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Abstract Simulation provides a flexible approach to analyzing business processes.

Through simulation experiments various “what if” questions can be answered and

redesign alternatives can be compared with respect to key performance indicators.

This chapter introduces simulation as an analysis tool for business process man-

agement. After describing the characteristics of business simulation models, the

phases of a simulation project, the generation of random variables, and the analysis

of simulation results, we discuss 15 risks, i.e., potential pitfalls jeopardizing the

correctness and value of business process simulation. For example, the behavior of

resources is often modeled in a rather naı̈ve manner resulting in unreliable simula-

tion models. Whereas traditional simulation approaches rely on hand-made models,

we advocate the use of process mining techniques for creating more reliable

simulation models based on real event data. Moreover, simulation can be turned

into a powerful tool for operational decision making by using real-time

process data.

1 Introduction

Simulation was one of the first applications of computers. The term “Monte Carlo

simulation” was first coined in the Manhattan Project during World War II, because

of the similarity of statistical simulation to games of chance played in the Monte
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Carlo Casino. This illustrates that that already in the 1940s people were using

computers to simulate processes (in this case to investigate the effects of nuclear

explosions). Later Monte Carlo methods were used in all kinds of other domains

ranging from finance and telecommunications to logistics and workflow manage-

ment. For example, note that the influential and well-known programming language

Simula (Dahl and Nygaard 1966), developed in the 1960s, was designed for

simulation. Simulation has become one of the standard analysis techniques used

in the context of operations research and operations management. Simulation is

particularly attractive since it is versatile, imposes few constraints, and produces

results that are relatively easy to interpret. Analytical techniques have other advan-

tages but typically impose additional constraints and are not as easy to use

(Buzacott 1996). Therefore, it is no surprise that in the context of Business Process
Management (BPM), simulation is one of the most established analysis techniques

supported by a vast array of tools (van der Aalst 2013; Rosemann and vom Brocke

2014).

Consider for example a large car rental agency (like Hertz or Avis) having

thousands of offices in different countries sharing a centralized information system

where customers can book cars online. One can make simulation models of

individual offices and the centralized information system to answer question such

as:

• What are the average waiting times of customers when booking a car online?

• What is the variability of waiting times when picking up a car at a particular

location?

• What is the utilization of staff at a particular location?

• Will waiting times be reduced substantially if extra staff is deployed?

• How many customers are lost due to excessive waiting times?

• What is the effect of allocating staff based on the number of bookings?

• What is the effect of changing the opening hours at a particular location?

To answer these and many other questions, a simulation model can be used. A

proper simulation model is a simplified representation of reality and thus can be

used to simulate that reality using a computer. Obvious reasons for using a

simulation model are (van der Aalst and Stahl 2011; van der Aalst and Voorhoeve

2000):

• Gaining insight in an existing or proposed future situation. By charting a

business process, it becomes apparent what is important and what is not.

• A real experiment may be too expensive. Simulation is a cost-effective way to

analyze several alternatives. Decisions such as hiring extra staff or adding new

servers many too expensive to simply try out in reality. One would like to know

in advance whether a certain measure will have the desired effect.

• A real experiment may be too dangerous and may not be repeatable. Some

experiments cannot be carried out in reality due to legal, ethical, or safety

reasons. Moreover, it is often impossible to reliably compare alternatives due

to changing conditions (performance may change due to external factors).
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There is an abundance of mathematical models that can be used to analyze

abstractions of business processes. Such models are often referred to as analytical
models. These models can be analyzed without simulation. Examples are queueing

models (Kleinrock 1975), queueing networks (Baskett et al. 1975), Markov chains,

and stochastic Petri nets (Haas 2002; Ajmone Marsan et al. 1995). If a simple

analytical model can do the job, one should not use simulation. In comparison to a

simulation model, an analytical model is typically less detailed and requires fewer

parameter settings. Widely acknowledged advantages of simulation are:

• Simulation is flexible. Any situation, no matter how complex, can be investi-

gated through simulation.

• Simulation can be used to answer a wide range of questions. It is possible to

assess waiting times, utilization rates and fault percentages using one and the

same model.

• Simulation stimulates creativity. Simulation triggers “process thinking” without

restricting the solution space upfront.

• Simulation is easy to understand. In essence, it is nothing but replaying a

modeled situation. In contrast to many analytical models, little specialist knowl-

edge is necessary to understand the analysis technique used. Hence, simulation

can be used to communicate ideas effectively.

Unfortunately, simulation also has some disadvantages.

• A simulation study can be time consuming. Sometimes, very long simulation

runs are necessary to obtain reliable results.

• One has to be very careful when interpreting simulation results. Determining the

reliability of results can be very treacherous indeed.

• Simulation does not provide any proof. Things that can happen in reality may not

be witnessed during some simulation experiment.

Today’s simulation tools can be used to rapidly construct simulation models

using drag-and-drop functionality. However, faulty simulation models or incor-

rectly interpreted results may lead to bad decisions. Therefore, this chapter will

focus on the validation of simulation models and the correct derivation and inter-

pretation of simulation results. We will highlight potential pitfalls of traditional

simulation approaches. Therefore, this chapter can be viewed as a “survival guide”
for people new to the topic. Moreover, we also aim to broaden the view for people

familiar with traditional business process simulation approaches. The availability of

detailed event data and possible connections between simulation tools and infor-

mation systems enables new forms of simulation. For example, short-term simula-
tion provides users and managers with a “fast forward button” to explore what will

happen in the near future under different scenarios.

The remainder of this chapter is organized as follows. Section 2 introduces

traditional business process simulation by describing the simulation-specific ele-

ments of process models and by discussing the different phases in a typical

simulation project. Section 3 discusses the role of pseudo-random numbers in

simulation. Section 4 explains how to set up a simulation experiment and how to
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compute confidence intervals. Pitfalls that need to be avoided are discussed in

Sect. 5. Section 6 discusses more advanced forms of simulation that exploit the

availability of event data and modern IT infrastructures. Section 7 concludes the

chapter with suggestions for further reading.

2 Traditional Approach to Business Process Simulation

The correctness, effectiveness, and efficiency of an organization’s business pro-

cesses are vital for survival in today’s competitive world. A poorly designed

business process may lead to long response times, low service levels, unbalanced

resource utilization, angry customers, back-log, damage claims, and loss of good-

will. This is why it is important to analyze processes before they are put into

production (to find design flaws), but also while they are running (for diagnosis

and decision support). In this section, we focus on the role of simulation when

analyzing business processes at design time.

2.1 Simulation Models

For the construction of a simulation model and to conduct experiments, we need a

simulation tool. Originally, there were two typical kinds of simulation tools:

• A simulation language is a programming language with special provisions for

simulation. Classical examples of simulation languages are Simula, GPSS,

Simscript, Simpas, MUST and GASP.

• A simulation package is a tool with building blocks for a certain application

area, which allow the rapid creation of a simulation model, mostly graphically.

Classical examples of simulation packages for production processes are:

Sim-Factory, Witness and Taylor. Examples of simulation packages specifically

designed for workflow analysis are Protos, COSA, WoPeD, and Yasper. In fact,

most of today’s BPM systems provide such a simulation facility.

The advantage of a simulation language is that almost every situation can be

modeled. The disadvantage is that one is forced to chart the situation in terms of a

programming language. Modeling thus becomes time-consuming and the simula-

tion program itself provides no insights. A simulation package allows to rapidly

build an intuitive model. Because the model must be built from ready-made

building blocks, the area of application is limited. As soon as one transgresses the

limits of the specific area of application, e.g., by changing the control structure,

modeling becomes cumbersome or even impossible.

Fortunately, many tools have been introduced with characteristics of both a

simulation language and a simulation package. These tools combine a graphical

design environment and a programming language while also offering graphical
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analysis capabilities and animation. Examples of such tools are Petri-net-based

simulators such as ExSpect and CPN Tools (van der Aalst and Stahl 2011). These

allow for hierarchical models that can be constructed graphically while parts can be

parameterized and reused. The ARENA simulation tool developed by Rockwell

Automation also combines elements of both a simulation language (flexibility and

expensiveness) and simulation package (easy to use, graphical, and offering

predefined building blocks). ARENA emerged from the block-oriented simulation

language SIMAN. The use of proprietary building blocks in tools such as ARENA

makes it hard to interchange simulation models between packages. Simulation tools

based on more widely used languages such Petri nets or BPMN are more open and

can exchange process models with BPM systems and other analysis tools (e.g.,

process mining software).

