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Abstract

Rett syndrome (RTT) is a devastating neurodevelopmental disorder with autistic

features caused by loss-of-function mutations in the gene encoding methyl-CpG-

binding protein 2 (MECP2), a transcriptional regulatory protein. RTT has

attracted widespread attention not only because of the urgent need for treat-

ments, but also because it has become a window into basic mechanisms under-

lying epigenetic regulation of neuronal genes, including BDNF. In addition,

work in mouse models of the disease has demonstrated the possibility of

symptom reversal upon restoration of normal gene function. This latter finding

has resulted in a paradigm shift in RTT research and, indeed, in the field of

neurodevelopmental disorders as a whole, and spurred the search for potential

therapies for RTT and related syndromes. In this context, the discovery that

expression of BDNF is dysregulated in RTT and mouse models of the disease

has taken on particular importance. This chapter reviews the still evolving story

of howMeCP2 might regulate expression of BDNF, the functional consequences

of BDNF deficits in Mecp2 mutant mice, and progress in developing BDNF-

targeted therapies for the treatment of RTT.
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Abbreviations

The following abbreviations are used for the gene encoding methyl-CpG-binding

protein 2 and its protein product:

MECP2, BDNF Human gene

Mecp2, Bdnf Mouse gene

MeCP2, BDNF Protein

1 Introduction

Rett syndrome (RTT) is a complex neurodevelopmental disorder that affects approxi-

mately 1 in 10,000 live female births worldwide (Chahrour and Zoghbi 2007). RTT is

characterized by apparently normal early postnatal development with neurological

symptoms appearing around 6–18 months of age. The subsequent course of the

disorder is variable and patients exhibit a diverse array of symptoms that generally

includes loss of acquired speech, head growth deceleration, autistic features such as

emotional withdrawal and diminished eye contact,motor stereotypies, early hypotonia

followed by rigidity, epileptiform seizures, exaggerated responses to stress, and severe

respiratory and autonomic (cardiac and gastrointestinal) dysfunction (Chahrour and

Zoghbi 2007; Hagberg et al. 1983; Katz et al. 2009; Shahbazian and Zoghbi 2002;

Vorsanova et al. 2004; Weese-Mayer et al. 2006, 2008). Up to a quarter of RTT

patients may die prematurely of cardiorespiratory failure (Kerr et al. 1997).

The vast majority of typical RTT cases result from loss-of-function mutations in

the gene encoding methyl-CpG-binding protein 2 (MeCP2; Amir et al. 1999;

Chahrour and Zoghbi 2007), a transcriptional regulatory protein (Klose and Bird

2006). Over 250 different MECP2 mutations have been identified in RTT patients,

most of which tend to cluster either within the methyl-binding or transcription

repression domains. The MECP2 gene is X-linked, and affected females are

heterozygotes and somatic mosaics for MeCP2, i.e., cells in which the mutated

allele occurs on the inactive X are phenotypically normal for MeCP2 expression,

whereas cells in which the mutated allele occurs on the active X are mutant. Disease

phenotype is therefore affected not only by the specific MECP2 mutation but also

by the skewing of X chromosome inactivation; individuals in which inactivation is

skewed towards the mutant allele are less severely affected, and vice versa.

Hemizygosity in males is usually fatal, and the chances of homozygosity in females

are exceedingly small, given that most disease-causing mutations arise in the

paternal germ line and child-bearing by affected females is extremely rare.

The full scope of MeCP2 function in neurons remains a subject of some

controversy. Although it is clear that MeCP2 binds methylated DNA and can

potently silence transcription (Klose and Bird 2006), additional functions, including
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transcriptional activation (Chahrour et al. 2008), regulation of RNA processing

(Young et al. 2005), and control of higher order chromatin structure (Georgel

et al. 2003), have been proposed. Moreover, it is unclear whether or not MeCP2

selectively regulates transcription of specific genes or, alternatively, acts globally to

regulate chromatin state across the genome. A recent study by Skene et al. (2010)

demonstrated that MeCP2 protein is abundantly expressed in neurons at levels

comparable to histone octamers, i.e., sufficient to blanket the genome at methylated

CpG dinucleotides. Therefore, these authors have suggested that the primary

function of MeCP2 is to globally repress spurious transcription, e.g., of nucleotide

repeats across the genome rather than to dynamically regulate expression of specific

genes. However, Skene et al. (2010) showed that, in addition to its widespread

binding across genome, MeCP2 also shows peaks of even higher binding at specific

sites within promoter regions. Whether or not this is evidence for a more specific

role in dynamic regulation of particular genes remains unclear. Nonetheless, what is

clear is that expression of many genes is disrupted, either directly or indirectly, by

loss-of-function mutations in MECP2 and that the complexity of RTT is related to

the diversity of affected gene targets.

