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Preface

Neurotrophic factors can be broadly understood as any secreted factor that has

nourishing or sustaining effect on neurons. The archetypical neurotrophic factor is

nerve growth factor (NGF) which was first discovered in series of elegant embryo-

logical and biochemical experiments carried out by Rita Levi-Montalcini and her

colleagues. In the 1980s and 1990s, the work of Hans Thoenen, Yves-Alain Barde,

and others paved the way for the discovery of new members of this family BDNF,

NT-3, and NT-4. This family of neurotrophic factors became known as the

neurotrophins. In parallel to these discoveries, other neurotrophic factors were

discovered, notably the glial-derived neurotrophic factor (GDNF) which also

belongs to a small sub-family of factors which includes neurtrin, artemin, and

persephin. Our knowledge on the biology of neurotrophic factors has exploded in

the last 15 years and it has become apparent that members of the neurotrophin

family play important roles, not just in the development of the nervous system, but

in the normal physiology and pathophysiology of the brain. For this reason we have

chosen to largely restrict the focus of this new handbook of pharmacology volume

on neurotrophic factors to the biology of the neurotrophins NGF, BDNF, NT-3, and

NT-4. Research on the neurotrophins in the 1990s provided much hope that these

factors would show therapeutic potential in a wide variety of neurodegenerative

diseases from Alzheimer’s to Parkinson’s disease. It is probably fair to say that the

research emphasis has moved away from pursuing a role for neurotrophins in

neuroprotection. Nevertheless the last 15 years has witnessed outstanding progress

in understanding the functional roles of these neurotrophic factors and their

receptors in normal development and adult physiology, their mechanisms of action,

as well as their role in the pathophysiology of disease. This book provides critical

reviews of the role of neurotrophins and their receptors in a wide variety of diseases

including neurodegenerative diseases like Huntington’s, cognitive dysfunction,

psychiatric disorders such as clinical depression, Rett syndrome, motor neurone

disease, spinal cord injury, pain, metabolic disease, and cardiovascular disease. The

book also contains contributions from leaders in the field dealing with the basic

biology, transcriptional and post-translational regulation of the neurotrophins, and

their receptors. The last decade has witnessed a radical change in the view of

neurotrophins and their receptors, because of the discovery that the pro-peptide

forms of NGF and BDNF, in particular, have distinct biological effects mediated by

novel receptor constellations, including that of the VPS10p family transmembrane
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receptor sortilin and the low-affinity neurotrophin receptor p75NTR. Thus there are

more molecular targets for manipulating neurotrophins available and more

validated disease processes in which neurotrophins play a relevant and powerful

role. Pharmaceuticals tailored to interfere with neurotrophin function have not only

been developed, but even show clinical efficacy in late stage clinical trials for the

treatment of pain. This book will review all recent areas of progress in the study of

neurotrophins and their biological roles. Importantly, world-renowned experts

explain the detailed and complex biology of these factors in the context of disease,

revealing future perspectives for new therapies based on neurotrophin signalling

and their downstream targets.

We are very excited about this book as it contains contributions from the leading

scientists in the field who bring a unique combination of expertise on the detailed

molecular mechanisms by which neurotrophins signal as well as perspectives on

their disease relevance. During the final stages of the production of this book, two

pioneers in the field of neurotrophin research, Rita Levi-Montalcini and Hans

Thoenen, sadly passed away. We both had the honour and the luck to benefit

from close scientific contact with Hans Thoenen in the formative years of our

research careers. We would like to dedicate this volume to the memory of these two

wonderful scientists, Rita Levi-Montalcini and Hans Thoenen.

Berlin, Germany Gary R. Lewin

Nashville, TN Bruce D. Carter
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Part I

The Neurotrophin Family



NGF, BDNF, NT3, and NT4

M. Bothwell

Abstract

The discovery of nerve growth factor (NGF) was a seminal event in history of

research in developmental neurobiology. The further discovery that NGF was

just one of a family of structurally similar growth factors, neurotrophins,

provided important insights into the way nerve cells communicate, during

development of the nervous system, and in neuroplasticity, memory, and

learning in the adult nervous system. Four neurotrophins, NGF, brain-derived

neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4),

regulate a wide variety of neural functions, acting upon p75NTR, TrkA, TrkB,

and TrkC receptors.

Keywords

Neurotrophin • NGF • BDNF • NT3 • NT4 • Evolution

1 Historical Background: Discovery of NGF and Other
Neurotrophins

1.1 Discovery of NGF

The discovery and biochemical and functional characterization of nerve growth

factor (NGF), by Rita Montalcini, Viktor Hamburger, and Stanley Cohen, was

decades ahead of its time, in more ways than we can easily appreciate today. The

discovery that the trophic effect of innervated tissues on sympathetic and sensory

neuronal development was mediated by a diffusible factor (Levi-Montalcini and

Hamburger 1953) was conceptually ground-breaking, and the successful isolation

of this NGF from mouse salivary gland was remarkable given the primitive tools for
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protein fractionation that were available at the time. It is also remarkable that the

importance of NGF for neurons in vivo was established almost immediately by

demonstrating that injection of NGF antibody caused death of sympathetic neurons

(Cohen 1960). The precocious nature of these studies can only be understood by

contrasting this to the history of experimentation with a variety of other growth

factors that were discovered subsequently, since the loss-of-function experiments

required to demonstrate the importance in vivo of other growth factors usually

lagged the initial discovery of those growth factors by a decade or more.

It is hard to appreciate also, from a modern perspective, that the concept that a

protein released by one cell could control the differentiation of neighboring cells

was revolutionary at the time of discovery of NGF. Indeed, the possibility that NGF

could be “instructive” for neuronal differentiation, rather than merely being “per-

missive” was still a hotly debated subject when the author of this chapter entered

the field of NGF research in 1975.

The seed for the discovery of NGF was planted by the pioneering work of Viktor

Hamburger in which it was shown that surgical removal of the wing buds of chick

embryos reduced the ultimate number of motor neurons in the lateral motor column

of the spinal cord and of sensory neurons in the dorsal root ganglia at segmental

levels responsible for innervation of the missing target tissue, while transplantation

of supernumerary limb buds had the opposite effect of allowing development of

more motor neurons and sensory neurons (Hamburger 1934, 1939). Thus was born

the so-called neurotrophic hypothesis, stating that “Each part of the peripheral field

controls directly [development of] its own nervous center” along with the idea that

some signal or substance must move from the axon terminus to the neuronal cell

body to convey this signal.

The work of Rita Levi-Montalcini, initially independently (Levi-Montalcini and

Levi 1943) and subsequently in collaboration with Viktor Hamburger (Hamburger

and Levi-Montalcini 1949), demonstrated that these effects were not primarily an

effect on neurogenesis, as initially supposed, but rather, largely reflected the ability

of the innervated target to suppress developmental cell death of the innervating

neurons. Attempts to model the limb bud effects with small pieces of sarcoma

tumor, initially in vivo (Levi-Montalcini and Hamburger 1951), and subsequently

in vitro (Levi-Montalcini and Hamburger 1953), using newly available tissue

culture techniques demonstrated potent effects on development of sympathetic

neurons as well as sensory neurons and importantly established that the effects

were mediated by a diffusible factor. Subsequent studies revealed that a similar

activity was present at much higher concentrations in cobra venom and mouse

salivary gland, allowing the biochemical purification of the factors and importantly,

demonstrating that an antiserum to the NGF protein caused degeneration of the

nervous system of neonatal rodents (Cohen 1960; Cohen and Levi-Montalcini

1956). The later discovery that NGF was a member of a family of factors that

control survival of sensory neurons was presaged by Levi-Montalcini’s observation

that NGF promoted the survival of small mediodorsally located sensory neurons in

DRGs, while NGF had no effect on the larger ventrolaterally located sensory

neurons.

4 M. Bothwell



1.2 Discovery of the Neurotrophin Gene Family

The sensory ganglia that are segmentally distributed along the trunk of vertebrates

derive from the neural crest, but many cranial sensory ganglia derive instead from

epithelial placodes. Target-derived trophic factors are required for developmental

survival of both neural crest-derived and placode-derived peripheral sensory

neurons, yet NGF only promotes survival of neural crest-derived sensory neurons.

Such observations motivated experiments leading to the discovery and molecular

cloning of brain-derived neurotrophic factor (BDNF) as a trophic factor for

placode-derived sensory neurons (Barde et al. 1982). Nucleotide sequence analysis

revealed that NGF and BDNF were structurally related (Leibrock et al. 1989).

Several teams of investigators recognized independently that short highly

conserved regions of NGF and BDNF transcripts permitted the design of primers

for polymerase chain reaction that would jointly amplify both NGF and BDNF

sequences and employing these primers discovered additional members of the NGF

gene family—neurotrophin-3 (NT3) (Hohn et al. 1990; Jones and Reichardt 1990;

Maisonpierre et al. 1990; Rosenthal et al. 1990) and neurotrophin-4 (NT4)

(Berkemeier et al. 1991; Hallbook et al. 1991; Ip et al. 1992). The fourth mamma-

lian neurotrophin identified was variously named NT4 or NT5, according to

whether the discoverers included a previously described fish neurotrophin in their

numbering scheme. As a compromise between the alternative nomenclatures, the

fourth mammalian neurotrophin is frequently referred to as NT4/5. It will be called

NT4 in this chapter. Some fish possess an additional neurotrophin family member,

while birds lack NT4. The term neurotrophin was originally coined to describe

members of the NGF gene family. A few present day investigators use the term

“neurotrophin” as a synonym for “neurotrophic factor.” Most investigators prefer to

reserve the term “neurotrophin” for its original purpose, as a means to refer to NGF

gene family members collectively.

2 Neurotrophin Structure

Mature neurotrophins exist as noncovalently associated dimers of ~13,500 Da

protomers (Bothwell and Shooter 1977; Radziejewski et al. 1992). The affinity of

the dimeric NGF association is sufficient to prevent dissociation even at the pM

concentrations at which NGF acts physiologically (Bothwell and Shooter 1977) and

this is probably also true for the other neurotrophins. High resolution structures

have been determined for each of the neurotrophins (Butte et al. 1998; McDonald

et al. 1991; Robinson et al. 1999). Each neurotrophin subunit has a backbone

consisting of two pairs of antiparallel β-strands generating an elongated shape

and stabilized by three disulfide bonds. The structure has been referred to as a

cystine knot, and a similar folding organization has been observed in several other

growth factors, including TGF-beta and PDGF family members (McDonald and

Chao 1995). The highly conserved interaction interface of the neurotrophin dimers

permits the formation of heterodimers between different neurotrophins in vitro but

NGF, BDNF, NT3, and NT4 5



evidence is lacking for the existence of such heterodimers in vivo (Jungbluth

et al. 1994; Philo et al. 1994; Robinson et al. 1995).

Early studies of the biochemistry of NGF placed particular attention on the high

molecular weight complex in which NGF could be isolated from mouse submaxil-

lary salivary gland (Greene et al. 1969; Nichols and Shooter 1985). The sedimenta-

tion velocity of this complex was 7 svedbergs—accordingly the complex was

known as 7S NGF. Curiously, this complex was ultimately found to represent

NGF (known at the time as low molecular weight NGF, 2.5S NGF or beta-NGF)

in association with alpha and gamma subunits which represent two different

members of the glandular kallikrein family of proteases (Bothwell et al. 1979;

McDonald and Blundell 1991). The physiological relevance of the high molecular

weight complex of NGF is unclear, as this form of NGF appears to exist only in

mouse, and in mouse, only in salivary glands. The manner in which this peculiar

biological adaptation of NGF may have evolved in mice is discussed below.

3 Neurotrophin Receptors

The four mammalian neurotrophins interact with four receptors; p75NTR, TrkA,

TrkB, and TrkC. The function of these multiple receptors is complex, as p75NTR

and Trk receptors can function independently, but in neurons that express both

p75NTR and Trk receptors, the receptors interact physically and functionally in ways

that may alter the signaling properties of each. The structure and signaling functions

of these receptors are discussed in detail elsewhere in this book. Briefly, all four

neurotrophins, both as proneurotrophins and as mature fully processed

neurotrophins, can bind and activate signaling by p75NTR, whereas the Trk

receptors prefer to bind mature neurotrophins and are selective for particular

neurotrophins. NGF preferentially binds and activates TrkA, NT3 preferentially

binds and activates TrkC, and BDNF and NT4 preferentially bind and activate

TrkB. For this reason, BDNF and NT4 are typically functionally redundant in

mammals, and reflecting this redundancy, the NT4 gene has apparently been lost

during evolution of birds. NT3 is the most promiscuous of the neurotrophins as

alternative splicing of the TrkA transcript can generate forms of TrkA that are

effectively activated by NT3 (Clary and Reichardt 1994). Importantly, however,

NGF and NT3 are not functionally equivalent with respect to TrkA activation, as

they influence TrkA signaling differently (Harrington et al. 2011).

One or more of the four neurotrophin receptors are expressed in a wide variety of

types of neurons and glia in both the central and peripheral nervous system and also

in a variety of non-neural cell types. Thus, neurotrophins have an extraordinary

range of biological functions, with the neurotrophin preference of various cell

populations being determined by the particular neurotrophin receptor or receptors

they express.

6 M. Bothwell



4 Neurotrophin Processing and Secretion

Like most other secreted biologically active polypeptides, protein synthesis of

neurotrophins occurs in the rough endoplasmic reticulum, where the proneuro-

trophins are packaged into secretory vesicles. Proneurotrophins, which range

from about 210 to 270 amino acid residues in length, are processed within these

vesicles by proteases of the proprotein convertase family (Seidah et al. 1996),

producing the mature neurotrophins which are about 120 residues in length. In

the case of BDNF, the cleaved prodomain is stored with and cosecreted with mature

BDNF (Dieni et al. 2012). Whether this pro-peptide has any biological function,

and whether the pro-domains of other neurotrophins are secreted, is unknown. In

some cases, vesicular processing of neurotrophins is incomplete, leading to secre-

tion of unprocessed pro-neurotrophins from which the mature neurotrophin may be

released by plasmin and matrix metalloproteinases following secretion (Lee

et al. 2001).

The seminal experiments that lead to the proposal of the “neurotrophic hypothe-

sis” and the discovery of neurotrophins examined neuronal populations that

innervated non-neural peripheral target tissues. However, in many cases, and

particularly in the central nervous system, the neurotrophin-producing innervated

target cell may also be a neuron. Neurotrophin secretion by neuronal and

non-neuronal cells differs in several important ways that were not immediately

appreciated by investigators. Firstly, neurons (and neuroendocrine cells) have

distinct regulated and constitutive secretory pathways, whereas non-neuronal cell

types typically have only the constitutive secretory pathway (Kelly 1985). Thus,

while the manner of secretion of the four neurotrophin is similar in non-neural cell

types, in neurons, this is not the case, as NGF, NT3, and NT4 traffic mainly through

the constitutive secretory pathway in neurons and neuroendocrine cells, whereas

BDNF selectively traffics through the regulated secretory pathway (Farhadi

et al. 2000; Griesbeck et al. 1999; Hibbert et al. 2003; Mowla et al. 1999). This

distinction is particularly important in the context of BDNF functions in learning

and memory, where control of BDNF secretion by neural activity is likely to be

essential, as discussed elsewhere in this book. The second important distinction

between neurons and many non-neural cell types is that neurons are highly

polarized cells. Initially, no doubt with a mindset influenced by early studies of

neurotrophic functions with non-neural neurotrophin-producing cells, the expecta-

tion was that neurons would secrete neurotrophins principally at the

somatodendritic membrane domains, as these are normally the site of axonal

synaptic contacts. However, in neurons, much of BDNF secretion follows the

same secretory pathway as neuropeptides, being packaged in dense core vesicles,

which are transported anterogradely down axons and secreted at the axon terminus

(Conner et al. 1997; Dieni et al. 2012; von Bartheld et al. 1996; Zhou and Rush

1996).

Two proBDNF-binding proteins have been implicated in directing proBDNF to

the regulated secretory pathway, carboxypeptidase E (Lou et al. 2005), and sortilin

(Chen et al. 2005). Importantly, a common allelic variant of the human BDNF gene

NGF, BDNF, NT3, and NT4 7



encodes a Val/Met substitution within a region of the BDNF pro-domain that binds

sortilin. Consequently, the Met-containing proBDNF variant is poorly sorted into

the activity-regulated secretory pathway, resulting in poor performance in some

memory tasks (Chen et al. 2004, 2005; Egan et al. 2003).

5 Differential Activity of Neurotrophins
and Proneurotrophins

It is beyond the scope of this chapter to provide a detailed discussion of the various

functions of neurotrophins or of the structure and function of neurotrophin

receptors. For these topics, the reader may consult other chapters in this volume.

For the purposes of this chapter, it is sufficient to say that all four neurotrophins

interact effectively with the p75NTR neurotrophin receptor, whereas TrkA functions

primarily as an NGF receptor, TrkB as a receptor for BDNF and NT4, and TrkC as a

receptor for NT3 (Bothwell 1991). Additional complexity is provided by the ability

of NT3 to interact weakly with TrkA and TrkB receptors and by the ability of

p75NTR to influence neurotrophin/Trk receptor interactions (Huang and Reichardt

2003).

The structural basis governing the selectivity of neurotrophin/receptor

interactions has been extensively characterized by X-ray crystallographic analysis

of neurotrophin/receptor complexes and by mutagenic structure/function studies.

The extracellular domain of Trk receptors contains leucine-rich repeat domains and

two C2-immunoglobulin-like domains, and the second immunoglobulin-like

domain represents the main neurotrophin-binding region (Holden et al. 1997;

Urfer et al. 1998), although leucine-rich repeat domains may also contribute to

binding (Windisch et al. 1995). The interaction of neurotrophins with Trk receptors

is mediated largely by two neurotrophin interaction surfaces. One important inter-

action involves amino acid residues that are highly conserved among neurotrophins,

whereas a second neurotrophin/Trk interaction surface employs neurotrophin

amino acid residues that are not conserved among neurotrophins. The former

surface (known as the conserved patch) contributes importantly to the affinity of

binding, whereas the latter surface (known as the specificity patch) clearly is largely

responsible for determining the selectivity of binding of particular neurotrophins to

particular Trk isoforms (Hirata-Fukae et al. 2008). A similarly detailed comparison

of the binding interactions of all the neurotrophins with p75NTR has not been

published, although high resolution structures of both NGF and NT3 with p75NTR

have been reported (Aurikko et al. 2005; Gong et al. 2008; He and Garcia 2004).

Initially it appeared that it might be possible to generalize neurotrophin function

by stating that the different neurotrophins have a similar range of functions, but

directed against different cell populations, depending on the receptors expressed. It

has become clear, however, that the truth is much more complicated than this, as the

four different neurotrophin receptors can mediate very different and in some cases

even opposite cellular responses.

8 M. Bothwell



Although the function of neurotrophins in the peripheral nervous system

contributes to the neurotrophic support of various neuronal populations, in com-

plete accord with the “neurotrophic hypothesis” originally developed by Victor

Hamburger and Rita Levi-Montalcini, the neurotrophins mediate an extraordinary

range of other functions, which are not amenable to simplified generalizations. For

example, neurotrophins can either promote neuronal survival or promote neuronal

cell death, depending on the circumstance, the receptor employed, and whether

mature or proneurotrophins forms are present. In some cases neurotrophin/receptor

association promotes pro-survival signaling, in other cases, neurotrophin/receptor

association promotes pro-death signaling (Rajagopal et al. 2004), and in still other

cases, neurotrophin/receptor association terminates activity of a receptor that con-

stitutively signaling pro-death (Huang and McNamara 2010; Lee et al. 2002).

Further, while neurotrophin action sometimes conforms to the original neurotrophic

hypothesis, which predicts that neurotrophins should convey trophic signals from

the axon terminus retrogradely back to the neuronal soma, in some cases, and

particularly for BDNF, neurotrophins may be transported anterogradely down

axons to convey signals to postsynaptic cells (Altar et al. 1997; Conner

et al. 1997; Smith et al. 1997; von Bartheld et al. 1996; Zhou and Rush 1996).

Other neurotrophin functions, such as control of neuronal dendritic branching

(McAllister et al. 1997) and control of synaptic function (Kang and Schuman

1995; Lohof et al. 1993; Patterson et al. 1992), differ radically from the original

concept of the neurotrophic hypothesis. Other chapters in this volume provide a

more comprehensive discussion of the range of neurotrophin functions.

6 Evolution of Neurotrophins

6.1 Invertebrate Origins of Neurotrophins

The neurotrophin-signaling system, including neurotrophin-like ligands and

p75NTR and Trk-like receptors, evolved before the evolution of vertebrates. The

genome of the arthropod Daphnia pulex encodes clearly recognizable neurotrophin,

p75NTR, and Trk orthologs (Wilson 2009). Bilaterian organisms fall within two

major branches, protostomes, including arthropods such as Daphnia, and

deuterostomes, from which vertebrates evolved. The genomes of prechordate

deuterostomes Strongylocentrotus purpuratus (sea urchin) and Saccoglossus
kowalevskii (acorn worm) also encode neurotrophin, p75NTR, and Trk orthologs

(Bothwell 2006). Thus, the shared ancestor of protostomes and deuterostomes must

have possessed neurotrophin, p75NTR, and Trk orthologs.

It remains to be determined whether the invertebrate neurotrophin orthologs

bind and activate the invertebrate neurotrophin receptor orthologs. Interestingly,

however, the sea urchin neurotrophin has a pro-domain, a mature neurotrophin

domain, and a predicted site for proteolytic processing that are closely similar to

these domains in vertebrate neurotrophins, suggesting that proteolytic processing

might control selective association of proneurotrophin and mature neurotrophin

NGF, BDNF, NT3, and NT4 9



with p75NTR and Trk receptors, in invertebrates as in vertebrates. Indeed, the sea

urchin proneurotrophin is processed by the proprotein convertase furin, releasing

mature 13 kDa neurotrophin, when expressed in human HEK293 cells (Mark

Bothwell and Mark Hudson, unpublished results).

Curiously, the neurotrophin-signaling system has apparently been lost during

evolution of several bilaterian classes. Clear orthologs of neurotrophin, p75NTR, and

Trk genes cannot be identified in protostome species such as Drosophila
melanogaster or Caenorhabditis elegans or in deuterostome species such as

Ciona intestinalis (Bothwell 2006). Lack of a neurotrophin-signaling system in

Ciona is especially curious, as tunicates such as Ciona are commonly believed to

the closest living prechordate relatives of vertebrates.

The lack of a neurotrophin-signaling system in Drosophila is a subject of mild

controversy, as a family of Drosophila neurotrophic factors have been named as

neurotrophins (Zhu et al. 2008). These secreted proteins, like neurotrophins, do

contain a cystine knot structural fold, but they are only marginally more similar in

sequence to neurotrophins than they are to a variety of non-neurotrophin proteins

that contain cystine knot structures, and rather than signaling via p75NTR-like or

Trk-like receptors, they apparently employ receptors of the toll-like receptor

family.

The chordate ancestor of modern vertebrates probably had only one

neurotrophin and one Trk gene. The multiple neurotrophin and Trk paralogs in

modern vertebrates (four neurotrophins in mammals, three neurotrophins in birds,

three Trks in both mammals and birds) apparently arose as a result of the two

genome duplications that occurred as an early event in vertebrate evolution

(Hallbook et al. 2006).

6.2 Evolutionary Adaptations of NGF

6.2.1 Mouse Saliva NGF
The abundance of NGF in mouse salivary glands and in the venoms of various

snakes (Cohen and Levimontalcini 1956), which greatly aided the original isolation

of NGF, somewhat distorted understanding of the biochemistry of NGF in the early

years after its discovery, since these sites of NGF synthesis represent peculiar

species-specific adaptations with associated specializations of NGF synthesis and

storage. Mouse salivary gland NGF is stored in secretory vesicles as a zinc

ion-stabilized heterotrimeric complex, 7S NGF, consisting of alpha, beta, and

gamma subunits. The beta subunits contain all of the neurotrophic activity (hence

the name beta-NGF, which is still in common use), whereas the alpha and gamma

subunits are members of the tissue kallikrein family of proteases (Bothwell

et al. 1979). The tissue kallikrein gene family has undergone substantial expansion

in rodents—orthologs of alpha and gamma NGF subunits do not exist in most other

mammals, including humans. Thus, the 7S complex of NGF is only of interest as a

peculiar mouse-specific specialization, and even in mice, there is little evidence for

this heterotrimeric complex in tissues other than salivary glands.
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6.2.2 NGF as a Noxious Component of Venoms
The question inevitably arises—why is NGF so highly enriched in the submaxillary

salivary glands of mice and in the venom glands of snakes? The question is

particularly poignant since NGF is abundant in the venoms of rattle snakes, vipers,

and Australian elapid snakes, and the venom glands of these snake families are

believed to have evolved independently (Jackson 2007), indicating that the highly

enriched production of NGF in salivary or venom glands has evolved on at least

four separate occasions, and implying that there is a strong selective pressure for

this adaptation. It is reasonable to speculate that the selective pressure derives from

the ability of NGF elicit pain. Ironically, the ability of NGF to elicit profound pain

was not fully appreciated until it emerged as a serious side effect of human clinical

trials of NGF for treatment of peripheral neuropathy (Petty et al. 1994). Although

venomous snakes use their venom to immobilize prey, this effect is too slow to be a

reliable defense mechanism against predators of snakes. The ability of snake

venoms to cause immediate pain, mediated by NGF, may be a specialization to

discourage predators. NGF is secreted at much higher concentrations in the saliva

of male mice than in female mice and is released specifically in a specialized

nondigestive saliva produced in response to epinephrine (Wallace and Partlow

1976), which is presumably elevated during the aggressive encounters that typify

the behavior of male mice. Thus, salivary NGF in mice may also function as a pain-

producing weapon.

6.2.3 Fowlpox NGF
One other evolutionary adaptation of NGF deserves comment. The genome of the

fowlpox virus contains genes encoding two NGF orthologs (Afonso et al. 2000).

Although the functional properties of the encoded NGF proteins have not been

characterized, viruses commonly capture host genes that enhance the ability of the

virus to evade host defenses. It would be interesting to learn what feature of avian

skin biology is modified by the virally encoded NGFs. As conventional forms of

NGF act through both p75NTR and TrkA receptors, it would also be interesting to

learn whether the viral NGF has become specialized for activation of one or the

other of these two receptors.
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Deciphering Proneurotrophin Actions

B.L. Hempstead

Abstract

Like most growth factors, neurotrophins are initially synthesized as precursors

that are cleaved to release C-terminal mature forms. The well-characterized

mature neurotrophins bind to Trk receptors to initiate survival and differentiative

responses. More recently, the precursor forms or proneurotrophins have been

found to act as distinct ligands by binding to an unrelated receptor complex

consisting of the p75 neurotrophin receptor (p75) and sortilin to initiate cell

death. Induction of proNGF and p75 has been observed in preclinical injury

models and in pathological states in the central nervous system, and strategies

that block the proNGF/p75 interaction are effective in limiting neuronal apop-

tosis. In contrast, the mechanisms that regulate expression of other proneuro-

trophins, including proBDNF and proNT-3, are less well understood. Here,

recent findings on the biological actions, regulation of expression, and patho-

physiological effects of proneurotrophins will be reviewed.

Keywords

ProNGF • ProBDNF • ProNT3 • p75NTR • Synaptic plasticity •

Neurodegeneration • Long term depression • Long term potentiation • Sortilin •

Cell death • Apoptosis

Neurotrophins are a family of proteins, including nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin

4 (NT-4/5). They exhibit well-characterized activities to promote neuronal survival

and differentiation, to modulate synaptic plasticity and to play important roles in

both the developing and adult nervous system (Chao 2003). While only four
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neurotrophin genes are found in mammals, they are sufficient to modulate a diverse

repertoire of functions in the peripheral and central nervous systems and in

non-neuronal organs. Indeed, several conceptual advances have been made during

the last decade that reveal how this might be accomplished. Here we will focus on

proneurotrophins as unique ligands that complement and oppose the actions of

mature neurotrophins. Given the breadth of this rapidly moving field, it is difficult

to acknowledge all contributions, and oversights are unintended. Related areas

including mechanisms of p75 activation and signaling, mature neurotrophin

actions, and functions of sortilin family members are reviewed in other chapters

of this publication.

Like most growth factors, neurotrophins are initially synthesized as precursors

or proneurotrophins consisting of a N-terminal prodomain and a C-terminal mature

domain. Following translation, proneurotrophins form noncovalent dimers via

interactions of the mature domain which forms a cysteine knot-like structure

(Bradshaw et al. 1993). Dimeric proneurotrophins can be cleaved by intracellular

proteases, including furin and proconvertase, in the Golgi or in secretory vesicles to

generate mature neurotrophins, which are dimers consisting of the mature domains

(Seidah et al. 1996). Mature neurotrophins selectively bind to members of the

family of Trk receptor tyrosine kinases, as well as to the p75 neurotrophin receptor,

a TNFR superfamily member (Huang and Reichardt 2001; Dechant and Barde

2002; Hempstead 2002). The interaction of mature neurotrophins with Trk

receptors initiates the differentiative and synaptic activities of mature

neurotrophins. Mature neurotrophins also bind to the p75 receptor, although the

biological outcomes depend upon whether p75 is expressed independently or as a

receptor complex with Trk receptors. When p75 is co-expressed with TrkA, mature

NGF binds to the complex with higher affinity than is observed when TrkA is

expressed in the absence of p75 (Hempstead et al. 1991). Although these results

have been interpreted as evidence that p75 can bind and then pass mature NGF to

TrkA to facilitate binding (Barker 2007), other studies suggested that p75 was

exerting an allosteric action on TrkA and that binding of mature NGF to p75 was

not required for this effect (Esposito et al. 2001). Application of mature

neurotrophins to p75 expressing cells has also been found to induce apoptosis,

and genetic deletion of p75 in mice results in impaired sympathetic neuron or

retinal ganglion cell death (Bamji et al. 1998; Frade and Barde 1999). However,

high concentrations of mature neurotrophins were required to initiate cell death by

p75 in vitro (Casaccia-Bonnefil et al. 1996; Yoon et al. 1998; Kenchappa

et al. 2006), suggesting that an alternate form of neurotrophins might selectively

activate p75 at more physiologic concentrations. Indeed, the precursor form of

NGF, proNGF, can be released intact from cells and has been found to selectively

activate p75 to induce apoptosis at subnanomolar concentrations (Lee et al. 2001).

This finding suggests that the precursor is a distinct, biologically active ligand and

that mature and proNGF can induce opposing actions. Subsequent studies have

further defined the receptor complex to which proNGF binds: proNGF interacts

with high affinity to complex consisting of p75 and the type I transmembrane

protein sortilin, wherein the NGF mature domain binds to p75, and the prodomain
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binds to sortilin (Nykjaer et al. 2004). Sortilin specifically recognizes the

prodomains of the three proneurotrophins (proNGF, proBDNF, and proNT-3) and

forms a co-receptor complex with p75NTR to convey proneurotrophin-induced

apoptotic signaling at subnanomolar ligand concentrations (Nykjaer et al. 2004;

Teng et al. 2005; Jansen et al. 2007; Willnow et al. 2008; Yano et al. 2009). Thus,

the specificity of neurotrophin action is regulated by the form of ligand that is

released from cells (proneurotrophin or mature), as well as by the interaction with

distinct receptor complexes, with proneurotrophins preferentially activating p75

and sortilin, whereas mature neurotrophins activate Trk receptors.

More recent studies have determined that proNGF can also interact with another

sortilin family member, SorCS2, when it is co-expressed with p75 (Deinhardt 2011;

Siao 2012). SorCS2 is a transmembrane protein that is closely related to sortilin and

is highly expressed in the developing and adult nervous system (Willnow

et al. 2008). Like sortilin, SorCS2 interacts with the prodomain of proNGF.

1 Actions in ProNGF in Development

The ability of proNGF to induce apoptosis during development has been studied

using several strategies. Although it would be tempting to generate a gene-targeted

mouse that lacks the prodomain of NGF as a means to discriminate proNGF from

mature NGF function, this is not an effective strategy as the prodomains of

neurotrophins are required for efficient protein folding and intracellular trafficking

(Suter et al. 1991; Chen et al. 2005). Also, the results obtained upon deletion of p75

must be interpreted carefully, as p75 interacts with all forms of neurotrophins, and

with multiple co-receptors including TrkA, TrkB, and TrkC to modulate mature

neurotrophin responsiveness, and with the Nogo receptor, Lingo-1 and ephrin A, to

regulate axonal guidance (Schecterson and Bothwell 2008). Thus, genetic deletion

of p75 can yield multiple and complex phenotypes based on potential interactions

with other receptor components and thus attributing a specific phenotype to

proNGF requires careful analysis of the expression patterns of other ligands and

co-receptors.

However, utilization of neurons from p75-deficient mice has been a valuable

tool to assess proNGF actions, as this imparts a proNGF-resistant phenotype in vitro

(Lee et al. 2001). Mice deficient in sortilin have also been generated and

characterized regarding proNGF-induced apoptosis during development (Jansen

et al. 2007). Prior studies have documented impaired apoptosis of developing

retinal ganglion cells in E15.5 embryos that were deficient in p75 or ngf (48 % or

56 % reduction, respectively) (Frade and Barde 1998, 1999). Similarly, embryos

deficient in sortilin exhibit reduced retinal ganglion cell death (63 % reduction)

(Jansen et al. 2007). The immunodetection of proNGF but not mature NGF at this

developmental window, together with the protection of these neurons in sortilin-
deficient and p75-deficient mice, suggests that elimination of post-mitotic retinal

ganglion cells is mediated by proNGF in late development. Surprisingly, neonatal

mice deficient in sortilin exhibit no reduction in the numbers of sympathetic
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ganglion neurons (Jansen et al. 2007), suggesting that other co-receptors may

regulate sympathetic neuron elimination in vivo. An additional challenge in

attributing the phenotypes of sortilin-deficient mice to proNGF activities is that

sortilin binds to numerous other ligands, including proBDNF, proNT-3, TGF-beta

family members, and apolipoprotein B (Strong et al. 2012; Kjolby et al. 2010;

Kwon and Christian 2011); thus, documenting expression of proNGF and p75 is

required to confirm that the effects of sortilin deficiency reflect the specific actions

of proNGF.

2 ProNGF in Aging

ProNGF levels are very low in the central and peripheral nervous systems of

uninjured young adult rodents (Harrington et al. 2004; Jansen et al. 2007). How-

ever, several studies indicate that proNGF levels are upregulated in adults of

advanced age. For example, proNGF levels are elevated in the peripheral nerves

of 60-week-old mice, and this expression correlates with age-dependent death of

sympathetic neurons (Jansen et al. 2007). A more extensive analysis of ligand and

receptor levels in aged or young adult rats documented increased levels of proNGF

and p75 and decreased levels of mature NGF and phosphoTrkA in the prefrontal

cortex and hippocampus of aged rats, as compared to younger adults (Terry

et al. 2011; Allard et al. 2012). Although these effects correlated with impaired

performance in spatial learning and recognition memory, a causal role was not

investigated. New studies using transgenic overexpression of proNGF suggests it

induces memory deficits (Tiveron et al. 2013). A systematic and quantitative

analysis of proNGF levels in postmortem human brains from aged but cognitively

normal individuals has not been performed. However, a report in aged rodents

suggests that proNGF is an apoptotic ligand in basal forebrain cholinergic neurons

(Al-Shawi et al. 2008). Indeed, proNGF levels have been found to be elevated in

Alzheimer’s disease patients (Fahnestock et al. 2001; Pedraza et al. 2005) and in

animal models of Alzheimer’s disease (3xTg-AD mice; Perez et al. 2011). Future

studies will be required to determine whether impairment of the interaction of

proNGF with sortilin may prevent age-associated neuronal loss, as has been

proposed for proNGF:p75 antagonists (Massa et al. 2006). However, a transgenic

line approach has been used to selectively deplete mature NGF, but not proNGF

(line AD-11) (Capsoni et al. 2010). This strategy results in an imbalance, with

impaired TrkA signaling, but sustained proNGF:p75 signaling. These studies have

suggested that imbalance of the proNGF:mature NGF ratio in the CNS can trigger

cholinergic neuron loss similar to that observed in Alzheimer’s disease (Capsoni

et al. 2010). Consistent with this hypothesis, the activation of p75 by proNGF was

observed to suppress survival signaling by TrkA, specifically by impairing PTEN

induction that blunts PI3-kinase-Akt activation (Song et al. 2010). Collectively,

these studies suggest that selectively shifting the balance between pro-apoptotic and

pro-survival pathways, triggered by proNGF or mature NGF, respectively, one can

potentially prevent neuronal loss.
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3 ProNGF Actions Following Injury

Because apoptosis was the first identified action of proNGF in vitro, many studies

have examined the roles of proNGF following acute injury in the peripheral and

central nervous systems. Following spinal cord injury in rodents, proNGF and p75

expression are induced within a few days and maintained for at least 1 week; in a

related model of corticospinal neuron axotomy, p75, sortilin and proNGF are all

coordinately up regulated, and overexpression is maintained for 2 weeks (Brunello

et al. 1990; Beattie et al. 2002; Harrington et al. 2004; Arnett et al. 2007; Jansen

et al. 2007). To examine a causative role for proNGF in promoting neuronal

apoptosis following corticospinal axotomy, two approaches have been used. First,

genetic deletion of p75 or sortilin, or haploinsufficiency of ngf, rescues most of the

death of corticospinal neurons after axotomy (Harrington et al. 2004; Jansen

et al. 2007). In addition, infusion of function-blocking antibodies specific for the

prodomain of proNGF markedly reduces apoptosis, strongly suggesting that

proNGF is an inducible, proapoptotic cytokine (Harrington et al. 2004). More

recently, administration of a ProNGF/p75 antagonist has been shown to promote

functional recovery following spinal cord injury (Tep et al. 2013)

ProNGF has also demonstrated pro-apoptotic actions in cultured spinal motor

neurons that express p75 and sortilin (Domeniconi et al. 2007). Using peroxynitrite

as an oxidant and to generate of free radicals, reactive astrocytes were found to

upregulate proNGF production, suggesting that proNGF may be a potential thera-

peutic target for the treatment of motor neuron disease. Astrocytes are also a

significant source of the proNGF that is induced following seizures in rodents

(Volosin et al. 2008). In a pilocarpine model of seizure induction, proNGF and

proBDNF are upregulated by astrocytes, but not by microglia. Following seizures,

infusion of function-blocking antibodies specific for the prodomain of NGF impairs

hippocampal neuron apoptosis in vivo, suggesting that proNGF is the relevant

ligand that mediates the apoptotic effects (Volosin et al. 2008).

Increased proNGF expression has been observed in spongiform encephalo-

myelopathy (Stoica et al. 2008) and Parkinson’s disease models (Wang

et al. 2008); however, a mechanistic role for proNGF in these slow onset neurode-

generative diseases has not been demonstrated. However, recent studies have

examined a potential role for progranulin, as progranulin loss of function has been

associated with frontotemporal lobar degeneration (FTLD), and modulates sortilin

function (Hu et al. 2010). Although the precise mechanisms by which progranulin

deficiency contributes to neuronal dysfunction in aging, the enhanced expression of

proNGF in aging rodent animal models (Terry 2011) raises the possibility that

proNGF might compete with the binding of progranulin to sortilin to augment the

progression or onset of cognitive degeneration in a p75NTR-indpendent mechanism.

This potential action, however, will require experimental validation.

Studies of models of retinal injury suggest that proNGF is induced in microglia

in a model of retinal dystrophy (Srinivasan et al. 2004) and that sortilin and p75 are

induced in retinal ganglion cells following elevation in intraocular pressure,

suggesting that proNGF may play a role in the retinal neuron death that occurs in

this ischemic setting (Wei et al. 2007). More recent studies have examined a

Deciphering Proneurotrophin Actions 21



potential role for proNGF in promoting retinal neurodegeneration in the retina of

diabetic rodents (Al-Gayyar et al. 2013). In the peripheral nervous system, injured

sciatic neurons express proNGF and this may result in the loss of p75-expressing

neurons following transection (Arnett et al. 2007). Collectively, these diverse

models of injury or aging suggest that proNGF may be a pathophysiologically

relevant proapoptotic ligand.

3.1 ProNGF Actions in Non-neuronal Organ Systems

As NGF is normally synthesized by many organs to promote innervation during

development, misregulation of NGF expression, or impaired conversion of proNGF

to mature NGF in disease could contribute to pathology. Several recent reports have

established that proNGF is misregulated in breast cancer, following myocardial

infarction, and in psoriasis. In human breast cancer specimens, proNGF is

upregulated and appears to mediate cell invasion, an effect requiring TrkA and

sortilin, rather than p75 (Demont et al. 2012). These studies suggest that NGF and

TrkA may be relevant preclinical targets for further examination (Hondermarck

2012). ProNGF and p75 have also been studied in dermatologic diseases, including

psoriasis where a failure to induce apoptosis of transit amplifying cells in the

dermis, in a p75-dependent manner, may contribute to this disease (Truzzi

et al. 2011). Although initial studies focused on proNGF as the relevant p75 ligand,

due to its expression in keratinocytes, additional p75 ligands such as BDNF may

contribute. Lastly, prior studies have documented induction of the ngf gene by

cardiac myocytes following ischemic injury using rodent models of myocardial

infarction (Hiltunen et al. 2001; Meloni et al. 2010). More recently, the ngf isoform
that is induced has been shown to be proNGF, which is upregulated by cardiac

myocytes following ischemia reperfusion injury in rodents and in humans follow-

ing fatal myocardial infarction. Coordinate upregulation of p75 and SorCS2 is

observed by the pericytes and smooth muscle cells in cardiac vessels in the

ischemic zone. Furthermore, deletion of p75 limits the infarct size, suggesting

that proNGF represents a new target to limit microvascular dysfunction (Siao

et al. 2012). Additional studies will be required to determine whether proNGF

plays a role in the vasculature of other organ systems.

4 Acute Proneurotrophin Actions on Neuronal Morphology

Recent studies have examined relatively acute, non-apoptotic functions for proNGF

and proBDNF. These studies build upon older reports that document that p75

interacts with RhoA (Yamashita et al. 1999) and fascin (Shonukan et al. 2003),

signaling intermediates that are coupled to cytoskeletal reorganization. Two semi-

nal studies have also indicated that p75 regulates neuronal morphology: (a) loss of

p75 in gene-targeted mice leads to enhanced dendritic arborization (Zagrebelsky

et al. 2005) and (b) p75 activation by BDNF leads to axonal pruning (Singh

et al. 2008). However, these studies did not directly compare the effects
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proneurotrophins vs. mature neutrophins in eliciting morphological actions. In

more recent experiments using live imaging of neuronal growth cones, proNGF

was found to induce rapid growth cone collapse in neurons expressing p75 and the

sortilin family member, SorCS2 (Deinhardt et al. 2011). These effects were depen-

dent upon two coordinated signaling pathways. First proNGF induced a dissocia-

tion of the Trio GEF from the p75/SorCS2 receptor complex, which resulted in

local Rac inactivation. This was coupled with PKC activation and fascin phosphor-

ylation, leading to a reduction in actin bundling and neurite retraction.

ProBDNF has also been demonstrated to exert rapid morphological effects on

neurons, specifically at the neuromuscular junction, where proBDNF secreted from

myocytes induces retraction of motors neuron axons, as well as synaptic depression

(Yang et al. 2009a; Je et al. 2012). A similar effect of recombinant proBDNF has

been observed using dorsal root ganglion neurons, where proBDNF led to acute

neurite collapse in a Rho A-dependent fashion (Sun et al. 2012). This retraction

requires expression of p75. Lastly, using cultured retinal ganglion cells, Marler and

colleagues have provided evidence that proBDNF is secreted from these cells and

acts locally to enable repellant axon guidance in a p75-ephrin A-dependent fashion

(Marler et al. 2010). Further studies will be required to identify whether proBDNF

interactions with p75 can be mediated by a range of co-receptors, including sortilin

family members and/or ephrins, in a cell type-specific manner.

5 ProBDNF Effects on Synaptic Plasticity

The effects of mature BDNF on hippocampal structure and synaptic plasticity are

well described (Korte et al. 1998; Keng et al. 1997; Lu et al. 2008, and recently

reviewed by Park and Poo 2013); however, the effects of proBDNF are less clear.

Several studies suggest that endogenous proBDNF can be released from neurons.

One study has used hippocampal neurons from a knock-in mouse expressing

HA-epitope-tagged BDNF (Yang et al. 2009b) to quantitatively detect secreted

proBDNF and mature BDNF using antibodies to the HA-tag, rather than relying on

antibodies that recognize either proBDNF or mature BDNF. With this approach,

both proBDNF and mature BDNF were secreted following depolarization. In

contrast, mature BDNF was the predominant secreted form secreted from hippo-

campal neurons cultured with astrocytes and the GABAA receptor antagonist

bicuculline (Matsumoto et al. 2008). However, using electrical stimulation of

cultured hippocampal neurons, proBDNF was the predominant form secreted

after low-frequency stimulation (LFS; used to induce LTD), whereas mature

BDNF was released following high frequency stimulation (HFS; used to induce

LTP; Nagappan et al. 2009). It is well established that tPA is secreted following

depolarization (Lochner et al. 2006, 2008) and thus proBDNF may be locally

converted to mature BDNF by the coordinated release of proBDNF and tPA from

axons.

The actions of proBDNF have been best described using recombinant proBDNF

protein. Treatment of cultured neurons with recombinant proBDNF promotes
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neuronal death and process retraction, mediated by p75NTR (Teng et al. 2005; Sun

et al. 2012). Recombinant proBDNF also influences synaptic plasticity in area CA1

of the hippocampus; following perfusion of slices with cleavage-resistant

proBDNF, LTD was significantly enhanced, an effect that requires expression of

p75 (Woo et al. 2005). In contrast, mature BDNF is required for the maintenance of

LTP induced by stimuli that simulates theta rhythm (TBS) (Korte et al. 1998; Chen

et al. 2010; Keng et al. 1997; and recently reviewed, Park and Poo 2013). Together,

these results suggest that proBDNF and mature BDNF have opposing effects

in vivo, with proBDNF supporting LTD and mature BDNF important to LTP.

The effects of exogenous proBDNF have been extended to other classes of neurons,

as proBDNF negatively regulates neuromuscular synaptic activity via p75NTR

(Yang et al. 2009a; Je et al. 2012).

One aspect of proBDNF and mature BDNF action in the hippocampus that is

unresolved is the relative levels of the two isoforms that are expressed during

postnatal development and in adulthood. In one study, hippocampal proBDNF

expression was found to be highest in the second postnatal week, when axonal

projections are being established and synapses are forming, as quantitated using a

tagged bdnf allele to measure proBDNF and mature BDNF levels (Yang

et al. 2009b). In the adult mouse, however, mature BDNF was found to be the

predominant form (Yang et al. 2009b). Other studies suggest that mature BDNF is

the predominant isoform from postnatal day 4 until 12 weeks of age (Rauskolb

et al. 2010). However, the levels of p75NTR are highest in early postnatal life and

diminish in adulthood (Yang et al. 2009b). Thus the effects of endogenous

proBDNF may be most prominent in early postnatal development and further

studies to document the levels of endogenous proBDNF and its effects in vivo are

warranted.

6 ProBDNF in Disease States

ProNGF has been most intensively studied regarding its expression in disease states

in humans and in preclinical rodent models, as noted above. However, several

studies have documented elevated levels of proBDNF in postmortem brain sections

from subjects with cognitive impairment from HIV neurotoxicity (Bachis

et al. 2012). The levels of proBDNF and mature BDNF have also been studied in

a small number of postmortem sections from subjects with autism or unaffected

controls. In the fusiform gyrus, increased levels of proBDNF and decreased levels

of mature BDNF were observed in subjects with autism, suggesting local defects in

proteolytic processing (Garcia et al. 2012). These results contrast with those

obtained using brain tissue from Alzheimer’s disease patients, where reduction in

both proBDNF and mature BDNF was observed, as compared to control (Peng

et al. 2005). Further studies with larger sample sizes, as well as in vivo models that

identify actions of endogenous proBDNF will be helpful in clarifying the potential

roles of this isoform in disease.
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7 Other Proneurotrophins: ProNT-3 and ProNT-4

The majority of studies to date have focused on the biological actions of proNGF

and proBDNF. However, the NT-3 and NT-4 mature products are derived from

precursor proteins, raising the possibility that proNT-3 and proNT-4 may exhibit

biological actions distinct from their mature neurotrophin counterparts. ProNT-3

has been biochemically generated, and it mediates apoptotic actions on SCG

neurons, utilizing p75 and sortilin as co-receptors (Yano et al. 2009). In addition,

proNT-3 has been detected in the developing inner ear, and sortilin and p75

receptors are also present on spiral ganglion neurons. Although no changes in spiral

ganglion numbers have been detected in sortilin null mice during development,

proNT-3 may play a role following barotrauma injury (Tauris et al. 2011). Cur-

rently, there are no reports as to whether proNT-4 exhibits pro-apoptotic activity or

other biological actions. However, its prodomain is substantially smaller than those

of the other three proneurotrophins and the NT-4 prodomain does not bind sortilin

(Chen et al. 2005); suggesting that NT-4 might exist strictly as a TrkB ligand.

8 Regulation of Conversion of Proneurotrophins
to Mature Neurotrophins

In adult tissues, mature NGF and mature BDNF are the predominant isoforms,

present at very low, subnanomolar levels (Shetty et al. 2003; Rauskolb et al. 2010).

Thus, it is not clear how proNGF, secreted in injury response states, escapes the

mechanisms that normally ensure efficient intracellular conversion to mature NGF.

In neuroendocrine cells and hippocampal neurons, proNGF is cleaved efficiently by

furin and the mature domain is trafficked to secretory vesicles in the constitutive

pathway, whereas the prodomain remains in the cell body and sorted to lysosomes

for degradation (Mowla et al. 1999). Indeed, secretion of a soluble proNGF

prodomain has been difficult to detect, although Dicou and colleagues have

observed peptides of the prodomain in inflammatory states (Dicou 2008). These

studies suggest that there is efficient conversion of proNGF to mature NGF in

uninjured organs, and constitutive secretion of mature NGF is the norm. However,

the intracellular chaperones that traffic proNGF to the trans-Golgi network where

furin cleavage occurs have not been characterized. One candidate is sortilin, a

VpS10p protein that has been well characterized, as described above, as a cell

surface co-receptor with p75 for proNGF; however, direct experimental evidence to

support this is currently lacking. ProBDNF has been demonstrated to bind to sortilin

to direct intracellular trafficking of to regulated secretory vesicles (Chen

et al. 2005), where proBDNF can be cleaved by proconvertase (Seidah

et al. 1996). However, sortilin can also traffic proBDNF and other cargo, including

sphingomyelinase, to the lysosome (Evans et al. 2011; Ni and Morales 2006), and it

is not clear how these targeting decisions are regulated. Other chaperones including

carboxypeptidase E bind to the mature domain of BDNF, but not mature NGF (Lou

et al. 2005). Therefore, many questions still remain regarding the intracellular
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proteins that regulate proNGF intracellular trafficking, and release, as well as the

mechanisms that regulate the efficiency of proBDNF cleavage within secretory

vesicles. Recent reports, however, have documented that the prodomain of BDNF is

detectable in vivo (Dieni et al. 2012; Anastasia et al. 2013).

9 Extracellular Cleavage of Proneurotrophins

Recombinant proNGF and proBDNF are susceptible to cleavage by numerous

proteases, including plasmin, tryptase, and specific matrix metalloproteinases

(MMPs) (Lee et al. 2001; Bruno and Cuello 2006; Althaus and Kloppner 2006;

Spinnler et al. 2011). Nonetheless, intact proNGF is detectable for several days to

weeks following central nervous system injury, with little evidence of conversion to

mature NGF in these vivo settings (Beattie et al. 2002; Harrington et al. 2004;

Jansen et al. 2007). These observations suggest that proteolysis of extracellular

proNGF is impaired following in vivo injury and may result from the coordinate

induction of inhibitors of MMPs and plasmin, such as tissue inhibitors of

metalloproteinase (TIMPs), neuroserpin, and alpha-2 macroglobulin. This is in

agreement with prior studies documenting that these proteins are induced in

neurodegenerative diseases such as Parkinson’s and Huntington’s diseases and

following neuronal excitotoxicity (Bruno and Cuello 2006; Dzwonek et al. 2004;

Jaworski et al. 1999; Lorenzi et al. 2003). Indeed, recent studies using a seizure

model of CNS injury demonstrates that MMP-7 is downregulated, whereas its

inhibitor, TIMP-1, is induced, leading to stabilization of proNGF. Furthermore,

exogenous delivery of MMP-7 following seizures enhances proNGF cleavage and

reduced neuronal apoptosis (Le and Friedman 2012), suggesting that the efficiency

of proNGF to NGF conversion can be experimentally manipulated to provide

neuroprotection.

10 Molecular Strategies to Alter ProNGF Effects

Given the induction in proNGF and p75 in numerous pathophysiologically relevant

preclinical models that result in cellular apoptosis or acute morphological

remodeling, there has been broad interest in targeting proNGF/p75 signaling. The

low levels of p75 and proNGF in the uninjured central nervous system and

induction of both ligand and receptor within several hours to days of acute injury

suggest that there is a window of opportunity for administration of agents to block

the induction of ligand or receptors or their interaction. By silico modeling, small

molecules have been identified that interact with a p75 structural domain important

for mature NGF binding; in addition, these molecules block proNGF actions in

cultured neurons (Massa et al. 2006). These molecules are now being tested in

rodent models of spinal cord injury (Tep et al. 2013). Additional modeling

approaches to impair proNGF/p75/sortilin interactions may provide additional

reagents to block proNGF actions. The crystallographic structure of p75 with
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mature NGF, p75 with proNGF, and the structure of sortilin are all available

(He and Garcia 2004; Quistgaard et al. 2009; Feng et al. 2010). Although the

structure of the proNGF/p75/sortilin complex has remained elusive, its eventual

solution may provide information for the development of antagonists in the future.

Lastly, the activation of intracellular or extracellular proteases to specifically

cleave proneurotrophins to mature neurotrophins is another attractive target. To this

end, a more detailed understanding of the regulation of intracellular trafficking of

proNGF in injured cells, and mechanisms that permit inefficient intracellular

cleavage are needed. In addition, the stability of proNGF in the injured central

nervous system suggests that specific protease inhibitors in the local inflammatory

environment may prevent efficient extracellular cleavage of proNGF, and strategies

to locally manipulate the proteolytic landscape following acute injury are being

studied (Le and Friedman 2012). A quantitative assessment of locally produced

proteases and their specific inhibitors in the injured central nervous system will

provide specific candidate molecules to promote proneurotrophin to mature

neurotrophin conversion.
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Spatiotemporal Intracellular Dynamics
of Neurotrophin and Its Receptors.
Implications for Neurotrophin Signaling
and Neuronal Function

F.C. Bronfman, O.M. Lazo, C. Flores, and C.A. Escudero

Abstract

Neurons possess a polarized morphology specialized to contribute to neuronal

networks, and this morphology imposes an important challenge for neuronal

signaling and communication. The physiology of the network is regulated by

neurotrophic factors that are secreted in an activity-dependent manner

modulating neuronal connectivity. Neurotrophins are a well-known family of

neurotrophic factors that, together with their cognate receptors, the Trks and the

p75 neurotrophin receptor, regulate neuronal plasticity and survival and deter-

mine the neuronal phenotype in healthy and regenerating neurons. Is it now

becoming clear that neurotrophin signaling and vesicular transport are coordi-

nated to modify neuronal function because disturbances of vesicular transport

mechanisms lead to disturbed neurotrophin signaling and to diseases of the

nervous system. This chapter summarizes our current understanding of how

the regulated secretion of neurotrophin, the distribution of neurotrophin

receptors in different locations of neurons, and the intracellular transport of

neurotrophin-induced signaling in distal processes are achieved to allow coordi-

nated neurotrophin signaling in the cell body and axons.

Keywords
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Retrograde signaling

The nervous system is a highly wired structure formed by neurons and glial cells,

which together sculpt neuronal networks. The physiology of the network is
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regulated by neurotrophic factors that are secreted in an activity-dependent manner,

modulating neuronal connectivity. Neurons exhibit a polarized morphology with

two different compartments: the somatodendritic arbor and the axon, which are

functionally differentiated to form and participate in neuronal networks. The

neuronal soma acquires a particular morphology with branched prolongations

specialized to form and receive synaptic contacts. The axon is a single prolongation

that is specialized to transmit information from and back to the cell body, and it can

be as long as 400 times the diameter of the neuronal soma in the case of rat

hippocampal neurons (Fig. 1) or human lumbar motor neurons that can have

axons longer than 10,000 times the diameter of the cell body. This special mor-

phology imposes an important challenge for neuronal signaling and communication

(Horton and Ehlers 2003b; Ibanez 2007).

Neurotrophins (NGF, BDNF, NT3, and NT4) are a well-known family of

neurotrophic factors that, together with their cognate receptors, the Trks (TrkA,

TrkB, and TrkC) and the p75 neurotrophin receptor (p75), regulate the development

of neuronal networks by participating in the growth of neuronal processes, synaptic

development and plasticity, neuronal survival, differentiation, and myelination. In

the mature NS, neurotrophins determine the neuronal phenotype participate in

neuronal plasticity and survival and in healthy and regenerating neurons. While

each neurotrophin has a preferred Trk (NGF/NT3 binds TrkA; BDNF/NT4 binds

TrkB; and NT3 binds TrkC), all neurotrophins bind p75 with a similar affinity.

Additionally, two co-receptors for p75 have been described as participating in p75

signaling events: the neurotensin-3 receptor sortilin and the Nogo receptor (NogoR)

for myelin-associated glycoproteins (Barker 2004; Greenberg et al. 2009; Huang

and Reichardt 2001; Lu et al. 2005). In contrast to the Trks, p75 is capable of

inducing opposing biological outcomes depending on its expression level,

Fig. 1 Hippocampal axons can be as long as 400 times the diameter of the cell body. Hippocam-

pal neurons were cultured in microfluidic chambers for 10 days in the presence of BDNF in the

axonal compartment. The neurons were loaded with the fluorescent probe Calcien-AM (shown in

green) to label the neuronal morphology. Nucleus was labeled with Hoechst staining (shown in

blue)
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association with different co-receptors at the plasma membrane, and the type of

ligand (Bronfman and Fainzilber 2004; Gentry et al. 2004). p75 alone potentiates

TrkA survival pathways and, in association with sortilin, induces cell death.

Furthermore, it potentiates neurite outgrowth when acting alone or induced growth

cone collapse in the presence of NogoR (Barker 2004; Higuchi et al. 2003).

Considering the particular morphology of the neuron, it is important to under-

stand how the distribution of neurotrophin receptors in different locations of

neurons, the regulated secretion of neurotrophin, and the intracellular transport of

neurotrophin-induced signaling in distal processes are achieved to allow coordi-

nated neurotrophin signaling in the cell body and axons. It is it now becoming clear

that neurotrophin signaling and vesicular transport are coordinated to modify

neuronal functioning because disturbances of vesicular transport mechanisms lead

to disturbed neurotrophin signaling and to diseases of the nervous system

(Bronfman et al. 2007; Perlson et al. 2010; Salinas et al. 2010). In this chapter,

we will emphasize the role of key proteins that regulate vesicle transport and, thus,

signaling, including Rab GTPases and molecular motors. Rab GTPases comprise a

large family of small GTPases that control membrane identity and vesicle dynamics

through the recruitment of different effector proteins (Stenmark 2009). There are

two main classes of molecular motors that coordinate the transport of cargoes to the

minus and plus ends of microtubules. The kinesins are a large gene family (KIFs,

for kinesin superfamily proteins) that coordinates the transport of vesicles, macro-

molecular complexes, and organelles to the plus end of microtubules, thereby

moving materials in an anterograde manner to the distal process of neurons,

whereas cytoplasmic dynein is a protein complex that moves cargoes to the

minus end of microtubules, thus moving materials in a retrograde fashion from

the neuronal distal process to the cell body (Hirokawa et al. 2009; Kardon and Vale

2009).

1 Secretion and Anterograde Transport of Neurotrophins
and Their Receptors

1.1 Neurotrophin Discovery and Biological Sources

Neurotrophins were first described as target-derived growth factors regulating the

survival and differentiation of neurons from the peripheral nervous system (PNS,

sensory and sympathetic neurons). The neurotrophic hypothesis, postulated by Rita

Levi-Montalcini and Viktor Hamburger, stated that factors secreted in limiting

amounts by tissues and target organs would ensure the correct number of neurons

and their target fields, explaining the massive cell death of neurons during devel-

opment in the PNS (Huang and Reichardt 2001; Korsching 1993; Levi-Montalcini

1966, 1987). It was later shown that neurotrophins have multiple functions in the

central nervous system (CNS), including the regulation of synaptic plasticity and

neuronal morphology. Most target tissues in the CNS also secrete neurotrophins

that exert their effects by signaling back to the cell body (Bibel and Barde 2000;
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Bilsland et al. 2010; Holzbaur 2004; Huang and Reichardt 2001; Lu et al. 2005;

Mufson et al. 1999). Over the years, it has been shown that neurotrophins can be

secreted not only by target tissues, which can be postsynaptic neurons or other types

of cells, such as muscle, but also by presynaptic neurons, astrocytes, microglia, and

glial cells, such as Schwann cells and oligodendrocytes, having paracrine and

autocrine actions on neurons and other cell types (Bagayogo and Dreyfus 2009;

Bessis et al. 2007; Cao et al. 2007; Dai et al. 2001; Lessmann et al. 2003; Matsuoka

et al. 1991; Ohta et al. 2010; Schinder and Poo 2000; Verderio et al. 2006; Yune

et al. 2007).

1.2 Coordination of Neurotrophin Processing, Local Translation,
and Postsynaptic Secretion

Neurotrophins are homodimeric proteins synthesized as precursors (proneuro-

trophins) and are secreted to the extracellular space in a constitutive and regulated

manner. As for many secreted proteins, after cleavage of the signal peptide in the

endoplasmic reticulum, the homodimer transits through the Golgi, where it is

subjected to glycosylation in its prodomain. The homodimers accumulate in

vesicles in the trans-Golgi network (TGN), where the prodomains are cleaved by

Furin and pro-convertases (PCs) to be secreted as non-glycosylated mature

neurotrophins. The efficiency of cleavage varies according to neuronal and cell

type. In hippocampal neurons, in the case of BDNF, proBDNF is secreted in an

activity-dependent manner to the extracellular space, where it can be cleaved by the

tissue plasminogen activator to be converted to mature BDNF (Lessmann

et al. 2003; Nagappan et al. 2009; Yang et al. 2009). The regulation of neurotrophin

secretion has been best studied in the case of BDNF. Although no studies have been

reported that address how neurotrophins are sorted to either constitutive or

regulated pathways, it is known that a polymorphism in the prodomain region

(BDNF val to met) reduces the activity-dependent secretion of BDNF (Chen

et al. 2004). This region of the BDNF prodomain has been shown to bind sortilin,

a Vps10p domain protein that is known to bind the prodomain of proNGF to induce

neuronal cell death by forming a complex with p75 (Nykjaer et al. 2004). In the

TGN, sortilin has been associated with the proper intracellular trafficking of

proteins in and out of the Golgi. The majority of sortilin resides in intracellular

membranes that correspond to the TGN, endosomes, and secretory granules and

vesicles in dendrites and axons (Willnow et al. 2008). Therefore, it is likely that this

transmembrane protein plays a major role in targeting other soluble proteins and

receptors out of the TGN to other cellular compartments. Thus, through interaction

with sortilin, the prodomain of BDNF (not proNT4) regulates the sorting of BDNF

to the regulated secretory pathway, and truncated versions of sortilin cause

missorting of BDNF to the constitutive pathway, without affecting NT4-regulated

secretion in hippocampal neurons, pointing to a neurotrophin-specific sorting

mechanism to the regulated secretory pathway (Chen et al. 2005b).
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The postsynaptic secretion of neurotrophins, particularly of BDNF, has been

well documented (Cohen-Cory et al. 2010; Lessmann et al. 2003). Evidence has

shown that BDNF and NT3 are more efficiently targeted to dendritic secretory

granules in hippocampal neurons than are NT4 and NGF. Although secretion of

neurotrophin is slower than neurotransmitter release, neurotrophin secretion

co-localizes with PDZ-95, a postsynaptic marker of glutamatergic synapses.

Regulated secretion of BDNF in glutamatergic synapses is tightly regulated, such

that it will occur only in active synapses. For these phenomena to take place, there

must be coordination of the local translation of BDNF messages and the secretion

of vesicles in dendrites (Brigadski et al. 2005; Cohen-Cory et al. 2010).

The BDNF gene is characterized by complex transcriptional regulation; it can be

transcribed from at least eight different promoters and can be polyadenylated on at

least at two different sites, leading to the production of mRNA with a short 30

untranslated region (UTR) or a long 30UTR (Aid et al. 2007). The functional

significance of the more than 16 transcripts that can be produced is unknown, but

it has been suggested that this serves as a mechanism to add different layers of

complexity to the regulation of the transcription and local translation of the BDNF
gene (Greenberg et al. 2009). Dendritic transport of mRNA depends on specific

dendritic targeting elements (DTEs) or cis-acting elements that are usually located

in the 30UTR; these sequences then target a specific mRNA for microtubular

transport toward distal dendrites. BDNF mRNAs appear to share a common mech-

anism of transport with the mRNAs for calcium/calmodulin-dependent protein

kinase II (alpha-CaMKII) and arc protein (Falley et al. 2009; Hirokawa 2006;

Raju et al. 2011). These messages are transported in RNA granules in machinery

that includes the trans-activating elements staufen and Pur-α and the kinesin-5

(KIF5) subfamily of molecular motors, in addition to the RNA-associated protein

CArG box binding factor A (CBF-A). For BDNF specifically, an mRNAwith a long

30UTR seems to be more efficiently transported to dendrites compared to an mRNA

with a short 30UTR. A knockout mouse specific for this particular transcript exhibits

abnormal pruning and enlargement of dendritic spines, as well as selective

impairment of long-term potentiation in dendrites, but not the soma of hippocampal

neurons (An et al. 2008).

In the cerebral cortex, promoter IV-dependent transcription of BDNF accounts

for the majority of activity-dependent BDNF transcription (Hong et al. 2008). This

transcript is apparently related to translation and secretion in the cell body, as it has

been reported that the transcript mainly localizes to the cell soma, and exon II and

VI BDNF-containing transcripts are more efficiently targeted to neurites

(Chiaruttini et al. 2009). This phenomenon is presumed to be independent of

DTEs in the 30UTR of BDNF transcripts. The study performed by Chiaruttini and

collaborators also indicated that there is a sequence coding for the prodomain of the

BDNF transcript that binds translin, an RNA-binding protein involved in RNA

transport. This is the same sequence used by sortilin to bind proBDNF. Interest-

ingly, the val66met polymorphism in the BDNF gene causes translin to lose its

ability to bind to BDNF transcripts and impairs its transport to dendrites. Thus, the

reduced hippocampal dendritic complexity, memory deficits, and susceptibility to
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mood disorders caused by this BDNF polymorphism may be due to the effects of

deficits in the regulated secretion of BDNF mediated by the interaction of the

BDNF prodomain with sortilin and to the inhibition of BDNF transcript transport

to dendrites that is mediated in part by Translin (Bath and Lee 2006; Chen

et al. 2006; Pezawas et al. 2004). Additional studies are needed to clarify the

molecular mechanisms implicated in the activity-dependent targeting of specific

BDNF mRNAs to dendrites. However, it can be proposed that the local synthesis

and secretion of BDNF in active synapses is carried out through a mechanism that

involves the transport of specific BDNF transcripts in a KIF5-dependent fashion

and the coordination of BDNF synthesis in endoplasmic reticulum membranes and

secretion from Golgi outposts localized to distal dendrites. Thus, postsynaptically

secreted BDNF activates postsynaptic TrkB receptors, resulting in autocrine regu-

lation of synaptic potentiation, or presynaptic TrkB potentiation of neurotransmitter

release and regulation of target innervation (see below) (Fig. 2) (Cohen-Cory

et al. 2010; Horton and Ehlers 2003a).

1.3 Anterograde Transport of Neurotrophin and Its Receptors

There is good evidence that BDNF-regulated secretion can occur in the presynaptic

terminal. For this phenomenon to happen, dense core vesicles (DCV) derived from

the Golgi apparatus in the neuronal soma have to undergo anterograde travel in a

kinesin-dependent fashion to the synaptic terminal. It has been shown that BDNF

and NT3 undergo anterograde transport and accumulate in DCV in synapses.

Additionally, it has recently been found that BDNF anterograde transport in DCV

is dependent on KIF1A (a member of a subfamily of kinesin 3) (Lo et al. 2011),

suggesting that targeting to anterograde transport is regulated in part during the

targeting of BDNF-DCV to a specific kinesin subfamily. In the presynaptic terminal

BDNF is secreted in an activity-dependent manner similarly to other neuropeptides,

exerting postsynaptic effects that regulate the development and maintenance of

neuronal networks (Altar and DiStefano 1998; Lessmann et al. 2003; Matsumoto

et al. 2008; Shinoda et al. 2011) (Fig. 2). In sensory neurons, the anterograde

transport and release of BDNF in the axon enhance myelination, pointing to a

potential role for anterograde-transported BDNF during development and regener-

ation (Ng et al. 2007). An unexpected finding reported by Butowt and von Bartheld

(2001) was that in chick retinal ganglion cells, endocytosed NT-3 is sorted to the

Golgi in a kinase-dependent manner, after which it undergoes anterograde transport

to the presynaptic terminal in a process that depends on p75 anterograde

transport (Butowt and von Bartheld 2001). This result implies that the anterograde

transport of neurotrophins can be receptor mediated in a cellular pathway including

ligand/receptor endocytosis in the cell body and posterior sorting to the anterograde

transport pathway. Thus, there are at least two different forms of neurotrophins

sorted to the anterograde pathway: one is non-receptor mediated and the other is

receptor mediated.
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As indicated above, sortilin is involved in regulating the secretion of BDNF in

neurons. It was recently reported that in sensory neurons, sortilin facilitates the

anterograde transport of Trks from the cell body along the axon (Vaegter

et al. 2011). Determining whether the anterograde transport of BDNF and other

neurotrophins also depends on sortilin, as has been shown for the regulated

Fig. 2 Schematic diagram of a glutamatergic synapse in the central nervous system. In the

presynaptic terminal, delineated in blue, it is illustrated how dense core vesicles (DCV) and

synaptic vesicle precursors are transported to the terminal by different KIF members. DCV are

filled with BDNF and they fuse with the plasma membrane in response to increase calcium

concentration. The anterograde transport of synaptic vesicle precursors carrying TrkB receptors

is regulated by the monomeric GTPase Rab27. There is a coordination of local translation and

secretion of BDNF in the postsynaptic neuron that is delineated in green. The mRNA for BDNF is

transported to the dendritic spine also by a KIF member. TrkB receptors are located at both pre-

and postsynaptic membranes

Spatiotemporal Intracellular Dynamics of Neurotrophin and Its Receptors.. . . 39



secretion of BDNF and the anterograde transport of Trks, is a matter that will

require further research.

Of note, in hippocampal neurons, anterograde-transported TrkB-positive

vesicles are co-transported with VAMP2, a synaptic vesicle-associated protein,

indicating that the final destination of these receptors is the presynaptic terminal

(Gomes et al. 2006). The anterograde transport of TrkB is specifically mediated by

conventional kinesin (kinesin-1) and the complex CRPM2/Slp1/Rab27a (Arimura

et al. 2009). The CRPM2 protein associates with kinesin to bind microtubules, and

through the Rab27a effector Slp1, which binds the TrkB cytosolic tail, Rab27a and

CRPM2 engage TrkB in the anterograde axonal pathway (Fig. 2). Thus, upstream

signaling pathways regulating CRPM2 activity will increase the transport of TrkB

to the presynaptic terminal. Rab27a has been shown to be involved in the regulated

secretion of TGN-derived secretory granules in many cellular models and may,

therefore, play a key role in the targeting and insertion of TGN-derived TrkB in the

presynaptic terminal (Fukuda 2008). Another monomeric GTPase of the Rab family

involved in the anterograde transport of Trks is Rab11. Rab11 regulates the

dynamics of the recycling endosome in many cells, and in sympathetic neurons,

after TrkA endocytosis, Rab11 regulates the transcytosis and anterograde transport

of TrkA to the sympathetic growth cone, where it enhances NGF sensitivity

(Ascano et al. 2009). The kinesin associated with Rab11 vesicular trafficking is

kinesin 2, through interaction with the Rab11 effector FIP5 (Schonteich

et al. 2008). Although it has not been demonstrated that this complex regulates

Rab11-dependent TrkA transcytosis, it is likely that different molecular motors and

associated complexes regulate TGN-derived anterograde Trk vesicles versus
transcytosis from the cell body of endocytosed Trks to the presynaptic terminal.

2 Internalization and Retrograde Signaling of Neurotrophin
Receptors

After secretion, neurotrophins bind their cognate receptors, which can be located

along the axon, in the neuronal cell body, or at the synapse (pre- or postsynaptic).

After ligation, the neurotrophin/receptor complex rapidly activates signaling

pathways in the plasma membrane and undergoes internalization. For quite some

time, endocytosis of the neurotrophin/receptor complex was considered to be a

mechanism solely involved in the downregulation of signal transduction. However,

it is now well established that the internalization and post-endocytic trafficking of

receptors are essential for signaling and neuronal function. After internalization,

growth factor receptors continue signaling from endosomes, where they are

associated with different signaling adaptors than in the plasma membrane. Addi-

tionally, the efficiency of endocytosis and the recycling of the receptors back to the

cell surface is a mechanism that regulates the availability of the receptors for

initiating signaling. Finally, the efficiency of ligand/receptor degradation in late

endocytic pathways determines the duration of signaling inside the cell, thus having

an important impact on cellular function (Fig. 3) (Bronfman et al. 2007;
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Miaczynska et al. 2004b; Platta and Stenmark 2011; Sorkin and Von Zastrow

2002).

The first evidence that neurotrophin receptors continue signaling inside the cell

came from the groups of Mobley for the Trks and Fainzilber for p75, using PC12

Fig. 3 Schematic diagram of the intracellular trafficking dynamic of the p75 and Trks receptors.

In the plasma membrane p75 is found as a dimmer and the neurotrophin (Nt) binding triggers a

conformational change that induces signaling adaptors binding (Vilar et al. 2009). p75 receptor is

internalized through clathrin-coated pits and is found in early endosomes (EE) positive for Rab5

and recycling endosomes (RE) positive for Rab11. However, the majority of the receptor is

accumulated in a multivesicular body (MVB) that is negative for late endocytic markers such as

Rab7. The Trks are internalized through clathrin-coated pits and also by a mechanism that involves

the formation of membrane ruffles, the actin cytoskeleton and the chaperone pincher. After

internalization, Trks associates with signaling endosomes (SE) where activation of the GTPase

Rap1 triggers the long-lasting activation of ERK1/2 and cellular differentiation. Trks are also

found in the recycling pathways regulated by Rab11 and Rab4. Finally, downregulation of Trks

signaling is initiated in its transit thought the late endosome (LE) and is achieved, in part, by

degradation of the receptor in the lysosomes (L), process that is regulated by Rab7. Maturation

from early endosomes to lysosomes needs the transport of endosomes from the cell periphery to

the perinuclear region using microtubules and the molecular motor dynein
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cells as a model. Regarding TrkA, it was found that the internalized and activated

TrkA receptor, together with NGF and PLC-γ1, was associated with intracellular

vesicles. Later, it was reported that p75 internalizes more slowly than TrkA,

accumulating in different vesicles, where the receptor is associated with NGF and

signaling adaptors of the MAGE family (Bronfman et al. 2003; Grimes et al. 1996,

1997; Tcherpakov et al. 2002). The first description of the intracellular signaling of

neurotrophin receptors gathered a great deal of interest related to understanding the

mechanism of the internalization and trafficking of neurotrophin receptors because

it was clear that it would shed new light on how neurons and neuronal networks

interpret neurotrophin signaling. A summary of the more compelling findings on

this topic will be presented below.

2.1 Trks Internalization and Intracellular Trafficking

In general terms, activated receptors in the plasma membrane can be internalized

via clathrin-mediated or clathrin-independent routes. The clathrin-independent

routes include at least eight different mechanisms, including caveolar-type endocy-

tosis, macropinocytosis, Arf6-dependent endocytosis, and cholesterol-dependent

and caveolin- and clathrin-independent pathways. All clathrin-mediated or

clathrin-independent pathways of internalization are thought to converge on periph-

eral early endosomes (also referred to as sorting endosomes) (Doherty and

McMahon 2009; Mayor and Pagano 2007). From there, some components are

either rapidly recycled back to the plasma membrane or more slowly recycled

through the recycling endosome (or pericentriolar endosome). From the early

endosome, receptors are also sorted to late endosomes and lysosomes, where

proteins are degraded (Di Fiore and De Camilli 2001; Miaczynska et al. 2004b;

Sorkin and Von Zastrow 2002; Stenmark 2009) (Fig. 3).

The dynamics of intracellular trafficking, including through the endo-lysosomal

system, are coordinated by Rab GTPases, which are a large family of small

GTPases that control membrane identity and vesicle budding, uncoating, motility,

and fusion through the recruitment of different and diverse effector proteins

(Stenmark 2009). For example, Rab5 is a key regulator of early endosomal traffick-

ing (Sonnichsen et al. 2000); Rab11 and Rab4 regulate transport through the

recycling pathway; and Rab7 regulates transit from early endosomes to late

endosomes and from late endosomes to lysosomes (Fig. 3) (Bucci et al. 1992,

2000; Cavalli et al. 2001; Somsel Rodman and Wandinger-Ness 2000).

Two different major routes of Trk internalization have been suggested in the

literature: one is clathrin and dynamin dependent, and the other involves a

macropinocytic process that depends on the new chaperone Pincher and is Rac

and actin dependent, but dynamin independent. Dynamin is a GTPase that causes

the pinching and scission of vesicles from the plasma membrane, and Rac is a small

GTPase from the Rho family that regulates the dynamics of the actin cytoskeleton.

In PC12 cells, NGF increases the association of clathrin with membranes, and TrkA

is recovered in fractions containing clathrin-coated vesicles, together with signaling
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components of the ERK1/2 pathway. Additionally, TrkA and TrkB internalization

is inhibited by monodansylcadaverine, a drug that inhibits clathrin-mediated inter-

nalization. In support of a role for clathrin-coated pits in TrkA internalization, TrkA

mutants with a truncated carboxyl-terminal domain that therefore lack potential

clathrin-mediated internalization motifs exhibit dramatically decreased NGF inter-

nalization (Fig. 3) (Beattie et al. 2000; Doherty and McMahon 2009; Howe

et al. 2001; Joset et al. 2010; Jullien et al. 2003; Mayor and Pagano 2007; Shao

et al. 2002; Zhang et al. 2000; Zheng et al. 2008). Both types of internalization

appear to take place in the cell body, as well as in axons because both dynamin and

Pincher dominant negative mutants inhibit the internalization and retrograde trans-

port of activated Trk receptors in sympathetic neurons (Valdez et al. 2005; Ye

et al. 2003). Although Trks have been found in caveolae-like domains and lipid

rafts (cholesterol and sphingolipid-rich membrane domains) upon ligand stimula-

tion, there is no evidence that Trks are internalized through a clathrin-independent

but cholesterol-dependent pathway. Similar to what happens to other receptor

tyrosine kinases (RTKs), such as the epidermal growth factor (EGF) receptor

(EGFR), localization to lipid rafts is necessary for signaling. However, in contrast

to what is seen for EGFR, the Trks exhibit increased localization to lipid rafts after

ligand binding. It is of note that for TrkB, translocation to lipid rafts in cortical and

hippocampal neurons is necessary for synaptic modulation and requires TrkB

receptor phosphorylation and internalization, suggesting that association with

lipid rafts occurs on intracellular membranes (Assaife-Lopes et al. 2010; Huang

et al. 1999; Limpert et al. 2007; Nishio et al. 2004; Pereira and Chao 2007; Zwang

and Yarden 2009).

In general, the most important pathway for RTK internalization is clathrin-

mediated internalization. Macropinocytosis is associated with areas where plasma

membrane spreading and ruffling take place, which is a process, regulated by actin

dynamics (Cavalli et al. 2001; Kirkham and Parton 2005) (Fig. 3). Although EGFR

has also been shown to use this internalization mechanism, it has been suggested

that this route is utilized only when there is an excess of ligand (Zwang and Yarden

2009). Most studies related to the Pincher-mediated macropinocytosis of Trks have

been performed in cells overexpressing the Trk receptor or a chimeric version of it,

and different concentrations of ligands have not been tested; therefore, the physio-

logical relevance of this process has to be viewed with caution (Philippidou

et al. 2011; Shao et al. 2002; Valdez et al. 2005).

Cargo recognition during clathrin-mediated endocytosis is mediated by different

adaptors that possess a phospholipid-interacting motif and may also interact with

transmembrane receptors. These adaptors interact with clathrin, increasing its

affinity for the plasma membrane and for the cytosolic motif present in the

cytoplasmic tails of transmembrane receptors. The best studied adaptor protein

functioning at the plasma membrane is the AP-2 complex, which recognizes the

YXXϕ sequence (where ϕ is a hydrophobic residue, and X is a variable residue) and

dileucine sequences [DE]XXXL[LI] (where the second leucine can be isoleucine,

and X is a variable residue that can be followed by an asparagine and lysine). These

sequences are found in classic endocytic receptors, such as the transferrin receptor.
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There are also other adaptors such as Epsin and EPS15 that can associate directly

with clathrin, recognizing mono- or polyubiquitins in the cytoplasmic tail of

receptors (Bonifacino and Traub 2003; Hawryluk et al. 2006; Marmor and Yarden

2004). EGFR activation induces the binding of the c-Cbl ubiquitin ligase, which

adds multiple monoubiquitins to the receptor, inducing its internalization through

the EPS15 and Epsin adaptors and clathrin (de Melker et al. 2001; Marmor and

Yarden 2004). Other clathrin adaptors that work differently than AP2 are AP180

and Dab2. AP180 is specifically expressed in the nervous system and induces the

internalization of synaptic vesicle-associated proteins, and DAB2 binds to NPXY

sequences (whereas X is a variable residue) found in the lipoprotein receptors

LDLR and ApoER2, inducing their internalization from the apical domain of

epithelial cells (which is proposed to be equivalent to the presynaptic terminal of

neurons) (Cuitino et al. 2005; Morris et al. 2002; Rodriguez-Boulan and Powell

1992; Slepnev and De Camilli 2000; Sorkin 2004).

There is little information about which clathrin adaptors mediate the clathrin-

dependent internalization of Trks. There is one report that AP-2 mediates the

internalization of TrkB in hippocampal neurons. Both TrkA and TrkB possess

AP-2 and DAB2 consensus sequences; however, it is not known whether they

serve as binding sequences for AP2 or DAB2 (Fig. 4). It would be of interest to

evaluate whether DAB2 and AP180 participate in the clathrin-dependent endocy-

tosis of Trks in the synaptic terminal to mediate Trk presynaptic local effects or

retrograde signaling (see below). Additionally, similar to EGFR, the Trks are

multimonoubiquitinated, and TrkA, in particular, is multimonoubiquitinated or

polyubiquitinated in a Nedd4-2-dependent or TRAF6-dependent manner, respec-

tively. However, through reducing TRAF6-mediated ubiquitination alone, the

internalization of the receptor is diminished, and it is possible that Nedd4

ubiquitination mediates sorting to lysosomes and not internalization (see below).

To date, there have been no studies reported indicating whether the Trks are

recognized by clathrin adaptors such as EPS15 and Epsin that specifically recognize

ubiquitinated cargoes (Arevalo et al. 2006; Geetha et al. 2005).

The neuroendocrine PC12 cell line is a frequently used model of NGF signaling

expressing both p75 and TrkA receptors. When treated with NGF, PC12 cells

differentiate to a sympathetic neuron-like phenotype, extending neurites and

increasing the expression of different neurotransmitters (Greene and Tischler

1976). Numerous studies on neurotrophin signaling and trafficking have been

performed in this neuronal model system. Many lines of research support the idea

that intracellular trafficking of neurotrophin receptors regulates neurotrophin-

signaling outcomes. In PC12 cells, inhibition of dynamin and TRAF6-dependent

internalization inhibits the neurite extension induced by NGF (Geetha et al. 2005;

Zhang et al. 2000). This is consistent with the fact that internalization of TrkA is

necessary for sustained activation of the ERK1/2 pathways that are required for

PC12 cell differentiation. Different publications indicate that this is achieved by

increasing the activation of Rap1 that is mainly associated with endosomes (Fig. 3)

(Kao et al. 2001; Mochizuki et al. 2001; Nomura et al. 2004; Wu et al. 2001; York

et al. 2000). Interestingly, endosomal signaling mediated by TrkA and Rap1 and
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sustained ERK1/2 activation require dynein retrograde transport of endosomes

from the cell periphery to the perinuclear region of PC12 cells and sensory neurons.

This indicates that during microtubular and dynein-dependent transport, TrkA-

positive endosomes mature and acquire the adaptors and signaling molecules

necessary for TrkA signaling to Rap1 and ERK1/2 (Wu et al. 2007).

Although TrkA and the EGFR are both targeted to the degradative pathway,

EGFR is more efficiently targeted to the lysosomal pathway, whereas the TrkA

receptor continues signaling in Rab5-positive endosomes for a longer period of

time. Which molecular interaction might account for this difference in trafficking

kinetics and signaling? There are at least two different reports in the literature

regarding this point. The first is related to the association of Trks with the ankyrin-

rich transmembrane protein ARMS, which does not associate with EGFR. ARMS is

rapidly tyrosine phosphorylated after the binding of neurotrophins to Trk receptors

and provides a docking site for the CrkL–C3G complex, resulting in sustained

Rap1-dependent ERK activation (Arevalo et al. 2004). The other report is related to

the association of endocytosed TrkA with RabGAP5, a protein that downregulates

Rab5 activity to facilitate neurite outgrowth and differentiation. Downregulation of

Rab5 activity delays the maturation of early endosomes into late endosomes and

lysosomes, precluding TrkA degradation. Consistently, overexpression of a domi-

nant negative form of Rab7 induced endosomal accumulation of TrkA and

potentiated Erk1/2 phosphorylation and neurite outgrowth (Liu et al. 2007; Saxena

et al. 2005a). Another factor contributing to different signaling outcomes between

EGFR and TrkA is the efficiency of lysosomal targeting by monoubiquitination.

a
NKCGQRSKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQGHIMENPQYFSDTCVHHI TrkA     
RHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIGMTKIPVIENPQYFGITNSQLK TrkB     
b
KRQDIILKWELGEGAFGKVFLAECYNLLNDQDKMLVAVKALKETSENARQDFHREAELLTMLQHQHIVRFFGVCTEGGPL

LMVFEYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQVAAGMVYLASLHFVHRDLATRNCLVGQGLVVKI
GDFGMSRDIYSTDYYRVGGRTMLPIRWMPPESILYRKFSTESDVWSFGVVLWEIFTYGKQPWYQLSNTEAIECITQGRELER
PRACPPDVYAIMRGCWQREPQQRLSMKDVHARLQALAQAPPSYLDVLG-COOH TrkA

c
PDTFVQHIKRHNIVLKRELGEGAFGKVFLAECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFYGV

CVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQMLHIAQQIAAGMVYLASQHFVHRDLATRNCLVGENL
LVKIGDFGMSRDVYSTDYYRVGGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSNNEVIECITQGR
VLQRPRTCPQEVYELMLGCWQREPHTRKNIKNIHTLLQNLAKASPVYLDILG-COOH TrkB

d
CKQNKQGANSRPVNQTPPPEGEKLHSDSGISVDSQSLHDQQTHTQTASGQALKGDGNLYSSLPLTKREEVEKLLN

GDTWRHLAGELGYQPEHIDSFTHEACPVRALLASWGAQDSATLDALLAALRRIQRADIVESLCSESTATSPV-COOH

Fig. 4 Potential sequence of neurotrophin receptors regulating its internalization. The

juxtamembrane portion of the TrkA and TrkB receptor is shown in a, the sequence NPXY is

labeled in pink, and it is a potential binding site for the clathrin adaptor Dab2. NPXY is also the

binding site for signaling adaptors such as Shc and Grb2 leading to activation of ERK1/2 and IP3K

(Huang and Reichardt 2003). The lysine (K) labeled in green is ubiquitinated by TRAF6 in TrkA

and regulates its internalization (Geetha et al. 2005). It is not known whether this lysine is also

ubiquitinated in TrkB. In b and c is shown the rest of the intracellular domain of TrkA (b) or TrkB
(c) and the intracellular domain of p75 (d). In blue are labeled the YXXϕ, which is a potential

binding site for the clathrin adaptor AP2. In yellow are shown the dileucine motifs in the context of

[DE]XXXL[LI], which are also a potential binding site for the clathrin adaptor AP2 (Bonifacino

and Traub 2003)
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Compared to TrkA, the EGFR rapidly targets to the degradative pathway through

monoubiquitination by the ubiquitin ligase c-Cbl, whereas TrkA is

monoubiquitinated by the E3 ubiquitin ligase Nedd4-2, which targets the receptor

for endosomal degradation. However, TrkA monoubiquitination does not impair

signaling but rather appears to potentiate sustained ERK1/2 activation, suggesting

that the TrkA receptor may continue signaling even in the late endosomal pathway

(Arevalo et al. 2004; Georgieva et al. 2011; Haglund et al. 2002; Marmor and

Yarden 2004; Saxena et al. 2005b).

Another molecular adaptor that might function downstream of the TrkA inter-

nalization to achieve sustained signaling and differentiation is the APPL1 cytosolic

protein. Under certain conditions, APPL1 associates with Rab5 and defines a

subpopulation of Rab5-positive endosomes. With respect to EGF signaling, it has

been shown that after downregulation of Rab5 activity in early endosomes, APPL1

is released from the endosomal membrane and translocates to the nucleus, where it

associates with components of the nucleosome remodeling and histone

deacetylation machinery. In the case of TrkA, APPL1 associates with TrkA through

two different means: indirectly via GIPC1 (a PDZ protein) and directly through the

APPL1 phosphotyrosine-binding domain. Cell fractionation studies have

demonstrated that APPL1, GIPC1, and phosphorylated TrkA are present in the

same endosomal fractions and that both GIPC1 and APPL1 are recruited to TrkA-

positive endosomes upon ligand stimulation. Additionally, both the APPL1 and

GIPC1 proteins are required for NGF-induced ERK1/2 and Akt activation and

neurite outgrowth. Although it has not been demonstrated that APPL1 is released

from endosomes and translocates to the nucleus after binding TrkA in endosomes,

these results are consistent with a potential role for APPL1 in NGF-dependent

transcription to induce neuronal differentiation (Lin et al. 2006; Miaczynska

et al. 2004a; Varsano et al. 2006).

Another means of increasing the sustained activation of signaling molecules is

through the recycling of activated receptors. Chen and collaborators found that

TrkA is more efficiently recycled to the plasma membrane compared to TrkB in

PC12 cells because it possesses a post-endocytic recycling signal in the

juxtamembrane domain. Accordingly, in PC12 cells, TrkA causes sustained signal-

ing of phosphatidylinositol 3-kinase/Akt, resulting in increased cell survival,

whereas TrkB does not have this effect. Targeting of TrkA to the recycling

pathways does not require the receptor to exhibit kinase activity, while targeting

of the receptor to the degradative pathway does, suggesting that kinase activity

modulates targeting of the receptor to the degradative or recycling pathway (Chen

et al. 2005a; Saxena et al. 2005b). Although the TrkB receptor does not possess the

recycling signal present in TrkA, it has been described (in hippocampal neurons)

that there is a regulated recycling of TrkB that depends on its kinase activity and the

adaptor Hrs. This regulated recycling pathway appears to be different than the

constitutive recycling pathways used by transferrin and is required for sustained

ERK1/2 signaling induced by TrkB (Huang et al. 2009). Highlighting the functional

role of the recycling pathway in hippocampal neurons, we have found that TrkB

recycling in dendrites is mainly mediated by Rab11, a RabGTPase regulating the
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recycling of receptors back to the plasma membrane, and that inhibition of Rab11

activity reduces the dendritic ramifications induced by BDNF. Inhibition of Rab11

activity also reduced targeting of TrkB to dendrites. Additionally, we showed that

TrkB activation increases Rab11 activity and changed Rab11 dynamics in

dendrites. This is one of the first examples indicating that regulation of Rab11

activity by TrkB is necessary for structural plasticity induced by BDNF (Lazo

et al. 2013). Consistent with the idea that post-endocytic trafficking of the TrkB

receptor is necessary for signaling, inhibition of TrkB internalization reduces

phosphatidylinositol 3-kinase/Akt signaling and neurite outgrowth of hippocampal

neurons (Huang et al. 2009; Zheng et al. 2008).

2.2 p75 Internalization and Intracellular Trafficking

Regarding p75 internalization, we have previously shown that pharmacological

inhibition of clathrin-mediated internalization completely blocks ligand-dependent

p75 internalization in PC12 cells. Additionally, p75 is internalized with slower

kinetics compared to transferrin and TrkA (Bronfman et al. 2003; Saxena

et al. 2004). These different kinetics of internalization result in targeting p75 and

TrkA to different types of endosomes (McCaffrey et al. 2009). In contrast to what is

seen for the Trks, p75 is not targeted to the degradative pathway (i.e., late

endosomes and lysosomes) within the time frame of these experiments. Initially,

observations of partial colocalization with transferrin suggested that endocytosed

p75 accumulates in recycling endosomes, where it continues signaling (Bronfman

et al. 2003; Saxena et al. 2005b). However, recent studies by our group using

quantitative confocal microscopy and deconvolution have indicated that after

internalization, p75 evades Rab5-positive early endosomes and accumulates in

two different organelles. One organelle is positive for Rab11, and another one

positive for the tetraspanin CD63. CD63 labels multivesicular bodies for exosomal

release and we found p75 in exosomes derived from PC12 cells and sympathetic

neurons (Fig. 3) (Escudero et al. unpublished work). Additionally studies are

needed to understand the particular trafficking features of p75 in different types

of neurons. These studies are important because p75 continues signaling inside the

cells and we have shown that endocyted p75 is proteolytically processed. Several

lines of evidences have indicated that after proteolytic processing, p75-derived

COOH-terminal fragments are important for signaling; therefore, internalized p75

may interact with signaling adaptors in endosomes or to be proteolytically

processed to generate signaling fragments (Bronfman 2007; Bronfman

et al. 2003; Kanning et al. 2003; Kenchappa et al. 2006; Urra et al. 2007).

Other mechanisms of internalization are apparent in neurons. For example, in

motor neurons, p75 internalization is ligand independent and is inhibited by the

expression of dominant negative forms of dynamin, but not of AP-2 or AP180

clathrin adaptors, suggesting that in the motor neuron cell body, p75 internalization

is clathrin independent. However, in motor neuron axons, clathrin-dependent and

independent pathways coexist. The clathrin-dependent route targets p75 for
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retrograde transport in the axon (Deinhardt et al. 2007). Similar to what is seen in

motor neurons, in sympathetic neurons that express TrkA and p75, BDNF internal-

ization is partially inhibited by sucrose (pharmacological inhibition of clathrin-

dependent pathways) and nystatin (an independent drug that disrupts lipid rafts),

suggesting that there are also clathrin-dependent and clathrin-independent

mechanisms for the internalization of p75 in sympathetic neurons (Hibbert

et al. 2006). Similar to the Trks, p75 also associates with lipid rafts to carry out

signaling; however, additional studies are needed to understand the role of lipid

rafts in the regulation of internalization, signaling, and p75 stability in the plasma

membrane (Fujitani et al. 2005; Huang et al. 1999; Nishio et al. 2004). We have

analyzed p75 internalization kinetics in three different cells types. In hippocampal

neurons, p75 is internalized rapidly, whereas p75 internalization in PC12 cells is

slower than in hippocampal neurons, but twice as fast as in sympathetic neurons

(Bronfman et al. 2003, 2007). We have found that in cultures, these three different

cell types exhibit substantial differences in the cholesterol content of their

membranes, the greater the content of cholesterol in the cell, the slower the

internalization of the receptor with sympathetic neurons presenting the highest

levels of cholesterol and hippocampal neurons the lowest. Of note, although

sympathetic neurons exhibit the greatest content of cholesterol in the plasma

membrane the mobility of p75 in the plasma membrane seems to be similar than

in PC12 cells (Fig. 5). These observations suggest that the content of cholesterol in

the plasma membrane plays a role in the time of residence of the p75 receptor in the

plasma membrane after ligand binding and thus regulates its internalization

kinetics.

2.3 Neurotrophin Trafficking and Neurodegenerative Diseases

The role of the internalization and intracellular trafficking of neurotrophin receptors

in signaling outcomes is emphasized by the fact that mutations in trafficking

proteins cause neurodegeneration in humans and alteration of neurotrophin signal-

ing. For example, missense mutants in the late endosomal Rab7 GTPase cause the

autosomal dominant peripheral neuropathy Charcot–Marie–Tooth disease type 2B

(CMT2B). Mutant Rab7 acts as a constitutively active GTPase, increasing the

activity of Rab7 and downregulating NGF-induced differentiation through abnor-

mal ERK1/2 signaling. Additionally, loss of function of alsin, an activator of the

Rac1 and Rab5 small GTPases, causes ALS2, an autosomal recessive motor neuron

disease with juvenile onset and slow progression. Als2(�/�) mice exhibit a marked

diminution of Rab5-dependent endosome fusion activity, together with

disturbances in the endosomal transport of the insulin-like growth factor 1 (IGF1)

and BDNF receptors (BasuRay et al. 2010; Cogli et al. 2010; Devon et al. 2006).

We have analyzed the consequences of loss of function of the Niemann–Pick type C

1 (NPC1) protein for neurotrophin signaling. NPC1 is a transmembrane protein that

controls the efflux of cholesterol from endocytic pathways and causes abnormal

endocytic function and neurodegeneration. Our analysis indicated that NPC1 loss of
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function causes increased neurotrophin signaling and reduced recycling of TrkA in

addition to increased pathological Tau phosphorylation (Cabeza et al. 2012). Other

hereditary neurodegenerative diseases related to abnormal functioning of Rab

Fig. 5 Dynamics of p75 receptor in three different neuronal models. (a) p75 internalization in

three different neuronal models. The peak of p75 internalization is observed at different time

points in the three different models. p75 internalization was visualized as indicated in Bronfman

et al. (2003, 2007). (b) Visualization of the levels of cellular cholesterol observed in three different
neuronal models stained with filipin (a fluorescent drug that binds cholesterol). a, b, scale bar,
10 μm. (c) p75 localized in the plasma membrane of PC12 and sympathetic neurons was labeled

with and antibody against the extracellular domain of p75 (MC192) labeled with Q-Dots. Move-

ment of p75 in the plasma membrane was studied by real-time microscopy with a frequency of 1.5

frames/second (a total of 150 frames). The 150 frames were condensed to 1 and showed in a gray

scale (left panel) or with segmentation of intensity ranges into a pseudo-colored scale (right
panel). Blue indicates mobile p75. c, scale bar, 5 μm
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GTPases (including Rab5, Rab11) and alterations in BDNF and NGF transport are

Huntington’s disease, Alzheimer’s disease, and Down syndrome (Gauthier

et al. 2004; Ginsberg et al. 2010; Li et al. 2009; Pal et al. 2006; Salehi

et al. 2006). A conclusion arising from these findings is that assembly of specific

signaling complexes on specific endosomes provides a way to solve the problem of

specificity in signal transduction; alteration of the trafficking properties of a neuron

would alter this specificity, causing miss-regulation of signaling and contributing to

diverse neurodegenerative diseases.

2.4 Mechanism of the Axonal Transport of Neurotrophin
Signaling in Neurons

Neurotrophins were first discovered as target-derived factors essential for the

survival and maturation of sensory neurons and sympathetic neurons of the periph-

eral nervous system (Glebova and Ginty 2005; Huang and Reichardt 2001;

Korsching 1993; Levi-Montalcini 1966, 1987). The question then arose of how

long-range projection neurons transmit the neurotrophic survival signal from the

presynaptic terminal to the neuronal cell body to induce transcriptional changes?

The first hint of an answer to this question came from the work of Hendry and

colleagues, who showed that radiolabeled NGF was retrograde transported from

adrenergic terminals in the mouse and rat iris to the cell body of sympathetic

neurons in the superior cervical ganglia (SCGs). This transport was found to be

sensitive to colchicine (a drug that destabilizes microtubules) and was inhibited by

antibodies against NGF, indicating that the transport was specific and dependent on

microtubules (Hendry et al. 1974a, b). Later, it was found that activated TrkA

accumulated distally to a ligation site in the sciatic nerve, indicating that activated

TrkA complexes are retrograde transported (Bhattacharyya et al. 1997; Ehlers

et al. 1995). Additionally, Hendry and collaborators reported that the transport of

radiolabeled NGF in sensory axons, mediated by the microtubule-associated molec-

ular motor dynein, depends on signal transduction by different kinases, including

TrkA and PI3-K (Reynolds et al. 1998). More details regarding the molecular

mechanism of the transport of neurotrophin signaling came with the development

of compartmentalized cultures of sensory and sympathetic neurons. In these

cultures, neuronal cell bodies are located in a different compartment than axons.

Thus, these cultures allow neurotrophin axonal stimulation without stimulation of

the neuronal soma. Using them, Ginty, Segal, and collaborators reported that both

the kinase activity and internalization of Trks are required for retrograde-

transmitted nuclear responses, including the activation of transcription factors

such as CREB and c-Fos. Furthermore, inhibition of dynein activity in the axons

of compartmentalized sensory neuron cultures causes downregulation of the trans-

port of activated TrkB, together with inhibition of the survival responses in the cell

body. A biochemical explanation for these results was offered by detection of the

direct interaction of Trks with the molecular motor dynein, as described by Chao
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and coworkers (Heerssen et al. 2004; Riccio et al. 1997, 1999; Watson et al. 1999,

2001; Yano et al. 2001). These results, together with the isolation of endosomes

derived from sciatic nerve axoplasm containing activated TrkA, p75, phospho-

ERK1/2, PI3-K, phospho-p38, and Rap1 (Delcroix et al. 2003), led to the signaling

endosome hypothesis, which postulated that after binding to neurotrophins in the

synaptic terminal, activated Trks are internalized in endosomes that contain signal-

ing molecules. These endosomes are retrograde transported back to the cell body in

a dynein-dependent manner. Upon arrival to the cell body, signaling endosomes are

expected to trigger nuclear responses (Heerssen and Segal 2002; Howe and Mobley

2004). Recent evidence has shown that, in central neurons, TrkB elicits a retrograde

signaling that leads to CREB activation and an increase in dendritic ramification

(Fig. 6) (Zhou et al. 2012). This retrograde response is mediated by the snapin

Fig. 6 Retrograde activation of CREB. (a) Scheme of a compartmentalized culture of cortical

neurons. (b) Cortical neurons were cultured in microfluidic chambers and the axons were retro-

gradely labeled using a fluorescent (Alexa-555) subunit B of the cholera toxin (CTX). CTX was

added only in the axonal compartment for 6 h, time that was enough to label only the somas of

neurons that have crossed axons to the axonal compartment. Later, the axons were treated with

BDNF for 30 min and the cultures were washed and fixed and the neuronal cell body compartment

treated with an antibody to label pCREB. Neurons without axons in the axonal compartment are

not labeled by CTX. Nucleus was labeled with Hoechst staining (shown in blue). (c) The image of

neuronal cell bodies showed in b with a circle was magnified and the nuclear staining of pCREB is

appreciated only in neurons retrogradely labeled with CTX

Spatiotemporal Intracellular Dynamics of Neurotrophin and Its Receptors.. . . 51



recruitment of dynein to TrkB signaling endosomes supporting the role of signaling

endosomes in the retrograde signaling of peripheral and central neurons.

Other mechanisms have been postulated for the propagation of neurotrophin

signaling along the axon, including the “wave propagation model” and the “retro-

grade effector model” (Bronfman and Kapon 2007; Howe and Mobley 2004).

Additionally, Campenot’s group has suggested that there might be signaling

endosome-independent pathways of retrograde signaling because, using

compartmentalized cultures of sympathetic neurons, they found that the addition

of NGF to axonal terminals induces increased activation of TrkA in the cell body

1 min after NGF addition to axons and much earlier than the arrival of

NGF-associated vesicles. However, these researchers have not yet provided a

molecular mechanism for their findings, and a mechanism that has gained the

most substantial support though experimental validation is the “signaling endosome

model” (MacInnis and Campenot 2002; Senger and Campenot 1997; Ye

et al. 2003). An interesting alternative to the signaling endosome hypothesis is

that activated signaling complexes, such as ERKs, could undergo retrograde travel

in an endosome-independent manner associated directly with dynein. Macromolec-

ular complexes of ERK1/2 in association with locally synthesized importin,

vimentin, and dynein have been described in sciatic nerves under injury conditions,

supporting the existence of non-vesicular transport of activated signaling molecules

(Hanz et al. 2003; Perlson et al. 2005).

Another controversial issue in this field is the nature of the transport organelle

that carries retrograde neurotrophin signaling. Mobley and collaborators reported

characterizing an early endosomal fraction (positive for Rab5 and EEA1) derived

from sciatic nerve axoplasm where there are activated TrkA receptors and activated

signaling molecules, such as Erk1/2, p38, and Akt. They have also provided

evidence from electron microscopy and double immunostaining that the Rab5

GTPase co-localizes with activated TrkA and retrograde-transported NGF in

axons. Another report also associates Rab5 with an axonal retrograde organelle

formed by the Pincher chaperone. Intriguingly, the organelle is a multivesicular

endosome/body (MVB) positive for Rab5 (Philippidou et al. 2011).

Multivesicular endosomes/bodies (MVBs) are organelles of the early-late

endocytic pathway that sort endocytosed proteins to different destinations. Many

lysosomally directed membrane proteins are sorted onto intraluminal vesicles,

while recycling proteins remain on the perimeter membrane, from which they are

removed via tubular extensions. Rab5–Rab7 conversion and the resulting change in

the repertoire of Rab effector proteins on the endosome membrane mark the final

progression of an MVB to a fusion-competent state, in which it can fuse with

lysosomes. In the case of non-polarized cells in culture, MVBs are moved to the cell

center during this maturation process by cytoplasmic dynein. An elegant study

carried by Schiavo and collaborators provided evidence that the Rab5 GTPase is

important for sorting to the retrograde transport pathway of vesicles. However, they

found that it was the Rab7 GTPase, a classical marker of late endosomes, necessary

for the retrograde transport of an organelle positive for p75 and TrkB in motor

neurons. It is known that the Rab7 effector RIPL links Rab7-positive organelles to
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dynein and to the subsequent movement of MBVs to the minus end of microtubules

close to the perinuclear region of cells in culture. It is possible that Rab7 effectors

are specifically distributed along the axon and that they play the role of linking

transport carriers to dynein-mediated transport, rather than acting in late endosomes

fusion. It has been described that there is a small proportion of NGF bound to axon

terminals in primary cultures of sympathetic neurons that is actually retrograde

transported and that a proportion of the NGF is recycled in the synaptic terminal

(Deinhardt et al. 2006; Tsui-Pierchala and Ginty 1999; Ure and Campenot 1997;

Weible et al. 2001). Thus, we can envision a model in which receptors are recycled

in the synaptic terminal, and only a small proportion of the receptors are able to

become active and recruit active Rab5. Rab5-tagged endosomes are sorted to

retrograde pathways, and similar to the Rab5–Rab7 conversion that occurs in the

cell body leading to maturation of late endosomes, there would be a conversion of

Rab5 to Rab7 for retrograde transport. Therefore, it is possible that retrograde-

transported vesicles are a heterogeneous group of vesicles with different degrees of

Rab5/Rab7 loads that are not necessary multivesicular bodies since it has been

described that MVBs are not frequently found in axons and that radiolabeled

neurotrophins are often found with simple and small organelles more reminiscent

than early endosomes (Fig. 7) (Altick et al. 2009).

It is of note that Rab5, Rab7, and Rab11 GTPases have all been functionally

linked to dynein-mediated transport, and it is known that there are different dynein

isoforms. Therefore, it is possible that each GTPase regulates the dynamics of

different dynein isoforms. Additional research will be required to understand the

heterogeneity of different retrograde-transported signaling organelles and the

molecular machinery that generates them and regulates their transport (Horgan

et al. 2010; Loubery et al. 2008; Satoh et al. 2008; Tan et al. 2011).

2.5 Retrograde Signaling and the Development of Proper
Connectivity

Postganglionic sympathetic neurons have long served as a good model to study the

molecular events underlying neuronal survival, axon growth, and the elaboration of

dendrites in the PNS. These neurons express the TrkA and p75 receptors, and both

NGF and NT3 are required for sympathetic nervous system development. It has

been shown that during development of sympathetic axons, NT3 and NGF are

required for proper axonal growth. While NT3 is required for the local growth of

sympathetic axons through their local targets, such as the vasculature, NGF is

required for final target innervation (for example, of the heart). This differential

response is achieved by NT3 inducing a local response through the activation of

TrkA in the growth cone, while NGF induces retrograde signaling that induces

survival in the cell body, dependent on the activity of the CREB transcription

factor. Different mechanisms have been developed by sympathetic neurons to

increase their sensitivity to NGF once TrkA-NGF-mediated retrograde signaling

has been initiated. NGF-TrkA retrograde signaling induces transcytosis of cell
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body-associated TrkA receptors to the presynaptic terminal in a Rab11-dependent

mechanism. The transcytosis of TrkA to axons results in increased sensitivity to

NGF. Additionally, NGF-TrkA-mediated responses induce increased expression of

TrkA and p75. p75 increases the specificity of TrkA binding to neurotrophins; thus,

in the presence of p75, NT3 no longer binds TrkA. Another effect of NGF

retrograde signaling is the increased expression of BDNF and NT4 that through

the p75 receptor activate cell death signaling in neighboring neurons associated

with low levels of TrkA-NGF signaling (Ascano et al. 2009; Deppmann et al. 2008;

Kuruvilla et al. 2004). Therefore, there are at least three different positive feed-

forward loops that increase sensitivity to NGF in sympathetic neurons and trans-

form it into a “winner” in the competition for survival.

Contrary to what has been reported in PC12 cells regarding the p75 regulation of

TrkA internalization (Geetha et al. 2005; Makkerh et al. 2005), p75 has no effect on

the retrograde transport of TrkA signaling during neurotrophin-mediated target

innervation of sympathetic neurons (Kuruvilla et al. 2004). However, it has been

reported that p75 is internalized in the cell bodies and axons of sympathetic neurons

through a mechanism that is partially dependent on clathrin coats and cholesterol.

Additionally, internalized p75/BDNF vesicles appear more slowly than TrkA

vesicles, suggesting (as observed in PC12 cells) that different populations of

Fig. 7 Signaling endosomes in the axon. In response to neurotrophins (NTs) the neurotrophin

receptors are internalized and a proportion of them are sorted to the dynein-dependent retrograde

transport. Endosomes positive for p75, Trks only, or p75 and Trks are transported in the axon. The

Rabs GTPases Rab5 and Rab7 are involved in the sorting and retrograde transport of potential

signaling endosomes. Retrograde killing and survival signals are induced by p75 and Trks

activation in distal axons, respectively. Several evidences indicate that these endosomes are

associated with signaling molecules (see text for references)
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vesicles are formed and transported in response to the binding of neurotrophins to

p75 or TrkA (Bronfman et al. 2003; Hibbert et al. 2006). The significance of the

retrograde transport of p75 for p75 signaling is largely unknown. It was recently

reported that proNT3 is able to induce retrograde killing in sympathetic

compartmentalized cultures when applied to axons (Yano et al. 2009), and we

have found that BDNF is able to induce retrograde killing in compartmentalized

cultures of sympathetic neurons in a dynein and c-Jun-amino-terminal kinase

(JNK)-dependent manner (Escudero et al. unpoblished work). Therefore, it is

possible that BDNF accumulates in DCVs in sympathetic synaptic terminals and

it is secreted in an activity-dependent manner by the neurons that have established

synaptic contacts and exhibit high levels of NGF-TrkA signaling. In the growth

cone of neurons with low levels of TrkA-NGF signaling, BDNF through binding to

p75 may induce retrograde killing of sympathetic neurons (Mok et al. 2009). A

retrograde killing for neurotrophin withdrawal has also been recently described for

sympathetic neurons. Determining whether this process is p75 dependent will

require further research.

A standing question has been why the activation of TrkA by NT3 only induces

local axonal growth while NGF induces the internalization of TrkA and retrograde

signaling. Kuruvilla and Ginty and collaborators have recently provided the answer

to this question proposing two different, but not mutually exclusive, explanations;

NGF, but not NT3, promotes the endocytosis of TrkA through the calcineurin-

mediated dephosphorylation of the endocytic GTPase dynamin1. NGF is able to

induce specific dephosphorylation of dynamin1, increasing the internalization of

TrkA and, thus, the retrograde transport associated with survival signaling, while

the interaction of NT3 with TrkA does not have the same effect. Consistently,

conditional deletion of calcineurin in sympathetic neurons disrupts NGF-dependent

innervation of peripheral target tissues (Bodmer et al. 2011). On the other hand,

NGF and not NT3 is able to activate, in endosomes, the actin regulators Rac1-GTP-

cofilin, enabling the NGF/TrkA signaling endosomes to “escape” the actin network

for retrograde transport (Harrington et al. 2011).

Another less explored mechanism for neurotrophin-induced axonal elongation is

control of the local translation of axonal mRNAs. A recent study from Riccio and

collaborators combined compartmentalized cultures of rat sympathetic neurons and

sequential analysis of gene expression (SAGE) to analyze the mRNA content of

sympathetic axons. Their screen yielded more than 11,000 tags in axons that

matched known transcripts. Bioinformatics analysis revealed that many transcripts

were highly enriched in axons compared to cell bodies, indicating that the accumu-

lation of specific mRNAs in axons depends on active transport. The most abundant

transcript in axons was myo-inositol monophosphatase-1 (Impa1), a key enzyme

that regulates the inositol cycle and the main target of lithium in neurons. A novel

localization element within the 30 untranslated region of Impa1 mRNA was found

to specifically target Impa1 transcripts to sympathetic neuron axons and regulate

local Impa1 translation in response to axonally supplied NGF. Reduction of

NGF-induced Impa1 synthesis in axons was observed to decrease nuclear CREB

activation and induce axonal degeneration. Related findings have been reported by
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the Twiss group in regenerating axons of adult sensory neurons grown in

compartmentalized cultures. In their system, neurotrophins have been found to

selectively increase the transport of specific RNAs to axons (Andreassi

et al. 2010; Willis et al. 2007). Thus, target-derived NGF induces axonal elongation

by cytoskeleton remodeling and axonal translation of proteins. Additionally,

NGF-TrkA retrograde signaling in the cell body changes the repertoire of

mRNAs that are anterograde transported to the synaptic terminal to increase target

innervation and, thus, neuronal survival.

One interesting concept has emerged from the groups of Ginty and Segal and

collaborators. In addition to regulating the number of neuronal cells that survive,

long-distance neurotrophin signaling might regulate the degree of connectivity with

preganglionic sympathetic neurons located in the central nervous system. In sym-

pathetic neurons, NGF–TrkA signaling endosomes travel from distal axons to cell

bodies and dendrites, where they promote postsynaptic density (PSD) formation.

