the STP. The largest degree and saturation degree have been adapted for the STP and
other low-level construction heuristics have been identified for this domain. The fol-
lowing low-level heuristics have been defined for this purpose:

e Random - In this case a construction heuristic is not used and tuples to be al-
located are randomly chosen from the list of unscheduled tuples.

e Largest degree — Tuples with a larger number of class-teacher meetings are
scheduled first. Once a tuple is allocated the largest degree of the remaining
tuples with the same class and teacher (and venue if applicable) is reduced
by one. For example, suppose that teacher T3 is required to meet class C1 in
venue V4 four times a week. There will be four occurrences of the tuple
(C1, T3, V4) in the list of tuples to be allocated and all four occurrences will
have a largest degree of 4. Suppose one occurrence is scheduled, leaving
three occurrences in the list of unscheduled tuples. The largest degree of
three remaining tuples will be reduced by one giving each occurrence a larg-
est degree of 3.

e Saturation degree — The saturation degree of a tuple is the number of feasi-
ble, i.e. a period that will not result in hard constraint violations if the tuple is
scheduled in it, timetable periods which the tuple can be scheduled in at the
current point of the construction process. Tuples with a lower saturation de-
gree are given priority. At the beginning of the timetable construction
process all tuples have the same saturation degree, i.e. the number of timeta-
ble periods for the problem. For example, suppose that the tuple (C1,T3) has
been allocated. The saturation degree of all tuples containing either C1
and/or T3 will be reduced by one.

e C(Class degree — Tuples containing a class that is involved in the most class-
teacher meetings is given priority.

e  Teacher degree — Tuples containing the teacher involved in the most number
of class-teacher meetings are given priority.

e Consecutive periods — Tuples that need to be scheduled in consecutive pe-
riods, i.e. doubles and triples, are given priority and scheduled first.

e  Sublclass/co-teaching degree — Tuples that have co-teaching or subclass re-
quirements are given priority and allocated to the timetable before the other
tuples.
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e  Period preferences — Tuples that have to be scheduled in specific periods are
scheduled first and hence given priority over the other tuples. For example,
if all Mathematics lessons must be scheduled within the first four periods for
certain grades all the tuples for these lessons will be given priority.

e Teacher availability — Tuples containing teachers that are available for the
least number of days are given priority.

One of these low-level heuristics is usually used to sort tuples. Alternatively, a
combination of low-level heuristics can be applied to sort the list of tuples. In this
case a primary heuristic and one or more secondary heuristics can be used for sorting
purposes. For example, if saturation degree is employed as a primary heuristic and
period preferences as a secondary heuristic, the tuples will firstly be sorted in ascend-
ing order according to the saturation degree. If two tuples have the same saturation
degree, the tuples with a larger number of period preferences will be scheduled first.
The initial population of the GA in Phase II is the population of the last generation of
Phase I. All the timetables in this population are usually feasible.

3.2 Evaluation and Selection

Evaluation of the population on each generation involves calculating a fitness meas-
ure for each individual, i.e. timetable. The fitness of a timetable is the number of hard
constraint violations in Phase I and the number of soft constraint violations in Phase
II. Thus, in both phases we aim to minimize the fitness of an individual. The fitness
of the elements of the population is used by the selection method to choose the par-
ents of the next generation.

The tournament selection method is used to select parents. This method randomly
selects ¢ elements of the population where ¢ is referred to as the tournament size. The
element of the tournament with the best fitness, i.e. the lowest fitness measure, is
returned as a parent.

During trial runs a variation of the tournament selection method, called a sports
tournament method, proved to be more effective in the evolution of solutions to the
school timetabling problem than the standard tournament selection method. The pseu-
do code for the sports tournament selection is depicted in Figure 3. The selection me-
thod takes an analogy from sport such as cricket where the best team may not always
win. Instead of always returning the fittest element of the tournament this method
firstly randomly selects the first element of the tournament and in comparing the suc-
cessive elements of the tournament randomly decides to leave the current_champion
unchanged, replace the current_champion with the contender, even if the contender is
not fitter, or replace the current_champion with the contender if the contender is fitter
(standard tournament selection). The two-phased GA approach will use either the
tournament or sports tournament selection for both GAs of both phases and the choice
of selection method is problem dependant.

3.3  Regeneration

One or more mutation operators are applied to chosen parents to create the offspring
for each generation. Section 3.3.1 presents the mutation operators used by the GA in
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Phase 1 and section 3.3.2 those used by the GA in Phase 2. A certain percentage of
mutation operations are usually reduced to reproduction, i.e. the offspring is a copy of
the parent. Thus the reproduction operator is not used to reduce the possibilities of
cloning. Previous studies have found the use of a crossover operator usually results in
violation of the problem requirements, e.g. allocation of the same tuple to the same
period. Thus, application of the crossover operator is usually followed by a repair
mechanism being applied to rectify the side effects [7, 9]. This is time consuming and
results in an increase in runtimes. Hence, Bedoya et al. [8] do not implement a cros-
sover operator. The same approach is taken in this study.

3.3.1 Phase 1 Operators
The following three mutation operators are available for the GA for Phase 1:

e Double violation mutation (2V) — This operator locates two tuples assigned
to periods which have resulted in hard constraint violations and swaps these
tuples. This swap may result in no change in the fitness of the timetable, i.e.
the swap has not removed the violations or may improve the fitness by re-
sulting in one or both of the violations being eliminated.

e Single violation mutation (1V) — This mutation operator selects a tuple caus-
ing a hard constraint violation and swaps it with a randomly selected tuple.
This could result in a further violation worsening the fitness. Alternatively,
the swap may remove the constraint violation improving the fitness of the
timetable or have no effect.

e Random swap — This operator selects two tuples or two sets of consecutive
tuples randomly and swaps the locations of the tuples or sets in the timetable.

Each of these operators performs s swaps and the best value for s is problem de-
pendant. Versions of these operators incorporating hill-climbing is also available.
The hill-climbing versions of these operators continue mutating the parent until an
offspring fitter than the parent is produced. In order to prevent premature convergence
of the GA and long runtimes, a limit / is set on the number of attempts at producing a
fitter individual. If this limit is reached the last offspring created is returned as the
result of the operation. The performance of the different mutation operators with and
without the incorporation of hill-climbing will be tested for the different school time-
tabling problems. This is discussed in section 4.

3.3.2 Phase 2 Operators

This section describes the four mutation operators that are used by the GA in Phase 2
of the approach. As in the first phase, each mutation operator performs s swaps, with
the best value for s being problem dependant. Swaps producing hard constraint viola-
tions are not allowed. The four mutation operators for Phase 2 are:

e Random swap — This operator randomly selects two tuples and swaps their
positions in the timetable.

e Row swap - Two rows in the timetable are randomly selected and swapped,
changing the period that the tuples in both the rows are scheduled in.

e Double violation mutation — Two tuples causing soft constraint violations are
chosen and swapped. This can have no effect on the fitness or improve the
fitness by eliminating one or both of the violations.
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e Single violation mutation — The position of a tuple causing a soft constraint
violation is swapped with that of a randomly selected tuple. As in the first
phase this could result in a further violation, have no effect or remove the
soft constraint violation.

e  Subclass+co - teaching row swap (1VSRS) — The row containing a tuple that is
violating a subclass or co-teaching constraints is swapped with another row.

As in the first phase, versions of these operators including the use of hill-climbing are
also implemented. In this case the mutation operator is applied until an offspring at least
as fit as the parent is produced. Again to prevent premature convergence and lengthy
runtimes a limit is set on the number of attempts at producing such an offspring.

4 Experimental Setup

This section describes the school timetabling problems that the GA approach pre-
sented in the previous section is evaluated on, the genetic parameter values used and
the technical specifications of the machines the simulations were run on.

4.1  School Timetabling Problems

The school timetabling problem varies from school to school due to the different edu-
cational systems adopted by different countries. Thus, there are different versions of
the school timetabling problem. In order to thoroughly test the two-phased GA ap-
proach and to evaluate it in a South African context, the approach was applied to four
school timetabling problems:

A set of hard benchmark school timetabling problems
The Greek high school timetabling problem

A South African primary school timetabling problem
A South African high school timetabling problem

Each of these problems is described in the following subsections.

4.1.1 Benchmark Timetabling Problems

Abramson [7] has made available five artificial timetabling problems [19]. These
problems are “hard” timetabling problems (hence the hdtr) as all periods must be
utilized with very little or no options for each allocation. The characteristics of the
problems are listed in Table 1. Each school week is comprised of five days with six
periods a day with a total of 30 timetable periods.

Table 1. Characteristics of the artificial school timetabling problems

Problem | Number of teachers Number of Venues Number of Classes
hdtt4 4 4 4
hdtt5 5 5 5
hdtt6 6 6 6
hdtt7 7 7 7
hdtt8 8 8 8
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All five problems have the following hard constraints:

All class-teacher-venue tuples must be scheduled the required number of
times.

There must be no class clashes, i.e. a class must not be scheduled more than
once in a period.

There must be no teacher clashes, i.e. a teacher must not be scheduled more
than once in a period.

There must be no venue clashes, i.e. a venue must not be allocated more than
once to a timetable period.

4.1.2 The Greek School Timetabling Problem

The GA approach is applied to two Greek school timetabling problems, namely, that
made available by Valouxis et al. [20] and Beligiannis et al. [21]. The problem pre-
sented by Valouxis et al. involves 15 teachers and 6 classes. There are 35 weekly timet-
able periods, i.e. 5 days with 7 periods per day. The hard constraints of the problem are:

All class-teacher meetings must be scheduled.

There must be no class or teacher clashes.

Class free/idle periods must be scheduled in the last period of the day.

Each teacher’s workload limit for a day must not be exceeded.
Class-teacher meetings must be uniformly distributed over the school week.

The soft constraints for the problem are:

The number of free periods in the class timetable must be minimized.
Teacher period preferences must satisfied if possible.

The GA approach is also tested on six of the problems made available by Beligian-
nis et al. [21]. The characteristics of these problems are depicted in Table 2. There
are 35 timetable periods per week.

Table 2. Characteristic of the Beligiannis Problem Set

Problem | Number of Teachers | Number Number of
of Classes Co-Teaching/Sublcass Re-
quirements
HS1 11 34 18
HS2 11 35 24
HS3 6 19 0
HS4 7 19 12
HS5 6 18 0
HS6 13 35 20

The hard constraints for the problem are:

All class-teacher meetings must be scheduled.
There must be no class or teacher clashes.
Teachers must not be scheduled to teach when they are not available.
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Class free/idle periods must be scheduled in the last period of the day.
Co-teaching and subclass requirements must be met.

The problem soft constraints are:

The number of idle/free periods for teachers must be minimized.

Free periods must be equally distributed amongst teachers.

The workload for a teacher must be uniformly distributed over the week.
Classes should not be taught the same subject in consecutive periods or more
than once in a day if possible.

4.1.3 South African Primary School Problem

This problem involves 19 teachers, 16 classes and 14 subjects. There are a maximum
of 11 weekly timetable periods. However, different grades have a different number of
daily periods ranging from 9 to 11. The hard constraints for the problem are:

All required class-teacher meetings must be scheduled.

There must be no class or teacher clashes.

Certain subjects must be taught in specialized venues, e.g. Technology in the
computer laboratory.

Mathematics must be taught in the mornings (specified in terms of valid pe-
riods).

All co-teaching requirements must be met.

All double period requirements must be met.

The problem has one soft constraint, namely, the lessons per class must be uniformly
distributed throughout the school week.

4.1.4 South African High School
The South African high school problem that the GA approach is applied to involves
30 classes, 40 teachers and 44 subjects. The hard constraints for the problem are:

All required class-teacher meetings must be scheduled.
There must be no class or teacher clashes.
All sub-class and co-teaching requirements must be met.

The soft constraints for the problem are:

4.2

Teacher period preferences must be met if possible.
Period preferences for classes must be met if possible.

Genetic Parameter Values

Trials runs were conducted to determine the most appropriate values for the following
genetic parameters:
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e SCM population size (n) — The SCM is used to create each element of the
population. It creates n timetables, the fittest of which is included in the GA

population of Phase I.

GA population size
Number of generations
Tournament size
Number of mutation swaps
Number of generations

Table 3 lists the values tested for each of these parameters.

Table 3. Ranges for each parameter value

Parameter Tested range | Note:

SCM size 1 to 100 Only applicable in Phase 1

Population 200 to 1000 Constant population size adopted for every generation
size

Tournament 5t020 Applicable to tournament selection for Phase 1 and Phase
size 2

Swaps 20 to 200 Applicable to mutation operators for Phase 1 and Phase 2
Generations 20to 75 Applicable to Phase 1 and Phase 2

When testing each parameter value, 30 runs were performed. In order to test the
impact that each parameter has on the performance of the genetic algorithm, all other
parameter values, construction heuristics, selection methods and genetic operators
were kept constant. The most appropriate values found for each problem are listed in

Table 4.
Table 4. Parameter values for each data set
Problem SCM Population Tournament Swaps per Genera-
Size Size Mutation tions

HDTT4 50 1000 10 200 50
HDTTS5 50 1000 10 200 50
HDTT6 50 1000 10 200 50
HDTT7 50 1000 10 200 50
HDTTS 50 1000 10 200 50
Valouxis 50 1000 10 100 50
HS1 - HS4, | 25 750 15 200 50
HS6

HS5 50 750 10 20 75
Lewitt 20 500 10 200 50
Woodlands 20 750 10 150 75

4.3  Technical Specifications

The GA system was developed using Visual C++ 2008. The random number genera-
tor function available in C++ is used to generate random numbers. A different seed is
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used for each run of the genetic algorithm approach. Simulations (trial and final)
were run on several machines:

e Intel Core 2 Duo CPU @ 2.40 GHz, 2.00 GB RAM, Windows XP, Windows
7 Enterprise OS.

o Intel Core I7 870 CPU @ 2.93 GHz, 4.00 GB RAM, Windows 7 64-bit OS.

e Intel Core I7 860 CPU @ 2.80 GHZ, 4.00 GB RAM (3.49 Usable), Windows
7 32-bit OS.

e  Pentium Dual Core @ 2GHZ, 2.00 GB RAM, Windows XP.

5 Results and Discussion

The two-phased genetic algorithm approach was able to evolve feasible solutions of
good quality for all problems. Different combinations of construction heuristics, se-
lection method and genetic operators were found to produce the best quality solution
for each problem. The GA approach was run using different combinations of these
components. In order to test the impact that each component has on the performance
of each genetic algorithm, all other genetic algorithm components and parameter
values are kept constant. Thirty runs were performed for each component. The statis-
tical significance of the performance of the different construction heuristics, selection
methods and genetic operators was ascertained using hypothesis tests' (tested at the
1%, 5% and 10% levels of significance). The combination producing the best result
for each problem is listed Table 5. Note that if hill-climbing was used with the genetic
operator this is indicated by HC and if it was not used by NH.

The use of saturation degree as a primary heuristic produced the best results for all
except one problem. A secondary heuristic was needed for all of the real world prob-
lems especially problems involving subclass and co-teaching constraints. For the Ab-
ramson data set double violation mutation without hill-climbing appears to be the
most effective during Phase 1. For the real world problems single violation mutation
with hill-climbing produced the best results for a majority of the problems. Hill-
climbing was not needed in Phase 2 to produce the best soft constraint cost for any of
the problems with single violation mutation proving to be the most effective for a
majority of the problems. The sports tournament selection method appears to be effec-
tive in the GA implemented in Phase 1 focused on optimizing the hard constraint
costs while the standard tournament selection appears to have produced better results
in Phase 2, which improves the quality of timetables, for most of the problems. It is
evident from Table 5 that different combinations of low-level constructive heuristics,
selection method and mutation operators is needed to solve each problem. Future
work will investigate whether there is a correlation between the architecture of the
GAs of each phase and the characteristics of the different problems as well as me-
thods for the automatic configuration of the GA architectures of both phases for the
school timetabling problem.

! Throughout the paper hypothesis tests conducted test that the means are equal and the Z test is
used.
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Table 5. Summary of best heuristics, methods and operators for each data set

PHASE 1 PHASE 2
Problem Primary Secondary Selection | Genetic Selection | Genetic
Heuristic Heuristics Method Operators | Method Operator
HDTT4 Saturation None Std/Sports | 2VNH N/A N/A
Degree
HDTTS Saturation None Sports 2VNH N/A N/A
Degree
HDTT6 Saturation None Sports 2VNH N/A N/A
Degree
HDTT7 Saturation None Sports 2VNH N/A N/A
Degree
HDTTS8 Saturation None Standard 2VNH N/A N/A
Degree
Valouxis Saturation Teacher De- | Sports 1VHC Sports Random
Degree gree Swap
Teacher avail-
ability
HS1 Saturation SubClass/Co- Sports 1VHC Standard | Single
Degree Teaching Violation
degree
HS2 Saturation SubClass/Co- Sports 1VHC Standard | Single
Degree Teaching Violation
degree
HS3 Saturation SubClass/Co- Sports 1VHC Standard | Single
Degree Teaching Violation
degree
HS4 Saturation SubClass/Co- Sports 1VHC Sports Single
Degree Teaching Violation
HS5 Largest SubClass/Co- Sports 1VNH Standard | Random
Degree Teaching Swap
degree
HS7 Saturation SubClass/Co- Sports 1VHC Standard | Single
Degree Teaching Violation
degree
Lewitt Saturation Consecutive Standard Hybrid Sports Random
Degree Periods (2VHC, Swap
1VHC,
Random
Swap)
Wood- Saturation SubClass/Co- Standard 1VHC Standard | 1VSRS
lands Degree Teaching
degree

The performance of the GA approach was compared to other methods applied to
the same set of problems. For the first set of problems, namely, the benchmark hard
problems made available by Abramson [7], the GA approach was compared to the
following:
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SA1 — A simulated annealing method implemented by Abramson et al. [22].
SA2 — A simulated annealing algorithm implemented by Randall [23].

TS — A tabu search employed by Randall [23].

GS - The greedy search method used by Randall [23].

NN-T2 — A neural network employed by Smith et al. [24].

NN-T3 — A second neural network employed by Smith et al. [24].

The hard constraints for this set of problems are listed in section 4. The minimum
(best cost - BC) and average (average cost — AC) hard constraint costs for each of
these methods and the GA approach is listed in Table 6. In this study the average is
taken over thirty runs. The best results are highlighted in bold. The GA approach has
produced the minimum for all of the problems and the best average for three of the
problems. For the remaining two problems, the average obtained is very close to the
best results.

Table 6. Comparison for the Abramson Data Set

Method HDTT4 HDTT5 HDTT6 HDTT7 HDTTS
SA1 BC: Unknown BC: 0 BC: 0 BC: 2 BC: 2
AC: Unknown AC: 0.67 AC: 2.5 AC: 2.5 AC: 8.23
sy | BC:0 BC: 0 BC: 0 BC: 0 i(cj': ?.9
AC: 0 AC: 0.3 AC: 0.8 AC: 1.2
TS BC: 0 BC: 0 BC: 3 BC: 4 BC: 13
AC: 0.2 AC:2.2 AC:5.6 AC: 109 AC: 17.2
GS BC: 5 BC: 11 BC: 19 BC: 26 BC: 29
AC: 8.5 AC: 16.2 AC: 222 AC: 30.9 AC: 354
HNNI BC: 0 BC: 0 BC: 0 BC: 0 BC: 0
AC: 0.1 AC: 0.5 AC: 0.8 AC: 1.1 AC: 14
HNN2 BC: 0 BC: 0 BC: 0 BC: 0 BC: 0
AC: 0.5 AC: 0.5 AC: 0.7 AC: 1 AC: 1.2
GA BC: 0 BC: 0 BC: 0 BC: 0 BC: 0
approach | AC: 0 AC: 0 AC: 0 AC: 1.067 AC: 1.733

The GA approach was also applied to the school timetabling problem presented by
Valouxis et al. [20]. In the study conducted by Valouxis et al. constraint program-
ming was used to solve this problem. The timetables induced by both methods were
run through an evaluator developed by the authors which assessed the hard and soft
constraint costs. Feasible timetables were produced by both methods. The timetable
produced by constraint programming had 45 soft constraint violations while that pro-
duced by the GA approach had 35.

The timetables generated by the evolutionary algorithm implemented by Beligian-
nis et al. [21] are compared to those produced by the GA approach. Again an evalua-
tor developed by the authors was used to assess the hard and soft constraint cost of all
timetables for comparison purposes. Both methods produced feasible timetables for
the 6 problems tested. The soft constraint costs of the timetables are listed in Table 7.
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Table 7. Comparison with the Beligannis data set [21]

Problem Evolutionary Algorithm GA Approach
HS1 139 96

HS2 175 99

HS3 61 34

HS4 102 59

HS5 43 40

HS6 226 117

The timetable used by the South African primary school is induced by a package.
The timetable produced by the package is manually changed to meet the hard and soft
constraints. The current timetable used by the school does not meet all the double
period requirements while the best timetable evolved by the GA approach satisfies
these. The best timetable produced by the GA for the South African high school prob-
lem is a feasible timetable and has the same soft constraint cost, namely a cost of two,
as the timetable currently being used by the school. From the above comparisons it is
evident that the performance of the GA approach is comparable and in some cases
better, than other methodologies applied to the same problems.

6 Conclusion and Future Work

This study has presented a two-phased genetic algorithm approach for solving the
school timetabling problem. In previous work a genetic algorithm was developed to
solve a particular problem whereas this study has evaluated genetic algorithms as a
means of solving different school timetabling problems. The paper has also defined
low-level construction heuristics for this domain. The performance of a methodology
on a variety of problems is important as the school timetabling problem varies drasti-
cally from one school to the next. The two-phased genetic programming approach
was tested on four different types of problem sets involving a total of 13 different
problems. This approach was able to produce feasible timetables for all problems.
The soft constraint cost of these timetables were found to be comparable to and in
some cases better than other methodologies applied to the same problems. Different
combinations of genetic algorithm components, namely, construction heuristics, se-
lection methods and genetic operators were needed to produce the best results for the
different problems. Thus, future work will focus on identifying the correlation be-
tween different combinations and problem characteristics and methods for the auto-
matic configuration of the GA architecture for both phases of the GA approach in
solving the school timetabling problem. This research will investigate the use of case-
based reasoning and an evolutionary algorithm, to explore a space of strings
representing the GA components to find the optimal combination, as options for au-
tomatic GA architecture configuration. The study has also revealed that GAs can
successful solve both the South African primary and high school timetabling.
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Abstract. This work proposes an Estimation of Distribution Algorithm
(EDA) that incorporates an explicit separation between the exploration
stage and the exploitation stage. For each stage a probabilistic model
is required. The proposed EDA uses a mixture of distributions in the
exploration stage whereas a multivariate Gaussian distribution is used
in the exploitation stage. The benefits of using an explicit exploration
stage are shown through numerical experiments.

Keywords: Estimation of Distribution Algorithm, Exploration stage,
Exploitation stage.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [10] are metaheuristics designed
for searching good solutions in optimization problems. Similar to other meta-
heuristics of Evolutionary Computation (EC), EDAs are iterative algorithms
based on the use of populations. However, an important characteristic of EDAs
is the incorporation of probabilistic models in order to represent the dependen-
cies among the decision variables of selected individuals. Once a probabilistic
model is learnt by an EDA, it is possible to replicate dependencies in the new
population by sampling from the model.

Algorithm 1 shows a pseudocode for EDAs. According to step 4, the de-
pendencies among decision variables are taken into account by means of the
probabilistic distribution M;. Step 5 shows how the dependence structure of the
selected individuals is transferred to the new population, which greatly modifies
the performance of an EDA.

As shown in Algorithm 1, step 4 involves an important and critical proce-
dure in EDAs. For this reason, much of the research in EDAs has been focused
precisely on proposing and enhancing new probabilistic models with many contri-
butions in discrete and continuous domains [9,12,3]. Some of these probabilistic
models are based on Bayesian and Markov networks [14,5,11]. Other EDAs have
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© Springer-Verlag Berlin Heidelberg 2013



82 R. Salinas-Gutiérrez et al.

Algorithm 1. Pseudocode for EDAs

1: Initialize the generation counter ¢ <— 0
Generate the initial population Py with N individuals at random.
Evaluate population P; using the cost function.
Select a subset S; from P; according to the selection method.
Estimate a probabilistic model M; from S;.
Generate the new population P:y1 by sampling from the model M+
Assign t +— t + 1.
6: If stopping criteria are not reached go to step 2.

used Gaussian assumptions [6,7,1,2], such as Gaussian kernels, Gaussian mix-
ture models and the multivariate Gaussian distribution. The interested reader is
referred to [8,4] for knowing more about the probabilistic models used in EDAs.

Although the active research in EDAs has been oriented to model adequately
dependencies among decision variables [13], the generation of individuals in the
exploration stage has not been investigated. This observation gives an opportu-
nity for proposing a new exploration procedure and for studying its effects in
EDAs.

The structure of the paper is the following: Section 2 describes the proposal
of this work, Section 3 shows some preliminary results of the implementation of
the exploration stage, Section 4 presents the experimental setting to solve five
test global optimization problems, and Section 5 resumes the conclusions.

2 The Exploration Stage

According to Algorithm 1, the initial population is generated at random. This
means that the first population is generated by sampling from the uniform distri-
bution. However, once the first population is generated, the following populations
are generated by sampling from a probabilistic model M; which is in general
different than the uniform distribution. A common practice in EDAs is that the
probabilistic model M; is selected beforehand from a family of probabilistic dis-
tributions. Therefore, the immediate transition between the uniform distribution
and the probabilistic model M, could affect the performance of the exploration
stage. This work investigates the effects of having an explicit separation between
the exploration stage and the exploitation stage.

The proposal of incorporating an explicit exploration stage in EDAs requires
the support of an adequate estrategy. Firstly, the number of generations for
the exploration stage must be defined in advance. For example, the number of
generations can be given by a fixed number. Secondly, a probabilistic model is
needed in order to generate populations in the exploration stage. The natural
choice for exploration purposes is a probabilistic distribution with high variance.
However, the progress of the exploration stage must be reflected in the variance
of the probabilistic model.

This work proposes the incorporation of a mixture of distributions for the
exploration stage. The mixture is formed with the uniform distribution and
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with a distribution based on a modified histogram. The uniform distribution
allows to generate individuals with high variance. The histogram is a statistics
tool for density estimation and its implementation is well known. The histogram
is used as a model for the selected individuals in each generation within the
exploration stage. However, in order to favor the generation of individuals with
high variance, we propose the use of a histogram with similar height for all bars.
Figure 1 illustrates this idea. The total area of each histogram, (a) and (b), is
normalized to 1.

1l

(a) Histogram (b) Modified histogram

Fig. 1. The modified histogram (b) is based on the initial histogram (a) and its rectan-
gles have the same height

The expression for the proposed mixture of distributions is given by:

St:wt-lxl—s—(l—wt)-’H ,Withth[O,l]. (1)

The mixture (1) offers the following characteristics:

1. The initial weight of the uniform distribution & is the highest possible
whereas the weight of the modified histogram H is the lowest. This allows
to start the exploration stage with individuals sampled from a distribution
of high variance.

2. According to the advance of the exploration stage, the weight of the uniform
distribution U is decreased whereas the weight of the modified histogram H
is increased.

Algorithm 2 shows the inclusion of a procedure for the exploration stage in
EDAs. It can be noted that the number of 100 generations (step 2) and the
rule for decreasing the weight w; (step 7) are defined in this way to indicate
the extension of the exploration stage. Both the number of generations and the
expression for the weight can be changed by other values. On the other hand, it
can be also note that the exploitation stage has elitism whereas the exploration
stage has not elitism. However, the best individuals found during the process
of the exploration stage are used as the initial population for the exploitation
stage.
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Algorithm 2. Pseudocode for EDA with explicit exploration
1: Exploration stage
Initialize the weight w; <+— 1

2: for t =1 — 100 do

3:  Generate the population P, with N individuals by sampling from the model &,
(see Eq. (1))

4:  Evaluate population P; using the cost function.

5:  Select a subset S; from P, according to the selection method.

6: Estimate a modified histogram H from S;.

7:  Assign wy +— 1 — (¢/100).

8:  Select the best N individuals from all the previous generations and record them
in B.

9: end for

10: Exploitation stage
Assign P «+— B.
11: Evaluate population P; using the cost function.
12: Select a subset S; from P, according to the selection method.
13: Estimate a probabilistic model M; from S;.
14: Generate the new population P;11 by sampling from the model M,
15: Set Pi+1 with the best N individuals from Piy1 U Py
Assign t +— t + 1.
16: If stopping criteria are not reached go to step 2.

3 Preliminary Results

In order to gain some insight about how the inclusion of the exploration stage
modifies the performance of an EDA, we compare two EDAs in two test pro-
blems. The comparison is done through the Estimation of Multivariate Normal
Algorithm (EMNA) and the EMNA with the exploration stage (EMNA+E). The
test problems are the Rosenbrock and Sphere functions. These test functions are
described in Fig. 2.

The benchmark test suite includes separable functions and non-separable func-
tions, from which there are unimodal and multimodal functions. In addition, the
search domain is asymmetric. All test functions are scalable. We use test prob-
lems in 10 dimensions. Each algorithm is run 30 times for each problem. The
population size is 100 and the maximum number of generations is 150.

A graphical comparison between EMNA and EMNA+E is shown in Figure 3.
According to these graphical results, the EMNA has a better performance than
the EMNA+E in the first 100 generations. However, after the exploration stage
is done, the performance of the EMNA+E outperforms the performance of the
EMNA.

4 Experiments

Five test problems are used to compare an EDA with exploration against a typi-
cal EDA without explicit exploration. These algorithms are, respectively, the
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Description
Ackley
—20 - exp (O'z\/cli D xf) — exp (cli D cos(27rxi)> + 20 + exp(1)
x € [—10,30]"
Properties: Multimodal, Non-separable Global Minimum: f(0) =0
Griewangk
2
d Li d Ti
1+3>¢ 2000~ [15_, cos (\/Z> ;@ € [—200,1000]"
Properties: Multimodal, Non-separable Global Minimum: f(0) =0
Rastrigin
Zle(xf — 10cos(27x;) + 10) ; € [-10,30]*
Properties: Multimodal, Separable Global Minimum: f(0) =0
Rosenbrock
St 100 (g1 —2f)* + (1 - 2:)%] 5 @ € [-10,30]¢
Properties: Unimodal, Non-separable Global Minimum: f(1) =0

Sphere Model
>4, 2?5 @ e [-200,1000)*
Properties: Unimodal, Separable Global Minimum: f(0) =0

Fig. 2. Names, mathematical definition, search domains, global minimum and proper-
ties of the test functions

EMNA+E and the EMNA. The multivariate Gaussian distribution is incorpo-
rated as probabilistic model to the EMNA and the same distribution is used for
the exploitation stage in the EMNA+E. Algorithm 1 is the basis for the EMNA
whereas Algorithm 2 is the corresponding basis for the EMNA+E. In order to
make a fair comparison, the elitism in the exploitation stage of EMNA+E is also
included in the EMNA.

The test problems used in the experiments are the Ackley, Griewangk, Rast-
rigin, Rosenbrock, and Sphere functions. Fig. 2 describe the test functions. The
algorithms are tested in different dimensions and asymmetric search domain.
Each algorithm is run 30 times for each problem. The population size is ten
times the dimension (10 * d). The maximum number of evaluations is 100,000.
However, when convergence to a local minimum is detected the run is stopped.
Any improvement less than 1 x107% in 25 iterations is considered as convergence.
The goal is to reach the optimum with an error less than 1 x 104

The results in dimensions 4, 6, 8, 10, 15 and 20 for non-separable functions
are reported in Table 1, whereas the results for separable functions are reported
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Rosenbrock
w o] o
- <] -
o 50 100 150 o 50 100 150 ] 50 100 150
(a) (b) (c)
Sphere
AN v J——\
- o] -
« kR a
L] 50 100 150 L] 50 Iéﬂ 150 [] 50 100 150
(a) (b) (c)

Fig. 3. The horizontal axis represents the generation and the vertical axis represents
the fitness in logarithmic scale (base 10). (a) The fitness performance of EMNA. (b)
The fitness performance of EMNA+E. (¢) The dashed line is used for the average per-
formance of EMNA and the solid line is used for the average performance of EMNA+E.

in Table 2. Both tables report descriptive statistics for the fitness values reached
in the all runs. The fitness value corresponds to the value of a test problem.
For each algorithm and dimension, the minimum, median, mean, maximum,
standard deviation and success rate are shown. The minimum (maximum) value
reached is labelled best (worst). The success rate is the proportion of runs in
which an algorithm found the global optimum.

Besides the descriptive results shown in Tables 1 and 2, a hypothesis test is
conducted to properly compare the performance of EMNA+E against EMNA.
The statistical comparisons are for the algorithms with the same test prob-
lem and the same dimension. The t-test is employed to compare the fitness
average between EMNA+FE and EMNA. When a hypothesis test indicates that
EMNA-+E is significantly better than the EMNA, the corresponding average in
in Tables 1 and 2 is marked with an asterix (*).

Another measure that can help in the comparisons of the algorithms is the
success rate. Tables 1 and 2 show respectively the success rate in each dimension
for non-separable and separable functions. If the success rate of EMNA+E is
greater than the success rate of EMNA, it is marked with a dagger (7).
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Table 1. Descriptive results of the fitness for non-separable functions

Algorithm

EMNA

EMNA + E

EMNA

EMNA + E

EMNA

EMNA + E

* denotes EMNA+E is significantly better than the EMNA, at o = 0.05
** denotes EMNA+E is significantly better than the EMNA, at o = 0.01
t denotes that the EMNA+E has greater success rate than the EMNA

d Best Mean

Std.
Dev.