2 Regulation of BDNF Expression, Trafficking, and
Secretion by MeCP2

The debate concerning the role of MeCP2 in gene regulation is particularly relevant

to understanding the evolution of current thinking regarding BDNF and the patho-

genesis of RTT. The initial suggestion that dysregulation of BDNF expression

might play a role in RTT came from in vitro evidence that BDNF is a transcriptional

target of MeCP2 and repressed by MeCP2 binding to BDNF promoter regions.

Specifically, Chen et al. (2003) and Martinowich et al. (2003) used chromatin

immunoprecipitation to demonstrate binding of MeCP2 protein to BDNF promoter

IV (referred to at the time as promoter III), one of nine BDNF promoters and one

that is particularly important for activity-dependent regulation of BDNF expres-

sion. Moreover, MeCP2 binding appears to recruit a transcriptional repressor

complex that includes HDAC1 and Sin3A to the BDNF locus (Martinowich

et al. 2003). Chen et al. (2003) and Martinowich et al. (2003) further showed that

MeCP2 binding to the BDNF gene was dynamic and subject to regulation in

cultured neurons by exposure to depolarizing stimuli, such as elevated potassium

chloride (KCl). Specifically, strong chemical depolarization reduces MeCP2 bind-

ing to BDNF promoter IV (Martinowich et al. 2003) in association with a change in

the phosphorylation state of MeCP2 (Chen et al. 2003), reduces methylation of

promoter IV (Martinowich et al. 2003), and increases BDNF expression (see also

Ballas et al. 2005). Subsequently, Zhou and colleagues (Zhou et al. 2006)

demonstrated that phosphorylation of MeCP2 at serine 421 is particularly important

for activity-dependent increases in BDNF expression in cultured hippocampal

neurons. Consistent with this repression model, Chen et al. (2003) showed that

Mecp2 null embryonic cortical neurons cultured in the presence of blockers of
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neuronal activity exhibited higher levels of BDNF exon IV mRNA than wild-type

cells. However, in the presence of a depolarizing concentration of KCl, wild-type

and mutant cells exhibited similar levels of BDNF expression, which the authors

interpreted as consistent with BDNF already being derepressed in the mutant cells

to levels similar to those achieved in wild-type cells upon stimulation. More

recently, evidence has emerged that BDNF expression can also be regulated by

the acetylation state of MeCP2 in a manner consistent with the repression model.

Specifically, mice lacking functional SIRT1, a nicotinamide-adenine dinucleotide-

dependent histone deacetylase, exhibit increased MeCP2 binding to the BDNF exon

IV promoter and decreased levels of BDNF mRNA and protein (Zocchi and

Sassone-Corsi 2012).

The hypothesis that MeCP2 normally represses BDNF transcription predicted

that loss of MeCP2 function in RTT, or mouse models of the disease, would be

associated with elevated BDNF expression. However, this prediction has not been

borne out, as Mecp2 null or heterozygous mice exhibit reduced levels of BDNF

mRNA and protein in vivo (Chang et al. 2006; Ogier et al. 2007; Wang et al. 2006).

Similarly, two studies of postmortem brain samples from RTT patients have

demonstrated reduced levels of BDNF mRNA (Abuhatzira et al. 2007; Deng

et al. 2007). The BDNF mRNA and protein deficits observed in the brain and

peripheral nervous system of Mecp2 mutant mice are progressive (Chang

et al. 2006; Ogier et al. 2007; Wang et al. 2006), being virtually undetectable at

birth and declining to as much as 50 % of wild-type levels in some tissues by

5 weeks of age in male nulls (Wang et al. 2006). Moreover, the postnatal decline in

BDNF levels occurs with a slower time course in heterozygous females compared

to male nulls (Schmid et al. 2012). Clearly, these in vivo data are inconsistent with a

model in which MeCP2 simply represses expression of BDNF.

