
123

20th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2012
Santa Cruz, CA, USA, October 2012
Revised Selected Papers

VLSI-SoC:
From Algorithms to Circuits
and System-on-Chip Design

IFIP AICT 418

Andreas Burg
Ayse Coskun

Matthew Guthaus
Srinivas Katkoori

Ricardo Reis
(Eds.)

IFIP Advances in Information
and Communication Technology 418

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to
one society per country. Full members are entitled to vote at the annual General
Assembly, National societies preferring a less committed involvement may apply
for associate or corresponding membership. Associate members enjoy the same
benefits as full members, but without voting rights. Corresponding members are
not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Andreas Burg Ays.e Cos.kun
Matthew Guthaus Srinivas Katkoori
Ricardo Reis (Eds.)

VLSI-SoC:
FromAlgorithms to Circuits
and System-on-Chip Design

20th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2012
Santa Cruz, CA, USA, October 7-10, 2012
Revised Selected Papers

13

Volume Editors

Andreas Burg
EPFL, Lausanne, Switzerland
E-mail: andreas.burg@epfl.ch

Ays.e Cos.kun
Boston University, MA, USA
E-mail: acoskun@bu.edu

Matthew Guthaus
University of California, Santa Cruz, CA, USA
E-mail: mrg@soe.ucsc.edu

Srinivas Katkoori
University of South Florida, Tampa, FL, USA
E-mail: katkoori@cse.usf.edu

Ricardo Reis
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil
E-mail: reis@inf.ufrgs.br

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-45072-3 e-ISBN 978-3-642-45073-0
DOI 10.1007/978-3-642-45073-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953903

CR Subject Classification (1998): C.5.4, B.7, C.3, C.1, C.0, B.8, B.6, B.7

© IFIP International Federation for Information Processing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book contains extended and revised versions of the best papers that were
presented during the 20th edition of the IFIP/IEEE WG10.5 International Con-
ference on Very Large Scale Integration, a global System-on-a-Chip Design &
CAD conference. The 20th conference was held at the Dream Inn Hotel, Santa
Cruz, California, USA (October 7–10, 2012). Previous conferences have taken
place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado,
Lisbon, Montpellier, Darmstadt, Perth, Nice, Atlanta, Rhodes, Florianópolis,
Madrid, and Hong Kong.

The purpose of this conference sponsored by IFIP TC 10 Working Group
10.5, the IEEE Council on Electronic Design Automation (CEDA), and by IEEE
Circuits and Systems Society, with the In-Cooperation of ACM SIGDA, is to
provide a forum for the exchange of ideas and presentation of industrial and
academic research results in the field of microelectronics design. The current
trend toward increasing chip integration and technology process advancements
has brought about stimulating new challenges both at the physical and system
design levels, as well as in the test of these systems. VLSI-SOC conferences aim
to address these exciting new issues.

The 2012 edition of VLSI-SoC maintained the traditional structure of the
conference, which has been successful at the previous VLSI-SOC conferences.
The quality of submissions (110 regular papers and nine special session papers
from 15 countries) made the selection process difficult. Finally 33 papers were
accepted for oral presentation and 17 posters were accepted for presentation. Out
of the 33 regular oral papers presented at the conference, 12 papers were chosen
by a selection committee to have an extended and revised version included in
this book. The selection of these papers has considered the evaluation scores
during the review process and the review forms provided by members of the
Technical Program Committee and session chairs as a result of the presentation.
The chapters of this book have authors from Belgium, Brazil, China, Italy, Swe-
den, Switzerland and the USA. The Technical Program Committee comprised
97 members.

VLSI-SoC 2012 was the culmination of the work of many dedicated vol-
unteers: paper authors, reviewers, session chairs, invited speakers and various
committee chairs, especially the local arrangements organizers. We thank them
all for their contribution.

This book is intended for the VLSI community, mainly those persons who
did not have the chance to attend the conference. We hope you will enjoy

VI Preface

reading this book and that you will find it useful in your professional life and
for the development of the VLSI community as a whole.

October 2013 Andreas Burg
Ays.e Cos.kun

Matthew Guthaus
Srinivas Katkoori

Ricardo Reis

Organization

The IFIP/IEEE International Conference on Very Large Scale Integration-System-
on-Chip (VLSI-SoC) 2012 took place during October 7–10, 2012, in the Dream
In Hotel, Santa Cruz, California, USA. VLSI-SoC 2012 was the 20th in a se-
ries of international conferences, sponsored by IFIP TC 10 Working Group 10.5
(VLSI), IEEE CEDA, and ACM SIGDA.

General Chair

Matthew Guthaus UC Santa Cruz, USA

Program Chairs

Ayse Coskun Boston University, USA
Andreas Burg EPFL, Switzerland

Special Sessions Chair

Wentai Liu UC Santa Cruz, USA

Local Arrangements Chair

Jose Renau UC Santa Cruz, USA

Publication Chairs

Srinivas Katkoori Univ of South Florida, USA
Ricardo Reis UFRGS, Brazil

Publicity Chair

Ricardo Reis UFRGS, Brazil

Registration Chair

Rajsaktish Sankaranarayanan UC Santa Cruz, USA

VIII Organization

Finance Chair

Baris Taskin Drexel, USA

PhD Forum Chair

Ken Pedrotti UC Santa Cruz, USA

Web Chair

Walter Condley UC Santa Cruz, USA

Steering Committee

Chi-Ying Tsui HKUST, Hong Kong, SAR China
Manfred Glesner TU Darmstadt, Germany
Luis Miguel Silveira INESC ID, Portugal
Salvador Mir TIMA, France
Ricardo Reis UFRGS, Brazil
Michel Robert University of Montpellier, France

Table of Contents

FPGA-Based High-Speed Authenticated Encryption System 1
Michael Muehlberghuber, Christoph Keller,
Frank K. Gürkaynak, and Norbert Felber

A Smart Memory Accelerated Computed Tomography Parallel
Backprojection . 21

Qiuling Zhu, Larry Pileggi, and Franz Franchetti

Trinocular Stereo Vision Using a Multi Level Hierarchical Classification
Structure . 45

Andy Motten, Luc Claesen, and Yun Pan

Spatially-Varying Image Warping: Evaluations and VLSI
Implementations . 64

Pierre Greisen, Michael Schaffner, Danny Luu, Val Mikos,
Simon Heinzle, Frank K. Gürkaynak, and Aljoscha Smolic

An Ultra-Low-Power Application-Specific Processor with Sub-VT

Memories for Compressed Sensing . 88
Jeremy Constantin, Ahmed Dogan, Oskar Andersson,
Pascal Meinerzhagen, Joachim Rodrigues, David Atienza, and
Andreas Burg

Configurable Low-Latency Interconnect for Multi-core Clusters 107
Giulia Beanato, Igor Loi, Giovanni De Micheli,
Yusuf Leblebici, and Luca Benini

A Hexagonal Processor and Interconnect Topology for Many-Core
Architecture with Dense On-Chip Networks . 125

Zhibin Xiao and Bevan Baas

Fault-Tolerant Techniques to Manage Yield and Power Constraints in
Network-on-Chip Interconnections . 144

Anelise Kologeski, Caroline Concatto,
Fernanda Lima Kastensmidt, and Luigi Carro

On the Automatic Generation of Software-Based Self-Test Programs
for Functional Test and Diagnosis of VLIW Processors 162

Davide Sabena, Luca Sterpone, and Matteo Sonza Reorda

X Table of Contents

SEU-Aware Low-Power Memories Using a Multiple Supply Voltage
Array Architecture . 181

Seokjoong Kim and Matthew R. Guthaus

CMOS Implementation of Threshold Gates with Hysteresis 196
Farhad A. Parsan and Scott C. Smith

Simulation and Experimental Characterization of a Unified Memory
Device with Two Floating-Gates . 217

Neil Di Spigna, Daniel Schinke, Srikant Jayanti, Veena Misra, and
Paul Franzon

Author Index . 235

FPGA-Based High-Speed

Authenticated Encryption System

Michael Muehlberghuber, Christoph Keller,
Frank K. Gürkaynak, and Norbert Felber

Integrated Systems Laboratory (IIS), ETH Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland

{mbgh,chrikell,kgf,felber}@iis.ee.ethz.ch

Abstract. The Advanced Encryption Standard (AES) running in the
Galois/Counter Mode of Operation represents a de facto standard in
the field of hardware-accelerated, block-cipher-based high-speed authen-
ticated encryption (AE) systems. We propose hardware architectures
supporting the Ethernet standard IEEE 802.3ba utilizing different cryp-
tographic primitives suitable for AE applications. Our main design goal
was to achieve high throughput on FPGA platforms. Compared to pre-
vious works aiming at data rates beyond 100Gbit/s, our design makes
use of an alternative block cipher and an alternative mode of operation,
namely Serpent and the offset codebook mode of operation, respectively.
Using four cipher cores for the encryption part of the AE architecture,
we achieve a throughput of 141Gbit/s on an Altera Stratix IV FPGA.
The design requires 39 kALMs and runs at a maximum clock frequency
of 275MHz. This represents, to the best of our knowledge, the fastest
full implementation of an AE scheme on FPGAs to date. In order to
make the design applicable in a real-world environment, we developed a
custom-designed printed circuit board for the Stratix IV FPGA, suitable
to process data with up to 100Gbit/s.

Keywords: Authenticated encryption, High-throughput architecture,
FPGA, Pipelining, Serpent, OCB, AES, GCM.

1 Introduction

Confidentiality and authenticity are two of the most important cryptographic
goals. Whereas the former assures that any eavesdropping adversary is unable to
decipher a given message—even if she has access to the transmission medium—,
the latter refers to the cryptographic service that ensures that the receiver of a
message can be sure about its origin, i.e., that an attacker has not impersonated
the sender. Authenticated encryption (AE) combines these two services and
allows a secure and authentic communication between two parties.

In order to provide high-throughput AE implementations based on block ci-
phers, so-called combined modes of operation have been designed throughout
the last decade. They allow a higher throughput by interleaving the authenti-
cation part and the encryption part instead of calculating them consecutively

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 1–20, 2013.
� IFIP International Federation for Information Processing 2013

2 M. Muehlberghuber et al.

BobAlice

Quantum Key Distribution System

Encryption Board

O
pt

ic
al

 U
se

r
In

te
rf

ac
e

O
pt

ic
al

 U
se

r
In

te
rf

ac
eFPGA

C
lie

nt
 I

nt
er

fa
ce

Authenticated
Encryption

Pl
ai

nt
ex

t

Keytransfer

Quantum Key Distribution System
Secure

Channel

Encryption Board

O
pt

ic
al

 U
se

r
In

te
rf

ac
e

O
pt

ic
al

 U
se

r
In

te
rf

ac
eFPGA

C
lie

nt
 I

nt
er

fa
ce

Authenticated
Encryption

Pl
ai

nt
ex

t

Ciphertext

Public
Channel

(100Gbit/s)

Keytransfer

Fig. 1. High-speed authenticated encryption system setup

(as traditional AE methods do). The two most widely accepted AE modes of
operation are Counter with CBC-MAC (CCM) [19] and Galois/Counter Mode
(GCM) [11]. Their acceptance is most likely due to the fact that they have been
recommended by the National Institute of Standards and Technology (NIST)
(cf. [5] and [6]). Since then, they have been applied to technologies and proto-
cols such as WiFi 802.11 [8] and IPsec [17]. Although the specifications of these
modes do not determine the underlying block cipher, most applications make use
of the Advanced Encryption Standard (AES) [14] since it is another algorithm
standardized by the NIST.

The present work proposes a block cipher-based hardware architecture for
AE, targeting high throughput on field-programmable gate array (FPGA) plat-
forms. Our design has been developed as to fulfill the requirements of the Eth-
ernet standard IEEE 802.3ba [1], which allows for transmission speeds of up to
100Gbit/s. This work has been designed as part of a system that employs quan-
tum key distribution (QKD) for synchronizing multiple private key exchanges
within a single second, and provides authenticated encryption service using con-
ventional cryptographic primitives. Fig. 1 illustrates the overall system setup.
The main contributions of our work are related to the Authenticated Encryption
part of Fig. 1, i.e., the digital, AE-related parts on the FPGA and have originally
been presented in [12].

So far, our system employed a common GCM-AES-based cryptographic prim-
itive in order to achieve the required throughput. In this work, we examine al-
ternatives for both the block cipher and the mode of operation and compare
the performance of these alternatives to the established cryptographic primi-
tives. Besides exploring more efficient hardware implementations, this work is
also motivated by providing an alternative AE scheme, in case successful attacks
are developed against the existing primitives. We evaluate the Serpent block ci-
pher [3] and the offset codebook (OCB) mode of operation [16] and we provide
results of hardware implementations for different mode of operation/block cipher
combinations, namely:

FPGA-Based High-Speed Authenticated Encryption System 3

– OCB-Serpent
– OCB-AES

– GCM-Serpent
– GCM-AES

Our fastest AE implementation is based on an OCB-Serpent architecture and
requires 39kALMs (Adaptive Logic Modules) on an Altera Stratix IV FPGA.
It uses four cipher cores for the encryption part and reaches a throughput of
141Gbit/s, running at 275MHz.

Moreover, we developed a custom-designed printed circuit board (PCB),
which allows us to use the presented designs in real-world applications such
as the system illustrated in Fig. 1. So far, two copies of the board have been
fabricated and successfully tested in various sample experiments.

The remainder of this work is structured as follows. In the next section,
we present an overview of related work on hardware architectures targeting
high-throughput AE designs. In Section 3, a description of Serpent and OCB is
given. The actual hardware architecture of our design is presented in Section 4.
Throughout Section 5, we summarize our results, including a brief discussion.
Finally, Section 6 provides a description of the custom-designed PCB including
some of its major features, before we conclude our work in Section 7.

2 Related Work

Due to the standardization by the NIST, GCM-AES has received significant
attention from both the research community and the industry, and several im-
plementations targeting FPGAs can already be found in the literature.

In 2009, Zhou et al. [20] presented a single-core GCM-AES design, which
targets a Xilinx Virtex-5 FPGA. They achieved a throughput of 41.5Gbit/s
using the 128-bit version of AES. Henzen and Fichtner [7] showed that it is
possible to break the 100Gbit/s barrier on a Virtex-5 FPGA platform. They
made use of four fully unrolled AES cores for the encryption part and used four
Karatsuba-Ofman (KO) multipliers in order to realize the authentication part.
Their design reaches a throughput of 119.3Gbit/s.

The most complex operation during the computation of a message digest ac-
cording to GCM is the multiplication in the binary finite-field GF (2128), which is
part of the universal hashing function called GHASH. Therefore, most of the ef-
fort in improving GCM implementations has been spent on speeding up this cal-
culation. Wang et al. [18] presented a GHASH architecture based on four GHASH
cores that achieved a throughput of 123.1Gbit/s on a Virtex-5. Crenne et al. [4]
reached 238.1Gbit/s by using 8 parallel finite-field multipliers, also targeting a
Xilinx Virtex-5 FPGA. Since we aim at a full AE architecture, i.e., a design
including both the authenticity and the confidentiality part, we do not consider
these GHASH-only implementations for our investigations.

To the best of our knowledge, no hardware architecture based on a block
cipher other than AES and targeting a high-throughput AE implementation has
been presented so far. Moreover, no AES design has been published to date,
which makes use of an operation mode different than GCM in order to achieve
throughputs up to 100Gbit/s.

4 M. Muehlberghuber et al.

IP

FP

Si mod 8
Si mod 8

Si mod 8
Si mod 8

LT

32×

01

K̂i

K̂32

FP

<<< 13

<< 3

<<< 3

<<< 1

<< 7

<<< 5

<<< 7

32 Rounds

i ∈ {0, . . . , 31}

128

128

32 32 32 32

128

<<< 22

Key
Schedule

Cipher
Plaintext

Ciphertext

Linear
Transformation

Concatenate

Fig. 2. Serpent block cipher

3 100Gbit/s Authenticated Encryption Alternatives

In order to reach throughputs exceeding 100Gbit/s on commercial FPGA de-
vices, it is necessary to use multiple parallel instances of cryptographic primi-
tives. Although AES running in GCM mode is currently the most widespread
option for high-throughput hardware architectures, using these cryptographic
primitives is not a requirement. Different block ciphers and modes of operation,
like the ones presented in the following sections, can be used for a throughput-
oriented AE system as well.

3.1 Serpent Block Cipher

Serpent was the runner-up of the AES block cipher competition. Although it
has not been chosen by the NIST during the competition, it was considered to
be a close alternative and is still known to be secure from a cryptographic point
of view as the considerably large number of rounds contributes to its security
[13]. In the following we will briefly discuss the main components of Serpent, i.e.,
the key schedule and the cipher itself, using the conventional implementation
described in the official proposal [2]. In order to change from the conventional to
the bitslice version of Serpent1, all instances of the initial and the final permu-
tation have to be omitted.

Cipher. Fig. 2 illustrates the Serpent cipher which consists of an initial per-
mutation (IP), 32 round transformations, and a final permutation (FP). The

1 We refer to the Serpent proposal [2] for further information on the bitslice
implementation.

FPGA-Based High-Speed Authenticated Encryption System 5

first 31 rounds of the cipher include a key-mixing stage, a substitution stage, and
an avalanche stage (i.e., a stage where a linear transformation takes place). In
the last round of the cipher, the linear transformation is omitted and replaced
by another key-mixing operation. Serpent makes use of eight different S-boxes
(Si, i ∈ {0 . . .7}) which repeat themselves every eighth round as shown in Fig. 2.
Note that only a single S-box is used within each round of the cipher.

Key Schedule. The key schedule of Serpent takes a 256-bit cipher key K and
expands it to thirty-three 128-bit subkeys denoted by K̂i. Cipher keys shorter
than 256 bits are padded by appending a single “1”, followed by as many “0”s
as required in order to reach a length of 256 bits. After padding, K gets ex-
pressed using eight 32-bit values, i.e., K = {ω−8, . . . , ω−1}, and extended to an
intermediate key {ω0, . . . , ω131} according to

ωi = (ωi−8 ⊕ ωi−5 ⊕ ωi−3 ⊕ ωi−1 ⊕ φ⊕ i) <<< 11 , i ∈ {0 . . . 131} ,

where <<< i denotes a rotate-left function by i bits and φ = 0x9E3779B9, i.e.,
the 32-bit value of the fractional part of the golden ratio. The actual subkeys,
which are required during the round transformations of the cipher, are finally
obtained by

K̂i = IP (S(3−i) mod8(ω4i, ω4i+1, ω4i+2, ω4i+3)) , i ∈ {0 . . .32} ,

where Si refers to one of the eight Serpent S-boxes. Similar to the cipher, the
bitslice implementation of the Serpent key schedule can be obtained by removing
all instances of the initial permutation IP . For a detailed description of Serpent,
including additional information about the initial and the final permutation, we
refer the reader to the official Serpent proposal [2].

3.2 Offset CodeBook Mode

The offset codebook (OCB) block cipher mode of operation is a combined AE
scheme and has first been published by Rogaway et al. [16] in 2001. It is strongly
related to the Integrity Aware Parallelizable Mode (IAPM) by C. Jutla [9] and
three different versions have been made public since 2001. Throughout the re-
mainder of this work we solely refer to the third version of it, i.e., OCB3 [10].

To start the authenticated encryption scheme according to OCB, a plaintext
message, denoted by M , gets split into m different blocks, each of length n and
an optional block M∗ of length smaller than n as follows2:

M =

{
M1, . . . ,Mm , if |M | = k · n and k ∈ N ,

M1, . . . ,Mm,M∗ , else .

Algorithm 1 and Fig. 3 describe the authenticated encryption according to
OCB using pseudo-code and a block diagram, respectively. For simplicity, only

2 We refer to the length of x in bits using the following notation: |x|.

6 M. Muehlberghuber et al.

Algorithm 1. OCB authenticated encryption

Input: Message M , Message block length n, Cipher key K, Nonce N , Associated data
A, Authentication tag length τ , 0 ≤ τ ≤ 128

Output: Ciphertext C, Authentication tag T
1: if |N | ≥ n then return INVALID
2: {M1, . . . ,Mm,M∗} ←M , with |Mi| = n and |M∗| < n
3: Checksum← 0128;C ← 0128

4: L∗, L$, L[0] . . . L[�log2(m)�]← Setup(K,m)
5: Δ← Init(N,n,K)
6: for i = 1 to m do
7: Δ← Δ⊕ L[ntz(i)] � Inci(Δ)
8: C ← C||EK(Mi ⊕Δ)⊕Δ
9: Checksum← Checksum⊕Mi

10: end for
11: if M∗ �= ∅ then
12: Δ← Δ⊕ L∗ � Inc∗(Δ)
13: Pad← EK(Δ)
14: C ← C||M∗ ⊕ (Pad ∧ (1|M∗|))
15: Checksum← Checksum⊕M∗10∗, with

M∗10∗ = M∗‖1‖0 . . . 0, such that |M∗10∗| = n
16: end if
17: Δ← Δ⊕ L$ � Inc$(Δ)
18: Final ← EK(Checksum⊕Δ)
19: Auth← HashK(A)
20: Tag ← Final ⊕Auth
21: T ← trunc(Tag, τ)
22: return C||T

the cases for full message blocks, i.e., M∗ = ∅ is shown in Fig. 3. The cipher
starts with a setup and initialization step (cf. line 4 and 5 in Algorithm 1).
Thereafter, each message block can be processed independently of each other
(line 6 to 16). Finally, the authentication tag T is determined throughout line 17
to 21. The characters ||, ⊕, and ∧ represent the concatenation, bitwise exclusive
or, and bitwise and operation. The term ntz(i) describes the number of trailing
zeroes of i in binary representation. 0n and 1n stand for bit strings of length n
containing only zeros and ones, respectively. Furthermore, trunc(X, y) truncates
the bit string X to its y least significant bits. We use ∅ to represent an empty
set. Appendix A provides listings for the Setup, Init, and HashK procedures
used throughout Algorithm 1.

When using a counter for the nonce N , the calculation of the initial offset
Δ requires a block cipher call only every 64th initialization. This is due to the
fact that the least significant six bits of N are set to zero before passing it
to the block cipher (cf. line 3 of Algorithm 3). This fact together with the
parallelizable processing of the message blocks, makes OCB suitable for high-
throughput applications.

FPGA-Based High-Speed Authenticated Encryption System 7

EK EK

A1 A2

EK

Auth

EK

Checksum

T

τ

Final

Tag

Ap

EK EK EK

M1 M2
M3

C1 C2 C3

EK

Mm

Cm

Inc1(Δ) Inc3(Δ) Incm(Δ)

Inc1(Δ)

Inc2(Δ)

Inc2(Δ) Inc3(Δ) Incm(Δ)

Inc1(Δ) Inc2(Δ) Incp(Δ) Inc$(Δ)

Fig. 3. Overview of the encryption and the authentication part of OCB

4 OCB-Serpent Hardware Architecture

For the OCB-Serpent architecture, supporting the IEEE 802.3ba Ethernet stan-
dard, we assume the following prerequisites:

– The size of the message block counter i is restricted to 7 bits, since 27 message
blocks are capable of hosting a full Ethernet frame.

– As our target application ensures solely full message blocks, we do not handle
short final message blocks separately.

As previously mentioned, to achieve extremely high throughputs, a multi-
core approach has proven to be the only viable option when implementing AE on
commercial FPGA platforms. Similar to GCM, OCB also allows two successive
message blocks to be processed independently of each other. We have taken
advantage of this fact and decided to use four parallel cipher cores in order
to achieve the desired throughput. Fig. 4 illustrates the OCB architecture for
authenticated encryption based on four Serpent cores.

4.1 Pipelined Four-Core Serpent Architecture

Each of the four Serpent cores handles a single 128-bit message block. Therefore,
the overall design can process a 512-bit message at a time. As can be seen from
Fig. 4, we fully unrolled the 32 rounds of Serpent. Furthermore, we inserted
pipeline stages after each round in order to increase the maximum frequency
of the cipher cores. Although the pipelined architecture allows us to clock the
Serpent cores at a higher frequency, one problem inherent to all pipeline archi-
tectures has to be taken into consideration: When the normal flow of operations
has to be suspended, the entire pipeline must be stopped in order to allow the
rest of the operation to resume. Such an occurrence is known as a pipeline stall
and can, for instance, occur during a key change.

Due to the unrolling of the Serpent rounds, we have to realize 1024 of the
4-bit S-boxes for each core, which requires a considerable amount of resources.
The subkeys for the key-mixing stage of all four Serpent cores are provided from
a single key schedule, i.e., the cores always operate on the same cipher key.

8 M. Muehlberghuber et al.

0

512

Message / Plaintext Nonce

128 128 128 128

128 128 128 128

512

CiphertextTag

TRUNC

K
ey

 S
ch

ed
ul

e

Serpent

O
ff

se
t C

al
cu

la
tio

n

128

XOR

128

XOR

128

128

Round 0

Round 30

Round 31

Round 0

Round 30

Round 31

Round 0

Round 30

Round 31

Round 0

Round 30

Round 31

Fig. 4. OCB-Serpent architecture

4.2 OCB - Authenticated Encryption

OCB can, in general, be subdivided into three stages: Initialization, encryp-
tion/authentication, and finalization. During the initialization phase, two poten-
tial pipeline stalls may occur if not handled properly. First, after each key change
a cipher call EK(0128) is required in order to compute the table values L[..] (cf.
Algorithm 2). Second, each new message needs a fresh nonce N , and thus a new
offset value Δ. Since the calculation of the initial offset also requires a cipher
call, this may result in another pipeline stall. In order to reduce the number of
pipeline stalls to a minimum, we precompute the initial offset values.

The limitation of message lengths to a maximum of 27 blocks facilitates the
precomputation of the L[..]-values, as it limits the maximum number of trailing
zeroes of the block counter i to six. Thus, only L$, L∗, and L0 . . . L6 have to
be precomputed and stored in registers. In fact, when the result of EK(0128) is
available, all nine table values can be computed in a single clock cycle3.

When processing a block in authenticated-encryption mode, the message gets
XOR-ed with the current offsetΔi, encrypted, and finally XOR-ed withΔi again.
As pipeline stages were introduced into the cipher cores, the Δ-values either have

3 The calculation only depends on operations cheap to implement in hardware, i.e.,
fixed shift and conditional exclusive or operations.

FPGA-Based High-Speed Authenticated Encryption System 9

to be stored or recalculated. We decided to recompute the offsets as it makes the
implementation less dependent on the underlying block cipher and the number of
pipeline stages used. Since the multi-core design processes four message blocks in
parallel, the offset-calculation needs to be capable of providing four offset values
at a time. In fact, the calculation of the four offset values is relatively cheap as
the initial offset only has to be XOR-ed with the precomputed table values.

As described in Algorithm 3, a nonce-dependent call to the encryption of
the block cipher is required. The result of this operation, further-on called Ktop,
then has to be shifted by a 6-bit nonce-dependent value Bottom. First, in order
to be able to perform this shift-operation, Bottom has to be buffered until the
result of EK(Top) is available. Second, the 6-bit variable shift is done using a
192-bit by 6-bit barrel shifter. Although using a counter for the nonce N could
avoid the resource-expensive barrel shifter, we decided to keep it in order to stay
independent of the actual structure of the chosen nonce.

4.3 Decryption

Authenticated decryption according to OCB is very similar to the encryption
process. Exchanging the encryption operation EK of the underlying cipher by
the decryption operationDK in line 8 of Algorithm 1, turns OCB into decryption
mode. However, the other encryption operations remain. Therefore, the multi-
core decryption unit contains four block-cipher decryption cores, one encryption
core, and a common key schedule. In order to assure authenticity of a provided
message, the re-calculated message tag T ′ must be equal to the tag T , received
from the opposite communicating party.

A minor drawback of authenticated decryption according to OCB is the fact
that a delay, dependent on the number of pipeline stages p between the cal-
culation of the plaintext and the calculation of the authentication tag exists.
This delay is caused by the calculation of the authentication tag which requires
the Checksum of the plaintext. Therefore, in order to verify the authentication
tag of a message, p plaintext blocks have to be buffered, resulting in additional
memory requirements.

5 Results

We coded our architectures in VHDL. For the synthesis and place&route design
steps, we used Altera Quartus II version 11.0. Functional correctness was verified
with Modelsim 6.6e simulator. Synthesis was conducted using a speed-optimzed
setting. Except of M9K block memories, no Altera-specific logic blocks had been
used. In order to have some reference implementations regarding AES and GCM
on our target platform (Altera Stratix IV), we also synthesized a four-core AES
cipher architecture as well as GCM based on both Serpent and AES. The AES
architectures were accomplished with an underlying four-core AES similar to
the one proposed by Henzen et al. [7]. We used the 128-bit version of AES and
fully unrolled the 10 rounds. Furthermore, pipelining registers have been inserted
after each round similar to the Serpent cipher core design.

10 M. Muehlberghuber et al.

Table 1. Encryption-only and authenticated encryption results targeting an Altera
Stratix IV (EP4S100G5F45) platform using four cipher cores

Block Mode of Area fmax Throughput

Cipher Operation [ALMs] [M9K Bl.] [MHz] [Gbit/s] [%]

Cipher-Only Architectures

Serpent cipher-only 28,399 0 281 144 136

AES cipher-only 7,661 314 267 137 130

Authenticated Encryption Architectures

Serpent OCB 38,312 0 275 141 133

AES OCB 11,948 314 250 128 121

Serpent GCM 56,474 0 203 104 99

AES GCM 24,313 314 206 105 100

The first two rows of Table 1 contain the place&route results of the multi-
core encryption architectures (i.e., without running any mode of operation).
The subsequent rows present the results for the different combinations of block
ciphers and modes of operation. Regarding the block ciphers, the fully unrolled
four-core AES design requires less area as it only has to provide 160 8-bit S-
boxes for each cipher core, compared to the 1024 4-bit S-boxes needed by the
Serpent cores. For the AES cores we utilized the M9K memory blocks in order
to implement the 160 S-boxes, whereas for Serpent we implemented them solely
in look-up tables. One of the reasons for this design decision was the significant
routing overhead, which would have been required for the 1024 Serpent S-boxes
being realized in M9K memory blocks. Since the high-throughput universal hash
function GHASH of the GCM mode occupies a lot of area, OCB designs result
in a smaller footprint than their GCM counterparts.

Regarding the throughput, all architectures met the target of 100Gbit/s.
However, the OCB versions are considerably faster. This is mainly because
of the simpler architecture of OCB compared to GCM, which requires the
resource-expensive GHASH function. Table 1 shows that the critical path of
the GCM-based architectures is dominated by the authentication part, whereas
the OCB-based designs almost reach the maximum frequency of the cipher-only
implementations (with minor exceptions which are most likely due to placement
and routing disparities). Compared to our results in [12], we were able to further
increase the maximum frequency of both our cipher-only architectures as well
as the designs based on OCB. Although our results show that OCB is at least
as suitable for high-throughput hardware implementations as GCM, the latter
is still the preferred mode of operation in the literature when designing high-
speed authenticated encryption hardware architectures based on block ciphers.
This might be due to the facts that there are some US patents on OCB and
that, in contrast to GCM, it has not been recommended by the NIST. Regard-
ing the patents on OCB, its author has recently eased licensing for a variety of

FPGA-Based High-Speed Authenticated Encryption System 11

Table 2. Block cipher modes of operation comparison

Property OCB GCM

Patented Yes No

Parallelizable Yes (Encr. + Auth.) Yes (Encr. + Auth.)

Decryption required Yes No

Cipher calls (Initialization) 1 1

Cipher calls (Encryption) �|M |/n� + 1.0161 �|M |/n� + 1

1 Applies as long as the associated data is fixed during a single session and a counter is

used for the nonce.

applications [15] what may increase the popularity of OCB in the near future.
Table 2 summarizes the properties of the two AE block cipher modes of opera-
tion. One benefit of GMC might be that it solely requires the encryption of the
underlying block cipher whereas OCB also needs the decryption.

Our designs have been tested on a self-designed printed circuit board (PCB),
which has solely been developed for high-speed authenticated encryption archi-
tectures running on an Altera Stratix IV FPGA.

6 100 Gbit/s Authenticated Encryption System Design

The AE core, described in Section 4, was developed as part of a larger FPGA-
based system that will be used to encrypt data on IEEE 802.3ba Ethernet con-
nections, allowing data rates of up to 100Gbit/s. Designing a real system that is
able to reliably process such high data-throughputs poses some formidable chal-
lenges. We have successfully developed a complete FPGA-based system working
at 40 respectively 100Gbit/s and will present both the digital part and the PCB
development throughout the next sections.

6.1 FPGA Digital Design

Processing data at a rate of up to 100Gbit/s by itself is per se rather challenging.
However, transporting this amount of data to and from the processing cores is
also a significant problem. In this system we have decided to aggregate plaintext
data from ten separate 10Gbit/s Ethernet links into a single 100Gbit/s data
stream. This data is then encrypted and an authentication tag is determined
using the AE schemes mentioned earlier. The resulting ciphertext data stream
is then transmitted over a single 100Gbit/s Ethernet link. As illustrated in
Fig. 5, the receiving path of the system works similarly in the opposite direction.
The system ensures that the AE remains transparent for all 10Gbit/s clients
connected to the system.

12 M. Muehlberghuber et al.

FPGA

10×

10
x1

0
G

bi
t/s

 O
pt

ic
al

 P
la

in
te

xt
In

te
rf

ac
es

 (
SF

P+
, X

FP
)

1x
10

0
G

bi
t/s

 O
pt

ic
al

 C
ip

he
rt

ex
t

In
te

rf
ac

e
(C

FP
, C

X
P)

TDM
Encoder

TDM
Decoder

Channel
Sync

Channel
Sync

10 Gbit/s Ethernet
Physical Coding

Sublayers

100 Gbit/s Ethernet
Physical Coding

Sublayer

Authenticated
Decryption

Authenticated
Encryption

Configuration, Statistics, Key Interface

USB

Fig. 5. Block diagram of the whole encryption system on the FPGA

Transmitting Path. The plaintext, received from the 10Gbit/s Ethernet
clients, arrives as a serial data stream. In the 10Gbit/s Ethernet Physical Cod-
ing Sublayer (PCS) block, this data is parallelized and prepared for further
operations. Note that in our implementation we do not require a Media Access
Control (MAC) unit. Instead, we directly aggregate and encrypt the received
data stream. The TDM Encoder collects the data from each PCS and transfers
it to the Authenticated Encryption core, where the data is encrypted and a cor-
responding authentication tag is generated. The Channel Sync unit encapsulates
the encrypted data and its authentication tag into a TDM Ethernet frame. To
ensure fast resynchronization after a connection or packet loss, a synchronization
frame is inserted every millisecond into the 100Gbit/s stream. The synchroniza-
tion frame is also used to transmit parameters such as the current initialization
vector for GCM and the nonce for OCB. The generated frames from the Channel
Sync block are prepared for transmission and serialized in the 100Gbit/s PCS.
The PCS uses ten 10Gbit/s serial data streams to transmit the data.

One problem during transmission is the synchronization loss due to various
effects such as electrical and optical multiplexing in the optical CFP modules and
small differences in the length of electrical traces on the PCB. As a result, the
serial streams may arrive at the receiver out of order. Therefore, a mechanism is
required to reorder and realign the serial streams. Unique alignment markers for
each stream are inserted every 100�s to enable synchronization at the receiver.

Receiving Path. On the receiving path, the PCS deserializes the incoming
100Gbit/s Ethernet transmission into ten 10Gbit/s data streams. These data

FPGA-Based High-Speed Authenticated Encryption System 13

streams are then reordered and possible delays are compensated by utilizing the
alignment markers inserted during the transmission. The system is capable of
compensating up to 200 ns of delay in this way. In the next step, the now par-
allelized 100Gbit/s data stream is decoded by the receiving Channel Sync. If
a synchronization frame is detected, parameters for the AE cores are extracted
from this frame and applied for the following data frames. When a TDM Eth-
ernet frame is detected, the payload is extracted and sent to the Authenticated
Decryption core. In the TDM Decoder, the decrypted data stream is distributed
to the corresponding 10Gbit/s PCS units. In addition, the calculated authenti-
cation tag from the Authenticated Decryption block is compared to the received
one. If an authentication failure is detected, an alert flag is set. The system can
be configured to react with further measures, such as purging its input data for
that channel.

An important problem of the system is clock synchronization. It occurs if the
clock on the receiving side of the system differs (slightly) from the transmitting
side. According to the Ethernet standard, the maximum allowed clock mismatch
is 100 ppm. To be able to compensate these mismatches, the system can enlarge
or shrink the gap between two Ethernet frames.

System Configuration. The system on the FPGA can be configured and
monitored via a USB connection in the development board. Individual 10Gbit/s
links can be disabled, the encryption can be turned on or off, and secret key sizes
can be determined through this interface. In addition, the encryption keys are
also submitted via this interface. Moreover, the same connection can be used
to monitor the operation. Statistical data such as number of transmitted and
received frames, status of the Authenticated En/Decryption blocks, or presence
and link activity of SFP+, XFP, CFP, and CXP modules can be observed using
the configuration interface.

Performance. Although our development board and the AE cores have been
designed to support a 100Gbit/s communication, real-world experiments have so
far only been undertaken using a 40Gbit/s ciphertext interface due to financial
reasons4. Nevertheless, measurements of the overall system proved it to be oper-
ational at data rates up to 40Gbit/s with all the features described above. The
whole digital system showed a constant latency of 3.5�s for all 10Gbit/s Ether-
net links when configured with OCB-Serpent. Correct transmission of frames up
to a length of 16,000Bytes was observed. The total power dissipation of the over-
all development board is 45W, thereof 14W are consumed solely by the FPGA.
If configured with OCB-Serpent, the FPGA’s utilization corresponds to 32%.
Note that when operating in the 40Gbit/s configuration, only two fully unrolled
encryption cores for the transmitting path and two fully unrolled decryption
cores for the receiving path are required.

4 The 100Gbit/s CFP module is about eight to ten times more expensive than the
40Gbit/s module.

14 M. Muehlberghuber et al.

Fig. 6. Overview of the 100Gbit/s AE development board

6.2 PCB Design

Designing such a complex system in one shot is, in our opinion, not a sound
engineering strategy. While reconfiguration of the FPGA does not pose a problem
at all, the design of the underlying PCB is “rather statical”. Therefore, we have
adopted a two-stage design process where we have developed two PCBs. The
first system shown in Fig. 6, with its main features listed in Table 3, was used
as a development board with all the main components and allowed us to test
the basic functionality. The second PCB is the final prototype, and in addition
to fixing problems detected in the first design, also adds a number of changes to
meet the industrial requirements.

In this section, we will describe the main problems (power distribution and
signal quality) we have encountered while designing the development system and
will also explain the optimizations we have performed for a follow-up board.

Power Distribution. The first challenge in the system design is establishing
the connections to the FPGA which uses a 1932-pin BGA package. While the
signal connections offer a formidable challenge in terms of routing, the real prob-
lem is in power routing. The system uses in total 14 different power supplies and
the main digital power supply of 0.95V was estimated to consume as much as
48A. The only practical solution to supply the FPGA with stable power is using
several dedicated low-impedance power planes. As a result of these considera-
tions, a 24-layer stack was designed for the development PCB. Even though we

FPGA-Based High-Speed Authenticated Encryption System 15

Table 3. Main components of the development board for the 100Gbit/s AE system

Component Type Description

Networking and
encryption engine

Altera Stratix IV GT FPGA model EP4S100G5F45 with high-speed
transceivers, 1932-BGA

Board controller Altera MAX II CPLD EPM2210F256

Plaintext interfaces 8 SFP+ 10Gbit/s Ethernet interfaces. Short range
(4 SFP+ prepared for Fibre Channel)

2 XFP 10Gbit/s Ethernet interfaces. Medium rage

Ciphertext inter-
faces

1 CFP 40Gbit/s or 100Gbit/s wavelength multiplexing
four or ten 10Gbit/s electrical streams per direc-
tion

1 CXP 100Gbit/s active cable using ten 10Gbit/s fibres
per direction. Short range

USB interface Cypress EZ-USB
FX2LP

For configuration, key transfer, and statistics

Power system 4 LMT4601 4-phase 0.95V FPGA core supply. max. 48A

6 further switched
regulators

Digital supplies and analog pre-supplies

13 linear regulators Analog and timing block supplies

Clocking system 7 oscillators System clocks, Transceiver clocks, 24 ... 644MHz

PCB NELCO NP400-
13EP

24 layers, 387mm × 220mm × 3mm, 1175 com-
ponents

had anticipated problems with the 0.95V supply, measurements showed that the
voltage-drop across the power plane was still too high. Therefore, we have added
two additional power planes for the final design.

Power considerations have also dictated the organization of the layer stack.
In the development board, high currents were concentrated on thicker low-
impedance layers in the uppermost layers, close to the energy hungry components
and their blocking capacitors. However, this asymmetric PCB stack could not
be used for the second PCB, since a different manufacturer had to be used. As
a result, half of the power layers had to be moved to the bottom for the second
PCB.

Signal Quality. As expected, routing several 10Gbit/s high-speed differential
lines across a large PCB turned out to be a challenging task. In total, the develop-
ment board used sixty impedance-matched differential lines and ten differential
clock signals in the frequency range of 156 to 644MHz. In the development board,
these signals were routed on dedicated high-speed layers towards the bottom of
the layer stack, where signal quality was not further compromised by longer via
stubs. Although utmost care was taken in the design of these differential lines,
actual measurements on the board revealed that the attenuation on high-speed
signals was critical and problems were detected in impedance matching of the
vias. We were able to reach the bit error rates specified in the IEEE 802.3ba
standard by programming the transceivers on the FPGA side.

16 M. Muehlberghuber et al.

Fig. 7. 3D simulation of a differen-
tial via from an impedance-matched
wire on top to a wire of layer 14 of
the pad stack

0 5 10 15 20

D
iff

er
en

tia
l S

 [d
B

]

Frequency [GHz]

D
iff

er
en

tia
l T

D
R

Fitting Result

Calculated TDR

Fig. 8. Reflexion coefficient S11 of the simulated
differential via in Fig. 7 and simulated, differen-
tial time-domain reflectometry (TDR) result

As mentioned earlier, for the second PCB a new manufacturer had to be used,
which necessitated a change in the layer stack. In the new layer stack, the high-
speed signals are placed in the center of the stack, sandwiched between ground
planes. We created a 3D model of the new layer stack using CST Microwave
Studio as seen in Fig. 7. This allowed us to make detailed simulations on the
behavior of differential vias and determined the best possible geometry to be
used. Fig. 8 gives the result of the S11 parameter and simulated TDR behavior
of the differential via shown in Fig. 7.