The presence of p75 restricts PSD formation, suggesting an important role for

antagonistic NGF–TrkA and p75 signaling pathways during retrograde control of

synapse establishment. A similar model has been suggested for sensory neurons, in

which BDNF and NGF retrograde signaling induce the activation of ERK5 in the

axon and cell body and the transcription factor MEF2D. MEF2-dependent tran-

scriptional programs, in addition to inducing survival through the upregulation of

the anti-apoptotic bcl-2 family member bcl-w, are also critical for establishing

synaptic morphology and for regulating synapse numbers (Flavell et al. 2006;

Pazyra-Murphy et al. 2009; Shalizi et al. 2006; Sharma et al. 2010).

In conclusion, proper connectivity of the nervous system is achieved by

coordinating signal transduction with intracellular processes, such as secretion,

endocytosis, and molecular motor transport, together with the local translation of

localized mRNA in distal neuronal processes. To understand the molecular

mechanisms that regulate these events through extracellular molecules (i.e.,

neurotrophins) will be useful to understand how the nervous system works and

will provide better insight into how perturbation of intracellular trafficking may

lead to neurodegenerative diseases.
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Abstract

Neurotrophins are powerful molecules. Small quantities of these secreted

proteins exert robust effects on neuronal survival, synapse stabilization, and

synaptic function. Key functions of the neurotrophins rely on these proteins

being expressed at the right time and in the right place. This is especially true for

BDNF, stimulus-inducible expression of which serves as an essential step in the

transduction of a broad variety of extracellular stimuli into neuronal plasticity of

physiologically relevant brain regions. Here we review the transcriptional and

translational mechanisms that control neurotrophin expression with a particular

focus on the activity-dependent regulation of BDNF.
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1 Introduction

Transcriptional regulation is mediated by the association of DNA binding proteins

with gene regulatory elements, which confer developmental, cell-type-specific, and

stimulus-dependent regulation on gene transcription. Protein–DNA interactions

influence transcription by modulating the recruitment and/or activation of RNA

polymerase II at nearby genes. Gene regulatory elements are defined by their

function, and although many closely neighbor genes, regulatory elements can also

act over long distances. Many regulatory elements are found in promoters, which

are broadly defined as the region of genomic DNA immediately proximal to and up

to about 2 kb upstream of the transcription start site (TSS) for a given gene. By

contrast enhancer elements can be located at very great distances on either side of

the TSS. Gene transcription can also be influenced by protein–DNA interactions at

insulator and silencing elements, which impact transcription over large regions of

the surrounding genome. All of these elements are subject to an additional level of

regulation by the secondary and tertiary structure of chromatin, which can be

modulated by modifications of both genomic DNA and its associated histone

proteins. Once synthesized, mRNA is subject to several modes of posttranscrip-

tional regulation that can impact levels of gene expression through regulation of

RNA stability, transport, and translation. In addition to protein–RNA interactions,

there is a growing awareness of the role of noncoding RNAs as mediators of these

processes.

Here we describe the characterization of the transcriptional and translational

processes that regulate expression of the neurotrophins. Though all the

neurotrophins play important roles in neuronal physiology, commensurate with

the importance of stimulus-dependent regulation of Bdnf mRNA expression for

neural plasticity, the mechanisms underlying the dynamic regulation of this gene

have received substantial attention and will be reviewed in the greatest detail.

2 Nerve Growth Factor

2.1 Expression Pattern and Regulation

Nerve growth factor (NGF) is expressed in both neuronal and non-neuronal cells of

the peripheral and central nervous systems (Sofroniew et al. 2001). NGF is highly

expressed in the target tissues of TrkA expressing neurons, which include dorsal

root ganglia (DRG), cranial sensory neurons that mediate pain and temperature,

sympathetic neurons, basal forebrain cholinergic neurons, striatal cholinergic

neurons, and certain thalamic and brainstem neurons. Hippocampal and cortical

neurons that are targets of cholinergic innervation express the highest levels of NGF

mRNA in the brain (Lauterborn et al. 1993, 1995; Rocamora et al. 1996a), and

interestingly, the majority of these NGF-positive neurons are GABAergic

interneurons. In the striatum, NGF is also expressed by a population of small

GABAergic interneurons (Bizon et al. 1999). In non-neuronal cells of the adult

mouse, the highest levels of NGF mRNA are present in the salivary gland, vas
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deferens, and heart. Expression of NGF mRNA in salivary gland is sex specific; in

male animals the levels are much higher than in females (Sofroniew et al. 2001).

Immature Schwann cells produce NGF during development, but in adults, NGF

expression is undetectable in mature myelinating Schwann cells. However, after

nerve injury the expression is induced in reactive and dedifferentiated Schwann

cells (Heumann et al. 1987; Lindholm et al. 1987).

Expression of NGF is sensitive to regulation by both neuronal activity and

stimuli related to inflammation. Limbic seizures induce Ngf expression by 1 h in

the dentate gyrus, whereas expression appears in the neocortex and olfactory

forebrain some hours later (Gall and Isackson 1989). Consistent with enhanced

transcription as a mechanism underlying the activity-dependent increases in Ngf
mRNA levels, membrane depolarization of cultured embryonic cortical neurons

induces the association of RNA PolII with the Ngf gene promoter (Kim et al. 2010).

CNS induction of Ngf is responsive to both glutamate (Zafra et al. 1990) and

acetylcholine (da Penha Berzaghi et al. 1993). In addition, Ngf expression can be

upregulated by glucocorticoids (Mocchetti et al. 1996; Barbany and Persson 1992)

and activation of β2 adrenergic receptors (Colangelo et al. 1998). The interleukin

IL-1 strongly induces expression of Ngf in non-neuronal cells of the peripheral

nervous system after injury (Lindholm et al. 1987). Intraventricular injection of

IL-1 also induces Ngf expression in the hippocampus, but it is not clear whether this

induction is in neuronal or non-neuronal cells (Spranger et al. 1990).

2.2 Promoter Structure and Elements

The Ngf gene is found on chromosome 3qF2.2 in mouse, chromosome 2q34 in rat,

and chromosome 1p13.2 in human. The mammalian Ngf gene contains several 50

exons encoding the 50 untranslated region (UTR) and one 30 exon encoding the NGF
protein (Metsis 2001) (Fig. 1). The structure of the mammalian Ngf gene and its

transcripts has been studied most extensively in the mouse (Edwards et al. 1986;

Selby et al. 1987). In mouse the Ngf gene comprises five exons, exons IA, IB, II, III,

and IV covering about 50 kb. According to current knowledge, exons IA, IB, II, and

III encode 50 UTRs and exon IV the NGF pre-protein. Although exons IA and II

both contain additional putative ATG codons, their usage for translation initiation

of NGF protein has not been established. Four different splicing patterns have been

described for the mouse Ngf gene leading to the following transcripts: transcripts

containing exons IA, III, and IV, transcripts containing exons IB, III, and IV,

transcripts containing exons IB, II, III, and IV, and transcripts containing 50

extended exon III and exon IV. Exon IA-III-IV transcripts are the most abundant

Ngf mRNAs in the submandibular gland comprising about 90 % of the pool of Ngf
mRNAs. In other tissues, including heart, kidney, and brain, the most abundant

transcript is exon IB-III-IV followed by exon IA-III-IV transcripts. The levels of

exon IB-II-III-IV transcripts and exon III-IV transcripts are much lower. One major

transcription initiation site has been determined both for exon IA and IB by primer

extension and S1 nuclease protection assay showing that exons IA and IB, separated

by only 142 bp, are linked to separate promoters. It has also been shown that the 50
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region of mouse exon IB is able to drive reporter gene expression when transiently

expressed in cultured cells showing that this exon is linked to a functional promoter

(Zheng and Heinrich 1988; D’Mello and Heinrich 1991). The putative promoter of

mouse Ngf exon IA has not been studied.

Fig. 1 Structures of mammalian neurotrophin genes. The structures of the genes include data

published on the human, mouse, and rat neurotrophins. All neurotrophin genes consist of multiple

50 exons linked to promoters that initiate transcription of distinct mRNAs. As a common feature,

the 30 exon that is included in all different transcripts of each neurotrophin comprises the open

reading frame (ORF, colored box) encoding the respective prepro-neurotrophin. The beginning of
the ORF is marked by the translation initiation codon ATG. There are variant upstream ATGs in

all neurotrophin genes except Ntf4, but the usage of these translation initiation sites has not been

verified. For all except the Ngf gene, usage of at least two alternative polyadenylation sites (pA,

thin vertical line) has been detected. In the case of Bdnf, human-specific exons that are not present

in rodent Bdnf are marked with the letter “h” following the Roman numeral representing the name

of the exon brought above the box designating the exon. Horizontal dashed lines represent introns.
Vertical dashed lines inside exons indicate alternative splicing acceptor sites used within that

exon. Splicing patterns of neurotrophin mRNAs are shown by lines linking exons. The most

upstream transcription start site (TSS) is indicated by an arrow for each exon. The asterisk
marking the TSS of BDNF exon VIII stands for a rodent-specific transcription initiation site that

has not been detected to be used in human. The genomic locations of human (h), mouse (m), and

rat (r) genes are shown adjacent to each schematic. Scale bar is for exons and introns shown with

uninterrupted dashed lines. Introns that are interrupted with double slash are longer and out of this
scale
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The rat and human NGF genes have not been characterized in detail; however,

bioinformatic analysis of GenBank suggests that, similar to mouse, exon IB-III-IV

transcripts are the most abundant in several tissues, including brain. The transcrip-

tion initiation site of exon IB has been determined for rat exon IB by S1 nuclease

protection (Zheng and Heinrich 1988) and the 50 region of both rat and human exon

IB is able to direct reporter gene expression in various cultured cells using transient

expression assays (Zheng and Heinrich 1988; Cartwright et al. 1992). In addition,

transgenic mice expressing reporters under control of human and mouse NGF
promoter regions have been characterized that partially recapitulate expression of

the endogenous gene (Alexander et al. 1989; Kaisho et al. 1999; Kawaja

et al. 2011).

The function of regulatory elements in the Ngf exon IB promoter has been

studied in non-neuronal cells. Following cloning of the Ngf gene, attention focused

on an AP-1 site found at +35 bp, mutation of which reduces activity of an Ngf
promoter reporter plasmid in heterologous expression assays (D’Mello and

Heinrich 1991). AP-1 elements are bound by members of the Fos/Jun family of

transcription factors, and lesion of the sciatic nerve was known to induce both Fos

protein and Ngf mRNA expression. Using a fibroblast line in which Fos could be

inducibly overexpressed, it was shown that Fos increases Ngf mRNA expression

through a mechanism that supports DNAse protection of the AP-1 containing

fragment, suggesting that Fos binding to this AP-1 may contribute to lesion-induced

increases in Ngf mRNA (Hengerer et al. 1990). By contrast elements 50 to the TSS

have been implicated in transcriptional regulation of Ngf in response to β2 adrener-
gic receptor activation. In C6-2B glioma cells, Ngf expression can be induced by

addition of the β2 adrenergic receptor agonist clenbuterol. Activation requires an

element mapped by DNAse footprinting and reporter transactivation to a region

�90 to �70 bp relative to the TSS (Colangelo et al. 1998). Binding and reporter

studies identified CCAAT/enhancer-binding protein δ (C/EBPδ) as a putative

regulatory transcription factor for this site, and further studies showed that CREB

binds to a CRE half-site at �65 bp. Importantly C/EBPδ knockout mice have

significantly reduced β2 adrenergic receptor-induced NGF expression in the cortex,

suggesting that similar transcriptional mechanisms may contribute to Ngf regula-
tion in the brain (McCauslin et al. 2006).

2.3 Regulation of mRNA Stability

In addition to transcriptional regulation, Ngf mRNA is subject to stimulus-

dependent changes in its stability. In cultured rat fibroblasts, in addition to a change

in the transcriptional rate of Ngf synthesis as revealed by nuclear run-on, RNase

protection assays demonstrate that IL-1 increases the half-life of Ngf mRNA

(Lindholm et al. 1988). In smooth muscle cells, the secreted factors PDGF and

TGFβ increase NGF secretion in the presence of the transcriptional inhibitor

Actinomycin D and elevate the ratio of NGF protein to NgfmRNA again suggesting

an effect on RNA stability and/or processing (Sherer et al. 1998). AU-rich regions

in the 30UTR often serve as instability elements, and AU-rich regions of the Ngf
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30-UTR have been identified that appear to contribute to mRNA stability

(Tang et al. 1997). However, the specific signaling mechanisms and proteins that

regulate stability of Ngf mRNA under basal or stimulus-induced conditions remain

unknown.

3 Neurotrophin-3

3.1 Expression Pattern and Regulation

Neurotrophin-3 (NT-3) is widely expressed in non-neuronal tissues during devel-

opment and, in general, the levels are lower in the adult. In the adult rat the highest

NT-3 protein levels have been detected in the pancreas and spleen (Katoh-Semba

et al. 1996). In the nervous system, NT-3 is most highly expressed in the immature

CNS when proliferation, migration, and differentiation of neuronal precursors are

ongoing. NT-3 expression dramatically decreases with maturation of these regions

(Maisonpierre et al. 1990b; Ernfors et al. 1992; Friedman et al. 1991b). The factors

that regulate expression of NT-3 have been most highly studied in the developing

cerebellum where expression of NT-3 is required for proper cerebellar development

(Bates et al. 1999). Brain-derived neurotrophic factor (BDNF) can drive NT-3

expression in the cerebellum as can thyroid hormone T3 (Leingärtner

et al. 1994). Strikingly, unlike BDNF and NGF, expression of NT-3 is not induced

by traditional stimuli that increase neural activity in the CNS. For example, NT-3

shows no induction in the hippocampus following pilocarpine-induced seizures

(da Penha Berzaghi et al. 1993) and reduced expression levels following kainate-

induced seizure (Katoh-Semba et al. 1999).

3.2 Promoter Structure and Elements

NT-3 is encoded by the Ntf3 gene on mouse chromosome 6qF3, rat chromosome

4q42, and human chromosome 12p13. In all mammals studied (mouse, rat, and

human) the Ntf3 gene comprises three exons giving rise to multiple Ntf3 mRNA

transcripts (Fig. 1). Several TSSs in both upstream exons and three different

polyadenylation sites in exon III have been mapped by RNase protection assays

and by RACE. Alternative promoter usage upstream of exons I and II leads to

expression of transcripts that differ in the putative translation initiation ATGs

(Leingärtner and Lindholm 1994; Kendall et al. 2000). Exon I-III transcripts

contain an ATG in the beginning of exon III suggesting that it is used for initiation

of protein translation. Exon I-II-III and exon II-III transcripts have two potential

translation initiation codons; however, it has not been determined which of the

ATGs is used for protein translation. Exon II-III transcripts appear to be the

predominant transcripts in most tissues, including brain, and exon I-II-III

transcripts have been demonstrated only in a few tissues in rat (Kendall

et al. 2000). Both promoters are active when fused to reporter genes and transfected

into cerebellar granule neurons (Leingärtner and Lindholm 1994). Transcripts
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initiating from both promoters have been detected in cerebellar granule neurons;

however, only promoter II is transcriptionally upregulated by tri-iodothyronine

(T3).

In reporter assays, both promoters I and II of the Ntf3 gene contain regions that

function as enhancer and repressor elements (Leingärtner and Lindholm 1994;

Katoh-Semba et al. 1996). One family of regulators that contributes to regulation

of promoter II are the related zinc-finger transcription factors Sp4, Sp1, and Sp3.

Sp4 and Sp1 bind directly to Ntf3 promoter II in cerebellar granule neurons as

shown by chromatin immunoprecipitation (Ramos et al. 2009). Knockdown of Sp4

expression leads to increased Ntf3 expression in these cells suggesting that this

interaction is required for Ntf3 repression. However, the effects of Sp4 on NT-3

regulation may be context or cell-type dependent because mice with reduced Sp4

expression show reduced NT-3 in the hippocampus (Zhou et al. 2005). By contrast,

BDNF-dependent activation of Ntf3 promoter II in cerebellar granule cells is

mediated by members of the MEF2 and CREB families of transcription factors

(Shalizi et al. 2003). BDNF drives phosphorylation and activation of the MAP

kinase family member Erk5, which then induces phosphorylation and activation of

MEF2. BDNF-dependent induction of Ntf3 requires a region �1087 to �838 bp

relative to the TSS of exon II. Both MEF2 and CREB bind sequences within this

region, and knockdown of MEF2 or overexpression of dominant-negative CREB

inhibits BDNF-dependent induction of Ntf3 suggesting that the two factors cooper-

ate to mediate the regulation of this element (Shalizi et al. 2003). Finally the

POU-domain transcription factor Brn-3c (POU4F3) has been implicated in Ntf3
regulation in a cell line derived from organ of Corti (Clough et al. 2004). However,

unlike the other factors, Brn-3c appears to be an activator of Ntf3 promoter I.

4 Neurotrophin-4

4.1 Expression Pattern and Regulation

Although neurotrophin-4 (NT-4) (also called NT-4/5 or NT-5) binds and activates

the TrkB receptor, regulation of NT-4 expression shares few similarities with the

other TrkB ligand, BDNF. In the rat NT-4 is widely expressed in non-neuronal

tissues both during embryonic and postnatal development and also in the adult.

Highest NT-4 levels have been detected in early postnatal testis (Timmusk

et al. 1993b). NT-4 is highly expressed in embryonic and adult skeletal muscle

and it is strongly expressed by both neuronal and non-neuronal cells of the spinal

cord (Ip et al. 1992; Scarisbrick et al. 1999). By contrast it is expressed at much

lower levels in the CNS (Ip et al. 1992), both during development and in the adult

animal (Timmusk et al. 1993b). Compared with Bdnf knockout mice, Ntf4 null mice

show minimal neurological phenotypes (Liu et al. 1995; Conover et al. 1995). NT-4

expression is induced in muscle by electrical stimulation (Funakoshi et al. 1995)

and in spinal cord by systemic administration of the excitotoxic stimulus kainic acid

(Scarisbrick et al. 1999). Analysis of Ntf4 knockout mice has demonstrated that
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muscle-derived NT-4 is required for maintenance of postsynaptic acetylcholinergic

receptor clustering, normal muscular electrophysiological responses, and resistance

to muscle fatigue. Thus, NT-4 is involved in activity-dependent feedback

mechanisms involved in the maintenance of neuromuscular connections and mus-

cular performance (Belluardo et al. 2001). Surprisingly, in the brain Ntf4 is not

activity regulated since there is no change in NT-4 expression in the hippocampus

after pilocarpine-induced seizure (Mudo et al. 1996), a common method for induc-

ing activity-regulated gene transcription.

4.2 Promoter Structure and Elements

NT-4 is encoded by the Ntf5 gene on mouse chromosome 7qB4, the Ntf4 gene on rat
chromosome 1q22, and the NTF4 gene on human chromosome 19q13.3. We refer

here to the gene in all three species as “Ntf4”. The Ntf4 gene comprises three exons

with two alternative promoters upstream of exons I and II (Fig. 1). The transcription

initiation sites have been determined for rat Ntf4 gene in newborn testis and adult

skeletal muscle; however, there has been no comprehensive analysis of alternative

promoter usage in other tissues and cell types in vivo. In cell lines promoter II

confers significantly stronger transcriptional activity on a reporter plasmid than

promoter I (Salin et al. 1997). Generation of transgenic mice that contain the full

Ntf4 gene plus 1.4 kb of additional upstream sequence show high levels of Ntf4
expression in muscle and low but detectable expression in brain and thymus,

indicating that this region is largely sufficient to confer proper expression of Ntf4.
Importantly this transgene also recapitulates the activity-regulated expression of

Ntf4 in muscle (Funakoshi et al. 1995; Salin et al. 1997), suggesting that activity-

responsive elements lie within this fragment. However, the position of these

elements and their associated transcription factors has not yet been identified.

5 Brain-Derived Neurotrophic Factor

5.1 Expression Pattern and Regulation

Bdnf has a widespread expression pattern that is conserved among mammalian

species (Maisonpierre et al. 1990a, b, 1991; Conner et al. 1997; Katoh-Semba

et al. 1997). During development, Bdnf expression is more abundant in the nervous

system compared with other tissues and its levels are dramatically increased in the

brain postnatally (Kaisho et al. 1991; Katoh-Semba et al. 1997). In the adult

nervous system, Bdnf displays a wide distribution pattern, with the highest levels

of mRNA and protein in the hippocampus, amygdala, cerebral cortex, hypothala-

mus, and septum in the brain and in the dorsal root ganglia in the PNS. BdnfmRNA

expression is mostly confined to neurons and there are only a few brain areas where

Bdnf transcripts are not detected (Ernfors et al. 1990; Hofer et al. 1990; Timmusk

et al. 1994b; Conner et al. 1997; Katoh-Semba et al. 1997; Phillips et al. 1990;
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Friedman et al. 1991a; Webster et al. 2006). Bdnf expression in adult tissues is also
detectable outside of the nervous system. Similar BdnfmRNA levels to those found

in the brain have been detected in the heart and lung and lower levels in the thymus,

liver, spleen, and muscle (Ernfors et al. 1990; Maisonpierre et al. 1990a; 1991;

Katoh-Semba et al. 1997; Yamamoto et al. 1996).

Regulation of transcription is a major contributor to the pleiotropic functions of

BDNF. Accordingly, Bdnf expression levels in neurons are regulated by many

stimuli including ischemic and hypoglycemic insults (Lindvall et al. 1992), periph-

eral nerve axotomy (Michael et al. 1999), immobilization stress (Smith et al. 1995a,

b), antidepressant treatment (Nibuya et al. 1995; Dias et al. 2003), drug craving

after cocaine withdrawal (Grimm et al. 2003), and chronic social defeat stress

(Tsankova et al. 2006). However, the best studied and probably the most potent

Bdnf transcription-inducing stimulus is neuronal activity. Neuronal activity in the

brain and Bdnf mRNA expression are both evoked by excitatory stimulus-evoked

seizures by kainic acid treatment (Zafra et al. 1990; Ballarin et al. 1991; Metsis

et al. 1993), electrical stimulation resulting in epileptogenesis (Ernfors et al. 1991),

lesion-induced recurrent limbic seizures (Isackson et al. 1991), exposure to light as

sensory input (Castren et al. 1992), electrical stimulation inducing LTP of synaptic

transmission (Patterson et al. 1992; Castren et al. 1993), enriched environment

(Falkenberg et al. 1992; Young et al. 1999), application of KCl to the cortical

surface inducing spreading depression (Kokaia et al. 1993), mechanical stimulation

of mystacial whiskers (Rocamora et al. 1996b; Nanda and Mack 2000), physical

activity (Neeper et al. 1996; Russo-Neustadt et al. 2000), singing in birds

(Li et al. 2000), hippocampus-dependent contextual learning (Hall et al. 2000),

and amygdala-dependent learning (Rattiner et al. 2004). On the other hand,

treatments or conditions that reduce neuronal activity, for example, inhibition of

neuronal activity by gamma-aminobutyric acid (GABA) (Berninger et al. 1995) and

monocular deprivation (Bozzi et al. 1995; Rossi et al. 1999), have been

demonstrated to decrease Bdnf mRNA levels. Furthermore, expression of Bdnf
undergoes circadian oscillation, mirroring variations in physiological activity

(Bova et al. 1998; Berchtold et al. 1999). Thus, environmental stimuli that produce

excitatory inputs onto neurons and increase their intracellular Ca2+ concentration,

i.e., induce neuronal activity, have been found to be the key regulators of Bdnf
transcription. The significance of this activity-regulated transcription of Bdnf is
emphasized by the fact that BDNF is one of the major regulators of neuronal

activity-dependent neurotransmission and plasticity in the brain (Schinder and

Poo 2000; Poo 2001; Lu 2003; Bramham and Messaoudi 2005).

5.2 Promoter Structure

The Bdnf gene comprises nine exons that span 52.3 kb of chromosome 2qE3 in

mouse, chromosome 3q33 in rat, and chromosome 11p14.1 in human. All three

species appear to have at least eight homologous exons that contribute to alternate

50 UTRs, each of which is linked to a separate promoter and can be spliced to form a
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bipartite transcript and in some rare cases also a tripartite or a quadripartite

transcript (V-VIII-VIIIh-IX, V-VIIIh-IX, and VI-IXb-IXd) with a common ninth

exon that contains the coding sequence and 30-UTR (Fig. 1) (Liu et al. 2005, 2006;

Aid et al. 2007; Pruunsild et al. 2007). An ATG in exon I provides an alternative

putative translation start site for exon I-IX variants (Timmusk et al. 1993a). Expres-

sion constructs encoding a human BDNF-GFP fusion protein containing both the

exon I ATG and exon IX ATG are translated when transiently expressed in primary

hippocampal neurons. However, it was not studied which of these two ATGs was

used for translation initiation (Jiang et al. 2008). The pufferfish and zebrafish Bdnf
genes preserve a similar multi-exon organization suggesting that this genomic

structure may have a conserved function through evolution (Heinrich and

Pagtakhan 2004). Rat and human BDNF genomic regions recapitulating tissue-

specific, neuronal activity-, and axotomy-induced expression of rat Bdnf (Timmusk

et al. 1995; Koppel et al. 2010) and human BDNF (Koppel et al. 2009) have been

characterized in transgenic mice.

The functional importance of the multi-promoter organization of Bdnf is incom-

pletely understood; however, it appears that the stimulus-selective activation of the

distinct sets of transcription factors bound at each of these promoters serves to make

BDNF expression responsive to a very diverse range of stimuli. Different 50 Bdnf
exons are induced by distinct kinds of stimuli (West 2008), consistent with the idea

that transcription originating at each promoter may be differentially important for

the myriad biological functions of BDNF. It should be noted that while the

importance of Bdnf exon IV containing mRNA transcription in the development

of GABAergic inhibition in the cortex has been studied relatively well in vivo using

specific genetic manipulations that disrupt basal and activity-responsive Bdnf exon
IV-derived production of BDNF protein (Hong et al. 2008; Sakata et al. 2009), the

in vivo role of Bdnf exon I- and II-containing transcripts has not been addressed. In
the light of the findings that exon I mRNAs of Bdnf are among the most strongly

induced Bdnf transcripts upon neuronal activity (Metsis et al. 1993; Timmusk

et al. 1993a) and that overexpression of Bdnf exon I, II, and III mRNAs without

increasing other Bdnf transcripts is associated with enhanced LTP in mice (Barco

et al. 2005), it would be especially interesting to elucidate the roles of all the

multiple exons of Bdnf.

5.3 Promoter Regulation

5.3.1 Promoter I
The levels of Bdnf exon I increase markedly in the brain after kainic acid-induced

seizures (Metsis et al. 1993; Timmusk et al. 1993a) and other experimental

conditions that produce neuronal activity. The first transcription factors that were

shown to contribute to this Ca2+-mediated activation of Bdnf promoter I were the

activating transcription factor (ATF)/cAMP/Ca2+-response element binding protein

(CREB) family basic leucine zipper protein CREB and the basic helix-loop-helix

(bHLH) proteins upstream stimulatory factor (USF) 1 and USF2 (Fig. 2a) (Tabuchi
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Fig. 2 Transcription factors and regulatory elements involved in the regulation of activity-

dependent transcription from BDNF promoters I, II, and IV. Bdnf promoters (p) I, pII, and pIV

are bound by multiple transcription factors (TFs) that regulate neuronal activity-dependent

induction of Bdnf exon I, II, and IV mRNA transcription. (a) The TFs and cis-elements that

have been shown to regulate activity-dependent Bdnf exon I or II transcription are myocyte-

specific enhancer factor 2D (MEF2D); nuclear factor kappa B (NF-κB); neuronal PAS domain

protein 4 (NPAS4); aryl hydrocarbon receptor nuclear translocator 2 (ARNT2); cAMP/Ca2+-

response element binding protein (CREB) bound by CREB binding protein (CBP); upstream

stimulatory factors 1 and 2 (USF1/2); neuron-restrictive silencing factor (NRSF) bound by

mSin3A (histone deacetylase complex subunit Sin3A), RE1-silencing transcription factor

(REST) co-repressor 1 (CoREST), and histone deacetylase 1 and 2 (HDAC1/2); NF-κB response

element (NF-κB-RE); bHLH-PAS transcription factor response element (PasRE); cAMP/Ca2+-

response element, in pI, a CRE-like element (CRE); and neuron-restrictive silencing element

(NRSE). (b) The TFs and cis-elements that have been shown to regulate activity-dependent Bdnf
exon IV transcription are methyl-CpG binding protein (MeCP2); CCCTC-binding factor (CTCF);

NPAS4; ARNT2; MEF2; Ca2+-response factor (CaRF); USF1 and USF2; CREB and CBP; basic

helix-loop-helix domain containing, class B, 2 (BHLHB2); NF-κB; nuclear factor of activated
T-cells cytoplasmic 4 (NFATc4); PasRE; Ca2+-response element 1, 2 (UBE, USF-binding ele-

ment), and 3 (CRE) (CaRE1, 2, and 3); and BHLHB2-RE, NF-κB, and response elements for the

respective TFs (NFAT-RE). All factors that have been shown to bind specific cis-regulatory DNA
elements in the promoters are depicted on the line representing DNA. The cis-elements are

specified below the factors. The TFs that have been shown to contribute to regulation, but for

which the binding site is not known, are depicted above the promoter. The question mark adjacent
to the USF1/2 factors that are drawn below pI indicates that although USFs have been shown to

regulate the rat promoter, regulation of human pI by the USF factors has not been confirmed and

the regulatory element that has been found to bind USF in the rat promoter is not conserved in

human. Transcription start sites (TSSs) are designated by arrows. Only the most upstream TSS for

each promoter is shown. Distance in base pairs (bp) relative to the TSS is shown below the line

representing DNA. This figure shows all the TFs and regulatory elements that have been shown by

different groups, although data about some TFs are contradictory (for example, USF1/2 and CREB

for pI, see text for details)
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et al. 2002). Tabuchi et al. (2002) studied rat Bdnf promoter I regulation and found

that Ca2+-responsive DNA elements in Bdnf promoter I are located in two promoter

regions: in a proximal and in a distal region that are located at approximately�70 to

�100 bp and �180 to �280 bp, respectively, relative to the most 50 transcription
start site of rat exon I. In the proximal region, a cAMP/Ca2+-response element

(CRE)-like element overlapping with a USF-binding site was identified. These cis-
elements were shown to be bound in vitro by CREB and USF1/USF2, correspond-

ingly, and mutations in the CRE and USF-binding sites were shown to reduce rat

Bdnf promoter I-dependent transcriptional activity in response to membrane depo-

larization of primary neurons. In addition, overexpression of dominant-negative

forms of CREB and USF proteins in neurons was found to interfere with activity-

dependent transcription from rat Bdnf promoter I (Tabuchi et al. 2002).

The transcription factors and cis-element that contributed to the Ca2+

responsiveness of the distal region of promoter I were identified when the regula-

tion of the human BDNF promoter I in primary neurons was analyzed (Pruunsild

et al. 2011). The deletion of these distal elements was even more potent in reducing

the inducibility of Bdnf promoter I than deletions in the proximal region (Tabuchi

et al. 2002), It was shown that the human as well as the rat BDNF promoter I is

induced by neuronal activity by the bHLH-Per-Arnt-Sim (bHLH-PAS) transcrip-

tion factors aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) and neuro-

nal PAS domain protein 4 (NPAS4), which dimerize and bind to a Ca2+-responsive

element termed bHLH-PAS transcription factor response element (PasRE) located

approximately �170 bp relative to the most 50 transcription start site of human

BDNF promoter I (Pruunsild et al. 2011). Pruunsild et al. demonstrated that

mutating the PasRE drastically reduces neuronal activity-responsive induction of

BDNF promoter I-dependent transcription. Also, it was shown that expression of

dominant-negative ARNT2 and NPAS4 almost completely blocks and

overexpression of ARNT2 and NPAS4 strongly enhances activity-responsive

exon I transcription, respectively, in primary neurons. Moreover, ARNT2 binds

BDNF promoter I in human brain in vivo (Pruunsild et al. 2011). In a separate study,

NPAS4 has been detected to be bound on the mouse Bdnf promoter I region in

mouse brain by chromatin immunoprecipitation (ChIP) (Lin et al. 2008), further

strengthening involvement of the bHLH-PAS proteins in BDNF exon I regulation.

Some different results have been seen between the regulation of rodent and

human Bdnf promoter I. Despite evidence for its use in rodents, the USF-binding

element is not conserved in the human BDNF promoter I and the USF proteins have

been found not to contribute to the neuronal activity-dependent regulation of the

human promoter I (Pruunsild et al. 2011). Furthermore, the CRE-like element,

although conserved, has been found in transient transfection assays of reporter

constructs to be more important for basal transcription than for the activity-

dependent induction of the human promoter I (Pruunsild et al. 2011). Nonetheless

in vivo, a constitutively active form of CREB is able to enhance promoter

I-dependent transcription suggesting the physiological relevance of this interaction

(Barco et al. 2005). The potential importance of ARNT2 and NPAS4 factors is

strongly supported by a study showing that neuronal activity-dependent
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transcription of BDNF exon I transcripts is sensitive to protein synthesis inhibitors,

indicating that immediate-early gene products are involved in activating promoter I

(Lauterborn et al. 1996). As NPAS4 is one of the most strongly induced immediate-

early genes by neuronal activity (Lin et al. 2008), it is conceivable that the ARNT2

and NPAS4 heterodimers, which would upregulate exon I transcription, form after

the first wave of immediate-early genes have been transcribed and translated in

response to the activating stimulus. This would also explain why the rise in the

levels of BDNF exon I transcripts takes place with a delay compared to BDNF exon

IV transcripts (Kokaia et al. 1994; Lauterborn et al. 1996; Pruunsild et al. 2011) that

are predominantly under the control of the CREB/CRE system (Hong et al. 2008).

In addition to the factors described above, two other transcription factors have

been implicated in mediating the neuronal activity-dependent induction of Bdnf
exon I transcription: (1) nuclear factor kappa B (NF-κB), through binding two pairs
of NF-κB response elements in proximity of BDNF promoter I (Lubin et al. 2007),

and (2) myocyte-specific enhancer factor (MEF) 2D via binding a far upstream

enhancer element (Flavell et al. 2008). Lubin et al. (2007) showed that pharmaco-

logical inhibition of the NF-κB pathway in rats decreased kainate-induced Bdnf
exon I mRNA expression and that NF-κB was detectable on Bdnf promoter I with

ChIP. MEF2D was shown to bind a far upstream Bdnf enhancer element with ChIP

as well. Additionally, by mutation and deletion analyses of a Bdnf promoter I

construct, the MEF2D binding site was demonstrated to significantly contribute

to Bdnf promoter I neuronal activity-dependent induction in primary neurons,

providing evidence that the cis-element whereby MEF2D augments Bdnf promoter

I activity-responsive induction is the enhancer element approximately 4,500 bp

upstream of Bdnf exon I (Flavell et al. 2008). The cis-elements for NF-κB in the

activity-dependent regulation of Bdnf promoter I still need verification. Further

insights into the role of NF-κB, as well as more understanding of the role of CREB

and the possible rodent-specific function of the USFs in promoter I regulation, may

reveal important new aspects of transcriptional control of BDNF expression.

5.3.2 Promoter II
Although to a lesser extent than Bdnf mRNAs containing exon I, BDNF exon II

transcript levels also rise in response to neuronal activity in the brain (Metsis

et al. 1993; Timmusk et al. 1993a). However no Ca2+-responsive cis-elements or

transcription factors have yet been described for Bdnf promoter II. Nonetheless

promoter II-regulated transcripts have a unique role in the regulation of Bdnf
expression since they are under the control of a neuron-restrictive silencer element

(NRSE) (Palm et al. 1998; Timmusk et al. 1999). This element binds the zinc-finger

protein neuron-restrictive silencer factor (NRSF) that recruits transcriptional

co-repressors mSin3A and CoREST and in turn interacts with several other

proteins, including HDACs, to regulate transcription (Fig. 2a) (Andres

et al. 1999; Huang et al. 1999; Roopra et al. 2000). In transgenic mice with wild-

type or mutated NRSE sequences, it has been shown that the BdnfNRSE is involved

in the repression of basal and kainic acid-induced transcription from Bdnf promoter

II and, interestingly, also promoter I in neurons in vivo, indicating a role for this
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element in modulating activity-dependent expression of Bdnf (Timmusk

et al. 1999). One of the causes for Huntington’s disease has been proposed to be

mutant huntingtin-mediated NRSF-dependent decreases in Bdnf gene transcription,
leading to reduced trophic support for striatal neurons (Zuccato et al. 2003). The

remote effect of the NRSE in Bdnf promoter II on Bdnf exon I transcription suggests
that Bdnf exons I and II, which are separated only by approximately 630 bp in the

human genome, could be co-regulated as a single cluster. Although indications in

this direction have been obtained by using reporter constructs encompassing the

genomic region covering both promoters I and II of Bdnf (Timmusk et al. 1999;

Hara et al. 2009), this hypothesis, and especially the role of Ca2+-dependent cis-
elements in front of Bdnf exon I in the activity-responsive induction of exon II, has

yet to be proved by using additional control experiments where the expression of

not only the reporter protein but also exon-specific mRNA is analyzed.

5.3.3 Promoter IV
Exon IV-containing Bdnf transcripts are broadly expressed and strongly stimulus

responsive in the CNS. Exon IV-containing Bdnf transcripts are also found in some

non-neuronal cells including those of the heart and lung (Timmusk et al. 1993a).

Promoter IV is the most active of the inducible Bdnf promoters in the developing

brain (Pattabiraman et al. 2005; Metsis et al. 1993) and its regulation has been

strongly correlated with activity-regulated neuronal and synapse development

(Hong et al. 2008; Sakata et al. 2009). RNAse protection and RACE assays have

identified two major clusters of TSSs for promoter IV separated by about 80 bp.

Both clusters are used for transcription initiation in all seven regions of the adult rat

brain that have been analyzed (cerebral cortex, hippocampus, cerebellum, mid-

brain, thalamus, pons/medulla, and striatum). Also both TSSs are used under

control conditions and 3 h after kainic acid treatment (Timmusk et al. 1993a,

1994a).

Sequences in the proximal region of Bdnf promoter IV (e.g., <250 bp upstream

of the exon IV TSS) are sufficient to confer about a 5–6-fold induction on a

luciferase reporter gene following KCl-induced membrane depolarization,

suggesting that important calcium-response elements are found within region.

Indeed promoter-luciferase reporter mutagenesis studies have led to the identifica-

tion of several calcium-response elements (CaREs) within the proximal Bdnf
promoter that are required for cooperative regulation of calcium-induced transcrip-

tion of Bdnf exon IV (Chen et al. 2003b; Shieh et al. 1998; Tao et al. 1998;

Pruunsild et al. 2011; Jiang et al. 2008). However, it is important to note that

expression of endogenous exon IV-containing Bdnf transcripts shows over a

100-fold induction in response to the same stimulus (Tao et al. 2002). These data

suggest that additional features of the endogenous Bdnf locus, such as epigenetic

modifications of chromatin (Bird and Wolffe 1999) or the action of distant

enhancers (Kim et al. 2010; Flavell et al. 2008), are likely to make a major

contribution to activity-regulated Bdnf transcription.
A key insight from studies of Bdnf promoter IV is that the tight temporal, spatial,

and stimulus-specific regulation of this single promoter is achieved by a complex
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interplay between multiple activity-regulated transcriptional factors. At least eight

different transcription factors have been shown to bind to CaREs in Bdnf promoter

IV (Fig. 2b). Starting at the most upstream element, these factors include (1) the

activity-inducible transcription factor NPAS4, heterodimerized with ARNT2,

which has been shown to bind a PasRE in human Bdnf promoter IV (Pruunsild

et al. 2011), (2) members of the myocyte enhancer factor 2 (MEF2) family of

stimulus-regulated transcription factors, which bind to the upstream half of the

element called CaRE1 (Hong et al. 2008; Lyons et al. 2012; Tao et al. 2002), (3) the

unique transcription factor calcium-response factor (CaRF), which binds the down-

stream half of CaRE1 (Tao et al. 2002), (4) the upstream stimulatory factors

USF1/2, which are basic helix-loop-helix family members that bind an E-box

element referred to as CaRE2 (Chen et al. 2003b), (5) members of the CREB

family, which bind a CRE half-site also called CaRE3 (Shieh et al. 1998;

Tao et al. 1998), (6) the basic helix-loop-helix factor BHLHB2 which binds

immediately upstream of the first TSS (Jiang et al. 2008), (7) the nuclear factor

κB (NF-κB) which binds a site overlapping the first TSS (Lipsky et al. 2001), and

(8) the nuclear factor of activated T cells (NFAT) which associates with an

intragenic element +140 relative to the second TSS (Vashishta et al. 2009).

Distinct requirements for these transcription factors in the regulation of Bdnf
promoter IV have been revealed through molecular genetic approaches that include

RNA interference, the generation of transcription factor knockout mice, and the

generation of transgenic mice that block the ability of specific factors to regulate

Bdnf. For example, mice lacking Bhlhb2 expression show enhanced hippocampal

Bdnf exon IV expression under both basal and activity-induced conditions,

implicating this protein as a repressor of Bdnf promoter IV (Jiang et al. 2008).

Interestingly knockdown of Npas4 or overexpression of dominant-negative forms

of the PAS domain proteins ARNT2 and NPAS4 selectively impairs Bdnf exon IV

expression at late time points after membrane depolarization (Lin et al. 2008;

Pruunsild et al. 2011). Npas4 is an immediate-early gene that shows very little

expression prior to membrane depolarization, but very rapid and robust protein

synthesis following stimuli that induce calcium influx into neurons (Lin et al. 2008).

Recruitment of newly synthesized NPAS4 to Bdnf promoter IV appears to prolong

the activation of transcription, allowing amplification of the initial transcription-

inducing stimulus.

Despite the fact that CaRF binds the calcium-response element CaRE1 and is

broadly expressed throughout the brain, studies in mice CaRF revealed that this

factor appears to play a brain region-specific role in basal regulation of Bdnf
transcription (McDowell et al. 2010). Carf knockout mice show reduced levels of

Bdnf exon IV-containing mRNA transcripts and reduced BDNF protein in the

frontal cortex compared with their wild-type littermates; however, Bdnf expression
is unchanged in the hippocampus and striatum of the knockout mice (McDowell

et al. 2010). Furthermore, although CaRE1 is required for activity-dependent

transcription of Bdnf exon IV, CaRF is selectively required for the activity-

independent regulation of Bdnf promoter IV activity (McDowell et al. 2010). By

contrast, the MEF2 family transcription factor MEF2C appears to be selectively
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required for the membrane depolarization-dependent activity of CaRE1 (Lyons

et al. 2012). These data demonstrate that differential transcription factor binding

to single gene regulatory elements can confer stimulus specificity upon the regula-

tion of target genes.

By contrast with CaRF, the binding of CREB to CaRE3 is selectively required

for the activity-dependent regulation of Bdnf exon IV transcription. The functional

importance of this interaction was elegantly demonstrated by generation of a mouse

strain bearing a mutation knocked into Bdnf promoter IV that selectively mutates

the CRE/CaRE3 site (Hong et al. 2008). Neurons from CaRE3 mutant mice have

normal basal levels of BDNF but lack activity-inducible transcription from pro-

moter IV, validating the requirement for this CaRE in activity-dependent Bdnf gene
regulation in vivo. Interestingly, disruption of CaRE3 is associated with impaired

Bdnf promoter IV recruitment of other transcriptional regulators including MEF2,

which binds to a DNA sequence distinct from CaRE3. These data provide experi-

mental support for the role of a multifactor transcriptional complex at Bdnf pro-
moter IV and suggest a function for CREB in nucleating the assembly of this

complex.

5.4 Chromatin Regulation

In addition to the binding of sequence-specific transcription factors to gene regu-

latory elements, transcription is both gated and modulated by the secondary and

tertiary structure of genomic DNA and its associated architectural proteins, which

are collectively called chromatin. The core unit of chromatin is the nucleosome,

which comprises ~146 bp of DNA wrapped around an octamer of histone proteins

with two copies each of histone H2A, H2B, H3, and H4. The positioning and

stability of nucleosomes impact transcription by modulating the accessibility of

gene regulatory elements for transcription factor binding. Chromatin structure is

sensitive to modifications of both genomic DNA and histone proteins. Differences

in chromatin structure are a major determinant of cell-type-specific programs of

gene transcription, and as we will discuss below, stimulus-dependent changes in

chromatin regulation are emerging as an important mechanism that contributes to

the plasticity of Bdnf transcription.

5.4.1 Posttranslational Histone Modifications
Dynamic acetylation of specific lysine (K) residues on the N-terminal tails of

histones H3 (at K9 and K14) and H4 (at K5, K8, K12, and K16) bound to gene

promoters is highly associated with transcriptional activation (Roh et al. 2004). A

wide variety of environmental stimuli that induce Bdnf transcription have been

demonstrated to drive increased acetylation of histones selectively at induced Bdnf
promoters in physiologically relevant brain regions. Stimuli that have been shown

to induce histone acetylation in conjunction with Bdnf transcription include seizure
(Tsankova et al. 2004; Huang et al. 2002), membrane depolarization (Chen

et al. 2003a; Martinowich et al. 2003), antidepressant treatment (Tsankova
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et al. 2006), cocaine administration (Kumar et al. 2005), forced cocaine abstinence

(Sadri-Vakili et al. 2010), dopamine D1 receptor agonist administration (Schroeder

et al. 2008), and extinction of conditioned fear (Bredy et al. 2007). Among the

molecular mechanisms that mediate steady-state changes in histone acetylation at

Bdnf, the histone acetyltransferase CBP has been shown to be recruited to the

CREB binding site of Bdnf promoter IV in an activity-dependent manner (Hong

et al. 2008), and the histone deacetylase HDAC2 has been found to be preferentially

associated compared to HDAC1 with Bdnf promoters I and II in vivo (Guan

et al. 2009).

Activity-dependent regulation of histone methylation has also been observed on

Bdnf promoters, implicating an additional set of regulatory enzymes in transcrip-

tional control. Histone methylation has been associated with both transcriptional

activation and repression depending on the particular lysine that is methylated, with

H3K4 and H3K36 correlating with transcriptionally active genes, whereas H3K9,

H3K27, and H4K20 correlate with transcriptionally repressed genes (Barski

et al. 2007; Lachner and Jenuwein 2002). Furthermore, the mono-, di-, or

tri-methylation (me1, me2, or me3) of lysines can mediate differential recruitment

of methyl-sensitive binding partners to histones (Shi et al. 2006). On Bdnf promoter

IV, chronic membrane depolarization of cultured cortical neurons drives increased

H3K4me2, a modification associated with transcriptional activation (Martinowich

et al. 2003), while on the same promoter, repressive methylation events including

H3K9me2, H3K9me3, and H3K27me3 are reduced by acute membrane depolari-

zation (Chen et al. 2003a) or exposure to an enriched environment (Kuzumaki

et al. 2011). Large families of enzymes mediate the site-specific methylation and

demethylation of histones suggesting a potential source of specificity for the

regulation of histone methylation (Shi 2007). However, which specific enzymes

act at Bdnf promoters and how their function and/or recruitment is coupled to

neuronal activity remain largely unknown.

The observation that histone modifications are subject to stimulus-dependent

plasticity at Bdnf promoters is intriguing because the persistent nature of many

chromatin structural changes suggests that these changes could provide a mecha-

nism of molecular memory. To address this possibility, a growing number of

studies are examining correlations between histone modifications and Bdnf gene
expression in chronic stimulation paradigms. For example, in vivo, downregulation

of Bdnf exons III and IV is seen in hippocampus in a paradigm of chronic social

defeat stress in mice (Tsankova et al. 2006). This decrease in Bdnf transcription is

correlated with an increase in repressive histone H3K27me2 on both promoters III

and IV. Interestingly, acute treatment of defeated mice with the antidepressant

imipramine restores Bdnf expression and induces the activating mark H3K4me2

without diminishing the “repressive” H3K27me2 mark. A similar dissociation

between H3K27 methylation and Bdnf gene expression has also been observed

following light deprivation in mice. One week of light deprivation leads to reduced

expression of multiple Bdnf isoforms in the visual cortex while Bdnf expression in

the hippocampus remains unchanged (Karpova et al. 2010). However, H3K27me3

levels rise on Bdnf promoter IV in both brain regions and are elevated at all active
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Bdnf promoters in the hippocampus. One hypothesis suggested by these data is that

persistent histone modifications may chronically alter the transcriptional state of

Bdnf in subtle ways that modulate but do not eliminate stimulus-dependent pro-

moter regulation. Future studies that address more subtle aspects of transcriptional

regulation such as the kinetics of gene activation or the cell-type specificity of

induction may yield more insight into the functional relevance of these long-lasting

changes in histone modifications.

5.4.2 DNA Methylation
In mammalian cells, genomic DNA is extensively modified by the addition of

methyl-groups, predominantly at cytosine residues in CpG dinucleotides (Lister

et al. 2009). DNA methylation of gene promoters has traditionally been associated

with the persistent transcriptional repression that characterizes X-chromosome

inactivation, gene imprinting, and long-term silencing of retrotransposons (Bird

2002). More recently, genome-wide studies have shown that substantial DNA

methylation is also found over active gene bodies and in intergenic regions

(Hellman and Chess 2007; Meissner et al. 2008), where it is thought to modulate

gene expression by influencing diverse processes that include maintenance of active

chromatin states, alternative promoter choice, and RNA splicing (Luco et al. 2011;

Maunakea et al. 2010; Wu et al. 2010).

DNA methylation can be very persistent. For example, the differential methyla-

tion of imprinting regions can impact selective parent-of-origin gene expression for

the life of a cell (Reik 2007). However a growing body of data indicates that DNA

methylation is also subject to neuronal activity-regulated changes suggesting that

modulation of DNA methylation may impact the transcriptional regulation of

plasticity genes. Consistent with this possibility, stimulus-dependent changes in

DNA methylation at Bdnf promoters have been correlated with regulation of Bdnf
mRNA expression. Martinowich et al. (Martinowich et al. 2003) were the first to

suggest that chronic membrane depolarization of cortical neurons in culture could

lead to activity-regulated loss of methylation in Bdnf promoter IV. Subsequent

studies have shown changes in the level of DNA methylation that are negatively

correlated with Bdnf mRNA expression following contextual fear conditioning

(Lubin et al. 2008), exercise (Gomez-Pinilla et al. 2011), and early life adversity

(Roth et al. 2009).

Intriguing data suggest that the stimulus-regulated demethylation of DNA in the

CNS is mediated by activation of DNA repair mechanisms. In the hippocampus,

seizure drives rapid, transient demethylation of a highly methylated region of the

Bdnf gene that is found just upstream of and overlapping the coding exon, exon IX

(Ma et al. 2009). Loss of DNA methylation is maximal 4 h following seizure

initiation but returns to baseline by 24 h. Seizure-induced DNA demethylation of

Bdnf requires the enzyme Tet1, and demethylation fails to occur when Tet1
expression is knocked down (Guo et al. 2011). In the absence of Tet1, seizure

also fails to induce Bdnf expression, suggesting the causal importance of this

demethylation reaction for Bdnf gene expression. Tet1 is part of a family of

enzymes that mediate the conversion of 5-methyl-cytosine (5mC) to the
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intermediate 5-hydroxymethyl-cytosine (5hmC) (Ito et al. 2010). Once induced by

Tet1, 5hmC is a substrate for demethylation by the Aid/Apobec family of Zn2+-

dependent cytidine deaminases. Overexpression of Aid in the dentate gyrus

demethylates Bdnf exon IX and induces Bdnf mRNA expression, whereas knock-

down of Apobec reduces seizure-induced DNA demethylation at Bdnf and impairs

stimulus-dependent Bdnf induction (Guo et al. 2011). It will be of great interest in

the future to understand how neural activity modulates the activity of this demeth-

ylation pathway.

DNA methylation impacts transcription by inhibiting or recruiting the associa-

tion of DNA binding proteins with methylated regions of the genome (Klose and

Bird 2006). Two methyl-DNA-sensitive proteins implicated as effectors of DNA

methylation for the regulation of Bdnf are the methyl-CpG binding protein

2 (MeCP2) (Chen et al. 2003a; Martinowich et al. 2003) and the insulator protein

CTCF (Chang et al. 2010). MeCP2 is of particular interest in the CNS because loss-

of-function mutations in human MECP2 cause the neurodevelopmental disorder

Rett syndrome (RTT) (Chahrour and Zoghbi 2007; Amir et al. 1999). Several lines

of evidence suggest that MeCP2 modulates both synapse development and function

(Deng et al. 2010; Medrihan et al. 2008; Nelson et al. 2006; Dani et al. 2005; Chao

et al. 2007; Tropea et al. 2009; Armstrong 2005), and loss of MeCP2-dependent

regulation of Bdnf expression has been suggested to make a major contribution to

these defects. Although MeCP2 has been shown to associate with both a histone

deacetylase and a histone H3-K9 methyltransferase (Fuks et al. 2003; Nan

et al. 1998), and traditionally has been studied for its role in transcriptional

repression, adult Mecp2 null mice show impaired expression of Bdnf suggesting a

more complex role for MeCP2 in regulation of this and likely other genes. Unlike

classic transcriptional regulators, which bind discrete gene regulatory elements,

MeCP2 is bound widely across the genome in a pattern that closely tracks the

distribution of DNA methylation. This binding pattern suggests that MeCP2 is a

global regulator of chromatin, perhaps via effects of chromosome architecture or

long-distance genomic interactions. How global chromatin regulation of this kind

would affect Bdnf expression in particular and activity-regulated gene transcription
in general is an exciting question that remains to be understood.

5.5 Translational Regulation

Although transcriptional regulation is thought to make the major contribution to

determining the expression levels of BDNF, several lines of evidence suggest that

once synthesized, Bdnf mRNA is subject to additional modes of regulation that

refine the spatial and temporal synthesis of BDNF protein. Neuronal activity may

also play a role in sculpting translational regulation. The Bdnf 30-UTR has been

shown to confer activity-regulated stability on a luciferase reporter gene, and

elements mediating this effect have been mapped in the 30-UTR though the regu-

latory mechanisms remain to be determined (Fukuchi and Tsuda 2010). Another

way that neuronal activity may influence the translation of Bdnf has been shown for
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Exon VI-containing Bdnf transcripts, for which RNAse protection analyses have

revealed that in response to membrane depolarization of neurons, a different TSS is

activated that is well downstream of the primary TSS (Timmusk et al. 1994a). The

shorter transcript generated from this new TSS lacks a GC-rich region near the 50

end of Exon VI and is predicted to be more easily translated, potentially enhancing

the activity-dependent expression of BDNF protein. Here we review described

mechanisms that may modulate the stability and/or translation of Bdnf mRNA as

well as regulatory pathways that direct Bdnf mRNA trafficking in the cell.

5.5.1 MicroRNAs Targeting the Bdnf 30-UTR
MicroRNAs (miRNAs) are short noncoding RNA molecules encoded within

conserved regions of the genome. These regulatory RNAs bind to complementary

sequences that are usually located in the 30 untranslated region (UTR) of their target
messenger RNAs. Although miRNA binding can regulate protein expression by

repressing translation, miRNA–mRNA pairs most often lead to degradation of the

target messenger RNA (Guo et al. 2010).

Bioinformatics-based in silico analyses of putative miRNA binding sites have

suggested that multiple miRNAs may be capable of binding the Bdnf 30 UTR
(Konopka et al. 2010; Lewis et al. 2003). For example, one panel of prediction

algorithms identified potential binding sites for 26 different miRNAs in the 30 UTR
of human BDNF (Mellios et al. 2008). Five of these miRNA families were shown to

be highly expressed in the prefrontal cortex, a brain region where control of BDNF
levels is important for cognitive function. The authors of this study demonstrated

that overexpression of either of two of these miRNAs, miR-30a-5p and miR-195,

was sufficient to reduce the expression of luciferase when transfected into heterol-

ogous cells along with a luciferase construct fused to the BDNF 30-UTR (Mellios

et al. 2008). Interestingly, overexpression of the miR-30a-5p precursor in cultured

rat forebrain neurons was shown to reduce BDNF protein levels without changing

levels of Bdnf mRNA (Mellios et al. 2008). These data raise the possibility that

miR-30a-5p may modulate Bdnf translation rather than inducing degradation of

Bdnf mRNA; however, the mechanisms of this effect remain to be determined.

Other studies have started with screens for miRNAs of relevance to a biological

phenomenon and then addressed Bdnf as a potential target gene. For example, the

miR-22 gene contains a single-nucleotide polymorphism that is linked to panic

disorder (Muiños-Gimeno et al. 2011). Bdnf was identified bioinformatically as a

potential target of miR22 and overexpression studies in heterologous cells were

used to demonstrate that miR-22 can degrade a luciferase report fused to the BDNF
30-UTR. In another study miR-15-a was identified as a miRNA genetically required

for inner ear development, which is a process that is highly sensitive to BDNF

levels (Ernfors et al. 1995). Bdnf was again identified and tested as a candidate

target of regulation using a combination of in silico analysis and heterologous

expression assays (Friedman et al. 2009).

As is apparent from these examples, the challenge that remains for miRNA

studies is to demonstrate the physiological relevance of endogenous miRNA–target

gene interactions for the modulation of gene expression levels in vivo. In support of
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a role for endogenous miRNAs in the regulation of BDNF, expression levels of

BDNF have been shown to be elevated in the hippocampus of Camk2a-Cre
conditional Dicer knockout mice (Konopka et al. 2010). However this observation

does not demonstrate that the effect on BDNF protein is the result of a direct

interaction between miRNAs and the Bdnf 30-UTR. Future studies of miRNA

knockout strains and/or targeted knockin mutations of miRNA binding sites in

the 30-UTRs of Bdnf will enhance our understanding of the functional relevance of

this regulatory mechanism for BDNF expression during neuronal development and

plasticity.

5.5.2 Natural Antisense BDNF Transcripts
In humans, the opposite strand of the BDNF gene encodes a variably spliced,

apparently noncoding transcript spanning 11 exons transcribed in reverse orienta-

tion to BDNF (Pruunsild et al. 2007; Liu et al. 2005). This antiBDNF gene spans

~191 kb and consists of ten exons with no evidence of open reading frames. 50

RACE indicates that there is a single promoter upstream of exon I (Pruunsild

et al. 2007). Exons I–IV of antiBDNF are located 30 to the BDNF gene, and

exons VII–X overlap BDNF introns. However, exons V and VI of the antiBDNF
transcript overlap the coding exon of BDNF. AntiBDNF mRNA is expressed in

many tissues where BDNF is also expressed, raising the possibility that these two

RNAs could form complementary double-stranded RNA species. Consistent with

this model, RNAseA/T1 treatment of RNA harvested from human cerebellum

supports recovery of double-strand RNA templates of the BDNF coding exon for

cDNA synthesis (Pruunsild et al. 2007). Natural antisense transcripts are a hetero-

geneous class of regulatory RNAs that can form sense–antisense RNA duplexes to

lead to RNA degradation or translational repression (Faghihi andWahlestedt 2009).

Although AntiBDNF was first reported to be expressed only in humans by two

groups (Liu et al. 2006; Aid et al. 2007), there has been a recent identification of an

antisense Bdnf transcript in mice (Modarresi et al. 2012). Inhibition of this Bdnf
antisense transcript leads to increased expression of BDNF protein; however, this

appears to be through a mechanism that is independent of changes in Bdnf transcript
stability (Modarresi et al. 2012). Although both mouse and human Bdnf antisense
transcripts overlap the coding region of the Bdnf gene, the transcription start sites

and exon organization of these transcripts are otherwise entirely different. One

hypothesis of the origin of species-specific antisense transcripts is that insertion of

the long-terminal repeats of human-specific endogenous retroviruses may create

new promoters that drive the formation of these antisense transcripts (Gogvadze

et al. 2009). Regardless, this evidence for a species-specific mechanism that may

modulate expression of BDNF adds a new and interesting dimension to the intricate

complexity of this highly regulated gene.

5.5.3 Dendritic Trafficking of Bdnf mRNA
At synapses, BDNF is hypothesized to activate local signaling cascades that

modulate synaptic strength and structure (Poo 2001). Though not as robustly

targeted to dendrites as the classic dendritic RNAs (Camk2a, Mtap2, and Arc)
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(Schuman 1999) the evidence that Bdnf mRNA can be even weakly detected in

dendrites (Tongiorgi et al. 1997, 2004) raised intense interest in the possibility that

regulated trafficking and localized synthesis of Bdnf might impact the specificity of

neuronal plasticity.

Expression analyses suggest that multiple regions of the Bdnf mRNA contribute

to its dendritic localization. Most commonly, RNA targeting determinants have

been mapped to 30-UTRs. Through the use of two different alternative

polyadenylation sites, Bdnf transcripts fall into two categories with either a short

or long 30-UTR (Hofer et al. 1990; Timmusk et al. 1993a). RNAs containing the

long UTR are preferentially localized to dendrites and genetic truncation of the long

30-UTR of Bdnf leads to impaired dendritic Bdnf mRNA localization, consistent

with a localization of a positive dendritic target sequence to this region

(An et al. 2008). However the coding sequence and 50-UTRs of Bdnf appear to
contribute to cellular mRNA localization as well. In situ analyses show that Bdnf
mRNAs with different 50-UTRs are differentially localized in the cell. For example,

exon VI-containing forms of Bdnf are targeted to dendrites after stimulation of

visual cortical neurons, whereas exon IV-containing forms of Bdnf are localized

only to the somata of the same cell (Pattabiraman et al. 2005). Furthermore, in the

hippocampus, exon II and exon VI probes detect Bdnf mRNA in apical dendrites

after kainate-induced seizure, whereas exon I- and IV-containing transcripts remain

restricted to the somata despite being strongly induced in levels by the stimulus

(Chiaruttini et al. 2008). Overexpression analyses in hippocampus neurons show

that when fused to GFP alone, the coding sequence of Bdnf is trafficked to the

dendrites whereas addition of exon I or exon IV sequences to the 50-UTR of

the reporter construct leads to retention of Bdnf in the somata. These data raise

the possibility that competing dendritic targeting and somatic retention signals may

be found in the coding sequence and 50-UTRs of the Bdnf mRNA, respectively

(Chiaruttini et al. 2008).

The identification of Bdnf mRNA binding proteins is just beginning to yield

insights into the regulation of its trafficking. Using bioinformatics, Chiaruttini

et al. (2008) identified a putative binding site for the RNA binding/trafficking

protein Translin (Li et al. 2008) in the coding sequence of Bdnf. Intriguingly, this
binding site overlaps the sequence encoding the common nonsynonymous

Val66Met SNP in BDNF, which has been shown to impact BDNF synthesis and

secretion (Egan et al. 2003; Chen et al. 2004).There is reduced dendritic targeting of

Bdnf mRNA in the apical dendrites of the hippocampus following pilocarpine

seizure in Bdnf Met/met mice compared with Val/Val (Chiaruttini et al. 2008).

Translin and its associated protein Trax are in dendrites, and Translin knockouts do

show moderately reduced levels of dendritic Bdnf mRNA under baseline

conditions. However these mice show robust dendritic trafficking of Bdnf mRNA

following pilocarpine seizure demonstrating that Translin expression is not required

for trafficking under these conditions (Wu et al. 2011). Another RNA binding

protein that may influence Bdnf mRNA trafficking and/or translation is the hetero-

geneous nuclear ribonucleoprotein CArG box binding factor A (CBF-A) (Raju

et al. 2011). CBF-A is found in dendrites and synaptosomes as well as somata
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and nuclei, suggesting that it could have functions in regulation of dendritic

mRNAs. CBF-A coimmunopreciptiates with Bdnf, Arc, and Camk2a RNA from

synaptosomes, and electrophoretic mobility shift assays demonstrate that CBF-A

can form a direct interaction with hnRNP A2 response elements (RTS) located in

the 30 untranslated regions of all three mRNAs. However, rather than selectively

inhibiting dendritic localization of these mRNAs, knockdown of CBF-A reduces

overall NMDA-R-dependent induction of Bdnf, Arc, and Camk2a mRNAs,

suggesting a more general role for CBF-A in stability and/or processing of

mRNAs including Bdnf (Raju et al. 2011).

Despite the presence of Bdnf mRNA in dendrites, it remains to be determined

whether Bdnf is actually locally translated in dendrites or at synapses. Nonetheless,
several lines of evidence suggest the importance of translational regulation of

BDNF expression for its functions at synapses. For example, truncation of the

long 30-UTR of Bdnf not only reduces dendritic Bdnf levels but also causes defects

in pruning of dendritic spines and a selective impairment of long-term potentiation

at synapses onto the dendrites of hippocampal neurons (An et al. 2008). Bdnf
transcripts with the long 30-UTR are more likely to be recovered in the polysome

fraction from cells, suggesting that they are more readily translated (Lau et al. 2010;

Timmusk et al. 1994a). Under basal conditions, addition of the long 30-UTR of Bdnf
to a reporter suppresses translation, whereas following neuronal activity the long

30-UTR enhances reporter translation, raising the possibility that stimulus-sensitive

translational regulatory elements lie within this domain (Lau et al. 2010). One

signaling pathway that has been shown to modulate neuronal BDNF translation in a

stimulus-regulated fashion is the eukaryotic elongation factor 2 kinase (eEF2K, also

known as CaMKIII). eEF2 is a critical component of the translational machinery

that promotes ribosomal translocation during protein synthesis. Under resting

conditions in neurons, basal activity of NMDA receptors promotes phosphorylation

of eEF2 by eEF2K, which inhibits general translation (Sutton et al. 2007). How-

ever, upon NMDA receptor blockade, reduced activity of eEF2K permits dephos-

phorylation of eEF2 that promotes translation of target mRNAs including Bdnf
(Autry et al. 2011). Intriguingly, translation induction of BDNF by the NMDA-

receptor antagonist ketamine is positively correlated with the antidepressant actions

of this drug (Autry et al. 2011). Thus these data raise the possibility that transla-

tional regulation of BDNF could contribute to the modulation of complex cognitive

and emotional behaviors.

Conclusions

Two decades of research into the transcriptional and translational mechanisms

that control expression of the neurotrophins have yielded a wealth of molecular

information about fundamental regulatory pathways that contribute to neuronal

development and plasticity. These regulatory pathways offer promising targets

for the development of therapeutics that could be used to extrinsically regulate

neurotrophin levels for the correction of neurological disorders. The challenge

for the future is to understand how these pathways are integrated in vivo to sculpt
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subtle aspects of the gene expression program that underlies the complexity of

the mammalian brain.
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Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor

neurons. Science 268:1495–1499

Gall CM, Isackson PJ (1989) Limbic seizures increase neuronal production of messenger RNA for

nerve growth factor. Science 245:758–761

92 A.E. West et al.



Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E (2009) Human-specific modulation of tran-

scriptional activity provided by endogenous retroviral insertions. J Virol 83:6098–6105

Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived

neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci

33:383–390

Grimm J, Lu L, Hayashi T, Hope B, Su T, Shaham Y (2003) Time-dependent increases in brain-

derived neurotrophic factor protein levels within the mesolimbic dopamine system after

withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci

23:742–747

Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y,

Wang X, Mazitschek R et al (2009) HDAC2 negatively regulates memory formation and

synaptic plasticity. Nature 459:55–60

Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to

decrease target mRNA levels. Nature 466:835–840

Guo JU, Su Y, Zhong C, Ming G-L, Song H (2011) Hydroxylation of 5-methylcytosine by TET1

promotes active DNA demethylation in the adult brain. Cell 145:423–434

Hall J, Thomas K, Everitt B (2000) Rapid and selective induction of BDNF expression in the

hippocampus during contextual learning. Nat Neurosci 3:533–535

Hara D, Fukuchi M, Miyashita T, Tabuchi A, Takasaki I, Naruse Y, Mori N, Kondo T, Tsuda M

(2009) Remote control of activity-dependent BDNF gene promoter-I transcription mediated by

REST/NRSF. Biochem Biophys Res Commun 384:506–511

Heinrich G, Pagtakhan C (2004) Both 500 and 300 flanks regulate Zebrafish brain-derived

neurotrophic factor gene expression. BMC Neurosci 5:19

Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science

315:1141–1143
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Leingärtner A, Heisenberg CP, Kolbeck R, Thoenen H, Lindholm D (1994) Brain-derived

neurotrophic factor increases neurotrophin-3 expression in cerebellar granule neurons. J Biol

Chem 269:828–830

Lewis B, Shih I, Jones-Rhoades M, Bartel D, Burge C (2003) Prediction of mammalian microRNA

targets. Cell 115:787–798

Li X, Jarvis E, Alvarez-Borda B, Lim D, Nottebohm F (2000) A relationship between behavior,

neurotrophin expression, and new neuron survival. Proc Natl Acad Sci U S A 97:8584–8589

Li Z, Wu Y, Baraban JM (2008) The Translin/Trax RNA binding complex: clues to function in the

nervous system. Biochim Biophys Acta 1779:479–485

Lin Y, Bloodgood B, Hauser J, Lapan A, Koon A, Kim T, Hu L, Malik A, Greenberg M (2008)

Activity-dependent regulation of inhibitory synapse development by Npas4. Nature

455:1198–1204

Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve

growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658–659

Lindholm D, Heumann R, Hengerer B, Thoenen H (1988) Interleukin 1 increases stability and

transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts. J Biol Chem

263:16348–16351

Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith M, Siesjo B, Persson H (1992) Differential

regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and

neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma.

Proc Natl Acad Sci U S A 89:648–652

Lipsky R, Xu K, Zhu D, Kelly C, Terhakopian A, Novelli A, Marini A (2001) Nuclear factor

kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection.

J Neurochem 78:254–264

Lister R, Pelizzola M, Dowen R, Hawkins R, Hon G, Tonti-Filippini J, Nery J, Lee L, Ye Z, Ngo Q

et al (2009) Human DNA methylomes at base resolution show widespread epigenomic

differences. Nature 462:315–322

Liu X, Ernfors P, Wu H, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking

NT4 and BDNF. Nature 375:238–241

Liu Q, Walther D, Drgon T, Polesskaya O, Lesnick T, Strain K, de Andrade M, Bower J,

Maraganore D, Uhl G (2005) Human brain derived neurotrophic factor (BDNF) genes, splicing

patterns, and assessments of associations with substance abuse and Parkinson’s Disease. Am J

Med Genet B Neuropsychiatr Genet 134:93–103

Liu Q, Lu L, Gong J, Shaham Y, Uhl G (2006) Rodent BDNF genes, novel promoters, novel splice

variants, and regulation by cocaine. Brain Res 1067:1–12

Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98

Lubin FD, Ren Y, Xu X, Anderson AE (2007) Nuclear factor-kappa B regulates seizure threshold

and gene transcription following convulsant stimulation. J Neurochem 103:1381–1395

Neurotrophins: Transcription and Translation 95



Lubin F, Roth T, Sweatt J (2008) Epigenetic regulation of BDNF gene transcription in the

consolidation of fear memory. J Neurosci 28:10576–10586

Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA

splicing. Cell 144:16–26

LyonsMR, Schwarz CM,West AE (2012)Members of the myocyte enhancer factor 2 transcription

factor family differentially regulate Bdnf transcription in response to neuronal depolarization.

J Neurosci 32:12780–12785

Ma D, Jang M, Guo J, Kitabatake Y, Chang M, Pow-Anpongkul N, Flavell R, Lu B, Ming G, Song

H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and

adult neurogenesis. Science 323:1074–1077

Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD

(1990a) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science

247:1446–1451

Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM,

Yancopoulos GD (1990b) NT-3, BDNF, and NGF in the developing rat nervous system:

parallel as well as reciprocal patterns of expression. Neuron 5:501–509

Maisonpierre P, Le Beau M, Espinosa R, Ip N, Belluscio L, Monte L, De S, Squinto S, Furth M,

Yancopoulos G (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3:

gene structures, distributions and chromosomal localizations. Genomics 10:558–568

Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun Y (2003) DNA methylation-

related chromatin remodeling in activity-dependent BDNF gene regulation. Science

302:890–893

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE,

Hong C, Nielsen C, Zhao Y et al (2010) Conserved role of intragenic DNA methylation in

regulating alternative promoters. Nature 466:253–257

McCauslin CS, Heath V, Colangelo AM, Malik R, Lee S, Mallei A, Mocchetti I, Johnson PF

(2006) CAAT/enhancer-binding protein delta and cAMP-response element-binding protein

mediate inducible expression of the nerve growth factor gene in the central nervous system.

J Biol Chem 281:17681–17688

McDowell KA, Hutchinson AN, Wong-Goodrich SJE, Presby MM, Su D, Rodriguiz RM, Law

KC, Wiliams CL, Wetsel WC, West AE (2010) Reduced cortical BDNF expression and

aberrant memory in Carf knockout mice. J Neurosci 30:7453–7465

Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W (2008) Early

defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome.

J Neurophysiol 99:112–121

Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE,

Nusbaum C, Jaffe DB et al (2008) Genome-scale DNA methylation maps of pluripotent and

differentiated cells. Nature 454:766–770

Mellios N, Huang H-S, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially

expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in

prefrontal cortex. Hum Mol Genet 17:3030–3042

Metsis M (2001) Genes for neurotrophic factors and their receptors: structure and regulation. Cell

Mol Life Sci 58:1014–1020

Metsis M, Timmusk T, Arenas E, Persson H (1993) Differential usage of multiple brain-derived

neurotrophic factor promoters in the rat brain following neuronal activation. Proc Natl Acad

Sci U S A 90:8802–8806

Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV (1999) Axotomy results in major changes

in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC

cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei.

Eur J Neurosci 11:3539–3551

Mocchetti I, Spiga G, Hayes VY, Isackson PJ, Colangelo A (1996) Glucocorticoids differentially

increase nerve growth factor and basic fibroblast growth factor expression in the rat brain.

J Neurosci 16:2141–2148

96 A.E. West et al.



Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der

Brug MP, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in

gene-specific transcriptional upregulation. Nat Biotechnol 30:453–459

Mudo G, Jiang XH, Timmusk T, Bindoni M, Belluardo N (1996) Change in neurotrophins and

their receptor mRNAs in the rat forebrain after status epilepticus induced by pilocarpine.

Epilepsia 37:198–207

Muiños-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T, Maron E, Pettai K,
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Trk Receptors

Katrin Deinhardt and Moses V. Chao

Abstract

The tropomyosin-related tyrosine kinase (Trk) receptors were initially described

as a family of growth factor receptors required for neuronal survival. They have

since been shown to influence many aspects of neuronal development and

function, including differentiation, outgrowth, and synaptic plasticity. This

chapter will give an overview on the biology of Trk receptors within the nervous

system. The structure and downstream signaling pathways of the full-length

receptors will be described, as well as the biological functions of their truncated

isoforms. Finally, the role of Trk receptors in the nervous system in health and

disease will be discussed.

Keywords

Trk receptors • Neurotrophins • Survival • Neurite outgrowth • Apoptosis •

Signaling endosome

1 Introduction

Widespread programmed cell death occurs during the formation of the vertebrate

nervous system. In this way, correct neuronal numbers and appropriate target

innervation are ensured during nervous system development. The neurotrophic

hypothesis proposes that during development, neurons approaching the same final

target compete for limited amounts of target-derived trophic factors, which in turn

accounts for selective cell survival (Levi-Montalcini 1987b). In this way, the
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nervous system shapes itself to maintain only the appropriate connections. This

hypothesis implies that (1) the efficacy of neuronal survival depends upon the

amounts of trophic factors produced and (2) specific receptor expression in distinct

cell populations confers neuronal responsiveness.

Within the peripheral nervous system, neurotrophins and their cognate Trk

receptors fit well with the neurotrophic hypothesis, as many peripheral neuronal

subpopulations exhibit a predominant dependence on a specific neurotrophin during

the period of naturally occurring cell death. However, in the central nervous system,

the overlapping expression of multiple neurotrophin receptors and their cognate

ligands allows for the creation of diverse connectivity, which extends well into

adulthood. Moreover, the activities of neurotrophin-Trk signaling extend well

beyond neuronal survival and include molecular mechanisms underlying neuronal

growth and arborization, as well as the strengthening of synaptic transmission.

Importantly, Trk signaling is not confined to the nervous system, but is instead

increasingly recognized in non-neuronal tissues such as the vasculature (Kermani

and Hempstead 2007).

This chapter will focus upon several aspects of Trk receptor biology within the

nervous system. We will discuss the receptor structure, signal transduction, and

retrograde transport and discuss the impact of Trk signaling on the nervous system

in health and disease.

2 Structure

The Trk family of tyrosine kinase receptors comprises three single-pass type I

transmembrane proteins. Their extracellular domains are heavily glycosylated and

each contains three leucine-rich repeats flanked by two cysteine repeats and

immunoglobulin-C2 (Ig) domains proximal to the transmembrane region. Intracel-

lularly, Trk receptors possess a tyrosine kinase domain.

Trks interact with their ligands using the second of their Ig domains (Ultsch

et al. 1999; Wiesmann et al. 1999), and the receptor expression profile confers

ligand responsiveness to a cell. In addition, differential splicing of Trk mRNA

results in the generation of Trk isoforms with different extracellular domains,

affecting ligand binding. For example, a short insert in the juxtamembrane region

of TrkA increases affinity for NT-3 without affecting nerve growth factor (NGF)

binding (Clary and Reichardt 1994), and in TrkB, the presence of a similar insert

allows for activation through NT-3 and NT-4, while lack of this insert confers

specificity for brain-derived neurotrophic factor (BDNF) (Boeshore et al. 1999;

Strohmaier et al. 1996). Other Trk isoforms lacking large parts of the intracellular

domain including the tyrosine kinase domain (“truncated Trks”) are discussed in

more detail below (see also Sect. 8).

Ligand binding to full-length Trk receptors results in receptor dimerization and

subsequent activation in trans of the receptor. Three tyrosine residues are found

within the autoregulatory loop of the Trk kinase domain, and phosphorylation of

these sites further activates the kinase, thereby initiating downstream signaling

pathways.
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3 Ligands

The ligands for the Trk receptors are a family of basic growth factors called

neurotrophins. They comprise NGF, BDNF, and neurotrophins (NT) 3 and

4, which bind selectively and with affinities of 10�9–10�10 M to their respective

Trk receptors, TrkA, TrkB, and TrkC. NGF binds most specifically to TrkA, BDNF

and NT-4 to TrkB, and NT-3 to TrkC. The p75 can bind to all four neurotrophins

and additionally regulate the affinity of Trk receptors for individual neurotrophins

(Bothwell 1995; Chao and Hempstead 1995). Although Trk and p75 receptors do

not appear to bind directly to each other, there is evidence that complexes form

between these receptors. As a result, p75 can increase ligand affinity and selectivity

for Trk receptors. For example, an excess of p75 over TrkA increases TrkA’s

affinity for NGF to 10�11 M. Moreover, the presence of p75 restricts TrkA signaling

to NGF, not NT-3 (Benedetti et al. 1993), and increases TrkB specificity for BDNF

over NT-3 and NT-4 (Bibel et al. 1999).

All neurotrophins are initially synthesized as proneurotrophins, which are then

cleaved by proteases either intra- or extracellularly to generate the mature ligand.

The prodomain is essential for the correct folding of the mature ligand as well as for

its targeting to the secretory pathway. In addition, proneurotrophins themselves are

active signaling molecules, which have opposing effects compared to their mature

counterparts (Lu et al. 2005) and bind with high affinity to the p75 receptor.

The roles of p75 and proneurotrophins are discussed in more detail in chapter

“Deciphering Proneurotrophin Actions”.

4 Signaling

The signaling pathways activated by Trk receptors impact on many diverse neuro-

nal functions, including cell survival and differentiation, axonal and dendritic

growth and arborization, synapse formation, and synaptic plasticity. Much of the

groundwork describing Trk signaling pathways was initially performed in rat

adrenal pheochromocytoma (PC12) cells, which express TrkA and p75 and are

used as a model cell line for sympathetic neurons. However, these cells differ from

primary neurons in many aspects, such as lack of axonal and dendritic specification

and continuing cell cycling. Therefore, many studies investigating neurotrophin

signaling focused on NGF and TrkA. These results have been extrapolated to TrkB

and TrkC signaling. However, more recently Trk signaling has been studied in a

large variety of primary neurons as well as outside the nervous system, and it has

become clear that while many pathways are indeed shared between the individual

Trk receptors, others are activated in a Trk- or cell type-specific manner.

The mechanism of Trk signaling involves phosphorylation of specific tyrosine

residues upon neurotrophin binding. These phosphorylated tyrosine sites mediate

signaling by creating docking sites for effector proteins that initiate the activation of

intracellular signaling pathways. The Y490 and Y785 tyrosine residues in human

TrkA receptor, and their corresponding residues in TrkB and TrkC, serve as the
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main docking sites to initiate downstream signaling pathways such as the

Shc-extracellular signal-regulated kinase (ERK) or phospholipase C-γ (PLC-γ)
pathways, respectively. The Y670, Y674, and Y675 residues located within the

tyrosine kinase domain can also recruit adaptor proteins after phosphorylation,

including the Grb2 and SH2B adaptor proteins. Canonical Trk receptor signaling

has been reviewed extensively [e.g., see Arevalo and Wu (2006), Huang and

Reichardt (2003), Reichardt (2006)]. Below, we describe in more detail the three

most studied pathways downstream of Trk receptor activation (see also Fig. 1).

Plasma membrane

Ig

Ig

CRD

CRD

LRR

TK

Y490

Y785
PLCγ

DAG IP3

PKC Ca2+

Shc
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SOS

Erk
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Fig. 1 Schematic of signaling pathways downstream of Trk tyrosine kinase receptors. Each Trk

receptor undergoes ligand-dependent dimerization that results in the recruitment of multiple

cytoplasmic proteins, which in turn increase the activities of PLCγ, PI3K, and Erk
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4.1 PLC-g

Phosphorylation of Trk at the most C-terminal tyrosine, Y785, leads to recruitment

and activation of PLC-γ, which hydrolyzes phosphatidylinositol(4, 5)bisphosphate

(PI(4,5)P2) into diacylglycerol (DAG) and inositol tris-phosphate (IP3). IP3 leads to

release of intracellular Ca2+, which in turn activates Ca2+-dependent enzymes such

as Ca2+-calmodulin-regulated protein kinases (CaM kinases) and the phosphatase

calcineurin. Additionally, the release of Ca2+ and the production of DAG activate

protein kinase C (PKC), which subsequently stimulates Erk signaling via Raf, as

well as the capsaicin VR1 channel (Chuang et al. 2001) and the transient receptor

potential channel (TRPC), which contributes to the BDNF-induced rise of Ca2+ at

growth cones and synapses. Other activities that are affected include the formation

of TrkB-postsynaptic density 95 (PSD95) complexes at synapses and cAMP

response element binding protein (CREB)-dependent transcription. PLC-γ signal-

ing in response to both NGF and BDNF has been implicated in chemoattraction of

axonal growth cones, and prolonged activation in response to an NGF pulse induces

the transcription of a sodium channel. Furthermore, mice harboring a targeted

mutation at the TrkB PLC-γ docking site, Y816 (Minichiello et al. 1999), have

impaired hippocampal long-term potentiation (LTP), along with impaired induction

of CREB and CaM kinase signaling. However, there are potential contributions of

other proteins, such as ARMS/Kidins220 scaffold protein, which is phosphorylated

by Trk and influences LTP (Wu et al. 2010).

4.2 PI3K-Akt

Phosphorylation of Trk at the tyrosine residue closest to the transmembrane

domain, Y490 in TrkA or Y515 in TrkB, creates a Shc binding site. This in turn

leads to activation of phosphatidylinositol 3-kinase (PI3K) via Grb2 and Gab1 and

to phosphorylation of inositol phospholipids at the 30 position resulting in a change

of the local membrane composition. As a consequence, Akt translocates to the

plasma membrane and becomes activated. Akt activity results in increased protein

translation via the mammalian target of rapamycin (mTOR)-p70S6 kinase and

4E-BP1 pathways and in enhancing axonal growth through phosphorylation and

inactivation of GSK-3β. Additionally, activated Akt promotes neuronal survival by

inhibiting a forkhead transcription factor, FKHRL1, which regulates expression of

pro-apoptotic genes, by phosphorylating and therefore inhibiting the pro-apoptotic

protein Bad, and by phosphorylating the inhibitor of the NFκB pro-survival path-

way, IκB, and thus promoting its degradation.

4.3 Erk

In addition to PI3K-Akt signaling, the creation of a Shc binding site at Y490

initiates downstream Ras-extracellular signal-regulated kinase (Erk) signaling.
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Recruitment of a complex of growth factor receptor bound protein 2 (Grb2) and the

Ras activator son of sevenless (SOS) stimulates activation of Ras and downstream,

transient activation of the c-Raf/MEK/Erk cascade. Prolonged Erk activation is also

initiated at the Y490 site, but requires the ARMS/Kidins220 protein, which recruits

Crk, another adaptor protein. Binding to Crk activates the exchange factor C3G and

thus initiates Rap1/Raf-dependent MEK/Erk signaling (Arevalo et al. 2004). Ulti-

mately, Erk signaling may lead to local axonal growth as well as to the initiation of

CREB-mediated transcriptional events.

5 Alternatives to Ligand Binding: Transactivation of Trk
Receptors

In addition to direct activation through neurotrophins, Trk receptors are, similar to

EGF receptors, also transactivated intracellularly using alternative, neurotrophin-

independent pathways. The ability to transactivate Trks was first demonstrated for

adenosine and pituitary adenylate cyclase-activating polypeptide (PACAP) signal-

ing through G-protein-coupled receptors (GPCRs), a mechanism requiring Src

family kinases (SFK) and intracellular calcium (Lee and Chao 2001; Lee

et al. 2002). In contrast to neurotrophin-mediated direct activation, transactivation

is a relatively slow process that happens within hours, not minutes, and is thought to

occur on intracellular membranes, primarily at the Golgi (Rajagopal et al. 2004).

Ligand binding to the low-density lipoprotein receptor LRP1 also transactivates

Trks in an SFK-dependent manner and is required for LRP-dependent neurite

outgrowth in PC12 cells (Shi et al. 2009).

Transactivation of Trk receptors is not restricted to in vitro paradigms, as recent

studies demonstrated that transactivation of Trk occurs in embryonic cortical

neurons by EGF (Puehringer et al. 2013). Also, both glucocorticoids (Jeanneteau

et al. 2008) and zinc (Huang et al. 2008) are able to transactivate Trk receptors

in vivo. Indeed, zinc-mediated transactivation of TrkB affects synaptic transmis-

sion by modulating in mossy fiber LTP.

6 Membrane Trafficking

Activation of Trk receptors by neurotrophins leads to the endocytosis of the

receptor–ligand complexes via clathrin-mediated endocytosis (Grimes et al. 1996;

Zheng et al. 2008). Internalized receptors continue to signal either locally or are

transported over long distances to relay a signal from or to distant parts of the cell.

Eventually, the endocytosed receptors will be either degraded or recycled back to

the plasma membrane.
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6.1 Receptor Recycling and Degradation

The decision between receptor recycling or degradation following stimulation and

internalization determines the responsiveness of the cell to ligand. Additionally,

post-endocytic sorting of Trks controls the strength and duration of intracellular

receptor signaling. In general, Trk receptors can either undergo recycling or

degradation or enter the retrograde axonal transport pathway to carry trophic

signals over long distances (see Sect. 6.2). However, there are differences between

the individual Trk receptors. A detailed study in PC12 cells revealed that a

juxtamembrane motif in TrkA biases this receptor for rapid recycling and delays

degradation. In contrast, TrkB receptors, which lack this sequence, are primarily

sorted into the degradative route (Chen et al. 2005; Sommerfeld et al. 2000).

Accordingly, the biological response is different, with NGF–TrkA signaling lead-

ing to prolonged downstream signaling compared to BDNF–TrkB.

6.2 Retrograde Axonal Transport

In the peripheral nervous system, neurotrophins are released by the target tissue and

bind to their cognate Trk receptors at the nerve terminals. Here, they are

internalized into membranous vesicles, which are then transported retrogradely

along the axon to the cell body to convey the survival signal. These

Trk-containing vesicles have been termed “signaling endosomes” (Grimes

et al. 1996). Experiments using compartmented in vitro systems, where the distal

axon is isolated from the somatodendritic compartment and can therefore be

selectively exposed to ligands, have demonstrated that distal stimulation of Trk

receptors with neurotrophins can indeed lead to a nuclear response, and this process

requires the internalization of the ligand–receptor complex. For example, the

NGF–TrkA complex can signal to CREB this way to mediate neuronal survival

(Riccio et al. 1997, 1999).

Measurements of 125I-NGF transport from distal axons to the cell body in mice

indicated a rate from 3 to 10 mm/h in vivo (Stockel et al. 1975). Later, in vitro

assays directly visualizing retrograde axonal transport of fluorescently labeled

NGF, BDNF, or TrkB in cultured dorsal root ganglia and motor neurons confirmed

these transport rates and furthermore identified proteins that participate in this

process, such as the molecular motor dynein (Heerssen et al. 2004). In addition,

purification of signaling endosomes from sciatic nerve and in vitro neuronal

cultures identified the endocytic Rab GTPases Rab 5 and 7 (Deinhardt

et al. 2006; Delcroix et al. 2003) as well as the actin modulators Rac and cofilin

(Harrington et al. 2011) as essential components for the trafficking of

Trk-containing signaling endosomes along the retrograde transport route. These

experiments also provided insights into the nature of signals that are relayed from

the terminal to the soma (Perlson et al. 2009). While these studies have begun to

shed light on the complex process of axonal retrograde Trk trafficking and signaling

in peripheral neurons, much less is known about axonal transport of Trk receptors in
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the brain, where neurons do not necessarily depend on target-derived neurotrophins

for their survival.

7 Effects of Trk Signaling on the Nervous System

Individual Trk receptors are expressed in separate subsets of neurons. For example,

TrkB is predominantly expressed within the central nervous system, while both

TrkA and TrkC are largely found on peripheral neuronal populations. Accordingly,

the analysis of Trk receptor knockout mice revealed limited overlap between the

phenotypes of different Trk-deficient mice (Snider 1994). For example, TrkA null

animals have normal motor function, but display severe sensory and sympathetic

neuropathies and die within 1 month of birth. This is accompanied by a profound

loss in superior cervical, dorsal root, and trigeminal ganglion neurons, but TrkA

null mice show very limited defects within the central nervous system (Smeyne

et al. 1994).

TrkC null animals appear largely normal at birth, but display subsequent growth

defects, and mostly die by 3 weeks of age. During postnatal development, these

animals develop abnormal postures and movements but can sense pain, suggesting

that proprioception is specifically affected. In these mice, motor neuron afferents

are decreased and a population of dorsal root ganglia neurons is lost, while the

central nervous system appears grossly normal (Klein et al. 1994).

Animals deficient for TrkB in contrast fail to feed and die within hours after

birth. These animals lack populations of motor neurons as well as dorsal root and

trigeminal ganglia neurons. Interestingly, despite the broad expression of TrkB

throughout the central nervous system there is no profound neuronal loss within the

brain of TrkB null animals (Klein et al. 1993) or even within the brains of TrkB;

TrkC double knockout mice (Silos-Santiago et al. 1997). These findings highlight

the profound difference between central and peripheral neurons with regard to their

dependence on trophic factors for survival.

Expression of Trk receptors is not just restricted to the nervous system, and

accordingly, Trk null animals have additional severe defects, for example, in the

cardio vasculature (Kermani and Hempstead 2007). TrkB is expressed in cardiac

endothelial cells, and TrkB null animals show increased apoptosis of these cells and

a decrease in intramyocardial blood vessels (Wagner et al. 2005). TrkC expression

was found in developing cardiomyocytes, and consequently TrkC null animals have

severe cardiac deficiencies, such as atrial and ventricular septal defects and valvular

defects (Tessarollo et al. 1997). The potential role of TrkA in cardiac and vascular

development is less well studied. However, restoring TrkA expression specifically

in the nervous system of TrkA null animals showed that the resulting animals are

viable and grossly normal, with minor immune defects (Coppola et al. 2004). This

argues against a prominent role of TrkA signaling in the formation and maintenance

of a healthy vasculature.
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7.1 Neuronal Survival

As described above, individual Trk receptors mediate the survival of specific

subpopulations of peripheral neurons, as their absence results in loss of defined

subsets of cells. An underlying molecular mechanism has been described for

NGF–TrkA signaling in superior cervical ganglion neurons. Here, Trk receptors

are activated by target tissue-derived neurotrophins and thus relay a retrograde

signal along the axon to the neuronal soma, which triggers the PI3 kinase–Akt

pathway and CREB activation, thereby resulting cell survival (Riccio et al. 1999).

Interestingly, within the same system NT-3, which also activates TrkA, cannot

substitute for NGF in supporting survival from the distal axon (Kuruvilla

et al. 2004), suggesting that not all ways of Trk receptor activation are equal.

Withdrawal of growth factors in compartmented in vitro cultures of superior

cervical ganglion neurons showed that in addition to the absence of a survival

signal, a negative signal is generated and transmitted along the axon to the cell

body, contributing to the cell death response (Mok et al. 2009). Along these lines, a

recent study suggested that TrkA and TrkC but not TrkB act as so-called depen-

dence receptors in vitro and in vivo, which not only require ligand-dependent

activation to promote neuronal survival, but can also actively induce neuronal

death in absence of sufficient ligand (Nikoletopoulou et al. 2010). These

observations may explain in part why neurons of the central nervous system,

which mainly express TrkB, are less sensitive to apoptosis following lack of

neurotrophic support.

7.2 Morphological Effects

In addition to promoting neuronal survival, neurotrophin-Trk signaling enhances

neuronal outgrowth and arborization in a wide range of different neuronal subtypes.

Indeed, the TrkA ligand NGF was initially described as a soluble factor promoting

the axon outgrowth from chick sensory ganglia explants (Levi-Montalcini 1987a).

Within the central nervous system, where neurons are not dependent on

neurotrophin-Trk signaling for their survival, enhancing neuronal growth and

synaptic strengthening (see Sect. 7.3) appear to be the primary functions of Trk

signaling. Accordingly, interfering with BDNF–TrkB signaling leads to axonal and

dendritic outgrowth and arborization defects in multiple animal models ranging

from frog to mouse [e.g., see Chen et al. (2006), Hu et al. (2005)]. Molecular

mechanisms that lead to Trk-dependent neurite growth and branching include

signaling via the scaffolding protein ARMS/Kidins220 (Wu et al. 2009),

ubiquitination and downregulation of a RhoA activator (Lin et al. 2011), and

induction of a MAP kinase phosphatase to regulate microtubule dynamics

(Jeanneteau et al. 2010). In addition to axonal and dendritic growth and arboriza-

tion, BDNF–TrkB signaling also has a well-established role in dendritic spine

formation and therefore synapse development (see Sect. 7.3).
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During the development of sympathetic neurons, TrkA mediates both the initial

axon extension toward the target tissue and then terminal branching and synaptic

innervation once the target is reached. The switch between extension to branching

and innervation is marked by a change in ligands from NT-3 to NGF-dependent

TrkA signaling (Kuruvilla et al. 2004), thereby demonstrating Trk receptors can

respond differentially, depending on the stimulus provided.

7.3 Synaptic Plasticity

The role of neurotrophins in modulating synaptic transmission is best described for

BDNF–TrkB signaling. BDNF–TrkB not only have a well-established role in

promoting dendritic spine formation, and therefore providing a structural basis

for synapse formation, but also enhance synaptic transmission in paradigms of

LTP (Cohen-Cory et al. 2010; Minichiello 2009). Indeed, blocking BDNF-

dependent TrkB activation leads to a decrease in hippocampal LTP, in both the

early and late response. Several of the signaling cascades triggered by BDNF–TrkB

signaling are essential in LTP maintenance, such as the Erk and Ca2+/ calmodulin

pathways, therefore providing a molecular mechanism of how BDNF–TrkB signal-

ing may influence synaptic strength. In addition, activation of TrkB enhances

glutamate release and synaptic transmission in a myosin6/ GIPC-dependent manner

(Yano et al. 2006). Conversely, defects in postsynaptic events during synaptic

transmission and plasticity are observed in mouse models with reduced BDNF

secretion (Ninan et al. 2010; Pattwell et al. 2012). Hence, BDNF is capable of

regulating both presynaptic and postsynaptic events in central neurons (Manabe

2002). These effects are not without behavioral consequences, as these mice display

increased anxiety and decreased responsiveness to antidepressant treatment (Bath

et al. 2012; Chen et al. 2006; Yu et al. 2012).

8 Truncated Trk Receptors

In addition to the full-length receptor tyrosine kinases, truncated isoforms of Trk

receptors exist, which lack the intracellular kinase domain. These shorter isoforms

are expressed at high levels throughout the mature nervous system. However,

compared to their full-length counterparts, relatively little is known about the

biological function of these truncated isoforms. Initially it was thought that the

truncated Trk receptors act as dominant negatives, which sequester free

neurotrophin ligands away from the active full-length receptors. However, more

recently it has become clear that these truncated versions are not just neurotrophin

sinks, but are also actively signaling molecules (Fenner 2012) (see also Fig. 2). For

example, binding of NT-3 to truncated TrkC leads to recruitment of the scaffolding

protein tamalin, which results in activation of Arf6 and the small Rho family

GTPase Rac1 and ultimately membrane ruffling (Esteban et al. 2006). Truncated

TrkB on the other hand interacts with a Rho GDP dissociation inhibitor (GDI), and
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binding of BDNF to truncated TrkB leads to the release of the Rho-GDI and thus to

the inhibition of Rho (Ohira et al. 2005). Analysis of mice lacking selectively the

truncated form of TrkB revealed a decrease in dendritic complexity specifically

within the amygdala, while the dentate gyrus area of the hippocampus was not

affected. This defect in neuronal morphology was associated with an increase in

anxiety (Carim-Todd et al. 2009). In addition, mice lacking truncated TrkB display

increased neuromuscular function (Dorsey et al. 2012).

9 Trk Signaling in Disease

Neurotrophic factors have been proposed as a treatment for Alzheimer’s disease,

Huntington’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and

peripheral neuropathy. Considerable evidence in rodents and primates has shown

the efficacy of neurotrophins, such as NGF and BDNF, to prevent death of neurons;

improve cell signaling; restore learning and memory, and prevent age-related

Plasma membrane
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Ig
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LRR

Frs2

RhoGDI
tamalin

ARNO

Arf6
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Fig. 2 Active signaling downstream of truncated Trk receptors. Truncated Trk receptors lack the

tyrosine kinase domain of their full-length counterparts, but are nevertheless competent to recruit

cytoplasmic proteins and initiate signaling cascades following ligand-dependent dimerization
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cognitive decline. Neurotrophins carry out their trophic functions through Trk

receptor signaling (see Sect. 4). However, many clinical trials with NGF and

BDNF have met with disappointing results, in part due to difficulties of delivery

and uncertain pharmacokinetics (Thoenen and Sendtner 2002). Neurotrophic

factors are large, sticky proteins that do not diffuse well into tissues and do not

readily cross the blood–brain barrier. The problems in managing the dose and

pharmacokinetics of these proteins have hindered the application of neurotrophic

factors as a therapeutic intervention for many aging and neurodegenerative

diseases.

An extensive amount of preclinical research in the past 25 years indicates that

neurotrophic factor-based therapies can reverse deficits in learning and memory in

disorders such as Alzheimer’s disease (Nagahara et al. 2009; Tuszynski 2007) and

promote neuronal regeneration (Lu and Tuszynski 2008). Indeed, activation of Trk

receptors results in neuroprotective effects upon cortical, hippocampal, striatal,

basal forebrain cholinergic and motor neurons after nerve injury (Lee and Chao

2001; Rajagopal et al. 2004). These observations are significant since cholinergic

neurons in the basal forebrain degenerate in Alzheimer’s disease; motor neurons

undergo cell death in ALS; and striatal neurons in Parkinson’s and Huntington’s

diseases. Activation of TrkB receptors prevents motor neurons from cell death after

injury. In addition, there is evidence to support a causal role of BDNF in

Huntington’s disease (Zuccato and Cattaneo 2009).

Activation of Trk receptors results in increases in Akt, CREB, and ERK

activities, as well as phosphoinositide lipid phosphorylation and activation of

GTPases, such as Ras and Rap1, to promote neuronal cell survival and differentia-

tion (Chao 2003) (also see Sect. 4). A unique substrate of Trk receptors is the

ARMS/Kidins protein, which is rapidly phosphorylated by neurotrophin treatment.

Indeed, a deficit in the levels of ARMS protein results in age-dependent

neurodegeneration in the entorhinal cortex accompanied by impairments of spatial

memory that mimic Alzheimer’s disease (Duffy et al. 2011).

As described above, low-molecular-weight compounds are capable of activating

Trk receptors, through receptor transactivation (Domeniconi and Chao 2010;

Jeanneteau et al. 2008; Lee and Chao 2001) (also see Sect. 5). Administration of

adenosine agonists rescues lesioned motor neurons (Wiese et al. 2007) and

ameliorates motor deficits in a Huntington’s disease mouse model (Chou

et al. 2005). Therefore, small molecules that transactivate the TrkB receptor

could be used for the treatment of many neurodegenerative diseases, in lieu of

using BDNF. Because the identified compounds (adenosine, steroids) have many

systemic effects, additional small molecules of high specificity and potency capable

of targeting and activating Trk receptors in the brain are needed. Transactivation of

Trk receptors is not only a potential mechanism to prevent age-related degenera-

tion, but can also be applied to mood disorders (anxiety, depression). Mood and

anxiety disorders are among the most prevalent of all medical disorders. BDNF has

been implicated in both depression and anxiety (Martinowich et al. 2007).

Decreases in BDNF levels occur with stress-induced depressive behaviors, hippo-

campal atrophy, and increased anxiety-related behaviors. Identification of specific
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Trk agonists will be relevant not only to the treatment of aging diseases affecting

the nervous system, but also conditions of pain, anxiety, and depression.

Conclusion

Within this chapter, we have attempted to cover major aspects of Trk receptor

biology in the nervous system. We have discussed the molecular structure of Trk

receptors, their cognate ligands, and the molecular basis of ligand-dependent

receptor activation, as well as the possibility for ligand-independent receptor

transactivation at intracellular membranes. We further described intracellular

mechanisms of signal transduction downstream of Trk receptor activation, using

the most studied pathways as examples, and depicted how distinct routes of Trk

receptor membrane trafficking can influence both the duration and location of

Trk receptor signaling. Finally, we have portrayed multiple effects of Trk

receptor signaling on neuronal physiology, such as mediating the survival of

neuronal populations during development, and higher order functions in adult-

hood, such as supporting learning and memory by increasing synaptic transmis-

sion. Together, this emphasizes not only the essential role of Trk receptors

within a healthy nervous system, but also highlights the potential of Trk

receptors as a therapeutic target in neurodegenerative diseases, as discussed in

the final part of this chapter.
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The Biological Functions and Signaling
Mechanisms of the p75 Neurotrophin
Receptor
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Abstract

The p75 neurotrophin receptor (p75NTR) regulates a wide range of cellular

functions, including programmed cell death, axonal growth and degeneration,

cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellu-

lar functions governed by the receptor arises from the variety of ligands and

co-receptors which associate with p75NTR and regulate its signaling. P75NTR

promotes survival through interactions with Trk receptors, inhibits axonal

regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and

promotes apoptosis through association with Sortilin. Signals downstream of

these interactions are further modulated through regulated intramembrane pro-

teolysis (RIP) of p75NTR and by interactions with numerous cytosolic partners.

In this chapter, we discuss the intricate signaling mechanisms of p75NTR,

emphasizing how these signals are differentially regulated to mediate these

diverse cellular functions.
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1 Introduction

The discovery of nerve growth factor (NGF) as the factor released by the target to

promote survival and differentiation quickly led to the hunt for the receptor

involved in mediating its actions. Early studies characterizing radiolabeled NGF

binding to peripheral neurons revealed that NGF bound its receptors in a complex

manner that likely involved multiple sites (Frazier et al. 1974a, b). Subsequently,

two distinct NGF binding sites, one with high affinity and one with low affinity,

were demonstrated on sensory neurons (Sutter et al. 1979). Cross-linking studies

confirmed two receptor components in sympathetic neurons (Massague et al. 1981)

and PC12 cells (Grob et al. 1983; Massague et al. 1982) of approximately

140–200 kDa and 70–100 kDa, with the lower molecular weight species being

most abundant. These binding studies set the stage for the expression cloning of the

NGF receptor by Chao et al. (1986) and, independently, by the Shooter lab (Radeke

et al. 1987). Both groups identified the cDNA for the lower molecular weight

species; it was termed the p75 receptor, which proved to be the low affinity binding

site. Eventually, the proto-oncogene tropomyosin-related kinase A, or TrkA, was

recognized as another NGF receptor accounting for the higher molecular weight

component (Kaplan et al. 1991; Klein et al. 1991), and a complex of both p75 and

TrkA was shown to comprise the high affinity binding site (Hempstead et al. 1991).

The cloning of the p75 receptor was a major achievement in the field; however, it

opened a Pandora’s box of puzzles and paradoxes. Prior to the cloning of p75, it had

been suggested that only the high-affinity binding component was able to mediate

the neurite growth-promoting effects of NGF (Sonnenfeld and Ishii 1982; Stach and

Wagner 1982), raising the question of the role of the low affinity component. Once

TrkA was identified as another receptor for NGF, it was quickly established as the

primary mediator of NGF’s survival and differentiation effects, being a tyrosine

kinase with potent signaling capability (Ibanez et al. 1992; Loeb et al. 1991). For

several years the p75 receptor was thought to simply function as a binding partner

for TrkA or acting to increase the local concentration of NGF to facilitate activation

of TrkA (Chao and Hempstead 1995). However, there were a number of

observations that piqued the interest of researchers in the field, causing them to

further explore the role of p75; for example, the receptor is expressed widely in the

developing nervous system, with expression in peripheral neurons, within the spinal

cord, and throughout the brain (Ernfors et al. 1991). It is expressed by many

neuronal cell types, as well as neural stem cells, some astrocytes, oligodendrocyte

precursors, Schwann cells, and olfactory ensheathing glia (Cragnolini and

Friedman 2008). Several nonneural tissues also express the receptor during some

stage of development, such as kidney and muscle (Ernfors et al. 1991; Wheeler and

Bothwell 1992). In contrast, the Trk receptors exhibit a much more restricted

expression pattern. In addition, the p75 receptor is strongly upregulated in many

neurons and glial cells following injury, suggesting that it has a functional role in

such conditions (discussed below). Finally, there are portions of the intracellular

domain, where signaling would initiate, that are highly conserved across species,

from chicken to human. These findings prompted further study of the p75 receptor,
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and in the 25 years since its initial cloning, it has been shown to regulate an amazing

array of cellular responses, including cell survival, cell cycle, neurite outgrowth,

synaptic function, and myelination. This chapter will discuss our current under-

standing of the molecular mechanisms by which the p75 receptor mediates these

diverse signals.

2 Structure

After the cloning of p75 it was quickly recognized that it not only bound NGF but

also brain-derived neurotrophic factor (BDNF) (Rodriguez-Tebar et al. 1990),

neurotrophin-3 (NT3) (Rodriguez-Tebar et al. 1992), and neurotrophin-4 (NT4)

(Ryden et al. 1995), with similar affinity, although with somewhat different kinetics

(Rodriguez-Tebar et al. 1992). The ability of the receptor to bind all neurotrophins

led to its designation as the p75 neurotrophin receptor (p75NTR) as opposed to the

p75 NGF receptor. The p75NTR interacts with the neurotrophins through the four

cysteine-rich domains in its extracellular domain (Baldwin and Shooter 1995). The

initial X-ray crystallography structural analysis of the extracellular domain of

p75NTR bound to NGF indicated that the receptor monomer binds NGF in an

asymmetrical fashion, resulting in a 1:2 ratio (He and Garcia 2004). However,

considerable biochemical data indicated that p75NTR associates with neurotrophins

in a 2:2 ratio. Binding analyses using cross-linkers to attach neurotrophins to the

receptor indicated a dimer of p75NTR bound to a neurotrophin dimer (Grob

et al. 1985). Further crystallographic analyses support a 2:2 complex between

neurotrophins and p75NTR (Feng et al. 2010; Gong et al. 2008), and it has been

suggested that the 1:2 asymmetrical binding may represent an intermediate in the

formation of the 2:2 complex (Feng et al. 2010).

At least a fraction of p75NTR has been shown to preexist as a disulfide-linked

dimer (Grob et al. 1985; Ross et al. 1984), and a highly conserved cysteine (257) in

the transmembrane domain responsible for linking the monomers was recently

identified, although non-covalent dimerization still occurred even when cysteine

257 was mutated (Vilar et al. 2009). Further analysis revealed that a conserved

AxxxG266 sequence in the transmembrane region, which is often found in self-

associating transmembrane proteins, is required for the formation of dimers.

Through their studies, the authors elucidated an interesting aspect of the receptor’s

structural dynamics that provided a mechanism by which p75NTR transduces its

signal upon ligand binding: the disulfide in the transmembrane domain acts as a

pivot point, such that when the extracellular domain clamps down on a

neurotrophin, the intracellular domains separate. The parting of the dimerized

intracellular portions of the receptor facilitates binding of signaling molecules

necessary for p75NTR-mediated cell death (Vilar et al. 2009).

The intracellular domain (ICD) of p75NTR contains a region similar to the Tumor

necrosis factor receptor (TNFR) and the Fas antigen (Chapman 1995; Chapman and

Kuntz 1995; Feinstein et al. 1995). Since TNFR and Fas mediate apoptotic signals,

this portion of their ICD was termed the “death domain.” The 3-D structure of
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p75NTR’s death domain was determined by NMR and was similar to the structure of

the Fas death domain, although there were a few differences. In particular, the death

domain of Fas and TNFR self-assemble, while that of p75NTR does not (Liepinsh

et al. 1997). This result is in agreement with the ability of TNFR and Fas to signal

by recruiting other death domain-containing proteins while the intracellular

interactors of p75NTR so far identified do not contain a death domain.

In addition to the full length form of p75NTR, a splice variant was reported

lacking exon III, which encodes the cysteine-rich domains 2, 3, and 4 that are

required for neurotrophin binding (von Schack et al. 2001). The original p75NTR

knockout mouse was created by deleting exon III (Lee et al. 1992); thus the short

form of p75NTR (s-p75NTR) could still be detected in these mice, in principle. The

existence of s-p75NTR, however, remains rather controversial, and its function is not

known. Nevertheless, an alternative mutant mouse was created lacking exon IV,

such that both splice isoforms of p75NTR are deleted (von Schack et al. 2001). These

mice exhibit a number of neurological and vascular defects similar to the exon III

knockout mice, but with a more severe phenotype. However, understanding the

phenotype of the exon IV mutants is complicated by the fact that the targeting

strategy created a cryptic truncated protein encoding an extracellular stalk with the

entire transmembrane and intracellular domains of the receptor (Paul et al. 2004).

Since expression of the intracellular domain of the receptor can initiate signaling

independent of ligand (Majdan et al. 1997), some phenotypic characteristics of this

mouse may be due to the expression of this fragment. Clearly, results from using

either of these genetically altered mice need to be interpreted with caution, and

further study is needed to understand the role of s-p75NTR.

3 Apoptotic Signaling

Although p75NTR was first discovered for its ability to bind NGF, which promotes

neuronal survival, the most investigated function of the receptor is, ironically, its

ability to induce programmed cell death. One of the earliest indications of this

function was revealed in a study by Bredesen’s group demonstrating that ectopic

expression of p75NTR in an immortalized neural cell line increased apoptosis after

serum withdrawal (Rabizadeh et al. 1993). These results proved challenging to

reproduce in primary cells with the endogenous receptor; however, the groups of

Barde and Chao found that activation of endogenous p75NTR by NGF could induce

apoptosis in early retinal neurons in the chick (Frade et al. 1996) and oligoden-

drocytes in rat (Casaccia-Bonnefil et al. 1996), respectively. The ability of p75NTR

to induce programmed cell death in response to ligand binding has now been

observed in a wide variety of neuronal and non-neuronal cell types, including

sympathetic (Bamji et al. 1998; Linggi et al. 2005; Teng et al. 2005), motor

(Sedel et al. 1999), and hippocampal neurons (Volosin et al. 2008); photoreceptor

cells (Srinivasan et al. 2004); oligodendrocytes (Casaccia-Bonnefil et al. 1996);

Schwann cells (Khursigara et al. 2001; Syroid et al. 2000); and other cells (Bunone

et al. 1997; Volosin et al. 2006; Wang et al. 2000). These in vitro studies together
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with the analysis of p75NTR�/� mice have established this receptor as a critical

regulator of developmental apoptosis, promoting the naturally occurring elimina-

tion of neurons within the developing basal forebrain (Naumann et al. 2002),

trigeminal ganglia (Agerman et al. 2000), retina (Frade et al. 1996), superior

cervical ganglion (Bamji et al. 1998), and spinal cord (Frade and Barde 1999).

This developmental role of p75NTR has been particularly well characterized in

sympathetic neurons. These neurons express TrkA and p75NTR, which together

mediate a survival signal in response to NGF (discussed below); however, Miller

and colleagues demonstrated that selective activation of p75NTR by BDNF led to

apoptosis (Bamji et al. 1998). Furthermore, deletion of the receptor resulted in an

increase in the number of neurons during the development of the superior cervical

ganglia, suggesting that p75NTR mediates normal developmental death in this

population. Ginty’s group later demonstrated that these neurons produce BDNF

in response to NGF and suggested a model in which neurons receiving robust

trophic support through NGF-induced activation of TrkA produce BDNF, thereby

promoting p75NTR-dependent death of neighboring neurons receiving insufficient

NGF signal (Deppmann et al. 2008). Their computer simulations based on this

model quite accurately predicted the normal developmental kinetics of cell death in

the superior cervical ganglia.

3.1 Activation of the Mitochondrial Cascade

Over the past decade, significant progress has been made in understanding the

cellular mechanisms through which p75NTR promotes apoptosis, although many

facets of the receptor’s signaling remain enigmatic. Members of the TNF receptor

superfamily can activate two pathways that regulate cell survival. Through their

death domain, they recruit other death domain-containing adaptors, such as

TRADD and FADD, leading to caspase-8 activation and induction of a terminal

caspase cascade (Dempsey et al. 2003). Despite attempts to detect activation of

caspase-8 (Gu et al. 1999; Troy et al. 2002), no evidence supports p75NTR utilizing

this pathway, which agrees with the structural divergence of p75NTR’s death

domain from that of TNFR and Fas. The second pathway initiated by many

members of the TNF receptor family involves stimulation of the stress kinase

c-Jun N-terminal kinase (JNK) and of the transcription factor NF-κB (Dempsey

et al. 2003). JNK activation causes cell death by inducing phosphorylation of the

transcription factor c-Jun and the tumor suppressors p53 and p73 (Dhanasekaran

and Reddy 2008), resulting in transcriptional upregulation of an array of

pro-apoptotic genes, including Bax (Miyashita and Reed 1995), PUMA (Nakano

and Vousden 2001), Bak (Bogoyevitch and Kobe 2006), and Caspase-6

(MacLachlan and El-Deiry 2002), among others (Wu 2004). In addition, JNK

directly phosphorylates several Bcl-2 family proteins, causing inhibition of

pro-survival members such as Bcl-2 (Yamamoto et al. 1999) and activation of

pro-death members such as Bim (Lei and Davis 2003) and Bad (Donovan
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et al. 2002). These events ultimately lead to the release of cytochrome c from

mitochondria and caspase-dependent apoptosis (Bogoyevitch and Kobe 2006).