In the remainder of this chapter we remain tool-independent and focus on the

essential characteristics of simulation.

To explain the typical ingredients of a model used for business process simula-

tion, we first focus on the control-flow of a business process. Figure 1 shows the

same control-flow using three widely used notations. Figure 1a shows a Petri net; a
WF-net (WorkFlow net) to be precise (van der Aalst and Stahl 2011; ter Hofstede

et al. 2010; Weske 2007). Activities are modeled by labeled transitions and the

ordering of these activities is controlled by places (represented by circles). A

transition (represented by a square) is enabled if each of its input places contains

a token. An enabled transition may occur thereby consuming a token from each

input place and producing a token for each output place. Initially, source place in
contains a token. Hence, transition a is enabled in the initial state. After registering

a request (modeled by transition a), extra insurance can be added (b) or not

(modeled by the silent transition). Then the check-in is initiated (c). Subsequently,
the selection of the car (d ), the checking of the license (e), and the charging of the

credit card ( f ) are executed (any ordering is allowed, including the concurrent

execution of d, e, and f ). Finally, the car is provided (g). The process instance

terminates when place out is marked. Figure 1b shows an event log describing some

example traces.

BPMN, EPCs, UML ADs, and many other business process modeling notations

have in common that they all use token-based semantics. Therefore, there are many

techniques and tools to convert Petri nets to BPMN, BPEL, EPCs and UML ADs,

and vice versa. As a result, the core concepts of Petri nets are often used indirectly,

e.g., to enable analysis, to enact models, and to clarify semantics. For example,

Fig. 1c shows the same control-flow modeled using the Business Process Modeling
Notation (BPMN). BPMN uses activities, events, and gateways to model the

control-flow. In Fig. 1c two types of gateways are used: exclusive gateways are

used to model XOR-splits and joins and parallel gateways are used to model

AND-splits and joins. BPMN also supports other types of gateways corresponding

to inclusive OR-splits and joins, deferred choices, etc. (Dumas et al. 2013; ter

Hofstede et al. 2010; Weske 2007). Event-driven Process Chains (EPCs) use

functions, events, and connectors to model the controlflow (cf. Fig. 1d). Connectors

in EPCs are similar to gateways in BPMN. There are OR, XOR, and AND
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connectors. Events in EPCs are similar to places in Petri nets. Just like places and

transitions in a Petri net, events and functions need to alternate along any path in an

EPC. However, events cannot have multiple successor nodes, thus making it

impossible to model deferred choices (ter Hofstede et al. 2010). UML Activity
Diagrams (UML ADs) – not shown in Fig. 1 – are similar to BPMN and EPCs

when it comes to the basic control-flow constructs.

The control-flow oriented models shown in Fig. 1 provide necessary but not

sufficient information for business process simulation. Figure 2 sketches the min-

imal additional information that needs to be provided to conduct meaningful

simulation experiments. First of all, a simulation environment needs to be provided
that generates new cases according to some predefined arrival process and that

collects statistics based on the Key Performance Indicators (KPIs) of interest. Often
a so-called Poisson arrival process is used (the time in-between two arrivals is

sampled from a negative-exponential distribution). Typical KPIs are average flow

time, service level, mean utilization, etc. Choices modeled in the process need to be

resolved when executing a simulation model. Therefore, priorities and probabilities
can be used. For example, in Fig. 2 one could specify that on average 80 % of cases

skip the extra insurance (i.e., b is executed in 20 % of cases). One also needs to

model the duration of activities. In most business processes, the average flow time

of a case is much longer than the average service time (i.e., the time actually worked
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Fig. 1 Three types of models describing the same control-flow: (a) Petri net, (c) BPMN, and (d)

EPC. The event log (b) shows possible traces of this model using the short activity names provided

by the Petri net
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on the case). This is due to queueing for unavailable or busy resources. Often

activities require a particular type of resource, commonly referred to as a role.
Several resources may have the same role and several activities may require a

particular role. The simulation model needs to specify resource requirements and
usage. Also the number of resources per role, the selection of resources and the

ordering of pending activities need to be specified. For example, a round-robin

mechanism can be used to select available resources and a First-Come First-Served

(FCFS) queueing discipline can be used to order pending activities. Other queueing

disciplines are Last-Come First-Served (LCFS), Random Order (RO), Rush Orders

First (ROF), and Shortest Processing Time First (SPTF).

To conduct experiments, one also needs to determine the number of subruns,
subrun length, and warm-up period. As explained in Sect. 4, these subrun settings

are needed to be able to compute confidence intervals.
Interestingly, one does not need to supply the additional information shown in

Fig. 2 when configuring a Business Process Management (BPM) or Workflow
Management (WFM) system (van der Aalst 2013; Dumas et al. 2013; ter Hofstede

et al. 2010; Weske 2007). For example, activity durations and routing probabilities

emerge over time based on the real characteristics of cases and resources.
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Fig. 2 Information required for business process simulation. This information is not needed for

enactment (using for example a BPM/WFM system), but needs to be added for simulation
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2.2 Life-Cycle of BPM and Simulation Projects

To explain the role of simulation as an analysis tool, we start by discussing the BPM
life-cycle (van der Aalst 2013; van der Aalst and Stahl 2011) shown in Fig. 3. In the
(re)design phase, a process model is designed. This model is transformed into a

running system in the implementation/configuration phase. If the model is already

in executable form and a WFM or BPM system is already running, this phase may

be very short. However, if the model is informal and needs to be hard-coded using

some conventional programming language, this phase may take substantial time.

After the system supports the designed processes, the run & adjust phase starts. In
this phase, the processes are enacted and adjusted when needed. In the run & adjust

phase, the process is not redesigned and no new software is created; only predefined

controls are used to adapt or reconfigure the process. Figure 3 shows two types of

analysis: model-based analysis and databased analysis. While the system is run-

ning, event data are collected. These data can be used to analyze running processes,

e.g., discover bottlenecks, waste, and deviations. This is input for the redesign

phase. During this phase process models can be used for analysis. For example,

simulation is used for “what if” analysis or the correctness of a new design is

verified using model checking.

Traditionally, simulation is positioned on the left-hand side of Fig. 3, i.e.,

business process simulation is a form of model-based analysis conducted during

the (re)design phase. Figure 4 shows the phases of a typical simulation project.

These phases should be seen as a further refinement of the (re)design phase in

Fig. 3.

The simulation process starts with a problem definition, describing the goals and
fixing the scope of the simulation study. The scope tells what will and what will not

be a part of the simulation model. The problem definition should also state the

questions to be answered. Preferably, these questions should be quantifiable.

Instead of asking “Are the customers satisfied?”, one should ask “How long do

customers have to wait on average?”

After defining the problem, the next phase is modeling. In this phase the

conceptual model is created. The conceptual model defines classes of objects and
the relations between these objects. In the case of a car rental organization example

objects to be distinguished are cars, customers, staff members, parking spaces, etc.

The relevant characteristics (properties) of these objects need to be determined. The

construction of the conceptual model will most likely unveil incomplete and

contradictory aspects in the problem definition. Also, the modeling process may

bring forth new questions for the simulation study to answer. In either case, the

problem definition should be adjusted.

After the conceptual modeling phase, the realization phase starts. Here, the

conceptual model is mapped onto an executable model. The executable model

can be directly simulated on the computer. How to create this model depends

strongly on the simulation tool used. Simulation languages require a genuine design

and implementation phase. Simulation packages that fit the problem domain merely
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require a correct parameterization. The objects of the conceptual model are mapped

to building blocks from the package and their quantitative characteristics

(e.g. speed) are translated to parameter values of these building blocks.

An executable model is not necessarily correct, so it has to be verified. Verifi-
cation of the model is necessary to examine whether the model contains qualitative

or quantitative errors, like programming errors or wrong parameter settings. For

verification purposes, small trial runs can be simulated step-by-step, or a stress test

can be applied to the model. In the stress test the model is subjected to extreme

situations, like having more customers arrive than can be attended to. In such a case,
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Fig. 3 BPM life-cycle consisting of three phases: (re)design, implement/configure, and run &

adjust. Traditional simulation approaches can be seen as a form of model-based analysis mostly

used during the (re)design phase
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waiting times measured should increase dramatically in the course of time. Some

tools support more advanced forms of verification (van der Aalst 2013; van der

Aalst and Stahl 2011). Apart from verification, validation of the model is also

required. During validation we compare the simulation model with reality. When

simulating an existing situation, the results of a simulation run can be compared to

observations from historical data. Verification and validation may lead to adjust-

ments of the simulation model. New insights may even lead to adjusting the

problem definition and/or the conceptual model. A simulation model found to be

correct after validation is called a validated model.
Starting from the validated model, experiments can be carried out. These exper-

iments have to be conducted in such a way that reliable results are obtained as

efficiently as possible. In this stage decisions will be made concerning the number

of simulation runs and the length of each run (cf. Sect. 4).