Advanced PCB. By applying a two-stage design approach, we achieved the
following goals. First, the design constraints for the initial board are relaxed,
allowing the board to be manufactured early in the process. Second, the devel-
opment board is then actively used throughout the development of the AE core
and the surrounding system, allowing real measurements on a representative sys-
tem. These in turn were used to identify problems in the development board and
has guided the design of the final PCB. In addition to the weaknesses detected
in the first PCB design, it was decided to make the following changes to meet
industrial constraints:

– Added two additional layers to improve power distribution.
– Moved the secret key port from USB to PCIe to improve throughput.
– Removed the CXP active cable interface which was deemed to be unnecessary

for the application.
– Replaced the two XFP modules by two SFP+ modules.
– Added electronic dispersion compensation (EDC) to six of the SFP+ mod-

ules.

FPGA-Based High-Speed Authenticated Encryption System 17

– Adapted the dimensions of the PCB to better comply with the requirements
of the industrial partner.

However, our two-stage approach also had some drawbacks. The design pa-
rameters for such complex PCB systems are not standardized, and most of these
parameters need to be negotiated with the PCB manufacturer directly. If for
some reason, the PCB manufacturer has to be changed, it is likely that the cho-
sen parameters can not be reused, necessitating time-consuming re-design work.
In our case, we were forced to change manufacturers as the initial manufacturer
filed for bankruptcy. It proved to be quite difficult to find an alternative PCB
manufacturer, 12 out of the 14 companies we have contacted refused the design
due to its high complexity.

The advanced PCB now has 26 layers and is 3.3mm thick. This thickness
posed additional challenges for drill holes. The maximum practical aspect ratio
(thickness/diameter) for drill holes is around 16:1. Therefore, the thickness of the
board directly determines the minimum diameter of the vias that can be used.
Since smaller vias are required for impedance matching of 10Gbit/s differential
lines, a delicate balancing act is necessary to reconcile the demands of signal
quality on one hand and safe manufacturability on the other hand.

As a consequence of both the increased number of layers, and the change
of the manufacturer, we were no longer able to use vias that were 0.22mm in
diameter, but had to adjust the minimal via size to 0.25mm. This change alone
required significant re-design effort.

7 Conclusion

In this work, we described a hardware architecture for high-speed authenticated
encryption (AE) using block ciphers on FPGAs, based on alternative crypto-
graphic primitives. Our design operates in the offset codebook (OCB3) mode of
operation and contains four parallel Serpent block cipher cores for the encryption
part in order to achieve the desired data rates according to IEEE 802.3ba. The
OCB3-Serpent architecture reaches a throughput of 141Gbit/s and thus, out-
performs all GCM-AES implementations on FPGAs available to date. Although
OCB3 has not (yet) been approved by the NIST, its structure (as well as that
of Serpent) is definitely suitable for high-throughput implementations as shown
during this work. Moreover, we present a custom-designed printed circuit board
for the Stratix IV FPGA, which allows us to use the presented AE schemes in
real-world applications processing data with up to 100Gbit/s.

Acknowledgement. This work is part of the QCRYPT project, which is eval-
uated by the Swiss National Science Foundation and financed by the Swiss Con-
federation with funding via Nano-Tera.ch.

The authors would like to thank the entire team from the Microelectron-
ics Design Center at the ETH Zurich for their help during the development of
the printed circuit board as well as Christian Pendl from Graz University of
Technology for his contributions to the digital part of the system.

18 M. Muehlberghuber et al.

References

1. IEEE Standard for Information technology-Telecommunications and information
exchange between systems - Local and metropolitan area networks - Specific
requirements Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications Amendment 4: Me-
dia Access Control Parameters, Physical Layers, and Management Parameters for
40 Gb/s and 100 Gb/s Operation. IEEE Std 802.3ba-2010 (Amendment to IEEE
Standard 802.3-2008), pp. 1–457 (22 2010)

2. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard. In: Proceedings of the First AES Candidate Conference.
National Institute of Standard and Technology, Ventura (1998)

3. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: A New Block Cipher Proposal.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidel-
berg (1998)

4. Crenne, J., Cotret, P., Gogniat, G., Tessier, R., Diguet, J.P.: Efficient Key-
Dependent Message Authentication in Reconfigurable Hardware. In: 2011 Interna-
tional Conference on Field-Programmable Technology (FPT), pp. 1–6 (December
2011)

5. Dworkin, M.: Recommendations for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. Tech. rep., NIST (2004)

6. Dworkin, M.: Recommendations for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. Tech. rep., NIST (2007)

7. Henzen, L., Fichtner, W.: FPGA Parallel-Pipelined AES-GCM Core for 100G Eth-
ernet Applications. In: 2010 Proceedings of the ESSCIRC, pp. 202–205 (September
2010)

8. IEEE Std 802.11-2007: IEEE Standard for Information Technology - Telecommu-
nications and Information Exchange Between Systems - Local and Metropolitan
Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications (June 2007)

9. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

10. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

11. McGrew, D.A., Viega, J.: The Galois/Counter Mode of Operation (GCM). NIST
Modes Operation Symmetric Key Block Ciphers (2005)

12. Muehlberghuber, M., Keller, C., Felber, N., Pendl, C.: 100 Gbit/s Authenticated
Encryption Based on Quantum Key Distribution. In: 2012 IEEE/IFIP 20th In-
ternational Conference on VLSI and System-on-Chip (VLSI-SoC), pp. 123–128
(October 2012)

13. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., Roback, E.:
Report on the Development of the Advanced Encryption Standard (AES). Tech.
rep., National Institute of Standards and Technology, NIST (2000)

14. NIST: Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute
of Standards and Technology (November 2001)

15. Rogaway, P.: OCB Free Licenses (2013), http://www.cs.ucdavis.edu/~rogaway/
ocb/license.htm (accessed March 05, 2013)

http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm

FPGA-Based High-Speed Authenticated Encryption System 19

16. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. In: ACM Conference on Com-
puter and Communications Security, pp. 196–205 (2001)

17. Viega, J., Mcgrew, D.: The Use of Galois/Counter Mode (GCM) in IPsec Encap-
sulating Security Payload (ESP). RFC 4106 (Proposed Standard) (June 2005)

18. Wang, J., Shou, G., Hu, Y., Guo, Z.: High-speed architectures for GHASH based
on efficient bit-parallel multipliers. In: 2010 IEEE International Conference on
Wireless Communications, Networking and Information Security (WCNIS), pp.
582–586 (2010)

19. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Informational) (September 2003)

20. Zhou, G., Michalik, H., Hinsenkamp, L.: Improving Throughput of AES-GCM with
Pipelined Karatsuba Multipliers on FPGAs. In: Becker, J., Woods, R., Athanas, P.,
Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp. 193–203. Springer, Heidelberg
(2009)

A OCB Algorithms

Algorithm 2 lists the calculation of the table values L[..] required during the
OCB mode of operation. The double-procedure is defined according to:

double(X) = (X � 1)⊕ (msb(X) · 0x87),
where msb(X) represents the most significant bit of X using binary repre-

sentation.

Algorithm 2. Table value calculations

Input: Cipher key K, Number of message blocks m
Output: Setup(K,m)
1: L∗ ← EK(0128)
2: L$ ← double(L∗)
3: L[0]← double(L$)
4: for i = 1 to �log2(m)� do
5: L[i]← double(L[i− 1])
6: end for
7: return L∗, L$, L[0] . . . L[�log2(m)�]

The initial offset Δ is determined according to Algorithm 3. X � i denotes
a left shift operation of X by i bits.

20 M. Muehlberghuber et al.

Algorithm 3. Initial offset (Δ) calculation

Input: Nonce N , Message block length n, Cipher key K
Output: Init(N,n,K)
1: Bottom← N ∧ 16 � Bottom = Least six LSBs of N
2: Nonce ← 0127−|N|||1||N
3: Top← (1122||06) ∧Nonce � Zeroing out least six LSBs of Nonce
4: Ktop← EK(Top)
5: Stretch← Ktop||(Ktop ⊕ (Ktop 8))
6: Δ← (Stretch Bottom) ∧ 1n � Use first n bits of Stretch Bottom
7: return Δ

Algorithm 4 describes the calculation of HashK(A). Since the Setup pro-
cedure already gets called during the actual encryption process of OCB (cf.
Algorithm 1, line 4), line 3 in Algorithm 4 can be omitted as long as the table
values L[..] are globally available.

Algorithm 4. Authentication hash (HashK(A)) calculation

Input: Associated data A, Associated data block length q, Cipher key K
Output: HashK(A)
1: {A1, . . . , Ap, A∗} ← A, with |Ai| = q and |A∗| < q
2: Sum← 0128; Δ← 0128

3: L∗, L[0] . . . L[�log2(p)�]← Setup(K,p)
4: for i = 1 to p do
5: Δ← Δ⊕ L[ntz(i)] � Inci(Δ)
6: Sum← Sum⊕ EK(Ai ⊕Δ)
7: end for
8: if A∗ �= ∅ then
9: Δ← Δ⊕ L∗ � Inc∗(Δ)
10: Sum← Sum⊕ EK(A∗10∗ ⊕Δ), with

A∗10∗ = A∗‖1‖0 . . . 0, such that |A∗10∗| = q
11: end if
12: return Sum

A Smart Memory Accelerated Computed

Tomography Parallel Backprojection

Qiuling Zhu, Larry Pileggi, and Franz Franchetti

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, USA

qiulingz@andrew.cmu.edu

Abstract. As nanoscale lithography challenges mandate greater pat-
tern regularity and commonality for logic and memory circuits, new
opportunities are created to affordably synthesize more powerful smart
memory blocks for specific applications. Leveraging the ability to embed
logic inside the memory block boundary, we demonstrate the synthesis of
smart memory architectures that exploits the inherent memory address
patterns of the backprojection algorithm to enable efficient parallel im-
age reconstruction at minimum hardware overhead. An end-to-end de-
sign framework in sub-20nm CMOS technologies was constructed for the
physical synthesis of smart memories and evaluation of the huge design
space. Our experimental results show that customizing memory for the
computerized tomography (CT) parallel backprojection can achieve more
than 30% area and power savings while offering significant performance
improvements with marginal sacrifice of image accuracy.

Keywords: Smart Memory, Logic and Memory Synthesis, Computed
Tomography, Parallel Backprojection.

1 Introduction

Computationally intensive algorithms in medical image processing (e.g., comput-
erized tomography (CT)) require rapid processing of large amounts of data and
often rely on hardware acceleration [1–3]. Inherent parallelism in the algorithms
is exploited to achieve the required performance by increasing the number of
parallel functional units at a cost of power and area. The overall performance
is often defined by the limited bandwidth of the on-chip memory as well as the
high cost of memory access.

One approach to address these challenges is to optimize the on-chip memory or-
ganization by constructing a customized smart memory module that is optimized
for a particular function for higher performance and/or energy efficiency [4, 5].
However, such customization is generally unaffordable for an application-specific
IC embedded memory for which cost dictates that it is “compiled” from a set of
SRAM hard IP components (e.g., physical implementations of bitcells and pe-
ripheral circuits). Such memory compilation limits the possibility of application-
specific customization and hinders the system design space exploration.

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 21–44, 2013.
c© IFIP International Federation for Information Processing 2013

22 Q. Zhu, L. Pileggi, and F. Franchetti

Recent studies of sub-20nm CMOS design indicate that memory and logic
circuits can be implemented together using a small set of well-characterized
pattern constructs [6, 7]. Our early silicon experiments in a sub-20nm commercial
SOI CMOS process demonstrate that this construct-based design enables logic
and bitcells to be placed in a much closer proximity to each other without yield or
hotspots pattern concerns. While such patterning appears to be more restrictive
to accommodate the physical realities of sub-20nm CMOS, the ability to make
the patterns the only required hard IP allows us to efficiently and affordably
customize the SRAM blocks. More importantly, it enables the synthesis (not just
compilation) of customized memory blocks with user control of flexible SRAM
architectures and facilitate smart memory compilation.

To efficiently leverage this new technology, however, algorithms and hardware
architectures need to be revised. In this paper we revisit the well-known Shepp
and Logan’s backprojection algorithm that is widely used in the CT image recon-
struction [3]. It is observed that in the parallel implementation of the algorithm,
the memory address differences are fairly small for adjacent projection angles
and adjacent pixels. We exploit this property via a customized memory struc-
ture that could feed in-parallel running image processing engines (IPEs) with
a large amount of required projection data in one clock cycle. The implemen-
tation is realized by embedding “intelligent” functionality into the traditional
interleaved memory organization and allow multiple memory sub-banks to share
the memory periphery. Novel periphery-sharing smart memory strategies are ex-
plored, and an efficient parallel-pipeline backprojection architecture is proposed.
We further construct a smart memory design framework that provides the end
user with finer control of the customized SRAM architecture parameters, thus
enabling automatic generation of the specified implementation. Physical imple-
mentations were carried out in a commercial sub-20nm SOI CMOS process. Our
results indicate that there is more than 40% area savings and 30% power savings
while providing significant performance improvements. The marginal impact on
accuracy is minimized with appropriate constraints on the algorithm.

Related Work. In other related work various fast approaches have been pro-
posed to improve the backprojection implementation [2, 8, 9, 3]. As pointed out
in [3], these approaches may be classified into three categories; namely, algorith-
mic improvement, dedicated hardware, and parallel processing. However, this
paper shows that it is possible to combine these three aspects to deliver a more
efficient backprojection architecture by taking advantage of the availability of
smart memory synthesis. Our approach optimizes the parallel backprojection
architecture, especially the on-chip memory architecture, by exploiting the in-
herent memory address pattern that has not been previously explored.

2 Background

Filtered backprojection is the most commonly used approach for image re-
construction from parallel-beam projection data. Before analyzing the inherent

A Smart Memory Accelerated Computed Tomography 23

Source array

Detector array

tR

1tR

0R

1NR

d

i

x

y

r

c

0

(,)P x y

Fig. 1. Illustration of Parallel-Beam Projection: The object to be scanned is placed
between the evenly spaced array of an unidirectional X-ray source and the detector.
Radiation beams from the X-ray source pass through the object and are measured at
the detector, forms the projections of the image.

memory access pattern and building the corresponding customized memory ar-
chitecture, in this section we will first introduce the parallel-beam CT scanning
system and the commonly used backprojection algorithm.

2.1 CT Scanning Method

Tomography is a non-invasive imaging technique allowing for the visualization
of the internal structures of an object. Tomography has found widespread ap-
plications in many scientific fields, including physics, chemistry, astronomy, geo-
physics, and medicine. A parallel-beam CT scanning system uses an array of
equally spaced unidirectional sources of focused X-ray beams. The object to be
scanned is placed between the sources array and the detector. Radiation beams
from the source pass through the object and are measured at the detector (see
Fig. 1). A complete set of projections is obtained by rotating the arrays and tak-
ing measurements for different angles over 180◦, forming the Radon transform
of the image (i.e., projection data), and it contains information needed for the
reconstruction of an image. A set of values given by all detectors in the array
comprises a one-dimensional projection data. The inverse of the projection data
allows to reconstruct the tomographic images (i.e., backprojection) [10, 1]. The
Radon transform and its inverse provide the mathematical basis for reconstruct-
ing tomographic images from the measured projection data.

24 Q. Zhu, L. Pileggi, and F. Franchetti

2.2 Shepp and Logan Backprojection Algorithm

The most widely known reconstruction-from-projections test image is the Shepp-
Logan phantom. Introduced in 1974 it is still in common use today as a refer-
ence image for reconstruction algorithms. The Shepp and Logan backprojection
algorithm is the most well-known backprojection algortithm [3, 11]. In the con-
ventional Shepp and Logan backprojection algorithm, for each pixel, P , located
at (x, y), and each projection angle θi, the first step in backprojection is to lo-
cate the pixel in an appropriate beam (ray). If the center of P is not on a ray,
the distance (d) to its adjacent rays is calculated and the contribution from the
adjacent rays to the pixel (Qp) is computed according to the linear interpolation
equation (1), assuming that pixel is enclosed by the tth and (t+ 1)thth rays,

Qp(x, y, θi) = Rt + (d/L) · (Rt+1 −Rt), (1)

where Rt is the value of tth ray, d is the interpolation distance, and L is the
ray interval. Qp represents the contribution of the projection of angle θi to the
current pixel value.

In the above equation, the address t to the projection data memory and the
interpolation distance d are computed as follows (assuming the target image has
the dimension size of r × c):

tx,y,θi =
(
x− r

2

)
· cos θi −

(
y − c

2

)
· sin θi + toffset. (2)

and the interpolation distance d is calculated as follows:

d = t(θ)− �t(θ)�. (3)

Existing Algorithm Optimization. The above procedures, locating and in-
terpolation, are to be repeated for every pixel and for every projection angle.
However, there exists computational redundancy that can be explored to save
the operations in the iterations. To do this, 2D Shepp and Logan algorithm ex-
ploits the property of constant difference of address t for those pixels on the same
row or column. Considering two adjacent pixels located at (x, y) and (x+ 1, y),
and backprojection angle θ, we can calculate the addresses to the projection
memory for the two pixels based on (2). And the difference of their addresses,
tx+1,y,θi − tx,y,θi is equal to cos(θ), which is a constant for a given θ. Let δtx
denotes the constant difference along the x direction. Then, in the 2−D Shepp
and Logan algorithm, instead of evaluating equation (2) for every pixel, it sim-
ply adds a constant of cos(θ) to the previous adjacent address index (tx,y,θi)
to generate the new address index (tx+1,y,θi). The same rule can be applied to
the y direction to calculate the address index (tx,y+1,θi) by adding the constant
difference δty of sin(θ) to (tx,y,θi).

3 Memory Address Pattern Analysis

This paper moves one step forward by taking advantage of these constant ad-
dress differences of δtx and δty that exist in the conventional Shepp and Logan

A Smart Memory Accelerated Computed Tomography 25

Backprojection algorithm, to simplify not only the address calculation but also
the underlying memory hardware. Furthermore, we will demonstrate that the
address differences when the projection angle θ changes are also within a very
small and predictable range that could be also exploited to further optimize the
hardware memory design.

3.1 Address Difference for Adjacent Projections

For each pixel (x, y) and each projection angle (θi), the beam index tx,y,θi (i.e.,
address to the projection memory) is already shown as in (2). To illustrate the
inherent address patterns that were hidden in the algorithm, we show the address
to the next projection of angle θi+1 in (4):

tx,y,θi+1 =
(
x− r

2

)
· cos (θi+1)−

(
y − c

2

)
· sin (θi+1) + toffset. (4)

The address difference (δt1) between (2) and (4) could be as

δt1 =
(
x− r

2

)
· δcosθi +

(c
2
− y

)
· δsinθi , (5)

with δcosθi = cos(θi+1)− cos(θi) and δsinθi = sin(θi+1)− sin(θi).
δcosθi can be rewritten as:

δcosθi = cos θi+1 − cos θi = −2 sin
θi+1 + θi

2
sin

θi+1 − θi
2

(6)

For θi =
2πi
N , θi+1−θi

2 is the constant π/N , so δcosθi is simplified as

δcosθi = −2 sin
(π

N

)
sin

(
π(2i+ 1)

N

)
(7)

Similarly, we have:

δsinθi = 2 sin
(π

N

)
cos

(
π(2i+ 1)

N

)
(8)

So, (5) can be written as:

δt1 =
(
x− r

2

)
·
(
−2 sin(

π

N
) sin

π(2i+ 1)

N

)
+
(c
2
− y

)
·
(
2 sin(

π

N
) cos

π(2i+ 1)

N

)
(9)

Therefore, using trigonometric identities, we can compute the bound on (5)
as follows:

|δt1| ≤ |2 · sin
(π

N

)
· r
2
·
(
cos

(
π(2i+ 1)

N

)
− sin

(
π(2i+ 1)

N

))
|. (10)

(10) has a maximum bound of
√
2π · r

N for relatively large N .

26 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1

(,)x y (1,)x y

(, 1)x y (1, 1)x y
P

(a) Bilinear Interpolation (b) Linear Interpolation in Backprojection

0t

2t
3t

1t

4t
5t

t

t 1t

1tR

tR
d

, ,x yt

, ,x yt
R

(, ,)pQ x y

2t

3t
t

Fig. 2. Interpolation in CT Backprojection

Here we assuming r = c is the dimension size of a square image and N is the
number of projection angles. It is shown that δtθ1 is restricted in a very limited
range when the ratio of r and N is relatively small. For example, δtθ1 must be
less than 1 when r

N ≤ 1
8 .

This observation can easily extend to the scenario of computing the contribu-
tion of consecutive k projection angles to the same pixel (x, y). In this situation,
the address differences will be accumulated and the resulting accumulating ad-
dress difference between the next k projection memory of angle θk and the first
memory of angle θ1 for the same pixel P (x, y) will increase proportionally to k:

|δtk| = |tx,y,θi+k
− tx,y,θi| ≤

√
2π · r

N
· k· ≈ 4.44 · r

N
· k. (11)

For certain value of k, δtk will still be within a very small value.

3.2 Address Difference for Adjacent Pixels

In the above section, we have derived the beam index differences for a fixed
pixel when projection angles increment. Next, we will show that the address
differences when both pixel coordinate and projection angle increment are also
bounded by a limited range.

For demonstration purpose, we define the problem as to reconstruct four
neighborhood pixels in parallel, that is, (x, y), (x + 1, y), (x, y + 1), (x + 1,
y + 1). We will encounter this problem for parallel image reconstruction. For
example, Fig. 2 shows the example to compute four neighborhood pixels, (x,
y), (x + 1, y), (x, y + 1), (x + 1, y + 1), in parallel. The similar problem could
also happen in a higher-level interpolation, that is, the calculation of the non-
existing pixel P requires to compute its four neighborhood pixels first and apply
a bilinear interpolation afterwards.

We denote the address of the first pixel (x, y) in the first projection memory
θi as the reference address (tx,y,θi). Then, for other three pixels, (x + 1, y), (x,
y+1), (x+1, y+1) in the same projection memory of θi, their address differences
from tx,y,θi, can be estimated as shown in (12), (13), (14):

|tx+1,y,θi − tx,y,θi| = | cos(θi)| ≤ 1 (12)

A Smart Memory Accelerated Computed Tomography 27

|tx,y+1,θi − tx,y,θi| = | sin(θi)| ≤ 1 (13)

|tx+1,y+1,θi − tx,y,θi| = | cos(θi) + sin(θi)| ≤
√
2 (14)

It can be observed that all the shown three address differences are all in a
very small range. For the same four pixels, let’s now analyze their addresses to
the next adjacent projection memory of angle θi+1. For the first pixel located at
(x, y), its address difference from tx,y,θi has been calculated in (10) and here we
repeated it in (15):

|tx,y,θi+1 − tx,y,θi| = |δtθ1 | ≤
√
2π · r

N
(15)

Similarly, for the other three pixels, we show their address differences from
tx,y,θi in (16), (17), (18) respectively:

|tx+1,y,θi+1 − tx,y,θi| = | cos(θi) + δtθ1 | ≤ 1 +
√
2π · r

N
(16)

|tx,y+1,θi+1 − tx,y,θi| = | sin(θi) + δtθ1 | ≤ 1 +
√
2π · r

N
(17)

|tx+1,y+1,θi+1 − tx,y,θi| = | cos(θi) + sin(θi) + δtθ1 | ≤
√
2 +

√
2π · r

N
(18)

It can be observed that all of these memory addresses in adjacent projection
angles i and i + 1 are all very close to reference address tx,y,θi. (18) presents
the largest possible address distance among them. This is because the pixel to
compute in (18) is located at (x+1, y+1), and it changes from the pixel p(x, y)
in both x dimension and y dimension while pixels p(x+1, y) and p(x, y+1) only
changes from the pixel p(x, y) in either x dimension or y dimension. Therefore,
the address difference between tx+1,y+1,θi+1 and tx,y,θi shown in (18) is relatively
larger than the other address differences from (15) to (17).

We could extend the observation to the addresses of these four pixels in the
next adjacent k projection memories, that is, for projection angles from θi and
θi+k. We can easily prove that the involved addresses are also very close to
tx,y,θi for the required k, and the maximum possible address difference to tx,y,θi
is introduced by the last pixel (x+1, y+1) in the last projection memory θi+k,

|δtmax| = |tx+1,y+1,θi+k
− tx,y,θi| = | cos θi + sin θi + k · δt1| (19)

(19) has the maximum value of
√
2 + 4.44 · r

N · k and it is limited to small
range, e.g., the value must be less than four when r

N ≤ 1
8 and k = 4.

The basic idea is, since the address differences for adjacent projections angles
and adjacent pixels are small, these addresses will activate the same or adjacent
wordlines when such memories are located horizontally in parallel with each
other. Such particular memory address pattern leads to opportunities to share
the memory decoder among these memories by programming extra “intelligent”
logic functionalities into the memory periphery.

28 Q. Zhu, L. Pileggi, and F. Franchetti

4 Backprojection Smart Memory Design

In this section, we describe our approach to optimize the memory organization
and backprojection architecture based on the observed memory access patterns.

4.1 Interpolation Memory

As we mentioned, linear interpolation is required if the location of a pixel in a
specific view in not on a ray. As shown in Fig. 2 (b), if the beam index in a
projection memory, t, is not an integer and located in between [t2,t3], then the
neighborhood pixels t2 and t3 will be accessed and an linear interpolation will
be performed to compute the required pixel value t. To improve the processing
speed, the neighborhood pixels t2 and t3 need to be accessed from the memory
in one clock cycle. For the single port memory design, this requires to divide
the memory into two different memory banks. Therefore, to run two adjacent
backprojections in parallel, it requires to implement two separate projection
memories, and each memory is divided into two memory banks. Similarly, to
run more adjacent backprojections in parallel, it requires to implement more
multi-banking projection memories. However, we will show that it is possible
to significantly optimize the hardware implementation of such multi-banking
memory system if the discussed memory address patterns are well exploited.

4.2 Consecutive Access Memory

We have discussed that linear interpolation operation requires to access two
nearest neighborhood pixels from the projection memory in one clock cycle. We
would like to extend this operation to access more than two consecutive pixels
from the memory in one clock cycle (i.e., multiple consecutive access memory).
We will show later in section 4.4 that such multiple neighborhood pixels access
will be required to our smart memory design.

We will first introduce a smart memory structure which can output arbitrary
number of adjacent memory entries at arbitrary position in one clock cycle. As
we have mentioned, this is traditionally accomplished by distributing data across
multiple memory banks so that for any consecutive access all data elements are
retrieved from different banks without conflicts. Using multiple SRAM banks
incurs high overhead since every memory bank requires its own decoder logic.
In our previous work [12], we have proposed a rectangular-access smart memory
which is able to output an arbitrary rectangular block in a 2D data array. Its 1D
simplified version, called 1D Consecutive Access Memory, can be used to output
consecutive elements from a 1D data array.

We exploit the fact that we always read a constant number of consecutive
elements per cycle for each operation. The core observation is that after address
decoding, the activated wordlines of all memory banks are always adjacent to
each other. Based on that, it’s possible to optimize the multi-banking memory
system to save the periphery overhead. We employ a customized multi-banking

A Smart Memory Accelerated Computed Tomography 29

WL[0]

WL[1]

WL[n]

X
decoder

0 1 31

mapped onto memory block
 y[n-1: b]

 y[b : 0]

WWWWWWW

Y decoder

Memory bank

Data reordering logic

1D Data Array

4 5 3 2

2 3 5 4

X

60

]
0

4

X

61

1

5

X

62

2

6

X

63

3

7

32 33 63

Fig. 3. Consecutive Access Memory. As the basic memory structure in the paper, our
customized memory can output consecutive memory entries in one clock cycle and
allows parallel memory banks to share the x-decoder.

SRAM design topology [13], which provides around 50% area and power sav-
ings compared with the traditional multi-banking memory design. We define the
functionality of memory to support one-clock-cycle access of 2b data points from
a 2n size data array. We build a parameterized memory which is divided into 2b

memory banks and they are located vertically parallel to each other. To control
the memory block aspect ratio, we let each word of a memory bank holds 2c

data points. Fig. 3 shows the organization of the memory block when n = 6,
b = 2, c = 1. The main idea is to let 2b memory banks in each memory block
share a modified X-decoder by using the same method described in [13]. The
X-decoder is specifically designed to activate two adjacent wordlines simultane-
ously. That is, when one block wordline is asserted, the next block wordline is
also asserted by the OR gate operation of every two adjacent wordline signals.
Another Y -decoder is used to select one of the two activated wordlines for each
memory bank with the AND operations. Each memory bank word holds 2c data
points but each time only one data point of them is required. A column MUX
is designed to select one data element for each memory bank and the column
MUX is controlled by the lower (b + c) bits of address y (y[b+c−1:0]).

As shown in Fig. 3, both the first wordline (WL[0]) and the second wordline
(WL[1]) are initially activated by X-decoder but Y -decoder further selects the
WL[1] for the first two memory banks and WL[0] for the last two memory banks
with the additional AND operations. After the column MUX, this memory block
outputs data series of ‘4−5−2−3’, which are then reordered to be ‘2−3−4−5’.
So with some simple logic for data reordering, the smart memory outputs the
required 2b data points in order simultaneously. The distribution of address bits

30 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1

Projection angle

 (Reference)

t0 t1

t2 t3

t4 t5

t6 t7

t0 t1

t2 t3

t4 t5

t6 t7

t0 t1

t2 t3

t4 t5

t6 t7

t0 t1

t2 t3

t4 t5

t6 t7

i 1i (a) (b) (c)

0wl

1wl

2wl

3wl

1tc 0tc 0tc

0wl

1wl

2wl

3wl

0wl

1wl

2wl

3wl

0wl

1wl

2wl

3wl

(1) Memory Access Layout I

Projection angle

 (Reference)

t-1 t0

t1 t2

t3 t4

t5 t6

t-1 t0

t1 t2

t3 t4

t5 t6

t-1 t0

t1 t2

t3 t4

t5 t6

t-1 t0

t1 t2

t3 t4

t5 t6

i 1i (a) (b) (c)

0wl

1wl

2wl

3wl

0tc 0tc 0tc

0wl

1wl

2wl

3wl

0wl

1wl

2wl

3wl

0wl

1wl

2wl

3wl

(2) Memory Access Layout II

Fig. 4. Data Layout in Adjacent Two Projection Memories. If t2 and t3 are required
in the first reference memory of the projection θi, then beam pixel required in the next
memory of projection θi+1 has three possible locations, that is, [t1,t2], [t2,t3] or [t3,t4].

to each memory component is parameterized. By specify these parameters, the
resulting memory architecture can be precisely determined. Therefore, we can
program the smart memory at the RTL level. Compared with the conventional
multi-banking memory design, the amount of memory bank periphery circuits is
reduced from 2b to 1. As is observed in Fig. 3, the resulting memory architecture
has the embedded logic gates (e.g. the AND gates) which is tightly integrated
with the memory cells, and each logic gate communicates with its local memory
cells.

This consecutive access memory serves as the basic memory structure in our
method. However, this smart memory structure could be further optimized if
provided more knowledge from a particular application. In the rest of paper, we
will propose more advanced memory sharing strategies to further optimize the
consecutive access memory based on the observed memory access patterns in the
backprojection algorithm.

4.3 Decoder-mux and Output-mux

As a simple illustration, in Fig. 4 we show the physical data layout in our con-
secutive access memory. If the address of projection θi is located in between t2
and t3 (denoted by [t2, t3]), then in our previous discussed consecutive access
memory design, t2 and t3 should either be located in the same wordline or split
into two separate wordlines, as shown in the first memory array in Fig. 4 (a) and
Fig. 4 (b) respectively. In both situations, two wordlines, wl1 and wl2, are acti-
vated simultaneously. From the analysis of equation (10), we have derived that

A Smart Memory Accelerated Computed Tomography 31

1tc0tc(a) (b)

0

1

1

0

0

0

0

1

1

0

0

0

0wla

1wla

2wla

3wla

4wla

5wla

tctc

0wlb

1wlb

2wlb

3wlb

4wlb

5wlb

configuration logic
(decoder_mux)

0

1

1

0

0

0

1

1

0

0

0

0

0wla

1wla

2wla

3wla

4wla

5wla

tctc

0wlb

1wlb

2wlb

3wlb

4wlb

5wlb

Fig. 5. Decoder-MUX. The wordlines of the first memory (wlai) are configured to
generate the wordlines for the next memory (wlbi), so that the decoder of the latter
memory could be eliminated.

the address difference of the two adjacent memories (δtθ1) is less than one when
r
N ≤ 1

8 . This implies that the two adjacent memory addresses after rounding
must be either the same or adjacent to each other. Then for the addressed beam
index of the next projection memory of angle θi+1, it will has only three possible
locations, that is, [t1, t2], [t2, t3] or [t3, t4], as illustrated in the next three mem-
ory layouts of Fig. 4 (1) and Fig. 4 (2). In the illustration we also highlight the
corresponding active wordlines if implemented in the consecutive access memory.
It’s seen that if the active wordlines for the first memory are wl1 and wl2, then
in the next memory, the active wordlines must be the same in most situations.
The only exception is to access t2 and t3 from the first projection memory but
to access t1 and t2 from the second projection memory, as shown in the Fig. 4
(1). In this situation, the active wordlines are shifted upwards by one step. That
is, wl1 and wl2 are activated in the first projection memory but wl0 and wl1
are activated in the second projection memory. We use a control signal ct to
specify the relationship between the two sets of the activated wordlines of the
two neighborhood projection memories and ct can be determined by the input
address.

Based on this observation, we propose two “smart” memory approaches which
are named decoder-mux and output-mux respectively

Decoder-mux. In the first approach, called decoder-mux, we eliminate the de-
coder of the second memory and let it share the same decoder with the first
memory by adding some configuration logic (which we also call decoder-mux) in
between the two sets of memory wordlines. This logic configures the wordlines
of the first projection memory (wlai) to generate the wordlines for the next ad-
jacent projection memory (wlbi). The relationship between the wordlines of the
two adjacent memories can be derived as

32 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1

t0

t7 t5 t6

t8 t11 t9

X X X X

Sharing
Decoder

Projection
(Reference)

i

t10

0wl

1wl

2wl

nwl

t4 t1 t2 t3

(a) (b) (c)

t0 t3 t1 t2

t4 t7 t5 t6

t8 t11 t9

X X X X

t0 t3 t1 t2

t4 t7 t5 t6

t8 t11 t9

X X X X

t0 t3 t1 t2

t4 t7 t5 t6

t8 t11 t9

X X X X

t10 t10 t10

Projection memory
 (three situations)

1i

t2 t3

Output mux

t4 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3

t1 t2 t4 t3 t2 t3

Output mux Output mux Output mux

t3 t1 t2

t4

Fig. 6. Output-MUX. The memories are configured to output four pixels simultane-
ously, and the output mux is used to select the required two pixels from the four outputs
for the liner interpolation in each backprojection.

bi = (−ct) · ai + ct · ai+1. (20)

The configuration can be implemented using only AND and OR logic gates,
which ensures the feasibility of the hardware implementation. In Fig. 5, we show
an example of the configuration logic involving six wordlines. In this example,
wla1 and wla2 are activated in the first memory array. After the decoder-mux
block, either the same wordlines, wlb1 and wlb2, are activated in the second
memory when ct = 0 (Fig. 5 (a)), or the neighborhood wordlines, wlb0 and wlb1,
are activated when ct = 1 (Fig. 5 (b)).

Output-mux. In the alternative approach named output-mux the two memories
still share the decoder but the configuration logic is located outside of the mem-
ory (see Fig. 6). In this approach, memories are designed as the 1×4 consecutive
access memories to output more elements than required. In this example, t2, t3
along with their nearest neighbors t1 and t4 are all read out from the memories.
Then the configuration logic (output-mux) is used to select the appropriate two
elements from the four outputs. In this approach, the active wordlines for the
two memories are always the same in all the situations.

4.4 Horizontal and Vertical Parallel Backprojection

The method of decoder-mux and output-mux can be further extended to let more
than two adjacent projection memories share one memory decoder. When more
projection memories are involved, the address differences will be accumulated.
As explained in the formulae (11), the address difference of the next k projec-
tion memory from the first reference memory is increasing proportionally with
k. Therefore, we will have to configure the smart memory design in order to

A Smart Memory Accelerated Computed Tomography 33

 Slide 1 Slide 1 i 3i1i 2i 4i 5i 6i 7i

(reference)
0t

2t
3t

1t

4t
5t
6t
7t

Fig. 7. Parallel Projection Memory Accessing. The highlighted two-pixel groups rep-
resent the beam pixels that have chances to be accessed in each projection memory.

accommodate the increased address differences if we want to let more than two
adjacent projection memories share one memory decoder.

To exploit the proposed smart memory mechanisms to obtain superior hard-
ware efficiency of the parallel backprojection, we propose two parallel approaches,
that is, horizontal and vertical parallel backprojection.

Horizontal Parallel Backprojection. The horizontal parallel backprojection
can perform more than two backprojections in parallel and all the involved pro-
jection memories share the same memory decoder using either decoder-mux or
output-mux approach. Fig. 7 shows the example of accessing in eight adjacent
projection memories. Assuming that the pixels addressed by the first memory
addresses are t3 and t4, we highlight the possible locations of the two pixels
accessed in the next seven memories. We observe that they are all clustered
locally around t3 and t4, and are bounded by t0 and t7. For example, the pix-
els required for projection θi+3 could be any two adjacent pixels within [t1, t6].
Required pixels spread out further from t3 and t4 for memories that are fur-
ther away from the first memory as explained by formulae (11). Similar to the
output-mux design shown in Fig. 6, we configure each projection memory as an
1 × 8 consecutive access memory to output all the shown eight pixels and use
another 8-to-2 output-mux to select the appropriate two outputs from the eight
outputs for each projection memory. In this way, all the eight memories could
share the same decoder and seven memories decoders are saved. However, as the
projection memories output more pixels than required, many memory outputs
are actually wasted. An approach to use these wasted pixels is applying vertical
parallel backprojection, as discussed next.

Vertical Parallel Backprojection. From (12) to (19), we discuss the address
differences for performing the backprojections of four neighborhood pixels, that
is, (x, y), (x+1, y), (x, y+1), (x+1, y+1), concurrently. Backprojection of each
pixel per projection angle requires one linear interpolation and involves memory
accessing of two pixels, so totally it requires eight pixels to be accessed from
each projection memory. To analyze the address distribution of these pixels,
we compute all the involved addresses to the projection memories of projection
angle θi and projection angle θi+1 respectively, assuming r/N = 1/4. We let

34 Q. Zhu, L. Pileggi, and F. Franchetti

tx,y,θi be the reference address, and we assume that it is located at t13 (see
Fig. 8). In the middle column of Fig. 8, we explicitly present the differences
of other addresses from the reference address tx,y,θi. And in the last column
of Fig. 8 we indicate the possible locations of all the accessed pixels. It’s seen
that the addresses in the first memory array are all localized in between t11 and
t15 , therefore, the access of them will only touch the middle six pixels. In the
second projection memory, the accessed pixels are localized in between t20 and
t26, and therefore any of shown eight pixels in the second memory array could
be touched. For a small r/N , it can be expected that the locations of accessing
pixels in more adjacent memory arrays will also be localized in between the shown
eight pixels. In this way, we support the vertical parallel backprojection which
can perform the backprojections of multiple neighborhood pixels in parallel. The
memory architecture needs no changes for the vertical parallel backprojection
since we just take advantage of the unused memory outputs from the horizontal
parallel backprojection. By implementing both horizontal and vertical parallel
backprojection concurrently using the modified consecutive access memory, all
the memory outputs are utilized and a much higher throughput is achieved.

5 Parallel Backprojection Architecture

The CT image reconstruction naturally lends itself to parallel processing since
each backprojection can be processed independently. In this section, we will first
introduce the conventional pipeline parallel backprojection architecture. Then we
will develop a more advanced memory sharing pipeline parallel backprojection
architecture based on the smart memory structures that we have introduced.

5.1 Parallel Pipeline BackProjection Architecture

An existing efficient architecture for projectionbased processing is the parallel
pipeline backprojection engine (PPPE) [14, 1] due to its simplicity and poten-
tial speed. Fig. 9 (a) illustrates the structure of the PPPE based backprojection
system, which employs an array of identical IPEs to reconstruct the image re-
cursively, where each IPE performs the same tasks on a different projection. The
input image is presented to each IPE on the pipelined image bus, one pixel at a
time in a raster-scan format. In raster-scan format the x coordinate of the image
is incremented every clock cycle and the y coordinate is incremented every line.

To start the operation, the first IPE in the pipeline is fed a blank image and
adds the contribution of the first projection one pixel at a time. After the first
IPE adds its contribution, it passes the pixel to the next IPE in the pipelined
image bus and each IPE of the pipe adds its projection’s contribution to the
image. Therefore, each IPEn in the pipe performs the backprojection for the
angle θn, and add the resulting value to the input pixel, and then passes the pixel
onto IPEn+1 as it receives another pixel from IPEn−1. As the image pixel is sent
through the pipelined array, the pixel value is reconstructed after accumulating
the backprojected values from all the projections. The pipelined calculation and
the raster-scan input allow high data throughput of one pixel per clock cycle.