Various hypotheses have been offered to explain how loss of MeCP2 function

could lead to deficits in BDNF expression. One idea, already introduced above, is

that MeCP2 activates rather than represses gene expression. In support of this

hypothesis, Chahrour et al. (2008) showed that global overexpression of MeCP2

in mice is associated with increased expression of BDNF mRNA in the hypothala-

mus, whereas MeCP2 loss is associated with decreased BDNF. Similarly, selective

deletion ofMecp2 from Sim-1-positive neurons also causes a reduction in BDNF in

the hypothalamus (Fyffe et al. 2008). The activator hypothesis is also supported by

a recent report by Li et al. (2013) demonstrating global reductions in transcription

and Akt/mTOR-dependent protein translation—including BDNF—in human iPSC-

derived neurons in which the Mecp2 gene was deleted using TALEN-mediated

DNA editing. One caveat to these findings is that the possible contribution of

decreased BDNF mRNA and/or protein stability, rather than decreased gene tran-

scription per se, has not been ruled out. Further support for the activator model

comes from studies showing that derepression of microRNA (miRNA)-mediated

inhibition of MeCP2 translation in cultured neurons increases expression not only

of MeCP2 but BDNF as well (Klein et al. 2007).

A recent approach to resolving the repressor versus activator debate is the “dual
operation model” (Li and Pozzo-Miller 2013). This model is motivated by data

484 D.M. Katz



from one study showing that either knockdown or overexpression of MeCP2 in

cultured neurons leads to increased expression of BDNF (Larimore et al. 2009), as

well as evidence that MeCP2 can undergo diverse posttranslational modifications,

including phosphorylation, acetylation, and ubiquitylation, leading to unique

associations with either co-repressors or co-activators (Gonzales et al. 2012).

A second hypothesis that has been proposed to explain decreased BDNF expres-

sion in the absence of MeCP2 function is that MeCP2 normally represses the

activity of repressors of BDNF expression, i.e., the RE1 silencing transcription

factor (REST)/CoREST complex (Abuhatzira et al. 2007). This model is based on

data from mice and humans demonstrating elevated levels of REST/CoREST in

RTT patients and Mecp2-deficient mice, presumably leading to reduced BDNF

expression through repressive interactions with the RE1 element in BDNF pro-

moter regions. A third hypothesis is that reduced BDNF expression in Mecp2 null

neurons is a consequence of reduced neuronal activity (Sun and Wu 2006). This

idea was based on the finding that cortical neurons from Mecp2 null mice exhibit

reduced firing rates associated with a loss of excitatory synaptic drive (Dani

et al. 2005). However, we found that even after exposure to strongly depolarizing

stimuli in vitro, Mecp2 null cells express less BDNF protein than wild-type,

indicating that differences in activity alone are unlikely to account for BDNF

deficits in the absence of MeCP2 (Ogier et al. 2007). Thus, at present, the normal

role of MeCP2 in regulating BDNF expression, as well as the mechanism

(s) responsible for reduced BDNF levels in the RTT brain, remain to be clarified.

One possibility is that, although loss of MeCP2 may result in derepression of BDNF

gene expression, translation and/or stability of the protein may also be adversely

affected, resulting in a net decrease in BDNF levels in the RTT brain. In support of

this possibility, Wu et al. (2010) recently demonstrated that MeCP2 controls

transcription of several microRNAs (miRNAs) that target the 30 UTR of Bdnf
mRNA, some of which are upregulated in the absence of MeCP2 function and

negatively regulate Bdnf mRNA levels. Conversely, inhibition of two such

miRNAs, miR-381 and miR-495, in both wild-type and Mecp2 null neurons

in vitro, increased levels of Bdnf mRNA and BDNF protein. Thus, Wu

et al. (2010) proposed that, in the absence of MeCP2 function, the net effect of

direct derepression of Bdnf mRNA, combined with depression of miRNAs that

negatively regulate Bdnf mRNA, is reduced BDNF levels. This hypothesis requires

further testing, as Wu et al. (2010) also identified miRNAs that target Bdnf mRNA

and are downregulated in the absence of MeCP2 function. In particular, it will be

critical to define the stoichiometry of these positive and negative influences on Bdnf
transcription, translation, and stability in vivo in order to fully understand the role

of miRNAs in BDNF protein deficits in RTT.