The simulation results need to be interpreted to allow feedback to the problem

definition. Confidence intervals will have to be calculated for the various KPIs

based on low-level measurements gathered during simulation. Also, the results will

have to be interpreted to answer the questions in the problem definition. For each

such answer, the corresponding reliability should be stated. All these matters are

summarized in a final report with answers to questions from the problem definition

and proposals for solutions.

Figure 4 shows that feedback is possible between phases. In practice, many

phases do overlap. Specifically, experimentation and interpretation will often go

hand in hand.

Figure 4 may be misleading as it refers to a single simulation model. Usually,

several alternative situations are compared to one another. In that case, several

simulation models are created and experimented with and the results are compared.

Often, several possible improvements of an existing situation have to be compared

through simulation. We call this “what if” analysis. Simulation is well-suited for

“what if” analysis as it is easy to vary parameters and compare alternatives based on

selected KPIs.

3 Sampling from Distributions

Figure 2 illustrates that random variables need to be added to resolve choices, to

sample durations from some probability distribution, and to generate the arrival of

new cases. This section shows how to introduce “randomness” selectively.

3.1 Pseudo-Random Numbers

A simulation experiment is little more than replaying a modeled situation. To replay

this situation in computer, we have to make assumptions not only for the modeled
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business process itself but also for its environment (cf. Fig. 2). As we cannot or will
not model these matters in detail we turn to “Monte Carlo”. We do not know when

and how many customers will enter a car rental office, but we do know the mean

and variation of customer arrivals. So, we have the computer take seemingly

random samples from a probability distribution. The computer is by nature a

deterministic machine, so we need to smartly generate so-called pseudo-random
numbers.

A random generator is a piece of software for producing pseudo-random

numbers. The computer does in fact use a deterministic algorithm to generate

them, which is why they are called “pseudo random”. Most random generators

generate pseudo-random numbers between 0 and 1. Each value between 0 and

1 being equally probable, these values are said to be distributed uniformly over the
interval between 0 and 1.

Most random generators generate a series of pseudo-random numbers Xi

m

according to the formula:

Xn ¼ aXn�1 þ bð Þ modulo m

For each i, Xi is a number from the set {0, 1, 2, . . ., m � 1} and Xi

m matches a

sample from a uniform distribution between 0 and 1. The numbers a, b and m are

chosen in such a way that the sequence can hardly or not at all be distinguished from

“truly random” numbers. This means that the sequence Xi must visit, on average,

each of the numbers 0, 1, 2, . . ., m � 1 equally often. Also, m is chosen as closely

as possible to the largest integer that can be manipulated directly by the computer.

There are several tests to check the quality of a random generator [cf. (Bratley

et al. 1983; Law and Kelton 1982; Pidd 1989; Shannon 1975)]: frequency test,

correlation test, run test, gap test and poker test.

A reasonable random generator for a 32-bit computer is:

Xn ¼ 16807Xn�1 modulo 231 � 1
� �

That is: a ¼ 16807, b ¼ 0 and m ¼ 231�1. For a 64-bit machine:

Xn ¼ 6364136223846793005Xn�1 þ 1ð Þ modulo 264

is a good choice.

The first number in the sequence (X0) is called the seed. The seed completely

determines the sequence of random numbers. In a good random generator, different

seeds produce different sequences. Sometimes the computer selects the seed itself

(e.g., based on a system’s clock). However, preferably the user should consciously

select a seed himself, allowing the reproduction of the simulation experiment later.

Reproducing a simulation experiment is important whenever an unexpected phe-

nomenon occurs that needs further examination.
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Today’s simulation tools provide adequate random generators. This generator

can be seen as a black box: a device that produces (pseudo) random numbers upon

request. However, beware: pseudo-random numbers are not truly random!

(A deterministic algorithm is used to generate them.) Do not use more than one

generator and take care when selecting the seed.

To illustrate the dangers in using random generators we mention two well-

known pitfalls.

The first mistake is using the so-called ‘lower order bits’ of a random sequence.

For example, if a random generator produces the number 0.1321734234, the higher

order digits 0.13217 are ‘more random’ than the lower order digits 34234. In

general the lower order digits show a clear cyclical behavior.

Another frequent mistake is the double use of a random number. Suppose that

the same random number is used twice for generating a sample from a probability

distribution. This introduces a dependency into the model that does not exist in

reality, which may lead to extremely deceptive results.

3.2 Example Probability Distributions

Only rarely do we need random numbers uniformly distributed between 0 and

1. Depending on the situation, we need samples from different probability distri-
butions. A probability distribution specifies which values are possible and how

probable each of those values is.

To simplify the discussion of random distributions and samples from probability

distributions, we introduce the term random variable. A random variable X is a

variable with a certain probability of taking on certain values. For example, we can

model the throwing of a dice by means of a variable X that can take on the

values 1, 2, 3, 4, 5 and 6. The probability of obtaining any value a from this set is
1
6
. We can write this as follows:

 X ¼ a½ � ¼
1

6
if a ∈ 1; 2; 3; 4; 5; 6f g

0 else

8<
:

Given a random variable X we can define its expectation and variance. The
expectation of X, denoted by  X½ �, is the average to be expected from a large

number of samples from X. We also say the mean of X. The variance, denoted as

Var[X], is a measure for the average deviation of the mean (expectation) of X. If
X has a high variance, many samples will be distant from the mean. Conversely, a

low variance means that, in general, samples will be close to the mean. The

expectation of a random variable X is often denoted with the letter μ, the variance
(Var[X]) is denoted as σ2. The relation between expectation and variance is defined
by the following equality:
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Var X½ � ¼  X � μð Þ2
h i

¼  X2
� �� μ2

As Var[X] is the expectation of the square of the deviation from the mean, the

square root of Var[X] is a better measure for the deviation from the mean. We call

σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var X½ �p

the standard deviation of X.

Table 1, lists some well-known discrete probability distributions. For example, a

random variable X having a Bernoulli distribution with parameter p has two

possible values: 0 (no success) and 1 (success). Parameter p models the probability

of success. Hence,  X ¼ 1½ � ¼ p: X½ � ¼ p and Var X½ � ¼ p 1� pð Þ.
Table 2 lists some continuous distributions. Unlike discrete distributions, the

probability of a specific value is zero, i.e., [X ¼ k] ¼ 0 for any k. Therefore, the
probability density function fX (k) is used to describe the likelihood of different

values. Consider for example a random variable X uniformly distributed on the

interval [a,b]. f X kð Þ ¼ 1
b�a, i.e., all values on the interval have the same likelihood.

 X½ � ¼ aþb
2

and Var X½ � ¼ b�að Þ2
12

.

Arrival processes are often modeled using the negative-exponential distribution.
Parameter λ is called the intensity of the arrival process, i.e., λ is the expected

number of new arrivals per time unit. Negative-exponentially distributed random

variable X models the time in-between two subsequent arrivals.  X½ � ¼ 1
λ is the

expected average time between two such arrivals. If there is a large population of

potential cases (e.g., customers) that behave independently, then, by definition, the

inter-arrival times are distributed negative exponentially. This is referred to as a

Poisson arrival process.
Durations are often modeled using the normal or beta distribution. The well-

known normal distribution has two parameters: μ (mean value) and σ (standard

deviation). If we use a normally distributed random variable for modeling time

durations, like processing times, response times or transport times, we must be

aware that this random variable can also take on negative values. In general

negative durations are impossible; this may even cause a failure of the simulation

software. To circumvent this problem, we might take a new sample whenever the

Table 1 Discrete random distributions

Distribution Domain ½X ¼ k�  X½ � Var[X]

Bernoulli

0 � p � 1

k ∈ {0,1} 1� p k ¼ 0

p k ¼ 1

�
p p(1�p)

Homogeneous

a < b
k ∈ {a,. . .,b} 1

b�að Þþ1
aþb
2

b�að Þ b�að Þþ2ð Þ
12

Binomial

0 � p � 1

n ∈ {1,2,. . .}

k∈ {0,1,. . .,n} n
k

� 	
pk 1� pð Þn�k n p n p(1�p)

Geometric

0 � p � 1

k ∈ {1,2,. . .} (1�p)k�1 p 1
p

1�p
p2

Poisson

λ > 0

k ∈ {0,1,. . .} λk !
k! e

�λ λ λ
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given sample produces a negative value. Note that this will affect the mean and the

variance. Therefore, this solution is recommended only if the probability of a

negative value is very small. We use the following rule of thumb: if μ�2σ < 0,

the normal distribution should not be used to model durations. The normal distri-

bution with parameters μ ¼ 0 and σ ¼ 1 is called the standard normal distribution.
Like the uniform distribution, the beta distribution is distributed over a finite

interval. We use it for random variables having a clear upper and lower bound. The

beta distribution has four parameters a, b, r and s. The parameters a and b represent the
upper and lower bounds of the distribution. The parameters r (r > 0) and s (s > 0)

determine the shape of the distribution. Very different shapes of the probability

density function are possible, see (van der Aalst and Voorhoeve 2000) for examples.