Median Worst

Ackley

4 1.86E-7 5.28E-1

6 5.01E-5 1.57E40
8 1.65E-2 3.20E40
10 6.86E-1 3.85E+0
15 1.34E+0 5.21E+0
20 4.81E4-0 7.09E+0
4 2.71E-7 6.29E-3**
6 6.46E-7 4.57E-2%**
8 7.26E-7 1.57E-1**
10 7.12E-6 3.59E-1**

1.42E-3 4.30E+0 1.11E+0 0.40
8.50E-1 5.60E+0 1.72E4-0 0.00
3.22E+0 9.14E+-0 2.41E+0 0.00
3.12E+0 8.53E+0 1.97E+0 0.00
5.54E+0 8.36E+0 1.60E+0 0.00
7.34E+0 1.00E+1 1.33E+0 0.00
9.24E-7 1.49E-1 2.77E-2 0.60 t
2.22E-3 5.76E-1 1.14E-1 0.23 ¢}
2.69E-2 1.32E+40 3.11E-1 0.03 {
1.60E-1 1.59E4-0 4.42E-1 0.00

15 2.15E-2 1.96E40** 1.81E+0 3.25E+0 8.35E-1 0.00
20 2.10E+4-0 3.84E+0** 3.66E+0 6.44E+0 1.23E40 0.00
Griewangk

4 5.26E-2 1.64E40
6 9.41E-2 3.58E+0
8 2.49E-1 9.65E+0
10 9.86E-1 1.33E+1
15 7.46E+0 5.97TE+1
20 6.36E41 1.08E+2
4 4.95E-2 1.27E-1**
6 1.49E-1 2.86E-1**
8 3.36E-5 3.59E-1**
10 1.37E-3 5.08E-1**

1.68E-1 1.28E4-1 3.31E4-0 0.00
4.67E-1 3.39E+1 7.25E4-0 0.00
5.24E+0 9.45E+1 1.73E+1 0.00
8.47E40 5.01E+41 1.36E+1 0.00
5.46E+1 1.21E+2 2.44E+1 0.00
1.06E+2 2.03E4-2 3.05E41 0.00
1.23E-1 2.43E-1 5.09E-2 0.00
3.01E-1 4.10E-1 7.07E-2 0.00
3.53E-1 6.70E-1 1.96E-1 0.00
1.89E-1 2.90E+0 7.50E-1 0.00

15 1.54E+0 9.27E+0** 7.03E+0 2.73E+1 7.28E+0 0.00
20 4.32E4+0 2.97TE+1** 3.04E+1 6.46E+1 1.49E+1 0.00
Rosenbrock

4 3.32E-7 3.01E40
6 3.26E-5 1.24E+1
8 1.26E-1 7.82E42
10 7.24E+0 3.24E+3
15 4.36E+2 3.14E+4
20 7.12E4-2 1.056E+5
4 413E-5 1.77E40
6 1.01E40 4.53E+0*
8 2.05E40 1.56E+1*
10 7.03E+0 3.51E+1*

1.23E4-0 4.32E+1 7.76E+0 0.03
4.28E40 1.19E+2 2.34E+1 0.00
4.61E41 1.22E4+4 2.31E+3 0.00
1.28E4-2 3.71E+4 8.25E+3 0.00
1.47E+4 1.64E4-5 4.50E+44 0.00
6.40E+4 5.45E+5 1.30E+5 0.00
1.37E+0 9.71E4-0 2.01E4-0 0.00
4.01E4-0 1.32E41 2.12E+0 0.00
8.20E+0 4.44E+1 1.38E+1 0.00
1.29E+1 2.72E4-2 5.09E41 0.00

15 1.46E+1 1.35E42** 7.45E+1 1.31E+43 2.37TE+2 0.00
20 7.73E+1 8.23E+2** 4.00E+2 4.26E+3 8.83E+2 0.00

Success
Rate

87
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Table 2. Descriptive results of the fitness for separable functions

Algorithm d  Best Median Worst Std.

Dev.

Success
Rate

Mean

Rastrigin

4 3.57TE-7 4.74E40
6 1.99E+0 1.24E+1
8 9.95E+0 3.10E+1

3.69E4-0 2.09E+41 4.86E+0 0.07
1.04E41 3.32E+1 6.76E+0 0.00
2.72E+1 8.77E+41 1.63E41 0.00

EMNA 10 2.17E+1 5.01E+1  4.81E+1 1.01E42 1.94E+1 0.00
15 6.45E+1 1.15E+2  1.07E+2 2.16E+2 3.83E+1 0.00
20 1.35E4+2 2.37TE+2  2.27TE+2 4.58E+2 7.26E+1 0.00
4 1.30E+0 3.91E4+0 3.92E+40 7.91E+40 1.36E+0 0.00
6 4.79E-7 1.08E+1 1.04E+1 1.57E+1 3.30E+40 0.03
EMNA + E 8 1.30E+1 1.99E+1** 1.92E+1 2.75E+1 4.15E+0 0.00
10 8.26E-2 3.27TE+1** 3.39E+1 4.58E+1 8.23E+40 0.00
15 5.16E+1 7.22E+1** 7.38E+1 8.48E+1 9.23E+0 0.00
20 8.67TE+1 1.20E+2** 1.22E+2 1.54E+2 1.45E+1 0.00
Sphere
4 4.46E-7 3.70E+3 3.13E+1 4.83E+4 9.38E+3 0.17
6 9.20E-7 1.27TE4+4 4.76E+3 1.02E+5 2.08E+4 0.03
EMNA 8 1.16E-2 3.66E+4 2.90E+4 2.02E45 4.52E+4 0.00
10 1.14E+4 9.86E+4  7.30E+4 3.09E+5 8.14E+4 0.00
15 9.27TE+4 2.04E+5 1.94E+5 3.65E45 7.13E+4 0.00
20 1.43E+5 3.94E+5 3.80E+5 6.51E+5 1.42E+5 0.00
4 7.18E-8 6.21E-3* 8.64E-7 1.61E-1 2.94E-2 0.53 t
6 2.08E-7 1.25E40** 3.66E-4 2.58E+1 4.70E+0 0.33 1
EMNA + E 8 4.99E-7 9.94E+1** 6.34E+0 2.11E+43 3.83E+2 0.03 T

10 3.29E-2 9.01E+2** 1.24E+2 7.68E+3 1.82E+3 0.00

15 1.16E+3 3.25E+4** 3.12E+4 8.48E+4 2.22E+4 0.00

20 7.24E+3 1.26E+5** 1.20E+5 2.28E+5 6.04E+4 0.00

* denotes EMNA+E is significantly better than the EMNA, at o = 0.05
** denotes EMNA+E is significantly better than the EMNA, at o = 0.01
1 denotes that the EMNA+E has greater success rate than the EMNA

Tables 1 and 2 show a total of 30 comparisons. Out of the 18 comparisons for
the non-separable functions, the EMNA+E excels in 17 cases. Similarly, out of
the 12 comparisons for the separable functions, the EMNA+E excels in 10 cases.
These results give an evidence of the benefits achieved by the incorporation of
the exploration stage in EDAs. However, regarding the number of evaluations,
Tables 3 and 4 show that EMNA+E requires more function evaluations than the
EMNA.
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Table 3. Descriptive results of the number of evaluations for non-separable functions

Algorithm

EMNA

EMNA + E

EMNA

EMNA + E

EMNA

EMNA + E

d Best Mean Median Worst Std.
Dev.
Ackley
4 1.52E+3 2.07E+3 2.20E+3 2.56E+3 3.78E+2
6 3.42E+3 4.11E+3 4.02E+3 5.58 E+3 4.19E+2
8 5.52E+3 6.34E+3 6.12E+3 8.48E+3 6.95E+2
10 7.60E+3 8.80E+3 8.35E+3 1.54E+4 1.56E+3
15 1.17E+4 1.52E+4 1.46E+4 2.16E+4 1.93E+3
20 2.02E+4 2.37TE+4 2.33E+4 2.94E+4 2.22E+3
4 5.04E+3 5.46E+43 5.20E+3 6.00E+3 4.00E+2
6 8.64E+3 9.45E+3 9.60E+3 9.90E+3 3.94E+2
8 1.24E+4 1.34E+4 1.34E+4 1.38E+4 2.52E+2
10 1.69E+4 1.73E+4 1.72E+4 1.80E+4 2.31E+2
15 2.73E+4 2.81E+4 2.78E+4 2.99E+4 6.78E+2
20 3.86E+4 4.01E+4 4.00E+4 4.22E+4 9.20E+2
Griewangk
4 1.40E+3 2.64E+3 2.52E+3 5.32E+3 9.65E+2
6 2.34E+3 4.64E+3 3.90E+3 1.01E+4 1.85E+3
8 4.00E+3 8.52E+3 8.92E+3 1.17TE+4 2.22E+3
10 5.20E+3 1.01E+4 1.03E+4 1.38E+4 1.93E+3
15 8.40E+3 1.33E+4 1.43E+4 1.56E+4 2.00E+3
20 1.28E+4 1.81E+4 1.78E+4 2.38E+4 2.15E+3
4 5.00E+3 5.95E+3 5.64E+3 8.92E+3 9.07E+2
6 7.98E+3 9.30E+3 9.15E+4+3 1.20E+4 1.00E+3
8 1.10E+4 1.39E+4 1.29E+4 2.04E+4 2.96E+3
10 1.42E+4 2.11E+4 2.11E+4 2.58E+4 2.54E+3
15 2.25E+4 2.75E+4 2.81E+4 3.08E+4 2.32E+3
20 3.64E+4 3.75E+4 3.70E+4 4.04E+4 1.22E+3
Rosenbrock

4 1.64E+3 2.70E+3 2.60E+3 3.52E+3 3.73E+2
6 3.84E+3 4.71E+3 4.47TE+3 6.30E+3 6.22E+2
8 3.52E+3 6.91E+3 6.68E+3 9.92E+3 1.11E+3
10 7.80E+3 1.05E+4 1.01E+4 1.71E+4 1.84E+3
15 1.25E+4 1.69E+4 1.66E+4 2.42E+4 2.31E+3
20 1.60E+4 2.45E+4 2.46E+4 2.88E+4 2.49E-+3
4 5.48E+3 6.19E43 6.16E+3 7.04E+3 2.64E+2
6 9.78E+3 1.02E+4 1.00E+4 1.14E+4 4.09E+2
8 1.37E+4 1.44E+4 1.44E+4 1.57TE+4 5.07TE+2
10 1.79E+4 1.90E+4 1.88E+4 2.11E+4 9.03E+2
15 2.49E+4 3.13E+4 3.14E+4 3.47E+4 1.85E+3
20 3.64E+4 4.39E+4 4.29E+4 5.38E+4 4.02E+3
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Table 4. Descriptive results of the number of evaluations for separable functions

Algorithm d  Best Mean Median Worst Std.
Dev.
Rastrigin
4 1.44E+3 2.49E43 2.26E+3 5.80E+43 9.40E+42
6 2.46E+3 4.27E+3 3.93E+3 8.64E+3 1.42E+3
8 2.96E+3 5.50E+3 5.40E+43 1.16E+4 1.96E+3
10 4.30E43 7.18E+43 6.90E+3 1.37E+4 2.44E+43
15 7.05E+3 1.11E+4 1.03E+4 2.58E+4 3.91E+3
20 8.60E+3 1.65E+4 1.49E+4 2.64E+4 5.04E+3
4 5.00E+3 5.73E+3 5.60E+3 8.80E+3 8.19E+42
6 7.62E+3 9.21E+3 8.82E+3 1.51E+4 1.53E+3
8 1.08E+4 1.28E+4 1.28E+4 1.45E+4 1.07E43
10 1.33E+4 1.58E+4 1.51E+4 2.65E+4 2.54E+3
15 2.01E+4 2.37E+4 2.34E+4 2.96E+4 2.43E+-3
20 2.84E+4 3.36E+4 3.38E+4 4.04E+4 3.16E+3
Sphere

4 1.24E+3 2.51E43 2.82E+43 3.32E+3 6.04E+2
6 2.46E+3 4.68E+3 4.80E+3 5.16E+3 5.30E+2
8 6.32E+3 7.07TE+3 7.12E+43 7.44E+3 2.51E42
10 9.00E+3 9.48E+3 9.50E+3 9.90E+3 2.05E+42
15 1.49E+4 1.60E+4 1.61E+4 1.64E+4 2.78E+-2
20 2.28E+4 2.34E+4 2.34E+4 2.40E+4 2.73E+2
4 4.60E+3 5.21E+3 4.76E+3 6.08E+3 5.54E+-2
6 7.86E+3 9.19E+3 9.60E+3 1.02E+4 9.05E+2
8 1.14E+4 1.40E+4 1.42E+4 1.46E+4 5.57E+2
10 1.77E+4 1.85E+4 1.86E+4 1.90E+4 3.72E+42
15 3.00E+4 3.04E+4 3.05E+4 3.11E+4 2.39E+2
20 4.22E+4 4.2TE+4 4.26E+4 4.32E+4 2.98E+2

EMNA

EMNA + E

EMNA

EMNA + E

5 Conclusions

This work has introduced an explicit exploration stage for EDAs. In particu-
lar, the numerical implementation of the exploration stage has been done with
continuous decision variables in a well known EDA (EMNA). According to the
numerical experiments, the explicit separation between the exploration stage
and the exploitation stage (EMNA+E) can help achieving better fitness values.
Nonetheless, the benefit of including an exploration stage requires an increase of
function evaluations.

An important contribution of this paper is the design of a probabilistic model
for the exploration stage. The goal of the proposed model in the exploration
stage is to provide a new tool for finding an set of individuals that can be used
as initial population in the exploitation stage.

Although the statistical comparisons clearly indicate that the EDA with the
exploration stage has better performance than the typical EDA, the success
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rate shows that more experiments are necessary in order to identify where the
exploration stage have a positive impact in EDAs.
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Abstract. This paper approaches the containership stowage problem. It is an
NP-hard minimization problem whose goal is to find optimal plans for stowing
containers into a containership with low operational costs, subject to a set of
structural and operational constraints. In this work, we apply to this problem an
ant-based hyperheuristic algorithm for the first time, according to our literature
review. Ant colony and hyperheuristic algorithms have been successfully used
in others application domains. We start from the initial solution, based in re-
laxed ILP model; then, we look for the global ship stability of the overall sto-
wage plan by using a hyperheuristic approach. Besides, we reduce the handling
time of the containers to be loaded on the ship. The validation of the proposed
approach is performed by solving some pseudo-randomly generated instances
constructed through ranges based in real-life values obtained from the literature.

Keywords: Containership Stowage Problem, Ant Colony Optimization, Hyper-
heuristic Approach.

1 Introduction and Problem Description

The containership stowage problem, denoted in the literature as the Master Bay Plan-
ning Problem (MBPP) [1], is one of the relevant problems involves in the efficient
operation of ports.

MBPP is an NP-hard minimization problem and can be to define as follows: Given
a set C of n containers of different types to be loaded on the ship and a set S of m
available locations on the containership. We have to determine the assignment of each
container to a location of the ship, such that, all the given structural and operational
constraints are satisfied, and the total stowage time is minimized.

F. Castro, A. Gelbukh, and M. Gonzilez (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 93-104, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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In MBPP each container ¢ € C must be stowed in a location [ € S of the ship.
The [/-th location is actually addressed by the indices i, j, k representing, respectively:
the bay (i), the row (j), and the tier (k). We denote by I, J and K, respectively, the set
of bays, rows and tiers of the ship, and by b, r and s their corresponding cardinality.

The objective function is expressed in terms of the sum of the time t;. required for
loading a container ¢, V¢ € C, in location [, VI € S, such that L = Y. t;.. However,
when two or more quay cranes are used for the loading operations the objective func-
tion is given by the maximum over the minimum loading time (Lg) for handling all
containers in the corresponding ship partition by each quay crane ¢, that is L =
maXxgc{Lq}, where QC, is the set of available quay cranes.

The main constraints that must be considered for the stowage planning process for
an individual port are related to the structure of the ship and focused on the size, type,
weight, destination and distribution of the containers to be loaded. For a detailed de-
scription of such constraints, the reader is referred to [2].

In order to optimize a stowage planning, we decompose the problem hierarchically
like in current approaches [3, 4]. The problem is divided into two phases: the first one
consist of generating a relaxed solution, that is, we remove the constraints of stability;
and the second phase is intended to make this solution feasible through simple heuris-
tics handled by the hyperheuristic, in less time. This hyperheuristic was designed with
online learning [5].

A hyperheuristic is a high-level algorithm that acts as a planner over a set of heu-
ristics, which can be selected in a deterministic or nondeterministic form [6]. Hyper-
heuristic does not operate on the problem directly, that is, it does not have domain
knowledge of the problem over which it operates. They aim to be apply to an even
problem domains, such as to be tackled in this work.

This paper is organized into four parts. Section 2 describes our proposed hyperheu-
ristic. Section 3 presents the experimental results. Finally, the last section shows the
conclusions and future work.

2 Proposed Algorithm

We propose a hyperheuristic algorithm to optimize the global ship stability of the
overall stowage plan, and at the same time it minimizes the containers loading time on
the ship.

The proposed hyperheuristic approach (Ant Colony Optimization Hyperheuristic,
ACOHH) uses an ant colony optimization (ACO) algorithm [7] as a high-level meta-
heuristic and seven low level heuristics that interact directly with the solutions of the
problem. An important characteristic to be pointed out is that ACO can only interact
with the low level heuristics.

ACOHH starts with an initial solution S,, which is obtained by solving its associated
relaxed 0/1 LP model up to the first feasible solution reached by the commercial soft-
ware Gurobi. Relaxed 0/1 LP model is composed by the complete 0/1 LP model pro-
posed in [1] but removing the constraints of horizontal and cross equilibrium. Once
obtained the initial solution, ACOHH applies to it a heuristic, which generates a new
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candidate solution. This solution is feasible if satisfies the assignment, weight and desti-
nation constraints (8)-(15) of the MBPP problem formulation [1].

In order to evaluate the heuristic performance, like in [4], we consider the objective
function Z(x) = M (01 (x) + oy (x)) + L(x), where g;(x) and o,(x) are the hori-
zontal and cross equilibrium stability violation functions, respectively. M is a coeffi-
cient, such that M > 0, to strongly penalize, the stability violation functions, in such
a way that we give a high priority to the generation of feasible solutions.

2.1 Low Level Heuristics

The seven low level heuristics (LLH) used in ACOHH was inspired by Ambrosino,
et. al. [4] and are detailed as follows:

1. Anterior-Posterior exchange of location’s contents: This kind of move exchanges
the current content assigned to the locations [ E ANX and I' € PN X, X being a
fixed side of the ship (L or R). Note that this change may affect the cross equili-
brium but does not modify the horizontal equilibrium of the ship.

2. Left-Right exchange of location’s contents: This kind of move exchanges the cur-
rent content assigned to the locations [ ELNX and I' € RN X, X being a fixed
side of the ship (A or P). This move may affect the horizontal equilibrium whereas
it does not modify the cross one.

3. Cross exchange of location’s contents: This kind of move exchanges the current
content assigned to the locations [EANL and I'EPNR (or lEANR and
' € P n L). This move affects both the horizontal and the cross equilibrium.

4. Anterior-Posterior exchange of stacks: This move exchanges the positions of two
whole stacks of containers, s and s’, where s ={l: L€ AnX,l = (i,j, k) with i
and j fixed} and s' ={l":l'e PnX,l = (i',j', k) with i’ and j' fixed}, X be-
ing a fixed side of the ship (L or R). Like heuristic 1, this move may affect only
the cross equilibrium.

5. Left-Right exchange of stacks: This move exchanges the positions of two whole
stacks of containers, s and s’, where s ={l:l€ LN X,l = (i,j, k) with { and j
fixed} and s' ={l":l' e RnX,l = (i',j', k) with i’ and j' fixed}, X being a
fixed side of the ship (A or P). Like heuristic 2, with this move only horizontal
equilibrium may be affected.

6. Cross exchange of stacks: This move exchanges the positions of two whole stacks
of containers, s and s', where s ={l: /€ AnL,l = (i,j, k) with i and j fixed}
and s"={l":"I'"e PnR,l=(",j' k) with i’ and j' fixed} (or s={l:l€AN
R,l=(i,j, k) with i and j fixed} and s" ={l":l'e PnL,l = (i',j' k) with i
and j' fixed}). Like heuristic 3, both the horizontal and cross equilibrium might be
affected.

7. Anterior-Posterior exchange of bays: This move exchanges all locations in two
bays i and i’ located in A and P, respectively, without changing the original row
and tier positions of the containers, for this reason, this move may affect only the
cross equilibrium.
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In the LLH description, we used the following additional notation:

E and O: sets of even and odd bays, respectively, such that E c I, O c [ and
EUO=1I; A and P: sets of anterior and posterior bays, respectively, such that
Acl,Pcland AUP =1I; R and L: sets of right side and left side rows, respec-
tively, suchthat Rc J, LcJ and RUL =].

In the heuristics 1 to 3, [ or I’ could be both: empty or assigned. In order to apply
some of these heuristics, [ and ' must be assigned, that is, when [ and !’ are empty,
the current solution will not improve, so it is not necessary to apply them. For the
heuristics 4 to 6, if two whole stacks of containers s and s’are empty, that is, they do
not have anything assigned, these heuristics will not be applied. This is the case for
heuristic 7, but applied to the bays. For any LLH, two bays i and i’ must be the same
type (E or 0).

Since the choice of the containers to be exchanged is performed randomly, it might
be not satisfy the criteria previously established to apply the heuristic move. In order
to overcome the possible infeasibility, ACOHH allows a certain number of attempts
to choose an item. The items are single location’s contents, stacks and bays.

2.2 Graph Description

In ACOHH, the graph G is complete (network), directed and self-directed, that is, for
any pair of vertices i and j, including the case where j = i, there exists a directed
edge from i to j. The set of vertices V of graph G = (V, E), represents the set of low
level heuristics, i.e., V. = H = {hy, h,, hs, ...,h|H|}, and the set of directed edges E
joins every heuristic to each other E = {(hy, hy), (hy, hy), (hy, h3), ..., (h|H|,
hiy))}. ACOHH uses a certain number of ants HHA = {a;, a,, as, ...,a|A|}, which in
the literature are known as hyperheuristic agents, to construct paths on the graph by
traversing it (see Fig. 1). In this study we fix |[HHA| = |H| = 7, which means that
there are the same number of ants and heuristics. A path P, constructed by an ant k
is a sequence of LLH to be applied to a solution of the problem, the length of any P,
is |H|.

A, R ay

Fig. 1. Example of a complete, directed and self-directed graph G traversed by the hyperheu-
ristic agents

At each vertex, each ant selects the next vertex to be visited, traverses the edge to
that vertex, and applies the heuristic represented by the selected vertex to the current
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solution of the problem. Vertices and edges could be selected more than once in the
path of any ant. After that, each ant evaluates its generated route (compute the objec-
tive value of the constructed solution), and lays a pheromone trail, which is propor-
tional to the solution quality, on those edges crossed by the ant in its path.

2.3  Data Structures

In ACO, the artificial ants used are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to partial
solutions. For that, the ants take into account: heuristic information on the problem
instance being solved, if available, and (artificial) pheromone trails which change
dynamically at run-time to reflect the agents’ acquired search experience [8,9].

Unlike ACO, our hyperheuristic approach has no domain knowledge. The domain
is LLH and their ability to improve an initial solution. When ACOHH chooses the
following low level heuristic through Equation 1, it is based on the following tables:

1. Visibility table n has a size of |H| and stores information that represents the un-
iformly distributed current confidence that heuristic h; € H will lead to a good so-
lution. Visibility table is initially impartial and continually adaptive, due to the
hyperheuristic approach has no knowledge of each low-level heuristic’s potential
in advance, and this potential varies as the colony traverses the solution space [10].

2. Pheromone table T has a size of |H| X |H| and is a dynamic memory structure
containing information on the quality of previously obtained result. The phero-
mone trails are associated with arcs and therefore 7;; refers to the desirability of
applying heuristic j directly after heuristic i. ACOHH algorithm initializes the
pheromone trails with low values, V(i, j), 7;; = 7o = 0.009 [11].

2.4  Algorithmic Description

Algorithm 1 shows the ant hyperheuristic process, which is performed by the hyper-
heuristic agents supplied with an initial solution S,. This process is performed until a
maximal number of cycles is reached. A cycle is the period of time between all ants
beginning their paths and all ants completing their paths. The operation of the algo-
rithm can be divided into three phases.

In the first phase (lines 1-13), so-called initialization, visibility table does not have
information and all pheromone table is initialized with a low value named t,. First,
the ants are located uniformly among the vertices of the network (line 4), that is, a,
in the vertex 1 (heuristic 1), a, in the vertex 2, and so on. After that, they are pro-
vided with an initial solution S = S, (line 7) and each ant applies to its copy of S, the
heuristic i (corresponding to its location) to provide an initial visibility value (line
12). Besides, each ant adds its first heuristic i to its respective path (line 9).

Subsequently, the next phase is the construction process (lines 15-24), which is a
basic ingredient of any ACO algorithm [12]. The ants then construct a path (sequence
of heuristics) by traversing the network. The choice of the next vertex (heuristic) to be
added is done probabilistically according to Equation 1 at each construction step (line
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17). Later, each ant traverses the arc to the selected vertex, and applies the heuristic
represented by that vertex to its current solution (line 18). When all ants have com-
pleted one construction step of the path, visibility table is updated through Equation 4.
This updating process is done until all ants construct their paths completely.

Algorithm 1. ACOHH (G = (V, E), S,)

1. Initialize: S « Sy, Spe < So» Sg < So» hpe < 0
2. for each vertex i set an initial value n; « 0

3. for each edge (i,j) set an initial value 7;; « 7,
4. Scatter the ants uniformly on the |H| vertices

5. for each ant k do

Initialize the path P, « {0}

Provide a copy of initial solution S < S
Apply heuristic i to solution S;, to produce S,
9. Addtopath P, « P, Ui

10. Update S, and hy,

® N

11. if Sy, is better than Sy, then S,. « Sy, and h;, < i
12.  Update 1; according to the Equation 4
13. end for

14. for each cycle ¢ do
15.  for each step s do

16. for each ant k do

17. Apply the selection rule: j = f({py,;lj € H})

18. Apply heuristic j to solution Sj to produce Sy

19. Add to path P, < P, Uj

20. Update Sy, and hy,

21. if Sy is better than S, then S, « S and hy, « j
22. end for

23. Update n; according to the Equation 4

24.  end for

25.  Update 7;; according to the Equation 5
26. foreach ant k do

217. S« Spe

28. Provide a copy of best solution of the cycle S, « §
29. i« hy,

30. i <1

31. end for

32.  Update S; /IS4 is the output of the algorithm

33. if Sy is better than Sy, then S, « Sp,

34. end for

In the final phase, named update process, of the algorithm ACOHH (lines 25-33)
the ants evaluate their generated solution, this rule is formalized in Equation 5. Addi-
tionally each ant deposits the pheromone trail on the traveled path (line 25), that is,
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the sequence of low level heuristics selected for it. At the end of each cycle all of the
ants are relocated in region of the solution space where the best solution of that cycle
was found. Then, in the next cycle the ants start their paths at the vertex of the net-
work whose associated heuristic discovered the best solution of the previous cycle
(lines 26-31). ACOHH returns the best solution S, found during all cycles.

2.5 Behavior Rules

ACOHH has three rules of behavior: the selection, visibility update and pheromone
update. These rules update the data structures introduced in Section 3.2. We now
describe them in the following paragraphs.

Selection Rule
The selection process of the current ant requires combining the visibility (n table) and
pheromone (7 table) values for each arc. At each construction step, ant k applies a
probabilistic action choice rule, called random proportional rule, to decide which
heuristic to apply next. This rule is based on the ant system formulation [13].

In particular, the probability with which ant k, currently at vertex (heuristic) i,
chooses to visit vertex j is:

I CHEOA

i = o
7 Zien(9i)*(6)F
where a and § are two parameters which determine the relative influence of the
heuristic information and the pheromone trail, and H is the set of low level heuristics.

When one or more heuristics find a solution of poorer quality than the current solu-
tion, the heuristic j will not have possibility to be selected, as stated in Equation 2.

0, otherwise

€y

(2)
Like 7, when one or more arcs have pheromone trails with a large penalization, none
of them will have a possibility to be selected, this is given by:

¢ _ {Ti,j' ifTi'j >0
L7 o, otherwise '

(3)

In the case that all heuristics have negative performance, we choose one heuristic
randomly. This is with the finality of encourage a diverse search of the solution space.
Initially, beginning the first cycle (c = 1), the ants are scattered uniformly among the
vertices of the network with a copy of an initial solution S. In the first step of this
cycle, each ant applies the heuristic to its copy of S corresponding to its location, and
adds the first heuristic in its path. That is, in this step the ants do not apply the Equa-
tion 1. Besides, the ants provide an initial visibility value, according to Equation 4.

After the first cycle, the ants adopt the best solution found of the previous cycle,
which will be the new S in current cycle. For the example of Fig. 1, assuming the
best solution S, of the previous cycle was discovered by the ant a; applying heuris-
tic hs, the ants will adopt this best solution in current cycle (S = Sj.) [10].
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Visibility Update Rule

Like in [10], in this paper visibility function 7n; is adaptive and corresponding to
individual performance of the heuristic h;, this value is updated after all ants have
completed each step s of their paths:

I -
n(s) =ymyls — 1)+ ZkEHHA T’I(cjji)) (©))

where HHA is the set of ants in the colony, I ;(t) is the improvement (which could
be negative) produced by heuristic h; on ant k-th current solution at decision point s
(step), Ty ;(s) is the running time spent by heuristic h; at decision point s, this value
is given in CPU nanosecond, and y is the decreasing rate of visibility (number be-
tween zero and one). The parameter y is used to avoid unlimited accumulation of the
heuristic information and it enables the algorithm to ‘‘forget’” older preferences pre-
viously taken.

Pheromone Update Rule
This rule is based on the ant system formulation [13] and the hyperheuristic phero-
mone function [10].

Once all the ants have constructed their paths, the pheromone trails are updated.
This is done by first lowering the pheromone value on all arcs by a constant factor,
and then adding a determined amount of pheromone on the arcs where the ants have
crossed in their paths. In fact, if an arc is not chosen by the ants, its associated phero-
mone value decreases exponentially with respect to the number of cycles.

The amount of pheromone on each arc 7; ; between heuristic i and heuristic j at

cycle c is adjusted as follows:

TN, ; (Pk(c))[k(Pk (C))
KEHHA T (P (€))

Tty () = =Pyl =D+ Y (5)
where p is a parameter called evaporation coefficient (number between zero and one),
P, (c) is the path that ant k traversed during the final cycle, TNL-J-(P,((C)) is the
number of times the arc (i,j) was traversed by the ant during path Py (c). The im-
provement produced by ant k used during its last path is [ (Pk (C)), this is the differ-
ence between the best solution quality found during this path and the best solution
quality found at the end of the previous cycle, and T}, (Pk (c)) is the running time in
CPU nanoseconds. Thus, arcs that are used by many ants and which have high quality
of the solutions achieved receive more pheromone and are therefore more likely to be
chosen by ants in future cycles of the ACOHH algorithm.

3 Experimental Results

In this section the performance of the ACOHH algorithm is tested. In the following
subsections we describe the test instances, experimental environment and the perfor-
mance analysis.
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3.1 Test Cases

In order to validate our hyperheuristic approach, we generate a set of pseudo-random
instances (test cases) according to the format and conditions defined in [2].

The dataset is formed by small-sized instances. Table 1 reports the containers cha-
racteristics of the considered 10 instances, showing the total number of containers, in
TEU and absolute number (n), the number of containers of types 20’ (7) and 40’ (F),
the number of containers for three classes of weight (L: low, M: medium, H: high) and
the partition of containers for each destination. Three classes of weight are consi-
dered, namely low (from 5 to 15 tons), medium (from 16 to 25 tons) and high con-
tainers (from 26 to 32 tons).

Table 1. Containers for the set of small-sized instances

Type (n) Weight (n) Destination (1)
Instance TEU n

T F L M | H| Dy | D, | D3
1 69 50 31 19 | 23 25 2 23 | 27 0
2 83 60 37 23 26 | 32 2 27 | 33 0
3 85 65 45 20 | 30 | 33 2 31 34 0
4 88 65 42 23 | 29 | 34 2 31 34 0
5 90 70 50 20 | 31 37 2 30 | 40 0
6 90 75 60 15 35 38 2 32 | 43 0
7 93 65 37 28 30 | 33 2 31 34 0
8 93 70 47 23 1 29 | 39 2 32 | 38 0
9 93 70 47 23 31 36 3 25 | 20 | 25
10 94 74 54 20 | 34 | 38 2 25 | 25 24

These instances concerns a small size containership, with a maximum capacity of
240 TEU, composed of 12 odd bays, 4 rows and 5 tiers (3 in the hold and 2 in the upper
deck, respectively). Table 2 shows the loading times for the small containership. The
maximum horizontal weight tolerance (Q;) was fixed to 18% of the total weight of the
all containers to load. While the maximum cross weight tolerance (Q,) was fixed to 9%
of the total weight, expressed in tons. Respecting MT, that is, the maximum stack
weight tolerance of three containers of 20°, was fixed to 45 tons and MF (the maximum
stack weight tolerance of three containers of 40’) was fixed to 66 tons.

Pseudo-random instances were generated for the purpose of their reproduction in a
reasonable time, because the initial solution is found by an exact method. Each row in
the Table 1 is associated to each instance. This row represents the characteristics of
the containers set C to be loaded on the containership. In each instance, the first I71
containers of set C are of 20° and the following IFl containers are of 40'. In relation
to the characteristic of Weight, the first Ll containers of the set C are light, the next
IM| are medium weight and the last |HI are heavy. Finally, the characteristic of Desti-
nation of the containers of the set C, are established of the same sequence that Weight
characteristic.
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Table 2. Loading times for the set of small-sized instances, the times are expressed in 1/100 of
minute, taken from [4]

Tier Row
3 1 2 4
2 240 250 260 270
4 230 240 250 260
4] 220 230 240 250
82 210 220 230 240
84 200 210 220 230

3.2 Infrastructure

The following configuration corresponds to the experimental conditions:

e Software: Operating system Microsoft Windows 7 Home Premium; Java pro-
gramming language, Java Platform, JDK 1.6; and integrated development, Net-
Beans 7.2. Solver Gurobi 5.0.1.

e Hardware: Computer equipment with processor Intel (R) Core (TM) i5 CPU M430
2.27 GHz and RAM memory of 4 GB.

3.3  Performance Analysis

Table 3 shows the comparison of the results obtained by three solution methods for
the set of small-sized instances. The objective values are given in 1/100 of minute
(Obj) and CPU time, expressed in seconds (Time). The results are divided into three
relevant columns according to solutions found by: complete 0/1 LP model [1]; relaxed
0/1 LP model; and ACOHH algorithm. The computational execution of complete 0/1
LP model and relaxed 0/1 LP model were stopped when the first feasible solution is
reached by the commercial software Gurobi.