In addition to dysregulation of BDNF expression, loss of MeCP2 also appears to

disrupt regulated secretion and transport of BDNF. Although mature sensory

neurons lacking MeCP2 express lower levels of BDNF protein, they actually

secrete a larger proportion of their total BDNF content than wild-type cells, at

least in cell culture (Ladas et al. 2009). However, this enhanced secretion is not

sufficient to completely compensate for reduced levels of BDNF expression, and
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the absolute amount of BDNF released by mutant cells is nonetheless lower than

wild-type. This is also seen at mossy fiber inputs onto CA3 pyramidal neurons in

Mecp2 null mice, in which activity-dependent BDNF release is reduced compared

to wild type, resulting in reduced activation of TrkB and reduced signaling through

TRPC3 channels (Li et al. 2012). On the other hand, in newborn Mecp2 null

neurons, which do not yet exhibit a significant deficit in BDNF expression, the

absolute amount of BDNF released is actually greater than wild-type (Wang

et al. 2006). These data raise the possibility that during early development,

enhanced secretion of BDNF from Mecp2 null cells could derange developmental

processes that depend on tight coupling between neuronal activity and BDNF

release, such as activity-dependent refinement of synaptic connections (Lein and

Shatz 2000). Enhanced BDNF release appears to be just one manifestation of a

more widespread dense core vesicle phenotype in Mecp2 null mice. Studies of

catecholamine release inMecp2 null adrenal chromaffin cells demonstrated that the

readily releasable pool of dense core vesicles is significantly larger and individual

vesicles are more fusigenic than in wild-type cells, resulting in hypersecretion of

epinephrine (Ladas et al. 2009; Wang et al. 2006). Given that BDNF is also a dense

core vesicle cargo (Decker et al. 2010; Farhadi et al. 2000; Luo et al. 2001; Salio

et al. 2007; Wu et al. 2004), similar mechanisms may underlie the BDNF secretory

phenotype in Mecp2 null mice.

Recent studies indicate that BDNF signaling in Mecp2 mutants is also impacted

by deficits in axonal transport, resulting from dysregulation of huntingtin (Htt)- and

huntingtin-associated protein (Hap1)-dependent vesicle trafficking (Roux

et al. 2012). Specifically, the velocity of vesicular BDNF transport in cortico-

striatal projection neurons is impaired by loss of MeCP2. Given the importance

of cortically derived BDNF for the maintenance of striatal medium-spiny neurons

(Baquet et al. 2004), these data raise the possibility that deficits in BDNF transport

from the cortex contribute to striatal pathology in RTT (cf., Stearns et al. 2007).

3 Topography of BDNF Deficits in Mouse Models of RTT

The time course and distribution of BDNF deficits resulting from loss ofMeCP2 have

been studied in some detail inMecp2 null and heterozygous mice (Chang et al. 2006;

Ogier et al. 2007; Wang et al. 2006; Deogracias et al. 2012). The earliest and most

dramatic deficits in BDNF mRNA and protein occur in the vagal sensory nodose

ganglion (NG), followed by the brainstem, cerebellum, and cortex (Chang et al. 2006;

Ogier et al. 2007; Wang et al. 2006). In NG sensory neurons, for example, BDNF

mRNA and protein levels fall to approximately 50%wild-type values within 5 weeks

after birth (Ogier et al. 2007), leading to synaptic dysfunction in vagal afferent inputs

to the brainstem (see below). Within the brain, the effect of MeCP2 loss on BDNF

levels is not uniform across cell groups. For example, although Mecp2 null mutants

exhibit marked decreases in BDNF immunostaining in the neuropil of some

brainstem nuclei, such as the nucleus tractus solitarius (nTS), nucleus ambiguus,

and nucleus locus coeruleus (LC), others, such as the gracile and principal sensory
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trigeminal nuclei, are only mildly affected or unchanged (Kline et al. 2010). Mecha-

nisms that underlie the differential temporal and spatial patterns of BDNF decline in

the Mecp2 mutant brain have not been defined. Recent data indicate that regional

BDNF deficits in Mecp2 null mutants are accompanied by reduced levels of TrkB

phosphorylation without a change in total TrkB expression (Schmid et al. 2012).