It is impossible to describe all frequently used probability distributions here.

Probability distributions often used for simulation are described in detail in (van der

Aalst and Voorhoeve 2000). Also consult standard textbooks on probability theory

and simulation (Altiok andMelamed 2007; Kleijnen and van Groenendaal 1992; Law

and Kelton 1982; Pidd 1989; Ripley 2006; Ross 1990). These references also explain

how particular random variables can be constructed from pseudo-random numbers.

For example, if Xi is a pseudo random number from the set {0, 1, . . ., m � 1}, then

�ln Xi

m

� �
=λ is a sample from a negative-exponential distribution with parameter λ.

4 Processing the Results

In Sect. 2.1 we described the typical ingredients of a simulation model. Simulation

models abstract from details that cannot be fully modeled (e.g., perfectly modeling

human decision making and customer behavior) or that are too specify (e.g.,

data entered into a form). Such abstractions may necessitate the introduction of

Table 2 Continuous random distributions

Distribution Domain fX (x)  X½ � Var[X]

Uniform

a < b
a � x � b 1

b�a
aþb
2

b�að Þ2
12

Exponential

λ > 0

x � 0 λ e�λ x 1
λ

1
λ2

Normal

μ ∈ 
σ > 0

x ∈  1ffiffiffiffiffiffiffi
2πσ2

p e � x�μð Þ2
2σ2

μ σ2

Gamma

r, λ > 0

x > 0 λ λxð Þr�1 e�λx

Γ rð Þ
r
λ

r
λ2

Erlang

λ > 0

r ∈ {1,2,. . .}

x > 0 λ λxð Þr�1 e�λx

r�1ð Þ!
r
λ

r
λ2

χ2
v ∈ {1,2,. . .}

x > 0 See Gamma

r ¼ v
2
and λ ¼ 1

2

v 2v

Beta

a < b
r, s > 0

a � x � b 1
b�a

Γ rþsð Þ
Γ rð ÞΓ sð Þ

x�a
b�a

� �r�1 b�x
b�a

� �s�1 aþ b� að Þ r
b�a

rs b�að Þ2
rþsð Þ2 rþsþ1ð Þ
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stochastic elements in the model. For example, a path is selected with a certain

probability and the duration of an activity is sampled from some continuous

probability distribution. In Sect. 3 we showed that pseudo random numbers can

be used to introduce such stochastic elements. This section focuses on the inter-

pretation of the raw simulation results. In particular, we will show that subruns are

needed to compute confidence intervals for KPIs.

During simulation there are repeated observations of quantities, such as waiting

times, flow times, processing times, or stock levels. These observations provide

information on KPIs (cf. Sect. 2.1). Suppose we have k consecutive observations x1,
x2,. . .,xk also referred to as random sample. The mean of a number of observations

is the sample mean. We represent the sample mean of observations x1,x2,. . .,xk by x.
We can calculate the sample mean x by adding the observations and dividing the

sum by k:

x¼
X k

i¼1
xi

k

The sample mean is merely an estimate of the true mean. However, it is a

so-called unbiased estimator (i.e., the difference between this estimator’s expected

value and the true value is zero). The variance of a number of observations is the

sample variance. This variance is a measure for the deviation from the mean. The

smaller the variance, the closer the observations will be to the mean. We can

calculate the sample variance s2 by using the following formula:

s2¼
X k

i¼1
xi � xð Þ2

k � 1
:

This is the unbiased estimator of the population variance, meaning that its

expected value is equal to the true variance of the sampled random variable.

In a simulation experiment, we can determine the sample mean and the sample

variance of a certain quantity. We can use the sample mean as an estimate for

the real expected value of this quantity (e.g., waiting time), butwe cannot determine
how reliable this estimate is. The sample variance is not a good indicator for

the reliability for the results. Consider for example the sample xa and sample

variance s2a obtained from a long simulation run. We want to use xa as a predictor
for some performance indicator (e.g., waiting time). If we make the simulation

experiment ten times as long, we will obtain new values for the sample mean and

the sample variance, say, xb and s2b, but these values do not need to be significantly

different from the previous values. Although it is reasonable to assume that xb is a
more reliable predictor than xa, the sample variance will not show this. Actually,

s2b may be greater than s2a. This is the reason to introduce subruns.
If we have n independent subruns, then we can estimate the reliability of

estimated performance indicators. There are two approaches to create independent

subruns. The first approach is to take one long simulation run and cut this run into
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smaller subruns. This means that subrun i + 1 starts in the state left by subrun i. As
the subruns need to be independent, the initial state of a subrun should not strongly

correlate with the final state passed on to the next subrun. An advantage is that

startup effects only play a role in the first run. Hence, by inserting a single start run

at the beginning (also referred to as “warm-up period”), we can avoid incorrect

conclusions due to start-up effects. The second approach is to simply restart the

simulation experiment n times. As a result, the subruns are by definition indepen-

dent. A drawback is that start-up effects can play a role in every individual subrun.

Hence, one may need to remove the warm-up period in all subruns.

There are two types of behavior that are considered when conducting simulation

experiments: steady-state behavior and transient behavior. When analyzing the

steady-state behavior, we are interested in long-term effects. For example, we

may consider two process designs and analyze the differences with respect to

average flow times and costs in the next 5 years. When analyzing the transient

behavior, we are interested in short-term effects. For example, if there are currently

many backorders, we may want to know how many additional resources we need to

temporarily deploy to handle these orders. When analyzing transient behavior, we

are not interested in long-time averages given some stable situation but in the short-

term effects. If we investigate steady-state behavior, the simulation runs need to be

long and we may want to discard the initial part of the simulation. When analyzing

transient behavior, the simulation runs are short and the initial part is most relevant.

Figure 5 illustrates the difference between steady-state and transient analysis.

Moreover, Fig. 5c shows that one simulation run can be partitioned into subruns

(provided that the state at the beginning of subrun i + 1 does not depend on the state

at the beginning of subrun i). In the remainder of this section, we concentrate on the

steady-state behavior and assume that warm-up periods have been removed. Note

that for each of the three situations sketched in Fig. 5, we obtain a set of indepen-

dent subruns (in this case four subruns) with corresponding measurements.

Suppose we have executed n subruns and measured a result yi for each subrun i.
Hence, each result yi serves as an estimate for a performance indicator. We assume

that there exists a “true” value μ that each result yi approximates. We want to derive

assertions about μ from the values yi. For example, yi is the mean waiting time

measured in subrun i and μ the “true” mean waiting time that we would find by

conducting a hypothetical simulation experiment of infinite length. Also KPIs other

than the mean waiting time could be considered, e.g., yi could be an estimate for the

mean variance of the waiting time, the mean occupation rate of a server, or the

mean length of a queue. However, we must be certain that the values yi are mutually

independent for all subruns. This can be ensured by choosing a long enough subrun

length or by using independent subruns. Given the results y1, y2,. . .,yn, we derive the
sample mean:

y¼
Xn

i¼1
yi

n
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and the sample variance:

s2y¼
Xn

i¼1
yi � yð Þ2

n� 1
:

The sample standard deviation is sy ¼
ffiffiffiffi
s2y

q
. The sample mean and the sample

variance for the results of the subruns should not be confused with the mean and the

variance of a number of measures within one subrun. We can consider the sample y
as an estimate of the true value μ. Value y can be seen as a sample from a random

variable Y ¼ X1 þ X2 þ . . .þ Xnð Þ=n, the estimator. Now syffiffi
n

p is an indication of the

reliability of the estimate y. If
syffiffi
n

p is small, it is a good estimate.