ACOHH algorithm was executed thirty times per instance with the following con-
figuration: ants number, LLH number, and the length of each path was fixed to 7, the
number of cycles was fixed to 1000 , 7, = 0.009, a =10, f =20 and y =p =
0.5. The Avg Obj column reports the average of total loading time reported by
ACOHH, Avg Time column shows its running time (CPU time) and the last column
Tot Time indicates the total (average) CPU time needed by the relaxed 0/1 LP model
and ACOHH phases.

It is observed that the ACOHH algorithm outperforms the first solutions produced
by the complete model for the MBPP. ACOHH algorithm achieved an average per-
formance of 158.727 minutes for total loading time, in an average total CPU time of
33.888 seconds; while the performance achieved by complete 0/1 LP model was of
160.12 minutes of total loading time, in a CPU time of 57.497.

Additionally, to validate the results, non-parametric statistical test of Wilcoxon
[14] was performed through the VisTHAA tool [15]. The results of this test reveals
that the performance of the algorithm ACOHH shows a significant improvement over
the solutions found by complete 0/1 LP model, on the set of the 10 test instances, at a
confidence level 95%. Besides, ACOHH reduced the CPU time in 41.06% with re-
spect CPU time spent by 0/1 LP Model.
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Table 3. Comparison of the computational results for the small-sized instances

Relaxed 0/1 LP Model*
mse, | T EPMOde™ g ial solution for ACOHHD) ACOHH
Obj, Time Obj, Time 0 o, Avg Obj Avg Time Tot Time
1 11930 | 13.357 | 11970 | 4.081 77 | 283 | 11996.666 7.359 11.440
2 14290 | 23.825 | 14590 | 23.975 | 77 | 200 14363 8.733 32.708
3 15840 | 47.987 | 15610 | 14.723 | 79 | 398 | 15544.666 9.852 24.576
4 15440 | 30.897 | 15650 | 19.874 | 26 | 110 | 15523.666 10.374 30.248
5 17050 | 68.121 | 16790 | 29.659 | 238 | 22 | 16743.666 9.554 39.213
6 18020 | 62.720 | 18000 | 31.245 | 126 | 110 | 17949.333 11.112 42.358
7 15650 | 53.697 | 15200 | 8.505 | 457 0 15389 10.441 18.946
8 16910 | 71.581 | 16760 | 25.651 | 62 | 183 16712 11.165 36.817
9 16990 | 95.706 | 16820 | 36.064 | 50 59 | 16746.666 14.205 50.269
10 | 18000 | 107.077 | 17980 | 40.735 0 84 | 17758.666 11.565 52.301
Avg | 16012 | 57.497 | 15937 | 23.451 15872.733 10.436 33.888

*It was stopped when the first feasible solution is reached by the commercial software Gurobi.

4 Conclusions and Future Work

In this paper, we apply an ant-based hyperheuristic algorithm, so-called ACOHH, for
the first time, according to our literature review, for the Containership Stowage Prob-
lem. The hyperheuristic algorithm optimizes the global ship stability of the overall
stowage plan, and also at the same time it reduces the handling time of the containers
to be loaded on the ship.

Additionally, we proposed a dataset of pseudo-random instances to validate the
proposed approach. On this dataset instances, ACOHH algorithm outperformed the
first solutions produced by the exact complete model for the MBPP taken from the
literature, and reduced the CPU time in 41.06% too.

According to the experimental results we can conclude that our proposed hyper-
heuristic is competitive regards to other alternatives from the current state of the art.
ACOHH can produce feasible solutions in a short running time, and this approach
could be applied to solve real instances. Moreover, as a future work it is considered to
test other initial solutions for ACOHH, for example a variety of heuristic methods. It
could be interesting to compare ACO against some other metaheuristic approaches,
such as Genetic Algorithms, Simulated Annealing, among others.
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Abstract. In this paper we present new components to be included in harmony
search algorithms. These components are inspired from music improvisation. The
Modal improvisation uses musical modes rather than chord progressions as a har-
monic framework. We also include the notion of tone scales that allows the algo-
rithm to visit different parts of the search space. We evaluate our approach solving
instances of the Multidimensional Knapsack Problem instances. We compare our
results with those obtained by the former harmony search algorithm, and with the
well-known state-of-the-art results.

Keywords: Harmony Search, Discrete Optimization.

1 Introduction

Harmony Search has been introduced as a new metaheuristic inspired from jazz music
improvisation to solve hard problems, [1]. This technique has been successfully applied
to solve various well-known problems, [2]. Because the idea of using a technique based
on music looks very promising, we propose in this paper to include components in-
spired from music into harmony search algorithms. These components allow the search
of the standard harmony search algorithm to improve. Moreover, because of the great
presence of musical components, our approach is much different from classical meta-
heuristics. The goal of our research is to improve the search of harmony search al-
gorithms by including new inspired musical components. We find the best parameter
values for our algorithms using EVOCA [3], a recently proposed tuner for metaheuris-
tics. We also report a statistical analysis for comparison. In the next section, we briefly
describe the classical harmony search algorithm. This is followed by a description of the
Multidimensional Knapsack Problem (MKP), which we use to evaluate our approach.
The musical based components and mechanisms incorporated on the harmony search
structure are introduced in Section 5. Section 6 presents the experimentation, statistical
analysis and comparison using well-known MKP instances, and finally, Section 7 gives
the conclusions of our work and ideas for future work.

* This work is partially supported by FONDECYT Project 1120781 and Centro Cientifico Tec-
nolégico de Valparaiso (CCT-Val) FB0821.

F. Castro, A. Gelbukh, and M. Gonzdlez (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 105-117, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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2 Standard Harmony Search Algorithm

[4] introduces the Harmony Search (HS) metaheuristic inspired in the jazz music im-
provisation. Roughly speaking, the idea comes from musicians who search to improve
harmonies in order to obtain aesthetic melodies. Thus, HS is a population-based meta-
heuristic. From the optimization point of view, each harmony represents a candidate
solution which is evaluated using an evaluation function. The changes are inspired by
music improvisation that are randomly applied to previous candidate solutions in mem-
ory. The HS algorithm uses a population of candidate solutions or Harmony Memory
(HM). At the beginning a HM is randomly generated. At each iteration a new solution
is either generated from memory information, or randomly. Two parameters guide the
generation of the new solution. The Harmony memory considering rate (HMCR) and
Pitch adjusting rate (PAR) correspond to the rate of randomly updated solutions. For
each variable, its value in the new solution is either obtained from a direct copy of
a selected value in the memory, or from a selected value from the memory that goes
through a small perturbation, or randomly generated. The new solution is evaluated and
replaces the worst candidate solution in the population if it obtains a better evaluation
value. This process is repeated, until a termination criterion is reached. The pseudocode
is presented in algorithm 1. At step (5) in this figure, the variable value comes from the
memory. Different strategies can be applied. The most popular are to randomly select a
value for this variable from the memory. Another strategy is to select the value from the
best evaluated harmony the memory. At step (7) a little perturbation using equation 1
is made to the previously selected value using a bandwidth (BW) value. When the al-
gorithm does not use the value in memory (step (10)), a new value belonging to the
variable domain is randomly generated. Finally, after the evaluation, if the new solution
is better than the worst one, it takes its place in the memory (step(15)).

new solution[i]| = new solution[i] + random(0,1) * BW (1)

This algorithm has been applied to solve various problems with continuous domains,
[5]. Some modifications have been proposed to solve discrete problems, [6] , [7], as
well as to include an on-line tuning strategy in order to control the parameters HCMR
and PAR during the search, [8].

Before describing the new musical inspired components, we briefly present the Mul-
tidimensional Knapsack Problem (MKP) in the following section. We use MKP to il-
lustrate our new components, and also to evaluate the algorithm in the experiments
section.

3 Multidimensional Knapsack Problem

The 0-1 Multidimensional Knapsack Problem (MKP), defined as a knapsack with mul-
tiple resource constraints. It consists in selecting a subset of n objects or items in such a
way that the total profit of the selected objects is maximized while a set of m knapsack
constraints are satisfied.
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Algorithm 1. Standard Harmony Search
1: Generate Randomly Initial Population HM of size HMS
2: while (max — number — iterations) do

3 fori:=1to N do

4 if (HMCR < rnd(0,1)) then

5: new-solution[i] from HM

6: if (PAR < rnd(0,1)) then

7 new-solution[i] < perturbed(new-solution[i])
8

: end if

9: else

10: new-solution[i] <— randomly generated

11: end if

12: end for
13: Fitness-new-solution <— Evaluate(new-solution)
14: if (Fitness-new-solution better Worst memory solution) then
15: Replace Worst memory solution
16: end if

17: end while

Formally, given

X, - {(1) if objec(t)tzi1 1esr i:al;:apsack @)
Maximize Z = i:piXi 3)
Subject to: Z
— Knapsack Constraints
zn:Xiwijgcj,ijl,‘.‘,m “)

?

where p; is the profit of the object <. MKP is an NP-hard optimization problem that can
formulate many practical problems such as capital budgeting where project ¢ has profit
p; and consume w;; units of resource j. The goal is to determine a subset of n projects
such that the total profit is maximized and all resource constraints are satisfied. We have
choosen this problem because many approaches already exist to solve it, and because
there are well-known benchmarks that can be used to evaluate our work.

4 Adaptive Binary Harmony Search

Adaptive Binary Harmony Search (ABHS) has been proposed in [6] to solve applica-
tions with binary domains. Thus, this algorithm can solve MKP. In this algorithm the
classical equation 1 is replaced by a bit assignment from the best solution found. Pseu-
docode is presented in algorithm 2. Initially, ABH S sets the values for PAR (Pitch
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Adjusting Rate), H M C'R (Harmony Memory Considerating Rate), H M .S (Harmony
Memory Size) and NI (Number of Iterations). Then the population is randomly gen-
erated in Init HarmonyMemory(). ABHS uses a binary representation and the al-
gorithm selects only feasible solutions. ABH S creates a new harmony called N H in
ImproviseNewHarmony() and if it’s better than the worst solution in
memory, UpdateHarmonyMemory() replaces the worst with NH. Finally,
SetBestHarmony() identifies the best solution in memory.

Algorithm 3 shows the procedure I'mprovise NewHarmony(). A new solution is
constructed by selecting a bit either from HarmonyM emory or at random according
to the HMCR parameter value. The procedure I'mprovise N ewH armony is focused
on improving NH by including some bits from the best solution (BestGlobal Solution).
For this, it uses the P AR parameter.

Algorithm 2. ABHS

Set PAR,HCMR,HMS, NI

InitHarmonyMemory();

while (current iteration < NI) do
ImproviseNewHarmony();
UpdateHarmonyMemory();
SetBestHarmony();
current iteration + +;

end while

S Our Approach

In this section, we introduce modifications and different components to use in harmony
search inspired algorithms. To explain our approach we use ABHS and MKP. We in-
troduce in the following sections four algorithms that use different musical concepts
named ABHS*, HS wHC, HS wTones and HS wModes. These algorithms use the
same procedure to create the initial harmony as well as the perturbation criteria.

Initial Harmony: All of the previous algorithms use a binary representation and gen-
erate the initial harmony as follows.: In the classical HS the initial harmony memory
or population is randomly generated. However, when a musician begins to play a given
piece of music, he/she actually has an initial knowledge about the different harmonies
and which combinations sound good or not. Thus, for MKP, we generate the initial
population using the following three heuristics:

— A random generation

— Weight decreasing order: This heuristic is used to first consider the light objects
with the idea of obtaining a greater profit.

— Efficiency increasing order: This heuristic takes into account both the weight and
the profit of the object to be included. It uses a rate computed as p ‘ , to measure the
contribution related to the reduction of the knapsack free- capa(:1ty
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Algorithm 3. ImproviseNewHarmony()
NH < ZeroVector of n size (n: number of objects)
for Each bit k of the Vector of NH do
rani <Random number between 0 and 1
if (ran1 < HMCR) then
1 <—Random number between 0 and HMS-1
NHIk] + HM]IEK][{]
if (!CheckFeasibleSolution()) then
NH[k] «+ 0
end if
else
ranz <—Random number between 0 and 1
if (ranz > 0.5) then
NHIk] + 1
else
NHI[k] + 0
end if
end if
end for

for Each bit k of the Vector NH do
rans <—Random number between 0 and 1
if (rans < PAR) then
N H k] + BestGlobalSolutionlk]
if (!CheckFeasibleSolution()) then
NH[k] + 0
end if
end if
end for

The heuristics are used by a greedy procedure. We have made special attention in the
diversity of the initial population. For this, all the candidate solutions in memory are
checked to be different. Algorithm 4 shows the procedure. Init Harmony Memory is a
greedy procedure which takes the objects from an ordered list. This list can be randomly
ordered or drawn up either in weight decreasing order or in efficiency increasing order.

Perturbation Criteria: Some decisions made in the classical HS implementation do
not take into account the quality of the intermediate solution obtained. For instance, it
can use a value from memory, and decide to apply a perturbation to this value. The algo-
rithm will apply this perturbation whether or not it improves the current solution. Doing
that, the algorithm can loose some good solutions without remembering that they were
already generated. Therefore, in all of our algorithms, perturbations are only accepted
when the current solution is improved.

51 ABHS*

The algorithm ABH S* is similar to ABHS, but it generates the initial harmony and
includes the perturbation criteria described above.
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Algorithm 4. InitHarmonyMemory()

1: RandomList <— OrderRandomly();

2: WeightList <— OrderByWeight();

3: EfficiencyList <— OrderByEfficiency();
4: option < 0

5: while (!completed population) do

6: switch (option)

7 case O:

8: GenerateSolutions(RandomList);
9:  case 1:
10: GenerateSolutions(WeightList);
11:  case 2:
12: GenerateSolutions(EfficiencyList);
13:  default:
14: break;

15: end switch

16:  (option 4+ 1)%3;

17: end while

18: SelectBestHMSSolutions();

5.2 HS wHC

The essential of the human improvisation task is oriented to improve musical aesthet-
ics. Thus, in our the HS wHC algorithm, when it constructs a new harmony, it follows
a local search procedure that uses a first-improvement strategy with a swap move, be-
fore being evaluated to be included in memory. Algorithm 5 shows this procedure. The
algorithm only allows feasible candidate solutions.

Algorithm 5. HS wHC
1: Set PAR, HCMR,HMS , NI, RAN
2: InitHarmonyMemory();
3: while (current iteration < NI) do
ImproviseNewHarmony();
HCO;
UpdateHarmonyMemory();
SetBestHarmony();
current iteration + +;
: end while

R e A S

5.3 HS wTones

In order to do a good improvisation, a musician knows the tones to use. Different tonal
changes are done during the improvisation task. An experienced musician knows the
most suitable tone to be used to produce a better harmony. Using this idea, we include
a new component whose goal is to modify the tone before harmony improvisation. It is
translated by modifying the seed before the improvisation of each harmony, such that
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Algorithm 6. HC()
l: Aux NH «+— NH
2: for N times ( N: size of the Vectors Aux N HandN H) do
3: 4 <—Random number between 0 and N — 1
4: 7 <—Random number between 0 and N — 1
5:  Swap(Aux NHIi|, Aux NH[j]);
6:  if (!CheckFeasibleSolution()) then
7 Swap(Aux N H[j], Auz NH]i])
8

: else
9: if (Flitness Aux NH > Fitness N H) then
10: NH < Aux NH
11: break;
12: end if
13: end if
14: end for

each harmony follows different patterns according to the associated seed. Algorithm 7
shows the pseudocode with the tonal modifications. The algorithm, before trying to
include the new solution in memory, uses the same hill climbing procedure as in the
previous algorithm.

Algorithm 7. HS wTones
1: Set PAR,HCMR,HMS,NI, RAN
2: InitHarmonyMemory();
3: while (current iteration < NI) do
4: srand(seed);
5 ImproviseNewHarmony();
6:  HC();
7:  UpdateHarmonyMemory();
8: SetBestHarmony();
9: current iteration + +;
0: seed + = current iteration;
1: end while

5.4 HS wModes

Instead of focusing on the chord sequence of the song, modal jazz is all about scales
and modes. This gives more freedom. The accompanying instruments don’t have to fol-
low the chords, the soloist can create melodies of his own instead of arpeggiating, on
and on the same chord sequence. Thus, to create jazz improvisations it is also possi-
ble to use various scales beginning from the same tone. It gives the option of changing
the melody colour during scale changes by doing variations in the interval sequences,
which allows the space of new harmonies to increase. This is known as musical modes
and comes from Greek musical theory, but they were only incorporated in the sixties by
Miles Davis and John Coltrane [9]. The seven modes are organized from each step of
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the scale, thus the modes that have no sharps and no flats are: C Ionian/Major, D Do-
rian, E Phrygian, F Lydian, G Mixolydian, A Aeolian/Minor and B Locrian [10]. In our
implementation, this theory is included by generating seven new harmonies beginning
at a fixed tone at each iteration. The idea is to apply the tones modification and to select
the best harmony from the seven choices which have previously followed a hill climb-
ing procedure. Algorithms 8 and 9 show the details of the procedure. The difference
between HS wTones and HS wModes is a new procedure called Modes(), which in-
cludes Improvise NewHarmony (for creating all the new harmonies) and HC() (to
improve them). HS wModes includes the HS wTones tonal variation, modifying the
seed at each iteration. At the end of each iteration in Algorithm 9, Modes() creates one
solution per Mode with ImproviseNewH armony, then HC tries to improve it. The
best of the seven harmonies is selected.

Algorithm 8. HS wModes

1: Set PAR, HCMR,HMS, NI, RAN
2: InitHarmonyMemory();

3: while (current iteration < NI) do
4 srand(seed);

5: Modes();

6:  UpdateHarmonyMemory();
7 SetBestHarmony();

8 current iteration + +;
9: seed + = current iteration;
10: end while

Algorithm 9. Modes()

1: for Each of Seven Modes do

2 ImproviseNewHarmony();

3: HCQ;

4. Vectormodes < Push back(NH);
5: end for

6: NH « BestSolution(Vectorsodes);

6 Experimental Evaluation

In this section we report the results obtained by the algorithms when solving MKP
instances. The goal of the tests are:

1. To evaluate the ability of harmony search algorithms to find good values for MKP.
2. To compare the performance of the different algorithms and to evaluate the contri-
bution of the new components and musical inspired ideas to improve the search.

To compare the approaches here presented, we only used MKP instances involving
20 objects or more. The MKP benchmarks can be found on the website!.

! http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
http://www.cs.nott.ac.uk/ jgd/mkp/index.html
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6.1 Comparing different Versions of HS

At this point it is important to remark that the goal of these tests is to evaluate if HS
inspired techniques can solve MKP instances more than to find the best algorithm for
solving MKP. Our ideas are focused on improving the Harmony Search metaheuristic.
The tests are carried out on our four algorithms:

the first one is the version ABH S*,

the second one includes the hill-climbing first-improvement procedure,

the third algorithm incorporates the idea of Tones to the second algorithm, and
finally, the approach which includes the Modal improvisation idea

Tuning Results. In order to do a good comparison, all algorithms have been fine-tuned
using EVOCA, which is a new tuner recently proposed for metaheuristics, [3]. EVOCA
and the tests are available on our webpage comet.informaticae.org®. The parameters
tuned are the size of the harmony population, HMCR, PAR and RAN. Parameter RAN
corresponds to the probability of taking a random value for a variable, instead one
value from the memory which has been perturbed. The algorithms are independent
from EVOCA. We can use any tuner like ParamILS, REVAC or another one. We use
EVOCA because it strongly reduces the initial parameters values setting effort. Table 1
shows the parameter’s values.

Table 1. EVOCA results

Algorithm HMS HMCR PAR RAN

ABHS* 44 0.892 03 0.1
HS wHC 44 0871 05 0.1
HS wTones 13 0.9 0.297 0.464
HS wModes 26 02 03 0.1

Comparing ABHS to ABH S™ The first set of tests is to contrast the results obtained
using ABHS and ABH S*. We have used 50 different seeds to run each algorithm for
a maximum of 100000 iterations. The ABHS parameter’s values are those reported by
the authors: HMS 20, HMCR 0.6, PAR 0.4 and RAN 0.5.

Table 2 shows the results for each instance tested and reports the best value as well as
the average of the best solutions obtained for each algorithm. The results show in black
when ABHS* obtain better or equal results than ABHS. Thus, given these results in
the following sections the algorithms are compared with respect to ABH S*.

6.2 Instances Results

Table 3 shows the gap between the best value obtained by each algorithm and the best-
known value for the MKP instances. HS wModes shows a better performance than the
other algorithms.

2 The hardware platform adopted for the experiments was a PC with an Intel Corei7-920, having
4GB of RAM, and using the Linux Mandriva 2010 operating system.
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Table 2. Comparison between ABHS and ABH S*

Inst ABHS ABHS™
nstance Best Avg Best Avg
HP 1 3418 3399.66 3418  3374.7
HP2 3186 3112.8 3168 3070.62

MKNAP1.5 12400 12393.8 12400 12397.8
MKNAP1.6 10618 10583.98 10604 10558.98
MKNAP1.7 16537 16482.3 16519 16445.06

SENTO1 7772 7704.04 7772 7731.78
SENTO2 8711 8675.84 8722 8710.86
PB5 2139 2117.6 2139 2093.24
PB 6 716 77146 776  771.56
PB7 1035 10346 1035 1022.82

WEISH 1 4554  4554.0 4554 4549.38
WEISH6 5557 5545.8 5557 5538.44
WEISH 10 6339 6317.52 6339 6302.84
WEISH 15 7486 7421.84 7486 7479.22
WEISH 18 9533 9427.42 9548 9525.62
WEISH?22 8901 85954 8929 8907.06
WEING 1 141278 141278.0 141278 141258.0
WEING 2 130883 130883.0 130883 130879.8
WEING 3 95677 95677.0 95677 95665.0
WEING 4 119337 119337.0 119337 119317.08

Table 3. MKP instances results - %Gap best-known optimal value

Instance n m ABHS ABHS* HS wHC HS wTones HS wModes

HP 1 28 4 0.0 1.42 0.0 0.0 0.0

HP2 354 00 0.0 3.17 2.31 0.0
MKNAP1.528 10 0.0 0.0 0.0 0.0 0.0
MKNAP1.639 5 0.0 0.13 0.0 0.13 0.0
MKNAP1.750 5 0.0 0.0 0.0 0.0 0.0
SENTO1 6030 0.0 0.0 0.0 0.0 0.0
SENTO2 6030 0.13 0.0 0.0 0.01 0.08

PB5 2010 0.0 0.0 0.0 0.0 0.0

PB6 4030 0.0 0.0 0.0 0.0 0.0

PB7 3730 0.0 0.0 0.0 0.0 0.0
WEISH1 30 5 0.0 0.0 0.0 0.0 0.0
WEISH6 40 5 0.0 0.0 0.0 0.0 0.0
WEISH 10 50 5 0.0 0.0 0.0 0.0 0.0
WEISH15 60 5 0.0 0.0 0.0 0.0 0.0
WEISH 18 70 5 0.49 0.0 0.0 0.0 0.0
WEISH 22 80 5 0.52 0.0 0.0 0.0 0.37
WEING1 28 2 0.0 0.0 0.0 0.0 0.0
WEING2 28 2 0.0 0.0 0.0 0.0 0.0
WEING3 28 2 0.0 0.0 0.0 0.0 0.0
WEING 4 28 2 0.0 0.0 0.0 0.0 0.0
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Table 4. Wilcoxon Test
Comparison P-value
ABHS™* vs HS wHC 1.46E-002

ABHS* vs HS wModes 2.20E-016
ABHS™ vs HS wTones 6.90E-005

Table 5. Comparison with the best known solutions and times to reach the results

Instance n m Best Known HS wModes AVG Execution Time[s] AVG Optimal Time[s]

HP 1 28 4 3148 3148 136.06 15.14
HP2 354 3186 3186 193.18 25.20
MKNAP1.5 28 10 12400 12400 300.84 0.02
MKNAP1.6 39 5 10618 10618 302.68 183.71
MKNAP1.7 50 5 16537 16537 445.84 421
SENTO1 6030 7772 7772 1764.38 1086.60
SENTO2 6030 8722 8715" 2059.96 -
PB5 2010 2139 2139 120.52 3.78
PB6 4030 776 776 1143.7 2.12
PB7 3730 1035 1035 1276.12 27.80
WEISH1 30 5 4554 4554 97.72 7.14
WEISH6 40 5 5557 5557 179.12 17.72
WEISH 10 50 5 6339 6339 292.3 68.78
WEISH 15 60 5 7486 7486 353.88 121.10
WEISH 18 70 5 9580 9580 2136.58 1734.00
WEISH 22 80 5 8947 8914* 639.44 —
WEING1 28 2 141278 141278 47.52 8.92
WEING2 28 2 130883 130883 44.56 17.02
WEING3 28 2 95677 95677 44.7 4.30
WEING4 28 2 119337 119337 46.72 0.04

Statistical Analysis: To better analyze these results, we have done a statistical com-
parison previously used in Ref. [11] to compare the performance of the algorithms
proposed with ABH S*. Using the information of the distance from the best-known
solution obtained by the algorithms, we performed the well-known pair-wise Wilcoxon
non-parametric test [12]. The results are shown in Table 4 for each pair comparison.
All the computations have been done using the statistical software package R. The
null-hypothesis tested is that each pair of algorithms are similar. Table 4 indicates
that ABH S™ is statistically significantly different to the other algorithms. Moreover,
HS wModes has the most remarkable performance.

Comparison with the Best Known Solutions. Compared to other approaches, the
results provided in this paper were produced using small execution times. Table 5 shows
a comparison of the best solution found by our algorithm HS wModes with respect to
the best known solution for each instance of the benchmarks. HS wModes can not find
the best-known value for just two of the evaluated instances (we mark this with ).
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Table 6. CB and GK instances results - %Gap best-known optimal value

Instance nrm ABHS HS wModes
CB5x100-0.25-10 100x5 3.99 3.23
CB5x100-0.50-10 100x5 3.55 1.86
CB5x100-0.75-10 100x5 1.46 0.53
CB5x250-0.25-10 250x5 14.28 6.15
CB10x100-0.25-10 100 x 10 7.91 3.74
CB10x100-0.50-10 100 x 10 3.32 2.62
CB10x100-0.75-10 100 x 10 1.84 0.60
CB10x250-0.25-10 250 x 10 15.26 4.84
CB30x100-0.25-10 100 x 30 7.73 4.65

GKO1 100 x 15 2.06 1.95
GKO02 100 x 25 1.88 1.70
GKO03 150x 25 2.28 2.78

Comparing ABHS to HS wModes. From table 3 the best results are obtained using
HS wModes. In order to do a better evaluation we have included some tests using bigger
MKP instances proposed by Glover & Kochenberger (GK) and Chu & Beasley (CB).
HS wModes shows a better performace than ABHS in 91% of cases. Table 6 shows the
results.

7 Conclusions

We have presented new ideas from the music domain, to be included into harmony
search based algorithms to improve its search. Ideas that also allow to differentiate this
metaheuristic from classical evolutionary algorithms. The simplest modification to the
standard harmony search algorithm is related to the premise that good solutions must
not be lost during the search. On the other hand, a musician searches for aesthetic im-
provisation, thus our algorithms are based on the key idea that the musician is focused
on improving his performance. All of our algorithms use notions of local search im-
provement. The idea of Tones allows for a better diversification of the search. The idea
of Modes allows more diversification with a higher level of intensification given its se-
lection procedure. In a future work, we will evaluate our technique with other kinds of
problems using dynamic parameter control.
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Abstract. This paper proposes a parallel model of the self-organizing
map (SOM) neural network applied to the Euclidean traveling sales-
man problem (TSP) and intended for implementation on the graphics
processing unit (GPU) platform. The plane is partitioned into an ap-
propriate number of cellular units, that are each responsible of a certain
part of the data and network. The advantage of the parallel algorithm
is that it is decentralized and based on data decomposition, rather than
based on data duplication, or mixed sequential/parallel solving, as often
with GPU implementation of optimization metaheuristics. The process-
ing units and the required memory are with linear increasing relationship
to the problem size, which makes the model able to deal with very large
scale problems in a massively parallel way. The approach is applied to
Euclidean TSPLIB problems and National TSPs with up to 33708 cities
on both GPU and CPU, and these two types of implementation are com-
pared and discussed.

Keywords: Neural network, Self-organizing map, Euclidean traveling
salesman problem, Parallel cellular model, Graphics processing unit.

1 Introduction

A classical and widely studied combinatorial optimization problem is the Eu-
clidean traveling salesman problem (TSP). The problem is NP-complete [1]. The
self-organizing map (SOM), originally proposed by Kohonen [2], is a particular
kind of artificial neural network (ANN) model. When applied in the plane, SOM
is a visual pattern that adapts and modifies its shape according to some under-
lying distribution. The SOM has been applied to the TSP since a long time [3-5]
and it was shown that this artificial neural network model is promising to tackle
large size instances since it uses O(N) memory size, where N is the instance size,
i.e. the number of cities. In the light of its natural parallelism, we propose a par-
allel cellular-based SOM model to solve the Euclidean TSP and implement it on
the graphics processing units (GPU) platform. From our knowledge, we did not
find such type of SOM application to the Euclidean plane and implementation
on GPU in the literature.

In recent years, the graphic hardware performance is improved rapidly and
GPU vendors make it easier and easier for developers to harness the computation

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICAI 2013, Part IT, LNAI 8266, pp. 118-129, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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power of GPU. Some methods for computing SOM on GPU have been proposed
[6,7]. All these methods accelerate SOM process by parallelizing the inner steps
in each basic iteration, of which mainly focus on two aspects as follows, firstly, to
find out the winner neuron in parallel, secondly, to move the winner neuron and
its neighbors in parallel. In our model, we use each parallel processing unit to do
SOM iterations independently in parallel to a constant part of the data, instead
of using many parallel processing units to cooperatively accelerate a sequential
SOM procedure iteration by iteration. The processing units and the required
memory are with linear increasing relationship to the problem size, which makes
the model able to deal with very large scale problems in a massively parallel way.
The theoretical computation time of our model is based on a parallel execution of
many spiral search of closest points, each one having a time complexity in O(1) in
average when dealing with a uniform, or at most a bounded data distribution [8].
Then, one of the main interests of the proposed approach is to allow the execution
of approximately N spiral searches in parallel, where N is the problem size.
Thus, what would be done in O(N) computation time in average for a sequential
spiral search able to find N closest points, is performed in constant time O(1)
theoretical complexity for a parallel algorithm in the average case, for bounded
distributions. This is what we intend by “massive parallelism”, the theoretical
possibility to reduce average computation time by factor N, when solving a
Euclidean NP-hard optimization problem.

The rest of this paper is organized as follows. We briefly introduce the Eu-
clidean traveling salesman problem and the self-organizing map in Section 2.
After that, we present our parallel cellular-based model in Section 3 and give
the detailed GPU implementation in Section 4. Our experimental analysis on
both small and large scale problems is outlined in Section 5, before we summa-
rize our work and conclude with suggestions for future study.

2 Background

2.1 Traveling Salesman Problem

The travelling salesman problem (TSP) can be simply defined as a complete
weighted graph G = (V, E,d) where V' = {1,2,--- ,n} is a set of vertices (cities),
E ={(i,7)|(i,7) € VxV}is aset of edges, and d is a function assigning a weight
(distance) d;; to every edge (¢,j). The objective is to find a minimum weight
cycle in G which visits each vertex exactly once. The Euclidean TSP, or planar
TSP, is the TSP with the distance being the ordinary Euclidean distance. It
consists, correspondingly, of finding the shortest tour that visits IV cities where
the cities are points in the plane and where the distance between cities is given
by the Euclidean metric.

2.2 The Kohonen’s Self-organizing Map

The standard self-organizing map [2] is a non directed graph G = (V, E), called
the network, where each vertex v € V' is a neuron having a synaptic weight vector



120 H. Wang, N. Zhang, and J.-C. Créput

w, = (z,y) € N2, where R? is the two-dimensional Euclidean space. Synaptic
weight vector corresponds to the vertex location in the plane. The set of neurons
N is provided with the dg induced canonical metric dg(v,v') = 1 if and only if
(v,v") € E, and with the usual Euclidean distance d(v,v’).

In the training procedure, a fixed amount of T, iterations are applied to
a graph network (a ring network in TSP applications), the vertex coordinates
of which being randomly initialized into an area delimiting the data set. Here,
the data set is the set of cities. Each iteration follows three basic steps. At
each iteration ¢, a point p(t) € R? is randomly extracted from the data set
(extraction step). Then, a competition between neurons against the input point
p(t) is performed to select the winner neuron n* (competition step). Usually, it
is the nearest neuron to p(t). Finally, the learning law (triggering step) presented
in Equation 1 is applied to n* and to the neurons within a finite neighborhood
of n* of radius oy, in the sense of the topological distance d¢g, using learning
rate a(t) and function profile h;. The function profile is given by the Gaussian
in Equation 2. Here, learning rate «(t) and radius o, are geometric decreasing
functions of time. To perform a decreasing run within 7;,., iterations, in each
iteration ¢, coeffients a(t) and o, are multiplied by exp(In(X final/Xinit)/Tmaz)
with respectively x = a and x = 0, Xinit and Xfina being respectively the
values in starting and final iteration. Examples of a basic iteration with different
learning rates and neighborhood sizes are shown in Fig.1.

wn(t+ 1) = wy(t) + a(t) X he(n*,n) x (p(t) — wn(t)) . (1)

he(n*,n) = exp(—da(n*,n)*/c?) . (2)

.‘} .
o

Fig. 1. A single SOM iteration with learning rate « and radius o. (a) Initial configu-
ration. (b) « =0.9,0 =4. (¢) «a=09,0 =1. (d) a =0.5,0 =4.

3 Parallel Cellular Model

3.1 Cell Partition

It is intuitive that TSP and SOM can be connected by sharing the same Eu-
clidean space. As a result, the input data distribution of SOM is the set of cities
of TSP. The application consists of applying iterations to a ring structure with a
fixed number of vertices (neurons) M. Specifically, M is set to 2N, N being the
number of cities. After training procedure, the ring transforms into a possible
solution for the TSP along which a determined tour of cities can be obtained.
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Fig.2 illustrates an example of training procedure on the prl24 instance from
TSPLIB [9] at different steps of a long simulation run. Black dots are the city
points of TSP. Small red circles and the black lines that connect them constitute
the ring network of neurons. Execution starts with solutions having randomly
generated neuron coordinates into a rectangular area containing cities, as shown
in Fig.2(a). After 100 iterations, the ring network as shown in Fig.2(b) has
roughly deployed towards cities. After 10000 iterations, the ring network has
almost completely been mapped onto cities, as shown in Fig.2(c).