4 BDNF Deficits in Mouse Models of RTT:
Functional Consequences

With a few exceptions, relatively little is known about the specific functional

consequences of reduced BDNF expression in Mecp2 mutants and RTT patients.

Morphologic and synaptic phenotypes observed in the brains of RTT patients

and/or Mecp2 null mutants, including decreased brain weight and neuronal size,

reduced dendritic arborizations and impaired hippocampal long-term potentiation

(reviewed in Chahrour and Zoghbi 2007), overlap with deficits seen in Bdnf loss-of-
function mutants (Chang et al. 2006; Huang and Reichardt 2001). In addition, at

least some of the behavioral features of Mecp2 mutant mice, including irregular

breathing and impaired locomotion, overlap to some degree with deficits observed

in Bdnf mutants (Conover et al. 1995; Erickson et al. 1996). Moreover, genetic

overexpression of BDNF in Mecp2 null mutants can improve survival and loco-

motor function, whereas BDNF deletion hastens the onset of symptoms (Chang

et al. 2006). However, few studies have examined how reduced BDNF availability

in identified neural circuits is linked to specific functional deficits in RTT. What is

clear is that because BDNF declines postnatally in Mecp2 mutants, the size of

neuronal populations that depend on BDNF for survival before birth is unaffected

(Wang et al. 2006). Therefore, increasing attention has focused on the role of BDNF

deficits in the maturation and function of the RTT brain after birth.

4.1 MeCP2 and Stimulation of Dendritic Growth by BDNF

MeCP2 plays a key role in mediating the effects of environmental stimuli, such as

neuronal depolarization, on expression of genes required for neuronal maturation,

including BDNF (Cohen et al. 2011; Ebert et al. 2013). For example, Zhou

et al. (2006) demonstrated that phosphorylation of MeCP2 at serine 421 (ser421)

is required for activity-dependent expression of BDNF in postnatal hippocampal

neurons. BDNF, in turn, can stimulate ser421 phosphorylation of MeCP2,

indicating that BDNF functions both upstream and downstream of MeCP2.

MeCP2 phosphorylation at ser421 is also required for expression of mature den-

dritic morphologies in hippocampal neurons (Chapleau et al. 2009; Zhou

et al. 2006), possibly by activating this BDNF signaling loop. In support of this

possibility, overexpression of BDNF can reverse dendritic atrophy in hippocampal

neurons that are null for Mecp2 (Larimore et al. 2009).
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4.2 BDNF and Synaptic Dysfunction in RTT

The potential synaptic consequences of BDNF loss have been studied in detail at

primary afferent synapses between NG primary sensory neurons and second order

neurons in the nTS. These synapses are the first site at which peripheral visceral

sensory inputs impinge on central autonomic reflex pathways and thereby play a

critical role in autonomic functions disrupted in RTT, such as respiratory, cardio-

vascular, and gastrointestinal homeostasis. Normally, BDNF plays a sensory gating

function at these synapses by modulating postsynaptic responses to glutamate, the

primary excitatory transmitter of visceral afferent neurons (Balkowiec et al. 2000).

We hypothesized, therefore, that in Mecp2 null mice, decreased BDNF expression

in NG sensory neurons would be associated with a deficit in modulation of fast

glutamatergic transmission at primary afferent synapses in nTS. Indeed, the

amplitudes of spontaneous miniature and evoked EPSCs in nTS neurons are

significantly increased in Mecp2 null mice (Kline et al. 2010; Kron et al. 2012a),

and accordingly, mutant cells are more likely than wild-type to fire action potentials

in response to primary afferent stimulation (Kline et al. 2010). These changes

occur without any increase in intrinsic neuronal excitability and are unaffected by

blockade of inhibitory GABA currents. A prediction of these results is that auto-

nomic reflexes mediated by primary afferent inputs to nTS would be disinhibited

in the absence of MeCP2 function. This prediction has been borne out by studies

demonstrating that the hypoxic ventilatory response, a reflex mediated by primary

chemoafferent inputs to nTS, is markedly exaggerated in Mecp2 null mice com-

pared to wild-type controls (Bissonnette and Knopp 2006; Roux et al. 2008;

Voituron et al. 2009). Similarly, Mecp2 nulls exhibit a loss of habituation in the

Breuer–Hering reflex, an nTS-mediated behavior that plays an essential role in

regulating the post-inspiratory phase of the respiratory cycle (Stettner et al. 2007).