If there is a large number of subruns, we can consider the estimatorY as normally

distributed. Here we use the well-known central limit theorem. For a set X1,X2,. . .,

(a) transient analysis (no warm-up period, initial state matters, bounded time frame)

(b) steady-state analysis (separate runs each with warm-up period)

(c) steady-statean alysis (long run with one warm-up period split into smaller subruns)

Fig. 5 For transient analysis, the initial state and the first part of the simulation are relevant. For

steady-state analysis, the initial state and warm-up period are irrelevant and only the behavior after

the warm-up period matters. Each graph shows one simulation run. The X-axis denotes time

whereas the Y-axis represents the state of the process. For steady-state analysis one can take

separate simulation runs (each with a warm-up period) or one large simulation run cut into smaller

subruns
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Xn of independent uniformly distributed random variables with expectation μ and

variance σ2, the random variable

X1 þ X2 þ . . .þ Xnð Þ � nμ

σ
ffiffiffi
n

p

converges for n ! 1 to a standard normal distribution. Thus, the sum or average

of a large number of independent random variables is approximately normally

distributed. If the subrun results are indeed independent and there are plenty of

such results, we can assume that the estimator Y is normally distributed. Therefore,

we treat the situation with over 30 subruns as a special case.

Given a large number of independent subruns (say, n � 30), we can easily

determine a confidence interval for the quantity to be studied. Because the sample

mean y is the average of a large number of independent measures, we can assume

that y is approximately normally distributed. From this fact, we deduce the

probability that the true value μ lies within a confidence interval. Given the sample

mean y and the sample standard deviation sy, the true value μ conforms with

confidence (1�α) to the following equation:

y� syffiffiffi
n

p z
α

2


 �
< μ < yþ syffiffiffi

n
p z

α

2


 �

where z α
2

� �
is defined as follows: If Z is a standard normally distributed random

variable, then the probability that random variable Z is greater than z(x) is x. Table 3
shows for five values of x the value z(x). The value α represents the unreliability;

that is, the probability that μ does not conform to the equation. Typical values for α
range from 0.001 to 0.100. The interval

y� syffiffiffi
n

p z
α

2


 �
, yþ syffiffiffi

n
p z

α

2


 �� 


is known as the (1�α)-confidence interval for the estimated value μ.
Given a smaller number of independent subruns (say, n � 30), we need to make

more assumptions about the distribution of the individual subrun results. A com-

mon assumption is that the individual subrun results are normally distributed. This

is a realistic assumption when the subrun result itself is calculated by taking the

average over a large set of independent measurements (see the central limit

Table 3 [Z > z(x)] ¼ x where Z is standard

normally distributed
x z(x)

0.001 3.090

0.005 2.576

0.010 2.326

0.050 1.645

0.100 1.282
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theorem, which states that as the sample size increases the distribution of the

sample average of these random variables approaches the normal distribution

irrespective of the shape of the common distribution of the individual terms). By

using this assumption, we can deduce—given n subruns with a sample mean y,
sample deviation sy, and reliability (1�α)—the following confidence interval:

y� syffiffiffi
n

p tn�1

α

2


 �
, yþ syffiffiffi

n
p tn�1

α

2


 �� 


where tv(x) is the critical value of a Student’s t-distribution with v degrees of

freedom. Table 4 shows for several values of v and x the critical value tv(x).
Contrary to the method discussed earlier, we can now also determine the

confidence interval if only a limited number of subruns (say, ten) is at our disposal.

For small numbers v, we have tv(x) > z(x). As v increases, the value of tv(x)
decreases and in the limit we obtain tv(x) ¼ z(x).

When two confidence intervals are overlapping for a KPI, one cannot make

any firm statements about the superiority of one the corresponding alternatives.

Moreover, one alternative may score better with respect to costs whereas the other

alternative may reduce flow times significantly.

Using the above, we can compute confidence intervals for any KPI. If the

confidence intervals are too wide, more subruns or longer subruns can be used to

obtain tighter confidence intervals. As mentioned before, simulation is an excellent

tool for “what if” analysis. Confidence intervals can be computed for different KPIs

and different alternatives. Alternatives can be created by varying parameters or by

making changes in the design.

Table 4 The critical values

for a student’s t-distribution

with v degrees of freedom tv(x)

x ¼
0.100 0.050 0.010 0.001

v ¼ 1 3.08 6.31 31.82 318.31

2 1.89 2.92 6.96 22.33

3 1.64 2.35 4.54 10.21

4 1.53 2.13 3.75 7.17

5 1.48 2.02 3.37 5.89

6 1.44 1.94 3.14 5.21

7 1.41 1.89 3.00 4.79

8 1.40 1.86 2.90 4.50

9 1.38 1.83 2.82 4.30

10 1.37 1.81 2.76 4.14

15 1.34 1.75 2.60 3.73

20 1.33 1.72 2.53 3.55

25 1.32 1.71 2.49 3.45

50 1.30 1.68 2.40 3.26

100 1.29 1.66 2.35 3.17

1 1.28 1.64 2.33 3.09
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5 Pitfalls to Avoid

Simulation is a powerful and flexible tool that can be used to support decision

making. If simulation is applied incorrectly (flawed model or poor analysis of the

results), then this may result in incorrect decisions that are very costly. Therefore,

we point out 15 typical pitfalls of simulation that should be avoided. In Sect. 5.1 we
present ten general risks that may result in incorrect conclusions and misleading

insights. These are linked to the different phases of a simulation study (cf. Fig. 6).

Section 5.2 identifies five more specific risks caused by simulation models that do

not incorporate essential phenomena such as working speeds depending on work-

loads, partial availability of resources, and competition among activities in different

processes.

5.1 General Risks

In Sect. 2.2 we described the different phases of a traditional simulation study.

Figure 6 lists ten risks pointing to typical errors (pitfalls) frequently made when

applying simulation. These are described in the remainder.

5.1.1 Risk 1: One-Sided Problem Definition

A simulation study gets off on the wrong foot if the problem definition is drawn up

exclusively by either the user or the systems analyst. The user may possess

extensive knowledge of the problem area, but lacks the experience needed for

defining his problem. The systems analyst on the other hand, fully knows the

elements which should be present in a problem definition, but lacks the background

conceptual
model

problem
definition

modeling

executable
model

realizing

validated
model

verifying and
validating

simulation
results

expertimenting

answers
solutions

interpreting

Risk 1: One-sided
problem definition

Risk 2: Wrong level
of detail or scope

Risk 3: Hidden
assumptions

Risk 4: Validation by
the wrong people

Risk 5: Forcing the
model to fit

Risk 6: Underexposure of
the sensitivity of the model

Risk 7: No subruns

Risk 8: Careless
presentation of the results

Risk 9: Dangers of
animation

Risk 10: Unnecessary
use of simulation

Fig. 6 Various risks associated to the different phases of a simulation study
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of the specific problem. The systems analyst is also aware of the possibilities and

impossibilities of simulation. The user on the other hand, generally knowing little

about simulation, is barely informed on this issue. Therefore, for a simulation study

to be successful, it is important that both parties closely cooperate in setting up the

problem definition. The problem definition serves as a “contract” between the user

and the builder of the model. Hence, the following rule of thumb should be used:

“Do not start a simulation study until it is clear to both user(s) and analyst(s) which

questions need to be answered!”.

5.1.2 Risk 2: Wrong Level of Detail or Scope

In making a simulation model, one chooses a certain level of detail. In a simulation

model for a manufacturing department, a machine may be modeled as an object

with a mean service time as its only parameter. Alternatively, it can be modeled in

detail, taking into account aspects such as set-up times, faults, tool-loading, main-

tenance intervals etc. Many simulation studies end prematurely because a wrong

level of detail is selected initially. Too much detail causes the model to become

unnecessarily complex and introduces extra parameters that need to be assessed

(with all the risks involved). Too many abstractions can lead to a simulation model

that leaves the essential questions of the problem definition unanswered. The right

level of detail is chosen if:

1. Information is present that allows experiments with the model,

2. The important questions from the problem definition are addressed by the model,

and

3. The complexity of the model is still manageable for all parties concerned.

If it is impossible to choose a suitable level of detail satisfying these three

conditions, the problem definition needs to be adjusted.