A Smart Memory Accelerated Computed Tomography 35

 Slide 1 Slide 1

Beam Index Possibly Accessed Data

 1i

20t

22t
23t

21t

24t
25t
26t

i

10t

12t
13t

11t

14t
15t
16t , , ix yt

1, , ix yt

, 1, ix yt
1, 1, ix yt

1, , ix yt
sin cos 2i i

cos 1i

11, , ix yt

1, 1, ix yt

11, 1, ix yt

sin 1i

sin cos 2.52
ii i t

sin 2.11
ii t

cos 2.11
ii t

1.11
i
t

1i

i

0 13t

14t13t12t

22t 23t 24t 25t21t

14t13t12t

21t 22t 23t 24t 25t 26t20t

12t 13t 14t 15t11t

21t 22t 23t 24t 25t 26t20t

21t 22t 23t 24t 25t 26t20t

Fig. 8. Address Differences Analysis

5.2 Advanced Memory Sharing Parallel Pipeline Backprojection
Architecture

If there are fewer IPE in the pipeline than angles (Nθ), then multiple passes
through the IPE array are required to reconstruct the image. However, the per-
formance will be decreased proportionally when the number of the IPE decreases.
As an effective solution to increase the performance but minimize the hardware
cost, we can modify the pipeline backprojection architecture to an more advanced
memory-sharing based parallel pipeline backprojection engine (MSPPPE) by
taking advantage of the our previous discussed horizonal and vertical backpro-
jection methods. MSPPPE is also composed of a pipeline of identical image
processing engines, however, each IPE will perform multiple backprojections to
multiple pixels concurrently.

Base on the horizontal parallel backprojection, we let each IPE perform more
than one backprojections simultaneously and each IPE needs to hold all of the
involved projection data on-chip. So conventionally each projection memory is
implemented as a multi-banking memory system in order to supply the data that
are required in the parallel CT backprojection. Based on the above horizontal
parallel backprojection approach, in each IPE we can combine all the projection
data memory into one large memory block by locating them horizontally in
parallel with each other so that all of these projection memories could share one
memory decoder. In this way, the large overhead that associate with the multiple
memory-banking design that were required in the parallel backprojection design
can be eliminated. On the other hand, to take advantage of the vertical parallel
backprojection, we increase the raster-scan bandwidth by letting more than one
pixels pass through the pipeline simultaneously. Although the calculation of the
contribution of every projection to every pixel needs to be performed in parallel,
only the ALU needs to be duplicated to enable the parallel computing. The
memory structure and its associate cost will be the same as above since we will
just reuse the redundant output from the horizontal parallel backprojection.

The modified architecture is illustrated in Fig. 9 (b), where we show an example
that the input image passes through the IPE on the pipelined image bus, four
pixels at a time. Each IPEn in the pipe performs eight adjacent backprojects from
θi to θi+7 to the current four pixels (P (x, y), P (x+1, y),P (x, y+1),P (x+1, y+1)),

36 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1 (b) Advanced Memory Sharing Parallel Backprojection Architecture

Image
buffer

IPE0 IPE1 IPE2 IPEn/8-1

Image bus

0 77 8 1515 16 2323Sinogram
bus

(,)P x y

(1,)P x y

(, 1)P x y
(1, 1)P x y

Image
buffer

IPE0 IPE1 IPE2 IPEn-1

Image bus

Histogram
bus

(a) Conventional Pipeline Backprojection Architecture

0 1 2

Fig. 9. Parallel Pipeline Backprojection Architecture

and then passes these pixels onto the IPEn+1 as it receives another four pixels from
IPEn−1. As these pixels are sent through the pipelined array, the pixel values are
accumulated from the contributions of all the projections.

6 Design Automation

In this section we analyze the design space and describe our design automation
framework for the hardware synthesis of a user-specified backprojection design
point.

6.1 Design Tradeoff Space

Designing a CT image reconstruction system is a tradeoff problem involving
algorithmic constraints, performance, hardware cost, and image accuracy. The
discussion of address patterns in Section 3 shows that the ratio of image dimen-
sion size (r) and the projection numbers (N), r/N , is an important algorithm
constraint. Smaller r/N indicates smaller adjacent address differences, which
allows for more adjacent projection memories sharing the memory decoder, sav-
ing more hardware cost and computing latency. However, it also limits the use
of the method in applications with larger image size r and/or fewer projection
angles N . For larger r/N , the corresponding larger address difference will limit
the number of projection memories that can share the decoder. For example, in
Fig. 7, the last two projection memories of θi+6 and θi+7 may require to access
two pixels at the two ends, which are not accessible along with other eight pix-
els from the 1 × 8 consecutive access memory. To solve this problem we could

A Smart Memory Accelerated Computed Tomography 37

Download tar of current design

Genesis

Smart Memory Compiler

Synthesizable Hardware
Description

Customized Decoder Logic

W
rit

e D
riv

er

Ou
tp

ut
 M

ux BANK

BLOCK

Synthesized Smart
Memory Layout

Gui Link: [http://genesis.web.ece.cmu.edu/gui/scratch/mydesign-13376.php]

Fig. 10. Smart Memory Design Framework

increase the memory access width and apply more complicated configuration
logic. However, this would increase the hardware cost. Alternatively, to lower
hardware cost we could assign the nearest neighborhood pixels if the requested
pixels are not available, which would result in loss of image accuracy. This shows
that different design decisions will result in different tradeoffs. The combination
of these design choices constitutes a huge design space. Further, exploring the
design tradeoff space requires customized memory designs, which are tradition-
ally prohibitively expensive. Thus, a strong design automation tool is required
to make the hardware synthesis feasible.

6.2 Chip Generator and Smart Memory Synthesizer

Application-specific LiM requires to tailor logic and memory design to applica-
tion or algorithm specifics. Thus, a strong design automation tool is required to
make the approach feasible, as hand-designing of LiMs is prohibitively expen-
sive. We have developed a design generation and design space exploration tool
which will automate the design of proposed customized smart memory blocks.

Our tool provides designers with a graphical user interface to select design
parameters, and generate the corresponding hardware for the specified function-
ality. Un-specified parameters (free parameters) can be optimized by the system.
A designer then evaluates the obtained designs and can explore the design space
to optimize the design by varying the parameters. We encapsulate all of these
design tradeoffs in our automatic design framework and build the backprojec-
tion smart memory synthesizer, the user interface is shown in Fig. 10. It enables
an application designer to explore the design space to optimize the design by
simply varying the parameters and automatically generates the optimized smart
memory hardware IP.

38 Q. Zhu, L. Pileggi, and F. Franchetti

Design Exploration and RTL Generation. The tool frontend is built us-
ing our chip generator infrastructure “GENESIS” [15, 16] and it’s responsible
for application interfacing, design optimization and efficient RTL generation. To
achieve that, it allows designers to simultaneously code in two interleaved lan-
guages: a target language (SystemVerilog) to describe the behavior of hardware
and a meta-language (Perl) to decide what hardware to use for given specs. This
“dual-language programming” allows to design an entire parameterized family
of LiM designs, all at once. Design parameters are set in graphical user interface
(GUI) which is defined through XML files. An optimization engine selects opti-
mized values for free parameters. The system supports hierarchical composition
of modules and resolving of parameter constraints across modules through all
hierarchy levels.

Smart Memory Compiler. The automated design framework discussed so far
is capable of mapping LiM application specifications to optimal RTL. Our system
also relies on a backend “smart memory” compiler to physically co-synthesize
logic and memory. Today’s embedded memory is typically synthesized using an
SRAM compiler. But the use of commercial SRAM hardware IP is unable to in-
corporate application-specific customization that are required in the LiM design
and also hinders comprehensive design space exploration. LiM physical synthesis
is enabled by our smart memory synthesis framework, which is developed from
the pattern construct based logic and memory co-design methodology [6, 7].
Using this framework, embedded logic in the LiM is synthesized together with
the memory cells to a small set of pre-characterized layout pattern constructs.
Lithographic compliance between the co-designed logic and memory ensures sub-
20nm manufacturability of LiM circuits.

End-to-End LiM Design Framework. In our tool chain we are combining the
architectural frontend and physical backend to build an end-to-end LiM design
framework. Its input is the design specification and the output is ready to use
hardware (RTL, GDS, .lib, .lef). When generating a specified design point, our
framework also reports the area, power and latency and send them back to the
frontend user interface, from which the designer can evaluate the resulting design
and reset the design specs for redesign if necessary. Our LiM framework allows
an application designer to generate the optimized “silicon” templates by simply
tuning the “knobs”.

7 Evaluation and Results

In this section, we evaluate the smart memory architectures with respect to area,
power, latency, and accuracy. The design framework is used to generate various
design points. Area and power are measured from the physical implementations
of the design on a commercial sub-20nm SOI CMOS process at 500MHz and the
shown results are all normalized.

A Smart Memory Accelerated Computed Tomography 39

 Slide 1 Slide 1

0.0E+00

3.0E+03

6.0E+03

9.0E+03

1.2E+04

size_256 size_512 size_1024 size_2048 size_4096

(c) Memory Area with Fixed Wordlength-8bits

consecutive_access_2
consecutive_access_4
consecutive_access_8

Memory Area[um^2] vs. Memory Size

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

16X16 16X32 32X32 32X64 64X64

(a) Memory Area-Power-Delay Product

Dumb_Memory Smart_Memory

Area-Power-Delay Product [um^2·mW·nS] vs. Memory Size

0.0E+00

1.2E+04

2.4E+04

3.6E+04

4.8E+04

8bits 16bits 24bits 32bits 40bits 48bits 56bits 64bits

(d) Memory Area with Fixed Size-4096

consecutive_access_2
consecutive_access_4
consecutive_access_8

Memory Area[um^2] vs. Memory Wordlength

0

30

60

90

120

150

x_decoder wl_and y_decoder reorder_mux write_driver

(b) Hierarchical Smart Memory Periphery Area

consecutive_access_2
consecutive_access_4
consecutive_access_8

Memory Periphery Area [um^2] Distribution for 512×8bits Memory

Fig. 11. Consecutive Access Memory Evaluation

7.1 Consecutive Access Memory Evaluation

The smart consecutive access memory is the basic memory structure that we
use to implement various backprojection smart memory designs, therefore we
evaluate its design efficiency first as shown in Fig. 11. To be consistent with the
previous design, we implement the smart consecutive access memory to readout
eight consecutive pixels from 1D data arrays from size 256 to size 4096. For
comparison purpose, we also built the traditional multi-banking memory designs
with the same functionalities. In Fig. 11 (a), we demonstrate the power-delay-
product of the proposed smart consecutive access memory compared with the
traditional multi-banking memory design (i.e., dumb memory), and it shows
that the proposed smart memory are one order magnitude more efficient. To
better understand the design structure of the smart consecutive access memory,
we implement three different consecutive assess memories with different access
bandwidths, that is, consecutive assess of two pixels, four pixels and eight pixels.
We plot their hierarchical memory periphery area distribution in Fig. 11 (b). We
see from the plot that the increase of the access width will decrease the area of the
x-decoder while at the same time will increase the area of most other periphery
circuit components (e.g., y-decoder, reorder-mux, write-driver and IO registers).
This is because when the access width increases, the memory is getting wider
and shorter as there will be more memory sub-banks sharing the x-decoder. Cell
area is not plotted since it is assumed to be approximately the same for all the
designs. For the same reason, the localized wordline AND logic (i.e., wl and) area
is the same for all the designs as each memory cell is associated with one AND
gate in the customized x-decoder design. In Fig. 11 (c) and (d), we show the
overall memory area for smart memory designs with different consecutive access
widths at different memory sizes and different memory wordlengths respectively.
One important observation is that the increase of the consecutive access width
will not increase the overall smart memory area, and sometimes it even decreases
the overall memory area for those larger-size memory designs (e.g., memory of

40 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1

0

500

1000

1500

2000

2500

x_decoder local wl_and others

(d) Periphery Area Distribution

Conventional
Decoder_mux
Output_mux

Area [um^2] Memory size = 4K Bytes

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

cell_area decoder_area others

(c) Memory Area Distribution

Conventional
Decoder_mux
Output_mux

Area [um^2] Memory size = 4K Bytes

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

512 1024 2048 4096

(b) Area-Power-Delay Product

Conventional

Decoder_mux

Output_mux

Area-Power Product [um^2 · mW · nS] vs. Memory Size

0

0.2

0.4

0.6

0.8

1

1.2

Area Dynamic_power Static_power

(a) Smart Memory Method Comparison

Conventional Decoder_mux Output_mux
Normalized Area & Power for Different Memory Sharing Methods

Fig. 12. Backprojection Smart Memory Evaluation

size 4096). This is because larger-size memory is associated with larger memory
periphery circuits in the x-dimension (e.g., x-decoder) which can be reduced
more in designs with larger access widths. However, the increase of the access
width tends to cost more memory area for memories with larger wordlengh since
in this situation the periphery circuits in the y-dimension (e.g., y-decoder) is
getting larger and more complicated.

7.2 Backprojection Smart Memory Cost Evaluation

Decoder-mux and Output-mux Evaluation. In Fig. 12 (a), we first com-
pare the hardware cost of two smart memory approaches (decoder-mux and
output-mux) to the conventional rectangular access smart memory approach.
The memories studied here have the size of 4,096-words and wordlength of 16
bits, and we only consider two memories implemented as 1×8 consecutive access
memories sharing the decoder with each other. We observe that the output-mux
approach is more cost-efficient as saves around 30% area and 20% power while
decoder-mux only achieves around 5% area saving and 10% power saving. The
similar results can be seen in Fig. 12 (b), in which we plot the overall area-
power-delay of the three designs at four different memory sizes. As expected,
output-mux approach saves on average 20%− 40% in terms of area-power-delay
product. On the other hand, decoder-mux performs much worse compared with
the output-mux. The reason is that in decoder-mux each wordline is accompanied
by a set of configuration logic (two AND gates and one OR gate), and each set
of logic communicates with its local wordline. This explains also why decoder-
mux achieves relatively higher power-efficiency compared to its area-efficiency.
In contrast, output-mux only requires a single large configuration logic at the
memory output while its memories have large access width as they output more
pixels than required. Due to the superiority of the output-mux method, it will
be used for our backprojection system in the following discussions.

A Smart Memory Accelerated Computed Tomography 41

 Slide 1 Slide 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Pd_2 Pd_3 Pd_4 Pd_5 Pd_6 Pd_7 Pd_8

(b) Latency Evaluation

One-pixel

Four-pixels

Normalized Latency vs. Parallel Degree

0

0.2

0.4

0.6

0.8

1

Pd_2 Pd_3 Pd_4 Pd_5 Pd_6 Pd_7 Pd_8

(a) Area and Power Evaluation

Area
Power

Normalized Area/Power vs. Parallel Degree

Fig. 13. Memory Sharing Parallel Pipeline Architecture Evaluation

As the main idea of the memory sharing strategy is to reduce the hardware
cost by sharing the x-decoder, in order to understand the distribution of the
hardware cost of the different components in the memory structure, in Fig. 12 (c)
we plot the hierarchical memory area for all the three methods. It is observed that
although memory cell array occupies most of the memory area, the periphery
area also accounts for a large proportion of overall memory area. As the memory
cell area of the three designs are the same, in Fig. 12 (d) we particularly plot the
hierarchical memory periphery area for the three methods and we see that the
memory periphery is dominated by the x-decoder and the embedded localized
wordline AND logic (i.e., wl and) gates. As we discussed in 4.2, the localized
wordline AND logic (i.e., wl and) gates are tightly integrated with the memory
cell for local wordline activation. As can be seen, both of the decoder area and
the local wl and gates area are largely reduced in the output-mux approach as
they can be directly shared by all the memory banks.

Parallel Backprojection Architecture Evaluation. In Fig. 13 (a) we evalu-
ate the hardware cost of the MEPPPE memory architecture for reconstructing a
256×256-size image from 1,024 projections. The x-axis is the parallel degree Pd,
which is defined as the number of adjacent backprojections that are performed in
each IPE concurrently and its value varies from two to eight. In our implementa-
tion these Pd projection memories will all share the same memory decoder. The
y-axis shows the relative area and power compared to the conventional design
where no memory sharing strategies are used. We see that more than 40% area
savings and more than 30% power savings can be achieved with the increase
of Pd. Fig. 13 (b) shows that the latencies are decreasing proportionally with
the increase of Pd as expected. Moreover, we achieve a four times performance
improvement by computing four pixels in parallel in each IPE.

7.3 Backprojection Accuracy Evaluation

As we gain in both of hardware cost and performance, the impact on accuracy
needs to be evaluated. In Fig. 14 (a), we show the distribution of the locations of
the accessed data in eight adjacent projection memories for a real application. We
first observe that the locations of the accessed data in eight adjacent projection

42 Q. Zhu, L. Pileggi, and F. Franchetti

 Slide 1 Slide 1

0.0E+00

4.0E+03

8.0E+03

1.2E+04

1.6E+04

2.0E+04

(a) Indexed Data Distribution

center+3
center+2
center+1
center
center-1
center-2
center-3

Distribution of Indexed Projection Data in Eight Projection Memories

1.0E-07

2.0E-06

4.0E-05

8.0E-04

1.6E-02

Pd_2 Pd_3 Pd_4 Pd_5 Pd_6 Pd_7 Pd_8

(b) Accuracy Evaluation

r/N=32/1024 r/N=64/1024 r/N=128/1024

r/N=256/1024 r/N=512/1024

Mean Square Error (MSE) vs. Parallel Degree

Fig. 14. Image Accuracy Evaluation

(a) Pd_1 (b) Pd_2 (c) Pd_3 (d) Pd_4

(e) Pd_5 (f) Pd_6 (g) Pd_7 (h) Pd_8

Fig. 15. Display of Reconstructed Image

memories are all localized to the location of center. Therefore we could design
all the eight projection memories to output the pixels within the range between
center−3 and center+3 so that they could share one memory decoder based on
our output-mux design. However, it can also be seen that the range of possible
locations of the accessed data are increasing when we go from projection memory
of angle i to the projection memory of angle i + 7. For example, starting from
projection angle θi+4, all the shown seven locations will be intensively touched.
It can be expected that if we let more adjacent projection memories share the
decoder, they could require pixels that are beyond the smart memory outputs.
We could approximately assign the nearest pixels if the required pixels are not
available but it will then sacrifice the resulting image quality in such situations.

We measure the mean square error (MSE) of the reconstructed image com-
pared to the reference image and plot the results in Fig. 14 (b) for parallel
degrees (Pd) from one to eight. As expected, the error increases when either
Pd or algorithm parameter (r/N) increases. This is because that we let Pd

A Smart Memory Accelerated Computed Tomography 43

projection memories share the same memory decoder, and it will introduce error
if the address differences of these Pd projection memories are not small enough
which could happen when Pd and (r/N) are large. In our implementation, we
carefully manipulate the data precision so that the numerical errors can be ig-
nored in the accuracy comparison. In Fig. 15 we display the reconstructed head
phantom images from hardware simulation, which indicates fairly high image
quality for all the studied parallel degrees. We also observe the gradual deterio-
ration of the image quality for higher parallel degree, which allows us to tradeoff
image accuracy with hardware cost in applications where minor distortion is
acceptable.

8 Conclusion

The emergence of construct-based design facilitates the robust synthesis of cost-
effective smart memory blocks that are customized for specific applications. This
cutting-edge design methodology creates opportunities to re-design algorithms
and re-architect the hardware structure to match the advanced technology ca-
pabilities. In this paper we propose smart memory architectures and the end-
to-end design framework to implement them for the CT image reconstruction
problems. The results in a sub-20nm CMOS process demonstrate significant
improvements in area, power and performance. Moreover, we present the op-
portunities to tradeoff hardware cost with acceptable image accuracy based on
appropriate algorithm tuning. This paper demonstrates that the embedded mem-
ories in data-intensive computing can exploit the smart memory design method-
ology and the inherent address pattern of the algorithm to achieve superior power
and performance efficiency.

Acknowledgement. The authors acknowledge the support of the C2S2 Focus
Center, one of six research centers funded under the Focus Center Research
Program (FCRP), a Semiconductor Research Corporation entity.

References

1. Agi, I., Hurst, P.J., Current, K.W.: An Image Processing IC for Backprojection
and Spatial Histogramming in a Pipelined Array. IEEE Journal of Solid-State
Circuits 28(3), 210–221 (1993)

2. Srdjan, C., Miriam, L., Miller, E., Trepanier, M.: Parallel-Beam Backprojection:
An FPGA Implementation Optimized for Medical Imaging. FPGA (2002)

3. Chen, C., Cho, Z., Wang, C.: A Fast Implementation of the Incremental Backpro-
jection Algorithms for Parallel Beam Geometries. IEEE Transactions on Nuclear
Science 43(6), 3328–3334 (1996)

4. Zhu, Q., Turnerz, E.L., Bergery, C.R., Pileggi, L., Franchetti, F.: Application-
Specific Logic-in-Memory for Polar Format Synthetic Aperture Radar. In: IEEE
Conference on High Performance Extreme Computing, HPEC (2011)

44 Q. Zhu, L. Pileggi, and F. Franchetti

5. Zhu, Q., Bergery, C.R., Turnerz, E.L., Pileggi, L., Franchetti, F.: Polar Format Syn-
thetic Aperture Radar in Energy Efficient Application-Specific Logic-in-Memory.
In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1557–1560 (2012)

6. Morris, D., Rovner, V., Pileggi, L., Strojwas, A., Vaidyanathan, K.: Enabling
Application-Specific Integrated Circuits on Limited Pattern Constructs. In: Symp.
VLSI Technology (2010)

7. Morris, D., Vaidyanathan, K., Lafferty, N., Lai, K., Liebmann, L., Pileggi, L.:
Design of embedded memory and logic based on pattern constructs. In: Symp.
VLSI Technology (2011)

8. Luiz, M.C.B., Felipe, M.G.F., Vladimir, C.A., Claudio, L.A.: Reconfigurable Hard-
ware for Tomographic Processing. In: Proceedings of the XI Brazilian Symposium
on Integrated Circuit Design, pp. 19–24 (1998)

9. Jang, B., Kaeli, D., Do, S., Pien, H.: Multi GPU Implementation of Iterative To-
mographic Reconstruction Algorithm. In: International Symposium on Biomedical
Imaging (ISBI), pp. 185–188 (2009)

10. Yu, H.Q.: Memory Architecture for Data Intensive Image Processing Algorithms
in Reconfigurable Hardware. Master Thesis (2003)

11. Cho, Z.H., Chen, C.M., Lee, S.Y.: Incremental Algorithm - A New Fast Back-
projection Scheme for Parallel Beam Geometries. IEEE Transactions on Medical
Image 9(2), 207–217 (1990)

12. Zhu, Q.L., Vaidyanathan, K., Shachamy, O., Horowitz, M., Pileggi, L., Franchetti,
F.: Design Automation Framework for Application-Specific Logic-in-Memory
Blocks. In: Application-Specific Systems, Architectures and Processors (ASAP),
pp. 125–132 (2012)

13. Murachi, Y., Kamino, T., Miyakoshi, J., Kawaguchi, H., Yoshimoto, M.: A Power-
Efficient SRAM Core Architecture with Segmentation-Free and Rectangular Ac-
cessibility for Super-Parallel Video Processing. In: IEEE International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), pp. 63–66 (2008)

14. Hinkle, E.B., Sanz, J.L.C., Jain, A.K., Petkovic, D.: P3E: New life for projection-
based image processing. Journal of Parallel and Distributed Computing 4(1), 45–78
(1987)

15. Shacham, O.: Chip multiprocessor generator: automatic generation of custom and
heterogeneous compute platforms. PhD Thesis, Stanford (2011)

16. Stanford genesis2web site,http://genesis2.stanford.edu/mediawiki/index.php

http://genesis2.stanford.edu/mediawiki/index.php

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 45–63, 2013.
© IFIP International Federation for Information Processing 2013

Trinocular Stereo Vision Using a Multi Level
Hierarchical Classification Structure*

Andy Motten1, Luc Claesen1, and Yun Pan2

1 Expertise Centre for Digital Media, Hasselt University – tUL – iMinds
Wetenschapspark 2, 3590 Diepenbeek, Belgium
firstname.lastname@uhasselt.be

2 Institute of VLSI Design, Zhejiang University
Hangzhou, China

panyun@vlsi.zju.edu.cn

Abstract. A real-time trinocular stereo vision processor is proposed which
combines a window matching architecture with a classification architecture. A
pair wise segmented window matching for both the center-right and center-left
image pairs as their scaled down image pairs is performed. The resulting cost
functions are combined which results into nine different cost curves. A multi
level hierarchical classifier is used to select the most promising disparity value.
The classifier makes use of features provided by the calculated cost curves and
the pixels’ spatial neighborhood information. Evaluation and classifier training
has been performed using an indoor dataset. The system is prototyped on an
FPGA board equipped with three CMOS cameras. Special care has been taken
to reduce the latency and the memory footprint.

Keywords: trinocular stereo camera, real-time matching, confidence metric,
computer vision, system-on-chip, FPGA, SoC.

1 Introduction

Trinocular vision makes use of three cameras to calculate a disparity space image
(DSI). The DSI is generated by pairwise matching the images from the different cam-
eras which is based on a local window based stereo matching architecture.

An improvement of occlusion handling in trinocular vision compared to stereo vi-
sion is achieved by Mozerov [1]. The main idea is based on the assumption that any
occluded region in a matched stereo pair (center-left images) in general is not oc-
cluded in the opposite matched pair (center-right images). They use a global optimiza-
tion technique to derive the composite DSI. Bidirectional matching using trinocular
stereo is used by Ueshiba [2] to detect half-occlusions and to discard false matches. It
uses a cumulative cost function derived from a summation of both cost curves.

* This research has been sponsored in part by the BOF (Bijzonder Onderzoeks Fonds uHasselt),

Flanders FWO (Fonds voor Wetenschappelijk Onderzoek) and Chinese MOST (Ministry of
Science and Technology) project number G.A.063.10.

46 A. Motten, L. Claesen, and Y. Pan

The method presented in this paper likewise calculates several DSI’s. However, in-
stead of combining them, a hierarchical classifier is used to select the most likely
disparity for each pixel in the final DSI. The matching algorithm is based on the adap-
tive-weight algorithm proposed by Yoon [3], which adjusts the support weight of each
pixel in a fixed sized window. The support weights are depending on the color and the
spatial difference between each pixel in the window and the center pixel. Dissimilari-
ties are computed based on the support weights and the plain similarity scores. Their
experiment indicates that a local based stereo matching algorithm can produce depth
maps similar to global algorithms. A hardware implementation using the same ideas is
published by Motten in [4].

For each matching result, a confidence metric is calculated. A good comparison be-
tween different confidence metrics can be found in the evaluation paper of Hu [5].
Confidence metrics suitable for hardware implementation can be found in [6]. They
conclude that neighboring pixels contain valuable information to distinguish good
matches from bad ones.

Recently many stereo implementations have been proposed for hardware imple-
mentations. A real-time FPGA-based stereo vision system is presented by Jin [7] that
makes use of the census transform. Their system includes all the pre- and post-
processing functions such as: rectification, LR-check and uniqueness test in a single
FPGA. Another extensive implementation can be found in [8]. They divide the prob-
lem into two parts: first a rough depth map is constructed using a segmentation based
SAD window comparison, second a disparity refinement module identifies false
matches and replaces them with new estimates. Hardware implementations of a trino-
cular disparity processor are limited. An implementation using the summation of
SAD’s from both image pairs can be found in [9].

This paper combines the strengths of an advanced stereo vision system with a two-
scale adaptive window SAD incorporated in a trinocular setup.

2 System Overview

2.1 General Architecture

The trinocular disparity processor takes three images that have been taken by three cam-
eras that have a vertical alignment and a horizontal offset (see Fig. 1). The objective is
to calculate a disparity space image (DSI) where dark pixels represent a distance further
away from the cameras and a light pixel represents a distance closer to the camera.

Objects will appear on the same horizontal line (the epipolar line) on all images.
The horizontal distance between the same objects on the center image and the left (or
right) image is called the disparity. If calibrated correctly, the disparity of an object
between the center-left and the center-right image pair is the same. This characteristic
can be used to discard false matches using bidirectional matching [2] or to improve
the quality of the disparity space image (DSI) especially in occluded regions [1].

 Trinocular Stereo Vision U

The architecture consists
the pixel streams, generates
chip memories. The secon
different streams using a bi
calculates its confidence for

Fig.

On several places, this a
using a fixed window shap
dow. This assumption is fa
different depth levels. A m
tinuity across pixels with s
rithm which gives a suppor
on chip resources, an alter
chosen as binary values [4]
support window of the ce

Using a Multi Level Hierarchical Classification Structure

s of three main blocks (see Fig. 2). The first block captu
s the scaled images and places them in multiple parallel
d block performs a pair wise window comparison of
inary adaptable SAD cost aggregation [8]. The third bl
r each data stream and selects the final disparity value.

. 1. Trinocular disparity processor setup

Fig. 2. Global architecture

architecture makes use of a binary support window. W
pe, depth continuity is implicitly assumed across this w
alse at depth edges where parts of the window belong
more conservative assumption is to only assume depth c
similar color. Yoon [3] proposed an adaptive weight al
t weight to each pixel in a window. In order to save syst
rnative has been proposed where the support weights
. A value of ‘0’ means that this pixel doesn’t belong to

enter pixel and ‘1’ means that this pixel belongs to

47

ures
on-
the

lock

When
win-
g to
con-
lgo-
tem
are
the
the

48 A. Motten, L. Claese

support window of the cent
calculated by taken the abs
of all pixels q belonging to

 0 |
This binary support windo
other (2). Instead of compar
window is ‘1’ (white) will b

 ∑

Fig. 3. Window con

Each window of the cen
the left or the right camera.
lation is performed. The lar
are needed. The result is an
(usually starting from 0), th

In this paper, C1 stands
C2 stands for the second l
are indicated by D1 and D
the cost curve using a “Win
the cost curve (C1) will bec

In this architecture nine
DSI. The first step is to c
ter-left (SADCL1) image pai
The second step is to calcul

en, and Y. Pan

ter pixel. This is called the binary support window (1). I
solute difference of the chroma color components (CB,
the rectangular window centered in pixel p. | | |1

ow is used when comparing different windows with e
ring a complete window, only the pixels where the supp
be taken into account (see Fig.3).

ntent (left) and resulting binary support window (right)

nter image needs to be matched with multiple windows
For every window that needs to be matched, a SAD cal

rger the disparity search width, the more SAD calculati
n array that contains a SAD score for each disparity va

his array is also known as the cost curve (see Fig. 4).

Fig. 4. Cost curve example

for the lowest SAD score (the minima of the Cost Curv
owest SAD score, and so on. Their corresponding dep

D2. Most matching algorithms calculate the disparity fr
nner Takes All” (WTA) approach. Doing so, the minima
come the calculated disparity D1.
e different cost curves are calculated for each pixel in
alculate the cost curve the center-right (SADCR1) and c
irs as their scaled down image pairs (SADCR0 and SADC

late the summation of these cost curves (3).

It is
CR)

(1)

each
port

(2)

s of
lcu-
ions
alue

ve).
pths
rom
a of

the
cen-
CL0).

 Trinocular Stereo Vision U

3 Hierarchical Cla

In the previous section it is
pixel (3). In order to select
al classifier is constructed (
values are investigated inde
confidence classifier is con
dences are passed on to the
or indicates that no disparity

Using a Multi Level Hierarchical Classification Structure

Fig. 5. Different window matching , , ,

assification

explained that nine disparity values are generated for e
one of them for generating the DSI, a two level hierarch
(see Fig. 6). In the first level of the hierarchy, the dispa
ependently of each other. For each disparity value a bin
nstructed using the methods presented in [6]. These co
e second level classifier which selects the disparity to u
y has been found.

Fig. 6. Hierarchical classification

49

(3)

each
hic-

arity
nary
nfi-
use,

50 A. Motten, L. Claesen, and Y. Pan

For each level of the hierarchy, a different set of features is needed for classifica-
tion. The first level of classifiers uses information obtained from the pixel neighbor-
hood and from its corresponding cost curve. The second level classifier uses the
generated binary confidence values together with the agreement between the different
disparity values. A binary confidence value of ‘1’ indicates a strong confidence in the
correctness of the disparity value. A binary confidence value of ‘0’ indicates a weak
confidence in the correctness of the disparity value.

Three different datasets have been used to verify the results:

• Tsukuba [10]: 384 x 288 (Maximal disparity of 30).
• Teddy [11]: 450 x 375 (Maximal disparity of 30).
• Art [12]: 695 x 555 (Maximal disparity of 30).

In order to train a classifier, it is needed to define a target output. In this case, the
preferable output would be a Boolean value indicating the correctness of the disparity
value (the confidence value). A pixel is defined to be correctly matched with its cor-
responding disparity when the calculated disparity (Dc) and the real disparity (Dr) do
not differ more than one unit disparity value (4, 5).

 1 , 10 (4)

 ∑ (5)

3.1 Feature Generation

The features for the first level of classification are proposed in [6]. Their objective
lies in accommodating the classification of the disparity stream for the first level of
classification.

The matching cost (MC) is the minimum value of the cost curve. A high score will
be a good indication of a wrong depth value.

 (6)

The texture (TEX) uses a fixed window of color information (Ci) around the investi-
gated pixel and measures the amount of texture it contains. The intuition behind it is
that textureless regions will provide more incorrect depth values.

 (7)

The segmentation size (SEG) calculates the sum of the binary support window (1).
This binary support window can be the same as the one used in the cost aggregation
phase.

 ∑ (8)

The following two features make use of neighborhood information of the disparity
space image (DSI). In order to calculate them, a buffer is needed to store several lines

 Trinocular Stereo Vision Using a Multi Level Hierarchical Classification Structure 51

of the DSI. The size of this window depends on the size of the neighborhood and the
width of the image.

The sum of neighboring depths differences (SNDD) uses a fixed window of depths
around the investigated pixel and calculates the depth differences in this window.

 ∑ | | (9)

The sum of neighboring depths differences binary window (SNDDBW) is similar to
SNDD, but instead of using a fixed window it uses only the neighboring pixels, which
have a similar color. This is a different usage of the binary support window (1).

 ∑ | | ∑ (10)

The following features are designed for multi stream classification. They take the
confidence value generated from the first level of classification and provide a feature
which objective lies in accommodating the selection of the best disparity stream.

The sum of streaming depths differences (SSDD) calculates the depth difference
between the different disparity streams taking the confidence value into account.

 ∑ | | (11)

The sum of streaming confidences (SSC) calculates the number of streams which
have a positive confidence.

 ∑ (12)

3.2 Classification Methods

The first level classifier consists of a decision tree (DT) for each disparity stream
individually. The decision tree is a top-down tree structure consisting of internal
nodes, leaf nodes, and branches. Each internal node represents a decision on a feature,
and each outgoing branch corresponds to a possible outcome. Each leaf node
represents a class (0 or 1 in this case). The main advantage of a decision tree is the
ease of interpretation and implementation, while still being able to separate hard to
separate classes. In the example of Fig. 7, two classes are separated by the class
boundary which is constructed using a small DT.

The second level classifier chooses the final disparity from the different disparity
streams by choosing the one with the lowest SSDD. A decision tree classifier is
trained to construct a confidence value for the final disparity value.

Both classification methods are easily implemented in hardware without using
many resources.

52 A. Motten, L. Claese

Fig. 7. Decision tree exampl

3.3 First Level Classific

Matlab has been used to g
cross validation. The datase
the classifier and one set is
such that each of the five s
tion results are averaged to

For each dataset, cost cu
thod for a binary adaptabl
window size of 7x7.

The features are indicate
script of their parameters: e
21x21 and a Chroma thresh

The results of the first le
feature is shown which is
table, we can see that the e
ent; by summation of the SA

From Fig. 8 we can see t
cated as correct. The cent
across borders where the a
area on the right side of th
sults when the border is rev
global error rate, but the bo

As expected, the scaled
vides better results on larg
pair comparisons (CL1 – C
However they have problem
the bars on the lamp. The s
the scaled downs image pa
small details and has a bette

en, and Y. Pan

le: two-dimensional feature space (left) and resulting DT (righ

cation Evaluation

generate and classify the different features using five-f
et is split into five sets, where four sets are used for train

used for validating the results. This is repeated five tim
sets is used exactly once as validation set. The five vali
generate the final result.

urves have been calculated using the SAD aggregation m
le window with four different selection thresholds an

ed in the following table by their acronym and by the s
e.g. SNDDBW21,8 means SNDDBW with a window size
hold of 8.
evel classification can be seen in table 1. For every test,
most important in the construction of the tree. From

error rate between the different disparity streams is dif
AD’s a more correct DSI is constructed.
that the different DSI’s have different areas which are in
ter-left image comparison (CL1) provides a good re

area on the left side of the border is further away then
he border. The center-right image (CR1) provides good
versed. A summation of both SAD’s (CLR1) gives a low
rders are less clear.
down image pair comparisons (CL0 – CR0 – CLR0) p
e texture less areas compared with the normal size im
CR1 – CLR1). This is particular true for the backgrou
ms finding the correct disparity value for small objects, l
summation of the SAD’s generated by the normal size
airs (CL01 – CR01) gives a lower global error rate, ke
er result with texture less areas.

ht)

fold
ning
mes,
ida-

me-
nd a

sub-
e of

the
this

ffer-

ndi-
esult

the
d re-
wer

pro-
mage
und.
like
and

eeps

 Trinocular Stereo Vision Using a Multi Level Hierarchical Classification Structure 53

Table 1. First level classification

Data Data Feature Error Rate Misclassification
Stream Name DSI (Th1) Binary Classifier

CL0 Tsukuba SNDDBW21,8 27.30% 17.13%

 Teddy SNDDBW21,8 13.35% 5.35%
 Art SNDDBW21,8 19.65% 10.60%

CR0 Tsukuba SNDDBW21,8 29.43% 21.15%

 Teddy SNDDBW21,8 18.26% 6.12%

 Art SNDDBW21,8 19.27% 10.64%
CL1 Tsukuba SNDDBW21,8 22.98% 11.51%

 Teddy SNDDBW21,8 14.53% 13.39%

 Art SNDDBW21,8 23.74% 18.12%

CR1 Tsukuba SNDDBW21,8 25.05% 11.88%
 Teddy SNDDBW21,8 23.55% 16.25%

 Art SNDDBW21,8 24.45% 19.53%

CL01 Tsukuba SNDDBW21,8 22.92% 14.77%

 Teddy SNDDBW21,8 11.60% 6.05%
 Art SNDDBW21,2 19.11% 10.21%

CR01 Tsukuba SNDDBW21,8 24.83% 18.53%

 Teddy SNDDBW21,8 17.06% 6.83%

 Art SNDDBW21,2 18.99% 11.50%
CLR0 Tsukuba SNDDBW21,8 25.19% 20.06%

 Teddy SNDDBW21,8 14.02% 7.47%

 Art SNDDBW21,8 16.30% 10.13%

CLR1 Tsukuba SNDDBW21,8 22.40% 11.85%
 Teddy SNDDBW21,8 18.15% 21.59%

 Art SNDDBW21,8 19.12% 14.06%

CLR01 Tsukuba SNDDBW21,2 22.52% 16.67%

 Teddy SNDDBW21,8 14.17% 8.10%
 Art SNDDBW21,8 16.73% 10.45%

This indicates that by combining the DSI’s, we could obtain a higher quality DSI.

However before combining them, we need to know which part of each individual DSI
is correct. A binary classifier is constructed to provide a confidence value for each
DSI. The more correct this classifier, the more success we will have with the com-
bined DSI. Depending on the dataset, a misclassification rate between 5% and 20% is
obtained. This could be improved by using a more discriminative classifier like an
artificial neural network [6].

54 A. Motten, L. Claese

Fig. 8. Depth map quality of t
level of classification (black pi

3.4 Second Level Class

The goal of this classificat
(13). The input of this class
output of this classification
wards generated using the s
SSC as an extra input featur

An exhaustive search is pe
provides the highest dispar
table 2. The results indica
for all investigated datasets
extra streams improves the
most noticeably at occluded
parts with little texture.

en, and Y. Pan

the Tsukuba dataset for a fixed window size of 7x7 after the
ixels indicate a confidence value of zero)

sification Evaluation

tion level is to select the most promising disparity va
sification level is the SSDD for each disparity stream. T

n level is a disparity selection. A confidence value is af
same method as for each individual stream although us
re. mini:1 streams SSDD i (

erformed in order to know which combination of strea
rity improvement. A selected set of results can be seen
ate that, by combining extra streams, the classification r
s are improved. From Fig. 9 we can see that the addition

quality of the DSI. The trinocular setup improves the D
d regions. The scaled image improves the disparity map

first

alue
The
fter-
sing

(13)

ams
n in
rate
n of
DSI
p at

 Trinocular Stereo Vision U

T

Data
Stream

CL1 - CR1 - ...
CL01 - CR01 -
CLR1 - CLR0
CL1 - CR1 -...
CL0 - CR0

CL1 - CR1 - ...
CL01 - CL01

CL01 - CR01 -
CLR1 - CLR0

Fig. 9. Depth map quality of
DSI generated from CL0 data
CL0, CL1, CR0 and CR1 data

4 System Design

The hardware architecture
pling module has been adde
is generated with one-fou
matching module is modif
Third a hierarchic classific
disparity from the different

Using a Multi Level Hierarchical Classification Structure

Table 2. Second level classification

Data Error Rate Misclassification
 DSI (Th1) Binary Classifier

Tsukuba 16.50% 12.90%
... Teddy 7.82% 7.18%

Art 11.86% 10.09%
Tsukuba 16.52% 12.47%
Teddy 7.74% 6.71%
Art 12.43% 11.50%
Tsukuba 16.85% 12.57%
Teddy 8.05% 7.23%
Art 13.09% 11.38%

... Tsukuba 17.25% 13.22%
Teddy 7.58% 6.47%
Art 11.82% 10.99%

the investigated datasets (Tsukuba, Teddy, Art). Comparison
a stream (Top row) and DSI generated from the combination
streams (Bottom row).

consists of three main modules. First a filter and sub sa
ed to the pre-processing module [8] so that a scaled im
rth the size of the original image. Second the wind

fied from [8] to allow for multiple data stream matchi
cation module is constructed to select the most promis

disparity results.

55

n of
n of

am-
mage
dow
ing.
sing

56 A. Motten, L. Claese

4.1 Pre-Processing Mo

The pre-processing module
pixel stream: first a Bayer d
age, next a rectification mo
lar calibration and lastly th
image.