More generally, these findings suggest that reduced sensory gating in nTS

contributes to cardiorespiratory instability in RTT and that nTS is a site at which

restoration of normal BDNF signaling could help to reestablish normal homeostatic

controls. Indeed, exaggerated synaptic responses to primary afferent input in nTS

are reversed by application of exogenous BDNF to brainstem slices in vitro (Kline

et al. 2010). Moreover, respiratory function in vivo is improved by treatments that

enhance BDNF/TrkB signaling in Mecp2 mutants (see below).

4.3 BDNF and Hypothalamic Dysfunction in RTT

Feeding behavior and energy homeostasis are strongly influenced by BDNF/TrkB

signaling in the hypothalamus (Noble et al. 2011; Rios et al. 2001). Specifically,

increased levels of BDNF are associated with cessation of feeding and increased

energy expenditure. Although the specific circuitry underlying the role of BDNF in

feeding has not been completely defined, BDNF has been identified as a down-

stream effector of melanocortin-4 receptor (MC4R) signaling in the ventromedial

hypothalamus (Noble et al. 2011; Xu et al. 2003), a key site for regulating feeding
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and satiety. Fyffe et al. (2008) demonstrated that loss of Mecp2 by Cre-mediated

deletion specifically within Sim-1 expressing neurons in the hypothalamus results

in reduced BDNF levels inMecp2 null neurons in the paraventricular nucleus, also

a site of MC4R expression (Nicholson et al. 2007), as well as hyperphagia and

obesity. Although the relevance of the obesity phenotype to RTT is unclear, these

data provide further evidence that MeCP2 is required for maintaining normal levels

of BDNF expression and metabolic homeostasis.

5 BDNF-Targeted Therapies for RTT

Recent studies in conditional Mecp2 null mice have demonstrated that reactivation

of the Mecp2 gene, even in severely symptomatic animals, can rescue neurologic

function to a remarkable degree (Guy et al. 2007). These findings indicate that

deficits caused by loss of MeCP2 function are not due to irreversible changes in

brain structure or function. In addition, as noted above, genetic overexpression of

the BDNF gene in Mecp2 null mice improves somatomotor function and prolongs

life span (Chang et al. 2006), and exogenous BDNF can reverse synaptic deficits

caused by MeCP2 deficiency (Kline et al. 2010). Together, these findings raise the

possibility of rescuing neurologic function in Mecp2 null mice and, eventually,

RTT patients, by pharmacologic therapies that enhance BDNF/TrkB signaling.

BDNF itself does not have good drug-like characteristics, i.e., limited half-life

and poor blood–brain barrier penetration, thus motivating the search for alternative

approaches to increasing BDNF/TrkB signaling in RTT. As discussed below, these

approaches include enhancing expression of endogenous BDNF, increasing BDNF

trafficking, and directly activating the TrkB receptor.

5.1 Increasing Expression or Delivery of Endogenous BDNF

In the first test of a BDNF-targeted therapeutic strategy, Ogier et al. (2007) exam-

ined whether or not pharmacologic elevation of endogenous BDNF expression with

ampakine drugs could improve respiratory function inMecp2 null mice. Ampakines

are benzamide derivatives that facilitate the activity of glutamatergic AMPA

receptors and thereby increase expression of activity-dependent genes, including

BDNF (Lynch and Gall 2006). Repeated administration of ampakines in rats and

mice increases expression of BDNF mRNA and protein in the forebrain for several

days (Lauterborn et al. 2003; Rex et al. 2006) and augments BDNF-dependent

synaptic function (Ingvar et al. 1997; Porrino et al. 2005; Rex et al. 2006). Indeed,

treatment ofMecp2 null mutants with the ampakine CX546 for 3 days significantly

increases BDNF levels in NG sensory neurons and reverses the respiratory

tachypnea that is a prominent feature of breathing dysfunction in RTT (Ogier

et al. 2007). Although additional studies are required to elucidate the mechanism

of ampakine action in this model, these data are consistent with the hypothesis that