Related to the level of detail is the scope of the model. When analyzing a process

handled within a department, one can also model the other processes within the

same department competing for the same resources and the other departments

interacting with the process. One can think of the scope as the “breadth” of the

model whereas the level of detail is the model’s “depth”. Broadening the scope or

increasing the level of detail may lead to more accurate models. However, more

detail or a broader scope may result in increased modeling and data gathering

efforts. In fact, sometimes there is no data to support a more refined model. This is

why probability distributions are used.

The well-known “80/20-rule” also applies to simulation models: 80 % of the

model’s accuracy is obtained from 20 % of the model’s detail. Hence, a small

increase in accuracy may require the addition of lots of details. Hence, the follow-

ing rule of thumb should be used: “Minimize the breadth and depth of a model given

a set of predefined questions and required level of accuracy”.
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5.1.3 Risk 3: Hidden Assumptions

During modeling and while realizing an executable simulation model, many

assumptions must be made. Assumptions are made to fill gaps in an incomplete

problem definition or because of a conscious decision to keep the simulation model

simple. Often these assumptions are documented poorly, if documented at all.

These hidden assumptions may lead to the rejection of the simulation model during

validation or later. Hidden assumptions may also lead to invalid conclusions and

bad decisions. Therefore, all assumptions must be documented and regularly

discussed with the user.

5.1.4 Risk 4: Validation by the Wrong People

Sometimes, due to time pressure or indifference of the user, the simulation model is

only validated by its maker(s). Discrepancies between the model and the ideas of

the user may thus be discovered too late, if at all. Therefore, the user should be

involved in the validation of the simulation model before any experiments are

conducted.

5.1.5 Risk 5: Forcing the Model to Fit

In the validation phase, often the results of the simulation model do not match the

observed or recorded actual data. One is then tempted to make the model “fit” by

changing certain parameter values, i.e., the analyst fiddles around with the param-

eter settings until a match is found. This, however, is very dangerous, since this

match with reality is most likely caused by sheer luck and not by a model that

adequately reflects reality. Parameters should be adjusted only after having under-

stood why the model deviates from reality. This prevents the conscious or uncon-

scious obscuring of errors in the model.

5.1.6 Risk 6: Underexposure of the Sensitivity of the Model

Certain model parameters (e.g. the intensity of the arrival process) are often set at

one specific value. The chosen parameter settings should be justifiable. However,

even if this is the case, small variations in the arrival process can have dramatic

effects.

Consider for example the M/M/1 queue describing the situation with a Poisson

arrival process (the inter-arrival times are distributed negative exponentially),

negative-exponentially distributed service times and one server (i.e., at most one

customer is served at a time). Assuming an arrival rate λ (average number of

customers arriving per time unit) and service rate μ (average number of customers
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that can be handled per time unit), the average flow time is 1
μ�λ. If λ ¼ 98

(on average 98 customers arrive per day) and μ ¼ 100 (the average service time

is approximately 14 min), then the average flow time is 1
100�98

¼ 0:5 (12 h). If λ
increases to 99 (an increase of approximately 1 %), then the average flow time

doubles to 1
100�99

¼ 1, i.e., a full day. The example illustrates that a small increase in

workload may have dramatic effects on the mean flow or waiting time. Therefore,

the sensitivity of the model to minor adjustments of its parameters should be

seriously accounted for.

5.1.7 Risk 7: No Subruns

Some people say: “A sufficiently long simulation yields correct results!” They

execute a simulation run for a night or weekend and then blindly trust, e.g., the

mean waiting time measured. This is a very risky practice, as no assertions about the

reliability of the result can be given. Others derive a confidence interval from the

mean variance measured. This is also wrong because, for example, the mean

variance of the waiting time measured is unrelated to the reliability of the estimated

mean waiting time. The only way to derive independent measurements is by having

independent subruns!

5.1.8 Risk 8: Careless Presentation of the Results

Interpreting the results of a simulation study may require complex statistical

analyses. This is often a source of errors. Translating the results from statistics

into language a user can understand, can be very tricky indeed. In Darrel Huff’s

book “How to lie with statistics” (Huff 1954), there are numerous examples of

sloppy and misleading presentations. As an example, suppose the final report of a

simulation study contains the following conclusion “Waiting times will be reduced

by 10 %”. This conclusion is very incomplete, as it contains no reference whatso-

ever to its reliability. It is good practice to give a confidence interval. The same

conclusion suggests that waiting times will be reduced by 10 % for each customer.

This, however, may not be the case. The average waiting time may be reduced by

10 % while it increases for certain customers and is reduced somewhat more for

others.

5.1.9 Risk 9: Dangers of Animation

Modern simulation tools allow for impressive visualizations of simulation results.

Animation facilities graphically show the process while it is unfolding. These

facilities improve communication with the user. However, there is an inherent

danger in animation. As animation only shows the tangible aspects of the
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simulation model, the user may develop an unfounded faith in the model. The

choice of parameters or decision making rules deeply influence the simulation

results, yet are barely visible in an animation. The same hold for the presentation

of simulation results. Impressive 3D charts do not replace a sound statistical

analysis.

5.1.10 Risk 10: Unnecessary Use of Simulation

Simulation is a flexible analysis tool that can be applied in almost any business

context. Therefore, one may be tempted to use it regardless of the circumstances.

Often, however, a simple mathematical model (e.g. a queuing model) or a simple

spreadsheet calculation is sufficient. In such cases simulation is “overkill”. It should

only be used if and when the situation requires it. Simulation is a means and not a

goal!

5.2 Specific Risks

The ten risks highlighted in Fig. 6 cover the different phases of a simulation project.

Besides these general risks there are more specific risks related to not incorporating

relevant contextual factors (that may be changing over time) and not capturing

characteristics of human resources (working patterns, partial availability, and

varying working speeds). For example, human resources are typically modeled in

a rather naı̈ve manner. As a result, it is not uncommon that the simulated model

predicts flow times of minutes or hours while in reality flow times are weeks or even

months (van der Aalst et al. 2014).

5.2.1 Risk 11: Abstracting Away Relevant Contextual Factors

Processes unfold in a particular context (Rosemann et al. 2008) that is often

neglected in simulation studies. Not capturing this context may result in simulation

models with limited predictive value. To explain the notion of “context” consider

Fig. 7 (taken from (van der Aalst and Dustdar 2012)). In (van der Aalst and Dustdar

2012) four levels of context data are considered:

• Instance Context. Process instances (that is, cases) might have various properties

that influence their execution. Consider the way businesses handle a customer

order. The type of customer placing the order can influence the path the instance

follows in the process. The order’s size can influence the type of shipping the

customer selects or the transportation time. These properties can directly relate

to the individual process instance; we refer to them as the instance context.

Typically, discovering relationships between the instance context and the case’s
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observed behavior is not difficult. We might, for example, discover that an

activity is typically skipped for VIP customers.

• Process Context. A process might be instantiated many times—for example, the

process can handle thousands of customer orders per year. Yet, the

corresponding process model typically describes one order’s life cycle in isola-

tion. Although interactions among instances are not very explicit in most

simulation models, they can influence each other. Instances might compete for

the same resources, and an order might be delayed by too much work-in-

progress. Looking at one instance in isolation is not sufficient for understanding

the real behavior. Simulation models should also consider the process context,

such as the number of instances being handled and resources available for the

process. When analyzing the flow time of cases, the simulation model should

consider not only the order’s status (instance context) but also the workload and

resource availability (process context).

• Social Context. The process context considers all factors directly related to a

process and its instances. However, people and organizations typically are not

allocated to a single process and might be involved in many different processes.

Moreover, activities are executed by people operating in a social network. Friction

between individuals can delay process instances, and the speed at which people

work might vary due to circumstances that are not fully attributable to the process

being analyzed (see also Risk 14). We refer to all these factors as the social

context, which characterizes how people work together within a particular orga-

nization. Today’s simulation tools tend to neglect the social context even though it

directly impacts how people and organizations handle cases.

• External Context. The external context captures factors that are part of an

ecosystem that extends beyond an organization’s control sphere. For example,

the weather, the economic climate, and changing regulations might influence

how organizations handle cases. The weather might influence the workload, as

when a storm or flooding leads to increased insurance claims. Changing oil

prices can influence customer orders, as when the demand for heating oil

increases as prices drop. More stringent identity checks influence the order in

which a government organization executes social-security-related activities.