(b). W S—

Fig. 2. Different steps of training procedure on the pr124 instance

In order to implement the parallel level at which parallel execution will take
place, we introduce a supplementary level of decomposition of the ring network
plane and input data. We uniformly partition the Euclidean space into small cells
with the same size that constitute a two-dimensional cellular matrix. The scale
of cell partition is decided by the number of cities. Specifically, the size of each
dimension is set to [v/N x A], where N is the number of cities and parameter
A, which we set to 1.1 in the later experiments, is used to adjustment. The
three main data structures of the parallel model are illustrated in Fig.3. This
intermediate cellular matrix is in linear relationship to the input size. Its role will
be to memorize the ring network in a distributed fashion and authorize many
parallel closest neuron searches in the plane by a spiral search algorithm [8]. Each
cell is then viewed as a basic training unit and will be executed in parallel. Thus,
in each parallel iteration we conduct a number of parallel training procedures
instead of carrying out one only. Each cell corresponds to a processing unit or
GPU thread.

Each processing unit, that corresponds to a cell, will have to perform the
different steps of the sequential SOM iteration in parallel. A problem that arises
is then to allow many data points extracted at first step by the processing units,
at a given parallel iteration, to reflect the input data density distribution. As a
solution to this problem, we propose a particular cell activation formula stated
in Equation 3 to choose those cells that will execute or not the iteration. Here, p;
is the probability that the cell ¢ will be activated, g; is the number of cities in the
cell ¢, and num is the number of cells. The empirical preset parameter § is used to
adjust the degree of activity of cells/processing units. As a result, the more cities
a cell contains, the higher is the probability this cell to be activated to carry out
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Fig. 3. Parallel cellular model

the SOM execution at each parallel iteration. In this way, the cell activation
depends on a random choice based on the input data density distribution.

qi
pi = X9 . 3
’ maX{Qla q2, ... 7Qnum} ( )

3.2 Cellular-Based Parallel SOM

Based on the cell partition, the parallelized SOM training procedure carries out
four parallel steps: cell activation step, extraction step, competition step and
triggering step. Then, this parallel process is repeated Tj,q, times. Note that
Tinaz Now represents the number of parallel iterations.

For each processing unit which is associated to a single cell, a cell is acti-
vated or not depending on the activation probability. If the cell is activated,
the processing unit will continue to perform the next three parallel operations,
otherwise it does nothing and directly skips to the end of the current iteration.

In the parallel extraction step, the processing unit randomly chooses a city
from its own cell, unlikely the original sequential SOM which randomly extracts
a point from the entire input data set.

In the competition step, the processing unit carries out a spiral search [§]
based on the cell partition model to find the nearest neuron to the extracted
city point. The cell in which this point lies will be searched first. If this cell is
empty of neuron (ring node), then the cells surrounding it are searched one by
one in a spiral-like pattern until a neuron is found. Once one neuron is found, it is
guaranteed that only the cells that intersect a particular circle, which is centered
at the extracted point and with the radius equal to the distance between the
first found neuron and the extracted point, have to be checked before finishing
searching. When performed on a uniform data distribution, or bounded den-
sity distribution [8], a single spiral search process takes O(1) computation time
according to the instance size. Then, one of the main interests of the method
would be to perform O(N) (the cell number) spiral searches in parallel, then
in a theoretical constant time O(1) for bounded density distribution, if O(N)
physical cores were available. This is what we call “massive parallelism”.
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In the triggering step, each processing unit moves its closest neuron and several
neurons within a finite neighborhood toward the extracted city, according to
the rule of Equation 1. All the processing units share one unique ring network
of neurons in the Euclidean space. The coordinates of neurons are therefore
stored into a shared buffer which is simultaneously accessed by all the parallel
processing units.

After all the parallel processing units have finished their jobs in one single
iteration, the learning rate o and radius o are decreased, getting ready for the
next parallel iteration.

To establish our cellular-based parallel SOM model, the scale of cell parti-
tion is [v/N x A]2, with N the number of cities. Hence, the number of parallel
processors needed is O(N). Since only one ring network is stored in memory,
the memory complexity is also O(NN). Moreover, the parallel spiral search by
every processor takes constant time O(1) theoretically for bounded density dis-
tribution. For T,,,, parallel iterations, the maximum number of single SOM
iterations is Tyqz X [\/ N x )\]2, which corresponds to the extreme case where
all the processing units are activated at the same time.

4 GPU Implementation

4.1 Platform Background

We use GPU to implement our parallel model with the compute unified device
architecture (CUDA) programming interface. In the CUDA programming model,
the GPU works as a SIMT co-processor of a conventional CPU. It is based on
the concept of kernels which are functions written in C executed in parallel by
a given number of CUDA threads. These threads will be launched onto GPU’s
streaming multi-processors and executed in parallel [10]. Hence, we apply CUDA
threads as the parallel processing units in our model.

All CUDA threads are organized into a two level concepts: CUDA grid and
CUDA block. A kernel has one grid which contains multiple blocks. Every block
is formed of multiple threads. The dimension of grid and block can be one-
dimension, two-dimension or three-dimension. Each thread has a threadld and a
blockId which are built-in variables defined by the CUDA runtime to help user
locate the thread’s position in its block as well as its block’s position in the
grid [10,11].

4.2 CUDA Code Design

In the CUDA program flow in Algorithm 1, Lines 2, 4, 7, 8, 11, and 13 are
implemented with CUDA kernel functions that will be executed by GPU threads
in parallel. The kernel function in Line 2 is used for calculating each cell’s density
value, i.e. the number of city points in each cell. After all the cells’ density values
are obtained, the maximum one is found. This last work in Line 3 is done on CPU
since it is done only one time and does not directly concern the main behavior.
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Note that computing a maximum value is a trivial job even when done on GPU.
Then, the cells’ activation probabilities are computed according to the activation
formula of equation 3 by the kernel function of Line 4. In each iteration of the
program, each cell needs two random numbers: one is used for cell activation and
the other is used to extract input point in the activated cell. With respect to the
large scale input instances with huge cellular matrix and numerous iterations,
the random numbers generated via kernel functions shown in Line 7 and Line
8 are stored in a fixed size area due to the limited GPU global memory. Every
time these random numbers are used out, a new set of random numbers are
generated at the beginning of the next iteration, depending on a constant rate
factor called memory reuse set rate. The random number generators we use in
Line 7 and Line 8 are from Nvidia CURAND library [10]. Line 10 and Line
11 concern the cell refreshing. Each cell has data structures where to deposit
information of the number and indexes, in the neuron ring, of the neurons it
contains. This information may change during each iteration, but it appears
that it can be sufficient to make the refreshing based on a refresh rate coefficient
called cell refresh rate. The cell contains are refreshed via kernel function in
Line 11. Note that neurons’ locations are moved in the plane at each single
iteration, whereas the indexes in cells are refreshed based on a lower rate. Then,
the parallel SOM process takes place with kernel function of Line 13 (see below).
After the parallel SOM process is done, the SOM parameters will be modified
getting prepared to do the next iteration.

Algorithm 1. CUDA program flow
: Initialize data;
Calculate cells’ density values;
Find the max cell density value;
Calculate cells’ activated probabilities;
for ite <— 0 to maz ite do
if ite % memory reuse set rate == 0 then
Set seeds for random number generators;
Generate random numbers;
end if
10:  if ite == 0 || ite % cell refresh rate == 0 then
11: Refresh cells;
12:  end if
13:  Parallel SOM process;
14:  Modify SOM parameters;
15: end for
16: Save results;

©

Overall, the host code (CPU side) of the program is mainly used for flow con-
trol and the entire GPU threads synchronization by sequentially calling separate
kernel functions. For all the kernel functions, one thread handles one cell and
the number of threads launched by each kernel is no less than the number of
cells.
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The parallel SOM kernel function of Line 13 of Algorithm 1 is further illus-
trated by Algorithm 2. Firstly, it locates the cell’s position by its threadld and
blocklId. Then, the thread checks if the cell is activated or not, by comparing
the cell’s activated probability to a random number with value between 0 and
1. If the cell is activated, the thread randomly selects a city point in the cell
by using a second random number with value between 0 and the cell’s density
value (number of cities in that cell). After that, the thread performs a spiral
search within a certain range on the grid for finding the closest neuron to the
selected city point. The maximum number of cells a thread has to search equals
(range x 2+ 1)2. After finding the winner neuron, the thread carries out learn-
ing process via modifying positions of the winner neuron and its neighbors. All
the neurons’ locations are stored in GPU global memory which is accessible to
all the threads. Like all the multi-threaded applications, different threads may
try to modify one same neuron’s location at the same time, which causes race
conditions. In order to guarantee a coherent memory update, we use the CUDA
atomic function which performs a read-modify-write atomic operation without
interference from any other threads [10].

Algorithm 2. GPU parallel SOM kernel flow

1: Locate cell position associated to current thread

2: Check if the cell is activated;

3: if the cell is activated then

4:  Randomly select a city point in the cell;

5:  Perform a spiral search within a certain range;

6:  Modify positions of the winner neuron and its neighbors;
7: end if

5 Experimental Analysis

5.1 Warp Divergence Analysis

In the CUDA architecture, a warp refers to a collection of 32 threads that are
“woven together” and get executed in lockstep [11]. At every line in kernel func-
tion, each thread in a warp executes the same instruction on different data.
When some of the threads in a warp need to execute an instruction while others
in the same warp do not, this situation is known as warp divergence or thread
divergence. Under normal circumstances, divergent branches simply result in per-
formance degradation with some threads remaining idle while the other threads
actually execute the instructions in the branch. The execution of threads in a
warp with divergent branches are therefore carried out sequentially, resulting in
performance degradation.

According to our trial tests, the most time consuming kernel function is the
parallel SOM kernel. One of the reasons is that there exists warp divergence
when this kernel is being executed because it has an unpredictable spiral search
process in it. The spiral search is carried out in each cell of the search range, one
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by one, and it stops immediately when the thread finds a nearest neuron. As a
result, different threads may stop at different times. Also, the more cells each
thread is going to search in, the severer this problem gets. Hence, different search
range settings have different influences on warp divergence. When the block size
is set to 256 which is usually enough to fulfill the streaming multi-processor
with adequate warps for the GPU device with CUDA capability 2.0, the highest
branch efficiency (ratio of non-divergent branches to total branches [10]) of all
executions with search range set to 1, 2, and 3 is 90.1%, 87.2%, and 85.9%
respectively as collected by NVIDIA Visual Profiler. In theory, the less threads
are put in one block, the less warp divergence occurrences will appear. Extremely,
if there is only one thread in a block, then there will definitely not be warp
divergence. However, the decrease of threads in each block implies the decrease
of the CUDA cores usage associated to each streaming multi-processor. In order
to analyze the tradeoff between performance and number of threads in a block,
we have tested a set of different combinations of grid size and block size for the
parallel SOM kernel. The configuration which makes the kernel run fastest is
with block size of 8 with highest branch efficiency of 96.9%.

5.2 Comparative Results on GPU and CPU
During our experimental study, we have used the following platforms:

— On the CPU side: An Intel(R) Core(TM) 2 Duo CPU E8400 processor run-
ning at 2.67 GHz and endowed with four cores and 4 Gbytes memory. It
is worth noting that only one single core executes the SOM process in our
implementation.

— On the GPU side: A Nvidia GeForce GTX 570 Fermi graphics card endowed
with 480 CUDA cores (15 streaming multi-processors with 32 CUDA cores
each) and 1280 Mbytes memory.

Table 1. Experiment parameters

Qinit  Qfinal Oinit Ofinal Iiterations o CRR" SSR® MRSR®
GPU! 1 0.01 12 1 100000 1 1 1 1000
CcpU! 1 0.01 12 1 100000 x N — 100 1 -
GPU? 1 0.01 100 1 100000 1 1 3 1000
CPU? 1 0.01 100 1 10000 x N — 100 3 —

! Tests of small size instances.  Tests of large size instances.
@ Cell refresh rate. ? Spiral search range. © Memory reuse set rate.

We have done our tests with two groups of instances from either National
TSPs (http://www.math.uwaterloo.ca/tsp/world/countries.html) and TSPLIB
database [9]. One group consists of four small size instances from 124 cities to
980 cities, while the other consists of four large size instances from 8246 cities
to 33708 cities. The parameter settings for the two groups are shown in Table
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1. As discussed in Section 3.2, Tpuaz X [V N X )\]2 parallel SOM operations will
be carried out as an extreme case by the GPU SOM program, with N the input
instance size and A set to 1.1. For the tests of small size instances, we set the total
number of sequential iterations of the CPU version to Tinqe X IV, in order to make
the total SOM operations approximately similar between GPU version and CPU
version, and to reach similar quality results. Whereas for the tests with large size
instances, we set it to Tiax X N/10, also to achieve similar quality results and
because GPU operations depend on the cell activation probabilities and may be
less than IV at each GPU parallel iteration.
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Fig. 4. Test results of small size instances
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Fig. 5. Test results of large size instances

All the tests are done on a basis of 10 runs per instance. For each test case is
reported the percentage deviation, called “%PDM”, to the optimum tour length
of the mean solution value obtained, i.e. %APDM = (mean length — optimum) X
100/optimum. As well, is reported the percentage deviation from the optimum
of the best solution value found over 10 runs, called “%PDB”. Finally, is also
reported the average computation time per run in seconds, called “Sec”.



128 H. Wang, N. Zhang, and J.-C. Créput

Table 2. Test results of small size instances

GPU CPU
Problem Optimal %PDM %PDB Sec %PDM %PDB Sec
prl24 59030 2.52 1.07 3.30 4.73 1.85 9.88
pchb442 50778 5.18 3.41 4.00 5.26 3.24 4213
u724 41910 6.19 496 4.64 6.29 4.67 85.61
11980 11340 5.47 3.40 447 897 4.58 125.88

Average 4.84 321 410 6.31 3.59 65.88

Table 3. Test results of large size instances

GPU CPU
Problem Optimal %PDM %PDB Sec %PDM %PDB  Sec
ei8246 206171 8.31 7.12 7138 7.33 6.88 614.36
fil0639 520527 6.93 6.49 66.63 8.94 8.10 952.35
d15112 1573084 8.20 7.66 109.28 7.35 7.14 1761.23
bm33708 959304 6.07 5.85 254.22 7.28 7.04 7936.33

Average 7.38 6.78 12538 7.73 7.29 2816.07

As shown in Fig.4 and Fig.5, and in Table 2 and Table 3, respectively for
the two instance groups, our GPU parallel SOM approach outperforms its coun-
terpart CPU sequential version both on small size and large size instances, for
similar tour length results. For small size instances, the ratio of CPU time by
GPU time (called acceleration factor) varies from roughly factor 3 to factor 28,
as the instance size grows. For large size instances, it varies from roughly factor
9 to factor 31 for the maximum size instance with up to 33708 cities. We think
that the acceleration factor augmentation indicates a better streaming multi-
processor occupancy as the instance size grows. We can note that the execution
time of GPU version increases in a linear way with a very weak increasing coeffi-
cient, when compared to the CPU version execution time. We consider that such
results are encouraging in that the parallel SOM model should really exploit the
benefits of multi-processors, as the number of physical cores will augment in the
future.

6 Conclusion

In this paper we propose a cellular-based parallel model for the self-organizing
map and apply it to the large scale Euclidean traveling salesman problems. We
did not find in the literature GPU implementations to such large size problems
with up to 33708 cities. We think that this is because current GPU applications
to the TSP concern memory consuming algorithms, such as ant colony, genetic
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algorithm or k-opt local search, which generally require O(N?) memory size.
Whereas, our approach is dimension with O(N) memory size. We implement our
model on a GPU platform and compare the results with its counterpart CPU
version. Test results shows that our GPU model has linear increasing execution
time with a very weak increasing coefficient when compared to the CPU version,
for both small size instances and large size instances.

Future work should deal with verification of effectiveness of the algorithm
as the number of physical cores augments. More precisely, we should verify the
possibility to design a weakly linear increasing, or ideally a near constant time
algorithm, for bounded or uniform distributions, when the number of physical
cores really increases as the instance size increases. It should be of interest also
to study more CUDA programming techniques, for a better memory coalescing,
or the use of shared memory. Moreover, implementations of the model to other
parallel computing systems are also potential areas of research.
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Abstract. The cardiac ejection fraction (EF) is a clinical parameter
that determines the amount of blood pumped by the heart in each car-
diac cycle. An EF outside the normal range indicates the heart is con-
tracting abnormally. Diverse non invasive methods can be applied to
measure EF, like Computer Tomography, Magnetic Resonance. Never-
theless, these techniques cannot be used for the continuous monitoring
of EF. On the other hand, Electrical Impedance Tomography (EIT) may
be applied to obtain continuous estimations of cardiac EF. Low cost and
high portability are also EITs features that justify its use. EIT consists
in fixing a finite number of electrodes on the boundary of the tomogra-
phy body, injecting low amplitude currents and recording the resulting
potential differences. The problem we are interested is how to estimate
the blood volume inside the ventricles by using the electric potentials
obtained via the EIT technique. This problem is normally classified as a
non-linear inverse problem. However, in this work we propose to face it
as a classification problem. Because artificial neural networks (ANN) are
nonlinear models simple to understand and to implement it was decided
to use them in the context of EF estimation. The use of ANNs requires
less computational resources than other methods. In addition, our ANN-
based solution only requires as input the measurements of the electrical
potentials obtained by the electrodes; and has as output only the scalar
value that defines cardiac EF. In this work, ANNs were trained and
tested with data from electrical potentials simulated computationally.
Two-dimensional magnetic resonance images were used for the genera-
tion of synthetic EIT data set with various types of heart configurations,
spanning from normal to pathological conditions. Our preliminary re-
sults indicate that the ANN-based method was very fast and was able
to provide reliable estimations of cardiac EF. Therefore, we conclude
that ANN is a promising technique that may support the continuous
monitoring of patient’s heart condition via EIT.

Keywords: Cardiac Mechanics, Medical Applications, Cardiac Ejection
Fraction, Electrical Impedance Tomography, Artificial Neural Networks.
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1 Introduction

Cardiac Ejection Fraction is an important parameter to analyze the efficiency
of the heart as a pump. It represents the amount of blood pumped out of each
ventricle in each cardiac cycle. In other words, EF is a measure of blood fraction
that the ventricle ejects. Clinically, it is more common to use only the ejection of
the left ventricle to determine the ejection fraction. By definition, it is calculated
as follows:

PV EDV - ESV Q)
EDV ~  EDV '

where PV denotes the volume of blood pumped, given by the difference be-
tween the end-diastolic volume (EDV) and the end-systolic volume (ESV). Car-
diac ejection fraction is a relevant parameter for its high correlation with the
functional status of the heart. Diverse non-invasive techniques can be applied
to determine EF, as echocardiography, cardiac magnetic resonance, and oth-
ers. Although such techniques are able to produce high definition images for
well-accurate diagnostics, they cannot be used for continuous monitoring, due
specially to their high costs. In this work, a new method for continuous monitor-
ing of cardiac ejection by Electrical Impedance Tomography (EIT) is presented
based on its advantages in terms of lower costs and better portability, besides it
does not use ionizing radiation.

Electrical Impedance Tomography produces an image of the conductivity dis-
tribution of part of the body using measures of current injection and potential
protocols taken on the boundary of the domain. Usually, conducting electrodes
are attached to the body of the patient and small currents are applied. Besides,
this technique has been largely applied in different fields, as industrial monitoring
[1], geophysics [2], and biomedical engineering [3-6]. In the context of the latest
field, recent work [7] has discussed viability of EIT to continuous monitoring of
cardiac ejection fraction, and other related works [8, 9] have shown preliminary
results on the same subject. Some works use a method for generating an image
of the ventricules and then the area is obtained for the estimate of EF, which is
based on the partition of the body in small parts based on its resistivities.

In this work, the potential protocols taken by EIT are applied in an Artificial
Neural Network (ANN) for calculation of EF. The measures of the potentials are
used as ANN’s input and the areas for both ventricles are obtained as ANN’s
output. Both areas are necessary to the EF’s calculation. Thus, there is no
need to generate an image of the body. Due to the lack of a real medical data
base, for training and testing the ANN, a synthetically generated data set is
used, containing various types of synthetic heart configuration (with anomalies
or not). This synthetic data set was generated based on the work made by [10].

This paper is organized as follows. The second section describes the methods
used for generating the data set. The third section presents our proposal: the Ar-
tificial Neural Network used to obtain the cardiac EF. The fourth section shows
the simulation setup and his results obtained. In the last section, a conclusion
is made with some ideas for future works.

EF =
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2 Methods

2.1 Generation of Training Data Set

Parametrization. In [7] a parametrization is taken from an image of a human
torso model provided by a magnetic resonance and the parameters that represent
the regions of interest of the body are obtained. This image is segmented in five
different regions: two for both lungs, one for the torso boundary and two for the
heart ventricles. The shape of the regions are defined by a manual segmentation
in two different image - one taken at the end of systole and another at the end
of diastole. For simplicity matters, the shape of lungs and torso are considered
constant during all heart cycle. The figure 1 illustrates the result of such manual
segmentation.

Thorax

—=.=.— Lungs

— — — — Ventricle Cavities

Fig. 1. Manual segmentation of a magnetic resonance image

To represent the boundary lines of the regions a extended x-spline curve is
used with a minimum number of control points [11]. Since the lungs and torso
are considered fixed, the control points critical for this work are the ones that
represent the left and right ventricles. There are 7 control points for left ventricle
and 8 for right ventricle. Each control point is represented by a coordinate with
two axis. The coordinate of some control points is modified generating new
splines curves that represents variations of the ventricles.

Also, a strategy is used to define the position of each control point in relation
to the diastole and systole. Since the same amount of points is used for repre-
sentation of diastole and systole, it is possible to represent the position of each
control point ¢ in a line, where ¢; = 0 represents the point ¢ at the end of the
systole while t; = 1 represents at diastole. As shown in figure 2.

Calculation of Electrical Potentials. As said before, this work uses an Ar-
tificial Neural Network that receives the electrical potentials synthetically cal-
culated in function of the known resistivity and conductivity distribution of the
body. As done in [7], the electrical potentials (¢) at each point of the regions
must satisfy the Laplace’s equation:
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(a) Systole (b) Diastole

Fig. 2. Position of each control point in relation to diastole and sytole

V3¢ =0, (2)

subjected to the following conditions:

orVo.n =orVo.n, z el
ogVo.n =orVo.n, zely
orVo.n = J;, T € Fge
Vo.n =0, z € (I3 — I

where I represents the interface between lung and torso region; I is the inter-
face between the blood and torso region; I3 is the external boundary of the body;
I'i¢ is the portion of I'; in which the i*" electrode is placed on; J; is the electric
current injected through the i** electrode; and or, o and oy, are, respectively,
torso, blood and lung conductivities.

To solve this problem, an implementation of the Boundary Elements Method
(BEM) [12] is used based on the method used by [13].

Generation of New Control Points for the Ventricles. In order to the ANN
be capable to learn well, the training data set must be well representative with suf-
ficient informations [14]. Since there is a lack of real data set, in this work, the data
set used was synthetically generated. Aiming to cover all possible heart configu-
ration, this data set was generated by pertubating some randomly chosen control
points ¢ as follows. The pertubation algorithm runs for each t; = 0,0.1,0.2...1 al-
ternating control points from right ventricle, left ventricle and both. Then, at each
iteration of the algorithm half of total control points of left ventricle and of right
ventricle are chosen. After that, some perturbations z,t; — 0.3 <z <t; + 0.3 are
chosen and given to the control points predeterminated. In this way, the areas for
ventricles are well distributed with values between the systole and diastole. The
figure 2.1 shows the histogram distribution for areas around the values from right
and left ventricles from the generated synthetical data set.
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2.2 Modelling the Artificial Neural Network

According to Haykin [14], ANNs are nonlinear computacional models, inspired
by the structure of human brain, capable of learning, association, generalization
and abstraction through experimental knowledge. ANNs are composed of structs
called neurons and the connections between them. The connections are called
synaptic weights and used to store the knowledge acquired. The adjustments of
synaptic weights are provided by the learning algorithm, basically it consists in
updates on the weights based on the error output. ANNs have been successfully
applied to many problems in practical problems of prevision, classification and
control. However, its performance is dependent on its configuration, such as
weight initializations and number of neurons in the hidden layer.

In this work, a multilayer perceptron (MLP) neural network with one hidden
layer was used. The implementation was provided by [15] which uses a Backprop-
agation Algorithm with the Levenberg-Marquardt optimization [16]. Different
ANN configurations were trained changing the number of hidden neurons. For
each configuration, some different weight inicializations was applied for training
it. The comparison of all performance of trained configuration is based on the
Mean Absolute Percentual Error(MAPE).

The data set has been divided in three different subsections: a training data set
which is presented to the learning algorithm and is used to adjusts the synaptic
weights; a validation set which secures that the ANN is generalizing well during
the training phase; and finally, a test set which is used to measure the perfor-
mance of the network after the training phase. In the training process, whenever
the validation error begins to increase, an early stopping algorithm was applied
for avoiding overfitting on the training set.

The data set division is made as following: the training set contains 63%, the
validation contains 16% and the test contains 21% of the data set. All samples
for each set are chosen randomly. Some ANN configurations have been trained
with different numbers of hidden neurons and weights initializations. The best
configuration is chosen by the smallest error(MAPE) among the others. In the
following section, the results for the training phase is shown along with a test in
a simulated case.
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3 Results

For each ANN configuration trained - based on the number of hidden neurons,
was obtained a minimum MAPE among all different weight inicializations. Also
the mean of all weight inicializations MAPE was calculated. The Figure 4 shows
the MAPE and the mean MAPE of all ANN configurations trained. In the lighter
bars, the lowest MAPE achieved for that number of hidden neurons is represented
and the darker bars represents the mean MAPE. The arrow sights the best
trained configuration obtained.
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Fig. 4. Error based on Number of Hidden Neurons

In the present work, the areas that represents the ventricles are based in a
transversal section of the heart cavities and is assumed to be proportional to
their volumes. Assuming that, the EF can be calculated by

EDA - ESA 3
B EDA ’ (3)
where EDA represents the area of the end of diastole, while ESA stands for the
area of the ventricle at the end of the systole. Since the EF is calculated based
on the area, the ANN gives as output the area corresponded to the electrical
potentials, which is taken as inputs. Also a small error for the area corresponds
to a small error on EF calculation.

The MAPE for the best ANN is 0.73% based on the test set. For the purpose
of demonstration, an artificial cardiac dysfunction was generated to simulate a
new heart cycle, in which EF of left ventricle is 33.02% and 17.25% for the right
ventricle. In order o generate this target values, the end of systole is considered
being greater than normal, while the disatole remains unaltered.

EF
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Applying the Equation 3, where the EDA remains the same, but ESA is the
one used from the output of the ANN already trained, the result obtained was
an EF of 33.37% of the left ventricle and 18.03% for the right ventricle, giving a
relative error of 1.06% and 4.49%, respectively. In the methods used by [10] the
results were 0.09% and 2.41%. These results are presented in the Table 1.

Table 1. Comparison between LM Method and ANN

Relative Errors (%)
Method RV LV
LM 2.41 0.09
ANN 4.49 1.06

The equation 4 provides the relative error:

EF — EF
A% =100 4
% X EF (4)
where A% is the relative error, EF is the ejection fraction calculated from the
values obtained using the ANN’s output and EF is the target value for ejection
fraction.

4 Conclusions

The main advantage of Electrical Impendance Tomography in relation to others
tomography is its portability - the patient can stay in the hospital bedroom
while making an EIT. Because of that, methods that gives low execution time
is crucial for a continuous monitoring of the heart. As the results suggests, the
Artificial Neural Network presents a low error and fast execution time, being
capable to continuos monitoring the Ejection Fraction by EIT. Although its
error was higher than the compared methods, the difference is not significant if
you take in consideration that other errors was not included in the calculations,
such as noise in electrical potentials due to irregularities in position of electrodes
attached to the body

A problem for a neural network is its training phase, since a significant amount
of data has to be provided. In this work, the data set was synthetically generated.
But in a real world application, an image from a magnetic resonance of the
patient would have to be taken in order to do the processes described here to
train the network.

For further works, a three-dimension model can be used for better represen-
tation of the body. Besides, a data set provided from real EIT is interesting for
the choose of the best method.
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Abstract. The aim of this paper is to analyze the potentialities of Bidirectional
Recurrent Neural Networks in classification problems. Different functions are
proposed to merge the network outputs into one single classification decision.
In order to analyze when these networks could be useful; artificial datasets were
constructed to compare their performance against well-known classification
methods in different situations, such as complex and simple decision bounda-
ries, and related and independent features. The advantage of this neural network
in classification problems with complicated decision boundaries and feature re-
lations was proved statistically. Finally, better results using this network topol-
ogy in the prediction of HIV drug resistance were also obtained.

Keywords: Bidirectional recurrent neural network, classification, feature rela-
tion, output combination, HIV drug resistance, bioinformatics.

1 Introduction

The classification task is based on assigning a new pattern to one class of a set of N
discrete classes. The pattern is represented by a vector X = (xy, X, ..., xy) of N charac-
teristics or features. Classification problems are just as common in bioinformatics as
they are in other areas. In this work we focused on the classification of biological
sequences, such as nucleotide and protein sequences.

Just like in any classification problem, the search for appropriate features is the
first step in building a knowledge database. The representation of biological se-
quences is particularly difficult; analyzing most biological sequences is easier if we
have the three-dimensional structure, but unfortunately it is very difficult and expen-
sive to obtain. This is one of the motives to use primary or secondary structures as an
alternative to represent the sequences. These representations are linear and very
different to the three-dimensional structure. Complex relations between the amino
acids or between some parts of the sequence are hypothetically presumed in order to
relate these structures. To represent the sequences, some authors use biological prop-
erties such as: hydrophobicity, polarity, etc., in order to end the problem of the varia-
ble size of the sequences. However, sometimes it is common to keep the natural
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© Springer-Verlag Berlin Heidelberg 2013
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representation or replace the amino acids or nucleotides with any quantitative meas-
ure. This representation takes into account the complex relations that may exist
between the elements; this representation can therefore be seen as a time sequence
that induces the incentive to use dynamic structures to solve this problem.

Although we will use the primary structure to represent the biological sequences,
the variable size is not the objective to use dynamic structures in this paper. In this
paper we have supposed that the sequences are all the same sizes or an alignment
method was applied. This assumption was done to compare the network against the
classic classification methods. The motivation of this paper is to see the one specific
structure’s ability to deal with problems of complex relation between the features, that
we suppose biological sequences have.

To solve classification problems there are some different models of machine learn-
ing. Recurrent Neural Network (RNN) has become an increasingly popular method in
bioinformatics problems over recent years. Given its temporal connections, the RNN
has the particularity of making possible a temporal memory, regardless of whether
they are future or past times. Temporal problems are not the only ones that can be
solved with this network. Just like a Multilayer Perceptron (MLP) or how a Support
Vector Machine (SVM) does with nonlinear kernels, RNN makes an internal feature
extraction, By separating the features in subsets associated with times, more complex
feature extraction combinations can be achieved.

In particular Bidirectional Recurrent Neural Networks (BRNN) have been used
for protein secondary structure prediction [1]. Currently this architecture is consi-
dered to be one of the best models for addressing this problem [2]. Some authors have
used methods based on BRNN [3] or a combination with other methods [4].

Bidirectional Recurrent Neural Network is a type of Recurrent Neural Networks
[5]. This structure has the advantage of not using fixed windows like MLP and can
use information from both sides of the sequence, right and left.

The objective of this paper is to compare the behavior of BRNN and classical clas-
sification methods when dealing with problems of different dependencies of the fea-
tures. The topology of BRNN used is the one proposed by Baldi [1], specifically the
topology already described in [6]. The main difference between these topologies is the
way they combine the outputs. In this paper some output combination functions are
used to take into account that the network has one output for each time and in classifi-
cation problems there is only one output.

Artificial databases with different dependences of the features were built in order
to illustrate the potentiality of this type of network in datasets with complex relation
between the features. In this paper, we selected a Multilayer Perceptron, as the classic
neural network to classification problems as well as the Support Vector Machine and
Bayes Network. With this comparison we don’t pretend to generalize when the use of
BRNN is appropriate. Our purpose is to justify that this method improves the predic-
tion in some problems of biological sequences analysis in comparison to the classical
classification methods.

To conclude this paper shows the results using the BRNN to solve the problem of
prediction of HIV resistance, using the information of one protein: protease. Also, the
results obtained by the BRNN are compared with the other methods.
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2 Methods

2.1 Data Preparation

Artificial datasets were generated for this experiment. To build the datasets three fac-
tors were kept in mind: feature relation, direction of the relation and decision region
of classes.

For each feature a further subset of features was randomly selected. A mathemati-
cal dependency was built between the feature and the selected subset. Dependencies
were generated by linear, polynomial and piecewise polynomial functions f{X) as can
be seen in equations 1, 2 and 3 respectively. X = (x, x,, ..., Xy) represents the feature
vector with dimension N.

M=

al.xl.+c
fX)=——

Zﬂli‘}'C (1)

In this linear function, g; is the coefficient for each i, and c is an independent term.
This function is finally normalized by the maximum possible value of the numerator,
keeping in mind the features generated in the interval [0,1].

As was explain before each feature has a subset of features of which they are de-
pendent upon, named as SDF,. SDF; = (dy, d,..., dy,), where dj; represents the
index of features and m is also generated randomly. The coefficient a; is generated
randomly if i is a member of SDF;, or else the value will be 0.

In equation 2, the coefficients b; € [1,10] are added, so the equation behaves poly-
nomially.

iaixih’ +c
f(X) = l:lN (2)

Ya +c
i=1

On the other hand, piecewise generated by polynomial function A(X) defines dif-
ferent behaviors for the last kind of functions: piecewise polynomial functions (equa-
tion 3).

fX)=g(X),  u, Sh(X)<u, 3)

Function g; defines this behavior for each subdomain. A set of thresholds was gen-
erated at random: U = (uy, uy, ..., Ug), where R represents the number of intervals
(generated at random too in the [5,15] interval). A final consideration: u(=0, uz=1
and Vie [1,R]: ui; <u;.

At first, a subset without any feature relation was generated; and used as our refer-
ence for the comparison.
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Dependencies between the features were analyzed in three ways: forward, back-
ward and in both directions. To build dependencies forward, the selection of the sub-
set of dependent features for a particular feature in the position i, a subset of indexes j
were generated in the interval [0, i-1], to backward [i+1, N] and to both directions
[LN], j#i.