Pixels generated by the
four colors: Red (R), Green
color filters. The high quali
to estimate the color compo

The proposed architectu
(Y) values are used to com
(CB, CR) are used to constr
RGB color space needs to b

 1

Two different kinds of dist
kind consists of the lens di
the three cameras. Since th
distortions should be resolv
extrinsic parameters of the
trinocular setup are determ
These parameters are henc
each pixel in the image. Tho

The rectification module
The reverse mapping coord

en, and Y. Pan

dule

e (see Fig. 10) consists of four different entities for e
demosaicing algorithm is used to reconstruct the color
dule is used to remove lens distortion and perform trino

he image is filtered and down sampled to generate a sca

Fig. 10. Pre-processing module

camera are formatted in a Bayer pattern consisting of
n1 (G1), Blue (B) and Green2 (G2), representing the th
ity linear interpolation demosaicing algorithm [13] is u

onents for each pixel.
ure makes use of the YCBCR color space. The Lumina

mpare the two input streams. While the chrominance val
ruct the binary support window. Hence, the reconstruc
be transformed into the YCBCR color space (14). 16 66 · 129 · 25 ·128 38 · 74 · 112 ·128 112 · 94 · 18 · (

tortions are present in a trinocular camera setup. The f
istortions; the second kind consists of the misalignmen
he search space is only located on the epipolar line, b
ved before matching can be performed. The intrinsic
cameras individually and the transformation matrix of

mined offline using images of checkerboard patterns [
ce used to construct the x and y mapping coordinates
ose parameters are called the reverse mapping coordinat

e proposed in [15] consists of three main parts (see Fig.1
dinates are stored in a LUT. When the mapping coordina

each
im-

ocu-
aled

the
hree
used

ance
lues
cted

(14)

first
nt of
both
and
the

14].
for

tes.
11).
ates

 Trinocular Stereo Vision U

do not change drastically f
coordinates of certain pixel
The desired grid size depen
polation is used to reconstr
warped image is construct
coordinates are provided b
mapping, the source pixels
especially designed to kee
needed. Third, the output pi

Fig

The rectified pixel strea
by a factor of two. The orig
scaled pixel stream is annot

4.2 Window Comparis

The pixel streams originati
center camera using segme
clock cycle a window of th
or right camera. Since four
memory read accesses fou
parallel.

On every clock cycle, th
stream is written to and whi

The frequency of the wi
parity search width of the t
available resources. The hig
the window matching modu
on Fig. 13 the window mat
pixel streams.

Using a Multi Level Hierarchical Classification Structure

from pixel to pixel, it suffices to only store the mapp
ls. These pixels are chosen to be located on a regular g
nds on the amount of distortion in the image. Bilinear in
ruct the mapping coordinates for the complete image. T
ted by selecting the pixels from the source image wh
by the reverse mapping LUT. In order to perform reve
s need to be stored in an input buffer. This input buffe
ep the memory usage low so that no external memory
ixels are resampled in order to get sub-pixel accuracy.

g. 11. Image rectification module [15]

m is passed through a 3x3 mean filter and down samp
ginal pixel stream is annotated with level 1 (L1) while
tated with level 0 (L0).

on Module

ing from the right and left camera are compared with
ntation based SAD calculation (see Fig. 12). During ev

he center camera is compared with four windows of the
r successive pixels are stored in one memory location,
ur pixels; hence four comparison modules are running

he stream selection unit (SSU) determines where each d
ich windows are compared.
indow matching module directly controls the possible d
trinocular matching architecture and can be adapted to
gher the frequency difference between the pixel stream
ule, the more comparisons can be executed. In the exam
tching module is clocked twenty-four times higher than

57

ping
grid.
nter-
The

hose
erse
er is
y is

pled
the

the
very
left
one

g in

data

dis-
the
and

mple
the

58 A. Motten, L. Claese

F

On each clock cycle, the
four consecutive windows (
index are saved in a regist
can be compared against th
a search window is reached
window is initiated. In our
compared with the right im
compared with the left imag

Fig. 13. W

en, and Y. Pan

Fig. 12. Window comparison module

e comparison module compares the reference window w
(see Fig. 13). The lowest SAD score and its correspond
er, so that on the next clock cycle this lowest SAD sc

he SAD scores of the next four windows. When the end
d, the index indicates the disparity result and a new sea
example, in the first eight clock cycles, the center imag
mage. In the next eight clock cycles the center image
ge.

Window comparison of different data streams

with
ding
core
d of
arch
ge is
e is

 Trinocular Stereo Vision Using a Multi Level Hierarchical Classification Structure 59

In the following four clock cycles the scaled center image is compared with the
scaled right image and in the last four clock cycles the scaled center image is com-
pared with the scaled left image. This leads to a combined disparity search width of
thirty-two.

This architecture makes it possible to easily change the disparity search width and
comparison data streams for each pixel in the DSI. By adapting the SSU it is possible
to switch between a trinocular and a stereo disparity search. The trade-off is the dis-
parity range; on each clock cycle, four comparisons can be performed. When using
only two cameras, all clock cycles can be used for this camera pair. While with three
cameras, only half of the clock cycles remain for each camera pair, this will lead to a
reduction of the disparity search width.

4.3 Hierarchical Classification Module

The hierarchical classification module consists of the generation of the features used
during the classification phase and the two classification steps. The first level classifi-
er calculates the confidence of each stream in the selection (15, 16). For each stream,
different thresholds are selected. However, the main structure of the classifier remains
the same. The second level classifier selects the most promising disparity stream for
the final DSI (17, 18, 19).

 streams CL0,CL1,CR0,CR1 (15)

 , 1 0 0 (16)

 SSDD ∑ Confy* Dx-Dyy streams , x streams (17)

 _ miny streams (18)

 streams _ (19)

The features are calculated at different moments in the streaming pipeline. For the
first level of classification, three main timing zones have been specified.

• Zone 1: Features based on the luminance window e.g. TEX.
• Zone 2: Features based on the cost curve e.g. MC.
• Zone 3: Features based on the disparity window e.g. SNDD.

Features of different timing zones are expensive to synchronize. Each feature needs a
buffer to temporally store its value. This is of particular importance when combining
features from zone 1 and 3. Zone one features are calculated even before the calcula-
tion of the depth value, while zone three features are based on a window of disparity
values around the disparity value of which the feature is calculated. This means that a
delay of several image lines is to be expected.

60 A. Motten, L. Claese

A solution is to split the
for each zone. For a decisio
of the DT can be pre-calcul
need to be buffered, the wid

Fig. 14. Exa

5 Implementation

The architecture and metho
FPGA system (Terasic DE2
(EP4CE115F29C7N) with
sources of the input stream
pixel clock of 16 MHz resu
tion consists of the propose
window matching clock of
Fig. 15.

The architecture has bee
need for external memorie
tional advantage that the la
nimal. This makes this syst
In addition to the evaluation
real life environments.

The synthesis results can

en, and Y. Pan

e classification method into separate classification meth
on tree classifier, no major changes are needed, each bra
lated in a different zone (see Fig. 14). Since only the res
dth of the buffer is reduced to one.

mple of different timing zones for classification

n

ods presented in this paper have been implemented on
2-115 development board) , based on an Altera Cyclone

114,480 logic elements and 432 memory blocks. T
ms are three cameras with a resolution of 640x480 an
ulting in a refresh rate of 52 Hz. The current implemen
ed design using a 7x7 binary adaptive window SAD wit
f 96 MHz. The hardware block diagram can be found

en constructed to reduce memory usage. Hence there is
s. The reduction of external memory usage has the ad

atency between input frame and output frame becomes
tem suitable to be incorporated in real-time control loo
n presented in section 2, the system has also been tested

n be found in Table 3.

hods
anch
ults

n an
e IV
The

nd a
nta-
th a

d on

s no
ddi-
mi-

ops.
d in

 Trinocular Stereo Vision UUsing a Multi Level Hierarchical Classification Structure

Fig. 15. Hardware block diagram

61

62 A. Motten, L. Claesen, and Y. Pan

Table 3. Synthesis results overview

 Memory Elements
 Logic Elements Nr of Blocks Kilobits
 Module Name # Single Total Single Total Single Total

P
re

-
P

ro
ce

ss
in

g

Demosaicing 3 861 2,583 6 18 31 92

Rectification 3 4,870 14,610 44 132 331 993

Box Filter & Downsampling 3 688 2,064 5 15 28 84

W
in

do
w

 M
at

ch
in

g

Address & Stream Selection A 1 296 296

Parallel Memory A 1 659 659 22 22 119 119

Address & Stream Selection B 1 340 340

Parallel Memory B 1 1,557 1,557 22 22 59 59

Address & Stream Selection C 1 310 310

Parallel Memory C 1 661 661 22 22 59 59

Binary Support Window 1 5,014 5,014

Comparison Module 1 20,893 20,893 1 1 0 0

H
ie

ra
rc

hi
ca

l
C

la
ss

if
ic

at
io

n

Feature 1: Texture 4 854 3,416

Feature 2: Parallel Memory D 1 2,115 2,115 18 18 102 102
Feature 2: Binary Suppport
Window 1 5,675 5,675

Feature 2: Parallel Memory E 4 2,115 8,460 12 48 64 255

Feature 2: SNDBBW (21x21) 4 8,350 33,400
Feature 3: SSDD & Minima
Selection 1 212 212

Total: 102,265 298 1,764

6 Conclusions and Future Work

A trinocular disparity processor has been proposed. We investigated nine cost curves
resulting from pairwise comparison of three cameras. Each data stream has been in-
vestigated independently from one another and ultimately a hierarchic classification
algorithm selects the most promising disparity value.

For each of the nine cost curves, a classification algorithm is trained in order to
provide a confidence indication for their disparity values. These confidences are
passed on to the second level classifier which selects the disparity to use, or indicates
that no disparity has been found.

The selection of classification algorithms has been used as guideline for the im-
plementation in an FPGA. From the results we can conclude that the quality of the
disparity space image increases by using more cost curves from a trinocular camera.

Due to the adaptability of the window matching module and the hierarchic classifi-
cation structure, the system can easily be expanded with more data streams to further
improve the disparity space image.

 Trinocular Stereo Vision Using a Multi Level Hierarchical Classification Structure 63

References

1. Mozerov, M., Gonzalez, J., Roca, X., Villanueva, J.J.: Trinocular stereo matching with
composite disparity space image. In: 16th IEEE International Conference on Image
Processing, Proceedings IEEE ICIP 2009, pp. 2089–2092 (2009)

2. Ueshiba, T.: An efficient implementation technique of bidirectional matching for real-time
trinocular stereo vision. In: 18th International Conference on Pattern Recognition,
Proceedings IEEE ICPR 2006, pp. 1076–1079 (2006)

3. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search.
IEEE Trans. PAMI 28(4), 650–656 (2006)

4. Motten, A., Claesen, L.: A Binary Adaptable Window SoC Architecture for a Stereo Based
Depth Field Processor. In: Proceedings IEEE VLSI-SOC 2010, 18th IEEE/IFIP Interna-
tional Conference on VLSI and System-on-Chip, Madrid, September 27-29, pp. 25–30
(2010)

5. Hu, X., Mordohai, P.: Evaluation of stereo confidence indoors and outdoors. In: Proceed-
ings IEEE CVPR 2010, 23rd IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1466–1473 (2010)

6. Motten, A., Claesen, L., Pan, Y.: Binary confidence evaluation for a stereo vision based
depth field processor SoC. In: Proceedings IEEE ACPR 2011, 1st Asian Conference on
Pattern Recognition, Beijing, November 28-30, pp. 456–460 (2011)

7. Jin, S., Cho, J., Pham, X.D., Lee, K.M., Park, S.-K., Jeon, J.W.: FPGA Design and Imple-
mentation of a Real-Time Stereo Vision System. IEEE Transactions on Circuits and Sys-
tems for Video Technology 20(1), 15–26 (2010)

8. Motten, A., Claesen, L.: Low-cost real-time stereo vision hardware with binary confidence
metric and disparity refinement. In: Proceedings IEEE ICMT 2011, International Confe-
rence on Multimedia Technology, pp. 3559–3562 (2011)

9. Li , M., Jia, Y.: Stereo vision system on programmable chip (SVSoC) for small robot na-
vigation. In: Proceedings IEEE/RSJ IROS 2006, International Conference on Intelligent
Robots and Systems, pp. 1359–1365 (2006)

10. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo corres-
pondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2002)

11. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In:
Proceedings IEEE CVPR 2003, IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 195–202 (2003)

12. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Pro-
ceedings IEEE CVPR 2007, International Conference on Computer Vision and Pattern
Recognition, pp. 1–8 (2007)

13. Malvar, H., He, L., Cutler, R.: High-Quality Linear Interpolation for Demosaicing of Bay-
er-Patterned Color Images. In: Proceedings IEEE ICASSP 2004, IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, May 17-21, pp. 485–488 (2004)

14. Zhang, Z.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations.
In: Proceedings IEEE ICCV 1999, 7th IEEE International Conference on Computer Vi-
sion, Kerkyra, September 20-25, pp. 666–673 (1999)

15. Motten, A., Claesen, L., Pan, Y.: Adaptive Memory Architecture for Real-Time Image
Warping. In: Proceedings IEEE ICCD 2010, 30th IEEE International Conference on Com-
puter Design, Montreal, September 30-October 3, pp. 466–471 (2010)

Spatially-Varying Image Warping:
Evaluations and VLSI Implementations

Pierre Greisen1,2, Michael Schaffner1,2, Danny Luu1, Val Mikos1,
Simon Heinzle2, Frank K. Gürkaynak1, and Aljoscha Smolic1,2

1 ETH Zurich, Switzerland
2 Disney Research Zurich, Switzerland

Abstract. Spatially-varying, non-linear image warping has gained grow-
ing interest due to the appearance of image domain warping applications
such as aspect ratio retargeting or stereo remapping/stereo-to-multiview
conversion. In contrast to the more common global image warping, e.g.,
zoom or rotation, the image transformation is now a spatially-varying
mapping that, in principle, enables arbitrary image transformations. A
practical constraint is that transformed pixels keep their relative order-
ing, i.e., there are no fold-overs. In this work, we analyze and compare
spatially-varying image warping techniques in terms of quality and com-
putational performance. In particular, aliasing artifacts, interpolation
quality (sharpness), number of arithmetical operations, and memory
bandwidth requirements are considered. Further, we provide an archi-
tecture based on Gaussian filtering and an architecture with bicubic in-
terpolation and compare corresponding VLSI implementations.

Keywords: image-based rendering, EWA splatting, bicubic resampling,
video processing, anti-aliasing, interpolation quality, complexity evalua-
tion, caching, VLSI.

1 Introduction

With the steadily increasing frame rates and resolutions, real-time video pro-
cessing and graphics processing is becoming predominant in terms of computa-
tional requirements in mobile devices. Many application-specific hardware cores
for video processing are currently being integrated onto mobile system-on-chips
(SoCs) (e.g., NVIDIA Tegra). One upcoming application for mobile devices is
video content adaptation: while a growing amount of content is watched on an
increasing number of different mobile platforms, most content is captured with
one acquisition system at fixed parameters. Examples for content adaption al-
gorithms are content-aware video resizing (video retargeting) [13], non-linear
stereoscopic 3D (S3D) adaption [14], 2D to S3D conversion and S3D to multi-
view generation [6,19,5]. Other content transformation applications are camera
alignment for S3D video and panoramic shots.

As a first step, any display adaptation algorithm determines an image warp-
ing function that is dependent on the display characteristics. The input frames

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 64–87, 2013.
c© IFIP International Federation for Information Processing 2013

Spatially-Varying Image Warping 65

are then transformed to the output frames according to the given warping func-
tion using a view rendering algorithm based on spatially-varying warping. The
generation of the warping function is application-specific, and can be separated
from the view rendering. For instance in video retargeting, the warping function
retains the aspect ratio of salient (i.e., visually important) parts of the image,
while the image distortion is hidden in visually less important regions. In S3D
to multi-view conversion, the warping function is derived from the 3D structure
of the scene (obtained from a disparity estimation step) to generate in-between
views.

Various view synthesis and image rendering architectures have been proposed
in prior work. However, the majority of these architectures have been optimized
for one particular rendering application, such as depth-image based rendering
(DIBR) [11, 3], stereo rectification [7], or non-linear lens correction [2, 17]. In
contrast, we consider warping with general transformations that can be used for
global per-frame transformations such as (wide-angle) lens undistortion, but also
for spatially varying per-pixel transformations such as in video retargeting. Due
to the spatially-varying nature of the transformation and the high resolutions of
video footage in current applications, special care has to be taken in algorithm
and architecture design. That is, aliasing needs to be avoided, high-quality in-
terpolation should be guaranteed, and high computational – and memory band-
width requirements need to be addressed.

In this paper, we address hardware efficiency and VLSI architectures of non-
linear warping for view synthesis applications. It is an extended version of our
previous work [8, 9]: next to the elliptical weighted average (EWA) rendering
system presented in [8, 9] we present non-linear image warping through bicubic
interpolation and adaptive super-sampling and assess image quality and hardware
requirements by comparing an extended set of non-linear warping strategies. An
important hardware consideration is thereby the memory bandwidth require-
ments and the corresponding cache simulations and VLSI designs. Finally, using
the obtained ASIC implementation results, we provide a comparison of different
warping techniques in terms of VLSI performance.

2 Non-linear Image Warping

Non-linear image warping is the process of geometrically transforming an image
with a general image transformation (warping) function. In the simplest case, the
image warping function can be represented as a global per-image transformation
such as a rotation or translation of all the pixel values. Such transformations are
usually represented by simple, per-image arithmetic operations of the input pixel
locations. Stereo rectification is a practical application example: two non-aligned
camera images are rectified in order to eliminate any vertical offsets between the
cameras, and a 3-by-3 matrix with 8 degrees of freedom is enough to specify the
full image transformation.

While our setup is able to perform global per-image transformations, its
strength lies in the ability to realize locally-adaptive non-linear deformation of

66 P. Greisen et al.

Spatially-adaptive
aspect ratio retargeting Linear scalingInitial Image

Fig. 1. Example of transformations possible with our non-linear image warping setup.
In addition to global per-frame transformations such as rotations or linear scaling
(right image) our system also allows arbitrary non-linear transformations (middle im-
age). Such transformations are essential for spatially-adaptive retargeting applications.
Image credits: the initial image (left) is in the public domain, the middle image is
generated with the framework from [13] and the right image is a linear scaled version
of the initial image.

the input video, which is required in modern video applications such as content-
aware video retargeting. Our warping function can be specified by a per-pixel
mapping function: any pixel in the source image is assigned its own destination
pixel position in the target image. Figure 1 shows an example of transformations
that are possible with the system presented in this work.

2.1 Warping Basics

In the following we briefly summarize the image resampling process, for a thor-
ough derivation we refer to literature (e.g. [18,21,22]). Consider an input image
with pixel values wk, where k is the linearized image coordinate and uk the
corresponding 2D coordinate in source (image) space. Each (non-integer) source
coordinate u is transformed via mapping m to a target coordinate x

x = m(u) (1)

Further, let fi() be a continuous source space interpolation filter and fa() a
continuous target space anti-aliasing filter. The general mapping function m
then transforms an input image into an output image fout according to

fout(x) =

∑
k

wkfi(m−1
(x)− uk) ∗ fa(x)

=

∫
R2

∑
k

wkfi(m−1
(τ)− uk)h(x− τ)dτ . (2)

The interpolation and anti-aliasing filter are crucial for obtaining good image
quality in the resampling process, and omitting them can lead to aliasing or

Spatially-Varying Image Warping 67

holes in the output image, especially for spatially-varying transformations. The
final output image is obtained by evaluating fout on the desired integer grid
positions.

In practice, the general mapping function m(u) is linearly approximated with
a first-order Taylor expansion around an integer grid position uk

x = m(u) ≈m(uk) + Jk · (u− uk), (3)

where Jk is the 2× 2 Jacobian matrix of m at position uk. Also, the resampling
equation (2) can be evaluated in two ways. The so-called backward mapping ap-
proach steps through the output pixel positions xh and looks for the correspond-
ing pixels in the input image. The forward mapping approach steps through the
input grid positions uk and calculates its contributions to the target pixels. In
the following, we introduce practical backward and forward mapping techniques
for non-linear warping.

2.2 Forward Mapping: EWA Splatting

An efficient forward mapping approach is elliptical weighted average (EWA)
splatting [9]. In the EWA framework, 2D Gaussian filters are used for both
interpolation and anti-aliasing filters with covariance matrices V{i,a} = σ2

{i,a}I2,
where I2 is a 2-by-2 identity matrix. Two main advantages of Gaussian filters
make the EWA framework very effective: first, a Gaussian filter remains Gaussian
under linear transformations. Second, the convolution of two Gaussian filters
results in another Gaussian.

Consider an input image with pixel values (intensities or RGB components)
wk, where k is the linearized 2D image coordinate corresponding to the 2D
position vector uk and an Taylor-approximated mapping m(uk) + Jk(u − uk).
The complete EWA resampling process is then summarized as follows. First, the
per-pixel covariance matrix is calculated from the warping grid Jacobian Jk and
covariance matrices V{a,i}

Ck = JkViJT
k + Va. (4)

The technique from [9] further adapts the resulting co-variance matrix Ck on
a per-pixel level and thereby optimizes the inherent blur-aliasing trade-off of
Gaussian filters (see [9] for details). Next, for each input pixel k with position
uk and value wk, we accumulate its contributions in the target image vh on
target grid positions xh with linear index h

vh ← wk|Jk|
2π

√|Ck|
e−0.5(xh−m(uk)T C−1

k
(xh−m(uk)). (5)

The ’←’ symbol denotes an update operation (accumulation). Due to non-
idealities, a post-normalization step is necessary: vh/ρh, where ρh are the ac-
cumulated weights

ρh ← |Jk|
2π

√|Ck|
e−0.5(xh−m(uk)T C−1

k
(xh−m(uk)). (6)

68 P. Greisen et al.

In theory, xh is the complete target image grid; in practice, because of the fast
decay of the Gaussian kernel, the range of xh can be confined by a rectangular
bounding box around the transformed center of the Gaussian m(uk) [9]

m(uk) +

(±√Ck(1, 1)

±√Ck(2, 2)

)
. (7)

2.3 Backward Mapping

Backward mapping approaches do not accumulate contributions from source pix-
els in the target image but, conversely, perform a direct look-up for each target
pixel in the source image. In order to evaluate the analytical resampling expres-
sion without using Gaussian filters, the anti-aliasing filter is usually replaced by
a practical anti-aliasing technique. The resampling expression simplifies to an
interpolation in source space. There exist a variety of different filter kernels that
can be used for the interpolation, such as nearest-neighbor, bilinear, bicubic, or
windowed-sinc interpolation kernels. In the quality evaluation section, the per-
formance of the interpolation kernels is evaluated and compared numerically to
each other.

The general backward evaluation formula can be written as

ρh =

∑
k

wkfi(m−1
(xh)− uk). (8)

For instance, in the simple case of nearest-neighbor interpolation, the expression
becomes ρh = wk′ with k′

= argmink|m−1
(xh) − uk|2. Expressions for other

interpolation filters can be derived similarly or looked-up in literature [21].
To add anti-aliasing on top of the practically efficient backward interpolation

technique, different approaches exist. One is super-sampling and decimation,
where image values are looked-up on a higher-resolution output grid and then
decimated again to the actual required resolution. The decimation filter thereby
serves as anti-aliasing filter. Another technique is mip-mapping, which is used
in the texture mapping stage in current GPUs [1]. Mip-mapping keeps multi-
ple resolution of the same image and, during look-up, uses the resolution that
corresponds to the local downscale/upscale factor.

3 Evaluations

The general resampling framework described above allows many practical real-
izations, in particular when selecting interpolation filters and the anti-aliasing
method. In this section we compare several common methods in terms of visual
quality, and, more importantly, in terms of computational complexity. Finally,
we evaluate memory accesses and design a cache to reduce memory bandwidth
for non-linear image domain warping applications.

Spatially-Varying Image Warping 69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

30

35

40

45

50

55

60
a) Rotation

rotation (in 2pi/17 steps)

P
S

N
R

 (d
B

)

Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
30

35

40

45

50

55

60

65

70
b) Translation

translation (in 1/17 steps)

P
S

N
R

 (d
B

)

Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
30

35

40

45

50

55

60

65
Bilin
BicConv
BSpl
BicSpl
Gauss_0.39
Hann_2
Lancz_2

c) Isotropic magnification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
24

26

28

30

32

34

36

38

40

42
d) Isotropic minification

Fig. 2. Comparison of PSNR values for different kind of transformations. The evalua-
tions have been performed by first applying a transformation and then the correspond-
ing inverse transformation. The resulting image is compared with the original using the
PSNR metric. The results plotted here are median values over a set of 16 natural 720p
color images. The Gaussians are parameterized with σ = 0.39 in the above evaluation
(this value was determined in [9]) and they are clipped at 2.

3.1 Quality Comparisons

For the evaluations we use several well-known interpolation and anti-aliasing
methods and apply them to aspect-ratio retargeting and stereo-to-multiview
conversion examples. Interpolation kernels compared in this work are bilinear
and bicubic interpolation, b-spline, bicubic spline interpolation, Gaussian, and
windowed-sinc filters with Hann and Lanczos windows. For details on the dif-
ferent methods refer to e.g. [21]. Anti-aliasing kernels in forward mapping are
evaluated using the EWA framework. Backward mapping methods are evalu-
ated with various degrees of constant super-sampling (SS) or different sampling
patterns such as quincunx and flipquad [1].

Figure 2 provides evaluation results on comparing interpolation filters and
anti-aliasing methods in resampling applications. The different resampling meth-
ods are used to transform a set of 16 natural 720p color images according to

70 P. Greisen et al.

Fig. 3. Visual comparison of anti-aliasing artifacts: without anti-aliasing visual dis-
tortions are obvious (a); twofold oversampling removes some of the aliasing in this
example (b). However, fourfold oversampling is necessary to remove all aliasing (d).
The two EWA splatting variants (c,e) hardly show aliasing artifacts. We also observe
that adaptive EWA splatting (e, see Section 2.2) provides a sharper image than con-
ventional EWA splatting (c).

simple parameterized transformations (e.g. rotation by a certain angle). In or-
der to be able to assess the resampling quality using the PSNR measure, the
images are resampled twice: once with the forward transform and once with the

Spatially-Varying Image Warping 71

corresponding inverse transform. The original images can then be used as a ref-
erence. It should be noted that the PSNR is a good measure for the amount of
introduced blurring, but it does not capture aliasing artifacts very well as can be
seen in Figure 2d, which shows the numerical results for isotropic minification.

From these basic quality evaluation figures, several observations can be made.
The first observation is that Gaussian interpolation shows similar quality com-
pared to the typically used bilinear interpolation, even without any non-linear
warping. Bicubic methods and windowed sinc filters are in general superior to
Gaussian and bilinear interpolation, and B-splines show the worst performance.

Regarding anti-aliasing, one observes two things: the numerical evaluations
show that all methods introduce a similar amount of additional blurring, except
of course, when using no anti-aliasing method. The adaptive Gaussian shows
less blurring than the fixed-width Gaussian, which has been already shown in
Section 2.2. On top of that, visual evaluations show that using no anti-aliasing
filter may introduce severe aliasing artifacts, as can be seen in Figure 3.

Our observations are in line with claims and evaluations from previous works
[1, 10, 18, 20]. Quality-wise, we conclude that the adaptive EWA splatting ap-
proach is superior both to simple bilinear interpolation and bilinear interpola-
tion with super-sampling. In terms of quality, a bicubic or windowed-sinc back-
ward mapping approach with (sufficient) supersampling are superior to EWA
splatting.

3.2 Computational Complexity

Beside the quality evaluations, we compare the computational complexity of
bilinear and bicubic backward mapping as well as adaptive EWA splatting in
image domain warping applications (e.g., aspect ratio retargeting). We consider
the following scenarios, first an identity transformation of a 1920× 1080 image,
second linear scaling from 1440× 1080 to 1920× 1080, and third linear scaling
from 1920× 1080 to 1440× 1080.

Using these three cases, the order of magnitude of the complexity can be esti-
mated. More importantly, these cases allow us to compare the relative complexity
of different methods. As can be seen in Figure 4, the lowest-cost technique is bi-
linear interpolation (Bil+noAA), followed by bicubic interpolation (Bic+noAA)
and adaptive EWA (adEWA). We also see that supersampling significantly in-
creases the complexity of the backward mapping methods. Note that the bicubic
polynomials and the Gaussian kernel evaluations are approximated with linear
interpolation between lookup table values. Further, the inverse square-root is
calculated using the fast inverse square-root approximation [16].

Warp Interpolation and Inversion. The numbers discussed above hide a
practical issue: depending on the application, warp information is available in
either forward or backward format and the conversion from one format to another
requires additional computations. In typical image domain warping applications,
warps are available in forward format. This has consequences for backward map-
ping approaches, where an additional inversion step becomes necessary (denoted

72 P. Greisen et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Bil+noAA
Bil+Inv100+noAA

Bil+Inv1081+noAA
BicConv+noAA

adEWA
Bil+SSx2

BicConv+Inv100+noAA
adEWA+Interp100

BicConv+Inv1081+noAA
Bil+Inv100+SSx2

Bil+Inv1081+SSx2
BicConv+SSx2

BicConv+Inv100+SSx2
BicConv+Inv1081+SSx2

1920x1080 to 1920x1080

[Gops per frame]

add
add const
mult
mult const
div

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Bil+noAA
Bil+Inv100+noAA

Bil+Inv1081+noAA
adEWA

BicConv+noAA
Bil+SSx2

adEWA+Interp100
BicConv+Inv100+noAA

BicConv+Inv1081+noAA
Bil+Inv100+SSx2

Bil+Inv1081+SSx2
BicConv+SSx2

BicConv+Inv100+SSx2
BicConv+Inv1081+SSx2

1440x1080 to 1920x1080

[Gops per frame]

add
add const
mult
mult const
div

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Bil+noAA
Bil+Inv100+noAA

Bil+Inv1081+noAA
BicConv+noAA

Bil+SSx2
BicConv+Inv100+noAA

adEWA
BicConv+Inv1081+noAA

adEWA+Interp100
Bil+Inv100+SSx2

Bil+Inv1081+SSx2
BicConv+SSx2

BicConv+Inv100+SSx2
BicConv+Inv1081+SSx2

1920x1080 to 1440x1080

[Gops per frame]

add
add const
mult
mult const
div

Fig. 4. Comparison of the computational complexity of different resampling techniques.
Top: identity transformation; middle: 4:3 to 16:9 retargeting using linear scaling; bot-
tom: 16:9 to 4:3 retargeting using linear scaling. The compared methods are bilin-
ear interpolation (Bil), bicubic convolution (BicConv) and adaptive EWA splatting
(adEWA). The postfix SSx2 stands for twofold supersampling, whereas noAA stands
for no anti-aliasing. The methods printed with a bold font do not include any warp
preprocessing, whereas the methods with the postfix WarpInv1081, WarpInv100 or In-
terp100 include an additional warp inversion or warp interpolation step (the number
denotes the vertical warp resolution - refer to the text for more details).

Spatially-Varying Image Warping 73

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

Target SpaceSource SpaceLegend

Fig. 5. This figure shows a typical frame buffer access pattern of a retargeting warp
rendered with EWA splatting. The grid on the left hand side shows a typical retargeting
warp of a 1280 × 720 image. In this application, the warp contains only limited image
distortions. The excerpts on the right side show close-ups of two partially rendered
regions of this warp, where the large spatial overlap among subsequent patches in
horizontal and vertical directions can be observed.

as Inv1081 in Figure 4). Further, the warp is usually available on lower resolution
than the actual image such that an additional upscaling step using interpolation
is necessary (e.g. bilinear interpolation). Warp inversion together with warp up-
sampling from 100 pixel to 1080 pixel in vertical direction is denoted as Inv100
whereas, warp upsampling alone is denoted as Interp100. Note that the warp
inversion also requires more memory (and associated bandwidth) for the storage
of the inverted warp coordinates or the partly rasterized output image.

Conclusion. Together with the quality evaluations from the previous section,
we conclude that adaptive EWA splatting forms a good tradeoff between compu-
tational complexity, interpolation and anti-aliasing quality. Bilinear interpolation
lowers the computational complexity but at the price of lower image quality. Fi-
nally, bicubic approaches provide more interpolation quality at a similar cost as
EWA splatting, but they are very costly when super sampling is added. In im-
age domain warping applications, forward warp coordinates are available, which
makes EWA splatting an efficient solution for non-linear warping.

3.3 Memory Bandwidth Evaluation

In real-time VLSI implementations, the warp and image are processed in scanline
order. Depending on the warp format, i.e., backward or forward transformation,
the image needs to be stored in either input buffer or an output framebuffer, in
order to support arbitrary image transformations. The buffers usually contain
large parts or the entire image and therefore have to be stored in external off-
chip memories (an uncompressed full HD image amounts to about 50 Mbit). Due
to the limited pin and power budget it is important to minimize the required
memory bandwidth.

74 P. Greisen et al.

X= 2048
Y= 8
Level= 1.065

horizontal pixels

ve

rti
ca

l p
ix

el
s

1 2 4 8 16 32 64 128 256 512 1k 2k 4k
1

2

4

8

16

32

64

2

4

6

8

10

12

14

16

18

20

(a)

X= 2048
Y= 8
Level= 1.0011

horizontal pixels

ve

rti
ca

l p
ix

el
s

1 2 4 8 16 32 64 128 256 512 1k 2k 4k
1

2

4

8

16

32

64

2

3

4

5

6

7

(b)

Fig. 6. Simulation of different overall cache sizes of a direct mapped cache with de-
generate 1 × 1 blocks (i.e. each pixel has its tag and valid bit). Both plots show the
averaged results from 17 nonlinear retargeting warps (aspect ratio change from 4:3 to
16:9 of 1080p images).(a) shows the normalized bandwidth of the input image buffer
for bicubic backward mapping; and (b) shows the normalized bandwidth of the frame
buffer for (non-adaptive) EWA splatting. The normalized bandwidth is encoded in the
color. Depending on the mapping direction of the method, the normalization factor is
either the size if the input (a) or output image (b).

Bandwidth Bottleneck. In the case of backward mapping, each rendered
output image pixel requires a small patch to be fetched from the input image in
order to perform the interpolation. Similarly, in the case of a forward mapping
method, each input image pixel leads to a patch of pixel contributions in the
output image, which are then accumulated in a frame buffer. In both cases the
size of those patches depends on the employed filter kernel, and ranges from 2×2

(bilinear and adaptive EWA), to 3× 3 (normal EWA) to 4× 4 pixels (bicubic).
Thus, the amount of memory accesses is a multiple of the image resolution

and can easily lead to a bandwidth bottleneck. For instance, in the case of
bicubic interpolation and a 1080p color output image we require a bandwidth
of 1920 × 1080 × 3 × 4 × 4 ≈ 796 MByte/frame. Fortunately, if the warp is
traversed in scanline order, consecutively accessed patches spatially overlap to a
certain degree as illustrated in Figure 5. The vertical and horizontal locality of
the patches can be leveraged to reduce the overall bandwidth by employing a
two-dimensional image cache (similar to texture caches in GPUs).

Cache Evaluations. In order to see how a two-dimensional image cache has to
be parameterized in the case of image warping, we simulated different cache con-
figurations for different resampling methods and calculated the required band-
width for one frame. Figure 6 shows the averaged simulation results of a direct
mapped cache with degenerate 1 × 1 blocks for 17 nonlinear retargeting warps
(aspect ratio change from 4:3 to 16:9 for 1080p images). Note that the retargeting
warps all show similar memory access patterns as they perform the same global
linear upscaling with only local variations. For better readability, the bandwidth
has been normalized with the size of the input image (a), or with the size of the

Spatially-Varying Image Warping 75

10
0

10
1

10
2

10
3

no
rm

al
iz

ed
 m

em
or

y
ba

nd
w

id
th

 (w
.r.

t.
th

e
ou

tp
ut

 im
ag

e)

cache size [pix]
aspect ratio

1
1:1

2
1:2

4
1:1

8
1:2

16
1:1

32
1:2

64
1:1

128
2:1

256
1:4

512
2:1

1k
4:1

2k
8:1

4k
256:1

8k
512:1

16k
256:1

32k
128:1

64k
64:1

128k
32:1

256k
64:1

1x1 blocks
2x2 blocks
4x4 blocks
16x4 blocks
32x2 blocks

Bicubic convolution 1440x1080 to 1920x1080

(a)

10
0

10
1

10
2

10
3

no
rm

al
iz

ed
 m

em
or

y
ba

nd
w

id
th

 (w
.r.

t.
th

e
ou

tp
ut

 im
ag

e)

cache size [pix]
aspect ratio

1
1:1

2
1:2

4
1:4

8
1:2

16
1:1

32
1:2

64
1:4

128
1:8

256
1:16

512
1:2

1k
4:1

2k
8:1

4k
64:1

8k
512:1

16k
256:1

32k
128:1

64k
64:1

128k
32:1

256k
64:1

1x1 blocks
2x2 blocks
4x4 blocks
16x4 blocks
32x2 blocks

Bicubic convolution 1920x1080 to 1440x1080

(b)

Fig. 7. Simulation of different cache configurations for the input image buffer used in
bicubic backward mapping. (a) shows the results for a nonlinear aspect ratio change
from 4:3 to 16:9 of a 1080p image; and (b) shows the results for a nonlinear aspect
ratio change from 16:9 to 4:3 of a 1080p image. The results are mean values over 17
warps generated for natural testimages.

output image (b) – depending on the mapping direction (forward or backward).
We can see that as soon as the cache is large enough to store an image patch
which is larger than the size of the employed filter kernel (4× 4 in (a) and 3× 3

in (b)), the bandwidth is beginning to drop significantly. In the ideal case, if
the cache is large enough, data will be transferred only once between the main

76 P. Greisen et al.

10
0

10
1

10
2

10
3

no
rm

al
iz

ed
 m

em
or

y
ba

nd
w

id
th

 (w
.r.

t.
th

e
ou

tp
ut

 im
ag

e)

cache size [pix]
aspect ratio

1
1:1

2
1:2

4
1:1

8
1:2

16
1:1

32
2:1

64
1:1

128
2:1

256
1:1

512
1:2

1k
1:1

2k
8:1

4k
256:1

8k
512:1

16k
256:1

32k
128:1

64k
64:1

128k
32:1

256k
64:1

1x1 blocks
2x2 blocks
4x4 blocks
8x8 blocks
4x2 blocks
8x2 blocks
16x2 blocks
32x2 blocks

EWA splatting 1440x1080 to 1920x1080

(a)

10
0

10
1

10
2

10
3

no
rm

al
iz

ed
 m

em
or

y
ba

nd
w

id
th

 (w
.r.

t.
th

e
ou

tp
ut

 im
ag

e)

cache size [pix]
aspect ratio

1
1:1

2
1:2

4
1:1

8
1:2

16
1:4

32
1:8

64
1:4

128
1:2

256
4:1

512
2:1

1k
4:1

2k
32:1

4k
256:1

8k
512:1

16k
256:1

32k
128:1

64k
64:1

128k
32:1

256k
64:1

1x1 blocks
2x2 blocks
4x4 blocks
8x8 blocks
4x2 blocks
8x2 blocks
16x2 blocks
32x2 blocks

EWA splatting 1920x1080 to 1440x1080

(b)

Fig. 8. Simulation of different cache configurations for the frame buffer used in EWA
splatting. (a) shows the results for a nonlinear aspect ratio change from 4:3 to 16:9
of a 1080p image; and (b) shows the results for a nonlinear aspect ratio change from
16:9 to 4:3 of a 1080p image. The results are mean values over 17 warps generated for
natural testimages.

memory and the cache. This corresponds to transferring only one input image
to the cache in a backward mapping architecture, and only one output image in
a forward mapping architecture. In this optimal case the normalized bandwidth
is equal to one. As can be seen in Figure 7 and Figure 8, the optimum can be
reached if the cache is large enough to hold several image rows.

Spatially-Varying Image Warping 77

A cache with a block size of 1×1 pixel is adapts well to the geometric variations
in the warp function, but such a cache configuration requires a huge amount of
overhead (i.e., valid-bit and address-tag entries have to be stored for each pixel
as well). Increasing the block size reduces the memory required to store the tags
and the valid-bits, but also comes at the cost of cache performance, as can be
seen in Figure 7 and Figure 8. However, if the cache is large enough, it is possible
to reach the optimum with large cache blocks.

4 Hardware Architectures

Based on the findings from the previous section, we introduce two hardware
architecture for spatially-varying image warping. The first architecture uses for-
ward mapping with adaptive EWA, the second architecture uses backward map-
ping with bicubic interpolation and, to reduce computations, with an adaptive
super-sampling technique.

4.1 EWA Splatting Architecture

The top-level diagram of the EWA architecture is given in Figure 9. The core
accepts streaming pixel color information, given in an 24 bit RGB format. In ad-
dition to the color information, a deformation grid describing the pixel mapping
m is streamed in. In the quadrilateral deformation grid format, the deformation
of each pixel is described by transformation of the pixel’s bounding box. More
specifically, the four corner positions of a quad describe the new pixel center as
well as the pixel deformation. The horizontal and vertical gradients necessary
for constructing Jk can be easily deduced from the quads.

We assume that the image transformation m is locally smooth, and that
neighboring pixels share their adjacent quad grid corners. Therefore, in compact
form, the quad grid representation only requires (W +1)× (H +1) grid points, if
W and H are the input video width and height, respectively. Note that we chose
this representation in order to disallow transformations that would result in
image holes. Furthermore, since neighboring grid points and pixels are typically
strongly correlated, we add a lossless differential compression/decompression
scheme at the input interface to reduce the input bandwidth and I/O power.
Note that temporal compression across frames could further reduce the input
bandwidth since the warp typically varies slowly over time.