An accumulation of evidence has indicated that p75NTR-induced apoptosis

occurs via this mitochondrial cascade. Activation of JNK in response to ligand

binding to endogenous p75NTR has been demonstrated in oligodendocytes

(Casaccia-Bonnefil et al. 1996), sympathetic neurons (Bamji et al. 1998), and

hippocampal neurons (Friedman 2000), and inhibition of the kinase prevented the

induction of apoptosis (Friedman 2000; Harrington et al. 2002; Kenchappa

et al. 2010; Yeiser et al. 2004; Yoon et al. 1998). Overexpressing p75NTR in cortical

neurons also resulted in activation of JNK (Bhakar et al. 2003). In mammals, there

are three genes encoding the JNK family, JNK1–3. While JNK1 and JNK2 are

ubiquitously expressed, JNK3 is selectively expressed in the nervous system and

heart (Gupta et al. 1996; Kuan et al. 2003; Mohit et al. 1995) and has been

suggested to be the primary isoform mediating neuronal death in response to a

variety of ligands and insults (Dhanasekaran and Reddy 2008). Of these three JNK

isoforms, JNK3 was selectively activated following ligand binding to p75NTR in

oligodendrocytes (Harrington et al. 2002) and sympathetic neurons (Kenchappa

et al. 2010), and gene deletion of JNK3 prevented receptor-mediated apoptosis both

in vitro and in vivo (Kenchappa et al. 2010; Li et al. 2007).

Further support for p75NTR activating a JNK-p53 apoptotic pathway comes from

the fact that cell death mediated by the receptor is associated with upregulation of

p53 (Aloyz et al. 1998; Linggi et al. 2005). Induction of apoptosis by p75NTR has

also been linked to phosphorylation of Bim (Becker et al. 2004) and Bad (Bhakar

et al. 2003), cytochrome c release (Bhakar et al. 2003), and cleavage of procaspase-

3, -6, -7, or -9 (Bhakar et al. 2003; Tabassum et al. 2003). Curiously, however, the

receptor does not require c-Jun for killing sympathetic neurons (Palmada

et al. 2002).

3.2 Cytosolic Factors Linking p75NTR to JNK

Like many other receptors of the tumor necrosis factor (TNF) receptor superfamily,

p75NTR promotes downstream signaling via association with a number of cytosolic

interactors (Fig. 1). One group of p75NTR interactors that contributes to activation

of JNK is the family of TNF receptor-associated factors (TRAFs). TRAF family

proteins are distinguished by a conserved C-terminal domain that is responsible for

their oligomerization and interactions with the cytoplasmic domains of TNF recep-

tor family members (Zotti et al. 2012). With the exception of TRAF1, all TRAF

family members also feature an N-terminal domain containing RING and zinc

finger structures that are critical for their signaling function. The RING finger

domain in the TRAFs acts as an E3 ubiquitin ligase, but instead of targeting proteins

for proteasomal degradation, the TRAFs form a ubiquitin chain through Lys

63 linkages, which serve as protein–protein interaction motifs (Ha et al. 2009;

Hacker et al. 2011). TRAF1–6 have been reported to associate with p75NTR, with

TRAF2, 4, and 6 shown to modulate p75NTR-induced cell death via interactions

126 B.R. Kraemer et al.



with the ICD of the receptor (Khursigara et al. 1999; Ye et al. 1999). However, the

role of TRAF6 in p75NTR signaling has been the most thoroughly studied. TRAF6

associates with p75NTR in a ligand-dependent manner (Khursigara et al. 1999) and

mediates signaling from the receptor to both JNK and NF-κB (Khursigara

et al. 1999; Yeiser et al. 2004). Sympathetic neurons from traf6�/� mice fail to

activate JNK in response to BDNF binding to p75NTR and fail to undergo apoptosis

(Yeiser et al. 2004). Furthermore, there is reduced developmental cell death in the

superior cervical ganglia in traf6�/� mice relative to the wild type, indicating that

TRAF6 is essential for p75NTR-mediated apoptotic signaling in vivo.

TRAF6 also associates with the neurotrophin receptor-interacting factor (NRIF)

to promote JNK activation (Gentry et al. 2004; Linggi et al. 2005). NRIF is a zinc-

finger protein that was first identified in a yeast 2-hybrid screen for proteins

interacting with the ICD of p75NTR (Casademunt et al. 1999). NRIF and TRAF6

can directly interact, and overexpression of NRIF together with TRAF6 enhanced
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Fig. 1 Signaling pathways mediated by p75NTR that regulate cell survival and apoptosis. In

response to neurotrophin binding, p75NTR promotes JNK activation via interactions with

NRAGE, TRAF6, and NRIF, thus leading to apoptosis. Activation of JNK by p75NTR also occurs

through induction of sphingomyelinases. The chopper domain of p75NTR promotes apoptosis by

facilitating depletion of internal K+ through GIRK channels. Other cytosolic interactors contribute

to p75NTR-mediated cell death, including NADE, MAGE-G1, and Necdin. In response to

pro-neurotrophins, p75NTR inhibits Trk-mediated survival signaling via induction of PTEN and

the resultant inhibition of PI3K-Akt survival signaling. Promotion of cell survival by p75NTR is

facilitated by its interactions with Trk receptors which enhance Trk-mediated PI3K-Akt survival

signaling, as well as other Trk-mediated survival pathways. P75NTR may also promote survival via

activation of NFκB, possibly through associations between RIP2 and TRAF6 (abbreviations: DD
p75NTR death domain, C p75NTR chopper domain, K Trk receptor tyrosine kinase domain)
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TRAF6-mediated JNK activation (Gentry et al. 2004). Furthermore, BDNF-

induced JNK activation and cell death were significantly attenuated in nrif�/�
sympathetic neurons (Linggi et al. 2005). Gene deletion revealed that NRIF was

required for developmental apoptosis in the retina (Casademunt et al. 1999), which

is a p75NTR-dependent process (Frade et al. 1996). Thus, interaction of NRIF with

TRAF6 and p75NTR appears to be critical for p75NTR-mediated JNK activation and

apoptosis. However, expression of NRIF alone in mouse embryonic fibroblasts was

not sufficient to activate the kinase, although it did induce cell death (Linggi

et al. 2005). Exactly how NRIF contributes to the activation of JNK is not clear,

but it may facilitate oligomerization of TRAF6, which is necessary for it to mediate

its biological actions (Yin et al. 2009).

Another intracellular binding partner of p75NTR that is linked to JNK activation

is the neurotrophin receptor-interacting MAGE homolog, NRAGE (also known as

Maged1 and dlxin) (Salehi et al. 2002). NRAGE contains a melanoma-associated

antigen (MAGE) domain, which is a region of homology defining the MAGE

family of proteins. The function of the MAGE proteins is poorly understood, but

many have been implicated in the regulation of cell cycle and apoptosis (Sang

et al. 2011). Ectopic expression of NRAGE along with p75NTR in a sympathetic

precursor cell line enabled NGF-dependent cell death, thereby implicating this

interactor in the apoptotic pathway activated by p75NTR (Salehi et al. 2000).

Overexpression of NRAGE in PC12 cells led to potent activation of JNK, release

of cytochrome c from mitochondria, and the induction of caspases -3, -6, and -9,

ultimately resulting in cell death (Salehi et al. 2002). These results suggested that

NRAGE could be involved in p75NTR-mediated stimulation of JNK. Corroborating

evidence came from analysis of nrage�/�mice: p75NTR-induced JNK activation in

nrage�/� sympathetic neurons was significantly reduced compared to wild-type

neurons (Bertrand et al. 2008). Furthermore, the null animals have an increased

number of neurons in their superior cervical ganglia, like p75NTR�/� mice, and

sympathetic neurons isolated from nrage�/� mice were resistant to p75NTR-

mediated apoptosis (Bertrand et al. 2008). These results suggest a function for

NRAGE as an adaptor protein, linking the receptor to JNK activation and apoptosis.

Whether NRAGE, TRAF6, and NRIF form a complex or function independently to

regulate the kinase remains an open question; however, they may function at

different stages of the cascade to affect the kinetics of JNK activity (discussed

below). It should be noted that sequestering the anti-apoptotic factor XIAP (Jordan

et al. 2001; Kendall et al. 2005) and promoting degradation of the anti-apoptotic

transcription factor Che1 (Di Certo et al. 2007) have also been suggested as

mechanisms through which NRAGE affects cell survival, though these interactions

have not been studied in the context of p75NTR signaling.

Another mechanism through which p75NTR has been suggested to regulate JNK

involves production of the lipid signaling molecule ceramide (Fig. 1). When the

field was searching for evidence of signaling by p75NTR, a NGF-mediated increase

in ceramide levels through activation of neutral sphingomyelinase in T9 glioma

cells was one of the first signals detected (Dobrowsky et al. 1994). Multiple reports

have since confirmed the ability of p75NTR to stimulate ceramide production in
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other cell types, including in oligodendrocytes (Casaccia-Bonnefil et al. 1996),

hippocampal neurons (Brann et al. 2002), Schwann cells (Hirata et al. 2001), and

mesencephalic neurons (Blochl and Sirrenberg 1996). One known downstream

effect of elevated ceramide is activation of JNK (Westwick et al. 1995), and thus

ceramide may couple p75NTR to JNK phosphorylation. Indeed, in cultured hippo-

campal neurons activation of p75NTR resulted in upregulation of ceramide, stimu-

lation of JNK, and cell death (Brann et al. 2002). Furthermore, inhibition of

sphingomyelinase in these neurons prevented ceramide accumulation, JNK activa-

tion, and the induction of apoptosis. However, increasing ceramide levels does not

always result in cell death. In fact, p75NTR-mediated ceramide production has also

been linked to promotion of cell survival (DeFreitas et al. 2001; McCollum and

Estus 2004). Understanding this lipid signaling pathway is complicated by the fact

that ceramide is a central intermediate in sphingolipid metabolism and can have a

variety of effects depending on the specific fatty acid chain attached and its cellular

concentration and localization (Horres and Hannun 2012). Further studies are

needed to elucidate the mechanisms by which p75NTR activates sphingomyelinase

and to reveal how ceramide elicits its effects in various cellular contexts.

3.3 Other Factors Involved in p75NTR Mediated Apoptosis

Apart from TRAF6, NRIF, and NRAGE, several other cytosolic proteins have been

shown to associate with p75NTR and suggested to regulate its apoptotic signaling.

For example, p75NTR-associated cell death executor (NADE), a novel protein

isolated in a two-hybrid screening for proteins binding to the ICD of the receptor,

was reported to associate with endogenous p75NTR in PC12 cells (Mukai

et al. 2000). Overexpression of NADE together with p75NTR in HEK 293 cells

induced apoptosis (Mukai et al. 2000) and expression of a fragment of NADE

lacking the region identified as necessary for promoting apoptosis blocked receptor-

mediated cell death in oligodendrocytes (Mukai et al. 2002). Currently, though,

how NADE contributes to p75NTR-mediated apoptotic signaling is unknown. In

addition, MAGE-G1, MAGE-H1 and the MAGE-related protein, Necdin, have also

been shown to interact with p75NTR (Kuwako et al. 2004; Tcherpakov et al. 2002).

Both Necdin and MAGE-G1 associate with E2F1, a transcription factor that is

important for G1/S transition in the cell cycle and that can induce apoptosis in

postmitotic cells (Ginsberg 2002). When the ICD of p75NTR was overexpressed in a

neuroblastoma cell line, Necdin and MAGE-G1 bound to the receptor ICD, thereby

releasing E2F1 and triggering apoptosis (Kuwako et al. 2004; Lopez-Sanchez

et al. 2007). Additional studies are needed to determine whether Necdin and

MAGE-G1 regulate ligand-mediated cell death in primary cells. The p75NTR has

also been reported to promote apoptosis through upregulation of the sugar binding

protein Galectin-1 (Plachta et al. 2007). Embryonic stem (ES) cells engineered to

express p75NTR degenerated when they were induced to differentiate into neurons.

This degeneration correlated with expression of Galectin-1, which promoted death

of the ES cells as well as cortical neurons (Plachta et al. 2007). Furthermore, mice
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lacking Galectin-1 were resistant to neuronal apoptosis caused by pilocarpine-

induced seizures (Bischoff et al. 2012), which was demonstrated to be a p75NTR-

dependent process (Roux et al. 1999; Volosin et al. 2008). The mechanisms by

which this lectin causes cell death remain to be determined.

3.4 Regulated Intramembrane Proteolysis of p75NTR

In a manner similar to Notch and amyloid precursor protein (APP), p75NTR

undergoes regulated intramembrane proteolysis (RIP). Proteolysis of p75NTR was

first described as a response to phorbol esters in HEK293 cells transfected with the

receptor (Jung et al. 2003; Kanning et al. 2003). The extracellular region of p75NTR

is first cleaved by the metalloproteinase TNFα-converting enzyme (TACE, also

known as ADAM17), thereby producing a 24 kDa membrane-bound C-terminal

fragment (p75NTR-CTF) (Weskamp et al. 2004). This cleavage event appears to be

quite promiscuous in terms of the amino acid sequence; however, deletion analysis

revealed that at least 15 residues extracellular to the transmembrane domain are

required (Zampieri et al. 2005). Following release of the soluble ectodomain, the

p75NTR-CTF is then further cleaved within its transmembrane region by the

γ-secretase complex, thereby releasing the 19 kDa intracellular domain of the

receptor (p75NTR-ICD). Similar to proteolysis by TACE, cleavage by γ-secretase
is quite permissive for various amino acids; nevertheless, there must be some

sequence specificity for both enzymes since substituting the transmembrane domain

of Fas for that of p75NTR blocked cutting by γ-secretase and replacing the 15 amino

acid juxtamembrane sequence with the Fas sequence blocked p75NTR proteolysis

by TACE (Zampieri et al. 2005). The order of the two cleavage reactions is also

invariant, with TACE acting on the receptor prior to γ-secretase. This was deter-
mined by studies in which cleavage of p75NTR by γ-secretase was prevented by

TACE inhibition, but inhibition of γ-secretase did not affect TACE activity, thus

indicating that release of the extracellular domain is required for further proteolysis

of the receptor within the transmembrane domain (Kenchappa et al. 2010; Zampieri

et al. 2005). Since the initial finding of RIP of p75NTR in response to phorbol esters,

a number of reports have demonstrated that proteolysis of p75NTR occurs through a

ligand-dependent mechanism; for example, treatment of sympathetic neurons with

BDNF (Kenchappa et al. 2006, 2010), Schwann cells with NGF (Frade 2005), and

cerebellar neurons with myelin-associated glycoprotein (Domeniconi et al. 2005)

(this ligand is discussed below) resulted in RIP. It is unclear, however, whether

ligand activated p75NTR always results in RIP.

One functional role of p75NTR cleavage, like for many γ-secretase substrates, is
to facilitate signaling to the nucleus. Release of the p75NTR-ICD may facilitate

nuclear translocation of associated factors such as NRIF. Although NRIF was

shown to be required for p75NTR-mediated apoptotic signaling based on analyses

of nrif�/� mice (Casademunt et al. 1999; Linggi et al. 2005), exactly how it

contributed to the cell death was not clear. NRIF contains a classic C2H2 zinc-

finger motif (Casademunt et al. 1999), which is typically found among DNA
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binding transcription factors (Wolfe et al. 2000), suggesting that in addition to

facilitating JNK activation, NRIF could bind DNA and regulate transcription. The

recognition of p75NTR proteolysis by γ-secretase revealed a possible mechanism by

which NRIF could be translocated from the surface-bound ICD of the receptor to

the nucleus. Indeed, it was demonstrated that BDNF-induced cleavage of the

receptor in sympathetic neurons facilitated nuclear localization of NRIF and,

subsequently, apoptosis (Kenchappa et al. 2006). Blocking receptor cleavage

prevented both localization of NRIF to the nucleus and cell death. A similar

signaling cascade has been detected in hippocampal neurons, where neuronal

death due to pilocarpine-induced seizures was associated with p75NTR proteolysis

and NRIF nuclear translocation. Moreover, the number of apoptotic neurons after

seizure was significantly reduced in p75NTR�/� (Troy et al. 2002) and in nrif�/�
mice (Volosin et al. 2008).

The mechanism of NRIF nuclear translocation also depends on TRAF6-

mediated ubiquitylation. TRAF6 was shown to ubiquitylate NRIF following ligand

binding to p75NTR, and blocking this event by mutating the ubiquitin-attachment

site of NRIF prevented its nuclear translocation and inhibited p75NTR-mediated

apoptosis (Geetha et al. 2005). The ubiquitylation of NRIF required p75NTR cleav-

age (Kenchappa et al. 2006), suggesting that receptor proteolysis facilitates an

interaction between NRIF and TRAF6, enabling ubiquitylation of NRIF, which is

needed for it to enter the nucleus, and oligomerization of TRAF6, which promotes

the activation of JNK (Fig. 2).

The cleavage of p75NTR and the activation of JNK were recently shown to occur

through interdependent pathways. In sympathetic neurons, JNK activation was

required for ligand-induced proteolysis of the receptor by both TACE and

γ-secretase (Kenchappa et al. 2010), as blocking JNK activity or deleting JNK3

prevented receptor cleavage by both proteases. The activation of JNK facilitated the

transcriptional upregulation of TACE and, through an unknown mechanism,

stimulated both TACE and γ-secretase, thereby inducing p75NTR processing. Inter-

estingly, the release of the receptor’s ICD, along with NRIF and TRAF6, was

necessary for prolonged JNK stimulation by the receptor. Expression of a

non-cleavable mutant p75NTR prevented JNK activation at 24 h, yet the kinase

was still activated for the first hour after ligand binding (Kenchappa et al. 2010).

Hence, there appears to be a biphasic activation of JNK by p75NTR, with an early

signal, perhaps initiated through NRAGE, inducing proteolytic processing of the

receptor, which allows NRIF and TRAF6 to promote long-term stimulation of the

kinase as well as nuclear signaling, ultimately resulting in cell death (Fig. 2).

In contrast to the evidence that proteolytic processing of p75NTR induces apo-

ptosis by releasing the p75NTR-ICD, in certain cellular contexts programmed cell

death may be activated by the p75NTR-CTF alone. Coulson et al. found that

overexpression of the p75NTR-CTF was sufficient to promote the apoptosis of dorsal

root ganglion (DRG) neurons and that the death domain was not necessary

(Coulson et al. 2000; Underwood et al. 2008). This function of the p75NTR-CTF

required a 29 amino acid sequence in the cytoplasmic juxtamembrane region of the

receptor termed the “chopper domain” (Coulson et al. 2000). Coulson and
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colleagues demonstrated that ectopic expression of membrane-associated

fragments of p75NTR containing the chopper domain promoted apoptosis by induc-

ing a Rac-dependent increase in phosphatidylinositol 4,5-bisphosphate (PIP2). In

turn, PIP2 stimulated G-protein-coupled inwardly rectifying potassium (GIRK)

channels, causing a depletion of internal potassium that ultimately activated an

apoptotic protease activating factor 1 (APAF-1)-dependent cell death pathway

(Coulson et al. 2004, 2008; Skeldal et al. 2011). It should be cautioned, however,

that these studies relied on overexpression of the CTF; thus, further studies are

needed to determine how the various fragments of the receptor regulate cell death

under different physiological conditions.

3.5 Proneurotrophins and Sortilin

The initial discovery that p75NTR can induce programmed cell death was somewhat

puzzling, as in vitro studies indicated that relatively high concentrations of
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neurotrophins were needed to induce apoptosis, and in certain cell types, cross-

reactivity of neurotrophins with Trk receptors could potentially promote an oppos-

ing, pro-survival signal. An answer was found, at least in part, by Hempstead’s

group, who discovered that precursor forms of neurotrophins are biologically

active, selective ligands for p75NTR. Like most secreted proteins, neurotrophins

are initially synthesized as larger precursors, which are enzymatically cleaved to

generate the mature form of the protein (Edwards et al. 1988; Suter et al. 1991).

Proneurotrophins have an amino-terminal pro-domain that assists in their proper

folding and dimerization (Heymach and Shooter 1995; Rattenholl et al. 2001a, b).

The pro-domain can be proteolytically removed by furin and pro-protein

convertases in the endoplasmic reticulum and Golgi apparatus (Seidah

et al. 1996). Alternatively, the cleavage of the pro-domain can also be mediated

by plasmin and matrix metalloproteases following secretion of the proneurotrophin

into the extracellular milieu (Lee et al. 2001). While it was originally thought that

mature neurotrophins are the only physiologically active ligands for p75NTR, it is

now well established that endogenous proneurotrophins can be secreted to function

as potent activators of p75NTR signaling (Beattie et al. 2002; Harrington et al. 2004;

Lebrun-Julien et al. 2010; Lee et al. 2001; Teng et al. 2005).

Proneurotrophins do not activate Trk receptors (Boutilier et al. 2008; Lee

et al. 2001) and have been demonstrated to induce significant p75NTR-mediated

cell death at sub-nanomolar concentrations (Lee et al. 2001). Thus, proteolytic

processing determines the functional fate of nascent neurotrophins, with uncleaved

forms selectively triggering p75NTR-mediated cell death and mature forms

activating either p75NTR or Trk receptors, depending upon the cellular context.

Proneurotrophins induce programmed cell death by binding to a high affinity

protein complex containing p75NTR and its co-receptor Sortilin, a member of the

Vps10p-domain receptor family (Nykjaer et al. 2004; Teng et al. 2005). Mamma-

lian members of the Vps10p family, which consists of Sortilin, SorLA, and SorCS-

1, -2, and -3, are type I transmembrane receptors with multifunctional roles that

include the modulation of protein sorting and trafficking, as well as regulation of

signal transduction (Willnow et al. 2008). Proneurotrophins bind to Sortilin via

their pro-domain and to p75NTR by their mature domain, thus facilitating the

association of these two receptors to initiate programmed cell death (Nykjaer

et al. 2004, 2005; Teng et al. 2005). Following initial reports that Sortilin mediates

neurotrophin-induced cell death in vitro (Nykjaer et al. 2004; Teng et al. 2005),

studies have indicated that Sortilin is required for developmental p75NTR-mediated

cell death in vivo. For example, mice lacking Sortilin have a reduction in the

developmental apoptosis of retinal ganglion cells that is indistinguishable from

that of p75NTR-deficient mice (Jansen et al. 2007). However, Sortilin may not be

required for all p75NTR-mediated cell death, as these mice did not have defects in

the apoptosis of sympathetic neurons during the developmental time period in

which p75NTR-mediated death is known to occur (Jansen et al. 2007). Loss of

Sortilin did, however, impair age-related degeneration of these neurons, suggesting

that proneurotrophins may not have been involved in the early development of the

sympathetic neurons, but do have a role in their loss during aging.
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3.6 Apoptotic Role of p75NTR in Pathology

In addition to its critical role during neurodevelopment, p75NTR is a stress-activated

receptor that stimulates the death of cells within injured tissue. Though the receptor

is downregulated in most regions of the nervous system after early postnatal

development, reexpression of p75NTR occurs in response to many forms of cellular

damage. For example, increases in p75NTR expression have been reported following

neuronal axotomy (Ernfors et al. 1989; Giehl et al. 2001; Harrington et al. 2004;

Koliatsos et al. 1991; Taniuchi et al. 1986), mechanical damage (Beattie et al. 2002;

Brunello et al. 1990; Rende et al. 1993), elevated intraocular pressure (Wei

et al. 2007), seizures (Roux et al. 1999; Volosin et al. 2008), and focal ischemia

(Kokaia et al. 1998). Beyond measuring increases in expression of the receptor,

multiple studies have more definitively demonstrated that p75NTR signaling is

responsible for injury-induced cell death in vivo. In one such study, unilateral

administration of kainic acid to the basal forebrain resulted in reexpression of

p75NTRin the degenerating cholinergic neurons, which correlated with their apo-

ptosis. Administration of a function-blocking p75NTR antibody prevented this cell

death, thereby indicating that p75NTR signaling contributes to excitotoxin-induced

death of basal forebrain neurons (Oh et al. 2000). Similarly, expression of p75NTR

was induced and associated with programmed cell death caused by axotomy of

corticospinal neurons, and antibodies to p75NTR prevented this apoptosis (Giehl

et al. 2001). Although these two studies indicated that p75NTR promotes neuronal

death after injury, whether proneurotrophins contribute to the death caused by these

injuries was not known. In a later report, injury to the spinal cord was found to

induce production of proNGF and to stimulate p75NTR-dependent apoptosis of

spinal cord oligodendrocytes (Beattie et al. 2002). ProNGF extracted from the

injured region elicited apoptosis of cultured oligodendrocytes expressing p75NTR

but not of p75NTR�/� oligodendrocytes. Thus, this work suggested that proNGF

functions to promote the elimination of damaged cells by activating p75NTR after

spinal cord injury (Beattie et al. 2002). A subsequent study by Yoon and colleagues

demonstrated that axotomy of corticospinal neurons also resulted in apoptosis of

the neurons through a proNGF–p75NTR-dependent mechanism (Harrington

et al. 2004). Following lesion of the internal capsule, proNGF was detected in

cerebral spinal fluid, indicating that proNGF is produced and secreted in vivo after

brain injury. In the cortex of lesioned animals, an interaction between proNGF and

p75NTR was detected in vivo, and disruption of this interaction by infusion of an

antibody specific for proNGF prevented the apoptosis caused by the injury

(Harrington et al. 2004). These experiments provided the first conclusive evidence

that proNGF is a pathophysiological ligand that induces apoptosis in response to

neuronal damage. Since then, a growing body of evidence has linked proneuro-

trophins to cell death induced by various types of injury. For example, hippocampal

seizures stimulated the upregulation and secretion of proNGF in vivo, and

antibodies specific for proNGF prevented seizure-induced apoptosis of neurons

within the dentate gyrus (Volosin et al. 2008). In another study, increases in

proNGF, along with p75NTR and Sortilin, were reported in the retina after exposure
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of albino mice to intense light, and blockade of Sortilin with the pro-domain of

proNGF attenuated light-induced retinal cell death (Santos et al. 2012). The ability

of proneurotrophins to induce cell death in response to cellular damage is likely not

specific to proNGF, as proBDNF has also been demonstrated to promote apoptosis

in a number of cell culture models (Fan et al. 2008; Taylor et al. 2012; Teng

et al. 2005), and upregulation of proBDNF has been detected in in vivo injury

models, such as in an animal model of cochlear damage (Tan and Shepherd 2006).

ProBDNF has also been implicated in apoptosis occurring due to neuronal

axotomy, as infusion of a proBDNF antibody prevented the death of sensory

neurons induced by lesion of the sciatic nerve in vivo (Fan et al. 2008).

While the signaling mechanisms responsible for the induction of p75NTR and the

proneurotrophins after injury are not well understood, several studies have provided

some clues. One possibility is that cellular damage prevents the proteolytic

processing of neurotrophins, thus increasing the release of death inducing proneuro-

trophins. A recent study by Friedman and colleagues has revealed that following

kainic acid-induced seizures, the proneurotrophin-processing enzyme matrix

metalloproteinase-7 (MMP-7) and its inhibitor tissue inhibitor of matrix

metalloproteinase-1 (TIMP-1) were regulated in a manner that would hinder cleav-

age of proneurotrophins and lead to increased release of proNGF (Le and Friedman

2012). Decreased MMP-7 production has also been observed in samples from

human patients and animal models with diabetic retinopathy (Ali et al. 2011).

These findings suggest that regulation of proteolytic processing of proneurotrophins

is one mechanism by which the levels of these factors are modulated, though a

greater understanding of the pathways regulating their release in the unprocessed

versus the mature form is needed. Along with increases in the levels of proneuro-

trophins, upregulation of p75NTR after injury may occur due to inflammatory

signals released in response to tissue damage. The inflammatory cytokines

interleukin-12 (IL-12), tumor necrosis factor alpha (TNFα), and interleukin-1β
have been demonstrated to increase p75NTR expression in a variety of in vitro

systems, such as in cultured hippocampal neurons (Choi and Friedman 2009),

natural killer cells (Rogers et al. 2010), or astrocytes (Choi and Friedman 2009).

Interestingly, a recent report indicated that trauma-induced upregulation of p75NTR

could also result from calcium influx. Within axotomized hippocampal neurons,

cellular responses to GABA change from hyperpolarizing to depolarizing, leading

to increased intracellular calcium and the subsequent activation of Rho kinase

(ROCK). The activation of ROCK resulted in upregulation of p75NTR, ultimately

leading to neuronal death (Shulga et al. 2012). Thus, multiple signals may contrib-

ute to trauma-induced upregulation of the receptor. However, the mechanisms by

which these signals increase p75NTR transcription are still poorly understood. The

ubiquitous transcription factor Sp1 has been linked to p75NTR basal expression

(Poukka et al. 1996) and upregulation following hypo-osmotic stress (Kommaddi

et al. 2011a; Ramos et al. 2007), but whether this factor is involved in other forms of

injury is not known. It should also be added that long-term treatment of SH-SY5Y
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cell lines with IGF1 resulted in a significant upregulation of p75NTR levels

(Costantini et al. 2006), suggesting that a factor that responds to IGF1 signaling

may also be involved.

In addition to regulating cell death following injury, p75NTR signaling has been

suggested to contribute to neurodegeneration caused by a number of diseases.

Among these disorders, the link between p75NTR and Alzheimer’s disease

(AD) has been most studied. Besides Purkinje neurons in the cerebellum, p75NTR

is expressed at high levels in cholinergic neurons of the adult basal forebrain, a

population of neurons that undergoes severe degeneration early in the progression

of AD pathology. Additionally, several in vitro studies have indicated that amyloid

beta 1–42 (Aβ), the main component of plaques commonly found within brains of

AD patients, is a pro-apoptotic ligand for p75NTR (Costantini et al. 2005;

Hashimoto et al. 2004; Yaar et al. 1997). These findings have led to the hypothesis

that activation of p75NTR by Aβ contributes to neurodegeneration caused by

AD. This idea has remained controversial, however, due to other reports indicating

that expression of p75NTR is protective against Aβ-induced toxicity (Bengoechea

et al. 2009; Zhang et al. 2003). Nonetheless, a role for p75NTR in Aβ-induced
neurotoxicity was recently strengthened by an in vivo finding that deletion of

p75NTR prevented the degeneration of cholinergic basal forebrain neurons in vivo

following Aβ injection into the hippocampus (Sotthibundhu et al. 2008). Further-

more, when p75NTR�/� mice were crossed with the Thy1-hAPPLond/Swe mouse

model of AD, the degeneration of hippocampal and forebrain cholinergic fibers was

dramatically rescued (Knowles et al. 2009). Just as for the in vitro studies, however,

these in vivo studies were also challenged by a recent study by Wang et al, which

indicated that p75NTR signaling induces production of Aβ, since deletion of the

p75NTR gene in the APPswe/PS1dE mouse model of AD resulted in decreased

production of Aβ within cortical neurons (Wang et al. 2011). Despite some

differences, these findings together suggest that p75NTR signaling by Aβ peptides

contributes to overall AD pathology. Apart from Aβ-induced apoptosis, studies

have also implicated proNGF in AD pathology. Increased expression of proNGF

has been detected in human brains affected by AD (Pedraza et al. 2005; Peng

et al. 2004), and proNGF isolated from these brain samples induced p75NTR-

mediated death of cultured sympathetic neurons (Pedraza et al. 2005; Podlesniy

et al. 2006). Thus, in addition to activation of p75NTR by Aβ, enhanced production

of proNGF may contribute to neurodegeneration within the AD brain. While these

studies provide multiple links between p75NTR signaling and AD-induced

neurodegeneration, collective evidence suggests that the degeneration of neurons

in AD occurs near the end-stages of the disease (Jack et al. 2010). Hence, under-

standing whether p75NTR plays a critical role in the onset and early progression of

AD remains essential.

While the majority of studies related to p75NTR and neurodegenerative disease

have focused on the contributions of the receptor to AD, it is perhaps not surprising

that p75NTR has been linked to a number of other disorders. For example, p75NTR

may contribute to degeneration of motor neurons during the progression of

amyotrophic lateral sclerosis (ALS). Though p75NTR is downregulated in motor
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neurons of the spinal cord during the perinatal period, reexpression of the receptor

was detected in spinal motorneurons of an ALS mouse model (Copray et al. 2003;

Lowry et al. 2001), as well as in spinal cord samples from human patients with ALS

(Lowry et al. 2001; Seeburger et al. 1993). Furthermore, the receptor was

implicated in ALS-associated motoneuron death by a study in which knockdown

of p75NTR delayed locomotor impairment and mortality in the SOD1G93A mouse

model of ALS (Turner et al. 2003). However, when the SOD1G93A mice were

crossed with the p75NTR�/� mice, prolonged survival was only detected in the

female mice, and this improvement did not correlate with increased motorneuron

survival, but with reduced astrocytosis (Kust et al. 2003). Nevertheless, the SOD

mutation represents a very small fraction of ALS patients, thus further study into the

role of the receptor in this disease is warranted.

Degeneration of dopaminergic neurons in Parkinson’s disease (PD) could also

involve p75NTR. A study by Simon and colleagues demonstrated that loss of the

Engrailed transcription factors results in increased expression of p75NTR in the

ventral midbrain (Alavian et al. 2009). This finding has implications for Parkinson’s

disease because mice deficient in Engrailed-1 and Engrailed-2 exhibit progressive

loss of mesencephalic dopaminergic neurons and have PD-like motor deficiencies

(Alavian et al. 2009). Importantly, knocking down p75NTR or addition of a receptor-

blocking antibody prevented the apoptosis of mesencephalic dopaminergic neurons

in cultures from the engrailed 1, 2 double knockout mice. Upregulation of p75NTR

in dopaminergic nigro-striatal neurons has also been reported following kainic-acid

treatment (Wang et al. 2008). However, direct evidence for p75NTR expression in

nigral dopaminergic neurons in PD and causal evidence linking expression of

p75NTR to PD-associated nigral neurodegeneration in vivo is still missing.

In addition to these neurodegenerative conditions, evidence continues to grow

implicating p75NTR in the pathology of other neurological diseases. For example,

p75NTR has been suggested as having a role in spongiform encephalomyelopathy

(Stoica et al. 2008), diabetes-related impairment of neovascularization (Caporali

et al. 2008), and psoriasis (Truzzi et al. 2011), among others. The abundance of

links between p75NTR and such a variety of diseases indicates that the receptor may

function in a broader sense as a stress-induced apoptotic signal that is activated by a

mechanism common to all of these pathological conditions. Thus, further elucida-

tion of the mechanisms by which p75NTR is upregulated and activated during these

pathological conditions and of the contributions of the receptor to the resulting

neurodegeneration may be of critical therapeutic importance.

4 Promotion of Cell Survival

Despite its currently known role in eliciting programmed cell death, early studies of

p75NTR demonstrated that in a variety of cellular contexts the receptor has the

opposite function: to promote cell survival. Though p75NTR-induced apoptosis has

been more widely studied, the receptor has been demonstrated to promote cell

survival in a wide variety of cell types. One of the first indications that the receptor
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can promote neuronal survival came from analysis of p75NTR�/� mice, which

revealed significant loss of sensory innervation of limbs (Lee et al. 1992). Subse-

quently, the number of neurons in the dorsal root ganglia (DRG) was reported to be

reduced by 50–75 % in the knockout mice (Murray et al. 1999). Although the DRG

is a very heterogeneous population of neurons, a decrease in virtually all types of

neurons was detected, based on morphological criteria (Bergmann et al. 1997;

Gjerstad et al. 2002) or expression of various markers (Jiang et al. 2004). Since

then, numerous reports have suggested that p75NTR promotes survival in a wide

range of cell types, with the majority suggesting that this is through cooperation

with the Trk family, leading to a high affinity receptor complex or enhanced Trk

signaling.

4.1 P75NTR Interactions with the Trks

Shortly after TrkA was identified as a receptor for NGF, Chao and colleagues

demonstrated that p75NTR interacts with TrkA to form a high-affinity binding

complex (Hempstead et al. 1991). While TrkA alone was found to bind NGF

with nanomolar affinity, co-expression with p75NTR was discovered to increase

this interaction by 100-fold (Esposito et al. 2001; Hempstead et al. 1991). Thus,

p75NTR can augment Trk-mediated survival by increasing its interaction with

neurotrophins. Given that neurotrophins are typically present in limiting amounts

in the target tissues, the presence of high-affinity receptors is an obvious advantage.

The requirement for p75NTR in forming the high-affinity complex was initially

offered as an explanation for the sensory neuron loss in the animals lacking the

receptor. Indeed, neurotrophin dose–response curves revealed that higher doses of

NGF were needed to promote survival of sensory and sympathetic neurons from

p75NTR�/� mice (Davies et al. 1993; Lee et al. 1992). However, a critical element

unanswered by this interpretation of the data relates to the fact that, unlike the loss

of neurons in the DRG, p75NTR�/�mice actually have excess sympathetic neurons

(Bamji et al. 1998; Deppmann et al. 2008; Jansen et al. 2007). As discussed above,

p75NTR contributes to normal, developmental apoptosis of sympathetic neurons,

which could explain the increased neuronal number in the knockout mice, yet why

the receptor functions differently in sensory neurons has yet to be resolved.

Although functional interaction between p75NTR and Trk receptors is clear, the

molecular details are not fully understood. Surprisingly, the transmembrane and

intracellular domains of p75NTR, but not the neurotrophin-binding portion of the

extracellular domain, are required for the high-affinity complex (Esposito

et al. 2001). Furthermore, structure analysis by X-ray crystallography and comple-

mentation assays (using fragments of beta-galactosidase) indicated that complexes

of each receptor bind NGF independently and that there is no direct interaction

between p75NTR and TrkA (Wehrman et al. 2007). The structural analysis disagrees

with many early cross-linking experiments (discussed above) and

co-immunoprecipitation studies in HEK293 cells (e.g., Bibel et al. 1999) that
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indicate the presence of a complex of both receptors. Clearly, further study is

required to resolve the nature of the high affinity complex.

It is also important to note that a p75NTR homolog, neurotrophin receptor

homolog 2 (NRH2), was recently identified (Kanning et al. 2003). Like p75NTR,

NRH2 can also undergo cleavage by TACE and γ-secretase (Kanning et al. 2003),

associate with Sortilin (Kim and Hempstead 2009), and form a high-affinity NGF

receptor with TrkA (Murray et al. 2004). NRH2 is co-expressed with p75NTR in

multiple neuronal subtypes. Thus, understanding how NRH2 and p75NTR

function together with their co-receptors is necessary to interpret the phenotype

of p75NTR�/� mice.

Remarkably, Trk–p75NTR interactions not only facilitate the formation of a high-

affinity receptor complex but also regulate the neurotrophin selectivity of the

tyrosine kinase receptor. For example, in the absence of p75NTR, TrkA can respond

to both NT3 and NGF; however, the Trk–p75NTR complex is highly selective for

NGF (Benedetti et al. 1993; Clary and Reichardt 1994). During the development of

sympathetic neurons, NT3–TrkA interaction is necessary for neuronal survival

(Ernfors et al. 1994; Farinas et al. 1994; Francis et al. 1999). Ginty and colleagues

demonstrated that intermediate targets, such as blood vessels, produce NT3 and

promote axon growth, but not survival, through TrkA. However, as the neurons

innervate their NGF-secreting targets, p75NTR is upregulated, causing TrkA to

become selective for NGF over NT3. The NGF–Trk–p75NTR complex is then

retrogradely transported to promote survival (Kuruvilla et al. 2004). Hence,

p75NTR can function as a switch factor, allowing differential TrkA responses.

Similar selectivity is observed with TrkB ligands; co-expression of p75NTR with

TrkB increased its selectivity for BDNF over NT3 and NT4 (Bibel et al. 1999).

Beyond regulating the affinity and selectivity of Trks for neurotrophins, p75NTR

also potentiates Trk survival signaling. Prevention of neurotrophin binding to

p75NTR attenuated TrkA signaling in several in vitro systems (Barker and Shooter

1994; Lachance et al. 1997; Ryden et al. 1997; Verdi et al. 1994). The mechanism

by which p75NTR enhances Trk signaling remains poorly understood. Barker and

colleagues demonstrated that co-expression of p75NTR with TrkA attenuated TrkA

ubiquitylation and delayed the NGF-dependent internalization and degradation of

the receptor (Makkerh et al. 2005). Therefore, one mechanism utilized by p75NTR to

augment Trk-mediated survival signaling is prolonging cell surface expression of

the Trk receptor. Chao and colleagues identified a large transmembrane protein,

Ankyrin repeat-rich membrane spanning (ARMS/Kidins220), that interacts with

both p75NTR and Trk (Kong et al. 2001). ARMS is tyrosine phosphorylated

following neurotrophin treatment and is expressed in many of the neuronal

populations that receive neurotrophin stimulation (Kong et al. 2001). While these

data suggest that ARMS may serve as a link between p75NTR and Trk receptors,

expression of ARMS was discovered to decrease association of TrkA with p75NTR

(Chang et al. 2004), and the functional role of the protein has yet to be determined.

Recently, however, analysis of mice lacking ARMS revealed substantial apoptosis

of sensory neurons (Cesca et al. 2011), a phenotype similar to that observed in

p75NTR�/� animals (Murray et al. 1999), thus further highlighting the potential
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importance of this interactor in regulation of cell survival through p75NTR–Trk

interaction.

In addition to p75NTR regulating Trk function at the cell surface, there is

evidence that intracellular signaling pathways are modulated by co-activation of

the receptors. One such signaling event particularly affected by this interaction is

activation of the pro-survival kinase Akt. Treatment of PC12 cells with NGF in the

presence of an antibody that blocked binding to p75NTR inhibited the activation of

Akt (Bui et al. 2002). Similarly, silencing of P75NTR in PC12 cells or cerebellar

granule neurons reduced neurotrophin-induced activation of the kinase (Ceni

et al. 2010). These authors also reported that activation of Akt required proteolysis

of p75NTR. In contrast to what was observed for p75NTR in sympathetic neurons

(Kenchappa et al. 2006), Ceni et al. reported that the cleavage of p75NTR was

induced by Trk activation. They have since extended these findings, demonstrating

that Trk activation promoted phosphorylation of TACE, which activated the prote-

ase and lead to cleavage of p75NTR, which was necessary for potentiation of

neurotrophin-induced survival signaling (Kommaddi et al. 2011b).

Although p75NTR can function in cooperation with Trks to promote survival

signals, Friedman and colleagues found that in basal forebrain neurons, p75NTR

reduced Akt signaling by increasing the levels of active PTEN (phosphatase and

tensin homolog deleted on chromosome 10), an inhibitor of the PI3 kinase–Akt

pathway (Song et al. 2010). ProNGF binding to p75NTR upregulated PTEN, which

resulted in apoptosis of the neurons, even if TrkB was activated by BDNF. Since

proNGF signals through binding a complex of p75NTR and Sortilin, the effects of

p75NTR on Akt activity appears to depend on its co-receptor.

4.2 P75NTR Activation of NFkB

Apart from enhancing Trk survival signaling, there is evidence that p75NTR can

activate an independent pro-survival signal; for example, selective activation of

p75NTR prevented the death of certain neuroblastoma (Cortazzo et al. 1996) and

breast cancer cells (Verbeke et al. 2010), of hippocampal neurons treated with

NMDA (Bui et al. 2002), and of both sensory neurons (Longo et al. 1997) and

cortical subplate neurons deprived of trophic support (DeFreitas et al. 2001). In

addition, the receptor appears to play a protective role after certain injuries; e.g.,

p75NTR�/� mice have increased death of primary auditory neurons following

acoustic trauma (Tan et al. 2010). The pro-survival effects of p75NTR appear to

be more of a modulatory signal, as they are not as potent as the effects of tyrosine

kinases like the Trks. The molecular mechanisms by which p75NTR promotes

survival independent of the Trk receptors are not fully understood; however, one

downstream pathway that has been identified involves the transcription factor

nuclear factor kappa B (NFκB). NFκB is best characterized for its role in the

immune system, where it is activated by many cytokine and Toll-like receptors,

leading to upregulation of other cytokines and pro-survival genes (Baldwin 2012).

The activation of NFκB by p75NTR was first reported in Schwann cells
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(Carter et al. 1996) and has since been demonstrated in a variety of cell types,

including Schwannoma cells (Gentry et al. 2000), primary Schwann cells

(Khursigara et al. 2001), trigeminal neurons (Hamanoue et al. 1999), and hippo-

campal neurons (Culmsee et al. 2002). NFκB exists as a dimer, held in the cytosol

through binding to its inhibitor IκB. The transcription factor is activated through

phosphorylation of IκB by the IκB kinase (IKK) complex, leading to proteasomal

degradation of the inhibitor and release of the NFκB dimer to translocate into the

nucleus (Baldwin 2012). As mentioned above, neurotrophin binding to p75NTR can

recruit members of the TRAF family, which activate the IKK complex

(Ha et al. 2009; Hacker et al. 2011); specifically, TRAF6 was shown to mediate

activation of NFκB, as Schwann cells from traf6�/� mice did not respond to

p75NTR activation (Yeiser et al. 2004). Since TRAF6 promotes both NFκB and

JNK activation, it was recognized as a potential nodal point for determining

survival vs. apoptotic signaling. How TRAF6 selectively promotes one pathway

over the other remains to be fully elucidated; however, the finding that the adaptor

protein receptor-interacting protein 2 (RIP2) directly associates with the death

domain of p75NTR provided an important clue. Chao and colleagues demonstrated

that expression of RIP2 in Schwann cells conferred NGF-dependent activation of

NFκB through interaction with TRAF6. Expression of RIP2 in these cells also

reduced JNK activation and the subsequent apoptosis (Khursigara et al. 2001).

Thus, RIP2 expression may serve as the key toggle, switching TRAF6 signaling to

NFκB from JNK (Fig. 1).

Another well-established activator of NFκB is Akt. Although evidence suggests

that p75NTR enhances Trk activation of Akt, as discussed above, p75NTR has also been

reported to promote Akt activation in a manner that was independent of Trk signaling

in hippocampal neurons (Arevalo and Rodriguez-Tebar 2006), melanoma cells, and

mutant PC12 cells lacking TrkA (Roux et al. 2001). Therefore, NFκB may be among

the downstream pro-survival signals activated by p75NTR in some contexts.

It is also notable that the p75NTR was recently shown to regulate the stability of

HIF1a, a transcription factor induced by oxidative stress that controls the expres-

sion of a wide variety of genes involved in protection from reactive oxygen species

and, importantly, promoting cell survival (Hu et al. 2003). Le Moan et al. (2011)

reported that the ICD of the receptor can bind the E3 ubiquitin ligase Siah2, which

targets HIF1a for degradation. The interaction between p75NTR-ICD and Siah2 lead

to upregulation of HIF1a and increased expression of vascular endothelial growth

factor, which promoted angiogenesis after retinal hypoxia. While the authors did

not address a potential role in regulating survival, given that many target genes of

HIF1a are pro-survival, it will be interesting to determine whether this pathway has

a role in promoting neuronal survival in response to activation of the receptor.

Because of the ability of p75NTR to augment Trk-mediated survival signaling

and ligand selectivity, the overall effect of p75NTR on cell survival is quite variable

by cell type and highly dependent upon the presence or absence of the Trk receptor.

In general, though not always, simultaneous activation of both Trk receptors and

p75NTR by mature neurotrophins results in cell survival. However, selective activa-

tion of p75NTR by neurotrophins in the absence of Trk-receptor activation more
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often promotes cell death than survival. For example, NGF treatment of sympa-

thetic neurons, which express both p75NTR and TrkA, promotes neuronal survival.

Stimulation of these neurons with BDNF, however, results in apoptosis, as these

neurons do not express TrkB (Bamji et al. 1998). The proliferative state of the cell

also may influence the effects of p75NTR signaling, as the majority of reports

describing p75NTR mediated cell death have involved post-mitotic neurons, while

studies of p75NTR in proliferative cells have revealed more variable survival

outcomes (Skeldal et al. 2011).

5 Regulation of the Cell Cycle

One of the first effects described for selective activation of p75NTR in the absence of

Trks was cell cycle arrest in a glioma cell line treated with NGF (Dobrowsky

et al. 1994). The effects of p75NTR on cell cycle have since been linked to several

receptor-interacting proteins, including SC-1 (Chittka et al. 2004), NRIF (Benzel

et al. 2001), and NRAGE (Salehi et al. 2000). Like NRIF, SC-1 is a C2H2 zinc

finger-containing protein, and translocation of SC-1 to the nucleus was

demonstrated in response to NGF binding to p75NTR in transfected COS cells

(Chittka and Chao 1999). Expression of SC-1 in these cells blocked cell prolifera-

tion through a mechanism involving repression of cyclin E transcription (Chittka

et al. 2004). Chao and colleagues have also demonstrated that expression of

p75NTR-ICD inhibited cyclin E mRNA production in HeLa cells, and the endoge-

nous p75NTR-ICD in PC12 cells could be localized to the cyclin E promoter by

chromatin immunoprecipitation following NGF treatment (Parkhurst et al. 2010).

These results suggest that the ICD of p75NTR translocates to the nucleus along with

SC-1 to modulate genes involved in the cell cycle. Whether SC-1 has a role in the

receptor’s apoptotic signal remains an open question.

NRIF (Benzel et al. 2001) and NRAGE (Salehi et al. 2000) have also been

implicated in the regulation of cell cycle based on the observation that ectopic

expression of either factor in HEK 293 cells induced cell cycle arrest. It is interest-

ing that these two proteins inhibit proliferation in immortalized fibroblasts but

cause apoptosis when expressed in neurons, Schwann cells (Linggi et al. 2005),

or neural precursors (Salehi et al. 2000, 2002). Perhaps the differential effects relate

to the presence of the tumor suppressor p53, which is mutated or inhibited in many

immortalized cells, including HEK 293s. Cell death induced by ectopic expression

of NRIF is dependent on p53 (Linggi et al. 2005) and over-expression of NRAGE in

breast cancer cells upregulated p53 (Du et al. 2009). One interpretation of these

findings is that in response to p75NTR activation, NRIF and NRAGE may alter

expression of key cell cycle genes, thereby triggering an increase in p53 expression,

ultimately resulting in cell death, but in cells with p53 mutated or blocked, the

effects are limited to inhibiting proliferation.
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6 Regulation of Synaptic Plasticity

In addition to regulating neuronal survival, the balance of signaling between the

Trks and p75NTR plays an important role in modulating synaptic efficacy. BDNF,

acting through TrkB, is essential for the strengthening of synaptic function, referred

to as long-term potentiation (LTP) (Figurov et al. 1996; Kang et al. 1997; Korte

et al. 1998; Patterson et al. 2001). In contrast, p75NTR has a critical role in the

weakening of synaptic connections, a process called long-term depression (LTD).

Analysis of p75NTR knockout mice revealed a deficiency in the ability to induce

LTD in hippocampal slices, although LTP was not impaired (Rosch et al. 2005;

Woo et al. 2005). The mechanism by which p75NTR regulates synaptic function has

yet to be fully resolved; however, glutamate receptor expression appears to be

altered in the null animals. Lu and colleagues found reduced levels of the NMDA

receptor subunit NR2B in p75NTR�/� hippocampal lysates, and NMDA currents

measured in slices from the null mice were not affected by the NR2B antagonist

ifenprodil, while in wild types they were blocked (Woo et al. 2005). In addition,

Korte’s group found impaired AMPA receptor function and decreased levels of the

AMPA receptor subunits GluR2 and 3 in the hippocampus of p75NTR�/� mice

(Rosch et al. 2005). Glutamatergic signaling is essential for the development of

LTD, and both NMDA and AMPA receptors have been implicated as contributing

to the synaptic changes, depending on the mechanism of induction (Hunt and

Castillo 2012). Therefore, the altered expression of these receptors in p75NTR�/�
mice likely contributes to their inability to induce LTD. Furthermore, these changes

in glutamatergic signaling may underlie the impairments in learning, inhibitory

avoidance, and habituation that have been observed in the p75NTR null mice

(Peterson et al. 1999).

P75NTR may also regulate synaptic plasticity through modulating dendritic

structure. No gross morphological changes in the structure of the hippocampus

have been detected in the p75NTR�/� animals; however, careful measurements of

dendritic spines revealed an increase in their density and complexity (Zagrebelsky

et al. 2005). Moreover, immunoelectron microscopy revealed that p75NTR is

expressed on dendritic shafts and spines in the hippocampus (Woo et al. 2005).

These results suggest that the receptor may be important for normal pruning and

refining of these postsynaptic structures. Correspondingly, overexpression of

p75NTR in hippocampal slices resulted in reduced spine density and complexity.

Decreases in spine size and number are associated with LTD (Okamoto et al. 2004;

Zhou et al. 2004) and increases in size and number correlate with LTP (Desmond

and Levy 1986; Fifkova and Anderson 1981; Van Harreveld and Fifkova 1975);

therefore, it is interesting to speculate that during LTD induction, p75NTR may

cause retraction of dendritic spines. As described below, the receptor can activate

the Rho family of GTPases, which regulate the actin-cytoskeleton (Yamashita

et al. 1999). Thus, local dendritic activation of the receptor may result in collapse

or shrinkage of a spine through activation of Rho or inhibition of Rac, ultimately

resulting in reduced synaptic efficacy. However, how morphological changes in

dendritic spines affect synaptic plasticity remains an open question.
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The ligand responsible for activating p75NTR during LTD has been suggested to

be proBDNF; however, this remains somewhat controversial. Pang et al. (2004)

reported that proBDNF cleavage by the extracellular protease plasmin to produce

mature BDNF was required for the induction of LTP. Previous studies

demonstrated that tissue plasmingen activator (tPA), which activates plasmin

from plasminogen, is secreted from axon terminals (Krystosek and Seeds 1981)

and is required for LTP (Baranes et al. 1998; Frey et al. 1996; Huang et al. 1996),

but what role the protease played in the process was not clear. The finding that tPA

targets proBDNF provided a relevant substrate. Moreover, the fact that tPA/plasmin

is acting extracellularly suggested that proBDNF is released into the synaptic cleft,

where it could activate p75NTR if it’s not cleaved. Indeed, Woo et al. (2005) found

that perfusion of hippocampal slices with proBDNF enhanced LTD, but slices from

p75NTR�/�mice were insensitive. More recently, this group also demonstrated that

synaptic competition is regulated by a balance between pro- and mature-BDNF.

Using cocultures of Xenopus myocytes and motor neurons, they demonstrated that

when two neurons innervate one myocyte, the active terminal promotes cleavage of

proBDNF to mature BDNF, which stabilizes the synapse through activation of

TrkB. In contrast, at the less active terminal proBDNF is not cleaved and causes

axon retraction through binding to p75NTR (Je et al. 2012). Such activity-dependent

synaptic competition is a common principle in many areas of the developing

nervous system, although the underlying molecular mechanisms are not known.

The finding that pro-/mature BDNF levels can be dynamically regulated to act as

the punishment and reward signal provides some important clues as to the

mechanisms that could underlie this competition. Nevertheless, despite these ele-

gant studies, results from the Barde group cast doubt on a role for proBDNF in

synaptic plasticity. They reported that proBDNF was not secreted by hippocampal

neurons in culture and that the induction of LTD was unaffected by conditional

deletion of BDNF (both the pro- and mature-form of the neurotrophin) in neurons

(Matsumoto et al. 2008). Clearly, additional studies are needed to fully understand

the role of p75NTR in synaptic plasticity.

7 Promotion of Peripheral Myelination

All cells of the neural crest lineage express p75NTR during development, including

those that become Schwann cells in the sciatic nerve. Schwann cells continue to

express p75NTR until myelination, at which time it is downregulated. This reduction

in its expression was attributed to axonal signals, whose identity still remains

unknown (Lemke and Chao 1988). Due to its regulated expression in the sciatic

nerve, questions have persisted as to whether p75NTR plays a role in some aspects of

the myelination process by Schwann cells. Anton et al. (1994) first reported that

p75NTR is involved in migration of Schwann cells: Schwann cell migration out of

DRGs onto sciatic nerve explants was enhanced by NGF treatment, but REX, a

p75NTR antibody, blocked its effect. The effect was, however, observed only with

explants from denervated sciatic nerves and not with intact sciatic nerves,
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suggesting that p75NTR may play a role only after injury. When Schwann cell

migration was examined during embryogenesis in trigeminal ganglia, however,

p75NTR did have an effect: the extent of Schwann cell migration to the axon tips was

significantly reduced in p75NTR knockout mice compared to littermates (Bentley

and Lee 2000). Since trigeminal ganglion neurons also express p75NTR, Bentley and

Lee examined Schwann cell migration in vitro using sciatic nerve explants. The

extent of Schwann cell migration was reduced in cultures from p75NTR knockout

mice compared to that in the wild-type counterparts, although NGF addition had no

effect. These results suggest that p75NTR expression specifically in Schwann cells

regulates their migration both during development and after injury.

Schwann cells have to migrate along the axon before they form myelin sheaths

around axons. The fact that p75NTR plays a role in Schwann cell migration suggests

that the receptor could regulate the myelination process. This question was first

addressed by Eric Shooter’s group in 2002. Cosgaya et al. (2002) reported that

blocking p75NTR signaling resulted in inhibition of myelin formation both in

DRG-Schwann cell cocultures as well as in developing sciatic nerves. In particular,

EM analysis of sciatic nerves that were injected with REX antibody at P0, before

the onset of myelination, revealed that the myelin sheath became thinner 4 days

later, without affecting the number of myelinated axons, suggesting that p75NTR

promotes Schwann cell myelination in vivo. As for the ligand that activates p75NTR

in Schwann cells, BDNF, which the group had previously reported to promote

Schwann cell myelination (Chan et al. 2001), was shown to be responsible.

Attributing the effect of BDNF to p75NTR in Schwann cells was indirect, however,

because p75NTR is expressed both in axons and Schwann cells at the neonate stage

in the sciatic nerve. For instance, Cosgaya et al. (2002) illustrated that while the

full-length TrkB levels were barely detectable, p75NTR levels were very high in

Schwann cells. While modulating BDNF signaling by either injecting excess BDNF

or scavenging the neurotrophin with TrkB-Fc affected myelination in wild type

mice, no effect on myelination was observed in p75NTR knockout mice. Since

p75NTR is the only receptor in Schwann cells that could elicit downstream signaling

to promote myelination, the lack of effect was attributed to BDNF acting through

p75NTR in Schwann cells.

The idea that BDNF promotes myelination through p75NTR in Schwann cells

was challenged by the Murray group (Xiao et al. 2009). In their study, a

DRG-Schwann cell coculture system was utilized, wherein p75NTR expression

was regulated both in DRG and Schwann cells independently. To delete p75NTR

from DRG neurons, DRG neurons were isolated from p75NTR knockout mice,

maintained in NGF, and subsequently seeded with rat Schwann cells. To knock-

down p75NTR in Schwann cells, they transduced rat Schwann cells with p75NTR-

shRNA prior to seeding them onto NGF-dependent DRG neurons. Surprisingly,

adding BDNF to the NGF-dependent DRG neurons from p75NTR knockout mice

failed to promote myelination, while in wild-type counterparts BDNF increased

myelin protein levels by 1.5–2-fold. When p75NTR expression was knocked down

in Schwann cells before they were seeded onto NGF-dependent DRG neurons,

however, there was little effect, regardless of whether BDNF was present or not.
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This study thus demonstrated that it is p75NTR in DRG neurons and not in Schwann

cells that influences Schwann cell myelination.

Tep et al., on the other hand, reported opposite results by using the same

DRG-Schwann cell coculture system, wherein p75NTR expression was knocked

down only in Schwann cells before they were seeded onto NGF-dependent DRG

neurons (Tep et al. 2012): the number of myelinated nerves were reduced by

�50 %. As for the reason why the two studies differ, Tep et al. stated that while

Xiao et al. isolated DRG neurons at P2 and cultured them in the presence of NGF

for 2–3 weeks, Tep et al. cultured DRG neurons from embryonic day 15 animals

and cultured them for a week before Schwann cells were seeded. It is not clear

whether the age of DRG neurons subjected to myelination in culture is responsible

for the opposite outcome, since the studies were conducted independently. Since

p75NTR was shown to affect the extent of remyelination after injury (Song

et al. 2006), it is possible that under injury conditions in the adult PNS, p75NTR

expressed in DRG neurons controls aspects of remyelination. What now awaits is

the analysis of conditional p75NTR knockout mice in Schwann cells and neurons,

individually, to resolve the issue.

Regardless of where p75NTR exerts its effect, the question remained as to what

signaling pathway p75NTR employs to promote myelination in Schwann cells.

P75NTR was shown to regulate small GTPases that are critical for cytoskeletal

reorganization, such as RhoA (Domeniconi et al. 2005; Harrington et al. 2008;

Passino et al. 2007; Wang et al. 2002; Yamashita et al. 1999, 2002; Yamashita and

Tohyama 2003; Yamauchi et al. 2004) and Rac1 (Deinhardt et al. 2011; Harrington

et al. 2002; Tep et al. 2012) in a variety of tissues both in and outside of the nervous

system. During Schwann cell myelination, p75NTR-mediated Rac1 activation

appears to be important, as partitioning-defective 3 (Par3) was shown to bind

p75NTR through its PDZ-binding tri-peptide motifs in Schwann cells (Chan

et al. 2006). Par3 is a member of the polarization complex that includes Par6 and

protein kinase C, regulating activation of Rac1 and Cdc42 (Goldstein and Macara

2007). In Schwann cells, Par3 was colocalized with p75NTR at axon–glial interfaces

in response to BDNF (Chan et al. 2006) and was shown to mediate Rac1 activation

by BDNF (Tep et al. 2012). Rac1 activation was also significantly reduced in

neonate sciatic nerves from p75NTR knockout mice, supporting the notion that

p75NTR activates Rac1 as it forms a complex with Par3 at the axon–glial interface

(Tep et al. 2012). Thus, Rac1 activation appears to be a pathway induced by p75NTR

that regulates Schwann cell myelination.

8 Regulation of Neurite Growth and Axonal Degeneration

Although p75NTR was shown to activate members of the Rac/Rho family in

Schwann cells, thereby affecting myelination, the role of p75NTR-dependent

RhoA activation has been best studied in the context of neurite outgrowth. The

regulation of RhoA by p75NTR was first demonstrated by Yamashita et al, who

identified RhoA as a receptor-interacting factor in a yeast two-hybrid screen. They
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found that unliganded p75NTR promoted RhoA activation and neurotrophin binding

prevented this activation, thereby promoting neurite outgrowth (Yamashita

et al. 1999). Soon after this finding, p75NTR was shown to regulate RhoA in

response to a group of myelin proteins, including myelin associated glycoprotein

(MAG), Oligodendrocyte myelin glycoprotein (OMgp), and Nogo (Wang

et al. 2002; Wong et al. 2002; Yamashita et al. 2002). These myelin proteins are

expressed by oligodendrocytes and are known to inhibit neurite outgrowth, which

has made them a major focus for studies aimed at axonal regeneration after spinal

cord injury (Akbik et al. 2012). All three of these inhibitors bind to a glycosylpho-

sphatidylinositol (gpi)-linked receptor, the Nogo receptor (NgR). The NgR lacks an

intracellular domain, but it can associate with p75NTR and another transmembrane

protein, Lingo-1, to regulate RhoA (Mi et al. 2004) (Fig. 3).

The ability of p75NTR to regulate Rho family members depends on a number of

intracellular interacting factors. The activation of RhoA by myelin proteins occurs

through the recruitment of the Rho inhibitor RhoGDI to p75NTR, thereby releasing

RhoA (Yamashita and Tohyama 2003). RhoGDI competes with the guanine nucle-

otide exchange factor (GEF), Kalirin 9, for p75NTR binding (Harrington et al. 2008),

such that upon receptor activation, Kalirin 9 is released, allowing binding of

RhoGDI. Once RhoA is freed from RhoGDI, it is then activated by Kalirin 9

(Fig. 3). It should be added that RhoA activation by MAG in cerebellar granule

neurons required cleavage of p75NTR (Domeniconi et al. 2005). It is not known
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Rho Family
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Fig. 3 Regulation of axonal growth by p75NTR. A complex comprised of p75NTR, NogoR, and

Lingo-1 is formed in response to myelin-derived inhibitors such as MAG, OMgp, and Nogo. In

response to stimulation by these ligands, Rho-GDI is recruited to the intracellular domain of

p75NTR. Concurrently, association of Kalirin-9 with the p75NTR intracellular domain is decreased,

thus resulting in enhanced activation of Rho family members by Kalirin-9 and inhibition of axonal

growth
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how receptor cleavage facilitates the stimulation of Rho or whether other myelin

inhibitory molecules that bind the NgR–p75NTR–Lingo-1 complex also induce

p75NTR cleavage. In addition to regulating RhoA, Hempstead’s group recently

demonstrated that proneurotrophin binding to p75NTR caused a decrease in Rac

activity. Rac typically counterbalances Rho, such that decreasing Rac has a similar

effect to activating Rho. The reduction in Rac activation after proneurotrophin

binding was linked to dissociation of the Rac GEF Trio from a complex of p75NTR

with another Sortilin family member, SorCS2, suggesting that the release of Trio

reduces basal Rac activity (Deinhardt et al. 2011). Hence, there may be multiple

mechanisms by which p75NTR regulates members of the Rho family, depending on

the ligand and the co-receptors present.

As might be expected, evidence suggests that p75NTR can regulate axonal growth

and retraction at the tip of the growing axon in the growth cone. Treatment of

Xenopus spinal neurons with MAG caused p75NTR-dependent repulsion of the

growth cone (Wong et al. 2002). Similarly, proneurotrophins were recently reported

to induce growth cone collapse in cortical neurons (Sun et al. 2012) and in

hippocampal neurons (Deinhardt et al. 2011). In contrast to the inhibitory effects

of proneurotrophins and myelin proteins on growth cones, mature neurotrophin

binding to p75NTR increased filopodial length in the growth cone of subplate

neurons (McQuillen et al. 2002), as well as in retinal ganglion and dorsal root

ganglion cells, where it was demonstrated that the receptor promoted filopodia

growth through inhibition of RhoA (Gehler et al. 2004).

The recognition of p75NTR as a signal transducer for MAG, OMgp and Nogo

created a considerable amount of interest in targeting the receptor as a means of

promoting regeneration following CNS injury; however, the regulation of axonal

regeneration is very complex, and the role of p75NTR is not well understood.

Despite the fact that p75NTR null neurons failed to activate RhoA and respond to

myelin inhibitors in culture (Wang et al. 2002; Yamashita et al. 2002; Yamashita

and Tohyama 2003; Zheng et al. 2005) and after spinal cord injury (Dubreuil

et al. 2003), there was no effect on regeneration of corticospinal tract after spinal

cord injury in the p75NTR knockout mice (Song et al. 2004; Zheng et al. 2005). The

reason why p75NTR does not appear to regulate regeneration after spinal cord injury

is not clear, but this may be due to the fact that p75NTR expression is upregulated in

oligodendrocytes as well as denervated axons following spinal cord injury (Beattie

et al. 2002; Tep et al. 2013), potentially confounding its effect on regeneration. It is

also possible that the NgR can partner with other receptors in addition to p75NTR;

for example, another member of the TNF receptor superfamily, Troy, was shown to

function as a signal transducer for the NgR (Park et al. 2005; Shao et al. 2005). In

addition, another receptor, PirB, was identified that also binds myelin inhibitory

molecules (Atwal et al. 2008), and Fujita et al. (2011b) reported that myelin

inhibitory molecules induced interaction between the PirB and p75NTR in cerebellar

granule neurons. In that study, the authors demonstrated that optic nerve regenera-

tion was significantly improved after injury in p75NTR knockout mice, suggesting

that p75NTR does play a role in regeneration at least in the optic system, which is

less complex than spinal cord injury in terms of affected cell types and the cellular
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responses to injury. The question remains, however, whether this effect is mediated

through the interaction of p75NTR with PirB, since PirB knockout mice had no

effect on optic nerve regeneration (Fujita et al. 2011a). The ultimate outcome of

whether p75NTR promotes axon regrowth or retraction after an injury may depend,

in part, on the type of injury and the different ligands produced that bind to p75NTR

and its signaling partners: p75NTR interacts with Lingo-1 and NgR or PirB in

response to myelin inhibitory molecules (Mi et al. 2004; Wang et al. 2002), Sortilin

in response to proNGF (Nykjaer et al. 2004), EphA in response to Ephrin-As (Lim

et al. 2008), in addition to TrkA, TrkB, and TrkC in response to NGF, BDNF, and

NT3.

Does myelin play a similarly inhibitory role in intact brains in the absence of any

injury? Freda Miller’s group addressed this question by examining axonal sprouting

of p75NTR-expressing cholinergic septal neurons into the corpus callosum in the

adult brain (Park et al. 2010). Surprisingly, there were many more cholinergic fibers

entering the corpus callosum in p75NTR knockout than in the wild type mice,

suggesting that p75NTR normally prevents misrouting of these fibers in vivo.

P75NTR appeared to have induced degeneration of the fibers that entered the

white matter tract, since cholinergic axons degenerated when plated on myelin.

Similar axonal breakdown was observed in cultured sympathetic neurons when

BDNF was applied selectively to axons while the soma was maintained in NGF

(Singh et al. 2008). The axonal degeneration induced by p75NTR in vitro and in vivo

extended beyond the collapse of growth cones, as there was overt breakdown of

axonal fibers; however, there was no apoptosis of the neurons. The signaling

mechanisms involved in the degeneration appear to involve both Rho and

caspase-6, as activation of both enzymes was detected in axons following stimula-

tion of p75NTR, and inhibition of either Rho or caspase-6 blocked the axonal

breakdown (Park et al. 2010). Local activation of caspases in distal axons during

axonal degeneration has been increasingly reported; for example, degeneration due

to withdrawal of NGF selectively from distal axons of DRG neurons grown in

compartmentalized chambers was dependent on both caspase-3 and -6 (Simon

et al. 2012). These caspases were not activated in the soma; thus the neurons did

not undergo apoptosis. How such degenerative/apoptotic signaling is restricted to

the axon is not known. The caspase inhibitor XIAP is also upregulated in mature

sympathetic neurons, making them resistant to injection of cytochrome c (Potts

et al. 2003). Thus, NGF acting at the soma may prevent the spread of caspase

activation through upregulation of such inhibitors. Additional studies are needed to

understand the spatial control of such signaling pathways.

Conclusion

Since the initial cloning of p75NTR, the field has undergone a remarkable

transformation in its understanding of this puzzling receptor. Initially, p75NTR

was viewed as a non-signaling, auxiliary binding component for members of the

Trk family that simply enabled neurotrophins to bind with high affinity to the

Trks. Now, p75NTR is considered a key signaling component for multiple ligands

through the formation of a variety of receptor complexes that regulate a wide
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array of biological responses, from cell survival to neurite growth, axon degen-

eration, or myelin formation. Many questions remain to be answered regarding

the mechanisms utilized by p75NTR to mediate its responses, such as how the

receptor can selectively activate one pathway over another, some of which can

be in direct opposition (e.g., survival vs. apoptosis). The genes regulated by

receptor proteolysis and the ICD-binding proteins that translocate to the nucleus

are also yet to be identified. What role Sortilin and other Vps10p family

members play in p75NTR signaling beyond binding to the pro-domain of

proneurotrophins remains to be determined. Even the molecular nature of the

high affinity complex between p75NTR and the Trks is still poorly understood.

Beyond these questions regarding receptor signaling, it will be equally important

to explore the role of the receptor in the many injuries and diseases where it is

upregulated. Given that p75NTR has the potential to signal both survival and

degeneration/apoptosis, it is enticing to consider the possibility of developing

novel therapeutics that switch the receptor’s degeneration signal to one promot-

ing survival. Certainly, further understanding of how the receptor functions will

provide additional insights for developing novel therapeutics for many

neuropathologies.

In this chapter, we attempted to cover the many aspects of signaling through

the p75NTR receptor and the biological outcomes; nevertheless, we could not

fully encompass the many contributions made by the large number of

researchers who have studied this complex system. We apologize for those

omissions.
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Sortilins in Neurotrophic Factor Signaling
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Abstract

The sortilin family of Vps10p-domain receptors includes sortilin, SorLA, and

SorCS1–3. These type-I transmembrane receptors predominate in distinct neu-

ronal tissues, but expression is also present in certain specialized non-neuronal

cell populations including hepatocytes and cells of the immune system. The

biology of sortilins is complex as they participate in both cell signaling and in

intracellular protein sorting. Sortilins function physiologically in signaling by

pro- and mature neurotrophins in neuronal viability and functionality. Recent

genome-wide association studies have linked members to neurological disorders

such as Alzheimer’s disease and bipolar disorder and outside the nervous system

to development of coronary artery disease and type-2 diabetes. Particularly well

described are the receptor functions in neuronal signaling by pro- (proNT) and

mature (NT) neurotrophins and in the processing/metabolism of amyloid

precursor protein (APP).
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1 The Vps10p Domain Receptor Family: Sortilins

Sortilins, also denoted Vps10p domain receptors, are emerging as critical regulators

of neuronal survival and function (Fig. 1). They partake in a multitude of functions

from anterograde and retrograde protein sorting to signal transduction induced by

neurotrophic factors (Willnow et al. 2008). The mammalian sortilin family includes

sortilin, SorLA, and SorCS1–3 and appears to have evolved with increasing

demand for cellular complexity. The unifying structural Vps10p domain, short for

vacuolar protein sorting 10 protein, was first identified in the yeast (Marcusson

et al. 1994). Vps10p is a type I receptor with two copies of the domain in its

extracellular part that participates in a mannose-6-phosphate receptor-independent

pathway for sorting of proteins targeted for the yeast vacuole. Human sortilin and

SorLA were first isolated from brain homogenates by receptor-associated protein

(RAP) affinity chromatography in an attempt to discover novel low density lipo-

protein receptor-related proteins (Jacobsen et al. 1996; Petersen et al. 1997).

Sortilin is the prototype family member as its entire extracellular domain consists

of a single copy of the ~700 amino acids Vps10p domain followed by a transmem-

brane domain and a short cytoplasmic tail. In contrast, SorLA is a mosaic receptor

with a large extracellular part. In SorLA, the Vps10p domain is followed by an EGF

precursor-type repeat, a cluster of 11 complement repeats, and six fibronectin type-

III repeats (Fig. 1). Interestingly, SorLA appears to have originated in the first

organism with a nervous system, the hydra, where it acts as a receptor for the

neuropeptide head activator (Hampe et al. 2000).

The homologues SorCS1, SorCS2, and SorCS3 were identified by database mining

(Hampe et al. 2000; Hermey 2009; Rezgaoui et al. 2001), and contain in their

extracellular domains in addition to the Vps10p domain, a polycystic kidney disease

(PKD) module, and a juxtamembrane leucine-rich region (Fig. 1). The global

sequence identity between SorCS1 and SorCS3 proteins is 70%, whereas their identity

with SorCS2 is much lower ranging from 45 to 47 % with highest conservation found

in the Vps10p domain and lowest identity in their propeptides and cytoplasmic tails.

The composition of the yeast Vps10p with two luminal copies of the domain is

only found in fungi whereas a sortilin-like composition is conserved in protozoans,

echinoderms, and vertebrates. Highly conserved orthologues of all the mammalian

family members are found in birds and fish, but no Vps10p orthologues have been

identified in species such as flies, nematodes, and plants (Hermey 2009).

In mammals, sortilins prevail in most regions of the developing and adult

nervous system. However, receptors are also expressed in a dynamic manner in a

number of non-neuronal cell types. Sortilin and SorLA, for example, are abundant

in tissues such as embryonic lung, kidney, liver, and several developing glands. In

the adult organism expression persists in most tissues and now also appears in cells

of the immune system (Hermans-Borgmeyer et al. 1999; Sarret et al. 2003;

Fauchais et al. 2008; Wahe et al. 2010; Kjolby et al. 2010). While expression of

sortilin and SorLA mostly overlap, SorCS1, -2, and -3 show a much more restricted

and complementary pattern of expression. For instance, SorCS1 and SorCS3 are

highly expressed in CA1 of the hippocampus, whereas SorCS2 displays the highest
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expression in the CA2 and dentate gyrus. Of note, the hippocampal expression of

SorCS1 and SorCS3 is dynamically regulated as both can be induced by neuronal

activity, suggesting their potential participation in activity-dependent synaptic

modifications (Hermey et al. 2004).

2 The Vps10p Domain Structure

Sortilins bind a wide variety of ligands through the Vps10p domain, ranging from

transmembrane receptors to soluble proteins involved in processes as diverse as

lipid metabolism and signaling by neurotrophic factors. Mammalian sortilin and

yeast Vps10p show low amino acid sequence identity, yet they are both predicted to

adopt a beta-propeller fold. The crystal structure of sortilin in complex with the

small neuropeptide ligand neurotensin (Table 1) was recently solved and revealed a

completely novel fold (Quistgaard et al. 2009) (Fig. 2). The domain forms an

unusually large ten-bladed beta-propeller structure creating a large tunnel with

multiple ligand-binding sites formed by loops protruding from the beta-strand

ends into the tunnel cavity. The beta-propeller is followed C-terminally by a

COOH

NH2

COOH COOH COOHCOOH

SorLA Sortilin SorCS1 SorCS2 SorCS3 Cytoplasmic domain

Transmembrane
region

Leucine rich domain

Propeptide

Fibronectin type III
repeat

EGF precursor
homology domain

Vps10p-domain

PKD domain

COOH COOH COOH COOHCOOHCOOH

Complement-type repeat

NH2 NH2 NH2

NH2

Fig. 1 The Vps10p domain receptor family. Sortilin represents the prototype family member

containing an N-terminal propeptide followed by the Vps10p domain that constitutes the entire

extracellular part of the mature receptor. The receptor also contains a transmembrane region and a

short cytoplasmic domain containing several functional sorting motifs. The propeptide is cleaved

off by furin during processing of the receptor in the Golgi. In the extracellular part of SorLA, the

Vps10p domain is followed by an EGF precursor homology domain, a series of complement

repeats originally known from the low-density lipoprotein receptor and a series of fibronection

type III repeats. SorCS1-3 are global homologues and contain in addition to the Vps10p domain,

a polycystic kidney disease (PKD) domain and a leucine-rich domain
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small domain designated 10CC. This domain has no secondary structure but

comprises ten cysteine residues forming five disulfide bonds. 10CC interacts

extensively with one side of the propeller and is believed to stabilize the tunnel

while restricting the access of ligands to this side of the tunnel.

Neurotensin inhibits the binding of most sortilin ligands in a competitive manner,

and the co-crystal structure showed that the neurotensin binding site resides inside

the tunnel cavity. This suggests that different binding sites for soluble ligands are

formed within the tunnel likely by differential combinations of the protruding loops.

Most Vps10p domain ligands compete with each other for binding, but this ability

most likely relies on steric hindrance rather than on identical binding sites. The ten

blades of the Vps10p domain propeller results in a fourfold increase in the tunnel

Table 1 Known binding partners of sortilins

Ligands Sortilin SorLA SorCS1 SorCS2 SorCS3 Function

APP + Golgi retention (Andersen

et al. 2005)

ApoB100 + VLDL particle assembly (Kjolby

et al. 2010)

CLC/CLF-1 + Signaling (Larsen et al. 2010)

CNTF + Signaling (Larsen et al. 2010)

LPL + + Lysosomal sorting (Nielsen

et al. 1999)

Neurotensin + + Unknown (Mazella et al. 1998)

P75NTR + Apoptosis (Nykjaer et al. 2004)

PDGFβ + + + Unknown (Hermey et al. 2006)

ProBDNF + Apoptosis (Teng et al. 2005)

Progranulin + Lysosomal sorting (Hu et al. 2010)

ProNGF + + Apoptosis (Nykjaer et al. 2004)

ProNT3 + Apoptosis (Yano et al. 2009;

Tauris et al. 2011)

Prosaposin + Lysosomal sorting (Lefrancois

et al. 2003)

RAP + + Unknown (Petersen et al. 1997;

Jacobsen et al. 1996)

SorLA

propeptide

+ + Inhibition of premature ligand

binding (Jacobsen et al. 2001)

Sortilin

propeptide

+ + Inhibition of premature ligand

binding (Munck Petersen

et al. 1999)

TGFβ + Lysosomal sorting (Kwon and

Christian 2011)

Thyroglobulin + Recycling (Botta et al. 2009)

TrkA, -B, -C + Sorting (Vaegter et al. 2011)

APP amyloid precursor protein, CLC/CLF-1 cardiotrophin-like cytokine/receptor cytokine-like

factor-1, CNTF ciliary neurotrophic factor, LPL lipoprotein lipase, PDGFβ platelet-derived growth

factor-β, proBDNF pro-brain-derived neurotrophic factor, proNGF pro-nerve growth factor, proNT3
pro-neurotrophin-3, RAP receptor-associated protein, Trk tropomyosin-related kinase
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volume as compared to, for example, the eight-bladed propeller peptidase IV. Thus,

unlike smaller beta propellers, the sortilin tunnel can accommodate large protein

ligands and provide specific binding sites for an extended set of ligands. Also,

confining binding sites to the tunnel, rather than being scattered on an exposed

outer surface, ensures that sortilin accommodates only one ligand at a time.

Another interesting structural feature of the Vps10p domain is two protruding

hydrophobic loops (Quistgaard et al. 2009). These loops have been proposed to

interact directly with the cell membrane or with transmembrane receptor partners

such as the p75 neurotrophin receptor (p75NTR) or the tropomyosin-related kinase

(Trk) family of receptors (see below). Apart from the sortilin Vps10p domain, the

solution structures of the second SorLA fibronectin type III domain (PDB code:

2DM4) in addition to SorCS2 PKD (PDB code: 1WGO) have been solved by NMR.

The PKD structure related it to the immunoglobin superfamily.

3 Ligands of Sortilins

A number of both soluble and transmembrane ligands binding to the extracellular

domains of sortilin family members have been described, and those shown to bind

in a direct manner are listed in Table 1. Sortilin has the highest number of ligands

Fig. 2 Crystal structure of

the sortilin Vps10p domain in

complex with neurotensin.

The structure is visualized

using PyMOL
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followed by SorLA with many overlaps. Only two ligands have been identified for

SorCS1 and -3, whereas SorCS2 is so far an orphan receptor. The majority of

sortilin ligands are related to lipid metabolism such as lipoprotein lipase (LPL)

(Nielsen et al. 1999) and ApoB100 (Kjolby et al. 2010), or to neurotrophic factor

signaling, notably, the neurotrophin system and their receptors (Nykjaer et al. 2004;

Teng et al. 2005; Yano et al. 2009; Tauris et al. 2011; Vaegter et al. 2011) in

addition to a subset of helical type I cytokines (Larsen et al. 2010). SorLA is unique

in binding amyloid precursor protein (APP), and this interaction is considered

important to avoid pathological amyloid plaque formation (Andersen et al. 2005)

(see below).

4 Processing Conditions Sortilin and SorLA for
Ligand Binding

An additional unifying feature of Vps10p domain receptors throughout species is an

N-terminal propeptide containing an RXXR motif that defines the consensus

cleavage site for furin and other proprotein convertases. Sortilin, SorLA, and

SorCS1–3 are all synthesized as proproteins, and their ~50 amino acids propeptides

are removed late in the trans-Golgi network (TGN), possibly following internaliza-

tion and recycling of the newly synthesized receptor, as processing of mutated

sortilin lacking the cytoplasmic tail is slowed dramatically (Munck Petersen

et al. 1999; Nielsen et al. 2001). Furin cleavage results in dissociation of propeptide

from the mature receptor and in the case of sortilin and SorLA, this conditions the

receptors for ligand binding (Munck Petersen et al. 1999; Jacobsen et al. 2001).

Accordingly, mutation of the furin cleavage sites results in receptor variants that are

unable to bind Vps10p domain ligands (Munck Petersen et al. 1999; Jacobsen

et al. 2001). Also, recombinant soluble propeptides are potent antagonists of sortilin

and SorLA ligand binding, e.g., proneurotrophin binding by sortilin (Munck

Petersen et al. 1999; Jacobsen et al. 2001; Nykjaer et al. 2004; Teng et al. 2005;

Tauris et al. 2011). Neurotensin also completely inhibits this binding, implicating

that the tunnel cavity is critically involved in the interaction with proneurotrophins

(Nykjaer et al. 2004; Quistgaard et al. 2009). The above has important functional

implications as it indicates that prosortilin cannot interact with Vps10p domain

ligands prior to propeptide processing, whereas the SorCS3 propeptide appears to

have no effect on its ability to bind pro-nerve growth factor (proNGF) (Westergaard

et al. 2005). In the case of sortilin, SorLA, SorCS1, and SorCS3, it has been further

demonstrated that the propeptide acts as a chaperone in the endoplasmic reticulum

(ER) required for efficient folding of the newly synthesized receptors

(Munck Petersen et al. 1999; Jacobsen et al. 2001; Westergaard et al. 2005; Hermey

et al. 2003).
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5 Cellular Trafficking of Sortilins

Sortilin and SorLA are mainly found intracellularly in perinuclear vesicles and in

the TGN with less than 10 % of the receptor pool present on the cell surface

(Petersen et al. 1997; Jacobsen et al. 1996; Nielsen et al. 2001). In neurons, sortilin

and SorLA also show a vesicle-like staining in the soma, but receptors can also be

found in axons and dendrites and at the nerve terminals (Sarret et al. 2003; Hermey

et al. 2001). In contrast, SorCS3 is predominantly surface exposed (Westergaard

et al. 2005). Notably, SorCS1 is unique among the sortilins as it exists in several

distinct splice variants, denoted SorCS1-a, -b, and -c, that encode cytoplasmic

domains differing in length and sequence. While the SorCS1-a variant is almost

exclusively intracellular, the -b and -c isoforms mainly localize to the cell surface

(Hermey et al. 2003; Nielsen et al. 2008).

As mentioned above, sortilins are matured in the TGN (Munck Petersen

et al. 1999). This organelle is a sorting station important for distributing proteins

between various cellular compartments. From here, proteins are directed to the

constitutive or regulated secretory pathway, and to endosomes or lysosomes.

Neuronal TGN is also involved in axonal transport and in the formation of signaling

endosomes (Bonifacino and Rojas 2006). Trafficking between the TGN and the

different cellular compartments is assisted by specific adaptor proteins that directly

or indirectly connect the cytoplasmic tail of sortilins to the clathrin coat of transport

vesicles, to lipid membranes, or to the cytoskeleton (Nielsen et al. 2001, 2008)

(Fig. 3).

At the cell surface sortilin and SorLA are rapidly internalized into endosomes

through clathrin coated pits. For SorLA, this is mediated by adaptor protein

2 (AP-2) by binding to an acidic cluster dileucine-like site in the cytoplasmic tail

(Nielsen et al. 2007). In the case of sortilin, internalization is mediated by a

tyrosine-based internalization motif (Nielsen et al. 2001). SorCS1-c, SorCS2, and

SorCS3 also contain tyrosine-based internalization motifs, but their activity and

adaptor proteins remain to be determined. Internalized receptors exit endosomes

and are returned to the TGN through retrograde sorting pathways, thus escaping

lysosomal degradation (Nielsen et al. 2001, 2007). Four distinct complexes of

cargo adaptor proteins have been implicated in this transport pathway including

the AP-1 complex that links cargo to the clathrin coat of endosomal and TGN

vesicles, the clathrin adaptors Golgi-localizing, γ-adaptin ear homology domain,

ARF-interacting proteins (GGA-1, -2, -3), the retromer complex, and the

phosphofurin acidic cluster sorting protein (PACS1). The existing data suggest a

model in which AP-1 and the GGAs transport sortilin and SorLA from the Golgi to

endosomes whereas the retromer and possibly AP-1 mediate their return from the

tubular endosomal network of early endosomes to the TGN (Nielsen et al. 2001,

2007). In the case of SorLA, PACS1 also appears to be implicated in TGN transport

(Schmidt et al. 2007). At present, no data are available for SorCS1–3.

At the cell surface, sortilins are subject to events other than endocytosis as they

can also be cleaved by ADAM10 or -17 and released from the cell surface (Hermey

et al. 2006). Whether the soluble receptor product, which is capable of ligand
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binding, serves as a decoy receptor is currently unclear. However, the remaining

transmembrane fragment can undergo regulated intramembrane proteolysis (RIP)

by the gamma-secretase complex. The fate of the resulting intracellular fragment is

unclear, but in the case of the SorLA cytoplasmic tail, it is targeted to the nucleus

where it possibly can induce gene expression as proposed by use of a reporter gene

assay (Bohm et al. 2006). Whether RIP of sortilin is implicated signaling by

neurotrophic factors remains to be determined, but the role of p75NTR RIP is

well described in neuronal survival and death (see below).

6 Sortilin in Proneurotrophin-Induced Apoptosis

Contrasting their inherent name “neurotrophins,” literally meaning “nerve

nourishments,” these molecules not only elicit neuronal survival, growth, and

differentiation but are also capable of apoptotic signaling. The trophic signals are

governed by binding of the neurotrophins (NT) to their respective Trk receptor.

Nerve growth factor (NGF) binds to TrkA, brain-derived neurotrophic factor

(BDNF) and neurotrophin-4 (NT-4) to TrkB, and neurotrophin-3 (NT-3) to TrkC,

respectively. Co-expression with p75NTR fortifies the trophic activities as it

strengthens both affinity and specificity of the NTs towards their cognate Trk

receptor. Intriguingly, p75NTR is also required for NTs to stimulate apoptosis,

suggesting that this receptor is able to switch between survival and death signaling

depending on the cellular context. For some time this was a puzzling observation,

but an indication of the underlying mechanism came with the recognition that while

trophic activities are mediated by mature NTs, their proform, denoted proneuro-

trophins (proNT), can provoke apoptosis in a Trk-independent manner

SorLA
KHRRLQSSFT10AFANSHYSSR20LGSAIFSSGD30DLGEDDEDAP40MITGFSDDVP50MVIA

Sortilin
KKYVCGGRFL10VHRYSVLQQH20AEANGVDGVD30ADLDTASHTN40KSGYHDDSDE50DLLE

SorCS1a
KFKRCVSLYP10RSPTPDLFLL20PDRFRSMCYS30DVHSSDGFY

SorCS1b
KFKRRVALPS10PPSPSTQPGDS20SLQRARHATPP30STPKRGSAGA40QYAI

SorCS1c
KFKRKIPGIN10VYAQMQNEKE20QEMISPVSHS30ESRPNVPQTE40LRRPGQLIDE50KVESQLIGK

SorCS2
KFKRKRPGRT10VYAQMHNEKE20QEMSTPVSHS30EDVQGAVQGN40HSGVVLSINS50REMHSYLVS

SorCS3
KFKRKIPWIN10IYAQVQHDKE20QEMIGSVSQSE30NAPKITLSDF40TEPEELLDKE50LDTRVIGGIA60TIANSESTKE70IPNCTSV

   
   internalisation (AP-2: YXXB, [DE]XXXL[LI])
   TGN   endosome   TGN (AP-1: YXXB, [DE]XXXL[LI])
   TGN   endosome (GGA: C-terminal DXXLL)
   TGN   post-synaptic densities (PDZ domain proteins: S/TXF) 
   signalling (SH3 domain proteins: PXXP)
   endosome   TGN (retromer complex) 

Fig. 3 Cytosolic adaptor sites in sortilins. Both putative and experimentally confirmed sites are

indicated together with the type of trafficking they conduct. The responsible adaptor proteins and

their consensus recognition motifs are listed in parenthesis (Nielsen et al. 2001, 2007, 2008;

Schmidt et al. 2007; Hermey et al. 2003)
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(Lee et al. 2001). Earlier studies had reported that NT binding to p75NTR can induce

apoptosis in cultured neurons and oligodendrocytes lacking the corresponding Trk

receptor. However, the non-physiologically high ligand concentrations required

suggests that proNTs most likely are accountable for the pro-apoptotic activity

in vivo (Bamji et al. 1998; Casaccia-Bonnefil et al. 1996; Kenchappa et al. 2006;

Yoon et al. 1998).

It has been intensively debated whether proNTs are merely intracellular

precursors that require processing by pro-convertases in the TGN to mature before

their secretion, or whether they can indeed be secreted in their unprocessed form.

Recent reports have now settled this dispute by the demonstration of proNGF

release from cultured sympathetic (Hasan et al. 2003) and cortical (Bruno and

Cuello 2006; Hasan et al. 2003) neurons, microglia (Srinivasan et al. 2004), and

astrocytes (Domeniconi et al. 2007). Likewise, release of proBDNF has been

demonstrated in prenatal (Mowla et al. 1999; Teng et al. 2005) and postnatal

(P0) (Yang et al. 2009) derived hippocampus cultures. Perhaps more convincing,

in pathological conditions characterized by neurodegeneration such as Alzheimer’s

disease (AD), spongiform encephalomyelopathy, spinal cord injury, and seizures,

proNT levels are increased (Fahnestock et al. 2001; Stoica et al. 2008; Harrington

et al. 2004; Beattie et al. 2002; Volosin et al. 2006), and inhibitory antibodies

against the proNTs significantly attenuate neuronal cell death associated with the

latter two conditions (Harrington et al. 2004; Volosin et al. 2008).

Initially believed that p75NTR by itself was sufficient to bind and transmit the

apoptotic signal, subsequent studies revealed a critical role of sortilin in this

process. When analyzed separately, p75NTR and sortilin both bind proNGF with

estimated affinities (Kd) of ~5–15 nM, but upon their co-expression in cells the

affinity increases to ~160 pM (Nykjaer et al. 2004). This binding cooperativity is

accomplished in part by a direct interaction between the two receptors, and in part

by formation of a ternary receptor complex enabled by the simultaneous binding of

the proNT pro-domain with sortilin and the mature part of the molecule with

p75NTR. In accordance with the dimeric confirmation of neurotrophins, a recent

structural study revealed that proNGF shapes a 2:2 complex with p75NTR and that

the binding of proNGF to sortilin is enhanced when proNGF is in a preformed

complex with p75NTR (Feng et al. 2010). Although most ligands have been

demonstrated to occupy sortilin in the tunnel (see above), p75NTR is unlikely to

do so as its interaction with sortilin is not inhibited by the tunnel-specific inhibitor

neurotensin. In contrast, the binding of proNGF is abolished by neurotensin,

suggesting that sortilin potentially may bind proNT and p75NTR simultaneously

by engaging different binding epitopes.

The important role of sortilin in neuronal cell death has been substantiated by

in vivo studies demonstrating increased expression of sortilin as well as increased

co-expression of sortilin with p75NTR following seizure (Volosin et al. 2006), facial

nerve and spinal cord injury (Harrington et al. 2004; Provenzano et al. 2008; Jansen

et al. 2007), retinal ischemia (Wei et al. 2007), spongiform encephalomyelopathy

(Stoica et al. 2008), or aging (Al-Shawi et al. 2008), conditions where proNGF is

also upregulated (see above). However, studies in mice deficient in sortilin
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expression have provided the most compelling evidence. Cultured knockout

neurons that lack sortilin (Sort1�/�) but still express p75NTR are resistant specifi-

cally to proNT-induced cell death. In vivo, Sort1�/� mice are characterized by

reduced apoptosis in the developing retina that is indistinguishable from that

observed in p75NTR knockout mice, and upon aging deficiency for sortilin protects

sympathetic neurons against degeneration. Finally, in a neuronal injury protocol,

lesioned corticospinal neurons were fully rescued from death in the Sort1�/�mice,

a phenotype shared with mice treated with inhibitory antibodies to proNGF (Jansen

et al. 2007; Harrington et al. 2004).

7 Sortilins and Proneurotrophin Signaling

What might be the molecular mechanisms by which sortilin affects proNT signaling

in neurons? As described above, modulation of proNT affinity towards p75NTR

would be a qualified suggestion as sortilin is required for high-affinity proNT

binding to p75NTR. Whereas this obviously appears to be the simplest mechanistic

explanation, additional mechanisms could indeed be involved such as regulation of

adaptors to p75NTR or modulation of p75NTR cleavage-dependent signaling. Finally,

direct signaling by sortilin can also be envisioned.

While some p75NTR signaling pathways are initiated from the cell surface upon

ligand binding (e.g., JNK activation (Reichardt 2006)), other signaling pathways

require p75NTR internalization and subsequent receptor sorting from early to

recycling endosomes, forming p75NTR-signaling endosomes (Bronfman

et al. 2003). The molecular mechanisms involved in p75NTR internalization and

intracellular sorting are poorly characterized, and as previous studies have

described the function of sortilin in internalization and intracellular sorting events,

it is not unreasonable to speculate that sortilin could be involved. Thus, proNGF is

rapidly internalized in cells expressing p75NTR and sortilin, whereas endocytosis of

proNGF is absent in sortilin-deficient cells (Nykjaer et al. 2004). Interestingly, the

expression of sortilin on the neuronal cell surface also appears to be positively

regulated, thereby increasing responsiveness to proNT during specific developmen-

tal stages correlating with cell apoptosis (Nakamura et al. 2007). Thus, a mamma-

lian p75NTR homologue NRH2 was reported to interact with sortilin and function as

a trafficking switch, redistributing sortilin from the predominant TGN/perinuclear

localization to the cell surface and promoting p75NTR–sortilin receptor complex

formation. Accordingly, knock down of NRH2 in sympathetic neurons significantly

reduced proNT-induced apoptosis in these cells (Kim and Hempstead 2009).

The intracellular signaling cascades initiated by the sortilin–p75NTR complex

upon proNT binding remain largely elusive. However, several signaling pathways

activated following NT binding to p75NTR are mediated through the binding

of adaptor proteins to the cytoplasmic domain of p75NTR, including Traf6,

neurotrophin receptor-interacting factor (NRIF), melanoma-associated antigen

(MAGE), and neurotrophin receptor p75 interacting MAGE homologue

(NRAGE) (Yamashita et al. 2005; Reichardt 2006). As the mechanisms that govern
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ligand-induced adaptor docking to p75NTR are still largely unknown, it can be

speculated whether the formation of a complex between p75NTR and sortilin is

able to modulate/enhance adaptor binding to p75NTR. Interestingly, Teng

et al. (2005) investigated whether complexes of proBDNF and the soluble extracel-

lular domain of sortilin was capable of initiating apoptosis of sympathetic neurons

that express endogenous p75NTR and sortilin. Although a ternary complex likely

forms between sortilin, p75NTR, and proNT with only the extracellular domains of

the receptors present (Feng et al. 2010), Teng and colleagues found no induction of

apoptosis using a preformed, soluble sortilin–proBDNF complex (Teng et al. 2005).

This argues that the transmembrane or intracellular part of sortilin is critical in

p75NTR- and proNT-mediated apoptosis, perhaps by contributing to the correct

stoichiometry of the receptor–ligand complex to allow signaling. So far there has

been no description of whether sortilin has any signaling property in its own right.

However, it has been described how SorLA under certain circumstances can be

processed by TNF-α converting enzyme (TACE) and subsequently by the

γ-secretase, releasing both intra- and extracellular fragments. The cytoplasmic tail

is subsequently translocated to the nucleus where it acts as a transcriptional activa-

tor and enhances proliferation of neuronal precursor cells (Bohm et al. 2006).

Another indication that members of the Sortilins may directly signal came from

the finding that SorLA interacts with the kinase Ste20-related proline–alanine-rich

kinase (SPAK) in the distal nephron of the kidney. Intracellular trafficking of SPAK

by SorLA is crucial in the regulation of Na+-K+-Cl� cotransporter 2 (NKCC2) and

hence in the maintenance of renal ion balance (Reiche et al. 2010).

Finally, a potential regulatory function of sortilin is upon p75NTR cleavage. On

the cell surface and/or in the endosomal compartments, p75NTR is subject to

cleavage by gamma-secretase (Bronfman 2007), and proNGF and proBDNF are

reported to induce such cleavage in several neuronal systems, including sympa-

thetic neurons, Schwann cells, and photoreceptors. The intracellular domain (ICD)

of p75NTR is consequently released, and the p75NTR adaptor neurotrophin receptor

interacting factor (NRIF) translocates to the nucleus to induce apoptosis

(Kenchappa et al. 2006; Volosin et al. 2008; Srinivasan et al. 2007; Podlesniy

et al. 2006). The binding of sortilin (and proNT) to p75NTR could potentially affect

p75NTR cleavage as conformational changes upon complex formation might

increase the affinity of p75NTR for the gamma-secretase (Fig. 4).

8 Potentiation of Neurotrophic Factor Signaling by Sortilins

As mentioned, the first evidence for a role of sortilin in proNT-mediated apoptosis

was described in 2004 (Nykjaer et al. 2004), and this concept has subsequently been

confirmed in numerous other studies. Surprisingly, recent data suggest that sortilin,

like p75NTR, may also engage in trophic signaling by mature neurotrophins. Thus,

endogenous sortilin and Trks were found not only to be co-expressed in subgroups

of sensory neurons as well as hippocampal and cortical neurons but also to be

physically associated as determined by coimmunoprecipitation analysis and
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fluorescence resonance energy transfer (FRET) microscopy. Studies in neuron

cultures and in knockout mice revealed that sortilin facilitates efficient anterograde

axonal transport and synaptic targeting of the Trks. However, the mechanism by

which sortilin links to the microtubule motor is currently unknown. Somewhat

surprisingly, the sortilin-deficient mice do not appear to be seriously affected by the

reduction in peripheral Trk levels, at least when assessing sensory nerve morphol-

ogy and functionality (Vaegter et al. 2011). These observations are, however, in

accordance with previous work on Trk heterozygote mice which display reductions

in Trk levels and activity of approximately 50 % (comparable to observations in the

sortilin-deficient mouse) but are phenotypically normal (Ernfors et al. 1994; Klein

et al. 1993; Minichiello et al. 1995) (Fig. 5).

The combined observations suggest the tripartite model for neurotrophin signal-

ing illustrated in Fig. 6 (“the neurotrophin triangle”): Sortilin is essential to form a

death complex with p75NTR activated by proNT. Signaling by Trk receptors,

conversely, requires p75NTR on the plasma membrane to facilitate binding of NT

and to strengthen trophic signals. To complete this triangular interaction, sortilin

supports and fine-tunes trophic signaling by facilitating anterograde Trk transport

along the axonal path.

Yet another function of sortilin in NT signaling was put forward by Chen and

colleagues, who showed that sortilin is involved in sorting of BDNF from the TGN

into the pathway for regulated secretion (Chen et al. 2005). In untreated primary

hippocampal neurons and the neuroblastoma cell line PC12, (pro)BDNF

Nucleus

21

3 4

Sortilin

p75NTR

Apoptotic signaling

proNGF Adaptors

Signaling
endosome

Fig. 4 Potential mechanisms of sortilin in p75NTR-dependent proNT apoptotic signaling. (1)
Sortilin and p75NTR constitute a high-affinity binding site for proNT, strongly increasing proNT

binding to the cell surface. (2) Signaling of p75NTR depends on the binding of adaptors molecules

to the cytoplasmic tail of p75NTR, and the formation of a complex between p75NTR and sortilin

might modulate/enhance adaptor binding to p75NTR. (3) Some signaling pathways are reported to

require p75NTR internalization with the formation of p75NTR-signaling endosomes, perhaps

assisted by sortilin. (4) p75NTR can be cleaved upon proNT binding, with the C-terminal fragment

and adaptors translocating to the nucleus to induce apoptosis
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colocalized with secretogranin II that labels vesicles destined for regulated secre-

tion. Inhibiting sortilin activity by siRNA knockdown or overexpression of

dominant-negative receptor mutants redistributed proBDNF from the regulated to

the constitutive secretory pathway and reduced depolarization-induced (pro)BDNF

secretion with a concomitant increase in constitutive release (Chen et al. 2005).

Biochemical mapping subsequently identified a conserved binding motif in the

pro-domain of BDNF that is capable of binding the luminal domain of sortilin. A

recent study further supports the role of sortilin in vesicular transport and stabiliza-

tion of proBDNF. Yang and colleagues found that proBDNF forms complex with

sortilin and Huntingtin-associated protein-1 (HAP1) and that this complex is impor-

tant for the transport of proBDNF/BDNF-containing vesicles to facilitate synaptic

targeting of proBDNF in neurites of cortical neurons. Furthermore, the association

of sortilin to the proBDNF/HAP1 complex prevents proBDNF degradation and

facilitates the furin cleavage to release mature BDNF (Yang et al. 2011). How

sortilin affects vesicular transport is unclear, but it is noteworthy that KIF1A, a

subunit of kinesin-3 that transports synaptic vesicles, has been identified as a sortilin

interaction partner (Vaegter et al. 2011) (Peder Madsen, personal communication).

Signaling by neurotrophic factors other than neurotrophins have also been

reported to be positively regulated by sortilin. Ciliary neurotrophic factor (CNTF)

belongs to the family of helical type 1 cytokines, which also includes interleukin-6

(IL-6), IL-11, leukemia inhibitory factor (LIF), and others. CNTF was initially

identified (and named) for its ability to maintain survival of parasympathetic

neurons of chicken ciliary ganglia (Adler et al. 1979). Since then it has been

reported to support the survival of a variety of neuronal cell types, including

sensory (Simon et al. 1995) and motor (Oppenheim et al. 1991) neurons. Further-

more, it is believed to act as a lesion factor released from tissues subjected to trauma

as several studies have reported a marked change in the localization and expression

of CNTF (Rudge et al. 1995; Sendtner et al. 1992; Friedman et al. 1992). CNTF

signaling is elicited by the formation of a trimeric receptor complex composed of

cis-
Golgi trans-

Golgi

Endoplasmic
reticulum

Pro-Sortilin Sortilin

Immature Trk Mature Trk

Sortilin pro-domain

Fig. 5 Schematic model of sortilin involvement in Trk receptor trafficking. Prior to the trans-

Golgi network (TGN), the pro-domain of sortilin inhibits binding of ligands to sortilin. However,

following furin-mediated pro-convertase cleavage in the TGN, mature sortilin is now able to bind

fully glycosylated Trk and facilitate anterograde transport of this receptor, assuring sufficient

peripheral Trk levels to sustain efficient neurotrophin signaling by neurotrophins released from

target tissues
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the GPI-anchored CNTF receptor α (CNTFRα), the signaling subunit 130-kDa

glycoprotein (gp130), and the LIF receptor β (LIFRβ) (Davis et al. 1993). However,
CNTFRα is not an absolute requirement for signaling because CNTF at relatively

high concentrations is able to activate the gp130/LIFRβ heterodimer (Gearing

et al. 1994). Interestingly, Larsen and colleagues demonstrated that sortilin interacts

with LIFRβ, thereby facilitating CNTF signaling and mediating CNTF-dependent

proliferation through the gp130/LIFRβ heterodimeric complex (Larsen et al. 2010).

It will be interesting for future studies to investigate the effect of sortilin upon

CNTF signaling in relation to, e.g., motor neuron regeneration following nerve

injury in vivo.

9 Sortilins and Neuronal Disease

The first member of the family to be associated with a neurodegenerative disease

was SorLA, with the finding of low levels of SorLA gene expression (SORL1) in
patients with sporadic AD (Scherzer et al. 2004). Whereas several subsequent

association studies confirmed this connection, some failed to do so. However, a

recent comprehensive and unbiased meta-analysis of all published and unpublished

data from studies on SORL1 SNPs, including approximately 12,000 cases of AD

and 17,000 controls, significantly substantiated the involvement of SORL1 gene

variants in AD and further suggested multiple causative gene variants in distinct

regions of SORL1 (Reitz et al. 2011a). Neuronal processing of amyloid-precurser

protein (APP) by the β-secretase, with formation of the cleavage product Aβ and

subsequently development of neurotoxic Aβ oligomers and senile plaques, are

pathological hallmarks of AD. The involvement of SorLA in APP processing was

described by Andersen and colleagues in 2005, demonstrating that the proteins

colocalize in Golgi compartments and early endosomes. Further studies

demonstrated that the neuronal production of Aβ inversely correlated with the

level of SorLA, as APP is retained in the TGN by SorLA and thereby impairs

transit to the plasma membrane or late endosomes for β-secretase cleavage

(Andersen et al. 2005; Schmidt et al. 2007).

Deathp75NTR

Sortilin

Trk Survival

N
eurotrophinsNeurotrophins

Proneurotrophins

Fig. 6 Schematic illustration of “the neurotrophin triangle” concept, linking sortilin and key

receptors in survival and death signaling by mature/pro-neutrophins
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Intriguingly, another member of the sortilins has been associated with

AD. Association of SorCS1 with AD was suggested approximately concurrently

with the genetic association between SorLA and AD (Rogaeva et al. 2007; Grupe

et al. 2006). A later study substantiated the association and found significantly

lower SorCS1 expression in AD brains, suggesting an inverse correlation between

SorCS1 levels and Aβ production, and this correlation was further supported by

biochemical studies in cell lines (Reitz et al. 2011b). However, while genetic and

biochemical data support a relationship between SorCS1 and AD, the mechanisms

by which SorCS1 modulates Aβ is currently not clear.

Although AD is characterized by Aβ plaque formation, neurotrophins are likely

involved in the subsequent process with loss of neurons. The cortex of AD brain is

characterized by an increase in proNGF levels during disease progression and stable

levels of p75NTR and sortilin but reduced levels of TrkA (Mufson et al. 2010;

Counts et al. 2004; Al-Shawi et al. 2008; Peng et al. 2004; Fahnestock et al. 2001).

As the balance of pro-survival versus pro-apoptotic signaling may depend on the

stoichiometry of these proteins (Masoudi et al. 2009; Capsoni et al. 2010), the shift

in ratio may very well change the functional outcome of proNGF on neurons in the

brain. Because TrkA is necessary for NGF pro-survival signaling, this shift in NGF

receptor stoichiometry paralleled with increased proNGF may favor the trimeric

interactions of proNGF with p75NTR and sortilin, activating pro-apoptotic pathways

during the early stages of AD. Further, although some studies indicate that proNGF

can bind to TrkA (albeit with less with less affinity than NGF) to induce

neurotrophic response (Fahnestock et al. 2004), the lower levels of TrkA may not

be sufficient to initiate proNGF-induced cell survival signaling in the AD brain.

Sortilin has recently been functionally linked to frontotemporal lobar degenera-

tion with ubiquitin-positive inclusions (FTLD-U), a form of frontotemporal demen-

tia (FTD) characterized by neuronal loss within, and atrophy of, the frontal and

temporal lobes of the brain. FTLD-U cases are caused by haplo-insufficiency due to

mutations in the GRN gene encoding progranulin (PGRN), a common feature in

FTD with about 50 identified mutations in GRN linked to these disorders

(Mackenzie et al. 2010). Despite intense investigation, the normal and pathological

roles of PGRN within the CNS are still largely unknown. Apparently, PGRN can

function as a nerve growth, protective, or survival factor (Bateman and Bennett

2009), and the reduction of PGRN levels observed in, e.g., FTLD-U would indeed

be consistent with the observed neurodegeneration. Hu and colleagues identified

sortilin as a major neuronal receptor for the PGRN, providing an important mecha-

nistic link to understand normal CNS functions of PGRN and how partial loss of

PGRN function may lead to neurodegenerative disease. Importantly, they showed

that sortilin regulates PGRN levels as mice lacking sortilin had elevated brain and

serum PGRN levels and further that PGRN binds sortilin and colocalizes with

sortilin in endocytic vesicles and eventually with Lamp1, a marker for lysosomes

(Hu et al. 2010). Together with the finding that mice lacking PGRN develop

lysosomal dysfunction, this might implicate a normal role of PGRN in the lysosome

(Ahmed et al. 2010).
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A further hallmark of FTLD-U is the loss of nuclear localization of TAR DNA

binding protein (TDP-43) but the presence of cytosolic accumulation of

ubiquitinated inclusions of TDP-43. Two studies show that TDP-43 binds many

target RNAs, approximately 30 % of the mouse transcriptome and preferably within

the intron, suggesting a function in splicing regulation. Intriguingly, knock-down of

TDP-43 affected in particular splicing of sortilin, suggesting another possible

regulatory link between sortilin and key molecules in FTLD-U (Tollervey

et al. 2011; Baum et al. 2008).

A single nucleotide polymorphism in the bdnf gene resulting in a valine (Val) to
methionine (Met) mutation at amino acid 66 in the BDNF prodomain has been

linked to neuropsychiatric disorders including depression, bipolar disorders, and

memory impairment (Sen et al. 2003; Neves-Pereira et al. 2002; Sklar et al. 2002;

Egan et al. 2003; Hariri et al. 2003; Rybakowski et al. 2003). The molecular

mechanisms underlying the altered-variant function is not understood, but the

Met-variant has been reported to have reduced activity-dependent (or regulated)

secretion (Egan et al. 2003; Chen et al. 2004). Interestingly, Chen and colleagues

reported in 2005 that the binding site of sortilin within the prodomain of BDNF is

overlapping the region containing the Val–Met substitution and that the Met-variant

has decreased interaction with sortilin (Chen et al. 2005). Thus, identification of the

sortilin–BDNF interaction in regulated secretion of BDNF provides a possible

molecular model in the attempt to understand the effect of the BDNF polymorphism

in the selective impairment of CNS function.

Lastly, it should be noted that recent genome-wide association studies (GWAS)

implicated SorCS2 in the etiology of bipolar disorder. Generally, the diagnosis and

lack of quantitative physiological parameters in this disorder makes genomic

studies challenging. However, a number of independent studies have now described

association of the same three SNPs in the SORCS2 gene to the risk of bipolar

disorder, and SORCS2 is in fact one of the top candidate genes to emerge from these

GWAS (Baum et al. 2008; Christoforou et al. 2011; Ollila et al. 2009).

10 The Role of Sortilins in Metabolic Disorders

Although expression of sortilin family members predominates in neuronal tissues,

they are also present in specific cell types in tissues outside the nervous system

(skeletal muscle, pancreas, thyroid, liver, lung, heart) (Petersen et al. 1997; Hermey

2009; Jansen et al. 2007; Vaegter et al. 2011). The functions of the receptors outside

the nervous system are still only beginning to be unraveled but appear to embrace

involvement in many apparently unrelated molecular pathways. In particular,

sortilin and SorCS1 have recently attracted attention due to their proposed roles

in metabolic disorders such as regulation of plasma cholesterol levels/coronary

heart disease (sortilin) and insulin metabolism/type 2 diabetes (sortilin and

SorCS1).

Genome-wide association studies of large human cohorts showed a strong

correlation between single-nucleotide polymorphisms (SNPs) in the chromosome
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1p13.3 locus (that harbors the sortilin gene) and hypercholesterolemia as well as

coronary heart disease (Kathiresan et al. 2008; Willer et al. 2008; Sandhu

et al. 2008; Dube et al. 2011; Willnow et al. 2011). Effort has subsequently been

mobilized to identify the mechanistic basis of this association, and independent

groups have recently described their findings after focusing on the sortilin gene

(SORT1), located at this locus. However, these studies find opposite effects of how

sortilin might affect plasma cholesterol level. A study by Kjolby and colleagues

found that loss of sortilin in a transgenic mouse model results in a reduction of

plasma cholesterol. Furthermore, sortilin bound apoB100 containing lipoproteins in

the secretory pathway, suggesting a stimulatory involvement in very-low-density

lipoproteins (VLDL) secretion (Kjolby et al. 2010). In opposition to these findings,

Musunuru and colleagues used a very different mouse model and reported that

sortilin levels inversely correlate with plasma cholesterol, as sortilin impaired

VLDL secretion from hepatocytes (Musunuru et al. 2010). While these contradic-

tory findings may appear incompatible, they perhaps rather demonstrate that the

specific function of regulatory proteins might significantly differ depending on the

genetic background and chow and hence molecular conditions in which they are

studied. Therefore, sortilin may partake in a broader range of functions in lipopro-

tein sorting/secretion depending on the overall metabolic milieu in vivo.