BDNF deficits contribute to the respiratory phenotype of Mecp2 null mice and that

Brain-Derived Neurotrophic Factor and Rett Syndrome 489



BDNF signaling may be a pharmacological target for improving respiratory func-

tion in RTT. More recently, Deogracias et al. (2012) showed that fingolimod, a

sphingosine-1 phosphate receptor agonist used to treat multiple sclerosis, increases

BDNF in cultured neurons and protects against NMDA-induced neuronal death in a

BDNF-dependent manner. In vivo, treatment of Mecp2 mutant mice partially

reversed BDNF deficits and also increased striatal volume, an index of BDNF

signaling. Treated mice also showed improvement in locomotor behavior, a clini-

cally relevant outcome measure for RTT patients. Finally, it is well known that

BDNF expression in the rodent forebrain can be increased by environmental

enrichment and exercise (cf., Cotman and Berchtold 2002). Indeed, rearing

Mecp2 mutant mice in an enriched environment, particularly at early stages of

postnatal development, leads to improvements in motor and spatial learning,

coordination, and anxiety, as well as hippocampal circuit function, that correlate

well with increases in BDNF expression (Kondo et al. 2008; Lonetti et al. 2010).

Another potential strategy for enhancing BDNF/TrkB signaling in RTT is to

increase the bioavailability of endogenous BDNF by promoting increased axonal

transport and/or secretion. Recently, Roux et al. (2012) showed that cysteamine, a

drug that increases vesicular trafficking of BDNF (Borrell-Pages et al. 2006),

extends life span and improves motor function in Mecp2 mutant mice.

5.2 Targeting the BDNF Receptor, TrkB

One potential limitation of pharmacologic approaches that globally increase BDNF

is that BDNF activates receptors other than TrkB, including p75. The properties of

BDNF binding to p75 as well as functioning as a full agonist at TrkB could lead to

unwanted pleiotropic effects of elevated BDNF levels. An alternative approach is to

directly activate TrkB; potential strategies include TrkB activating antibodies (Qian

et al. 2006) and small molecules that function as direct TrkB ligands (Jang

et al. 2010; Massa et al. 2010; Xie and Longo 2000). Our laboratory has recently

examined the ability of a small molecule, non-peptide BDNF loop 2 domain

mimetic, LM22A-4, which functions as a direct and specific partial agonist of

TrkB, but not p75 (Massa et al. 2010), to increase TrkB activation and improve

breathing in Mecp2 mutant mice. LM22A-4 was developed by Longo, Massa, and

colleagues by in silico screening for mimetics of BDNF loop domains that selec-

tively activate TrkB and downstream signaling partners in vitro and in vivo (Han

et al. 2012; Massa et al. 2010; Schmid et al. 2012). Recent studies in our laboratory

have shown that LM22A-4 (1) reduces synaptic hyperexcitability in the brainstem

respiratory network in brain slice preparations (Kron et al. 2012b), (2) reverses

deficits in TrkB activation in the brainstem (Schmid et al. 2012), and (3) signifi-

cantly improves respiratory function (Schmid et al. 2012), including the elimination

of apneic breathing (Kron et al. 2012b), following systemic administration to

symptomatic Mecp2 null and heterozygous mice. Together, these data provide

direct evidence linking TrkB signaling to respiratory dysfunction in mouse models
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of RTT and further highlight the therapeutic potential of strategies aimed at

enhancing BDNF/TrkB signaling for the treatment of RTT patients.

6 Summary

BDNF is only one of many genes whose expression is dysregulated in RTT

(Chahrour et al. 2008). Nonetheless, given the multiplicity of roles played by

BDNF signaling in brain maturation and neural circuit function across the life

span, it is not surprising that deficits in BDNF protein levels have now been linked,

either directly or indirectly, to diverse neurologic deficits in RTT, including

reduced dendritic growth, breathing dysfunction, and impaired locomotion. Cer-

tainly, much more work is required to understand how BDNF deficits may contri-

bute to the expression of specific RTT endophenotypes. It is encouraging, however,

that the possibility of treating RTT using BDNF/TrkB-targeted therapies has

already been established in principle in mouse models of the disease.
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