Additionally, the classes were generated with the same features described below.

In total, 285 datasets were generated, 95 datasets with the class generated from
each function. Each dataset is described by 9 features and a dichotomy class.

2.2  Models Used

All models used in this paper were implemented in Weka (version 3.6; Waikato Envi-
ronment for Knowledge Analysis), a software developed at the Waikato University,
New Zealand, and available at: http://www.cs.waikato.ac.nz/ml/weka/index.html.

To compare the results, a Multilayer Perceptron, Support Vector Machine, Bayes
Network (BayesNet) and C45 decision tree (named J48 in Weka) were selected.

Also BRNN mentioned before was implemented in Java using the Weka package
and added to it.

2.3 Bidirectional Recurrent Network Topology

The use of these networks in dissimilar fields has increased in the last few years.
These networks have the particularity of making a temporal memory given their tem-
poral connections possible, no matter whether they are future or past times. There are
many real problems with these characteristics.

In order to deal with biological sequences problems, a bidirectional model to estab-
lish recurrences in two directions was used. On the left in Figure 1 the proposed to-
pology, with three-hidden-layers is shown. This makes the correlations independent
of each time with the others. On the right, one can see the unfolded network to the
time ¢. A size of window for the sequence is defined as a parameter of this model. The
sequence is divided in sub-sequences according to the size of window (n) defined,
where each one represents a time for the network. According to the size of windows
it is also possible to define the number of neurons in the input layer. As is shown in
figure 1, the topology has a recurrent to one step backward (time #-1) and one forward
(time #+1), that is the unfolding is of T times, where T = Sequence Length / n. For
example for a sequence divided into three parts (times), the unfolding of the network
will be replicated exactly three times.

The network is trained with the Bakpropagation Through Times algorithm [7].

Once the basic algorithm steps for processing a problem have been defined, a pro-
cedure for combining the results was introduced.
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Fig. 1. Bidirectional Recurrent Neural Network and its unfolding in ¢, #-1 and #+1 times

Output Aggregation Functions

The outputs can be either labels or continuous values. Label outputs refer to the dis-
crete value assigned to each class label. On the other hand, when continuous outputs
are used, a c-dimensional vector [d;, d, ..., d] is provided, where d; represents the
support for the hypothesis that output vector comes from the j" class, and ¢ is the total
amount of classes.

The model can be compared with a multi-classifier, where each time is a classifier
with its own output. Taking into account this idea, the model output can be
represented as T vectors, one for each time.

In literature, several approaches for aggregating these values into a single output
have been proposed and discussed. In this paper, we use the three following variants.
Each function returns one vector of membership probabilities for each class, where
the final result is the class associated to the index of value in the vector:

e Average function: Calculates the average of the probabilistic values associated
with the class membership of the network outputs.

e Max Probability function: Calculates the highest value of class membership proba-
bility and returns the class with more probability.

e Mode function: Calculates the class with more probability for each network output
and return the class that appears most often as result.
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2.4  Performance Evaluation

As was mentioned before, the databases were built artificially with binary classes.
The most commonly used parameter to assess the predictively of the classification
models is the percent of well-classified cases (eq. 4).

Accuracy = TP+TN 100 (4)

TP+ FP+TN + FN

Where TP is the true positive rate (positives correctly classified/total positives), TN
is the true negative rate (negatives correctly classified/total negatives), FP is the false
positive rate (negatives incorrectly classified/total negatives) and FN is the false nega-
tive rate (positives incorrectly classified/total positives).

Here we used the accuracy and 10-fold cross-validation to show and compare the
results.

3 Results and Discussion

3.1 Results from Artificial Databases

The training of the BRNN is based on the topology presented before. To simplify the
experiment, three times and the same amounts of neurons for each hidden layer were
selected: 4, 6, 8 and 10 neurons. Three output combination functions were tested:
mode, max and average. Backpropagation Through Time algorithm was used with
learning rate 0.01 and momentum 0.9.

We trained a J48, BayesNet, 10 SVMs with polynomial kernels (from 1 degree to
10 degrees), 10 MLPs with 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 neurons in the hidden
layer. Then a 10-fold cross-validation was performed for each base, taking the accu-
racy as performance measures. Also statistical tests were applied.

The analysis of the results is focused on the three factors used to build the databas-
es: feature relation, direction of this relation and the decision boundary, beginning
with the last one.

When the class is obtained by a linear function the results of BRNN are not as
good as the other methods. In this case, SVMs and MLPs provide better results than
BRNNSs. This could be due to their capability to find hyperplanes to separate the
classes. They are also cheaper computationally speaking, so it is not advisable to use
BRNNSs in problems with linear separation.

On the other hand, when the class is obtained by polynomial or piecewise poly-
nomial functions, BRNNs are superior to other classifiers depending on the output
combination method used.

Figure 2 shows the results of accuracies in datasets with the features generated by a
polynomial function. Vertical axes show results obtained by BRNNs with the pro-
posed output combination functions (average, max and mode), and horizontal axes
represent the highest accuracy values of the other classifiers: J48, BayesNet, SVM
and MLP. The BRNN superiority can be seen, at first sight, in this unfair comparison.
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Fig. 2. BRNN accuracy using average, max and mode as combination functions against the J48,
SVM, Bayes Net and MLP highest accuracy in datasets with class relation by polynomial
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Fig. 3. BRNN accuracy using average, max and mode as combination functions against the J48,
SVM, Bayes Net and MLP highest accuracy in datasets with class relation by piecewise poly-
nomial function

The best results are obtained with the mode as output combination function.

Similar results are shown in figure 3, but in this case, the piecewise polynomial
function to generate the features is being used. BRNNs are superior again. This sug-
gests that when the decision boundary is complex the BRNN is an alternative method
to solve the problem.

Taking into account the factor of feature relation, one could predict that, the results
obtained by BRNN in datasets without relation between the features are not really
better than others methods. BRNN is computationally expensive and complex. For
this reason we suggest not using these networks when the problem has independent
features. On the other hand, there are significant differences in datasets with feature
relations, no matter the complexity of these relations. Fig 4 shows the comparison
between the classical classification methods and the BRNN. Most of the time, BRNN
achieve the higher result.
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SVM, Bayes Net and MLP highest accuracy in datasets with feature and class relation by poly-
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In figure 5 only the database with relation between the features and a non-linear
decision boundary is displayed. As can be seen, the results are now better for the
BRNN, aiding towards a conclusion that the combination of a complex decision
boundary and a dependency between features suggests that it is more suitable to use
methods like BRNN for classification problems.

Additionally, the results obtained taking into account the directions of dependen-
cies between features were analyzed. It is important to observe that BRNN achieves
the best results again when the features have dependencies, in the three directions:
forward, backward and in both directions. Although the BRNN achieves the best re-
sults for the three cases, the best are obtained when the data has dependence in both
directions: forward and backward. The output combinations with best results are max
probability and mode. As figure 6 illustrates, when features have both dependencies
(forward + backward) and the output combinations are max probability or mode the
BRNN is always superior or at least similar to the other methods.

To corroborate these conclusions statistic tests were used specifically nonparame-
tric tests and more specifically the two-way Anova Friedman test. It was necessary
to carry out a 2-related sample test to contrast the groups.
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Fig. 6. BRNN accuracy using average, max and mode as combination functions against the J48,
SVM, Bayes Net and MLP highest accuracy in datasets with different directions of dependen-
cies between features

The Wilcoxon test shows highly significant differences between results obtained
by BRNN and the other classifiers in those datasets where the class is obtained by
polynomial and piecewise polynomial functions.

Furthermore, the comparison between the results related with features relation and
with the dependencies between them reconfirms the superiority of the BRNN when

the data has dependencies between the features in any direction.

Finally, output combinations were compared. Mode and max probability were best
for accuracy, instead of the expected average function (the continuous central tenden-
Cy measure).
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3.2  Results Using the HIV Drug Resistance Database

The information to build the databases is from the “Stanford Database” [8]. There are
7 databases corresponding to drug resistance in the following protease inhibitors:
Amprenavir (APV), Atazanavir (ATV), Indinavir (IDV), Lopinavir (LPV), Nelfinavir
(NFV), Ritonavir (RTV) y Saquinavir (SQV).

In [6] the use of this BRNN topology is shown with mode as the output combina-
tion function, to solve this problem, but with another version of the database. Here
more cases from the database were used. BRNN is compared with previous results
with others methods. In [9] the results obtained by a lot of classification methods to
predict the HIV drug resistance is shown.

Here the BRNN is trained with the three output combination functions used before.
Also other classification models were trained: J48, SVM with different kernels: linear,
polynomial and Gaussian; BayesNet, MLP.

In this work the amino acids are represented with their contact energies and the da-
tabase is the last version of the Stanford Database. For these reason the obtained re-
sults are a slightly different to those obtained in [9] and [6].

Table 1 illustrates the results obtained by different models. BRNN achieves accu-
rate similar or superior results in all cases. The best output combinations for this prob-
lem are mode and max probability.

Table 1. Results of accuracy for database of protease inhibitors

148 SVM SVM' SVM BayesNet MLP BRNN BRNN BRNN -
linear Polynomial Gaussian Average Mode Max Probability
APV 0.82 0.82 0.82 0.69 0.81 0.79 0.82 0.83 0.83
ATV 0.65 0.75 0.73 0.61 0.68 0.76 0.74 0.75 0.77
IDV 0.89 0.89 0.88 0.82 0.89 0.88 0.87 0.90 0.90
LPV 0.89 0.87 0.88 0.85 0.86 0.89 0.89 0.91 0.89
NFV 090 0.88 0.86 0.71 0.90 0.88 091 091 0.92
RTV 0.93 0.90 0.90 0.80 0.91 0.90 091 0.93 0.93
SQvV 0.76 0.74 0.74 0.74 0.72 0.73 0.72 0.74 0.76
Average 0.83  0.84 0.83 0.74 0.83 0.83 0.84 0.85 0.85

In this biological sequence problem the BRNN also achieves the best or at least
similar results in most of the databases, as is shown in table 1. Although the mode
achieves better results with respect to the rest of methods, the max probability is now
the aggregation function with best results.

4 Conclusions

BRNN is not the best classifier in linear decision boundary problems. In these prob-
lems, other simpler methods are in fact better, such as, SVM and MLP. However, in
problems with complex decision boundaries, as soon as relations start emerging be-
tween features, BRNN becomes the best classifier. The best results of this model are
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when the features have dependencies in the sequences on both backward and forward.
It is recommended to use the mode or the max probability as output combination.

In regards to the problem of HIV drug resistance the results of the topology of
BRNN proposed has superior results or at least similar to the results obtained by the
other techniques. These results and conclusions do not mean that the model described
here is better than other methods for any type of biological problem, but it is a prom-
ising method to bear in mind.
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proof reading.
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Abstract. The reasons because power systems monitoring is a challeng-
ing task are the complexity and high degree of interconnection present
in electrical power networks, the presence of dynamic load changes in
normal operation mode, the presence of both continuous and discrete
variables, as well as noisy information and lack or excess of data. There-
fore, in order to increase the efficiency of diagnosis, the need to develop
more powerful approaches has been recognized, and hybrid techniques
that combine several reasoning methods start to be used. This paper
proposes a methodology based on the system’s history data. It combines
two techniques in order to give a complete diagnosis. The proposal is
composed by two phases. The first phase is in charge of the fault de-
tection by using Multidimensional Scaling (MDS). MDS acts like a first
filter that gives the most probably state of each system’s node. The
second phase gives the final diagnosis using an Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) over the node(s) given by the first phase in
order to look for the faulty line(s) and the time when the fault starts.
This proposal can detect the presence of either symmetrical or asymmet-
rical faults. A set of simulations are carried out over an electrical power
system proposed by the IEEE. To show the performance of the approach,
a comparison is made against similar diagnostic systems.

Keywords: Fault Detection, Fault Diagnosis, Complex Systems, Elec-
trical Power System, Dynamic Load Changes, Multidimensional Scaling,
ANFIS.

1 Introduction

From the point of view of safety and reliability of electric power systems, it is
necessary to have an early fault diagnosis scheme which can detect, isolate, diag-
nose the faults, and advise the system’s operators to initiate corrective actions.
During a disturbance, there is a great number of events related to the fault(s).
Such events make the decision of the restoration actions to be carried out a
difficult task to the power system’s operator. Moreover, with advances in power
system devices and communications, even more information will be presented to
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operators, and alarm processing in large power systems calls for the treatment
of a great bulk of information. The increase in information will enable a more
complete view of the power systems state, but it will increase the need for fault
diagnosis to effectively handle the system information. In this domain, the need
to develop more powerful approaches has been recognized, and hybrid techniques
that combine several reasoning methods start to be used.

An electrical power system fault detection and diagnosis methodology using
a combination of the Multidimensional Scaling (MDS) and an Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) is proposed. The framework proposed is a pro-
cess history based method. The organization of the paper is as follows. Section
2 reviews the state of the art. Section 3 gives the preliminaries and the back-
ground knowledge on MDS and ANFIS. Section 4 gives the approach general
description. Section 5 shows how this framework works in a simulation example.
Finally, conclusion ends this paper in section 6.

2 State of the Art

The reasons behind the increased interest in fault diagnosis in power networks
are the complexity and high degree of interconnection present in electrical power
networks, that can lead to an overwhelming array of alarms and status messages
being generated as a result of a disturbance. This can have a negative impact
on the speed with which operators can respond to a contingency. Therefore, in
order to increase the efficiency of diagnosis, it is necessary to use automated
tools, which could help the operator to speed up the process.

[8] presents a methodology that uses artificial neural networks integrated
with other several statistical techniques. Among the numerical and statistical
tools used in the approach is the Fourier parameters, the RMS values (RMS),
the constant of false alarm rates (CFAR), the skewness values (SV), the Kurtosis
measures (KM), the ratio of power (ROP), symmetrical components (SC), which
seek to identify in a integrated way between a normal operation situation and
a transient occurrence situation. When there is a fault, an artificial neural net-
work of multilayer perceptron type classifies it. In [9] there are multiple ANFIS
units which are Fault Detection, Fault Classification and Fault Location units
to carry out the diagnosis of a long tranasmission line. They are instituted by
training different data that are carried out at various situations of fault and no
fault conditions. The input data ANFIS detection units are firstly derived from
the fundamental values of the voltage and current measurements using digital
signal processing via Fourier transform. [6] uses readings of the phase current
only during the first one-forth of a cycle in an integrated method that com-
bines symmetrical components technique with the principal component analysis
(PCA) to declare, identify, and classify a fault. This approach also distinguishes
a real fault from a transient one and can be used in either a transmission or
a distribution system. [4] presents a framework that uses a probabilistic neural
network to classify the most probably node’s state based on the eigenvalues of
the line’s voltages correlation matrix. Then a comparison against a fault signa-
ture is made to diagnose the type of fault. [7] proposes an Augmented Naive



152 J.P. Nieto Gonzélez and P. Pérez Villanueva

Bayesian power network fault diagnosis method based on data mining to diag-
nose faults in power network. The status information of protections and circuit
breakers are taken as conditional attributes and faulty region as decision-making
attribute. [2] can analyze faults occurring between two buses that are equipped
with measurement units. The first step of the framework is to detect the presence
of a fault in the power system in real time. Then, the method of symmetrical
components is used to convert the three-phase power signals to three sets of
independent components, which are positive, negative, and zero sequences. [5]
proposes a two phase methodology. First phase uses a probabilistic neural net-
work to obtain the most probably operation mode of the nodes, then a second
phase performs an ANFIS to determine the real state of each node’s lines. The
present work proposes a variant of the approaches shown on [4] and [5].

The methodology presented in the present paper, carries out a complete diag-
nosis in two phases. The main difference is the way the detection process is done.
A set of simulations are carried out over an electrical power system proposed
by the IEEE. To show the performance of the approach, a comparison is made
against similar diagnostic systems. The results have shown promising results for
this new proposal.

3 Preliminars

3.1 Multidimensional Scaling

Multidimensional Scaling (MDS) techniques are applied when for a set of ob-
served similarities (or distances) between every pair of N items, it is wanted to
find a representation of the items in fewer dimensions such that the inter-item
proximities nearly match the original similarities (or distances). It may not be
possible to match exactly the ordering of the original similarities (distances).
Consequently, scaling techniques attempt to find configurations in ¢ < N — 1
dimensions such that the match is as close as possible. The numerical measure
of closeness is called the stress. [3] summarizes the MDS algorithm as follows:

— For N items, obtain
N(N -1
2
similarities (distances) between distinct pairs of items.
— Order the similarities as

Sitky < Sigke < oor < Sipkas (2)

where s;, %, is the smallest of the M similarities.
— Using a trial configuration in ¢ dimensions, determine the inter-item dis-
tances
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— Minimize the stress

S (d) —diP)? s
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Stress =

— Using the CZEZ)’S, move the points around to obtain an improved configura-

tion. A new configuration will have new dEZ)’s new CZZ(»Z)’S and smaller stress.

The process is repeated until the best (minimum stress) representation is
obtained.

Thus, MDS allows to visualize how near points are to each other for many kinds
of distance or dissimilarity measures and can produce a representation of data
in a small number of dimensions. MDS does not require raw data, but only a
matrix of pairwise distances or dissimilarities. A matrix is a similarity matrix
if larger numbers indicate more similarity between items, rather than fewer. A
matrix is a dissimilarity matrix if larger numbers indicate less similarity.

3.2 Adaptive Neuro-Fuzzy Inference Systems

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are a class of adaptive net-
works that are functionally equivalent to fuzzy inference systems. For simplicity,
assume that the fuzzy inference system under consideration has two inputs x
and y and one output z. For a first order Sugeno fuzzy model (shown in Fig. 1)
a common rule set with two fuzzy if-then rules is of the form

— Rule 1: If z is A; and y is By, then fi = piz+qy+nm
— Rule 2: If z is As and y is Bs, then fo = pox + g2y + 72

Fig.1. ANFIS architecture

Every node i in layer 1 has a node function
O1, = pa,(x) for i=1,2, (5)

where Oy ; is the membership grade of a fuzzy set A (A = A;, Az, By or Bs)
and it specifies the degree in which the given input x satisfies the quantifier A.
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These are the premise parameters. In layer 2 every node is a fixed node labeled
11, whose output is the product of all the incoming signals

Oz = w; = pAi(x)uB;i(y) i=1,2 (6)

each node output represents the firing strength of a rule. Every node in layer 3
is a fixed node labeled N. The i** node calculates the ratio of the i** rule’s firing
strength to the sum of all rules’ firing strengths

wy

1=1,2 (7)
w1 + wo

O3, = w; =

In layer 4 every node i is an adaptive node with a node function
Os,i = w; fi = wi(pix + qiy +14) (8)

these are the consequent parameters. The single node in layer 5 is a fixed node
labeled 3", which computes the overall output as the summation of all incoming

signals
ZZ‘ wif i

22w )

overall output = Os; = Zwifz‘ =
i

4 Framework Description

This is a variant of the proposals shown in [4] and [5]. The general fault de-
tection and diagnosis framework proposed in the present work is shown in Fig.
2. According to [10] this proposal is a process history-based method because of
the need of a data set when the system runs under normal operating conditions.
The framework only requires a big quantity of historical data, containing normal
operation data in the system. The approach is composed by two phases. First
phase is the detection process and the second phase gives the final diagnosis.

The two phases of the complete fault detection and diagnosis system performs
their functions as follows:

1. As depicted in figure 2, the very first step is to take data sets of normal
operation and split them in windows of n samples. Then a multidimensional
scaling (MDS) procedure is carried out. The output of this MDS will be
a set of vectors in p dimensional space such that the matrix of Euclidean
distances among them corresponds as closely as possible to some function
of the input matrix according to a criterion function called stress. These
distances could be plotted and will give an idea of how the samples group in
a two dimensional space. MDS is used as a feature extraction step to learn
the normal operation dynamics of the system. Feature extraction could in-
clude several different methods to extract relevant aspects that will serve as
a-priori knowledge of the normal behavior of the system. In this paper the
feature extraction is carried out only by the MDS. MDS gives the distances
between the lines of each system’s nodes. Then from these distances, the
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Fig. 2. General fault detection and diagnosis framework

minimum and maximum limits are obtained describing in this way the nor-
mal operation mode. When monitoring the system, MDS is performed over
the test data set to extract the distances between the lines of each system’s
node and then they are compared against the minimum and maximum limits
that describe the normal operation. When faulty data is present the output
of this phase will give which node is on a faulty condition based on the
fact that at least one of the distances between its lines must be out of their
normal operation limits. The use of MDS is to quickly locate the suspicious
nodes instead of performing the second phase of the methodology over the
entire original system. Thus the search space for a fault presence is reduced
to only for those nodes whose distances between their lines lay outside the
normal operation limits providing the advantage of speeding up the fault
detection process. If the features extracted are inside the normal operation
limits then the monitoring system continues its process by taking another
data set to test.

. If the features extracted lay outside the normal operation limits the second
phase of the methodology starts. Here an ANFIS is used to look for the
type of fault present and to give the final diagnosis. In this second phase
an ANFIS is built as shown in section 3.2 using for this task according with
the most probably state of the system the corresponding variables (electrical
node’s lines) that are found in normal operation as the predictor variables
for each one of the rest of variables. Thus, the ANFIS for a specific variable
will predict the value of the variable monitored being this output, its normal
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operation value. With this value it is obtained a normal operation interval
with respect to the normal operation predicted value. Finally a comparison
against the normal operation limits is carried out in order to detect which of
the variables has a fault present. This comparison serves as a classifier that
gives the real variables’ state and can be used to locate the period of time
or sample number where the fault occurs.

The algorithm for this approach could be summarized as follows:

Learning steps of the monitoring system

Take a normal operation data set

Carry out the feature extraction for learning. In this work this is as follows:

(a) Split the original data set in smaller windows

(b) Apply MDS

(¢) Obtain the minimum and maximum distances between the electrical lines
of each node

(d) Stablish the normal operation distances limits for the electrical lines

. Form and train an ANFIS using the corresponding variables (electrical node’s

lines) that are found in normal operation as the predictor variables for each
one of the rest of variables.

When monitoring a data set the system performs as follows:

. Take a test data set. This is a window of n samples as depicted in step 2(a).
. Carry out the feature extraction for testing. Do the same as in step 2 (b)

and 2 (c).

. Compare the distances between the electrical lines of a suspicious faulty

node against the limits of normal operation data distances. Verify if these
distances are inside the limits obtained in step 2 (d).

. If all of the distances are between the normal operation limits return to step

4 else go to step 8

. Perform an ANFIS for the suspicious node
. Look for the variables that have actual different values from those predicted

by the ANFIS

Look for the position of the samples that differ from the right predicted value
given by the ANFIS obtained in step 3

Give the final diagnosis. Show the variable that is in faulty mode as well as
its location

Case Study

The present section shows the performance of the framework proposed for
multiple-fault diagnosis over the IEEE network shown in Fig. 3. This figure de-
picts an electrical power system having dynamic load changes. The performance

of

the methodology proposed for multiple-fault diagnosis was observed within
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50 simulation databases of the IEEE network. In order to make the comparison,
it has been used those 50 databases containing symmetrical and asymmetrical
faults at random nodes, taking into account multiple simultaneous faults sce-
narios with up to five different faults at a time, and combining faults such as:
one line to ground, two lines to ground, three lines to ground, fault between two
lines and the no fault mode.

The diagnosis system proposed was tailored according to the steps described
on section 4 as follows:
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Fig. 3. IEEE reliability test system single line diagram

1. Obtain windows of 100 samples from normal operation history data process
(electrical voltage in each node’s lines).

2. Obtain MDS minimum and maximum distances between the electrical lines
of each of the 24 nodes of the system.

3. Stablish the normal operation distances limits for each of the 24 nodes.

4. Train an ANFIS with voltage’s amplitude of normal operation mode.

5. Take a test data set of 100 samples from the electrical power system being
monitored.

6. First Phase: Use MDS to obtain the distances between the electrical lines of
each of the 24 nodes of the system.

7. Identify which nodes have their distances out of the normal operation limits.
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8. Second Phase: Carry out and ANFIS for each of the lines involved on the
most probably faulty node given by the first phase output (see step 7). Then
compare the suspicious samples with the output of the ANFIS in order to
determine the real state of the system and if there is a fault present, classify
and locate it.

9. Give the final diagnosis of each node being monitored. If a fault is present
in a specific node give the node’s number, the type of fault present and the
time when it appears, else print NO FAULT.

We have considered on the simulations that voltages from the three lines of
each of the 24 nodes from the electrical network are measured and registered
on a database. The methodology has been applied under the consideration that
voltage’s information is known, nevertheless on electrical power systems the only
available information could be the electrical network’s breakers state instead of
voltages or electrical current’s values. The proposal takes sample windows of 100
data and takes into account three possible cases.

— Case 1: System is working properly during the first 25 samples from a total
of 100, that means 25 samples are ok and 75 samples correspond to fault

present on system.
— Case 2: Takes 50 samples of normal operation data and 50 samples with

fault present.
— Case 3: Takes 75 samples of normal operation and 25 with fault present.

Table 1. Comparison of the diagnosis systems general performance’s percentages of
detection by fault type for each proposal after 50 simulations

Component State Probabilistic Logic [1] PNN + EIG [4] MDS + ANFIS

A-B-C GND 100 100 100
A-B GND 100 100 100
A GND 86 93 100
A-B 83 78 88
B-C 100 79 88

NO FAULT 71 64 88

Table 2. Comparison of the diagnosis systems general performances percentages for
each of the proposals for case 1 after 50 simulations of different fault scenarios

Proposal [Reference] Detection Identification Location

Probabilistic Logic [1] 88 88 70
PNN + EIG [4] 85 85 60
MDS + ANFIS 85 90 90
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Table 3. Comparison of the diagnosis systems general performances percentages for
each of the proposals for case 2 after 50 simulations of different fault scenarios

Proposal [Reference] Detection Identification Location

Probabilistic Logic [1] 85 83 65
PNN + EIG [4] 79 79 50
MDS + ANFIS 80 85 85

Table 4. Comparison of the diagnosis systems general performances percentages for
each of the proposals for case 3 after 50 simulations of different fault scenarios

Proposal [Reference] Detection Identification Location

Probabilistic Logic [1] 80 79 50

PNN + EIG [4] 75 75 45

MDS + ANFIS 75 80 80
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Fig. 4. Different fault scenarios. a)Case 1 for node 9, one line to ground. b)Case 2 for
node 3, two lines to ground, ¢)Case 1 for node 7, fault between two lines.
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Fig. 4 shows the voltages’ magnitud for different scenarios. Those scenarios
are the following: Fig.4a) represents a fault present on node 9 for case 1 and the
type of fault is one line to ground. Fig.4b) shows a two lines to ground fault on
node 3 for case two and Fig.4c) depicts case 1 fault between two lines for node
7.

To observe the performance of the new proposal, a comparison against a
diagnostic system based on probabilistic logic taken from [1] and the framework
proposed on [4] has been carried out. Table 1 shows the comparison of the
performance’s percentages of detection by fault type for each proposal. It clearly
shows that the new approach has the best performance of the three diagnostic
systems being compared.

Tables 2, 3 and 4 show the comparison of the present fault diagnosis system
against those used in [4] and in [1]. The comparison was made for Case 1, Case
2 and Case 3 respectively. The percentages were obtained after carry out 50
simulations for each case and combining different fault scenarios. First column
shows the methods used on each proposal. Second column gives the general
percentage of fault detection, that is the percentage of correct detection of a
fault present for the 50 simulations. Third column is the general percentage of the
correct identification of type of fault present on the system. Fourth column shows
the general percentage of the correct sample location when the fault occurs.

6 Conclusion

This paper has presented a new proposal to carry out a complete fault detec-
tion and diagnosis of electrical power systems with dynamic load changes. The
methodology proposed is composed by two phases. First phase is the fault detec-
tion process. This is done by using MDS technique in order to obtain the limits
of the distances between the voltage samples of each node that define the normal
operation of the system. The output of the second phase is the final diagnosis.
This is carried out by a comparison between the observed variables and those
predicted by an ANFIS. This allows to give which line(s) are in faulty mode.
The simulations carried out has shown the promising results obtained with this
approach in comparison with similar frameworks.
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Abstract. This paper proposes a novel control scheme for rotor time constant
identification using artificial neural networks. This approach, based on estima-
tion of the rotor time constant from motor terminal variables (stator voltage, sta-
tor current and rotor speed), can be applied to indirect field oriented control and
used to tune the actual rotor time constant of the induction motor to its set value
programmed in the decoupling controller. The neural estimators use the back-
propagation learning process to update their weights. The performance of the
proposed scheme is carried out by extensive simulations confirming the feasi-
bility of the proposed control strategy.

Keywords: artificial neural networks, indirect field oriented control, induction
motor drives, rotor time constant.

Nomenclature
ANNSs Atrtificial Neural Networks
dgq direct and quadrature components
R, R, stator and rotor resistance [Q]
igs, Igs stator current dg —axis [A]
igrs Igr rotor current dg —axis [A]
Vas. Vas stator voltage dg-axis [V]
Var Var rotor voltage dg-axis [V]
L,,L,L, stator, rotor and mutual inductance [H]
Adss Ags dg stator fluxes [Wb]
Adrs Agr dgq rotor fluxes [Wb]
T, electromagnetic torque [N.m]
@,y W, Oy rotor, synchronous and slip frequency [rad/s]
T, rotor time constant
J inertia moment [Kg.mz]
n, motor pole number
o leakage coefficient
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1 Introduction

Development of vector control techniques applied to induction motors, power conver-
ters and digital controllers has initiated the decline of the supremacy of DC machines
in high performance adjustable speed drives. The vector control can be realized in a
direct or indirect fashion [1]. The latter arouses more interest since it does not imply
any modification to the structure of the machine. The method of indirect orientation
of the rotor flux is widely used due to its simplicity and because it lends itself well to
a generalized implementation for general-purpose induction motors. The principal
drawback of the indirect method is its sensitivity to parameters variation [2]. The
differences between the parameter programmed in the regulators and the real parame-
ters of the machine deteriorate the performances of the drive not only in transients,
but also in steady state [3]. The estimation of the rotor time constant is thus necessary
for the implementation of high performance vector control schemes based on indirect
method of rotor flux orientation. Various techniques are explored nowadays by re-
search team’s all around the world. All have the aim of obtaining correct values of
the motor parameters, required in the implementation of indirect vector controls in-
sensitive to parameters variation [4]-[5]-[6]-[7]-[8]-[9]-[10]-[11].

The contribution of this paper lies in the use of artificial neural networks (ANNs)
for the implementation of vector controlled induction motor. The advantages of
ANN s have been highlighted in several fields of application and they arouse, current-
ly, much interest in the fields of power electronics and electrical machines control
[12]. The main objective of this research is to estimate the rotor time constant of an
induction motor drive, in order to realize an indirect field oriented control insensitive
to the variation of this parameter. The originality of this work lies in the approaches
used. Indeed, three new estimation strategies have been developed. These techniques
use either ANNs or the motor model equations under dynamic conditions in the sta-
tionary reference frame. To achieve this goal, several sub-objectives are to consider in
particular, the development of a simulation library of induction motor, the develop-
ment of learning methods ANNs, and finding appropriate architectures.

2 Indirect Field Orientated Control

The indirect field orientation uses the slip relation to estimate the flux position to the
rotor. There are no sensing devices placed inside the motor, meaning there is no direct
measurement of the magnetic field. Instead, the rotor speed (i.e. rotor frequency) is
measured and slip frequency is calculated. Addition of these frequencies yields an
optimal stator frequency for motor control. A sensor on the motor shaft measures the
rotor angle 6, (or measures the rotor speed w,, followed by an integrator for calcula-
tion of the angle). The input signals for current control are used for calculation of the
desired slip frequency, wgy, which is integrated, giving a slip angle, 6, which is added
to the rotor angle. (The slip angle is required to adjust the inclination of the d-axis so
that the magnetization of the motor is along this axis). The sum of the two angles
gives the instantaneous rotor flux position angle.
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The decoupling conditions may be written:

A=dy+jA, =4y A =0, and i, =|- i i )
Then, the torque equation becomes:
T, = %ﬁriqs 2)
And the rotor flux equation becomes:
A= 1f7 i 3)

The slip equations for an induction motor in an arbitrary synchronously rotating refer-
ence frame are given by:

Ri, RL . L)1 |R,.
— = = s = | — |, (4)
ﬂ'dr ﬂ'err R lds L

r

a)e_a)r:a)sl =-

r

when iy and i, are decided by wy, rotor flux position 6, is given by:

0 =]@dt=j(wr+@,)dt (5)

e
0 0

Indirect field orientation does not have inherent low speed problems (unlike direct
field oriented control), and is thus preferred in most systems that must operate near
zero speed. As well, flux can be obtained even down to zero frequency, making it
suitable for position control. A major drawback, however, is that calculation of the
rotor flux depends on the rotor the constant z,, where 7,=L,/R,. This time constant is
dependent on rotor resistance, which is a function of rotor temperature and therefore
tends to vary significantly due to temperature variations and the skin effect. This af-
fects the accuracy of the flux magnitude and angle estimation, leading to degradation
in system performance and quality of control.

3 Mathematical Development of Rotor Time Constant
Estimator and Rotor Flux

Consider the stator voltages equations and calculate the term: (vsigs-Vysias),
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. . dﬂd& . dﬂ’qs .
vdslqs _Vqslds = dt lqs - dt lds (6)
Let us know that:
A = i_”d’ toLi, )
L, .