Other studies have linked sortilin and SorCS1 to insulin/glucose metabolism and

the risk of type 2 diabetes development. Thus, SorCS1 was identified as a diabetes

susceptibility gene, affecting fasting insulin and glucose plasma levels in mice

(Clee et al. 2006; Stoehr et al. 2000). Genetic variants of the SORCS1 gene were

subsequently associated with diabetes risk and age of onset of diabetes in a human

genetic association study (Goodarzi et al. 2007), reducing in vivo insulin secretion

and hence interfering with compensatory mechanism when type 2 diabetic patients

become severely insulin resistant. Insulin resistance in fat and skeletal muscle

tissues may be caused not only by defective insulin signaling but also by abnormal

glucose transporter Glut4 regulation. Under basal conditions, Glut4 is present in

multiple subcellular compartments but majorly in a distinct population of vesicles

named insulin-responsive vesicles (IRV) or alternatively Glut4 storage vesicles

(GSV). Upon insulin stimulation, glucose uptake in fat and skeletal muscle tissues

is achieved by translocating Glut4 from the intracellular storage pool to the plasma

membrane. In this context it is therefore interesting that sortilin shows a high degree

of colocalization with Glut4 and represents one of the major component proteins of

Glut4 vesicles (Lin et al. 1997; Morris et al. 1998). Furthermore, sortilin has been

demonstrated to be essential for biogenesis of IRVs and for the acquisition of

insulin responsiveness in adipose cells (Shi and Kandror 2005).
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Neurotrophins in the Regulation of Cellular
Survival and Death

Claire Ceni, Nicolas Unsain, Michele P. Zeinieh, and Philip A. Barker

Abstract

The neurotrophins play crucial roles regulating survival and apoptosis in the

developing and injured nervous system. The four neurotrophins exert profound

and crucial survival effects on developing peripheral neurons, and their expres-

sion and action is intimately tied to successful innervation of peripheral targets.

In the central nervous system, they are dispensable for neuronal survival during

development but support neuronal survival after lesion or other forms of injury.

Neurotrophins also regulate apoptosis of both peripheral and central neurons,

and we now recognize that there are regulatory advantages to having the same

molecules regulate life and death decisions. This chapter examines the

biological contexts in which these events take place and highlights the specific

ligands, receptors, and signaling mechanisms that allow them to occur.
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1 Introduction

The regulation of cell survival and death is a key aspect of the establishment of

functional neuronal circuits. A remarkable feature of the developing vertebrate

nervous system is that, for most populations, an excess of neurons is produced and
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only those that successfully contact their target and form appropriate connections

survive, while the remaining are removed by apoptosis. Several decades ago,

analysis of limb ablation and target addition in developing vertebrate embryos

demonstrated that naturally occurring cell death was regulated by target tissues

[reviewed in Levi-Montalcini (1987) and Oppenheim (1991)]. This led to the

hypothesis that target tissues produce limiting amounts of neurotrophic factors

and that only neurons which successfully competed for this limited supply went

on to survive the period of naturally occurring cell death. The pioneering work of

Rita Levi-Montalcini and her colleagues (Levi-Montalcini and Angeletti 1968) led

to the identification of nerve growth factor (NGF) as the first target-derived survival

factor. This discovery initiated a new field of research in neurobiology devoted to

characterizing the action of NGF, other neurotrophins, and non-neurotrophin sur-

vival factors.

The neurotrophins play important roles in neuronal life and death decisions. Two

decades after the identification of NGF, Barde et al. (1982) succeeded in isolating a

neuron survival factor from pig brain, termed brain-derived neurotrophic factor

[BDNF—(Barde et al. 1982)]. BDNF was subsequently shown to be highly homol-

ogous to NGF (Leibrock et al. 1989) and this quickly led to the identification of

neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), neurotrophin-6 (NT-6), and

neurotrophin-7 (NT-7) (Hallbook et al. 1991; Hohn et al. 1990; Ip et al. 1992;

Maisonpierre et al. 1990b; Gotz et al. 1994; Lai et al. 1998). NT-6 and NT-7 are

expressed only in fish and will not be further discussed in this chapter. Given their

central role as survival promoting factors, it was initially surprising to learn that the

neurotrophins are also capable of initiating death pathways during development and

after injury. In retrospect, we now recognize that the use of the same molecules and

receptors in regulation of survival and death provides the tight regulatory control

required to appropriately sculpt a functional nervous system.

2 Neurotrophins Promote the Survival of Neurons Through
Trk Receptors

2.1 Neurotrophins and the Trk Receptors Support Survival
of Developing Peripheral Neurons

About 50 % of the peripheral neurons that are generated go on to die during

development through a process of programmed cell death. Initial in vivo gain and

loss of function experiments that used exogenous NGF or neutralizing NGF

antibodies showed that NGF is a survival factor for sympathetic neurons and a

subpopulation of sensory dorsal root ganglia (DRG) neurons. The subsequent

generation of mouse strains carrying null mutations in genes encoding each of the

neurotrophins and their receptors unequivocally demonstrated that NGF, BDNF,

NT-3, and NT-4/5, as well as their cognate Trk receptors, play an important role in

regulating the survival of peripheral neurons [reviewed in Huang and Reichardt

(2001)].
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DRG neurons detect three distinct sensory modalities: nociception, elicited by

noxious or thermal stimuli; mechanoreception, provoked by mechanical pressure in

the skin; and proprioception, elicited by mechanical displacement of the muscles

and joints. The subpopulation of neurons that detect these modalities show remark-

able specificity in their neurotrophin requirements for survival during development

[reviewed in Ernfors (2001) and Farinas (1999)] which is matched with the spatial

distribution of neurotrophin expression. For example, NGF is expressed in the skin,

a major target of pain sensory neurons, whereas NT-3 is expressed in muscle

spindles, Golgi tendon organs, and Merkel cells, the targets of the NT-3-dependent

neurons (Buchman and Davies 1993; Copray and Brouwer 1994; Ernfors 2001).

Nociceptive neurons invariably express TrkA at some time during their devel-

opment, and essentially all of these neurons are lost in mice rendered null for TrkA

or NGF (Crowley et al. 1994; Smeyne et al. 1994). Loss of a single allele of the

NGF gene reduces survival of TrkA-expressing DRG neurons (Crowley et al. 1994)

whereas transgenic mice that overexpress NGF skin display increased survival of

TrkA-expressing neurons, both in wild-type neurons (Albers et al. 1994) and in

NGF null mice (Harrison et al. 2004). Thus, it would appear that limiting quantities

of skin-derived NGF normally support the survival of TrkA-expressing DRG

neurons during development. Interestingly, recent evidence shows that after target

innervation, nociceptive neurons also become dependent on locally produced

BDNF for their survival (Valdes-Sanchez et al. 2010).

Most DRG neurons that express TrkC upon neurogenesis differentiate into

proprioceptive neurons that convey information from muscle spindles and Golgi

tendon organs. These neurons, and their corresponding end organs, are lost in NT-3

and TrkC mutants (Ernfors et al. 1994b; Klein et al. 1994). Proprioceptive neurons

are lost almost immediately after neurogenesis in these null strains, which suggests

that they depend on NT-3 before target innervation occurs, probably provided

through intermediate targets (Farinas et al. 1996). NT-3 also supports the survival

of primary sensory neurons that mediate slowly adapting mechanoreception. NT-3

null mice show a gradual loss of afferents and their corresponding end organs, the

Merkel cells, shortly after birth. By 2 weeks of age, both are largely absent in the

NT-3 null animals (Airaksinen et al. 1996; Fundin et al. 1997).

Some sensory neuron subpopulations switch their neurotrophin dependence

during development (Farinas et al. 1998; White et al. 1996). Mechanoreceptive

neurons termed D-hair receptors rely on NT-3 for survival during prenatal and early

postnatal development but in mature animals, NT-4/5 is required to support their

survival (Stucky et al. 2002). In fact, many DRG neurons (about 60 %) and virtually

all sympathetic neurons rely on NT-3 before target innervation occurs (Ernfors

et al. 1994b; Kuruvilla et al. 2004; Lefcort et al. 1996); the subsequent switch in

neurotrophin dependence occurs once target is contacted, and this helps ensure that

subsequent neuronal survival remains dependent on the target.
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2.2 Neurotrophins and Central Neuron Survival

In contrast to their dramatic effects on the developmental neuronal survival of

peripheral neurons, neurotrophins have a modest effect on the developmental

survival of neurons in the central nervous system [reviewed in Huang and Reichardt

(2001) and Rauskolb et al. (2010)]. This is somewhat surprising given that

neurotrophins can support the survival of several types of primary CNS neurons

in vitro and since successful target innervation and synaptic contact are key

elements required for central neuron survival. With the exception of NGF, each

of the neurotrophins promotes survival of purified motor neurons in vitro (Sendtner

et al. 1996). Despite this, the vast majority of motor neurons are spared in mice

lacking any single one of these factors (BDNF, NT-3, or NT-4/5) in vivo (Conover

et al. 1995; Ernfors et al. 1994a, b; Farinas et al. 1994; Jones et al. 1994) and only

slightly affected (20 % deficit in facial and spinal motor neurons) in triple null mice

lacking BDNF, NT-3, and NT-4/5 (Agerman et al. 2000). Interestingly, TrkA and

TrkC null mice do not show significant reduction in motor neurons, yet mice

lacking TrkB show a dramatic decline in motor neurons in the facial nucleus and

lumbar spinal cord. Nonetheless, mice lacking both BDNF and NT-4/5 do not show

a corresponding deficit (Conover et al. 1995); the mechanisms that account for the

specific TrkB-dependent motor neuron loss remain unresolved.

Other CNS neurons that are responsive to neurotrophins in vitro include basal

forebrain and striatal cholinergic neurons. Although differentiation of these neurons

is altered in NGF null mice (Smeyne et al. 1994), their perinatal survival is not

affected in TrkA or NGF knockout animals. Postnatal atrophy of NGF-dependent

populations of cholinergic forebrain neurons has been observed in adult NGF

mutant heterozygotes indicating that these neurons appear to retain dependence

on this neurotrophin (Chen et al. 1997). Cerebellar granule cells, mesencephalic

dopaminergic neurons, and retinal ganglion cells are BDNF and NT-4/5–responsive

neurons, and a modest increase in postnatal apoptosis of hippocampal and cerebel-

lar granule cells is observed in TrkB and TrkB/TrkC mutants (Alcantara et al. 1997;

Minichiello and Klein 1996). However, the effects on these cells are slight when

compared to the dramatic losses observed in the peripheral nervous system of these

same animals.

Because BDNF is the most abundant neurotrophin found in the brain, it is a

strong candidate as a critical survival and growth factor for CNS neurons. The role

of BDNF in the brain cannot be explored with conventional bdnf null mutant mice

since this strain dies before the postnatal increase in BDNF expression occurs

(Castren et al. 1992; Maisonpierre et al. 1990a; Zafra et al. 1992). Several studies

have reported the effects of Cre-mediated excision of floxed bdnf alleles. The
α-calcium/calmodulin-dependent protein kinase II (CamKII) promoter drives Cre

expression in post-mitotic neurons in the forebrain (Chan et al. 2006a, 2008;

Monteggia et al. 2007; Rios et al. 2001), and the depletion of BDNF in the

hippocampus within CamKII-Cre animals causes a deficit in granule neuron differ-

entiation in adult animals (Chan et al. 2008). BDNF depletion in the forebrain was

achieved earlier in development by using the Emx1 promoter to drive Cre
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expression in neuronal progenitors (at around E10.5). The postnatal striatum was

reduced in these animals, and medium spiny neurons (MSNs) displayed abnormally

small cell somas, thin dendrites, and few dendritic spines (Baquet et al. 2004).

Significant striatal neuron losses were not detected at P180 but by 1 year of age,

striatal neuron number had decreased by about 35 % in these mice (Baquet

et al. 2004). Defects in these mice were not limited to the striatum; cortical thinning

was observed in the visual cortex and was attributable, at least in part, to neuronal

shrinkage and dendritic retraction (Gorski et al. 2003). By expressing Cre

recombinase from the Tau locus, Rauskolb and colleagues (2010) were recently

able to excise BDNF alleles from almost all differentiated neurons in the brain and

spinal cord (Rauskolb et al. 2010). This study confirmed that BDNF is not a

significant survival factor for most CNS neurons and, consistent with earlier

studies, showed that BDNF is required for the postnatal growth of the striatal

neurons; single-cell analyses revealed a marked decrease in dendritic complexity

and spine density in these Tau-Cre:BDNF mice.

Studies analyzing conditional deletion of TrkB within the CNS complement

those targeting BDNF. When CaMKII-Cre was used to drive TrkB deletion,

pyramidal neurons within cortical layers II/III and V showed reduced dendritic

arborization and layer thinning at early postnatal stages (Xu et al. 2000). At later

developmental stages, loss of TrkB also results in progressive elimination of

neurons in the somatosensory and visual cortices (Xu et al. 2000). Thus, the

BDNF-TrkB axis functions to support striatal and cortical neuron size and dendrite

structure rather than the initial development of these features. Thus, the BDNF-

TrkB axis plays a role in stabilizing the “survival of circuitry” during activity-

dependent reorganization of cortical connectivity (Gorski et al. 2003).

2.3 BDNF May Act as a Survival Factor After Injury

In contrast to its limited role in normal CNS development, neuronal survival after

CNS axotomy does appear to require an intact TrkB-BDNF signaling axis. Early

evidence for this emerged from studies showing that provision of exogenous BDNF

reduced death of cortico-spinal neurons after axotomy (Giehl et al. 1998; Giehl and

Tetzlaff 1996). TrkB seems to be capable of mediating an endogenous survival

response in these circumstances as post-axotomy survival of hippocampal and

facial motor neurons is sharply reduced in animals lacking TrkB receptors

(Alcantara et al. 1997). Interestingly, survival of newly born neurons produced in

the dentate gyrus following traumatic brain injury was sharply reduced in mice

lacking BDNF expression in the hippocampus (Balthasar et al. 2004; Gao and Chen

2009). Thus, endogenous BDNF may have an important role maintaining neuronal

survival after injury to the central nervous system.
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2.4 Trk Signaling Promotes Survival

During development, survival of peripheral neurons requires neurotrophin signal-

ing via Trk receptors. By binding neurotrophin, the receptor kinase domains are

brought into proximity to facilitate trans-phosphorylation of residues within the

kinase domain and elsewhere in the receptor’s intracellular domain. Although most

of the details of Trk survival signaling have emerged from studies in mammalian

systems, Trks are ancient receptors that existed at the time of the protostome/

deuterostome split, and its signaling mechanisms have likely been employed for

several hundred million years (Wilson 2009).

Upon ligand binding, the initial activating event in Trk receptors is the phos-

phorylation of tyrosines Y670, Y674, Y675 (numbering scheme based on human

TrkA) which are present within the activation loop of the tyrosine kinase domain.

Structures of the kinase domains of the Trk receptor family have not been deter-

mined directly but in similar receptor tyrosine kinases (RTKs), the kinase is

normally maintained in a catalytically repressed state through interactions of the

activation loop with the membrane proximal domain. This “closed” confirmation

blocks access of ATP and substrate residues; activation-loop phosphorylation

relieves these inhibitory interactions and thus activates kinase activity (Hubbard

and Miller 2007).

In addition to the three activation loop tyrosines, seven additional tyrosine

residues are evolutionarily conserved among the Trks. Of these, Y490 and Y785

have been well characterized as adaptor protein docking sites that play crucial roles

in Trk signaling. Phosphorylation of Y490 creates a binding site that can be

occupied by several different cytosolic proteins. The first of these identified was

Shc, an adaptor protein containing a central phosphotyrosine interaction domain

(PID) and a C-terminal SH2 domain. The interaction of the PID domain with Y490

in TrkA results in Shc phosphorylation which in turn allows recruitment of the Grb2

adaptor protein and SOS, the RAS exchange factor. Once recruited to this complex,

SOS-induced RAS activation elevates c-Raf and Erk activity and induces

phosphatidylinositol-3-kinase (PI3K) activation.

A key feature that distinguishes Trk signaling from that of most other RTKs is

sustained activation of the MEK/Erk pathway. This is accomplished through a

secondary cascade initiated by the interaction of a Trk adaptor protein termed

FRS2 which, like Shc, binds to Y490 (Meakin et al. 1999). Binding and phosphor-

ylation of FRS2 allows Grb2 and the Crk adaptor protein to join the FRS2 complex

and thereby engage C3G, an exchange factor that induces activation of Rap1, a

Ras-related small GTPase. This in turn activates the b-Raf kinase which drives

sustained Erk activity. Interestingly, NGF-induced Rap1 activation is reliant on

PI3K activation and on TrkA internalization whereas Ras activation requires

neither of these events (York et al. 2000). A number of additional adaptor proteins,

including ARMS, PDZ-GEF1, RGS12, GIPC, and FRS3 (Dixon et al. 2006; Hisata

et al. 2007; Varsano et al. 2006; Willard et al. 2007) have been shown to associate

with the internalized Trk receptor signaling complex and facilitate sustained Erk

activation. Although details of the developmental, cellular, and neurotrophin
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specificity of each of these remain uncertain, the fact that the Trk signaling system

invokes several complementary and overlapping systems to mediate prolonged

Mek/Erk signaling emphasizes the crucial importance of this signaling cascade in

neurotrophin function.

Activation of PI3K plays a central role regulating neurotrophin-dependent cell

survival, and this pathway also relies on adaptors that bind to Y490; Ras directly

binds to PI3K, and activation of this signaling pathway relies primarily on Ras

activation. However, in some cases, PI3K activation can also occur in a

Ras-independent manner through a pathway that involves the GAB1 adaptor

protein. In this cascade, the PI3K regulatory subunit has been reported to directly

bind TrkA and acts as an adaptor that brings GAB1 to the receptor complex, leading

to its phosphorylation and enhancing its ability to act as a scaffold for downstream

signaling cascades (Korhonen et al. 1999; Onishi-Haraikawa et al. 2001). Genera-

tion of phosphatidylinositides by PI3K leads to the activation of the protein kinase

Akt, a central regulator of cell survival in neurons. Akt mediates its pro-survival

effects by phosphorylating and inhibiting the action of targets such as BAD, a

pro-apoptotic Bcl-2 family member (Datta et al. 1997), and FKHRL1, a forkhead

transcription factor that drives expression of pro-apoptotic genes (Brunet

et al. 1999).

Y785 on TrkA functions as a docking site that mediates binding and phosphory-

lation of phospholipase C-g1 (PLCg1); once activated, PLCg1 hydrolyzes phos-

phatidyl inositol to generate IP3 and DAG which in turn induces release of Ca2+

from internal stores and activates several forms of PKC. Activation of the PLCg1

cascade activates several pathways important for neurotrophin function [reviewed

in Skaper (2008)] but does not appear to be required for neurotrophin-dependent

survival or death signaling.

2.5 Retrograde Survival Signaling

Neurons that rely on target-derived neurotrophic support have the unique challenge

of responding to survival factors that are produced at distances far from the cell

body and nucleus. The retrograde transport of neurotrophin-Trk complexes play

crucial roles in mediating neurotrophin-dependent survival responses (Ginty and

Segal 2002). Activated Trk receptors that are complexed with ligand can be

internalized via clathrin- or pincher-mediated endocytosis (Bhattacharyya

et al. 2002; Grimes et al. 1996, 1997; Hendry et al. 1974; Howe et al. 2001);

bead-bound NGF that activates cell surface Trk but cannot be internalized does not

support retrograde signaling (Riccio et al. 1997), and dominant negative forms of

dynamin that block internalization of NGF from distal axons reduce survival

signaling in cell bodies (Watson et al. 2001). Thus, endocytosis of the NGF–TrkA

complex is required for appropriate survival responses.

The intracellular vesicle that contains the activated ligand–receptor complex and

is retrogradely transported to the cell body is termed the signaling endosome. This

vesicle functions as an active signaling platform that contains TrkA and is bedecked
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with activated components of the PI3K, MAPK, and PLCg pathways (Grimes

et al. 1997; Howe et al. 2001; Yano et al. 2001).

As activated Trk receptors move from cell surface to initial endosome and then

approach neuronal cell bodies, the signaling events generated change substantially.

For example, PI3K activation is induced at the cell surface where it plays an

important role initiating formation of the signaling endosome. In contrast, limited

Mek/Erk signaling is initiated by cell surface Trk receptors and robust activation of

this pathway requires receptor endocytosis and formation of signaling endosome

(Grimes et al. 1997; Howe et al. 2001; Yano et al. 2001).

After internalization, the properties of the signaling endosome change during its

retrograde journey. The Segal group has shown that Erk1/2 are preferentially

activated in neuronal processes whereas Erk5, a related family member, is prefer-

entially activated as the neurotrophin signal approaches the cell soma. This switch

from Erk1/2 to Erk5 plays a crucial role in retrograde survival signaling since Erk5

activity is required for phosphorylation of CREB and MEF2, transcription factors

that mediate production of anti-apoptotic gene products (Pazyra-Murphy

et al. 2009; Watson et al. 2001).

Distinct neurotrophins differ in their ability to induce formation of signaling

endosomes, and this has important consequences for development of the peripheral

nervous system. Ginty and colleagues have shown that NGF and NT-3 both bind

and activate TrkA present on sympathetic neurons, but only NGF drives TrkA into

endosomes to mediate long-range survival effects (Kuruvilla et al. 2004). This

difference emerges because the NGF–TrkA complex is capable of inducing a

Rac1-cofilin signaling module that results in actin depolymerization that is essential

for initiation of NGF/TrkA endosome trafficking. The NT-3–TrkA complex is

incapable of mediating this effect, possibly because NT-3–TrkA complexes disas-

semble within the acidic environment of early endosomes (Harrington et al. 2011).

Since NT-3 is produced at high levels in vasculature and NGF is only produced in

target tissues and in vivo, local NT-3 allows TrkA-dependent neurite growth to

occur on blood vessels during development whereas only NGF, produced by the

ultimate target of the innervating neurons, is capable of eliciting long-range sur-

vival signals (Kuruvilla et al. 2004); this system uses local NT-3-TrkA effects to get

sympathetic axons to their destination and then uses long-range NGF–TrkA signal-

ing to support neuronal survival.

3 Promotion of Survival by the P75NTR

3.1 Genetic Evidence

When the p75exonIII�/�mouse was generated in 1992 (Lee et al. 1992), one of the

most striking phenotypes identified was a defect in sensory innervation, most

notably in developing paws (Lee et al. 1992), together with a striking decrease in

the volume of dorsal root ganglia (DRG). Subsequent analyses using unbiased

stereological counting methods revealed that the p75exonIII�/� animal showed
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massive decrease in the numbers of DRG neurons surviving to P7, with 75 % fewer

neurons in DRGs from the cervico-thoracic region and a 50 % fewer in lumbar

DRGs (Murray et al. 1999).

DRG neurons are a heterogeneous population, and a number of studies have

addressed whether p75NTR deletion selectively affects specific DRG

subpopulations. Bergmann et al. (1997) reported that the increased neuronal loss

observed in the p75NTR null occurred in DRG neurons of all sizes (Bergmann

et al. 1997), and similar results were reported when neurons were classified as A- or

B-cells by ultrastructural and cytochemical criteria (Gjerstad et al. 2002; Jiang

et al. 2004). Other studies have shown that nociceptive neurons expressing CGRP

and Substance P, nociceptive expressing isolectin IB4, and non-nociceptive RT97-

positive neurons all show equivalent losses in the p75NTR null (Jiang et al. 2004;

Vaegter et al. 2011). Furthermore, TrkA-, TrkB-, and TrkC-positive neurons are all

lost to the same extent (40–60 %) in p75NTR null mice (Vaegter et al. 2011).

Interestingly, genetic deletion of sortilin, a putative p75NTR co-receptor, had no

effect on DRG survival but compound p75NTR:sortilin nulls had more severe DRG

neuronal loss than that observed with p75NTR deletion alone.

In vitro data show that p75NTR enhances NGF-induced survival of primary

trigeminal, DRG, and sympathetic neurons (Barrett and Bartlett 1994; Davies

et al. 1993; Lee et al. 1994), contributes to Schwann cell survival (Gentry

et al. 2000; von Schack et al. 2001), and normal myelination (Chan et al. 2006b;

Cosgaya et al. 2002) and that it plays a role in neurogenesis in the adult rat

subventricular zone (Young et al. 2007). However, the mechanisms that allow

p75NTR to support survival and differentiation remain unknown, and many basic

and fundamental questions remain unresolved. For example, we do not know when

these defects appear during development or whether these phenotypes reflect a cell

autonomous or a non-cell autonomous effect of p75NTR.

3.2 Prosurvival Signaling Pathways Activated by p75NTR

A number of studies suggest that p75NTR can activate survival through activation

and/or positive modulation of the NF-kB and PI3K pathways. The NF-kB transcrip-

tional complex regulates the expression of a number of genes involved in cell

survival and is important for sustaining the survival of mature neurons, oligoden-

drocytes, DRG sensory neurons, and PC12 cells [reviewed in O’Neill and

Kaltschmidt (1997)]. Since p75NTR is the founding member of the TNF receptor

(TNFR) superfamily and many of the TNFR family members are potent NF-kB

activators, p75NTR has been examined for its ability to activate NF-kB signaling.

Activation of NF-kB by p75NTR was initially reported in primary cultures of

Schwann cells, where NGF binding to p75NTR increased NF-kB DNA binding

activity and p65 nuclear translocation (Carter et al. 1996). Subsequent studies have

shown p75NTR-dependent NF-kB activation in oligodendrocytes, RN22

Schwannoma cells, sensory neurons, and PC12 cells (Bhakar et al. 1999; Gentry

et al. 2000; Hamanoue et al. 1999; Hughes et al. 2001; Ladiwala et al. 1998).
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Typically, p75NTR-dependent NF-kB activation is modest but is sharply enhanced

in cells exposed to a variety of stressful stimuli (Carter et al. 1996; Bhakar

et al. 1999; Hughes et al. 2001). In fibroblasts, p75NTR does not directly activate

NF-kB, but instead indirectly enhances TNF-mediated NF-kB activation (Bhakar

et al. 1999).

In the canonical NF-kB signaling system, the inhibitory IkB subunit binds and

sequesters NF-kB dimers in the cytosol. Activation of the IkB kinases (IKK1 and

IKK2) results in phosphorylation, ubiquitination, and proteosomal degradation of

IkB which releases NF-kB dimers and allows them to translocate to the nucleus

where they bind promoter elements to induce gene activation. In Schwann cells,

neurotrophin treatment has been reported to induce NF-kB activation through a

cascade involving the TRAF6 and RIP2 adaptor proteins. In this cascade, RIP2 and

TRAF6 bind directly to the p75NTR intracellular domain (p75NTR-ICD) in a

ligand-dependent manner, and this in turn leads to enhanced NF-kB activity that

blocks Schwann cells apoptosis (Khursigara et al. 1999, 2001; Yeiser et al. 2004). A

different scheme has been reported for PC12 cells, where the interleukin-1 receptor

associated kinase (IRAK) is recruited to the p75NTR receptor and forms a complex

that also contains the atypical protein kinase C interacting protein and TRAF6.

Kinase activity of IRAK induced by NGF was found to be required for NF-kB

activation, recruitment of p62 to p75NTR, and cell survival (Mamidipudi

et al. 2002, 2004).

The PI3K/Akt pathway plays a major role in neuronal survival [reviewed in

Brunet et al. (2001)], and p75NTR activates this pathway (Massa et al. 2006; Roux

et al. 2001). An early study showed that moderate overexpression of p75NTR or a

myristoylated form of the p75NTR-ICD results in enhanced Akt phosphorylation

which is ligand-independent, blocked by inhibitors of PI3K, and associated with

increased tyrosine phosphorylation of the p85 regulatory subunit of PI3K and the

Shc adaptor protein (Roux et al. 2001). Another study reported that NGF modestly

induces Akt phosphorylation in PC12nnr5 cells that express p75NTR but lack Trk

receptor expression (Bui et al. 2002). An interesting series of non-peptidic NGF

mimetics have been reported to activate Akt and NF-kB signaling in primary

hippocampal neurons. Interestingly, these compounds activate these survival

pathways in wild-type mice but not in neurons derived from p75NTR null mice,

indicating that they achieve their pro-survival effect by functioning as p75NTR

agonists. It is noteworthy in this regard that the phosphatase and tensin homolog

(PTEN), a dual specific phosphatase that negatively regulates Akt activity by

reducing PIP3 levels, undergoes NGF- and p75NTR-dependent phosphorylation

on serine 380 in hippocampal neurons exposed to NGF (Arevalo and Rodriguez-

Tebar 2006). Multiple targets of Akt could mediate p75NTR-dependent survival

but since NGF-induced NF-kB activation is inhibited by the PI3K inhibitor

LY294002 in PC12 cells (Bui et al. 2002), one likely possibility is that Akt induces

phosphorylation of IkB kinase 1 (IKK1) to facilitate NF-kB induction (Kane

et al. 1999; Ozes et al. 1999; Romashkova and Makarov 1999).

An important body of evidence indicates that p75NTR can promote survival

through potentiation of Trk signaling. Primary sensory and sympathetic neurons
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that lack p75NTR have reduced survival responses when maintained in low doses

of neurotrophin (Barrett and Bartlett 1994; Davies et al. 1993; Lee et al. 1994). In

cell lines and primary neurons, p75NTR clearly potentiates Trk signaling responses

(Barker and Shooter 1994; Bibel et al. 1999; Ceni et al. 2010; Hantzopoulos

et al. 1994; Brann et al. 2002; Bhakar et al. 2003; Twiss et al. 1998; Verdi

et al. 1994; Yan et al. 1991). The ability of p75NTR to confer enhanced responses

to low neurotrophin concentrations is an important property for neurons that

compete for the low quantities of neurotrophins present in target tissues [reviewed

in Barde (1989)]. The precise molecular mechanisms that allow p75NTR to

enhance Trk responsiveness to neurotrophin and signaling remain uncertain, but

two main hypotheses have been put forward: p75NTR may enhance Trk activation

and/or p75NTR may activate signaling events that converge and/or synergize with

Trk-dependent pathways.

p75NTR and Trk receptors interact independently with the neurotrophins with

similar Kd, about 10�9 M (Kaplan et al. 1991; Klein et al. 1991; Lee et al. 1994;

Rodriguez-Tebar et al. 1990, 1992; Squinto et al. 1991) yet high-affinity NGF

binding sites (Kd � 10�11 M) are present on PC12 cells and sensory neurons

(Green and Greene 1986; Greene and Tischler 1976; Rodriguez-Tebar et al. 1990,

1992; Sutter et al. 1979). Some studies performed in the early 1990s indicated that

co-expression of p75NTR with TrkA receptors in transformed cells produced high-

affinity NGF binding sites (Hempstead et al. 1991; Rodriguez-Tebar et al. 1992) but

others found no evidence for an effect of p75NTR on NGF binding to TrkA

(Bothwell 1995; Jing et al. 1992; Klein et al. 1991; Wehrman et al. 2007). In an

important study from the Hempstead group, it was found that TrkA expressed in the

absence of p75NTR shows very slow association and dissociation kinetics. How-

ever, when the two receptors are co-expressed, the rate at which NGF can associate

with TrkA increases by about 25-fold and this change in Trk association rate results

in the generation of high-affinity binding sites (Mahadeo et al. 1994). Interestingly,

neurotrophin binding to p75NTR does not seem to be required for creation of high

affinity binding sites: high-affinity NGF binding sites can be generated when Trk is

co-expressed with a p75NTR mutant deficient in neurotrophin binding but not with

p75NTR constructs with disrupted transmembrane or ICD domains (Esposito

et al. 2001).

Although NGF binding to p75NTR may be dispensable for the creation of high

affinity sites, it is required for efficient NGF-induced TrkA activation (Barker and

Shooter 1994; Clary and Reichardt 1994; Lachance et al. 1997; Ryden et al. 1997;

Verdi et al. 1994). TrkA activation is increased by wild-type p75NTR, but not by a

mutant form of p75NTR deficient in neurotrophin binding and not by a mutant form

of NGF that cannot bind p75NTR (Hantzopoulos et al. 1994; Ryden et al. 1997),

indicating that for this effect to be manifest, NGF must bind directly to p75NTR.

Thus, while it seems certain that generation of kinetically distinguishable high-

affinity sites is important for the enhanced activation of TrkA that is observed in the

presence of p75NTR, it appears unlikely that the profound effects of p75NTR on

Trk activity can be explained through this mechanism alone.
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These observations suggest that NGF binding to p75NTR is necessary to facili-

tate TrkA activation in response to low levels of NGF. However, a recent crystallo-

graphic study argues against the existence of a ternary complex (where NGF can

bind both p75NTR and TrkA at the same time) or even of a stable complex between

p75NTR and Trk receptors (Wehrman et al. 2007). An alternative model is that

p75NTR may act as a co-receptor that concentrates NGF locally or presents it to

TrkA in a favorable binding conformation (Barker 2007; Barker and Shooter 1994).

In this ligand-passing model, p75NTR functions to lower the energy barrier

required for NGF binding to TrkA and thereby increases the NGF association

rate. A prediction of this model is that intermediate affinity sites would be nonexis-

tent or very transient and thus impossible to resolve kinetically using standard

binding protocols.

A growing body of evidence indicates that p75NTR can potentiate Trk-induced

Akt signaling, perhaps by acting on downstream signaling pathways. In PC12 cells,

a p75NTR function blocking antibody significantly reduces NGF-induced Akt

phosphorylation (Bui et al. 2002). In a PC12 subline that is deficient in p75NTR

expression, termed PC84, NGF induces differentiation but does not induce Akt

phosphorylation (Ito et al. 2003). Furthermore, acute siRNA-mediated knockdown

of the p75NTR reduces NGF-induced or BDNF-induced Akt phosphorylation in

PC12 cells and cerebellar granule neurons, respectively (Ceni et al. 2010). Given

that p75NTR can induce Akt phosphorylation in the absence of Trk activation

(Arevalo and Rodriguez-Tebar 2006; Bui et al. 2002; Massa et al. 2006; Roux

et al. 2001) and that p75NTR rescues neuroblastoma cells from apoptosis via the

PI3K pathway (Lachyankar et al. 2003), it seems likely that a p75NTR-derived

pathway collaborates with Trk signaling to facilitate optimal Akt activation.

We have recently shown that Akt activation by p75NTR requires processing of

the receptor and release of the p75NTR-ICD into the cytoplasm. p75NTR cleavage

and generation of the p75NTR-ICD is induced through a Trk-dependent pathway

involving activation of MEK and induction of ADAM17, a cell surface transmem-

brane metalloprotease (Ceni et al. 2010). This indicates that neurotrophin-

dependent Trk activation propels a feed forward mechanism to generate the

p75NTR-ICD and thus enhance Akt phosphorylation. Interestingly, p75NTR has

also been shown to alter Shc phosphorylation. Antisense oligonucleotides targeting

p75NTR were shown to decrease NGF-induced Shc phosphorylation (Epa

et al. 2004), and p75NTR overexpression enhances Shc phosphorylation (Roux

et al. 2001). Precisely how the p75NTR-ICD may alter Akt activation or Shc

phosphorylation remains uncertain, but it is noteworthy that the ICD has been

shown to reduce cytosolic protein tyrosine phosphatase activity (Roux

et al. 2001) and that activity of the PTEN phosphatase can be reduced by

p75NTR (Arevalo and Rodriguez-Tebar 2006). Therefore, it is possible that

p75NTR enhances Akt activity by reducing activity of phosphatases that

include PTEN.

A p75NTR-related protein called Neurotrophin Receptor Homologue 2 (NRH2)

is co-expressed with p75NTR in many tissues (Murray et al. 2004), and recent

studies indicate that NRH2 can collaborate with TrkA to create high-affinity NGF
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binding sites and potentiate Trk signaling, at least in overexpression paradigms

(Wong et al. 2008). NRH2 was recently shown to bind sortilin (Kim and Hempstead

2009), and it therefore seems likely that p75NTR and NRH2 may fulfill similar

functions. Mice null for NRH2 have not yet been reported, but it will be very

interesting to test whether NRH2 and p75NTR exhibit overlapping and/or compen-

satory activities.

4 Promotion of Cell Death by the p75NTR

As discussed previously, neurotrophins were first identified as promoters of neuro-

nal survival, particularly in the PNS, and for decades researchers focused largely on

the pro-survival effects of neurotrophins and their receptors on various neuronal

populations. However, in the early 1990s, several studies showed that

neurotrophins could also induce apoptosis, acting through the p75NTR, in several

cell populations.

4.1 p75NTR and Cell Death: Evidence from Genetic Data

p75NTR is widely expressed in the peripheral and central nervous systems during

development, and it can contribute to the elimination of neurons that are unable to

obtain sufficient neurotrophic support [reviewed in Kaplan and Miller (2000)]. For

instance, although p75NTR has a survival-promoting role for the DRG neurons, it

was shown to promote death of other peripheral neurons during development. In the

superior cervical ganglia (SCG), NGF mediates the survival of sympathetic neurons

by activating TrkA. However, p75NTR induces apoptosis of these neurons in

response to BDNF in vitro (Kenchappa et al. 2006). Consistent with this,

p75NTR KO mice exhibit increased sympathetic neuron survival and delayed

developmental apoptosis compared to wild-type mice (Bamji et al. 1998; Majdan

et al. 2001). Eliminating p75NTR or NT-4/5 in mice leads to a marked attenuation

of developmental apoptosis of trigeminal ganglion neurons, indicating that NT-4/5

can induce the death of these neurons through the p75NTR (Agerman et al. 2000).

The p75NTR has also been shown to mediate cell death in the CNS, both during

development and after injury. NGF, BDNF, NT-3, and NT-4/5 can induce cell death

of neurons maintained in vitro and this appears to be due to p75NTR, since this

effect is lost in neurons derived from p75NTR null mice (Friedman 2000; Troy

et al. 2002). p75NTR has been shown to facilitate seizure-induced death of hippo-

campal and entorhinal neurons in vivo, and seizure-induced death is reduced in

p75NTR�/� mice (Roux et al. 1999; Troy et al. 2002).

p75NTR is highly expressed in the developing mouse retina at E15.5 and in the

chick dorsal retina at E4, ages that correspond to the period of active developmental

apoptosis in these species (Frade and Barde 1999; Frade et al. 1996). NGF binding

to p75NTR induces apoptosis of retinal ganglion cells (RGC) and treatment of

chick RGCs with NGF blocking antibodies significantly decreases cell death (Frade
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et al. 1996). In addition, p75NTR and NGF null mice have less RGC death than

wild-type mice (Frade et al. 1996), suggesting that NGF induces cell death via

p75NTR during early retinal development. p75NTR has also been implicated in

light-induced photoreceptor death in adult rodents in vivo (Harada et al. 2000).

p75NTR may also play a role in the death of basal forebrain (BF) cholinergic

neurons during development. p75NTR�/� mice show an increase in the number

and the size of cholinergic neurons as well as in the cholinergic innervation and

activity of the hippocampus (Van der Zee et al. 1996; Yeo et al. 1997).

p75NTR does not invariably induce cell death in the neurons that express

it. p75NTR is highly expressed in spinal cord motoneurons between E13 and

postnatal day 1, and inhibition of p75NTR with function blocking antibodies

prevents NGF-induced death of motoneurons in culture (Sedel et al. 1999). Despite

this, developmental loss of motoneurons proceeds normally in p75NTR null mice

(Bertrand et al. 2008). Ferri et al. (1998) showed that p75NTR may contribute to

post-axotomy motoneuron loss, but these early studies were performed by compar-

ing p75NTR nulls with wild-type animals derived from different strain

backgrounds (Ferri et al. 1998). When Gschwendtner et al. (2003) examined cell

death in motoneurons after facial nerve transection, they found that injury-induced

motoneuron death in the two distinct p75NTR null lines examined was identical to

wild-type animals (Gschwendtner et al. 2003).

p75NTR also promotes cell death in oligodendrocytes, both in vitro (Casaccia-

Bonnefil et al. 1996) and in vivo, after spinal cord injury (Beattie et al. 2002; Yune

et al. 2007), and death of Schwann cells after sciatic nerve transfection is reduced in

p75NTR null mice (Syroid et al. 2000). The ability of p75NTR to induce or

facilitate survival of Schwann cells may depend on the expression of receptor-

interacting serine/threonine-protein kinase 2 (RIP2), a p75NTR adaptor protein

(Khursigara et al. 2001). Therefore, both in vivo and in vitro data brought evidence

supporting the notion that p75NTR can induce death of neural cells during devel-

opment and after injury.

4.2 p75NTR and Cell Death: Signaling

p75NTR belongs to the TNF receptor superfamily, a group of proteins

characterized by 1–4 tandem arrays of a characteristic extracellular cysteine-rich

motif (Grivennikov et al. 2006). p75NTR was the first member of this family

identified but others, such as TNFR1, TNFR2, Fas, and CD40, were discovered

soon after. In mammals, over 25 TNFR proteins have been identified, and TNFRs

are also prevalent in nonmammalian vertebrates. In contrast, there are no TNFRs

expressed in C. elegans and only one, termed Wengen, is expressed in Drosophila.

Several members of the TNFR superfamily, including p75NTR, function as

death receptors that induce apoptosis in response to ligand binding. In TNFR1,

Fas, and DR5, intracellular structures termed death domains play a crucial role in

this process. Death domains consist of ~80 amino acids in a tight array of 6 alpha

helices which, in response to ligand binding to the receptor, aggregate and produce
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binding surfaces for downstream interactors that mediate the apoptotic response

[reviewed in Park et al. (2007)]. This death-inducing signaling complex (DISC)

contains adaptors such as FADD and TRADD that link the receptors to caspase

8, an initiator caspase. Oligomerization of caspase 8 within the DISC results in its

activation and auto-cleavage (Wang et al. 2010). Activated caspase 8 can directly

induce activation of downstream executioner caspases but also activates the mito-

chondrial apoptotic cascade, through cleavage and activation of BID, a

BH3-domain-only protein [reviewed in Kantari and Walczak (2011)].

p75NTR contains a death domain but in contrast to the pro-apoptotic TNFR

superfamily members discussed above, it does not form a DISC and does not

activate caspase 8. Instead, p75NTR-dependent apoptosis seems to occur mainly

through a pathway that involves activation of a Jun kinase cascade and activation of

the BH3-domain-only family members, Bid and Bad. This leads to activation of

Bax, permeabilization of the outer mitochondrial membrane, efflux of

cytochrome C, and activation of initiator caspase 9 and executioner caspases 3, 6,

and 7 (Bhakar et al. 2003; Friedman 2000; Salehi et al. 2002; Troy et al. 2002).

Substantial effort has gone into determining the events and players that are

required for p75NTR activation and induction of p75NTR-dependent apoptosis.

Since p75NTR has no intrinsic enzyme activity and must rely on adaptor proteins to

transduce its signals, several studies have attempted to identify adaptor proteins that

mediate the receptor’s effect. Neurotrophin receptor interacting factor (NRIF)

(Casademunt et al. 1999; Linggi et al. 2005) is a DNA binding protein that becomes

ubiquitinated and then transported to the nucleus upon p75NTR activation

(Kenchappa et al. 2006). The p75NTR-associated cell death executor (NADE)

has been reported to bind to the p75NTR death domain and induce caspase activa-

tion and cell death within primary cortical neurons and in transfected non-neuronal

cells (Mukai et al. 2000; Park et al. 2000). NRAGE interacts with the

juxtamembrane domain of p75NTR and induces apoptosis by activating JNK and

caspase 3 (Salehi et al. 2000, 2002). Genetic loss of function data indicates that

NRIF and NRAGE play important roles regulating p75NTR-dependent death

in vivo (Salehi et al. 2000, 2002), but the role of NADE in mediating p75NTR-

dependent death in vivo remains unexplored.

p75NTR undergoes a cleavage process, termed regulated intramembrane prote-

olysis (RIP), that first releases the receptor’s intracellular domain from its trans-

membrane tether and then processes the carboxy fragment to generate a soluble

form of the p75NTR-ICD. Interestingly, cleavage of p75NTR and generation of the

p75NTR-ICD have been shown to play a key role in apoptotic events. Early studies

showed that transgenic mice expressing p75NTR -ICD showed increased neuronal

apoptosis, both peripherally and centrally, and more recent work has shown that the

p75NTR-ICD induces activation of JNK (Kenchappa et al. 2010). Interestingly,

blockade of p75NTR cleavage prevents NRIF nuclear translocation and inhibits

apoptosis (Kenchappa et al. 2006).
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4.3 p75NTR and Cell Death: Role of pro-NGF

Neurotrophin precursors, the pro-neurotrophins, bind p75NTR and induce apopto-

sis downstream of this receptor [reviewed in Hempstead (2006)]. The effect of

proneurotrophins on p75NTR requires the participation of a co-receptor termed

sortilin. This Type I transmembrane protein contains a Vps10p domain and specifi-

cally recognizes the pro-domain of proneurotrophins. Sortilin is highly expressed in

the vertebrate CNS and when co-expressed with p75NTR, forms a high-affinity

co-receptor complex that mediates proneurotrophin-induced apoptosis in primary

SCG neurons, cerebellar granule neurons, and basal forebrain cholinergic neurons

[reviewed in Nykjaer and Willnow (2012)].

Proneurotrophin-induced death has been observed after injury in several

settings. ProNGF levels rise after spinal cord injury and contribute to the elimina-

tion of injured oligodendrocytes through activation of caspase 3 (Beattie

et al. 2002) and Schwann cell death that occurs after facial nerve axotomy similarly

relies on the association of p75NTR, sortilin, and proNGF (Provenzano et al. 2008).

Apoptosis of corticospinal neurons after internal capsule lesion is blocked by

neutralizing antibodies to p75NTR (Giehl et al. 2001) and reduced in sortilin

knockout mice (Jansen et al. 2007), indicating that both receptors may be involved

in this form of lesion-induced death.

The proneurotrophin signaling pathways that activate cell death seem to overlap

with those discussed above, with caspase activation being a prominent feature in

proNGF-induced apoptosis. Interestingly, proneurotrophins may also act to sup-

press pro-survival signals as proNGF has been reported to activate the phosphatase

PTEN which in turn acts to suppress the PI3K survival pathway in basal cholinergic

neurons (Song et al. 2010; Volosin et al. 2006). However, the proximal signaling

partners that allow the p75NTR-sortilin complex to transduce its signal remain

unclear and a p75NTR death-inducing signaling complex, analogous to that

described for TNFR1, has not yet emerged.

p75NTR has also been shown to contribute to neuronal cell degeneration in a

non-cell-autonomous fashion. A recent study has shown that proNGF promotes the

death of adult retinal ganglion cells via p75NTR signaling from Müller glia

(Lebrun-Julien et al. 2009), a specialized type of glia present in the vertebrate eye

and the only cell type in the retina that expresses p75NTR (Hu et al. 1998). ProNGF

induced robust expression of tumor necrosis factor alpha (TNFα) in Müller cells

which was required for proNGF-induced death of retinal neurons. Moreover, retinas

from mice lacking p75NTR or sortilin were resistant to the effects of proNGF on

TNFα expression and cell death. Similar observations were also made in retinal

degeneration as a consequence of glaucoma (Bai et al. 2010). These results

provided an explanation for the apparent lack of neuroprotective effects of NGF

in retinal injury, despite expression of prosurvival TrkA receptors in retinal gan-

glion cells (Bai et al. 2010; Shi et al. 2007).
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5 The Emergence of the Trk Receptors as Death Receptors

It is well established that the Trk family of RTK support survival of neurons during

development yet paradoxically, TrkA and TrkC have more recently emerged as

able to induce cell death of tumor cells [for review see Harel et al. (2010)] and

developing neurons.

5.1 Trk Receptors Can Induce Death of Tumor Cells

The pro-death potential role of Trk receptors emerged from studies of neuroblas-

toma and medulloblastoma, pediatric tumors of neuronal origin. Neuroblastomas

are solid tumors derived from the sympathoadrenal neural crest lineage whereas

medulloblastomas are malignant CNS tumors, usually derived from the cerebellum.

TrkA expression is a robust indicator of positive prognosis in neuroblastoma

[reviewed in Brodeur et al. (2009)], and TrkC levels correlate with a positive

prognosis in medulloblastoma [reviewed in Gulino et al. (2008)].

NGF treatment of medulloblastoma cells engineered to overexpress TrkA

induces apoptotic cell death; this is blocked by the Trk kinase inhibitor K252a or

by co-expression of a kinase-inactive form of TrkA, indicating a role for TrkA

kinase activity pathway (Chou et al. 2000; Muragaki et al. 1997). Similarly, chronic

overexpression of TrkA followed by exposure to NGF induces caspase 3-dependent

apoptosis in two distinct neuroblastoma cell lines (Lavoie et al. 2005). Jung and

Kim (2008) developed a Tet-On system to drive TrkA overexpression in neuro-

blastoma cells and found that, with TrkA expression, apoptosis occurred even in the

absence of NGF but cell death increased further when NGF was present (Jung and

Kim 2008).

The mechanism(s) that mediate TrkA-induced death remain unclear. In one

study, TrkA-induced apoptosis of medulloblastoma cells was reported to require

Ras and p53 activity and another has shown that TrkA-dependent death activates

caspases via the mitochondrial apoptotic pathway and that Bcl-XL overexpression

can block TrkA-induced death. Alternatively, experiments on TrkA-expressing

glioblastoma and osteosarcoma cells have suggested that TrkA induces autophagy

via a ERK- and JNK-dependent pathways (Hansen et al. 2007) or through a

combination of apoptosis and autophagy (Dadakhujaev et al. 2009).

Recently, CCM2, the protein product of the cerebral cavernous malformation

2 gene, was identified as a novel TrkA interactor that functions as a key mediator of

TrkA-induced cell death (Harel et al. 2009). Knockdown of CCM2 in TrkA-

expressing medulloblastoma and neuroblastoma cells attenuated NGF-induced

death, and neuroblastoma patients that co-expressed CCM2 and TrkA had

improved outcomes over those that did not. This study rules out the possibility

that p75NTR may play a role in TrkA-induced death and instead suggested that

CCM2 acts as an adaptor that binds directly to TrkA and links it to as yet unknown

downstream effectors.
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The role of TrkC in tumor cell death has been less well studied, but TrkC

expression in medulloblastomas has been correlated with a positive prognosis

(Segal et al. 1994). NT-3-induced apoptosis of primary medulloblastoma cells is

highly correlated with TrkC expression levels and in these cells, NT-3-induced

death can be blocked by K252a, suggesting that RTK activity is required. However,

there may be alternative means for TrkC to induce cell death since transfection of

the receptor in HEK293 cells reportedly causes cell death which is independent of

its endogenous tyrosine kinase activity (Tauszig-Delamasure et al. 2007).

5.2 Trk Receptors in the Death of Neurons

The Trk receptors play a crucial role in promoting neuronal survival in vivo, yet

emerging data support the provocative concept that Trks may also promote neuro-

nal cell death. An initial study on this topic showed that overexpression of TrkC in

HEK293 cells induced apoptosis and found that this was rescued by exposure to

exogenous NT-3 (Tauszig-Delamasure et al. 2007). Further support for this concept

emerged from the work of Nikoletopoulou et al. (2010) who produced ES cells in

which the locus was engineered to drive expression of cDNAs encoding TrkA,

TrkB, or TrkC. When the ES cells were differentiated to glutamatergic neurons,

overexpression of TrkA and TrkC was initiated and the cells quickly died

(Nikoletopoulou et al. 2010). This cell death was not prevented by addition of

K252A but was blocked by NGF (on TrkA-expressing cells) or NT-3 (on TrkC

expressing cells). Further, the ES cell death was significantly reduced when

p75NTR expression was suppressed by RNA interference.

The same study also examined the role of TrkA as a death receptor in primary

sympathetic neurons. Interestingly, death induced by NGF withdrawal was reduced

by about 50 % in sympathetic neurons derived from TrkA�/� embryos and by

about 20 % in neurons derived from p75exonIII�/� embryos. One interpretation of

this data is that NGF withdrawal and loss of ligand from TrkA activates a signaling

pathway that converges on p75NTR and related receptors which act as the bona fide

executioners in this pathway (Nikoletopoulou et al. 2010).

It is noteworthy that hippocampal neurons were also reported to undergo cell

death when withdrawn from NGF (Matrone et al. 2009). Interestingly, in this study,

TrkA and PLCg were phosphorylated 24 h after NGF withdrawal and pharmaco-

logic inhibition of TrkA activity or partial silencing of TrkA or p75NTR receptors

blocked neuronal apoptosis. In an interesting twist, antibodies against amyloid-beta

were found to block NGF-withdrawal-induced TrkA phosphorylation, and authors

proposed that NGF deprivation induces amyloid-beta production, which in turn

activates TrkA and induces cell death in a p75NTR-dependent manner.

Although many details remain to be determined, these data indicate that TrkA

and TrkC may have dual roles, both promoting survival and facilitating cell death in

specific contexts. Determining the physiological relevance of these pathways and

identifying the precise requirements for ligand and co-receptors, the signaling
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cascades involved, and their cell-specific and temporal and spatial organization are

likely to be an exciting area of exploration in the years to come.
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BDNF and Synaptic Plasticity, Cognitive
Function, and Dysfunction

B. Lu, G. Nagappan, and Y. Lu

Abstract

Among all neurotrophins, brain-derived neurotrophic factor (BDNF) stands out

for its high level of expression in the brain and its potent effects on synapses. It is

now widely accepted that the main function of BDNF in the adult brain is to

regulate synapses, with structural and functional effects ranging from short-term

to long-lasting, on excitatory or inhibitory synapses, in many brain regions. The

diverse effects of BDNF on brain synapses stem from its complex downstream

signaling cascades, as well as the diametrically opposing effects of the pro- and

mature form through distinct receptors, TrkB and p75NTR. Many aspects of

BDNF cell biology are regulated by neuronal activity. The synergistic

interactions between neuronal activity and synaptic plasticity by BDNF make

it an ideal and essential regulator of cellular processes that underlie cognition

and other complex behaviors. Indeed, numerous studies firmly established that

BDNF plays a critical role in hippocampal long-term potentiation (LTP), a long-

term enhancement of synaptic efficacy thought to underlie learning and memory.

Converging evidence now strongly suggest that deficits in BDNF signaling

contribute to the pathogenesis of several major diseases and disorders such as

Huntington’s disease, Alzheimer’s disease, and depression. Thus, manipulating

BDNF pathways represents a viable treatment approach to a variety of neuro-

logical and psychiatric disorders.
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Abbreviations

BDNF Brain-derived neurotrophic factor

BDNF-KIV BDNF GFP knockin in exon IV

CA1/CA3 Cornu ammonis areas 1 and 3

E-LTP Early phase long-term potentiation

GAD Glutamate decarboxylase

HA Hemagglutinin

HFS High frequency stimulation

IgG Immunoglobulin

KO Knockout

L-LTP Late phase long-term potentiation

LTD Long-term depression

mBDNF Mature BDNF

MMP Matrix metalloprotease

MRI Magnetic resonance imaging

NMDAR N-methyl-D-aspartate receptor

p75NTR p75 neurotrophin receptor

proBDNF Precursor BDNF

PRP Plasticity-related protein

PV Parvalbumin

SNP Single nucleotide polymorphism

STDP Spike time-dependent plasticity

TBS Theta burst stimulation

tDCS Transcranial direct current stimulation

tPA Tissue plasminogen activator

TrkB Tropomyosin-related kinase B

UTR Untranslated region

Val66Met Valine 66 to methionine

1 BDNF Regulation of Early Phase-LTP

1.1 Initial Discovery

The hint that BDNF might be involved in synaptic plasticity came from the

observation that the expression of BDNF in the hippocampus can be induced by

high frequency stimulation (HFS) that is often used to induce LTP (Castren

et al. 1993; Patterson et al. 1992). The first paper on pharmacological regulation

of LTP by BDNF was the report by Figurov et al. (1996) demonstrating that

treatment of hippocampal slices with BDNF facilitates early phase LTP (E-LTP)

induced by theta burst stimulation (TBS). Neonatal hippocampus generally

expresses a low level of BDNF, and TBS induces only short-term synaptic
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potentiation (STP). Application of exogenous BDNF enhances the synaptic

response to TBS, leading to LTP. In adult hippocampus, where the endogenous

BDNF levels are high, inhibition of BDNF activity by the BDNF scavenger TrkB-

IgG reduces the magnitude of LTP. In parallel, genetic experiments using two

independent lines of BDNF knockout mice demonstrate that a reduction in BDNF

expression is associated with a significant impairment in hippocampal LTP (Korte

et al. 1995; Patterson et al. 1996). Moreover, heterozygous (+/�) and homozygous

(�/�) BDNF-KO mice exhibit similar degrees of impairment in LTP, suggesting

that a certain level of BDNF in the hippocampus is required for LTP induction

and/or maintenance. Incubation with recombinant BDNF for a few hours (Patterson

et al. 1996) rescues the LTP deficits seen in BDNF-KO mice, suggesting that the

genetic impairment is amenable for pharmacological manipulations. Subsequent

experiments using more sophisticated genetic (TrkB conditional knockout, regional

or inducible BDNF knockout, chemical genetic model) and pharmacological

(BDNF (Chen et al. 1999) or TrkB (Kang et al. 1997) antibody) approaches have

ascertained unequivocally the obligatory role of BDNF-TrkB pathway in hippo-

campal LTP. BDNF regulation of LTP has also been demonstrated in other brain

regions such as visual cortex (Akaneya et al. 1997; Huber et al. 1998; Jiang

et al. 2001).

1.2 Acute Versus Chronic Synaptic Modulation by BDNF

In addition to its role in LTP, bath application of BDNF has also been shown to

induce long-lasting increase in basal synaptic transmission at hippocampal CA1

synapses (Kang and Schuman 1995). However, similar experiments by a number of

laboratories, where BDNF was slowly perfused (as opposed to bath application)

acutely showed no such enhancement (Figurov et al. 1996; Patterson et al. 1996;

Tanaka et al. 1997). Why would different methods of BDNF application (bath or

acute application versus slow or chronic perfusion) elicit such distinct effects?

Would different modes of BDNF delivery (or secretion under the physiological

conditions) lead to different functional outcomes? To address this question,

Ji et al. (2010) applied the same amount of BDNF (final concentration: 1 nM) either

acutely as a single bath application or gradually by increasing BDNF concentration

from 0.0001 to 1 nM with increments of tenfold every 30 min. Remarkably, the

kinetics of TrkB activation and its downstream signaling molecules (Erk, PLCγ1,
GSK-3β activation) differed dramatically depending on the mode of BDNF deliv-

ery. When BDNF was applied acutely, the activation was robust but transient and

declined to baseline within 2 h of application. However, when BDNF concentration

increased gradually, the kinetics of TrkB activation was slow, reached the maximal

in 1 h, and persisted for up to 8 h without decline. The difference in TrkB signaling

kinetics is not due to differential degradation or synthesis of TrkB. Rather, the

gradual but not acute delivery of BDNF appears to allow more TrkB receptor to

recycle back to the cell surface. Moreover, TrkB activation by acute BDNF

application elicited transient activation of both Ras- and Rap-dependent activation
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of Erk, whereas gradual BDNF increase resulted in a sustained, Rap-dependent

activation of Erk. These differences in downstream signaling pathways suggest that

TrkB in different compartments (plasma membrane, endocytic vesicles/signaling

endosomes) activate different signaling molecules as reported earlier (Arimura

et al. 2009; Heerssen and Segal 2002; Huang and Reichardt 2003; Watson

et al. 1999, 2001; Zhou et al. 2007; Zweifel et al. 2005). For instance, stimulation

of both Erk1/2 and PI3K/Akt signaling at the plasma membrane is important for

axonal elongation. However, preventing endocytosis using genetic or pharmaco-

logical inhibitors reduce Erk1/2 phosphorylation but not PI3K/Akt activation

suggesting PI3K/Akt activation precedes Trk internalization, while Erk1/2 activa-

tion follows receptor endocytosis (York et al. 2000; Zhang et al. 2000). The acute

and gradual modes of BDNF signaling also lead to differential expression of TrkB-

responsive genes such as Homer1 and Arc. The steady state levels of these proteins

increased and lasted longer when BDNF was applied gradually as opposed to acute

application, where the levels only increased transiently.

In addition to the differences in the kinetics of TrkB activation and its down-

stream signaling, different modes of BDNF application also induced differential

morphological changes. For instance, acute BDNF application promoted neurite

elongation and spine head enlargement, whereas gradual application increased

dendritic branching and filopodia-like spines. This is in parallel to changes in

different downstream signaling pathways causing relevant morphological changes

to establish homeostasis. Mimicking the gradual and acute increases in BDNF

concentrations in neonatal rat hippocampal slices showed that slow perfusion of

BDNF (slow and chronic) facilitated LTP induced by weak TBS without changing

baseline synaptic strength. In contrast, fast perfusion of BDNF (acute) to adult

hippocampal slices induced a rapid increase in activation of BDNF signaling that

promotes synaptic growth required for establishing neuronal networks during

development. It may also be beneficial for long-term, activity-induced structural

and functional changes in synapses. In contrast, transient activation of TrkB as a

consequence of acute BDNF secretion may rapidly potentiate synaptic transmission

in the adult brain (Ji et al. 2010).

1.3 Activity-Dependent Secretion of BDNF and Its Role
in Synapse Plasticity and Memory

Similar to all neurotrophins, BDNF is synthesized first as a precursor, proBDNF,

which is proteolytically cleaved either inside the cells (Mowla et al. 2001) or after

its secretion (Nagappan et al. 2009; Yang et al. 2009b) to form mature BDNF

(mBDNF). Unlike other neurotrophins, BDNF is secreted through constitutive as

well as regulated pathways. BDNF has been localized to both 200 and 400 nm

diameter vesicles by electron microscopy, suggesting that BDNF is trafficked in

vesicles that fuse with the plasma membrane either stochastically or in a regulated

fashion. While the secretion of mBDNF has been shown to be induced by depolari-

zation, high frequency electric stimulation (HFS), and some chemical inducers,
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relatively little is known about the secretion of proBDNF until 2001. Teng

et al. reported that proBDNF was detectable in neuronal culture medium, if

collected in the presence of α2 anti-plasmin inhibitors and in the absence of glial

cells (Lee et al. 2001; Yang et al. 2009b). In contrast, pulse-chase experiments by

Matsumoto et al. (2008) detected only mBDNF but not proBDNF extracellularly in

hippocampal cultures even after stimulation by the GABA antagonist bicuculline

(Matsumoto et al. 2008). This finding questioned whether proBDNF is secreted by

neurons at all. To resolve this discrepancy, Yang et al. (2009b) used the BDNF-HA,

knockin mice, in which BDNF is tagged with HA fragment to help detection of

secreted BDNF, as well as an antibody that specifically detected proBDNF but not

mBDNF. Results showed that proBDNF is highly expressed, especially during

postnatal development, and secreted in response to neuronal depolarization. The

following key measures helped demonstrate activity-dependent secretion of

proBDNF: (1) pure neuronal culture with minimum glial contamination; (2) a

potent plasmin inhibitor to prevent secreted proBDNF from converting to

mBDNF in the culture medium; (3) more sensitive antibodies to detect secreted

proBDNF.

Nagappan et al. (2009) reported that hippocampal neurons secrete proBDNF

both constitutively and also in a regulated fashion. Moreover, they showed that

proBDNF isoform is the major species secreted in response to physiological stimuli

such as the LTD-inducing low frequency stimulation (LFS). Interestingly, tissue

plasminogen activator (tPA), the enzyme identified to be responsible for converting

proBDNF to mBDNF isoform, was secreted only under LTP, but not in LTD

stimulating conditions. These results further substantiate that proBDNF secreted

from neurons is converted to mBDNF extracellularly in situ and is regulated by

neuronal activity. Pharmacological inhibition of tPA in different phases of L-LTP

suggests that extracellular conversion of proBDNF by a tPA/plasminogen mecha-

nism may be necessary for the induction phase, whereas the intracellular production

of mBDNF may be involved in the maintenance phase (Pang et al, SfN Abstract,

2007). In addition to the tPA/plasmin system, proBDNF can also be converted

extracellularly by matrixmetalloprotease 2, 3, 7, and 9 and tolloid-like

metalloproteinase (Hwang et al. 2005; Keifer et al. 2009; Lee et al. 2001; Yang

et al. 2009a). Further studies are necessary to establish the specificities of

proBDNF!mBDNF converting enzymes involved in different brain regions and

their physiological functions.

An important question is how cells sort BDNF into different vesicular (constitu-

tive and regulated) trafficking system. The discovery of the association between the

single nucleotide polymorphism (SNP) in humans (Egan et al. 2003) and Val66Met

(dbSNP number rs6265, with nucleotide change G196A; occurrence: 20–30 % in

Caucasian population) greatly facilitated the study of BDNF cell biology and

functions. Remarkably, cell culture experiments demonstrate that depolarization-

induced secretion of Met66BDNF from hippocampal neurons is significantly

reduced compared with Val66BDNF (Chen et al. 2004). Subjects with this SNP

exhibit lower levels of hippocampal N-acetyl aspartate (an indicator of cell health)

as measured by MRI spectroscopy, abnormal hippocampal activation in fMRI,
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poorer verbal episodic memory (Egan et al. 2003), as well as reduced hippocampal

volume (Pezawas et al. 2004; Szeszko et al. 2005). Interestingly, the Val66Met

polymorphism resides in the pro-domain of BDNF and not in mBDNF. How does a

SNP in the pro-domain affect activity-dependent BDNF secretion? In vitro

experiments using the Val66 and Met66 forms of BDNF indicate that Met66BDNF

protein tends to be clustered in neuronal cell bodies and the proximal regions of the

dendritic compartment, whereas the Val66 BDNF is distributed as punctates

throughout neuronal cell bodies and can travel to the distal dendrites. It is important

to note that the functional properties of Met66 derived mBDNF were not altered.

However, Val66BDNF, but not Met66BDNF, is co-localized with SecII, a regulated
secretory granule marker (Egan et al. 2003). Moreover, a large fraction of

Val66BDNF, but not Met66BDNF, is co-localized with synaptic markers such as

synapsin I and PSD95. Taken together, these results suggest that the majority of

BDNF is normally sorted into regulated secretory vesicles from Golgi

compartments. These vesicles are capable of being transported to distal dendrites

or axons, localized to synapses, and released in an activity-dependent manner.

Identification of Val66Met in BDNF trafficking and therefore its consequential

function in human episodic memory opened a new area for research in BDNF

biology. To further understand the impact of Val66Met substitution, Chen

et al. (2006) generated a genetic knockin line of mice in which the Val66BDNF is

replaced by Met66BDNF. Similar to the human results reported by Egan et al.,

neurons derived from the transgenic mice also exhibited reduced BDNF secretion

(~30 %), and Met66BDNF mice showed reduced hippocampal volume, due to

changes in dendritic complexity, as well as deficits in hippocampal-dependent

contextual memory. Moreover, these mice exhibit anxiety-like behaviors, and

treatment with antidepressants such as fluoxetine did not alleviate the anxiety

phenotype, suggesting that this antidepressant may achieve its anxiolytic effects

through activity-dependent BDNF secretion. Consistent with reduction in regulated

secretion of BDNF, synaptic plasticity in Met66BDNF mice was significantly

altered (Ninan et al. 2010). While the basal glutamatergic transmission remained

unaltered in the Met66BDNF animals (no changes in input/output curve, paired

pulse facilitation), both NMDAR-dependent LTP and LTD were significantly

reduced. Interestingly, mGluR-dependent LTD remained intact. These results sug-

gest that activity-dependent BDNF secretion is selectively involved in the NMDA-

dependent forms of synaptic plasticity. Future detailed studies should investigate

the specific mechanisms by which Val66MetBDNF alters NMDA receptor function.

Considering the rarity of the Met/Met allele frequency in humans (<0.3 %), the

Met66BDNF knockin line could serve as a good model to study synaptic dysfunc-

tion and effects of pharmacological interventions.

1.4 Effect of tDCS on LTP and Motor Learning

The genetics of BDNF polymorphism offers an opportunity to study the functional

consequences of alteration of activity-dependent BDNF secretion in human. It is
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conceivable that a reduction in BDNF secretion throughout development may lead

to structural alterations in neuronal circuits. It is therefore important to determine

whether some of the changes observed in Met66BDNF carriers could be reversed

through acute manipulations. Unfortunately, studies of synaptic plasticity have

been limited to animal models. Among the few available approaches for use in

man, transcranial direct current stimulation (tDCs) has emerged as a safe, simple,

noninvasive, and effective manipulation of cortical activity in humans (Antal

et al. 2004; Fregni et al. 2005; Gandiga et al. 2006; Iyer et al. 2005; Nitsche

et al. 2003). It has been shown that when the anode electrode is placed over the

target cortical area on a subject’s head and a weak direct current (mA) is applied,

stimulation can enhance cortical excitability and function (Webster et al. 2006). In a

simple experimental design, Reis et al. (2009) demonstrated that anodal tDCS

applied over the human motor cortex (M1) during training facilitates motor skill

learning, resulting in substantial improvements in long-term retention of motor

memories. In line with these findings, BDNF levels are reported to be elevated in rat

motor cortex following motor learning (Klintsova et al. 2004). Moreover, training-

induced potentiation of motor-evoked potentials is reduced in human Met66BDNF

carriers (Kleim et al. 2006). Thus, one could speculate that motor learning is

facilitated by tDCS-induced BDNF secretion in M1 cortex.

To test this hypothesis, Fritsch et al. (2010) developed a method that allows

direct application of DCS to mouse slices from M1 cortex, mimicking tDCS in

humans (Fritsch et al. 2010). Using this approach, they have identified a novel,

long-lasting synaptic potentiation induced by DCS (DCS-LTP), which is polarity

(anodal)-specific, NMDA-receptor dependent, and requires coupling of DCS with

simultaneous low frequency (0.1 Hz) synaptic activation (mimicking training).

Several lines of evidence suggest that DCS-LTP is mediated by DCS-induced

secretion of BDNF. First, DCS-LTP is completely blocked in M1 slices derived

from BDNF or TrkB knockout mice. Second, combined DCS and low frequency

stimulation results in TrkB phosphorylation suggesting BDNF secretion. Finally,

scavenging secreted BDNF by TrkB-IgG eliminated DCS-LTP. Thus, activity-

dependent BDNF secretion appears to mediate this novel DCS-induced synaptic

plasticity in mouse M1 motor cortex.

How activity-dependent secretion of BDNF could alter motor learning in vivo

(mouse and humans) was further examined using BDNF Val66Met allele careers

(Reis et al. 2009) and BDNFMet/Met knockin mice (Fritsch et al. 2010). Interestingly,

acquisition of a fine motor skill over multiple days was found to be significantly

impaired in human Met allele careers as well as in BDNFMet/Met knockin mice.

Furthermore, Met allele careers exhibited an attenuated response to combined

anodal tDCS and training. Taken together, these findings suggest that BDNF is an

important player in human motor learning, likely through its contribution to synap-

tic plasticity at M1, and therefore may have implications in the treatment of motor

deficits in neurological and psychiatric conditions.
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1.5 Role of TrkB Trafficking

As a diffusible factor, how does BDNF achieve synapse-specific modulation? In

addition to local synthesis and/or secretion of BDNF at the active synapse, it is

likely that active synapses may also respond better to BDNF compared to less

active ones. Therefore, neuronal/synaptic activity may enhance TrkB signaling

selectively at active synapses, without affecting the neighboring less active ones.

Indeed, multiple studies have revealed several mechanisms conferring activity-

dependent regulation of TrkB signaling. First, TrkB mRNA is localized at synapses,

especially in the dendritic regions and in synaptosomal fractions, suggesting that

similar to BDNF, TrkB mRNA may be locally translated (Righi et al. 2000;

Simonato et al. 2002; Tongiorgi et al. 1997). Tongiorgi et al. (1997) have shown

that neuronal activity induces translocation of TrkB mRNA into dendrites in vitro.

BDNF also induce dendritic translocation of TrkB mRNA, suggesting that activity-

dependent local secretion of BDNF may mobilize TrkB mRNA into the dendrites

(Tongiorgi and Baj 2008; Tongiorgi et al. 1997). Second, contrary to TrkB mRNA

transport into the dendrites, which occur in hours, dendritic TrkB protein levels

increased within minutes (~10 min) following neuronal activity. TrkB mRNA local

translation may serve as the first node of regulation by neuronal activity. Third, in

addition to local translation, BDNF regulation of active synapses may also be

mediated through selective insertion of TrkB receptors, providing a positive feed

forward regulation (Meyer-Franke et al. 1998). Corroborating this notion are the

results from Du et al., demonstrating that the physiologically relevant tetanic

stimulation, but not the low frequency stimulation, increase the number of surface

TrkB receptors (Du et al. 2000). Neuronal activity or BDNF stimulation led to rapid

insertion of TrkB receptors (<30 min) and was dependent on intracellular increase

in Ca2+ and activation of CaMKII. However, surface expression of TrkB is tightly

regulated depending on how TrkB is exposed to BDNF. For instance, acute

exposure to BDNF rapidly increases surface expression (Du et al. 2000), whereas

chronic exposure results in decrease in surface TrkB levels (Frank et al. 1996;

Haapasalo et al. 2002; Sommerfeld et al. 2000), possibly due to TrkB endocytosis

and proteasome-mediated degradation. However, if neuronal activity significantly

elevates the surface levels of TrkB rapidly in a random fashion, then how does

BDNF-TrkB signaling provide synapse-specific regulation?

One mechanism that could potentially constrain BDNF regulation to highly

active synapses is through the lateral movement of surface TrkB receptors that

are inserted at extrasynaptic sites to move into active synapses (spines/active

zones). Presence of lipid rafts (cholesterol and sphingolipid-rich microdomains)

at the synapses does offer specialized signaling platform for TrkB regulation

(Assaife-Lopes et al. 2010; Suzuki et al. 2004; Wu et al. 1997). Interestingly,

translocation of TrkB into lipid rafts selectively activates the Ras/MAPK/Erk

pathway, but not PI3K/Akt pathway, suggesting that lipid rafts could compartmen-

talize downstream signaling events of TrkB (Suzuki et al. 2004). Moreover,

blocking TrkB translocation into lipid rafts abolished the potentiating effects of

BDNF on evoked synaptic transmission in culture and blocked evoked synaptic
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responses in hippocampal slices in response to tetanic stimulation (Suzuki

et al. 2004). Finally, alternate mechanisms do exist that can specifically regulate

the responsiveness of TrkB receptors at synapses. Along with BDNF secretion,

neuronal activity also increases the intracellular concentration of cAMP ([cAMP]i)

in situ (spines and active zones), which has been shown to be responsible for

regulating BDNF-induced TrkB phosphorylation as well as facilitating the move-

ment of TrkB into the postsynaptic density in dendritic spines (Ji et al. 2005).

Together, multiple mechanisms have been discovered that can regulate BDNF

actions in a synapse-specific manner by modulating its receptor, TrkB.

2 BDNF Regulation of Late Phase-LTP and Long-Term
Memory

2.1 proBDNF Cleavage by tPA/Plasmin System Regulates
Late Phase-LTP

In addition to its role in E-LTP, substantial evidence suggests that BDNF is also

critical for late phase LTP (L-LTP). Reduction of BDNF levels either genetically by

BDNF gene knockout (BDNF+/� mice) (Patterson et al. 1996) or pharmaco-

logically by the application of a BDNF scavenger (Chen et al. 1999) (TrkB-IgG)

results in impairment in L-LTP in rat hippocampal slices. Moreover, application of

BDNF after hippocampal slices were stimulated with a weak TBS (three sets of four

pulses at 100 Hz), which normally only induce E-LTP, resulted in sustained L-LTP.

These results suggest that BDNF is necessary and sufficient for L-LTP. In addition,

tPA has also been implicated in L-LTP (Frey et al. 1996; Huang et al. 1996). The

biochemical function of tPA is to cleave and convert the inactive zymogen plas-

minogen into active protease plasmin. The finding by Lee et al. (2001) that plasmin

can convert proBDNF into mBDNF in vitro (Lee et al. 2001) prompted Pang

et al. (2004) to hypothesize that if proBDNF is produced and secreted in the

brain, then conversion of proBDNF to mBDNF by the tPA/plasmin system may

be involved in L-LTP. Using different transgenic knockout animals (tPA, plasmin,

BDNF), this hypothesis was tested systematically to establish the functional rela-

tionship between tPA/plasmin and BDNF. First, L-LTP was severely impaired in

both tPA and plasminogen knockout mice, and this impairment was completely

rescued by perfusing cleaved mBDNF (Pang et al. 2004). Remarkably, perfusion of

cleavage-resistant proBDNF (mutated at furin cleavage site) was unable to rescue

the L-LTP deficit in tPA (�/�) and plasminogen (�/�) mice, suggesting that

conversion of proBDNF to mBDNF is essential for expressing L-LTP. Second,

in vitro biochemical experiments showed that tPA together with plasmin was

necessary for the conversion of proBDNF to mBDNF, and proBDNF is not a direct

substrate of tPA (Pang et al. 2004). Consistent with this finding, tPA knockout

animals showed elevated levels of proBDNF. Third, perfusion of tPA failed to

rescue the L-LTP deficit in plasminogen (�/�) or BDNF (+/�) mice, whereas

perfusion of plasmin rescued the L-LTP deficit in tPA (�/�) mice but not in BDNF
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(+/�) mice. These results, together with the finding that mBDNF rescued the

L-LTP deficit in both tPA (�/�) and plasminogen (�/�) mice, suggest that tPA,

by activating the extracellular protease plasmin, converts the precursor proBDNF to

mBDNF in the hippocampus, and such conversion is required for L-LTP (Pang

et al. 2004).

An even more remarkable finding is that application of mBDNF after tetanus is

sufficient to allow L-LTP to occur even when all protein synthesis is blocked (Pang

et al. 2004). It is well established that both long-term memory and L-LTP require

new protein synthesis (Govindarajan et al. 2011; Klann and Sweatt 2008). An

essential and yet unresolved question is what is (are) the specific product

(s) mediating the long-term changes at synapses. The results by Pang et al. (2004)

suggest that mBDNF is likely to be the key (or only) protein synthesis product that

is essential to convert E-LTP to L-LTP. This is truly a provocative idea that

surprised many in the field.

2.2 BDNF Regulation of Long-Term Memory

L-LTP is considered as a cellular basis for long-term memory (LTM). Substantial

evidence supports a critical role of BDNF in LTM. An elevation in BDNF mRNA

level in the hippocampus has been observed following acquisition of spatial tasks

such as Morris water maze and radial arm maze (Kesslak et al. 1998; Mizuno

et al. 2000); inhibitory avoidance (Alonso et al. 2002a; Ma et al. 1998); contextual

fear conditioning (Hall et al. 2000); olfactory recognition (Broad et al. 2002); and

conditioned taste aversion memory (Ma et al. 2011). In addition, the retrieval of

spatial memories increases the level of BDNF mRNA in hippocampus following

contextual fear conditioning and Morris water maze training (Hall et al. 2000;

Kesslak et al. 1998). Moreover, significant increase of BDNF expression is

observed to accompany a new form of learning, the extinction of previously

acquired memories (e.g., conditioned fear) in the prefrontal cortex (Bredy

et al. 2007) and amygdale (Chhatwal et al. 2006).

On the other hand, LTM is impaired by disrupting BDNF signaling. Morris

water maze acquisition (Linnarsson et al. 1997) and contextual fear conditioning

(Liu et al. 2004) are impaired in BDNF (+/�) mice. Intraventricular injection of

anti-BDNF neutralizing antibody into rat brain prior to training also impaired LTM

in the Morris water maze task (Mu et al. 1999). In addition, over-expression of

truncated TrkB impaired long-term spatial memory (Saarelainen et al. 2000), while

over-expression of TrkB resulted in improved learning and memory in the water

maze, contextual fear conditioning, and conditioned taste aversion tests (Koponen

et al. 2004). Surprisingly, over-expression of BDNF also resulted in modest

learning deficits in spatial memory tasks, potentially due to precocious effects of

BDNF on the development of multiple circuits, leading to abnormal wiring in the

CNS (Cunha et al. 2009).

Region-specific genetic and pharmacological manipulations have helped

delineate the role of BDNF signaling in specific brain regions. Inhibition of BDNF
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mRNA expression via hippocampal infusion of BDNF antisense oligonucleotides or

anti-BDNF antibody before training also blocks acquisition in inhibitory avoidance

and radial arm maze tasks (Alonso et al. 2002a; Ma et al. 1998; Mizuno et al. 2000).

Gorski et al. (2003) deleted BDNF gene from the forebrain using site-specific Cre

recombinase and found that such mice failed to learn Morris water maze task.

Prelimbic cortical-specific deletion of BDNF resulted in robust deficits in consoli-

dation of cued fear (Choi et al. 2010). In addition, decreased BDNF mRNA expres-

sion in the hippocampus by targeted deletion of BDNF gene using lentiviral vector

engineered to express Cre recombinase led to impairments in spatial learning in

Morris water maze and the extinction of fear-potentiated startle (Heldt et al. 2007). A

recent study using post-training CA1 intrahippocampal infusion of anti-BDNF

antibody also revealed a critical role of BDNF in object recognition LTM retention

(Furini et al. 2009). Moreover, deletion of TrkB gene in forebrain results in severe

behavioral deficits in a spatial water maze task and moderate deficits in a radial arm

maze task (Minichiello et al. 1999), while expression of a dominant-negative TrkB

in amygdala specifically impaired consolidation of conditioned fear extinction

(Chhatwal et al. 2006).

Unfortunately, due to the lack of temporally restricted and reversible manipula-

tion of BDNF signaling, it is very difficult to discriminate the role of BDNF

signaling in specific processes of LTM such as formation (acquisition or encoding),

retention, retrieval, and extinction. However, using intra-hippocampal infusion of

BDNF antibodies or antisense oligonucleotide, recent studies demonstrated the

existence of two-time windows in LTM that requires BDNF: one at 1–4 h after

encoding, which is critical for LTM lasting for 1–2 days (Alonso et al. 2002a, b) and

the other at 12 h after memory formation that is essential for LTM 7 days later

(Bekinschtein et al. 2007). It remains unclear whether the second wave of BDNF is

induced by initial memory acquisition or it is the result of subsequent signaling

cascades initiated post-acquisition.

2.3 BDNF-TrkB Signaling in Synaptic and Behavior Tagging

Like LTM, L-LTP requires gene transcription and de novo protein synthesis. Since

gene expression occurs at the neuronal soma, how can the newly synthesized

proteins (known as “plasticity-related proteins” or PRPs) specifically modify the

stimulated or activated synapses but not the nearby, less active ones? The “synaptic

tagging hypothesis,” proposed by Frey and Morris (1997), states that local synaptic

activity generates a tag, which “captures” the soma-derived PRPs. Several lines of

evidence strongly suggest BDNF as a PRP.

First, BDNF mRNA levels are significantly increased 1–3 h after the induction

of L-LTP in hippocampal CA1 neurons (Castren et al. 1993; Dragunow et al. 1993;

Morimoto et al. 1998; Patterson et al. 1992). Such an increase is probably mediated

by enhanced BDNF transcription through activity-dependent transcription. Second,

application of mBDNF can rescue the impaired L-LTP in mice with reduced BDNF

expression (Pang et al. 2004; Patterson et al. 2001). Third, in mice with elevated
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levels of BDNF, a weak TBS, which can create a “synaptic tag” but not PRP, can

induce L-LTP (Barco et al. 2005). Moreover, application of BDNF to wild-type

mouse hippocampal slices also converts E-LTP induced by weak TBS to L-LTP.

Finally, BDNF application completely rescued L-LTP blocked by protein synthesis

inhibition.

In an insightful review, Tonegawa and colleagues proposed several criteria for

molecules to function as a synaptic tags (Kelleher et al. 2004): (1) a tag can be

generated by weak stimulation that induces only E-LTP, which is protein synthesis-

independent; (2) the lifetime of a tag must be about 1–2 h; (3) the activation of a tag

must not require protein synthesis; (4) a tag must be induced in an input-specific

manner and should be spatially restricted; and (5) a tag must interact with (and

therefore capture) PRP to facilitate L-LTP. If BDNF is a PRP, TrkB is an obvious

candidate for a synaptic tag. Using combined biochemical, genetic, electrophysio-

logical, and cell biological approaches, Lu and colleagues have recently

demonstrated that TrkB satisfies four of the five criteria (Lu et al. 2011). For

example, TrkB phosphorylation (and therefore activation) was induced in hippo-

campal slices by weak TBS that only induces E-LTP, and this TrkB activation is

transient (about 1 h) and protein synthesis-independent. To demonstrate that TrkB

activation is input-specific and spatially restricted, BDNF-conjugated beads were

locally applied to cultured hippocampal neurons to mimic BDNF release at

synapses upon local stimulation. Imaging studies demonstrated that TrkB activation

is confined to stimulated synapses (Lu et al. 2011). A litmus test for TrkB to act as a

synaptic tag is the two-pathway experiment in which induction of L-LTP by strong

stimulation (12 sets of TBS) in one pathway converts E-LTP induced by weak

stimulation (four sets of TBS) to L-LTP in a second, independent pathway. Taking

advantages of the pharmacologically regulatable TrkBF616A transgenic mice (Chen

et al. 2005), in which the ATP binding site of TrkB is genetically modified to be

reversibly inhibited by the compound 1NMPP1, it was shown that application of

1NMPP1 at the time of stimulation with a weak stimulus in the second pathway

diminished L-LTP in that pathway but had no effect on the first one. Since TrkB is

the natural receptor for BDNF, there is no conceptual difficulty for TrkB to capture

the potential PRP: BDNF (the fifth criterion).

Since L-LTP is considered as the cellular model for LTM, “synaptic tagging”

may serve as a cellular mechanism underlying “behavioral tagging”—a conversion

of short-term memory (STP) provided by weak training to LTM, if a PRP could be

induced by strong training of completely different modality. Specifically, it was

found in rats that are exposed to a strong stimulation such as a novel environment or

a novel taste before or after a weak training could provide the PRPs necessary to

convert STM to LTM (Ballarini et al. 2009; Moncada and Viola 2007). This

behavioral paradigm was adapted to mice: weak inhibitory avoidance conditioning

(IA) normally results in a STM detectable at 1 h but not 24 h after training.

However, exposure to a novel environment at 1 h before the IA training results in

LTM lasting for 24 h after training. Remarkably, inhibition of TrkB activation by

1NMPP1 in TrkBF616A mice prior to IA training blocked the conversion of STM to

LTM by novelty (Lu et al. 2011). These findings demonstrate that BDNF/TrkB has
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the strongest potential to serve as a PRP/tag for L-LTP and LTM both in vitro and

in vivo, respectively.

2.4 Role of Untranslated Region (UTR) of BDNF mRNA

Various isoforms of BDNF mRNAs are detected in neuronal dendrites, and such

dendritic localization of BDNF mRNAs has been shown to be regulated by neuro-

nal activity (Chiaruttini et al. 2009; Tongiorgi et al. 1997). A remarkable feature of

the BDNF transcripts is that they are processed at two alternative polyadenylation

sites, giving rise to two pools of BDNF mRNAs that harbor either a short or a long

30UTR of 0.35 kb and 2.85 kb in length, respectively (Liu et al. 2005, 2006). These

two pools of BDNF mRNA isoforms encode the same BDNF protein. Recently, a

study by An et al. (2008) showed that short 30UTR BDNF mRNA is restricted to

somata while the long 30UTR BDNF mRNA can be localized to dendrites of

cultured hippocampal neurons. A line of transgenic mice that express only the

short 30UTR but not the long 30UTR BDNF mRNA (BDNFklox/klox) was used to

investigate the functional role of long 30UTR in vivo. Truncation of the long 30UTR
disrupts dendritic localization of BDNF mRNA in the brain, leading to pruning and

enlargement of dendritic spines, and selective impairment in LTP at apical

dendrites but not in somata, of hippocampal neurons. In addition, lack of dendritic

BDNF (BDNFklox/klox) in layer 2/3 pyramidal neurons of the visual cortex also

showed altered spine pruning, late phase spine maturation, and recovery of cortical

responsiveness following monocular deprivation (Kaneko et al. 2012). These

results reveal a critical role for local BDNF synthesis in the structural and func-

tional plasticity in dendrites of hippocampal neurons. Furthermore, this study

provides an example that mRNAs containing the same coding sequence but distinct

30UTRs can have distinct physiological functions due to their selective subcellular

localization and translation. Interestingly, dendritically localized BDNF mRNAs

remain translationally silent and are made competent in response to neuronal

activity (Lau et al. 2010). Pilocarpine, a muscarinic cholinergic receptor agonist

known to exacerbate excitatory neuronal activity leading to seizures, specifically

mobilized long 30UTR BDNF transcripts into the polyribosomal fractions in

neurites. Further investigations are required to reveal how the long 30UTR silences

BDNF mRNA translation, and how neuronal stimulation removes the silencing.

The above data suggest that activity-dependent regulation of BDNF expression

could be achieved at the levels of trafficking and/or translation. These could be

mediated by one or more trans-acting factors, including but not limited to RNA

binding proteins and microRNAs that may be associated with short or long 30UTR
transcripts. Clues to the cis-elements in the BDNF transcripts and the trans-acting
factors involved in this process are beginning to emerge. Chiaruttini et al. (2009)

proposed G196A (rs6265) as a critical cis element in the 50UTR for BDNF mRNA

trafficking into dendrites. Evidence for additional cis elements in BDNF mRNA

also came from genetic association studies of the human SNP C270T (rs56164415)

in the 50UTR in idiopathic temporal lobe epilepsy (Kanemoto et al. 2003).
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The 50UTRs encoded by human BDNF gene exons V and VIII are proposed to

contain putative internal ribosome entry sequence (IRES), which may serve as

alternate sites for ribosomal binding and translation. In addition to the cis elements,

Chiaruttini et al. (2009) also proposed the role for the trans-acting complex translin/

trax in transporting BDNF mRNA into the dendrites. However, recent studies using

translin knockout mice showed that translin/trax complex-independent mechanisms

may also be involved in dendritic trafficking of BDNF mRNA (Wu et al. 2011).

Corroborating this idea, CArG box binding factor A or A2RE/RTS binding factor

(CBF-A) was shown to be a trans factor (other than staufen-1, DDX3 translin)

responsible for facilitating dendritic transport of different mRNAs including

BDNF, Arc, CaMKIIα (Raju et al. 2011). Similarly, fragile X mental retardation

protein (FMRP) has been suggested as a trans factor for dendritic BDNF mRNA

transport (Louhivuori et al. 2010). More interestingly, the mutant protein huntingtin

(htt), in which the change in the CAG repeat length is responsible for causing

Huntington’s disease, has also been shown to be associated with BDNF mRNA

granules (Ma et al. 2010). Other non-proteinaceous trans-acting factors, like

microRNAs 134, 381, and 495 that regulate BDNF mRNA translation, are begin-

ning to emerge (Wu et al. 2010).

While these findings unveiled multiple mechanisms of BDNF regulation by the

30UTRs, it is important to emphasize that BDNF transcripts also contain different

50UTRs and may impart additional regulatory mechanisms. BDNF mRNA traffick-

ing into different neuronal compartments, their local regulation of translation, and

association with factors that play a causal role in different neurological diseases

have opened up a new area in BDNF biology, which will be one of the key areas for

research focus in near future.

3 BDNF Regulation of Long-Term Depression

3.1 proBDNF Effect on LTD

Compared with the vast literature supporting the role of mBDNF in LTP, relatively

few studies have focused on BDNF regulation of other forms of plasticity such as

long-term depression (LTD). A clue came from outside of the synaptic plasticity

field. Hempstead and colleagues elegantly demonstrated that proNGF (also

proBDNF) induced neuronal apoptosis through the pan-neurotrophin receptor,

p75NTR, along with the co-receptor, sortilin (Lee et al. 2001). This result suggested

that proneurotrophins through a distinct receptor (p75NTR) may elicit effects

opposite to mature neurotrophins. However, although there was no obvious cellular

phenotype, p75NTR homozygous (�/�) mice (Lee et al. 1992) did show

impairments in several learning and memory tasks (in C57Bl/6 background)

(Peterson et al. 1999; Wright et al. 2004). These results remain controversial, as a

recent study demonstrated that spatial memory and hippocampal LTP are signifi-

cantly enhanced in the p75NTR-knockout mice (in 129/Sv background) (Barrett

et al. 2009). These data strongly suggest that proBDNF-p75NTR interaction may
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regulate synaptic function, rather than apoptosis, in adult mice. Given that a

significant proportion of BDNF secreted in the brain is proBDNF (Mowla

et al. 2001; Nagappan et al. 2009) and that cleavage of proBDNF facilitates

L-LTP, it was hypothesized that uncleaved proBDNF might have an opposite

role—regulation of long-term depression (LTD). Indeed, Korte and colleagues

reported that LTD could not be induced in two lines (exon III and exon IV) of

p75NTR transgenic mice (Rosch et al. 2005). A systematic analysis by Woo

et al. (2005) showed that p75NTR (�/�) mice indeed exhibit selective impairment

in the NMDA-dependent LTD (called NR-LTD), without affecting basal synaptic

transmission or other forms of synaptic plasticity. LTD could be reliably induced

either by application of a train of low frequency stimulation (LFS) or perfusion of

NMDA to the hippocampal slices from wild-type juvenile mice but not the

p75NTR�/� mice of the same age. This effect is very specific since NMDA-

dependent LTP and NMDA-independent LTD are completely normal in p75�/�
mice (Woo et al. 2005).

More direct evidence for the role of proBDNF in LTD came from pharmacolog-

ical studies (Woo et al. 2005). Uncleavable proBDNF facilitated NR-LTD, but not

LTP, not only in young mice (3–4 weeks when LTD is normally measurable) but

also in older mice (7–8 weeks old). Moreover, proBDNF promotes NR-LTD

through p75NTR, as deletion of the p75NTR gene or inhibition of p75NTR by

functionally blocking p75NTR (REX) antibody completely inhibited the potentiating

effect of proBDNF on NR-LTD. These results, together with the electron micro-

scopic evidence that p75NTR is localized in the dendritic spines of CA1 pyramidal

neurons, suggest that proBDNF is the endogenous ligand acting on postsynaptic

p75NTR in the CA1 neurons to control NR-LTD. This conclusion was unexpected,

since the traditional thinking was that p75NTR is only expressed at the cholinergic

afferents projecting from the basal forebrain neurons into the hippocampus. Further

experimentation revealed that NR2B, but not NR2A, is responsible for p75NTR/NR-

LTD. In hippocampal CA1 synapses from the p75NTR mutant mice, synaptic

currents mediated by NR2B, but not those by NR2A, were selectively eliminated.

Further, activation of p75NTR by proBDNF enhanced NR2B-mediated synaptic

currents. A selective impairment in NR2B expression could therefore explain the

specific failure of NR-LTD, but not LTP or NR-independent LTD, in p75NTR�/�
mice. Together, these findings revealed a novel role of proBDNF-p75NTR signaling

in LTD in hippocampal slices and its potential mechanism of action (Woo

et al. 2005).

In vivo studies in awake and behaving rats suggest a possible role for endoge-

nous proBDNF in regulating memory. During recall, a fully consolidated memory

can undergo either reconsolidation or be subject to extinction, depending on

whether the memory is enforced or not. Extinction memory competes with

consolidated memory to control behavior. Memories encoded in rats that are

conditioned in two different contexts can be retrieved and manipulated without

interference from each other. In one such experiment, Barnes et al. established an

extinction protocol in rats that were fear conditioned by foot shock in two different

contexts (Barnes and Thomas 2008). Interestingly, proBDNF levels in the
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hippocampal CA1 region were found to increase by ~2.5-fold only during extinc-

tion but not in acquisition or recall. Moreover, when proBDNF levels increased by

inhibiting the proBDNF processing enzymes tPA/plasmin using tPA-STOP (a small

molecule inhibitor), the extinction of conditioned fear memory was potentiated. In

parallel, tPA-STOP attenuated consolidation of memory during recall testing.

Together these studies suggest that the extent of proBDNF cleavage may be

precisely controlled by neuronal activity induced during memory recall: higher

levels of proBDNF may promote extinction while suppressing consolidation. This

study provides a mechanistic link from molecular events (proBDNF conversion by

tPA/plasmin cascade) to circuits (LTD facilitated by proBDNF) and behavior

(extinction memory).

3.2 Opposing Effects of proBDNF and Mature BDNF:
Yin-Yang Hypothesis

The studies highlighted above not only established a bidirectional regulation of

hippocampal plasticity by proBDNF and mBDNF but also helped formulate a “yin-

yang hypothesis”: the uncleaved proBDNF (pro-neurotrophins) leads to negative

effects such as apoptosis and LTD through p75NTR, while mBDNF (mature

neurotrophins) elicit positive functions such as cell survival and LTP through

TrkB. This hypothesis is based on several major findings that are now well

validated. First, pro-neurotrophins are secreted, and they could serve as signaling

molecules, rather than inactive precursors (Lee et al. 2001; Yang et al. 2009b). It is

now clear that the pro and mature neurotrophins elicit distinct signal transduction

pathways (Koshimizu et al. 2010; Koshimizu et al. 2009; Sun et al. 2012). Second,

in contrast to mature neurotrophins which preferentially bind Trk receptors,

pro-neurotrophins bind with high affinity to p75NTR, which previously was consid-

ered a low affinity pan neurotrophin receptor (Nykjaer et al. 2004). Third, pro and

mature neurotrophins often elicit opposite effects. Under this simple model, the

binary actions of neurotrophins depend on both the forms of the neurotrophin (pro

vs. mature) and the class of receptors activated (p75NTR vs. Trk’s). In addition to

cell survival and synaptic plasticity, recent studies have also shown that proBDNF

elicits axonal retraction (Sun et al. 2012; Yang et al. 2009a), inhibits neuronal

migration (Xu et al. 2011), and reduces dendritic growth and spines (Koshimizu

et al. 2009), through p75NTR. Finally, proNGF and proBDNF can be cleaved by

extracellular proteases such as MMP7 and plasmin (Lee et al. 2001; Pang

et al. 2004). An important concept emerged from the Yin-yang hypothesis is that

cleavage of pro-neurotrophins (or not) by extracellular proteases becomes a critical

control mechanism for bidirectional neurotrophin regulation. These results may

have implications in neural development, synaptic plasticity, and even nervous

system diseases. It remains to be established whether the yin and yang actions of

neurotrophins are equally prevalent.
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3.3 Role of p75 and LTD in Stress Coping and Anxiety

The unexpected discovery that proBDNF promotes NR-LTD in the juvenile hippo-

campus through p75NTR raised more questions. Since in adults p75NTR is primarily

expressed in basal forebrain cholinergic neurons but rarely in other brain regions,

what is the role of p75NTR in the adult brain? Given that NR-LTD is also restricted

to the juvenile brain, one may also ask can LTD ever be induced in the adult, and if

so, what is its physiological function? Further, what role does p75NTR play in

pathological conditions such as during stress?

Martinowich and colleagues have performed a series of experiments to address

these questions using the p75NTR (�/�) mice (Martinowich et al. 2011b). First,

acute stress (placing the mice on a small elevated platform) could enhance NMDA-

dependent LTD in hippocampus with weak low frequency stimulation (LFS), which

by itself will not enhance LTD in adult wild-type mice. Remarkably, this “stress-

enabled” NR-LTD was completely absent in the p75NTR (�/�) mice. The effect of

p75NTR gene deletion on LTD is very specific: there was no change in LTP, basal

synaptic transmission, or even LTD induced by a perfusion of NMDA or musca-

rinic receptor agonist carbachol in adult p75NTR (�/�) slices. These results

identified a new form of LTD in the adult hippocampus that is dependent on

NMDA receptor, p75NTR, as well as cholinergic inputs to the hippocampus.

Second, upon stress, the p75NTR mutants exhibit a selective increase in anxiety-

like, but not depressive-like, behaviors, as well as a decreased stress resiliency

(Martinowich et al. 2011b). These mice mount a normal stress-induced glucocorti-

coid surge and hyperthermia (a transient increase in body temperature, which

recovers upon removal of stress), but their ability to recover from this stress is

impaired, suggesting their inability to cope with stressful conditions. The musca-

rinic receptor antagonist scopolamine also blocked stress-enabled LTD, leading to

anxiety. In contrast, an increase in cholinergic transmission by the acetylcholines-

terase inhibitor (�)-phenserine resulted in anxiolytic effects. Taken together, these

results support a hypothetical pathway for stress coping (Martinowich et al. 2011b):

p75NTR ! cholinergic transmission! stress-enabled hippocampal LTD! control

of stress-induced anxiety.

Finally, to test this hypothesis, a membrane permeable and brain-penetrating

peptide, Tat-GluA23Y, was used to block GluR2 endocytosis. Remarkably, sys-

temic administration of the peptide attenuated the recovery of wild-type animals

from stress-induced hyperthermia and exacerbated anxiety-like behavior after

exposure to an acute stressor. Thus, LTD is a coping mechanism for stress-induced

anxiety, which is regulated by p75NTR-mediated cholinergic transmission in the

hippocampus. Piecing together these results suggest that acute stress leads to

acetylcholine release, which can be modulated by p75NTR in the basal forebrain

cholinergic afferents, and these cholinergic inputs facilitate hippocampal LTD,

which in turn suppresses the development of anxiety-like behaviors in response to

stress.
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4 BDNF Regulation of GABAergic Network

4.1 Activity-Dependent Transcription and GABAergic
Interneurons

While a majority of the studies have focused on BDNF regulation of excitatory

synapses, evidence for the role of BDNF in GABAergic inhibitory synapses is in

fact quite substantial (Holm et al. 2009; Huang et al. 2011; Olofsdotter et al. 2000).

For example, pharmacological treatment of brain slices with mature BDNF, but not

proBDNF, has been shown to decrease inhibitory synaptic transmission (Frerking

et al. 1998; Holm et al. 2009; Tanaka et al. 1997). A series of recent studies have

now pointed to a major role of activity-dependent BDNF transcription in the

development and function of GABAergic synapses.

BDNF gene is transcribed through multiple discrete promoters (I–VIII); each

drives a unique 50exon (exons I–VIII) that is spliced on to the common 30 coding
exon (exon IX). Thus, a total of nine BDNF transcripts are synthesized in rodents

(Aid et al. 2007; Timmusk et al. 1993) and ~17 transcripts in humans (Pruunsild

et al. 2007). Why are there so many different BDNF mRNAs that code for exactly

the same BDNF protein? Different transcripts are expressed in different brain

regions, cell types, and even different subcellular loci. They are also expressed

during different developmental stages and regulated by different environmental

factors. An emerging concept is that some promoters control the basal levels of bdnf
expression necessary for neuronal survival and differentiation, whereas others drive

activity-dependent bdnf expression, which may be involved in experience-

dependent circuit maturation and plasticity in vivo (Hong et al. 2008; Sakata

et al. 2009). Two groups have used sophisticated mouse genetics to address the

role of activity-dependent bdnf expression, which is mediated largely by promoter

IV. In one study, Hong et al. generated a mouse line in which the CaRE3/CRE

(CREm) in endogenous promoter IV was mutated. CREm mice exhibit reduced

spontaneous inhibitory postsynaptic currents (sIPSCs) in cortical culture and fewer

GABAergic synapses in the cortex (Hong et al. 2008). In another study, Sakata and

colleagues disrupted the promoter IV-mediated bdnf gene expression completely by

a GFP-STOP cassette after bdnf exon IV (the BDNF-KIV line) (Sakata et al. 2009).

These mice exhibit fewer parvalbumin (PV)-expressing, fast-spiking GABAergic

interneurons in the prefrontal cortex (PFC), reduced frequency and amplitude of

sIPSCs in cortical culture, as well as an altered spike-time dependent synaptic

potentiation (STDP) in PFC slices. Interestingly, the structure and function of

cortical glutamatergic synapses appear to be normal in both lines. These studies

demonstrate specific requirements for activity-dependent bdnf expression in the

development of inhibitory circuits in cortex.

To determine how activity-driven bdnf gene expression shapes the GABAergic

network in specific cortical circuits in vivo, Jiao et al. (2011) crossed the BDNF-

KIV line with the GAD67–GFP mouse line, in which all GABAergic neurons are

genetically labeled with GFP. Two interesting observations were made. First,

BDNF immunoreactivity in the barrel cortex was found to be distributed in an
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orderly barrel shape in the control, wild-type mice, but this barrel pattern of BDNF

distribution was completely abolished in the BDNF-KIV. This implies that it is the

activity-driven, not the constitutive, bdnf transcription that is responsible for the

barrel-shaped BDNF distribution in somatosensory cortex. Whisker trimming

markedly reduced BDNF expression in the barrel cortex of control mice, but not

in BDNF-KIV, suggesting that whisker sensory activities drive activity-dependent

BDNF expression at local barrel cortical circuits in an input-specific manner.

Second, whisker trimming deprived sensory inputs to the barrel cortex, leading to

fewer perisomatic GABAergic boutons on the pyramidal neurons, as well as barrel-

specific attenuation of GABAergic transmission. All these occur only in wild-type

mice, but not in BDNF-KIV. It is remarkable that a relatively mild manipulation on

activity-dependent but not basal BDNF expression machinery could completely

abolish whisker-trimming-induced plasticity of GABAergic circuit in the barrel

cortex in vivo.

While the BDNF-KIV was initially generated with the intent to block the

promoter IV driven bdnf transcription, detailed characterization indicates that the

activities of promoters I and III, which also contribute to activity-dependent bdnf
transcription, were also reduced in this line. Further analyses revealed that activity-

driven increase in BDNF protein is completely blocked while baseline BDNF level

has only a mild reduction in the BDNF-KIV brain (Jiao et al. 2011; Martinowich

et al. 2011a; Sakata et al. 2009). Thus, the BDNF-KIV line should serve as a tool to

study the function of activity-dependent BDNF expression, rather than that of

promoter-IV. To begin addressing the functional role of activity-dependent

BDNF expression in the adult, Martinowich et al. (2011a) found that in wild-type

animals, sleep deprivation dramatically increased BDNF transcription (primarily

promoter I) as well as cortistatin, a neuropeptide expressed in a subset of cortical

GABAergic interneurons implicated in sleep homeostasis. Such increases were not

observed in BDNF-KIV. Moreover, BDNF-KIV animals exhibited a substantial

decrease in the amount of sleeping time, compared to WT animals. Thus, activity-

dependent BDNF expression regulates sleep homeostasis possibly through

cortistatin-expressing interneurons.

4.2 BDNF-TrkB Controls Network Oscillations Through
Regulation of PV Interneurons

Compared with the vast knowledge of BDNF regulation at the cellular (synaptic

transmission and plasticity) and behavioral (cognitive functions) levels, only few

studies have been conducted to address the role of BDNF in neuronal networks.

Neuronal rhythmic activity, particularly γ-oscillations, is thought to be important

for neuronal assemblies underlying temporal encoding, binding of sensory features,

and memory storage and retrieval (Freeman 1975; Fries 2005; Rodriguez

et al. 1999; Singer and Gray 1995; Tallon-Baudry and Bertrand 1999). Several

studies have demonstrated that the parvalbumin-expressing, fast-spiking

GABAergic interneurons (PV interneuron) are essential for the γ-frequency
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synchronization in cortical and hippocampal networks. PV interneuron is a major

cell population in the forebrain that expresses the BDNF receptor, TrkB.

To explore the role of BDNF-TrkB signaling in network function in neuronal

circuits, a line of mutant mice in which the TrkB gene is specifically deleted in PV

interneurons (TrkB-PV�/�) was generated (Zheng et al. 2011). These mice showed

two interesting electrophysiological phenotypes: (1) The inputs and outputs of the

PV interneurons, which are reflected by the amplitude of glutamatergic synaptic

currents recorded in the PV interneurons and the frequency of GABAergic inputs to

the pyramidal cells, respectively, were reduced in the TrkB-PV�/� mice. These

results suggest that cortical BDNF-TrkB signaling is critical for the function of PV

interneurons. (2) In parallel, the rhythmic network activity in the gamma-frequency

range (30–80 Hz) recorded in the CA1 area was found to be dramatically reduced.

Further characterization demonstrated that this was due to a reduction as well as

desynchronization of action potentials generated in PV interneurons. Taken

together, these results demonstrate for the first time a role for BDNF-TrkB signaling

in network synchrony. This is another emerging area of BDNF biology that may

have significant impact not only in the understanding of network oscillations during

memory processes but may also help to understand abnormal or dysfunctional

network activities under pathophysiological conditions such as neurological

diseases and psychiatric disorders.

Conclusions

With important discoveries continually emerging one after another over the last

2 decades, BDNF regulation of synapses has been one of the most exciting areas

in the neurotrophin field. BDNF elicits a wide range of effects: during develop-

ment and in the adult, on excitatory and inhibitory synapses, regulating synaptic

transmission or plasticity, structure or function, with either acute or long-term

effects, etc. How does BDNF elicit such an array of pleiotrophic properties? One

of the key discoveries was that proBDNF, acting through its preferred receptor

p75NTR/sortilin, elicits biologically different and often opposing effects to

mBDNF. Thus, conversion of proBDNF to mBDNF through proteolytic cleav-

age has emerged as an important regulatory mechanism. Indeed, pharmacologi-

cal and genetic studies have revealed that tPA/plasmin-mediated, extracellular

conversion of proBDNF to mBDNF is necessary and sufficient for late-phase

LTP. Moreover, proBDNF-p75NTR signaling has been shown to facilitate LTD

in young hippocampal slices in vitro and perhaps during stress in adults in vivo.

Activity-dependent proBDNF!mBDNF conversion appears to play an impor-

tant role in synaptic competition/elimination during development. These

findings form the foundation for the “Yin-yang” hypothesis. Second major

breakthrough is identification of the human val/met polymorphism that impacts

selectively on activity-dependent but not constitutive BDNF secretion. This

provides an unprecedented opportunity to study the function of BDNF in

cognitive function and dysfunction in human. Third, the discovery that BDNF

mRNA with short 30UTR is located in neuronal soma whereas that with long

30UTR is targeted to distal dendrites has unveiled yet another level of

242 B. Lu et al.



complexity: compartmentalized regulation of BDNF expression in different

parts of the same neurons. Indeed, initial investigations suggest that dendritically

localized long 30UTR BDNF mRNA is quiescent, and its translation is induced

by local synaptic activity. Functional study of BDNF mRNA trafficking and its

activity-dependent translation has been an emerging area of research likely to

generate some new surprises. Fourth, neuronal activity has been shown to

regulate BDNF-TrkB signaling through a wide range of mechanisms: insertion

and endocytosis of TrkB receptor, translocation into lipid rafts, cAMP gating,

and differential signaling kinetics. Fifth, BDNF gene is transcribed through nine

different promoters in rodents, giving rise to nine mRNAs coding for the same

BDNF protein. Differential regulation of BDNF promoters and its functional

consequences represent an exciting area of research with profound implications

in both basic neuroscience and various neurological and psychiatric disorders.

Finally, BDNF also has been shown to play a significant role in brain network

development and in synchronization of network activities resulting in different

frequencies of oscillations. This is likely to be an intense area of investigation,

especially because it will help bridge the gap between neurophysiological

mechanisms to cognitive functions in the whole organism, as well as pave the

way for understanding pathophysiological conditions in nervous system

disorders.
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Nerve Growth Factor and Nociception:
From Experimental Embryology to
New Analgesic Therapy

Gary R. Lewin, Stefan G. Lechner, and Ewan St. John Smith

Abstract

Nerve growth factor (NGF) is central to the development and functional regula-

tion of sensory neurons that signal the first events that lead to pain. These

sensory neurons, called nociceptors, require NGF in the early embryo to survive

and also for their functional maturation. The long road from the discovery of

NGF and its roles during development to the realization that NGF plays a major

role in the pathophysiology of inflammatory pain will be reviewed. In particular,

we will discuss the various signaling events initiated by NGF that lead to long-

lasting thermal and mechanical hyperalgesia in animals and in man. It has been

realized relatively recently that humanized function blocking antibodies directed

against NGF show remarkably analgesic potency in human clinical trials for

painful conditions as varied as osteoarthritis, lower back pain, and interstitial

cystitis. Thus, anti-NGF medication has the potential to make a major impact on

day-to-day chronic pain treatment in the near future. It is therefore all the more

important to understand the precise pathways and mechanisms that are con-

trolled by NGF to both initiate and sustain mechanical and thermal hyperalgesia.

Recent work suggests that NGF-dependent regulation of the mechanosensory

properties of sensory neurons that signal mechanical pain may open new
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mechanistic avenues to refine and exploit relevant molecular targets for novel

analgesics.

Keywords

NGF • Hyperalgesia • Pain • Inflammation • Mechanotransduction • STOML3 •

Sensitization • TRP channel

1 Introduction

Nerve growth factor (NGF) is the founding member of the neurotrophin family. In

the last 20 years the link between the biology of NGF and pain has been well

established (Heppenstall and Lewin 2000; Pezet and McMahon 2006; Mantyh

et al. 2011). At present, there are at least five major pharmaceutical companies

running clinical trials of humanized antibodies designed to sequester NGF for the

treatment of pain in conditions as varied as osteoarthritis, lower back pain, and

interstitial cystitis (Cattaneo 2010; Lane et al. 2010; Evans et al. 2011; Brown

et al. 2012, 2013). The first example of an NGF sequestering drug is Tanezumab a

humanized monoclonal antibody that potently binds NGF developed by Rinat/

Pfizer (Lane et al. 2010). Although the eventual success of an NGF-based drug

for pain therapy is far from certain at the present time, the key role played by NGF

signaling in pain is not in doubt. In this review we will provide an overview of how

the study of NGF graduated from the province of embryologists to be the one of the

most exciting drug targets for chronic pain in recent years. Since an NGF signaling

axis is undoubtedly important in the etiology of pain, it is important to understand

how NGF functions in the context of nociception and above all in the context of

inflammatory hyperalgesia. Here we will primarily review the mechanistic basis of

how NGF functions in nociception and chronic pain. The further understanding of

NGF biology will be extremely important for understanding how best to manipulate

NGF signaling to effectively treat chronic pain.