From the input quad grid, the pixel position m(uk) (mean of adjacent corner
positions) and the Jacobi matrix Jk (horizontal and vertical gradients computed
from the corner positions) are calculated and stored in an on-chip FIFO buffer.
A dispatcher unit then distributes positions, Jacobian, and pixel values to mul-
tiple arithmetic units that perform the splatting operation. The processing time
of each splatting operation strongly depends on the deformation, as one input
pixel can possibly be stretched to multiple output pixels. To handle the vari-
able throughput requirements, several arithmetic splatting chains are used in
parallel, and the dispatcher unit distributes the input pixels depending on the

78 P. Greisen et al.

filter
setup rasterizer

splatting unit
splatting unit

filter
setup rasterizer

splatting unit
splatting unit

level 1
accu.

level 1
accu.

level 2
accu.

pixel

control/configuration

arithmetic accumulation

norm
pixel

di
sp

at
ch

er

warp RAM
IF

outp.
IF

ext.
accu

inp.
IF

Jk, m(uk)

Fig. 9. Top level block diagram of the EWA rendering architecture

workload. A FIFO buffer can absorb incoming pixels when all splatting units are
occupied during performance peaks. To handle prolonged peaks, the FIFO fires
a back-pressure system that allows to stall the data source to avoid data loss.

Due to mathematical properties of the summation operation in (5), we can re-
arrange the operation: instead of evaluating the sum for each output position, we
forward-transform all individual Gaussian kernels and perform an accumulation
of the Gaussian contributions in the temporary output image. To avoid exces-
sive memory bandwidth requirements between the chip and the external frame
buffer, we employ a two-level cache structure, in accordance with the cache con-
figuration simulations presented in the previous section. The cache exploits the
spatial coherence of image transformations, which in general map neighboring
input pixels to neighboring output pixels.

When all input pixels have been processed, the temporary output image can
be streamed to a normalization unit, where the accumulated pixels are then
normalized by the sum of the filter weights. Note that this final normalization
step is necessary due to the fact that Gaussian filters, and in particular their
truncations, are non-ideal interpolation filters.

Input Interface. The system requires the pixel information and the defor-
mation grid as the input. Since the deformation grid has to be determined by
another computation block, a simple custom interface has been designed that
can easily be adapted for different applications.

Compression. The input interface consists of 24 bit RGB values and 2 × 24

bit pixel coordinates, resulting in a bandwidth of 4.5 GBit/s for 1080p30. To
reduce the input bandwidth, we propose an optional differential compression
scheme. The compression exploits the fact that neighboring pixel colors and
coordinates usually exhibit strong spatial correlation, and will therefore result
in small incremental changes only. The purpose of the compression is to transmit
the small incremental changes only. The input fixed-point words are decomposed
into several sub-words, i.e., an n bit word is decomposed into n/m m bit words.

Spatially-Varying Image Warping 79

This decomposition relies on the observation, that the upper bits (MSBs) of
pixels and pixel positions change very rarely compared to the lower bits (LSBs).
With this, as only sub-words that change are transmitted, one MSB sub-word
can be transmitted with several LSB sub-words plus control bits that indicate
the number of lower sub-blocks per upper sub-block. Evaluation on actual data
has shown a bandwidth reduction of 35% on average. Note that the compression
is completely lossless and comes at negligible hardware overhead.

Dispatcher. The dispatcher unit is responsible for load-balancing between mul-
tiple subsequent splatting units. A simple round-robin based priority scheme is
used for the scheduling.

Arithmetic Processing Elements. In a nutshell, the splatting units imple-
ment the EWA equation (5) in a fixed-point format. For each input pixel, a
Gaussian kernel is calculated from the pixel color wk and the linearized approxi-
mation Jk of the warp grid. The Gaussian kernel is then resampled to determine
its contribution to all output pixels. The resampling is evaluated within a small
bounding box of the Gaussian only, i.e., the Gaussian will be truncated to zero
as soon as its energy falls below a very small threshold. The contributions of the
individual Gaussians are then accumulated, and finally normalized.

The datapath is implemented using custom fixed-point arithmetic. The accu-
mulated color channels are calculated with 11 bits each, and the accumulation
values are calculated with 12 bits, resulting in data words of 45 bits in total for
each pixel. This number has been chosen both for accuracy reasons as well as to
match the word-width of the external memory.

Adaptive EWA. The splatting cores can be configured to work in ’adaptive’
mode, which means that the Gaussian resampling covariance matrix is adapted
per-pixel to reduce the amount of blurring. The adaptive mode has been intro-
duced in [9] and its impact on overall area is negligible.

Throughput. Each splatting unit has a fixed throughput Θ = f/ncycles, deter-
mined by the clock frequency f and the number of cycles required to evaluate
one input pixel ncycles. The current architecture is optimized for ncycles = 20,
which is matched to the average number of output pixels times the number of
cycles it takes to evaluate one output pixel (9 × 2 plus overhead). A through-
put of 9 MPixels/s per splatting unit at a clock frequency of 170 MHz can be
achieved. Therefore, 1080p30 video (63 MPixels/s) can be achieved with some
margin by employing 8 parallel splatting units.

Accumulation, Caching, and Memory Interface. Each input pixel pro-
duces several output contributions that need to be weighted by a Gaussian ker-
nel and accumulated at the output sampling locations. As described earlier, the
Gaussian kernels are truncated at the bounding box boundary, and simulations
have shown that bounding boxes of 4 to 9 pixels in size are sufficient to capture
the majority of the non-zero contributions. Hence, the accumulation bandwidth

80 P. Greisen et al.

MAC unitJk

m(uk)

JkJk’

|C|

C

|C|-0.5

filter
setup

splatting unit

n
1/√Cii

MAC unit MAC unit

co
un

t
le

ad
in

g
0’

s

LU
T

2
-

|Jk|

M
SB -

-
‘1

’

>>
1

0x
5F

37
59

D
F

O
FF

SE
T

O
FF

SE
T

31
...

24
23

...
0

co
un

t
le

ad
in

g
0’

s sh
ift

sh
ift

expexp LUT

0

MAC

MSBsLSBs

valueslope

(x’C-¹x)BB stepperxb
yb

m

 C-1

|Jk|/
 √|C|

pi
xe

l

no
rm

.

wk

 |C|-1

1/x

x-0.5

n n

C

rasterizer

n

n

Fig. 10. Data path of the EWA splatting core

is between 2 × 4 and 2 × 9 times larger than the input bandwidth, as each
accumulation is performed using a read-modify-write operation. To reduce the
external bandwidth, our on-chip caching architecture exploits the horizontal and
vertical overlaps of neighboring Gaussian kernels. In a first stage (denoted L1),
contributions with spatial proximity are collected and accumulated into larger
blocks. The L1 blocks are then efficiently accumulated to a second stage (L2
blocks). The L2 cache is able to store several lines of the image, and once a
line is removed from the L2 cache it is accumulated to the external frame buffer
memory. Our two-stage caching architecture reduces the resulting bandwidth
considerably: the L1 cache is implemented using register arrays that support
the highest bandwidth, and the L2 cache implemented using block RAMs that
reduce the bandwidth to external memory further.

Throughput. Each accumulated data word has 45 bits, the required bandwidth
for 1080p30 can be calculated as

bwfull = 45× 1920× 1080× 30× 2× (1 + npps),

where the factor 2 comes from the read-modify-write operation. npps denotes the
number of pixels per splat, i.e., the bounding box size. Additionally, the final
read out requires one more read from the memory. If we assume a conservative
value of npps = 9, the overall bandwidth equals bwfull = 56 Gbit/s. Our cache
architecture exploits the inherent spatial overlap between neighboring pixels,
and shifts the bandwidth burden to the on-chip buffers, reducing the effective
npps. In simulations, a cache efficiency resulting in npps = 3 is always achieved,
and the required bandwidth is reduced to 22.4 Gbit/s.

Due to the read-modify-write operation, we choose a QDR-type memory in-
terface to efficiently support the accumulation. QDR memories are static RAMs
that have separate read and write ports, which can be accessed in parallel. More-
over, the data is transmitted in double edge mode. A 9 bit QDR RAM port

Spatially-Varying Image Warping 81

therefore has 3 Gbit/s read and 3 Gbit/s write bandwidth, at a clock frequency
of 170 MHz. Our architecture employs 5 instances of such 9 bit RAM interfaces,
and the resulting 45 bit memory interface matches our data word size. The
overall available bandwidth therefore amounts to 30 Gbit/s.

Scheduling and Control Flow. Due to the varying bounding box sizes of
the input Gaussian kernels, the run-time of the individual rendering cores is
non-deterministic during operation. However, on a per-frame basis the varying
per-pixel run-times are averaged out and thus approximately constant, which
can be used for dimensioning the number of cores and the required memory
bandwidth. Short-term fluctuations of throughput are then regulated using a
back-pressure system. Moreover, an efficient scheduling strategy distributes the
input pixels to individual rendering units.

Output Interface. The final step of the rendering pipeline consists of reading
out the image from the frame buffer and interfacing it to a standard display chip.
Since display interfaces must adhere to a very strict timing, the read-out from
the frame buffer is always prioritized over the read-modify-write accumulation
operations. In case of collision, the accumulation can be stalled via the back-
pressure mentioned before. The normalization block contains a divider producing
the final 24 bit RGB values, by normalizing the accumulated RGB values with
their weights.

4.2 Bicubic Warping Architecture

Figure 11 provides a top-level architecture overview of backward mapping using
bicubic interpolation and two-times adaptive super-sampling. The high-level ar-
chitecture is conceptually similar to the EWA architecture shown in Figure 9.
The backward warping grid represented by Jacobian and backward coordinate
lookup values is streamed line-by-line into the warping core (no warp inversion
is performed here). However, contrary to the EWA forward architecture, the
pixel intensities are not streamed together with the warp grid, but are accessed
through an external buffer.

Adaptive Supersampling. The adaptive super-sampling block decides for
each warp input whether super-sampling is necessary or not, by detecting if the
transformation is locally minifying. Minifications are detected by checking if the
determinant of the Jacobian is greater than one, or the determinant of the inverse
Jacobian is larger than one, depending on which format is available at the input.
In the case of supersampling, the locations of the additional sampling points
are linearly approximated using the Jacobian and the lookup coordinate. Note
that applying super-sampling in an adaptive way has two benefits over applying
super-sampling everywhere: first, the amount of computations is significantly
reduced, and second, blurring due to super-sampling with non-ideal decimation
kernels is avoided where no anti-aliasing is necessary.

82 P. Greisen et al.

warp

Jk
m-1(uk)

Bicubic
Kernel LUT

Adaptive Grid
Upsampling

Buffer and
Pixel Lookup

Bicubic
Interpolation

ext.
RAM

Cache/Memory IF

Interpolation Arithmetics

pixel

pixel

addr

2x Super-Sampling

pixelfractional coordinates

integer coordinates

ASIC

filter
coeffs

Fig. 11. Block diagram of bicubic interpolation with adaptive 2× super-sampling. The
caching setup is similar to the EWA rendering architecture cache, since a similar access
pattern is assumed. The key difference is that the bicubic backward mapping cache
is a read-buffer whereas the EWA forward mapping cache uses (read-modify)-write
accesses.

The currently employed supersampling strategy could be further improved
by introducing directional super sampling, i.e., by applying super sampling only
in the direction where the potential aliasing appears. This extension is able to
provide a higher throughput in cases where the image transformation is demag-
nifying and anisotropic (e.g. an aspect ratio change from 16:9 to 4:3).

Bicubic Interpolation. The adaptive super-sampling block outputs backward
coordinates to the memory interface block responsible for fetching the corre-
sponding pixels from the external buffer. In parallel, the interpolation arith-
metics block gets the fractional part of the backward coordinates to set up the
bicubic filter kernel coefficients. For each output sample, an area of 4× 4 pixels
has to be multiplied with the bicubic kernel. Note that this kernel is separable
and thus can be implemented with four vertical- and one horizontal application
of the one-dimensional bicubic convolution kernel. This architecture uses fixed
point arithmetic throughout. The coefficients of the bicubic kernel can therefore
be directly obtained from two lookup tables (LUTs), where we the indices consist
of two integer bits and the fractional bits of the x and y coordinate differences,
respectively. If the fractional precision is not too large, no additional refinement
of the indexed values (e.g. using linear interpolation) has to be performed as the
LUTs already cover the whole index range. The throughput of the bicubic in-
terpolator is one pixel per 4 cycles. In order to produce a super-sampled output
pixel, four such samples have to be calculated and averaged and thus 16 cy-
cles are required in that case. Thus, the effective throughput of the interpolator
depends on the fraction of supersampled pixels per frame.

Spatially-Varying Image Warping 83

Caching and Memory Interface. Analogue to the forward mapping archi-
tecture, the amount of accessed input image pixels is very large as the bicubic
interpolator always accesses a 4× 4 neighbourhood in order to calculate an out-
put pixel. Thus even in the case of no supersampling, we would have to load
16 times more pixels than there are in one frame, which translates into a very
large external bandwidth. An on-chip read cache which is able to hold several
lines of the image is therefore employed to reduce the bandwidth. As the bicubic
interpolator requires 4 cycles to produce one output sample, the cache mem-
ory is divided into four column interleaved RAM macros such that four parallel
accesses are possible.

5 Implementation Results

Several ASIC implementations of non-linear warping architectures have been
realized which allow for a comparison and conclusion on hardware performance of
the different techniques. In the following, we discuss some of the implementation
results of the different ASICs.

5.1 EWA Splatting: Esper

The EWA architecture described previously was implemented in VHDL and
was fabricated in 180 nm (1P6M) CMOS technology (Figure 12(a)). The design
supports image resolutions up to 2048×2048 and works on gray-level 8-bit pixels.
It employs four splatting units to support 720p25 in splatting performance. Due
to die size limitations the cache is reduced to eight lines of gray-valued 576p
(i.e. 8x1024 pixels). The ASIC has been successfully tested at 123 MHz where a
power consumption of 300 mW has been measured. Core voltage is 1.8 V and I/O
pad voltage is 3.3 V. Core area is 6 mm

2 which corresponds to 660 kGE. There
are 64 data I/O pins and 56 power/ground pins. This chip is a prototype of the
EWA core architecture and does not possess a real-world memory interface. The
normalization block is also not included. The accumulation precision is set very
conservatively to 16 bit per entry.

Detailed Throughput Figures. For the following throughput figures, a nominal
clock frequency of 133 MHz is assumed. One splatting unit has a throughput
of 6.65 MPixels/s. A 720p25 video stream requires a throughput of 23 MPixels/s

and thus four splatting units. The necessary external memory bandwidth without
caching is 2× 9× 23 = 414 MPixel/s which amounts to 414× 4 ≈ 1.66 GByte/s

for 4 bytes per pixel entry (accumulated value plus normalization weight). The
factor 2 comes from the read-modify-write operation of the accumulation. The
cache has an efficiency of about 83% which reduces the external bandwidth to
282 MByte/s, i.e. the normalized bandwidth is around 1.5 (normalized to the
bandwidth it takes to read, modify and write one output image). The optimum
normalized bandwidth cannot be reached, as the cache is only 1024 pixels wide.
In order to reach the optimal cache efficiency for 720p25 video, the cache should

84 P. Greisen et al.

be extended to 8 lines with 1280 pixels per line (see Section 3.3). Note that
in addition to the above bandwidth, a read/clear operation to the memory is
further necessary to account for the final read-out and clearing.

5.2 EWA Splatting: Vesper

The Vesper chip is an extended version of Esper, and it is designed to render
full HD color images at 30 frames per second. In contrast to Esper this chip
has been fabricated in 130 nm CMOS and it is equipped with fully-functional
display- and memory interfaces (Figure 12(c)).

The DVI interface requires a fixed input bandwidth and clock frequency, which
usually is dependent on the display resolution and frame rate. To decouple the
arithmetics and accumulation from the DVI interface, we separate the design
into two clock domains. While the rendering core should run as fast as possible,
the DVI core is running at the specific DVI pixel clock. The asynchronous data
interface is implemented using an asynchronous FIFO, see [4]. The chip also
provides clock signals for the external RAM components and the DVI transmit-
ter. In order to provide a flexible timing at the corresponding interfaces, those
output clocks can be phase shifted relative to the internal clock signals.

The I/O bandwidth, the throughput of the splatting units and the caching
have been dimensioned for very pessimistic and demanding scenarios, such that
1080p30 performance is achieved in a practical system that supports a wide
variety of warping applications. In turn, the actual performance for typical ap-
plications will be higher, and therefore also higher frame rates are possible. Un-
der typical conditions, our architecture reaches 1080p48. Furthermore, smaller
resolutions are always possible and would increase the frame rate further (e.g.
720p60).

The chip area is largely dominated by the number of input and output pins, as
well as the required power distribution for the high speed I/O interfaces. Vesper
supports 175 data I/O pins, of which 115 pins are used for the external QDR-II
interface. Due to the prototype nature of the chip, a more conventional "around
the core" I/O has been employed, instead of a more area efficient flip-chip I/O.
For a commercial implementation, the area could be significantly reduced since
the overall logic area (including on-chip SRAM) is 9 mm

2 which is much smaller
than the 5× 5 mm

2 the chip currently occupies.

5.3 Bicubic Interpolation: Eva

A bicubic backward mapping ASIC named Eva has been fabricated in 180 nm
CMOS technology (Figure 12(b)), and it has been designed to roughly match
the specifications of the Esper ASIC such that the two implementations are
comparable. It is able to support enough throughput for 576p25 when 10% of
the calculated pixels are super-sampled. Typical case post-layout simulations
have shown a maximum operating frequency of 135 MHz and a power consump-
tion of 60 mW. The core area is around 1 mm

2 which correspond to 110 kGE.
The chip contains a similar cache configuration as Esper (8 × 1024 pixel) with

Spatially-Varying Image Warping 85

Table 1. Comparison of different warping CMOS implementations. The rather large
differences in size originate from the type of transformation that are supported: arbi-
trary (arb.) or simple linear scaling (lin. scal.). In addition, EWA and bicubic feature
full or partial (super sampling (SS)) anti-aliasing support. Note that for the EWA ar-
chitecture, the interpolation (interp.), anti-aliasing (AA), and transformation (transf.)
blocks cannot be separated for the area numbers. A ’–’ means that the architecture
does not contain such a block, N/A means that the values are not available. The exter-
nal bandwidth figures are typical case values, normalized to reading/writing an image
once. The maximum throughput of our implementations are evaluated valid for non-
linear resizing (change of aspect ratio from 4:3 to 16:9). Results marked with (*) are
obtained through postlayout simulations.

EWA Bicubic Ext. Bil. Ext. Bil.
Esper Eva [15] [12]

Anti-Aliasing yes 2×SS no no
Transformation arb. arb. lin. scal. lin. scal.
Mapping direction fwd. bwd. bwd. bwd.
Image resolution 576p 576p 1080p WQSXGA
Color channels 1 1 1 1
Technology [nm] 180 180 130 130
Max. clock freq.[MHz] 123 135* 267 278

Max. throughput [fps] 40
47 (0%SS)*

N/A 3028 (10%SS)*
12.5 (100%SS)*

Power [mW] 300 62* 18.1 11.7
Transformation [kGE] ≈ 115 6 N/A N/A
Interpolation [kGE] ≈ 115 10 N/A N/A
Total w.o. memory [kGE] 230 16 26 13
Buffer size [Bit] 1024 × 8 × 2 × 16 1024 × 8 × 8 – 4 lines
Buffer [kGE] 410 90 – N/A
Memory type DP SRAM SP SRAM – SRAM
Normalized ext. BW 1 1 4 N/A

approximately half of the access bandwidth: backward mapping only requires a
read operation whereas the accumulation process in forward mapping requires
a read-modify-write operation. Thus, a single port memory is sufficient which
reduces SRAM size by half. Further, the entries are only 8 bit wide, and no ac-
cumulation weights have to be stored. Thus, in total, the SRAM memory macro
is about four times smaller in size. Note however, that this factor of four reduces
to a factor of around 1.83 if RGB pixels are stored (EWA shares the weight entry
among the three color subpixels), and if the accumulation precision is changed
to a more realistic value of 11 bit.

5.4 Comparison

In Table 1, we list several warping VLSI architectures to compare computational
resources. As can be seen, the EWA warping core is significantly larger than com-
parable backward architectures such as Eva and [15,12]. In particular, the cache

86 P. Greisen et al.

(a) (b) (c)

Fig. 12. Photo and CAD rendering of our VLSI implementations: (a) Esper (180 nm),
(b) Eva (180 nm) and (c) Vesper (130 nm). The pictures are not to scale.

of the EWA implementations is larger due to the higher fixed-point precision,
the additional weight entry, and the read-modify-write type operation. Another
reason for the higher gate count of the EWA implementations is that the EWA
arithmetics are fully evaluated, whereas a significant portion of computations in
the bicubic implementation are optimized by using LUT-based approximations.
Note that the EWA architecture could also be optimized by replacing some of
the arithmetic units with look-up tables. Thus, in applications where warping in-
formation is available in backward format and aliasing is of limited concern, one
should clearly prefer a backward mapping architecture, e.g. bicubic or bilinear
interpolation.

6 Conclusions

Arbitrary transformations of high-definition videos can be efficiently rendered
using a non-linear warping VLSI architecture. The proposed VLSI cores can be
used in an end-user device and enable image warping for current and upcoming
content-adaptive applications. Due to the separation of the rendering core into
several sub-units, the computational capabilities are easily scalable to higher
resolutions and frame-rates, such as the upcoming quad HD standards (2160p)
or the high-frame rate (HFR) standards.

References

1. Akenine-Moller, T., Haines, E., Hoffman, N.: Real-time rendering. AK Peters
(2008)

2. Asari, K.V.: Design of an efficient vlsi architecture for non-linear spatial warping of
wide-angle camera images. Journal of Systems Architecture 50(12), 743–755 (2004),
http://www.sciencedirect.com/science/article/pii/S1383762104000682

3. Chang, F.J., Tseng, Y.C., Chang, T.S.: A 94fps view synthesis engine for HD1080p
video. In: 2011 IEEE Visual Communications and Image Processing (VCIP),
pp. 1–4 (November 2011)

http://www.sciencedirect.com/science/article/pii/S1383762104000682

Spatially-Varying Image Warping 87

4. Cummings, C.: Simulation and synthesis techniques for asynchronous fifo design.
In: SNUG 2002 (Synopsys Users Group Conference, San Jose, CA, 2002 User Pa-
pers (2002)

5. Do, M., Nguyen, Q., Nguyen, H., Kubacki, D., Patel, S.: Immersive visual commu-
nication. IEEE Signal Processing Magazine 28(1), 58–66 (2011)

6. Farre, M., Wang, O., Lang, M., Stefanoski, N., Hornung, A., Smolic, A.: Automatic
content creation for multiview autostereoscopic displays using image domain warp-
ing. In: 2011 IEEE International Conference on Multimedia and Expo (ICME), pp.
1–6. IEEE (2011)

7. Greisen, P., Heinzle, S., Gross, M., Burg, A.: An FPGA-based processing pipeline
for high-definition stereo video. EURASIP Journal on Image and Video Process-
ing 2011(1), 18 (2011)

8. Greisen, P., Emler, R., Schaffner, M., Heinzle, S., Gurkaynak, F.: A general-
transformation EWA view rendering engine for 1080p video in 130 nm CMOS.
In: 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip
(VLSI-SoC), pp. 105–110 (October 2012)

9. Greisen, P., Schaffner, M., Heinzle, S., Runo, M., Smolic, A., Burg, A., Kaeslin,
H., Gross, M.: Analysis and vlsi implementation of ewa rendering for real-time hd
video applications. Transactions on Circuits and Systems for Video Technology
(2012) (accepted)

10. Heckbert, P.: Fundamentals of Texture Mapping and Image Warping. Masters the-
sis, Univ. of California, Berkeley, Dept. of Electrical Eng. and Computer Science
(1989)

11. Horng, Y.R., Tseng, Y.C., Chang, T.S.: VLSI architecture for real-time HD 1080p
view synthesis engine. IEEE Transactions on Circuits and Systems for Video Tech-
nology 21(9), 1329–1340 (2011)

12. Huang, C.C., Chen, P.Y., Ma, C.H.: A novel interpolation chip for real-time mul-
timedia applications. IEEE Transactions on Circuits and Systems for Video Tech-
nology 22(10), 1512–1525 (2012)

13. Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A system for retargeting of
streaming video. ACM Transactions on Graphics (TOG) 28(5), 1–10 (2009)

14. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlin-
ear disparity mapping for stereoscopic 3D. ACM Trans. on Graphics (Proc. SIG-
GRAPH) 29(3) (2010)

15. Lin, C., Sheu, M., Chiang, H., Wu, Z., Tu, J., Chen, C.: A low-cost VLSI design
of extended linear interpolation for real time digital image processing. In: Interna-
tional Conference on Embedded Software and Systems, ICESS 2008, pp. 196–202.
IEEE (2008)

16. Lomont, C.: Fast inverse square root. Tech. rep., Purdue University (2003),
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

17. Oh, S., Kim, G.: Fpga-based fast image warping with data-parallelization schemes.
IEEE Transactions on Consumer Electronics 54(4), 2053–2059 (2008)

18. Szeliski, R., Winder, S., Uyttendaele, M.: High-quality multi-pass image resam-
pling. Tech. rep., Microsoft Research (2010)

19. Tanimoto, M., Tehrani, M., Fujii, T., Yendo, T.: Free-viewpoint tv. IEEE Signal
Processing Magazine 28(1), 67–76 (2011)

20. Triggs, B.: Empirical filter estimation for subpixel interpolation and matching. In:
International Conference on Computer Vision (ICCV), vol. 2, pp. 550–557 (2001)

21. Wolberg, G.: Digital image warping, vol. 3. IEEE Computer Society Press (1990)
22. Zwicker, M., Pfister, H., Baar, J.V., Gross, M.: EWA splatting. IEEE Transactions

on Visualization and Computer Graphics 8(3), 223–238 (2002)

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

An Ultra-Low-Power Application-Specific

Processor with Sub-VT Memories
for Compressed Sensing

Jeremy Constantin1, Ahmed Dogan1, Oskar Andersson2,
Pascal Meinerzhagen1, Joachim Rodrigues2,

David Atienza1, and Andreas Burg1,�

1 École polytechnique fédérale de Lausanne, VD-1015 Lausanne, Switzerland,
Institute of Electrical Engineering

jeremy.constantin@epfl.ch
2 Lund University, 22100 Lund, Sweden,

Department of Electrical and Information Technology

Abstract. Compressed sensing (CS) is a universal low-complexity data
compression technique for signals that have a sparse representation in
some domain. While CS data compression can be done both in the
analog- and digital domain, digital implementations are often used on
low-power sensor nodes, where an ultra-low-power (ULP) processor car-
ries out the algorithm on Nyquist-rate sampled data. In such systems an
energy-efficient implementation of the CS compression kernel is a vital
ingredient to maximize battery lifetime. In this paper, we propose an
application-specific instruction-set processor (ASIP) processor that has
been optimized for CS data compression and for operation in the sub-
threshold (sub-VT) regime. The design is equipped with specific sub-VT

capable standard-cell based memories, to enable low-voltage operation
with low leakage. Our results show that the proposed ASIP accomplishes
62× speed-up and 11.6× power savings with respect to a straightforward
CS implementation running on the baseline low-power processor without
instruction set extensions.

Keywords: Ultra-Low-Power Processor, Application-Specific Instruc-
tion Set Processor, Instruction Set Extensions, Sub-VT Operation, Sub-
VT Embedded Memories, Compressed Sensing.

1 Introduction

Digital signal processing traditionally relies on the Nyquist sampling theorem
which states that a faithful reconstruction of a signal, limited to a bandwidth B
in the frequency spectrum, can be ensured with a sampling rate of fs ≥ 2 ∗ B.
Unfortunately, when sampled data needs to be stored or needs to be transmitted
over a wireless link, the storage or transmission costs of the raw samples can often

� This chapter extends the work published earlier in [1].

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 88–106, 2013.
c© IFIP International Federation for Information Processing 2013

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 89

limit the energy-autonomous lifetime of the system. In this case, it is advisable
to first compress the data. However, in this case the power consumption of the
compression process must also be kept very low to ensure an overall energy-
efficiency advantage.

Compressed sensing (CS) [2] is a universal, low-complexity data compression
technique to compress sparse signals. CS has been widely used in environmental
monitoring systems and in wireless body sensor networks (WBSNs) [3], where
portable and autonomous devices are expected to operate for long periods of
time with limited energy resources. Hence, an ultra-low-power (ULP) CS imple-
mentation is crucial for these systems.

On the architectural level, supply voltage scaling, potentially all the way to
the subthreshold (sub-VT) regime, can reduce both dynamic and leakage power
consumption. Therefore, many sensing platforms exploit sub-VT computing. The
state-of-the-art processors for sensing platforms have been reported to consume
as little as a few pJ/cycle while operating in the sub-VT regime [4–6]. Sub-VT

computing can also be used to perform CS data compression (in the digital
domain). However, most established CS implementations either require a large
memory footprint or still require considerable computational effort (despite the
inherent complexity advantage of CS). Leakage power consumption becomes a
very important challenge in the sub-VT regime with reduced active power. A
considerable amount of leakage in sensing platforms is due to the integrated
memories [7]. Moreover, many sensing platforms cannot be power gated com-
pletely, to retain their memory content [5], and hence leakage power is always
dissipated. Therefore, implementations with large memory requirements are not
desirable in the sub-VT regime. On the other hand, high computational effort
requirements can limit the degree of voltage scaling because of performance
degradation issues in the sub-VT regime [8–10]. These issues ultimately limit
currently the benefits of CS based data compression in ULP sensor nodes.

Application-specific instruction-set processors (ASIPs) can compensate for the
performance degradation issue, since they are optimized for a specific application
domain, providing increased efficiency and performance for the core algorithms
of the domain’s target applications. For instance, an ASIP optimized for stereo
image processing can achieve up to 130× speed-up compared to a conventional
processor [11]. These performance optimizations also lead to energy saving as
in [12], where a processing core with few accelerators dedicated to biomedical
applications, can achieve up to 11.5× energy saving compared the processing
core-only implementation. Despite of their efficiency in some specialized appli-
cation domains, to the authors knowledge no ASIP core has been reported for
ultra-low-power CS compression.

Contributions. We propose to synergistically exploit sub-VT computing in con-
junction with an ASIP core for CS compression to provide an ultra-low-power
solution for compression of sparse signals for sensing applications. To this end,
we extend the instruction set of a low-power processor to exploit the specific
operations of the CS compression algorithm. Our ASIP core does not require
high clock frequencies, and therefore enables more aggressive sub-VT voltage

90 J. Constantin et al.

scaling for a given throughput requirement. The very low memory requirements
additionally allow for a major reduction in leakage power. For a typical case
study of electrocardiogram (ECG) signal compression in WBSNs, the processor
consumes only 30.6 nW for an ECG sampling rate of 125Hz. Moreover, we show
that the proposed processing platform achieves 62× speed-up and 11.6× power
saving with respect to the established computation-based CS implementation
running on the baseline low-power processor.

2 Compressed Sensing

Signal compression based on compressed sensing (CS) [2] is performed by com-
puting the matrix-vector multiplication:

y = Φx (1)

where the random sensing matrix Φ ∈ Rk×n with k < n maps an input data
vector x ∈ Rn holding n samples to a compressed data vector y ∈ Rk with k
entries, for a compression ratio of k

n .
There are multiple approaches of how to choose a random sensing matrix Φ

with k rows and n columns. Sensing matrices with near optimal properties can
for example be constructed by choosing the entries of Φ by random iid sampling
from a uniform distribution [2].

2.1 Reduced Complexity Compression Algorithm

The structure and values of the entries of Φ determine the computational com-
plexity of the matrix-vector multiplication. Mamaghanian et al. [3] show (for
WBSNs) that in fact choosing Φ as a sparse matrix that contains only a few
non-zero entries per column at random positions is a valid approach which sig-
nificantly reduces complexity and still provides good integrity of the compressed
sparse signals. The non-zero elements can furthermore be chosen as 1, and the
number of ones per column (namely I) can be fixed. These constraints on Φ lead
to a very efficient algorithm (Algorithm 1) for performing CS data compression.
As a result, the computational complexity of the CS algorithm is reduced from
n×k multiplications and (n−1)×k additions for a dense sensing matrix of random
values, to only I×n additions. The sensing matrix can therefore be represented
in a compact form by a sequence of I×n random indices ∈ {1, 2, ..., k} describing
for each column in Φ the rows with non-zero entries1.

On a resource constrained system, the key challenge of Algorithm 1 is the
generation of the random indices. The optimized reference implementation [3]
uses a sensing matrix realized as a fixed sequence of indices stored in memory (for
a specific value of k). Since large memory footprints are undesirable, especially in
the context of ULP sensor nodes and sub-VT operation, we discuss the generation
of the required random indices at runtime.

1 Note that strictly speaking such a representation requires unique row-indices per
column. However, this requirement can often be relaxed without a significant impact.

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 91

Algorithm 1. Pseudocode of Compressed Sensing Algorithm

1: for i := 1→ n do
2: sample := getSample()
3: for j := 1→ I do
4: index := getRandomIndex(1..k)
5: buffer[index] := buffer[index] + sample
6: end for
7: end for

2.2 Pseudo Random Number Generation

A pseudo random number generator (RNG) can be used for the generation of the
random indices. A common implementation of such an RNG is a linear feedback
shift register (LFSR). The random sequence generated by an LSFR is defined by
the sequence of its internal states. The initial state of an LFSR is referred to as
its seed. For each state transition (LFSR step) the current internal state bits are
combined with the binary coefficients of a polynomial, which defines the pseudo
random sequence of the LFSR. The bits selected by the polynomial are summed
to produce one new bit (parity bit). The next state of an LFSR is calculated by
shifting out the least significant bit of the state and shifting the generated bit
in as the new most significant bit.

Maximum-length LFSRs provide a cycle length of the generated random num-
ber sequence that is equal to the number of maximum possible states (excluding
zero). Note that although maximum-length LFSRs can provide good sequences
of random numbers, the correlation between two subsequent LFSR states, i.e.,
subsequent indices, i1 and i2 is high, since i2 = i1/2 or i2 = i1/2 + k/2. When
the state is used directly, this correlation of the generated indices has a nega-
tive effect on the reconstruction quality of the compressed samples. Hence, we
propose to use an LFSR that advances multiple steps per generated index. The
number of steps is equal to the number of used index bits. For example, for
k = 256 the LFSR has to advance 8 states to generate the next index, which
yields only a small correlation to its predecessor. The quality of our generated
random indices for CS is assessed in the case study presented in Section 4.4. The
drawback of this approach is the increased computational effort for the RNG,
which can be compensated for by custom hardware support.

The proposed generation of the sensing matrix Φ can hence be described
with four main parameters: the LFSR polynomial, the LFSR seed, the number
of index bits (depending on k), and the number of non-zero elements per column
(I). These four configuration parameters enable the generation of a large set
of different sensing matrices. At the same time, the compact representation of
the RNG configuration keeps the memory overhead small compared to the case
where all indices for multiple matrices would need to be stored.

Hence, by choosing from a preconstructed pool of feasible values for the RNG
configuration, it is hence possible to achieve good sensing performance for a
variety of different signal conditions, potentially even by dynamically changing

92 J. Constantin et al.

the RNG configuration at runtime. This capability supports one of the strength
of the compressed sensing method which lies in the fact that even a randomly
chosen sensing matrix Φ ensures a good mapping for the sample data of a signal
source which has sparsity in a specific (potentially) unknown base with high
probability. On the contrary, any CS implementation using only a single or a very
small number of pre-stored sensing matrices loses its generality to perform well
independent of the signal source. To alleviate this issue, our approach therefore
tries to minimize all related storage and memory costs to support a large number
of different random sensing matrices, which can be dynamically generated at
runtime.

3 Sub-VT CS Processor

Resource constrained environments, such as ULP processing nodes, pose sig-
nificant challenges for the implementation of the presented data compression
algorithm (Algorithm 1). The key performance issue lies in the realization of the
random number sequences needed to address the elements in the sensing buffer.
Hence, the goal of our custom designed ASIP architecture is to provide support
for an efficient random number sequence generation, enabling energy efficient
operation in the sub-VT regime.

3.1 Processor Baseline Architecture

In this study we use a custom 16-bit reduced instruction set computing (RISC)
architecture (TamaRISC [13]), as shown in Figure 1, as the baseline microproces-
sor. TamaRISC provides a complete RISC instruction set, a C-Compiler, as well
as interrupt capability for basic embedded real-time operating system support.

Core Architecture. The main focuses of the architecture lies on minimiz-
ing the instruction set complexity in a true RISC fashion, while still providing
enough hardware support, especially regarding addressing modes, for efficient
execution of signal processing applications.

The microarchitecture has a 3-stage pipeline, comprised of a fetch, decode and
execute stage. The core operates on a data word width of 16-bit, comprises 16
general purpose working registers and 3 external memory ports, one for instruc-
tion fetch, one for data read and one for data write. The register file has 3 read
ports and 4 write ports, and provides 32-bit double word writeback support. In-
struction words are 24 bit wide, with every instruction using only a single word.
All instructions generally execute in one cycle, which is guaranteed by the use of
complete data bypassing inside the core for register as well as memory writeback
data.

Moreover, the TamaRISC architecture supports memory-to-memory arith-
metic instructions with advanced operand addressing modes, and is hence not a
typical load/store RISC architecture, but rather inspired by typical microcon-
troller architectures.

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 93

Fig. 1. TamaRISC sub-VT microprocessor architecture including address-randomizer
extension for CS

94 J. Constantin et al.

Instruction Set. The instruction set architecture (ISA) comprises a total of 14
unique instructions, with 8 arithmetic logic unit (ALU) instructions, 2 general
data move instructions, 2 program flow instructions, a sleep mode instruction,
and an instruction to provide basic hardware loops. The ALU supports addition,
subtraction (each with optional carry/borrow), logical AND, OR and XOR, right
(arithmetic or not) and left shift, as well as full 16-bit by 16-bit multiplication
(32 bit-result) on unsigned and signed data.

All ALU instructions work on two source and one destination operands, using
the exact same addressing mode options for each instruction, which helps to
reduce complexity of the architecture, since the operand fetch logic and the
arithmetic operation are completely decoupled. The supported addressing modes
are register direct, register indirect (with pre- or post-increment and decrement)
as well as register indirect with offset. The second operand also supports the use
of 4-bit literals. Regarding program flow instructions, branching is possible in
direct and register indirect mode, as well as by offset with 15 different condition
modes. The ISA also includes instructions for interrupt and sleep mode support
of the core. The sleep mode allows external clock-gating of the entire core, until a
wakeup event occurs (e.g., an interrupt request triggered by a new ADC sample).

3.2 Sub-VT Memories

While the core logic of the sub-VT CS processor works reliably at low sup-
ply voltages in the sub-VT regime, conventional data and instruction memories
based on 6-transistor (6T) static random-access memory (SRAM) bitcells fail to
operate reliably at low voltages [14]. Therefore, such conventional, embedded 6T
SRAM macrocells prohibitively limit the overall reliability and the manufactur-
ing yield of the proposed sub-VT CS processor. More precisely, under gradual
supply voltage down-scaling, read and write access failures start to appear first,
before the occurrence of data retention failures at even lower voltages [15]. Spe-
cially designed SRAM macrocells based on 8- or 10-transistor (8-10T) bitcells
are typically used to enable reliable data storage in the sub-VT regime. For ex-
ample, a typical 8T SRAM cell contains a read buffer to avoid the direct access
of the bit lines to the internal storage nodes and consequently to avoid the risk
of switching the bitcell during a read access [16], thereby improving read-ability.
Moreover, a popular 10T SRAM bitcell contains, in addition to the read buffer,
a tri-state inverter in the cross-coupled latch; this tri-state inverter is disabled
during a write access in order to avoid write contention [17], thereby improving
write-ability. All these 8T or 10T SRAM macrocells, specifically optimized for
robust sub-VT operation, need to be custom-designed due to the lack of good,
commercially available low-voltage memory compilers. Such custom design is
associated with a high engineering effort and bares high risk, unless each macro-
cell is first manufactured and silicon-proven independently, before its integration
into a larger VLSI system.

As opposed to such custom-designed sub-VT 8T/10T SRAM macrocells,
we employ a fully automated standard-cell basedmemory (SCM) compilation flow
[18]. The use of SCMs considerably simplifies the design process, and the

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 95

D Q

CK

D Q

CK

D Q

CK

D Q

CK

W
A

D

R
A

DD Q

CK

D Q

CK

R
 w

or
ds

C bits per word

...

...

...

...

...

... ...

MUX
...

MUX
...

D Q

CK

E

CKB

Q

DI(C-1) DI(0)

WClk

WAddr(r-1:0)

Clk(R-1)

Clk(0)

RAddr(r-1)

RAddr(0)

RClk DO(C-1) DO(0)

E

CKB Q

...

Integrated clock-gating cell

W
R

IT
E

 P
O

R
T

R
E

A
D

 P
O

R
T

Fig. 2. Schematic of the latch array with clock-gates for the generation of write select
signals and static CMOS readout multiplexers. The write port is highlighted in red,
while the read port is highlighted in blue.

resulting latch or flip-flop arrays directly avoid the aforementioned reliability con-
cerns of conventional 6T SRAM. In particular, standard-cell latches already con-
tain a read buffer to avoid read failures and a cell-internal keeper which is dis-
abled during write, i.e., during the transparent phase of the latch, to avoid the
risk of write contention and write failures. Consequently, the proposed SCMs work
reliably in the sub-VT regime without the need for any extra engineering effort,
and allow the complete system to operate at aggressively scaled voltages. Among
many architectural variants summarized in [18], this work adopts the latch ar-
ray architecture shown in Fig. 2. This architecture consists of a write address de-
coder (WAD) and clock gates for the generation of the one-hot encoded write se-
lect pulses (row-wise gated clock signals).Moreover, static CMOSmultiplexers are
used to read out the desired address (word). While a read logic based on tri-state
buffers exhibits lower leakage current, the chosen CMOS multiplexers are faster
and more robust for sub-VT operation. This latch array architecture can be syn-
thesized from commercially available standard-cell libraries. However, note that
it is possible to customize one or several standard-cells to meet a specific design
goal, such as ultra-low leakage power. For example, the leakage power and access
energy can be reduced by approximately 50% by using a single custom-designed
standard-cell, namely an ultra-low leakage latch using stack forcing and channel
length stretching, as well as a tri-state enabled output buffer to implement the
read logic [19].