Although external context can have a dramatic impact on the process being

analyzed, selecting relevant variables is difficult. Learning the external context’s

effects is closely related to identifying concept drift (see also Risk 12)—for

example, a process might gradually change due to external seasonal effects.

Simulation models tend to focus on the first two levels of the “union model”

depicted in Fig. 7. This may be valid in many studies. However, if the social context

and external context matter, they should be incorporated explicitly.

5.2.2 Risk 12: Ignoring Concept Drift

The term concept drift refers to a situation in which the process is changing while

being analyzed (Jagadeesh Chandra Bose et al. 2011; Widmer and Kubat 1996).
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Processes can change due to periodic or seasonal changes (“in December, there is

more demand” or “on Friday afternoon, fewer employees are available”) or to

changing conditions (“the market is getting more competitive”). Such changes

affect processes, and organizations must detect and analyze them. The notion of

concept drift is closely related to the context notion illustrated in Fig. 7. Large parts

of the context cannot be fully controlled by the organization conducting a simula-

tion study. Therefore, contextual variability needs to be considered and cannot be

ignored.

Predictable drifts (e.g., seasonal influences) with a significant influence on the

process need to be incorporated in simulation models. For unpredictable drifts (e.g.,

changing economic conditions), several “what if” scenarios need to be explored.

5.2.3 Risk 13: Ignoring That People Are Involved in Multiple Processes

In practice there are few people that only perform activities for a single process.

Often people are involved in many different processes, e.g., a manager, doctor, or

instance
context

e.g. size of order or
type of customer

process context

social context

external context

e.g., number of resources
allocated to process, number

of cases in progress

e.g., prioritization over different
processes, social network,

stress levels, internal
competition

e.g., weather, economic
climate, seasonal effects,

changes in legislation

expanding scope (more instances,
more processes, etc.)

a more direct relationship
between cause and effect

Fig. 7 Levels of context data. Context can influence processes and may change over time.

Nevertheless, simulation models seldom explicitly model the outer two context levels and do

not anticipate context changes
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specialist may perform tasks in a wide range of processes. The left-hand side of

Fig. 8 shows a Gantt chart illustrating how an individual may distribute her time

over activities in different processes. Simulation often focuses on a single process,

often ignoring competing processes.

Suppose a manager is involved in a dozen processes and spends about 20 % of

her time on the process that we want to analyze. In most simulation tools it is

impossible to model that she is only available 20 % of the time. Hence, one needs to

assume that the manager is there all the time and has a very low utilization. As a

result the simulation results are too optimistic. In the more advanced simulation

tools, one can indicate that resources are there at certain times in the week (e.g.,

only on Monday morning). This is also an incorrect abstraction as the manager

distributes her work over the various processes based on priorities and workload.

Suppose that there are 5 managers all working 20 % of their time on the process of

interest. One could think that these 5 managers could be replaced by a single

manager (5*20 % ¼ 1*100 %). However, from a simulation point of view this is

an incorrect abstraction. There may be times that all 5 managers are available and

there may be times that none of them is available.

People are involved in multiple processes and even within a single process

different activities and cases may compete for shared resources. One process may

be more important than another and get priority. In some processes cases that are

delayed may get priority while in other processes late cases are “sacrificed” to finish

other cases in time. People need to continuously choose between work-items and

set priorities. Although important, this is typically not captured by simulation

models.

5.2.4 Risk 14: Assuming That People Work at Constant Speeds

Another problem is that people work at different speeds based on their workload,

i.e., it is not just the distribution of attention over various processes, but also the

workload

sp
ee

d

optimal
stress level

overloaded

lethargic

activity A.1
activity A.2

…
activity A.8pr

oc
es
s
A

activity B.1
activity B.2

…
activity B.6pr

oc
es
s
B

activity C.1
activity C.2

…
activity C.9pr
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es
s
C

time

Fig. 8 People are typically involved in multiple processes and need to distribute attention over

these processes and related activities (left). Moreover, people do not work at constant speed (right).
The “Yerkes-Dodson Law of Arousal” (Yerkes and Dodson 1908) describes the phenomenon that

people work at different speeds based on their workload
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absolute working speed that determines the resource’s contribution to the process.

There are various studies that suggest a relation between workload and performance

of people. A well-known example is the so-called “Yerkes-Dodson Law of

Arousal” (Yerkes and Dodson 1908). The Yerkes-Dodson law models the relation-

ship between arousal and performance as a \-shaped curve (see right-hand side of

Fig. 8). This implies that, for a given individual and a given type of task, there exists

an optimal arousal level. This is the level where the performance has its maximal

value. Thus work pressure is productive, up to a certain point, beyond which

performance collapses. Although this phenomenon can be easily observed in

daily life (Nakatumba and van der Aalst 2010), today’s business process simulation

tools typically do not support the modeling of workload dependent processing

times.

5.2.5 Risk 15: Ignoring That People Work in Batches

As indicated earlier, people may be involved in different processes. Moreover, they

may work part-time (e.g., only in the morning). In addition to their limited avail-

abilities, people have a tendency to work in batches (cf. Resource Pattern 38: Piled

Execution (Russell et al. 2005)). In any operational process, the same task typically

needs to be executed for many different cases (process instances). Often people

prefer to let work-items related to the same task accumulate, and then process all of

these in one batch. In most simulation tools a resource is either available or not, i.e.,

it is assumed that a resource is eagerly waiting for work and immediately reacts to

any work-item that arrives. Clearly, this does not do justice to the way people work

in reality. For example, consider how and when people reply to e-mails. Some

people handle e-mails one-by-one when they arrive while others process their

e-mail at fixed times in batch. Related is the fact that calendars and shifts are

typically ignored in simulation tools. While holidays, lunch breaks, etc. can heavily

impact the performance of a process, they are typically not incorporated in the

simulation model.

In (van der Aalst et al. 2014) a general approach based on “chunks” is used to

model availability more adequately. The basic idea is that people spend “chunks of

time” on a particular process or task. Within a period of time a limited number of

chunks is available. Within a chunk, work is done in batches. As chunks become

more coarse-grained, flow times go up even when the overall utilization does not

change (van der Aalst et al. 2014).

6 Advanced Simulation

The 15 risks described in Sect. 5 illustrate that many things can go wrong in a

simulation project. Fortunately, modern IT infrastructures and the enormous

amounts of event data collected in many organizations also enable new forms of
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simulation. IT systems are becoming more and more intertwined with the business

processes they aim to support, resulting in an “explosion” of available data that can

be used for analysis purposes. Today’s information systems already log enormous

amounts of events and it is clear that data-based analytics like process mining (van

der Aalst 2011) will become more important. Increasingly, simulation techniques
will need to incorporate actual event data. Moreover, there will be a shift from
off-line analysis at design time to on-line analysis at run-time.

Figures 2 and 4 present a rather classical view on business process simulation.

This is the type of simulation supported by hundreds, if not thousands, of commer-

cial simulation packages. Some vendors provide a pure simulation tool (e.g., Arena,

Extend, etc.) while others embed this in a workflow management system (e.g.,

FileNet, COSA, etc.) or a business process modeling tool (e.g., Protos, ARIS, etc.).

All of these tools use the information presented in Fig. 2 to simulate business

processes and subsequently measure obvious performance indicators such as flow

time, utilization, etc. Using Fig. 9, we will show that it is possible to move beyond

“traditional” simulation approaches.

The left-hand-side of Fig. 9 shows the role of a process-aware information

system (a WFM/BPM system or any other process-oriented information system,

e.g., an ERP system like SAP) in supporting operational business processes. The

information system supports, controls, and monitors operational processes. The

resources within the organization perform tasks in such processes and therefore also

interact with the information system. The information system can only do mean-

ingful things if it has knowledge of the process, the resources within the organiza-

tion and the current states of active cases. Moreover, today’s information systems

often record historical information for auditing and performance analysis. The

lower four ellipses in the middle of Fig. 9 show four types of data implicitly or

explicitly available when an information system is supporting an operational

process: (1) real event data, (2) process state, (3) process model, and (4) resource

model. An event log (i.e., real event data) contains historical information about

“When, How, and by Whom?” in the form of recorded events. The process state
represents all information that is attached to currently running cases, e.g., Customer

order XYZ consists of 25 order lines and has been in the state “waiting for

replenishment” since Monday. The process state may also contain context infor-

mation relevant for the process, e.g., the weather or economic trends. The process
model describes the ordering of tasks, routing conditions, etc. The resource model
holds information about people, roles, departments, etc. Clearly, the process state,

process model, and resource model may be used to enact the process. The event log

merely records the process as it is actually enacted.