2 Experimental Embryology Leads the Way

In a classic series of experiments performed by Rita Levi-Montalcini and her

collaborator Victor Hamburger the activity that was to be identified as NGF was

studied using chicken embryos (Hamburger 1993). They described a process, now

termed programmed cell death, whereby an overabundance of neurons generated

during development, is reduced in number by apoptosis during critical periods. The

fact that many, but not all, neurons die during such critical periods raised the

question of what are the factors that keep the remaining neurons alive. From

these types of experiments came the key insight that led to the eventual identifica-

tion of NGF. Experiments using limb ablation, or the grafting of supernumerary

limbs in embryos during critical stages of development, showed that the number of
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surviving motor neurons, sympathetic ganglion neurons, or sensory neurons was

dependent on the size of the peripheral target. Hamburger and Levi-Montalcini

postulated that some target-derived survival factor synthesized in limiting amounts

was responsible for preventing many of the neurons from undergoing programmed

cell death. Bueker made the serendipitous discovery that injection of a mouse

sarcoma tumor cell line into chick embryos could mimic the survival promoting

effects of increased target size (Bueker and Hilderman 1953; Cohen 2008). These

experiments eventually led to the identification of a source of this as yet unknown

growth factor, namely, the mouse submaxillary gland. Stanley Cohen used this

biochemical source to purify NGF and was able to use this purified protein material

to generate rabbit polyclonal antibodies which bind to NGF (Cohen 1960; Levi-

Montalcini and Booker 1960). This enabled Levi-Montalcini to carry out the first

function blocking experiments, which addressed the endogenous function of NGF

in the mouse. Thus, the injection of NGF binding antibodies into newborn mice led

to a dramatic loss of sympathetic neurons showing that these neurons require NGF

for their survival. The antibody approach taken by Levi-Montalcini was based on

the idea that sequestration of endogenous NGF by high-affinity antibodies will

prevent NGF binding to its endogenous receptors to prevent cell death or promote

nerve fiber growth. It is worth noting that therapeutic interventions for the treatment

of pain now being pursued 50 years later are based on this very same idea.

The availability of antibody tools to manipulate the endogenous levels of NGF

allowed researchers to address the functional consequences of NGF sequestration.

Initially, efforts focused on identifying precisely which neuronal populations

depend on NGF for survival and when. It is through such experiments and later

genetics that we know that NGF is required for the survival of sympathetic ganglion

neurons and a large proportion of embryonic sensory neurons that are destined to

become nociceptors (Ruit et al. 1990, 1992; Crowley et al. 1994). It appears that

both sympathetic and sensory neurons largely lose their absolute dependency on

NGF for survival in the postnatal period (Ruit et al. 1990, 1992).

In the 1980s and 1990s the main focus of developmental biologists was the

question of whether these neurons required the neurotrophins to live, or otherwise

in their absence to die, normally through an active apoptotic program (Lewin and

Barde 1996). For example, it was known that all sensory neurons that express the

high affinity NGF receptor trkA during embryonic development require NGF to

survive, but it is also now clear that this population is not phenotypically homoge-

nous (Crowley et al. 1994; Marmigère and Ernfors 2007). Recently, it has become

possible using a nice genetic trick to examine the influence of NGF signaling in the

embryo without the confounding effects of cell death. Thus mice lacking the cell

death regulator Bax were generated on a genetic background in which the gene

encoding NGF was also deleted; in the absence of Bax, neurons cannot execute an

apoptotic program and remain alive in the absence of NGF (Patel et al. 2000; Luo

et al. 2007). One key finding of such experiments is that NGF signaling is not

required for long-distance axonal growth in the embryo, but is required for the

terminal branch formation in the skin. However, there are other phenotypic

characteristics of developing nociceptors that also require NGF signaling,

for example, the expression of nociceptor-specific ion channels like the
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capsaicin-activated ion channel TRPV1 and TRPM8 a menthol-gated channel

involved in cold sensing (Luo et al. 2007) (Fig. 1a). Functional experiments

using calcium imaging techniques also indicated that embryonic sensory neurons

begin to respond to capsaicin at embryonic stages coinciding with the innervation

of NGF-rich target tissues (Hjerling-Leffler et al. 2007) (Fig. 1a). The vast

majority of nociceptors are primarily sensitive to mechanical stimuli and many

possess fast activated mechanosensitive currents that are probably the functional

basis of their mechanosensitivity (Hu and Lewin 2006; Wetzel et al. 2007). We

thus asked when this mechanotransduction apparatus appears during develop-

ment and if its appearance is regulated by target innervation or neurotrophins

(Lechner et al. 2009) (Fig. 1b, d). Interestingly, one key finding of our study was

that there are several waves of mechanotransduction induction in the sensory

lineage with the first born, low-threshold mechanoreceptors (trkC population)

acquiring mechanosensitive currents as soon as they innervate their peripheral

targets (Fig. 1b). However, this process appears to be independent of growth

factors and is probably regulated by an as yet unknown genetic program, possibly

involving C-Maf genes (Lechner et al. 2009; Wende et al. 2012). In contrast, the

vast majority of trkA-positive sensory neurons innervate their targets later and

here it appears that target-derived NGF is absolutely required for the induction of

mechanosensory competence (Lechner et al. 2009) (Fig. 1d). Thus the
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Fig. 1 NGF controls the expression of Trpv1 and mechanically gated ion channels in DRGs

during embryonic development. (a) and (b) show the proportions of nociceptors that respond to the

TRPV1 agonist capsaicin (a) and to mechanical stimulation (b) plotted as a function of develop-

mental stage [data from (Hjerling-Leffler et al. 2007; Lechner et al. 2009)]. Note, both
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begin to innervate NGF-expressing target tissues. (c) Trvp1 in situ hybridization in DRGs. Note in
the absence of NGF (NGF�/�; Bax�/�), TrpV1 is not expressed in DRG neurons (Luo

et al. 2007). (d) NGF is required for the acquisition of mechanotransduction currents in vitro.
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physiological properties of developing sensory neurons that are essential for their

adult function may already be specified by neurotrophin signaling in the early

embryo (Fig. 1).

Despite the fact that NGF is not required for the continued survival of adult

sensory neurons, it continues to be synthesized in the peripheral targets into

adulthood. Indeed it has long been noted that the levels of NGF in the target

correlate very well with the density of sympathetic and sensory innervation

(Korsching and Thoenen 1983; Shelton and Reichardt 1984; Lewin and Barde

1996). Studies in the 1980s already showed that it is primarily neuropeptide

containing nociceptive sensory neurons in the adult that respond to NGF (Lewin

and Barde 1996). Thus the neuropeptide content, primarily substance P and calci-

tonin gene-related peptide (CGRP), of sensory neurons innervating tissues high in

NGF, such as the skin, was observed to be high compared to tissues low in NGF

(McMahon et al. 1989). Indeed, Lindsay and Harmar demonstrated that NGF

directly upregulates the substance P content of adult sensory neurons (Lindsay

and Harmar 1989). TrkA receptor expression is a feature of all developing

nociceptors in the embryo, but its expression is extinguished in postnatal, small

diameter, non-peptidergic nociceptors (Molliver et al. 1997). The high-affinity trkA

receptor is the primary NGF signaling receptor and is co-expressed in neuropeptide-

positive nociceptors in adults. In mature animals the peripheral tissue could be

shown to influence the chemical composition of sensory afferents. Thus in

experiments where a cutaneous nerve was rerouted to the NGF-poor skeletal muscle

and a muscle nerve was rerouted to NGF-rich skin, the substance P content changed

to match that characteristic of the new target, e.g., muscle nerve innervating skin

now had a high substance P content (McMahon and Gibson 1987; McMahon

et al. 1989). What was even more striking was the fact that the central connectivity

of muscle afferents that had been redirected to skin now resembled that of normal

skin afferents (Lewin and McMahon 1991). These results led us to carry out the first

serious test of the idea that a neurotrophic factor could regulate synaptic strength in

the nervous system. We decided to artificially raise the levels of NGF in the skeletal

muscle, in this case the gastrocnemius muscle, by chronically pumping NGF into

the muscle for a period of 14 days. By making extracellular recordings from spinal

dorsal horn neurons we knew that only very few of these neurons receive strong

synaptic drive from afferents innervating skeletal muscle. However, after exposure

to NGF skeletal muscle afferents showed a huge increase in their ability to excite

dorsal horn neurons and this increase was very large when compared to effects of

muscle afferents innervating the contralateral, untreated muscle (Lewin

et al. 1992b). This was in all probability the very first demonstration that a

neurotrophic factor can modulate synaptic strength. Shortly afterwards, an elegant

and more direct proof of this idea came from the lab of Moo Ming Poo, which

showed that both neurotrophin-3 (NT-3) and brain-derived neurotrophic factor

(BDNF) can increase the strength of neuromuscular synapses in vitro, with a

surprisingly fast time course in the range of seconds (Lohof et al. 1993). Together

these studies provided the foundation of a huge and important area of study,

namely, how neurotrophins regulate synapses and synaptic strength in the nervous

system (see chapters 9 and 16 from Bai Lui et al. and Boyce and Mendell).
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3 NGF and Hyperalgesia: The Linchpin Theory 1993

Hyperalgesia is defined as an increase in the felt intensity of a noxious stimulus,

usually following an injury or an inflammatory process. Secondary hyperalgesia is

the area of hypersensitivity surrounding an injured area that is not due to peripheral

sensitization of the primary afferent, as the afferents that innervate the secondary

area cannot be directly sensitized by the injury. This type of hyperalgesia is thought

to be due to sensitization of central circuits to afferent input coming from nearby the

initial injury site (Treede et al. 1992; Lewin and Moshourab 2004). During the

1980s, it was becoming increasingly clear that the neurobiological basis of second-

ary hyperalgesia was to a large extent dependent on a phenomenon termed central

sensitization (Woolf 1983; McMahon and Wall 1984; Cook et al. 1987; McMahon

et al. 1993). Thus strong activation of nociceptors leads to a rapid and long-lasting

plasticity at synapses between primary sensory neurons and dorsal horn neurons,

and this long-lasting change in synaptic strength can sustain hyperalgesia.

Hyperalgesia is induced following injury or inflammation, but can also be produced

after skin application of substances that activate or sensitize nociceptors. A classic

example of algogen-induced heat and mechanical hyperalgesia is that following the

application of capsaicin to the skin (LaMotte et al. 1991). While working on the role

of NGF in determining the phenotypic identity of nociceptors in Lorne Mendell’s

lab (Ritter et al. 1991; Lewin et al. 1992a), Amy Ritter and Gary Lewin noted that

rats that had been exposed to daily injections of NGF were behaviorally more

sensitive to mechanical and heat stimuli than untreated animals. These observations

led them to make a more systematic study of the effects of NGF on nociceptive

behaviors in the rat. To their surprise a single systemic injection of NGF (1 mg/kg

body weight) produced profound heat and mechanical hyperalgesia, which lasted

for several days. Interestingly, heat and mechanical hyperalgesia appeared to be

mechanistically distinct as heat hyperalgesia appeared within minutes, whereas

mechanical hyperalgesia first became apparent around 7 h after the injection,

becoming maximal and sustained at 24 h (Lewin et al. 1993). The fact that a single

molecule, NGF, could set into train a series of rapid functional changes with all the

hallmarks of hyperalgesia normally seen after sterile inflammation raised the

obvious question of whether NGF was necessary for inflammatory hyperalgesia.

This question was particularly pertinent in light of data published by Donnerer and

colleagues in 1992 showing that NGF was upregulated in the sciatic nerve follow-

ing inflammation of the skin (Donnerer et al. 1992). It was now an obvious step to

use blocking antibodies in vivo to show whether an inflammation-dependent rise in

NGF was a necessary first step in producing hyperalgesia. After obtaining prelimi-

nary data using NGF blocking antibodies, a new model of inflammatory

hyperalgesia was proposed where NGF represents a linchpin molecule that provides

the key humoral link between inflammation and the nociceptive sensory neurons

that initiate and sustain heat and mechanical hyperalgesia (Lewin and Mendell

1993). The key features of this model are shown in Fig. 2, highlighting the areas of

progress that have been made since the discovery that NGF is necessary for

inflammatory hyperalgesia. Soon after we reported that NGF could induce
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Fig. 2 Mechanisms of peripheral and central sensitization. (a) peripheral sensitization may result

from posttranslational modifications (top and middle panel) or from increased gene expression and
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hyperalgesia, several groups tested whether NGF blocking antibodies could ame-

liorate or block heat and mechanical hyperalgesia following inflammation. The first

two reports showed that both the heat and mechanical hyperalgesia that follow a

complete Freund’s adjuvant-induced inflammation could be ameliorated by the

administration of NGF blocking antibodies (Lewin et al. 1994; Woolf

et al. 1994). Later on, the use of improved molecular tools to sequester NGF,

namely, trkA-IgG fusion proteins that specifically bind endogenous NGF, was

also shown to be capable of ameliorating heat and mechanical hyperalgesia

associated with a carrageenan-evoked inflammation model in rats (McMahon

et al. 1995). The key finding that blockade of NGF pain signaling in inflammatory

conditions, where NGF is elevated, has a major analgesic effect has now been

repeated in many models (Pezet and McMahon 2006; Mantyh et al. 2011).

In 1993, Lewin and Mendell proposed a mechanistic model illustrating the

various ways in which increased NGF could produce heat and mechanical

hyperalgesia following inflammation. One key feature of this model was the idea

that the mechanisms that underlie the NGF-dependent heat hyperalgesia are distinct

from those that underlie the mechanical hyperalgesia (Lewin and Mendell 1993;

Lewin et al. 1994). We supposed that an important difference was that NGF is

capable of inducing extremely rapid changes in the peripheral terminals of C-fibers

that sensitizes them to noxious heat stimuli. Mechanical hyperalgesia on the other

hand seemed to require the induction of changes in gene expression that eventually

leads to central sensitization that maintains mechanical hyperalgesia (Lewin and

Mendell 1993; Lewin et al. 1994). In the last 20 years much progress has been made

in elucidating the molecular mechanisms that underlie peripheral NGF-dependent

heat hyperalgesia. Progress has also been made in understanding NGF-dependent

mechanical hyperalgesia and new data indicate that both central and peripheral

mechanisms may be important, the molecular basis of which is just beginning to be

unraveled.

4 NGF-Dependent Heat Hyperalgesia: Molecular
Mechanisms

The availability of NGF in the skin was shown early on to regulate the number of

C-fibers that respond to noxious heat. Thus, decreasing NGF levels with blocking

antibodies reduced the number of C-fibers that respond to heat and raised NGF

levels increased the number of heat-sensitive C-fibers (Lewin and Mendell 1994).

These early experiments demonstrated that the molecular basis of noxious heat

Fig. 2 (continued) the insertion of additional mechanically gated ion channels in the plasma

membrane of the peripheral nerve terminal (bottom). (b) NGF signaling induces the release of

substance P, BDNF, and CGRP from the central terminals of sensory neurons, which sensitize

NMDA receptors in second-order projection neurons resulting in the strengthening of synaptic

transmission in the spinal dorsal horn—i.e., central sensitization
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transduction was itself a target of regulation by NGF. The regulation of noxious

heat transduction in single C-fibers in an inflammatory pain model was also shown

to be dependent on NGF (Koltzenburg et al. 1999). The very rapid NGF-induced

heat hyperalgesia was shown to be partly mediated by NGF-induced mast cell

degranulation, which can in turn release more NGF (Mazurek et al. 1986; Lewin

et al. 1994; Andreev et al. 1995). However, subsequent studies have emphasized

that most of the rapid heat sensitization initiated by NGF takes place in the

nociceptor. An important advance in the field was the discovery that a subpopula-

tion of isolated sensory neurons possesses an ionic inward current directly activated

by noxious heat sometimes referred to as Iheat (Cesare and McNaughton 1996). The

Iheat inward current could also be sensitized by algogens like bradykinin and

recording from isolated cells has proved to be a useful model to study molecules

involved in nociceptor sensitization (Cesare and McNaughton 1996; Cesare

et al. 1999). There was great excitement in the field when the capsaicin-gated ion

channel TRPV1 was cloned by Julius and colleagues and shown to be gated by heat

with an activation threshold similar to that of Iheat � 43 �C (Caterina et al. 1997).

Thus the capsaicin receptor and the noxious heat transduction channel appeared to

be one and the same thing. It was thus very striking when Mendell and Shu showed

that a single short exposure of isolated sensory neurons to NGF (as well as NT-4)

greatly potentiated the capsaicin current amplitude measured minutes later (Shu

and Mendell 1999). Nerve growth factor-induced heat hyperalgesia was later found

to be dependent on the presence of the TRPV1 ion channel as NGF-induced

hyperalgesia is not found in TRPV1�/� mice (Chuang et al. 2001); the persistence

of NGF-induced heat hyperalgesia in p75�/� mice demonstrates that trkA is

probably the necessary receptor for downstream sensitization (Bergmann

et al. 1998). The present consensus is that the TRPV1 ion channel is a noxious

heat-gated ion channel present in many polymodal, noxious heat-sensitive C-fibers,

but its presence does not appear to be necessary for these neurons to respond to

noxious heat in vivo (Woodbury et al. 2004). Recent studies have implicated new

heat-activated ion channels such as anoctamin-1, a calcium-activated chloride

channel, and the TRP channel TRPM3 as being required for heat transduction in

nociceptors (Vriens et al. 2011; Cho et al. 2012). However, it is not yet known if

NGF-dependent heat hyperalgesia and nociceptor sensitization are dependent on

either anoctamin-1 or TRPM3.

The absolute requirement for TRPV1 for NGF-dependent heat hyperalgesia and

nociceptor sensitization has led many workers to use increased TRPV1 activity as a

molecular surrogate for sensitization. Thus capsaicin has often been used, rather

than heat, to activate TRPV1. Initial work using rat DRG neurons identified PKA as

responsible for the sensitization brought about by NGF (Shu and Mendell 1999),

but later work demonstrated that although protein kinase activity was involved in

producing sensitization, it was PKC and PI3K that were responsible (Bonnington

and McNaughton 2003). Differences in the sensitization protocol used and the

recording method (whole-cell electrophysiology vs. calcium imaging) have been

suggested to explain the differences in the results obtained. Whereas PKC acts

predominantly via direct phosphorylation of TRPV1 (Numazaki et al. 2002), the
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PI3K pathway has multiple steps: following trkA autophosphorylation at Tyr760,

PI3K is activated, which in turn activates Src kinase, a non-receptor tyrosine kinase

that subsequently phosphorylates Tyr200 on TRPV1 resulting in translocation to

the plasma membrane and increased membrane expression (Zhang et al. 2005; Stein

et al. 2006). An alternative explanation for NGF-induced heat hyperalgesia has

been built on the observation that mutated trkA, which is unable to activate

phospholipase C (PLC), fails to mediate NGF-induced sensitization, which the

authors suggested was due to the action of PLC liberating TRPV1 from PIP2

inhibition being prevented; antibodies to PIP2 also evoked TRPV1 sensitization

(Chuang et al. 2001). However, it has been argued that NGF can exert all its effects

in a PIP2-independent manner (Zhang and McNaughton 2006) and later studies

have shown that direct application of PIP2 actually potentiates TRPV1 (Stein

et al. 2006). The study by Stein and colleagues has, however, recently been

challenged by the finding that in artificial liposomes TRPV1 activation by both

heat and capsaicin is inhibited by a variety of phosphoinositide lipids interacting

with the C terminus of TRPV1 (Cao et al. 2013). Moreover, the authors show that

activation threshold is not altered by channel number and therefore conclude that

although NGF-dependent increased membrane expression of TRPV1 may account

for some of the thermal hypersensitivity observed, it cannot explain decreases in

thermal threshold. NGF-induced heat hyperalgesia is rapid in onset in vivo, but is

also very long lasting and it has been suggested that NGF can also enhance TRPV1

expression levels via the Ras-MAPK pathway (Ji et al. 2002), which could contrib-

ute to the more persistent heat hyperalgesia in the presence of NGF. It should,

however, be noted that there is good evidence that persistent heat hyperalgesia

following inflammation or NGF elevation may also be dependent on central

sensitization (Fig. 2).

The fact that TRPV1 is necessary for sensitization, but not for the transduction of

noxious heat by nociceptors, is an important fact that requires further investigation

(Woodbury et al. 2004; Koerber et al. 2010). It may be that freshly phosphorylated

TRPV1 protein or newly inserted TRPV1 molecules in turn directly interact with

candidate heat-gated channels, like anoctamin-1 or TRPM3, to produce sensitiza-

tion. Alternatively, TRPV1 may itself have a signaling function that is required for

the sensitization of heat transduction. In order to answer these questions a definitive

identification of the molecule(s) necessary for heat transduction will be required.

The signaling pathways that converge onto TRPV1 from trkA activation also

appear to be engaged by other growth factor receptors such as c-Ret together with

its co-receptors GFRα2 and GFRα3 (Stucky et al. 2002; Malin et al. 2006) that are

preferentially activated by neurturin and artemin, respectively (Baloh et al. 2000;

Bespalov and Saarma 2007). Neurturin signaling in particular may be like NGF, in

the sense that it regulates the number of heat-sensitive neurons amongst the

subpopulation of isolectin B4 (IB4)-positive sensory neurons that in the adult

lack trkA receptors (Molliver et al. 1997; Stucky and Lewin 1999; Stucky

et al. 2002). The receptor tyrosine kinase c-Kit is the receptor for stem cell factor

(SCF) and was recently found to be expressed by a subpopulation of noxious heat-

sensitive nociceptors (Milenkovic et al. 2007). It was shown that SCF/c-Kit
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signaling is necessary to maintain nociceptor heat sensitivity and SCF can, like

NGF, sensitize Iheat and produce a rapid, but short lasting, heat hyperalgesia in a

TRPV1-dependent manner (Milenkovic et al. 2007). Interestingly, in the case of

GDNF-like ligands and SCF where heat sensitization has been reported, mechanical

hyperalgesia was absent [but see (Albers et al. 2006)].

5 Mechanisms of NGF-Dependent Mechanical Hyperalgesia

Mechanical hyperalgesia is the symptom that most concerns patients with painful

conditions caused by inflammation or injury. It was thus very striking to observe

that a short burst of elevated NGF can be sufficient to induce mechanical

hyperalgesia that can last for days or even weeks in rodents and humans (Lewin

et al. 1993; Petty et al. 1994). Systemic or local injection of NGF is unlikely to lead

to sustained trkA activation because this small polypeptide would be rapidly

degraded by extracellular proteases after injection. Thus, a pulse of NGF is suffi-

cient to set in train a series of events that sustain mechanical hyperalgesia, often for

days. Early pharmacological experiments already indicated that long-lasting

NGF-induced heat hyperalgesia, but not mechanical hyperalgesia, is sustained by

a central sensitization that requires NMDA receptors (Lewin et al. 1994) (Fig. 2).

NGF can produce long-lasting changes in gene expression in adult sensory neurons

and the first genes shown to be controlled by NGF were substance P and CGRP

(Lindsay and Harmar 1989). Release of neuropeptides from sensory neurons may

modulate the strength of spinal cord synapses (Seybold 2009); however, mice with

a targeted mutation of the tachykinin-1 gene coding for the substance P peptide do

not show deficits in inflammation-induced mechanical hyperalgesia (Cao

et al. 1998). Thus considering that NGF is required for inflammation-induced

mechanical hyperalgesia, it appears to be unlikely that substance P is a major

central mediator. In contrast, studies on mice lacking a second major neuropeptide,

CGRP expressed in trkA-positive sensory neurons (Molliver et al. 1997), have

indicated broad deficits in inflammatory hyperalgesia including mechanical

hyperalgesia (Salmon et al. 2001). One unusual rodent species, the naked mole

rat, completely lacks both substance P and CGRP in cutaneous nociceptors, but

exhibits a similar degree of mechanical hyperalgesia following complete Freund’s

adjuvant to that seen in mice (Park et al. 2008). Interestingly, however, NGF

injected into naked mole rats does not produce heat hyperalgesia and this may be

due to the presence of a hypo-functional trkA receptor in this species (Park

et al. 2008; Smith et al. 2012).

Neurotrophins were traditionally thought of as being produced by the targets of

sensory neurons, but it became apparent from developmental studies that many

sensory neurons actually express and produce neurotrophins (Ernfors et al. 1990). It

was therefore striking, when it was discovered that BDNF is normally produced by

a subset of trkA-positive nociceptors and that the number of trkA neurons making

this factor is dramatically increased by increased NGF (Apfel et al. 1996; Michael

et al. 1997). Indeed, BDNF could be shown to be released by activity in sensory

neurons and its release is enhanced by elevated NGF levels that follow
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inflammation (Balkowiec and Katz 2000; Lever et al. 2001). Thus, increased

peripheral NGF leads to increased production and release of BDNF from the central

synapses of nociceptors in the spinal cord, which may be critical for certain central

sensitization events, especially those involving NMDA receptors (Kerr et al. 1999).

Direct electrophysiological evidence demonstrating that BDNF can rapidly poten-

tiate transmission at synapses formed by nociceptors was provided by Mendell and

colleagues (Garraway et al. 2003). The effects of mature BDNF on spinal synapses

are rapid and probably occur via both pre- and postsynaptic trkB receptors and the

potentiation observed is because of phosphorylation of NMDA receptor subunits

(Kerr et al. 1999; Heppenstall and Lewin 2001; Garraway et al. 2003) (Fig. 2).

One complication of examining the central sensitization effects of BDNF is that

this factor is also produced within the brain and spinal cord. Furthermore, the

production and release of BDNF may be controlled by many factors. For example,

it has been proposed that, when activated, spinal microglia cells may release BDNF,

which in turn can modulate the excitability of dorsal horn neurons. The modulation

of the anion gradient in lamina I projection neurons, possibly via the modulation of

KCC2 (a potassium chloride co-transporter), can lead to a shift in the reversal

potential for anions like chloride which makes normally hyperpolarizing inputs

from inhibitory interneurons either ineffective or even depolarizing (Coull

et al. 2005). This type of BDNF effect is thought to be particularly relevant for

sustaining neuropathic pain. Other work, notably from Mendell’s group, has also

shown how BDNF can have highly synapse-specific effects in the spinal cord

(Mendell and Arvanian 2002).

Global deletion of the BDNF gene leads to early postnatal lethality which has

made the study of BDNF’s role in the adult nervous system more difficult (Carroll

et al. 1998). Nevertheless, studies using isolated spinal cords from young

neurotrophin gene mutant mice have shown that the plasticity of ventral root

potentials, which reflects C-fiber drive flexion reflexes, is selectively attenuated in

the absence of BDNF, but not in the absence of NT-4 (Heppenstall and Lewin

2001). A systematic examination of pain-related behaviors in BDNF heterozygote

mutant mice also indicated that even reduced gene dosage of this important factor

can lead to deficits in acute noxious heat sensitivity and reduced pain behaviors,

e.g., in the formalin test (MacQueen et al. 2001). An elegant genetic study using

mice in which the BDNF gene was selectively deleted in nociceptive sensory

neurons showed that BDNF is required for normal heat hyperalgesia following

inflammation (Zhao et al. 2006). Although the authors did not definitively address

the question of whether NGF-induced mechanical hyperalgesia depends on sensory

neuron-derived BDNF, direct injection of NGF into skeletal muscle did not provoke

mechanical hyperalgesia in this model, which in common with other studies

suggests that elevated muscle NGF provokes central sensitization (Lewin

et al. 1992b; Zhao et al. 2006). In summary, it seems that at least a proportion of

the sustained heat hyperalgesia initiated by NGF may be sustained by central

sensitization driven by BDNF and subsequent phosphorylation of postsynaptic

NMDA receptors (Lewin et al. 1994; Zhao et al. 2006). However, it remains unclear

whether the long-lasting mechanical hyperalgesia initiated by increased NGF is

primarily dependent on peripheral or central mechanisms.
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The long-lasting changes initiated by NGF may also affect the electrical

properties of the primary afferent axons that transfer noxious information to the

central nervous system. Nociceptors possess an array of voltage-gated sodium

channels (NaVs) that are in some cases selectively expressed in these cells and

strongly implicated in painful conditions. Nociceptors possess TTX-resistant and

TTX-sensitive NaVs, which are carried primarily by NaV1.7, NaV1.8, and NaV1.9

channels (Momin and Wood 2008); the modulation of such channels has been

proposed to play a role in sensitization processes (England et al. 1996; Gold

et al. 1996). Action potential initiation, voltage threshold, and sustained firing are

dependent on the activation properties of NaV channels (Blair and Bean 2002). It is

therefore of interest that the availability of NGF can indeed modulate the action

potential shape of nociceptors, both in culture as well as in vivo. Nociceptors have

unusually broad action potentials with a prominent hump on their falling phase

(Lechner et al. 2009). It is possible to identify nociceptors in cultures of adult

sensory neurons that do not respond to NGF, as these can be live stained with

fluorescently conjugated IB4. Interestingly, the density of TTX-sensitive sodium

currents is actually less in NGF-sensitive nociceptors compared to IB4-positive

NGF-insensitive neurons, which also display broader action potentials (Stucky and

Lewin 1999). In vivo experiments have shown that chronically increasing the

availability of NGF is associated with a broadening of the action potentials of

identified Aδ nociceptors; conversely NGF deprivation is associated with a

narrowing of the action potential in the same neurons (Ritter and Mendell 1992;

Fang et al. 2005). The expression of TTX-resistant NaVs can be regulated by NGF

and so it is conceivable that changes in action potential properties partly result from

such regulation (Fjell et al. 1999). Genetic ablation of different NaV genes in the

sensory ganglia offers an opportunity to more directly assess their relative

contributions to NGF-dependent sensitization events. Using mutant NaV1.8 mice

it was shown that the induction of NGF-dependent heat hyperalgesia requires the

presence of NaV1.8 channels (Kerr et al. 2001). However, heat hyperalgesia

following carrageenan inflammation was only moderately delayed after genetic

ablation of NaV1.8 (Akopian et al. 1999) and was not affected in mice in which

NaV1.8 was inhibited in a cell autonomous manner (Stürzebecher et al. 2010). It is

known that TTX-resistant NaV currents can be measured very close to the spike

initiation zone of peripheral nociceptors (Brock et al. 1998). It is therefore possible

that a TRPV1-dependent sensitization process takes place in animals with ablated

or attenuated NaV1.8 channels, but that the increased activity of heat-sensitive

nociceptors is not relayed to the CNS. The NaV1.7 sodium channel plays an

important role in setting the action potential threshold as well as amplifying

subthreshold depolarization’s to bring these neurons to fire (Dib-Hajj et al. 2013).

Genetic ablation of this channel in mice and nonsense mutations in humans lead to a

profound loss of pain sensation (Nassar et al. 2004; Cox et al. 2006; Momin and

Wood 2008). NGF-dependent heat hyperalgesia is also essentially absent in mice

with a sensory neuron-specific deletion of the SCN9A gene encoding NaV1.7

channels (Nassar et al. 2004). Mechanical pain behavior is strongly attenuated in

mice lacking NaV1.7 in sensory neurons, which is consistent with a critical role for
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this channel in sustaining nociceptor AP propagation (Nassar et al. 2004; Minett

et al. 2012). There is, however, as yet only little direct evidence that the primary

consequence of NaV1.7 loss is an attenuation of the ability of somatic C-fibers to

conduct action potentials (Wilson et al. 2011). For example there are, as yet, no

reports in which this issue has been directly addressed using electrophysiological

methods in somatic C-fibers; however, shRNA-mediated knockdown of NaV1.7 in

the vagus nerve has demonstrated a loss of sustained firing (Muroi et al. 2011).

NaV1.7 is an a important channel in olfactory sensory neurons (OSNs) and here it

appears to be primarily required for the transfer of sensory information from OSN

to second-order neurons in the olfactory bulb (Weiss et al. 2011). This has led to

speculation that the primary mechanism leading to the spectacular loss of pain

phenotypes in humans lacking NaV1.7 channels is a block of information transfer

from primary afferent C-fibers at their central synapses in the dorsal horn (Black

et al. 2012; Minett et al. 2012). If the expression or subcellular distribution of

NaV1.7 channels is controlled by NGF availability (Gould et al. 2000; Diss

et al. 2008), then it is conceivable that anti-NGF drugs work in an NaV1.7-

dependent manner.

A key difference between NGF-induced heat and mechanical hyperalgesia is the

often radically different times courses that these phenomena display. Pure

NGF-dependent hyperalgesia has in the last few years been increasingly studied

in human subjects, as the injection of small amounts of NGF into the muscle or skin

offers an excellent model for both short- and long-term sensitization, whilst

bypassing inflammatory processes. During the first phase I safety trials of recombi-

nant human NGF (rhNGF), it was quickly realized that human subjects experienced

local soreness as well as a very long-lasting deep tissue hyperalgesia or myalgia

following rhNGF injection (Petty et al. 1994). In this first human study a dose-

dependent myalgia and hyperalgesia was observed to last for up to 7 weeks

following a single injection. As in animal models, the mechanisms by which

NGF produces mechanical hyperalgesia in humans will probably differ between

very early phases and later phases following a transient increase in NGF. One early

study noted signs of mechanical hyperalgesia within 6 h of an injection of rhNGF

into the skin (Dyck et al. 1997). However, later studies using the same approach in

humans showed that hyperalgesia, as measured using pressure pain threshold or

pinprick sensitivity, first appears after 7 days and peaks 21 days after an intradermal

rhNGF injection (Rukwied et al. 2010, 2013; Obreja et al. 2011a; Weinkauf

et al. 2012, 2013). This discrepancy could be explained by spillover of injected

NGF into underlying muscle tissue in humans, as well as in animal models. Thus,

pronounced hyperalgesia has been noted following injection of rhNGF into human

muscles or muscle fascia (Svensson et al. 2003, 2008; Andersen et al. 2008; Deising

et al. 2012), but this hypersensitivity differs in several important respects from the

NGF-induced mechanical hyperalgesia observed in the skin. First, mechanical

hyperalgesia is observed within a few hours of the injection and the pressure pain

hypersensitivity extends well beyond the area of the initial injection (Svensson

et al. 2003, 2008; Andersen et al. 2008; Deising et al. 2012). As a rule, the muscle

hypersensitivity following rhNGF injection is also observed to subside within a few
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days of the NGF injection, in marked contrast to the very long-lasting hyperalgesia

that follows a skin injection. In the skin model the available studies have noted that

the mechanical hyperalgesia remains strictly restricted to the area of the initial

rhNGF injection (Rukwied et al. 2010; Obreja et al. 2011a; Weinkauf et al. 2012), a

strong indicator that a peripheral sensitization process may be involved (Treede

et al. 1992; Lewin and Moshourab 2004).

In animal models a systemic injection of NGF provoked mechanical

hyperalgesia, which first appears between an hour and several hours after the

injection and persists for days (Lewin et al. 1993, 1994; Thompson et al. 1995).

One group has, however, claimed to observe mechanical hyperalgesia minutes after

the injection (Malik-Hall et al. 2005). As in humans, local skin injection of NGF in

rats also provokes a localized mechanical hyperalgesia that persists for days (Mills

et al. 2013). It appears that elevated NGF in skeletal muscle can sensitize muscle

afferents to mechanical stimuli, but the evidence from human and animal studies

suggests that secondary hyperalgesia is a prominent feature of this model, which

involves central sensitization (Lewin et al. 1992b; Hoheisel et al. 2007, 2013). The

observation that elevated NGF in the skin does not appear to provoke secondary

mechanical hyperalgesia suggests that nociceptor sensitization plays a prominent

role in this model. In general, it has been remarkably difficult to convincingly

demonstrate nociceptor sensitization to mechanical stimuli in a variety of inflam-

matory models as conflicting results have been published (Andrew and Greenspan

1999; Lewin and Moshourab 2004; Milenkovic et al. 2008; Lennertz et al. 2012),

Indeed, initial studies failed to detect prominent mechanical sensitization of

nociceptors after acute or long-term NGF exposure (Lewin et al. 1993, 1994;

Lewin and Mendell 1994; Obreja et al. 2011b).

The UV-B sunburn model is an interesting system to study peripheral

mechanisms of mechanical hyperalgesia, as there is convincing evidence that

central mechanisms do not play a prominent role in this model (Bishop

et al. 2009, 2010). Recordings from nociceptors innervating UV-B-sensitized skin

have demonstrated alterations in their firing rates to suprathreshold mechanical

stimulation (Bishop et al. 2010). However, although some fiber types like C-fiber

mechanonociceptors lacking noxious heat sensitivity (C-Ms) showed increased

suprathreshold responses to intense mechanical stimulation, other fiber types like

A-δ mechanonociceptors displayed reduced responses (Bishop et al. 2010). The

complex changes in coding properties of different nociceptor subclasses in the

UV-B model raise the possibility that mechanical hyperalgesia may be signaled

to the spinal circuits by altered patterns of afferent activation dispersed across two

or more nociceptor classes. Clear, direct evidence that cutaneous nociceptors are

sensitized to mechanical stimuli after exposure to elevated NGF in vivo has been

missing, until recently (Hirth et al. 2013). Many nociceptors are polymodal,

meaning that they are activated by more than one modality of noxious stimulus,

e.g., C-fibers activated by noxious mechanical and heat stimuli are termed

C-mechanoheat units (C-MH). Using this classification scheme it is possible to record

the following additional types of nociceptors in human skin using microneurography

techniques: C-mechanosensitive (C-M), C-mechanosensitive and cold (C-MC),

C-mechanosensitive heat and cold (C-MHC), C-mechano-insensitive and
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heat-insensitive (C-MiHi), C-mechanosensitive and heat (C-MH), C-fiber heat only

(C-H), and finally C-low-threshold mechanoreceptors (C-LT) (Lewin andMoshourab

2004). Broadly, the same types of nociceptors have been recorded in the skin of rats

and mice (Lewin and Mendell 1994; Koltzenburg et al. 1997), but there appear to be

consistent species differences, particularly in the incidence of each fiber type. In

particular, C-MiHi fibers, identified in subhuman primates as mechanically insensi-

tive afferents (MIAs), appear to be rare in rodents (Handwerker et al. 1991; Meyer

et al. 1991; Kress et al. 1992; Lewin andMendell 1994), but are relatively common in

human hairy skin (Schmidt et al. 1995; Weidner et al. 1999). Several studies have

strongly implicated C-MiHi fibers in peripheral sensitization processes; thus these

fibers can rapidly acquire mechanosensitivity when stimulated with strong algogens.

Recent studies by Schmelz and colleagues have shown that C-MiHi units are also

observed in the skin of the pig, which they have claimed may be a more suitable

animal model for human nociceptors (Obreja and Schmelz 2010). One feature of

C-MiHi fibers recorded in humans and in pigs is that they display a very strong and

prominent activity-dependent slowing of their conduction velocity (Weidner

et al. 1999; Obreja et al. 2011b; Hirth et al. 2013). Thus, the higher the firing rate

the longer it takes for the action potentials to reach the first spinal synapses.

Strikingly, cutaneous NGF elevation in pigs selectively reduced the magnitude of

activity-dependent slowing, as well as reducing the number of conduction failures at

a moderate stimulation frequency of 2 Hz (Obreja et al. 2011a, b). The authors have

named this phenomenon axonal sensitization as it is postulated that reduced slowing

and more reliable following of electrical stimuli could underpin mechanical

hyperalgesia. Moreover patients experienced more pain when cutaneous electrical

stimuli were employed at the height of the hyperalgesia induced by local intradermal

injection of rhNGF. The more reliable initiation and propagation of action potentials

in nociceptors under these circumstances may be physiologically relevant as electri-

cal stimulation could be seen as analogous to the driving depolarization produced by

opening of transduction channels. However, the same authors failed to find very

marked signs of nociceptor sensitization to natural mechanical stimuli in initial

studies (Obreja et al. 2011a, b). It is clear that the “axonal sensitization” that they

observed is probably caused by changes in the distribution or physiological properties

of ion channels that regulate conduction. Obvious candidates are NaV1.7 and NaV1.8,

which have indeed been implicated as targets of NGF signaling (Fjell et al. 1999;

Gould et al. 2000; Fang et al. 2005; Diss et al. 2008). Nevertheless, there are other

channels that regulate membrane excitability in nociceptors that could also be targets

of NGF in this model, for example, hyperpolarization-activated cyclic nucleotide-

gated cation channels like HCN2 (Emery et al. 2011; Mazo et al. 2013).

In a very recent study Hirth and colleagues actually provide good evidence for

local nociceptor sensitization that is robust only 21 days after the initial NGF

injection in a pig model (Hirth et al. 2013). Essentially, the authors show that at

this point a significant and large proportion of formerly C-MiHi fibers are now very

sensitive to mechanical stimuli; however, the suprathreshold coding properties of

these fibers were not examined. There are a couple of interesting features of these

findings, one is that the extremely long period of time it apparently takes before
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sensitization of nociceptors is overt following local NGF exposure. Second, why

does it takes so long for NGF-mediated signaling to induce an unmasking of

mechanosensitivity whereby acute exposure to strong algogens can unsilence

C-Mis with a very rapid time course (Schmidt et al. 1995). The human psycho-

physical data is clear about the fact that acute elevation of NGF in muscle, as

opposed to skin, can produce a rapid sensitization, but even here there is little data

to indicate why this may be the case. In one study in rats, NGF was injected directly

into the muscle and led to an apparent activation of C-fibers afferents in the muscle,

but did not lead to an acute sensitization of muscle C-fibers to mechanical stimuli

(Hoheisel et al. 2005). In common with the innervation of the viscera (McMahon

and Koltzenburg 1990), normal skeletal muscle is innervated by a large number of

C-fibers that are insensitive to mechanical stimuli (Jankowski et al. 2013). It is not

clear at the present time whether NGF can also lead to unmasking of mechanosen-

sitivity in deep tissue nociceptors such as those innervating skeletal muscle (Fig. 2).

Although sensitization of nociceptors to mechanical stimuli has been observed

and studied for many years, the molecular basis of the sensitization process is

poorly understood. It has long been thought that one mechanism underlying sensi-

tization may be the induction of excitability changes in nociceptor axons as has

been discussed above. However, it is difficult to argue that such a sensitization

process should be specific to mechanical stimuli as is often observed. The molecu-

lar mechanisms by which nociceptors actually detect mechanical stimuli are only

just beginning to be unraveled and it is this transduction process that is likely to be a

target for inflammatory factors like NGF. Mechanical stimuli are likely transduced

directly at the sensory endings of nociceptors and this process probably involves the

direct gating of a mechanosensitive ion channel by force or displacement

(Hu et al. 2006). There are enormous technical challenges to overcome before it

is possible to make direct recordings of mechanosensitive currents at the endings of

nociceptors in situ. However, acutely cultured sensory neurons possess

mechanosensitive ion channels that are directly gated by mechanical stimuli

(McCarter et al. 1999; Drew et al. 2004, 2007; Hu and Lewin 2006; Lechner

et al. 2009; Hu et al. 2010). It is now clear that there are at least two, and maybe

three, biophysically distinct mechanosensitive conductances present in sensory

neurons (Poole et al. 2011). Mechanosensitive currents in sensory neurons have

been classified according to their inactivation kinetics: currents that inactivate very

rapidly (τ1 < 5 ms) are termed rapidly adapting, RA-type; intermediately adapting

(τ1 < 50 ms); and IA-type and slowly adapting (no adaptation during a 230-ms

stimulus), SA-type. In the mouse the RA-type currents are sodium selective with a

linear current–voltage relation and reversal potential>30 mV (Hu and Lewin 2006;

Lechner et al. 2009). The RA-type current was not blocked by ruthinium red, but

displays much slowed kinetics in the presence of benzamil, a broad range ENaC/

Deg family channel blocker (Hu and Lewin 2006). The slowly adapting current is

found exclusively in nociceptors, is a nonselective conductance, and appears much

later in the development of sensory neurons (Hu and Lewin 2006; Lechner
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et al. 2009; Hu et al. 2010). There is now solid evidence that mechanosensitive

currents found in cultured sensory neurons are indeed the in vitro counterparts of

the transduction current in vivo. Thus manipulations that abolish or reduce the

activity of mechanosensitive currents in vitro, such as removal of the essential

mechanotransduction protein STOML3 or toxin-mediated block of these channels,

also block mechanosensitivity in vivo (Drew et al. 2007; Wetzel et al. 2007; Hu

et al. 2010). Agents that sensitize C-fibers in vivo, such as high concentrations of

ATP, also rapidly and selectively sensitize the RA- and IA-type currents found in

nociceptors (Lechner and Lewin 2009). Thus, within a few seconds of activation of

the Gq-coupled P2Y2 receptors by UTP or ATP, the amplitude of RA-type and

IA-type currents was elevated and the inactivation time slowed so that each

mechanical stimulus evoked a larger charge transfer through transduction channels.

This effect leads to a clear increase in mechanically evoked action potential firing

both in vitro and in vivo (Lechner and Lewin 2009). The principal sensitization

mechanism via P2Y2 receptor activation was to increase the charge transfer by

slowing RA- and IA-type current inactivation kinetics; interestingly very similar

effects of exposure to NGF have been reported for mechanosensitive currents in

sensory neurons (Di Castro et al. 2006; Lechner et al. 2009). However, in contrast to

the G-protein-mediated effects of UTP, the NGF effects required several hours to

appear to be mediated by protein kinase C and may be due to the insertion of new

mechanosensitive channels into the membrane (Di Castro et al. 2006). It is of

course difficult to study the detailed molecular mechanism of such effects when

the identities of the mechanosensitive channel(s) are unknown (Fig. 3).

Models of mechanotransduction have been very well developed in the

Caenorhabditis elegans nematode worm model as here most of the molecular
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Fig. 3 Sensitization of mechanotransduction currents. (a) NGF increases the amplitude and slows

the inactivation kinetics of RA- and IA-type currents, reproduced from (Lechner et al. 2009).

(b) illustrates possible signaling cascades that may underlie the sensitization of mechano-

transduction currents. NGF- and bradykinin-induced sensitization requires activation of PKA

and PKC (Di Castro et al. 2006). NGF-induced sensitization was further shown to require

transcription of new channels (Di Castro et al. 2006)

268 G.R. Lewin et al.



players have been identified using reverse genetic approaches (Lewin and

Moshourab 2004; Arnadóttir and Chalfie 2010; Poole et al. 2011; Geffeney and

Goodman 2012). Interestingly, in worm touch receptors the ion channel is com-

posed of the MEC-4 and MEC-10 proteins, which are worm orthologs of the acid

sensing ion channels (ASICs, all members of the ENaC/Deg family) and the ASIC

proteins have also been implicated as regulators of mechanosensitivity in sensory

neurons. Thus deletion of the ASIC2 and ASIC3 genes, but not the ASIC1 gene,

leads to clear deficits in the mechanosensitivity of cutaneous mechanoreceptors and

nociceptors (Price et al. 2000, 2001; Page et al. 2004; Moshourab et al. 2013).

However, it appears very unlikely that ASIC subunits are in fact necessary for the

formation of a mechanosensitive current in DRG neurons as these appear unaltered

following ASIC gene deletion (Drew et al. 2004; Lechner et al. 2009). However,

another mec gene identified in C. elegans is the stomatin domain protein MEC-2,

which has at least two functional orthologs in mammals, stomatin and STOML3

(stomatin-like protein 3) (Lapatsina et al. 2012a). Both MEC-2 and STOML3 are

required for the normal function of mechanotransduction in C. elegans and in the

mouse, respectively (O’Hagan et al. 2005; Wetzel et al. 2007; Moshourab

et al. 2013). Mutant mice lacking the Stoml3 gene have severe deficits in mechano-

receptor and nociceptor function in that a large proportion of these cutaneous

sensory neurons are mechanically insensitive. Indeed a much larger proportion of

thinly myelinated nociceptors innervating the hairy skin lack mechanosensitivity in

STOML3 mutant mice, a phenotype that is reminiscent of the mechanically insen-

sitive nociceptors identified in normal human and pig skin (Weidner et al. 1999;

Hirth et al. 2013). Stomatin-domain proteins like STOML3 and stomatin modulate

the proton gating of ASIC2 and ASIC3 proteins and some of the structural motifs of

the stomatin domains required for this modulation were recently identified (Price

et al. 2004; Brand et al. 2012; Lapatsina et al. 2012b). In this context, it is

interesting that deletion of stomatin or stoml3 genes, together with the Asic3 or

Asic2 genes, leads to a dramatic loss of mechanosensitivity in nociceptors, espe-

cially those with thinly myelinated Aδ axons (Moshourab et al. 2013). Although the

ASIC proteins probably do not form part of the mechanotransducer, their presence

or absence together with stomatin-domain proteins in sensory endings could be a

molecular substrate to regulate mechanosensitivity in so-called “silent”

nociceptors. The expression of ASIC proteins in sensory neurons is in fact con-

trolled in part by neurotrophin signaling (Mamet et al. 2002; McIlwrath et al. 2005).

It has been shown that pro-inflammatory mediators, including NGF, are involved in

upregulating ASIC mRNAs and that NGF moderately increases the density of ASIC

currents in cultured sensory neurons (Mamet et al. 2002). At the present time,

however, it is not clear whether the presence of any of the ASIC proteins in the

DRG is required for full-blown NGF-induced hyperalgesia. Acid is itself a potent

activator and modulator of muscle nociceptors (Mense 2009), and ASIC3 proteins

play a prominent role in muscle hyperalgesia (Sluka et al. 2003). In humans it was

recently shown that acid-induced pain is significantly enhanced, even up to 14 days

after a single injection of NGF into the muscle fascia of the back. The time course of

the enhanced acid pain roughly paralleled the course of the mechanical
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hyperalgesia (Deising et al. 2012). The parallel nature of mechanical and acid

hypersensitivity in the muscle fascia model could mean that ASIC3, together with

stomatin-domain proteins (Moshourab et al. 2013), is involved in regulating the

mechanosensitivity of muscle nociceptors, but as yet there is no direct evidence to

support this speculation. It is thought that ASIC3 and TRPV1 are the main ion

channels that drive nociceptor activation after exposure to physiological tissue

acidity observed after inflammation (Smith and Lewin 2009). Recently, we have

shown that acid-evoked depolarization via TRPV1 and ASICs is potently

counteracted by proton inhibition of NaVs, in particular NaV1.7 in nociceptors

(Smith et al. 2011). The inhibition of NaV1.7 in nociceptors from naked mole-rats

is so potent that it can abolish both the acid-induced activation of nociceptors and

the accompanying sensitization of nociceptors to mechanical stimuli (Smith

et al. 2011). Since NGF may also regulate NaV1.7, and its presence can put a

break on acid nociception, it is conceivable that a cell-specific regulation of this

channel might contribute physiological differences between the acid sensitivity of

cutaneous and deep tissue nociceptors.

Recently, two proteins were identified as bona fide stretch-activated ion

channels, Piezo1 and Piezo2, and are widely expressed in both neuronal and

non-neuronal tissues, as well as in sensory neurons (Coste et al. 2010, 2012).

RNAi-mediated knockdown of Piezo2 in sensory neurons has implicated this

stretch-activated channel as contributing to RA-type mechanosensitive currents

(Coste et al. 2010). However, Piezo2 currents are nonselective and when measured

in N2a neuroblastoma cells they are blocked by ruthenium red, both features not

matching those of native sensory neuron RA currents (Hu and Lewin 2006; Lechner

et al. 2009; Coste et al. 2010). Genetic evidence that Piezo1 or 2 are pore-forming

mechanotransduction channels in sensory neurons is, however, still lacking.

There is a highly controversial literature on the possible involvement of the

mustard oil-activated Trp channel TRPA1 in mechanotransduction (Patel

et al. 2010; Nilius et al. 2012). The TRPA1 channel undoubtedly plays an important

role governing the chemosensitivity of nociceptive afferents and is required for

normal inflammatory pain behaviors in mice (Bautista et al. 2006; Kwan et al. 2006;

Macpherson et al. 2007; McNamara et al. 2007). Recent studies have implicated

TRPA1 as a contributor to mechanosensitive conductances found in sensory

neurons (Vilceanu and Stucky 2010; Brierley et al. 2011); however, although

these studies show a diminution of mechanosensitive channel activity, it is very

difficult to differentiate between direct and indirect effects of TRPA1 gene deletion

or pharmacological blockade. This is especially the case for TRPA1 which is a

calcium-permeable ion channel, which itself can also be activated by the elevation

of intracellular calcium (Zurborg et al. 2007). Thus, since mechanosensitive

channels are calcium permeable it is possible that ion fluxes generated by trans-

ducing currents could be rapidly amplified by activating TRPA1 channels (Brierley

et al. 2011). Similarly to ASIC proteins there is some evidence that TRPA1

channels are regulated by NGF availability (Malin et al. 2011), and deletion of

the TRPA1 gene leads to complex changes in the mechanosensitivity of identified

C-fiber afferents innervating the hairy skin (Kwan et al. 2009). There is solid
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pharmacological evidence that TRPA1 blockade can prevent the moderate sensiti-

zation of C-fibers to suprathreshold mechanical stimulation following complete

Freund’s adjuvant inflammation (Lennertz et al. 2012). However, it is unclear if the

presence of TRPA1 channels is required for NGF-induced mechanical

hyperalgesia.

6 Cell Biology of Long-Lasting Sensitization Induced by NGF

The cell biology of DRG sensory neurons is unusual; these neurons accomplish two

fundamentally different tasks at their central and peripheral endings that are

separated by an enormous distance. Synaptic transmission and precise connectivity

are established at the spinal cord end and transduction is accomplished at

specialized endings in the periphery. In between, located about two-thirds of the

distance between these points is the cell body, which must provide specialized

proteins, membranes, and organelles that are sometimes differentially distributed

between the peripheral and central branch (Garcı́a-Añoveros et al. 2001). The

retrograde and local signal transduction events initiated by NGF have been studied

for decades and it is clear that NGF can exert some effects locally in the periphery

and many effects are transported and propagated to the cell body via the so-called

signaling endosome (Campenot and MacInnis 2004). However, in the periphery of

sensory axons there exists a robust and stable transduction apparatus equipped to

transduce mechanical signals in different ways in different sensory subtypes.

Indeed, there are now examples of ion channel proteins that are specifically targeted

to the peripheral endings of specific mechanoreceptor types, e.g., the potassium

channel KCNQ4 in rapidly adapting mechanoreceptors (Heidenreich et al. 2012).

How is this exquisite spatial and functional segregation achieved? The transport of

proteins involved in the transduction and transformation of sensory signals at the

peripheral endings of sensory neurons is very poorly understood, but represents a

clear potential target for NGF modulation of afferent mechanosensitivity. Since

STOML3 is the only protein known to participate directly in fast mechano-

transduction it was of interest to examine how this membrane protein is trafficked

within sensory neurons. We found that STOML3 is localized to a highly mobile and

molecularly distinct transport vesicle within cultured sensory neuron axons

(Lapatsina et al. 2012b). These vesicles are capable of co-transporting the related

stomatin-domain protein, stomatin, together with each of the ASIC family members

found in the DRG. Members of the Rab GTPase family of protein are involved in

controlling the organization and identity of different membranous compartments

within cells and neurons. For example, the Rab5 and Rab7 proteins are localized to

signaling endosomes that are thought to retrogradely transport neurotrophin signals

from the periphery to the cell body (Deinhardt et al. 2006). Interestingly, the

STOML3 containing vesicles are not part of the signaling endosome pool as they

are Rab5 negative, but are Rab11 positive. Rab11-positive vesicles have been

characterized as composing a slowly recycling endocytic compartment and may

be transported predominantly anterogradely in sensory neurons (Ascaño et al. 2009;
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Eva et al. 2010). Indeed gain- or loss-of-function Rab11 mutants radically change

vesicle behavior, but these compartments still contain STOML3 (Lapatsina

et al. 2012b). The STOML3 vesicle is obviously enriched in proteins that are

destined to function in transduction at the peripheral endings of sensory neurons

and so we have proposed to name these vesicles “transducosomes.” Indeed

uncoupling of the “transducosome” from microtubules leads to rapid incorporation

into the plasma membrane with an accompanying increase in acid-gated currents

(Lapatsina et al. 2012b). Ex vivo recordings from sensory afferents innervating the

skin have demonstrated that transduction of mechanical stimuli at the peripheral

endings of sensory neurons is very stable for many hours in the absence of a

connection to the cell body. Indeed early nerve injury experiments provided

evidence that anterogradely transported proteins are first incorporated into cut

endings to confer mechanosensitivity at a speed which is consistent with their

transport distally via fast axonal transport (Koschorke et al. 1994). The stability

of the transduction complexes at sensory endings is likely to be a function of three

main factors: the number of “transducosomes” that arrive per unit of time, the

propensity of such vesicles to fuse with the membrane and deliver functional

transduction proteins, and finally the stability of existing transduction complexes.

If this model is correct it is obvious that the ability of a sensory neuron to become

sensitized to mechanical stimuli or indeed to become newly mechanically sensitive

can be regulated at the levels of vesicle transport, fusion, or endocytosis of or

recovery of spent transduction complexes. It is clear from the time course of fast

mechanical hyperalgesia (hours) that local action of NGF might regulate the steps

outlined above, but the molecular details are still completely unclear. Long-lasting

mechanical hyperalgesia could be sustained by signals that are carried by signaling

endosomes to initiate a cell body response, which may or may not include new gene

expression, but would change the transduction process via the transport of novel,

perhaps modulatory, subunits to the mechanotransducer. We recently identified a

large extracellular tether protein that appears to be required for efficient and fast

transduction in mechanoreceptors and many nociceptors (Hu et al. 2010). It is

obvious that the transport of this protein could provide a way to “unsilence”

nociceptors, but this hypothesis can only be tested once the identity of this protein

is known.

7 The NGF Nexus of Pain

It is clear that NGF elevation that accompanies inflammation initiates a complex

series of events, some of which are local and fast and others are global and long

lasting. Anti-NGF therapy is remarkably effective in a broad variety of pain

conditions ranging from muscle pain to bone cancer pain (Mantyh et al. 2010,

2011; Jimenez-Andrade et al. 2011). This remarkable efficacy of anti-NGF proba-

bly arises through the broad range of molecular events that are set into motion by

elevated NGF levels in a variety of different tissues. In this review we have

concentrated on molecular targets in the sensory innervation of skin and skeletal
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muscle, but there is now abundant evidence that NGF may influence post-

inflammatory events in other deep tissues. It follows that the diverse molecular

changes initiated by NGF all serve to promote hyperalgesia, and we have discussed

many individual examples in this review. Although both heat and mechanical

hyperalgesia may be sustained, at least in part by synaptic changes in the spinal

cord, there is increasing evidence that peripheral mechanisms that are very long

lasting could also be specific targets of NGF signaling. For example, sensory

mechanotransduction itself may be controlled by NGF signaling in a cell-specific

manner. The molecular dissection of such effects will depend on identifying more

of the key molecular players in mechanotransduction. It should also be noted that

more knowledge on the downstream targets of NGF could eventually lead to the

development of next generation pharmaceuticals that target these downstream

players directly without the need to alter NGF availability.
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Neurotrophins and the Regulation
of Energy Balance and Body Weight

M. Rios

Abstract

Complex interactions between the brain and peripheral tissues mediate the

effective control of energy balance and body weight. Hypothalamic and hind-

brain neural circuits integrate peripheral signals informing the nutritional status

of the animal and in response regulate nutrient intake and energy utilization.

Obesity and its many medical complications emerge from the dysregulation of

energy homeostasis. Excessive weight gain might also arise from alterations in

reward systems of the brain that drive consumption of calorie dense, palatable

foods in the absence of an energy requirement. Several neurotrophins, most

notably brain-derived neurotrophic factor, have been implicated in the molecular

and cellular processes underlying body weight regulation. Here, we review

investigations interrogating their roles in energy balance and reward centers of

the brain impacting feeding behavior and energy expenditure.

Keywords

Neurotrophins • Hypothalamus • Hindbrain • Energy balance • Mesolimbic •

Dopamine • Food intake • Energy expenditure • Obesity • BDNF • NT-4 •
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1 Introduction

Energy homeostasis, the finely regulated equilibrium between caloric intake and energy

expenditure, is fundamental for animal survival because it safeguards essential energy

stores. It is regulated by short-term mechanisms that control food intake based on

the immediate nutritional requirements of the animal and long-term mechanisms

that protect energy reserves and body weight (Dietrich and Horvath 2009).
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Neuropeptidergic circuits in the hypothalamus and hindbrain contribute to the homeo-

static control of food intake and energy utilization by integrating hunger, satiety, and

body adiposity cues from the periphery. Eating can also be driven by the motivational

and pleasurable aspects of palatable foods in the absence of a homeostatic requirement

(Berridge 2009). Brain systems involved in motivated and reward-seeking behaviors,

including the mesolimbic dopamine pathway, are involved in this form of hedonic

feeding. Perturbations in homeostatic and reward neural circuits in the brain have been

linked to the etiology of excessive feeding and obesity.

Several neurotrophins have been implicated in the central mechanisms

influencing food intake and body weight and in disease processes leading to obesity.

Among those, brain-derived neurotrophic factor (BDNF) has been studied far more

extensively in this context and thus will be discussed in more detail. Roles for nerve

growth factor (NGF), neurotrophin-3 (NT-3) and 4 (NT-4), ciliary neurotrophic

factor (CNTF), and glial-derived neurotrophic factor (GDNF) in feeding behavior

have also been suggested and will be reviewed here. First, we describe the neural

circuits involved in the regulation of feeding behavior and then discuss findings

informing the role of neurotrophins in brain systems impacting food consumption

and body weight.

2 Brain Circuits Regulating Feeding Behavior

The hypothalamus plays a critical part in the regulation of homeostatic feeding. It

integrates acute satiety and hunger cues and long-term adiposity signals from the

periphery and responds by regulating the expression and secretion of selective

intra- and extra-hypothalamic peptides and neurotransmitters that influence feeding

responses and energy expenditure (Dietrich and Horvath 2009; Simpson

et al. 2009). For example, postpandrial satiety is mediated by elevated levels of

nutrients and peripheral appetite-suppressing hormones released into the circula-

tion, which directly affect hypothalamic neurons to increase the anorexigenic tone.

Adipocyte-derived leptin, pancreatic insulin, and the gut hormones, glucagon-like

peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY), are some of the peripheral

factors that are present in excess in the fed state and act in the hypothalamus to

reduce food intake and increase energy expenditure. Under conditions of negative

energy balance, levels of satiety factors are reduced and gastric secretion of the

orexigenic ghrelin is increased, leading to the activation of hypothalamic signaling

cascades that drive eating and reduce energy expenditure (Dietrich and Horvath

2009; Simpson et al. 2009). Several interconnected hypothalamic regions are

involved in the regulation of energy homeostasis, including the arcuate nucleus

(Arc), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH),

dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH).

The Arc has close access to nutritional signals released into the circulation due to

its proximity to fenestrated capillaries at the base of the hypothalamus (Cone

et al. 2001). It contains two functionally distinct populations of neurons that express
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the potent orexigenic neuropeptide Y (NPY) or proopiomelanocortin (POMC), a

precursor for α-melanocyte stimulating hormone (α-MSH), the anorexigenic ligand

of melanocortin receptor 4 (MC4-R) (Dietrich and Horvath 2009; Simpson

et al. 2009). NPY cells co-express agouti-related protein (AgRP), an endogenous

antagonist of MC4-R. POMC-containing neurons also synthesize the satiety factor

cocaine and amphetamine-regulated transcript (CART). Levels of activity of NPY

and POMC cells are associated with the metabolic state of the animal. Low energy

levels lead to activation of NPY neurons and elevated NPY and AgRP expression

and secretion, ultimately resulting in increased feeding and reduced energy expen-

diture. Conversely, positive energy balance is ensued by increased POMC neuron

activity and α-MSH secretion, facilitating satiety and increased energy expenditure.

NPY and POMC neurons are key cellular targets of leptin and other peripheral

metabolic signals and project to intra- and extra-hypothalamic regions (Schwartz

et al. 1996, 1997).

The PVN is a primary target of NPY and POMC neurons. This hypothalamic

region contains cells expressing thyrotropin releasing hormone (TRH), corticotro-

pin releasing hormone (CRH), urocortin, and oxytocin, all of which are involved in

the regulation of energy homeostasis (Antoni et al. 1983; Kublaoui et al. 2008; Toni

and Lechan 1993). The VMH and LH are also targets of NPY+ and POMC+ fibers

and play paramount roles in appetite regulation. Whereas lesions to the VMH result

in hyperphagia and obesity, destruction of the LH elicits hypophagia and weight

loss (Anand and Brobeck 1951; Penicaud et al. 1983). VMH neurons project within

the hypothalamus and to other brain regions including the bed nucleus of the stria

terminalis and the amygdala (Canteras et al. 1994). Cells in the LH project to the

DMH, VMH, and Arc and outside the hypothalamus including the ventral tegmen-

tal area (Leinninger et al. 2009; Saper et al. 1979). Similar to the Arc, cells in the

VMH and LH contain receptors for nutritional signals, including leptin and ghrelin

(Hakansson et al. 1998; Harrold et al. 2008). The LH also contains cells that

synthesize the orexigenic factors melanin concentrating hormone (MCH) and

hypocretin (Date et al. 1999; Zamir et al. 1986). Finally, the DMH has connections

with the Arc, PVN, LHA, and VMH and contains both orexigenic and anorexigenic

systems (Luiten and Room 1980).

The dorsal vagal complex (DVC) also participates in the homeostatic control

of feeding. It is located in the caudal brain stem and comprises the area postrema,

the nucleus of the solitary tract (NTS), and the dorsal motor nucleus of the vagus.

The DVC interprets mechanosensory, chemosensory, and hormonal signals

communicated by vagal nerve afferents from the gut, which primarily innervate

the NTS to inform gastric distention and gut hormone and nutrient levels (Schwartz

2000). The DVC represents an alternate route for communicating energy status

signals to the hypothalamus, with which it has reciprocal connections. It contains

glucose-sensing mechanisms and receptors for leptin, insulin, α-MSH, and the gut

peptide cholecystokinin (CCK), which mediates the acute inhibition of feeding

(Williams et al. 2009). Melanocortin and leptin signaling in the DVC contribute to

the control of food intake (Grill et al. 2002; Williams et al. 2000; Zheng et al. 2005).
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In the absence of a homeostatic requirement, hedonic feeding can be driven by

the highly rewarding qualities of palatable foods rich in sugar or fat. Hedonic

feeding is controlled at least in part by the mesolimbic dopamine pathway, a

regulator of motivated and reward-seeking behaviors. The mesolimbic system is

composed of dopamine (DA) neurons in the ventral tegmental area (VTA) and their

projections to the nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and

amygdala. This neural circuitry is a critical anatomical substrate for the behavioral

effects of drugs of abuse and natural rewards such as food (Bassareo et al. 2002;

Hernandez and Hoebel 1988; Rada et al. 2005). Indeed, ingestion of palatable food

or sucrose increases DA transmission in the NAc and PFC (Bassareo and Di Chiara

1997, 1999; Ghiglieri et al. 1997). Moreover, novel palatable food consumption

increases phosphorylation of dopamine and cAMP-regulated phosphoprotein

(DARPP-32), an effect prevented by administration of D1 receptor antagonists

(Rauggi et al. 2005).

Homeostatic and reward circuits in the brain can act in concert to impact

appetitive behaviors. Indeed, caloric restriction augments the incentive salience

and rewarding properties of food (Berthoud 2004). Their interactions are facilitated

by reciprocal neural connections. Whereas GABAergic neurons in the NAc project

to the LH and regulate hypocretin+ and MCH+ cells there, MCH neurons innervate

cells in the NAc and regulate dopamine signaling (Baldo et al. 2004; Bittencourt

et al. 1992; Pissios et al. 2008; Sears et al. 2010; Zheng et al. 2003). Additionally,

neurons that contain leptin receptors in the LH directly innervate the VTA and

influence activity of the mesolimbic dopamine pathway (Leinninger et al. 2009).

Thus, reward and homeostatic systems in the brain are distinct yet interrelated

pathways that interact to orchestrate feeding responses. Below we discuss how

several neurotrophins act in these circuits to influence appetitive responses and

energy expenditure.

3 BDNF

BDNF is a highly conserved member of the family of neurotrophins expressed in

the developing and mature central nervous system. This multifunctional growth

factor signals through the tropomyosin-related kinase B (TrkB) receptor and

activates phospholipase C gamma (PLC-γ), mitogen-activated protein kinase

(MAPK), and phosphatidylinositol-3 kinase (PI3-K) intracellular signaling

cascades (Patapoutian and Reichardt 2001; Reichardt 2006). It plays essential

roles in the differentiation, survival, and synaptic plasticity of several classes of

neurons. A role of BDNF in the control of feeding behavior was first suggested by

early rodent studies showing that chronic intracerebroventricular (ICV) delivery of

BDNF induced reductions in body weight gain (Lapchak and Hefti 1992; Martin-

Iverson et al. 1994; Pelleymounter et al. 1995). Subsequent investigations showed

that BDNF+/� mutant mice are hyperphagic and obese, indicating the necessity of

BDNF in appetite control (Kernie et al. 2000; Lyons et al. 1999). Similarly, mice

that contain 25 % of normal TrkB levels due to carrying hypomorphic TrkB alleles
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display excessive feeding (Xu et al. 2003). A closer examination of the meal

microstructure of BDNF+/� mice revealed that their elevated body weights were

related to increased meal number but normal meal size under standard chow

conditions and increased meal size when administered a high fat diet (Fox and

Byerly 2004). In addition to increases in body weight, BDNF mutant mice develop

other aspects of the metabolic syndrome including leptin and insulin resistance,

dyslipidemia, and hyperglycemia (Kernie et al. 2000; Rios et al. 2001). However,

these metabolic parameters can be normalized when mutants attain normal body

weights through food restriction, indicating that central BDNF is not required for

glucose or lipid metabolism. Because selective depletion of BDNF in the mouse

brain elicits hyperphagia and dramatic obesity (Rios et al. 2001), it is clear that this

neurotrophin regulates appetitive behaviors by acting on central feeding circuits.

Findings from human studies also support a chief role of the BDNF/TrkB

pathway in energy balance regulation. For example, a de novo missense mutation,

Y722C, in the TrkB gene that impairs BDNF-induced MAP kinase activation was

identified in an individual exhibiting severe hyperphagia and obesity (Yeo

et al. 2004). Elevated levels of food intake and body weight were also reported in

an 8-year-old female with monoallelic BDNF expression due to a de novo chromo-

somal inversion (Gray et al. 2006). Additional evidence comes from investigations

of individuals afflicted with Wilms’ tumor, aniridia, genitourinary anomalies, and

mental retardation (WAGR) syndrome due to large truncations within chromosome

11, which contains the human Bdnf gene. They showed that 100 % of WAGR

patients rendered BDNF haploinsufficient by truncations encompassing the Bdnf
gene were obese by 10 years of age (Han et al. 2008). In contrast, only 20 % of

WAGR patients with intact Bdnf alleles developed obesity. Finally, several studies

have linked the functional BdnfVal66Met polymorphism to higher body mass index

in humans (Beckers et al. 2008; Skledar et al. 2012; Speliotes et al. 2010;

Thorleifsson et al. 2009). This highly prevalent mutation (Shimizu et al. 2004)

impedes activity-dependent secretion and signaling of BDNF (Chen et al. 2006).

These investigations include a recent association meta-analysis of nearly 250,000

individuals that identified Bdnf as a genetic locus linked to obesity susceptibility in

humans (Speliotes et al. 2010).

Recent investigations have shed light onto the neural substrates mediating the

appetite-suppressing effects of BDNF. In the hypothalamus, the VMH appears to be

a critical target. Hypothalamic expression of BDNF is highest in this region, spans

the dorsomedial, medial, and ventrolateral aspects of this nucleus, and is robustly

regulated by energy status (Unger et al. 2007; Xu et al. 2003). Indeed, prolonged

fasting results in a vast depletion of BDNF transcripts in this region. Moreover,

glucose, a caloric signal, acts centrally to induce rapid elevations in BDNF and

TrkB mRNA content in the VMH. Metabolic signals appear to preferentially

influence BDNF expression in the VMH directed by promoter I and promoters II

and IV to a lesser degree (Tran et al. 2006; Unger et al. 2007). Expression of BDNF

mRNA in the VMH is also positively regulated by leptin and steroidogenic factor

1 (SF-1) (Komori et al. 2006; Tran et al. 2006). Leptin, the principal adipostatic

hormone, reduces food intake and augments energy expenditure through activation
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of the Janus kinase 2/STAT3 pathway in specific regions of the brain. Intravenous

administration of leptin induces expression of BDNF mRNA primarily in the

dorsomedial division of the VMH (Komori et al. 2006). SF-1 is a member of the

NR5A subfamily of nuclear receptors and a transcription factor essential for VMH

development and organization. It induces BDNF expression through interactions

with Bdnf promoters I and IV (Tran et al. 2006), and its pattern of expression

significantly overlaps that of BDNF in the VMH, particularly in the anterior portion

of this nucleus (Tran et al. 2003). Neuronal precursors in the VMH of SF-1 null

mice fail to terminally differentiate, resulting in aberrant afferent connections and

cytoarchitecture (Tran et al. 2003, 2006). Because SF-1 mutants have deficient

expression of BDNF in the VMH and in light of the well-demonstrated roles of

BDNF in neuronal survival, differentiation, and synaptic connectivity, it is plausi-

ble that this neurotrophin mediates some of the effects of SF-1 in the developing

VMH. Consistent with a supportive developmental role, BDNF transcripts are

highly expressed in the rat fetal VMH starting at embryonic day 17 with expression

peaking at postnatal day 4 (Sugiyama et al. 2003; Tran et al. 2003). BDNF mRNA

content in the VMH then gradually decreases during the first postnatal week until

reaching adult expression levels (Sugiyama et al. 2003).

It is clear that independently from effects that it might exert on developing

feeding circuits, BDNF also contributes prominently to the control of appetite in the

mature animal. In agreement, central and systemic administration of BDNF

mitigated body weight gain and improved glucose metabolism in various models

of obesity including leptin (ob/ob) and leptin receptor (db/db)-deficient mice

(Nakagawa et al. 2000; Tonra et al. 1999). Furthermore, BDNF infusion into the

VMH of adult wild-type rats resulted in decreased food intake and body weight

(Wang et al. 2007c). Finally, mice that had intact levels of BDNF throughout

development but deletion of Bdnf in the VMH in adulthood exhibited increases in

standard chow intake and body weight (Unger et al. 2007). These findings indicate

that BDNF acts as a required satiety factor in the adult brain and that the VMH is an

essential source of this neurotrophin for food intake control.

The melanocortin system is a predominant mediator of leptin signaling and plays

an instrumental part in the regulation of energy balance through actions in the

hypothalamus. In the VMH, the anorexigenic effects of this signaling pathway are

partly mediated by BDNF. Indeed, α-MSH-containing fibers originating in the Arc

terminate in the VMH, where they positively regulate BDNF expression via

activation of MC4-R (Xu et al. 2003). Accordingly, mouse models of obesity due

to impaired MC4-R signaling, including Ay lethal yellow and MC4-R null mice,

exhibit reduced BDNF mRNA expression in the VMH (Xu et al. 2003). Moreover,

application of the selective MC4-R agonist, MK1, to isolated rat hypothalamus

induced BDNF secretion, and this effect was blocked by a MC4-R antagonist

(Nicholson et al. 2007). In vivo studies indicate the functional relevance of

BDNF in the anorexigenic effects of melanocortin signaling. For example, ICV

infusion of BDNF mitigated the hyperphagia, and excessive body weight gain in

MC4-R-deficient mice administered a high fat diet (Xu et al. 2003). Additionally,

ICV administration of an anti-BDNF antibody counteracted the satiety effect of
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peripheral administration of MK1 (Nicholson et al. 2007). The facilitative effect of

BDNF on melanocortin signaling has clinical relevance as MC4-R mutations are a

frequent cause of morbid obesity in humans, accounting for up to 5 % of cases

(Farooqi et al. 2000; Vaisse et al. 2000).

The PVN contains BDNF and TrkB (Xu et al. 2003; Yan et al. 1997) and is also a

substrate for the anorexigenic actions of this neurotrophin signaling pathway.

Evidentiary is the finding that selective delivery of BDNF to the PVN in rats

reduced food intake by 32 % compared to vehicle administration (Wang

et al. 2010b). The effects of BDNF in this region appear to involve the CRH

pathway, which is known to suppress feeding and increase sympathetic activity,

which positively impacts energy expenditure. Supporting evidence includes the

findings that TrkB receptors co-localize with CRH and that ICV infusion of BDNF

results in elevated levels of CRH in the PVN (Toriya et al. 2010). Notably,

coadministration of the CRH receptor 1 and 2 antagonist, α-helical-CRH9-41,

abrogated the satiety effects of BDNF. Moreover, reductions in subcutaneous,

perirenal, mesenteric, and epididymal fat pad weights and serum triglyceride levels

induced by BDNF treatment were also abolished by co-delivery of α-helical-CRH9-41.

BDNF also increases expression of PVN urocortin, a member of the CRH family

that suppresses appetite and reduces body weight more potently than CRH (Toriya

et al. 2010). This observation suggests that BDNF might recruit the urocortin

pathway to inhibit feeding. Consistent with this idea, BDNF-induced anorexia

was significantly attenuated by blockade of CRH R2, which has high affinity for

urocortin but low affinity for CRH (Toriya et al. 2010). BDNF also appears to

influence PVN oxytocin-containing neurons that also play a part in energy balance

regulation (Kublaoui et al. 2008). In vitro studies involving isolated hypothalamic

oxytocinergic neurons demonstrated that BDNF promotes their survival and

triggers oxytocin release (Kusano et al. 1999; Moreno et al. 2011). BDNF

synthesized in the PVN could act in TrkB receptors expressed locally to regulate

CRH, urocortin, and oxytocin signaling pathways. Alternatively, BDNF

synthesized in the VMH could act as an anterograde signal in the PVN, which

contains VMH fibers.

Cells in the Arc do not synthesize BDNF, but TrkB receptors and BDNF-

containing nerve fibers are present in this region (Xu et al. 2003; Yan et al. 1997),

suggestive of neurotrophin signaling involvement in local processes underlying

appetitive responses. The role of BDNF there, however, remains elusive. Immuno-

histochemical studies of NPY and POMC-containing neurons in the Arc of

mice centrally depleted of BDNF (BDNF2L/2LCk-cre) showed no gross differences

compared to wild-type animals (Rios et al. 2001). However, studies by Wang

et al. suggest that BDNFmight regulate NPY neurons in the Arc. These investigators

showed that BDNF infusion into the PVN prevents elevations in NPY expression in

the Arc induced by fasting and notably reduces NPY-induced feeding (Wang

et al. 2007b). Of note, the density of excitatory and inhibitory inputs onto NPY

and POMC neurons in the Arc is dynamically regulated in opposite ways by the

metabolic state of the animal (Pinto et al. 2004; Sternson et al. 2005). For example,

the density and strength of excitatory inputs from the VMH to appetite-inhibiting

Neurotrophins and the Regulation of Energy Balance and Body Weight 289



POMC neurons in the Arc is reduced in the fasted state and restored following

refeeding (Sternson et al. 2005). BDNF is a known facilitator of structural and

synaptic plasticity in the cerebral cortex, hippocampus, and cerebellum (Carter

et al. 2002; Korte et al. 1995; McAllister et al. 1997). Therefore, it is plausible that

it might also participate in synaptic remodeling processes in the Arc that promote

satiety. This possibility warrants further examination.

Studies assessing the role of BDNF in the LH and DMH, both of which express

BDNF and TrkB, are rather limited but seem to suggest that these are not critical

substrates for the satiety effects of this neurotrophin. Immunohistochemical studies

in our laboratory indicate that the MCH and hypocretin neuronal populations in the

LH of BDNF2L/2LCk-cre mutant mice are not significantly altered (Rios et al. 2001),

suggesting that BDNF is not required for their survival or maturation. Furthermore,

Wang et al. (2007b) reported that a single injection of BDNF to the LH did not

affect food intake or body weight. Because the effect of chronic BDNF delivery has

not been investigated, the possibility remains that BDNF might influence feeding

through long-term mechanisms acting in the LH. In the DMH, expression of leptin

receptors and CARTmRNA appears intact in BDNF haploinsufficient mice (Kernie

et al. 2000). Furthermore, in contrast to the VMH and PVN, expression of BDNF

mRNA in the DMH is not influenced by caloric signals (Unger et al. 2007).

In addition to controlling caloric intake, the hypothalamus regulates efferent

autonomic pathways that impact metabolism and energy expenditure. For example,

cells in the VMH and PVN project to sympathetic and parasympathetic areas of the

medulla and spinal cord that regulate autonomic nervous system function. The role

of hypothalamic BDNF in the regulation of components of energy expenditure,

including basal metabolic rate and thermogenesis, remains somewhat unclear.

Because pair feeding is sufficient to normalize body weights of BDNF+/� mutants

and mice with depletion of BDNF in the VMH (Coppola and Tessarollo 2004;

Unger et al. 2007), alterations in energy expenditure do not appear to contribute to

the obesity of BDNF mutants. However, consistent with a role in energy expendi-

ture, selective BDNF administration into the VMH or PVN resulted in elevated

basal metabolic rate (Wang et al. 2007a, 2010a). Other studies implicate BDNF in

central processes enhancing thermogenesis. Normally, uncoupling protein

1 (UCP1) in brown adipose tissue uncouples fatty acid oxidation from ATP

production, dissipating energy in the form of heat (Enerback et al. 1997). It was

reported that ICV BDNF administration in obese db/dbmice enhanced norepineph-

rine turnover and UCP1 expression in brown adipose tissue, suggesting positive

regulation of thermogenesis and energy expenditure (Nonomura et al. 2001;

Tsuchida et al. 2001). Furthermore, Cao et al. (2011) showed that overexpression

of BDNF in the rodent hypothalamus resulted in the activation of brown fat

transcriptional programs in white fat cells, inducing a phenotypic white to brown

cellular switch that promoted energy expenditure and resistance to diet-induced

obesity.

While considering the conflicting evidence pertaining to the role of BDNF in

energy expenditure, it is important to note that the reported elevated level of locomotor

activity in BDNF+/� and BDNF2L/2LCk-cre mutant mice (Kernie et al. 2000;
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Rios et al. 2001) is a confounding factor. Deficits in the basal metabolic rate of these

mutants might be masked by increases in locomotor activity that also contribute to

energy expenditure. However, this does not appear to be the case for mice with

selective BDNF depletion in the VMH as they show normal levels of activity and

normalized body weights when pair fed with control mice (Unger et al. 2007). After

considering the cumulative evidence, it is reasonable to conclude that in the hypo-

thalamus, BDNF plays a critical part in the control of homeostatic food intake and an

important but likely nonessential role in the regulation of energy expenditure.

The satiety effects of BDNF are not restricted to the hypothalamus and also

involve the DVC. Whereas BDNF-containing cell bodies and fibers are present in

the NTS, TrkB+ cells are located in the NTS and area postrema (Conner et al. 1997;

Yan et al. 1997). Consistent with a role in local processes impacting appetite

control, BDNF protein levels in the DVC are reduced by fasting and induced by

refeeding (Bariohay et al. 2005). Importantly, infusion of this neurotrophin into the

DVC of rats significantly decreased daily food intake and cumulative body weight

gain (Bariohay et al. 2005). As it is the case in the ventromedial hypothalamus,

BDNF appears to be a downstream effector of melanocortin signaling in the DVC.

Accordingly, MC4-R stimulation induces BDNF expression in this region, and

pharmacological blockade of TrkB abolishes the anorexigenic effect of MC4R

agonists in the DVC (Bariohay et al. 2005, 2009). Notably, the hyperphagia induced

by MC4-R blockade via delivery of antagonists to the fourth ventricle can be

prevented by coadministration of BDNF. It is also important to note that CCK

and leptin, which promote satiety through interactions with the melanocortin

system in the DVC (Fan et al. 2004; Matson et al. 1997), also induce BDNF

expression in this region (Bariohay et al. 2009), suggesting that BDNF might

mediate their effects.

Obesity is associated with the development of insulin resistance and type

2 diabetes. Lipid accumulation in nonadipose tissues such as liver, muscle, and

pancreas is believed to greatly contribute to this outcome. BDNF has been shown to

alleviate obesity-related metabolic disease independently of mechanisms that medi-

ate appetite suppression. For example, chronic subcutaneous administration of

BDNF in obese db/dbmice triggered significant reductions in serum concentrations

of non-esterified free fatty acid, total cholesterol, and phospholipids compared to

pair-fed, vehicle-treated db/db mice (Tsuchida et al. 2002). Furthermore, liver

triglyceride content, an indicator of hepatic fat accumulation, and hepatomegaly

were also significantly reduced in BDNF-treated db/db mice. In addition to its

beneficial effects on lipid metabolism, BDNF also improves glucose homeostasis in

animal models of obesity including ob/ob and db/db mice, and this effect persists

for weeks after BDNF treatment cessation (Tonra et al. 1999). The mechanisms

underlying the facilitative effects of BDNF on glucose and lipid homeostasis

remain to be fully elucidated. However, central neural circuits appear to be

involved because infusion of BDNF directly into the brain is also efficacious in

improving blood glucose control (Nonomura et al. 2001). The effects of BDNF are

also mediated by increases in insulin sensitivity in the liver (Kuroda et al. 2003),
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a tissue highly susceptible to chronic increases in dietary fat intake, which elicits

hepatic steatosis, reduced hepatic insulin sensitivity, and a concomitant failure to

suppress liver glucose output. The pattern of BDNF and TrkB expression suggests

neurotrophic support of the autonomic innervation of the liver. In adult mice,

whereas BDNF mRNA is expressed in mouse hepatocytes (Lommatzsch

et al. 1999), TrkB is expressed by periductal nerve fibers innervating the liver

(Garcia-Suarez et al. 2006).

As noted earlier, food intake is a complex behavior governed not only by

homeostatic systems but also by reward-related processes that promote intake of

palatable food with high caloric content. BDNF and TrkB participate in the

regulation of hedonic feeding through the positive regulation of the mesolimbic

dopamine pathway. BDNF is expressed in dopamine neurons in the VTA and in

pyramidal neurons in the mPFC from which it is anterogradely transported to the

NAc, a region with minimal BDNF expression (Numan et al. 1998; Numan and

Seroogy 1999; Okazawa et al. 1992). TrkB is expressed in VTA dopaminergic

neurons, mPFC, and GABAergic medium spiny-projection neurons in the NAc

(Freeman et al. 2003; Numan et al. 1998; Numan and Seroogy 1999; Yan

et al. 1997). Similar to their behavior under standard chow conditions, BDNF2L/

2LCk-cre mutant mice exhibit a twofold increase in food intake when they have free

access to a palatable high fat diet (Cordeira et al. 2010). Interestingly, their

hyperphagia is further exacerbated by intermittent access to high fat food.

Alterations in the mesolimbic reward pathway accompany the abnormal eating

behavior of these BDNF mutant mice. For example, amperometric recordings in

acute brain slices revealed deficient evoked DA release in the NAc shell but not in

the NAc core in BDNF mutants. This deficit persisted in the presence of

nomifensine, a dopamine transporter inhibitor, indicating that this alteration was

due to reduced dopamine secretion rather than increased reuptake of dopamine.

Diminished mesolimbic dopamine transmission and signaling underlies the

overeating of high fat food triggered by depleted BDNF signal in the brain. In

support of this assertion, stimulation of dopamine 1 (D1) receptors with a selective

agonist in BDNF2L/2LCk-cre mutants completely normalized their high fat food

intake (Cordeira et al. 2010). Notably, mice with selective deletion of Bdnf in the

adult VTA became hyperphagic and obese when they had ad libitum access to

palatable high fat food (Cordeira et al. 2010). In contrast, they showed no signifi-

cant changes in food intake when fed a standard chow diet compared to controls.

The diet-specific effects of deleting Bdnf in the VTA suggest that BDNF signaling

in the mesolimbic system is essential for the regulation of hedonic but not of

homeostatic feeding.

Hypoactivity of the mesolimbic dopamine system was associated previously

with excessive food reward seeking. For example, hyperphagic and obese ob/ob
mice also exhibit decreased extracellular levels of dopamine in the NAc (Fulton

et al. 2006). Moreover, significant reductions in their food intake and body weight

were observed following administration of D1 receptor agonists (Bina and Cincotta

2000). Additional evidence comes from a human study showing that obese subjects

exhibited decreased striatal activity compared to lean subjects in response to
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consumption of palatable food as measured by functional MRI (Stice et al. 2008).

Based on these and other findings, it has been proposed that decreased dopamine

tone might produce a reward deficiency syndrome that, behaviorally, manifests as

compensatory overeating to boost dopamine transmission (Blum et al. 2000). In

agreement, chronic high fat food consumption was sufficient to normalize

decreased dopamine signaling in the NAc of Δ-FosB overexpressing mice, which

also exhibited increased instrumental responding to food reward (Teegarden

et al. 2008).

The disease mechanisms leading to reduced mesolimbic dopamine secretion in

BDNF mutants remain unclear. BDNF is not essential for the survival of VTA

dopamine neurons (Baquet et al. 2005) or for dopamine synthesis in these cells

(Cordeira et al. 2010). Because expression of TrkB mRNA in the VTA of sated

wild-type mice is increased by intake of palatable high fat food (Cordeira

et al. 2010), it is plausible that BDNF might act to regulate the excitability of

VTA dopamine neurons during food reward-related processes. In agreement with

this idea, Pu et al. (2006) showed that BDNF is essential for the potentiation of

excitatory synapses onto VTA dopamine neurons following cocaine withdrawal in

rats. Moreover, chronic food restriction in rats results in both decreased TrkB

protein expression in the VTA and reduced glutamatergic transmission in VTA

dopamine neurons (Pan et al. 2011). It is worth noting that food restriction

decreases mesolimbic dopamine secretion in rodents (Pothos et al. 1995a, b) and

is considered a high risk factor for eating disorders in humans (Herman and Polivy

1990; Ledoux et al. 1993). Thus, the findings described above raise the interesting

possibility that perturbed BDNF signaling underlies decreases in dopamine tone

induced by food restriction that might lead to maladaptive behaviors, including

disordered eating. Interestingly, a recent study involving adolescent girls showed

that carriers of the BdnfVal66Met allele that engaged in food restriction were more

likely to exhibit binge eating than wild-type carriers (Akkermann et al. 2011).

These data suggest an interaction of food restriction and diminished BDNF signal-

ing in the emergence of eating disorders. A role of BDNF in binge eating is also

suggested by a reported significant association of the BdnfVal66Met allele with

increased frequency and severity of bingeing in a population of Caucasian females

diagnosed with bulimia nervosa or binge eating disorder (Monteleone et al. 2006).

In summary, the collective data indicate that central BDNF plays fundamental

roles in the regulation of feeding behavior and body weight. It acts in energy

balance regulatory centers in the hypothalamus and DVC to provide essential

regulatory signals influencing homeostatic feeding. Furthermore, it regulates the

mesolimbic dopamine pathway to control hedonic feeding.

4 NGF, NT-3, and NT-4

NGF, NT-3, and NT-4 are also members of the family of neurotrophins and are

structurally related to BDNF. Their effects are mediated by their high affinity

tyrosine kinase receptors TrkA, TrkC, and TrkB, respectively, and the low affinity
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receptor p75. Even though their roles in body weight regulation have been under

studied, some reports implicate them in the regulation of food intake. For example,

excessive weight gain in adult rats with altered cholinergic activity due to partial

fimbrial transections was ameliorated by NGF treatment (Lapchak and Hefti 1992).

Moreover, ICV NGF infusion induced hypophagia and weight loss in a dose-

dependent manner in non-obese mice (Williams 1991). However, a conflicting

study showed that ICV administration of NGF in BDNF+/� mice was ineffective

in reducing their elevated body weights (Kernie et al. 2000). In humans, a single

nucleotide polymorphism (SNP) within the NGF gene was not significantly

associated with eating disorders in families of Spanish, French, and German origin

(Mercader et al. 2008). However, the risk of developing eating disorders in

individuals with a TrkC SNP was significantly increased if they also carried the

NGF SNP, suggesting an epistatic interaction between these genes in disease

mechanisms relevant to disordered eating.

Rodent studies indicate that NT-3/TrkC signaling does not play an essential role

in energy balance regulation. Accordingly, mice with central depletion of this

neurotrophin or with overexpression of TrkC exhibit normal body weights (Bates

et al. 1999; Dierssen et al. 2006). However, as noted above, a SNP in the TrkC gene

located in intron 8 and predicted to result in lower TrkC expression was signifi-

cantly associated with eating disorders (Mercader et al. 2008). Moreover, elevated

levels of TrkC expression were observed in the hypothalamus of the anx/anxmouse

model of anorexia (Mercader et al. 2008). It is important to note that eating

disorders are multifactorial psychiatric afflictions, the foundation of which might

not exactly parallel that of energy balance disorders. In that context, it is interesting

to note that features such as anxiety and depression, which have been associated

with altered NT-3 function (Amador-Arjona et al. 2010; Dierssen et al. 2006;

Hock et al. 2000), are comorbid with eating disorders.

The effects of NT-4 on feeding behavior are slightly clearer. Data supporting a

role in the underlying physiological processes include its ability to mitigate the

hyperphagia and excessive body weight gain in BDNF+/� mice following intra-

cerebral infusion into the third ventricle (Kernie et al. 2000). Similarly, daily

intravenous delivery of NT-4 in a mouse model of diet-induced obesity or

central administration in rhesus monkeys reduced food intake and body weight

(Tsao et al. 2008). NT-4-induced anorexia is not leptin-dependent as this

neurotrophin was equally efficacious in obese db/db mice, which lack leptin

receptors (Tsao et al. 2008). The weight loss of NT-4-treated mice could not be

solely attributed to reduced food intake. Indeed, vehicle-treated obese mice that

were pair fed with NT-4 treated animals did not exhibit the same amplitude of

weight loss as the latter, suggesting that NT-4 also influences energy expenditure.

Albeit sharing the TrkB receptor with BDNF, NT-4 exhibits distinct effects on

food intake and body weight and does not play an essential role in the regulation of

energy balance. In contrast to the dramatic levels of obesity exhibited by BDNF and

TrkB mutant mice, NT-4 null mutants have normal body weights (Fox et al. 2001).

However, it is worth noting that a close examination of their meal microstructure

revealed longer meal duration when administered a standard chow diet
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(Fox et al. 2001). This alteration does not impact overall food intake or body weight

because it is accompanied by compensatory behaviors, including reduced meal

frequency and decreased average rate of food intake. However, intermittent access

to high fat food can override these compensatory changes, ultimately resulting in

long-term increases in total food intake (Byerly and Fox 2006). Because direct

application of NT-4 to the hypothalamus also resulted in appetite suppression (Tsao

et al. 2008), alterations in hypothalamic feeding circuits might be responsible for

the observed changes in eating behavior. Alternatively, increased feeding in NT-4

mutant mice might be associated with identified deficits in vagal intraganglionic

mechanoreceptors in the small intestine (Fox et al. 2001). This defect is potentially

relevant because alterations in vagal sensory neurons innervating the gastrointesti-

nal tract have been implicated in obesity and eating disorders (Faris et al. 2000;

Schwartz 2000). Mechanoreceptors in the vagal sensory pathway are thought to

sense peristaltic contractions induced by food accumulation in the duodenum and

subsequently provide negative feedback to energy balance regulating centers in the

hindbrain to mediate meal termination. A study directly interrogated the negative

feedback action of gastrointestinal vagal afferents in NT-4 mutant mice in response

to fat and carbohydrates. These investigations revealed that in response to lipid

intragastric infusion, NT-4 mutant mice had smaller reductions in standard chow

intake compared to wild-type mice, indicating attenuated satiation due to reduced

negative feedback signaling in response to macronutrients in the GI tract (Chi and

Powley 2007).

The distinct effects of BDNF and NT-4 might be explained by their unique

patterns of expression in energy balance and reward centers of the brain. Alterna-

tively, they might diverge in the conformational changes they induce in TrkB

following binding, effectively influencing the strength of downstream signaling in

pathways recruited during feeding-related processes. In agreement with the first

scenario, knocking NT-4 into the Bdnf locus resulted in mice with a 30 % decrease

in body weight compared to littermate wild-type controls (Fan et al. 2000). In

agreement with the alternative model, TrkB-Shc signaling appears to be more

critical for NT-4 mediated functions than for BDNF effects (Fan et al. 2000).

Nonetheless, it is clear that endogenous NT-4 is not sufficient to overcome the

hyperphagia and obesity triggered by deficient BDNF signaling in the brain.

Together, the cumulative data indicate significant but nonessential roles of NT-4

in the regulation of body weight.

5 CNTF

CNTF is a neurocytokine from the interleukin 6 family expressed both in the

peripheral and central nervous systems during development and in adulthood

(Ip and Yancopoulos 1996). It supports the survival of several types of neurons

and glia. The actions of CNTF are mediated by a tripartite receptor complex

comprising gp130, the LIF β receptor, and the CNTF-α receptor. Together, they

activate signaling cascades involving protein tyrosine kinases of the Jak family and
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STAT transcription factors. The distribution of the CNTFR-α-gp130-β complex is

similar to that of the leptin receptor including expression in the Arc and PVN

(MacLennan et al. 1996). Moreover, signaling pathways downstream of CNTF and

leptin are similar, most notably the STAT3 pathway, which plays a critical part in

the regulation of caloric intake and expenditure (Xu et al. 2007). These parallels

prompted investigations interrogating the role of CNTF in the central regulation of

body weight. They revealed that chronic CNTF treatment was efficacious in

ameliorating several aspects of the metabolic syndrome in ob/ob and db/db mice

including their hyperphagia, increased adiposity, and hyperinsulinemia (Gloaguen

et al. 1997). The satiety effects of CNTF are partly mediated by the negative

regulation of NPY in the Arc (Xu et al. 1998). Accordingly, the increase in

hypothalamic NPY expression normally induced by fasting was absent in animals

treated with CNTF. Moreover, CNTF administration markedly reduced

NPY-induced feeding. Thus, the data indicate a double action of CNTF that

prevents both NPY expression and events downstream of NPY that promote eating.

Because the appetite-suppressing effects of CNTF persist long after cessation of

treatment, Kokoeva et al. sought to investigate whether this neurotrophin had long

lasting effects on hypothalamic cells. They discovered that similar to the dentate

gyrus of the hippocampus and the subventricular zone of the lateral ventricles, there

is persistent neurogenesis albeit at lower levels, in the adult hypothalamus

(Kokoeva et al. 2005). Notably, they uncovered a potent mitogenic effect of

CNTF in this process. Specifically, they found that when the cell proliferation

marker bromodeoxyuridine (BrdU) was chronically co-delivered with CNTF into

the lateral ventricles, there was a dramatic increase of newborn cells as marked by

BrdU immunoreactivity in the hypothalamus compared to vehicle treatment. These

adult-generated cells express the CNTF receptor, arise from the hypothalamic

parenchyma, and migrate to the base of the third ventricle, a region that includes

the Arc. A significant proportion of new cells follow a neuronal fate differentiation

pathway, and some express the orexigenic factor NPY or the anorexigenic peptide

POMC (Kokoeva et al. 2005). A subset of them is responsive to leptin, suggesting

that they might be recruited into functional feeding circuits in the hypothalamus.

Because elevated levels of hypothalamic BrdU+ cells persist weeks after CNTF

treatment cessation, it is possible that the facilitative effect of CNTF on adult

hypothalamic neurogenesis is a mechanism underlying its prolonged effects on

appetite suppression. In agreement with this idea, ICV co-delivery of the antimi-

totic drug, cytosine-β-δ-arabinofuranoside (Ara-C), with CNTF, abrogated the

long-term suppression of appetite by this neurotrophin without affecting induced

acute decreases in food intake (Kokoeva et al. 2005). The effects of Ara-C did not

appear to be related to neurotoxicity but to suppression of cell proliferation.

Similar to BDNF, CNTF can facilitate metabolism in obesity-related disorders.

It acts in the periphery to reverse fatty acid-induced insulin resistance. This is

achieved by increasing fatty acid oxidation and reducing insulin resistance in

skeletal muscle by activating AMP-activated protein kinase (Watt et al. 2006). In

the db/db model of obesity and diabetes, CNTF treatment significantly improved

glucose and lipid metabolism (Sleeman et al. 2003). CNTF-treated db/db mice
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showed reduced hepatic steatosis, improved liver function, and enhanced hepatic

responsiveness to insulin. These metabolic improvements were accompanied by

changes in expression of genes involved in lipid metabolism including reduced

expression of SCD-1, a rate limiting enzyme in lipid synthesis, and increased

expression of CPT-1, which facilitates lipid oxidation (Sleeman et al. 2003). The

beneficial effects of CNTF on metabolic disease do not emerge exclusively from

reduced food intake and body weight as pair fed vehicle-treated db/db mice did not

exhibit the same level of metabolic improvement as CNTF-treated mutants.

The long lasting anorexigenic actions of CNTF and its ability to alleviate

obesity-related metabolic disease have made it an attractive target for drug devel-

opment. An analog of CNTF, Axokine (Regeneron), underwent Phase III clinical

trials for the treatment of obesity. A modest effect on weight loss was observed

compared to placebo. However, a majority of treated individuals developed

neutralizing antibodies against Axokine, and the drug was not commercialized.

Nonetheless, the cumulative evidence is consistent with an important role of CNTF

in central mechanisms mediating satiety and body weight control.

6 GDNF

GDNF supports the survival and maturation of central dopamine neurons (REF). It

binds GFR-α receptors to form a signaling complex that recruits and activates the

receptor tyrosine kinase, rearranged during transfection (Ret). Studies involving

chronic central delivery of GDNF in rodents, monkeys, and humans serendipitously

found that this neurotrophic factor induced weight loss (Aoi et al. 2000; Hoane

et al. 1999; Lapchak et al. 1997). Follow-up investigations showed that viral-

mediated delivery of GDNF to the hypothalamus in rats also promoted body weight

reduction (Tumer et al. 2006), suggesting that this brain region was a relevant

substrate for the actions of GDNF. Weight and adipocity loss in GDNF-treated rats

was associated with reduced food intake and increased energy expenditure, but

these effects were transient. The effects of GDNF were not associated with altered

dopamine levels in the hypothalamus, a region with low levels of expression of

components of the GDNF signaling complex, Ret and GFR-α1. This observation
raised the possibility that excess GDNF signal in hypothalamic neurons of

AAV-GDNF-treated rats acted in extra hypothalamic areas where these cells

project, including midbrain dopamine neurons. Consistent with this idea,

AAV-GDNF delivery to the midbrain (substantia nigra) elicited decreases in food

intake and body weight that were more robust than those induced by delivery to the

hypothalamus (Manfredsson et al. 2009). Furthermore, a single injection of GDNF

into the substantia nigra had an anorexigenic effect that lasted 7–10 days (Hudson

et al. 1995). This effect was associated with neurite sprouting in tyrosine hydroxy-

lase (TH)-containing neurons in this region and increased TH immunoreactivity in

the striatum. Finally, intranigrally or intraventricularly administered GDNF par-

tially rescued the weight gain induced by 6-hydroxydopamine-induced lesions in

rats (Lapchak and Hefti 1992).

Neurotrophins and the Regulation of Energy Balance and Body Weight 297



The studies outlined above implicate the nigrostriatal pathway in the anorexi-

genic actions of GDNF. However, it is important to note that in at least one of the

studies involving AAV-GDNF delivery to the midbrain, elevated levels of dopa-

mine were detected in the NAc (Manfredsson et al. 2009). Therefore, a contribution

of the mesolimbic dopamine pathway cannot be ruled out.

The effects of GDNF on feeding might be related to its ability to potentiate

midbrain dopamine circuits. It increases the excitability of dopamine neurons

in vitro by inhibition of A-type potassium channels (Yang et al. 2001). Moreover,

GDNF synthesized in the NAc acts as a retrograde signal for dopamine neurons in

the VTA, where it positively regulates spontaneous firing activity through a mech-

anism involving the mitogen-activated protein kinase (MAPK) pathway (Wang

et al. 2010c). This GDNF-mediated facilitation results in an increase in dopamine

secretion in the NAc. Consistent with a critical role in dopamine tone, Ret ablation

results in decreased evoked release of dopamine (Kramer et al. 2007). Clearly,

much remains to be unraveled regarding the effects of GDNF. For now, we can

conclude that this neurotrophin participates in the regulation of feeding behavior

likely through mechanisms involving dopamine transmission.

7 Summary

Obesity is a pervasive disorder reaching epidemic proportions that contributes to

the burden of chronic disease and disability. It can arise from alterations in central

neural circuits that promote positive energy balance and weight gain. Several

neurotrophins have emerged as chief players in the complex mechanisms regulating

food intake and energy expenditure and in candidate disease processes driving

obesity. BDNF, for example, is a required satiety factor that participates in homeo-

static mechanisms in the hypothalamus and hindbrain balancing nutritional

requirements and energy status. This neurotrophin also inhibits hedonic feeding

via the positive regulation of the mesolimbic dopamine reward pathway. NT-4,

which shares the TrkB receptor with BDNF, also influences feeding responses but is

not essential for maintaining normal body weight, illustrating the complexity of

neurotrophin signaling and food intake regulation. CNTF and GDNF, for their part,

also play important roles in the regulation of appetitive behaviors, and the hypo-

thalamic and midbrain dopamine neurons, respectively, appear to be substrates for

their anorexigenic actions. The molecular and cellular underpinnings of neuro-

trophin action influencing energy balance and body weight are critical but largely

uncharted research areas that require further investigation. Attaining this mecha-

nistic understanding will potentially uncover novel therapeutic avenues for the

treatment and prevention of obesity and its associated medical afflictions.
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Abstract

This chapter addresses the role of neurotrophins in the development of the heart,

blood vessels, and neural circuits that control cardiovascular function, as well as

the role of neurotrophins in the mature cardiovascular system. The cardiovascu-

lar system includes the heart and vasculature whose functions are tightly con-

trolled by the nervous system. Neurons, cardiomyocytes, endothelial cells,

vascular smooth muscle cells, and pericytes are all targets for neurotrophin

action during development. Neurotrophin expression continues throughout life,

and several common pathologies that impact cardiovascular function involve

changes in the expression or activity of neurotrophins. These include atheroscle-

rosis, hypertension, diabetes, acute myocardial infarction, and heart failure. In

many of these conditions, altered expression of neurotrophins and/or

neurotrophin receptors has direct effects on vascular endothelial and smooth

muscle cells in addition to effects on nerves that modulate vascular resistance

and cardiac function. This chapter summarizes the effects of neurotrophins in

cardiovascular physiology and pathophysiology.
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1 Introduction

The neurotrophins are a family of growth factors that exert diverse effects on the

developing and mature cardiovascular system. Details about the structure and

function of pro and mature nerve growth factor (NGF), brain-derived neurotrophic

factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are examined

elsewhere in this volume and are not a major focus here. Likewise, a detailed

analysis of signaling through the Trk receptors or p75NTR and its various

co-receptors is not the aim of this chapter. This chapter will focus instead on the

role of neurotrophins and their receptors in cardiovascular development, function,

and disease.

The heart and vasculature form the cardiovascular system, and their function is

tightly controlled by the nervous system. Neurons, cardiomyocytes, endothelial

cells, vascular smooth muscle cells (VSMCs), and pericytes are all targets for

neurotrophin action during development and in the mature system. The first section

of this chapter will examine the role of neurotrophins in development of the heart,

blood vessels, and the neural circuits that control cardiovascular function. Later

sections will examine the role of neurotrophins in the mature cardiovascular

system, including disease states. Due to space limitations, we have not been able

to include detailed information from, or cite, all of the relevant studies. For a more

detailed review of direct neurotrophin actions on the heart and blood vessels, please

see (Caporali and Emanueli 2009).

2 Neurotrophins and Cardiovascular Development

Vascular system development and maturation require highly coordinated and

regulated complex processes including endothelial cell proliferation, migration

and invasion, as well as support of peri-endothelial cells, including VSMCs and

pericytes. The interaction among endothelial cells and peri-endothelial cells leads

to the formation of a complex network of capillaries, arterioles, arteries, and veins.

Vasculogenesis is the process of blood vessel formation by a de novo production of

endothelial cells from vascular progenitor cells. Vasculogenesis is a crucial process

for blood vessel formation during embryonic development and contributes to vessel

growth in the adult (Risau and Flamme 1995). Angiogenesis is a general term for

describing the growth and remodeling process that turns the primitive vascular

network into a complex network, including the growth of endothelial sprouts from

preexisting postcapillary venules (Carmeliet 2000).

Neurotrophins and their receptors are expressed by the developing heart and

blood vessels (Scarisbrick et al. 1993). Studies using global knockout mouse

models have identified specific roles for BDNF, NT-3, and their cognate Trk

receptors in the formation of the heart and the myocardial vasculature (Donovan

et al. 1996, 2000; Hiltunen et al. 1996; Huber et al. 1996; Tessarollo et al. 1997;

Tessarollo 1998), but the cardiovascular phenotype of mice lacking NGF or TrkA

has not been studied (Crowley et al. 1994; Smeyne et al. 1994). The lack of BDNF
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reduces endothelial cell–cell contact in the embryonic heart, leading to intraven-

tricular hemorrhage and reduction of cardiac contractility (Donovan et al. 2000).

Similarly, TrkB�/� mice show a marked reduction of blood vessel density and

increased number of apoptotic endothelial cells, especially in the subepicardial

region of the developing heart (Wagner et al. 2005). Thus, BDNF activation of

TrkB is required for survival of endothelial cells and development of the cardiac

vasculature. NT3 activation of TrkC is required for the development of the atria,

ventricles, and cardiac outflow tracts, so that genetic deletion of either NT-3 or

TrkC results in impaired cardiac morphogenesis (Donovan et al. 1996; Tessarollo

et al. 1997). The lack of NT3 leads to septal defects and tetralogy of Fallot, which

resemble some of the most common congenital malformations in humans (Donovan

et al. 1996). Overexpression of a dominant negative version of TrkC also leads to

development of cardiovascular abnormalities, further highlighting its crucial role in

proper development of the heart (Palko et al. 1999). Some of these developmental

defects appear before the onset of cardiac innervation in mice (embryonic day 9.5),

suggesting direct effects of neurotrophins on cardiovascular development

(Tessarollo 1998).

The p75NTR is also present in the cardiovascular system during prenatal

development. Immunohistochemistry for p75NTR together with the endothelial

cell marker PECAM-1 and the VSMC marker α-smooth muscle actin (α-SMA) in

wild-type murine embryos (at E11.5) showed the presence of p75NTR in both

vascular cell types of large blood vessels (von Schack et al. 2001). Deletion of

p75NTR by disrupting Exon IV in mice (p75NTRExonIV�/� mice) results in the

development of a defective vascular system (von Schack et al. 2001).

p75NTRExonIV�/� mice die at late gestational stages or around birth, with an

aorta that has a thinner wall and increased lumen diameter, and many embryos show

vascular ruptures and blood cell leakage (von Schack et al. 2001). More recent

studies indicate that the p75NTRExonIV�/� mice produce a pro-apoptotic frag-

ment of the p75NTR protein (Paul et al. 2004). This complicates interpretation of

the phenotype, but nevertheless implicates neurotrophin signaling through p75NTR

as critical for proper vascular development.

An alternative and useful approach to investigate the role of neurotrophins

during differentiation is to test their activity on embryonic and fetal stem cells.

Shmelkov et al investigated the effect of BDNF on CD133+ stem cells extracted

from the human fetal liver (Shmelkov et al. 2005) and found that BDNF given alone

or together with vascular endothelial growth factor-A (VEGF-A) stimulates CD133

+ stem cells to differentiate toward the endothelial lineage as well as giving rise to

beating cardiomyocytes. These cardiomyocytes, once transplanted into the mouse

ear, are able to generate electrical action potentials. Human embryonic stem cells

(hESC) express Trk receptors, and BDNF, NT-3, and NT-4/5 are produced by

hESC to mediate their survival by an autocrine Trk-PI3K/Akt mechanism (Pyle

et al. 2006). Addition of neurotrophins to hESC cultures induces greater clonal

survival (Pyle et al. 2006), and culturing hESC on three-dimensional scaffolds in

the presence of neurotrophins leads to formation of vascular structures (Levenberg

et al. 2005).

The Biology of Neurotrophins: Cardiovascular Function 311



These developmental studies revealed that neurotrophins have direct effects on

cardiovascular cells and stem cells, which express neurotrophin receptors. How-

ever, the generation of new animal models lacking or overexpressing the genes for

neurotrophin receptors in selected cardiovascular cells is required to fully elucidate

the direct cardiovascular actions of neurotrophins during development and

adulthood.

3 Neurotrophins and the Development of Neurons Involved
in Cardiovascular Control

Neurotrophins play an important role in the development of the autonomic circuits

that provide neural control to the cardiovascular system. Sympathetic and parasym-

pathetic nerves provide the final common pathway for neural control of cardiovas-

cular targets. Sympathetic nerves stimulate vasoconstriction, increase heart rate,

and enhance cardiac contractility through the release of norepinephrine (NE), while

parasympathetic nerves lower heart rate through the release of acetylcholine (ACh).

Both sympathetic and parasympathetic neurons are controlled by preganglionic

projections from the nucleus tractus solitarii (nTS) in the brainstem. The nTS

receives sensory input from baroreceptor and chemoreceptor afferents as well as

inputs from higher brain centers, and integrates this information to modulate

sympathetic and parasympathetic transmission (Potts 2002; Boscan et al. 2002;

Andresen et al. 2004). All aspects of this circuit—from sensory afferents to the

brainstem to post-ganglionic sympathetic neurons—are impacted by neurotrophin

actions.

Neurotrophins are required for the survival of neurons involved in cardiovascu-

lar homeostasis, so that the lack of specific neurotrophins or their cognate Trk

receptors results in the loss of different types of neurons. For example, BDNF

activation of TrkB is required for the survival of arterial baroreceptors during

development (Brady et al. 1999) while NT-3, NT-4, and BDNF are all involved

in the development of chemoafferent sensory neurons that innervate the carotid

body (Conover et al. 1995; Erickson et al. 1996). The lack of NT-4 results in the

loss of 20–30 % of preganglionic neurons projecting to the stellate ganglia (Roosen

et al. 2001), which contains most of the sympathetic neurons that innervate the

heart. NGF activation of TrkA is required for survival of the sympathetic (Crowley

et al. 1994) and sensory neurons that innervate the heart (Ieda et al. 2006). In

addition, multiple neurotrophins can play a role in the development of a single

population of neurons. For example, postganglionic sympathetic neurons require

NT-3 for their initial survival and axon outgrowth to targets and then become

dependent on target-derived NGF (Glebova and Ginty 2005). Similarly, some

sensory neurons from the nodose–petrosal ganglion require first NT-3 and NT-4,

and then later in development BDNF, for survival (ElShamy and Ernfors 1997;

Brady et al. 1999). Thus, one critical role of neurotrophins in cardiovascular

function is in supporting the survival of nerves required to sense changes in arterial
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pressure and oxygenation and then trigger compensatory changes in peripheral

vascular resistance, heart rate, and stroke volume.

Neurotrophins can control other aspects of cardiovascular circuit development

and function in addition to neuron survival. For example, BDNF is released from

sensory afferents onto neurons in the nTS (Martin et al. 2009), where it can

modulate cell excitability (Balkowiec et al. 2000) and contributes to development

of normal autonomic control (Kline et al. 2010). The cardiac ventricles are

innervated by TrkA-expressing sympathetic and sensory neurons whose production

of neuropeptides can be regulated by NGF (Ieda et al. 2006; McMahon et al. 1995;

Patel et al. 2000). These peptides can have direct effects on the heart and vascula-

ture (Henning and Sawmiller 2001; Li and Peng 2002) in addition to modulating

neurotransmitter release in the atria (Smith-White et al. 2003; Herring et al. 2008).

NGF activation of TrkA also stimulates extension of sympathetic axons into the

heart (Kohn et al. 1999; Glebova and Ginty 2004; Kuruvilla et al. 2004), synapse

formation between pre- and post-ganglionic sympathetic neurons (Sharma

et al. 2010), expression of tyrosine hydroxylase (TH), and NE synthesis (Max

et al. 1978; Thoenen 1972). NGF activation of receptor complexes containing

p75NTR during development modulates the density and distribution of sympathetic

fibers in the atria (Habecker et al. 2008) and left ventricle (Lorentz et al. 2010).