96 J. Constantin et al.

Even though these latch-based memories are optimized for low-voltage and
low-power operation, they still consume considerable leakage power. In our sys-
tem example, memories account for 70–95% of the architecture’s total power
consumption, depending on the mode of operation. Furthermore, the sub-VT

memories consume a considerable area share: our implementation with moder-
ate memory sizes of 256 instructions (6 kBit) and 512 data words (8 kBit) results
in the processing core only consuming 16% of the total area.

3.3 Index Sequence Implementations

As discussed before, the generation of random numbers used as the buffer indices
in Algorithm 1 is commonly performed using one of the following two approaches.
The first approach employs precomputation and storage of all required indices
in form of a large array in data memory, while the second approach performs
the computation of the index sequence at runtime based on a pseudo RNG.

Precomputation. The storage of a preconstructed sequence effectively trades
computational effort for memory consumption. For example, the requirement
for a single sensing matrix (with 12 non-zero entries per column), used for the
compression of a set of 512 samples by 50%, is 6Kbyte of memory. However, a
relatively large memory footprint is especially undesirable in an ULP embedded
system, for reasons of die area and power consumption. Since sub-VT memories
are large and consume most of the total power through leakage for low voltages,
the storage of tens of Kbyte of data for sensing matrices is not a feasible option,
especially when different matrices are to be supported.

Computation at Runtime. The generation of suitable random indices can
also be performed by sequence computation based on pseudo RNGs, such as
the algorithm proposed in Section 2.2. This approach only requires the data
memory to comprise the sensing buffer, which for compression of a set of 512
samples by 50% equals 256 data words (e.g., 512 bytes with a sample precision
of 12 (up to 16) bit). As shown in Section 2.2, for each generated index the
RNG has to perform the same number of LFSR steps as the number of bits per
index. A typical implementation (on a RISC ISA) in software can perform one
16-bit LFSR step in about 10 operations. For the example of a sensing buffer
size of 256 and 12 ones per column in the sensing matrix, this results in 12× 8
steps per sample, i.e., a computational requirement of about 1 kOp per sample,
dedicated to the task of random number generation alone. This requirement
becomes problematic, since downscaling of the supply voltage considerably limits
the maximum core clock frequency (cf. Figure 3). Due to the relatively large
computational overhead, achievable sampling rates for sub-VT operation are
therefore reduced to the range of tens of Hz, which is undesirable.

To combine the benefits of instant random number access of the storage ap-
proach, with the memory savings of the computational approach, we propose
an instruction set extension for TamaRISC, which performs the task of pseudo-
random index generation efficiently in hardware.

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 97

3.4 Instruction Set Extension for CS

Analysis of the CS kernel loop shows that the extension of memory operand ad-
dressing with efficient randomization can result in significant performance gains.
We hence introduce an extension to the TamaRISC instruction set architecture,
adding a new instruction that performs an accumulation of sample data on
randomized memory addresses within a defined buffer. Essentially, lines 3-6 of Al-
gorithm 1 are combined into a single instruction, named Compressed Sensing Ac-
cumulation (CSA). The assembler semantic of CSA is: CSA *Rb, Rs. As shown in
Fig. 1, the CSA instruction takes two general purpose registers as arguments: the
first (Rb) holding the data memory base address (b) of the sensing buffer, the sec-
ond (Rs) containing the sample data (s). The CSA instruction addresses a random
element (i) within the referenced buffer and adds the provided sample onto the
existing value in the memory. This operation is repeated for a configured number
of iterations, by the use of a counter register dedicated to the instruction. With
each repetition a new pseudo random element of the buffer is addressed.

Since the LFSR state of the address randomizer can be directly accessed
through the register file, the LFSR hardware can also be used for efficient pseudo
random number generation, independently of the CS specific memory addressing
and accumulation.

Moreover, the CSA instruction is generally used in a small loop in conjunc-
tion with the processor’s sleep mode, which puts the core in a dormant state
(clock-gated) to significantly reduce power consumption until new sample data
is available. On wakeup by an interrupt request, the sample data is fetched
from the ADC and the CSA instruction is executed, after which the core can
immediately be put to sleep again.

Configurability. To enable the construction of many different sensing matrices,
the custom instruction is based on four parameters, accessible through dedicated
configuration registers. The custom instruction supports software reconfigura-
bility regarding the employed 16-bit LFSR polynomial, the LFSR seed, and the
required index width used for memory addressing. Additionally the number of
non-zero entries per matrix column can be configured, which equals the number
of times a sample is added to pseudo random locations of the sensing buffer. This
configurability amounts to storage requirements of at most three 16-bit values
per sensing matrix.

Hardware Implementation. The internal hardware structure of the address
randomizer extension to the TamaRISC micro-architecture is presented in Fig. 1.
The custom instruction employs for the sample accumulation the existing 16-bit
adder unit in the ALU and does not introduce any new units to the data path
of the execution stage of the processor. The decode stage holds the extended
address generation logic, which enables addressing of a random word inside the
sensing buffer by combining a buffer base address (b) with index bits (i) taken
from the least significant bits of the current LFSR state. The number of index
bits depends on the value set in the configuration register. In one cycle, the

98 J. Constantin et al.

LFSR state is updated by the same number of LFSR steps as index bits used (1-
16). Additionally, the instruction set extension (ISE) is realized as a multi-cycle
instruction, which allows handling of one sample in a number of cycles equal to
the configured number of non-zero entries (I) per matrix column.

4 Power and Performance Results

Due to the need to retain their memory content, many sensing platforms can not
be power gated completely [5], and hence, leakage power is always dissipated.
Therefore, our sub-VT CS processor always operates at a clock frequency that
barely accomplishes the task on time while lowering the supply voltage to the
corresponding minimum possible level that avoids timing violations. Note that
the objective is to minimize power for a given workload in contrast to the opera-
tion at the energy-minimum-voltage (EMV), where maximizing energy efficiency
often requires a higher operating voltage to balance leakage and active energy.

4.1 Synthesis and Energy Profiling

The design is synthesized above threshold at nominal supply voltage of 1.0V
with a low-power high threshold-voltage 65-nm CMOS technology, which has
a threshold voltage VT ≤ 700mV. Toggling information is obtained by simu-
lating a fully routed design (including clock tree) with back-annotated timing
information. The design is characterized by employing the sub-VT energy char-
acterization model that has been derived in [20] and that is briefly introduced
in the next subsection. With this model, parameters retrieved from critical path
information as well as a traditional value change dump based power simulation
are used to compute maximum operational speed, energy and power dissipation
in the sub-VT region.

In our implementation, the post-layout critical path delay at nominal supply
voltage is 5.2 ns, according to the gate-level static timing analysis. Optimization
for maximum frequency and thus a larger slack on the critical path allows for
a more aggressive voltage scaling. However, leakage and active power increase
considerably with hard timing-constrained designs. Tight constraints will force
the tool to infer nets with high fan-out as well as stronger buffers, which increases
capacitance on the critical path and consequently yield a slower operation in the
sub-VT region. Following the strategy proposed in [21], we relax the timing
constraint to achieve a design with low area and leakage cost. Simulation results
show that a relaxed timing constraint of 9 ns, at nominal supply voltage, gives
good power results, while it still enables for aggressive voltage scaling for our
target applications.

4.2 Sub-VT Energy Profiling

The total energy dissipation ET of static CMOS circuits operated in the sub-VT

regime is modelled as

ET = αCtotVDD
2︸ ︷︷ ︸

Edyn

+ IleakVDDTclk︸ ︷︷ ︸
Eleak

+ IpeaktscVDD︸ ︷︷ ︸
Esc

, (2)

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 99

where Edyn, Eleak, and Esc are the dynamic, leakage, and short-circuit energy,
respectively. The energy dissipation Esc has been shown to be negligible in the
sub-VT regime [22]. The switching current causing the energy dissipation Edyn

results from subthreshold currents [23], i.e., from the drain currents of MOS tran-
sistors whose gate-to-source voltage VGS is equal to or lower than the threshold
voltage VT (VGS ≤ VT). Whenever the subthreshold current is not used to
switch a circuit node, it contributes to Eleak. For a given clock period Tclk, (2)
may be rewritten as

ET = μeCinvkcapVDD
2 + kleakI0VDDTclk, (3)

where I0 and Cinv represent average leakage current and input capacitance of a
single inverter, respectively. Furthermore, kleak and kcap are the average leakage
and capacitance of the circuit, respectively, both normalized to a single inverter.
Moreover, μe represents the circuit’s average switching activity.

In the sub-VT domain, it is beneficial to operate at the maximum achievable
frequency to reach minimum energy dissipation per operation. The critical path
delay of the circuit is given by

Tclk = kcrit
CinvVDD

I0eVDD/(nVT)
, (4)

where kcrit is the critical path delay of the circuit normalized to an inverter
delay, VT = kT/q is the thermal voltage and n is the subthreshold factor. By as-
suming that operation is performed at the maximum frequency, the total energy
dissipation ET is found by introducing (4) into (3), which gives

ET = CinvVDD
2

[
μekcap + kcritkleake

−VDD/(nVT)

]
. (5)

Additionally, for a system that operates at a fixed frequency with a given clock
period Tclk, at a given VDD, the power is derived from (3) as

P =
μeCinvkcapVDD

2

Tclk
+ kleakI0VDD, (6)

which shows that the static power consumption is directly proportional to VDD.
The application of the model provides the sub-VT profile of a design, i.e.,

energy/operation, power consumption, and critical path speed. The model was
validated by measurements and accuracy is within a 10% error rate at the mea-
sured temperatures 0, 27 and 37 ◦C. In Table 1 the design properties of the
sub-VT processor are shown in terms of leakage, capacitance and critical path
normalized to a single inverter, as well as switching activity. For more details,
the reader is referred to [20].

4.3 Simulation Results

Fig. 3 shows the power consumption and the corresponding supply voltage of
the sub-VT CS processor for various clock frequencies in the sub-VT domain,

100 J. Constantin et al.

Table 1. Architectural properties for sub-VT modeling

Design properties Value

kcap 254 000

kcrit 434

kleak 194 000

μe 0.0675

computed using (6) and (4). More specifically, a clock frequency of 100 kHz
for the CS processor is achieved at a supply voltage of 0.37V. As a result, a
total power of 288 nW is dissipated, where 27% of the power consumption is
due to leakage power. When the required clock frequency is reduced to 1 kHz
through voltage scaling, the sub-VT CS processor consumes 22.5 nW in total,
where the leakage dissipation now has a share of 98%. As demonstrated in Fig. 3,
the leakage power dominates the overall power for clock frequencies lower than
1.5 kHz, corresponding to 0.2V supply voltage. In this particular technology,
operation below 0.25 V is not recommended due to higher rates of functional
failures from larger process variations according to [20].

The energy profile of the sub-VT CS processor is shown in Fig. 4. Energy
dissipation at maximum operational frequency (5) is shown together with fixed
clock frequencies (3) of 2.1 kHz, 16.5 kHz and 100 kHz. It is observed that
operating at lower frequency than dictated by supply voltage results in higher

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−1

10
0

10
1

10
2

10
3

C
lo

ck
 F

re
qu

en
cy

 [k
H

z]

Supply Voltage [V]

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

100

200

300

400

500

600

700
P

ow
er

 [n
W

]

Max. frequency
Total power
Dynamic power
Leakage power

Fig. 3. Power and performance exploration of the sub-VT CS processor

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 101

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−1

10
0

10
1

Suppy Voltage [V]

E
ne

rg
y/

cy
cl

e
[p

J]

Maximum Freq
2.1 kHz
16.5 kHz
100 kHz

Fig. 4. Energy profile for various operational frequencies of the sub-VT CS processor

energy dissipation. Thus the implementation goal is to use a supply voltage that
is just barely sufficient to support the necessary clock frequency.

The total area of the sub-VT CS processor is 84.7 kGEs, where 1GE corre-
sponds to the area of a NAND-2 minimum drive strength gate. The instruction
and data memory in the processor have a size of 768Bytes and 1 kByte, respec-
tively. The memories occupy 84% of the overall area, whereas the core occupies
the rest. The area overhead of the instruction set extension for CS accounts for
less than 3% of the overall area.

4.4 Case Study: CS-Based ECG Signal Compression

As a case study, we apply the CS algorithm for the compression of ECG sig-
nals [3]. The test case performs data compression on blocks of 512 samples,
recorded at different sampling rates.

Quality of Produced Sensing Matrices. Mamaghanian et al. [3] have shown
that 12 non-zero elements in each column of the sensing matrix are sufficient to
maintain satisfactory quality of reconstructed ECG signals for diagnostic pur-
poses. Based on the study in [3], we group random indices into groups of 12,
where each group determines the non-zero elements of the corresponding col-
umn in the sensing matrix. Assuming that there are no repeated indices in a
group, the corresponding column of the sensing matrix will have only ones and
zeros. However, in case of repetition the repeated indices will accumulate, which,
according to our experiments, does not lead to any quality degradation in the
reconstructed signal as shown in Fig. 5 for an example sensing matrix.

102 J. Constantin et al.

To ensure a good quality of diagnostic analysis on the reconstructed ECG
signal, the compression performance is quantified according to the percentage
root-mean-square difference (PRD) for different compression ratios [3]. PRD
quantifies the percent error between the original and the reconstructed signal
where a PRD value less than 9 is classified as ”very good” or ”good” qual-
ity for ECG diagnosis. Thanks to our configurable CS-extension, many sensing
matrices with different combination of primitive polynomials and seeds can be
constructed. These sensing matrices are analyzed by quantifying their corre-
sponding PRD values for various compression ratios. More specifically, Fig. 5
shows as an example the PRD values with respect to various compression ratios
for one of the constructed sensing matrices with a polynomial

p = x13 + x12 + x11 + x10 + x9 + x7 + x3 + x2 + x1 + 1

and the seed ”0x6218” in hexadecimal combination. As seen from Fig. 5, a PRD
value below 10 is retained for compression ratios up to almost 60%. Moreover,
50% compression is achieved with a PRD of 7.7. Similar to the state-of-the-
art CS sensing matrices [3], our sensing matrices that are generated by our
multi-step LFSR mechanism, accomplish a ”good” or ”very good” quality of the
reconstructed signals for compression ratios less than 53%.

Power vs. Performance Analysis. We consider the example of 50% data
compression of ECG signals, using the ECG database in [24] for stimuli gener-
ation, to analyze the power and performance of our sub-VT CS processor. The
required operating frequency to support a given sampling rate to compress ECG
signals in real-time is given by: f ≥ N ∗ fs where fs and N stand for the given
sampling rate and the required average number of clock cycles to process a sam-
ple. The clock frequency of the sub-VT CS processor is always adjusted, to have
the minimum required clock frequency, according to the given ECG sampling
rate. The supply voltage of the processor is then lowered accordingly.

The presented sub-VT CS processor requires 8460 clock cycles to apply 50%
compression on 512 samples of ECG data when the sensing matrix is constructed
by 12 random indices per column (I = 12). This corresponds to only an average
of N = 16.5 cycles processing time for each sample (16 cycles per sample + setup
overhead per sample set). As a result, the sub-VT CS processor must operate with
a clock frequency of 2.1 kHz and 16.5 kHz for 125Hz and 1 kHz sampling rates,
respectively. Fig. 6 shows the power consumption of the sub-VT CS processor
for various ECG sampling rates. More specifically, for 125Hz sampling rate the
sub-VT CS processor consumes only 30.6 nW in total with 95% of the power due
to leakage. Similarly, the total power consumption is only 74 nW for a sampling
rate of 1 kHz, where 70.7% is because of leakage dissipation.

To compare our ISE-enhanced CS processor with the baseline processor, we
consider the construction of the CS sensing matrix by computing random se-
quences of indices based on a pseudo RNG algorithm (c.f. Section 2) running on
the baseline ISA. Our results show that the optimized implementation for the
baseline core requires a significantly higher computational effort. Specifically,

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 103

Fig. 5. PRD values at various compression ratios for three index sequences (sensing
matrices Φ), each using different methods of construction

the increased computational effort per sample in terms of cycles amounts to
(10log2(k) + 5)I + 5, compared to our implementation based on the proposed
CSA instruction with an effort of I + 4 cycles. In this case of LFSR emulation
by software, code optimized to the baseline ISA processes one ECG sample,
including the sensing matrix construction, on average in N = 1025.5 cycles,
which translates into a speed-up of 62× for our ISE-supported implementation.
Therefore, a sampling rate of fs = 125Hz requires a clock frequency of 128 kHz,
using the pure software approach. This results in a total power consumption for
the design of 355 nW (cf. Fig. 3), which is 11.6× higher than the sub-VT CS
processor with ISE, where the random indices are produced with the help of
the embedded LFSR. Moreover, Mamaghanian et al. [3] report a code execution
time of 25ms on a different architecture with a clock frequency of 8MHz, for
applying 51% compression on a set of 512 ECG samples, where pre-computed
random indices are stored in the memory. This results in N = 390.5 cycles per
sample, a 23.6× higher performance requirement than our CS implementation,
in terms of cycle count alone.

104 J. Constantin et al.

Fig. 6. Power consumption for various ECG sampling rates

5 Conclusion

Compressed sensing (CS) is a well-known universal data compression technique
applied to sparse signals, used widely for sensing environment applications. Au-
tonomous and portable devices, such as sensing platforms, however enforce ultra-
low-power CS implementations, due to their limited energy resources. Therefore,
we have proposed a subthreshold processing platform specifically optimized for
CS, while still maintaining the flexibility and configurability of a processor based
system. To this end, we have customized the instruction set architecture of a
low-power baseline processor to exploit the specific operations of the CS algo-
rithm. Specifically, we propose a Compressed Sensing Accumulation (CSA) in-
struction that efficiently performs accumulation of sample data on randomized
memory addresses within a defined sampling buffer. Moreover, our processing
platform embeds the required data and instruction memories in the form of
sub-VT-capable standard-cell memories, which are essential for ULP operation.
We show that our processing platform requires neither high computational ef-
fort nor excessive memory sizes compared to straight-forward implementations.
Therefore, the platform is well suited to exploit subthreshold computing at low
voltages and with very low leakage. Our system consumes only 30.6 nW for a
case study of CS-based electrocardiogram (ECG) signal compression at an ECG

An Ultra-Low-Power Application-Specific Processor with Sub-VT Memories 105

sampling rate of 125Hz. Our results show that the proposed processing platform
achieves 62× speed-up and 11.6× power savings with respect to an established
CS implementation running on the baseline low-power processor.

Acknowledgment. This work has been partially funded by the BodyPowered-
SenSE Nano-Tera.ch RTD project (ref. number: 20NA21 143069), which is eval-
uated by the Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation
financing.

References

1. Constantin, J., Dogan, A., Andersson, O., Meinerzhagen, P., Rodrigues, J., Atienza,
D., Burg, A.: TamaRISC-CS: An ultra-low-power application-specific processor for
compressed sensing. In: 2012 IEEE/IFIP 20th International Conference on VLSI
and System-on-Chip (VLSI-SoC), pp. 159–164 (2012)

2. Donoho, D.L.: Compressed sensing. IEEE Trans. on Information Theory 52(4),
1289–1306 (2006)

3. Mamaghanian, H., et al.: Compressed sensing for real-time energy-efficient ECG
compression on wireless body sensor nodes. IEEE TBME 58(9), 2456–2466 (2011)

4. Jocke, S.C., et al.: A 2.6-uw sub-threshold mixed-signal ecg soc. In: Symposium on
VLSI Circuits, pp. 60–61 (2009)

5. Hanson, S., et al.: A low-voltage processor for sensing applications with picowatt
standby mode. IEEE J. Solid-State Circuits 44(4), 1145–1155 (2009)

6. Kwong, J., et al.: A 65nm sub-vt microcontroller with integrated sram and
switched-capacitor dc-dc converter. In: ISSCC, pp. 318–616 (2008)

7. Dogan, A.Y., Atienza, D., Burg, A., Loi, I., Benini, L.: Power/Performance ex-
ploration of single-core and multi-core processor approaches for biomedical signal
processing. In: Ayala, J.L., Garćıa-Cámara, B., Prieto, M., Ruggiero, M., Sicard, G.
(eds.) PATMOS 2011. LNCS, vol. 6951, pp. 102–111. Springer, Heidelberg (2011)

8. Hanson, S., et al.: Exploring variability and performance in a sub-200-mV proces-
sor. IEEE J. Solid-State Circuits 43(4), 881–891 (2008)

9. Zhai, B., et al.: A 2.60pJ/Inst subthreshold sensor processor for optimal energy
efficiency. In: IEEE VLSI, pp. 154–155 (2006)

10. Dreslinski, R., et al.: Near-threshold computing: Reclaiming Moore’s law through
energy efficient integrated circuits. Proc. IEEE 98(2), 253–266 (2010)

11. Banz, C., et al.: Instruction set extension for high throughput disparity estimation
in stereo image processing. In: ASAP, pp. 169–175 (September 2011)

12. Kwong, J., Chandrakasan, A.: An energy-efficient biomedical signal processing plat-
form. IEEE J. Solid-State Circuits 46(7), 1742–1753 (2011)

13. Dogan, A.Y., et al.: Multi-core architecture design for ultra-low-power wearable
health monitoring systems. In: DATE (2012)

14. Qazi, M., Sinangil, M., Chandrakasan, A.: Challenges and directions for low-voltage
SRAM. IEEE Design and Test of Computers 28(1), 32–43 (2011)

15. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Modeling of failure probability and
statistical design of SRAM array for yield enhancement in nanoscaled CMOS.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 24(12), 1859–1880

106 J. Constantin et al.

16. Chang, L., Fried, D., Hergenrother, J., Sleight, J., Dennard, R., Montoye, R.,
Sekaric, L., McNab, S., Topol, A., Adams, C., Guarini, K., Haensch, W.: Sta-
ble SRAM cell design for the 32 nm node and beyond. In: 2005 Symposium on
VLSI Technology. Digest of Technical Papers pp. 128–129 (June 2005)

17. Jain, S., Khare, S., Yada, S., Ambili, V., Salihundam, P., Ramani, S., Muthuku-
mar, S., Srinivasan, M., Kumar, A., Gb, S., Ramanarayanan, R., Erraguntla, V.,
Howard, J., Vangal, S., Dighe, S., Ruhl, G., Aseron, P., Wilson, H., Borkar, N.,
De, V., Borkar, S.: A 280mV-to-1.2V wide-operating-range IA-32 processor in 32nm
CMOS. In: 2012 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC), pp. 66–68 (February 2012)

18. Meinerzhagen, P., et al.: Benchmarking of standard-cell based memories in the
sub-Vt domain in 65-nm CMOS technology. JETCAS 1(2), 173–182 (2011)

19. Meinerzhagen, P., Andersson, O., Mohammadi, B., Sherazi, Y., Burg, A., Ro-
drigues, J.: A 500 fW/bit 14 fJ/bit-access 4kb standard-cell based sub-VT memory
in 65nm CMOS. In: Proc. IEEE ESSCIRC, pp. 321–324 (September)

20. Akgun, O., et al.: High-level energy estimation in the sub-VT domain: Simulation
and measurement of a cardiac event detector. IEEE TBCAS 6(1), 15–27 (2012)

21. Meinerzhagen, P., et al.: Synthesis strategies for sub-Vt systems. In: ECCTD, pp.
552–555 (2011)

22. Vittoz, E.: Low-Power Electronics Design. CRC Press (2004)
23. Soeleman, H., Roy, K., Paul, B.: Robust subthreshold logic for ultra-low power

operation. IEEE T-VLSI Systems 9(1), 90–99 (2001)
24. Harvard-MIT Division of Health Sciences and Technology Biomedical Engineering

Center: MIT-BIH arrhythmia database directory,
http://www.physionet.org/physiobank/database/mitdb

http://www.physionet.org/physiobank/database/mitdb

Configurable Low-Latency Interconnect

for Multi-core Clusters

Giulia Beanato1, Igor Loi2,
Giovanni De Micheli1, Yusuf Leblebici1, and Luca Benini2

1 EPFL, Lausanne, Switzerland
2 DEIS, University of Bologna, Bologna, Italy

{giulia.beanato,giovanni.demicheli,yusuf.leblebici}@epfl.ch,
{igor.loi,luca.benini}@unibo.it

Abstract. Shared L1 memories are of interest for tightly-coupled pro-
cessor clusters in programmable accelerators as they provide a convenient
shared memory abstraction while avoiding cache coherence overheads.
The performance of a shared-L1 memory critically depends on the archi-
tecture of the low-latency interconnect between processors and memory
banks, which needs to provide ultra-fast access to the largest possible L1
working set. The advent of 3D technology provides new opportunities to
improve the interconnect delay and the form factor. In this chapter we
propose a network architecture, 3D-LIN, based on 3D integration tech-
nology. The network can be configured based on user specifications and
technology constraints to provide fast access to L1 memories on multiple
stacked dies. The extracted results from the physical synthesis of 3D-LIN
permit to explore trade-offs between memory size and network latency
from a planar design to multiple memory layers stacked on top of logic,
evaluating the improvement in both form factor and latency.

Keywords: 3D integration, multi-core processor, shared memory, inter-
connection network.

1 Introduction

Following Moore’s law, the scaling to nanometer technologies has led to a transi-
tion from single-core to multi-core processors, and is now moving towards many-
cores architectures [1]. Whereas hundreds of millions of transistors can now be
placed on a single chip leading to increased computing power, they cannot be
fully exploited due to interconnect latency. In nanometer-scale technologies, in-
terconnect latency and power do not scale as much as device geometries, thus
becoming a performance bottleneck. These limiting factors need to be overcome
at the architectural level. For many applications, the exploitation of customized
accelerators will be the way to obtain the highest performance, together with
more efficient types of interconnect and memory hierarchies [2].

For this reason, new interconnect architectures have already been envisaged.
For instance, Network-on-chip (NoC) [3] has been adopted to substitute con-
ventional bus-based systems when high bandwidth and high speed are required.

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 107–124, 2013.
c© IFIP International Federation for Information Processing 2013

108 G. Beanato et al.

When ultra-low latency processor to memory interconnection is requested for
parallel computing, novel fast interconnect topologies are imperative to guar-
antee the access to the memory in few clock cycles. Several research efforts are
already focused on low-latency, high-bandwidth connection between the process-
ing elements and multi-banked on-chip memories. The Mesh-of-Trees (MoT) In-
terconnection Network proposed in [4], the Hyper-core architecture [5] and the
single-cycle interconnection network presented in [6] are just few examples of
low-latency networks. Nevertheless, future generations of Chip Multi-Processor
(CMP) require a major innovation in both integration technology and on-chip
communication infrastructure.

A promising option to overcome the barrier in interconnect scaling is the
3D integration of integrated circuits (3D ICs)[7]. Stacking multiple chips and
connecting them by Through Silicon Vias (TSVs) has the potential to reduce the
interconnect wire length while offering high vertical connect density. Multi-cores
and many-cores processors can benefit from several characteristics of 3D devices:
(a) Wire length reduction improves the latency of core to memory interconnect;
(b) High TSV density and their small length can be exploited for improving
memory bandwidth when stacking memory layers on top of logic layers; (c) The
smaller form factor due to the addition of a third dimension is essential for
moving on-chip the memory required by the processing elements avoiding slow
off-chip connections.

In the last few years, several studies have been published exploring 3D in-
tegration technology in order to address the high area overhead of SRAM. A
proposal from Li et al.[8], focuses on the L2 cache design and management in
a 3D chip. They propose a network architecture embedded into the L2 NUCA
cache memory for connecting it to a collection of cores. A different approach
is followed by Loh, that in [9] considers 3D-DRAM stacked on top of multi-
processors and revises the memory system organization in a 3D context. More
recently, also Woo et al.[10], have explored a memory architecture that exploits
TSVs for connecting the last level cache to the 3D stacked DRAM. The work
of Madan et al.[11] instead, takes in consideration a 3D system composed by a
DRAM layer and an SRAM cache banks layer on top of a processing layer. Con-
sidering emerging memory technologies, Mishra et al.[12] study the integration
of STT-RAM in a multi-core system, together with a network level solution for
decreasing the write latency associated with these novel memories.

In order to connect memory and logic placed on different layers, several
groups already explored a methodology to extend NoC design into a 3D set-
ting. The simple extension of traditional NoC fabrics to the third dimension
adding routers at each layer (Symmetric NoC), does not pay in performance
due to the different delay between fast vertical TSV and the horizontal in-
terconnects. A first proposal has been done by Li et al. [8], with a network
architecture embedded into the L2 cache memory. The use of Time-Division
Multiple Access (dTDMA) buses as Communication Pillars between the wafers
is proposed in order to have single-hop communication amongst the layers. The
3D Dimensionally-Decomposed(DimDe) Router [14], focus on optimizing of the

Configurable Low-Latency Interconnect for Multi-core Clusters 109

inter-strata communication with single hop connection between any two lay-
ers. Park et al. [15] propose a Multi-layered on-chip Interconnect Router Ar-
chitecture (MIRA) divides the NoC between the multiple layers optimizing the
micro-architecture for Non Uniform Cache Architecture (NUCA)-based CMP. A
Low-Radix Low-Diameter 3D Interconnection Network is proposed by Xu et al.
[16] which adopts long wires to connect remote intra-layer nodes and results in
a 3 hops diameter network. More recently, Xue et al. [17] uses long range links
to replace multiple short links in order to build a 5 hops 3D interconnection
network for many core processors that exploits the DimDe router. While Ben
Ahmed et al.[18] focus on overcoming the limitations in power, communication
cost and throughput of their 2D OASIS-NoC by extending it to 3D.

This chapter aims to propose a fully synthesizable 3D Logarithmic Intercon-
nection Network (3D-LIN) for connecting a cluster of processing elements, placed
on a logic layer, to multiple layers of SRAM modules. These modules constitute a
single shared L1 memory that can enable fast communication among the tightly
coupled processing elements avoiding cache coherence overheads. The network is
configurable in both 2D and 3D-domains and is automatically split between the
chosen number of memory layers. In order to reduce the chip cost, regardless of
the number of memory layers needed, they all have the same layout and can all
be produced exploiting the same mask. Design automation and configuration of
the network allow us to experiment with different 3D structures, in the search
for the trade-off points between speed, footprint and number of layers.

2 2D Network

The basic 2D-LIN is a low-latency and flexible crossbar that connects multiple
processing elements (PEs) to multiple SRAM memory modules (MMs). The IP
is designed and optimized for sustaining full bandwidth and supporting non-
blocking communication within a single clock cycle. These features makes LIN
an interesting option for interfacing multi-processors to a shared Tight Coupled
Data Memory (TCDM) constituted by multiple equal memory banks. This topol-
ogy permits to avoid data replication providing also a simple and fast way for
inter-processors communication and multi-core synchronization. In order for the
design to be simple and efficient, the interconnect is built following the Mesh Of
Trees approach, where the network is created combining binary trees. Each tree
provides a unique combinational path between the processing element cluster
and one memory module, and viceversa. Aiming to sustain non blocking com-
munication, the request and the response path must be decoupled, hence 2D-LIN
features independent request and response network. The key property of this soft
IP is the reconfigurability. The user has control on a number of parameters:

– Number of masters, N, that is a power of two;
– Number of memory cuts, M, that is a power of two. With a number of MMs

at least double the numbre of PEs, access collision can be drastically reduced;
– Size of the memory cuts, all the banks should have the same size;
– Data and Address width;

110 G. Beanato et al.

– Enable for word level interleaving, for spreading transactions among all
banks drastically reducing access collision.

– Test and Set bit. This bit act as enable for a test-and-set instruction used
to write to a memory location and return the old value as a single atomic
operation.

W
I
R
I
N
G

Arbitration Tree
DMA

Arbitration Tree
CPU

RR
Arbiter

RR
Arbiter

Address Decoder Resp

MM
0

Test
&

Set

Request Block 0

Response Tree

Response Block 0

Address Decoder
Req

PE
0

Arbitration Tree
DMA

Arbitration Tree
CPU

RR
Arbiter

RR
Arbiter

Address Decoder Resp

MM
M

Test
&

Set

Request Block M

Response Tree

Response Block N

Address Decoder
Req

PE
N

Fig. 1. Block schematic of the 2D-LIN

2.1 Network Architecture Protocol

The network is created by independent and decoupled Request and Response
channel. A memory access starts with a request issued by a PE through a master
port, then, the master is kept updated on the status of the request by a simple
and lean protocol based on a credit based flow control. Each clock cycle, all the
requests made from PEs are propagated through the binary trees. Collisions due
to multiple requests directed to the same memory bank are avoided by Round
Robin arbitration performed at each node. The processors losing the arbitration
are stalled. The PE winning the arbitration concludes the transfer in a single
clock cycle in case of a store, while, in case of a load, the read data is returned
the next clock cycle.

Configurable Low-Latency Interconnect for Multi-core Clusters 111

2.2 Request Block

The request block is in charge of collecting all the PE’s requests directed to a
specific memory module (see Figure 1). In the simplest case of two PEs, the block
is built out of a single binary tree where the request block is composed of 1 node,
being a routing-arbitration primitive. The number of stages of the Arbitration
Tree is a function of the number of masters attached to it: NUMstage=log2(N), N
being the number of PEs. Combining several binary trees, the network can sup-
port both generic number of ports and different priorities. Hence, a high priority
channel for the processors and a low priority channel for eventual peripherals
can be supported. The primitives composing the request block first arbitrate
among eventual requests through a Round Robin policy, then the winning one
is routed to the MM in a combinational way. At the same time, the flow control
signals traveling from MMs to PEs, are also managed. Both normal read/write
operation and atomic test and set are supported.

2.3 Response Block

The response block (see Figure 1) is in charge of collecting all the responses from
memory modules which are directed to a specific processing element, therefore, it
can be considered as a specular version of the request block. Nevertheless, since
the response network is only used for read operations and the read latency is
deterministic (1 cycle), no response collisions are possible. Hence, the response
path does not need any arbitration, and it can be simplified replacing round
robin arbiters with simpler decoders.

3 3D Interconnection Network

Within a standard planar(2D) architecture, when more storage capability or
more processing power are needed, the network size increases, and the single-
cycle communication becomes the limiting factor for the maximum achievable
operating frequency. 3D-LIN is the extension of the 2D structure presented in
the previous section, to be integrated in a 3D-stacked CMP. This network topol-
ogy allows designers to overcome the limitation in frequency by automatically
splitting the 2D floorplan into one logic layer and several memory layers and
stacking them one on top of the other, Figure 3. All the power-hungry process-
ing elements are placed on logic layer, close to the heat sink, while the memory
banks, are divided among the memory layers. The network is partitioned among
the layers in an automated way following the assumption that all the memory
layers should have the same identical layout:

– Each layer automatically auto-configures during runtime. This permits to
reduce the chip cost and the design effort.

– TSVs from the bottom layer are connected to the lowest metal layer, while
the TSVs to the upper layer are connected to the top metal layer.

112 G. Beanato et al.

LOGIC
LAYER

MEMORY
LAYER 0

MEMORY
LAYER K

TSV

...

PEs

MMs

Fig. 2. 3D chip architecture

– The M memory banks are equally divided among K memory layers, where
K is a power of 2. Each memory layer contains ML=M/K memory banks.

Table 1 summarize the main parameters of 3D-LIN versus 2D-LIN. We can
notice that in terms of number of levels of the trees, the first strongly depends
on the number of PEs, while the second is related to the number of MMs. The
number of levels directly affects the latencies of the request network path (PE to
MM), and the response path (MM to PE). When connecting the memory banks,
the access time to read the data from the memory is added to the latency of the
response path. 3D-LIN allows us to decrease the number of arbitration levels of
the response tree when implemented on 2 or more memory layers, hence it allows
the system to run at higher frequencies. The number of primitives per layer and
in the system give an estimation on how the area of the network can be reduced
by moving to 3D. The main reduction is encountered for the primitives of the
Response Tree, but also the Arbitration Tree diminish.

3.1 Network Architecture

TSVs connecting the stacked dies have good electrical characteristics, but their
area footprint is bigger compared to the on-chip metal lines. For this reason it
is important to place the minimum number of TSVs, while still guaranteeing
the maximum possible bandwidth. When the signals traversing the tiers are the
direct input and output of the processor, it is possible to place the minimum
number of TSVs dedicated to signal propagation:

TSV = (Nc+ 1 + log2K) +N(Nbaddr + 2Nbdata +NbbyteEN + 2) (1)

where Nc is the number of TSVs for clock propagation, summed to one TSV for
the reset signal, log2K is the number of bits needed for the layer ID. Nbaddr,
Nbdata and NbbyteEN are respectively the number of TSVs for propagating the

Configurable Low-Latency Interconnect for Multi-core Clusters 113

W
I
R
I
N
G

Arbitration Tree
DMA

Arbitration Tree
CPU

RR
Arbiter

RR
Arbiter

Address Decoder Resp

MM
0

Test
&

Set

Request Block 0

Response Tree

Response Block 0

Address Decoder
Req

Layer Selector

Arbitration Tree
DMA

Arbitration Tree
CPU

RR
Arbiter

RR
Arbiter

Address Decoder Resp

MM
M/K

Test
&

Set

Request Block M/K

Response Tree

Response Block N

Address Decoder
Req

Layer Selector

TSVs

(a)

W
I
R
I
N
G

Request
Block 0

Response
Block 0

Request
Block M

Response
Block N

TSVs

PE
0

PE
N

STALL network

(b)

Fig. 3. Block schematic of the 3D-LIN: (a) Logic layer block diagram; (b) Single mem-
ory layer block diagram

address, the data and the byte enable signals. The maximum bandwidth of the
2D system is:

BWmax = f(
Nbdata

8
)K (2)

Hence, the PEs and the small Network for the stall (see Figure 3(b)) are placed
on the logic layer, while each memory layer has the same layout and contains
a Network of cardinality N×M

K and M
K memory banks (see Figure 3(a)). This

configuration that minimize the number of TSVs needed for the signals, still
guarantee BWmax also for the 3D implementation. The layerID signal is sent

114 G. Beanato et al.

from the logic layer to identify each memory layer, so that the address space is
equally divided between all the MMs. Each memory layer takes the incoming
layerID as its own identifier, and send to the next mem layer the received signal
incremented by one. In the TSV count, the Stall signal is not taken in account. In
the 2D network, the Stall signal is critical, because it needs to be asserted much
in advance with respect to the next clock rising edge. Hence, in order to optimize
it, the logic that computes the Stall signals is detached from the main Network
connecting PEs to MMs and placed on the logic layer as a small independent
Network.

Table 1. 3D-LIN vs. 2D-LIN

2D-LIN 3D-LIN

Number of levels Response
Tree

log2M log2
M
K

Number of levels Arbitra-
tion Tree

log2N log2N

Number of primitives on
each memory layer - Re-
sponse Tree

log2M∑

i=1

M

2i
×N

log2
M
K∑

i=1

M
K

2i
×N

Number of primitives on
each memory layer - Arbi-
tration Tree

log2N∑

i=1

M × N

2i

log2N∑

i=1

M

K
× N

2i

Number of primitives in the
system - Response Tree

log2M∑

i=1

M

2i
×N

K∑

j=1

log2
M
K∑

i=1

M
K

2i
×N

Number of primitives in the
system - Arbitration Tree

log2N∑

i=1

M × N

2i

K∑

j=1

log2N∑

i=1

M

K
× N

2i

3.2 Network Operation

During a read/write operation, the master asserts data and control signals that
are sent as a packet. Some control signals go to the Stall Network that arbitrates
possible collision and eventually sends the Stall signal to the PE within the
same clock cycle. The full packet, data and control signals, are also sent through
the TSVs to the memory layers. Each memory layer receives the packet and
checks if the request is for a position in its address range. The layer containing
the address lets the packet enter, while the other layers invalidate the request.
When a packet accesses the memory layer containing the requested address, the
network routes and arbitrates the packet among the other simultaneous requests,
allowing the higher priority request to access the memory bank. Write operations
are performed in the same clock cycle, while for Read operations and Test and
Set operations, the read data is propagated back to the related PE in the next
clock cycle.

Configurable Low-Latency Interconnect for Multi-core Clusters 115

4 Experimental Results

This section provides the evaluation of 3D-LIN in terms of area, power and delay.
The Network is implemented in System-Verilog and synthesized with Synopsys
Design Compiler in topographical mode using 65nm CMOS technology library
from ST-Microelectronics. The physical synthesis has been chosen to extract the
results because it allows the user to floorplan the design and accurately predict
post-layout timing using real net capacitances during RTL synthesis [19]. The
functionality has been verified using Mentor Graphics’ Modelsim.
In this experiment we considered 5μm wide TSV with 10μm minimum pitch and
a length of 50μm, which represents the state-of-the-art for high density through
silicon vias [20]. According to the chosen dimensions, the TSV’s parasitic capac-
itance have been obtained through the analytical model proposed by Kim,[21].
For the experiments, the parasitics values have been rounded to 20mΩ for the
resistance and 30fF for the capacitance.

The memory size depends on the multi-core application. For the experiments,
we chose a case study with memory modules chosen to be SRAM banks of
8kB, which timing and physical information are provided by the lib file and
the Milkyway database. Each MM occupy 0.06mm2. Regarding the processing
elements, dummy hard macros are used in order to emulate their area occupation.
Each PE is considered to be an ARM CortexM3, which the estimated area is
around 0.07mm2 for 65nm technology.

Unfortunately, the current version of Synopsys DC does not support TSV and
3D stacking, hence, in the absence of established design kits, the synthesis flow is
performed in several main steps. Starting from the synthesizable RTL description
of the network, already configured with the user constraints, the floorplanning
of memory layer is performed, and the time and physical constraints are added
to emulate the TSVs. After the physical synthesis of the memory layer, the
back-annotated delays are used to perform the physical synthesis of the logic
layer. After the floorplan definition, the logic layer is synthesized considering the
latencies of the stacked dies. These steps are then iterated to meet the desired
timing constraints for the complete 3D-stacked system.

4.1 Physical Analysis

When moving to a 3D configuration, the original NxM network is divided among
the layers: a small NxM network for the Stall signal is placed on the logic layer,
while the rest of the network that communicates with the memory banks is
divided in NxM

K smaller networks distributed on each memory layer. We first
explore the impact of the 3D partitioning on the network area, measured as
equivalent kgates (nand2), for several systems:

– 16 PEs and 64MMs.
– 16 PEs and 128MMs.
– 8 PEs and 64MMs.
– 8 PEs and 128MMs.