ﬂqs :L—}bqr +O'leqs (8)

dA, R, , .
d_td: L (Liy =4, )- @4, )

dA, R )
dt" = (L,i, =4, )- @4, (10)

We replace (44 and A4) by their values given by (7) and (8), we find:

da, di
Vel =V gsla :(ll'l—md/l + 0L, diy, ] ) _(L_m +0oL, dzs ]ids (1

dt dt L dt

r

We replace (d4/dt and dJ,/dt) by their values given by (9) and (10), we find:

vdsiqs _vqsids :i_m[_ir (/’Ldr qs /’Lqudb) (/’Lqr qs /’Ldrldé ))

r r

(12)
di, . di, .
toL,| —*i, ——%i,
dt dt
Hence, we can derive the expression of the rotor time-constant (z,=L,/R,):
Ai,—A,i
T = i =l (13)

' di di
Ifr ((/1‘,3 WAy )-o S(C’;‘iw—; nm(/zwmd,zdé)

m

Due to the mathematical complexity and quantity calculations of rotor time constant
estimators, an implantation using ANNs seems interesting.
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4 Neural Rotor Time Constant Estimator

Among the various neural networks and their associated algorithms, our choice fell on
the study of continuous multilayer neural networks. This type of network has excel-
lent characteristics in the estimation and signal processing. In our application, we
developed three ANNs that can be used in achieving a high performance control of
induction motors controlled by indirect method of rotor flux orientation. ANNs we
used are multi-layer networks, simple (the neurons of a layer are connected only to
neurons of the next layer) and each neuron is connected to all neurons of the next
layer. The network consists of an input layer, a hidden layer and an output layer. We
also tried two hidden layers networks, but the results and the learning curve is very
comparable, for the same number of neurons, to those obtained from a hidden layer.
Neurons used in ANNs developed are continuous neurons (sigmoid and linear). The
methodology used consisted in preparing a databank fairly representative. This bank
should take into account the maximum information on the different modes of training,
enrolling in range where it is required to operate. Once this databank prepared and
normalized, a part representing 20% is chosen to test the network generalization for
data never learned. The remaining 80% is used as databank learning will be used to
adapt the weights and biases of the ANN. As we mentioned goal is to realize ANNs
capable of well generalize, the structure of ANNs has been developed following the
cross-validation procedure proposed by [13]. Once the databank learning and the
structure of ANNs determined, the learning phase is started using the toolbox neural
network MATLAB. During this learning phase, we proceed regularly to verify the
network generalization. At the beginning of this phase, the training error and those
generalization decrease progressively as the number of iterations increases. However,
from a number of iterations, the generalization error starts to grow while the learning
continues to decline. This is due to the fact that ANNs begins to learn by heart the
training data (memorization).

As the goal is to develop ANN s that generalize, it is necessary that the learning phase
to be stopped as soon as the generalization error starts to grow. If both errors are
far from the desired error, we add some neurons and restart the learning phase until
obtaining a good compromise between the desired errors, learning and generalization.
Once the ANN has converged to an acceptable error, the optimal weights and biases
are saved.

Development of the Neural Network
A neural network has been trained for estimating the rotor time constant variation in
line using speed measurements, voltage and stator current (Vas, Vyss idss Igs> @p)-

Signals networks learning were prepared from the machine phase model in which we
programmed the rotor resistance variations. In addition, survey data from the machine
experimental magnetization characteristic were used to develop a model that takes into
account the saturation. For each rotor resistance variation, the rotor time constant is
calculated and stored. A databank has been constructed from the input signals (v, Vg
Igs, 145> @,), and network output 7,. In preparing this databank, different operating condi-
tions (torque and flux variables) were simulated. For the couple, the operations in the
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two rotation directions and even stoppage were simulated. It should be noted that learn-
ing could also be done with real signals captured in the laboratory, if we can by one
means or another to vary the rotor time constant value. This is simpler in the case of a
wound rotor machine, which can easily apply variations in rotor resistance. Each time
constant value corresponds to a very precise combination of input signals. The artificial
neural network role is therefore able to detect in the modifications imposed on the input
signals, due to the rotor resistance variation, the time constant value at machine level.
Once this databank prepared, it was subdivided at random into two subsets, one for
training whose size represents 80% of this databank and another representing approx-
imately 20% was reserved for testing the network generalization for data never learned.
The databank contains prepared 5000 combinations of input signals - rotor time con-
stant, which represents a reasonable size for bank learning ANNs.

I7=i; +i, (14)

s

i, = (15)
L 1
A = 1S (16)
1Y Li'Y
(1+57) S
+57T, T A

Fig. 1. Neural network for rotor time constant calculation
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A three-layer network with a total of 37 hard limit neurons is employed to imple-
ment the rotor time constant estimator as shown in Fig.1. The first hidden layer has 22
neurons (square activation function neuron with the w; and bias ;), 8 neurons in the
second hidden layer (tansig activation function neuron with the weight w, and bias
6,), and the output layer has one neuron (linear active function neuron with the weight
w; and bias ;). The network is trained by a supervised method. After 435 training
epochs, the sum squared error arrives at zero.

04r
:‘l} neural rotor time constant estimator
fu 03F actual rotor time constant
w
=
g 02t A
@
£ —‘—|— R =150%R
g 0-1 i A0 * }\ r " ‘\0
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Fig. 2. Estimation results of the neural rotor time constant and estimation errors
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Fig. 5. Electromagnetic torque

Fig.2 shows the results of neural rotor time constant estimating. This result is pre-
sented for rotor flux oriented drive operating at nominal set-points flux and torque, in
which we have programmed a rotor resistance which varies between 100%, 75%,
50%, 125%, 150% and 100% at t = 0.5s, t = 1s, t = 1.5s, t = 25 and ¢ = 2.5s respective-
ly. The neural network was also used to adjust a rotor flux oriented drive with respect
to the rotor resistance variation. The rotor time constant estimated by this ANNs is
used to correct the set-point slip at vector controller level.
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You can see in this figure the transient behavior of rotor time constant estimator based
ANNSs. We can also see that it responds precisely and variation index instantly applied
to the rotor time constant. Indexical variations were used here in order to verify the
dynamic performance estimation scheme. However, in practice the rotor time constant
varies exponentially with the heating of the machine.

The rotor speed response shows that the drive can follow the low command speed
very quickly and rapid rejection of disturbances, with a low dropout speed (Fig. 3).

The current responses are sinusoidal and balanced, and its distortion is small (Fig. 4).

The current and electromagnetic torque (Figs. 4 and 5) curves remain at their re-
spective set-points despite the variation applied to the rotor resistance. This proves
that the adaptation process of this parameter is actually performed and that decoupling
is maintained, seen that electromagnetic torque and current in the machine remain at
their respective set-points.

Induction motor parameters:

P, = 2.2kW, V, = 220/380V, f = 60Hz, R, = 0.84Q, R, = 0.3858Q, L, = 0.0706H,
L,=0.0706H, L, = 0.0672H, J = 0.008kg-m’, n, = 2.

5 Conclusions

In this paper we presented the analysis and the discussion of the effect of the rotor
time constant variations on the dynamic performance of rotor flux indirect field orien-
tation drives. We proposed a novel method for the adaptation of this quantity based on
artificial neural networks. The computer simulations have shown the validity and the
feasibility of the proposed method that possesses the advantages of neural network
implementation: the high speed of processing. In addition this method is more adapted
for practical implementation because it uses only stator terminal quantities (voltage,
current and frequency) in the estimation of the rotor time constant. This approach
should be useful in various applications where rotor time constant changes can
seriously deteriorate the performance of the drive.
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Abstract. This paper introduces a Genetic Algorithm (GA) for training
Artificial Neural Networks (ANNs) using the electromagnetic spectrum
signal of a combustion process for flame pattern classification. Combus-
tion requires identification systems that provide information about the
state of the process in order to make combustion more efficient and clean.
Combustion is complex to model using conventional deterministic meth-
ods thus motivate the use of heuristics in this domain. ANNs have been
successfully applied to combustion classification systems; however, tra-
ditional ANN training methods get often trapped in local minima of the
error function and are inefficient in multimodal and non-differentiable
functions. A GA is used here to overcome these problems. The proposed
GA finds the weights of an ANN than best fits the training pattern with
the highest classification rate.

Keywords: Genetic Algorithms, Artificial Neural Networks, Flame
Classification, Electromagnetic Spectrum.

1 Introduction

Currently Combustion is the most important source of energy for power gen-
eration, heating, and transportation in the world and this trend is expected to
continue in the foreseeable future [1]. Control systems that provide informa-
tion about combustion are of great importance for the energy saving. However,
combustion is a dynamic, highly nonlinear and multivariable process, which is
particularly complex to model using conventional deterministic methods.

Diagnostic methods based on flame monitoring have been implemented as
strategies to provide a status in combustion process with which can implement
control and optimization systems to make more efficient combustion process,
optimizing fuel consumption and reducing emissions. Several monitoring flame
techniques have been developed for combustion processes using Fuzzy Logic [2],
Expert systems [1], Support Vector Machines [3], Artificial Neural Networks
(ANNs) [4] and Genetic Algorithms (GAs) [5, 6], focussing mainly on combustion
gases analysis and prediction.

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICAI 2013, Part IT, LNAI 8266, pp. 172-184, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Monitoring flames through spectral analysis approaches arises as an alter-
native to monitoring techniques such as image analysis, which are difficult to
implement in combustion systems and require more computer processing. Com-
bustion processes such as those occurring in power generation industry frequently
make use of optical sensors as a safety measure indicating the presence or ab-
sence of the flame inside the furnace. However these sensors could provide more
information about the flame state that can be used for combustion optimization.

GAs are heuristic search methods based on the mechanism of genetics and
natural selection. GAs require minimum specific domain knowledge about the
search space, which makes their use very general. GAs are also easy to use and
can be particularly useful when dealing with optimization problems having a very
large, complex and little known search space, in which traditional mathematical
programming techniques tend to fail [7].

Performance of ANNs is largely influenced by the architecture as well as by
the weights used for its connections. The training stage in an ANN is the process
of adjusting the weights such that the training patterns fit with the lowest error
while having a profitable generalization ability to recognize new patterns. Tra-
ditional training methods for ANNs are based on gradient descent and get often
trapped in local minima of the error function. Therefore, such methods are very
inefficient in multimodal and non-differentiable functions [8]. In such cases, the
use of metaheuristics such as a GA is more appropriate. The GA proposed here
aims to adapt the weights of the connections of an ANNI9], different approaches
include the evolution of architecture [10-12] and the evolution of learning rules
and transfer functions [13].

The study reported here focuses on the electromagnetic spectrum signal anal-
ysis and GAs to train an ANN for the classification of pattern flames of a com-
bustion process. The remainder of this paper is organized as follows. In Section 2,
we describe the methodology adopted for our study, including a description of
the data acquisition and the features extraction processes of the electromag-
netic spectrum. In Section 3, we describe the main features of the GA that is
used to train an ANN and we also provide a description of the experimental
design adopted.Our results are shown in Section 4 and our conclusions and some
possible paths for future research are provided in Section 5.

2 Methodology

This section provides a description of the methodologies that have been used
for flame classification. In Figure 1, we show a general diagram of the system
adopted in our study, which includes three main stages: 1) data acquisition, 2)
features extraction and 3) the use of an ANN trained by a GA.

2.1 Data Acquisition

In our study, the electromagnetic spectrum of a combustion process was mea-
sured using a flame scanning system with a solid-state optical sensor that op-
erates between the ultraviolet peak at 350 nm and the infrared peak at 700
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Fig. 1. Diagram of the system adopted in our study

Training

nm. The scanning system output is 450 hexadecimal data, containing the sensor
configuration and the flame signal in both the time and frequency domains.

In combustion process optimization one of the most important condition is
the air/fuel ratio. Particularly there are tree conditions related to this ratio
balance: fuel rich, fuel lean and air/fuel balance. In Figure 2, we show the signals
associated to the following flame states:

1. No flame (background radiation)
2. Stable flame(air fuel balance)

3. Flame with air excess (fuel lean)
4. Flame with fuel excess (fuel rich)

A database was created using signals of the four flames states using a program
written in Visual Basic for data acquisition. The database is composed of 480
signals (we stored 120 for each flame pattern). Each signal contains 256 values
corresponding to the voltage equivalent to the flame intensity in 500 ms.

The database was divided in three subsets:

1. Data Training: Data used for training our ANN (see Section 3). The quadratic
error is minimized in the fitness function of the GA adopted to train the
ANN. This data corresponds to 50% of the total data set.

2. Data Validation: Data for computing the percentage of generalization. This
data corresponds to 20% of the total data set.

3. Data Test: New data to test the ANN. This data corresponds to 30% of the
total data set.

2.2 Features Extraction

Flame signals were preprocessed to extract features that capture the whole possi-
ble information (e.g., trends, periodicity, signatures of chaos) required to describe
the flame patterns. We provide next a description of the formulation of these
features.
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Fig. 2. Signal of the four flame patterns considered in our study

2.3 Statistical Features

Statistical Moments. Statistical moment analysis is a technique that can
be used for data series characterization, since it gives a set of parameters that
describe and provide information of a probability distribution function. The
second, third, and fourth normalized central moments of the distribution of the
flame signal intensity were calculated in order to provide information derived
from the comparison of the shape of the electromagnetic spectra.

The formal definition of a statistical moment is:

My, = Ele - E(2))* (1)

Where:

M= k order statistical moment
E[ |=Expected value

r= Data signal

Autocorrelation Sum (Box-Pierce). Autocorrelation measures the linear
correlation in a time series. The autocorrelation sum is calculated as:

Q(Tmaz) = ”E:ZTIT(T)Z (2)
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where:
Y (@ —a?)

n 2 2
Zt=r+1 Ty — &

(1)

2.4 Oscillation-Related Features

Oscillation-related features have been applied considering an oscillating behavior
in the flame signal (although this is not always true) and are calculated as in [14].
The signal is spanned with a data window of length k, and we checked if the
center is either a minimum or a maximum. The oscillation period is defined as
the time between successive peaks. The Oscillation-related features calculated
are the mean, and standard deviation of the period and peak, which are defined
as:
Period average:

_ 1 .
T = nEiL=1Ti (4)
where:
T,= Period of the it oscillation.
Peak average:
1
z = nE{;lzi (5)
where:
z;=Peak of the i*" oscillation.
Period standard deviation
1 n 2 )
Sr=1f T2 -T?) (6)
Peak standard deviation
1 n =2
Sz:nilzz‘ﬂ(zi_z ) (7)

2.5 Principal Components Analysis

Principal Components Analysis (PCA) is a data transformation technique that
can be useful to reveal simple structures, patterns or tendencies underlying in
complex data sets using analytical solutions. This technique provides a measure
to quantify the relative importance of each dimension allowing the characteriza-
tion of large data sets with a reduced number of components.

Let X be a (m x n) matrix and X*X a quadratic matrix of range ¢q. Then, X
could be expressed as:

X=UxV! (8)
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where U and V are m order matrices containing the eigenvector of X*X and X
is a diagonal matrix that contains the square roots of the eigenvalues of X*X:
(01,02,038,...,04), With 01 > 09 > 03 >,...,04 > 0.

In this study, we first compute the distance matrix of the data of a flame
signal and then, PCA is applied.

Principal Components Selection. It is expected that keeping n < m com-
ponents produces a high variance of the original data set. Then, the number of
components to retain is based on the cumulative contribution of the variance of
the first several components, which can be expressed as:

k

100
CVy = 9
* ; Z;nzl Aj ®)

where:
CV}, = cumulative variance of the component k
m = Total number of components

In Figure 3 we show the cumulative variance of the first 20 principal com-
ponents of a flame signal. As we can see, the first five components explain the
92.7% variability percentage and the 6th component increases it by only 1.28%.
Therefore, since the first five components have a high percentage of variability,
only these are retained.
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Fig. 3. Cumulative variance of the first 20 principal components

3 Genetic Algorithm Parameters

A real-coded GA was implemented, together with a two-layer feedforward neural
network using a hyperbolic tangent transfer function in both the hidden and
output layers. Figure 4 highlights the architecture of the ANN and in Figure 5
we show the weights encoding scheme adopted.

The inputs vector of the ANN is formed by the 13 features described in the
previous section, while the outputs correspond to the four different flame pat-
terns being considered. In Figure 6, we show the targets for the flame states.
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Algorithm 1. Pseudocode of the GA used to train our ANNs

Require: Population size N, Maximum number of generations G
Ensure: Trained artificial neural network
1: Load features extracted from flame signals.

Normalize features.

Perform data training, data validation and data testing.

Initialize the population P; of N individuals:

k=1

repeat
Generate random weights for the adjacency matrix of ANNj, .
Define the first chromosome with a concatenation of the weights of the hidden
layer of the adjacency matrix.

9:  Define the second chromosome with a concatenation of the the weights of the

output layer of the adjacency matrix.

10:  Perform an elimination of the connection weights using the connection elimina-
tion operator with a probability of 0.35.

11: k=k+1

12: until k=N

13: i+-0

14: repeat

15:  Evaluate fitness of population P;.

16:  Perform roulette wheel selection

17:  Generate offspring P;.

18:  Apply mutation operator to P;.

19:  Apply the elimination connection operator to P, with a probability of © ot
20:  Apply elitismP; 1 < P}.

21: i+ i+41

22: until Termination condition is reached

The pseudocode of the GA that we implemented is depicted in Algorithm 1.

Our GA uses elitism (the best individual from each generation passes intact
to the next one), as well as roulette wheel selection, arithmetic crossover [15] and
uniform mutation. Each of the main elements of our GA are briefly described
next.

3.1 Initial Population

The initial population is created with randomly generated real values in the
range [—50, 50] for both chromosomes. Then, a connection elimination operator
in applied. This operator sets the weights equal to zero with a probability of
0.35.

3.2 Fitness Function

The objective function commonly used to adjust the weights of an ANN is the
mean squared error (MSE). However, this is not necessarily the best choice when
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No flame  Stable

1 -1
-1 1
-1 -1
-1 -1

Oxigen Fuel
excess  excess
-1 -1
-1 -1
1 -1
-1 1

Fig. 6. Targets for the four flame classes during the ANN training

using a GA. In our study, we adopted a different scheme in which we aim to find
the weights of an ANN that provide a good generalization performance while
also providing the best matching with respect to the training set.

Thus, the fitness function adopted by our GA is:

n n
Fitness =|| H (1+e), Zef,Etest |
i=1 i=1

(10)
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where:
e;=FError associated to the training data set ¢
FEest=Percentage of misclassifications in the test data set
n==Size of the training data set

From now on, this fitness function will be referred to as the error norm.

3.3 Genetic Operators

As indicated before, we adopted roulette wheel selection with a probability of
0.9.

We also incorporated uniform crossover, which is defined as follows:

Let’s consider the following two parents F; and Fy:

Fi={(v1,...,Vkyeon,Um) (11)
Fy = (wi,..., Wy, W) (12)

Their offspring are generated, using:

01 ={av1 + (1 —a)wl,...,a X wr + (1 — Q)wg,...,a X vy + (1 — a)w,y, (13)
Oz = {(aw; + (1 —a)vl,...a x wr + (1 — a)vk,...,a X Wy + (1 — a)vy,) (14)

In our case, we adopted a = 0.6.
We also adopted uniform mutation with a probability P,,,: = 0.05.
Given an individual P, the mutated version is:

P = (v, ...,V ..., Um) (15)
where
’ Vg + Mg ifLBSUk+mk§UB,
Uk = (16)
v — my other case.
and:

my, = rand(LB,UB) and [LB, U B] are the lower bound (LB) and upper bound
(UB) of vy, which is the original position of the individual to be mutated.
Finally, we also adopted the elimination connection operator, in order to allow
the remotion of connections during the evolutionary search. This operator was
applied with a probability of P’"Q’“t (except for the initial generation in which a

higher probability was used, as indicated before).

3.4 Experimental Design

The 13 features extracted from the database of the four experimental flames
patterns were linearly normalized and were used as the inputs of our ANN. The
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GA was tested with a population of 30 ANNs having 10 neurons in the hidden
layer. First, MSE was used as our fitness function and then we adopted the
fitness function defined in equation (10).

The stopping criterion for all the runs of the GA was to reach the best possible
fitness value (i.e., Fitness = 1 for equation (10) and Fitness = 0 for MSE), or
when reaching 2000 generations (whatever happened first).

The results obtained from the GA when using equation (10) were compared
with respect to those produced by the scaled conjugate gradient method (SCG)
[16], which is a traditional approach for training ANNs. Our result are presented
next.

4 Discussion of Results

In Figure 7, we plot the fitness values versus the generation number. We show
there the results corresponding to the best individual found in a run of the GA
using equation (10). This plot shows how, in a few generations, an individual
with a fitness value of one (i.e., the best possible value) was found.

150

o,
8
L

g

Fitness function
3

10° I I I I
0 50 100 150 200 250 300

Generation

Fig. 7. Fitness function of the best individual as defined in equation (10)

Table 1. ANN training with GA. Average of 10 runs

average % correct classification average generations

MSE 98.1712963 2000
Norm 99.5138889 913.333333

In Table 1, we provide the results of the ANN training when using MSE as
the fitness function. In Figure 8, we show a comparison of the MSE of the best
individual using both fitness functions. As we can see, the use of MSE needs more
generations to reach an acceptable fitness value, whereas the use of equation (10)
provides good results with a lower number of generations.
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MSE of the best individual

T T T
— — — MSE as Fitness Function
Norm Fitness Function
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Fig. 8. Comparison of the MSE with the two different fitness functions adopted in our

study

Table 2. Average of 30 independent runs of ANN training using a GA

Class 1

Class 2

Class 3

Class 4

Aver-
age
MSE

5.7628E-
17

6.8257E-
15

1.421E-
13

1.0938E-
17

Total data set 2.3157E-

15

Total Average % Correct
misclassified Classification
signals

2 99.9444444
52 98.5555556
13 99.6388889
0 100

67 99.5347222

Average of
misclassified
signals

0.06666667

1.73333333

0.43333333
0

2.23333333

Table 3. ANN training using SCG. Average of 30 independent runs

Class 1
Class 2
Class 3
Class 4
Total data set

Total misclassification Average % Correct Classification Average of misclassified signals

120
121
1
246
488

96.66666667
96.63888889
99.97222222
93.16666667
96.61111111

4
4.03333333
0.03333333

8.2
4.06666667

The results of 30 runs of the GA with the fitness function defined in equa-
tion (10) are given in Table 2. A fitness value equal to 1 was reached, on average,
after 881.4 generations. Having a low average MSE implies a good fit with the
data training set, and having a high percentage of correct classification corre-
sponds with a good generalization ability. As Table 3 indicates, our results are
better than those obtained using SCG (this approach produced higher MSE
values than our GA using the fitness function defined in equation (10)).
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Table 4. MSE results with Scaled Conjugate Gradient method

Average MSE Average %error

training 0.0084154 3.26385333
validation 0.0088272 3.33308833
test 0.00959884 3.63403133

In Table 5, we compare the best and worst results of both training algo-
rithms. The best results obtained by our proposed GA significantly outperform
the results obtained by SCG.

Table 5. Comparison of the best and worst results obtained with a GA and with the
Scaled Conjugate Gradient method

MSE training MSE Validation MSE Test % Correct Classification

AG best result  6.77TE-18 7.62E-18 9.01E-16 100
AG worst result 2.77E-13 1.66E-09 9.66E-01 98.95833
SCG best result 9.25E-08 8.81E-08 3.30E-04 100
SCG worst result 6.73E-02 6.10E-02 6.10E-02 74.8

5 Conclusions and Future Work

A Genetic Algorithm was developed to train Artificial Neural Networks for flames
classification using the electromagnetic spectrum. The proposed GA was com-
pared with respect to the use of the Scaled Conjugate Gradient method in the
training of artificial neural networks. Our preliminary results indicate our pro-
posed approach is able to produce better performance, since it generates solu-
tions with less error and an improved generalization ability. Additionally, our
results show that the features extracted from signal spectra could provide infor-
mation about the combustion state and could be used for flame characterization
and combustion monitoring. All flame classes were classified with a high per-
centage while using ANNs trained with our proposed GA.

As part of our future work, we are considering the use of ANNs for the clas-
sification of signals of a combustion process in power generation systems, in
which there is a more complicated dynamics. We are also interested in evolving
weights connections of different ANN architectures, such as recurrent ANNs and
generalized multilayer perceptrons, using Genetic Algorithms.

Acknowledgments. The third author gratefully acknowledges support from
CONACyT project no. 103570.
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Abstract. Traffic Signs provide visual information to drivers, in order
to warn them from possible danger on the road, set rules for pedes-
trian protection and inform people about their environment, to name
a few. Therefore, Traffic Sign Detection and Recognition Systems have
increased their interest in the scientific community. Applications include
autonomous driving systems, road sign inventory and driver support as-
sistance systems. This paper presents a traffic sign recognition algorithm
for velocity signs, based on Linear Discriminant Analysis that performs
dimensionality reduction and it improves class separability. The tests
were performed on the German Traffic Sign Recognition Benchmark, us-
ing a Multi-Layer Perceptron as a classification tool. LDA classification
and k-Nearest Neighbors were also used for comparison. Experimental re-
sults demonstrate the validity of the proposed approach, having a 99.1%
of attributes reduction and a 96.5% of classification accuracy.

Keywords: Traffic Sign Recognition, Linear Discriminant Analysis, Ar-
tificial Neural Networks, Pattern Recognition.

1 Introduction

Driving a car is almost a purely visual task. Therefore, traffic signs are some
kind of visual language for drivers, with the main purpose of describing the
road, restrict or allow certain actions (parking, speed limits, etc.), warn from
possible risks, among others.

Traffic Sign Detection and Recognition is a computer vision field which au-
tomatically localizes and identifies road signs immerse in images, taken from a
moving car. It is also an important part of Driver Assistance Systems (DAS),
that provides information to the driver for incident avoidance.

Road sign detection and recognition is a hard task due to several factors (see
Fig. 1 for some examples):

* Corresponding author.

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICAI 2013, Part IT, LNAI 8266, pp. 185-193, 2013.
(© Springer-Verlag Berlin Heidelberg 2013



186 S.E. Gonzalez-Reyna et al.

Fig. 1. Factors that affect automatic traffic sign recognition. a) Bright images, b) dark
images, ¢) blurring, d) shadows, e) lackluster color and f) perspective.

color appreciation changes depending on the time of the day,
— weather conditions like rain, clouds, sun or fog affect visibility,
— road signs might be disoriented or rotated,

lackluster color due to sunlight exposure, and

blurring caused by camera moving velocity, among others.

In the Traffic Sign Recognition field, there have been a lot of different ap-
proaches. Original traffic sign images are commonly taken on RGB color space.
However, sometimes it can be convenient to work on a different color space due
to its relative illumination invariance, such spaces include CIELab [1], HSI [2],
HSV [3,4], and CIECAMO97 [5]. However, there are some previous works that
offer good results using RGB color space [6].

Some authors have proposed to apply different image processing algorithms, in
order to improve sign color, contrast and appreciation. There is a wide variety of
image processing algorithms used for traffic sign recongition: color segmentation
[2,3,6], Scale Invariant Feature Transform (SIFT) [1], Histograms of Orientations
[4,5] and Principal Component Analysis (PCA) [3].

There are several methods to classify the signs: Artificial Neural Networks
[6], Support Vector Machines (SVM) [2,4], k-Nearest Neighbors with different
similarity measures [3,5].

In the present study, a method for velocity Traffic Sign Recognition (TSR) is
proposed. The original images were taken from the German Traffic Sign Recog-
nition Benchmark (GTSRB) [7]. However, images contain a huge amount of
information, making a dimensionality reduction algorithm necessary. Therefore,
Linear Discriminant Analysis (LDA) has been chosen, given its ability to project
data taking into account the largest between-class separability. Classification will
be performed by the use of a Multi-Layer Perceptron (MLP), the simplest type
of Artificial Neural Networks, due to its noise robustness and generalization
abilities. LDA classification and Nearest Neighbors (k-NN) were also used for
comparison.
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Fig. 2. Eight different classes of speed traffic signs

The rest of this document is organized as follows. Section 2 describes prepro-
cessing steps and the Multivariate Linear Discriminate Analysis. Experimental
results are detailly described on Sect. 3. Finally, Sect. 4 presents some conclu-
sions and directions for future work.

2 Methodology

2.1 Image Preprocessing Stage

The GTSRB, contains over 50000 images, ordered in 43 different classes. Images
are taken under different illumination, movement, rotation, scaling, and weather
conditions. In this study, only speed signals on the GTSRB were used, due to
their importance in safe and legal driving, which correspond to eight classes, this
specific database is already divided into 12780 images for training, and 4170 for
validation (see Fig. 2).

The original images present varying illumination conditions, making recogni-
tion task unreliable when the contrast is low or when the brightness is extremely
high. Therefore, it is convenient to apply a preprocessing stage, in order to create
a semi-uniform data set in what it refers to luminance.

A gamma correction algorithm was applied only dark and bright images. For
that purpose, two thresholds were found by tuning, based on the average lumi-
nance value (gray scale images). All dark images (mean below 65, for [0,255]
gray scale) were transformed with a gamma factor of 0.4545. While all bright
images (mean above 180) were transformed used a gamma factor of 2.2. The
remaining images were not modified. The first row in Fig. 3 shows an example
of the three possibilities: dark, bright and ideal images. The second row of the
same figure shows the same images after the gamma correction was applied.

2.2 Multivariate Linear Discriminant Analysis

In pattern recognition, preprocessing stages might simplify data representation
if feature extraction is used, and therefore improve class separability. Linear
Discriminant Analysis (LDA) may find the best set of features to discriminate
existing classes.
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Fig. 3. Adaptive gamma correction. a), b) and c) are original dark, bright and ideal
images. d), e) and f) are corrected with gamma values of 0.4545, 2.2 and 1.0, respec-
tively.

For the multivariate LDA, we used the method proposed by Croux, Filzmoser
and Joossens [8]. The algorithm is described below.

Let X be an N2-dimensional vector, corresponding to an N x N image. The
data set would be fully contained on an N? x M matrix A, where M is the
total number of samples. Now consider the existence of C' different classes to
be discriminated, each with their correspondent mean vectors /72 and covariance
matrices S;, ¢ = 1,...,C. The probability that a given sample test belongs to
class i is given by m;, and can be estimated by the frequency of observations in
the training set.

The Between-Class covariance matrix is defined as,

C
B:me—m(m—m)T (1)
where,
C
=S mi. (2)
=1

Additionally, a Within-Class covariance matrix is defined as,
c
W = Z miS;. (3)
i=1

In order to find the projection space, eigenvalues \; and eigenvectors 71 of
the product W—1B shall be found. Furthermore, if dimensionality reduction is
required, only the first & eigenvectors which correspond to the highest k eigenval-
ues should be considered. Finally, the new data is a projection from the original
data set by the means of the k-eigenvectors set, as it can be seen in (4).
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where V = {71,...

Y =VT(A-n),

projection and g = k for dimensionality reduction.
The first question in the described LDA methodology would be, how to know
the optimal number of eigenvectors for dimensionality reduction. The answer

(4)

,7(1} is the set of eigenvectors, with ¢ = N? for classical

2
is simple: taking the Zfil A; as a total amount of information, .7 ; \;, ¢ =
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1,...,N? will represent the information taking the first ¢ eigenvalues. Choose
q that represents the minimal loss of information. Figure 4 shows the result of
these process. With only seven eigenvectors, LDA has a loss of information of
4.58 x 107 11%.

Figure 5 shows the actual training set per class probabilities. If data sets are
not balanced (the number of elements per class is different), classes that contain
more samples will have larger classification accuracies than those with fewer
number of observations. However, when the class probability is considered in the
algorithm, all classes will tend to have similar recognition accuracies.

3 Results

A MLP is a feed-forward neural network capable of discriminate nonlinear pat-
terns. Some of its greatest advantages are noise robustness, and generalization
capabilities. A MLP is characterized by simple units of processing named neu-
rons, which are organized in layers.

For the experiments presented here, the number of input neurons is equal to
the number of final attributes, and the number of outputs must be equal to the
number of classes (in this case, eight). The real problem is to find the optimal
number of neurons in the hidden layer of the network. In order find this number,
a performance test was implemented, by successively incrementing the number
of neurons in the hidden layer. Figure 6 shows that after sixty neurons, the
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Fig. 7. Classification accuracy with varying the number of Neighbors in kNN-CF
algorithm

classification error rate does not decrease significatively for training, neither for
testing (validation).

LDA classification can be achieved by comparing the similitude of the desired
sample with the ones existing in the training set. This process can also be known
as the Nearest Neighbor process. Another version of this algoritm, uses the com-
parison of the current sample against a larger number of Neighbors, generating
the k-Nearest Neighbors algorithm for classification. In this study, a variant to
this process, the KNN-CF is used, a detailed description can be found in [9],
due to its ability to manage unbalanced datasets. Another tuning process was
performed in order to find the number of neighbors which best classify the data,
the results of this experiment are shown in Fig. 7, where it is observed that the
highest accuracy is obtained for k = 37.

Table 1 lists the performance per class obtained when these classification
methods were applied to the same data set. For MLP both training and testing
performances are presented. In LDA and kNN-CF, euclidean distance was used.

For the MLP classification, it can be observed that for training, class 1 reached
the highest identification accuracy, however, it is also the worst recognition rate
for testing. This might be related to the fact that this is the class with lower
frequency of observations. The average performance for MLP and kNN-CF clas-
sification are above 90%.
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Table 1. Per Class performance accuracy and average performance for training and
testing sets

Class number MLP Training MLP Test LDA kNN-CF

1 99.5% 82.3% 89.7%  95.0%
2 96.8% 87.7% 87.0%  90.3%
3 96.1% 88.7% 88.6%  93.7%
4 95.8% 88.1% 83.8%  94.4%
5 97.8% 95.5% 96.0%  91.4%
6 94.9% 88.2% 85.9%  86.0%
7 97.2% 95.8% 92.7%  87.8%
8 96.9% 91.2% 90.5%  93.6%
average performance 96.5% 90.3% 89.06% 91.0%

In 2011, Fleyeh and Davami [3] proposed the “Eigen-based” traffic sign recog-
nition. The essential differences between their work and ours are enumerated in
Table 2. In the present study, segmentation step is not required. Furthermore,
since a known, free database is used, experiments can be easily reproduced and
compared to the proposed approach. The number of images is also an important
factor, because the classification tool presents better generalization capabilities
depending on the number of samples in the training step. Attributes reduction is
larger for this work, which is always a desirable characteristic in pattern recog-
nition. Although when recognition accuracy is a bit lower, good results were
obtained using a more complex database. However, direct comparison of perfor-
mances might be difficult due to the different amount of images used for both
experiments, and it is not known if the dataset used by Fleyeh and Davami is
balanced.

Table 2. Comparative results between the proposed method and [3]

Our work Fleyeh and Davami, 2011
Image preprocessing Gamma correction  HSV color space segmentation
Feature extraction algorithm  LDA PCA
Classification tool MLP SVM
Train and test images 12780, 4170 648
Image dataset GTSRB Private
Number of Final Attributes 7 20
Recognition accuracy 96.5% 97.9%

4 Conclusions

In this paper, a Traffic Sign Recognition system based on LDA is presented.
We conclude that speed traffic signs can be accurately classified by applying
a gamma correction algorithm to decrease luminance variations and LDA for
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attributes optimization and reduction. A factor that could increase identifica-
tion performance is the inclusion of more rotated signs in the training dataset.
Consequently, the final system will have a stronger rotation robustness.