Thus, neurotrophin signaling is critical for the development and maintenance of

several different aspects of neural control of cardiovascular function.

4 Neurotrophins in Adult Cardiovascular Physiology
and Pathophysiology

Neurotrophin expression continues throughout life, and several common

pathologies that impact cardiovascular function involve changes in the expression

or activity of neurotrophins. These include atherosclerosis, hypertension, diabetes,

acute myocardial infarction, and heart failure. In many of these conditions altered

expression of neurotrophins and/or neurotrophin receptors has direct effects on

vascular endothelial and smooth muscle cells in addition to effects on nerves that

modulate vascular resistance and cardiac function. In addition, changes in vascular

and cardiac neurotrophin production can alter neurotransmitter and peptide synthe-

sis and release, which in turn can impact expression of neurotrophins in the target

cell. For ease of understanding we will first discuss neurotrophin control of angio-

genesis under normal conditions and in several types of pathology. We will then

discuss the effects of neurotrophins on the innervation of the heart and vasculature

and highlight reciprocal interactions between neurotransmission and neurotrophin

expression.
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5 Neurotrophin Regulation of Angiogenesis

Postnatal angiogenesis occurs physiologically in the cycling ovary and the placenta

and is reactivated during wound healing, tissue repair, and under several pathologi-

cal conditions (Carmeliet 2005). The driving force of angiogenesis is hypoxia in the

surrounding tissue. Thus, ischemia provides a potent stimulus to angiogenesis and

the subsequent development of collateral vasculature that in part maintains and/or

revitalizes the ischemic tissue (Ejiri et al. 1990; Kodama et al. 1996) Sprouting of

capillaries leads to an increase of their density improving blood perfusion of

hypoxic tissue which is necessary to maintain or restore local oxygen and nutrition

supply (Heil et al. 2006). Arteriogenesis is the maturation of capillaries or arterioles

and the formation of arterial collaterals (Luttun et al. 2002; Skoff and Adler 2006)

that is important for post-ischemic blood flow recovery. Several neurotrophins play

a role in adult neovascularization.

NGF was the first neurotrophin found to be involved in postnatal angiogenesis

(Santos et al. 1991). NGF is produced by endothelial cells that also express TrkA

and p75NTR (Cantarella et al. 2002; Rahbek et al. 2005). NGF activation of TrkA

promotes survival, proliferation, and migration/invasion of endothelial cells, while

selective activation of p75NTR induces endothelial cell death (Kim et al. 2004;

Caporali et al. 2008a; Skoff and Adler 2006). TrkA-dependent survival and prolif-

eration of endothelial cells is at least in part due to increased production of VEGF-A

(Emanueli et al. 2002; Graiani et al. 2004; Salis et al. 2004) and may be mediated by

activation of ERK 1/2 (Cantarella et al. 2002). NGF-induced migration of endothe-

lial cells is mediated by the simultaneous activation of the PI3K/Akt and ERK 1/2

signaling pathways (Rahbek et al. 2005; Dolle et al. 2005). The end result of

NGF-TrkA-stimulated survival, proliferation, and migration of endothelial cells is

increased angiogenesis, as seen during the healing of cutaneous wounds (Graiani

et al. 2004).

5.1 Hindlimb Ischemia

NGF and TrkA are upregulated following the insurgence of ischemia in the leg or

heart (Emanueli et al. 2002; Hiltunen et al. 2001; Meloni et al. 2010), and NGF

participates in reparative capillarization triggered by the ischemic insult (Emanueli

et al. 2002; Meloni et al. 2010). Indeed, in a mouse model of hindlimb ischemia,

blockade of endogenous NGF by a neutralizing antibody disrupts the angiogenic

response to muscular ischemia, while exogenous NGF supplementation to ischemic

muscles enhances the spontaneous formation of capillaries and arterioles in the

target tissue and accelerates blood flow recovery (Emanueli et al. 2002; Salis

et al. 2004). The pro-angiogenic effect of NGF in the ischemic limb muscle

seems to be mediated by increasing expression of VEGF-A (Emanueli

et al. 2002) and possibly VEGF receptors (Hansen-Algenstaedt et al. 2006)

followed by activation of Akt, nitric oxide production, and upregulation of matrix

metalloproteinase-2 (MMP2) expression (Park et al. 2007; Rahbek et al. 2005).
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NGF-induced angiogenesis in ischemic limb muscles is prevented by a neutralizing

antibody for VEGF-A, as well as by suppressing nitric oxide production by using a

nitric oxide synthase inhibitor (L-NAME) or by gene transfer with a dominant

negative mutant form of Akt (Emanueli et al. 2002).

BDNF can stimulate angiogenesis in tissues where a subpopulation of vascular

endothelial cells expresses TrkB (Kermani et al. 2005). BDNF expression is

increased in response to hypoxia (Kim et al. 2004; Wang et al. 2006), and exoge-

nous BDNF stimulates in vitro angiogenesis via TrkB and activation of the PI3K/

Akt pathway (Kim et al. 2004). BDNF expression is upregulated in ischemic limb

muscles, and BDNF gene therapy in mice with limb ischemia accelerates post-

ischemic blood flow recovery and increases capillary density in the ischemic

muscle. Importantly, these effects appear to be mediated by TrkB, as the effects

of exogenous BDNF are attenuated in haplodeficient animals (trkB+/�) (Kermani

et al. 2005). In addition, adenovirus-mediated BDNF overexpression induces the

mobilization of Sca-1pos/CD11bpos hematopoietic progenitor cells from the bone

marrow into the circulation during mouse limb ischemia, which may play a role in

BDNF-stimulated angiogenesis (Kermani et al. 2005).

The NT-3 receptor TrkC is expressed in human veins and mouse skeletal muscle

endothelial cells, and recent studies indicate that NT-3 can stimulate angiogenesis

(Cristofaro et al. 2010). NT-3 stimulates endothelial cell proliferation, survival,

migration, and network formation on Matrigel in vitro (Cristofaro et al. 2010),

while in vivo overexpression of NT-3 induces neovascularization in a rat

mesenteric angiogenesis assay and a mouse model of hindlimb ischemia (Cristofaro

et al. 2010). In the rat mesentery, newly formed vessels show an enhanced branch

point density and diameter compared with the control group, and they also display

increased coverage by mural cells. Adenovirus-mediated NT-3 gene transfer to

murine ischemic hindlimbs stimulates the proliferation of capillary endothelial

cells, thus increasing capillary density and promoting blood flow recovery to the

ischemic foot. Activation of the PI3K/Akt/eNOS pathway is critical for NT-3-

induced angiogenesis both in vitro and in vivo (Cristofaro et al. 2010), and

stimulation of rat brain endothelial cells with NT-3 also increases eNOS levels

and nitric oxide production (Takeo et al. 2003).

5.2 Diabetes

Type I diabetes mellitus downregulates the content of NGF and TrkA in ischemic

skeletal muscles and concomitantly induces p75NTR expression in capillary endo-

thelial cells (Caporali et al. 2008a, b). In contrast to Trk actions, activation of

p75NTR induces endothelial cell death (Kim et al. 2004). Transduction of human

umbilical vein endothelial cells (HUVEC) with p75NTR impairs their

pro-angiogenic capacity (Caporali et al. 2008b), and p75NTR is responsible for

diabetes-induced impairment in neovascularization of ischemic limb muscles

(Caporali et al. 2008a). In diabetic mice treated with an adenovirus carrying a

dominant negative p75NTR in their ischemic limbs, post-ischemic angiogenesis
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and blood perfusion recovery were normalized to levels observed in

normoglycemic mice (Caporali et al. 2008a). Interestingly, NGF supplementation,

rather than initiating apoptosis of diabetic endothelial cells via p75NTR,

downregulates p75NTR expression by a mechanism that has not yet been clarified

and promotes endothelial cell survival and vascular regeneration (Graiani

et al. 2004; Salis et al. 2004).

5.3 Myocardial Ischemia

More recently, NGF has been shown to exert its pro-angiogenic effects also in the

setting of myocardial infarction (Meloni et al. 2010). Both NGF and TrkA are

increased in the peri-infarct area of human and mouse heart after myocardial

infarction, where NGF participates in the spontaneous angiogenic response. Block-

ade of endogenous NGF by a neutralizing antibody abrogates the spontaneous

capillary growth and reduces the density of small arterioles in the mouse peri-

infarct zone. By contrast, cardiac NGF overexpression improves angiogenesis and

cardiac perfusion, leading to improved cardiac performance and reduced mortality

in mice (Meloni et al. 2010). In contrast to limb muscles, NGF does not act through

VEGF-A to activate reparative angiogenesis in the infarcted heart. In the post-

infarcted heart, NGF promotes reparative neovascularization acting on the

pro-angiogenic and pro-survival Akt-Foxo-3A pathway (Meloni et al. 2010;

Potente et al. 2005). Moreover, local NGF gene therapy expands the number of

Lineage negative c-kit positive (lin-neg c-kit-pos) cells with cardiogenic and

vasculogenic capacities in the infarcted heart by increasing the expression of the

c-kit ligand stem cell factor (SCF) (Beltrami et al. 2003; Meloni et al. 2010). lin-neg

c-kit-pos cells are involved in myocardial repair and regeneration after myocardial

infarction (Beltrami et al. 2003; Cimini et al. 2007), and SCF induces neovascu-

larization in the adult myocardium (Xiang et al. 2009). Thus, NGF-stimulated

expansion of cardiac c-kitpos progenitor cells and SCF expression represent a new

therapeutic possibility for improving cardiac regeneration.

Interesting new data indicate that proNGF is also elevated in the human heart

after myocardial infarction (Siao et al. 2012). Similarly, upregulation of proNGF

was observed in the mouse heart soon after ischemia–reperfusion injury,

accompanied by increased expression of p75NTR by microvascular pericytes.

Further studies in the mouse revealed that proNGF expression in the heart

decreased pericyte process length and increased vascular permeability, resulting

in microvascular damage and expansion of the cardiac scar (Siao et al. 2012). Thus,

degradation or blockade of proNGF in the heart might provide a therapeutic target

to limit cardiac damage after myocardial infarction.

316 C. Emanueli et al.



5.4 Heart Failure

The role of NGF and its possible cardiac protective effects on the failing heart are

still under investigation. NGF is protective in a cardiotoxic model of heart failure in

zebrafish (Abstract 17596, AHA Scientific Session 2010). Heart failure was

induced by exposure of zebrafish embryos to aristolochic acid which reportedly

generates heart failure via inflammation (Huang et al. 2007). In the zebrafish model

of cardiac injury, NGF reduces the incidence of heart failure and mortality. The

effect of NGF was mediated via a regenerative response rather than by a reduction

in apoptosis, and this response was accompanied by upregulation of the

LIM-homeodomain protein Islet-1, which is expressed by cardiovascular progeni-

tor cells (Barzelay et al. 2010; Genead et al. 2010). In a mouse model of heart

failure associated with diabetic cardiomyopathy, NGF gene therapy by adeno-

associated vectors showed promise (Meloni et al. 2012). Diabetes-induced deteri-

oration of cardiac function was prevented by NGF overexpression. Moreover,

increased NGF cardiac expression prevented the enlargement of left ventricular

chamber volume and maintained the left ventricular internal diameter. NGF

overexpression also prevented the diabetes-induced microvascular rarefaction in

the left ventricle. These data suggest that NGF can be a relevant factor in promoting

cardiac regeneration and angiogenesis in the failing heart.

5.5 Atherosclerosis

Atherosclerosis is a complex chronic inflammatory process of the arterial wall that

involves endothelial cell activation by inflammatory cytokines, followed by

increased adhesion of circulating monocytes to the endothelium, and by the migra-

tion of VSMCs into the developing neointima. Lipid accumulation and modulation

of vascular cell phenotypes by extracellular matrix proteins (especially metallo-

proteases) stimulate the development of an atherosclerotic plaque, which progres-

sively obstructs the vascular lumen, thus reducing blood flow and increasing arterial

pressure. Human and rat VSMCs express all the neurotrophins as well as p75NTR

and Trk receptors both in vivo and in vitro (Donovan et al. 1995; Kraemer

et al. 1999). The expression of NGF, BDNF, TrkA, and TrkB are dramatically

upregulated by arterial balloon injury in rats and increased levels persist during

neointima formation (Donovan et al. 1995). BDNF, NT-3, NT-4/5, TrkB, TrkC, and

p75NTR are also present in VSMCs in human atherosclerotic lesions (Donovan

et al. 1995), thus suggesting that neurotrophins may regulate responses of VSMCs

to vascular injury. Additional studies indicate that activation of TrkA stimulates

VSMC migration (Donovan et al. 1995; Kraemer et al. 1999), while p75NTR

activation induces VSMC apoptosis during remodeling of the established vascular

lesion (Wang et al. 2000). Thus, neurotrophins may contribute to the development

and remodeling of atherosclerotic plaques.
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6 Neurotrophin Regulation of Nerves Involved
in Cardiovascular Function

Neurotrophins have widespread effects on the mature nervous system just as they

continue to stimulate angiogenesis in the adult. Neurotrophins are no longer

required for neuron survival, but they can regulate neurotransmission at many

levels including synapses formation (Lockhart et al. 2000; Sharma et al. 2010),

neural excitability (Luther and Birren 2009), production of neurotransmitters (Max

et al. 1978; Thoenen 1972), and neuropeptide synthesis (Shadiack et al. 2001; Skoff

and Adler 2006). Mature fully processed forms of the neurotrophins are a minor

species in most peripheral tissues including the heart and vasculature (Bierl

et al. 2005), and recent studies identified proteases in sympathetic neurons that

can cleave proNGF to the mature form (Saygili et al. 2011). Pro-neurotrophins

preferentially bind a receptor complex containing p75NTR rather than Trk

receptors, generating a distinct set of responses including cell death and axon

degeneration (Lee et al. 2001; Al Shawi et al. 2007; Nykjaer et al. 2004). Thus,

changes in the expression or processing of neurotrophins in the heart, vasculature,

or innervation can impact the nerves controlling cardiovascular function, and in

some instances contribute to the development of pathology.

6.1 Myocardial Ischemia and Congestive Heart Failure

Neurotrophin expression and actions have been studied in the context of acute

myocardial infarction, heart failure, and hypertrophy. Nerve Growth Factor (NGF)

mRNA is elevated in the infarct following ischemia–reperfusion (Hiltunen

et al. 2001), while BDNF mRNA is transiently expressed in myocytes at the border

of the infarct and intact tissue, and NT-3 mRNA changes little (Hiltunen

et al. 2001). Endogenous NGF protein is increased in the infarcted left ventricle

after both ischemia–reperfusion (Abe et al. 1997; Zhou et al. 2004) and chronic

ischemia (Hasan et al. 2006; Meloni et al. 2010; Oh et al. 2006), although the

methods used to quantify cardiac neurotrophin expression did not distinguish

between pro and mature forms. New data using a proNGF-selective antibody

indicate that proNGF is also elevated in mouse and human heart after ischemia–

reperfusion (Siao et al. 2012). The myocardium is an important source of NGF, but

several other sources have been identified in the heart including neural-crest stem

cells, inflammatory cells, as well as sympathetic and parasympathetic neurons

(Drapeau et al. 2005; Hasan et al. 2003, 2006; Hasan and Smith 2009; Saygili

et al. 2011). Mechanical stretch of sympathetic neurons, as may occur with

myocardial hypertrophy, can also increase neural synthesis of NGF (Hasan

et al. 2003; Rana et al. 2010). The extent to which these localized sources of

NGF affect nerve growth in cardiac pathology remains to be determined.

Increased production of NGF soon after myocardial infarction leads to develop-

ment of focal sympathetic hyperinnervation. In human studies increased NGF is

observed in the peri-infarct area of postmortem tissue (Meloni et al. 2010), and
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regions of peri-infarct sympathetic hyperinnervation correlate with a clinical his-

tory of ventricular arrhythmias (Chen et al. 2001). In canine studies, hyperinnerva-

tion from sympathetic nerves contributes to ventricular arrhythmia generation

(Chen et al. 2001; Zhou et al. 2004). The peak of ventricular NGF expression in

rodent models corresponds to the peak in tyrosine hydroxylase (TH) levels in the

first week after chronic cardiac ischemia, followed by decreases in both NGF and

TH (Hasan et al. 2006; Kimura et al. 2010). A major source of NGF in the infarct is

inflammatory cells, specifically myofibroblasts and macrophages, which are spa-

tially and temporally associated with changes in innervation density (Hasan

et al. 2006). Neurite outgrowth from peri-infarct tissue in explant culture can be

blocked by addition of function-blocking NGF antibodies (Hasan et al. 2006), and

anti-inflammatory therapies reduce both NGF expression within the failing heart

and sympathetic hyperinnervation (Wernli et al. 2009). Thus, early increases in

NGF stimulate sympathetic axon growth and increased NE production in the

cardiac sympathetic innervation following myocardial infarction.

Sympathetic nerves innervating the heart have been a major focus of investiga-

tion because their dysfunction contributes to human pathology (Esler et al. 1997;

Rubart and Zipes 2005), but the heart is also innervated by parasympathetic and

sensory nerves. Postganglionic parasympathetic fibers project from the cardiac

ganglia to the atria where they control the activity of pacemaker cells and modulate

NE release from sympathetic fibers (Levy 1990). Cardiac parasympathetic neurons

express the TrkC and p75NTR receptors (Hiltunen et al. 1996), but they are not

altered by the lack of p75NTR (Habecker et al. 2008), and their response to

neurotrophins after myocardial infarction has not been examined. Cardiac parasym-

pathetic neurons synthesize mature NGF, and this protein may help maintain

axo-axonal connections with sympathetic neurons in cardiac pacemaker regions

(Hasan and Smith 2009). Epicardial and ventricular myocardium is richly

innervated by NGF-dependent calcitonin gene-related peptide (CGRP)-expressing

sensory nerves (Ieda et al. 2006; Park et al. 2010). Although comprehensive studies

are lacking on sensory nerves after myocardial infarction, few CGRP-

immunoreactive nerve fibers were observed in post-infarct myocardium despite

sympathetic hyperinnervation (Hasan et al. 2006). Since hyperinnervation after

infarction has only been observed for sympathetic nerves, it is possible that

sympathetics compete more effectively for local NGF than sensory nerves in that

context. Indeed, after sympathectomy in spontaneously hypertensive rats (SHRs),

ventricular NGF levels increase accompanied by increased utilization of NGF by

sensory nerves (Supowit et al. 2005).

In contrast to the increased cardiac NGF observed soon after myocardial infarc-

tion, the progression of myocardial damage to congestive heart failure (CHF) is

associated with decreased production of NGF (Kaye et al. 2000; Kimura et al. 2010;

Qin et al. 2002). The transition to CHF is promoted by an overactive sympathetic

nervous system (Esler et al. 1997; Thomas and Marks 1978). In addition to

increased sympathetic drive in CHF, NE handling is disrupted so that the normal

balance between NE storage/release/reuptake is replaced by increased NE release

and decreased reuptake (Eisenhofer et al. 1996). The loss of NE reuptake, increased
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release, and corresponding increase in extracellular NE causes hypertrophy in the

human heart (Corea et al. 1983, 1984) and in animal models (Laycock et al. 1996;

Tsoporis et al. 1998). Eventually, the chronic increase in extracellular NE is

pathological (Lai et al. 1996; Bacaner et al. 2004) and may contribute to the

decrease in cardiac NGF expression (Qin et al. 2002; Kimura et al. 2010). Low

NGF in turn promotes decreased reuptake, as the loss of NE uptake is preceded by a

decrease in cardiac NGF and NT-3 (Kreusser et al. 2008), and injection of NGF into

stellate ganglia can restore NE uptake in nerve terminals within the failing heart

(Kreusser et al. 2006). Neuron–target interactions, including altered production of

neurotrophins, play an important role in the development of heart failure.

6.2 Diabetes

Cardiac autonomic neuropathy is a common complication of type I and type II

diabetes (Pop-Busui 2010), leading to complex changes in the cardiac sympathetic

innervation. The causes of diabetic autonomic neuropathy have been characterized

in animal models using streptozotocin to induce type I diabetes. Studies in rats

revealed increased cardiac NGF several weeks after streptozotocin injection

(Hellweg and Hartung 1990) that was followed by decreased cardiac NGF content

several months after the induction of diabetes (Hellweg and Hartung 1990; Schmid

et al. 1999). At the 6-month time point, the cardiac sympathetic innervation

exhibited significant heterogeneity, with distal denervation that closely tracked

with a gradient of cardiac NGF content that was highest in the proximal ventricle

and lowest in the distal ventricle (Schmid et al. 1999). The decreased production of

NGF, and proximal to distal gradient of NGF content in the diabetic rat heart, is

especially interesting because it may explain the proximal to distal gradient of

innervation density observed in patients with type 1 diabetes (Stevens et al. 1998).

Heterogeneity in the distribution and density of sympathetic nerves in the heart in

diabetes or other conditions increases the risk of sudden cardiac death (Rubart and

Zipes 2005; Stevens et al. 1998; Ieda and Fukuda 2009). Decreased cardiac NGF in

diabetes may contribute to the loss of uptake through the NE transporter that is a

component of diabetic autonomic neuropathy (Langer et al. 1995), since a similar

loss of NGF contributes to decreased NE uptake in heart failure (Kreusser

et al. 2006).

The heart is also innervated by NGF-responsive sensory nerves from dorsal root

ganglia (Ieda et al. 2006) that sense cardiac ischemia via acid-sensitive channels

(Yagi et al. 2006). The loss of pain perception during myocardial ischemia is a

complication of diabetes that increases a patient’s risk for complications or even

death since they do not sense the cardiac ischemia and seek treatment. The loss of

pain sensation in the heart has long been associated with diabetic autonomic

neuropathy (Faerman et al. 1977), suggesting that both sensory and autonomic

neurons in the heart are affected in diabetic neuropathy. Recent studies using

streptozotocin to produce diabetes in mice (Ieda et al. 2006) found decreased

NGF expression in the heart 4 months after streptozotocin injection accompanied
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by fewer CGRP + sensory nerve fibers. Ieda and colleagues then tested whether the

loss of NGF caused the loss of sensory nerve fibers and CGRP production by

inducing diabetes in mice whose cardiac myocytes were overexpressing NGF.

Increased cardiac NGF completely rescued the sensory innervation, preventing

deficits in nerve function despite the presence of hyperglycemia (Ieda

et al. 2006). To confirm that simply preventing the diabetes-induced loss of NGF

was sufficient to prevent sensory neuropathy, they then used viral overexpression to

add back NGF in diabetic rat hearts and blocked the degeneration of sensory fibers

(Ieda et al. 2006). These studies show that decreased cardiac NGF in diabetes is a

major contributor to cardiac diabetic neuropathy.

6.3 Hypertension

Neurotrophins play a role in the development of atherosclerosis-induced hyperten-

sion through their effects on plaque formation as described above, but they can

contribute to the development of hypertension through other means as well. The

SHR is a genetic model of essential hypertension that arose fromWistar-Kyoto rats.

Analysis of SHR rats compared to Wistar-Kyoto controls revealed that the under-

lying cause of hypertension was sympathetic hyperinnervation of vascular smooth

muscle (Head 1989). Further studies implicated increased expression of NGF in the

vasculature (Falckh et al. 1992; Zettler and Rush 1993) as causing the development

of sympathetic hyperinnervation and then hypertension. Injection of function

blocking anti-NGF antibodies at 3 weeks of age normalized arterial pressure in

adult rats (Brock et al. 1996), confirming that elevated NGF was the ultimate source

of hyperinnervation and hypertension. More recent studies indicate that NT-3 is

also elevated in SHR rats compared to Wistar-Kyoto control rats (Zhang and Rush

2001), but it is not clear if NT-3 contributes to the hyperinnervation of mesenteric

arteries. Increased sympathetic transmission in the heart and vasculature plays an

important role in a large fraction of human hypertension cases (Grassi et al. 2010),

but the underlying cause of hyperinnervation and increased nerve activity is not

known. Elevated NGF production in these targets may be an underlying cause, but

further studies in humans are required to determine if that is indeed the case.

7 Summary

Neurotrophins have widespread affects on the development of the heart and vascu-

lature as well as the neural circuits that control their function. Neurotrophins

continue to exert an effect on the cardiovascular system in the adult, acting directly

on vessels and cardiac myocytes in addition to actions in the nervous system.

Increased expression of neurotrophins in response to injury or other pathological

conditions can play an important role in stimulating angiogenesis and other repara-

tive processes. However, changes in neurotrophin expression can also contribute to
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the development of atherosclerosis, hypertension, diabetic sensory neuropathy, and

pathological heterogeneity in the cardiac sympathetic innervation.
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Neurotrophin Signalling and Transcription
Programmes Interactions in the
Development of Somatosensory Neurons

F. Marmigère and P. Carroll

Abstract

Somatosensory neurons of the dorsal root ganglia are generated from

multipotent neural crest cells by a process of progressive specification and

differentiation. Intrinsic transcription programmes active in somatosensory neu-

ron progenitors and early post-mitotic neurons drive the cell-type expression of

neurotrophin receptors. In turn, signalling by members of the neurotrophin

family controls expression of transcription factors that regulate neuronal

sub-type specification. This chapter explores the mechanisms by which this

crosstalk between neurotrophin signalling and transcription programmes

generates the diverse functional sub-types of somatosensory neurons found in

the mature animal.

Keywords

Neurotrophins • Somatosensory neuron functional diversity • Transcription

factors • Specification of neuronal identity

1 Introduction

In this chapter, we will concentrate on the roles of neurotrophins in the differentia-

tion and cell fate specification of somatosensory neurons of the peripheral nervous

system (PNS). This system, because of its relative simplicity and accessibility, has

been immensely instructive for our understanding of the key roles of neurotrophin

signalling in shaping nervous system development. We will review current ideas

about how complex interactions between neurotrophin signalling pathways and

intrinsic transcriptional codes together (1) generate the diverse array of functionally

F. Marmigère • P. Carroll (*)

INSERM U1051, Institut des Neurosciences de Montpellier (INM), 80, rue Augustin Fliche,

34091, Montpellier, France

e-mail: carroll@univ-montp2.fr

G.R. Lewin and B.D. Carter (eds.), Neurotrophic Factors, Handbook of

Experimental Pharmacology 220, DOI 10.1007/978-3-642-45106-5_13,
# Springer-Verlag Berlin Heidelberg 2014

329

mailto:carroll@univ-montp2.fr


distinct sensory neurons of the PNS (2) enable the formation of appropriate central

and peripheral projections of these neurons.

The PNS comprises several ganglia or plexi with different functions and

specificities disseminated in the whole body. Body sensations are detected by

sensory neurons located in dorsal root ganglia (DRG) along the spinal cord and in

the trigeminal ganglia located at the base of the brain. Sensory neurons are

characterised by the type of primary sensory stimulus they transmit to the CNS:

mechanoreceptors that respond to mechanical stimuli, proprioceptors that respond

to limb and muscle movement, thermoreceptors that respond to temperature,

nociceptors that respond to painful or pruritic (itch) stimuli (for reviews see Delmas

et al. 2011; Han and Simon 2011; Woolf and Ma 2007). Classical physiological

studies showed that these different types of sensory neurons innervate specific

target end-organs in the skin, muscle, tendons and organs of the body, form highly

stereotypic connections with central target neurons in the spinal cord, generating a

topographic map of the surface of the body and of the positions of joints and

muscles. Information from somatosensory neurons is integrated into spinal circuits

that control reflexes and coordinated movements.

A characteristic of peripheral neurons is their great diversity, although they

come from the same progenitor cells: diversity regarding their size, their biochem-

istry, the targets they contact and their physiological functioning. In recent years,

the functional diversity within different classes of sensory neurons is being revealed

by the identification of specific molecular markers and genetic labelling techniques

combined with physiological analyses. Several types of functionally distinct

nociceptors can be distinguished by expression of ion channels and receptors (Liu

and Ma 2011). Some of these are also distinguishable by the Mas-related G protein

coupled receptor (Mrgpr) expression (Dong et al. 2001), and specific sub-types of

Mgrprs have been shown to be necessary for itch sensation (Liu et al. 2009).

Another remarkable example is the diversity of sensory neurons responding to

temperature. The characterisation of the expression of the different Trp class of

channels in various thermoreceptors differentially activated by a wide range of

temperature allowed a better understanding of how sensory neuron discriminate

painful cold or heat from pleasant warm or cool stimuli (Caterina et al. 1997; Peier

et al. 2002; Jordt et al. 2003; Patapoutian et al. 2003; McKemy 2005). Similarly, the

calcium binding protein parvalbumin is a marker for proprioceptive neurons (Carr

and Nagy 1993). Myelinated Aβ sub-types of low threshold mechanoreceptors have

been identified by transcription factor gene and Ret receptor expression (Bourane

et al. 2009; Luo et al. 2009; Wende et al. 2012). Genetic labelling techniques in

mice are now being used to identify and trace the fine anatomy of the projections of

different types of somatosensory neurons innervating the skin (Liu et al. 2007;

Badea et al. 2012; Li et al. 2012).

During embryonic development, the vast majority of the PNS derives from a

transient population of multipotent stem cells: the neural crest cells (NCCs). This is

the case of the cells composing the DRG, the autonomic nervous system including

the enteric nervous plexus, the parasympathetic ganglia and the sympathetic chain.

The DRGs are formed by NCCs that migrate ventrally between the somite and the
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neural tube. Other transient embryonic structures, the neurogenic placodes, partici-

pate in the formation of the cranial ganglia, together or not with NCCs. Thus, the

vestibulo-acoustic (VIII), facial (VII) and the glossopharyngeal (IX), petrosal and

nodose cranial ganglia exclusively derives from neurogenic placodes whereas the

trigeminal ganglion is a mixed population arising from both neurogenic placodes

and neural crest origins in which nociceptors arise from NCCs. The jugular

ganglion is exclusively of NCC origin. Beside their common embryonic origins

and their function in maintaining the communication between the external environ-

ment and the internal milieu, neurons composing the PNS share other similarities.

They all contact a peripheral usually non-neuronal target located in the different

organs of the body and, for afferent neurons, central target neurons located in the

central nervous system. Peripheral neurons thus cross long distance in the body to

find, recognise and establish contacts with their appropriate peripheral and central

targets.

Cellular diversity is created according to a classical principle of developmental

biology: the specification or cell lineage segregation. Multipotent stem cells prolif-

erate in a tightly controlled manner to self-renew and give birth to progenitors with

restricted potential regarding proliferative rates and phenotypic fate. These progen-

itor cells migrate long distances and undergo several transitions and phenotypic

transformations during their journey, changing shape, polarity, size, biochemical

markers and their responses to the local environment. As differentiation progresses,

the fate potential of multipotent progenitor cells is progressively restricted in a

“step-by-step” manner. This process – called lineage segregation – is achieved by

two main mechanisms: epigenetic signals between cells and cell autonomous

genetic programmes acting within each cell.

Thus, cell fate commitment and phenotypic differentiation result from the

integration of distinct transcriptional programmes that are regulated by different

signalling pathways. In this concept, under the influence of extrinsic signals

activating intrinsic cell-autonomous programmes, the progression of a multipotent

progenitor towards a more differentiated state is accompanied by a loss of compe-

tence. External cues are mainly ligands secreted by local organising centres acting

on specific membrane-bound receptors. Cell-autonomous signals are mainly tran-

scription factor networks acting within the cell nucleus to regulate specific tran-

scriptional programmes. During development of the nervous system, morphogens

such as sonic hedgehog, retinoic acid, growth factors and members of the wingless

(Wnts) and bone morphogenetic proteins (BMPs) families are produced by local

organising centres and diffuse from their source in the surrounding embryonic

tissues, combining at variable distances depending on their diffusion properties.

In early embryogenesis, these molecules pattern the different tissues in a highly

organised manner to create the embryo.

Over the last several years, some of the transcription factors involved in the

progressive lineage restriction of multipotent neural crest stem cells into the diverse

array of fully differentiated somatosensory neurons have been identified (for

reviews see Pavan and Raible 2012; Lallemend and Ernfors 2012; Marmigere and

Ernfors 2007). During delamination from the dorsal neural tube and their ventral
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migration, NCCs express the sex-determining region of Y chromosome (SRY)-

related high mobility group (HMG)-box transcription factor Sox10 (Kim

et al. 2003) and Pax3 (Goulding et al. 1991; Nakazaki et al. 2008). These two

factors are important for NCCs specification and appear to be necessary to maintain

the multipotent state, since gene inactivation leads to premature neural differentia-

tion (George et al. 2010; Nakazaki et al 2008), an effect that may due in part to

repression of proneural gene expression such as Ngn2 (Nakazaki et al. 2008). Sox10

maintains NCCs in the multipotent state (Kim et al 2003) and Pax3 seems to be

necessary for NCC migration (Conway et al. 1997; Serbedzija and McMahon

1997). The future neurons of the ganglia are derived from neuronal precursors

that are produced in three successive and overlapping waves of neurogenesis

between E9.5 and E11 in the mouse embryo (Marmigere and Ernfors 2007). The

first wave produces mostly precursors of future myelinated afferents of the propri-

oceptor and mechanoreceptor functional sub-classes; the second wave produces

future non-myelinated nociceptive neurons and C-fibre mechanoreceptors

sub-classes. A minor population of nociceptive neurons arises from the later

migration of precursors from a transient neural crest-derived structure called the

boundary cap, located at the dorsal root entry zone and representing a reservoir of

multipotent sensory precursors (Maro et al. 2004; Hjerling-Leffler et al. 2005).

Under the influence of morphogens such as Wnt1 (Lee et al. 2004), BMPs

(Raible and Ragland 2005), fibroblast growth factors (FGFs) (Murphy et al. 1994;

Barembaum and Bronner-Fraser 2005; Ota and Ito 2006; Stuhlmiller and Garcia-

Castro 2012) and Notch signalling (Hu et al. 2011; Mead and Yutzey 2012), NCCs

that will form the future sensory neurons begin to express proneural basic helix-

loop-helix (bHLH) transcription factors neurogenin 2 (Ngn2) and neurogenin

1 (Ngn1) between E9.5 and E10.5. Ngn1 and Ngn2 are the earliest lineage markers

of sensory precursors and are essential for the development of DRG neurons since

double Ngn1/2 mutants display agenesis of the DRG (Ma et al. 1999). In particular,

high levels of Wnt signalling through its intracellular target β-catenin plays an

instructive role in driving sensory neuron specification. Mutation of β-catenin in

neural crest results in a loss of Ngn2 expression and reduced sensory neurogenesis

(Hari et al. 2002). Inversely, maintaining a sustained β-catenin activity in NCCs

results in a premature and ectopic Ngn2 expression with mislocated and overabun-

dant sensory neurons at the expense of other neural crest derivatives (Lee

et al. 2004). These transient expressions of Ngn2 and 1 in two temporally succes-

sive but overlapping timeframes identify the two first waves of neurogenesis

mentioned earlier. Ngn2 expression appears in the first wave of progenitors that

gives rise to most of the future myelinated afferents in the DRG, including neurons

that contribute to the proprioceptive, mechanoceptive and to the lightly myelinated

Aδ nociceptive populations, whereas the Ngn1 population gives rise to some

myelinated afferents and most unmyelinated nociceptive neurons at later stages

(Ma et al. 1999; Bachy et al. 2011). However, in the absence of Ngn2, Ngn1-

expressing precursors are capable of generating most functional types of sensory

neurons, indicating a developmental plasticity in the generation of these neurons.

Nevertheless, many of the details of the factors governing the numbers of each
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progenitor type produced and the exact roles of the Ngns in these cells have still to

be worked out. Are Ngn1 and Ngn2 functionally equivalent generic proneural

factors differentially regulated in time or do they have specific roles associated

with their expression in the early and late progenitor populations?

The transition from neuronal precursors to post-mitotic sensory neurons requires

the expression of the transcription factors Islet1 and Brn3a. A series of elegant

studies by the Turner group using single and double mutant mice lines has shown

that these factors appear to act together to suppress the progenitor state and drive

sensory differentiation to the exclusion of other neuronal fates (Fedtsova and

Turner 1995; Eng et al. 2007; Sun et al. 2008; Lanier et al. 2009; Dykes

et al. 2011). In the absence of these molecules, sensory progenitors express the

general neuronal marker βIII-tubulin but fail to up-regulate a series of genes

characteristic of sensory neurons. The FoxS1 transcription factor is also induced

in sensory precursors and post-mitotic neurons during this transition (Heglind

et al. 2005; Montelius et al. 2007). However, its role in this process is not known

since no sensory phenotype has been described in mouse mutants for this gene.

Having consolidated a generic sensory phenotype, early post-mitotic sensory

neurons begin to unfold the transcriptional programmes that will specify them

into the different functional sub-classes of neurons in the adult organism.

As somatosensory neurons extend processes during embryonic growth, retro-

grade signals pattern their growth and pathfinding in the peripheral tissues. These

retrograde signals include neurotrophins and other neurotrophic factors, secreted

from target tissues, as well as repulsive and attractive guidance molecules that

together cooperate with intrinsic transcriptional programmes to coordinate the

appropriate specification, differentiation, survival and neurite growth of PNS

neurons. The importance of neurotrophins in the harmonious development of this

system is exemplified by the deleterious effects of loss, overexpression or mutation

of neurotrophins or their receptors.

2 Neurotrophin-Trk Signalling and Functional Sub-classes
of Somatosensory Neurons (Fig. 1)

The neurotrophins (NGF, BDNF, NT3 and NT4) and their receptors (TrkA,

TrkB, TrkC and p75) belong to the superfamily of growth factors/receptors and

their appearance during development coincides with neurogenesis. From the

moment of their birth, it appears that all somatosensory and autonomic sensory

neurons express at least one neurotrophin receptor. Neurotrophins are secreted

peptides that diffuse poorly and act as autocrine/paracrine factors regulating neural

precursor selection and early neurogenesis. Later in nervous system development,

they serve as long distance factors regulating axonal growth, cell survival, specifi-

cation and phenotypic stabilisation. For these late functions, neurotrophin receptors

are synthesised by the neurons whereas their ligands are secreted by neuronal

targets thus establishing an elaborate communication system to establish

Neurotrophin Signalling and Transcription Programmes Interactions in the. . . 333



appropriate recognition between a neuron and its specific target. In this scenario,

neurotrophins signalling first promotes long range signalling bringing the axonal

projections to the vicinity of the source of neurotrophins. According to the

neurotrophic hypothesis, neurotrophins are secreted by the target in limited

amounts sufficient to promote neuronal survival of a limited number of neurons.

Thus, whereas neurons are initially produced in excess, the competition for limiting

amounts of retrograde neurotrophin signalling leads to the elimination of superflu-

ous neurons and neurons not presenting the appropriate high affinity neurotrophins

receptor (for recent review on neurotrophins and neuronal survival see Ichim

et al. 2012).

Studies on Trk receptors expression and analyses of mice carrying mutations at

neurotrophin and trk receptor loci have initially led to the general idea that different
neurotrophin-Trk receptor combinations are necessary for the development of the

three main classes of somatosensory neurons: NGF-TrkA for nociceptors, BDNF/

NT4-TrkB for mechanoreceptors and NT-3-TrkC for proprioceptors. However,

further biochemical characterisation of sensory neurons allowing a better discrimi-

nation of the numerous sub-classes has revealed a more complex reality. In fact, the

expression of Trk receptors in sensory neurons is highly dynamic during develop-

ment. Trk receptors display overlapping and sequential expression patterns in

sensory neurons as they progressively mature towards their ultimate differentiated

phenotype in the adult (for review see Ernsberger 2009). Accordingly, the neuronal

loss found in mutant mice lacking the different neurotrophins and their receptors is

much greater than the numbers of Trk-expressing neurons at a given stage. Many

newly born DRG neurons express multiple Trk receptors and probably respond to

short range autocrine/paracrine cues.
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Fig. 1 Molecular characteristics of somatosensory neuron functional sub-types. The major

classes of somatosensory neurons (thermo- and nociceptors, C-fibre low-threshold mechanor-

eceptors; red), myelinated low-threshold mechanoreceptors (green) and muscle spindle and

Golgi tendon organ afferents (blue) and the sensory modalities that they transduce are shown.

Different functional sub-types project to different regions of the spinal cord. Different functional

sub-types express different neurotrophic factor receptors (Trks and Ret) in adult stages. Transcrip-

tion factors associated with the development of different functional sub-types are shown
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TrkC is the first neurotrophin receptor to be expressed and is found in a majority

of DRG neurons at early stages in all studied species. Genetic lineage tracing

studies using a TrkC-Cre mouse line crossed with a Cre reporter line showed that

most sensory neurons in the trigeminal ganglion express TrkC at some stage of their

development (Funfschilling et al. 2004). TrkC expression is rapidly followed by

TrkB and TrkA is the last member of the family to be expressed (Ernsberger 2009).

The dynamic nature of Trks expression is illustrated by the changes in

co-expression of TrkB and TrkC during development. TrkB is expressed in a subset

of post-mitotic neurons at E11 (Farinas et al. 1998) and co-localises with TrkC in

75 % of the neurons. The co-incidence of TrkB and TrkC drops to 40 % at E12 and

to 10 % by E12.5, finally falling to zero at E14 (Kramer et al. 2006). However, in

adult mice 20 % of the DRG neurons co-express TrkB and TrkC (McMahon

et al. 1994; Karchewski et al. 1999). In neonatal mice, 40 % of neurons express

TrkC (Liebl et al. 1997, 2000). Similarly in adult rats, 20 % of the neurons express

TrkC (Wetmore and Olson 1995).

The onset of TrkA expression in mouse is E10.5 (Wright and Snider 1995;

Phillips and Armanini 1996), starts in few neurons and increases dramatically by

E11.5 to 20 % of the neurons and by E13 and E15 to 80 %, falling to 30 % in the

adult (Wright and Snider 1995; Molliver et al. 1997; Molliver and Snider 1997;

Farinas et al. 1998; Luo et al. 2007). In late gestation, the decrease in TrkA-

expressing neurons has been shown to be due to a switch in expression from

TrkA to c-Ret (Molliver et al. 1997), and this postnatal loss of TrkA depends on

Ret signalling (Luo et al. 2007). Nevertheless, whereas TrkA exhibits a more and

more restricted expression in subpopulations of thermo- and nociceptors during

development, its signalling is necessary for the development of all nociceptors since

TrkA or NGF mice mutants lack all types of nociceptors by birth (Crowley

et al. 1994; Smeyne et al. 1994). In the adult mouse, the TrkA-positive population

represents the peptidergic nociceptors and lightly myelinated Aδ nociceptors, and

the Ret-positive population includes the IB4-lectin binding non-peptidergic

nociceptors. TrkC-NT3 signalling is necessary for the survival of proprioceptive

neurons (Ernfors et al. 1994; Klein et al. 1994), and mouse mutants at these loci

display uncoordinated movements. TrkC is also expressed in some cutaneous

myelinated afferents. Single unit recordings on isolated nerve-skin preparations

and chronic application of NT3 in chick embryos showed that cutaneous slowly

adapting mechanoreceptors depend on NT3-TrkC for their survival during devel-

opment (Airaksinen et al. 1996; Oakley et al. 2000). However, their firing

properties in the adult are determined by BDNF-TrkB signalling (Carroll

et al. 1998). TrkB-NT4 signalling is necessary for the survival of adult D-hair

mechanoreceptors (Stucky et al. 2002), but 40 % of these afferents are also lost

during early development in NT3-deficient mice. The above examples demonstrate

that different aspects of sensory neuron development (survival, axon growth,

physiological functions) can be under the influence of different neurotrophins-Trk

receptor signalling at different times during their development. In addition, a series

of experiments in which null-mutant strains of mice for neurotrophins or their

receptors were crossed into a Bax-null mutant background preventing apoptosis
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in DRG demonstrated at least for NGF/TrkA and NT3/TrkC signalling a function

beyond neuronal survival in the full phenotypic maturation of nociceptive and

proprioceptive neurons including the expression of specific ion channels and

neuropeptides and the establishment of stereotyped projection pattern characteristic

of their physiological functions (Patel et al. 2000, 2003). Such an instructive role of

neurotrophins signalling for sensory neurons specification was further confirmed by

knock-in experiments in which the expression of TrkC receptor from the TrkA locus

was able to switch the fate of a small subset of nociceptive neurons in propriocep-

tive neurons (Moqrich et al. 2004). The demonstration of this late essential role of

neurotrophins signalling thus placed these molecules at the centre of studies related

to sensory neuron specification and diversification.

3 Early Effects of Neurotrophins

Differentiation/fate differentiation
The process of neuronal specification is the acquisition of definitive phenotypic

characteristics for a given sub-class of neurons during embryonic development.

This acquisition can be divided into several interdependent and sequential phases,

from the time point when progenitor cells exit the cell cycle towards the newly

formed and the perfectly differentiated neuron gains its definitive physiological

function. These steps include phases of specific biochemical characteristics acqui-

sition, axonal growth, survival, set-up and maintenance of connectivity with the

appropriate targets. Any disturbance of one of these steps compromises the follow-

ing one and leads to the elimination of the cell mainly through apoptosis.

3.1 Proliferation and Cell Cycle Exit

The early expression of Trk receptors in sensory neuron precursors before they

establish synaptic contact with their peripheral target led to the general idea that

early in development, local (non-target-derived) neurotrophins act on their receptor

to influence proliferation, survival and differentiation of neural progenitors in the

PNS (Schecterson and Bothwell 1992; Buchman and Davies 1993; Elkabes

et al. 1994; Farinas et al. 1996; White et al. 1996; Rifkin et al. 2000). Accordingly,

several studies in chick, quail and mice have further demonstrated a role for NT3 in

proliferating sensory neuron precursors. PNS stem cells in vivo respond to NT3

during gangliogenesis which can arrest their proliferation. In vitro, NT3 is able to

stimulate the proliferation of chick and quail NCCs as well as early rat DRG cells

(Kalcheim et al. 1992; Pinco et al. 1993; Memberg and Hall 1995). NT3 also

promotes neurogenesis for a subset of NCCs in vitro (Henion et al. 1995) as well

as the maturation of early isolated chick DRG neurons in vitro (Wright et al. 1992).

Addition of anti-NT3 antibodies in chick at the time of gangliogenesis induces a

dramatic loss of sensory neurons both in DRG and nodose ganglion (Wright

et al. 1992; Lefcort et al. 1996), and the loss occurs in precursor cells (Lefcort
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et al. 1996). Thus, at early stages, in vivo functions of NT3 include regulation of

neuronal precursor proliferation or induction of differentiation of precursors into

TrkC-expressing neurons that will become dependent on NT3 for survival. These

effects are specific to NT3 and could not be mediated via NGF signalling (Gaese

et al. 1994). These effects of NT-3 on NCCs proliferation seems to be mediated by

activation of full-length TrkC receptor (Hapner et al. 1998). All these effects exist

before the target-dependent neurotrophic period and are due to locally produced

NT3. Surprisingly, addition of NT3 in the same experiment, i.e. directly to the chick

embryo before gangliogenesis when neuroblasts are still proliferating, also reduced

the numbers of sensory neurons in DRG and nodose ganglia as well as a reduction

of proliferating neuroblasts (Ockel et al. 1996). If NT3 is applied later, the number

of neurons is increased, consistent with the role of NT3 in promoting survival of

mature neurons (Ockel et al. 1996). In mice mutants for NT3 at E12, the numbers of

neurons were normal, but there were fewer precursor cells (Farinas et al. 1996).

This was interpreted as a depletion of the progenitor pool by premature

neurogenesis in the absence of NT3. However, since no expression of Trk receptors

has been detected in proliferating sensory precursors in mice (Farinas et al. 1998),

these effects of NT3 could be indirect (Farinas et al. 2002).

Since the DRG neuronal loss in TrkC mutant is much less pronounced than in

NT3 mutants at early stages (Ernfors et al. 1994; Klein et al. 1994; Minichiello

et al. 1995), it is believed that early locally produced NT3 acts via TrkA activation

(Davies et al. 1995; Huang et al. 1999). However, whereas TrkA and NGF mutants

showed a synchronous cell death at E13.5, TrkC and NT3 null mutants exhibit cell

death at E11.5. In the trigeminal ganglion, similar results were observed (ElShamy

and Ernfors 1996; Pinon et al. 1996; Wilkinson et al. 1996). Additional early role in

neural crest commitment/differentiation to the sensory lineage have been attributed

to BDNF in vitro (Sieber-Blum et al. 1993). However, such a function has never

been demonstrated in vivo.

3.2 From Dividing Neuronal Progenitors to Post-mitotic Sensory
Neurons

The transition from a dividing neuronal progenitor to a post-mitotic sensory neuron

involves the down-regulation of the proneural genes neurogenin-1 and -2 and the

induction of transcription programmes characteristic of the post-mitotic state. The

transcription factors Islet1 and Brn3a play an essential role in this transition in

sensory neurons, since in mice lacking both of these factors, Ngn expression is

maintained and all studied early sensory neuron markers, including Trk receptors,

are absent (Dykes et al. 2011). However, the general neural marker βIII-tubulin was
expressed almost normally, showing that neurogenesis was not affected, whereas

the process of sub-type specification was completely compromised. Brn3a expres-

sion is correlated with the onset of expression of Trk receptors in post-mitotic

neurons, and mice lacking Brn3a fail to express TrkA in sensory neurons and

subsequently die presumably due to lack of trophic support from neurotrophins
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(McEvilly et al. 1996). NT-3 acting on progenitors may play a role in this process,

since it has been shown at least in trigeminal progenitors in culture that NT3 can

induce Brn3a expression (Wyatt et al. 1998).

4 Transcription Programmes in the Development
of Somatosensory Neurons (Fig. 2)

Depending on the cellular context and the developmental stage, the further

development of sensory neurons is characterised by crosstalk between transcrip-

tional programmes and neurotrophins-Trk receptors and several other neurotrophic

factor signalling pathways. As described above, Trk receptor expression in sensory

neurons is highly dynamic throughout embryonic development. Because of the

restricted neurotrophin receptor expression profiles in sub-types of specified sen-

sory neurons, one strategy used by developmental neurobiologists to identify such

transcriptional programmes has been to study the transcriptional regulation of the

neurotrophins receptors TrkA, TrkB and TrkC (for review see Lei and Parada

2007).

Regulation of the TrkA promoter by transcription factor binding
The first and best-characterised enhancer of a neurotrophin receptor gene is the

promoter of the trkA gene (Sacristan et al. 1999; Ma et al. 2000, 2003). In this

promoter, several binding sites for the transcription factor Brn3a, conserved across

species, have been characterised (Ma et al. 2003; Valderrama and Misra 2008).

However, loss of Brn3a results in a loss of TrkA expression and neurons in the

sensory trigeminal ganglion but not in the DRG (McEvilly et al. 1996; Xiang

et al. 1996; Huang et al. 1999; Eng et al. 2001). The Kruppel-like zinc-finger

transcription factor Klf-7 has been found to be expressed in TrkA-positive neurons

in the developing sensory ganglia (Lei et al. 2001) and cooperates with Brn3a to

activate the trkA enhancer (Lei et al. 2006). Mutation of the Klf7 gene led to a loss

of TrkA expression and subsequent neuronal death by apoptosis of nociceptive

sub-classes (Lei et al. 2005). Similarly, the homeodomain interacting protein kinase

2 (HIPK2) interacts with Brn3a to promote its binding to DNA but suppresses its

activation of TrkA transcription. Mutant mice displayed increased TrkA expression

and neuronal numbers in the trigeminal ganglia (Wiggins et al. 2004). However, no

effect of HIPK2 inactivation was reported in DRG neurons.

Other DNA binding protein such as Zhangfei/Crebzf (Valderrama et al. 2008),

the deltaNp73 isoform of the p73 gene (Zhang and Chen 2007), have been shown to
bind the trkA promoter and to modulate its transcription. However, although they

might be expressed in developing DRG, their roles in the specification of the

nociceptive sub-class of sensory neurons remain to be demonstrated.

Transcription factors and the regulation of neurotrophin receptor genes
expression

As mentioned above, Brn3a and Islet have been shown to be critically important

for the development of sensory neurons (Dykes et al. 2011). In DRGs of Brn3a/
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Fig. 2 Differentiation of somatosensory neurons from multipotent neural crest cells. Neural crest

cells (NCC) give rise to two major sub-classes of sensory neuron precursors expressing the

proneural genes ngn1 and ngn2. Ngn2 precursors generate most of the myelinated afferent sensory

neurons, whereas umyelinated nociceptors, thermoceptors and low-threshold C-fibres are

generated from the Ngn1 precursor population. Brn3a and Islet1 suppress Ngn expression and

drive neuronal differentiation and neurotrophin survival dependence, in part through the regulation

of Trk receptor expression. By cross-inhibitory mechanisms, Runx3 and Shox2 transcription

factors further differentiate neurons towards the proprioceptor and mechanoreceptor lineages.

Maf transcription factors play roles in the generation of specific sub-types of mechanoreceptor

neurons. In the Ngn1-dependent lineage, Klf7 and Runx1 drive TrkA expression at early stages

and Runx1, via regulation of TrkA expression, plays an essential role in the generation of diversity

of thermo- and nociceptors later in development
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Islet1 double mutant mice at E13, there was an absence of expression of TrkA, -B

and -C as well as several other transcription factors (Runx3, Runx1, ER81) and

signalling molecules (Ret) necessary for the generation of sensory neuron

sub-types. Transcription factors of the Runx family play important roles in the

specification of the proprioceptor and nociceptor functional classes of sensory

neurons. In the proprioceptive lineage Runx3 is required for the expression of

TrkC as well as parvalbumin and represses that of TrkB (Inoue et al. 2002, 2007;

Levanon et al. 2002; Kramer et al. 2006). At later stages of development Runx3 is

also expressed in skin innervating sensory neurons that have not yet been function-

ally identified and may also regulate the expression of TrkA and CGRP in these

neurons (Nakamura et al. 2008). A potential mechanism for the direct regulation of

trkB gene transcription by Runx3 was suggested by the identification of a negative

regulatory sequence in intron 7 of the trkB gene that contains Runx binding sites

and is responsive to TrkC signalling (Inoue et al. 2007). The level of Runx3

expression in proprioceptive and cutaneous afferents neurons also controls the

projection termination region of these afferents along the dorso-ventral axis of

the spinal cord (Chen et al. 2006a) although it has been suggested that this could

be a secondary effect of inefficient peripheral target innervation in Runx3 mutants

that results in loss of access to retrograde signals that control the expression of

ER81 (Lallemend et al. 2012). A recent study showed that Runx3 expression levels

also influence the rate of axon growth of proprioceptive neurons in the periphery

and thus could be a mechanism for adapting axon growth rate to the proximo-distal

position of target muscles (Lallemend et al. 2012).

The cross-inhibitory mechanisms by which transcription factors promote a

particular cellular fate while simultaneously suppressing alternative fates are well

illustrated by the inhibition of the mechanoreceptive neuron factor Shox2 by Runx3

(Abdo et al. 2011; Scott et al. 2011). Shox2 is necessary for the development of

TrkB-positive neurons. Runx3 suppresses Shox2 and TrkB expression in TrkC

proprioceptive neurons. Conversely, in the putative mechanoreceptor neuron popu-

lation, Shox2 promotes TrkB expression and inhibits TrkC expression.

Small cell-body diameter unmyelinated neuron sub-classes include all

nociceptors, thermoreceptors, pruriceptors and low-threshold C-fibre

mechanosensory neurons. These neurons all arise from the Ngn1-expressing pre-

cursor population (Ma et al. 1999; Kramer et al. 2006). As they exit the cell cycle,

they express Runx1 and are characterised by the early expression of TrkA. As is the

case for Runx3 expression in the proprioceptive lineage, early Runx1 expression

depends on Brn3a and Islet1 (Dykes et al. 2011). Later in development (E15 to

postnatal stages), Runx1 plays an essential role in the diversification of nociceptors

into two major classes: the TrkA-positive peptidergic nociceptors expressing CGRP

and substance P and the Ret-positive non-peptidergic IB4 lectin binding

nociceptors (Chen et al. 2006b; Kramer et al. 2006; Yoshikawa et al. 2007).

Thus, NGF signalling through TrkA causes down-regulation of Runx1 in

peptidergic nociceptors. Reciprocally, Runx1 is essential for the down-regulation

of TrkA and the up-regulation of Ret in the non-peptidergic nociceptor population

(Luo et al. 2007). Most of the functions of Runx1 including its role in the
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diversification into peptidergic and non-peptidergic sub-classes require a genetic

interaction with the homeodomain transcription factor Tlx3, which is broadly

expressed in developing DRG neurons (Lopes et al. 2012). Although absence of

Runx1 does not appear to affect the initiation of TrkA expression in the mouse in

some studies (Yoshikawa et al. 2007), others have reported an early loss of TrkA-

positive neurons in another Runx1-deficient mouse model (Kobayashi et al. 2012).

Nevertheless, gain or loss of function experiments in the chick and in vitro analysis

of TrkA promoter activity, together with the late function of Runx1 in the perinatal

diversification of the two main sub-classes of nociceptors, suggest that Runx1 can

directly modulate trkA transcription (Mulloy et al. 2005; Marmigere et al. 2006;

Chen et al. 2006b; Kramer et al. 2006; Yoshikawa et al. 2007). As demonstrated for

Runx3 and proprioceptive neurons (Lallemend et al. 2012), the levels of Runx1

seem to be important in determining the axonal rate growth of nociceptive neurons

(Chen et al. 2006b; Marmigere et al. 2006; Marmigere and Ernfors 2007). Runx1 is

necessary for the correct central projections of IB4-positive non-peptidergic

neurons in the dorsal horn, and Runx1 mutant mice display altered inflammatory

and neuropathic pain behaviours (Chen et al. 2006b). Further detailed analyses

revealed that Runx1 characterises two populations of nociceptors, distinguished by

persistent or transient Runx1 expression and that these sub-classes of nociceptors

play roles in inflammatory or neuropathic pain, respectively (Abdel Samad

et al. 2010).

How are the Runx3 and Runx1 lineages established? Analysis of single Brn3a

and Islet1 knockout mice suggest that these factors have a partially selective role in

sub-type specification, in that Brn3a and Islet1 are the principal regulators of Runx3

and Runx1 expression, respectively, but loss of both factors is required to

completely extinguish expression of these sub-type markers (Dykes et al. 2011).

In line with this, mice lacking Islet1 alone lose most cutaneous innervation whereas

muscle proprioceptors are normal (Sun et al. 2008). Nevertheless, it is not yet

known if Brn3a and Islet1 directly regulate runx genes, or if they create a cellular

environment that allows other signalling pathways to induce gene expression.

DRG11/Prrxl1 is a paired homeodomain protein that plays a role in the correct

spatio-temporal projections of primary nociceptive neurons to the superficial

laminae of the spinal cord (Chen et al. 2001). Expression of DRG11 appears at

E12 in mouse DRG neurons (Chen et al. 2001), and two different isoforms are

expressed in the same sensory neuron sub-classes (Rebelo et al. 2009). Genetic

ablation of DRG11 leads to loss of central projections of nociceptive afferents

during embryonic stages and a reduction in peptidergic and non-peptidergic noci-

ceptive neuron numbers post-natally accompanied by behavioural deficits in

nociception without affecting large DRG neurons. However, analysis of the expres-

sion of series of molecular markers of nociceptive neurons including TrkA showed

no differences between wild-type and mutant mice DRGs throughout embryonic

development (Chen et al. 2001; Rebelo et al. 2006), contrasting with the effect of

Runx1 inactivation on the expression of the same set of genes. Interestingly,

DRG11 is also expressed in second-order interneurons in the superficial dorsal

horn, and the expression of PKC gamma, a marker of a subset of spinal interneurons
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involved in pain processing, was lost in mutant mice. C-fibre innervation of

peripheral tissues was also reduced at postnatal stages in mutant mice (Rebelo

et al. 2006). Although expressed in the same neurons at the same time, it appears

that DRG11 and Runx1 act on different sets of genes to exert their functions. Runx1

would appear to specify nociceptor sub-type identity whereas DRG11, by as yet

unknown mechanisms, is important for spatiotemporal control of nociceptor

projections. The postnatal growth of peptidergic and non-peptidergic nociceptive

neurons strongly depends on TrkA and Ret signalling, respectively. Whether

DRG11 transcriptionally regulates or is activated downstream of these signalling

pathways has not been explored in detail.

The homeobox gene hoxD1 is expressed in the TrkA-expressing nociceptive

population beginning at E12 in mouse development (Guo et al. 2012). Interestingly,

HoxD1 expression in nociceptors is particular to mammals and seems to be

important for differences in nociceptive circuitry between mice and chick (Guo

et al. 2012). In HoxD1 mutant mice, several classes of skin innervating nociceptors

display abnormal termination patterns. In addition, central projections of

nociceptors in the spinal cord were aberrant and resembled those of the chick. It

was therefore suggested that the hoxD1 gene was co-opted during mammalian

evolution to play a role in determining the mammal-specific characteristic features

of nociceptive circuits.

Until recently, much less was known about the transcriptional programmes that

drive the specification and differentiation of low-threshold mechanoreceptor

neurons responsible for touch sensation. Progress was hampered by the very low

representation of these neurons, their high diversity and the lack of specific markers

to identify them. Mafs are members of the leucine zipper transcription factor

superfamily. Two members of the Maf family have now been shown to be impor-

tant for the development of highly specific sub-types of myelinated low-threshold

mechanoreceptors, namely the rapidly adapting afferents (RA-LTMs) that inner-

vate hair follicles, Pacinian corpuscles and Meissner corpuscles of the glabrous

skin. cMaf and MafA are both expressed in these neuronal sub-types (Bourane

et al. 2009; Wende et al. 2012). These neurons specifically express the Ret tyrosine

kinase receptor from early stages and loss of Ret causes defects in their peripheral

and central target innervation (Luo et al. 2009). cMaf is essential for the develop-

ment of these neurons. Mutant mice display defective innervation of hair follicles

and reduced and/or atrophied Pacinian and Meissner corpuscles and altered electro-

physiological response of RA-LTMs. Human patients carrying point mutations in

the cMaf gene present aberrant sensitivity to vibration stimuli, in accordance with

the observed defect in the Pacinian corpuscle innervating afferents in the mutant

mice (Wende et al. 2012). Interestingly, cMaf is also necessary for the expression of

the voltage-gated potassium channel KCNQ4. KCNQ4 is found at the peripheral

nerve endings of Aβ-hair follicle afferents and Meissner corpuscles and is required

for the proper velocity coding and frequency tuning of these receptors in both mice

and human (Heidenreich et al. 2012). The role of MafA in these neurons is less

clear, and loss of MafA in mutant mice could potentially be compensated by cMaf.

The expression of MafA is dependent on cMaf expression, but MafA has been
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shown to regulate the proportions of TrkB and Ret myelinated afferents (Bourane

et al. 2009). In line with a putative redundancy between these two factors, cMaf/

MafA double mutants have a more severe Pacinian corpuscle phenotype than cMaf

mutant alone (Wende et al. 2012). cMaf is necessary for the maintenance but not the

initiation of Ret expression in these neurons, and Ret expression is progressively

lost in RA-LTMs in cMaf mutants between E13 and P0. Thus, some of the defects

seen in cMaf mutants are most likely due to loss of Ret signalling. Indeed, cMaf and

Ret mutants display several similar phenotypes such as aberrant peripheral and

central projections of RA-LTMs (Bourane et al. 2009; Luo et al. 2009; Wende

et al. 2012).

The homeobox protein Shox2 was shown to be widely expressed in early DRG

neurons, later becoming progressively restricted to the medium diameter cell body

neurons that are TrkB-positive putative mechanoreceptor neurons (Abdo

et al. 2011; Scott et al. 2011). Conditional ablation of Shox2 in neural crest

derivatives caused a 60 % reduction in the numbers of TrkB-positive neurons by

P0 (Scott et al. 2011). However, no evidence of cell death was found suggesting a

failure of differentiation of TrkB neurons. Analysis of cutaneous innervation in

Shox2 mutant skin showed deficits in the innervation of Merkel cells, hair follicles

and Meissner corpuscles whereas Pacinian corpuscles were unaffected (Abdo

et al. 2011). Loss of a single shox2 allele caused an intermediate reduction in the

numbers of TrkB-positive neurons, and heterozygous Shox2 mutant mice displayed

a reduced sensitivity to mechanical stimulation of the paw (Abdo et al. 2011).

Whether and how Shox2 and Maf genes interact genetically in the development of

mechanoreceptors has not been addressed so far.

The homeodomain transcription factor Cux2 is expressed in subsets of post-

mitotic neurons in the DRG from early stages of development (Bachy et al. 2011). It

was shown that a part of this neuronal population that expresses TrkA is derived

from the Ngn2-positive first wave of DRG sensory neurogenesis. These early-born

TrkA-positive neurons are thought to become Aδ nociceptors that have lightly

myelinated fibres and convey sharp pain in response to mechanical insults.

Mouse mutants at the cux2 locus did not show any changes in neuronal numbers

or in the numbers of cells expressing sub-type-specific markers during develop-

ment. However, adult Cux2 mutant mice were hypersensitive to mechanical stimuli

(Bachy et al. 2011).

The three members of the Brn3 family of transcription factors (Brn3a, -b and -c)

are expressed in subsets of DRG neurons. Genetic labelling in mice using Brn3-Cre

alleles crossed with reporter mice allowed the visualisation of afferent arbours in

the skin and spinal cord of adult animals (Badea et al. 2012). It was shown that

Brn3a is expressed in a wide variety of DRG neurons whereas Brn3b and Brn3c

were restricted to hair follicle innervating mechanoreceptors and peptidergic

nociceptors, respectively. No somatosensory neuron phenotype was detected in

Brn3b and Brn3c mutant mice (Badea et al. 2012).

In conclusion, there is a growing body of information about the transcriptional

programmes regulating the different stages of neurogenesis, specification and

differentiation of different functional sub-classes of sensory neurons. These
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programmes could have direct effects on the transcriptional regulation of

neurotrophin receptor genes and/or be regulated by neurotrophins signalling as

evidenced by studies on the Runx and Maf families of transcription factors. As

was the case for the initial thinking that one Trk receptor was expressed by one

functional sub-class of neurons, recent data on Runx1 and Runx3 expression in

sensory neurons during development suggest that the dichotomy of Runx1/

nociceptors and Runx3/proprioceptors is an over-simplification (Yoshikawa

et al. 2013). Indeed, Runx transcription factors expression appears to be also highly

dynamic throughout development, overlapping with TrkB, c-Ret and TrkC in some

mechanoreceptive neurons (Yoshikawa et al. 2013). Similarly, the c-Maf transcrip-

tion factor is also found expressed in some TrkA/CGRP and TrkC/parvalbumin

neurons (Wende et al. 2012). Thus, it is tempting to speculate that if all these factors

are involved in the transcriptional regulation of trk genes, their levels of expression
together with their appropriate combinations will be the key to crack the code

specifying each sensory sub-type. To fully resolve this issue, many questions

remain to be answered, such as how these factors are induced? What are the

hierarchical relationships between many of the transcription factors expressed in

the same neuronal lineage?What are the downstream transcriptional targets respon-

sible for the observed phenotypes in the respective mutants? When different factors

are expressed in the same neuronal sub-type, do they cooperate in their actions or

function in parallel to drive specific aspects of neuronal differentiation? Technical

advances such as ChIP will help to further progress in this area. Besides, the role of

epigenetic factors such as chromatin modifications and histone acetylation in DRG

neuron specification has only been touched on (Eng et al. 2007) but remains to be

explored in detail.

4.1 Retrograde Control of Transcription Factor Expression
by Neurotrophin Signalling

Whereas early steps such as neurogenesis and process outgrowth depend on intrin-

sic transcriptional programmes, target dependent signals are an essential part of the

mechanisms by which neurons are integrated into neuronal circuits (Hippenmeyer

et al. 2004). Limb ablation experiments in chick embryo were instrumental in the

discovery of target-dependent survival and the identification of NGF. The impor-

tance of target-derived neurotrophins in the survival of different functional

sub-types of somatosensory neurons has been well documented. With the identifi-

cation of transcription factors specific to functional sub-types of sensory neurons, it

became possible to study the role of signals from target tissues for the correct

development of neurons that innervate them. After early specification by Runx3 has

occurred, expression of two members of the ETS family of transcription factors

(ER81 and Pea3) is turned on in proprioceptive neurons, as well as in specific pools

of motoneurons in the spinal cord (Lin et al. 1998; Arber et al. 2000; Patel

et al. 2000). In mouse and chick, ER81 was shown to regulate late steps in the

differentiation of these neurons (Arber et al. 2000; Patel et al. 2003; Lee
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et al. 2012). ER81 functions to control appropriate projections of proprioceptive

neurons since mutation of the er81 gene results in failure of these afferents to

invade the ventral spinal cord and form synapses on motoneurons (Arber

et al. 2000), in spite of the fact that peripheral projections to muscle are normal.

Thus, in ER81 mutant mice, Ia proprioceptive afferents terminate prematurely in

the intermediate spinal cord and fail to make monosynaptic connections with

α-motoneurons. Limb ablation in the chick showed that limb-derived signals

were necessary for the expression of these factors in sensory neurons during a

period preceding programmed cell death (Lin et al. 1998). Subsequently, it was

shown, by analyzing NT3/Bax double mutant mice in which proprioceptive Ia

afferents survive in the absence of NT3, that NT3 produced in muscle is necessary

for the expression of ER81. Accordingly, forced expression of NT3 in muscle of

NT3 knockout mice restored ER81 expression in Ia proprioceptive neurons (Patel

et al. 2003).

NGF retrograde signalling is also necessary for definitive phenotypic differenti-

ation of nociceptive neurons. In TrkA/Bax double mutant, nociceptive neurons also

survive in the absence of neurotrophins retrograde signalling (Patel et al. 2000).

Using this mutant, it was possible to demonstrate that the expression of CGRP and

Substance P, two neuropeptides expressed by TrkA-positive peptidergic

nociceptors, as well as the expression of c-Ret by non-peptidergic nociceptors

depend on TrkA/NGF signalling. Furthermore, this model was used to show that

NGF/TrkA signalling is responsible for the acquisition of mechanosensitivity in

nociceptors (Lechner et al 2009). In the case of Runx1, this factor is essential for the

early induction of TrkA expression in the nociceptive neuron lineage but is itself

subsequently down-regulated by TrkA signalling during the transition of the noci-

ceptive class of neurons into peptidergic TrkA-positive and non-peptidergic

Ret-positive sub-classes. Runx1 expression in the non-peptidergic neuron inhibits

TrkA expression. This “reiterative” transcription factor/Trk receptor interaction has

been proposed to be a hallmark of sensory neuron development (Lallemend and

Ernfors 2012).

Recently, it was shown that NGF/TrkA signalling is necessary of the induction

of HoxD1 gene in mouse nociceptors both in vitro and in vivo (Guo et al. 2012).

HoxD1, through the regulation of as-yet-unknown effector genes, subsequently

plays an important role in controlling the correct peripheral and central target

innervation by nociceptors. In an interesting evolutionary twist, Guo

et al demonstrated that this NGF/TrkA/HoxD1 signalling pathway is specific to

mammals and is not present in lower vertebrates.

Conclusions and Future Questions

As sensory neuron progenitors exit the cell cycle and begin to differentiate, they

rapidly turn on the expression of transcription factors that drive their diversifi-

cation into broad functional sub-classes. Under the influence of Brn3a and Islet1,

newly born DRG neurons express multiple Trk receptors and probably respond

to short range autocrine/paracrine cues. Neuronal specification involves refine-

ment of Trk receptor expression by Runx transcription factors for the
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proprioceptive and nociceptive lineages whereas Shox2 is important for TrkB

expression in mechanoreceptor neurons. Members of the Maf family of tran-

scription factors are induced very early in mechanoreceptor neurons sub-types

by as-yet unknown mechanisms and are essential for their further development.

Certain of these transcription factors (Runx3, cMaf, MafA and Runx1) are

expressed from very early stages and are, to an extent, predictive for the final

functional phenotype of these neurons in the adult animal, suggesting that the

broad functional classes, i.e. proprioceptive, mechanoceptive and nociceptive

are specified just after neuronal birth, before the neurons have extended

projections to their target tissues. Other neurotrophic factor signalling pathways,

notably those acting through Ret and Met receptors (Gascon et al. 2012), func-

tion in a complex interplay with the Trk receptors to further refine and sub-divide

the different functional sub-types of sensory neurons. As sensory neurons

innervate their target tissues, they receive trophic and differentiation signals,

probably summing biochemical and electrophysiological information that con-

trol the transcriptional networks necessary for the consolidation of neuronal

identity and to form appropriate projections to central target regions.

Since the discovery of neurotrophins and their receptors, somatosensory

neurons of the DRG, because they express all Trk receptors, have been a

model of choice to decipher the functions of neurotrophins signalling. Therefore,

the effects we discussed here on survival, axonal growth, early and late neuronal

specification are among the plethora of neurotrophins functions that were

initially unravelled in sensory neurons. In the future, novel functions will

certainly be attributed to neurotrophins signalling and the peripheral nervous

system will definitively remain a precious model for such discovery. For

instance, in the sympathetic nervous system, a novel function of NGF involving

retrograde transport from the peripheral target in the control of synapse assembly

with the central target has been demonstrated (Sharma et al. 2010). Besides,

emerging data on pro-neurotrophins and new Trk receptor interacting molecules

are revealing unexpected functions and even antagonistic effects to the well-

established role of Trk receptors, as shown by the collapsing effect of proBDNF

on DRG neurite outgrowth (Sun et al. 2012) or the enhancing effect of sortilin on

retrograde transport of neurotrophins by interacting with TrkA, B and C

(Vaegter et al. 2011).
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Part IV

Neurotrophins in Pathological Conditions



Huntington’s Disease

Chiara Zuccato and Elena Cattaneo

Abstract

Changes in the level and activity of brain-derived neurotrophic factor (BDNF)

have been described in a number of neurodegenerative disorders since early

1990s. However, only in Huntington disease (HD) gain- and loss-of-function

experiments have mechanistically linked these abnormalities with the genetic

defect.

In this chapter we will describe how huntingtin protein, whose mutation

causes HD, is involved in the physiological control of BDNF synthesis and

transport in neurons and how both processes are simultaneously disrupted in

HD. We will describe the underlying molecular mechanisms and discuss

pre-clinical data concerning the impact of the experimental manipulation of

BDNF levels on HD progression. These studies have revealed that a major

loss of BDNF protein in the brain of HD patients may contribute to the clinical

manifestations of the disease. The experimental strategies under investigation to

increase brain BDNF levels in animal models of HD will also be described, with

a view to ultimately improving the clinical treatment of this condition.
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Abbreviations

3NP 3-Nitropropionic acid

AAV Adeno-associated viral vector

ALS Amyotrophic lateral sclerosis

AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BAC Bacterial-derived artificial chromosome

ARNT2 Aryl hydrocarbon receptor nuclear translocator 2

BDNF Brain-derived neurotrophic factor

CaM kinase II α-Subunit of Ca2+/calmodulin-dependent kinase II

cAMP Cyclic adenosyne 30 50 monophosphate

CaRE1/2/3 Ca2+ Responsive element 1, 2 and 3

CaRF Calcium responsive transcription factor

CBP CREB Binding protein

C/EBP/beta CCAAT/Enhancer binding protein beta

ChIP Chromatin immunoprecipitation

CNS Central Nervous System

coREST REST Co-repressor 1

CRE cAMP/Ca2+ Responsive element

CREB CRE Binding protein

DARPP-32 Dopamine- and cyclic AMP-regulated phosphoprotein 32 kDa

DR Dietary restriction

ES Embryonic stem

ELISA Enzyme-linked immunosorbent assay

FDA Food and drug administration

GDNF Glial cell line-derived neurothrophic factor

Emx Empty spiracles homolog

eGFP Enhanced green fluorescent protein

GSK-3β Glycogen synthase kinase 3-beta

HAP1 Huntingtin-associated protein 1

HDAC Histone deacetylase

HD Huntington’s disease

Hdh Huntington disease gene homolog

hsp70 Heat shock protein cognate 70 kDa

HSJ1B Heat shock protein DNAJ-containing protein 1b

muHTT Mutant huntingtin

wtHTT Wild-type huntingtin

IT15 Interesting transcript 15

LiCl Lithium chloride

L-VDCC L-Type voltage-dependent Ca2+ channel

MEF2 Myocyte enhancer factor-2

MeCP2 Methyl-CpG binding protein 2

MEKK Mitogen-activated protein kinase kinase

MLK Mixed lineage kinase
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MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSNs Medium sized spiny neurons

mTOR Mammalian target of rapamycin

NGF Nerve growth factor

NMDA N-Methyl-D-aspartic acid

NPAS4 Neuronal PAS domain protein 4

p75NTR p75 Neurotrophin receptor

PCR Polymerase chain reaction

p150Glued 150 kDa Dynein-associated polypeptide

PasRE Basic helix-loop-helix (bHLH)-PAS transcription factor response

element

PGC-1alpha Peroxisome proliferator-activated receptor gamma coactivator

1-alpha

PKA Protein kinase A

Pro-BDNF BDNF Precursor

RE1/NRSE Repressor element 1/neuron-restrictive silencer element

REST/NRSF RE-1 Silencing transcription factor/neuron-restrictive silencer

factor

RILP REST/NRSF-Interacting LIM domain protein

Sin3a Switch independent homologue 3a

SOX 11 SRY (sex determining region Y)-box 11

Sp1 Specificity protein 1

SSRIs Selective serotonin reuptake inhibitors

SVZ Subventricular zone

TAFII-130 TATA box binding protein (TBP)-associated factor 130 kDa

TGases Transglutaminases

TrkB Tyrosine receptor kinase B

USF Upstream stimulatory factor

Val66Met Valine-to-methionine substitution at position 66

YAC Yeast-derived artificial chromosome

1 Introduction

Huntington’s disease (HD) is a dominant inherited neurodegenerative disorder that

is caused by an unstable expansion of a CAG repeat within the coding region of the

interesting transcript 15 (IT15) gene (HDCRG 1993). The gene encodes for a

protein called huntingtin whose mutation results in an elongated stretch of gluta-

mine in the N-terminal of the protein (HDCRG 1993). Prevalence of the mutation is

about 7–8 cases per 100,000 in populations of Western European descent, with

many more at risk of having inherited the mutant gene. Neuropathological and

neuroimaging studies revealed that the consequence of carrying the HD mutation is

a widespread brain neurodegeneration characterised by the prevalent loss of effer-

ent medium spiny neurons (MSNs) in caudate nucleus and putamen of the basal
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ganglia (Reiner et al. 1988; Rosas et al. 2008). The typical HD symptoms include

personality changes, cognitive declines and generalised motor dysfunction. The

disease is with no effective therapies and progresses inexorably for 10–15 years

from the onset.

The expansion of the CAG tract in huntingtin is the triggering event that endows

the protein with new toxic functions deleterious for brain cells. Since the discovery

of the HD gene in 1993, most of the research has focussed on elucidating the toxic

activities of mutant huntingtin (Zuccato et al. 2010). In addition, we now know that

the HD mutation also impairs the ability of normal huntingtin to exert activities that

are fundamental for the survival and functioning of neurons (Cattaneo et al. 2001,

2005). As we proposed in 2001 (Cattaneo et al. 2001), this loss of function
hypothesis in HD originates from the evidence that an expanded polyQ tract is

present also in other proteins that cause at least eight different neurodegenerative

diseases characterised by the loss of different types of neurons. Accordingly, we put

forward the idea that “whereas the CAG domain always evokes cell death, the
different proteins in whose backbone the CAG is expressed identify the neurons that
will die. If such proteins have crucial functions for the neurons that die in the
disease, the resulting selective neuronal death might be directly attributable to the
loss of those functions” (Cattaneo et al. 2001). A number of findings now indicate

that the ubiquitously expressed huntingtin protein has physiological function(s) that

are particularly important for the brain, both during development and in adulthood

(Zuccato et al. 2010; Cattaneo et al. 2005). It is in the context of these studies that
brain-derived neurotrophic factor (BDNF) has been mechanistically linked,
through gain and loss of function experiments, to normal and mutant huntingtin
for the first time.

Most of the striatal BDNF is produced in the cerebral cortex and anterogradely

delivered via the cortico-striatal afferents to the corpus striatum where it controls

the activity of the cortico-striatal synapse while promoting the survival and matu-

ration of the medium spiny neurons that are affected in HD (Altar et al. 1997;

Baquet et al. 2004; Rauskolb et al. 2010). A 50 % reduction in BDNF levels at this

synaptic site may thus contribute to striatal and cortical vulnerability. The hypoth-

esis of a link between huntingtin and BDNF is supported also by the fact that they

are co-localised in 99 % of the pyramidal neurons of motor cortex (Fusco

et al. 1999, 2003)

The first proof in favour of this hypothesis was obtained in 2001. We reported

that a crucial function of wild-type huntingtin is to contribute to the pool of BDNF

protein produced in the cerebral cortex and that a loss or reduction in wild-type

huntingtin as well as the presence of the CAG expansion in huntingtin diminishes

BDNF cortical production and its striatal level (Zuccato et al. 2001). We also

showed that huntingtin’s ability to control cortical BDNF production occurs at a

transcriptional level. Two years later huntingtin’s target on the BDNF promoter was

identified (Zuccato et al. 2003). In 2004, a new piece of data was added by the group

led by Frederic Saudou in Paris who showed that wild-type huntingtin, in addition

to controlling BDNF production, also controls its transport, at least in cells in vitro.

Huntingtin is part of the molecular machinery that drives BDNF vesicles along
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microtubules, and reduced BDNF transport was found in cultured HD cells

(Gauthier et al. 2004). In light of the evidence indicating reduced levels of BDNF

in HD, a number of studies involving HDmice have tested the impact of reducing or

augmenting the level of this neurotrophin on disease onset and progression. The

general conclusion is that “the BDNF loss” contributes to clinical manifestations in

mice. This has generated considerable excitement about the idea of establishing a

“BDNF therapy” for HD.
In this chapter we will describe the relevant data indicating that the production

and transport of BDNF are under the stimulatory control of wild-type huntingtin,

and that the mutation in the huntingtin gene as it occurs in HD causes the loss of this

stimulatory activity, leading to a reduced BDNF protein level in cortex and

striatum. We will emphasise the experiments performed on HD animal models

and on tissue from patients with HD, as these have revealed defects in BDNF

transcription, intracellular transport and postsynaptic targeting, as well as

alterations in downstream signalling pathways. We will also present the available

evidence highlighting the effect of reduced BDNF in HD, along with data showing

that increased levels of BDNF are neuroprotective in the HD brain. Finally, we will

describe the current experimental strategies under investigation that are aimed at

increasing brain BDNF levels in animal models of HD, with a view to ultimately

improving the clinical treatment of this condition.

2 Wild-Type Huntingtin and BDNF Gene Transcription

In this section we describe the evidence linking BDNF gene transcription to wild-

type huntingtin as well as the data demonstrating that a well-known DNA regu-

latory sequence located within the BDNF promoter represents the first identified

downstream molecular target of wild-type huntingtin’s activity on the BDNF gene.

We also discuss the mechanism by which wild-type huntingtin facilitates BDNF

gene transcription and summarise the evidence showing that the same mechanism

underlies the control of wild-type huntingtin over the transcription of other impor-

tant neuronal genes.

2.1 In Vitro and In Vivo Evidence of a Link Between Wild-Type
Huntingtin and BDNF

It was 2001 when huntingtin’s ability to stimulate BDNF production was reported

by means of a cell model of HD represented by immortalised ST14A cells stably

transfected with human full-length wild-type or mutant huntingtin (Zuccato

et al. 2001; Rigamonti et al. 2000). Enzyme-linked immunosorbent assays

(ELISAs) of the different stable ST14A transfectants showed increased BDNF

protein production in the cells overexpressing wild-type huntingtin in comparison

with the mutant clones, which had a lower BDNF content than the mock-transfected

ST14A cells. RNase protection assays further indicated that wild-type, but not
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mutant huntingtin, facilitates BDNF production by acting at the level of BDNF

gene transcription (Zuccato et al. 2001; Zuccato and Cattaneo 2007, 2009).

A second series of experiments showed that the pro-stimulatory effect of wild-

type huntingtin on BDNF gene transcription depends on the activation of one

specific BDNF promoter. At the beginning of 2000s the only data available about

the structure and regulation of the BDNF gene were from work by Tonis Timmusk

and colleagues at that time at Karolinska Institute in Stockholm, which identified

four 50 untranslated exons linked to separate promoters and one 30 exon that encodes
the BDNF protein (Timmusk et al. 1993). They also found that these promoters

were alternatively used, generating a tissue-specific and stimulus-induced pattern of

BDNF expression in the brain (Timmusk et al. 1993, 1995). It was later found that

these different transcripts may also have different subcellular localisation and

targets (Pattabiraman et al. 2005). Further studies from the same group published

in 2007 clarified that the rodent BDNF gene contains a total of nine exons (I, II, III,

IV, V, VI, VII, VIII and IX). The functional BDNF protein is produced following

splicing at the 30 end of exon IX, which contains the coding region (Aid et al. 2007)
(Fig. 1). To evaluate whether the modulatory effect of huntingtin on BDNF gene

transcription results from the preferential activation of one or more of these

promoter regions, promoter reporter assays and polymerase chain reaction (PCR)

for the specific mRNAs were performed (Zuccato et al. 2001). These experiments

demonstrated that enhanced transcription from BDNF promoter II accounts for the

increased BDNF level found in the presence of wild-type huntingtin, whereas

transcription from BDNF promoter I, III and IV [the two last now renamed IV

and VI, according to the new description of the gene by (Aid et al. 2007)] was

unaffected (Zuccato et al. 2001). See Fig. 1.

This was further verified in vivo, in yeast-derived artificial chromosome (YAC)

mice produced by Michael Hayden’s group at the University of British Columbia

and expressing increased full-length wild-type huntingtin with 18 glutamines

(YAC18) (Hodgson et al. 1999). We have found that these mice carry higher

BDNF protein levels as a consequence of the positive regulation on BDNF gene

transcription by wild-type huntingtin. In particular, lysates from the cerebral cortex

of these mice contained 47 � 12 % more BDNF protein than that of their

littermates and, consistently, there was 50 % increase in BDNF protein levels in

the striatum (Zuccato et al. 2001). Increased transcription from BDNF promoter II

accounted for the increased amount of BDNF protein in the cerebral cortex of

YAC18 mice, whereas the transcriptional activity of other BDNF promoters was

unchanged (Zuccato et al. 2001).

While extra copies of wild-type (but not mutant) huntingtin increase BDNF

production in vitro and in vivo, one should expect that cells or brain tissues depleted

of endogenous huntingtin are characterised by reduced BDNF levels. In 2003, we

reported that BDNF mRNA levels were lower in the cerebral cortex of constitutive

heterozygous huntingtin knockout mice (Zuccato et al. 2003). Similarly, the neuro-

nal inactivation of huntingtin in conditional homozygous knockout mice (Dragatsis

et al. 2000) led to a statistically significant reduction in BDNF mRNA levels in the

cerebral cortex (Zuccato et al. 2007). Moreover, BDNF mRNA was progressively
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reduced in mouse embryonic stem (ES) cells in which one or two alleles of the

Huntington disease gene homolog (Hdh) have been inactivated via removal of exon

4 and 5 (Zuccato et al. 2007). This reduction in BDNF mRNA was attributable to a

specific loss of BDNF mRNA II. These studies confirmed that loss of wild-type

huntingtin specifically affects transcription from BDNF exon II promoter (Zuccato

et al. 2003, 2007).

More recently, the group of David Rubinsztein at the University of Cambridge

has used zebrafish to study wild-type huntingtin function. They demonstrated that

loss of BDNF function is a major contributor to many of the developmental defects

seen when huntingtin levels are knocked down in the embryo. BDNF mRNA levels

were reduced in the huntingtin knockdown zebrafish, and these fishes also showed

phenotypes that were very similar to those observed in the BDNF knockdown.

Furthermore, the effects of huntingtin loss, which include brain atrophy, were

attenuated by supplementation of the fish growth medium with recombinant

BDNF protein (Diekmann et al. 2009; Henshall et al. 2009).

The data described above show that the ability of huntingtin to regulate BDNF

expression is a component of its normal function which contributes to maintain the

BDNF pool in the brain through a stimulatory action on BDNF promoter II.

Fig. 1 (a) BDNF gene

structure in humans and

rodents proposed by different

studies. Exons are shown as

boxes and introns as lines.
The BDNF coding region is

indicated in grey.
Homologous exons are

highlighted with the same

colour. (b) Transcription from
BDNF promoter II is

enhanced by wild-type

huntingtin overexpression,

whereas BDNF promoter IV

and VI transcriptional activity

is unaffected. Reduced wild-

type huntingtin levels causes

reduction of BDNF gene

transcription from promoter

II, while transcriptional

activity of promoter IV and

VI is unaffected. Mutant

huntingtin overexpression

reduces BDNF gene

transcription from promoter

II, IV and VI
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2.2 The Involvement of REST/NRSF in Huntingtin’s Activity
in the CNS

The investigation of the mechanism by which wild-type huntingtin stimulates

BDNF gene transcription has concentrated on BDNF promoter II. In 1998 a study

by Tonis Timmusk highlighted that the BDNF promoter II contains a 21- to 23-bp

DNA responsive element named repressor element 1/neuron-restrictive silencer

element (RE1/NRSE), whose activity depends on its cognate transcription factor

RE1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF)

(Timmusk et al. 1999). REST/NRSF is a master regulator of neuronal genes that is

highly expressed in immature Central Nervous System (CNS) cells and at a much

lower level in mature neurons, while remaining abundant in peripheral cells. Its role

is to repress a large cohort of neuron-specific genes, through specific recruitment of

a multi-subunit repressor complex to the RE1/NRSE (Ooi and Wood 2007).

In 2003, REST/NRSF was linked to HD with the discovery that wild-type but not

mutant huntingtin inhibits the silencing activity of the RE1/NRSE within BDNF

promoter II. In particular, wild-type huntingtin was found to retain REST/NRSF in

the cytoplasm, thus reducing RE1/NRSE’s activity and allowing BDNF gene

transcription (Zuccato et al. 2003). Instead, mutated huntingtin causes the patho-

logical entry of REST/NRSF into the nucleus where it can bind to the RE1/NRSE

site and lead to BDNF repression (Zuccato et al. 2003).

In 2008, studies from Masahito Shimojo’s laboratory at University of Kentucky

College of Medicine demonstrated that huntingtin does not interact with REST/

NRSF directly, but is part of a complex that contains huntingtin-associated protein

1 (HAP1) and REST-interacting LIM domain protein (RILP), a perinuclear protein

that directly binds REST/NRSF and promotes its nuclear translocation. When

huntingtin is mutated, REST/NRSF is released from the perinuclear protein com-

plex and accumulates in the nucleus, where it binds to the RE1/NRSE sites within

BDNF exon II and causing reduced BDNF gene transcription (Zuccato et al. 2003;

Shimojo 2008) (Fig. 2).

2.3 Beyond BDNF: An Expanded Role for Wild-Type Huntingtin
in Neuronal Gene Transcription

Bioinformatic studies from Noel Buckley’s group at the University of Leeds

indicated that the potential repertoire of REST/NRSF-regulated genes is extensive.

In fact, in addition to the BDNF gene, the RE1/NRSE is found in thousands of

neuronal genes including those encoding other growth factors, hormones, neuronal

transcription factors, ion channels, proteins involved in axonal guidance,

neurotransmitters, proteins involved in vesicle trafficking, fusion and synaptic

transmission (Bruce et al. 2004). This suggested that wild-type huntingtin may

play a broader role in regulating neuronal gene transcription via inhibition of the

REST/NRSF–RE1/NRSE pathway.

364 C. Zuccato and E. Cattaneo



Several experiments confirmed the above-mentioned hypothesis. ST14A cells

and YAC18 mice overexpressing wild-type huntingtin showed increased levels of

the mRNAs transcribed from many other RE1/NRSE-containing neuronal genes, in

addition to BDNF (Zuccato et al. 2003). In particular, the levels of synapsin-1,

cholinergic receptor nicotinic beta-polypetide 2 and dynamin 1 mRNA were higher

in the cerebral cortex of YAC18 mice, thus indicating that huntingtin may act as a

general facilitator of neuronal gene transcription in the nervous system (Zuccato

et al. 2003). Evidence in favour of a role of wild-type huntingtin in controlling RE1/

NRSE-controlled neuronal gene transcription came also from chromatin

immunoprecipation (ChIP) data showing that REST occupancy is significantly

lower in cells and mice expressing wild-type huntingtin than in HD models

(Zuccato et al. 2007). Consistently, depletion of endogenous huntingtin in cells

Fig. 2 (a) Regulation of BDNF gene transcription by huntingtin. Wild-type huntingtin (as part

of a complex with HAP1, p150Glued and RILP) sequesters REST/NRSF in the cytoplasm, thereby

preventing the formation of a co-repressor complex (involving sin3a, coREST and HDAC) at

RE1/NRSE sites and allowing the BDNF gene to be transcribed. The binding between huntingtin

and REST is indirect: p150Glued, the large subunit of the dynactin complex, bridges the interaction

between wild-type huntingtin and RILP, with the latter directly binding REST/NRSF. (b) The
mutant huntingtin complex in HD is less capable of retaining REST/NRSF in the cytoplasm than

the wild-type complex. REST/NRSF enters the nucleus and the repressor complex is able to form,

leading to reduced transcription of the BDNF gene
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and mice is associated with increased occupancy of REST/NRSF at RE1/NRSE loci

and reduced transcription from the same genes (Zuccato et al. 2003, 2007).

These results identify a key role for normal huntingtin in facilitating transcrip-

tion of REST/NRSF-regulated genes essential for neuronal development and main-

tenance. Proper control of transcription of the BDNF gene is particularly important

for the activity of the cortico-striatal synapse and for the survival of striatal and

cortical neurons, but reduced wild-type huntingtin function in HD may have

broader consequences on neuronal gene transcription through the mechanism

described herein. These findings have also potential therapeutic implications and

suggest that treatment of HD may benefit from the production of drugs that mimic

wild-type huntingtin physiological activity on the REST/NRSF–RE1/NRSE

regulon (Zuccato et al. 2003, 2007; Rigamonti et al. 2007; Conforti et al. 2012).

3 Reduced BDNF Gene Transcription in HD

A 1997 landmark discovery by Stanley J. Wiegand and colleagues at Regeneron

Pharmaceuticals, in New York, showed that most of BDNF protein found in striatum

is produced in the cerebral cortex and anterogradely transported along the cortico-

striatal tract to the MSNs (Altar et al. 1997). MSNs depend on cortically derived

BDNF for their survival and activity (Zuccato and Cattaneo 2007, 2009). Thus, it has

been proposed that reduction in BDNF level in the cerebral cortex or in its delivery

may contribute to striatal (and cortical) vulnerability inHD. The finding that wild-type

huntingtin stimulates BDNF gene transcription and protein production has prompted

analyses of BDNF levels in the brain of transgenic mice and patients with HD.

3.1 Evidence from HD Cell and Animal Models

A first indication of a specific molecular defect in BDNF protein and mRNA levels

in HD came from experiments on striatum-derived ST14A cells overexpressing

full-length wild-type or mutant huntingtin. Although cells overexpressing wild-type

huntingtin produce more BDNF protein, the production of both BDNF mRNA and

protein in mutant huntingtin cells was less than in control cells (Zuccato

et al. 2001). A similar decrease was also found in mutant huntingtin knockin cells

obtained from heterozygous and homozygous huntingtin knockin mice in which a

109 CAG triplet has been inserted in exon 1 of the murine Huntington disease gene
homolog (Hdh) gene (Hdh109/7 and Hdh109/109) (Zuccato et al. 2001, 2003, 2007;

Soldati et al. 2011; Trettel et al. 2000). Moreover, Josep Canals and collaborators at

the University of Barcelona transiently expressed exon 1 of mutant human

huntingtin with 47, 72 or 103 CAG repeats in a striatum-derived cell line and

showed reduced BDNF content. They also indicated that the increase in CAG size

did not exacerbate the BDNF phenotype (Canals et al. 2004). More recently,

reduced level of BDNF mRNA has been reported also in a novel series of mouse

neural stem (NS) cells lines that carry varying number of CAG repeats (20, 50, 111)
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in the mouse huntingtin gene (Conforti et al. 2013). We revealed that reduction in

BDNF mRNA level during neuronal differentiation is CAG dependent up to 111

CAG (Conforti et al. 2013). According to recent in vivo studies some HD

phenotypes may be more promptly revealed in the presence of shorter CAG

expansion (Dragatsis et al. 2009; Morton et al. 2009; Cummings et al. 2012).

Consistent with the in vitro data, many laboratories have found reduced BDNF

levels in total brain or cortical and striatal samples from a large panel ofmousemodels

of HD that show different degrees of similarity to the human condition. The first

in vivo evaluation of BDNF levels in a mouse model of HD has been performed on

YAC mice that express human full-length mutant huntingtin with 72 glutamines

(YAC72) and was described to develop striatal degeneration of MSNs at 12 months

of age. An approximately 30% decrease in BDNF protein levels has been found in the

cortex of 9-month-old YAC72 mice with no disease symptoms (Zuccato et al. 2001).

Another study found reduced BDNF mRNA levels in YAC72 mice from the age of

3 months, thus confirming that BDNF gene transcription can be affected before the

onset of disease symptoms in this animalmodel (Hermel et al. 2004).A 40% reduction

in BDNF content has also been detected in the hippocampus, a finding that may be

consistent with observations of impaired spatialmemory inHDmice, aswell as reports

of hippocampal cell proliferation and neurogenesis deficits (Gil et al. 2005; Grote

et al. 2005; Lazic et al. 2004; Ben M’Barek et al. 2013). Although preliminary, these

data may have a clinical correlate insofar as HD patients show cognitive abnormalities

(Schmidtke et al. 2002). The battery of YAC mice includes also mice carrying

128 CAG repeats (Slow et al. 2003) which are especially interesting because they

show an earlier disease onset with respect to YAC72mice, with age dependent striatal

and cortical degeneration, and development of well-characterised progressive motor

and cognitive deficits (Zuccato et al. 2010). Recently, Baoji Xu and colleagues at

Georgetown University Medical Center have reported similar BDNFmRNA levels in

the cerebral cortex of symptomatic 16-month-old mice YAC128 compared to wild-

type mice (Xie et al. 2010). In the same study levels of mature BDNF determined by

western blot in YAC128 mice were similar in the cerebral cortex, but significantly

reduced in the striatum when compared with control mice (Xie et al. 2010). It is

surprising that BDNF mRNA level and protein do not change in YAC128 cortex at

symptomatic stages,whereas significant BDNF reduction has been found in the cortex,

striatum and hippocampus of YAC72 mice in the absence of neuropathological and

behavioural phenotype (Zuccato et al. 2001; Hermel et al. 2004). Data from our group

have shown that BDNF mRNA level, as determined by quantitative PCR, is approxi-

mately 30 % lower in the cortex of YAC128 mice from pre-symptomatic stages

compared to controls (unpublished data). These different results may be due to the

different techniques used for BDNF mRNA quantisation. Baoji Xu and colleagues

used in situ hybridisation while we have used quantitative PCR.

In 2008 bacterial-derived artificial chromosome (BAC)-mediated transgenesis

was used to develop mouse models of HD expressing full-length mutant huntingtin

with 103 glutamine repeats (BACHD). These mice, produced by William Yang at

the University of California Los Angeles, exhibit progressive motor deficits starting

from 2-months of age, neuronal synaptic dysfunction and late onset selective
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neuropathology, which includes significant cortical and striatal atrophy and numer-

ous degenerating neurons in striatum (Gray et al. 2008). BACHD cortical tissues

have been tested for the BDNF content and significant deficit in BDNF transcription

was found at 8 and 6 months of age (Simmons et al. 2013; Gray et al. 2008). More

recently, reduction in BDNF cortical mRNA has been revealed at earlier time points

(2 and 4 months of age) (Conforti et al. 2012).

Other studies have shown reduced BDNF mRNA and protein levels in HD mice

transgenic for the N-terminal portion of the mutant huntingtin. These mice are

characterised by early onset of symptoms and a fast progression of the disease that

makes them particularly useful to test BDNF levels along disease progression. The

analyses usually cover an experimental window that is no longer than 24 weeks. The

R6/2 line produced by Gill Bates group at King’s College in London and expressing a

63 amino acid N-terminal fragment of mutant huntingtin with 150 glutamines

(Mangiarini et al. 1996) has been tested independently by four groups. Zhang

et al. have reported a 50 % reduction in BDNF protein in total brain from 12-week-

old symptomatic (Zhang et al. 2003) while Wang et al., using animals of the same

age, reported a 20 % decrease in perikarial BDNF mRNA in corticostriatal neurons

located in layer V (which have projections to the striatum) (Wang et al., abstract

450.4/W11, Society for Neuroscience 36th Annual Meeting 2006). In line with the

rapid disease progression—subtle motor and learning deficits appear after approxi-

mately 4–5 weeks and the animals usually die after 13–14 weeks—we found reduced

BDNF mRNA levels in the cerebral cortex from early pre-symptomatic stages

(Zuccato et al. 2005). Luthi-Carter et al. have shown that the same mice exhibit

reduced BDNF gene transcription in the cerebellum from 8 weeks of age, possibly

leading to cerebellar dysfunction and altered motor coordination (Luthi-Carter

et al. 2002). In the last years, the reduction of BDNF in the brain of R6/2 mice has

been confirmed by additional studies (Conforti et al. 2008; Apostol et al. 2008;

Johnson et al. 2008; Mielcarek et al. 2011; Giampà et al. 2013).

Brain BDNF protein levels have been tested, but with conflicting results, in another

transgenic mouse line, R6/1, created at the same time as R6/2. R6/1 mice show slower

disease progression because of the smaller amount of expressed mutant huntingtin

(Mangiarini et al. 1996). Spires et al. (2004) reported that BDNF protein levels were

reduced in R6/1 striatum but not in the cerebral cortex at the age of 5 months (Spires

et al. 2004), whereas Canals et al. found no deficiency in striatal BDNFprotein levels at

the age of 6 months (Canals et al. 2004). The latter authors suggested that the

unchanged BDNF levels in R6/1 mice may be due to the low transgene level, as cells

expressing low levels of an exogenous mutant huntingtin tract do not show a reduction

in BDNF protein content (Canals et al. 2004). Pang et al. have reported similar BDNF

protein levels in the striatum and hippocampus of 5-month-old controls andR6/1mice,

but increased levels were found in the frontal cortex and, in the same study, reduced

BDNF mRNA levels in the striatum, anterior cortex and hippocampus was detected

(Pang et al. 2006). Reduced BDNF mRNA level in the R6/1 hippocampus has been

confirmed by a study fromZajac and colleagues (2010). These conflicting findingsmay

be explained by the different methods used for BDNF protein quantification. Spires

et al. (2004) used western blot, which differentiates mature BDNF (which is found
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decreased) from the immature form (which remained unmodified), whereasCanals and

Pang used ELISA, which is more quantitative but does not distinguish mature and

immature BDNF. It is possible that the striatal level of mature BDNF protein is

significantly decreased but levels of immature BDNF remain largely unchanged

(Pang et al. 2006). Moreover, the reduced levels of BDNF mRNA in striatal neurons

(which transcribe little or no BDNF) probably also affect the still uncertain BDNF

levels in R6/1 mice, and so further investigations are necessary in this mouse model.

BDNF levels have also been tested in N171-82Q mice produced by David Borchelt

laboratory at Johns Hopkins University and expressing a 517 amino acid N-terminal

portion of huntingtin with 82 glutamine repeats driven by a mouse prion protein

promoter (Duan et al. 2003; Schilling et al. 1999). Compared with the R6 mice, the

N171-82Q model has fewer polyglutamine repeats resulting in a later onset of

symptoms.ELISAassays showed thatBDNFprotein levelswere significantly decreased

by 70–80 % in the striatum and cortex of symptomatic 3-month-old N171-82Q mice

(Duan et al. 2003). Quantitative PCR analyses have recently shown that BDNF mRNA

is reduced in the cortex of N171-82Qmice at 4months of age (Conforti et al. 2012). The

above data indicate that R6/2 and N171-82Q mice are attractive tools for the study of

pre-symptomatic therapies aimed at isolating drugs that increase BDNF levels.

BDNF levels have also been analysed in knockin mice that carry the HDmutation

in the appropriate genomic context and express huntingtin protein at a physiological

concentration, thus more reliably replicating the pathogenesis of HD. BDNF protein

levels were first evaluated in a knockin mouse model produced byMarcyMacDonald

at Massachusetts General Hospital in Boston and in which mouse exon 1 has been

replaced with the human exon 1 carrying 111 CAG repeats (Wheeler et al. 1999).

Immunoblots showed a less intense BDNF band in striatal and cortical extracts from

homozygous mutant huntingtin knockin mice (Hdh111/111) aged 5 months (Gines

et al. 2003). Data from Borrell-Pages et al. indicating a small reduction in BDNF

protein levels in total brain samples taken from 3-month-old homozygous knockin

mice further support the notion of a BDNF deficit in this mouse model (Borrell-Pages

et al. 2006). Support for an early BDNF reduction in the brain of mutant huntingtin

knockin mice came also from a study by Simmons et al. who found that BDNF

protein was reduced by 40–45 % in the hippocampus, cortex and striatum of

2-month-old Hdh111/111 mice and from a work by our group highlighting reduced

BDNF mRNA in cortex at 1 month of age (Lynch et al. 2007; Zuccato et al. 2007).

With a few exceptions that require further investigation, this evidence together

speaks in favour of reduced BDNF level in HD cells and animal models and opens

up the possibility that a similar dysfunction may be present in the human disease.

3.2 Reduced BDNF Promoter II Activity in HD

As previously described, wild-type—but not mutant—huntingtin stimulates BDNF

gene transcription by acting at the level of BDNF promoter II. Several evidences

indicate that the presence of a pathological CAG expansion in huntingtin abolishes

the ability to sustain BDNF gene transcription from BDNF promoter II. Reduced
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BDNF mRNA II levels are found in ST14A cells overexpressing full-length mutant

huntingtin (Zuccato et al. 2001), as well as in heterozygous and homozygous

mutant huntingtin knockin cells (Hdh109/7 and Hdh109/109) (Zuccato et al. 2003).

Furthermore, reporter gene assays confirm that BDNF exon II promoter is 60 % less

active in cells overexpressing mutant huntingtin than in parental cells (Zuccato

et al. 2001). Earlier in vivo data support these observations and indicate that BDNF

mRNA II levels are much reduced in the cerebral cortex and hippocampus of

pre-symptomatic YAC72 mice expressing human full-length mutant huntingtin

(Zuccato et al. 2001), and similar findings were reported in an independent study

of the same YAC mice at 3 months of age (Hermel et al. 2004). Reduced BDNF

mRNA II levels have been recently described also in cortical tissues from BAC-HD

and in N171-82Q mice (Conforti et al. 2012). Cortical BDNF mRNA II levels are

25 % less in 8-week-old R6/2 mice than in controls and 60 % less in 12-week-old

symptomatic R6/2 mice (Zuccato et al. 2005). Similar analyses by other authors

have shown a significant depletion of wild-type huntingtin in 7-week-old R6/2 mice

that parallels the timing of the reduced BDNF mRNA II level, thus suggesting that

the decreased transcription from BDNF II promoter in this model may be due to the

reduced level of endogenous huntingtin (Zhang et al. 2003).

The mechanism by which BDNF exon II promoter activity is reduced in HD has

been described previously. As indicated, the RE1/NRSE silencer is the target of wild-

type huntingtin on BDNF promoter II, and the wild-type protein inhibits its silencing

activity by retaining the REST/NRSF transcription factor (which binds and activates

the silencer) in the cell cytoplasm (Zuccato et al. 2003). ChIP assays have highlighted

increased REST/NRSF binding at the RE1/NRSE of BDNF exon II in mutant

huntingtin homozygous HD cells, in animal models (BAC-HD mice, R6/2 mice

and homozygous mutant huntingtin knockin mice) as well as in the cerebral cortex

of HD subjects, and this leads to increased activity of the silencer and to reduced

BDNF mRNA II levels (Zuccato et al. 2007; Conforti et al. 2012) (Fig. 2).

Increased binding of REST/NRSF in the presence of mutant huntingtin is not

confined to the RE1/NRSE of the BDNF gene. Increased REST/NRSF occupancy is

evident in a cohort of RE1/NRSE-regulated genes in different cellular and animal

HD models (Zuccato et al. 2007; Soldati et al. 2011; Johnson et al. 2008; Conforti et

al. 2012; Soldati et al. 2013), resulting in repression of gene transcription. Further-

more, bioinformatic analyses of published microarray data of HD brain have shown

that RE1/NRSE genes are preferentially repressed in HD patients (Johnson and

Buckley 2009). This suggests that increased REST/NRSF repression can explain a

significant fraction of gene dysregulation in the HD brain.

3.3 A Gained Toxic Activity of Mutant Huntingtin on BDNF
Promoter IV and VI

In addition to reduced activity of BDNF promoter II, transcriptional activities of

BDNF mRNA IV and VI are affected in HD cells and mice and contribute to

reduction of the BDNF pool in HD brain. Short regions flanking promoters IV and
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IV have been thoroughly characterised in terms of their regulatory elements of gene

transcription. In HD cells, mouse and human tissue transcription from other BDNF

promoters (BDNF promoter IV and VI) is also affected, suggesting that, in addition

to reduced activity of BDNF promoter II (caused by loss of wild-type huntingtin

activity), other mechanisms are in operation that lead to reduced BDNF gene

transcription that are more specifically linked to mutant huntingtin’s gain of toxic

function (Zuccato et al. 2001, 2007; Zuccato and Cattaneo 2009) (Fig. 1). Informa-

tion on these promoter exons is given below, followed by a summary of

experiments indicating the deleterious effect of mutant huntingtin and speculation

about the underlying mechanisms.

Early studies indicated that BDNF promoter I is physiologically activated at low

levels and stimulated by the administration of kainic acid, which evokes calcium

signals through different subtypes of glutamate receptors (Metsis et al. 1993; Zafra

et al. 1990). For this reason BDNF exon I was originally defined as the inducible

brain-specific promoter (Timmusk et al. 1993; Metsis et al. 1993). Recent studies

by Liu et al. (2006) and by Aid et al. (2007) have shown that BDNF promoter I is

subject to physiological activation as the mRNA transcribed from it can be detected

in the cerebral cortex, cerebellum, hippocampus, thalamus and brain stem (Aid

et al. 2007; Liu et al. 2006), but little is known about the mechanisms regulating the

transcriptional activation of BDNF promoter exon I. It is known that BDNF

promoter exon I has distal and proximal cyclic adenosine 30, 50 monophosphate

(cAMP)/Ca2+ responsive elements (CRE), and a proximal CRE is overlapped by an

upstream stimulatory factor (USF) binding element (Tabuchi et al. 2002). We also

know that the proximal element is bound by CRE binding protein (CREB) and

upstream stimulatory factor 1 and 2 (USF1/USF2) and responds to Ca2+ signals

evoked via L-type voltage-dependent Ca2+ channels (L-VDCC) and N-methyl-D-

aspartic acid (NMDA) (Tabuchi et al. 2000, 2002). A study from Hara and

colleagues suggest that Ca2+ signal-induced transcription of BDNF promoter I is

mediated by REST/NRSF (Hara et al. 2009). More recently, the group of Tonis

Timmusk has identified a asymmetric E-box-like element named PasRE [basic

helix-loop-helix (bHLH)-PAS transcription factor response element] in human

BDNF promoter I and demonstrated that binding of this element by bHLH-PAS

transcription factors ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) and

NPAS4 (neuronal PAS domain protein 4) is crucial for neuronal activity-dependent

transcription from promoter I (Pruunsild et al. 2011).

More robust attempts have been made to elucidate the structure and activity of

BDNF exon IV promoter [BDNF exon III, according to the nomenclature described

in (Timmusk et al. 1993)], which is characterised by the three Ca2+ responsive

elements CaRE1, CaRE2 and CaRE3/CRE. These regulatory elements are

stimulated by Ca2+ signals evoked by N-methyl-D-aspartic acid (NMDA) glutamate

receptor and involve CREB together with CaM kinase IV (Shieh et al. 1998; Tao

et al. 1998). Moreover, CaRE1 and CaRE3/cAMP responsive element are bound by

the neuronal calcium responsive transcription factor (CaRF), whereas CaRE2

activity depends on the binding of transcription factor USF1/USF2 (Tabuchi

et al. 2002; Chen et al. 2003a). Two studies by Chen et al. and Martinowich
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et al. have shown that methyl-CpG binding protein 2 (MeCP2), which binds

methylated CpGs island on DNA and is involved in the long-term silencing of

gene transcription, can selectively bind BDNF promoter exon IV and repress BDNF

gene transcription (Chen et al. 2003b; Martinowich et al. 2003). Membrane

depolarisation triggers the calcium-dependent phosphorylation and release of

MeCP2 from BDNF promoter IV, thus facilitating transcription. Recently, it has

been shown that for a full induction of human BDNF exon IV mRNA transcription,

ARNT2 and NPAS4 binding to a PasRE sequence in promoter IV is needed

(Pruunsild et al. 2011).

Unlike the other BDNF promoters analysed above, BDNF promoter VI

[indicated as IV by (Timmusk et al. 1993)] contains glucocorticoid-responsive

elements, and its activity is influenced by thyroid hormone (Koibuchi et al. 1999)

and corticosterone (Hansson et al. 2006). Additional findings indicate that CaM

kinase II mediates the activation of BDNF promoter VI by Ca2+ influx. Transient

transfection and overexpression experiments have shown that two nuclear isoforms

of CaM kinase II (delta 3 and alpha B) specifically activate only promoter VI

(Takeuchi et al. 2000). Takeuchi et al. has shown that mitogen-activated protein

kinase kinase (MEKK) and protein kinase A (PKA) can also upregulate the activity

of BDNF promoter exon VI; in particular, CaM Kinase II and MEKK, respectively,

activate the promoter linked to BDNF exon VI via CCAAT/enhancer binding

protein beta (c/EBP/beta) and specificity protein 1 (Sp1) transcription factors

(Takeuchi et al. 2002). More recent findings indicate that MEF2 and Sox11 are

also implicated in the regulation of BDNF promoter IV (Lyons et al. 2012; Salerno

et al. 2012).

The first indication about a possible effect of huntingtin on BDNF promoter I, IV

and VI was reported in 2001 by our group. We found that ST14A neural cells

overexpressing the mutant protein do not express BDNF mRNA I (Metsis

et al. 1993), but we did find that transcription from BDNF promoter IV and VI,

which are physiologically subject to activation in the CNS, was significantly

reduced in the presence of the mutant protein. Consequently, BDNF mRNA VI

and VI are also reduced in ST14A cells expressing mutant huntingtin, and their

levels were also lower in heterozygous and homozygous mutant huntingtin knockin

cells (Zuccato et al. 2001). Similar results have been obtained in mouse models of

HD. YAC72 mice show a reduction in BDNF mRNA IV and VI levels starting at

pre-symptomatic stages (Zuccato et al. 2001; Hermel et al. 2004). A similar pattern

has been found in R6/2 mice, which express mutant huntingtin exon 1. In particular,

BDNF exon VI mRNA level was the first to be affected (at 6 weeks of age), while

defects in transcription from promoter IV occurred only at very late stages

(12 weeks of age) (Zuccato et al. 2005). Transcription from BDNF promoter IV

and VI was significantly reduced also in the brain of N171-82Q and in BAC-HD

mice (Conforti et al. 2012).