116 G. Beanato et al.

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

100

200

300

400

500

600

memory layers

E
qu

iv
al

en
t k

ga
te

s
[n

an
d2

]

16x64
16x128
8x64
8x128

Fig. 4. Area occupied by the network in the 3D system

Figure 4 depicts the trend of the total area, that is the sum of the area occupied
by the partitioned network on each layer, for different network cardinalities. We
can notice that for 3D-systems composed of 1 memory layer, the total area has
a slight increase. This is due to the fact that moving from a 2D-system to a
3D-system, the small stall network is added on the logic layer. Once we reach 3
or more layers, even if the network is replicated on each memory layer, the area
reduction per layer dominates. Since the total number of primitives constituting

3D-LIN is equal to

K∑
j=1

log2
M
K∑

i=1

M
K

2i
×N +

K∑
j=1

log2N∑
i=1

M

K
× N

2i
, is expected that the

area reduction is more accentuated for networks connecting a higher number of
MMs.

In a 3D system, however, is important to consider the per-layer reduction,
since the form factor is influenced by the single layers dimension. The area
occupied by the network on the logic layer and the ones on each memory layer is
shown in Figure 4.1. Once adding more memory layers, there is a strong decrease
in the per-layer network area.

Figure 6 shows the trend of the ratio between the network area and the mem-
ory area both per layer and in the full 3D system composed of 16 PEs interfaced
to 64 MMs. When moving from a planar design to a stacked system, the sum of
the ne twork areas on each layer is higher than the 2D counterpart, nevertheless
the area per layer decreases.

The configurability of the Network gives the possibility to explore the form-
factor trend for the 3D multi-core systems with shared L1 memory on top of
logic. Given the specification of the system, the best trade-off can be found in
terms of number of layers. In particular, we chose to analyze the area of the
chip(A3D) normalized to the area of the same chip implemented on a single

Configurable Low-Latency Interconnect for Multi-core Clusters 117

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

50

100

150

200

250

memory layers

E
qu

iv
al

en
t k

ga
te

s
[n

an
d2

]
Network cardinality: 16x64

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

100

200

300

400

500

600

memory layers

E
qu

iv
al

en
t k

ga
te

s
[n

an
d2

]

Network cardinality: 16x128

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

50

100

150

memory layers

E
qu

iv
al

en
t k

ga
te

s
[n

an
d2

]

Network cardinality: 8x64

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

50

100

150

200

250

300

memory layers

E
qu

iv
al

en
t k

ga
te

s
[n

an
d2

]

Network cardinality: 8x128

on Logic Layer
on each Memory layer

Fig. 5. Area of the Stall/Valid Network on the logic layer (blue) and area of the data
Network on each memory layer (green) for different number memory layers stacked on
top of the logic layer

silicon layer(A2D) for the following configurations and area occupation of the
memory(Amem) over the area of the planar chip(A2Dchip):

– 16 PEs and 16 MMs : Amem

A2Dchip
=43% ;

– 16 PEs and 32 MMs : Amem

A2Dchip
=58%;

– 16 PEs and 64 MMs : Amem

A2Dchip
=70% ;

– 16 PEs and 128 MMs : Amem

A2Dchip
=79% .

Figure 7 depicts the reduction of the area when the chip is designed to stack
different numbers of memory layers on top of the logic layer. When moving from
the planar structure, to a 2-layer structure, the memories and the network are
moved to the upper layer, and we can notice a decrease in the form factor.
However, this reduction is still limited due to the size of the network that, as
explained before, does not shrink effectively. In additions, the TSV area occu-
pation increases the size of both layers. Considering the stacking of two or more
layers on top of the logic, the network cardinality start changing depending on

118 G. Beanato et al.

0(2D) 1(3D) 2(3D) 4(3D) 8(3D) 16(3D)
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

memory layers

Anetw

Amem

Full system
Per layer

Fig. 6. Area of the network over the area of the memory for each memory layer(green),
and for the whole system(blue)

0(2D) 1(3D) 2(3D) 4(3D) 8(3D) 16(3D)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

memory layers

A3D

A2D

A

mem
/A

2Dchip
:43%

A
mem

/A
2Dchip

:58%

A
mem

/A
2Dchip

:70%

A
mem

/A
2Dchip

:79%

Fig. 7. Area of the 3D chip normalized to the area of the 2D implementation

the number of memory layers, leading to a decrease in its area occupation, while
the TSV occupation remains the same as for the 3D, single memory layer, case.
The best trade-off point can be found when the area of the memory layer is
almost equal to the area of the logic layer. When reaching the best trade-off, the
stacking of any more memory layers does not affect the form factor that is now
defined from the area of the logic layer.

Configurable Low-Latency Interconnect for Multi-core Clusters 119

4.2 Power Analysis

The power consumption is an important parameter to be considered. For 3D-
ICs, it is even more important: stacking more layers arise new challenges due
to an increased power density per footprint, which may cause temperature to
increase beyond the limits that guarantees reliability. At the design level, careful
floorplan definition and thermal management techniques such as dynamic voltage
and frequency scaling (DVFS) can help, but are not sufficient. There is a signif-
icant research effort to tackle the power issue at different levels. At the software
level thermal-aware task scheduling policies [23] can be implemented, while at
the fabrication level, cooling techniques such as inter-layer micro-channel liquid
cooling [22] and Thermal-TSVs(TTSV) [24], [25] can be exploited to remove the
excessive heat.

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

50

100

150

memory layers

Po
w

er
 [

m
W

]

16x64
16x128
8x64
8x128

Fig. 8. Total dynamic power consumption of the network in the 3D system

In this chapter, we do not propose any cooling or thermal management tech-
niques, but we focus on exploring the power dissipation of 3D-LIN to ensure
reliability. The total dynamic power consumed by the network is depicted in
figure 8. We can observe how the trend for power is correlated to the network
area. As the number of blocks to be interconnected increases, the size of the die
affect the wire length and the power related to wiring start dominating the cell
internal power. Hence, the gain in power consumption is more pronounced for
systems with higher cardinality and appears once stacking more memory layers
which reduces both the per-layer network cardinality, and the single layer size.

The power contribution of the different single layers is shown in figure 8. The
power consumed by the stall network on the logic layer is small compared to
the consumption of the network on each memory layer, which is the dominant
contribution. As the number of stacked memory layers increases, the cardinality
of the network on each layer is reduced, leading to a significant gain in power.

120 G. Beanato et al.

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

10

20

30

40

50

60

70

memory layers

Po
w

er
 [

m
W

]
Network cardinality: 16x64

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

20

40

60

80

100

120

140

memory layers

Po
w

er
 [

m
W

]

Network cardinality: 16x128

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

10

20

30

40

50

memory layers

Po
w

er
 [

m
W

]

Network cardinality: 8x64

on Logic Layer
on each Memory layer

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

20

40

60

80

100

memory layers

Po
w

er
 [

m
W

]

Network cardinality: 8x128

on Logic Layer
on each Memory layer

Fig. 9. Dynamic power consumed by the Stall/Valid Network on the logic layer (blue)
and dynamic power consumed by the data Network on each memory layer (green) for
different number memory layers stacked on top of the logic layer

4.3 Timing Analysis

Exploring 3D-LIN in term of latency the following configurations are considered:

– 16 PEs and 32 MMs;

– 16 PEs and 64 MMs;

– 16 PEs and 128 MMs.

As previously discussed, the frequency of the network is limited by the re-
sponse path that includes the access time to read a data from the memory
bank. However, depending on the size of the memory module, this access time
changes. In our experiments, we explored the latency of the network when con-
necting memory banks of 8kB. In Figure 4.3 and 4.3, both system latency and
network latency are shown. We can notice that moving from the planar system
to one stacked memory layer, the latency slightly decreases due to the shorter
interconnect. The reduction in delay is more evident for the systems with two

Configurable Low-Latency Interconnect for Multi-core Clusters 121

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

20

40

60

80

100

120

140

160

memory layers

Sy
st

em
 la

te
nc

y
[F

O
4]

16x32

16x64

16x128

Fig. 10. System latency: Network delay plus memory access time

or more memory layers, due to the changes in the network topology. The re-
duction in delay is more evident in Figure 4.3 considering the network itself,
independently from the attached memory banks. The latency of the network
shows significant improvement, in the case of 16PEs connected to 64MMs, the
2D latency of ˜42FO4 is reduce down to ˜23FO4 .

Table 2 shows the latency improvements in percentage. The results show that
stacking a single memory layer, the memory access time dominates the decreased
latency of the interconnect and the improvement is only a few percents. How-
ever, when we move to two memory layers, we can obtain already around 8%
improvement, reaching 11% with four memory layers for a network cardinality
of 16x128. Independently from the attached memory, considering the network
alone, the benefits are more evident, with 35% improvements for four memory
layers stacked on top of the logic layer.

Table 2. Latency improvement

16x32 16x64 16x128

system network system network system network

1 memory layer 2% 9% 2% 7% 3% 10%

2 memory layers 6% 22% 6% 20% 8% 24%

4 memory layers 8% 32% 10% 35% 11% 31%

8 memory layers 12% 46% 13% 44% 16% 46%

122 G. Beanato et al.

0(2D) 1(3D) 2(3D) 4(3D) 8(3D)
0

10

20

30

40

50

60

memory layers

N
et

w
or

k
la

te
nc

y
[F

O
4]

16x32
16x64
16x128

Fig. 11. Network latency

5 Conclusion

In this paper, we present a configurable network architecture that can be in-
tegrated in 3D stacked CMP. The network enable the connection of multiple
processing elements to a shared multi-banked memory guaranteeing low-latency
connection. The network and the multi processor system has been explored in
terms of area, form factor, power and latency. The benefits obtained by exploit-
ing 3D integration are evaluated. Moreover, the study also focus on exploring the
performances for different 3D structures, studying the effects of stacking differ-
ent number of layers. The physical synthesis results show the best trade off point
between the amount of memory needed in the system and the number of stacked
layers. In case of a memory occupation of 60% of the planar chip, by moving to a
system that integrates two memory layers on top of a logic layer, the form factor
is improved more than 60%. In terms of latency, the 16x128 configuration of the
network can be improved up to around 24% in case of 2 memory layers, and
31% in case of four memory layers, leading to a latency reduction for accessing
8kB memory banks of 8% and 11% respectively. Latency and area improvements
come without a worsening in terms of power. Stacking 2 or 3 layers, the power
consumption is kept almost the same as for the 2D implementation, while starts
improving as the number of layer increases.

Acknowledgments. This work has been partially supported by the EU project
grant PRO3D FP7-ICT-248776.

Configurable Low-Latency Interconnect for Multi-core Clusters 123

References

1. Owens, J.D., Dally, W.J., Ho, R., Jayasimha, D.N., Keckler, S.W., Peh, L.-S.:
Research challenges for on-chip interconnection networks. IEEE Micro 27, 96–108
(2007)

2. Borkar, S., Chien, A.A.: The Future of Microprocessors. Commun. ACM 54, 67–77
(2011)

3. Benini, L., De Micheli, G.: Networks on Chips: a New SoC Paradigm. Computer 35,
70–78 (2002)

4. Balkan, A., Qu, G., Vishkin, U.: A Mesh-of-Trees Interconnection Network for
Single-Chip Parallel Processing Application-Specific Systems. In: International
Conference on Architectures and Processors, pp. 73–80 (2006)

5. Plurality, Ltd.: The hyperCore architecture. White Paper (2010)
6. Rahimi, A., Loi, I., Kakoee, M., Benini, L.: A fully-synthesizable single-cycle inter-

connection network for Shared-L1 processor clusters Design. In: Automation Test
in Europe Conference, pp. 1–6 (2011)

7. Xie, Y.: Processor Architecture Design Using 3D Integration Technology. In: 23rd
International Conference on VLSI Design, pp. 446–451 (2010)

8. Li, F., Nicopoulos, C., Richardson, T., Xie, Y., Narayanan, V., Kandemir, M.:
Design and management of 3D chip multiprocessors using network-in-memory.
SIGARCH Comput. Archit. News 34, 130–141 (2006)

9. Loh, G.: 3D-Stacked memory architectures for multi-core processors. In: Proceed-
ings of the 35th Annual International Symposium on Computer Architecture, pp.
453–464 (2008)

10. Woo, D.H., Seong, N.H., Lewis, D., Lee, H.-H.: An Optimized 3D-Stacked Mem-
ory Architecture by Exploiting Excessive, High-Density TSV Bandwidth. In: 16th
International Symposium on High Performance Computer Architecture, pp. 1–12
(2010)

11. Madan, N., Zhao, L., Muralimanohar, N., Udipi, A., Balasubramonian, R., Iyer,
R., Makineni, S., Newell, D.: Optimizing communication and capacity in a 3D
stacked reconfigurable cache hierarchy. In: 15th International Symposium on High
Performance Computer Architecture, pp. 262–274 (2009)

12. Mishra, A., Dong, X., Sun, G., Xie, Y., Vijaykrishnan, N., Das, C.: Architecting on-
chip interconnects for stacked 3D STT-RAM caches in CMPs. SIGARCH Comput.
Archit. News 39, 69–80 (2011)

13. Li, F., Nicopoulos, C., Richardson, T., Xie, Y., Narayanan, V., Kandemir, M.:
Design and Management of 3D Chip Multiprocessors Using Network-in-Memory.
SIGARCH Comput. Archit. News 34, 130–141 (2006)

14. Kim, J., Nicopoulos, C., Park, D., Das, R., Xie, Y., Narayanan, V., Yousif, M.,
Das, C.: A novel dimensionally-decomposed router for on-chip communication in
3D architectures. In: 34th International Symposium on Computer Architecture,
pp. 138–149 (2007)

15. Park, D., Eachempati, S., Das, R., Mishra, A., Xie, Y., Vijaykrishnan, N., Das,
C.: MIRA: A Multi-layered On-Chip Interconnect Router Architecture. In: 35th
Annual International Symposium on Computer Architecture, pp. 251–261 (2008)

16. Xu, Y., Du, Y., Zhao, B., Zhou, X., Zhang, Y., Yang, J.: A Low-Radix and Low-
Diameter 3D Interconnection Network Design. In: 15th International Symposium
on High Performance Computer Architecture, pp. 30–42 (2009)

17. Xue, L., Gao, Y., Fu, J.: A High Performance 3D Interconnection Network for
Many-Core Processors. In: 2nd International Conference on Computer Engineering
and Technology, pp. 383–389 (2010)

124 G. Beanato et al.

18. Ben Ahmed, A., Ben Abdallah, A., Kuroda, K.: Architecture and Design of Effi-
cient 3D Network-on-Chip (3D NoC) for Custom Multicore SoC. In: Broadband,
Wireless Computing, Communication and Applications, pp. 67–73 (2010)

19. Design Compiler User Guide, Synopsys, version F-2011.09-SP2 (2011)
20. Van der Plas, G., Limaye, P., Loi, I., Mercha, A., Oprins, H., Torregiani, C., Thijs,

S., Linten, D., Stucchi, M., Katti, G., Velenis, D., Cherman, V., Vandevelde, B.,
Simons, V., De Wolf, I., Labie, R., Perry, D., Bronckers, S., Minas, N., Cupac, M.,
Ruythooren, W., Van Olmen, J., Phommahaxay, A., de Potter de ten Broeck, M.,
Opdebeeck, A., Rakowski, M., De Wachter, B., Dehan, M., Nelis, M., Agarwal,
R., Pullini, A., Angiolini, F., Benini, L., Dehaene, W., Travaly, Y., Beyne, E.,
Marchal, P.: Design issues and considerations for low-cost 3-D TSV IC technology.
J. of Solid-State Circuits 46, 293–307 (2011)

21. Kim, D.H., Mukhopadhyay, S., Lim, S.K.: Fast and Accurate Analytical Modeling
of Through-Silicon-Via Capacitive Coupling. IEEE Transactions on Components
Packaging and Manufacturing Technology 1, 168–180 (2011)

22. Shi, B., Srivastava, A.: Liquid Cooling for 3D-ICs. In: International Green Com-
puting Conference and Workshops, July 25-28, pp. 1–6, (2011)

23. Zhou, X., Yang, J., Xu, Y., Zhang, Y., Zhao, J.: Thermal-aware Task Scheduling
for 3D Multicore Processors. IEEE Trans. Parallel Distrib. Syst. 21, 60–71 (2010)

24. Goplen, B., Sapatnekar, S.: Thermal Via Placement in 3D ICs. In: International
Symposium on Physical Design, pp. 167–174 (2005)

25. Yu, H., He, L.: Dynamic Power and Thermal Integrity in 3D Integration. In: Com-
munications, Circuits and Systems, pp. 1108–1112 (2009)

A Hexagonal Processor and Interconnect

Topology for Many-Core Architecture
with Dense On-Chip Networks

Zhibin Xiao and Bevan Baas

Department of Electrical and Computer Engineering
University of California, Davis

1 Shields Avenue Davis, CA USA 95616
{zxiao,bbaas}@ucdavis.edu

Abstract. Network-on-Chips (NoCs) are used to connect large numbers
of processors in many-core processor architecture because they perform
better than less scalable methods such as global shared buses. Among
all NoC design parameters, NoC topologies define how nodes are placed
and connected and greatly affect the performance, energy efficiency, and
circuit area of many-core processor arrays. Due to its simplicity and the
fact that processor tiles are traditionally square or rectangular, 2D mesh
is mostly used for existing on-chip networks. However, efficiently map-
ping applications can be a challenge for cases that require communication
between processors that are not adjacent on the 2D mesh. Motivated by
the fact that applications often have largely localized communication pat-
terns, we have proposed an 8-neighbor mesh topology and a 6-neighbor
topology with hexagonal-shaped processor tiles, both of which increase
local connectivity while keep much of the simplicity of a mesh-based
topology. We have physically designed a 16-bit DSP processor and the
corresponding processor arrays which utilize all three topologies. A 1080p
H.264/AVC residual video encoder and a 54 Mbps 802.11a/11g OFDM
wireless LAN baseband receiver are mapped onto all topologies. The 6-
neighbor hexagonal grid topology incurs a 2.9% area increase per tile
compared to the 4-neighbor 2D mesh, but its much more effective inter-
processor interconnect yields an average total application area reduction
of 21%, an average power reduction of 17%, and a total application inter-
processor communication distance reduction of 19%.

Keywords: CMOS, many-core processor, interconnection topology, net-
work on chip (NoC), digital signal processing (DSP).

1 Introduction

Tiled architectures that integrate two or more independent processor cores are
called multi-core processors. Manufactures typically integrate multi-core proces-
sors into a single integrated circuit die (known as chip multiprocessors or CMP).
CMPs that integrate tens, hundreds, or thousands of cores per die are called

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 125–143, 2013.
c© IFIP International Federation for Information Processing 2013

126 Z. Xiao and B. Baas

many-core chips and those that utilize scalable interconnects and avoid long
global wires will attain higher performance [1].

NoCs are used to connect large numbers of processors in many-core proces-
sor architecture because they perform better than less scalable methods such as
global shared buses. Among all NoC design parameters, NoC topologies define
how nodes are placed and connected and greatly affect the performance, energy
efficiency, and circuit area of many-core processor arrays. Due to its simplic-
ity and the fact that processor tiles are traditionally square or rectangular, 2D
mesh is mostly used for existing on-chip networks. However, efficiently mapping
applications can be a challenge for cases that require communication between
processors that are not adjacent on the 2D mesh as shown in Figure 1(a). This
condition could require processors to act as routing processors for static intercon-
nection architectures, and intermediate routers for dynamic router-based NoCs.
The power consumption and communication latency also increase as the number
of routing processors or routers between two communicating cores increase.

Fig. 1. Popular Network-on-Chip topologies and their physical layouts [2]: (a) 2D mesh,
(b) 2D Torus, and (c) Spidergon

There exist other common topologies for NoCs such as 2D torus, Spidergon,
fat tree and higher dimensional meshes and tori which provide higher routing
capability and communication bandwidth with costs of higher wire density and
longer global wires. Furthermore, topologies with irregular layouts present sig-
nificant challenges for many-core implementations especially with the number of

A Hexagonal Processor and Interconnect Topology 127

cores per die expected to soon reach thousands and more. As an example, Fig-
ure 1(b)(c) shows the 2D torus and Spidergon topologies as well as their physical
layouts on a 2-dimensional chip [2]. Both topologies require global wires which
go across one or more processors. Mapping arbitrary non-regular topologies to
a 2D floorplan is an NP-hard optimization problem [3].

For many applications mapped onto homogeneous chip multiprocessors, com-
munication within processors is often largely localized [4], which may result in
local mapping congestion. An increase of local connectivity can ease such con-
gestion, which results in application mappings with smaller application area and
lower power consumption. This motivates us to propose new topologies with in-
creased local connectivity while keeping much of the simplicity of a mesh-based
topology.

The main contributions of this paper can be summarized as three points.
First, we have proposed a 6-neighbor topology with hexagonal-shaped processor
tiles and a 8-neighbor mesh topology, which are compared to the common 4-
neighbor 2D mesh topology. Second, commonly available commercial CAD tools
are used to implement tiled CMPs for all three topologies. Three processors
including a hexagonal-shaped processor tile and their corresponding many-core
processor arrays are physically implemented in 65 nm CMOS and are DRC
and LVS clean. Third, a complete functional H.264/AVC residual encoder and
an 802.11a baseband receiver are mapped onto all three topologies for realistic
comparisons.

The remainder of this paper is organized as follows. Section 2 describes the
related work. Section 3 presents the proposed inter-processor communication
topologies. Section 4 shows the mapping of two complex applications to all dis-
cussed topologies. In section 5, the physical design of the hexagonal-shaped pro-
cessor tiles is presented. Section 6 presents the chip implementation results and
section 7 concludes this paper.

2 Related Work

Many topologies have been used for on-chip inter-processor communication, such
as buses, meshes, tori, binary trees, octagons, hierarchical buses and custom
topologies for specific applications. The low complexity 2D mesh has been used
by most fabricated many-core systems including RAW [5], AsAP [6], TILE64 [7],
AsAP2 [8] and Intel 48-core Single-Chip Cloud Computer (SCC) [9].

Becker et al. [11] developed a hexagonal Field-programmable Analog Array
in a 0.13 µm CMOS technology. The basic building block is a hexagonal analog
circuit block which communicates with six neighbors. Extension to a many-core
processor is similar in topology, but very different in terms of impact on tile area
and total application interconnect.

Malony studies the two-dimensional regular processor arrays which are
geometrically defined based on nearest-neighbor connections and space-filling
properties [12]. He theoretically proves the hexagonal array is the most efficient
topology in emulating other topologies by analyzing the geometric characteris-
tics. Chen et al. theoretically explored the addressing, routing and broadcasting

128 Z. Xiao and B. Baas

(a) (b) (c)

Fig. 2. Examples of three hexagonal networks (a) a 6-neighbor off-chip hexagonal net-
work; (b) a 3-neighbor on-chip honeycomb network [10]; (c) the proposed 6-neighbor
on-chip hexagonal grid network

in hexagonal mesh multiprocessors [13]. Decayeux and Seme proposed a 3D
hexagonal network as an extension of 2D hexagonal networks [14]. Their work
focuses on off-chip 6-neighbor hexagonal network where each node is located at
the vertex of the network as shown in Figure 2(a). Stojmenovic proposed efficient
coordinate system and routing algorithms for the 3-neighbor honeycomb mesh
networks as shown in Figure 2(b) [15]. Compared to previous work, we have de-
signed a hexagonal-shaped processor that can be tiled together as a hexagonal
mesh for on-chip inter-processor communication as shown in Figure 2(c). The
advantages of hexagonal-shaped processor topology are demonstrated by real-
world application mappings and physical implementations of a fully functional
many-core processor array.

3 Processor Shapes and Topologies

3.1 NoC Topology Analysis Criteria

NoC topologies can be analyzed by a few criteria [16]:

– Degree: is the number of direct neighbors for one node. A high degree allows
more nodes to communicate directly with low latency.

– Diameter : is the largest number of hops between any two nodes. A small
diameter indicates low maximum latency of a network.

– Bisection: is the minimum number of links to be removed to separate a
network into two equal ones. A high bisection indicates a high bandwidth
yielding high throughput.

– Number of links : the total number of bidirectional links in a network.

– Clustering degree: also called clustering coefficient, is a measure of degree
to which nodes in a network tend to cluster together. The local clustering
degree for a node i can be defined as: 2li

ni(ni−1) , where ni is the number of

direct neighbors and li is the number of links between its neighboring nodes.
A high clustering degree indicates that local nodes close to each other are
strongly connected.

A Hexagonal Processor and Interconnect Topology 129

Table 1. Characteristics of various regular topologies for a homogenous many-core
array with n×n processors where n is the number of processors on one edge and n ≥ 2

Topology Degree Max. Link Link Diameter Bisection Clustering
Hops Num. Degree

2D Mesh 4 0 2n(n− 1) 2(n− 1) n 0
2D Torus 4 1 2n2 n 2n 0
8-neighbor
mesh 8 1 4n2 − 6n+ 2 n− 2 3n− 2 0.86
6-neighbor
hexagon 6 0 3n2 − 4n+ 1 n+ �n−2

2
� 2n− 1 0.40

+ Omitted due to space limitation. The total number of links for 5-5 House and
Rect is: n(n− 1) + n(�n−1

2
�) + (2n− 1)(�n−1

2
�).

* This is for n ≥ 4. If n ≤ 3, the diameter of the topology is: n+ �n−1
2
�.

– Max link hops : is the maximum hops that a link can cross after the topol-
ogy has been physically mapped to a 2-dimensional chip. This is a criteria
proposed in this work to measure the length of global wires of a topology.

The above criteria can be used to compare various topologies and provide an
initial indication on performance. The first two rows of Table 1 list the character-
istics of two popular topologies 2D mesh and 2D torus. 2D mesh has a maximum
degree of 4 and a maximum link hop equal to 0 since all of the links are nearest-
neighbor. For an n×n array, 2D mesh has a number of links equal to 2n(n− 1),
a diameter equal to 2(n − 1), bisection n , and a clustering degree equal to 0.
Compared with 2D mesh, 2D torus has the same degree, more links, smaller di-
ameter, higher bisection bandwidth and the same clustering degree. All of these
criteria indicate 2D torus could achieve higher throughput and lower latency at
the cost of more long non-nearest neighbor links.

This work explores low complexity topologies with higher degree, larger num-
ber of links, smaller diameter, higher bisection compared to 2D mesh. We also
limit the maximum link hops being less than or equal to one to avoid global
long wires. These requirements result in proposed topologies that have a strong
local connectivity with a non-zero clustering degree. In the following subsec-
tions, a 6-neighbor hexagon and an 8-neighbor mesh topologies are proposed
and analyzed.

3.2 Processor Tile Shapes

To the best of our knowledge, all previously-fabricated VLSI processors have
been of a rectangular shape, often nearly square. As illustrated in Figure 3(a)(b),
it stands to reason that a circular shape would allow shorter wires for a given
netlist, resulting in smaller area and lower wire capacitance which would result

130 Z. Xiao and B. Baas

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(a) Square
0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Circle
0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Hexagon

Fig. 3. Example tiles of constant area with random uniformly-distributed wire end-
points

in higher speeds and lower energy per operation. A simple experiment with ideal
shapes and one million randomly-placed wires yields a 2.2% reduction in total
wire length for a circular tile compared to a square tile. On the negative side,
it is clear that circles do not pack together without wasted space between tiles.
On the positive side, circles pack with six neighbors while rectangles obviously
have only four. It is reasonable to expect a rectangular tile to have longer wires
on average compared to a square tile.

In contrast to the circle, the hexagonal shape does pack efficiently without
gaps between tiles and it retains the 6-nearest-neighbor property. The same
wiring experiment was run for a hexagonal tile and it resulted in a 1.8% reduction
in total wire length compared to the square tile. A reduction in total wire length
yields a pure benefit in area, energy and delay for processor tile design. The
inclusion of common rectangular blocks such as memory arrays in a processor
tile increases routing congestion but is shown in Section 6 to be tolerable. In
addition, we demonstrate that Manhattan-style wire routing is fully compatible
with non-rectangular tile shapes.

3.3 The Proposed Topologies

As shown in Fig. 4, three different topologies are studied and the well-known
4-neighbor mesh is used as the baseline topology for comparison as shown in
Figure 4(a).

Figure 4(b) shows a 6-neighbor processor array using hexagonal-shaped pro-
cessor tiles. The processor center-to-center distance is

√
3 ∗ w if the length of

the hexagon edge is w. The hexagonal grid is commonly used in mobile wireless
networks due to its desirable feature of approximating circular antenna radiation
patterns and its optimal characteristic of six nearest neighbors. The symmetry
and space-filling property make the hexagonal-shaped processor tile an attractive
design option for many-core processor arrays.

Due to limitations of current wafer sawing machines, chips on round wafers
are traditionally square or rectangular. In fact, the opportunities and limitations
of non-rectangular processors on a chip are analogous to non-rectangular chips

A Hexagonal Processor and Interconnect Topology 131

(a) (c)(b)

Fig. 4. The three inter-processor communication topologies considered in this work:
(a) baseline 4-neighbor mesh (b) 6-neighbor hexagonal tile and interconnect, and (c)
8-neighbor mesh

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of processors (n) on one edge of an array (n x n)

F
ra

ct
io

n
of

 a
re

a
un

av
ai

la
bl

e
fo

r
he

x
pr

oc
es

so
r

til
e

Fig. 5. Fraction of area unavailable for processor tiles in an n x n many-core array
utilizing 6-neighbor hexagonal tiles and interconnect topology

on a wafer. For the case of a rectangular chip composed of hexagonal-shaped
processors, there are areas on the periphery of the chip in which processors
can not be placed. Figure 5 shows the percentage of unavailable area for the
hexagonal-shaped tile topology with varying processor array size. If the processor
array size is larger than 30 x 30, this area overhead becomes less than 2.7% of the
total chip area. In practice, this area could be filled with other chip components
such as decoupling capacitors, or portions of hardware accelerators, memory
modules, I/O circuits or power conversion circuits.

Another logical extension of the 2D mesh is to include four diagonal processors
in an 8-neighbor arrangement as shown in Figure 4(c) where each rect tile can
directly communicate with 8 neighbors. This approach has increased routing
congestion in the tile corners due to the four (uni-directional) links that pass
through each corner (the dashed lines in Figure 4(c)).

132 Z. Xiao and B. Baas

Table 2. Link length for the three studied topologies with the area of each processor
tile equal to one unit of length squared

Topology
Nearest-neighbor Link Longer Link
Number Length Number Length

4-neighbor mesh 4 1.00 – –
6-neighbor hex grid 6 1.07 – –
8-neighbor mesh 4 1.00 4 1.41

Fig. 6. A 2D mesh processor array connected by a dynamic five-port routers each with
one port connected to the processor core

Table 1 also lists the characteristics of the two proposed topologies for an
homogenous many-core array with n × n processors. Compared with 2D mesh,
the two proposed topologies have larger node degree, smaller diameter, larger
or equal bisection bandwidth and larger clustering degree. The 8-neighbor mesh
topology has the largest bisection, smallest diameter and largest clustering de-
gree, which indicates lower maximum latency and high maximum throughput.
The advantage of the 6-neighbor hexagon topologies is that global long wires are
not required.

The center-to-center distance can be used to represent the communication
link length between two “touched” processors. Table 2 shows the number of
different types of communication links and the corresponding link length for the
three topologies. The area of a processor tile is assumed to be one squared unit.
As shown in Table 2, the 4-neighbor mesh and 6-neighbor hex grid have only
one type of communication link due to equal center-to-center tile distance. The
8-neighbor mesh topology has two types of links.

4 Application Mapping

4.1 Target Interconnect Architecture

Fig. 6 shows the inter-processor communication in a typical 2D mesh proces-
sor array using dynamic routers. As the diagram shows, the processor array is

A Hexagonal Processor and Interconnect Topology 133

Core

Switch

Buffer

Core

Switch

Buffer

Fig. 7. A 2D mesh processor array connected by circuit switches each with four nearest-
neighbor inter-processor communication links and one port connected to the processor
core

connected by 5-port routers and the communication logic includes five buffers
and one 5× 5 crossbar. There might be more control logic to support the com-
munication flow control which is not drawn. The static circuit-switch intercon-
nection has smaller area, lower power dissipation and lower complexity than
dynamic router interconnection while trading off routing flexibility [17].

Fig. 7 shows another 2D mesh array connected by circuit switches each with
four nearest-neighbor interconnection links and one port connected to the pro-
cessor core. The circuit switch communication logic has only one buffer and one
4 × 1 crossbar. The long distance communication is performed by software in
the intermediate processors. In this work, we use the static configurable circuit
switch architecture which is suitable for applications with steady communication
patterns. We also extend the architecture in Fig. 7 by adding one more port to
the processor core due to the fact that processors normally have a two-operand
instruction format. Thus, the processor can read two words from two buffers in
one instruction at the same time.

4.2 Application Mapping Methodology

Parallel programming on the discussed many-core systems with dense on-chip
networks includes two main steps: 1) partitioning the algorithms at a fine-grained
level; 2) mapping the tasks to the nodes of the processor array and connecting
the nodes with available links defined by the topology [18]. The two steps might
be repeated iteratively for throughput optimization where we can identify the
bottleneck task of the design and partition it even more until the throughput
meets the requirement.

To be specific, in the partitioning step, an estimate of task workload and re-
quired resources such as data and instruction memories are used to generate a
fine-grained task graph where each task can be assigned to one processor node.
Following the fine-grained partition, the mapping is conducted either manually or

134 Z. Xiao and B. Baas

automatically by an automatic mapping tool [19]. Application mapping is essen-
tially an optimization problem,which can be formed as integer linear programming
(ILP) problem [20] and solved by Heuristic algorithms such as simulated anneal-
ing [21]. In this work, we have used a manual mapping method and the primary
optimization target is to minimize area and maximize local communication.

Based on the two-port circuit switch architecture, two complete applications
including an H.264/AVC residual encoder and an 802.11a receiver are manually
mapped onto all three topologies which differ in the number of links among
neighboring processor tiles. In order to be fair to compare all topologies, we
chose not to partition tasks specifically for one topology and mapping the two
applications onto all topologies is based on the same task graph.

N1

N2

N3

N4

N5

N9

N7

N6

N10

N11

N12

N14

N15

N16

N17
N18

N19 N20

N21

N22

data_in

data_out

N8

N13

(a)

N1

N2

N3

N4
data_in

N5

N7

N6

N9N8

FFT

data_out

N10 N11

N14

N13

N12

N15

N19

N18

N16

N17

N20 N21 N22

(b)

Fig. 8. Task graph of (a) a 22-node H.264/AVC video residual encoder, and (b) a
22-node 802.11a WLAN baseband receiver

4.3 Benchmark Application Mapping

Figure 8 depicts two task graphs of the benchmark applications, where each
node represents one task which can be implemented in one processor and each
edge represents one physical link between two processor nodes. Figure 8(a) shows
a 22-node task graph of an H.264/AVC residual baseline encoder composed of
integer transform, quantization and context-adaptive and variable length cod-
ing (CAVLC) functions [18]. The H.264/AVC encoder is a memory-intensive
application which requires an additional shared memory module as shown in

A Hexagonal Processor and Interconnect Topology 135

the task graph. Figure 8(b) shows a 22-node task graph of a complete 802.11a
WLAN baseband receiver which is computation-intensive requiring two dedi-
cated hardware accelerators: Viterbi decoder and FFT. The complete receiver
includes necessary practical features such as frame detection, timing synchroniza-
tion, carrier frequency offset (CFO) estimation and compensation, and channel
estimation and equalization [22]. Figure 9 shows an example mapping of the

Data
Receiver

4x4 IT
4x4 AC
Quant.

4x4 AC
Quant.

Router 1
Buffer &
Chroma
DC HT

Buffer
Chroma

DC Quant

Intra
16x16 DC

Quant

Intra
16x16 DC

HT

Data
Receiver

Zig-zag
P1

CAVLC
Scanning

P1

Router 2
Zig-Zag

P2

CAVLC
Scanning

P2
Chroma
Predict

nnz

Luma
Predict

nnz
Router 3

Non-zero
Coeff Run

Encode
Router 10

TotalZero
Encode

Router 9

Level
Encode

P1

Level
Encode

P2
Sign

Trailing
Ones

Router 5

NumCoeff
Trailing
Ones

Router 4

VLC
Binary
Packer

Router 8

Router 7

Router 6

Shared Memory
(968 KB maximum used

Data in

Data out

Fig. 9. An H.264/AVC video residual encoder mapped on a processor array with 4-
neighbor 2D mesh topology

Data_in

4x4 IT

Data

Receiver
4x4 AC

Quant

4x4 AC

Quant

Chroma

DC Quant

ZigZag

P2

ZigZag

P1

Scanning

P2
SignTrailing

Ones
TotalZero

Shared

Memory

Chroma

DC Quant

Intra

16x16 DC

HT

Intra

16x16 DC

Quant

Data

Receiver

Chroma

Predit nnz

Luma

Predict

nnz

Scanning

P1

NumCoeff

TrailingOnes
Level P1 Level P2

Router 1

& Packing

Router 2

& Packing
Router 3

Run

Before

VLC

Binary

Packer

Data_out

Fig. 10. An H.264/AVC residual video encoder mapped on a processor array with
6-neighbor hex topology

H.264/AVC residual encoder capable of 1080p HDTV encoding at 30 frames per
second on the baseline 4-neighbor mesh that uses 32 processors plus one shared
memory. The 4-neighbor mesh is inefficient in handling a complex application
like H.264/AVC encoding. A total of 10 processors are used solely for routing
data which accounts for 31% of the total application area. Figure 10 shows a
possible 25-processor mapping on the proposed 6-neighbor hex grid topology.
As mentioned before, the hexagonal-shaped processors still take a maximum of

136 Z. Xiao and B. Baas

DATA
DISTR.

AUTO-
CORR.

CFO
COMPEN.

ENERGY
COMP.

FRAME
DET.

CORDIC
– ANGLE

CHANNE
L EQUAL.

CHANNE
L EST.

TIMING
SYN.

CFO EST.
DE-

MAPPING
BR & DL
COMP.

DE-
SCRAM.

PAD
REMOV.

DE-
INTERLEA

V2

DE-
PUNC.

FFT
VITERBI

DEC.

POST
TIMING

SYN.

to MAC layer

PRE-
CHAN.
EST.

from
ADC

GUARD
REMOV.

Router 1

ACC. OFF.
VECTOR
COMP.

Router 2 Router 3

Router
4

Router
5

Router 6

Router 7Router 8

Router 10Router 9

DE-
INTERLEAV1

SUBCARR.
REORD.

Fig. 11. An 802.11a baseband receiver mapped on the processor array with baseline
4-neighbor 2D mesh topology

DATA

DISTR.

AUTO-

CORR.

ENERGY

COMP.

FRAME

DET.

TIMING

SYN.

POST

TIMING

SYNC

CFO

EST.

ACC. OFF.

VECTOR

COMP.

VITERBI

DEC.

BR & DL

COMP.

DE-

MAPPING

SUBCARR

. REORD.

DE-

SCRAM

.

DE-

INTERL

EAVE 1

CORDIC –

ANGLE

CFO

COMPEN.

GUARD

REMOV.

CHANNEL

EQUAL.

DE-

PUNC.

DE-

INTERL

EAVE 2

PAD

REMOV.

CHANNEL

EST.

PRE-

CHANNEL

EST.

FFT

to MAC layer

from ADC

Router

1

Router

2

Fig. 12. An 802.11a baseband receiver mapped on the processor array with 6-neighbor
hex topology

two inputs from the six nearest-neighbor processors. Compared with the design
using 4-neighbor mesh, seven routing processors are saved, which accounts for a
22% processor number reduction.

Fig. 11 shows a mapping of the 802.11a/g baseband receiver (54 Mbps) on the
baseline 4-neighbor 2D mesh that uses 32 processors plus the Viterbi decoder
and FFT accelerators with 10 processors used for merging and forwarding data.
Fig. 12 shows a mapping on the hexagonal-shaped tile architecture which requires
only 24 processors plus the Viterbi decoder and FFT accelerators—25% fewer
processors than those used in the 2D mesh mapping.

4.4 Application Mapping Results

Figure 13(a) shows the number of processors used for mapping the two appli-
cations to all three topologies. The 6-neighbor hex grid and 8-neighbor mesh
are much more efficient than the baseline 2D mesh, resulting in a number of
processor savings of 25% and 22% for the H.264 residual encoder and both 25%

A Hexagonal Processor and Interconnect Topology 137

for the 802.11a receiver. The 8-neighbor mesh requires slightly larger number of
processors than the 6-neighbor hex grid topology which yields the largest reduc-
tion (24%) in average number of used processors compared to 4-neighbor mesh.
This is because the communication patterns of the two applications are mostly
localized. Thus, topologies with more nearest-neighbor links yield more benefits
than topologies with less nearest-neighbor links.

��������	
����������� �����������
���

�

�

��

��

��

��

��

��

��

�
�
�
�
�
��
�
	�

��
�
�
�
�
�
��

��������	
�����

��������	
����������

��������	
�����

(a)

��������	
������������ �����������
����

�

��

��

��

��

��

��

�
�
��
��
�
�
�
�
	

��
�
��
�

�
�

�
�
�

�
��

��������	
�����

��������	
����������

��������	
�����

(b)

Fig. 13. The application mapping results of the 4-neighbor mesh, 6-neighbor hex grid
and 8-neighbor mesh (a) the number of used processors, (b) the total communication
link length

Figure 13(b) shows the total communication link length for the two appli-
cations which is calculated based on the data in Table 2 and the application
mapping diagrams. The 8-neighbor mesh has longer communication length than
the 4-neighbor mesh because of using more long communication links. The 6-
neighbor hex grid is the most efficient topology, yielding the largest reduction
(19%) in average total communication link length compared to the baseline 4-
neighbor mesh.

5 Physical Design Methodology and Hexagonal Processor
Tile Design

5.1 Physical Design Methodology

For performance evaluation, a small DSP processor with configurable circuit-
switch interconnection is used for all physical designs. The processor contains
a 16-bit datapath with a 40-bit accumulator and 560-Byte instruction and 256-
Byte data memories. Each processor also contains two 128-Byte FIFOs for data
buffering and synchronization between two processors.