This method can be applied for TSR with more than eight classes, having a
pre-classification step for Traffic Signs subgroups (e.g. prohibition, speed limits,
warnings).
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Abstract. The concept of association measure generalizing the Pearson
correlation coefficient is introduced. The methods of generation of association
measures by means of pseudo-difference associated to some t-conorm and by
similarity measures are proposed. The association measure can be introduced on
any set with involutive reflection operation and suitably defined similarity
measure. The methods of construction of association measures by Minkowski
metric and data standardization using the aggregation functions are considered.
The cosine similarity and the Pearson’s correlation coefficient are obtained as
partial cases of the proposed general methods.

Keywords: association measure, t-conorm, pseudo-difference, similarity meas-
ure, Minkowski distance, correlation coefficient, cosine similarity, involutivity,
reflection, idempotence, data standardization.

1 Introduction

The Pearson correlation coefficient plays an important role in data analysis giving
possibility to measure possible direct and inverse relationships between variables. It is
considered as a measure of the strength of linear relationship between variables but it
is not always suitable for measuring possible associations between variables in gener-
al case [1] and for measuring associations between time series shapes [2]. It arises the
problem of creation of association measures suitable for different applications. An
axiomatic definition of time series shape association measures generalizing the prop-
erties of correlation coefficient has been considered in [4]. In [3], the general methods
of construction of association measures satisfying to the axioms of time series shape
association measure have been proposed. In the present work the results of [3] are
extended in several directions. First, the problem of definition and construction of
association measures is considered here from the more general point of view of the
theory of aggregation functions [6]. It gives possibility to extend the methods of gen-
eration of association measures using the concept of pseudo difference associated
with some #-conorm. Second, the concept of association measure is extended from
the set of time series on a general domain where some involutive mapping together
with a similarity measure related with this mapping can be introduced. It gives possi-
bility to extend the class of association measures that can be considered and generated
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on wide class of objects different from time series. The cosine similarity and the Pear-
son correlation coefficient are obtained as particular cases of the proposed approach.

The paper has the following structure. Section 2 gives definitions of #-conorms and
pseudo-differences. Section 3 introduces the concept of the association measure and
proposes the methods of construction of these measures on the sets with involutive
reflection operation and suitably defined similarity measures. Section 4 considers a
set of n-tuples of real values (vectors, time series or samples) where association
measures can be defined and discusses the methods of standardization of n-tuples.
Section 5 shows how dissimilarity measures and the Minkowski distance together
with standardizations can be used for constructing association measures considered in
Section 3. The cosine similarity and the Pearson’s correlation coefficient are obtained
from the general methods of construction of association measures using standardiza-
tion transformation and Minkowski distance. Conclusions are given in Section 6.

2 Basic Definitions

Consider some definitions from [5-7].
A t-conorm is a function S:[O,1]2—> [0,1] such that for all a,b,c€[0,1] the following
axioms are satisfied:

S(a,b) = S(b,a), (commutativity)
S(a,S(b,c)) = S(S(a,b),c), (associativity)
S(a,b) <S(a,c), whenever b <c, (monotonicity)
S(a,0)= a. (boundary condition)

From the definition of #-conorms it follows for all a€[0,1]:

S(la) = S(a,1) =1, 5(0,a)= a.

An element ae]0,1[ will be referred to as a nilpotent element [5] of S if there exists
some be]0,1[ such that S(a,b)=1. A t-conorm S has no nilpotent elements if and
only if on [0,1] it is fulfilled:

from S(a,b) = 1 it followsa=1orb = 1.

Consider simplest #-conorms:

Su(a,b) = max{a,b}, (maximum)
Si(a,b) = min{a+b, 1}, (Lukasiewicz t-conorm)

Sp(a,b) = a+b-ab. (probabilistic sum)
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It is clear that the maximum and the probabilistic sum have no nilpotent elements but
the Lukasiewicz t-conorm has.
Let S be a t-conorm. The S-difference is defined by [6]:

ab =inf{c € [0,1]IS(b,c) = a}

for any a,b in [0,1].

From the properties of 7-conorms it follows:
0=1,

1 EX b =1, if b < 1 and t-conorm S has no nilpotent elements.

Let S be a t-conorm. The pseudo-difference associated to S is defined by [6]:

albp, ifa>b
a(=)sb = —(bia), ifa<b
0, ifa=b»b

for any a,b in [0,1]°. Equivalently

a(—)sb = sign(a — b)(max (a, b) 2 min (a, b)).

The following pseudo-differences are associated with f-conorms Sy, S; and Sp
respectively:

a, ifa>b
a(-)yb=3-b, ifa<by,
0, ifa=b
a(=)b=a—-0>b,

a(=)pb = (a = b)/(1 — min (a, b)).

3 Association Measures

Suppose X is a set with a mapping N:X— X satisfying for all elements x from X the
property:
N(N(x)) = x. (involutivity)
This mapping will be called a reflection operation.
As an example of a set with a reflection operation one can consider the set X=[0,1]

with an involutive negation N, defined, e.g. by [7]: N(x) = 1-x, the set of fuzzy sets X
with an involutive negation of fuzzy sets, the set of vectors or time series of the
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length n with real valued elements x= (xi,...,x,) and reflection operation N(x)=(-x|,
..., =X,) €tC.

Suppose A is a function A:XxX— [-1,1] satisfying for all x and y from X the
properties:

A(xy) = A(y,x), (symmetry)
A(x,x) =1, (reflexivity)

and N is a reflection operation on X. The function A will be called an association
measure (with respect to N) if for all x from X such that A(N(x),x) # 1, it s fulfilled:

A(N(x),x) = -1, (inverse reflexivity)
A(N(x),y) = -A(x,y). (inverse relationship)

Generally, a function SIM:XxX — [0,1] satisfying for all x and y from X the proper-
ties:

SIM(x,y) = SIM(y,x), (symmetry)
SIM(x,x) =1, (reflexivity)
will be referred to as a similarity measure.
Suppose SIM for all x, y satisfies some of the following properties:
SIM(N(x),y) = SIM(x,N(y)), (permutation of reflections)
SIM(N(x),x) < 1, (weak similarity of reflections)
SIM(N(x),x) = 0. (non-similarity of reflections)
It is clear that from the non-similarity of reflections it follows the weak similarity of

reflections. Below it is a generalization of the result from [3] on pseudo-differences
and reflection operation N.

Theorem 1. Suppose SIM is a similarity measure satisfying the property of permuta-
tion of reflections and § is a f-conorm. Then the function:

Asm(x,y) = SIM(x,y)(—)s SIM(x,N(y))

defined for all y such that SIM(N(y),y)# 1 is an association measure if one of the fol-
lowing is fulfilled:

1. SIM satisfies the non-similarity of reflections;
2. SIM satisfies the weak similarity of reflections and #-conorm S has no nilpotent
elements.

Since maximum S, and probabilistic Sp t-conorms has no nilpotent elements but
Lukasiewicz t-conorm S; has, from the Theorem 1 the following specific methods for
construction of association measures can be obtained.
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Corollary 2. Suppose SIM is a similarity measure satisfying the property of permuta-
tion of reflections. For all y such that SIM(N(y),y)# 1 the association measure can be
defined as follows. If SIM satisfies the non-similarity of reflections then the function:

Asiy1(x,y) = SIM(x,y)— SIM(x,N(y))

is an association measure. If SIM satisfies the weak similarity of reflections then the
following functions are association measures:

SIM(x,y), if SIM(x,y) > SIM(x,N(y))
Asum(x,y) = =SIM(x,N(y)), if SIM(x,y) <SIM(x,N(y)) r,
0, if SIM(x,y) = SIM(x,N(y))

Asimp(x,y) = (SIM(x,y) — SIM(x, N(¥)))/(1 — min (SIM(x,y), SIM (x, N(¥))))-

In the following section, we will consider the set X of n-tuples of real values x=
(x1,...,x,) of the length n with the reflection operation N(x)= -x = (-x,,...,-x,). In this
case a symmetric and reflexive function A will be an association measure if for all x
from X such that A(-x,x) # 1, it is fulfilled:

A(-x,x) =-1, (inverse reflexivity)
A(-x,y) = -A(x,y). (inverse relationship)

The corresponding properties of similarity measures related with reflection operation
will have the following notations:

SIM(-x,y) = SIM(x,-y), (permutation of reflections)
SIM(-x,x) < 1, (weak similarity of reflections)
SIM(-x,x) = 0. (non-similarity of reflections)

Generally we do not require as in [3] that association measure satisfies for any real
value ¢ the following property:

A(x+q,y) = A(x,y). (translation invariance)

But this property will be considered as necessary if X is a set of time series x=
(x1,-..,X%,) [3]. The association measure will be referred to as scale invariant if for all
positive real values p it is fulfilled [3]:

A(px,y) = A(x,y). (scale invariance)

It is clear that Agy, is translation or scale invariant if SIM satisfies the corresponding
properties.



Association Measures and Aggregation Functions 199

4 Standardization

For any n-tuples x, y and real values p,q define x+y = (x;+yy, ..., X,+V.), px+q= (px,+q,
....,px,+q). Denote g, a constant n-tuple with all elements equal to g. We will write x=
const if x = g, for some ¢, and x # const if x# x; for some i#j from {1,...,n}. From
definitions above it follows: px+q = px+q ).

A transformation F:R"— R" is said to be a standardization if for all xeR" it is
fulfilled F(x) # const if x # const:

F(F(x)) = F(x), (idempotence)
F(q) =0,  for any real value g.

A n-tuple x is said to be in a standard form wrt a standardization F if F(x) = x.

As it follows from the definition, a standardization F transforms any x into a stan-
dard form F(x). We will say that F(x) satisfies r-normality for some r =1,2,.... if:

il\F(x)i\r =1

A transformation E:R"— R is said to be an estimate if E(q,)=¢ for any real value g.

It is clear that any aggregation function [6] is an estimate.
We will use the following terminology, if for all n-tuples x,y, for any real value ¢
and for any positive value p > 0, F satisfies the properties:

F(x+q) = F(x)+q, (translation additivity)
F(x+q) = F(x), (translation invariance)
F(x+y) = F(x)+F(y), (additivity)
F(px) = pF(x), p>0, (scale proportionality)
F(px) = F(x). (scale invariance)

Note that in literature the translation additivity is often referred to as shift invariance
or translation invariance, the scale proportionality is referred to as scale invariance or
homogeneity of degree 1. It is clear that from the additivity of F it follows its transla-
tion additivity. The same terminology will be used for E.

Proposition 3. The following transformations are standardizations:

1. F\(x)= x-E (x), if E, is a translation additive estimate.
F is translation invariant and E(F(x))= 0.

2. Fy(x)= x/Ey(x), for x # const, if E, is a scale proportional estimate and E,(x) > 0
for all x.
Fis scale invariant and E»(F>(x))= 1.
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If E;(x) = 3/ X lx;|", then F,(x) satisfies the r-normality property.
If E,(x) = X1 x;, then F,(x) satisfies the normality property: i, F(x); = 1.

3. F3(x)= (x-E5(x))/Exs(x), if Ej; is a translation additive and scale proportional es-
timate, E,; is a translation invariant and a scale proportional estimate, and E,3(x)>
0, for all x.

Fis translation and scale invariant, E3(F3(x)) = 0.

If Eyyx)= (i‘ x; — Ey5( x)l,")lf r then F3(x) satisfies the r-normality property.
i=1

An estimate E is said to be a mean if it satisfies the condition [6]:

min{xl )Cn} SE(X) Smax{xl AAAAA xn}'

Most of the means [6] are translation additive and scale proportional estimates and
they can be used for generation standardizations considered above. Below are exam-
ples of standardizations F(x) = f{x), where the arithmetic mean is denoted by

—_ 1 n
xZZZXj:
=l

fi);=x-x,

fa(x); = x; =MIN (x) ,

X X

f3(0; = —=———-

(xj —;)2

IR

j=1

5 Dissimilarity Measures

A dissimilarity measure D(x,y) is a real valued function satisfying for all n-tuples x
and y the properties:

D(x,y) = D(y,x),
D(x,y) = D(x,x) = 0.

D will be called normalized if it takes values in [0,1].
Define dissimilarity measure by Minkowski metric and a standardization F:

D, (x,y) = (S |F (), = F,| "
i=1
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D, ¢ satisfies permutation of reflections property D, (-x,y) = D, g(x,-y) if standardiza-
tion F used in Minkowski distance is an odd function, i.e. it satisfies: F(-x)= —F(x).
Standardization F, defined in Proposition 3 is an odd function. Standardizations F
and F; from Proposition 3 will be odd functions if the estimates E; and E;3 are odd
functions [3].

If U is a strictly decreasing nonnegative function such that U(0) = 1 then the func-
tion SIMp(x,y)= U(D,x,y)) with odd standardizations F will be a similarity meas-
ure satisfying permutation of reflections property. The property of a weak similarity
of reflections SIMp(-x,x) < 1, will be fulfilled because D, (x,-x) > 0 for odd standar-
dizations F. Such SIMp(x,y)= U(D,g(x,y)) can be used for generating association
measures Agpsy and Agyp considered in Corollary 2 and generally for 4, from
Theorem 1 when t-conorm § has no nilpotent elements. For example, we can use one
of the following definitions of SIM, where D= D, and C is a positive constant:

Cc
S[MD(X,_’)/) = m,

1
SIMD(JC,_'Y) = m.

Consider the method of construction of association measure Agy,; from Corollary 2
by means of standardizations F, or F; from Proposition 3. If it exists some positive
constant H such that H > D(x,y) for all x,y, and W is a strictly increasing function such
that W(0) = 0, W(H) < 1, then a similarity measure can be defined as follows:

SIMp(x,y)= 1- W(D(x.y)).

Such similarity measure will satisfy non-similarity of reflections property if for all n-
tuples x,y the following will be fulfilled: D(-x,x) = H > D(x,y), H > 0, and W(H) = 1.
If D is normalized then one can define similarity measure by:

SIMD(X,Y): 1 - D(X,Y)
Such similarity measure satisfies non-similarity of reflections property if D(-x,x)=1.

Proposition 4. Suppose D, {x,y) is a dissimilarity measure defined by Minkowski
distance, F is an odd standardization satisfying r-normality and W is a strictly increas-
ing function such that W(0)= 0, W(2) = 1, then the function:

Asipi(%y) = W(D, p(x,-y))-W(D,.r(x,y)), (1
defined for all x,y# const, is an association measure.

The simplest functions W(D, r(x,y)) considered in Proposition 4 have the form:

p
Dr,F (X, )’)] ’ (2)

WD, f(x,y)) = [ >

where p is a positive constant. For p = 1 we have:
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Asiy1(x%,y) = 0.5(Dy, 1(x,-y)-Dy, {(X,))-

For p = r the association measure defined by (1), (2) has the form:

Asir (% y>=21, S (IFeo;+ Foo” = [Feo; - Fool ).
i=1

Corollary 5. A shape association measure defined by (1), (2) with parameters p=r=2
coincides with a cosine similarity measure:

Acos,F(-x’y) = COS(F(X):F()’))-

Corollary 6. The shape association measure A, /(x,y) = cos(F(x),F(y)) with standar-
dization

X X

f3(0); :%

coincides with the sample Pearson’s correlation coefficient:

Z (xi - j‘f)(yi - 5)
A(x, y) = 1 =

Ji(xl- P Ef

i=1 i=1

6 Conclusions

The paper introduces the concept of association measure in the rapidly developed area
of aggregation functions. The operation of pseudo-difference associated to -conorm §
considered in the theory of aggregation functions [6] gives possibility to generalize
the methods of construction of association measures considered in [3] and to propose
new methods of construction of such measures. The pseudo-differences associated to
t-conorms without nilpotent elements play an important part in these methods. Such #-
conorms are dual to t-norms without zero devisors have been considered in the theory
of t-norms [5,7]. The main results are given for a wide class of sets with a reflection
operation and a suitably defined similarity measure. It gives possibility to introduce
association measures on feature spaces, in fuzzy logic, on the set of fuzzy sets, etc.
The obtained results can be used for generation of association measures in various
application areas, for example, is time series data mining [3]. Possible extensions of
considered results can be based on the methods of definition of similarity measures
used for generation of association measures. These similarity measures can be given
by indistinguishability operators [9], by metrics related with the Archimedian norms
[10], by some shape function [8] or kernel function etc.
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Abstract. This paper introduces JT2FIS, a Java Class Library for In-
terval Type-2 Fuzzy Inference Systems that can be used to build in-
telligent object-oriented applications. The architecture of the system is
presented and its object-oriented design is described. We used the water
temperature and flow control as a classic example to show how to use it
on engineering applications. We compared the developed library with an
existing Matlab® Interval Type-2 Fuzzy Toolbox and Juzzy Toolkit in
order to show the advantages of the proposed application programming
interface (API) features.

Keywords: Interval Type-2 Fuzzy Inference Systems, Java Class Li-
brary, Object-Oriented Intelligent Applications.

1 Introduction

Fuzzy inference systems (FIS) have been broadly used for a wide range of en-
gineering applications. FIS’s have been applied successfully in control [1] and
classification systems [2], which have been under constant improving. Their main
advantage is the way they deal with imprecise information of some system vari-
ables and it allows to work with it.

Most of the FIS’s models used until now are based on a Type-1 model [3],
but lately, a Type-2 models have been developed and others applications have
been extended with it [4]. The fuzzy system state of the art leads us to Type-2
General Fuzzy Inference Models [5] that have been developed as the next step
on the way to have FIS’s with more capabilities to model real-world things [6].

The purpose of this paper is to present a Java Class Library for fuzzy systems
that can be used to build an Interval Type-2 Fuzzy Inference System.

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 204-215, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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1.1 Type-2 Fuzzy Inference System

A fuzzy inference system (FIS) is based on logical rules that can work with
numeric values or fuzzy inputs, these rules and individual results are evaluated
together to form a fuzzy output, then, a numerical value must be passed through
a process of defuzzification if necessary. Figure 1 shows a block diagram of the
classic structure of a FIS.

R1: IF xis small THEN Y is high
R2: IF xis middle THEN Y is middle
R3: IF x is high THEN Y is small

Crisp Outputs
¥

Crisp Inputs Defuzzifier :>

X

i)
|:> Fuzzifier Type-1reduced .2
Fuzzy Sets :

1=

Type Reducer

4

b

Type-2 input Type-2 output ,'"‘
Fuzzy Sets \/ Fuzzy Sets o
M P
_______ FRN [
: AN P —————————— 1
! P Inference 1 1
e 1
——————————— 1 ’l
v

Fig. 1. Type-2 Fuzzy Inference System block diagram

The concept of a Type-2 fuzzy set was introduced by Zadeh [7] as an extension
of the concept of usually type-1 fuzzy sets. A Type-2 fuzzy set is characterized
by a membership function whose membership value for each element of the
universe is a membership function within the range [0, 1], unlike the type-1
fuzzy sets where the value of membership is a numeric value in the range [0,
1]. The creation of a fuzzy set depends on two aspects: the identification of a
universe of appropriate values and specifying a membership function properly.
The choice of membership function is a subjective process, meaning that different
people can reach different conclusions on the same concept. This subjectivity
derives from individual differences in the perception and expression of abstract
concepts and it has very little to do with randomness. Therefore, subjectivity
and randomness of a fuzzy set are the main difference between the study of fuzzy
sets and probability theory [8].

In type-1 fuzzy sets, once the membership function is defined for a concept,
this is based on the subjective opinion of one or more individuals and shows
no more than one value for each element of the universe. In doing so, it loses
some of the ambiguity of the discussed concepts, especially where people may
have a slightly different opinion, but they are considered valid. The Type-2 fuzzy
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sets allow handling linguistic and numerical uncertainties. Figure 2 depicts two
graphics of fuzzy sets: a) with type-1 fuzzy logic, and b) with Type-2 fuzzy logic.

In a) the values set shown are A = {(z, pa(x))|x € X} where AC X, X AC
X, X is the universe of valid values and p(z) is the membership function (MF)
that contains a map of each value of X with its membership value corresponding
to a value between [0, 1]. For b) the values set are A = {((x,u), puz(x,u))},
where MF p ;(z,u) has a membership value for each element of the universe as
a function of membership in the range [0, 1], so the footprint can be seen around
the curve of a).

H(x) H(x)

X Xj

a) b)

Fig. 2. Type-1 fuzzy set and Type-2 fuzzy set with uncertainty

1.2 Type-2 Fuzzy Inference System Applications

Concepts such as large/small or fast/slow can be represented as fuzzy sets, thus
allowing slight variations in the definition of common concepts, an example of
this is presented in [9]. When dealing with a fixed set of actions but with a
different criteria to decide what action to take, you can use fuzzy logic as a vi-
able option to define behavior profiles. There are many applications where fuzzy
logic has been used, for example: a simulation of bird age-structured population
growth based on an interval Type-2 fuzzy cellular structure [10], optimization of
interval Type-2 fuzzy logic controllers using evolutionary algorithms [11], a hy-
brid learning algorithm for a class of interval Type-2 fuzzy neural networks [12],
Type-1 and Type-2 fuzzy inference systems as integration methods in modular
neural networks for multimodal biometry and its optimization with genetic al-
gorithms [13] and face recognition with an improved interval Type-2 fuzzy logic
sugeno integral and modular neural networks [14].

1.3 Object-Oriented Fuzzy Inference Systems

There are available code libraries and tool-kits to build Fuzzy Inference Systems
[15]. Some of these packages are object-oriented class libraries that are developed
mainly to build Type-1 Fuzzy Logic with object-oriented programming language
[16]. jFuzzyLogic [17] and Juzzy [18] are examples of a class library written



JT2FIS A Java Type-2 Fuzzy Inference Systems Class Library 207

in Java. The advantage of a Fuzzy Inference System in Java is that we can
build intelligent systems with Type-2 Fuzzy Logic capabilities using an object-
oriented programming language. Java is a robust general use object-oriented
programming language used in a wide range of applications.

There are already discussions about the advantages and disadvantages of using
Java in scientific research [19], but the Java library becomes very important due
to the convenience of reuse, legibility of coding and system portability from an
engineering point of view and compared with other industrial used programming
languages [20].

2 The JT2FIS Class Library

JT2FIS is a class library developed for Java. The main purpose is to deploy
a library to building Type-2 fuzzy inference systems with an object-oriented
programming language.

2.1 JT2FIS Design

JT2FIS is integrated by a package structure that contains all class collection.
The package containment is organized and depicted in Table 1.

The library takes advantage of heritage capability of the object-oriented
paradigm to integrate new membership features. Figure 3 depicts JT2FIS ex-
pressed in Unified Modeling Language (UML) and class structure JT2FIS is
shown.

Fis
w¥s N
[ A
>
-inputs ~rules ~outputs
’ W * A\ * i
Input Rule Output
xK ¥k ¥ %
-CONSequents -antecedents
V-V f
-memberFunctions MemberFunction x

| .
* -memberFunctions

Fig. 3. JT2FIS core class structure

In JT2FIS we have a set of core Type-1 and Type-2 member functions(Gauss,
Triangular, Trapezoidal). Table 2 list Type-2 member function available in the
library.
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Table 1. JT2FIS library packages content

FIS class
Mamdani class
Sugeno class

fis package

defuzzifier package Defuzzifier class

TypeReducer class
. Fussify class
fuzzifier package PointFuzzy class
nf package MemberFunction class .
typel package BellMemberFunction class
’ GaussMemberFunction class
TrapezoidalMemberFunction class
TriangulerMemberFunction class
type2 package GaussCutMemberFunction class
’ GaussUncertaintyMeanMemberFunction class
GaussUncertaintyStandardDesviationMemberFunction class
TrapaUncertaintyMemberFunction class
TrapezoidalUncertaintyMemberFunction class
TriangulerUncertaintyMemberFunction class
TriUncertaintyMemberFunction class
Input class
structure package Output class
Rule class
, LinSpace class
utl paciage Sorter class
Utilities class
Table 2. JIT2FIS Type-2 Member Functions
PackageType-2 Member Functions Description
GaussCutMemberFunction Params=[sigma mean alfa
GaussUncertaintyMeanMemberFunction Params=|sigma meanl mean2]
GaussUncertaintyStandardDesviationMemberFunction Params=|[sigmal sigma2 mean]
TrapaUncertaintyMemberFunction Params=[al bl c1 d1 a2 b2 c2 d2 alfa]
TrapezoidalUncertaintyMemberFunction Params=[a d sa sd sn alfa]
TriangulerUncertaintyMemberFunction Params=[a ¢ sa s(|
TriUncertaintyMemberFunction Params=[al bl cl a2 b2 ¢2]

The Fis class instances are composed by a set of inputs (Input class), out-
puts (Output class) and rules (Rule class). Each input and output contain a
set of member functions (MemberFunction class) and each one could be a spe-
cific type of member function. The Fis class provides the main features of an
Interval Type-2 Fuzzy Inference System. It is an abstract class that establishes
the core functionality and extends to Mamdani and Sugeno concrete classes
which implements different approaches.
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We can start a FIS extending the Mamdani or Sugeno class. This core classes
are extensions of the basic Fis class and Mamdani and Sugeno subclasses im-
plements all functionality of each model respectively, but share the same interface
with structural Input, Output and Rule classes.

Creating a new FIS Instance To build an Interval Type-2 Fuzzy Inference
System with JT2FIS, first we must create an instance of Mamdani or Sugeno
classes, depending of the selected model to implement. Then, we must add inputs,
outputs and rules creating the corresponding objects to classes. For each input
and output instances, we must add a member function that will represents a
linguistic variable within the system. Member functions could be from different
type, depending on the application.

Listing 1.1 shows an example of how to code a FIS with JT2FIS class library.

Listing 1.1. Object-oriented coding example

//Creating a new FIS instance

Mamdani fis = new Mamdani ("FIS");

//Creating a new Input Iinstance

Input input = new Input("Input");

//Creating a input member function

GaussUncertaintyMeanMemberFunction inputMF = new
GaussUncertaintyMeanMemberFunction("InputMF") ;

//Adding member function to Input ilnstance

input.getMemberFunctions () .add (inputMF) ;

//Adding input to FIS instance

fis.getInputs () .add(input) ;

//Etc.

The written code is full object-oriented programming style, and could be
offered a better coding experience for object-oriented programmers.

3 Test Cases and Results

In order to show JT2FIS features and capabilities, on this paper we are showing
three different test cases to compare JT2FIS with other Type-2 Fuzzy Logic
libraries. First we going to compare JT2FIS with Matlab® Interval Type-2 Fuzzy
Toolbox using Water Temperature and Flow Control Test Case. Second, we going
to compate JT2FIS with Matlab® Interval Type-2 Fuzzy Toolbox and Juzzy
Toolkit using Water Temperature and Flow Control Test Case Variation. Finally,
we going to compare JT2FIS with Matlab® Interval Type-2 Fuzzy Toolbox and
Juzzy Toolkit using Rule Sets Test Case.
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3.1 Test Case 1: Comparing JT2FIS with Matlab® Interval Type-2
Fuzzy Toolbox Using Water Temperature and Flow Control
Test Case

Water Temperature and Flow Controller is a proposed problem provided by
Matlab® as an example to show how to use the Fuzzy Logic Toolbox. In [15]
extends Matlab® Toolbox to Type-2 Fuzzy Logic, so we used this toolbox to
compare our approach to it. The system implements the following set of rules
(see Table 3):

Table 3. Rules example "ISHOWER”

Antecedent (IF) Consequent (THEN)

(Temp is Cold) and (Flow is Soft) (Cold is openSlow)(Hot is openFast)
(Temp is Cold) and (Flow is Good) (Cold is closeSlow)(Hot is openSlow)
(Temp is Cold) and (Flow is Hard) (Cold is closeFast)(Hot is closeSlow)
(Temp is Good) and (Flow is Soft) (Cold is openSlow)(Hot is openSlow)
(Temp is Good) and (Flow is Good) (Cold is Steady)(Hot is Steady)
(Temp is Good) and (Flow is Hard) (Cold is closeSlow)(Hot is closeSlow)
(Temp is Hot) and (Flow is Soft) Cold is openFast)(Hot is openSlow)
(Temp is Hot) and (Flow is Good) (Cold is openSlow)(Hot is closeSlow)
(Temp is Hot) and (Flow is Hard) (Cold is closeSlow)(Hot is closeFast)

Py

For Test Case 1 we configured Type-2 FISs in JT2FIS and Matlab® Interval
Type-2 Fuzzy Toolbox implementations using the same parameters showed in
Table 4.

Using 101 points and Centroid reduction type, we evaluate both systems im-
plementations with the same set of input data. Table 5 shows that there’s no
difference between tools by obtaining the same response.

We evaluated performance by increasing the number of discretizations points
in order to increment complexity of processing inputs and outputs (fuzzing and
de-fuzzing).

Table 6 showed that JT2FIS is faster than Matlab® Interval Type-2 Fuzzy
Logic Toolbox.

3.2 Test Case 2: Comparing JT2FIS with Matlab® Interval Type-2
Fuzzy Toolbox and Juzzy Toolkit using Water Temperature and
Flow Control Test Case Variation

[18] introduced Juzzy, a Java based Toolkit for Type-2 Fuzzy Logic. To compare
the JT2FIS with Juzzy Toolkit we used a Water Temperature and Flow Con-
troller test variation. The use of this Toolkit is to compare Matlab® Interval
Type-2 Fuzzy Toolbox and our approach to it. For Test Case 2 we configured
Type-2 Fuzzy Inference Systems in JT2FIS, Matlab® Interval Type-2 Fuzzy



Type

Inputl TrapaUncertaintyMemberFunction

Inputl

Inputl TrapaUncertaintyMemberFunction

Input2 TrapaUncertaintyMemberFunction

Input2

Input2 TrapaUncertaintyMemberFunction

Outputl
Outputl
Outputl
Outputl
Outputl
Output2
Output2
Output2
Output2
Output2
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Table 4. Inputs, Outputs example "ISHOWER”

MemberFunction

TriUncertaintyMemberFunction

TriUncertaintyMemberFunction

TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction
TriUncertaintyMemberFunction

22=-2.9h2=-2.9,:2=0.7,2=0.1 alfa=0.98
al=-0.45,b1=-0.05,¢1=0.35,a2=-0.35,b2=0.05,c2=0.45

al=-31,b1=-31,c1=-16,d1=-1,
a2=-20b2=-29 ¢2=-14,d2=1.0 alfa=0.98

Params

al=-11,b1=-1c1=9,a2=-9,h2=1,c2=11

al=-1bl=14,c1=29,d1=29,

a2=1h2=16,:2=31,d2=31 alfa=0.98
al=-3.1,b1=-3.1,c1=-0.9,d1=-0.1,

al=0.1b1=0.7,c1=2.9,d1=0.1,

a2=0.9,b2=3.1,c2=3.1,d2=0.1,alfa=0.98
al=-1.05,b1=-0.65,c1=-0.35,a2=-0.95,b2=-0.55,c2=-0.25
al=-0.65,b1=-0.35,c1=-0.05,a2=-0.55,b2=-0.25,c2=0.05
al1=-0.35,b1=-0.05,c1=0.25,a2=-0.25,b2=0.05,c2=0.35
al=-0.05,b1=0.25,c1=0.55,a2=0.05,b2=0.35,c2=0.65
al=0.25,b1=0.55,c1=0.95,a2=0.35,b2=0.65,c2=1.05
al=-1.05,b1=-0.65,c1=-0.35,a2=-0.95,b2=-0.55,c2=-0.25
al=-0.65,b1=-0.35,c1=-0.05,a2=-0.55,b2=-0.25,c2=0.05
al=-0.35,b1=-0.05,c1=0.25,a2=-0.25,b2=0.05,c2=0.35
al1=-0.05,b1=0.25,c1=0.55,a2=0.05,b2=0.35,c2=0.65
al=0.25,b1=0.55,c1=0.95,a2=0.35,b2=0.65,c2=1.05
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Table 5. Comparing JT2FIS outputs versus Matlab® Interval Type-2 Fuzzy Logic
Toolbox outputs

Inputs JT2FIS

-16

-12
-8
-4
0
4
8
12
16
20

-0.8 0.3 0.6328
-0.6 0.3 0.6342
-0.4 0.2211  0.5184
-0.2 -0.0098  0.2545
0 0 0
0.2 0.0098 -0.2545
0.4 -0.22113 -0.5184
0.6 -0.2999 -0.6342
0.8 -0.3 -0.6328
1 -0.3 -0.6328

1.24
1.24
1.24
1.24
1.24
1.24
1.24
1.24
1.24
1.24

Interval Type-2 Fuzzy

Logic Toolbox
x1 x2 Output 1 Output 2 Time(ms) Output 1 Output 2 Time(ms)

0.3
0.3
0.2211
-0.0098
0
0.0098
-0.22113
-0.2999
-0.3
-0.3

0.6328
0.6342
0.5184
0.2545
0
-0.2545
-0.5184
-0.6342
-0.6328
-0.6328

8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6

Toolbox and Juzzy Toolkit implementations using the same parameters showed
in Table 7. The Juzzy Toolkit does not have an available Gaussian type member
function for the Type-2 systems, so we used the new configuration for all systems
using ” Triangular with Uncertainty” member functions.