The mechanism leading to the reduced expression of BDNF mRNA IV and VI in

HD is still unknown. However, an impaired CRE pathway has been observed

(Sugars et al. 2004; Sugars and Rubinsztein 2003) and, as BDNF promoter IV has

a CRE element, it is possible that a dysfunction in CRE activity may account for its
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reduced transcription. Various evidences indicate that crucial proteins in this event

are CREB (which directly binds to the CRE element after phosphorylation by PKA

at Ser133) and the CREB binding protein (CBP), which acts as a bridge between

CREB and the transcriptional machinery. A finding by Joan Steffan and Leslie

Thompson at the University of California Irvine indicates that mutant huntingtin

can interact with both the glutamine-rich activation domain and the acetyl transfer-

ase domain of CBP (Steffan et al. 2001). They also found that a reduction in the

acetyltransferase activity of CBP causes a reduction in histone acetylation (Steffan

et al. 2001), thus leading to a more compact chromatin structure that is less

accessible to transcription factors and potentially explaining the decrease in

CRE-dependent transcription and reduction in BDNF mRNA IV levels. Although

early findings suggested that CBP can be sequestered into mutant huntingtin

aggregates (McCampbell et al. 2000; Nucifora et al. 2001), a study by Yu

et al. showed that altered CRE-dependent gene expression may be due to the

interactions of soluble mutant huntingtin with nuclear CBP, rather than to the

depletion of this transcription factor by nuclear inclusions (Yu et al. 2002). CBP

is therefore subtracted from the transcriptional machinery regulating the CRE

element in BDNF promoter IV. Reduced CREB phosphorylation (Gines

et al. 2003; Giampa et al. 2006) and reduced cAMP levels (Gines et al. 2003)

may also contribute to reduced transcription from BDNF exon IV promoter in an

HD background. Moreover, CRE-mediated transcription is also activated by TATA

box binding protein (TBP)-associated factor, 130 kDa (TAFII130), and evidence

from Dimitri Krainc originally at Massachusetts General Hospital indicates that

TAFII130 interacts with mutant huntingtin, thus further impairing the transcrip-

tional machinery at the CRE loci (Dunah et al. 2002). The reduced transcription

from BDNF promoter linked to exon VI in HD (Zuccato et al. 2001, 2005) may be

also explained on the basis of evidence showing that Sp1 participates in its activa-

tion (Takeuchi et al. 2002), whereas mutant huntingtin sequesters Sp1, thus

blocking its physiological interaction with TAFII130 and causing reduced tran-

scriptional activity (Dunah et al. 2002; Li et al. 2002).

In conclusion, reduced normal huntingtin activity is responsible for decreased

transcription from promoter II, whereas reduced transcriptional activity at promoters

IV and VI reflects mutant huntingtin-induced toxicity. The above has potential

therapeutic implications insofar as it suggests the usefulness of restoring BDNF levels

in HD. The BDNF promoters can be used as reporter assays of huntingtin activity in

order to identify the contribution of the activity of the mutant protein versus the loss of

normal huntingtin function during HD progression. In particular, they can be used to

develop reporter assays for the isolation of molecules that mimic wild-type huntingtin

on BDNF exon II promoter. Such an assay would have the advantage of reflecting the

activity of a much larger number of promoters located in neuronal genes and

containing the RE1/NRSE element, thus anticipating the possibility that active

compounds would restore transcription from a large number of RE1/NRSE controlled

neuronal genes. In parallel, BDNF exon IV and VI promoters can be used in reporter

assays to identify drugs capable of reducing or blocking the ability of mutant

huntingtin to inactivate BDNF gene transcription from the same promoters.
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4 Huntingtin and BDNF Vesicles Transport

In 2004, the French group led by Frederic Saudou at the Centre Universitaire Orsay

in Paris showed that full-length wild-type huntingtin stimulates BDNF vesicular

trafficking in neuronal cells and that its transport can be attenuated by reducing the

levels of wild-type huntingtin using RNA interference (Gauthier et al. 2004).

Huntingtin is found predominantly in the cytoplasm of neurons, and it is enriched

in compartments containing vesicle-associated proteins (DiFiglia et al. 1995); it is

antero- and retrogradely transported in rat sciatic nerve axons, where it associates

with vesicles and microtubules (Block-Galarza et al. 1997). It is also involved in

fast axonal trafficking (Gunawardena et al. 2003) and in the transport of

mitochondria (Trushina et al. 2004). Wild-type huntingtin regulates axonal trans-

port by interacting with the scaffolding proteins of the motor complex on

microtubules thereby enabling retrograde transport and perhaps anterograde trans-

port (Block-Galarza et al. 1997; Gunawardena and Goldstein 2005).

In this section we describe the studies showing that huntingtin has a role in the

control of BDNF vesicle transport and the underlying mechanisms while presenting

the evidence indicating that BDNF vesicle transport is reduced in HD.

4.1 Huntingtin as a Scaffolding Protein That Drives BDNF
Vesicles Transport

Saudou and colleagues tested the relationship between huntingtin and BDNF

vesicle transport by a series of in vitro experiments that included cells

overexpressing wild-type huntingtin and cells in which endogenous huntingtin

has been reduced by means of RNA interference. The distribution and dynamics

of BDNF vesicles were evaluated in real time by means of ultra-fast 3D

videomicroscopy after the transfection of recombinant BDNF tagged with

enhanced green fluorescent protein (eGFP), followed by deconvolution microscopy

and the measurement of parameters such as the percentage of static vesicles, mean

velocity and the pausing time of vesicles (Gauthier et al. 2004). These analyses

revealed that BDNF vesicles move faster in the presence of exogenous wild-type

huntingtin while their speed is lower when the level of huntingtin is reduced. This

study revealed also that BDNF vesicle transport is mediated by microtubules and

requires molecular motors, such as kinesin and dynein, i.e. proteins that move vital

cargoes on microtubule tracks. Within axons, vesicles from the cell body are

transported anterogradely by kinesin motors to nerve terminals and synapses,

whereas dynein and some kinesin motors intervene to transport organelles in the

retrograde direction. Wild-type huntingtin enhances BDNF transport to both the

tips of the neurite and the cell body, suggesting a possible role for huntingtin in both

the anterograde and retrograde transport of BDNF (Gauthier et al. 2004).

Biofractionation studies and immunoprecipitation experiments indicated that wild-

type huntingtin is part of the motor complex that drives vesicles transport along

microtubules. In particular, huntingtin was found to interact with 150 kDa dynein-

associated polypeptide (p150Glued) subunit of dynactin via HAP1, thereby stimulating
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BDNF transport. BDNF vesicle velocity decreased when HAP1 protein levels were

reduced by RNA interference, whereas its overexpression caused the formation of

BDNF vesicle clusters in which wild-type huntingtin and the p150Glued subunit of

dynactin are recruited to activateBDNFvesicle transport (Gauthier et al. 2004) (Fig. 3).

Further elucidation of the molecular mechanisms that link wild-type huntingtin

to BDNF vesicle transport came from the group of Sandrine Humbert at the

Institute Curie in Paris and involves one of huntingtin post-translational

modifications [reviewed in Zuccato et al. (2010)]. Humbert’s group found that

phosphorylation at Ser 421 by Akt kinase is crucial to control the direction of

BDNF vesicles (Colin et al. 2008). When huntingtin is phosphorylated, BDNF

anterograde transport is favoured, whereas when the phosphorylated status is

reduced, BDNF vesicles undergo retrograde transport (Colin et al. 2008). Reduced

phosphorylation of huntingtin at Ser 421 is observed in cellular and animal models

Fig. 3 The role of huntingtin in the intracellular transport of BDNF vesicles. Wild-type huntingtin

forms part of a motor complex that controls BDNF vesicle intracellular transport along

microtubules. Arrows indicate direction of transport (retrograde to the left, anterograde to the

right). (a) when wild-type huntingtin is unphosphorylated, kinesin 1 molecules detach from the

microtubules and vesicles undergo retrograde transport, mediated by dynein and dynactin. (b)
when wild-type huntingtin is phosphorylated, kinesin 1 binds to the motor complex and

microtubules, inducing a switch to anterograde transport. (c) mutant huntingtin is less readily

phosphorylated than wild-type huntingtin and also binds more tightly to HAP1, reducing both

anterograde and retrograde transport of the BDNF vesicles
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of HD and in post-mortem human tissue, and this is likely to impair the transport of

BDNF vesicles although in vivo proofs are still missing (Colin et al. 2008; Warby

et al. 2005) (Fig. 3). A recent finding from Humbert’s group has shown that BDNF

vesicle transport can also be regulated by phoshorylation of huntingtin at Ser 1181

and 1201 (Ben M’Barek et al. 2013). Particularly, it was found that

unphosphorylated forms of the two residues cause increased anterograde and

retrograde BDNF transport (Ben M’Barek et al. 2013).

4.2 The Impact of the HD Mutation on BDNF Vesicles Transport

Since 2004, different groups have tried to understand whether a pathological polyQ

expansion affects BDNF vesicles transport in HD. The Saudou’s group found that

BDNFvesicle velocity is reduced in heterozygous and homozygousmutant huntingtin

knockin cells and that proteins involved in other neurodegenerative diseases do not

affect BDNF transport, indicating the selectivity of huntingtin involvement in the

transport of BDNF vesicles (Gauthier et al. 2004). To test in vivo the possible

alteration of BDNF transport in the brain, Saudou and colleagues analysed the

composition of the microtubule transport machinery in brain homogenates from

mutant huntingtin knockin mice (Hdh109/109 mice) and human post-mortem brain

tissue. As previously mentioned, huntingtin is involved in the motor complex that

includes HAP1 and the p150Glued subunit of dynactin (Gauthier et al. 2004; Block-

Galarza et al. 1997; Engelender et al. 1997; Li et al. 1995, 1998). The results of

experiments using HDmice, as well as human post-mortem brain tissues, suggest that

this motor complex is altered in HD. In particular, increased binding of mutant

huntingtin to HAP1 reduced the association between HAP1/p150Glued dynactin and

microtubules in heterozygous mutant huntingtin knockin mice (Gauthier et al. 2004).

This suggests that the mechanism controlling retrograde transport is altered in the

presence of the polyglutamine expansion in huntingtin. As most striatal BDNF comes

from anterograde (and not retrograde) transport from the cerebral cortex, it was also

investigatedwhether the association between kinesin andmicrotubules is also reduced

and found this to be the case in in vitro experiments using homozygous mutant

huntingtin knockin cells. On the basis of the consideration that, in yeast two hybrid

experiments, HAP1may be pulled downwith a human kinesin-like protein, it was also

suggested that the complex consisting of huntingtin/HAP1 and kinesin may be

affected by the polyglutamine expansion, leading to impaired anterograde transport

(Gauthier et al. 2004; McGuire et al. 2006).

The second study was from Her and Goldstein at the University of California San

Diego. By using a knockin mouse model of HD, which carries a 150 CAG triplet repeat

expansion in the huntingtin gene, (Hdh(CAG)150) this group reported impaired move-

ment of BDNF vesicles along microtubules in striatal and hippocampal primary

neurons, but not in cortical neurons, the main source of striatal BDNF (Her and

Goldstein 2008). Contrary to previous findings of Saudou and colleagues, this study

shows that the observed alteration of BDNF vesicles transport in HD is not attributable

to a disruption of motor protein complexes in Hdh(CAG)150 knockin mice (Her and

Goldstein 2008). To test whether this discrepancy could be caused by differences in the
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HD mouse models used (Hdh(CAG)150 vs Hdh109/109 used in the Gauthier’s study),

differences of age or methods, Her and Goldstein performed sucrose gradient fraction-

ation of brain extracts of 14-months-oldHdh109/109 using a 7.5–25% sucrose gradient as

previously described by the Saudou group (Gauthier et al. 2004). No gross change in the

pattern of the dynein and dynactin complexes and of kinesin or HAP1 between mutant

and control mice were found. This study indicates that different mechanisms may

contribute to alter BDNF vesicle transport. Mutant huntingtin may form aggregates

that impair cargomovement or physically blockmovement in axons (Chang et al. 2006;

Orr et al. 2008). However, this is unlikely to occur in the Her andGoldstein experiments

because no aggregateswere observed in the presymptomatic primary neurons employed

(Her and Goldstein 2008). More recently, a study from Wu and colleagues suggests a

new mechanism involving huntingtin, HAP1 and its direct interaction with pro-BDNF.

BDNF is synthesised as a precursor (pro-BDNF), sorted into the secretory pathway,

transported along dendrites and axons and released in an activity-dependent manner.

Wu et al. have shown that HAP1 may participate in axonal transport and activity-

dependent release of pro-BDNF by directly interacting with pro-BDNF

(Wu et al. 2010). Mutant huntingtin reduces the association of HAP1 with pro-BDNF,

thus leading to decreased transport and release of BDNF in HD (Wu et al. 2010).

In 2006, Sandrine Humbert linked BDNF vesicle transport to heat shock protein

DNAJ-containing protein 1b (HSJ1B). HSJB is an inhibitor of heat shock protein

cognate 70 kDa (hsp70), which removes clathrin from clathrin-coated vesicles

(Cheetham et al. 1996). Clathrin is themain component of the protein coats decorating

the cytoplasmic face of vesicles budding from the plasma membrane, the trans-Golgi

network and endosomes, and is important for regulating vesicle secretion and endo-

cytosis (Gleeson et al. 2004). This study revealed that BDNF, HSJ1B and clathrin

co-localise at the cis-Golgi. The overexpression of HSJ1B positively regulates the

sorting of BDNF-containing vesicles from the Golgi/trans-Golgi network, thus

increasing BDNF release. Increasing levels of HSJ1B enhance the co-localisation of

BDNF and clathrin, whereas reducing HSJ1B by RNA interference dramatically

decreases it (Borrell-Pages et al. 2006). Reduced HSJ1B levels have been found in

HD patients. This suggests that formation of the clathrin coats on BDNF vesicles can

be altered, leading to impairment in BDNF processing at the Golgi and reduced BDNF

vesicle transport (Borrell-Pages et al. 2006).

The finding of an altered BDNF vesicle transport in HD needs more studies.

However, the evidence available suggests that increasing endogenous BDNF levels

may be of therapeutic interest. On these bases, several attempts have been made to

understand if BDNF levels are consistently affected in the brain of HD patients.

5 BDNF in HD Patients

In this section we describe the studies aimed at investigating BDNF levels in HD

patients. We present the available data about BDNF mRNA and protein levels in

autoptic brain tissues and the studies that have tested the BDNF gene

Huntington’s Disease 377



polymorphisms as potential modifiers of age at HD onset. Finally, we will review

the conflicting evidence related to BDNF measurement in human blood.

5.1 Studies on Post-mortem Tissues

In a preliminary study conducted in 2000 by Ferrer and colleagues at the University

of Barcelona, a small selection of post-mortem HD brain samples was evaluated.

Decreased BDNF levels were found in striatum but not in the cerebral cortex. In

particular, the parietal cortex, temporal cortex, hippocampus, caudate and putamen

of 4 grade III HD subjects were analysed and compared with samples from 6 -

age-matched controls. Western blots indicated a decreased ranging of mature

BDNF protein (14 kDa) from 53 to 82 % in the caudate and putamen of HD patients

when compared with age-matched controls. BDNF levels were preserved in the

cerebral (parietal and temporal) cortex and the hippocampus. Immunohistochemi-

cal studies of the same tissue samples confirmed the reduced BDNF immunoreac-

tivity in HD striatum (Ferrer et al. 2000). Although the BDNF signal was decreased

in striatal neurons, BDNF labelling was maintained in scattered fibres. The authors

suggested that the reduced BDNF protein levels in HD striatum could be due to a

selective reduction in striatal neurons rather than reduced BDNF input from the

cerebral cortex (Ferrer et al. 2000). However, most of the BDNF found in striatum

is notoriously derived from cerebral cortex.

The findings of a second study by the Saudou’s group published in 2004 also

showed that BDNF protein levels evaluated by western blot in the cerebral cortex of

ten HD patients and seven controls were reduced to about 50 % in striatum, but not

in the cerebral cortex, thus suggesting a defect in cortical BDNF transport to

striatum in HD; the negligible patient-to-patient variations indicated the highly

homogenous nature of the patient cohort (Gauthier et al. 2004). On the contrary, the

third study (published by our group in 2001) found that the levels of BDNF protein

(assessed by ELISA) and BDNF mRNA in cortex were consistent with those

observed in the various transgenic mouse models of HD: there was a ~50 %

decrease in BDNF levels in the frontoparietal cortex of two HD subjects (grade

II) in comparison with 2 age-matched controls (Zuccato et al. 2001). It is highly

likely that the differences in the results of these three studies were due to their

different methods and the diversity of the analysed samples (including our own

limited number of samples initially analysed), and would be eliminated by

analysing a larger number of samples. To this end, in 2007 we have extended the

study to a larger cohort of HD and control subjects and have provided new evidence

indicating a significant reduction in BDNF mRNA and protein in the cortex of

20 HD subjects in comparison with 17 controls. Analyses of the BDNF isoforms

showed also that transcription from BDNF promoter II and IV is downregulated in

human HD cortex (Zuccato et al. 2008; Pruunsild et al. 2007).

This study supports the notion of impaired BDNF production in human HD

cortex as a consequence of an expanded CAG tract in the HD gene and suggests that

increasing BDNF level or its signalling may be beneficial.
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5.2 BDNF Polymorphisms in HD

Given the extensive evidence linking BDNF to HD, the BDNF gene has been tested

as a potential modifier of age at HD onset caused by the presence of the BDNF

polymorphisms. One known polymorphism of the human BDNF gene is a valine-

to-methionine substitution at position 66 (Val66Met BDNF) that is located in the 50

pro-BDNF sequence encoding the precursor peptide (pro-BDNF), which is proteo-

lytically cleaved to form the mature protein. This BDNF polymorphism does not

affect mature BDNF protein function nor its rate of transcription, but it has been

shown to dramatically alter the intracellular trafficking and packaging of

pro-BDNF, and consequently the regulated secretion of the mature peptide (Chen

et al. 2004; Egan et al. 2003). The BDNF Val66Met polymorphism is highly

conserved across species and relatively common in the human population with a

prevalence for heterozygotes of 20–30 % and a prevalence for the homozygote of

~4 % (Egan et al. 2003; Hariri et al. 2003; Neves-Pereira et al. 2002; Sen

et al. 2003). Several genetic linkage and behavioural studies have shown that this

polymorphism is associated with neuropsychiatric disorders, including Alzheimer’s

disease, Parkinson’s disease, bipolar disorders, depression, obsessive compulsive

disorder and schizophrenia, as well as with normal personality traits (Neves-Pereira

et al. 2002, 2005; Momose et al. 2002; Sklar et al. 2002; Ventriglia et al. 2002).

In the case of HD, it was found that mutant huntingtin does not affect the

transport of Val66Val BDNF nor of Val66Met BDNF from the endoplasmic

reticulum to the Golgi apparatus. Instead, it specifically alters the post-Golgi

trafficking of BDNF vesicles. In particular, the post-Golgi trafficking of Val66Val

BDNF was significantly blocked in mutant huntingtin cells, whereas the transport

of Val66Met BDNF was not affected. These data clearly indicate that the mutant

protein affects solely the trafficking of Val66Val BDNF form, without causing a

major retention of Val66Met BDNF in the Golgi apparatus (del Toro et al. 2006).

However, this study does not exclude the possibility that patients withVal66Met

BDNF polymorphisms manifest the disease earlier.

A first linkage studies from Jordi Alberch at the University of Barcelona reported

a later age of onset in HD patients who were heterozygous for the Val66Met

polymorphism compared to individuals who were homozygous for valine or methi-

onine at this position, although this association was restricted to the group of

patients with huntingtin CAG repeats between 42 and 49 (Alberch et al. 2005).

However, four subsequent independent studies did not confirm an effect of

Val66Met and other BDNF polymorphisms, representing the entire variability of

the BDNF gene, on the age of onset of HD (Di Maria et al. 2006; Kishikawa

et al. 2006; Mai et al. 2006; Metzger et al. 2006).

Collectively, these studies conclude that there is no convincing genetic link

between BDNF polymorphisms and HD. As the Val66Met polymorphism

influences BDNF transport from the Golgi region to the appropriate secretory

granules, without affecting the transcriptional or biological activities of this mole-

cule, we proposed that the lack of an association might indicate that the defect in

BDNF transport has no impact on the age of disease onset, although it may still
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affect disease progression. However, this evidence does not exclude the possibility

that a defect in BDNF transcriptional activity may affect age of onset and/or disease

progression (Zuccato and Cattaneo 2007).

5.3 BDNF in Blood: An Unsolved Issue

BDNF is highly concentrated in the nervous system but is also found in the blood of

human and other mammals, where its function is poorly understood. The BDNF in

blood derives not only from synthesis in mononuclear blood and endothelial cells

but also from platelets release as well as, although to a very minor extent, from the

passage through the brain blood barrier (Fujimura et al. 2002; Radka et al. 1996;

Rasmussen et al. 2009; Pan et al. 1998; Pan and Kastin 1999). Although it is still

unclear how BDNF expression and metabolism in human peripheral tissues are

regulated, changes in serum BDNF levels in rats during development correlate to

those in brain (Radka et al. 1996; Klein et al. 2011). Based on these findings and on

the extensive data showing that BDNF is reduced in HD brain, it was proposed that

peripheral BDNF could be used to measure the state of the disease and/or the

effectiveness of a given treatment. A number of clinical studies in other pathologi-

cal conditions revealed that BDNF protein can be measured in human plasma and

serum. Although attempts at revealing BDNF protein levels in human HD blood

have been performed (Ciammola et al. 2007) in our experience, the detection of

BDNF in human blood samples remains extremely complex and variable and

results can be easily affected by the experimental procedure (Marullo et al. 2010;

Zuccato et al. 2011).

Also studies in rodents can be problematic and controversial. BDNF protein was

detected in mouse and primate serum and found sensitive to pharmacological

treatment with cystamine (Borrell-Pages et al. 2006). By contrast, earlier findings

from Radka et al. (1996) further confirmed by Klein et al. (2011) indicated that

BDNF protein is not detectable in either mouse serum or plasma with the most

commonly used commercially available ELISA kit (Radka et al. 1996; Klein

et al. 2011). However, BDNF mRNA can be monitored systematically by quantita-

tive PCR in the blood of control and HD mice and correlates with disease progres-

sion (Conforti et al. 2008). Blood BDNF mRNA is also sensitive to

pharmacological treatments as, for example, the acute and chronic treatment of

R6/2 mice with CEP-1347, a mixed lineage kinase (MLK) inhibitor with

neuroprotective and neurotrophic effects in mice, leads to increased total BDNF

mRNA in blood and brain when compared to untreated R6/2 mice (Conforti

et al. 2008; Apostol et al. 2008). BDNF mRNA levels in blood may represent a

reliable tool to assess drug efficacy in pre-clinical trials in animals.
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6 Experimental Manipulation of BDNF Levels and Its Impact
on HD Progression

The data described above indicate a clear reduction in BDNF mRNA and protein

levels in the cortex of subjects with HD, thus suggesting that the administration of

BDNF may be a valid therapeutic option. In this section we present a number of

studies involving genetically altered mice that have been performed to evaluating

the effects of the modification of BDNF levels on disease onset and progression.

These studies provided further support to the idea that cortical BDNF depletion and

dysfunction are one of the critical factors in the pathology of HD and that BDNF

administration could be beneficial to HD patients (Table 1).

6.1 Effect of BDNF Reduction

In a first set of experiments performed by the group of Kevin Jones at the University

of Colorado, empty spiracles homolog (Emx)-BDNF knockout mice that are geneti-

cally engineered to be deficient in BDNF production in cortical neurons with little

BDNF reduction in the thalamus, midbrain and hindbrain were produced. These

mice gradually develop aspects of behavioural and anatomical abnormalities seen in

mouse models of HD (Baquet et al. 2004). Cortical Emx-BDNF knockout mutants

show significantly smaller striatal volumes due to reduced MSNs soma size, thinner

dendrites and fewer dendritic spines than wild-type littermates. Similar results have

been reported by Yves Barde group at the University of Basel that generated a new

mouse line in which the BDNF gene has been globally inactivated in post-mitotic

neurons of the CNS (Rauskolb et al. 2010). These data are in agreement with earlier

studies demonstrating that BDNF stimulates the morphological differentiation of

striatal neurons by increasing the length of their neurites, the number of branching

Table 1 Role of BDNF in HD: evidence from rodent models

Model Observation References

Emx1-BDNF
knock-out mice

Complete inactivation of BDNF in wild-type

mice forebrain leads to:

– HD-like behavioral phenotype

– Gene expression changes similar to the ones

observed in the human HD caudate

Baquet et al. (2004),

Strand et al. (2007)

BDNF+/� R6/1 Inactivation of one BDNF allele in HD mice leads

to:

– Earlier onset, worsening of the behavioural,

motor phentype

– Loss of striatal enkephalin-positive neurons

Canals et al. (2004)

CamKIIalpha
BDNF Tg;R6/1
CamKIIalpha
BDNF Tg;YAC128

Overexpression of BDNF in the brain of HD mice

leads to:

– Improvement of behavioral, motor phenotype

– Improvement of neuropathology and BDNF-

mediated signaling in HD mice

Gharami et al. (2008),

Xie et al. (2010)
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points on the neurites and the soma area (Ivkovic and Ehrlich 1999). Another study

has confirmed reduced BDNF support as one major molecular pathway causing

striatal dysfunctions in human HD (Strand et al. 2007). The aim of this specific work

was to identify the animal model that best recapitulates the striatal gene expression

profile of human HD. This study included the most widely used genetic models of

HD, i.e. the R6/2 line, three mechanistically motivated HDmodels of mitochondrial

dysfunction including 3-nitropropionic acid (3NP) treated rats, 1-methyl-4- phenyl-

1,2,3,6-tetrahydropyridine (MPTP) treated mice and peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC1-alpha) and Emx-BDNF
knockout mice. Remarkably, the authors found the Emx-BDNF knockout mice

exhibited striatal gene expression abnormalities that are more similar to human

HD than the other profiles, including those of mouse genetic HD models (Strand

et al. 2007).

In a second experimental paradigm to explore the relevance of BDNF depletion

in HD pathogenesis, inactivation of one BDNF allele was achieved in a transgenic

mouse line expressing human huntingtin exon 1 with an expanded CAG repeat

(i.e. R6/1 mouse) (Canals et al. 2004). These mice were reported to show a

worsening of the HD phenotype as shown by anticipated age of onset and

exacerbated behavioural deficits (Canals et al. 2004) and more accentuated cogni-

tive and learning impairment before symptoms onset (Giralt et al. 2009).

These observations indicate that BDNF depletion may contribute to HD

aetiology. The obvious clinical implication is that augmenting BDNF levels or

activating downstream signalling pathways may be of therapeutic benefit.

6.2 Effect of BDNF Augmentation

Studies aimed at testing a possible neuroprotective role of BDNF in HD started in

the early 1990s, soon after the discovery of the BDNF as potent pro-survival and

pro-differentiative factor for developing mature neurons.

The first experiments to assess the effect of BDNF augmentation in vivo in HD

mice were performed in chemically induced models. Before the isolation of the

disease gene in 1993, HD animal models were produced by injecting excitotoxins

into the striatum (Zuccato et al. 2010). BDNF delivery by protein infusion,

intrastriatal injection of BDNF-expressing adenovirus, or grafting of BDNF-

expressing cells conferred protection to striatal neurons exposed to excitotoxins

(Zuccato and Cattaneo 2007). These early findings have been recently corroborated

by a study in which the BDNF gene was delivered to the striatal neurons by use of

adenoviral vectors. The authors found that transfer of low concentration of BDNF

gene to striatal neurons using serotype adeno-associated viral vector (AAV)

increased the BDNF protein level in the striatum and conferred protection to striatal

neurons against excitotoxic insult, thus attenuating motor impairment (Bemelmans

et al. 1999; Kells et al. 2004, 2008).

The impact of BDNF delivery has been then evaluated in genetic models of HD,

which better recapitulate the human pathology. A first experiment was performed

in vitro on cultured cells transfected with mutant huntingtin and showed that BDNF

382 C. Zuccato and E. Cattaneo



conferred protection against death of neurons caused by mutant huntingtin (Saudou

et al. 1998).

Later, four independent studies tried to establish whether BDNF could be

neuroprotective also in vivo in HD transgenic mice. In one study, BDNF was

delivered via osmotic minipump into the striatum of mice overexpressing exon

1 of human mutant huntingtin (R6/1 mice). It was found that daily treatment of

BDNF for 1 week succeeded in increasing the expression of enkephalin, as well as

in augmenting the number of enkephalin-expressing striatal neurons, the most

severely affected cells in HD (Canals et al. 2004). The same study showed a slight

improvement of the behavioural phenotype after BDNF administration. A more

recent study has shown that chronic and systemic delivery of recombinant BDNF is

beneficial also to R6/2 mice (Giampà et al. 2013). It was found that BDNF-treated

R6/2 mice survived longer and displayed less severe signs of neurological and

neuropathological dysfunctions than the vehicle treated ones (Giampà et al. 2013).

To better address the potential of BDNF increase in the brain of HD mice, in two

separate studies led by Baoji Xu at Georgetown University School of Medicine, the

neurotrophin was constitutively overexpressed in R6/1 mice (Gharami et al. 2008)

and YAC128 mice (Xie et al. 2010) by means of the promoter of the α-subunit of
Ca2+/calmodulin-dependent kinase II (CaM Kinase II). Such overexpression in the

striatum and cerebral cortex of R6/1 mice substantially ameliorated motor dysfunc-

tion, reversed brain weight loss, restored tyrosine receptor kinase (TrkB) signalling

in the striatum and reduced the formation of mutant huntingtin aggregates in

neurons (Gharami et al. 2008). Similarly, BDNF overexpression in YAC128 mice

prevented loss and atrophy of striatal neurons and motor dysfunction. Decreased

spine density and abnormal spine morphology in striatal neurons of YAC128 mice

were also reversed by increasing BDNF levels in the striatum (Xie et al. 2010).

Evidence of a neuroprotective role of BDNF in HD came also from a study by

Girald and colleagues that produced R6/2 mice overexpressing BDNF in astrocytes

(Giralt et al. 2011). In the R6/2:p-GFAP BDNF animals, the decrease in striatal

BDNF observed in R6/2 mice was prevented and mice showed an improvement in

several motor coodination task and in synaptic plasticity (Giralt et al. 2011).

In 2007 the group of Steven Goldman at University of Rochester Medical Center

used a different approach to increase BDNF level in R6/2 mice. BDNF was

delivered to striatum by means of adenoviral vectors in combination with Noggin,

a molecule that promotes neurogenesis and regulates striatal neuronal regeneration.

The authors observed delayed motor impairment in the BDNF/Noggin treated R6/2

transgenic mice (Cho et al. 2007). In particular, these mice exhibited a significant

slowing in latency to fall and in rotarod impairment relative to untreated R6/2 mice.

Moreover, the BDNF/Noggin-treated mice survived an average of 16.8 % longer

than the respective controls (Cho et al. 2007). These results suggest that the

neurotrophic action of BDNF in combination with molecules that stimulate

neurogenesis might confer considerable therapeutic potential for mitigating both

neuropathological and motor function deficits in the brain of patients with HD (Cho

et al. 2007; Benraiss et al. 2013).
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7 Strategies to Increase BDNF Level In Vivo

The findings described above have generated considerable excitement about the

possibility of establishing a “BDNF therapy” for neurodegenerative diseases. When

designing therapeutic strategies based on BDNF administration, one important

consideration is the level of BDNF receptor expression in the neurodegenerating

brain. A study by Jordi Alberch group at the University of Barcelona has described

a marked reduction in the number and activity of TrkB receptors levels in the

striatum in mouse models of HD (Gines et al. 2006). Subsequent studies by our

group have shown that TrkB mRNA levels are reduced in caudate tissue but not in

the cortex, whereas the mRNA levels of T-Shc (a truncated TrkB isoform) and p75

neurotrophin receptor (p75NTR) are increased in the caudate. More recently, it was

also found that huntingtin can regulate TrkB transport and that the transport of TrkB

is reduced in HD neurons (Liot et al. 2013). This indicates that, in addition to the

reduction in BDNF mRNA and transport, there is also unbalanced neurotrophic

receptor trafficking and signalling in HD (Zuccato et al. 2008; Liot et al. 2013).

Overall, it remains likely that residual TrkB molecules in individuals with HD are

still capable of efficiently transducing BDNF-dependent cell signalling (Canals

et al. 2004), thereby justifying the effort to develop strategies aimed at increasing

BDNF levels in the brain.

The first clinical trial that explicitly investigated the role of BDNF in neurode-

generative diseases was performed in patients with amyotrophic lateral sclerosis

(ALS) (Bradley et al. 1995; Ochs et al. 2000; The BSG 1999). Methionyl human

BDNF was infused subcutaneously or intrathecally and was well tolerated but failed

to demonstrate a statistically significant effect of BDNF on the survival of patients

with ALS (Ochs et al. 2000; The BSG 1999). It is possible that the promising results

seen in animal models of disease have not translated well into clinical trials owing

to the poor pharmacokinetics associated with the intact protein. In particular, BDNF

has a short in vivo half-life, has a low blood–brain barrier penetrability and

undergoes only limited diffusion in the brain parenchyma. However, there is a

serious drawback associated with this intrathecal administration of BDNF. A steep

concentration gradient is generated, originating from the point of infusion, which

could lead to alteration of the infused tissue and the development of adverse effects

such as edema (Gill et al. 2003). Moreover, the intrathecal delivery systems of

recombinant BDNF need to be refilled repeatedly over time. The aforementioned

problems and the limited neuroprotective effects observed led to the cessation of

trials with BDNF.

For these reasons other approaches to efficiently deliver optimum doses of

BDNF to the brain have been considered. Non-invasive approaches such as nano-

particle-, Trojan horse- and nose-to brain-mediated delivery of BDNF into the brain

are being explored. Trojan horse technology involves conjugating BDNF to

molecules that can readily cross the blood-brain barrier. Emerging evidence

suggests that preferential uptake of BDNF into the CNS can be achieved by

conjugating BDNF to ligands that bind to certain receptors in endothelial cells

that facilitate trancytosis or to antibodies directed against these receptors
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(Gabathuler 2010; Géral et al. 2013). Intranasal administration of BDNF protein is

an alternative way to deliver BDNF into the CNS, and preliminary data in rodents

indicate that the neurotrophin reaches the brain parenchyma (Alcala-Barraza

et al. 2010; Jiang et al. 2011). The intranasal delivery method has great clinical

potential due to simplicity of administration, noninvasive drug administration,

relatively rapid CNS delivery, ability to repeat dosing easily, no requirement for

drug modification and minimal systemic exposure. Additional approaches are

represented by BDNF in vivo and ex vivo gene transfer while other strategies are

aimed at stimulating the synthesis of endogenous BDNF (Zuccato and Cattaneo

2007, 2009). A number of drugs that enhance BDNF production in the brain are

being studied, as well as the production of BDNF mimetics. Moreover, interesting

new perspectives have arisen from the observation that physical exercise and diet

markedly increase endogenous BDNF levels in the hippocampus and cerebral

cortex (Zuccato and Cattaneo 2007, 2009). In this section we describe the current

strategies that are under development to increase BDNF levels in the HD brain

(Fig. 4).

7.1 Gene Therapy

Durable expression of BDNF or other neurotrophins such as glial cell line-derived

neurotrophic factor (GDNF), from adenoviral, adeno-associated viral or lentiviral

vectors, has been successfully tested and developed over the past decade in animal

models of HD (Zuccato and Cattaneo 2007). Increasing BDNF levels through

constant, local production following gene transfer has produced encouraging results

in preclinical studies on mouse models of HD. Nevertheless, there are still a number

of problems to be overcome if this approach is to be used in the clinic. The first

Fig. 4 Experimental

therapeutic strategies for

restoring BDNF function

in HD
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challenge is to regulate the amount of BDNF produced locally, as an excess of

BDNF could have a deleterious effect on neuronal circuits, learning and memory

(Croll et al. 1999). The second problem is that transduction is often associated with

inflammation, which is usually accompanied by some vector toxicity, and together

these effects prohibit long-term therapy on safety grounds. Another major problem

is the risk of accidental insertional mutagenesis by viral vectors and subsequent

tumour formation (Hacein-Bey-Abina et al. 2008). To overcome these problems, a

large effort is currently underway to produce new viral vectors, which lack both

pathogenicity and immunogenicity (Biffi and Naldini 2005). Methods utilising

integration-deficient lentiviral vectors and nontoxic viral systems have been suc-

cessfully used in other pathologies and are under scrutiny (Biffi et al. 2013; Aiuti et

al. 2013; Yanez-Munoz et al. 2006). These approaches would allow the transduc-

tion of BDNF in a cell-specific and inducible manner.

7.2 Grafting of BDNF-Releasing Cells

To avoid concerns about the direct injection of a virus into the brain parenchyma,

another possible strategy to increase BDNF levels in the brain is to graft cells

engineered to stably express BDNF. In a first attempt, immortalised rat fibroblasts

genetically engineered to secrete BDNF were implanted in the rat striatum 7 days

before the striatal infusion of excitotoxic quantities of an NMDA-receptor agonist

that causes widespread neuropathological deficits similar to those seen in the HD

brain. Analysis of striatal damage 7 days after the lesion revealed that BDNF-

secreting fibroblasts offered no protection (Frim et al. 1993). A later study showed

that BDNF had only limited ability to protect the striatum from damage due to an

excitotoxic lesion by transplanting putative neural stem cells that had been geneti-

cally modified to overexpress BDNF, which were injected in the same area 1 week

later. One month after the lesion, striatal degeneration, lesion size and the loss of

striatal dopamine- and cyclic AMP-regulated phosphoprotein 32 kDa (DARPP-32)

positive neurons were only slightly improved by the BDNF-secreting cells

(Martinez-Serrano and Bjorklund 1996). Subsequent attempts have been more

successful probably because lower and safer BDNF doses have been released

(Perez-Navarro et al. 1999, 2000; Ryu et al. 2004), including a particularly inter-

esting study by Ryu et al. (2004). The authors investigated the ability of

transplanted BDNF-overexpressing bona fide neural stem cells taken from human

foetal brain to protect animals after 3NP administration, which causes striatal cells

death similar to those seen in HD. The animals receiving the intrastriatal cell

implantation 1 week before 3NP treatment showed significantly improved motor

performance and less striatal neuron damage, whereas those transplanted 12 h after

3NP treatment did not show any improvement in motor performance or any

protection of striatal neurons from the toxicity induced by 3NP (Ryu et al. 2004).

More recently, mice grafted with primary astrocytes overexpressing BDNF have

showed important and sustained behavioural improvements over time after

quinolinate administration as compared with wild-type mice grafted with wild-
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type astrocytes (Giralt et al. 2010). These findings suggested that astrocytes

engineered to release BDNF can constitute a therapeutic approach for HD.

Since grafting of BDNF-releasing cells may still have some problems—

xenogenic cells are at risk of being rejected and immortalised cells can cause

tumour growth—researchers envisage encapsulating cells with new materials

under development. These materials would serve as biological shields, preventing

immune rejection and eliminating the need for immunosuppression (Emerich

et al. 1997). There is also considerable interest in the development of stable,

nontumorigenic human neural stem cell lines as well as mesenchymal stem cells

that release BDNF (Conti and Cattaneo 2010; Hess and Borlongan 2008; Joyce

et al. 2010; Rossi and Cattaneo 2002; Somoza et al. 2010; Olson et al. 2012).

7.3 BDNF Mimetics

As many of the issues surrounding BDNF efficacy and safety result from the need to

deliver the neurotrophin close to the target site, investigators have considered the

interesting possibility of using peptidomimetics, agonist antibodies and small

molecules directed specifically to the BDNF receptors. These BDNF mimetics

have been designed in accordance with the three-dimensional structure of BDNF,

in particular, loops 1, 2 and 4, which are required for binding of BDNF to TrkB

receptors. The synthetic molecules are also modified in such a way as to penetrate

the blood–brain barrier more efficiently than BDNF (Longo et al. 2007; Massa

et al. 2010; Pardridge 2006). Recently, Frank Longo of Stanford University and

colleagues from the University of California at San Francisco screened over one

million compounds and discovered four chemically distinct compounds which

mimic BDNF being able to bind and activate selectively TrkB, but not the other

Trks and not p75NTR. One of the compounds was selected for further study, and it

was used to treat various cell models of neurodegenerative disease, including HD,

with promising results on cell survival (Massa et al. 2010; Simmons et al. 2013).

BDNF mimetics applied locally or systemically may be a promising strategy to

increase BDNF-mediated signalling in HD and, as a consequence, to induce

neuroprotection effects, because it avoids the adverse effects associated with

invasive methods of delivery or uncontrolled dosing, while improving upon the

diffusion properties of BDNF.

7.4 Drug Increasing BDNF Levels and Their Effectiveness in HD

Current experiments are aimed at isolating compounds that increase endogenous

BDNF level. Such a strategy would circumvent the problems related to invasive

methods of BDNF delivery in humans, including achieving the correct dosage and

maintaining stability of the neurotrophin. Several classes of compounds are able to

increase BDNF levels in the brain of HD mice, leading to improvements of the

neuropathology as well as of cognitive and behavioural deficits. Among them,
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considerable attention has been received by selective serotonin reuptake

inhibitors (SSRIs) and lithium. Furthermore, memantine and riluzole (a non-

competitive inhibitor of ionotropic glutamate NMDA receptor), cystamine and

cysteamine, ampakine (a positive modulator of alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)-type glutamate receptors), nicotinamide (an inhibitor

of sirtuin 1/class III NAD (+)-dependent histone deacetylase) and the calcineurin

inhibitor FK506 have been found to significantly restore BDNF levels in HD mice.

We describe below a selection of these studies.

7.4.1 SSRIs
SSRIs facilitate the signalling of serotonin by inhibiting its reuptake. SSRIs may

have protective effects on striatal and cortical neurons by activating cyclic AMP

and CREB signals, which also lead to BDNF expression (Mostert et al. 2008;

Tardito et al. 2006). A first attempt to test the effect of SSRIs on mouse models

of HD involved the administration of paroxetine (5 mg/kg/day) to N171-82Q mice,

which was found to delay the onset of behavioural symptoms and increase lifespan

(Duan et al. 2004). Significant impairment of the behavioural phenotype was

observed specifically at the level of motor function (Duan et al. 2004), and the

weight loss previously reported in this model occurred significantly more slowly

than in vehicle-treated HD mice. Histological analyses also revealed a decrease in

brain atrophy. N171-82Q are normally hyperglycemic but paroxetine treatment

reduced blood glucose levels, thus providing evidence that, in addition to neurode-

generative processes, it improves glucose metabolism in HD. Paroxetine also

increased survival even when administered after the onset of motor dysfunction

(Duan et al. 2004), thus suggesting the possibility that HD patients may benefit from

SSRIs after they become symptomatic.

In 2008, Duan and colleagues confirmed the beneficial effects of SSRIs by

demonstrating that sertraline prolongs survival, improves motor performance and

ameliorates brain atrophy in two mouse models of HD represented by the R6/2 and

N171-82Q (Duan et al. 2008; Peng et al. 2008). These beneficial effects of sertraline

were associated with enhanced neurogenesis and increased BDNF levels in the

brain (Duan et al. 2008; Peng et al. 2008).

These findings open the way to studies of the effects of paroxetine and sertraline

in human HD patients, but previous studies have found no clinical benefit with the

use of other SSRIs. There is a single case report of fluoxetine exacerbating chorea

(Chari et al. 2003), and although another study found it a useful antidepressant, it

failed to provide any substantial clinical benefit to non-depressed HD patients

(Como et al. 1997). On the contrary successful treatment with sertraline in

depressed HD patients has been reported. Moreover, sertraline is safe and well

tolerated for long-term administration, including in HD patients (Ranen et al. 1996).

This suggests that a clinical trial of SSRI treatment in order to retard disease

progression in human HD may be warranted.
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7.4.2 Lithium
Lithium induces the expression of BDNF and the subsequent activation of TrkB in

cortical neurons (Fukumoto et al. 2001). Early studies by Wei et al. indicated that a

subcutaneous lithium chloride (LiCl) injection for 16 days before quinolinic acid

infusion considerably reduces the size of quinolinic acid-induced striatal lesions

(Wei et al. 2001). It was later found that it can protect against polyglutamine

toxicity in cell lines by inhibiting glycogen synthase kinase 3-beta (GSK-3beta),

which is involved in apoptotic cell death, and increasing beta-catenin whose

overexpression protects cells from mutant huntingtin-induced toxicity (Carmichael

et al. 2002).

One year later, on the basis of lithium’s reported neuroprotective and anti-

depressive properties, other studies determined whether chronic LiCl treatment

affects the progression of the phenotype in R6/2 mice, but found that it had variable

effects on motor behaviour and did not improve survival (Wood and Morton 2003).

A study by Senatorov et al. has suggested that lithium may be neuroprotective in the

quinolinic acid-injection model of HD because of its ability to inhibit apoptosis and

induce neuronal and astroglial progenitor proliferation or migration from the

subventricular zone (SVZ) (Senatorov et al. 2004).

In 2008, David Rubinsztein at Cambridge University in the UK has shown

that lithium enhances mammalian target of rapamycin (mTOR)-dependent and

-independent autophagic processes in HD flies when administered in combination

with mTOR inhibitor rapamycin, leading to protection against neurodegeneration

(Sarkar et al. 2008). More recently, it has been reported that lithium induced brain

and blood BDNF expression, improved striatal neuropathology, and behavioral

abnormalities in YAC128 and N171-82Q mice (Chiu et al. 2011; Pouladi et al.

2012). Together with its favorable safety profile and pharmacokinetic properties,

these findings support further development of lithium as a therapeutic agent in HD.

7.4.3 Memantine and Riluzole
Memantine is a medium-affinity non-competitive NMDA receptor antagonist that

has been clinically used as a neuroprotective agent to treat Alzheimer’s disease and

Parkinson’s disease. At clinically relevant doses, it markedly increases BDNF and

TrkB mRNA levels in rat brain, and its effects on BDNF mRNA were reflected in

changes in BDNF protein levels (Marvanova et al. 2001). Remarkably, two differ-

ent studies demonstrated that memantine ameliorates neuropathological and behav-

ioral phenotypes in HD mice (Okamoto et al. 2009, Milnerwood et al. 2010). These

studies also suggest that the neuroprotective role of memantine depends on its

ability to promote the CREB pathway which controls BDNF gene transcription

(Okamoto et al. 2009; Milnerwood et al. 2010). Like memantine, riluzole

(a neuroprotective drug commonly used in ALS) acts by blocking glutamatergic

neurotransmission in the CNS. Interestingly, it has also been found to upregulate

the levels of a number of key neurotrophic factors, including BDNF and GDNF

(Katoh-Semba et al. 2002; Mizuta et al. 2001). These data suggest that the anti-

excitotoxic activity of memantine and riluzole is accompanied by an increase in the

endogenous BDNF production in the brain. On these bases a 2-year, multicentre
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open-label study of 27 HD patients was carried out in order to investigate the

effectiveness of memantine (up to 30 mg/day) in delaying disease progression. The

results suggest that memantine treatment may be useful in doing so (Beister

et al. 2004). Another open-label trial has found that riluzole causes transient

motor improvement in human HD patients (Seppi et al. 2001; HSG 2003). These

promising results have led to a 3-year, randomised controlled study conducted by

the European Huntington’s Disease Initiative Study Group led by Bernard

Landwehrmeyer on 379 HD patients. The study, concluded in 2007, showed that,

although riluzole was well tolerated, no neuroprotective or beneficial symptomatic

effects were demonstrated (Landwehrmeyer et al. 2007). On the contrary, a study

performed on a small number of HD patients (n ¼ 11) has shown that riluzole

protects HD patients from brain glucose hypometabolism and grey matter volume

loss and increases production of BDNF (Squitieri et al. 2009).

7.4.4 Cystamine and Cysteamine
Transglutaminases (TGases) play a critical role in the pathogenesis of HD because

they cross-link huntingtin and catalyse the formation of aggregates. As TGases

activity is increased in HD brain, they represent an attractive target for possible

therapeutic intervention in HD (Gentile and Cooper 2004; Hoffner and Djian 2005).

Early findings indicated that cystamine, a competitive inhibitor of TGases activity,

limits the aggregation of proteins with an expanded polyglutamine tract

(de Cristofaro et al. 1999; Igarashi et al. 1998) and has also been shown to decrease

apoptosis in cultured cells exposed to glutamate or an N-terminal fragment of

mutant huntingtin (Ientile et al. 2003; Zainelli et al. 2005). Cystamine protects

against 3NP striatal lesions in mice (Fox et al. 2004) and, more importantly,

improved behaviour and survival in two independent therapeutic trials in R6/2

mice (Dedeoglu et al. 2002; Karpuj et al. 2002). Other findings indicated that

cystamine reduces striatal volume loss and neuronal atrophy in YAC128 mice,

but does not reverse progressive motor dysfunction or the downregulation of the

striatal marker DARPP-32, whose expression is significantly reduced in this model

(Van Raamsdonk et al. 2005). Recent evidence suggests that the improved survival

and motor function in cystamine-treated R6/2 mice may not be solely due to TGase

inhibition because R6/2 mice not expressing tissue transglutaminase also benefit

from cystamine administration (Bailey and Johnson 2005). Other beneficial effects

of cystamine include the inhibition of caspase-3 activity, increased cell levels of the

anti-oxidant glutathione and cysteine (Fox et al. 2004; Lesort et al. 2003) and an

increase in the expression of heat-shock proteins (Karpuj et al. 2002).

In 2006 cystamine and cysteamine (the Food and Drug Administration (FDA)-

approved reduced form of cystamine) were linked to BDNF secretion, thus opening

up the possibility that the neuroprotection observed in treated animals may be due

to a cystamine-mediated increase in BDNF secretion (Borrell-Pages et al. 2006). In

their study, Borrell-Pages et al. found that cystamine increases the levels of HSJ1B,

which are low in HD patients. HSJ1B stimulates the BDNF secretory pathway

through the formation of clathrin-coated vesicles containing BDNF. Therefore, the

authors suggested that cystamine is neuroprotective because it increases BDNF
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secretion from the Golgi. Cystamine and cysteamine are both neuroprotective in

HD mice (Borrell-Pages et al. 2006). Tolerated cysteamine doses have been

evaluated in HD patients, thus strengthening the case in favour of using cystamine

and cysteamine as a therapeutic approach to HD. Although cysteamine can cross

the blood–brain barrier, it takes larger doses to detect a variation in cysteamine or

its metabolites in the brain (Bousquet et al. 2010). In 2011, Raptor Pharmaceutical

Corporation initiated a collaboration with the Centre Hospitalier Universitaire

(CHU) d’Angers in France to support a phase II clinical study of a delayed release

preparation of cysteamine bitartrate in HD patients. Clinical researchers at the CHU

d’Angers, in collaboration with the Curie Institute, have designed a 96 HD patients

trial to investigate the efficacy of this new cysteamine delivery, using BDNF as a

marker of efficacy (Gibrat and Cicchetti 2011). The trial has been recently

concluded and results are pending.

7.4.5 FK506
BDNF vesicle transport depends on S421 phosphorylation and constitutive phos-

phorylation of mutant huntingtin restores impaired BDNF vesicle transport in HD

(Colin et al. 2008; Zala et al. 2008). Pineda and colleagues found that pharmaco-

logical inhibition of calcineurin, the bona fide huntingtin S421 phosphatase,

restored the BDNF transport defects observed in HD (Pineda et al. 2009). Particu-

larly, FK506, an FDA-approved drug capable of crossing the blood–brain barrier,

restored BDNF transport in two complementary models: rat primary neuronal

cultures expressing mutant huntingtin and mouse cortical neurons from mutant

huntingtin knockin mice (HdhQ111/Q111). This effect was the result of specific

calcineurin inhibition, as calcineurin silencing restored both anterograde and retro-

grade transport in neurons from HdhQ111/Q111 mice (Pineda et al. 2009). These

results indicate that drugs as FK506, which target a specific mechanism responsible

for altered BDNF transport, may be of interest in HD.

7.4.6 Ampakine and Nicotinamide
Ampakine is a positive modulator of AMPA-type glutamate receptors. In 2009,

Gary Lynch’s group at the University of California Irvine showed that ampakine

upregulates endogenous hippocampal BDNF levels, rescues neuronal plasticity and

reduces learning problems in mutant huntingtin knockin mice (Simmons

et al. 2009). A study from the same group published 2 years later has confirmed

these data and showed that long-term ampakine treatment markedly slows the

progression of striatal neuropathology and locomotor dysfunction in an additional

mouse model of HD represented by the R6/2 transgenic line by increasing BDNF

protein levels in the neocortex (Simmons et al. 2011). Ampakines are well tolerated

in clinical trials and have shown efficacy in this study after brief exposures,

suggesting that they may be useful for chronic treatment of the cognitive difficulties

in the early stages of HD.

Nicotinamide is an inhibitor of sirtuin 1/class III NAD (+)-dependent histone

deacetylase. The group of Anne Messer at the Albany Medical College has exam-

ined the effects of nicotinamide after administration to R6/1 mice. BDNF levels
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were found to be significantly increased in the brain of R6/1 mice, and motor

deficits associated to HD phenotype were significantly improved (Hathorn

et al. 2011).

7.4.7 Towards the Identification of RE1/NRSE Modulators
Since some of the mechanisms of reduced BDNF gene transcription and protein

transport have been elucidated, a valid option could be to increase BDNF levels by

targeting specific mechanisms that are responsible for the BDNF dysfunction.

Strategies that act specifically on a defined molecular dysfunction could be more

effective than drugs that increase BDNF levels but do not specifically target a

disease mechanism.

We have previously shown that the REST/NRSF–RE1/NRSE transcriptional

system, important regulator of BDNF gene transcription, is impaired in HD, thus

contributing to reduced BDNF levels in the disease as well as to reduced transcrip-

tion of other REST/NRSF-regulated genes (Zuccato et al. 2003, 2007; Johnson and

Buckley 2009; Hodges et al. 2006). These data opened to the development of

therapeutic strategies that target the REST/NRSF–RE1/NRSE silencer complex.

In vitro evidences suggested that this could be a feasible strategy. Overexpression

of a dominant negative protein of REST/NRSF lacking any co-repressor domain

resulted in attenuation of REST/NRSF binding at its target sites and restoration of

the expression level of several target genes (Zuccato et al. 2007). A new study from

Noel Buckley at King’s College London has further demonstrated this concept. By

delivering oligonucleotide decoys targeting REST/NRSF, REST/NRSF occupancy

at several RE1/NRSE loci was reduced in mutant huntingtin knockin cells, thus

restoring transcription of BDNF and other neuronal genes (Soldati et al. 2011).

Compounds that specifically interfere with the REST/NRSF pathway in HD may

represent a valid therapeutic approach to increase the transcription of REST/NRSF-

regulated genes (Rigamonti et al. 2007; Leone et al. 2008). To this purpose Cell-

based reporter assays to monitor RE1/NRSE activity in cultured brain cells with the

final aim to identify compounds that specifically upregulate BDNF in HD have been

developed (Rigamonti et al. 2007; Charbord et al. 2013; Conforti et al. 2013).

Compounds identified in high-throughput screening as blockers of the RE1/NRSE

silencing activity alleviate the REST/NRSF-dependent repression and, hence, ame-

liorate the global transcriptional repression in the disease (Conforti et al. 2013;

Charbord et al. 2013). Other human pathologies exhibit abnormal REST activity,

highlighting the importance of REST/NRSF-mediated regulation to the integrity of

the cell. Abnormalities in REST/NRSF transcriptional activity have been

demonstrated also in cardiac hypertrophy, ischaemia and Down syndrome

(Rigamonti et al. 2009). Future therapeutics pointing at targeting REST/NRSF or

the RE1/NRSE site might consequently be applied to an extended set of pathologies

in addition to HD.
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7.5 Other Interesting Perspectives for Increasing
Endogenous BDNF

Physical exercise and diet cause a marked increase in BDNF levels in rat brain,

particularly the hippocampus and cerebral cortex. Early studies showed that dietary

restriction (DR) and physical exercise can have profound effects on brain functions

and vulnerability to injury and disease (Spires et al. 2004; Mattson et al. 2003;

Zoladz and Pilc 2010).

7.5.1 Diet and Environmental Enrichment
DR promotes neuronal survival by enhancing resistance against cell stress (Guo

et al. 2000; Yu and Mattson 1999), reducing oxidative damage (Dubey et al. 1996),

stimulating the production of new neurons (neurogenesis) and improving synaptic

plasticity (Mattson et al. 2003). Data in mouse models of neurodegenerative

diseases indicate that DR can protect neurons against neurodegeneration,

suggesting that dietary changes may reduce disease severity (Mattson

et al. 2003). When rats were kept on a periodic fasting/dietary restriction regimen

for several months before the administration of 3NP acid to induce a striatal lesion,

their motor function improved and more striatal neurons survived (Bruce-Keller

et al. 1999). In DR condition BDNF levels increase in several brain regions (Duan

et al. 2001a; Lee et al. 2002). The fact that beneficial effect of DR are mediated by

BDNF came from studies showing that the infusion of a BDNF blocking antibody

into the lateral ventricle of rats and mice significantly attenuated the

neuroprotective effect of DR in the kainate model of seizure-induced hippocampal

damage (Duan et al. 2001a, b). Other findings indicate that DR increases BDNF

protein level in the cerebral cortex and striatum of HD mice (the N171-82Q line),

which results in delayed disease onset and increased survival (Duan et al. 2003). DR

reduces brain atrophy and the formation of huntingtin aggregates and diminishes

caspase activation in N171-82Q mice, thus apparently blocking the toxic effects

elicited by mutant huntingtin (Duan et al. 2003). DR may therefore be considered a

potential early strategy (before the development of symptoms) for counteracting

HD phenotypes and restoring normal brain BDNF levels.

Environmental enrichment also markedly delays the onset and progression of

HD in transgenic mice. It involves providing the mice with environments

containing regularly changed, complex and stimulating objects. The impact of

such a strategy was reported for the first time in 2000, when it was shown that

R6/1 mice exposed to environmental enrichment experienced a delayed disease

onset and slower rate of disease progression, and had improved behavioural

performances on motor tests (van Dellen et al. 2000). Further studies have indicated

that environmental enrichment also slows disease progression in the more severe

R6/2 mouse model of HD (Hockly et al. 2002), as well as in N171-82Q transgenic

HD mice (Schilling et al. 2004). Environmental stimulation delays the onset of

cognitive deficits (van Dellen et al. 2005), and its beneficial effects have also been

demonstrated by studies of HD patients (Sullivan et al. 2001). The mechanisms by

which these beneficial effects are mediated are still unclear, but there are a number
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of plausible possibilities. Several studies indicated that environmental enrichment

upregulates neurotrophins such as BDNF and nerve growth factor (NGF) in the

hippocampus and cortex (Falkenberg et al. 1992; Keyvani et al. 2004; Pham

et al. 1999a, b; Young et al. 1999). There is evidence that environmental enrichment

or physical exercise upregulates the transcription of genes encoding neuronal

proteins that are important for neuronal plasticity, learning and memory (Rampon

and Tsien 2000). Enrichment is associated with increased synaptic signalling and

the stimulation of second messenger systems; it also has an effect on neuronal

morphology, as it is associated with increased spine density. The stimulatory role of

enrichment and BDNF on neurogenesis (Bath et al. 2012) suggests that this may be

an additional avenue for the therapeutic effects of environmental stimulation.

Studies of R6/1 transgenic mice have shown that environmental enrichment rescues

striatal and hippocampal BDNF protein deficits, leading to improvement of the

disease phenotype (Spires et al. 2004; Pang et al. 2006). These observations suggest

that the beneficial effect of enrichment may be partially mediated by increased

BDNF levels.

Conclusions

BDNF seems to be necessary for the phenotypic maintenance and activity of

mature, fully developed neurons, so it has been suggested that changes in its

level or distribution could be important in the pathogenesis of neurodegenerative

conditions in humans. The best example is given by HD. BDNF is crucial for

cortical and striatal neurons, the most affected neuronal populations in the HD

brain. The evidence described in this chapter points to BDNF deficit as one

major contributor to HD pathogenesis.

Findings of the last decade indicated that the normal huntingtin protein,

whose mutation causes HD, is involved in the physiological control of BDNF

synthesis and transport in the brain. Wild-type huntingtin sustains cortical

BDNF gene transcription and drives BDNF vesicles sorting in neuronal cells.

Multiple experiments in HD cells and animal models indicated that BDNF

production and possibly also its transport are impaired in the disease since

early stages. Moreover, BDNF levels are reduced in the brain of HD patients

and this is due to decreased normal huntingtin activity, but also to the toxicity of

mutant huntingtin. The “BDNF defect” in HD has been documented by roughly

20 laboratories and corroborated by the elucidation of the underlying molecular

mechanisms. BDNF measures are currently used as read-outs, both to test the

quality of new cellular or animal models of HD as well as the efficacy of new

compounds in pre-clinical studies.

Several groups are working to establish a “BDNF therapy” for the treatment

of HD, but numerous methodological and safety issues will need to be addressed

in patients before this approach can be widely adopted. In our opinion, one

promising strategy is the use of BDNF mimetics directed to the BDNF receptors

or small molecules that increase endogenous BDNF levels by acting on well-

characterised molecular targets generated by the knowledge of the mechanisms

underlying BDNF transcription and transport. We also believe that an important
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problem to solve is the reliable and robust measurement of BDNF protein and

mRNA levels in human material. It is true indeed that studies on postmortem

samples, although quantitatively and systematically performed, may not mimic

what happens in vivo. Moreover, in humans, BDNF synthesis is subjected to a

wide range of influences (dietary restriction, physical exercise, circadian

rhythms, stress) affecting the level of BDNF. The imprecise evaluation of the

BDNF level in the diseased brain may lead to the administration of uncorrected

doses of BDNF that could be inefficacious as well as deleterious. A better

understanding of the timing of BDNF loss in patients and the precise measure-

ment of its levels are crucial before proposing BDNF treatment as a beneficial

and feasible therapeutic approach in the clinic.
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Aurégan G, Guillermier M, Cailleret M, Viegas P, Nicoleau C, Martinat C, Brouillet E,

Cattaneo E, Peschanski M, Lechuga M, Perrier AL (2013) High throughput screening for

396 C. Zuccato and E. Cattaneo



inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical

compound that promotes expression of neuronal genes. Stem Cells 31:1816–1828

Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair

mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22:388–400

Chari S, Quraishi SH, Jainer AK (2003) Fluoxetine-induced exacerbation of chorea in

Huntington’s disease? A case report. Pharmacopsychiatry 36:41–43

Cheetham ME, Anderton BH, Jackson AP (1996) Inhibition of hsc70-catalysed clathrin uncoating

by HSJ1 proteins. Biochem J 319(Pt 1):103–108

Chen WG, West AE, Tao X, Corfas G, Szentirmay MN, Sawadogo M, Vinson C, Greenberg ME

(2003a) Upstream stimulatory factors are mediators of Ca2+�responsive transcription in

neurons. J Neurosci 23:2572–2581

Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME

(2003b) Derepression of BDNF transcription involves calcium-dependent phosphorylation of

MeCP2. Science 302:885–889

Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, Lee FS (2004) Variant brain-

derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-

dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J

Neurosci 24:4401–4411

Chiu CT, Liu G, Leeds P, Chuang DM (2011) Combined treatment with the mood stabilizers

lithium and valproate produces multiple beneficial effects in transgenic mouse models of

Huntington’s disease. Neuropsychopharmacology 36:2406–2421

Cho SR, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA (2007) Induction of

neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington

disease. J Clin Invest 117:2889–2902

Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F, Silani V (2007) Low

brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients.

Am J Med Genet B Neuropsychiatr Genet 144B:574–577

Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, Saudou F, Humbert S (2008)

Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in

neurons. EMBO J 27:2124–2134

Como PG, Rubin AJ, O’Brien CF, Lawler K, Hickey C, Rubin AE, Henderson R, McDermott MP,

McDermott M, Steinberg K, Shoulson I (1997) A controlled trial of fluoxetine in nondepressed

patients with Huntington’s disease. Mov Disord 12:397–401

Conforti P, Ramos C, Apostol BL, Simmons DA, Nguyen HP, Riess O, Thompson LM, Zuccato C,

Cattaneo E (2008) Blood level of brain-derived neurotrophic factor mRNA is progressively

reduced in rodent models of Huntington’s disease: restoration by the neuroprotective com-

pound CEP-1347. Mol Cell Neurosci 39:1–7

Conforti P, Mas Monteys A, Zuccato C, Buckley NJ, Davidson B, Cattaneo E (2012) In vivo

delivery of DN:REST improves transcriptional changes of REST-regulated genes in HD mice.

Gene Ther 20:678–685

Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, Mutti C, Cotelli F,

Contini A, Cattaneo E (2013) Binding of the repressor complex REST-mSIN3b by small

molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem

127:22–35

Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat

Rev Neurosci 11:176–187

Croll SD, Suri C, Compton DL, Simmons MV, Yancopoulos GD, Lindsay RM, Wiegand SJ,

Rudge JS, Scharfman HE (1999) Brain-derived neurotrophic factor transgenic mice exhibit

passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the

hippocampus and entorhinal cortex. Neuroscience 93:1491–1506

Cummings DM, Alaghband Y, Hickey MA, Joshi PR, Hong SC, Zhu C, Ando TK, André VM,
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Géral C, Angelova A, Lesieur S (2013) From molecular to nanotechnology strategies for delivery

of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics

5:127–167

Gharami K, Xie Y, An JJ, Tonegawa S, Xu B (2008) Brain-derived neurotrophic factor over-

expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J Neurochem

105:369–379

Giampa C, DeMarch Z, D’Angelo V, Morello M, Martorana A, Sancesario G, Bernardi G, Fusco

FR (2006) Striatal modulation of cAMP-response-element-binding protein (CREB) after

excitotoxic lesions: implications with neuronal vulnerability in Huntington’s disease. Eur J

Neurosci 23:11–20
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Motoneuron Disease
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Abstract

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) repre-

sent the two major forms of motoneuron disease. In both forms of disease, spinal

and bulbar motoneurons become dysfunctional and degenerate. In ALS, cortical

motoneurons are also affected, which contributes to the clinical phenotype. The

gene defects for most familial forms of ALS and SMA have been discovered and

they point to a broad spectrum of disease mechanisms, including defects in RNA

processing, pathological protein aggregation, altered apoptotic signaling, and

disturbed energy metabolism. Despite the fact that lack of neurotrophic factors

or their corresponding receptors are not found as genetic cause of motoneuron

disease, signaling pathways initiated by neurotrophic factors for motoneuron

survival, axon growth, presynaptic development, and synaptic function are

disturbed in ALS and SMA. Better understanding of how neurotrophic factors

and downstream signaling pathways interfere with these disease mechanisms

could help to develop new therapies for motoneuron disease and other neurode-

generative disorders.
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1 Introduction

During development of higher vertebrates, many types of neurons are generated in

excess, and about half of the newly generated neurons undergo cell death. Spinal

and bulbar motoneurons have been a central focus of research to understand the

underlying mechanisms. These neurons become postmitotic at early stages of

development; they grow out axons and make functional contacts with skeletal

muscle, before this phase of physiological cell death occurs. Pioneering work by

Viktor Hamburger and Rita Levi-Montalcini has shown that limiting amounts of

survival factors from target tissue play a central regulatory role in this context, and

this observation has been the basis for the discovery of neurotrophic factors in the

twentieth century. It has long been suspected that dysregulation of neurotrophic

signaling could also underlie the degeneration of motoneurons in amyotrophic

lateral sclerosis and spinal muscular atrophy, the two major forms of human

motoneuron disease. During the last three decades, gene defects underlying mono-

genetic forms of these disorders have been identified, and none of these gene

defects point to a lack of neurotrophic factors or defective receptors as cause of

motoneuron disease. Motoneurons that are isolated from mouse embryos and

cultured in vitro also depend on neurotrophic factors for their survival. These

cultures are a useful tool for studying signaling pathways for motoneuron survival,

but also signaling for axon growth, presynaptic differentiation, dendrite growth and

stabilization of neurites, and synaptic contacts. These parameters represent targets

of motoneuron disease processes, and recent research has indicated that

neurotrophic factor signaling also interferes with these mechanisms. The analysis

of disease processes and mechanisms how neurotrophic factors interfere could help

to develop new therapeutic strategies for amyotrophic laterals sclerosis and spinal

muscular atrophy.

2 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing dys-

function and death of lower motoneurons in the spinal cord and brain stem and of

upper motoneurons in the motor cortex (Kiernan et al. 2011). This results in

progressive dysfunction of neuromuscular innervation that normally causes death

due to respiratory failure. The incidence of ALS is approximately 2 per 100,000

individuals worldwide, the mean age of onset is 55–60 years, and the disease more

commonly affects men than women. Average survival from symptom onset is

approximately 3 years, although some forms of the disease also have a much slower

disease course, allowing patients to survive for several decades (Wood-Allum and

Shaw 2010). Traditionally, ALS has been considered as a pure motor disorder.

However, it has become increasingly evident that also other types of neurons are

affected and that some forms of ALS are coupled with prefrontal dementia or with

degeneration of dopaminergic neurons. Even in patients in which dysfunction of the

motor systems predominates the clinical phenotype, histopathological alterations
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are also found in many types of neurons, including hippocampus and basal ganglia

(Al-Sarraj et al. 2011). Therefore, ALS is now regarded as a more general neuro-

degenerative disorder in which the motor phenotype predominates the clinical

picture.

In more than 90 % of all cases, ALS appears sporadic. Only 5–10 % of all cases

are familial. In these cases, an autosomal-dominant inheritance is predominant

(Andersen and Al-Chalabi 2011). Even this subset of familial ALS is highly

heterogeneous on a genetic basis, and the so far identified genetic defects underly-

ing familial forms of ALS point to multifactorial pathogenic processes (Table 1).

3 fALS with Mutations in the SOD-I Gene

The first identified gene defect which accounts for about 10–20 % of familial ALS

were point mutations in the gene for Cu2+/Zn2+-dependent superoxide dismutase

(SOD-I) (NM 000454) (Rosen et al. 1993). So far, more than 50 different mutations

in this gene have been identified. Clinically, there seems to be no clear correlation

between disease onset or severity with specific mutation in the SOD-I gene

(Andersen and Al-Chalabi 2011), and the clinical appearance of ALS does not

differ from the majority of sporadic cases in this disease. Some types of mutations

in the SOD-I gene are prone to cause a severe and rapid course of disease, in

particular the A4V mutation; other forms, i.e., E21G, G37R, D40A, G93C, I104F,

L144S, and I151C, are associated with survival times that can exceed 10 years

(reviewed in Ferraiuolo et al. 2011). Not all of these mutations are associated with

loss of enzymatic function. In particular the G37A mutation which has been

intensively studied in transgenic mouse models, but also the A90V or D91A

mutations, does not primarily affect enzyme activity (reviewed in Al-Chalabi

et al. 2012).

The SOD-I protein plays a central role in detoxifying superoxide radicals from

the cell and preventing the generation of hydroxyl radicals that react with a great

variety of molecules, in particular polyunsaturated fatty acids in cell membranes,

but also proteins and nucleic acids. Cerebrospinal fluid (CSF), but also serum and

urine, show elevated markers of free radical damage in patients with ALS (Smith

et al. 1998; Simpson et al. 2004), and this does not only apply to patients and mouse

models of fALS with mutations in the SOD-I gene. Interestingly, knockout of the

SOD-I gene in mice does not result in motoneuron disease (Reaume et al. 1996),

whereas transgenic overexpression of mutant SOD-I in general causes rapid and

severe forms of the disease (Gurney et al. 1994). Mouse models overexpressing

A4V or G93A mutant SOD-I molecules have most commonly been used in studies

on the pathophysiological consequences of these mutations. The observation that

SOD-I gene knockout does not lead to motoneuron disease in mice and that many of

the mutations identified in patients with fALS do not show reduced enzyme activity

points to pathogenic mechanisms other than loss of enzyme activity. These include

actions of the mutant protein in cell types that appear not primarily affected such

as microglia and astrocytes. Mutant SOD-I in microglia increases NADPH
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oxidase-mediated superoxide production (Harraz et al. 2008), resulting in

prolonged ROS production. Mutant SOD-I protein has been found to interact with

chromogranins (Urushitani et al. 2006) and by this way appears to be released from

astrocytes and interneurons. Thus, extracellular mutant SOD-I can activate

microglia and possibly also promote direct toxic effects on motoneurons. In chime-

ric mice expressing mutant SOD-I in astrocytes, motoneurons degenerate and show

ALS pathology (Clement et al. 2003). Furthermore, mice in which the mutant allele

encoding SOD-I G37R is deleted from motoneurons using Cre-lox technology

(Boillee et al. 2006) show delayed disease onset, but no alteration in the disease

course once first symptoms have become apparent. Also in cell culture, toxic effects

of astrocytes expressing mutant SOD-I have been demonstrated when these cells

are cocultured with primary motoneurons from embryonic mouse (Nagai

et al. 2007) or human stem cell-derived motoneurons (Di Giorgio et al. 2008).

This toxic effect of mutant astrocytes has been shown to involve the deregulation of

glutamate receptor 2 (GluR2) in motoneurons, as a consequence of mutant SOD-I

expression in astrocytes (Van Damme et al. 2007). Taken together, these findings

indicate that non-neuronal cells expressing mutant forms of SOD-I exert toxic

effects on motoneurons and contribute to disease.

Both in patients and mouse models with mutations in the SOD-I gene, protein

inclusions are found in motoneurons and other types of neurons, but these

inclusions differ from inclusions found in the vast majority of sporadic ALS

patients and other forms of familial ALS because they do not include the TDP43

protein (Maekawa et al. 2009). Some of the protein aggregates that include the

mutant SOD-I protein are associated with mitochondria and thus could contribute to

mitochondrial dysfunction. The mutated SOD-I protein seems to aggregate in

vacuoles in the mitochondrial intermembrane space (Wong et al. 1995), and this

finding together with other reports showing interaction of mutant SOD-I protein

with bcl-2 (Pasinelli et al. 2004) gives further support to the idea that the mutant

SOD-I protein causes mitochondrial dysfunction and defective respiratory chain

activity. These findings also correlate with observations that the calcium buffering

capacity is impaired in mitochondria isolated from neural tissues of SOD-I mutant

mice (Damiano et al. 2006; Grosskreutz et al. 2010). The altered calcium homeo-

stasis caused by this defect might also correlate with susceptibility for glutamate-

mediated excitotoxicity and ER stress, which is also observed in motoneurons from

SOD-I mutant mouse models.

Mitochondrial dysfunction and morphological alterations such as vacuolation

occur early during presymptomatic disease stages in mouse models, and they are

thought to contribute to defective axonal transport of mitochondria (De Vos

et al. 2007). It is thought that a reduction in the mitochondrial content in axon

terminals could be a major mechanism for dying-back axonopathy, which is

generally observed in ALS.

Because of the multitude of pathological mechanisms that apparently contribute

to motoneuron disease in SOD-I mutant mouse and cell culture models, no clear

conclusions can be drawn on which signaling pathways downstream of

neurotrophic factor receptors are most important to interfere with pathomechanisms

416 M. Sendtner



in this form of familial ALS. Overexpression of mutant SOD-I in motoneurons

causes cytoplasmic aggregation of the enzyme, and neurons with such aggregates

subsequently undergo apoptotic cell death (Durham et al. 1997). When SOD-I

G93A mice are crossed with bcl-2-overexpressing mice, onset of disease is delayed

(Kostic et al. 1997), suggesting that inhibition of classical pathways for apoptotic

cell death interferes with the disease. However, bcl-2 overexpression cannot pre-

vent disease. Similar observations were made when SOD-I G93A mutated mice

were crossed with mice overexpressing a dominant-negative ICE isoform, which

prevents caspases from activation of cell death pathways (Friedlander et al. 1997).

Thus, interference with classical apoptotic signaling pathways apparently has some

impact, but the effects are not sufficient to prevent disease in this mouse model of

familial motoneuron disease. This indicates that interference with motoneuron cell

death programs is not sufficient for therapy and that additional pathomechanisms,

ranging from dysfunction of neuromuscular transmission to destabilization of

axonal processes and depletion of dendritic synaptic inputs, also need to be

targeted, at least in this form of motoneuron disease.

4 Inclusions and Altered RNA Metabolism in ALS: TDP-43,
FUS, C9orf72

Alterations in RNA metabolism have been suspected to contribute to ALS patho-

physiology for a long time. Since the discovery that fragile X syndrome is caused

by altered expression of FMR-1, a member of a large family of RNP proteins that

are involved in RNA binding and transport (Ashley et al. 1993), the potential

impact of defective RNA processing to neurodegeneration has increasingly become

a focus of interest. However, the mechanisms how altered RNA metabolism could

contribute to the pathomechanisms of ALS have only become more concrete in the

last few years. An important finding in this context was the identification of the

TAR DNA-binding protein-43 (TDP-43) protein as a major component of

ubiquitin-positive cellular inclusions (Neumann et al. 2006). These inclusions

have the appearance of threads, skeins, or compact bodies and are located in nuclei

and soma of neurons, including proximal dendrites and axons. TDP-43-positive

inclusions have also been found in other neurodegenerative disorders such as FTLD

(Buratti and Baralle 2008). They have also been described in postmortem brain of

patients with Huntington’s disease (Schwab et al. 2008), Alzheimer’s disease, and

dementia with Lewy body inclusions (Higashi et al. 2007).

The cellular function of TDP-43 is not fully understood. TDP-43 is a 414-amino-

acid protein of the hnRNP family (Krecic and Swanson 1999), with two RNA

recognition motifs (RRM1 and RRM2) and a C-terminal glycine-rich domain, and

thus resembles many other RNA-binding proteins such as fused in sarcoma (FUS)

and hnRNP-R, the latter having been previously identified to interact with the

survival motoneuron (Smn) protein (Rossoll et al. 2002), the central protein of

the Smn complex that is deficient in spinal muscular atrophy.
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After the identification of TDP-43 protein as the major component of proteina-

ceous inclusions in sporadic ALS and other neurodegenerative disorders, mutations

in the gene encoding for TDP-43 were found in some ALS patients (Rutherford

et al. 2008; Mackenzie et al. 2010), and also in patients with frontotemporal lobar

degeneration (FTLD, new nomenclature FTLD-TDP). About 4 % of patients with

familial ALS and 1.5 % of patients with sporadic ALS have mutations in the

TDP-43 gene. All of the so far identified mutations in familial ALS are autosomal

dominant, and most of them encode for a missense mutation within the C-terminal

domain which encodes the glycine-rich domain (Pesiridis et al. 2009), a part of the

protein that is important for interaction with other proteins and molecules, but it

does not directly interact with RNA. Based on these data, it has been suggested that

the mutations in the C-terminus are sufficient to induce neurodegeneration.

The TDP-43-positive inclusions are strongly ubiquitinylated and

phosphorylated. It is not the full-length TDP-43 which is found in inclusions, but

a truncated 20–25 kDa C-terminal fragment (Pesiridis et al. 2011). So far it is still

unclear whether the associated loss of TDP-43 function, due to the cleavage of the

N-terminus, which contains the RRM1 domain, is causative for neurodegeneration

or a loss of function due to depletion of TDP-43 from the nucleus and other

cytoplasmic regions where TDP-43 functions are necessary for neuronal mainte-

nance or gain of function by the cleaved fragments.

TDP-43 interactions with RNA have been studied in detail, and these studies

have revealed functions of TDP-43 in several aspects of RNA metabolism. The

RRM1 domain of this protein binds to single-stranded RNA (Buratti and Baralle

2001), in particular to regions containing UG repeats. These UG regions are

contained in many RNAs, and this fits with the observation that several thousand

different RNA species can interact with the protein (Tollervey et al. 2011;

Polymenidou and Lagier-Tourenne 2011), in particular intronic regions, but also

30untranslated regions (UTRs), and also noncoding RNAs. The association of

TDP-43 with intronic sequences and its predominant nuclear localization

implicates TDP-43 in early steps of pre-mRNA processing in the nucleus. These

functions could include transcriptional regulation, alternative splicing (Buratti

et al. 2001), and in particular micro-RNA (miRNA) processing. Defects in

miRNA malfunction have been shown to result in motoneuron disease (Haramati

et al. 2010). Thus, TDP-43 (Buratti and Baralle 2010a) and other members of the

hnRNP protein family (Pascale and Govoni 2012) like FUS (Morlando et al. 2012)

could also contribute to motoneuron maintenance by regulating miRNA function.

Whether motoneuron injury is caused by loss of such nuclear function of

TDP-43 is still not fully understood. Among the mRNAs that interact with

TDP-43 are those encoding for FUS, VCP (Sephton et al. 2011), and TDP-43

mRNA itself (Buratti and Baralle 2010b). TDP-43 regulates processing of its own

transcript by interaction of the protein with the 30UTR of TDP-43 mRNA, leading

to alternative splicing of the 30UTR. As a consequence, high levels of TDP-43 cause
reduced translation of TDP-43 mRNA. These functions involve interaction of

TDP-43 with other proteins that bind to the C-terminus, in particular other members

of the hnRNP family. These include hnRNP-A2/B1 (Buratti et al. 2005), hnRNP-
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A1, hnRNP-A3, and hnRNP-C1-C2 (Ling et al. 2010), but possibly also other

members of this large family (Freibaum et al. 2010).

Blocking TDP-43 expression with antisense oligonucleotides in adult mouse

brain alters the expression levels of more than 600 mRNA transcripts and changes

splicing of more than 900 transcripts (Polymenidou and Lagier-Tourenne 2011),

including such transcripts which are also relevant for motoneuron function, such as

choline acetyl transferase, and transcripts for other RNA-binding proteins for which

mutations lead to degeneration, such as FUS and progranulin.

Several animal models have been developed to study TDP-43 dysfunction,

including mouse models in which the gene is knocked out or overexpressed in

mutant form, but also Drosophila, zebrafish, and C. elegans models (reviewed in

Wegorzewska and Baloh 2011). Many models available so far cannot give final

hints about the pathomechanistic contributions of mutant TDP-43 to motoneuron

disease, because those overexpressing TDP-43 might also lead to dysregulation of

RNAs simply as a consequence of the TDP-43 overexpression itself, and a good

example for this problem is the processing of the TDP-43 mRNA by TDP-43.

Another potential problem is the interaction of the TDP-43 with intronic sequences,

which are highly different between species, and interaction of TDP-43 with intronic

sequences in human genes might not be found in mouse, fish, and C. elegans
models, because the intronic sequences differ more than coding sequences between

these species. Moreover, by overexpression of mutant TDP-43, the RRM1 domains

are mostly preserved, allowing functions in pre-mRNA processing that either

resemble the physiological function or alter these functions in a dominant-negative

manner, for example, when the C-terminal mutations lead to altered distribution of

the protein. Thus, the normal function of TDP-43 in regulating expression of

mRNA levels of cyclin-dependent kinase 6 (Ayala et al. 2008), histone deacetylase

6 (Fiesel et al. 2010, 2011), low molecular weight neurofilament (Strong

et al. 2007), or other transcripts with essential functions in motoneurons could

contribute to the pathophysiology and generate additional pathological features in

these mouse models that do not necessarily exist in humans with mutant TDP-43.

So far, the mechanisms that lead to altered subcellular distribution of TDP-43

and translocation between the nucleus and the cytoplasm are not fully understood.

Different types of cell stress lead to TDP-43 redistribution from the nucleus to the

cytoplasm (Moisse et al. 2009a, b), and the protein is then found within stress

granules (Freibaum et al. 2010; Dewey et al. 2011; Kiebler and Bassell 2006),

which are thought to stabilize mRNAs and prevent translation under these specific

cellular conditions (Kiebler and Bassell 2006). This function seems to be central for

understanding the role of TDP-43 in motoneuron disease. After axotomy, TDP-43

translocates to cytosolic compartments, and this translocation seems to be function-

ally connected with caspase-3 activation (Moisse et al. 2009a). Also after oxidative

insult, TDP-43 is recruited to stress granules (Colombrita et al. 2009). There are

also reports indicating that TDP-43 could interact with SOD-I and 14-3-3 proteins

in the cytosol and thus modulate the stability of mRNAs such as the neurofilament-

L chain mRNA (Volkening et al. 2009). Moreover, stress granule dynamics seems

to be influenced by TDP-43 (Dewey et al. 2011; McDonald et al. 2011) under
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conditions such as oxidative stress or sorbitol-induced osmotic stress. It is still

unclear at which stage of disease such stress granules occur and whether TDP-43

inclusion in stress granules is a consequence of other pathophysiological

mechanisms, whether such stress granules are fully reversible, or whether such

stress granules can give rise to insoluble proteinaceous aggregates. As a common

observation made under different types of cell stress, TDP-43 seems to be

redistributed from the nucleus to the cytosol. Sporadic ALS patients with slow

progression of the disease have been reported to exhibit a relatively low number of

TDP-43 inclusions (Nishihira et al. 2009), and this points to a correlation between

the number of these aggregates in motoneurons and severity of disease. Thus,

TDP-43 aggregates apparently do not protect neurons from degeneration. It remains

to be shown whether these TDP-43 aggregates are toxic and contribute to the

neurodegenerative process.

The TDP-43 protein also interacts with another RNA-binding protein named

fused in sarcoma (FUS) (Zinszner et al. 1994) or translocated in liposarcoma (TLS)

(Freibaum et al. 2010). TDP-43 and FUS are related (Drepper et al. 2011) and both

are members of the hnRNP protein family with two RRM (RRM1 and RRM2)

motifs. This protein is also involved in transcriptional regulation and mRNA

processing. Mutations in the FUS genes are found in 4 % of fALS cases

(Kwiatkowski et al. 2009) and only rarely (probably less than 1 %) in sporadic

ALS cases (Ferraiuolo et al. 2011; Mackenzie et al. 2010). Similar to TDP-43, most

mutations associated with ALS are found in the C-terminal regions containing the

glycine-rich domain. Some of these mutations seem to disrupt a nuclear transloca-

tion signaling, thus leading to cytoplasmic accumulation of the FUS protein within

cytoplasmic granules (Ito et al. 2011; Dormann et al. 2010). Alternatively, these

mutations in the C-terminus could also disturb protein interaction in particular with

other members of the hnRNP family, so that the altered subcellular distribution of

the FUS protein in these ALS patients could also be caused by such defects. Similar

to TDP-43, it is still not resolved whether loss of a physiological function of FUS

due to instability of the protein, cellular misdistribution, or decreased stability

causes motoneuron degeneration or a toxic gain of function.

Gene knockout mice have been generated that lack FUS gene function (Kuroda

et al. 2000). These mice show male sterility and increased sensitivity to ionizing

radiation, but no phenotype that could help to understand the role of this protein in

neurons and in neurodegeneration.

The last major gap in the identification of gene defects responsible for familial

ALS was closed by two independent groups identifying a hexanucleotide

(GGGGCC) repeat expansion in the first intron of the C9ORF72 gene on human

chromosome 5 as a frequent genetic cause of ALS (Renton et al. 2011; DeJesus-

Hernandez et al. 2011). These mutations, which are associated with both

frontotemporal dementia and ALS, cause disease with high penetrance with

autosomal-dominant inheritance. There are first indications that this pathophysiol-

ogy also influences RNA metabolism and that the expanded pre-mRNA also binds

to members of the hnRNP family, in particular hnRNP-A3 (Mori et al. 2013a). The

repeat domain forms a G-quadruplex structure in the corresponding mRNA (Fratta
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et al. 2012), exactly the same as those found in specific mRNAs that are highly

sorted in neurons such as the mRNA for PSD95 and CaMKIIa (Subramanian

et al. 2011; Drepper and Sendtner 2011). It is possibly that this structure encoded

by mutant C9orf72 transcripts disturbs transport and sorting of mRNAs from the

nucleus to the cytoplasm and subsequently into axons and dendrites. As an alterna-

tive disease mechanism, the formation of proteinaceous aggregates has been

suggested. The (GGGGCC) repeat expansion seems to be translated, and the

corresponding protein products are found as poly-(Gly-Ala) or poly-(Gly-Pro) or

poly-(Gly-Arg) dipeptide repeat proteins in nuclei and the cytoplasm of neuronal

cells (Ash et al. 2013; Mori et al. 2013b). These are presumably generated by novel

translation initiation sites allowing the expanded GGGGCC repeat to be translated

into proteins. Whether altered RNAmetabolism by interaction of the corresponding

mRNAs with hnRNP proteins or the formation of a quadruplex structure is the

primary pathomechanism, or the formation of protein aggregates, and how these

mechanisms relate to TDP-43 and FUS pathomechanisms is currently unknown.

Besides TDP-43, FUS, and C9orf72, two other proteins play a role in neurode-

generative disorders like FTLD and in ALS: progranulin and sortilin: Reduced

progranulin levels and activity are thought to be of broad relevance for these

diseases (Hu et al. 2010). Recently, sortilin was identified as a key progranulin-

binding partner on the surface of cortical neurons. In the stressed nervous system,

progranulin is not expressed in neurons, but in nearby glial cells. Sortilin rapidly

internalizes progranulin to lysosomes. Mice that do not express Sortilin exhibit high

levels of extracellular progranulin. Importantly, mice with a progranulin deficiency

similar to that seen in FTLD were fully normalized with regard to progranulin

levels when sortilin was deleted. These findings implicate sortilin-mediated

progranulin endocytosis in FTLD and ALS pathophysiology and identify sortilin

binding as a potential therapeutic site to alter progranulin pathology. Sortilin is also

a co-receptor for the p75 neurotrophin receptor (P75NTR) and modifies a broad

spectrum of actions through this receptor. In addition, sortilin is also involved in

subcellular transport of complexes including BACE and other membrane proteins

relevant for APP processing. Therefore, the interaction of p75NTR with sortilin

could be a modifier for proganulin actions and thus modify disease mechanisms in

those forms of motoneuron disease that suffer from altered progranulin metabolism.

5 Spinal Muscular Atrophy

Spinal muscular atrophy is the most common form of motoneuron disease in

children and young adults (Hausmanowa-Petrusewicz 1978; Crawford and Pardo

1996). In contrast to amyotrophic lateral sclerosis, more than 90 % of all cases of

this disease are caused by homozygous deletion or in rare cases mutation of the

SMN1 gene on human chromosome 5. In contrast to most forms of familial ALS,

this form of motoneuron disease is autosomal recessive and represents one of the

rare cases where loss of function of a specific gene and the corresponding protein is

responsible for the disease. The Smn protein is a central component of a complex
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that is necessary for assembly of spliceosomal snRNP particles (Pellizzoni 2007)

and the regeneration of such particles in the nucleus. This so-called Smn complex

has been characterized in much detail, the interaction partners of Smn called gemins

have been identified, and the structural basis of the interaction and of the function of

these components in the assembly of snRNP particles investigated. However, the

Smn protein is also localized in axons (Rossoll et al. 2002) and axon terminals of

motoneurons that are very distant from the cell body in which the assembly of

spliceosomal snRNP particles normally occurs. This has led to the conclusions that,

in addition to its role in the assembly of snRNP particles, the Smn protein could

serve an additional function in RNA metabolism in axons and axon terminals

(Sendtner 2001; Burghes and Beattie 2009).

In contrast to the human genome which contains two copies of SMN called

SMN1 and SMN2, both of which are expressed, the mouse genome only contains

one copy of the Smn gene. Conventional gene knockout of Smn in the mouse is

embryonic lethal at early developmental stages (Schrank et al. 1997), before

blastocysts form. This is consistent with an essential role of the Smn protein in

the assembly of spliceosomes: Abolishing pre-mRNA splicing and nuclear

processing is considered not to be compatible with life. Interestingly, when the

SMN2 gene, which is still present in patients with this disease, is overexpressed on a
Smn knockout background in mice (Monani et al. 2000), these mice develop to term

and then show typical signs of the disease. The SMN1 and SMN2 genes differ only

by five nucleotide exchanges (Wirth 2000), two of them within exons. A

translationally silent cytosine to thymidine exchange at position 6 of exon 7 is

responsible for the skipping of exon 7 in the majority of transcripts from the SMN2
gene. It has been shown that this mutation abolishes an exonic splice enhancer site

(Cartegni and Krainer 2002) and generates a new exonic splicing silencer domain

(Kashima and Manley 2003) for the last coding exon of the SMN2 gene. Therefore,
at least 80 % of the resulting SMN protein from SMN2 transcripts lack the

C-terminal 16 amino acids which are replaced by four amino acids encoded by

exon 8 sequences. As a consequence, the corresponding protein is unstable (Cho

and Dreyfuss 2010), the truncated SMN protein with altered C-terminus cannot

self-associate, and thus it is less active in forming SMN complexes and probably

also less active in a putative axonal function.

A large variety of animal models has been generated in which the consequences

of Smn deficiency have been investigated (reviewed in Burghes and Beattie 2009).

In all of these organisms, complete loss of Smn is lethal, and the time point of

lethality depends on the levels of maternal Smn protein. For example, this explains

why death in Smn-deficient Drosophila melanogaster (Chan et al. 2003) occurs

later during development than in early mouse embryos. Interestingly, expression of

a high number of SMN2 gene copies in Smn�/� mice completely reverses the

phenotype (Monani et al. 2000). Such mice appear healthy, indicating that high

expression of SMN2 can fully restore function.

Overexpression of Smn via the prion promoter only in the nervous system in

mice with low Smn expression in non-neuronal tissues also has a major effect on

survival of these animals (Gavrilina et al. 2008). Thus, low levels of functional Smn
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proteins produced from at least two copies of SMN2 gene are sufficient for normal

function in most organs and cell types. Apparently, motoneurons need more SMN

protein than other types of neurons and non-neuronal cell types, and this could

explain why the disease expresses itself as a relatively pure motoneuron disease.

Interestingly, efforts to restore Smn expression in muscle in mouse models with

reduced Smn expression had much less effect than restoring Smn in neurons

(Gavrilina et al. 2008). This correlates with observations that isolated motoneurons

from Smn�/�SMN2tg mice already show a clear dysmorphic phenotype in cell

culture (Rossoll et al. 2003). Survival of Smn-deficient motoneurons in cell culture

is normal: No difference in neuronal numbers is observed in the presence or

absence of neurotrophic factors when Smn�/�SMN2tg and control motoneurons

are compared in culture. However, axon growth is altered (Rossoll et al. 2003).

Within the first 3 days in culture, these motoneurons show normal axon growth, but

further extension of the axons between day 3 and 7 is severely disturbed (Jablonka

et al. 2007). Axonal growth cones are smaller, and a specific lack of actin protein is

observed in axon terminals. This correlates with the finding that actin mRNA levels

are highly reduced in axons of Smn-deficient motoneurons (Rossoll et al. 2003).

The Smn protein itself does not interact with specific mRNAs such as the β-actin
mRNA. However, the Smn protein does not only bind to components of the

classical Smn complex (Gubitz et al. 2004), but also with other proteins of the

hnRNP family, in particular hnRNP-R (Rossoll et al. 2002; Mourelatos et al. 2001).

There are also reports that the Smn protein interacts with TDP-43 (Wang

et al. 2002) and also with the FUS protein (Yamazaki et al. 2012). However, in

the case of TDP-43 and FUS, it is still not fully resolved whether these interactions

occur directly in postnatal motoneurons, or whether the Smn interacts with hnRNP

complexes containing TDP-43, FUS, and other members of the hnRNP family.

Studies aimed at identifying TDP-43-binding partners in nuclear and cytosolic

extracts point to the fact that the TDP-43 and FUS proteins are normally present

in large protein complexes involving several members of the hnRNP family (Ling

et al. 2010; Freibaum et al. 2010). Therefore, it is possible that Smn does not

directly interact with each of these proteins, but with different preference to

individual members of the hnRNP family. This needs further experimental

analyses.

Smn and hnRNP-R proteins are co-localized in axons of motoneurons (Rossoll

et al. 2002). The hnRNP-R protein is capable of directly interacting with the β-actin
mRNA, and this interaction is reduced when the Smn-binding domain of hnRNP-R

is deleted (Rossoll et al. 2003). The consequences of reduced interaction of Smn

with hnRNP-R are not known. However, the observation that Smn-deficient

motoneurons show reduced β-actin translocation into axons indicates that the

Smn protein could play a role for axonal translocation of this and probably also

other mRNAs into axons. Knockdown of hnRNP-R in isolated motoneurons or in

zebrafish embryos (Glinka et al. 2010) leads to a similar phenotype as Smn

deficiency. This points to an involvement of Smn in the formation and function

of hnRNP complexes for axonal translocation of specific mRNAs. Whether Smn

plays an essential role in the assembly of hnRNP complexes in the nucleus, in
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nuclear exports of such mRNA transport complexes, and in the translocation of

these protein/mRNA complexes to axons, and whether it also has a role in

regulating the translation of these mRNAs in the axon terminals, remains to be

determined.

Reduced axon growth has also been observed in zebrafish embryos in which

Smn has been knocked down by Morpholino technologies (McWhorter et al. 2003).

Axons are shorter and many of them are truncated or branched, so that they do not

reach their physiological target muscles. There is no evidence that axon growth is

reduced in Smn-deficient mouse models in vivo (McGovern et al. 2008). However,

motor axons grow out very early during embryonic development, and reduced

speed of axon elongation could be compensated in vivo, so that even motoneurons

with reduced axon growth rates in cell culture reach their target and make synaptic

connections. Smn-deficient motoneurons in cell culture show altered growth behav-

ior on laminin-β2/merosin (Jablonka et al. 2007). Wild-type motoneurons normally

exhibit reduced axon growth on the synapse-specific form of laminin, but

Smn-deficient motoneurons do not. This is due to altered distribution of CaV2.2

voltage-gated Ca2+ channels in axon terminals of Smn-deficient motoneurons

(Fig. 1). The altered distribution of these voltage-gated Ca2+ channels correlates

with altered excitability and altered Ca2+ influx after the initiation of action

potentials in the cell body of Smn-deficient motoneurons (Jablonka et al. 2007).

Fig. 1 Axonal defects in Smn-deficient motoneurons. (a) Smn�/�SMN2tg motoneurons show

defects in formation of presynaptic structures. They lack the accumulation of voltage-gated

calcium channels (Cav2.2) in the tip of axonal growth cones where active zones form. This is

also reflected by reduced colocalization with other proteins of the active zone, such as piccolo

(green). Reproduced from Jablonka et al. (2007) (b) Diminished neuromuscular endplate currents

(EPC) in tibialis anterior muscle of postnatal Smn-deficient (SMA) mice. The deficit in neuro-

transmission is caused by a deficit in release of synaptic vesicles. CL control; *P < 0.01.

Reproduced from Kong et al. (2009)
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Only a small proportion of action potential-like depolarizations in isolated

Smn-deficient motoneurons leads to Ca2+ transients in axon terminals of

motoneurons from the SMA mouse model. These alterations predict defects in

presynaptic function and neurotransmission at the neuromuscular endplates.

Indeed, such defects are also observed in mouse models. Reduced folds at neuro-

muscular junctions have been observed in Smn-deficient mouse models during

postnatal development, and neurotransmission at the synapses is also altered

(Kong et al. 2009; Torres-Benito et al. 2012; Ruiz et al. 2010) (Fig. 1).

Additional defects affecting excitability and neurotransmission have been dis-

covered in Smn-deficient mouse and Drosophila models. In Smn-deficient mice,

synaptic input to spinal motoneurons is reduced (Mentis et al. 2011), and the

majority of the proprioceptive sensory afferents that normally make direct synaptic

contact with spinal motoneurons are defective. It is still not clear whether this

sensory defect is a consequence of altered excitablilty of motoneurons or reflects a

primary defect in sensory neurons (Gogliotti et al. 2012). Such alterations in

sensory afferent have also been observed in fly models. Smn deficiency in Dro-
sophila melanogaster leads to aberrant splicing of stasimon in cholinergic sensory

neurons and interneurons (Imlach et al. 2012; Lotti et al. 2012), due to severely

impaired U12 splicing in Smn-deficient neurons, including neural cell types other

than motoneurons. This leads to decreased excitation of motoneurons and thus

possibly to malfunction and degeneration.

Taken together, the cellular basis of spinal muscular atrophy is complex. Smn

deficiency on the one side could lead to altered splicing of gene products that are

important for the function of neurons that project to motoneurons and are necessary

for giving them excitatory signals. Furthermore, Smn deficiency in motoneurons

could impair axon growth and presynaptic differentiation, resulting in impaired

neurotransmission at neuromuscular endplates. In any case, therapy has to focus on

restoration of Smn function, and this could be through increasing full-length Smn

expression in neurons, i.e., through strategies that improve the inclusion of exon

7-encoded domains from the SMN2 gene, or in increasing promoter activity for the

SMN2 gene with the aim to increase overall transcript levels of the Smn mRNA

(Sendtner 2010). In addition, strategies to restore physiological innervation of

motoneurons, motoneuron excitability, and neurotransmission at neuromuscular

endplates appear essential. Such strategies could go beyond increasing the levels

of functional Smn protein in motoneurons. Evidence for this has been given by

depleting PTEN in Smn-deficient motoneurons in cell culture and in vivo in mouse

models. PTEN depletion leads to a normalization of axon elongation, increases

axonal growth cone size, and restores excitability of Smn-deficient motoneurons

(Ning et al. 2010). These changes are associated with increased pAKT and p70S6

levels in Smn-deficient motor axons. This treatment also restores actin protein

levels in axonal growth cones of Smn-deficient motoneurons. In vivo, the injection

of siPTEN constructs in limb muscles of Smn-deficient motoneurons increases

motoneuron survival (Ning et al. 2010). The hypothesis that defective actin cyto-

skeleton in axon terminals contributes to disease is also supported by genetic

evidence in humans. Plastin-3, a protein that stabilizes filamentous actin, has
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been shown as modifier of SMA in patients (Oprea et al. 2008). This genetic

observation in patients has recently been confirmed by a corresponding mouse

model (Ackermann et al. 2013), and this opens perspectives for therapeutic

strategies that stabilize the actin cytoskeleton in presynaptic compartments of

neuromuscular endplates as another target for therapy development.

6 Developmental Motoneuron Cell Death

Neuronal cell death is often considered as a pathological feature, disregarding that

many neurons undergo cell death during normal development. Although some

observations on this phenomenon go back to the early twentieth century, it was

the work of Viktor Hamburger (1934, 1975) and other pioneer researchers who

discovered the principles and physiological meaning of this phenomenon. Spinal

motoneurons played a central role in this discovery process. Viktor Hamburger and

his colleagues showed that developmental motoneuron cell death is guided by

influences provided from target tissue. Removal of limb buds in developing chick

embryos enhances massively developmental motoneuron cell death and transplan-

tation of an additional limb reduces the number of dying motoneurons. This kind of

plasticity does not only allow the individual organism to react to deviations from

genetically determined developmental programs, it also allows plasticity to gener-

ate an individual architecture of the nervous system in response to environmental

cues, and thus might have contributed during evolution to the generation of a highly

complex nervous system in higher vertebrates. On the other hand, the complex

nature of such regulatory mechanisms also implies vulnerability and any distur-

bance of the regulatory processes theoretically could lead to pathological losses of

neurons and neuronal function. Since the cloning of BDNF (Leibrock et al. 1989)

and CNTF (Stockli et al. 1989) in 1989, a broad variety of neurotrophic factors were

identified that can support motoneuron survival. At least three neurotrophins, brain

derived neurotrophic factor, neurotrophin-4, and neurotrophin-3, but not NGF,

support motoneuron survival. The CNTF/LIF family, which mediates

pro-survival actions through a cytokine receptor involving LIFR-β and gp130,

also includes several members, besides CNTF leukemia-inhibitory factor (LIF),

cardiotrophin-1 (CT-1) (Pennica et al. 1996), and cardiotrophin-1-like cytokine

(CLC) (Elson et al. 2000).

Survival of cultured motoneurons is also supported by members of the glial-

derived neurotrophic factor (GDNF) gene families. Factors supporting motoneuron

survival include GDNF (Henderson et al. 1994), neurturin (Klein et al. 1997),

persephin (Milbrandt et al. 1998), and artemin (Baloh et al. 1998), and these

molecules mediate their survival effects through C-Ret-tyrosine kinase and specific

α-receptors. Motoneurons are also supported by insulin-like growth factor 1 and

2 (Arakawa et al. 1990). In cultures of isolated embryonic chick spinal

motoneurons, the survival-promoting effect of IGF is relatively low. However,

when IGFs are combined with other neurotrophic factors such as CNTF, this

leads to supra-additive survival effects, indicating that neurotrophic factors
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potentate each other. The relatively low survival effect of IGF-1 on chick embry-

onic motoneurons could be due to cell culture conditions that include serum in

culture medium with inhibitory insulin-like growth factor-binding proteins. Not

very much is known on how insulin-like growth factor-binding proteins modulate

the action of IGFs on motoneuron survival during development and in the adult.

Also other types of pluripotent growth factors support motoneuron survival such

as members of the FGF family (Arakawa et al. 1990; Hughes et al. 1993a), members

of the vascular endothelial growth factor (VEGF) family (Poesen et al. 2008;

Azzouz et al. 2004; Carmeliet and Storkebaum 2002), or hepatocyte growth factor

family (Yamamoto et al. 1997). HGF is a heterodimer protein with similarities to

plasminogen. However, it lacks the enzymatic activity of plasminogen (Weidner

et al. 1991). Interestingly, only lumbar motoneurons from 5-day-old chick embryos

survive with HGF, but not motoneurons from thoracic or cervical spinal cord

(Novak et al. 2000). In developing chick embryos, the c-met tyrosine kinase is

expressed in lumbar but not in thoracic motoneurons between embryonic day 5 and

10 during the period of physiological motoneuron cell death. Additional

experiments have shown that the expression of c-met in lumbar motoneurons

seems to be regulated by target tissue-derived factors other than HGF. This was

concluded from experiments showing that the massive cell death of motoneurons in

the lumbar spinal cord after limb removal cannot be rescued by HGF treatment

because the receptor was downregulated by target deprivation. HGF thus represents

another neurotrophic factor that influences survival of only specific subpopulations

of motoneurons and needs cooperation with other signals in order to exert a

survival-promoting effect. Together with the observation that IGF acts in a supra-

additive way with other factors on cultured motoneurons, this supports the conclu-

sion that motoneuron survival during development is regulated by a complex

orchestra of many factors that play together in supporting survival, presynaptic

differentiation, and maturation of neuromuscular endplates, regulating preservation

and stabilization of axons and by this way also the long-term functionality of these

cells in the nervous system.

Such interactions are also observed experimentally after lesion in peripheral

nerves. For example, when the facial nerve is transected in newborn rats, individual

application of CNTF (Sendtner et al. 1990) or BDNF (Sendtner et al. 1992a)

supports survival, but does not prevent atrophy of motoneuron cell bodies. Atrophy

is significantly reduced when both factors are applied (Gravel et al. 1997). Not all of

these factors that support survival of isolated embryonic motoneurons are also

expressed in developing skeletal muscle. For example, CNTF is not expressed in

muscle. The high expression found in adult mice is confined to myelinating

Schwann cells, and expression of this factor only starts in the postnatal period in

rodents when the period of physiological cell death is over. Similarly, only low

quantities of BDNF are found in skeletal muscle (Hughes et al. 1993b). Levels of

BDNF expression are much higher in Schwann cells after nerve lesion (Meyer

et al. 1992). Gene knockout experiments have been performed and it has been

shown that depletion of BDNF and/or NT-4 does not increase developmental cell

death of motoneurons (Liu et al. 1995). The same is true in animal models lacking
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CNTF and/or LIF (Holtmann et al. 2005). Only in mouse models in which GDNF is

depleted (Oppenheim et al. 2000) or cardiotrophin-1 (Oppenheim et al. 2001),

subsets of motoneurons are lost during this physiological cell death period. Also

these genetic data point to a collaboration of several neurotrophic factors in

developmental maintenance and regulation of survival during the period of physio-

logical cell death.

These data also show that Schwann cells play a role in motoneuron maintenance.

Mice in which Schwann cell-derived CNTF and LIF are eliminated show progres-

sive loss of motoneurons and of motoneuron functions, which correlates with loss

of muscle strength in adult mice (Holtmann et al. 2005). Similarly, mice deficient

for erb-B3, the receptor for glial growth factor (GGF), which exhibit severely

disturbed development of Schwann cells, show as a consequence significant reduc-

tion (79 %) in motoneurons (Riethmacher et al. 1997). Thus, Schwann cells

apparently do not only play a role as source of survival and maintenance factor in

the adult peripheral nervous system, but apparently also during development.

Developing Schwann cells either play a role in helping motoneurons to contact

skeletal muscle and to become functionally active, which then leads to upregulation

of neurotrophic support from skeletal muscle, or alternatively, they could provide

trophic support in addition to that of motoneurons, and only those motoneurons that

receive sufficient signals from developing Schwann cells and muscles are

supported, and those that do not receive the support are eliminated. When limb

buds are completely removed from chick embryos, motoneuron survival is severely

impaired (Oppenheim 1985). Similar observation is made when only skeletal

muscle is destroyed (Grieshammer et al. 1998), indicating that the remaining

Schwann cells are not sufficient to support survival, and therefore, additional

support from muscle is necessary.

7 Interactions of Neurotrophic Signaling
with Pathomechanisms of Motoneuron Disease

The identification of underlying gene defects for most of the familial forms of

spinal muscular atrophy and amyotrophic lateral sclerosis has pointed to a large

variety of disease mechanisms. There are two major groups of pathomechanisms

that have emerged: On the one side, dysfunctional RNA processing in spinal

muscular atrophy and familial forms with mutations in TDP-43, FUS, and abnormal

protein aggregates and dysfunctional signaling pathways for mitochondrial

metabolisms due to mutations in the SOD-I genes and potentially also the

c9Orf72 gene. These two groups of pathomechanisms do not exclude each other:

TDP-43 C-terminal fragments are a major component of inclusions in most cases of

ALS, including the majority of sporadic ALS. Axonal swellings containing protein

aggregates and dysmorphic mitochondria are commonly found in motoneurons and

also in mouse models of motoneuron disease such as pmn mutant mice (Bommel

et al. 2002; Selvaraj et al. 2012) (Fig. 2). None of the gene products named above

are directly connected to neurotrophic factors or their receptors. Therefore,
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deficiency of individual neurotrophic factors that lead to enhanced developmental

cell death, i.e., in the case of CT-1, GDNF, or HGF, or progressive postnatal

motoneuron loss after depletion of CNTF, LIF, or IGF-1, apparently does not

seem to be a primary cause of motoneuron disease, at least on a genetic level.

Nevertheless, the signaling pathways exerted downstream from receptor for

neurotrophic factors for motoneuron survival, for axon maintenance and regenera-

tion, and for presynaptic function and stabilization of neuromuscular endplates

apparently seem to be disturbed are not fully functional in motoneuron disease,

and several possibilities exist that need to be considered.

First, neurotrophic factors could play a role in compensating for

neurodegeneration of spinal motoneurons by promoting sprouting. The central

role of neurotrophic factors in axonal and terminal sprouting has been known for

a long time (Caroni 1997). Indeed, in a mouse model of a mild form of spinal

muscular atrophy, Smn+/� mice that exhibit a reduction of Smn protein by only

50 % and thus resemble mild forms of spinal muscular atrophy in humans do not

show an overt phenotype (Simon et al. 2010). Nevertheless, there is progressive loss

of motoneurons that reaches more than 50 % at an age of 1 year in this mouse

model. For comparison, Smn�/�SMN2tg mice, the mouse model for the severe

form of SMA type I only exhibits a loss of about 20 % above control (Monani

et al. 2000) when mice are terminally sick and completely paralyzed early after

birth. This indicates that loss of motor function does not necessarily correlate with

the loss of motoneurons, in particular not in cases with slowly progressive forms of

motoneuron disease that allow remaining motoneurons to sprout and compensate

for lost neurons by reinnervating denervated skeletal muscle fibers. Indeed, massive

sprouting occurs in Smn+/� mice and this explains the lack of any loss of muscle

strength in these mice. Electrophysiological analysis shows an increase of motor

units by a factor of at least 2, and morphological analysis provides evidence for

massive sprouting, including terminal sprouting and axonal sprouting to reinnervate

neuromuscular endplates in different muscle groups. This type of sprouting depends

Wildtype control pmn mutant motoneurons 

Fig. 2 Axonal swellings in isolated motoneurons from progressive motor neuropathy (pmn)

mutant mice. Based on a mutation in the TBCE gene (Bommel et al. 2002) motoneurons develop

axonal swellings containing protein aggregates and dysmorphic mitochondria. Scale bar:
1,000 nm

Motoneuron Disease 429



on neurotrophic factors provided from myelinating Schwann cells, in particular

CNTF. When these Smn+/� mice are crossbred with CNTF-deficient mice,

sprouting does not occur, and the compensatory increase in motor unit size detected

by electromyographical analysis is also not found. Thus, neurotrophic signaling

could help to compensate for loss of motoneuron function over prolonged periods,

and it is possible that this contributes to the observation that most forms of ALS

only become apparent at higher age.

This is also suggested by experiments when SOD-1 G93A mice are crossbred

with CNTF-deficient mice (Giess et al. 2002) (Fig. 3). When CNTF is lacking,

disease onset occurs earlier, providing evidence that this and probably also other

factors contribute to plasticity that helps animal models or individuals with SOD-I

gene defects to maintain motor function before disease finally becomes apparent.

Also in patients with ALS, the presence or absence of CNTF seems to play a role.

Due to an abundant polymorphism in the splice acceptor site of exon 2 of the CNTF

gene, about 2 % of the population worldwide is homozygous CNTF deficient and

express only a truncated CNTF protein without function. Average disease onset in

such patients is at least 10 years earlier, and in one family with an SOD-I mutation,

the additional homozygous deletion of CNTF leads to very early disease onset,

whereas other members of the same family with the same SOD-I mutation develop

the disease only 20 years later (Giess et al. 2002).

The question is open as to which parameters determine the time point when

compensation is lost and disease becomes apparent. In SOD-I mutant mice, deple-

tion of synaptic vesicles in presynaptic motor terminals at neuromuscular junctions

precedes the loss of presynaptic branches (Pun et al. 2006) and the progressive

degeneration of the motoneurons. Interestingly, when CNTF was injected, the

Fig. 3 Modifier effect of CNTF in a family with fALS patients (SOD V148G) and in SOD G93A

tg mice: (a) A family with autosomal-dominant ALS with SOD-I V148G mutation showed highly

variable disease onset, ranging from 25 to 56 years. Search for candidate modifier gene defects

revealed a homozygous CNTF null mutation in the patient with early onset at 25 years.

(b) Depletion of CNTF from SOD G93A mice confirms that CNTF deficiency leads to earlier

disease onset in mice. Reproduced from (Giess et al. 2002)
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depletion of synaptic vesicles and pruning of nerve terminals are delayed. Even

more interestingly, the injection of the neurotrophic factor GDNF was without

effect in this context. This is interesting insofar as both CNTF and GDNF are potent

survival factors for developing motoneurons, but apparently, they seem to differ

with respect to their function in maintaining nerve terminals.