The right-hand-side of Fig. 9 focuses on analysis rather than enactment; it links

the four types of data to simulation. For traditional simulation (i.e., in the sense of

Figs. 2 and 4) a hand-made simulation model is needed. This simulation model can

be derived from the process model used by the information system. Moreover,

information about resources, arrival processes, processing times, etc. is added

(cf. Fig. 2). The arcs between the box traditional simulation and the three types

of data (real event data, process model, and resource model) are curved to illustrate
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that the relationship between the data used by the information system and the

simulation tool is typically rather indirect. For example, the analyst cannot use

the process model directly, but needs to transform it to another language or

notation. The resource model used for simulation is typically rather simple com-

pared to models that can be enacted by a WFM or BPM system. Often each activity

has a single role and a fixed number of resources is available per role. Moreover,

often it is assumed that these resources are available on a full-time basis. Real event

data are not used directly. At best, event logs are used to estimate the parameters for

some of the probability distributions. Traditional simulation models are not tightly
coupled to the actual information and historical data and model resource behavior

in a rather naı̈ve manner. Moreover, the current state (including context informa-

tion) is not used at all. As such, simulation focuses on steady-state behavior and

cannot be used for operational decision making.

We advocate more advanced forms of simulation. First of all, we propose a tight

coupling with the information system supporting the process that is being analyzed.

Simulation should exploit event logs and process state information. Second, anal-

ysis should not only focus on steady-state behavior but also on transient behavior in

order to also support operational decision making. This is illustrated by the box

advanced simulation in Fig. 9.

Advanced simulation should exploit real event data to semi-automatically learn

better simulation models. Therefore, we advocate using process mining techniques

(van der Aalst 2011). Process mining exploits the information recorded in audit

trails, transaction logs, databases, etc. Process mining includes (automated) process

discovery (i.e., extracting process models from an event log), conformance

checking (i.e., monitoring deviations by comparing model and log), social net-

work/organizational mining, model extension, and process model repair. The

information
system

operational process

organization/
resources

process model

real event data

process state

resource model

describe

configure

interact

record

use

traditional simulation
(steady state, naive view of

resources, only indirect use of
historic information)

advanced simulation
(transient and steady state,

refined view of resources, use
of historic and state information)

enactment analysis simulation
report

simulated event
data

unified view on
simulated and

real event data

Fig. 9 Advanced simulation compared to traditional simulation. Note that real event data and

simulated event data can be stored in event logs and analyzed using the same process mining tool.

Due to this unified view on process behavior, simulation can be embedded in day-to-day manage-

ment and decision making
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automated construction of simulation models is possible by combining existing

process mining techniques (Rozinat et al. 2009a).

It is essential to note that, through process mining, events in the log can be

related to model elements. This allows for the projection of dynamic information

onto models: the event log “breathes life” into otherwise static process models.

Consider a control-flow model, e.g., the Petri net, BPMN, or EPC model shown in

Fig. 1. Such a model may have been discovered or made by hand. By replaying the

event log on the model, it is possible to enrich the model with frequencies,

probabilities and delays (Rozinat et al. 2009a). This illustrates that the additional

information described in Fig. 2 can indeed be discovered, thus resulting in a full-

fledged simulation model.

Establishing a good connection between event log and model may be difficult

and require several iterations. However, when using a WFM or BPM system, this

connection already exists. WFM and BPM systems are driven by explicit process

models and provide excellent event logs. Moreover, internally such systems also

have an explicit representation of the state of each running case. This enables a new

type of simulation called short-term simulation (van der Aalst 2011; Rozinat

et al. 2009b). The key idea is to start all simulation runs from the current state

and focus on transient behavior. This way a “fast forward button” into the future is

provided. To understand the importance of short-term simulation, see Fig. 5 which

explains the difference between transient analysis and steady-state analysis. The

key idea of simulation is to execute a model repeatedly. The reason for doing the

experiments repeatedly, is to not come up with just a single value (e.g., “the average

response time is 10.36 min”) but to provide confidence intervals (e.g., “the average

response time is with 90 % certainty between 10 and 11 min”). For transient

analysis the focus is on the initial part of future behavior, i.e., starting from the

initial state the “near future” is explored. For transient analysis the initial state is

very important. If the simulation starts in a state with long queues of work, then in

the near future flow times will be long and it may take quite some time to get rid of

the backlog. For steady-state analysis the initial state is irrelevant. Typically, the

simulation is started “empty” (i.e., without any cases in progress) and only when the

system is filled with cases measurement starts. Steady-state analysis is most rele-

vant for answering strategic and tactical questions. Transient analysis is most

relevant for operational decision making. Lion’s share of contemporary simulation

support aims at steady-state analysis and, hence, is limited to strategic and tactical

decision making. Short-term simulation focuses on operational decision making;
starting from the current state (provided by the information system) the “near

future” is explored repeatedly. This shows what will happen if no corrective actions

are taken. Moreover, “what if” analysis can be used to explore the effects of

different interventions (e.g., adding resources and reconfiguring the process).

Figure 9 shows that advanced simulation uses all information available, e.g.,

event data to learn process characteristics, the current state to enable short-term

simulation (“fast forward button”), and a more refined resource model to better

capture working patterns.
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Process mining techniques are driven by event logs recorded for the actual

process. Similar event logs can be generated by simulation. In both cases events

are described by a reference to some process instance (the case), an activity, a

timestamp, a resource, and other attributes (e.g., costs). The top-most ellipse in the

middle of Fig. 9 (tagged “simulated event data”) refers to event logs produced by

simulation rather than reality. As shown, both simulated and real events can be
viewed using the same tools. This is very important for operational decision making

and “what if” analysis. Different future scenarios can be explored using visualiza-

tions also used for past and current event data.

7 Conclusion

This chapter provides a “survival guide” to business process simulation. Besides

providing a basic introduction to the topic, the chapter lists 15 risks, i.e., potential

pitfalls, when using simulation. Moreover, the chapter also shows that more

advanced forms of simulation come into reach as IT and business processes get

more intertwined.

To conclude the chapter, we suggest books and articles for BPM academics and

professionals that want to learn more about business process simulation:

• There are many (text) books on simulation, see for example (Altiok and

Melamed 2007; Bratley et al. 1983; Hartmann 2009; Kelton et al. 2003; Kleijnen

and van Groenendaal 1992; Law and Kelton 1982; Naylor et al. 1966; Pidd 1989;

Ripley 2006; Robinson 1994; Ross 1990; Shannon 1975). Books like (Kleijnen

and van Groenendaal 1992; Ripley 2006; Ross 1990) focus on the statistical

aspects of simulation. Books like (Altiok and Melamed 2007; Hartmann 2009;

Kelton et al. 2003; Law and Kelton 1982) focus on the creation of simulation

models. The book “Successful Simulation: A Practical Approach to Simulation

Projects” (Robinson 1994) is one of the few books focusing on simulation

projects (including topics such as project management).

• In (Haas 2002; AjmoneMarsan et al. 1995) various techniques for the analysis of

stochastic Petri nets (i.e., Petri nets extended with priorities, probabilities, and

durations) are described. See (Baskett et al. 1975; Buzacott 1996; Kleinrock

1975) for some seminal papers on the analysis of processes using analytical

methods.

• For more information on role of various analysis techniques (including simula-

tion) in BPM we refer to (van der Aalst 2013; van der Aalst and Stahl 2011;

Dumas et al. 2013; ter Hofstede et al. 2010; Weske 2007). See (van der Aalst

2011; Rozinat et al. 2009a) for techniques to automatically discover simulation

models from event data and (Rozinat et al. 2009b) for operational decision

support using simulation (e.g., short-term simulation).

This chapter is based on (van der Aalst 2010; van der Aalst and Dustdar 2012;

van der Aalst et al. 2014; van der Aalst and Voorhoeve 2000): in (van der Aalst
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2010) we elaborate on the relation between simulation and process mining, in (van

der Aalst et al. 2014) we focus on the proper modeling of resource availability, in

(van der Aalst and Dustdar 2012) we emphasize the importance of incorporating

context, and in (van der Aalst and Voorhoeve 2000) we provide a tutorial on

conventional business process simulation.
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