212 M. Castanén—Puga et al.

Table 6. Comparing JT2FIS times(ms) versus Matlab® Interval Type-2 Fuzzy Logic
Toolbox times(ms) with different discretizations points for input1=20 and input2=1

Number Points JT2FIS Interval Type-2 Fuzzy
Time(ms) Logic Toolbox Time(ms)

101 1.24 8.6
1001 4.96 13.7
10001 45.42 71.2

Table 7. Inputs, Outputs example "ISHOWER” Trianguler

Type MemberFunction Params

Inputl TriUncertaintyMemberFunctionn al=-20.0,b1=-20.0,c1=1.06,a2=-20.0,b2=-20.0,c2=-1.0
Inputl TriUncertaintyMemberFunction — al=-11.0,b1=0.0,c1=11.0,a2=-9.0,b2=0.0,c2=9.0
Inputl TriUncertaintyMemberFunction — al=-1.0,b1=20.0,c1=20.0,a2=1.0,b2=20.0,c2=20.0
Input2 TriUncertaintyMemberFunction al=-1.0,b1=-1.0,c1=0.1,a2=-1.0,b2=-1.0,c2=-0.1
Input2 TriUncertaintyMemberFunction al=-0.5,b1=-0.0,c1=0.5,a2=-0.3,b2=0.0,c2=0.3
Input2 TriUncertaintyMemberFunction al=-0.1,b1=1.0,c1=1.0,a2=0.1,b2=1.0,c2=1.0
Outputl TriUncertaintyMemberFunction al=-1.05,b1=-0.6,c1=-0.25,a2=-0.95,b2=-0.6,c2=-0.35
Outputl TriUncertaintyMemberFunction —al=-0.65,b1=-0.3,c1=0.05,a2=-0.55,b2=-0.3,c2=-0.05
Outputl TriUncertaintyMemberFunction — al=-0.35,b1=0.0,c1=0.35,a2=-0.25,b2=0.0,c2=0.25
Outputl TriUncertaintyMemberFunction — al=-0.05,b1=0.3,c1=0.65,a2=0.05,b2=0.3,c2=0.55
Outputl TriUncertaintyMemberFunction — al=0.25,b1=0.6,c1=1.05,a2=0.35,b2=0.6,c2=0.95
Output2 TriUncertaintyMemberFunction al=-1.05,b1=-0.6,c1=-0.25,a2=-0.95,b2=-0.6,c2=-0.35
Output2 TriUncertaintyMemberFunction al=-0.65,b1=-0.35,c1=-0.05,a2=-0.55,b2=-0.25,c2=0.05
Output2 TriUncertaintyMemberFunction — al=-0.35,b1=0.0,c1=0.35,a2=-0.25,h2=0.0,c2=0.25
Output2 TriUncertaintyMemberFunction — al=-0.05,b1=0.3,c1=0.65,a2=0.05,b2=0.3,c2=0.55
Output2 TriUncertaintyMemberFunction — al=0.25,b1=0.6,c1=1.05,a2=0.35,b2=0.6,c2=0.95

Using 101 points and Centroid reduction type, we evaluate all system imple-
mentations with the same set of input data. Table 8 shows no difference between
JT2FIS and Matlab® Interval Type-2 Fuzzy Toolbox tools, obtaining the same
response, but we noticed little differences between JT2FIS and Juzzy Toolkit.

We evaluated performance by increasing the number of discretizations points
in order to increase complexity of processing inputs and outputs (fuzzing and de-
fuzzing). Table 9 shows that Juzzy Toolkit is faster than JT2FIS and Matlab®
Interval Type-2 Fuzzy Logic Toolbox.

3.3 Test Case 3: Comparing JT2FIS with Matlab® Interval Type-2
Fuzzy Toolbox and Juzzy Toolkit Using Rule Sets Test Case

Alternatively, to compare performance between JT2FIS, Matlab® Interval Type-
2 Fuzzy Toolbox and Juzzy Toolkit we used the rule set to configure and test
inference systems, increasing the number of rules on each test in order to incre-
ment complexity on processing rules.
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Table 8. Comparing JT2FIS outputs versus Matlab® Interval Type-2 Fuzzy Logic
Toolbox outputs y Juzzy Toolkit

Inputs JT2FIS Interval Type-2 Juzzy Toolkit
Fuzzy Logic Toolbox

xI x2 Output I Output 2 Time(ms) Output1 Output2 Time(ms) Output1 Output2 Time(ms)
-16-08 0.3 0.6336 1.4 0.3 0.6336 8.6 02999 0.6346 0.67
1206 03 0.6363 1.4 0.3 0.6363 8.6 0299 06374 067
-8-04 01822 04890 124 0182 04890 8.6 01824 04905 067
-4-02 -0002  0.2337 124 00052 02337 8.6 -0.0053  0.2356 0.67
0 0 -34694E-17-34694E-17 124  -3.4694E-17-34694E-17 86  -5.5511E-17 -5.5511E-17  0.67
402 00052 -0.2337 124 00052  -0.2337 8.6 0.0053  -0.2356  0.67
8 04 0182  -04800 124  -0.1822  -0.489%0 8.6 0.1824 04905 0.67
1206 -02999  -06363 124 -02999  -0.6363 8.6 02999 -0.6374  0.67
16 08  -03 06336 124 -03 -0.6336 8.6 02999 -0.6346  0.67
201 03 0.6324 1M 03 -0.6324 8.6 02999 -0.6334  0.67

Table 9. Comparing JT2FIS times(ms) versus Matlab® Interval Type-2 Fuzzy Logic
Toolbox times(ms) and Juzzy Toolkit times(ms) with different discretizations points
for input1=20 and input2=1

Number Points JT2FIS  Interval Type-2 Fuzzy Juzzy Toolkit
Time(ms) Logic Toolbox Time(ms) Time(ms)

101 1.24 8.6 0.67
1001 4.96 13.7 1.23
10001 45.42 71.2 8.48

Table 10. Inputs, Outputs example "ISHOWER” Trianguler

Type MemberFunction Params

Input! GaussUncertaintyStandardDesviationMemberFunction deviation1=0.1623, deviation2=0.2623 mean=0.0

Input! GaussUncertaintyStandardDesviationMemberFunction deviation1=0.1623, deviation2=0.2623 mean=05

Input! GaussUncertaintyStandardDesviationMemberFunction deviation1=(.1623, deviation2=0.2623 mean=1.0

QOutputl TriUncertaintyMemberFunction al=-0.5833,h1=-0.08333,¢1=0.4167,a2=-0.4167,h2=-0.08333,c2=0.5833
QOutputl TriUncertaintyMemberFunction a1=-0.08333,b1=04167,c1=09167,a2=0.08333,h2=0.4167,c2=1.083
Outputl TriUncertaintyMemberFunction al=0.4167b1=09167,¢1=1.417,22=0.5833,b2=0.9167,c2=1.583

Using 101 points and Centroid reduction type, we evaluate all system imple-
mentations with different rule sets.

Table 11 shows significant differences between JT2FIS, Matlab® Interval
Type-2 Fuzzy Toolbox and Juzzy Toolkit. JT2FIS showed better performance
when the rule set was increased.
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Table 11. Comparing JT2FIS times(ms) versus Matlab® Interval Type-2 Fuzzy Logic
Toolbox times(ms) and Juzzy Toolkit times(ms) with different number of rules for
input1=20 and input2=1

Number Inputs Number Rules JT2FIS Interval Type-2 Fuzzy Juzzy Toolkit
Time(ms) Logic Toolbox Time(ms) Time(ms)

2 9 0.72 4 0.74
3 27 1.09 5.5 2.03
4 81 1.95 10 10.77
5 243 5.807 30 148.19
6 729 16.44 70 3621.2

4 Conclusions and Future Work

JT2FIS is an object-oriented class library that can be used to build intelli-
gent applications based on type-2 fuzzy systems. We presented an architecture
of an object oriented design. We compared outputs response between JT2FIS,
Matlab® Interval Type-2 Fuzzy Toolbox and Juzzy Toolkit in order to validate
robustness and performance.

The proposed class library are prospected to cover the need of a type-2 fuzzy
system library in Java. Matlab® Interval Type-2 Fuzzy Logic Toolbox have been
traditionally used in research, but has been difficult to transfer some designs and
implementations from Matlab® to commercial applications. In other hand, Java
is a very used programming language by academics and professionals, and are
fully accepted by software industry due the convenience of reuse, legibility of
coding and system portability.

As a future work, first, we will continue adding features to the library and
re-factoring the code in order to improve performance and usability. Finally, we
are planning to extend the JT2FIS capabilities to Generalized Type-2 Fuzzy
Inference Systems.
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for Research Projects (Grant No. 300.6.C.62.15 and 300.6.C.135.17) of the Au-
tonomous University of Baja California, México.
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Abstract. In this work a diagnosis system for an electrical network is proposed.
The approach carries out the monitoring of an electrical system with dynamical
load changes proposed by the IEEE. The framework is composed by two phas-
es. The detection phase which uses a fuzzy system, and the diagnosis phase that
computes the Euclidean distances between samples in order to identify a pattern
on the system’s elements. The proposal is able to diagnose asymmetrical elec-
trical faults. Promissory results of the proposal are shown.

Keywords: Fault Detection, Diagnosis, Electrical Networks, Fuzzy System and
Euclidian Distance.

1 Introduction

The fault detection and diagnosis field is taking an important role in many industrial
areas in which engineering is involved. This is due to the complex systems that indus-
tries have today working on their processes. This complexity is given by the presence
of a lot of variables taking part of a process or system being monitored. Thus, the
identification of abnormal operation conditions in a system or a process is needed. An
alternative solution to the monitoring task of a lot of variables, is that the implementa-
tion of intelligent models are used to make faster diagnosis when a fault is present and
to make more precise systems that diminish the presence of false alarms. Avoiding in
this way the economic losses and preventing the risk to the operators working on
dangerous processes. Thus, the aim of this paper is to generate a system for fault de-
tection and diagnosis of a complex system that helps the operators to quickly identify
a fault presence and the location of it. In this paper a methodology has been proposed
to diagnose an electrical power system with dynamical load changes that uses histori-
cal data of the process to carry out a fault detection and diagnosis. The framework
proposed is composed by two steps. The first step uses a fuzzy logic system to do
the fault detection and the second step gives the final diagnosis measuring the Eucli-
dean distance between the voltages of the lines for each node. These steps are done to
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© Springer-Verlag Berlin Heidelberg 2013
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obtain a more robust and accurate monitoring system diminishing the presence of
false alarms in the final diagnosis.

2 State of the Art

Since the beginning of the use of the machines, the need to monitor if they are work-
ing properly has been a common task. In this way some important concepts related to
this field have been appeared. For instance, a fault is defined as a not allowed devia-
tion by at least one property, characteristic or parameter to acceptable conditions,
usual or normal operation of a system. Fault detection is to determine when a fault is
present on a system. Fault isolation is to determine the type and location of a fault.
Fault identification is to determine the size and variation in time of a fault. Finally,
fault diagnosis is to determine the type, size, location and time of detection. Finally,
the system is intervened to recover its normal operation[1]. According to [2], figure
1 shows the detection and diagnosis general methodology employed.

NO
YES
Fault. > F.aE.||t . > .Fault . > Recovery
detecction Identification Diagnosis Process

!

Fig. 1. Process monitoring system (Adapted from [2])

Once exposed the basic concepts in the field of fault detection and diagnosis, the
classification of the general methods is presented. Until now, researchers have ad-
dressed the problem of faults detection in different ways. [3] and [4] classifies the
detection methods in three different categories. Quantitative models that make use of
mathematical models, qualitative models which perform detection using graph theory
and partially mathematical models of the system and finally models that make use of
historical data to carry out a complete monitoring system. Another point of view are
the models described by [2], which describes the processes as invasive. For instance
those taking into account large linear systems that are often incorporated into the sys-
tem or process and as non-invasive such as those requiring data drive to detect if the
system is in faulty mode. In this same way, it characterizes as rigid models those
which depend directly on a mathematical model and the flexible models those that
make use of historical data. The use of these flexible models sometimes is more feasi-
ble because there are applications where it is not possible to mathematically model the
dynamics of the system. This could happen even when the monitoring system design-
er has much experience or know very well the process. Additionally it has been
shown that flexible models can work complementing mathematical models [5] since
most of today’s systems try to emulate the human behavior.
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The methods based on historical data of the process, are widely used nowadays in
most of the processes or systems due to its simplicity and efficiency [5]. In the partic-
ular case of electrical systems, the soft computing techniques such as: fuzzy logic,
artificial neural networks, probabilistic reasoning and evolutionary algorithms are
employed as classifiers. [6] uses fuzzy logic to do the fault detection process in real
time on a fuel injection system in a diesel engine. [7] proposes a control level system
of three tanks with the use of signals from various sensors. The main objective of this
system is to detect abnormal signals from these sensors, using fuzzy logic to carry out
fault detection and the diagnosis phase evaluates the data measurement provided. This
evaluation is done with the purpose of provide a robust system. Euclidean distances
are used as in [8] and [9]. The former applies decision rules at the photolithography
stage in the manufacturing process of an integrated circuit. The second calculates
the distances in a study case related with semiconductors in order to give the fault
diagnosis.

3 Preliminaries

3.1  Fuzzy Logic

Fuzzy logic systems are based on if-then rules that capture the experts’ knowledge.
Each rule is an instruction represented in mathematical language. On it, the words are
characterized by membership functions such as those described below.

e Membership Functions

The membership functions fuzzify data. That is to defined a fuzzy set A on a universe
of discourse X of the form p: X — [0,1], Taking the maximum value of p(x)=1 and
minimum value pa(x)=0. A membership function allows to represent graphically a
fuzzy set.

0 six<a
:;__Z sia<x<m
Ha) = b-a . (D
Lb_m sia<x<m
0 six=b

Where a is defined as the lorwer value, b is the higher value and m is mean value, X is
any input value in the membership functions.

e Fuzzy Operators

Fuzzy operators are applied to do basic operations with fuzzy sets. The basic op-
erators for complement, union, and intersection are defined as:
The complement:

HAx) = 1 — Haw 2

The union or t-norm:



Fault Detection and Diagnosis of Electrical Networks Using a Fuzzy System 219

HAUB () = MaX [Ka(x) MB(x ] 3)
The intersection or s-norm:

HanB(xy = Min [Hacx), M) 4
e Fuzzy Implications

The output of fuzzy the system is represented by a membership value which needs
to be transformed onto a crisp number. To perform this transformation is required a
fuzzifier such as: centroid defuzzfier.

tmm (%, y) = min [pgp, (X), wep, (V)] (5
or
Hmp (% Y) = Hep, (X) * Hpp, (V) (6)
e Defuzzification

To get a solution to a decision problem, the obtention of a crisp number is required in
order to no use a fuzzy output. Therefore, this fuzzy output is transformed using the
centroid method [10].

Yo xiu(xg)
_ Zhaxuc) 7
&= 3 u) )

3.2 Euclidean Distance

Euclidean distance is defined as the ordinary distance between two points that is de-
duced with the Pythagorean Theorem. This is using a bidimentional space, to obtain
the distance between two points P1 y P2, in coordinates (x;, y;) and (X, y,) respec-
tively, is [11]:

de(P, P,) = \/(Xz — %)%+ (y2 — y1)? ®)

4 Framework Description

In this paper it is proposed the implementation of a new methodology described in
Figure 2 in order to perform the detection and diagnosis of an electrical power system
proposed by the IEEE. The methodology consists of two steps. The first step is the
detection process in which it is used fuzzy logic to perform the task of evaluating the
operating conditions of the system. The second step gives the final diagnosis measur-
ing the Euclidean distances in order to obtain a normal operation pattern between the
voltages of each of the 24 nodes of the system. Thus, when a fault is present it deter-
mines which of the lines have the problem.
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Fig. 2. General fault detection and diagnosis framework of the proposal

The steps of the proposal are summarized as follows:

—

. To obtain the system’s databases in normal operation and faulty mode.

2. To generate a fuzzy system that evaluates each system’s nodes whose output will
be a zero for a node of the monitored system when it is found in faulty mode oth-
erwise it will give a nonzero value.

3. To count the number of consecutives zero’s output of the fuzzy system for a specif-
ic node to determine whether the system is faulty or not.

4. If the system has a faulty node(s) then measure the Euclidean distances between
the voltages of the lines of each suspicious node(s) of the system.

5. To perform a comparison of the distances obtained on step 4 against those of the

normal operation voltages’ distances magnitudes in order to give the final diagno-

sis showing which line(s) is in faulty mode.

5 Case Study

This work is addressed to analyze an electrical power system with dynamic load
changes proposed by the IEEE. This system consists of 24 nodes with 3 lines each.
Given in this way a total of 72 variables to monitor. The electrical system is depicted
in Figure 3.
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Fig. 3.Reliability test system single line diagram proposed by the IEEE (Adapted from [12])

The fuzzy system model was trained with the samples of only one of the nodes of
the original system. This represents a great advantage because it was not needed to
design and to train 24 different fuzzy systems in order to monitor each bus of the
original electrical power system. For the simulations it was considered two fault
types. Symmetrical faults that occurs between two lines and asymmetrical faults oc-
curring when one or more lines fall to ground.

The proposed methodology was applied in the following manner.

The first step is the detection process and is composed by the blocks shown in Fig-
ure 4. Each block performs as follows:

Detection
Process

/ ~

— ~ S
RULEF;ZFZ_:HEN > Counter Yes F1>5 b {  Systemis Fault
No

4 )
\ System is ok

Fig. 4. Fault Detection step

4

Database

1. The Database block indicates that it is needed the acquisition and analysis of his-
torical data from the electrical power system described above. This analysis was
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performed evaluating the amplitudes of the voltages of each node’s lines taking da-
ta windows of 100 samples using normal operation and faulty databases.

2. In the Fuzzy Rules block are contained the steps 2 to 6

3. In this block the selection of a membership function is needed. In this case it was
selected triangular functions due to their simplicity.

4. Additionally with the databases taken on step 1, the fuzzy rules describing the sys-
tem’s behavior were generated. These rules are shown on table 1.

5. The fuzzy operators and fuzzy implication were selected as those depicted on equa-
tions 2 to 6. This selection was made because the use of these operators and impli-
cations were enough to explain relatively well the behavior of the system.

Table 1. Fuzzy rules

Rule Line 1 Line 2 Line 3 Fault
1 More Less More No

2 More Less Less No

3 More More Less No

4 Less More More No

5 Less Less More No

6 Less More Less No

7 More More More Yes

8 Less Less Less Yes

9 Zero Zero Zero Yes

The range considered for the amplitudes of the voltages observed in each line was
from -200 to 200 volts.

6. It has been selected the centroid method to carry out the defuzzification step de-
scribed in Eq. 7. because this is the most commonly method used.

7. The output of the fuzzy system will be a zero if the system is found on a faulty
mode and otherwise it will give a nonzero output.

8. The counter block contains a counter that is adjusted by the user in order to give
sensibility to the detection process. The counter increments in one its counting
when there exist consecutive zeroes given by the fuzzy system.

9. Several tests have been carried out and there were found the results showing on ta-
ble 2. This table shows the percentage of detection obtained for different preset
values of the counter.

Table 2. Percentage of detection for different counter preset values

Counter F1=3 F1=4 F1=5
Porcentage 80% 100% 100%

For the second step the diagnosis process is carried out as described below and this
process is shown in Figure 5.
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After analyzed the operating conditions of the system for the possible different
faults that could be present, the relationship founded for the Euclidean distances
measured gives the different possible faults signature. These relationships are de-
scribed below.

One line to ground fault.

If when comparing the distances between L1-L2-L.3, those of L2-L3 are equal val-
ues, then the fault is present on line L1. If those of L1-L3 are equal values, then the
fault is present on line L2. And in the same way if the distances between L1-L2 are
equal values then the fault is present on line L3.

Database
I L1203=1213 ves | The Faultisin Line L1
_ or S~ or
<_ If L1-L2-13=L1-L3 //\_-} L2
S or P \ or
N ~_If L1-L2-L3=L1—L2/// \ L3
~__ =
~,"
Diagnosis
Process < No
_ ~.
_ ~
_— N r
_If 11-12=0 & L2-13= L1-13 / The Fault are in Lines L1-L2
7 T ~__ Yes |
s ~_ or
<\ If L1-13=0 & L1-L2=L2-L3 />—> L2-13
S~ or _ or
. If L2-13=0 & L1-L2= L1—L3/// L1-13
\\\ // \
\\ ///
oy
™ — Yes
~ [ .
/ The Fault are in
P Jod18e N »|
\\\'f 24320~ > linest1-2-43
\\ /

Fig. 5. Fault diagnosis step

Two lines to ground fault.

If the distances between L1-L2 are equal to zero, and L2-L3, L1-L3 are equal, the
fault is present in the lines L1 and L2. If the distances between L1-L3 are equal to
zero, and L1-L2, L.2-L3 are equal, the fault is present in the lines L1 and L3. Or, If the
distances between L2-L.3 are equal to zero, and L1-L2, L1-L3 are equal, the fault is
present in the lines L2 and L3.

Three lines to ground fault.

If the distances between the three lines L1-L2-L3 are zero then the type of fault
present is a three lines to ground fault.

Thus, as it can be seen the comparison carried out in the second step of the propos-
al, determines which line has the asymmetrical fault present on it.
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6 Conclusion

This paper has proposed a fault detection and diagnosis system that uses a fuzzy logic
system for the detection process and a comparison of the measured Euclidean dis-
tances between the voltages magnitude of an electrical power system to give the final
diagnosis. The proposal is a process history data based method. This approach was
validated in an electrical power system of 24 nodes having dynamic load changes
proposed by the IEEE. This work was done with the purpose to give a robust metho-
dology using these two techniques for a safer detection and diagnosis.
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Abstract. The aim of the presented work is to illustrate the perfor-
mance of embedded fuzzy agent for online tuning of a PID controller.
A DC motor is used for illustration of its position control. An agent is
built using an embedded fuzzy system type 1. Performance of the PID
controller is evaluated on line and this performance is improved in low
cycles of tuning by the agent.

1 Introduction

1.1 Pid Control Systems

Nowadays, there is an existing problem generalized with the tuning of PID con-
trol systems, which generally are set through the developer’s experience, which
means, that the gains are set in an heuristic way.

The PID schemes, based in the classic control theory, have been widely used
in the control industry for a long time. So, in order to improve the control
quality, developers use the nonlinear characteristics to modify the traditional
PID control[3,4].

The integral square error, is more effective for considerable error than with
minimum errors, it tends to eliminate them in a prompt way, even though the
initial response overshoots, this one decays rapidly. Basically, various small peaks
are tolerated for reducing the magnitude of the principal peak. This type of
behavior is usually non desire in the process, whereby a gains optimization is a
desired process in the controller’s tuning[7].

1.2 Fuzzy Logic in PID Control Systems

The most common control algorithm in the industry is the PID control, it has a
simple structure, good reliability and is easy to adjust, reason why it has been
widely used. In order for the PID control to enter in a complex environment of
parameters adjustment, intelligent PID control arises at the historic moment.
The most common intelligent PID control methods are: fuzzy PID control,
neural network PID control, genetic algorithm PID control and so on, but the

F. Castro, A. Gelbukh, and M. Gonzélez (Eds.): MICAI 2013, Part IT, LNAI 8266, pp. 225-232, 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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most common is fuzzy PID control[2]. However, for the velocity control generally
is used a conventional PID[1].

Fuzzy tuning of PID control is the outcome combination of the fuzzy theory,
the fuzzy technology and PID control algorithm. The fuzzy tuning system of the
flexible adaptable advantage with PID control structure, which are simple high
control’s accuracy characteristics[6].

Fuzzy Logic control (FLC) has proven effectiveness for complex non-linear
and imprecisely processes, for which standard model based control techniques are
impractical or impossible. Fuzzy Logic, deals with problems that have vagueness,
uncertainty and use membership functions [5]. Below in Figure 1 is the structure
of a fuzzy tuning of PID control model:

r(t)

Fig. 1. Block diagram of fuzzy tuning and PID controller

The traditional PID algorithm, for a control non linear system is not easy
for adjusting the control parameters and the online settings. For this type of
problems, is better to use the fuzzy control theory which has a great ability and
processing power. The traditional PID control, through the regulation of the
control PID parameters, reaches the stability of the system, in order for the fuzzy
tuning system to perform the establishment of the online parameters, setting
rules in the fuzzy control chart which will connect the error derivative signal
with the exchange rate of the error derivative signal and the three parameters of
the PID, in the precisely moment in which the control parameters are established.

2 System Description

The fuzzy tuning of PID controller would be implemented in a Microcontroller
(MCU), the challenge of the MCU is that it hosts the controller and the fuzzy
system, because we are trying to make a full embedded system.

The aim is to design a fuzzy tuning of PID controller for the position of a DC
motor. For this objective we follow the scheme in Figure 2: Output of Arduino
is connected to the motor, the motor shaft is connected to a potentiometer for
position feedback and another potentiometer would bring the desire position to
the MCU.

For our purpose we are considering a simple PID controller, Figure 3, with
one output gave by the Arduino Development Board we can change the output
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Setpoint

Fig. 2. Block diagram of system

—o-— il —o_ 8l
Control
Signal

Feedback Signal

Fig. 3. Structure of a PID Controller

controller value, expecting to reach the desire value of position. The value of
the output is given by three gains (Kp, Ki, Kd) and the measured values of
error. The error is produced by the difference between the desire position and
the actual position, but in the case of integral gain and derivative gain, the value
of the error is calculated according to the request in the formula. All operations
are calculated by the MCU on real time at the maximum speed of the MCU.
The discrete formula of the PID, considering that the integral and derivative
gain is given according to the sample period, would be:

u(t) = Kpe(t) + K;T, Z e(i) + I;d Ae(t) (1)

where u(t) is the control signal, e(t) is the error between the reference input
and the process output, Ty is the sampling period and A e(t) = e(t) - e(t-1).
The equation 1 is used for software implementation.

The parameter of the PID controller K, K; and K4 can be manipulated to
provide a different response curves, it is here, when the right parameters are
acquire, which are really important because we are trying to minimize the errors
in the response. This errors are measured when we provide an input to the PID
and wait for the stabilization.
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Once the system is in steady state, we obtain the three principal qualifiers to
measure the performance of the controller. The qualifiers are the errors in steady
state, the overshoot and the settle time. And it is here when the intelligent
systems take part of the problem, for this problem we propose the use of a fuzzy
system.

The fuzzy system is in charge of minimizing the errors to the response of
the PID, using a fuzzy rule set. This rule set has a structure according to the
Takagi-Sugeno-Kahn (TSK) model, and the response of the defuzzifier structure
would control the change of the PID controller’s gains, this would be by doing
some increments or decrements in the gains, searching for a better response of
the system with every iteration of the fuzzy system.

The explanation of the segments in fuzzy system is listed below:

1. Fuzzifier: an input for the fuzzy system, in this case it would be the normal
values (values mapped to a value between 0 and 1) of the qualifiers to the
response of the PID. These values characterized the inputs in fuzzy values,
which can be read in a linguistic way and classify them as follows: in very
high, high, medium, low and very low. According to the value of the input,
the Fuzzifier mechanism returns a membership value.

2. Knowledge base: Store IF-THEN rules provided by experts. These rules de-
cide the behavior of the system.

3. Inference engine: collecting the membership values from the Fuzzifier and
supporting with the knowledge base, this mechanism creates an output of
the fuzzy system. These output is a fuzzy way.

4. Defuzzifier: the last step of the fuzzy system is the Defuzzier mechanism,
the objective of this mechanism consists, in making the fuzzy output of the
inference engine, understandable to mechanism that only process numeric
information.

With the tools of PID Controller and the fuzzy systems, we create an intelligent
system that can tune the fuzzy controller for the control’s position optimum
values in this DC motor and for other systems with the same characteristics.
The system can be host and fully functional from a MCU with some limitations,
low costs and open source development.

3 Implementation

The system proposed is a DC Motor connected to a development board Arduino
MEGA through an H-bridge driver. For the signal position feedback, the shaft’s
transmission motor would be connected to a potentiometer, which would be the
system. Also there are additional inputs, the first one consists in another poten-
tiometer that provides a requested position (Setpoint) for the PID controller.
The second input, is a selector for tuning mode, this mode begins the routine to
obtain the values of gains for the PID. Once we have selected the tuning mode,
the system will initiate the tuning routine, followed by a specific period of time
in which the process will be concluded in order to ensure the certain optimized
values of gain in the controller.
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Once the system is in tuning mode, the gains of the PID controller are set to
K, =0.01,K; = 0.01 and K4 = 0.01. Then, the fuzzy system starts modifying
them in order to obtain the optimal values, this would be through get the steady
state with the actual gains, and calculate the system qualifiers that will serve
like inputs for the fuzzy system. The controller has a variable sample time which
is calculated in every iteration.

The TSK model is used to calculate the increments or decrements of every
gain, but for this the TSK model request modify three gains, since the model is
designed for only one output, we need to use three complete systems to obtain
the K, K; and K.

The fuzzy systems used in this work had three inputs, one output, and five
fuzzy sets to determinate the membership function (MF), the fuzzy sets were
mentioned above; Very High (VH), High (H), Medium (M), Low (L) and Very
Low (VL). To allow an easy implementation, the inputs and outputs of the
system were normalized between zero and one, this helps to obtain an output
that can be easy escalated to wanted terms.

Next, on Table 1, a sample of the 125 rules of the knowledge base used to
every gain of the PID:

Table 1. Fuzzy Rules for K, behavior

OSSSST O
1 1 25
1 1 33
1 2 3 2
2 4 5 2
5 5 5 1

Where 1 its for Very Low (VL), 2 for Low (L), 3 for Medium (M), 4 for High
(H) and 5 Very High (VH) fuzzy sets. According to the table, fuzzy rules can be
read:

IF overshooting is VL, IF error in steady state is VL, IF settle time is L THEN
Output it VH.
IF overshooting is VL, IF error in steady state is VL, IF settle time is M THEN

Output it M.
IF overshooting is VL, IF error in steady state is L, IF settle time is M THEN
Output it L.
IF overshooting is L, IF error in steady state is H, IF settle time is VH THEN
Output it L.

IF overshooting is VH, IF error in steady state is VH, IF settle time is VH THEN
Output it VL.

Finally, the output proposed in the defuzzifier incremented to the actual value
of the gain. This will take us to find the optimal value of gain for the plant
proposed.
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A complete digram of the system is showed on Figure 4

[ CONTROL — PID TUNNING ROUTINE J

[ CONTROL - POSITION CONTROL

PWM 0-255

Feedback
Position to

Controller PWM 0-255 and

Direction Control

Actual Position

Fig. 4. Diagram of system Implemetation

Table 2. Behavior for every iteration of fuzzy tuning of PID

0S SS ST Kp Ki Kd
20.020.02097 6 01 6
0.02 0.030.97 11 0.1 11
002 0 097 16 0.1 16
20.020.020.98 21 0.1 21
20.020.010.98 26 0.1 26
0.38 0.39 0.98 29.14 0.1 33.85
0.38 0.39 0.98 32.27 0.1 41.75
0.47 0.47 0.98 33.65 0.1 51.16
0.47 0.47 0.98 34.99 0.1 60.53
0.2 0.21 0.98 39.17 0.1 66.28
0.2 0.21 0.98 43.29 0.1 72.04
0.21 0.22 0.98 47.33 0.1 77.95
-0.02 0.01 0.98 52.33 0.1 82.95
-0.02 0.02 0.98 57.33 0.1 87.95
-0.02 0.03 0.98 62.33 0.1 92.95

4 Experimental Results

The objective of the experiment consists in showing how a fuzzy system’s imple-
mentation produces an improvement in every iteration. To show this, the system



An Embedded Fuzzy Agent for Online Tuning of a PID Controller 231

would be tuned with an input and for every iteration, qualifier values of the sys-
tem were monitored, and as a result we ensure that the fuzzy tuning of PID took
the parameters to the optimal or the closest possible way. Results are showed in
Table 2:

Table 2 shows how the qualifiers errors change during time, and the values of
gains that were used for obtain this errors. The last values were the best values
and the ones that will be used during the operation.

Finally the Figure 5 showed the response curve of the PID with the optimal
values.

PID DIFUSO | RESPUESTA A ESCALON

Fig. 5. Response curve to step inputs

Figure 5 is the response of DC motor for two steps, green line is position
feedback and red line is the setpoint required along time, every 10 ms.

5 Conclusion

The implementation of a fuzzy tuning of PID Control is plenty justified, because
of the nonlinearity response of the parameters. There is a lot of works using
this type of control, but there are only a few with all control embedded in a
commercial MCU with limited resources, which show a good performance in
this application, even though the control of position for DC motors is a really
fast process and require a faster response of the system.

This paper can be used as a base to develop future work like involving another
Intelligent System for the PID tuning, or making a reduced fuzzy system that
let us embedded easily these kind of systems.
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Abstract. Parameter selection greatly impacts the classification accu-
racy of Support Vector Machines (SVM). However, this step is often
overlooked in experimental comparisons, for it is time consuming and re-
quires familiarity with the inner workings of SVM. Focusing on Gaussian
RBF kernels, we propose a grid-search procedure for SVM parameter se-
lection which is economic in its running time and does not require user
intervention. Based on probabilistic assumptions of standardized data,
this procedure works by filtering out parameter values that are not likely
to yield reasonable classification accuracy. We instantiate this procedure
in the popular WEKA data mining toolbox and show its performance
on real datasets.

1 Introduction

Support Vector Machines (SVM) [1] is a supervised learning method that has
been used to achieve state-of-the-art classification results in many domains of
application. It is usually among the methods that are experimentally evaluated
when a new application or learning method is being proposed.

A crucial step when applying SVM is the selection of its parameters. In order
to do it properly and efficiently, it is required an understanding of how these
parameters affect SVM classification. Hence, users not familiarized with SVM
tend to skip parameter selection, often resorting on default parameters of the
implementations of their choice. The problem with this approach is that there
are no default parameters for SVM.

There has been some effort to introduce procedures for SVM parameter se-
lection that are both easy-to-use and principled [2,3]. However, they currently
involve checking a large range of parameter candidates, which can be quite time
consuming. What is more, there is an emphasis in fine-grained parameter selec-
tion, which may be overkill.

In this work we intend to make SVM parameter selection automatic and
economic in its running time. In order to do that, we try to exclude parameter
values that are not likely to provide good classification accuracy. After that,
we try to investigate parameter candidates that are essentially different, that
is, lead to different classification results. A key step to our procedure is data
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standardization, which is a common data pre-processing task that is also useful
for bringing all data features (attributes) to the same scale.

The machine learning community has much aided users by making available
a wide variety of learning algorithms through open source packages. A popular
environment which is widely used by machine learning experts and non-experts
is the Waikato Environment for Knowledge Analysis (WEKA) [4]. It contains a
wide variety of machine learning methods and also provides graphical user inter-
faces for easy access. Due to its popularity, we use it in this work to instantiate
and illustrate the proposed SVM parameter selection procedure.

The remainder of this paper is organized as follows. In Section 2 we review
SVM parameters and how they affect classification performance. In Section 3 we
express caution on the use of default parameters in SVM. In Section 4 we present
the proposed parameter selection procedure for SVM. In Section 5, we instantiate
the proposed procedure in WEKA and conduct illustrative experiments. We
conclude in Section 6.

2 Essential Parameters of SVM

This section reviews the parameters that most affect the generalization abil-
ity of Support Vector Machines'. It is not intended to be a tutorial on SVM
classification, as good references on the subject already exist [5].

Given n training examples (x1,v1),--.,(Tn,Yn), where x € R? and Y =
{+1, —1}, the optimization problem that emerges from SVM is usually written
as follows

a0y k(xs, )
1

n 1 n
max Qi — 5 >,
QL 5y Oy = i=1j=

n
subject to > ayy; =0,
i=1

OSO[Z'SC,

where 