Such differences between different groups of neurotrophic factors have also

been observed in other mouse models of motoneuron disease. For example, in pmn

mutant mice, which develop a motoneuron disease on the basis of a gene defect in

tubulin-specific chaperone-E gene (Bommel et al. 2002), CNTF can delay disease

onset and prolong survival (Sendtner et al. 1992b), whereas treatment with GDNF

(Sagot et al. 1996a) or BDNF cannot. The mutation in the TBCE gene leads to

instability of microtubules that correspond to defective axon growth in isolated pmn

mutant motoneurons in cell culture (Fig. 4).
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Fig. 4 CNTF rescues defective axon elongation in pmn mutant motoneurons (Bommel

et al. 2002; Selvaraj et al. 2012; Sendtner et al. 1992b): Wild-type and pmn mutant motoneurons

were cultured for 5 days in the presence of BDNF or BDNF+CNTF and stained with alpha-tubulin.

Pmn mutant motoneurons cultured with BDNF have shorter axons when compared to wild-type

controls. CNTF application restores axon elongation in pmn mutant motoneurons. Scale bar:
100 μm
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Survival of pmn mutant motoneurons is primarily not affected, but axons are

shorter and exhibit swellings that contain dysmorphic filaments and accumulations

of mitochondria (Fig. 2). Microtubule stability is altered in pmn mutant motoneurons

(Selvaraj et al. 2012): There is an increase of tyrosinated highly dynamic

microtubules, and this correlates with reduced axonal transport of mitochondria.

Interestingly, CNTF, but not GDNF or BDNF, can rescue this axonal phenotype.

The CNTF effect is mediated by the activation of STAT-3, which exerts a local,

non-transcriptional function in the axon via interaction with Stathmin, a microtubule-

destabilizing protein. Destabilization of microtubules in cultured motoneurons shows

that the capacity to regrow microtubules is highly reduced in isolated motoneurons

from this mouse model ofmotoneuron disease and that CNTF treatment can help pmn

mutant motoneurons to regrow stable microtubules (Fig. 5). Similarly, Stathmin

knockdown also rescues the phenotype. Stabilization of microtubules with Taxol

has a similar effect. Treatment of pmn mutant mice with CNTF delays disease onset

(Sendtner et al. 1992b), but transgenic overexpression of bcl-2 (Sagot et al. 1996b) or
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Fig. 5 CNTF promotes microtubule polymerization: Primary motoneurons isolated from wild-

type and pmn mutant embryos were treated with nocodazole for 6 h to depolymerize the microtu-

bule network. Nocodazole was washed out and microtubule regrowth was analyzed at 5 min after

CNTF application. Polymerized microtubules were labeled with antibodies against α-tubulin (red)
and microtubule organization center was labeled with antibodies against γ-tubulin (green).
Number of microtubules and length of microtubules formed in pmn mutant motoneurons were

significantly less when compared to wild-type motoneurons. Application of CNTF increased the

number of microtubules and length of microtubules formed in pmn mutant motoneurons (Selvaraj

et al. 2012). Scale bar: 2 μm
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treatment with GDNF only rescues cell bodies without any effect on axons, and the

consequence is that onset and course of the disease are not altered by bcl-2

overexpression or GDNF treatment. Thus, the local effect of neurotrophic signaling

on axon stability, in the case of CNTF, via STAT-3 and Stathmin seems to be more

important for modulating disease than the classical neurotrophic signaling pathways

for neuronal survival, and it is possible that similar effects are also contributing to the

modulatory effect of CNTF in fALS with mutations in the SOD-I gene.

Some neurotrophic factors, in particular members of the neurotrophin family and

their receptors, could also mediate additional effects via the p75 neurotrophin

receptor (p75NTR). This transmembrane protein shares structural and functional

similarities with other transmembrane molecules of the FAS/APO-1 CD95 and

TNF-receptor-1 family (Chao 2003). In a variety of cellular contexts in vitro and

in vivo, p75NTR mediates cell death after binding of neurotrophins and in particular

pro-neurotrophins, in particular when Trk receptors are not expressed, and binding

of pro-neurotrophins to p75NTR has been shown in a variety of physiological

contexts to destabilize neurites and cause neuronal cell death. Injection of

neutralizing antibodies against p75NTR into the eye of early chick embryos has

shown that early developmental cell death of retinal ganglion cells can be mediated

through this receptor (Frade et al. 1996). Some mediators of p75NTR signaling also

specifically destabilize axons (Plachta et al. 2007). Activation of p75NTR

upregulates expression of the sugar-binding protein galectin-1. Increased amounts

of galectin-1 destroy neuronal processes, both in cell culture and in vivo. The

p75NTR receptor is highly upregulated in degenerating motoneurons in ALS

(Kerkhoff et al. 1991; Seeburger et al. 1993), and it is likely that activation of

this receptor contributes to the degenerative effects, in particular pruning of neuro-

muscular synapses and degeneration of neural processes (Singh et al. 2008).

In summary, neurotrophic factors modulate motoneuron disease on several

levels. On the one side, they play a role in compensating the loss of motoneurons

at early stages by sprouting, by stabilizing neuromuscular synapses, by stabilizing

axons, and also by acting on motoneuron survival. On the other side, p75NTR

signaling could contribute to degenerative mechanisms responsible for denervation

of neuromuscular endplates and axon destruction, possibly even motoneuron cell

death at later stages of disease. This offers many options how neurotrophic factors

and their signaling pathways could be used as targets for therapy. So far, clinical

trials with CNTF, IGF-1, and BDNF have not been successful in motoneuron

disease (Thoenen and Sendtner 2002), but this is mainly due to side effects in the

case of CNTF and adverse pharmacokinetic properties in the case of BDNF and

possible also IGF-1. Future developments to overcome these problems could help

to develop new therapies for motoneuron disease. Similarly, approaches that inhibit

potential destructive signaling through p75NTR could also be of benefit for treat-

ment of motoneuron disease. These strategies could be even more efficient when

combined with therapies aiming at counteracting the consequences of primary

causes of motoneuron disease, such as Smn deficiency in spinal muscular atrophy,

or of altered TDP-43, Fus, or C9orf72 processing in familial or sporadic forms of

motoneuron disease.
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Neurotrophic Factors in Spinal Cord Injury

Vanessa S. Boyce and Lorne M. Mendell

Abstract

A major challenge in repairing the injured spinal cord is to assure survival of

damaged cells and to encourage regrowth of severed axons. Because

neurotrophins are known to affect these processes during development, many

experimental approaches to improving function of the injured spinal cord have

made use of these agents, particularly Brain derived neurotrophic factor (BDNF)

and Neurotrophin-3 (NT-3). More recently, neurotrophins have also been shown

to affect the physiology of cells and synapses in the spinal cord. The effect of

neurotrophins on circuit performance adds an important dimension to their

consideration as agents for repairing the injured spinal cord. In this chapter we

discuss the role of neurotrophins in promoting recovery after spinal cord injury

from both a structural and functional perspective.

Keywords
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Pain

1 Introduction

Neurotrophic factors have been implicated in the response to central nervous

system injury for more than two decades. Early experiments noted that with cortical

injury came the production of “neuronotrophic factors” (Nieto-Sampedro

et al. 1982), thought to be responsible for the survival of neurons in vitro.

V.S. Boyce • L.M. Mendell (*)

Department of Neurobiology and Behavior, Stony Brook University, Stony Brook,

NY 11794-5230, USA

e-mail: lorne.mendell@stonybrook.edu

G.R. Lewin and B.D. Carter (eds.), Neurotrophic Factors, Handbook of

Experimental Pharmacology 220, DOI 10.1007/978-3-642-45106-5_16,
# Springer-Verlag Berlin Heidelberg 2014

443

mailto:lorne.mendell@stonybrook.edu


These molecules were later identified by other groups as belonging to a family of

neurotrophic factors, consisting of nerve growth factor (NGF), brain derived

neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)

(Barde et al. 1982; Müller et al. 1984). The neurotrophins act via tropomyosin-

related kinase (trk) receptors which selectively bind neurotrophins (trkA: NGF;

trkB: BDNF; NT-4/5; trkC: NT-3). Expression of the different trk receptors on

different populations of neurons assures selectivity of neurotrophin action. Another

neurotrophin receptor, p75, is activated by all neurotrophins and is not a basis for

selectivity. Neurotrophins and their receptors are discussed in more detail in the

chapter by Chao.

During development neurotrophins have been identified as target-derived

molecules that are retrogradely (DiStefano et al. 1992) and anterogradely (Conner

et al. 1997) transported via intrinsic axonal transport mechanisms. These

mechanisms are used to deliver exogenously supplied neurotrophic factors to the

central nervous system, after either peripheral (Fortun et al. 2009; Petruska

et al. 2010) or central administration (Tuszynski et al. 1994; Blits et al. 2003;

Arvanian et al. 2003; Boyce et al. 2007, 2012). Neurotrophins promote cell survival

and axonal growth (see below) which make them excellent candidates for use in

spinal cord injury. Although these effects indicate a strong potential for roles in

spinal cord repair processes, more recent studies have indicated additional actions

for neurotrophins that could contribute to enhancing the function of the damaged

spinal cord. Here, we are referring to their role in altering the physiology of neurons

and their synapses. Since most spinal cord injuries are anatomically incomplete,

even though apparently functionally complete, any therapy that enhances cellular

and synaptic function of surviving neurons is potentially useful. Recent work has

demonstrated that neurotrophins elicit physiological effects in the damaged spinal

cord that can improve function. However, as we shall discuss, some of the effects of

neurotrophins can be detrimental, and this must be carefully considered before

using them as therapy after spinal cord injury.

This chapter discusses the many ways in which neurotrophins have been used to

improve functional outcomes in experimental studies of spinal cord injury. Herein,

we compare the efficacy of such treatments across animal models, lesion severities,

and delivery methods and attempt to distill the substantial body of work that has

been done in this field. In so doing, this chapter hopes to contribute to the discussion

of how best neurotrophic factor approaches can be optimized to address the

problems that are caused by spinal cord injury.

2 Cell Survival and Axonal Growth

Many deficits result from spinal cord injury. Foremost among these is axonal

damage resulting from the mechanical insult. Secondary damage due to neurotoxic

and a plethora of inhibitory molecules causes apoptotic cell loss and axonal
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degeneration (reviewed in McDonald 1999; Fitch and Silver 2008; Beattie 2004). In

addition the glial scar presents a physical barrier to axonal regrowth, the resulting

outcome being loss of function correlated with injury severity. It is no wonder then

that neurotrophic factors became attractive agents used by many groups (Henderson

et al. 1993; Xu et al. 1995; Tuszynski et al. 1996; Ye and Houle 1997; Liu

et al. 1999; Brock et al. 2010) to address cell survival and axonal regeneration

following a spinal cord injury (reviewed in Bregman 1998).

A major challenge for damaged neurons is survival. Although cell death is not

generally an immediate consequence of axotomy, cells disconnected from their

target often do not survive indefinitely. Axotomized motoneurons in neonatal rats

fail to survive, a fate that can be delayed for several weeks by providing the

neurotrophin BDNF, a trkB agonist (Sendtner et al. 1992; Yan et al. 1993; Koliatsos

et al. 1993). TrkB agonists (BDNF or NT-4/5) also enhance survival of axotomized

rubrospinal (Kobayashi et al. 1997; Bretzner et al. 2008) and corticospinal neurons

(Giehl and Tetzlaff 1996; Brock et al. 2010) in the central nervous system.

Surviving axotomized neurons must grow processes in order to participate in the

recovery of function. In the peripheral nervous system, BDNF has been found to

encourage growth of motor axons (Novikova et al. 2002; Boyd and Gordon 2003)

with low doses of BDNF facilitating regeneration and higher doses discouraging it,

the latter perhaps via its action on the p75 neurotrophin receptor (Boyd and Gordon

2003). Regeneration of sensory neurons to their central targets in the spinal cord

faces a barrier because of the inability of regeneration within the cord. However, it

has been demonstrated that provision of neurotrophins to the growing fibers helps

them overcome these barriers to enable synaptic connectivity with cells in the gray

matter (Ramer et al. 2000, 2002). Fibers regenerate according to the neurotrophin

that is provided, i.e., trkC-expressing muscle spindle afferents regenerate when

NT-3 is provided, etc.

In the CNS there are also numerous demonstrations of the effects of

neurotrophins in promoting axon growth. NT-3 in the dorsal columns promotes

growth of axotomized sensory axons (Bradbury et al. 1999), and placing NT-3 in

the dorsal column nuclei has been found to encourage ingrowth of axotomized

sensory fibers from the dorsal columns with ultrastructural evidence for formation

of synapses on relay cells (Alto et al. 2009). NT-3 has also been found to induce

sprouting from damaged corticospinal tract fibers (Grill et al. 1997; von Meyenburg

et al. 1998; Schnell et al. 1994; Tuszynski et al. 2003) but not from intact

corticospinal fibers (Zhou et al. 2003). The mechanisms of neurotrophin action on

axon growth remain incompletely described because of evidence that BDNF in

some cases stimulates sprouting of damaged corticospinal axons, (Bregman

et al. 1997; Vavrek et al. 2006) and in other studies NT-3 has been found to inhibit

the sprouting response (Hagg et al. 2005). BDNF and NT-4/5 exert a positive

growth action on damaged rubrospinal, vestbulospinal, and reticulospinal fibers

(Menei et al. 1998; Jin et al. 2002).

The ability to encourage regeneration of fiber tracts using neurotrophins has

stimulated more ambitious projects to improve function after spinal cord injury.

These efforts have included the use of bridges to improve growth of axons across
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lesions as well the use of transplanted cells to act as relays between damaged axons

and functioning parts of the nervous system. Neurotrophins have played important

roles in both undertakings. For example, axons growing through a Schwann cell

bridge placed into the damaged spinal cord are more successful in growing into a

bridge treated with NT-3 and/or BDNF (Xu et al. 1995). In addition, fibers reenter

the spinal cord on the other side of the bridge in greater numbers and for greater

distances when the host cord itself is treated with BDNF and/or NT-3 (Bamber

et al. 2001). In a recent study Bonner et al. (2011) demonstrated that embryonic

spinal neurons implanted into a dorsal column lesion site in rats received input from

dorsal column axons, and under the influence of BDNF sent axons into the dorsal

column nuclei. These axons, exhibited electrophysiological function, although

there was no definitive evidence that they made functional synapses on cells in

the dorsal column nuclei. Further studies in rats using cultured neural stem cells

implanted with a cocktail of growth factors including BDNF and NT-3 into a total

transection at T3 have revealed formation of a functional bridge connecting both

sides of the lesion (Lu et al. 2012). This bridge was associated with behavioral

improvement.

In addition to promoting growth of axons, neurotrophins also support prolifera-

tion of oligodendrocytes with the resultant myelination of nearby axons (McTigue

et al. 1998; Althaus et al. 2008). This is an exceedingly important function after

spinal cord injury where glial cells, including oligodendrocytes, are known to

undergo apoptosis, resulting in axons that are unable to conduct action potentials

normally. They are either subject to blockade, for example at branch points, or fail

to conduct faithfully at normal frequencies (Tan et al. 2007). These deficits in

presynaptic impulse discharge frequency can have substantial effects on the

response of postsynaptic cells.

A different strategy to improve spinal cord repair making use of the ability of

neurotrophins to promote axonal growth has involved attempts to generate bypasses

or detours around partial spinal lesions such as hemisections. One strategy already

discussed involves using implanted cell populations to serve as a bridge connecting

damaged axons to their usual target. Another strategy takes advantage of the ability

of neurotrophins to stimulate axonal growth or sprouting to enable damaged cells to

synapse on new populations of neurons that would conduct impulses past the region

of damage. Such anatomical plasticity has been documented particularly after

partial spinal cord injuries (Bareyre et al. 2004; Courtine et al. 2009; Murray

et al. 2010). In these instances reorganization and functional reconnection of

supraspinal tracts occurred via the formation of “bypass circuitry” around the lesion

utilizing long descending propriospinal fibers. In fact, cortical application of BDNF

increased the formation of these new corticospinal connections onto propriospinal

fibers (Vavrek et al. 2006).

Neurotrophic factors are instrumental in the remodeling of spinal cord circuitry

post-injury, with axonal sprouting chief among the benefits of their administration

(Senut et al. 1995). In particular sprouting of corticospinal (Schnell et al. 1994;
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Sasaki et al. 2009), cholinergic (Jakeman et al. 1998), and rubrospinal (Tobias

et al. 2003) fibers occurs with NT-3 or BDNF administration to the injured spinal

cord. Arvanian et al. (2006) demonstrated in the neonatal rat that axons of the

ventrolateral fasciculus deprived of monosynaptic connections to motoneurons by

hemisection can develop polysynaptic connections to ipsilateral motoneurons if the

cord is treated with NT-3. A factor enhancing NT-3 action is the NR2D regulatory

subunit of the NMDA receptor. This subunit is normally downregulated in the

immediate postnatal period, and this decline is responsible for Mg2+ block of

the NMDA receptor without which NT-3 is ineffective (Arvanian et al. 2004). In

the adult rat where growth of CNS axons is restricted due to the presence of

inhibitory factors such as Nogo, formation of a functional detour requires neutrali-

zation of Nogo in addition to NT-3 and NR2D (Schnell et al. 2011). Another

successful strategy with a similar outcome has involved the use of chondroitinase

in addition to NT-3 and NR2D (Garcı́a-Alı́as et al. 2011).

The ability for neurotrophins to influence connectivity in the damaged spinal

cord has stimulated efforts to deliver them chronically. Genetically modified

fibroblasts are among the cellular therapies used for this purpose (Tuszynski

et al. 1994; Grill et al. 1997; Liu et al. 1999; Brock et al. 2010). In addition to

serving as a “biological mini-pump,” producing the neurotrophin of interest, the

potential benefit of these cells is provision of a scaffold for regenerating axons.

These allografts require implantation of large numbers of cells and immunosup-

pression of the host in order to ensure graft survival (but see Tobias et al. 2001). In

order to circumvent the need for long-term immunosuppression, autologous cell

therapies have been examined (Li et al. 1997; Feron et al. 2005) as well as

neurotrophin secreting marrow stromal cells (Lu et al. 2005) or mesenchymal

stem cells (Sasaki et al. 2009). Viral constructs also effectively deliver

neurotrophins to the spinal cord by infecting cells in the host which then express

the gene product and transport it to the axon terminals (Liu et al. 1997; Hermens

and Verhaagen 1998; Blits et al. 2003; Hendriks et al. 2004). These are able to

affect spinal function even if placed in peripheral tissue (e.g., muscle) and

transported to the spinal cord (Fortun et al. 2009; Petruska et al. 2010).

None of the delivery methods discussed above is ideal. Issues of immunosup-

pression and transgene downregulation occur in cellular therapies. With viral

approaches the cellular targets are unknown and once infected, these cells continue

to elicit their effects for several months but not indefinitely (Petruska et al. 2010),

and so the effective dose needed to produce behavioral and/or anatomical

improvements is uncertain.

3 Cellular and Synaptic Changes Elicited by Neurotrophins

There is now substantial information indicating that administration of

neurotrophins results in functional changes that in many cases appear to contribute

to recovery. Much of the initial work on functional changes was centered on the role
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of nerve growth factor (NGF) in inducing inflammatory pain (See Chapter by

Lewin). Behavioral and electrophysiological studies confirmed that NGF is

pronociceptive when delivered to skin and that it is upregulated in the skin, visceral

organs, and bone during inflammatory pain (Petruska and Mendell 2009). Further-

more, antagonism of NGF reduces the pain associated with inflammation (Mantyh

et al. 2011). Some of the effects of NGF are virtually immediate, within a few

minutes, too soon to be caused by growth processes. These have been attributed to

direct effects on the nociceptive terminal whereby activation of the trkA receptor

enhances the response of noxious heat-responsive TRPV1 receptors. Other changes

are delayed and have been identified with changes in gene expression in

nociceptors, e.g., changes in Na+ channel or peptide (SP, CGRP, BDNF) expression

that enhance transmitter release rather than being related to growth of axons

(Mantyh et al. 2011).

BDNF and NT-3 have been shown to have synaptic effects in the spinal cord and

elsewhere. As is the case with the effects of NGF on the function of nociceptors,

both have immediate effects on synaptic transmission. Superfusion of the isolated

spinal cord with NT-3 elicits virtually immediate potentiation of the monosynaptic

EPSP produced in motoneurons of neonatal rats by stimulation of the segmental

(group Ia) inputs (Arvanov et al. 2000) which lasts for at least several hours

(Fig. 1a). This effect on the AMPA receptor-mediated response requires active

NMDA receptors (Arvanian and Mendell 2001a). The effects of BDNF are more

complicated, with an initial immediate facilitation followed by a long lasting

inhibition, both NMDA receptor-dependent; the latter appears to involve presynap-

tic inhibition (Arvanian and Mendell 2001b). Again these immediate effects are too

rapid to be accounted for by a growth process, such as sprouting, and are likely the

result of changes in AMPA receptor sensitivity or number. The requirement for

NMDA receptor activity and the blockade of the NT-3 effect by Ca2+ chelation

(Arvanov et al. 2000) suggest that Ca2+ entry via the NMDA receptor affects

AMPA receptor sensitivity or number, perhaps via CAM kinase activity (Strack

and Colbran 1998). These acute effects of neurotrophins observed in the isolated

cord are no longer observed after P14 because NMDA receptors lose the NR2D

regulatory subunit and become subject to Mg2+ blockade (Arvanian et al. 2004—

see above).

In other experiments NT-3 has been applied chronically using either fibroblasts

or adeno-associated viruses (AAVs) (Fig. 1b) and has been found to result in an

increase in synaptic potentials from intact segmental inputs (Arvanian et al. 2003;

Petruska et al. 2010; Boyce et al. 2012). These findings are consistent with earlier

studies in adult cats demonstrating that NT-3 applied to the stump of a severed

muscle nerve could either prevent or reverse the loss of synaptic efficacy from the

axotomized muscle afferent fibers (Mendell et al. 1999). The mechanism

(s) underlying this enhanced synaptic activity is (are) not yet defined. It could result

from a growth process, e.g., collateral sprouting, as has been described after spinal

injury (see above), a developmental process elicited by NT-3 (Seebach et al. 1999;
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Chen et al. 2003; Shneider et al. 2009), or it could be persistence of the acute effects

involving NMDA receptors. The blockade of NMDA receptors that might have

prevented NT-3 from having its NMDA receptor-dependent acute action (see

above) would be expected to be reduced or even eliminated in the intact spinal

cord where these experiments were done because the cells would often be

depolarized due to tonic synaptic activity; this is known to reduce or even eliminate

the Mg2+ blockade (Nowak et al. 1984). This ambiguity is important to resolve in

determining the mechanism responsible for the functional effects of neurotrophins

after spinal cord injury.

NT-3 does not facilitate transmission equally for all synaptic inputs to

motoneurons in the in vitro spinal cord. Arvanov et al. (2000) showed that

motoneurons exhibiting robust facilitation of the group Ia segmental EPSP by

NT-3 displayed no potentiation of the EPSPs elicited in the same motoneuron by

fibers in the ventrolateral funiculus (VLF) white matter of the spinal cord (Fig. 1a).
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Fig. 1 Left: (a) Acute potentiation of dorsal root (DR) evoked EPSP in motoneuron recorded

intracellularly in the neonatal rat cord recorded in vitro. Note that increasing the dose did not

increase the magnitude of the potentiation. (b) In the same motoneuron the response to stimulation

of the ventrolateral funiculus (VLF) white matter did not potentiate because NMDA receptors

associated with this input are blocked at this postnatal developmental stage. (c) The graph displays
the time course and magnitude of potentiation of the same motoneurons to both synaptic inputs.

Note the several hour duration of the DR potentiation even though NT-3 was removed after

10 min. From Arvanov et al. 2000 with permission. Right: Potentiation of the monosynaptic EPSP

evoked by muscle nerve stimulation (sEPSP) in the adult rat as a function of spinal cord and dorsal

root ganglion levels of NT-3. NT-3 was delivered to the muscle via AAV virus of different

serotypes (see legend). At high NT-3 cord concentrations, EPSP amplitude was elevated. From

Petruska et al. (2010) with permission
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In later studies this was attributed to differences in the NMDA receptors activated

by these two groups of fibers, specifically that in the neonatal cord, the NMDA

receptor activated by VLF fibers were already blocked by Mg2+ at a stage where the

NMDA receptors activated by group Ia fibers were not blocked. The initial view

was that this reflected a different timescale for decline of the NR2D subunit

associated with these two inputs: the VLF NMDA receptor already had reduced

NR2D expression at birth whereas the group Ia NR2D subunit declined only in the

second postnatal week. The concept that NMDA receptors associated with the

different classes of inputs to the same motoneuron has been extended more recently

by the demonstration that during the first postnatal week NMDA receptors

associated with VLF input are less mobile than group Ia NMDA receptors

(Shanthanelson et al. 2009). Furthermore, NMDA receptors associated with VLF

synapses on motoneurons have proportionally lower expression of the NR2B

subunit than group Ia fiber NMDA receptors (Shanthanelson and Mendell 2010).

Since NMDA receptors are important participants in at least some of the synaptic

actions of neurotrophins, the properties of NMDA receptors on different classes of

cells is an important issue to consider in determining neurotrophin effects in the

injured adult spinal cord.

In addition to affecting synaptic transmission, elevation of neurotrophin levels

has been found to affect cellular properties. This has been studied most extensively

for motoneurons. The most clear-cut effect is on excitability where elevation in

spinal cord NT-3 levels in adult rats has been found to reduce excitability measured

as an increase in threshold current (rheobase) (Petruska et al. 2010). This is

associated with a decrease in input resistance of the motoneurons suggesting that

the cells increase their surface area in response to NT-3, an effect that is similar to

that observed in visual cortex (McAllister et al. 1997). The inverse relationship

between rheobase and input resistance is expected since large cells should require

more current to depolarize them to threshold. Interestingly, BDNF applied

peripherally to muscle nerves has been found to reduce rheobase of the associated

motoneurons that is associated with a decrease in motoneuron surface area

(Gonzalez and Collins 1997) similar to that observed by McAllister et al. (1997).

Similar opposite effects of NT-3 and BDN F on motoneuron rheobase (i.e.,

excitability) were observed in the transected spinal cord after intraspinal delivery

of BDNF via AAV (Boyce et al. 2012). These opposing effects of NT-3 and BDNF

on motoneuron rheobase and size were not observed in similar studies in

motoneurons of neonatal rats treated with these agents although the same

treatments were effective in causing opposing changes in the amplitude of the

segmental monosynaptic EPSP: increased by NT-3, decreased by BDNF (Seebach

et al. 1999). No studies are available on the effects of neurotrophins on defined

populations of interneurons although the ability of neurotrophins to affect stepping

movements (see below) suggests that such effects exist.
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4 Recovery of Function in the Injured Cord

Given the extensive effects of neurotrophins on axon regeneration and sprouting, as

well as its effects, both acute and chronic, on properties of cells and synapses, it

would be expected that administration of neurotrophins should have effects on

function. Such effects might be very useful in promoting recovery of certain

behaviors that are lost after injury of the spinal cord. Important functions requiring

spinal circuitry include hind limb stepping, forelimb reaching, micturition, sexual

function and control of neuropathic pain. Evidence exists for modification of some

of these functions by neurotrophins.

Grill et al. (1997) used fibroblasts engineered to secrete NT-3 implanted into the

midthoracic cord to determine the degree of recovery from a midthoracic dorsal

hemisection of the spinal cord. They observed significant elongation of labeled

corticospinal axons up to about 8 mm through the gray matter, but not the white

matter. These anatomical changes were accompanied by evidence of motor recov-

ery, specifically in the number of footfalls when walking across a grid. The

interpretation of such experiments in terms of the recovery of function being due

to the reestablishment of corticospinal projections is complicated by the lack of

electrophysiological evidence indicating functional connections of such

regenerated fibers to target cells as well as the more recent evidence indicating

that infusion of NT-3 enhances synaptic connectivity from segmental afferent fibers

to motoneurons, at least in neonates (Arvanian et al. 2003). The improvement in

performance might have been largely due to local connections within the distal

cord. In a conceptually similar experiment (Liu et al. 1999) fibroblasts engineered

to secrete BDNF were implanted into a partial cervical hemisection. They found

regeneration of rubrospinal fibers up to four segments and remarkably this regener-

ation occurred through the white matter rather than being restricted to the gray

matter. This was attributed to a higher intrinsic growth capacity of rubrospinal

compared to corticospinal fibers that enabled them to regenerate through the hostile

environment of white matter. They observed improved reaching behavior of the

forelimb on the lesioned side in the BDNF-treated animals. An important control

carried out by these authors was to relesion the regenerated fibers and to demon-

strate that the recovered behavior was diminished substantially for up to 5 weeks

after the relesion. This control experiment points to a functional effect of the

regenerated fibers.

Fortun et al. (2009) demonstrated that the loss of forelimb function after a C4/C5

dorsal lesion in rats could be partially reversed after provision of NT-3. In these

experiments NT-3 was delivered non invasively using AAV viruses injected into

forelimb muscles. The NT-3 was transported to the spinal cord and it was concluded

that this enhanced the function of projections from the corticospinal tract. This was

supported by findings of decreased astrogliosis and a denser corticospinal tract

projection due either to less retraction or more sprouting of this synaptic input into

the zone of the injury.

The clearest example of the effect of neurotrophins on locomotor function has

come in studies where the cord was transected and no regeneration was allowed. It

Neurotrophic Factors in Spinal Cord Injury 451



is well established that hind limb stepping function can be enhanced after a

complete thoracic transection by locomotor training (Lovely et al. 1986; Barbeau

and Rossignol 1987; de Leon et al. 1998; Leblond et al. 2003) due to preservation of

locomotor modules necessary for stepping after spinalization (Boyce and Lemay

2009). Rats transected as neonates can be trained to step on a treadmill, but rats

transected as adults can only be trained if epidural stimulation is provided during

the training (Courtine et al. 2009). Recent experiments have demonstrated that

successful training affects certain electrophysiological parameters, particularly the

amplitude of the spindle-evoked monosynaptic EPSP which is increased and the

amplitude of the AHP which is decreased (Petruska et al. 2007). Since

neurotrophins also affect these cellular and synaptic properties (see above), it

might be expected that they would be able to elicit stepping without the need for

training or perhaps facilitate the effects of training. A possible role for

neurotrophins in recovery of stepping after spinal cord injury is further supported

by the finding that neurotrophin levels (BDNF, NT-3 and NT-4/5) are elevated in

the decentralized, distal portion of the transected cord of rats subjected to step

training (Ying et al. 2005; Côté et al. 2011) (Fig. 2). Another piece of evidence in

favour of a role for neurotrophins is the finding that sequestering neurotrophins

reduces the effect of step training in spinal rats (Ying et al. 2008).

Boyce et al. (2007) first demonstrated that provision of a combination of BDNF

and NT-3 to cats with complete thoracic spinal transection lesions via engineered

fibroblasts enabled them to recover hindlimb stepping ability on a treadmill without

the need for training (Fig. 3). Training further improved stepping performance by

increasing hind limb step length. Based on the available electrophysiological data it

seems reasonable to suggest that increasing the stretch reflex might play some role

in this recovery of stepping function (Pearson 2001) although the elevated stretch

reflex might interfere with functional recovery of stepping by increasing spasticity

(Thompson et al., 2013). More important is the need to consider the effect of

neurotrophins on the interneurons responsible for the patterned activity of stepping,

specifically the central pattern generator.

Another issue requiring evaluation is whether both BDNF and NT-3 are required

to elicit stepping in spinal animals. Previous investigators have reported that BDNF

delivered via osmotic minipump (Jakeman et al. 1998) or viral vectors (Blits

et al. 2003) could provoke hindlimb movements which fell short of walking. Recent

evidence (Boyce et al. 2012) suggests that spinal rats treated with either AAV-NT-3

or AAV-BDNF at the thoracic transection site can step on a treadmill, but

AAV-NT-3 is less effective requiring additional input usually in the form of high

intensity perineal stimulation. Treadmill stepping after BDNF treatment requires no

such additional stimulation, and furthermore BDNF-treated rats can walk

overground across a stationary platform supporting their own weight on their

hindlimbs. This finding has potentially important translational implications; how-

ever, increased sensitivity of nociceptive pathways and the spasticity that accom-

pany the locomotion may prevent its widespread use unless the side effects can be

eliminated or at least minimized.
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The foregoing discussion has emphasized the potential effects of delivering

exogenous neurotrophins to overcome deficits in animals with an injured spinal

cord. In contrast there are deficits that are reversed by neutralization of endogenous

neurotrophins. Autonomic dysreflexia, a condition that develops after spinal cord

injury, is characterized by dangerous increases in blood pressure in response to

stimulation of visceral afferents. Krenz et al. (1999) showed that this rise in blood

pressure could be significantly diminished in spinal injured rats (high thoracic

transection) by provision of an antibody to NGF. The mechanism of action was

shown to be related to a reduction in sprouting by CGRP-expressing fibers in the

dorsal horn possibly as a result of increased levels of NGF observed in DRG cell

bodies after spinal injury (Brown et al. 2007). This effect of NGF is similar to that

observed on CGRP-expressing trkA-expressing nociceptive afferents described

above. Similar NGF-induced sympathetic hyperinnervation of the heart has been

suggested to be an important factor in the increased susceptibility of patients with

high thoracic spinal cord injury to ventricular arrhythmias (Lujan et al. 2009).

Mitsui et al. (2005) demonstrated acceleration in the recovery of micturition in

thoracically contused rats treated with BDNF- and NT-3-expressing fibroblasts.

Anatomical evaluation of these rats revealed increased projections from CGRP- and

TRPV1-expressing sensory fibers and 5-HT- and DβH-expressing descending fibers
which were speculated to contribute to the recovery of function.

Fig. 2 Elevation of

neurotrophin levels in spinal

cord of adult rats caudal to

transection after step or bike

training. Note the increased

level of BDNF, NT-4, and

NT-3 especially in the lumbar

cord segments. From Coté

et al., J Neurotrauma 2011

with permission
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Conclusion

It is clear that neurotrophins have potent effects on the damaged spinal cord. The

challenge is to establish the actions of the individual neurotrophins and then to

try to devise appropriate combinations of treatments involving different

neurotrophins and other treatments such as training, plasticity enhancers such

as chondroitinase (Kwok et al. 2008) and agents that promote axonal elongation

in the CNS such as anti-Nogo (Starkey and Schwab 2011). The cellular location

of the different trk receptors will determine which class of cells will be affected

by, and will benefit from, the action of specific neurotrophin(s). Developmental

studies will be important to take into account since cells in the injured cord may

revert to a developmentally less advanced stage, and it has been shown in at least

some cases that the same neurotrophin can have different actions during differ-

ent stages of development (Zhu et al. 2004). Finally, neurotrophins can elicit

different actions depending on which intracellular signaling system is activated,

an area that is discussed at length in the chapter by Chao, and the evidence in

simple systems suggests that different channels can be induced depending on the

Fig. 3 Stepping carried out

by hind limbs in adult cats

after thoracic transection and

subjected to treatment with

NT-3 and BDNF via

fibroblasts, treadmill step

training, or both. Note the

improvement in limb swing

excursion (step length) and

plantar stepping (as opposed

to stepping on the dorsal

surface of the foot) after

either treatment alone and

especially after the

combination treatment. From

Boyce et al., J Neurophysiol.

2007 (with permission)
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time course of neurotrophin application (Toledo-Aral et al. 1995). Together,

these studies suggest that there are many factors influencing the action of

neurotrophins and it will not be sufficient to investigate them singly. Further-

more, the possibility for interaction or cooperativity between the different effects

must be taken into account. Thus although the neurotrophins are very promising

tools to reverse the effects of spinal cord injury, it is important to view them in a

broad context in order to make the most effective use of their properties in

repairing the damaged spinal cord.
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Neurotrophins and Psychiatric Disorders

E. Castrén

Abstract

Increasing number of studies has during the last decade linked neurotrophic

factors with the pathophysiology of neuropsychiatric disorders and with the

mechanisms of action of drugs used for the treatment of these disorders.

In particular, brain-derived neurotrophic factor BDNF and its receptor TrkB

have been connected with the pathophysiology in mood disorders, and there is

strong evidence that BDNF signaling is critically involved in the recovery from

depression with both pharmacological and psychological means. Neurotrophins

play a central role in neuronal plasticity and network connectivity in developing

adult brain, and recent evidence links plasticity and network rewiring with mood

disorders and their treatment. Therefore, neurotrophins should not be seen as

happiness factors but as critical tools in the process where brain networks are

optimally tuned to environment, and it is against this background that the effects

of neurotrophins on neuropsychiatric disorders should be looked at.

Keywords

BDNF • TrkB • Mood disorders • Depression • Anxiety • Schizophrenia •

Antidepressant drugs

1 Introduction

Neuropsychiatric disorders are complex brain disease with unknown etiology.

Many of them have a clear genetic predisposition; however, genetic association

studies have been largely contradictory and frustrating. However, recent genome-
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wide association studies have begun to reveal genetic background of schizophrenia

(Cichon et al. 2009), but a similar progress in mood disorders remains still to be

achieved (Wray et al. 2012). While it is clear that environmental factors also

influence the risk of neuropsychiatric disorders, identification of such factors has

been equally difficult as has been the case with genetic factors. Stress and early life

trauma have been for a long time known as predisposing factors for mood disorders

(Karg et al. 2011; Caspi et al. 2003; Caspi and Moffitt 2006), and there is evidence

to suggest a combination of environmental and genetic factors may explain the

predisposition better than either factor alone (Caspi et al. 2003; Caspi and Moffitt

2006; Casey et al. 2009). A particular problem related to neuropsychiatric disorders

is the lack of suitable animal models. Although several genetic and environmental

models have been proposed, essentially all are unsatisfactory in one way or another

(Krishnan and Nestler 2008; David et al. 2009).

There is increasing evidence that development andmaturation of neuronal connec-

tivity are critical component in the pathophysiology of essentially all neuropsychiatric

disorders (Krishnan and Nestler 2008; Lewis et al. 2005). As neurotrophins have been

implicated in brain development and in particular in the plasticity and maturation of

neuronal circuits, it is understandable that neurotrophins have been popular candidate

genes for psychiatric diseases. Increasing evidence has, indeed, implicated BDNF and

TrkB in mood disorders and in particular in the mechanisms of action of antidepres-

sant drug treatment.

2 Neurotrophins and Mood Disorders

The role of neurotrophins in the pathophysiology of mood disorders and in the

treatment strategies to alleviate these disorders have received by far the most

attention among the potential interaction of neurotrophins with neuropsychiatric

disorders (Krishnan and Nestler 2008; Castrén and Rantamäki 2010). Most studies

have focused on depression and antidepressant drugs, but increasing numbers of

studies are now revealing a role for BDNF signaling in anxiety disorders (Casey

et al. 2009). It is important to note that depression and anxiety are often comorbid in

humans and that antidepressant drugs are also widely used to treat anxiety

disorders. Therefore, even though there are separate genetic models and behavioral

test for anxiety and depression, it is probable that the underlying mechanisms are,

at least to a certain extent, shared between depression and anxiety.

2.1 Genetic Association of Neurotrophins with Mood Disorders

Several different genetic approaches have linked BDNF and TrkB to neurodeve-

lopmental and behavioral disorders. Humans heterozygous for the loss of a BDNF

or a TrkB allele show mental retardation and cognitive deficits, including impaired

memory and extreme obesity at the age of 9 years (Han et al. 2008; Gray et al. 2006;

Yeo et al. 2004). A recent study suggests that haplo-insufficiency of BDNF gene

462 E. Castrén



may be associated with autism, attention deficiency, and bipolar disorder (Shinawi

et al. 2011). It is noteworthy that haplo-insufficiency of BDNF and TrkB produces a

very similar phenotype, although only very few cases have been described so far

and only at young age (Gray et al. 2006; Yeo et al. 2004).

Since the description of a common polymorphism in the pro-region of human

BDNF gene, Val66Met, a vast number of studies have investigated the association of

this polymorphism in a variety of neurological and neuropsychiatric disorders,

including mood disorders, but the results have generally been very variable and

positive associations have often not been independently replicated (Frielingsdorf

et al. 2010). Early studies indicated association with depression and bipolar disorder,

but meta-analyses have not confirmed these findings (Zou et al. 2010; Kang

et al. 2010; Liu et al. 2009; Verhagen et al. 2010; Tsai et al. 2003; Domschke

et al. 2010), although a significant association to depression was reported in one

meta-analysis (Verhagen et al. 2010). However, there is evidence that an association

is significant in the group of depressed patients with adverse early life experiences

(Kaufman et al. 2006; Gerritsen et al. 2012) or in stroke patients (Kim et al. 2007).

Under laboratory conditions, met allele carriers show impairment in extinguishing

conditioned fear response (Soliman et al. 2010). Interestingly, transgenic mice

carrying methionine in this locus show a comparable phenotype, with enhanced

anxiety and impaired extinction of fear responses (Frielingsdorf et al. 2010;

Chen et al. 2006; Soliman et al. 2010).

2.2 BDNF in Brain and Serum in Depressed Patients

BDNF levels have been found to be reduced in postmortem samples of patients

having suffered from depression (Karege et al. 2005b; Chen et al. 2001; Pandey

et al. 2010; Dwivedi et al. 2003). Furthermore, the activity of the MAP kinase

pathway, a major signaling pathway downstream of TrkB and also a pathway

regulating BDNF synthesis, was recently shown to be reduced in depressed patients

(Duric et al. 2010; Dwivedi et al. 2006a, 2009), while the MAP kinase phosphatase,

a negative regulator of this pathway, was increased (Duric et al. 2010). The

expression of MAP kinase phosphatase is increased by stress in rodents and mice

lacking this enzyme are resilient to stress, indicating that MAP kinase pathway,

potentially regulated by TrkB activity, plays an important role in depression and

stress (Duric et al. 2010; Duman 2002).

BDNF is abundant in blood platelets, and it is released upon platelet activation.

Consequently, while BDNF levels in plasma are very low, serum levels are high and

variable among individuals. Several studies, including two meta-analyses, have

shown that serum BDNF levels are reduced in depressed patients (Karege

et al. 2005a; Shimizu et al. 2003; Matrisciano et al. 2009; Sen et al. 2008; Brunoni

et al. 2008). BDNF levels in whole blood do not seem to be altered in depression

suggesting that it is the release of BDNF from activated platelets that varies with

mood, not the concentration of BDNF in platelets (Karege et al. 2005a). Interest-

ingly, serum BDNF levels are normalized upon successful treatment of depression
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with a variety of different treatments, including chemical antidepressants, electro-

convulsive therapy, sleep deprivation therapy, and repetitive transcranial stimula-

tion (Sen et al. 2008; Lee and Kim 2008; Matrisciano et al. 2009; Okamoto

et al. 2008; Gorgulu and Caliyurt 2009; Zanardini et al. 2006; Gonul et al. 2005).

It is currently unclear whether platelet BDNF is derived from megakaryocytes or

taken up by circulating platelets (Fujimura et al. 2002) and what, if any, is the

relationship between BDNF in platelets and neurons. Nevertheless, these data

suggest a possibility that a similar kind of impediment of BDNF release from

both platelets and neurons might be associated with mood disorders. In this context,

it was recently shown that peripheral subcutaneous administration of BDNF to rats

increased BDNF levels and signaling in brain and produced antidepressant-like

effects in behavioral tests (Schmidt and Duman 2010).

2.3 Stress and BDNF Signaling

Stress predisposes to depression in humans, and chronic stress has been widely used

as a model of depression in experimental animals. Stress has widespread effects on

brain BDNF levels. Chronic stress reduces BDNF mRNA (Duman and Monteggia

2006; Nibuya et al. 1995; Smith et al. 1995; Haenisch et al. 2009; Russo-Neustadt

et al. 2001; Alfonso et al. 2006; Duric and McCarson 2005) and BDNF protein in

brain (Haenisch et al. 2009; Xu et al. 2004). Chronic corticosterone administration,

another model of stress, has also been shown to be associated with reduced BDNF

levels (Paizanis et al. 2010; Dwivedi et al. 2006b). Antidepressant treatment seems

to prevent the effects of stress on BDNF expression (Russo-Neustadt et al. 2001;

Haenisch et al. 2009; MacQueen et al. 2003; Nibuya et al. 1995; Xu et al. 2004;

Bravo et al. 2009; Gersner et al. 2010), and BDNF gene transfer increases stress

resilience (Taliaz et al. 2011). Environmental stress, such as perinatal exposure to

methyl mercury, brings about long-lasting reduction in BDNF mRNA levels in the

hippocampus and is associated with cognitive and emotional disturbances in adult-

hood (Onishchenko et al. 2007, 2008). Interestingly, both behavioral effects and

BDNF levels can be reversed in adulthood by antidepressant drug treatment

(Onishchenko et al. 2008).

2.4 Effects of BDNF on Depression-Like Behavior in Rodents

Injection of BDNF into midbrain or hippocampal regions produces an

antidepressant-like behavior in rats and mice in the forced swimming test (FST)

and the learned helplessness paradigm (Siuciak et al. 1997; Hoshaw et al. 2005;

Shirayama et al. 2002; Sirianni et al. 2010). Furthermore, overexpression of TrkB

or BDNF in brain also mimics the effects of antidepressant drugs (Koponen

et al. 2005; Govindarajan et al. 2006). Moreover, local viral injection of BDNF

into rat hippocampus counteracts behavioral effects of stress (Taliaz et al. 2011).

Interestingly, hippocampal injection of BDNF potentiates the effects of
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antidepressant administration on brain serotonin levels and on FST behavior

(Deltheil et al. 2008, 2009) However, injection of BDNF into the ventral tegmental

area increases depression-like behavior and inhibition of BDNF signaling in the

nucleus accumbens, which is the target area of the dopaminergic pathway from the

VTA, produces an antidepressant-like response (Eisch et al. 2003; Berton

et al. 2006; Krishnan and Nestler 2008), suggesting that behavioral consequences

of BDNF overexpression are dependent on the normal function of the affected

networks. In humans, patients with amyotrophic lateral sclerosis receiving intrathe-

cal BDNF administration in a context of a clinical trial showed dose-dependent

disturbances of sleep and signs of mania (Dr. Richard D. Penn, University of

Chicago, personal communication).

Even though stress reduces BDNF levels in brain, the majority of studies have

not found any evidence that reduction in brain BDNF levels or TrkB signaling in

transgenic mice would produce depression-like behavior (Saarelainen et al. 2003;

MacQueen et al. 2001; Monteggia et al. 2004, 2007), although some studies have

suggested that reduced BDNF levels might produce depression-like behavior in

female mice and in rats (Monteggia et al. 2007; Taliaz et al. 2010). These findings

are consistent with the lack of association between BDNF Val66Met polymorphism

and depression (Liu et al. 2009; Verhagen et al. 2010; Domschke et al. 2010).

However, mice carrying Val66Met mutation in their BDNF gene show anxiety-like

behavior (Chen et al. 2006) and both human and mouse methionine carriers are

impaired in extinguishing a conditioned fear response (Soliman et al. 2010),

suggesting that BDNF signaling may play a more important role in the development

of anxiety than depression.

2.5 Role of BDNF in the Antidepressant Drug Action

While the evidence for the role of neurotrophins in the pathophysiology of mood

disorders remains controversial, a solid body of data accumulated during the last

years has firmly established the role of BDNF and TrkB signaling in the mechanism

of action of antidepressant drugs. Original observations from the Duman lab

demonstrated that electroconvulsive shock treatment (ECT) as well as chronic

administration of various chemical antidepressants increased BDNF mRNA levels

in the rat hippocampus (Nibuya et al. 1995). Subsequent studies have largely

confirmed this finding and extended the treatment method that increase BDNF

mRNA and protein levels to include transcranial magnetic stimulation, vagus

nerve stimulation, as well as atypical antidepressants (Duman and Monteggia

2006; Russo-Neustadt et al. 2001; Xu et al. 2004; Jacobsen and Mork 2004; Altar

et al. 2003; Molteni et al. 2006; Czubak et al. 2009; Arunrut et al. 2009; Martinez-

Turrillas et al. 2005; Li et al. 2007; Balu et al. 2008; Rogoz et al. 2008; Larsen

et al. 2008; Dwivedi et al. 2006b; Soumier et al. 2009; Muller et al. 2000; Biggio

et al. 2009). However, not all studies have observed an increase in BDNF mRNA or

protein levels (Jacobsen and Mork 2004; Altar et al. 2003; Balu et al. 2008; Larsen

et al. 2008; Schulte-Herbruggen et al. 2009; Cooke et al. 2009; Calabrese
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et al. 2007; Coppell et al. 2003; Reagan et al. 2007). This variation may reflect

differences in treatment times and in mouse strains used (Balu et al. 2009).

Antidepressants have also been shown to increase BDNF protein levels not only

in the hippocampus but also in various cortical regions (Jacobsen and Mork 2004;

Altar et al. 2003; Balu et al. 2008; Schulte-Herbruggen et al. 2009; Cooke

et al. 2009; Dwivedi et al. 2006b; Calabrese et al. 2007; Mannari et al. 2008;

Maya Vetencourt et al. 2008). The increase in BNDF mRNA levels is only

detectable after several days of treatment, which has been linked to the delayed

appearance of the clinical antidepressant effect observed in humans. However,

the regulation of BDNF mRNA has been suggested to be biphasic, with an

early decrease followed by an increase in levels (Coppell et al. 2003; Madhav

et al. 2001).

Phosphorylation of TrkB receptors has been used as an indirect assay to investi-

gate the release of BDNF and its binding to TrkB receptors in brain in vivo (Aloyz

et al. 1999). Using this assay, antidepressant drugs and treatments belonging to a

variety of different chemical classes have been demonstrated to increase TrkB

phosphorylation and signaling in rodent hippocampus and cortex in vivo

(Saarelainen et al. 2003; Rantamäki et al. 2007). Interestingly, the increase in

TrkB phosphorylation and signaling through phospholipase C-gamma and cyclic-

AMP response element binding protein (CREB) are increased acutely within

30 min of drug administration and persist for at least 3 weeks of continuous

treatment (Saarelainen et al. 2003; Rantamäki et al. 2007). Antidepressants have

also been reported to induce a relocation of TrkB receptors to synaptic sites

(Wyneken et al. 2006). Consistent with the observations that long-term antidepres-

sant treatment is required for the increase in BDNF levels, but not in TrkB

phosphorylation, recent studies have demonstrated that the increase in TrkB phos-

phorylation induced by antidepressants is independent of BDNF, perhaps mediated

through G-protein coupled receptors (Rantamäki et al. 2011). Signaling pathways

downstream of TrkB have also been observed to be activated by antidepressant

drugs, particularly phosphorylation of CREB (Saarelainen et al. 2003; Conti

et al. 2002; Rantamäki et al. 2007).

Consistent evidence from several laboratories has demonstrated that BDNF

signaling through TrkB is necessary for the action of antidepressant drugs. The

behavioral effects induced by antidepressants are blunted in mice with reduced

levels of BDNF in brain (Saarelainen et al. 2003; Monteggia et al. 2004; Monteggia

et al. 2007; Guiard et al. 2008; Deltheil et al. 2008), with inhibited TrkB signaling

(Saarelainen et al. 2003; Li et al. 2008) or in mice carrying the met-allele of the

human Val66Met polymorphism (Chen et al. 2006). Dentate gyrus appears to be the

critical brain region in this context, as reduction of BDNF levels in the DG, but not

in the CA1 region, blocks the effects of antidepressants (Adachi et al. 2008). More

specifically, deletion of TrkB in the newborn neurons within the dentate gyrus is

sufficient to inhibit the effects of antidepressants indicating a unique role for these

newborn cells in the antidepressant response (Li et al. 2008). Extracellular seroto-

nin levels are increased, and serotonin transporter function is impaired in BDNF

heterozygous null mice (Guiard et al. 2008; Deltheil et al. 2008). Together with the

466 E. Castrén



observations indicating that BDNF injection or expression produces an anti-

depressant-like behavioral response (see above), these data suggest that BDNF

signaling through TrkB is both necessary and sufficient for the behavioral effects

of antidepressant drugs at least in rodents.

2.6 Neuronal Plasticity and the Antidepressant Effect

If BDNF signaling is necessary and sufficient for the antidepressant response, what

does it tell us about the mechanisms mediating these responses and about the

pathophysiology of mood disorders? It is well established that BDNF signaling is a

central and critical mediator of neuronal plasticity in developing an adult brain and a

central tool for structural changes in neuronal network connectivity (Thoenen 2000;

Poo 2001; Lu et al. 2014). It has, therefore, been suggested that neuronal plasticity

might be a central mechanism through which antidepressant drugs mediate their

effects (Castrén 2005, 2013; Castrén and Hen 2013; Duman and Monteggia 2006;

Krystal et al. 2009).

Adult neurogenesis in the dentate gyrus is a prominent form of neuronal plasticity.

Chronic treatment with antidepressant drugs with a variety of primary mechanisms of

action have been shown to increase proliferation and survival of newly born neurons

in the rodent hippocampus, but not in the subventricular regions that is the origin of

newborn neurons migrating to the olfactory bulb (Malberg et al. 2000; Warner-

Schmidt and Duman 2006; Madsen et al. 2000; Dulawa et al. 2004; Sahay and Hen

2007; Warner-Schmidt and Duman 2006; Samuels and Hen 2011), and there is

evidence that antidepressant treatment increases neurogenesis also in human brain

(Boldrini et al. 2009). Moreover, hippocampal neurogenesis has been shown to be

necessary for the behavioral effects of antidepressant drugs in some, but not all tests

(Santarelli et al. 2003; Li et al. 2008; Bergami et al. 2008; David et al. 2009).

Reduction of BDNF signaling or TrkB function does not interfere with the

antidepressant-induced proliferation of hippocampal progenitor cells, but the sur-

vival of the newly born neurons is compromised in BDNF+/� and dominant-

negative TrkB overexpressing mice (Sairanen et al. 2005; Bergami et al. 2008),

indicating that BDNF plays a role in the maturation of these neurons or that BDNF

might be a target-derived survival factor for newborn hippocampal neurons

(Castrén 2004). Deletion or TrkB receptors specifically in adult-born hippocampal

neurons interferes with their maturation and survival, and TrkB expression in

the newborn neurons appears to be required for the behavioral effects of

antidepressants (Bergami et al. 2008; Li et al. 2008).

In addition to neurogenesis, antidepressant drugs also regulate neuronal plastic-

ity at a smaller scale. There is evidence that antidepressants increase synaptic

turnover (Hajszan et al. 2005, 2009, 2010; O’Leary et al. 2009; Chen et al. 2008,

2009) and enhanced network activity in the hippocampus (Airan et al. 2007), and

increase in plasticity-associated genes in hippocampus and prefrontal cortex

(Sairanen et al. 2007). At least some of these effects are inhibited when TrkB

signaling is compromised (O’Leary et al. 2009).
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Recent experiments in visual cortex are beginning to shed light to the mechanisms

through which antidepressant-induced plasticity regulates neuronal network function.

Chronic fluoxetine administration has been shown to reactivate critical period-like

plasticity in the rat and mouse visual cortex and lead to a functional recovery of

developmentally miswired neuronal networks in adulthood (Maya Vetencourt

et al. 2008; Chen et al. 2011). A similar kind of reactivation of markers of juvenile-

type neurons was also reported by chronic antidepressant treatment in the dentate

gyrus (Kobayashi et al. 2010) and amygdala (Karpova et al. 2011). The reactivation of

developmental plasticity by antidepressants in the visual cortex requires BDNF

signaling (Maya Vetencourt et al. 2008) and serotonin (Maya Vetencourt

et al. 2011), and appears to bemediated by functional and structural effects on cortical

interneurons (Maya Vetencourt et al. 2008; Chen et al. 2011). These findings are

consistent with the networkmodel of antidepressant drug actionwhere antidepressants

reactivate cortical and hippocampal plasticity, which then, under the environmental

guidance, leads to the functional reorganization of neuronal networks (Castrén 2005,

2013; Castrén and Hen 2013).

2.7 NGF in Mood Disorders

In comparison with BDNF, much less information exists for a potential role of other

neurotrophins in the regulation of mood. The very first description of behavioral role

of any neurotrophin was the demonstration that intermale aggression increases NGF

mRNA and protein levels in the hypothalamus (Spillantini et al. 1989), but there

have been few subsequent studies to elaborate on this finding. Stress decreases NGF

mRNA and protein levels in hippocampus, prefrontal cortex and amygdala (Alfonso

et al. 2004, 2006; Schulte-Herbruggen et al. 2006; von Richthofen et al. 2003) and

antidepressant treatment may reverse this effect (Alfonso et al. 2006). NGF levels

have also been reported to be reduced in the Flinders sensitive rat line, which has

been proposed as a model of depression (Angelucci et al. 2000). Furthermore, NGF

injection reverses the depression-like behavior in these rats (Overstreet et al. 2010).

NGF may also play a role in the antidepressant drug action. Seizure activity and

ECT increase NGF mRNA levels in the hippocampus (Gall and Isackson 1989;

Sartorius et al. 2009; Angelucci et al. 2000), although changes in protein levels have

been more variable (Sartorius et al. 2009; Angelucci et al. 2000). However,

in contrast to BDNF and NT-3, injection of NGF into the hippocampus does not

elicit an antidepressant-like effect in rats (Shirayama et al. 2002).

3 Neurotrophins in Schizophrenia

Neurotrophins, particularly BDNF and NT-3, have been linked to the pathophysi-

ology of schizophrenia, but compared to mood disorders, results have been more

variable and particularly genetic studies have often not been replicated. The

pathophysiology of schizophrenia is unknown, but increasing evidence suggests
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that the development of inhibitory interneurons and their participation in develop-

ing circuits plays a critical role in schizophrenia. Indeed, interneurons in the

prefrontal cortex of schizophrenic subjects appear to show immature features

(Lewis et al. 2005). For example, the mRNA level for the 67 kDa isoform of

GABA synthesizing enzyme glutamate decarboxylase (GAD67) and the GABA

transporter are reduced particularly in the parvalbumin containing interneurons in

the prefrontal cortex of these patients (Lewis et al. 2005). BDNF and TrkB have

been implicated in the normal maturation of GABAergic interneurons (Woo and Lu

2006), and the mRNA levels for BDNF and TrkB have been found to be reduced in

the prefrontal cortex of schizophrenia patients (Hashimoto et al. 2005; Weickert

et al. 2005; Bellon et al. 2011). Furthermore, there is a significant correlation

between BDNF and TrkB mRNA levels and those for GAD67 in these brain

areas (Hashimoto et al. 2005). BDNF levels have been found to be reduced also

in serum of schizophrenic patients (Green et al. 2011). It remains unclear, however,

whether these findings are causal for the behavioral abnormalities found in schizo-

phrenia or rather a consequence of an earlier developmental defect.

BDNF levels are regulated in some animal models of schizophrenia (Roceri

et al. 2002; Fumagalli et al. 2003b; Linden et al. 2000). NMDA-receptor

antagonists, including ketamine and phencyclidine, produce an acute schizo-

phrenia-like disorder and have been proposed as a model of schizophrenia (Corlett

et al. 2011; Olney and Farber 1995; Javitt 2007). NMDA-receptor antagonists

produce region-specific effects on the expression of BDNFmRNA in brain (Castrén

et al. 1993; Väisänen et al. 1999; Marvanova et al. 2001; Linden et al. 2000), and

these effects can be at least partially counteracted by antipsychotic drug treatments

(Fumagalli et al. 2003a; Linden et al. 2000). However, alterations in TrkB receptor

activity in brain of transgenic mice do not appear to change responses to NMDA-

receptor antagonists (Väisänen et al. 2003).

In contrast to BDNF, NT-3 is not regulated by neuronal activity in brain, and the

physiological and pathophysiological role of NT-3 in brain remains unclear. NT-3

displays a transient expression in brain regions affected in schizophrenia, such as

limbic cortical and hippocampal regions, and disappears from most of these regions

during the first weeks of postnatal life (Friedman et al. 1991). Early genetic studies

have linked NT-3 with schizophrenia (Nanko et al. 1994), but many negative

associations have also been published and a meta-analysis does not support an

association (Lin and Tsai 2004; Bellon et al. 2011). Likewise, evidence that would

associate NT-3 with mood disorders or their treatment is largely lacking.

Conclusions

Recent evidence has brought about an avalanche of studies linking BDNF

signaling with mood disorders and their treatment and to somewhat lesser extent

also to schizophrenia. The association of BDNF with mood has often led to a

conclusion that BDNF is some sort of happiness molecule that improves mood

when increased. However, recent studies with the role of BDNF and antidepres-

sant drugs in the modulation of use-dependent neuronal network emphasize the

role of BDNF as a tool in the plastic modulation of neuronal network in the
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process where they are tuned to better accommodate to the environment. There-

fore, BDNF and other factors involved in activity-dependent neuronal plasticity

appear to play a permissive role in neuropsychiatric disorders, facilitating the

environmental effect on mood regulation.
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Brain-Derived Neurotrophic Factor
and Rett Syndrome

D.M. Katz

Abstract

Rett syndrome (RTT) is a devastating neurodevelopmental disorder with autistic

features caused by loss-of-function mutations in the gene encoding methyl-CpG-

binding protein 2 (MECP2), a transcriptional regulatory protein. RTT has

attracted widespread attention not only because of the urgent need for treat-

ments, but also because it has become a window into basic mechanisms under-

lying epigenetic regulation of neuronal genes, including BDNF. In addition,

work in mouse models of the disease has demonstrated the possibility of

symptom reversal upon restoration of normal gene function. This latter finding

has resulted in a paradigm shift in RTT research and, indeed, in the field of

neurodevelopmental disorders as a whole, and spurred the search for potential

therapies for RTT and related syndromes. In this context, the discovery that

expression of BDNF is dysregulated in RTT and mouse models of the disease

has taken on particular importance. This chapter reviews the still evolving story

of howMeCP2 might regulate expression of BDNF, the functional consequences

of BDNF deficits in Mecp2 mutant mice, and progress in developing BDNF-

targeted therapies for the treatment of RTT.
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Abbreviations

The following abbreviations are used for the gene encoding methyl-CpG-binding

protein 2 and its protein product:

MECP2, BDNF Human gene

Mecp2, Bdnf Mouse gene

MeCP2, BDNF Protein

1 Introduction

Rett syndrome (RTT) is a complex neurodevelopmental disorder that affects approxi-

mately 1 in 10,000 live female births worldwide (Chahrour and Zoghbi 2007). RTT is

characterized by apparently normal early postnatal development with neurological

symptoms appearing around 6–18 months of age. The subsequent course of the

disorder is variable and patients exhibit a diverse array of symptoms that generally

includes loss of acquired speech, head growth deceleration, autistic features such as

emotional withdrawal and diminished eye contact,motor stereotypies, early hypotonia

followed by rigidity, epileptiform seizures, exaggerated responses to stress, and severe

respiratory and autonomic (cardiac and gastrointestinal) dysfunction (Chahrour and

Zoghbi 2007; Hagberg et al. 1983; Katz et al. 2009; Shahbazian and Zoghbi 2002;

Vorsanova et al. 2004; Weese-Mayer et al. 2006, 2008). Up to a quarter of RTT

patients may die prematurely of cardiorespiratory failure (Kerr et al. 1997).

The vast majority of typical RTT cases result from loss-of-function mutations in

the gene encoding methyl-CpG-binding protein 2 (MeCP2; Amir et al. 1999;

Chahrour and Zoghbi 2007), a transcriptional regulatory protein (Klose and Bird

2006). Over 250 different MECP2 mutations have been identified in RTT patients,

most of which tend to cluster either within the methyl-binding or transcription

repression domains. The MECP2 gene is X-linked, and affected females are

heterozygotes and somatic mosaics for MeCP2, i.e., cells in which the mutated

allele occurs on the inactive X are phenotypically normal for MeCP2 expression,

whereas cells in which the mutated allele occurs on the active X are mutant. Disease

phenotype is therefore affected not only by the specific MECP2 mutation but also

by the skewing of X chromosome inactivation; individuals in which inactivation is

skewed towards the mutant allele are less severely affected, and vice versa.

Hemizygosity in males is usually fatal, and the chances of homozygosity in females

are exceedingly small, given that most disease-causing mutations arise in the

paternal germ line and child-bearing by affected females is extremely rare.

The full scope of MeCP2 function in neurons remains a subject of some

controversy. Although it is clear that MeCP2 binds methylated DNA and can

potently silence transcription (Klose and Bird 2006), additional functions, including
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transcriptional activation (Chahrour et al. 2008), regulation of RNA processing

(Young et al. 2005), and control of higher order chromatin structure (Georgel

et al. 2003), have been proposed. Moreover, it is unclear whether or not MeCP2

selectively regulates transcription of specific genes or, alternatively, acts globally to

regulate chromatin state across the genome. A recent study by Skene et al. (2010)

demonstrated that MeCP2 protein is abundantly expressed in neurons at levels

comparable to histone octamers, i.e., sufficient to blanket the genome at methylated

CpG dinucleotides. Therefore, these authors have suggested that the primary

function of MeCP2 is to globally repress spurious transcription, e.g., of nucleotide

repeats across the genome rather than to dynamically regulate expression of specific

genes. However, Skene et al. (2010) showed that, in addition to its widespread

binding across genome, MeCP2 also shows peaks of even higher binding at specific

sites within promoter regions. Whether or not this is evidence for a more specific

role in dynamic regulation of particular genes remains unclear. Nonetheless, what is

clear is that expression of many genes is disrupted, either directly or indirectly, by

loss-of-function mutations in MECP2 and that the complexity of RTT is related to

the diversity of affected gene targets.

2 Regulation of BDNF Expression, Trafficking, and
Secretion by MeCP2

The debate concerning the role of MeCP2 in gene regulation is particularly relevant

to understanding the evolution of current thinking regarding BDNF and the patho-

genesis of RTT. The initial suggestion that dysregulation of BDNF expression

might play a role in RTT came from in vitro evidence that BDNF is a transcriptional

target of MeCP2 and repressed by MeCP2 binding to BDNF promoter regions.

Specifically, Chen et al. (2003) and Martinowich et al. (2003) used chromatin

immunoprecipitation to demonstrate binding of MeCP2 protein to BDNF promoter

IV (referred to at the time as promoter III), one of nine BDNF promoters and one

that is particularly important for activity-dependent regulation of BDNF expres-

sion. Moreover, MeCP2 binding appears to recruit a transcriptional repressor

complex that includes HDAC1 and Sin3A to the BDNF locus (Martinowich

et al. 2003). Chen et al. (2003) and Martinowich et al. (2003) further showed that

MeCP2 binding to the BDNF gene was dynamic and subject to regulation in

cultured neurons by exposure to depolarizing stimuli, such as elevated potassium

chloride (KCl). Specifically, strong chemical depolarization reduces MeCP2 bind-

ing to BDNF promoter IV (Martinowich et al. 2003) in association with a change in

the phosphorylation state of MeCP2 (Chen et al. 2003), reduces methylation of

promoter IV (Martinowich et al. 2003), and increases BDNF expression (see also

Ballas et al. 2005). Subsequently, Zhou and colleagues (Zhou et al. 2006)

demonstrated that phosphorylation of MeCP2 at serine 421 is particularly important

for activity-dependent increases in BDNF expression in cultured hippocampal

neurons. Consistent with this repression model, Chen et al. (2003) showed that

Mecp2 null embryonic cortical neurons cultured in the presence of blockers of
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neuronal activity exhibited higher levels of BDNF exon IV mRNA than wild-type

cells. However, in the presence of a depolarizing concentration of KCl, wild-type

and mutant cells exhibited similar levels of BDNF expression, which the authors

interpreted as consistent with BDNF already being derepressed in the mutant cells

to levels similar to those achieved in wild-type cells upon stimulation. More

recently, evidence has emerged that BDNF expression can also be regulated by

the acetylation state of MeCP2 in a manner consistent with the repression model.

Specifically, mice lacking functional SIRT1, a nicotinamide-adenine dinucleotide-

dependent histone deacetylase, exhibit increased MeCP2 binding to the BDNF exon

IV promoter and decreased levels of BDNF mRNA and protein (Zocchi and

Sassone-Corsi 2012).

The hypothesis that MeCP2 normally represses BDNF transcription predicted

that loss of MeCP2 function in RTT, or mouse models of the disease, would be

associated with elevated BDNF expression. However, this prediction has not been

borne out, as Mecp2 null or heterozygous mice exhibit reduced levels of BDNF

mRNA and protein in vivo (Chang et al. 2006; Ogier et al. 2007; Wang et al. 2006).

Similarly, two studies of postmortem brain samples from RTT patients have

demonstrated reduced levels of BDNF mRNA (Abuhatzira et al. 2007; Deng

et al. 2007). The BDNF mRNA and protein deficits observed in the brain and

peripheral nervous system of Mecp2 mutant mice are progressive (Chang

et al. 2006; Ogier et al. 2007; Wang et al. 2006), being virtually undetectable at

birth and declining to as much as 50 % of wild-type levels in some tissues by

5 weeks of age in male nulls (Wang et al. 2006). Moreover, the postnatal decline in

BDNF levels occurs with a slower time course in heterozygous females compared

to male nulls (Schmid et al. 2012). Clearly, these in vivo data are inconsistent with a

model in which MeCP2 simply represses expression of BDNF.

Various hypotheses have been offered to explain how loss of MeCP2 function

could lead to deficits in BDNF expression. One idea, already introduced above, is

that MeCP2 activates rather than represses gene expression. In support of this

hypothesis, Chahrour et al. (2008) showed that global overexpression of MeCP2

in mice is associated with increased expression of BDNF mRNA in the hypothala-

mus, whereas MeCP2 loss is associated with decreased BDNF. Similarly, selective

deletion ofMecp2 from Sim-1-positive neurons also causes a reduction in BDNF in

the hypothalamus (Fyffe et al. 2008). The activator hypothesis is also supported by

a recent report by Li et al. (2013) demonstrating global reductions in transcription

and Akt/mTOR-dependent protein translation—including BDNF—in human iPSC-

derived neurons in which the Mecp2 gene was deleted using TALEN-mediated

DNA editing. One caveat to these findings is that the possible contribution of

decreased BDNF mRNA and/or protein stability, rather than decreased gene tran-

scription per se, has not been ruled out. Further support for the activator model

comes from studies showing that derepression of microRNA (miRNA)-mediated

inhibition of MeCP2 translation in cultured neurons increases expression not only

of MeCP2 but BDNF as well (Klein et al. 2007).

A recent approach to resolving the repressor versus activator debate is the “dual
operation model” (Li and Pozzo-Miller 2013). This model is motivated by data
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from one study showing that either knockdown or overexpression of MeCP2 in

cultured neurons leads to increased expression of BDNF (Larimore et al. 2009), as

well as evidence that MeCP2 can undergo diverse posttranslational modifications,

including phosphorylation, acetylation, and ubiquitylation, leading to unique

associations with either co-repressors or co-activators (Gonzales et al. 2012).

A second hypothesis that has been proposed to explain decreased BDNF expres-

sion in the absence of MeCP2 function is that MeCP2 normally represses the

activity of repressors of BDNF expression, i.e., the RE1 silencing transcription

factor (REST)/CoREST complex (Abuhatzira et al. 2007). This model is based on

data from mice and humans demonstrating elevated levels of REST/CoREST in

RTT patients and Mecp2-deficient mice, presumably leading to reduced BDNF

expression through repressive interactions with the RE1 element in BDNF pro-

moter regions. A third hypothesis is that reduced BDNF expression in Mecp2 null

neurons is a consequence of reduced neuronal activity (Sun and Wu 2006). This

idea was based on the finding that cortical neurons from Mecp2 null mice exhibit

reduced firing rates associated with a loss of excitatory synaptic drive (Dani

et al. 2005). However, we found that even after exposure to strongly depolarizing

stimuli in vitro, Mecp2 null cells express less BDNF protein than wild-type,

indicating that differences in activity alone are unlikely to account for BDNF

deficits in the absence of MeCP2 (Ogier et al. 2007). Thus, at present, the normal

role of MeCP2 in regulating BDNF expression, as well as the mechanism

(s) responsible for reduced BDNF levels in the RTT brain, remain to be clarified.

One possibility is that, although loss of MeCP2 may result in derepression of BDNF

gene expression, translation and/or stability of the protein may also be adversely

affected, resulting in a net decrease in BDNF levels in the RTT brain. In support of

this possibility, Wu et al. (2010) recently demonstrated that MeCP2 controls

transcription of several microRNAs (miRNAs) that target the 30 UTR of Bdnf
mRNA, some of which are upregulated in the absence of MeCP2 function and

negatively regulate Bdnf mRNA levels. Conversely, inhibition of two such

miRNAs, miR-381 and miR-495, in both wild-type and Mecp2 null neurons

in vitro, increased levels of Bdnf mRNA and BDNF protein. Thus, Wu

et al. (2010) proposed that, in the absence of MeCP2 function, the net effect of

direct derepression of Bdnf mRNA, combined with depression of miRNAs that

negatively regulate Bdnf mRNA, is reduced BDNF levels. This hypothesis requires

further testing, as Wu et al. (2010) also identified miRNAs that target Bdnf mRNA

and are downregulated in the absence of MeCP2 function. In particular, it will be

critical to define the stoichiometry of these positive and negative influences on Bdnf
transcription, translation, and stability in vivo in order to fully understand the role

of miRNAs in BDNF protein deficits in RTT.

In addition to dysregulation of BDNF expression, loss of MeCP2 also appears to

disrupt regulated secretion and transport of BDNF. Although mature sensory

neurons lacking MeCP2 express lower levels of BDNF protein, they actually

secrete a larger proportion of their total BDNF content than wild-type cells, at

least in cell culture (Ladas et al. 2009). However, this enhanced secretion is not

sufficient to completely compensate for reduced levels of BDNF expression, and
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the absolute amount of BDNF released by mutant cells is nonetheless lower than

wild-type. This is also seen at mossy fiber inputs onto CA3 pyramidal neurons in

Mecp2 null mice, in which activity-dependent BDNF release is reduced compared

to wild type, resulting in reduced activation of TrkB and reduced signaling through

TRPC3 channels (Li et al. 2012). On the other hand, in newborn Mecp2 null

neurons, which do not yet exhibit a significant deficit in BDNF expression, the

absolute amount of BDNF released is actually greater than wild-type (Wang

et al. 2006). These data raise the possibility that during early development,

enhanced secretion of BDNF from Mecp2 null cells could derange developmental

processes that depend on tight coupling between neuronal activity and BDNF

release, such as activity-dependent refinement of synaptic connections (Lein and

Shatz 2000). Enhanced BDNF release appears to be just one manifestation of a

more widespread dense core vesicle phenotype in Mecp2 null mice. Studies of

catecholamine release inMecp2 null adrenal chromaffin cells demonstrated that the

readily releasable pool of dense core vesicles is significantly larger and individual

vesicles are more fusigenic than in wild-type cells, resulting in hypersecretion of

epinephrine (Ladas et al. 2009; Wang et al. 2006). Given that BDNF is also a dense

core vesicle cargo (Decker et al. 2010; Farhadi et al. 2000; Luo et al. 2001; Salio

et al. 2007; Wu et al. 2004), similar mechanisms may underlie the BDNF secretory

phenotype in Mecp2 null mice.

Recent studies indicate that BDNF signaling in Mecp2 mutants is also impacted

by deficits in axonal transport, resulting from dysregulation of huntingtin (Htt)- and

huntingtin-associated protein (Hap1)-dependent vesicle trafficking (Roux

et al. 2012). Specifically, the velocity of vesicular BDNF transport in cortico-

striatal projection neurons is impaired by loss of MeCP2. Given the importance

of cortically derived BDNF for the maintenance of striatal medium-spiny neurons

(Baquet et al. 2004), these data raise the possibility that deficits in BDNF transport

from the cortex contribute to striatal pathology in RTT (cf., Stearns et al. 2007).

3 Topography of BDNF Deficits in Mouse Models of RTT

The time course and distribution of BDNF deficits resulting from loss ofMeCP2 have

been studied in some detail inMecp2 null and heterozygous mice (Chang et al. 2006;

Ogier et al. 2007; Wang et al. 2006; Deogracias et al. 2012). The earliest and most

dramatic deficits in BDNF mRNA and protein occur in the vagal sensory nodose

ganglion (NG), followed by the brainstem, cerebellum, and cortex (Chang et al. 2006;

Ogier et al. 2007; Wang et al. 2006). In NG sensory neurons, for example, BDNF

mRNA and protein levels fall to approximately 50%wild-type values within 5 weeks

after birth (Ogier et al. 2007), leading to synaptic dysfunction in vagal afferent inputs

to the brainstem (see below). Within the brain, the effect of MeCP2 loss on BDNF

levels is not uniform across cell groups. For example, although Mecp2 null mutants

exhibit marked decreases in BDNF immunostaining in the neuropil of some

brainstem nuclei, such as the nucleus tractus solitarius (nTS), nucleus ambiguus,

and nucleus locus coeruleus (LC), others, such as the gracile and principal sensory
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trigeminal nuclei, are only mildly affected or unchanged (Kline et al. 2010). Mecha-

nisms that underlie the differential temporal and spatial patterns of BDNF decline in

the Mecp2 mutant brain have not been defined. Recent data indicate that regional

BDNF deficits in Mecp2 null mutants are accompanied by reduced levels of TrkB

phosphorylation without a change in total TrkB expression (Schmid et al. 2012).

4 BDNF Deficits in Mouse Models of RTT:
Functional Consequences

With a few exceptions, relatively little is known about the specific functional

consequences of reduced BDNF expression in Mecp2 mutants and RTT patients.

Morphologic and synaptic phenotypes observed in the brains of RTT patients

and/or Mecp2 null mutants, including decreased brain weight and neuronal size,

reduced dendritic arborizations and impaired hippocampal long-term potentiation

(reviewed in Chahrour and Zoghbi 2007), overlap with deficits seen in Bdnf loss-of-
function mutants (Chang et al. 2006; Huang and Reichardt 2001). In addition, at

least some of the behavioral features of Mecp2 mutant mice, including irregular

breathing and impaired locomotion, overlap to some degree with deficits observed

in Bdnf mutants (Conover et al. 1995; Erickson et al. 1996). Moreover, genetic

overexpression of BDNF in Mecp2 null mutants can improve survival and loco-

motor function, whereas BDNF deletion hastens the onset of symptoms (Chang

et al. 2006). However, few studies have examined how reduced BDNF availability

in identified neural circuits is linked to specific functional deficits in RTT. What is

clear is that because BDNF declines postnatally in Mecp2 mutants, the size of

neuronal populations that depend on BDNF for survival before birth is unaffected

(Wang et al. 2006). Therefore, increasing attention has focused on the role of BDNF

deficits in the maturation and function of the RTT brain after birth.

4.1 MeCP2 and Stimulation of Dendritic Growth by BDNF

MeCP2 plays a key role in mediating the effects of environmental stimuli, such as

neuronal depolarization, on expression of genes required for neuronal maturation,

including BDNF (Cohen et al. 2011; Ebert et al. 2013). For example, Zhou

et al. (2006) demonstrated that phosphorylation of MeCP2 at serine 421 (ser421)

is required for activity-dependent expression of BDNF in postnatal hippocampal

neurons. BDNF, in turn, can stimulate ser421 phosphorylation of MeCP2,

indicating that BDNF functions both upstream and downstream of MeCP2.

MeCP2 phosphorylation at ser421 is also required for expression of mature den-

dritic morphologies in hippocampal neurons (Chapleau et al. 2009; Zhou

et al. 2006), possibly by activating this BDNF signaling loop. In support of this

possibility, overexpression of BDNF can reverse dendritic atrophy in hippocampal

neurons that are null for Mecp2 (Larimore et al. 2009).
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4.2 BDNF and Synaptic Dysfunction in RTT

The potential synaptic consequences of BDNF loss have been studied in detail at

primary afferent synapses between NG primary sensory neurons and second order

neurons in the nTS. These synapses are the first site at which peripheral visceral

sensory inputs impinge on central autonomic reflex pathways and thereby play a

critical role in autonomic functions disrupted in RTT, such as respiratory, cardio-

vascular, and gastrointestinal homeostasis. Normally, BDNF plays a sensory gating

function at these synapses by modulating postsynaptic responses to glutamate, the

primary excitatory transmitter of visceral afferent neurons (Balkowiec et al. 2000).

We hypothesized, therefore, that in Mecp2 null mice, decreased BDNF expression

in NG sensory neurons would be associated with a deficit in modulation of fast

glutamatergic transmission at primary afferent synapses in nTS. Indeed, the

amplitudes of spontaneous miniature and evoked EPSCs in nTS neurons are

significantly increased in Mecp2 null mice (Kline et al. 2010; Kron et al. 2012a),

and accordingly, mutant cells are more likely than wild-type to fire action potentials

in response to primary afferent stimulation (Kline et al. 2010). These changes

occur without any increase in intrinsic neuronal excitability and are unaffected by

blockade of inhibitory GABA currents. A prediction of these results is that auto-

nomic reflexes mediated by primary afferent inputs to nTS would be disinhibited

in the absence of MeCP2 function. This prediction has been borne out by studies

demonstrating that the hypoxic ventilatory response, a reflex mediated by primary

chemoafferent inputs to nTS, is markedly exaggerated in Mecp2 null mice com-

pared to wild-type controls (Bissonnette and Knopp 2006; Roux et al. 2008;

Voituron et al. 2009). Similarly, Mecp2 nulls exhibit a loss of habituation in the

Breuer–Hering reflex, an nTS-mediated behavior that plays an essential role in

regulating the post-inspiratory phase of the respiratory cycle (Stettner et al. 2007).

More generally, these findings suggest that reduced sensory gating in nTS

contributes to cardiorespiratory instability in RTT and that nTS is a site at which

restoration of normal BDNF signaling could help to reestablish normal homeostatic

controls. Indeed, exaggerated synaptic responses to primary afferent input in nTS

are reversed by application of exogenous BDNF to brainstem slices in vitro (Kline

et al. 2010). Moreover, respiratory function in vivo is improved by treatments that

enhance BDNF/TrkB signaling in Mecp2 mutants (see below).

4.3 BDNF and Hypothalamic Dysfunction in RTT

Feeding behavior and energy homeostasis are strongly influenced by BDNF/TrkB

signaling in the hypothalamus (Noble et al. 2011; Rios et al. 2001). Specifically,

increased levels of BDNF are associated with cessation of feeding and increased

energy expenditure. Although the specific circuitry underlying the role of BDNF in

feeding has not been completely defined, BDNF has been identified as a down-

stream effector of melanocortin-4 receptor (MC4R) signaling in the ventromedial

hypothalamus (Noble et al. 2011; Xu et al. 2003), a key site for regulating feeding
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and satiety. Fyffe et al. (2008) demonstrated that loss of Mecp2 by Cre-mediated

deletion specifically within Sim-1 expressing neurons in the hypothalamus results

in reduced BDNF levels inMecp2 null neurons in the paraventricular nucleus, also

a site of MC4R expression (Nicholson et al. 2007), as well as hyperphagia and

obesity. Although the relevance of the obesity phenotype to RTT is unclear, these

data provide further evidence that MeCP2 is required for maintaining normal levels

of BDNF expression and metabolic homeostasis.

5 BDNF-Targeted Therapies for RTT

Recent studies in conditional Mecp2 null mice have demonstrated that reactivation

of the Mecp2 gene, even in severely symptomatic animals, can rescue neurologic

function to a remarkable degree (Guy et al. 2007). These findings indicate that

deficits caused by loss of MeCP2 function are not due to irreversible changes in

brain structure or function. In addition, as noted above, genetic overexpression of

the BDNF gene in Mecp2 null mice improves somatomotor function and prolongs

life span (Chang et al. 2006), and exogenous BDNF can reverse synaptic deficits

caused by MeCP2 deficiency (Kline et al. 2010). Together, these findings raise the

possibility of rescuing neurologic function in Mecp2 null mice and, eventually,

RTT patients, by pharmacologic therapies that enhance BDNF/TrkB signaling.

BDNF itself does not have good drug-like characteristics, i.e., limited half-life

and poor blood–brain barrier penetration, thus motivating the search for alternative

approaches to increasing BDNF/TrkB signaling in RTT. As discussed below, these

approaches include enhancing expression of endogenous BDNF, increasing BDNF

trafficking, and directly activating the TrkB receptor.

5.1 Increasing Expression or Delivery of Endogenous BDNF

In the first test of a BDNF-targeted therapeutic strategy, Ogier et al. (2007) exam-

ined whether or not pharmacologic elevation of endogenous BDNF expression with

ampakine drugs could improve respiratory function inMecp2 null mice. Ampakines

are benzamide derivatives that facilitate the activity of glutamatergic AMPA

receptors and thereby increase expression of activity-dependent genes, including

BDNF (Lynch and Gall 2006). Repeated administration of ampakines in rats and

mice increases expression of BDNF mRNA and protein in the forebrain for several

days (Lauterborn et al. 2003; Rex et al. 2006) and augments BDNF-dependent

synaptic function (Ingvar et al. 1997; Porrino et al. 2005; Rex et al. 2006). Indeed,

treatment ofMecp2 null mutants with the ampakine CX546 for 3 days significantly

increases BDNF levels in NG sensory neurons and reverses the respiratory

tachypnea that is a prominent feature of breathing dysfunction in RTT (Ogier

et al. 2007). Although additional studies are required to elucidate the mechanism

of ampakine action in this model, these data are consistent with the hypothesis that

BDNF deficits contribute to the respiratory phenotype of Mecp2 null mice and that
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BDNF signaling may be a pharmacological target for improving respiratory func-

tion in RTT. More recently, Deogracias et al. (2012) showed that fingolimod, a

sphingosine-1 phosphate receptor agonist used to treat multiple sclerosis, increases

BDNF in cultured neurons and protects against NMDA-induced neuronal death in a

BDNF-dependent manner. In vivo, treatment of Mecp2 mutant mice partially

reversed BDNF deficits and also increased striatal volume, an index of BDNF

signaling. Treated mice also showed improvement in locomotor behavior, a clini-

cally relevant outcome measure for RTT patients. Finally, it is well known that

BDNF expression in the rodent forebrain can be increased by environmental

enrichment and exercise (cf., Cotman and Berchtold 2002). Indeed, rearing

Mecp2 mutant mice in an enriched environment, particularly at early stages of

postnatal development, leads to improvements in motor and spatial learning,

coordination, and anxiety, as well as hippocampal circuit function, that correlate

well with increases in BDNF expression (Kondo et al. 2008; Lonetti et al. 2010).

Another potential strategy for enhancing BDNF/TrkB signaling in RTT is to

increase the bioavailability of endogenous BDNF by promoting increased axonal

transport and/or secretion. Recently, Roux et al. (2012) showed that cysteamine, a

drug that increases vesicular trafficking of BDNF (Borrell-Pages et al. 2006),

extends life span and improves motor function in Mecp2 mutant mice.

5.2 Targeting the BDNF Receptor, TrkB

One potential limitation of pharmacologic approaches that globally increase BDNF

is that BDNF activates receptors other than TrkB, including p75. The properties of

BDNF binding to p75 as well as functioning as a full agonist at TrkB could lead to

unwanted pleiotropic effects of elevated BDNF levels. An alternative approach is to

directly activate TrkB; potential strategies include TrkB activating antibodies (Qian

et al. 2006) and small molecules that function as direct TrkB ligands (Jang

et al. 2010; Massa et al. 2010; Xie and Longo 2000). Our laboratory has recently

examined the ability of a small molecule, non-peptide BDNF loop 2 domain

mimetic, LM22A-4, which functions as a direct and specific partial agonist of

TrkB, but not p75 (Massa et al. 2010), to increase TrkB activation and improve

breathing in Mecp2 mutant mice. LM22A-4 was developed by Longo, Massa, and

colleagues by in silico screening for mimetics of BDNF loop domains that selec-

tively activate TrkB and downstream signaling partners in vitro and in vivo (Han

et al. 2012; Massa et al. 2010; Schmid et al. 2012). Recent studies in our laboratory

have shown that LM22A-4 (1) reduces synaptic hyperexcitability in the brainstem

respiratory network in brain slice preparations (Kron et al. 2012b), (2) reverses

deficits in TrkB activation in the brainstem (Schmid et al. 2012), and (3) signifi-

cantly improves respiratory function (Schmid et al. 2012), including the elimination

of apneic breathing (Kron et al. 2012b), following systemic administration to

symptomatic Mecp2 null and heterozygous mice. Together, these data provide

direct evidence linking TrkB signaling to respiratory dysfunction in mouse models
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of RTT and further highlight the therapeutic potential of strategies aimed at

enhancing BDNF/TrkB signaling for the treatment of RTT patients.

6 Summary

BDNF is only one of many genes whose expression is dysregulated in RTT

(Chahrour et al. 2008). Nonetheless, given the multiplicity of roles played by

BDNF signaling in brain maturation and neural circuit function across the life

span, it is not surprising that deficits in BDNF protein levels have now been linked,

either directly or indirectly, to diverse neurologic deficits in RTT, including

reduced dendritic growth, breathing dysfunction, and impaired locomotion. Cer-

tainly, much more work is required to understand how BDNF deficits may contri-

bute to the expression of specific RTT endophenotypes. It is encouraging, however,

that the possibility of treating RTT using BDNF/TrkB-targeted therapies has

already been established in principle in mouse models of the disease.
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Modulation of Neurotrophin Signaling
by Monoclonal Antibodies

A. Rosenthal and J.C. Lin

Abstract

The neurotrophin family is comprised of the structurally related secreted

proteins nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF), neurotrophin-3 (NT-3), and neurotrophine-4 (NT-4). They bind and

activate the tyrosine kinase receptors Trk A, B, and C in a ligand-specific manner

and additionally bind a shared p75NTR receptor. The neurotrophins were origi-

nally defined by their ability to support the survival and maturation of embryonic

neurons. However, they also control important physiological functions of the

adult nervous system including learning and memory, sensation, and energy

homeostasis. For example, NGF/trkA signaling is critical for normal and patho-

logical sensation of pain. Likewise, the BDNF/trkB pathway controls feeding

and metabolism, and its dysfunction leads to severe obesity. Antibodies can

modulate neurotrophin signaling. Thus, NGF blocking agents can attenuate pain

in several animal models, and a recombinant humanized NGF blocking antibody

(Tanezumab) has shown promising results in human clinical trials for

osteoarthritic pain. On the other hand trkB agonist antibodies can modulate

food intake and body weight in rodents and nonhuman primates. The power of

monoclonal antibodies to modulate neurotrophin signaling promises to turn the

rich biological insights into novel human medicines.
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1 Introduction: Neurotrophins and Their Receptors

Nerve growth factor (NGF) was discovered and isolated by Rita Levi-Montalcini

and Stanley Cohen in the 1950s as a target tissue-derived factor that supports the

survival and neurite outgrowth of the developing sympathetic and sensory neurons.

This was the first molecular demonstration in support of the “neurotrophic hypoth-

esis” postulated by Viktor Hamburger (Cohen and Levi-Montalcini 1956; Cohen

et al. 1954; Levi-Montalcini 1964; Levi-Montalcini and Hamburger 1951). About

30 years later, a second factor was purified based on its ability to promote the

survival of primary sensory neurons. This factor was structurally related to NGF

and designated brain-derived neurotrophic factor (BDNF) (Barde et al. 1982). The

discovery of BDNF allowed for the identification of two additional family

members, neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4, NT-5, or NT-4/5),

on the basis of the DNA sequence homology between NGF and BDNF (Barde

et al. 1982; Berkemeier et al. 1991; Hohn et al. 1990; Maisonpierre et al. 1990;

Rosenthal et al. 1990, 1991).

BDNF is highly expressed in the developing and adult central nervous system

(CNS) and peripheral nervous system (PNS), including the cerebral cortex, hippo-

campus, parts of basal ganglia, cerebellum, and spinal cord (Barde et al. 1987). On

the other hand, NGF, NT-3, and NT-4 display a more restricted pattern of expres-

sion in the embryo and in the adult (Davies et al. 1993; Henderson et al. 1993;

Ibanez et al. 1993; Kalcheim et al. 1992; Pinco et al. 1993). BDNF and NT4 share

very similar profiles of biological activity. Both support the growth and survival of

the sensory neurons of the trigeminal, nodose–petrosal, and dorsal root ganglia

(Berkemeier et al. 1991; Davies et al. 1986, 1993; Kalcheim et al. 1987; Lindsay

et al. 1985). On the other hand, NGF and NT-3 support the survival of sensory

neurons of the trigeminal and dorsal root ganglia (Johnson and Yip 1985; Levi-

Montalcini and Aloe 1985; Rosenthal et al. 1990). In addition, BDNF and NT4 also

support the survival of motoneuron (Henderson et al. 1993; Koliatsos et al. 1994;

Sendtner et al. 1992), dopaminergic neurons in the substantia nigra (Hyman

et al. 1991; Hynes et al. 1994), cholinergic neurons in the basal forebrain (Knusel

et al. 1992), all of which are of potential medical importance as they relate to

motoneuron disease, Parkinson’s disease, and Alzheimer’s disease.

The neurotrophins exert their biological functions largely through binding to a

family of “high affinity” tyrosine kinase receptors, trkA, B, and C, which are

expressed by the target cells. The interaction between neurotrophins and trk

receptors are highly ligand specific, resulting in tyrosine phosphorylation of the

respective trk receptor and the recruitment of downstream signaling molecule

(Chao et al. 2006; Ip et al. 1993; Patapoutian and Reichardt 2001). For instance,

trkA is the primary receptor for NGF (Cordon-Cardo et al. 1991; Klein et al. 1991a).

On the other hand, BDNF and NT4 mainly bind and signal through trkB, while NT3

is the only neurotrophic factor capable of binding trkC (Barbacid 1994; Klein

et al. 1991b, 1992; Lamballe et al. 1991).

The in vivo significance of the pairwise neurtrophin-trk receptor interactions has

been corroborated by genetic deletion of each of these genes through homologous
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recombination in mice (Conover and Yancopoulos 1997; Huang and Reichardt

2001). Specifically, NGF and trkA deletion in mice both led to the severe reduction

in the number of sympathetic and sensory neurons in the dorsal root ganglia

(Crowley et al. 1994; Smeyne et al. 1994). Deletion of BDNF, NT4, and trkB in

mice all led to the reduciton in the number of neurons of nodose, petrosal, and

geniculate ganglia but not in the sympathetic ganglia (Conover et al. 1995; Erickson

et al. 1996; Liu et al. 1995). The 50–60 % loss of in the nodose ganglia of BDNF�/

� and in NT4�/� mice indicates that both factors are required for the full

complement of neurons. The greater than 90 % loss of nodose ganglia in both the

BDNF�/�; NT4�/� double knock-out and the trkB�/� mice suggests that both

factors act in concert through the common trkB receptor to support the survival of

these neurons in vivo.

All of the neurotrophins can bind a common receptor called p75NTR (“low

affinity” receptor) in addition to their respective Trk receptors (Chao 1994).

p75NTR signaling appears to depend on the specific cellular and developmental

contexts and could either synergize with or antagonize the Trk signals (Cosgaya

et al. 2002; Sharma et al. 2010). The fact that p75NTR interacts with many other

neuronal receptors and soluble factors, such as the Nogo receptor, LINGO-1, Troy,

plexinA4, ephrin-A, and amlyoid beta (Schecterson and Bothwell 2010), further

enriches as well as complicates the precise interpretation of each specific function

of p75NTR. In part because of these complexities, the value of p75NTR as a drug

target had not been clearly demonstrated yet. Moreover, the pleiotropic effects of

p75NTR due to its many ligands and binding proteins may lead to side effects of

drugs targeting this receptor. As a result, p75NTR will not be discussed any further

in this chapter.

The roles of neurotrophins and their specific Trk receptors during embryonic

development of the nervous system have been studied extensively using neuronal

cultures and gene ablation in mice (Conover and Yancopoulos 1997). Although the

physiological functions of neurotrophins and their receptors during adult life are

more relevant for drug discovery, it was difficult to assess these functions using

traditional knockout mice. These mice almost always exhibited severe develop-

mental deficits and were often associated with prenatal or early postnatal death. The

scientific rationale and insight into new, antibody drugs that target neurotrophins or

their receptors are largely derived from conditional knockouts and pharmacological

interventions in the adult organisms.

2 Blocking Antibodies to NGF/trkA Pathway for Pain Relief

Developing sensory neurons transiently depend on NGF for survival during early

development. For instance, rat sensory neurons require NGF for survival only until

around postnatal day 2. Despite that, trkA expression in the nociceptive neurons

persists beyond the dependence phase and is sustained throughout life (Gorin and

Johnson 1980; Johnson et al. 1980; Yip et al. 1984). Multiple experiments indicate

that, in the adult, NGF and TrkA acquire a new role as functional modulators of
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neurons, particularly in pathological states. For example, injection of exogenous

NGF to adult animals causes profound sensitization of nociceptive neurons leading

to mechanical and thermal allodynia, i.e., pain from a stimulus that does not

normally lead to the sensation of pain. Injection of NGF also leads to mechanical

and thermal hyperalgesia, i.e., an extreme painful reaction to an otherwise innocu-

ous or only mildly painful stimulus (Lewin and Mendell 1993; Lewin et al. 1993).

Similar observation had been reported following injection of NGF in humans (Dyck

et al. 1997; Svensson et al. 2003).

NGF mRNA and protein are frequently upregulated in sites of inflammation and

in injured tissues. For instance, elevated levels of NGF are found in the synovial

fluid from human subjects with rheumatoid arthritis and osteoarthitis as well as in

the synovial fluid of animal models of inflammatory arthritis (Aloe et al. 1992a–c,

1993). NGF is also elevated in inflamed bladders, acute and chronic pancreatitis,

and in conjunction with pancreatic cancer invasion (Friess et al. 1999; Lowe

et al. 1997; Toma et al. 2000; Zhu et al. 1999). Likewise, NGF levels increase

significantly after a surgical plantar or muscle incision in rats (Banik et al. 2005;

Wu et al. 2009).

NGF decreases the activation threshold of sensory neurons in part by

up-regulating pain-related neurotransmitters, receptors, and ion channels—

including substance P, calcitonin gene-related peptide (Lindsay and Harmar

1989), the heat-gated TRPV1 channel (Winston et al. 2001), and action potential

controlling sodium channels (Friedel et al. 1997). NGF also increases the cell

surface level and functional level of the TRPV channels (Zhang et al. 2005) and

sodium and calcium channels (Luther and Birren 2009). These gene expression and

functional changes in the sensory neurons may underlie the enhanced pain sensitiv-

ity mediated by NGF.

The functional significance of the elevated NGF level in various pathological

states was revealed through NGF blocking studies using either soluble trkA recep-

tor or anti-NGF antibody. These NGF blocking agents led to a significant reduction

of pain hypersensitivity in multiple pain models. These include models of

inflammation-induced cutaneous or visceral pain (Bennett et al. 1998; Dmitrieva

et al. 1997; McMahon et al. 1995), arthritic pain (Shelton et al. 2005), metastatic

cancer-induced bone pain and pancreatic cancer pain (Halvorson et al. 2005; Sevcik

et al. 2005), long bone fracture pain (Jimenez-Andrade et al. 2007; Koewler

et al. 2007), surgical incision pain, and neuropathic pain conditions (Banik

et al. 2005; Ro et al. 1999; Wild et al. 2007; Zahn et al. 2004).

Several characteristics of the pain relief brought about by NGF blockade are

noteworthy. First, the pain relief can be achieved independent of any underlying

disease modification. For example, while thermal and tactile sensitivity were fully

normalized by anti-NGF in a rat model of collagen-induced autoimmune arthritis,

the underlying inflammation and progression of bone and cartilage destruction were

not affected by the treatment (Shelton et al. 2005). Likewise, anti-NGF antibodies

elicit profound reduction in both spontaneous and induced pain as measured by

reduction in guarding and flinching in a cancer pain model. However, the treatment

has no effect on the growth of the prostate tumor grafts or on bone destruction
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(Halvorson et al. 2005; Sevcik et al. 2005). Second, although anti-NGF can reverse

allodynia and hyperalgesia, it had no effect on normal thermal and tactile sensitivity

(Ghilardi et al. 2011; Sevcik et al. 2005). NGF antibody treatment was not

associated with any change in the density of the peptidergic nociceptive fibers or

sympathetic nerve endings in the skin of normal animals or with any impairment in

the acute activation of the peptidergic nociceptors in healthy state (Ghilardi

et al. 2011; Jimenez-Andrade et al. 2007; Sevcik et al. 2005). Thus, NGF does

not seem to be required for the structural integrity of adult sensory neurons in

non-pathological states. These pain mitigation effects of NGF antagonists are

unique. In contrast to the nonsteroidal anti-inflammatory drugs or the tumor necro-

sis factor-α (TNF-α) antagonists, NGF antagonists do not affect the inflammatory

process. Unlike opioids, they do not block normal pain sensation, hence not

analgesic, and are not associated with drug tolerance (Wild et al. 2007).

Recently, Pat Mantyh and his colleagues discovered that the peptidergic, TrkA+

sensory nerve and the sympathetic nerve endings undergo abnormal sprouting and

form neuroma-like structures as the bone cancers progress (Jimenez-Andrade

et al. 2010; Mantyh et al. 2010). Furthermore, both the pathological nerve sprouting

and cancer pain were driven by NGF because administration of anti-NGF

antibodies or a pan-Trk kinase inhibitor completely abolished these pathological

remodeling of nerve endings as well as cancer pain (Ghilardi et al. 2010; Jimenez-

Andrade et al. 2010). These authors suggested that NGF derived from either tumor

cells or tumor-associated stromal cells can lead to the pathological remodeling of

nerve endings and cancer pain. It remains to be seen if the pathological remodeling

of sensory and sympathetic nerve endings is also found in all the other known

NGF-responsive pain states and indeed if it constitutes the underlying, unifying

cellular mechanism of NGF-driven pathological pain state. It is interesting to note

again that NGF blockade does not affect normal pain sensation and consistent with

that does not appear to affect modulation of normal nerve endings.

Given the anticipated beneficial effects of NGF antagonists, Rinat Neuroscience

Corp. and Pfizer Inc. developed Tanezumab, a fully humanized, high affinity anti-

NGF monoclonal antibody. This antibody has been studied for safety and efficacy

in clinical trials of multiple pain conditions. In a phase 2 trial of patients with

moderate to severe pain due to osteoarthritis of the knee, Tanezumab given at

10–200 μg/kg intravenously once every 8 weeks has shown highly statistically

significant efficacy. Specifically, a 45–62 % reduction of joint pain and 29–47 %

improvement of function compared to placebo were achieved (Lane et al. 2010).

The therapeutic effects of anti-NGF exhibited a clear trend of dose-dependent

response. The most common adverse events included headache, muscle ache pain

in the extremities, upper respiratory infections, and abnormal peripheral sensation/

paresthesia (tingling, numbness, burning sensations, or increased sensitivity to

touch). The abnormal peripheral sensation was found in 14 % of patients receiving

Tanezumab and in 4 % of those receiving placebo and were mild in the majority of

the patients. These sensory symptoms were predominantly transient and were not

associated with neurological deficits (Lane et al. 2010; Wood 2010).
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Encouraging clinical results with Tanezumab have also been reported in phase II

trials with chronic low back pain (CLBP) and interstitial cystitis (IC) chronic

inflammation of the urinary bladder (poster presentation at the American Academy

of Pain Medicine’s 26th Annual Meeting, 2010). In the CLBP study, patients

randomly received a single intravenous infusion of either Tanezumab at 200 μg/
kg placebo or the nonsteroidal anti-inflammatory drug naproxen, twice daily. In the

IC study patients receive either a single infusion of Tanezumab at 200 μg/kg or

placebo and recorded their pain severity daily before and up to 6 weeks after

treatment using numeric scales. Patients treated with Tanezumab consistently

reported significantly greater reductions in their pain when compared to patients

treated with placebo. Moreover, for the CLBP patients, Tanezumab was more

effective than naproxen (poster presentation at the American Academy of Pain

Medicine’s 26th Annual Meeting, 2010). Studies with Tanezumab in cancer pain

are on going.

Surprisingly, however, the FDA recently raised concerns about a small number

of osteoarthritis patients that were treated with Tanezumab whose osteoarthritis

worsened, necessitating joint replacement. As a result, Pfizer halted enrollment and

treatment of osteoarthritis patients with Tanezumab pending further evaluation of

the data. Given the size of the Tanezumab clinical trials, which comprised over

9,000 patients and the fact that only 16 individuals with already advanced arthritis

were affected, these reported events have to be statistically evaluated whether they

are treatment dependent or not (Garber 2011; Wood 2010).

The positive clinical efficacy data indicate that NGF antagonists could become a

novel class of powerful pain medicine. Nevertheless, better understanding of any

potential adverse effects will be required before any new class of human therapeu-

tics can become a reality. Since anti-NGF antibodies and other NGF and/or TrkA

antagonists are now being pursued by multiple pharmaceutical companies, the

therapeutic potential and limitations of targeting NGF are likely to be clarified

within a few years.

A therapeutic antibody that antagonizes the neurotrophin signaling pathway

such as Tanezumab has several pharmaceutical attributes distinct from the tradi-

tional small molecule pain medicines. One major difference is the target specificity

offered by Tanezumab (Shelton et al. 2005) as opposed to kinase inhibitors, for

example, the pan-Trk inhibitor (Ghilardi et al. 2011) which recognizes multiple

targets. The high degree of target specificity offers a better safety profile compared

to small molecules. Another major difference is the long plasma half-life of

Tanezumab which allows applications once every 8 weeks compared to most

small molecule pain drugs which often require daily application. This unique

pharmacokinetic property may offset the inconvenience of intravenous or subcuta-

neous injections that are required to deliver antibody-based drugs. Finally,

antibodies have limited access to the central nervous system (CNS) under nonin-

flammatory conditions (DeMattos et al. 2001). While this property limits the use of

antibodies for CNS disorders, it is allows safer treatment of peripheral indications,

with minimal potential CNS side effects.
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3 TrkB Agonist Antibody for Modulating Metabolic
and Eating Disorders

Multiple genetic and pharmacological studies revealed that the BDNF/TrKB sig-

naling system plays a key role on energy homeostasis. For example, mouse models

of partial or brain-specific conditional knockout of BDNF as well as those of trkB

exhibited profound hyperphagia and obesity (Duan et al. 2003; Kernie et al. 2000;

Lyons et al. 1999; Rios et al. 2001; Xu et al. 2003). Likewise, regionally selective

deletion of BDNF in the VMH using a virally mediated approach in the adult mouse

led to hyperphagia (Unger et al. 2007). Conversely, exogenous administration of

the TrkB ligands BDNF or NT-4, either systemically or centrally, led to reduction

of food intake, body weight, and amelioration of various metabolic derangements

associated with obesity and diabetes in a variety of rodent disease models, including

the monogenic mouse models (ob/ob, db/db, Ay), high fat diet-induced obesity, and

polygenic obese-diabetic mice (Nakagawa et al. 2000; Ono et al. 1997, 2000; Tonra

et al. 1999; Tsao et al. 2008). Moreover, trkB-specific agonist antibodies,

administered either centrally or peripherally, can also mediate beneficial metabolic

effects in rodents similar to those of BDNF or NT-4 (Tsao et al. 2008), indicating

that trkB is a key receptor mediating BDNF and NT-4’s effects. BDNF is expressed

in the ventral–medial hypothalamus (VMH) of mice, and its expression is regulated

by food intake and the melanocortin pathway. (Bariohay et al. 2009; Nicholson

et al. 2007; Xu et al. 2003). BDNF in turn may mediate its anorexigenic effect in

part through feedback regulation on the VMH and the mesolimbic dopaminergic

pathways (Cordeira et al. 2010).

In addition to their central effects on food intake, BDNF and trkB also control

aspects of metabolism in the periphery. For example, BDNF enhances the hepatic

insulin signaling (Tsuchida et al. 2001) and modulate glucagon secretion in the

mouse pancreatic alpha cells (Hanyu et al. 2003). Mice with liver-specific ablation

of BDNF exhibited normal food intake and body weight when fed with normal

chow or high fat diet. However, these mice were protected from high fat diet

induced dyslipidemia and hyperglycemia (Teillon et al. 2010).

The importance of BDNF, NT4, and trkB system in human metabolic disorders

was underscored by genome-wide association studies of obesity and other genetic

studies of human eating disorders. BDNF polymorphisms were found to be signifi-

cantly associated with obesity in diverse ethnic populations by independent groups

of investigators (Ng et al. 2010; Thorleifsson et al. 2009). Likewise, human

individuals with either loss-of-function trkB mutation or BDNF deficiency have

been associated with early onset hyperphagia and morbid obesity (Gray et al. 2007;

Yeo et al. 2004). Haplo-insufficiency of the BDNF gene due to chromosomal

deletion in patients with the Wilms’ tumor, aniridia, genitourinary anomalies, and

mental retardation (WAGR) syndrome is also associated with lower serum levels of

BDNF and with childhood-onset obesity (Han et al. 2008). Furthermore, patients of

Prader–Willi syndrome, which suffer excessive weight gain, display reduced

plasma BDNF levels compared to those in the mildly obese or lean control subjects

(Han et al. 2010), suggesting the decrease in BDNF may cause the hyperphagia in
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these patients. It is therefore conceivable that trkB-specific agonists may be thera-

peutically useful in curbing the hyperphagia and obesity in human patients.

Consistent with the mouse and human genetic data, intra-cerebro-ventricular

injections of BDNF or NT4 can reduce food intake in a dose-dependent manner in

rhesus monkeys (Lin et al. 2008). However, when recombinant NT4 or a trkB-

specific agonist antibody was given peripherally to several species of nonhuman

primates, including obese baboons, lean cynomolgus, and rhesus monkeys, highly

significant weight gain and appetite enhancement were observed (Lin et al. 2008).

These results highlight the additional regulatory complexity in the central versus

peripheral trkB system and call for further investigation into the trkB pathway and

mechanism in primates. If trkB agonist antibody delivered peripherally can induce

weight gain in humans, as in nonhuman primates, such an antibody may be useful in

treating patients with severe anorexia or cachexia. Conversely, if the trkB agonist

antibody elicits weight loss in humans, it could be considered for further evaluation

as a potential therapy for obesity and hyperphagia disorders such as WAGR and

Prader–Willi syndrome.

4 TrkB and TrkC Agonist Antibodies for Treating Nerve
Degeneration and Neuropathy

In addition to the roles in regulating food intake and energy homeostasis, BDNF

and TrkB signaling system is also implicated in neuronal degeneration or dysfunc-

tion (Zuccato and Cattaneo 2009), such as Alzheimer’s disease (Blurton-Jones

et al. 2009; Massa et al. 2010; Nagahara et al. 2009), Parkinson’s disease (Baydyuk

et al. 2011; Sun et al. 2005), Huntington’s disease (Kells et al. 2004; Xie

et al. 2010), motoneuron disease (Moro et al. 2006), and Rett’s syndrome (Chang

et al. 2006; Kline et al. 2010). For example, direct intracerebroventricular delivery

of virally expressed BDNF or embryonic stem cell-derived neurons expressing

BDNF can reverse cognitive impairment and neural degeneration in nonhuman

primate and mouse models of Alzheimer’s disease (Blurton-Jones et al. 2009;

Nagahara et al. 2009). It is conceivable that TrkB agonist antibody may also be

applied to achieve therapeutic effects in these degenerative diseases of the CNS to

mimic the beneficial effect of BDNF. However, significant technical challenge

remains regarding how to safely and conveniently deliver TrkB agonist antibodies

to the target neuronal population in the CNS of these patients. Given the socioeco-

nomic burden and the human suffering brought about by these debilitating diseases,

we are hopeful that technical solutions will soon emerge to overcome this signifi-

cant hurdle of neurotrophin/antibody drug development. Emerging technologies

include the usage of antibodies to the insulin receptor (Boado et al. 2010) or

transferring receptor (Zhou et al. 2011), which mediates transcytosis into the

brain, as Trojan horses to deliver therapeutic proteins, antibodies, or other drugs

to CNS targets in both mouse and primate animal models.

For the degenerative diseases of the peripheral nervous system (PNS), monoclo-

nal antibodies may hold more immediate therapeutic potential since there is less
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issue with antibody drug delivery to the target tissues. One example is

Charcot–Marie–Tooth disease type 1A (CMT1A), which is a hereditary form of

progressive demyelinating disease restricted to the peripheral nerves. The Trembler

mice (TrJ) with a mutation in the peripheral myelin protein-22 gene is a mouse

model of this disorder. Administration of NT-3 has been shown to enhance the

nerve regeneration upon crush injury and improve remyelination in this model.

NT-3 administration was also effective in a disease model where Schwann cells

derived from CMT1A patients were engrafted into immune-deficient nude mice

(Sahenk et al. 2005).

Since NT3 acts primarily through TrkC and also weakly through TrkA and

TrkB, the therapeutic potential of TrkC and TrkB agonist antibodies, either alone

or in combination, was evaluated in the TrJ mouse model. TrkB and TrkC agonist

antibodies in combination significantly improved the electrophysiological

measures, motor function performance, as well as nerve regeneration in this animal

model of CMT1A (Sahenk et al. 2010). If Trk agonist antibodies are shown to be

effective in human CMT1A patients, additional disorders associated with periph-

eral neuropathy such as diabetic neuropathy or chemotherapy-induced neuropathy

should be considered for therapeutic evaluation.

Significant amount of future work will be needed to develop Trk agonist

antibodies into useful medicine in either CNS or PNS neural degeneration. Never-

theless, it is important to note that such agonist antibodies hold promise in terms of

both target selectivity and pharmaceutical properties compared to the

corresponding naturally occurring agonists. First, agonist antibodies have excep-

tional long plasma half-life compared to natural ligand molecules (14 days vs. a few

minutes or hours in human plasma) and thus are more likely to achieve efficacious

levels and are more convenient to use in treating chronic degenerative diseases

(ALS CNTF Treatment Study (ACTS) Phase I-II Study Group 1995; Nguyen

et al. 2000; Sahenk et al. 2010). Second, several naturally occurring growth factors

or agonists such as erythropoietin (EPO), thrombopoietin (TPO), and glial cell line-

derived neurotrophic factor (GDNF) have been associated with the development of

antidrug antibodies (ADA) in human subjects and in nonhuman primate models

(Casadevall et al. 2005; Chong and Ho 2005; Gao et al. 2004; Hovland et al. 2007;

Lang et al. 2006). Such ADA reactions against the recombinant protein drugs often

spread to target the respective endogenous ligands due to the shared sequences and

epitopes, thus resulting in life-threatening consequences. For example, ADA to the

EPO protein could lead to aplastic anemia following spreading of auto immune

response from the injected EPO to the endogenous EPO protein. Likewise, spread-

ing of ADA from injected TPO to the endogenous TPO lead to thrombocytopenia.

Such immunological reaction is unlikely to occur with the agonist antibodies since

there is virtually no sequence similarity between the antibody and the naturally

occurring growth factor.

Concluding Remarks

Here, we review the scientific rationale and the recent progress of targeting

neurotrophins using monoclonal antibodies as the therapeutic agents. We give

examples of therapeutic antibodies capable of blocking or activating the
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neurotrophin system via the NGF/TrkA and BDNF/TrkB pathways, respec-

tively. The clinical success of monoclonal antibodies in the areas of oncology

and inflammation has now been extended to the nervous system as shown by the

impressive efficacy of anti-NGF antibodies such as Tanezumab. The promise of

using therapeutic antibodies to target neurotrophins will hopefully be brought to

medical realty and be further expanded to the CNS indications once we under-

stand the safety profiles and the appropriate delivery methods in a variety of

clinical settings.
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