Each set of inter-processor links are composed of 19 signals including a clock,
16-bit data and 2 flow-control signals. This processor is tailored for all topologies

138 Z. Xiao and B. Baas

under test with a different number of neighboring interconnections ranging from
4 to 8. The internal switch fabrics are changed accordingly. The hardware over-
head is minimal for 6-neighbor and 8-neighbor processors with only 0.7% and
2.0% hardware overhead based on the synthesis results. In order to make CMP
integration simpler, four additional sets of pins are inserted into the processor
netlist after synthesis and are directly connected with bypass wires for the 8-
neighbor processor. This adds routing congestion in the corner for the 8-neighbor
mesh topology shown in Fig. 4(c).

The processors are synthesized from Verilog with Synopsys Design Compiler
and laid out with an automatic timing-driven physical design flow with Cadence
SoC Encounter in 65 nm CMOS technology. Timing is checked and optimized
after each step of the physical design flow: floorplan, power planning, cell place-
ment, clock tree insertion and detailed routing.

5.2 Hexagonal Processor and CMP Design

The hexagonal-shaped tile bring challenges for physical implementation. The
first challenge to design the hexagonal processor is how to create a hexagonal
shape at the floorplan stage. The rectangular placement and routing blockage
in SoC Encounter are used to create approximate triangle corner blockages with
each rectangular blockage differs by one unit in width and height. All rect block-
ages are piled together to create an approximate triangle in the four corners of
the rectangular floorplan as shown in Fig. 14.

A proper placement of pins can help to achieve efficient global routing and
easy CMP integration. At the floorplan stage, four sets of pins are put along
the diagonal edge of the corner and two set of pins are placed in the horizontal
top and bottom edge. Since all macroblocks have rectangular shapes (IMEM,
DMEM and two FIFOs), this presents a challenge to place the macroblocks. In
this design, the macroblocks are placed along the edge and the IMEM is placed
in the right corner, respectively as shown in Fig. 14.

The metal 6 and metal 7 are used to distribute power over the chip and the
automatically-created power stripes can stop at the created triangle edge in the
corner. The power pins are created on the top and bottom horizontal edges.
When integrating the hexagonal processor together, the power nets along the
triangle edge can be connected automatically or manually by simple abutment.

Once a hexagonal processor tile is laid out, a script is used to generate the
RTL files of the multiprocessor. The CMP array can be synthesized with empty
processor tiles inside. Another script places the hexagonal tiles with the blockage
area overlap with nearest-neighbor processors along the triangle edge of each
hexagonal tile. The SoC Encounter can connect all pins automatically although
there are overlaps between LEF (library exchange format) files. The final GDSII
files are read into Cadence icfb for design rule check (DRC). Fig. 14 shows the
final layout of a hexagonal-shaped processor tile and a 6 by 6 hexagonal-tiled
multiprocessor array. There are small empty spaces along the edges of the chip
as described in Section 3.

A Hexagonal Processor and Interconnect Topology 139

Hexagonal
Processor Core

DMEM

IMEM

F
IF

O
 0

F
IF

O
 1

Fig. 14. Layout of a hexagonal processor and a 6x6 multiprocessor array

6 Experiment Results

6.1 Processor Implementation

All discussed topologies enable an easy integration of processors by abutment
without global wires in the physical design phase. For all topologies, there is
no long-distance inter-communication link across more than two processors and
the processor has been pipelined in a way that the critical path is not in the
interconnection links. Therefore, the maximum achievable frequency of an array
is the same as an individual core, which is one of the key advantages of our
proposed dense on-chip networks. Three tile types are implemented from RTL to
GDSII layout. In order to be fair, all floorplans use the same power distribution
design and the I/O pins and macroblocks are placed along edges reasonably
depending on the topology.

In standard-cell design, the cell utilization ratio has a strong impact on the im-
plementation result. A higher cell utilization can both save area and increase sys-
tem performance if the design is routable. In order to get a minimum chip area for
all tiles, we start with a relatively large tile area which results in a small cell uti-
lization ratio. Then the tiles are repeatedly laid out while maintaining the aspect
ratio and reducing the area by 5% in each iteration withminor pin andmacroblock
position adjustments in the floorplaning phase. Once a minimum area within 5%
has been reached, the area change is reduced to 2.5%. The layout tool is pushed
until it is not able to generate an error-free GDSII layout for all tiles. Our method-
ology results in a high cell utilization for all three tiles ranging from 81% to 83%.

Figure 15 shows the normalized implementation results of the three processor
tiles in terms of area, max clock frequency, energy per operation and clock skew.

140 Z. Xiao and B. Baas

Fig. 15. Comparison of key metrics of the three optimized processor tile layout: nor-
malized area, maximum clock frequency, energy per operation, and clock skew

The baseline 4-neighbor rectangular tile has the smallest area and the highest
cell utilization of 83%. Compared with the baseline 4-neighbor rectangular tile,
an area increase of 2.9% and 5.9% are required for the 6-neighbor hexagonal-
shaped tile and the 8-neighbor rectangular tile, respectively. Both designs have
a cell utilization of 81%.

Figure 15 also depicts the normalized maximum clock frequency relative to
the baseline 4-neighbor rect tile which can operate at a maximum of 1065 MHz
at 1.3 V. Due to an increase of area, the 8-neighbor rect tile can operate at 2.9%
higher frequency than the 4-neighbor rect tile. The 6-neighbor hexagonal-shaped
tile has noticeably higher frequencies than baseline 4-neighbor rect tile, which
achieves a frequency increase of 5.8%.

Figure 15 shows the energy per operation for all tiles, which is estimated based
on a 20% activity factor for all internal nodes. Both the 6-neighbor hex tile and
8-neighbor rect tile have a higher energy per operation (7.5%) because of the
extra circuits for interconnections.

As for clock skew, the 8-neighbor rect tile shows a 29% higher clock skew
probably because routing congestion in the corners affects the clock tree synthe-
sis. The more circular-like shape helps the layout tool for a clock tree insertion
and the hexagonal-shaped tile achieves the lowest clock skew with a reduction
of 54% compared to the baseline 4-neighbor rect tile.

A Hexagonal Processor and Interconnect Topology 141

6.2 Application Area and Power

The actual application area depends on the number of used processors and the
processor tile sizes. Fig. 16 shows the normalized application area of the H.264
residual encoder and the 802.11a baseband receiver for all three topologies. The
average application area reductions are 21% and 18% for the 6-neighbor hex grid
topology and the 8-neighbor mesh topology, respectively. Corresponding to the
largest reduction of the number of used processors, 6-neighbor hex grid topology
achieves the largest application area reduction.

(a) (b)

Fig. 16. The final mapping results of the H.264 residual encoder capable of HD 1080p
encoding at 30 fps and 802.11a baseband receiver in 54 Mbps mode (a) normalized
application area, and (b) normalized power consumption

Since tightly-tiled architecture does not have global long wires, the total appli-
cation power depends on the number of used processors and the computational
workload for each processor tile. In order to meet the throughput requirement
for the two mapped applications, processors need to run at 959 MHz at a sup-
ply voltage of 1.15 V for H.264 residual encoder and 594 MHz at a supply
voltage of 0.92 V for 802.11a baseband receiver. Based on the processor power
consumption numbers, application mapping diagrams and the required clock
frequencies and supply voltages for processors, Fig. 16(b) shows the normalized
estimated average power consumption of the H.264 residual encoder (processing
1080p video at 30 fps) and the 802.11a baseband receiver (54 Mbps mode) for
all three topologies. Compared to 4-neighbor mesh topology, the average ap-
plication power reductions are 17% and 13% for the 6-neighbor hex grid and
the 8-neighbor mesh topology, respectively. The 6-neighbor hex grid is the most
power-efficient topology among all three topologies.

142 Z. Xiao and B. Baas

7 Conclusion

This paper presents two low area overhead and low design complexity topolo-
gies other than the commonly-used 2D mesh for tiled many-core architecture.
The proposed topologies include one 6-neighbor topology which uses novel
hexagonal-shaped processor tiles. This work demonstrates the feasibility of using
commonly available commercial CAD tools to implement CMPs with hexagonal
processor tiles. Compared to 4-neighbor 2D mesh, the proposed 6-neighbor hex
grid topology has little performance and energy penalties and small area over-
head while providing much more effective inter-processor interconnect to reduce
application area, power consumption and total communication link lengths.

Acknowledgments. The authors gratefully acknowledge support from ST Mi-
croelectronics, Intel, UC Micro, NSF Grant 0430090 and CAREER Award
0546907, SRC GRC Grant 1598, CSR Grant 1659, Intellasys, S Machines and
the support of the C2S2 Focus Center, one of six research centers funded under
the Focus Center Research Program (FCRP), a Semiconductor Research Corpo-
ration entity. The authors thank Dean Truong for the chip layout assistance and
Anh Tran for providing the 2D mesh mapping of the 802.11a WLAN baseband
receiver, P. Cogez, and E. Flamand.

References

1. Ho, R., Mai, K., Horowitz, M.: The future of wires. Proc. of IEEE 89, 490–504
(2001)

2. Neeb, C., Wehn, N.: Designing efficient irregular networks for heterogeneous
systems-on-chip. In: 9th EUROMICRO Conference on Digital System Design: Ar-
chitectures, Methods and Tools (DSD 2006), pp. 665–672 (2006)

3. Leary, G., Srinivasan, K., Mehta, K., Chatha, K.: Design of network-on-chip ar-
chitectures with a genetic algorithm-based technique. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 17(5), 674–687 (2009)

4. Pande, P.P., Grecu, C., Jones, M., Ivanov, A., Saleh, R.: Effect of traffic localiza-
tion on energy dissipation in NoC-based interconnect. In: Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS), pp. 1774–1777 (2005)

5. Taylor, M., et al.: A 16-issue multiple-program-counter microprocessor with point-
to-point scalar operand network. In: IEEE International Solid-State Circuits Con-
ference (ISSCC), pp. 170–171 (February 2003)

6. Yu, Z., Meeuwsen, M., Apperson, R., Sattari, O., Lai, M., Webb, J., Work, E.,
Truong, D., Mohsenin, T., Baas, B.: AsAP: An asynchronous array of simple pro-
cessors. IEEE Journal of Solid-State Circuits 43(3), 695–705 (2008)

7. Bell, S., et al.: TILE64 processor: A 64-core soc with mesh interconnect. In: IEEE
International Solid-State Circuits Conference (ISSCC), pp. 88–89 (February 2008)

8. Truong, D.N., Cheng, W.H., Mohsenin, T., Yu, Z., Jacobson, A.T., Landge, G.,
Meeuwsen, M.J., Tran, A.T., Xiao, Z., Work, E.W., Webb, J.W., Mejia, P.V., Baas,
B.M.: A 167-processor computational platform in 65 nm CMOS. IEEE Journal of
Solid-State Circuits 44(4), 1130–1144 (2009)

A Hexagonal Processor and Interconnect Topology 143

9. Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,
Konow, M., Riepen, M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S., Borkar,
S., De, V., Van Der Wijngaart, R.: A 48-core ia-32 processor in 45 nm cmos using
on-die message-passing and dvfs for performance and power scaling. IEEE Journal
of Solid-State Circuits 46(1), 173–183 (2011)

10. Yin, A., Xu, T., Liljeberg, P., Tenhunen, H.: Explorations of honeycomb topolo-
gies for network-on-chip. In: Sixth IFIP International Conference on Network and
Parallel Computing, NPC 2009, pp. 73–79 (October 2009)

11. Becker, J., Henrici, F., Trendelenburg, S., Ortmanns, M., Manoli, Y.: A continuous-
time hexagonal field-programmable analog array in 0.13um CMOS with 186MHz
GBW. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 70–71
(February 2008)

12. Malony, A.D.: Regular processor arrays. In: The 2nd Symposium on the Frontiers
of Massively Parallel Computation, pp. 499–502 (1988)

13. Chen, M.S., Shin, K., Kandlur, D.: Addressing, routing, and broadcasting in hexag-
onal mesh multiprocessors. IEEE Transactions on Computers 39, 10–18 (1990)

14. Decayeux, C., Seme, D.: 3D hexagonal network: modeling, topological properties,
addressing scheme, and optimal routing algorithm. IEEE Trans. on Parallel and
Distributed Systems 16(9), 875–884 (2005)

15. Stojmenovic, I.: Honeycomb networks: Topological properties and communication
algorithms. IEEE Transactions on Parallel and Distributed Systems 8, 1036–1042
(1997)

16. Chariete, A., Bakhouya, M., Gaber, J., Wack, M.: An approach for customizing
on-chip interconnect architectures in soc design. In: 2012 International Conference
on High Performance Computing and Simulation (HPCS), pp. 288–294 (July 2012)

17. Yu, Z., Baas, B.: A low-area multi-link interconnect architecture for GALS chip
multiprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 18(5), 750–762 (2010)

18. Xiao, Z., Baas, B.: A 1080p H.264/AVC baseline residual encoder for a fine-grained
many-core system. IEEE Transaction on Circuits and Systems for Video Technol-
ogy 21(7), 890–902 (2011)

19. Work, E.W.: Algorithms and software tools for mapping arbitrarily connected tasks
onto an asynchronous array of simple processors. Master’s thesis, University of
California, Davis, CA, USA (September 2007),
http://www.ece.ucdavis.edu/vcl/pubs/theses/2007-4

20. Tosun, S., Ozturk, O., Ozen, M.: An ILP formulation for application mapping onto
network-on-chips. In: International Conference on Application of Information and
Communication Technologies (AICT 2009), pp. 1–5 (October 2009)

21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

22. Tran, A.T., Truong, D.N., Baas, B.M.: A complete real-time 802.11a baseband
receiver implemented on an array of programmable processors. In: Asilomar Con-
ference on Signals, Systems and Computers (ACSSC), pp. 165–170 (October 2008)

http://www.ece.ucdavis.edu/vcl/pubs/theses/2007-4

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 144–161, 2013.
© IFIP International Federation for Information Processing 2013

Fault-Tolerant Techniques to Manage Yield and Power
Constraints in Network-on-Chip Interconnections

Anelise Kologeski, Caroline Concatto, Fernanda Lima Kastensmidt, and Luigi Carro

PGMICRO - PPGC - Instituto de Informática
Universidade Federal do Rio Grande do SUL (UFRGS)

Av. Bento Gonçalves, 9500 – Prédio 43412, sala 213
CEP: 91501-970 – Porto Alegre – RS - Brazil

{alkologeski,cconcato,fglima,carro}@inf.ufrgs.br

Abstract. The use of fault-tolerant mechanism is essential to ensure the correct
functionality of integrated circuits after manufacturing due to the massive num-
ber of faults that may occur during the process. In this work, we propose a set
of fault-tolerant techniques to cope with faulty wires in Network-on-Chip
(NoC). The most appropriate technique is chosen by taking into account the
number of faulty wires and their location in the NoC. The goal is to combine
different techniques to reduce overheads in area, delay and power. The use of
testing and diagnosis can minimize costs associated with embedded fault-
tolerant mechanisms once the architecture adapts itself to work in different faul-
ty scenarios. The proposed fault-tolerant strategy uses a lightweight adaptive
routing combined with data splitting, which is able to send the data in one clock
cycle. The power penalty has a low correlation with the number of faulty inter-
connections. Results for MPEG4 and VOPD applications running on the NoC
with different faulty case-study scenarios show that the proposed techniques
can tolerate many faulty interconnections with a low area, performance and
power overheads.

Keywords: adaptive routing, data splitting, fault tolerance, interconnections,
multiple faults, NoC.

1 Introduction

The use of embedded fault-tolerant strategies in System-on-Chip (SoC) architectures
becomes crucial to improve yield and reliability, due to the huge amount of intercon-
nections subject to the defects that comes from dimensions shrinking and aggressive
transistor density. A Network-on-Chip (NoC) offers better scalability and perfor-
mance than a traditional bus, and therefore it is alternative communication architec-
ture inside of a complex System-on-Chip.

Nevertheless, according to [1], one expects up 15% of the wires faulty in recent tech-
nologies, which confirms it is necessary to consider the fault probability at
the design time to ensure high yield and reliability in the devices. The use of fault-
tolerant structures grows in NoC designs, due to the fact that it is almost impossible to

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 145

manufacture integrated circuits without any defect in nanometer technologies [1]. Con-
sequently, the use of fault-tolerant methods is crucial to allow that circuits with some
amount of defects still reach the market. Therefore, fault-tolerant mechanisms in NoCs
are mandatory to ensure the correct functionality, the yield and the lifetime of a chip.

The problem is that the use of several embedded fault-tolerant techniques to cope
with multiple faults in links can significantly increase the overheads in area, power,
energy and performance. This is because most of the techniques are applied in the
critical path. In addition, they can be pre-placed even on those interconnections with
no defects. To offer a flexible strategy, our proposed method combines testing and
diagnosis to allows fault-tolerant techniques to be activated only in the faulty inter-
connections. In this way, we minimize the costs associated with the embedded fault-
tolerant techniques.

The strategy presented in this work is named ATARDS -Adaptive Technique based
on Adaptive Routing and Data Splitting, and the strategy combines a lightweight
adaptive routing (LAR) and data splitting (DS) to ensure NoC connectivity in pres-
ence of massive defects in the interconnections. The combination between two strate-
gies allows to obtain better results when compared with traditional solution widely
known in the literature. The present technique tolerates multiple faults scenarios in the
interconnections (or links). Consequently, it sustains yield by keeping the connectivi-
ty in the network. If the fault-tolerant resources are configured previously due to test-
ing and diagnosis phases, the performance and power overheads can be minimized. It
is possible because the fault-tolerant techniques are enabled to operate only in faulty
interconnections.

ATARDS avoids the need of additional wires in the link, and minimizes additional
hardware in the critical path. The impact in performance and power is not seen in all
parts of the architecture, since only faulty regions use the fault-tolerant mechanism.
The experimental results with different faulty case-study NoC scenarios show the
advantage of combining testing, diagnosis and ATARDS to reach better trade-offs
with a high connectivity, reduced power overhead and large fault coverage.

This paper is organized as follows. Section 2 presents the fault and test models
used in this work. Related work is discussed in Section 3, and we also demonstrate
that our proposed strategy can fill some significant hole in the literature by cope with
faulty interconnections using a merge of techniques. In Section 4, ATARDS strategy
is presented with details. Results from synthesis, performance, energy and connectivi-
ty are reported in Section 5. Finally, the conclusions and ideas for future work are
discussed in Section 6.

2 Fault and Test Models

The fault model provides and abstraction between the particular fault source and its
manifestation in different layers of the architecture. We are mainly interested in
high-level fault models in NoC. They can be in the cores (core fault model) or in the
interconnections (inter-core fault model) [7]. We address permanent faults due to
manufacturing. They can be modeled as shorts and open circuits. In our case, shorts
will be adopted to consider a specific pattern to be addressed. A short fault occurs

146 A. Kologeski et al.

when a wire connects with another one. The shorts may happen among wires at the
same metal layer, at the top or bottom metal layers. There are three types of short
faults: OR-short, AND-short, and strong driver [19]. In a NoC, the short faults, in the
wires can happen among different interconnections, from router to router or from
router to core. As the amount of wires grows, the number of faults will increase expo-
nentially [19]. Therefore, strategies that increase the number of wires are more prone
to faults.

The proposed fault-tolerant techniques tolerate the inter-core faults. The inter-core
fault model has been defined by faults happening among any links of the network, and
it has been further classified as interlink and intralink [22]. Intralink faults happen
when aggressor and victim wire are into the same link. So, they may happen isolated
in links between two routers and/or in links between a core and a router. Each intra-
link fault is not associated with other links. Interlink faults appear when aggressor and
victim are in different links. Thus, each interlink fault occurs between two different
interconnections that are intersecting. Multiple defects can be any combination of
intralink and interlink faults, and both can be treated by ATARDS implementation,
which characterize single and multiple faulty interconnections.

Besides of permanent faults due to problems with manufacturing process, the faults
also can be classified as intermittent and transient, in according to the duration. Inter-
mittent faults occur again and again considering a certain period of time, as a periodi-
cal influence by noise or crosstalk. The transient faults usually are result from alpha
particles, heavy ions and radiation, and they reach quickly the circuit affecting only
memory elements changing the information by one or few clock cycles. The architec-
ture proposed by ATARDS only copes with faulty situations located in each intercon-
nection. As a consequence, then just permanent and intermittent faults can be
tolerated by the approach if they are previously detected and diagnosed.

The capability of detecting faults in interconnections such as short circuit among
channels is mandatory for yield improvement. According to [19], for full-custom
layout implementations, faults between wires of distinct links are less likely, but can
still be observed. So, it is mandatory to extend the fault model to include interaction
faults that affect different interconnections of a NoC, like explained before with inter-
link faults situation.

Detection and diagnoses can be developed during manufacturing test, and off-line
tests also can run during the life time of the circuit. The test, proposed in[19] detects
shorts between pairs of wires (including data and control wires within a single chan-
nel or between channels) for a mesh NoC with XY routing. One has a cost-effective
test, which uses a 2 x 2 NoC to deal with a fault model, which expands for a larger
mesh NoC. The proposed testing approach uses Walking-One Sequence as a method
to detect faults in the NoC. Furthermore, in [19] can be extended to other interaction
faults in the interconnections, such as crosstalk, by adapting the test sequence. The
testing approach in [10] is very similar once it uses test vectors to allow testing and
diagnosis of fault interconnections. The test uses the results to configure the registers
in each channel with the information about faulty links.

In [20], the authors present a method to detect defects in SoC interconnections using
IDDT test (analyzing the variation of the dynamic current), boundary scan and tests of
delay. A built-in self-test (BIST) methodology for testing the inter router links of a No-
Chas been proposed in [21] considering the Maximum Aggressor Fault (MAF) model.

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 147

In this work, we consider that the test and diagnosis is done by test vectors like the
ones proposed in [19] and [10]. Analyzing the results from test, it is possible to confi-
gure the registers to inform each router of the faulty channel, and to configure the
control of multiplexers used for the data splitting strategy, as will be described in
detail after the related work.

3 Related Work

Related techniques to mitigate faults in the link usually based on one of the following
techniques: Hamming code, parity check, retransmission, redundancy, data splitting,
adaptive routing or remapping [2-10, 22]. Some of them do not need detection and
diagnosis offline, because they are always detecting and correcting possible faults at
run-time. Normally the authors assume a single fault scenario, which means only one
faulty wire in the interconnection, in accordance to MAF model [21] or considering
only one transient fault. Solutions based on error detection and correction codes
(EDAC) imply extra wires for parity/check bits and extra hardware placed in the criti-
cal path, for encoding and decoding blocks in each NoC link. EDAC impacts latency
and power consumption. Moreover, they can deal only with one fault per link and not
multiple intralink faults. The model of a single fault per link is not valid any longer,
since multiple manufacturing defects are more common to be observed and in loca-
tions close to each other, as clusters of defects in nanometer technologies [11]. Then,
one requires the use of a solution to tolerate massive faults, and as a consequence, the
trend is to combine different techniques to cope with, achieving high reliability with
an efficient solution.

Authors in [2] propose a technique that uses Hamming Code (HC) to protect all NoC
links against crosstalk, permanent and transient faults. They consider single-error cor-
rection and double-error detection (SEC/DEC) [2]. One decodes the incoming data be-
fore being stored in the FIFO, and encoded when it leaves the router. Reported results
show an area overhead of 39% and a delay penalty of 32% in frequency for 180nm
technology, and there is no protection for multiple faults in the link. In [3], the authors
propose to combine different methods to achieve fault tolerance to crosstalk and perma-
nent faults in NoC links. The technique uses data splitting, Hamming Code at each half
of the data, and retransmission to correct crosstalk faults in the links. On top of that,
triple modular redundancy (TMR) is used to protect the handshake links. The two main
disadvantages of this method are the high area and power overhead, which result from
the combined use of the HC and TMR, leading to a final area four times larger than the
no-protected router. Besides, there is performance degradation in the network, due to the
HC encoding and decoding, plus the time redundancy required for the data split tech-
nique. The latency in [3] is also increased around four times.

The technique proposed in [4] uses parity check, data splitting and retransmission
of data to protect. The technique is similar to [3], but the authors propose the use of
parity check to discover a faulty interconnection instead of HC. Extra bits for the
parity check have been used in each half of the link to detect faulty wires, reducing
the costs in relation to [3]. In the presence of faults, the erroneous half of the data is
doubled and retransmitted. Due to the required retransmission in faulty cases, the

148 A. Kologeski et al.

performance penalty in [4] occurs only in the presence of a fault. The main disadvan-
tage of this method is the use of extra wires and the area overhead compared to a rou-
ter protected with HC only. The big problem observed in these techniques presented
in [2-4] is to deal only with multiple faulty links (each one of single-fault), but not
with multiple faults per link.

In [5], for a 64-core NoC with 32 bits of channel-width, the overhead in wires is
about 137%, because each link protected by the Hamming code was completely dup-
licated (overhead of an interconnection plus wires to HC). The total area overhead is
22%, but the voltage scaling strategy has been used to reduce the power, saving 6.6%
in power consumption when compared with non-protected NoC. However, only
triple-error correction and quadruple-error detection are possible, considering that
there is a duplicated interconnection in each link.

In [6], redundancy has been applied in some specific components inside of a 2-
channel router, which means that there are two interconnections in each channel of
the router to provide reliability in the links. The area overhead is between 12.5% and
15.5%, due to the number of buffers used. Results for a 64-core NoC (for link-size
that occupies 5.45% of the total area) show that when there are 20 faulty wires the
connectivity is around 90%, while for 100 faulty wires the connectivity becomes low,
around 30%. Furthermore, the redundancy also degrades the latency.

The work in [7] proposes the use of partially faulty links when the traffic in the
network is high. The main idea is to make a uniform distribution of traffic in the links.
The links capacity can be split in groups of 25%, 50%, 75%, and 100% of wires, ac-
cording to the faults in the link. The proposed technique has a power consumption
overhead among 5% and 8% and an area overhead of 15% to 21%. However, [7] con-
siders that all faults concentrates within the same group of wires (affecting exactly
1/4, 1/2 or 3/4 of the link), although faults can be distributed among the link. In this
way, each data has a pre-defined position to be transmitted. For instance, the first bit
of the data can be placed in group1-bit1, or group2-bit1, or group3-bit1 or group4-
bit1. If there is a fault in each group, some bit of data always will be affected by the
faulty wire in the group, and then the link must be avoided (but avoiding a link, the
traffic can be damaged).

The works proposed in [23] and [24] combine mapping and adaptive routing to in-
crease reliability in NoCs. Both works present a mapping strategy that concurrently
takes into account the application core graph, the fault probability in the links and the
routing. Their goal is to obtain the Pareto set of mapping configurations with custo-
mized routing functions that minimize the average latency and maximize the reliabili-
ty of the application. Both proposals use the same routing algorithm (APSRA), and do
not cover faults between cores and routers, just between cores. The difference be-
tween [23] and [24] is the mapping algorithm. Moreover, the proposed technique can
solve the problems caused by faulty links between core and router, while in [23-24] it
is not possible, reducing their efficiency to 65% in the NoC with 12 routers and cores.

The works presented in [8] and [9] use adaptive routing to avoid faulty links and
faulty routers, which implies in a relative low latency overhead. However, they use
virtual channels and memory tables to avoid deadlock in the network, which are nor-
mally synonymous of area overhead and excessive power consumption. Besides that,

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 149

they cannot cope with faulty wires between router and cores, because there is no a
redundant path to re-route the data.

In [10], the authors propose a lightweight partially adaptive (LAR) routing strategy
to cope with multiple defects in each link and multiple faulty links based on minimal
change in the XY path. LAR provides minimal changes in the XY path of 2-D Torus
NoC, and it can cope with faults that affect up to 100% of wires in a single link, once
that the faulty link can be completed avoided by using a different path to forward the
packets. Consequently, virtual channels and tables are not used, and the technique in
[10] has just 1% of area overhead. However, LAR cannot cope with faulty wires be-
tween a router and core, because there is no redundant path to reach its target. Be-
sides that, LAR cannot access a router when both inputs in vertical (South and North)
or horizontal (East and West) are faulty, as well as cannot leave a router with both
faulty outputs, because these situations also do not allow an alternative fault-free path.
Results in [10] have shown that by using only adaptive routing, 34% of faulty links
would still be non-protected in a single-fault scenario. This percentage can be even
higher when considering multiple faulty links and specific LAR limitations. The ad-
vantage of LAR appears in the lowest overhead in area and performance compared to
the others techniques based on parity check or Hamming code, making the penalty in
time and power almost imperceptible. However, LAR itself is unable to tolerate a
large number of multiple faulty cases, because for many combinations of multiple
faulty wires in multiple links there is no available alternative fault-free path to be
used. Consequently, the combination of LAR with another fault-tolerant technique
able to use faulty links in some critical cases can be used to achieve a good compro-
mise in reliability, area, performance and power overhead.

Therefore, it is evident that we still need efficient solutions to solve the problem of
multiple faults in NoC interconnections, with minimum overheads and large fault
coverage. For this reason, our initial idea was to combine [10] with data splitting (DS)
and re-mapping of tasks to achieve good trade-offs, as can be seen in [12]. Initially
[12] has a double impact in latency for each communication through the faulty inter-
connection, because two clock cycles are necessary to send each data with DS strate-
gy. However, to minimizing this impact, [12] considers re-mapping of tasks, although
it could not be applied in all situations of faults, keeping sometimes the time penalty
still high. In the next section, significant upgrades have been done in the proposal
developed in [12]. Memory elements sensitive to the level of clock were inserted,
which enables to use the data splitting in only one clock cycle. Then, the re-mapping
of tasks could be removed by adding memory elements, simplifying the strategy. As
the approach uses the information about the fault diagnosis together with the best
fault-tolerant configuration, the proposal obtains good trade-offs in relation to tradi-
tional Hamming approach, as will be presented later.

4 The Adaptive Technique Based on Adaptive Routing and
Data Splitting: ATARDS

ATARDS copes with multiple defects, interlink and intralink. ATARDS tolerates
permanent faults, as shorts and open circuits, or intermittent defects such as crosstalk.
ATARDS is an improvement of [12], because it does not use re-mapping of tasks and

150 A. Kologeski et al.

transmits a flit in two halves considering just one clock cycle. ATARDS uses latches
structure to store the data and sends each half of information in different clock levels.
With the new approach, the re-mapping of tasks is not necessary because a faulty
interconnection does not introduce delay in the communication time (considering
clock cycles). The latency in clock cycles is the same for the proposed technique and
original NoC without any fault tolerance technique. The difference is in the maximum
frequency for each proposal. The router frequency is limited by the hardware over-
head introduced in each approach. ATARDS has lower maximum frequency when
compared to the original (non-protected) router, since there is more hardware in the
critical path. However, the latency (in cycles) is the same between a NoC with
ATARDS or original router, but the communication time (in seconds) is different, it
depends on the maximum frequency. Even with a reduction in maximum frequency,
on ATARDS compared to non-protected router, it is possible to reduce the delay im-
pact, once no extra cycle has been inserted for cases with faulty interconnections.
ATARDS also does not add any extra wires in the links, as most of related work in
literature does [2-6].

ATARDS has been implemented in 12-core SoCIN NoC [16] with 2D-torus topol-
ogy without virtual channels. The router architecture has been implemented in VHDL,
and each router can be connected to four neighboring routers with two unidirectional
channel links. Each router has a local port with a processor element connected. The
architecture uses packet switching and deadlock-free XY-routing. Each input channel
port has a buffer with 4 slots. All routers are capable of using the lightweight adaptive
routing (LAR) and data splitting (DS), however only the ones with faulty interconnec-
tions uses one of these techniques in order to minimize the overheads according to the
fault case. By using test and diagnosis [10, 19-21], each router is configured with the
information relative to the faulty interconnections (registers in each channel receive
the information about faulty interconnections and multiplexers from DS technique
receive the information about the specific faulty wires). In presence of defects, LAR
technique is always the first choice, because it has minimal impact in communication
time and power.

For LAR technique, the routing algorithm checks the test information before for-
warding a packet. Each router is configured with the manufacturing test information
about faulty-links. An additional 10-bit register is added in each router with the test
results to inform if one or more of its channels are faulty. When the contemplated
output channel is indicated as faulty, an alternative path replaces the original one in
the header, and the packet is re-routed through the fault-free path. Each router knows
the NoC size and its own position, so it can calculate the new number of steps needed
for the packet in the new path. In the 2D-torus topology of size m x n, a packet has
two possible routes in the same dimension: it may go k steps to one way (positive) or
m - k (or n - k) steps to the other way (negative). Though, a packet travels no more
than m - 1 or n - 1 steps from source to destination when m or n is odd, or only m or n
steps when they are even. As a consequence, the router dynamically changes the tar-
get address in the header in a packet when the original address intends to use a faulty
link. LAR has a small impact in latency, less than 1% for the simulated cases. This
little impact can be explained because on the average, the opposite path is not much

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 151

larger than the original path, and for all considered cases the alternative path was not
heavily congested.

However, LAR cannot cope with fault cases when there is no redundant path. For
these blocking positions, the faulty channel cannot be discarded, because the connec-
tivity needs to be sustaining, and another strategy must be used. When fault affects
both input and output channels in the same direction, the router becomes inaccessible,
as presented for router R6 and R11 in Figure 1. In addition, when the fault affects the
channel that connects cores and routers, there is no alternative path too, as shown in
Figure 1 for MED CPU and IDCT cores. The combination of LAR with another fault-
tolerant technique can enable to use faulty links with a good compromise in reliabili-
ty, area, performance and power overhead. So, for simplicity, one aggregates data
splitting in LAR approach. Figure 1 shows the 12-core 2D-torus NoC with the
MPEG4 application mapped into the system.

Fig. 1. MPEG4 benchmark mapped in a 12-core 2-D Torus NoC. The limitation of the LAR
technique is shown by the indicated faulty links that cannot be protected by LAR mechanism.

Data splitting technique can use the partial link by selecting just the fault-free
wires for each transmission. DS uses multiplexers to select the fault-free wires in each
input and output channel of the router, including the local channel. The data is sent in
two parts by using 50% of the interconnection in each moment. The control of each
multiplexer is configured off-line based on the test results. An example of configura-
tion can be found in Figure 2 (a) for an 8-bit link, where four faulty wires are consi-
dered. Two latches (L1 and L2) have been used to store each half of the data, because
the DS technique can send the data in one cycle of the clock, at clock high and low
levels. When clock is high, the first data half is transmitted through the link and it is
stored in L1. At the second moment, at clock low, the second half of the data is
transmitted and stored in L2. In the next cycle, both data are stored in L1 and L2 so
the data can be placed together in the input buffer, as can be seen in the waveforms in

152 A. Kologeski et al.

Figure 2 (b). When DS solution is not necessary, the multiplexers can be bypassed
and turned off [14-15].

Fig. 2. DS technique implementation in the ATARDS approach: (a) an example of configura-
tion using DS; (b) waveforms for a hypothetical communication showing the L1 and L2 latches
processing the data in one clock cycle

In Figure 3, a flowchart has been used to explain the order of application of the LAR
and DS strategies. Firstly the approach applies test vectors in the NoC to test and
diagnose faults in the wires of the interconnection. So, after that, one tries to use LAR
strategy. LAR being a possible solution to isolate the faulty links has minimum power
overhead, since LAR usually introduces 1% in power overhead (see the synthesis
results). LAR, needs to avoid deadlock situations: LAR can ensure a deadlock-free
communication when there is only one faulty link in each interconnection’s group in
row and column of the NoC. A row of interconnections is, for example, all horizontal
interconnections placed among Router 1, Router 2, Router 3 and Router 4 (Figure 1). A
column of interconnections is a group of vertical interconnections, for example, placed
among Router 1, Router 5 and Router 9 (Figure 1). When there are at least two different
faulty links in a row or in a column of interconnections, it is necessary to use DS at least
once. When LAR is not an option, one applies DS. DS solution will be used only when
"up to X faulty wires?" is affirmative. For our approach, the X value corresponds to
50% of the wires into an interconnection. In cases when the faulty channel has more
than 50% of faulty wires, the approach isolates the faulty interconnection. The flowchart
needs to be repeated for each interconnection in the NoC.

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 153

Fig. 3. Flowchart to decide what technique will be used by the ATARDS approach. The X
value is 50% of the wires in the interconnection.

4.1 Fault Coverage

To compare the fault coverage, one chooses to present the following approaches for
each NoC’s router: non-protected, LAR, ATARDS and Hamming code (HC). To
measure the fault coverage one considers two cases: acceptable number of faulty
wires in each interconnection and acceptable number of faulty interconnections for
each solution. Figure 4 shows a situation with only one faulty interconnection, and
this interconnection can have one or more faulty wires. As LAR provides a new path
when an entire link is faulty it has the best solution in that case. HC is the worst case,
once it protects against only one fault per link. On the other hand, ATARDS can cope
with only 50% of faulty wires and the non-tolerated strategy cannot be able to accept
faults without any protection.

154 A. Kologeski et al.

Fig. 4. Faulty tolerable number wires in each link for each strategy to sustaining connectivity

Figure 5 shows connectivity results for a scenario with multiple faulty interconnec-
tions and just one faulty wire per link. For this scenario, LAR is the weaker strategy
because it accepts only one faulty interconnection in each row and each column of
interconnections without causing deadlock. Thus, LAR tolerates seven faulty links of
the 12-core NoC as shown in Figure 1. For multiple faulty links with single-fault, just
DS and HC can protect the entire set of interconnections in the NoC with a successful
rate, while DS can still consider multiple faulty wires within an interconnection.

4.2 Connectivity

ATARDS can sustain 100% of connectivity in the NoC with a large range of multiple
fault combinations, once it combines techniques that can be better utilized in accor-
dance with the type and fault location. ATARDS can completely protect the NoC
when there are up to 50% of faulty wires. Multiplexers have been used to avoid the
faulty wires, shifting the information into an interconnection and using the levels high
and low to send the information in the same clock cycle. One expects to use LAR
when there are more than 50% of faulty wires per link.

Figure 6 shows the percentage of NoC connectivity according to the faulty wires per-
centage in a 12-core 2-D Torus NoC with 8-bit link. We are considering the best fault
distribution for each strategy. We also take into account the number of links used by the
application in the NoC. The scenario regards the defect’s location and the application.

Fig. 5. Tolerated number of faulty interconnections with only one faulty wire per link in 12-
core NoC

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 155

Figure 1 presents MPEG4 mapping into a NoC, for that specific mapping 24 links
are not used. Wherefore, faults in these links do not affect the connectivity, and there-
fore we consider that faults first happen in these interconnections, for all strategies.
ATARDS can sustain 100% connectivity with up to 50% of faults distributed in each
interconnection because of the DS capability. For the particular case of MPEG4, it
can sustain 100% connectivity even with 60% of faults (considering the best case of
fault distribution).

Fig. 6. NoC connectivity percentage in a generic 12-core NoC with MPEG4 benchmark

ATARDS can have better results because LAR and DS have been combined to im-
prove the fault tolerance. Data splitting (DS) only presents good results when 50% of
the wires are faulty-free in each link. LAR, by itself, can consider up seven faulty
links completely faulty in a 12-core NoC to avoid deadlock situations in according to
its limitations: only one fault in each row and column of the NoC can be considered,
as explained in Figure 1. Hamming code has the best case of protection when there is
just one faulty wire in each interconnection, that means that the efficiency is reduced
as soon as possible if faults happen in more than one wire within the interconnection.

Figure 7 shows connectivity results where the number of faulty wires have been con-
sidered between 0 and 100, and the percentage calculated based on the total number of
wires in the network, considering 8-bit link. The faults can be distributed in any wire of
the NoC, and the worst and the best scenario compared for each approach, considering a
generic case for a 4 x 3 and 8 x 8 NoC, as applied in [6]. For our approach, the best
scenario happens when the faults occur in 7 specific links for a 4 x 3 NoC or 16 in an 8
x 8 NoC (ATARDS using LAR). When DS becomes necessary, the best case is when
the faulty wires are at most 50% of faulty wires in each interconnection.

The best scenario for [6] occurs when the faults are completely distributed among
the interconnections, because redundancy and duplication are used by the authors.
The worst case for [6] is not clearly specified by the authors, but we compare with our
worst case in an 8 x 8 NoC scenario (when the faults happen in more than 50% of the
interconnections). For instance, when an interconnection with 8 wires has more than 4
faulty wires. Considering an 8 x 8 NoC with 100 faulty wires, ATARDS presents 6%

156 A. Kologeski et al.

less of connectivity, while [6] presents almost 70% of loss. It happens because 100
faulty wires are easily tolerated by our strategy when there are many wires and inter-
connections considered. When the total number of interconnections is lower, like in a
4x3 NoC case, our proposed technique shows up 30% less of connectivity, because
there are few interconnections in the network and 11.57% of the total wires are faulty.

Fig. 7. Comparison of connectivity in two generic NoCs considering ATARDS and the solution
proposed in [6] with 8-bit link

5 Experimental Results

ATARDS has been compared to LAR and HC technique in terms of area, perfor-
mance and power. Table 1 shows the synthesis results for each router developed
based on RASoC [18], with 8-bit and 32-bit links, using Synopsys Power Compiler
tool with 65 nm CMOS standard cell library. Besides the data bits in the link, the
SoCiN network has 2 extra wires per link to set the packet control and other 2 extra
wires to do the handshake and verify the buffer availability in each channel.

ATARDS has the largest area overhead because of its configurability properties.
HC presents the largest performance overhead, due to the encoding and decoding
blocks with long chains of XORs. HC also incurs the largest overhead in the number
of wires, once each link needs to send extra codification, using 4 and 6 extra wires for
8 and 32-bit link, respectively. Both maximum frequency and normalized frequency
at 300 MHz have been considered to calculate the power results. For ATARDS, there
are different types of power results, in according to the number of routers using the
approach: the number of routers using DS active depends of the amount of faults
present in the wires and its location. Therefore, some routers can turn off the DS solu-
tion when it is not necessary in the network. Then, when ATARDS turn off the DS
solution, it is running like a LAR router, and this situation is useful in the absence of
faulty links to improve the power and energy results.

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 157

Table 1. Synthesis results for 65 nm technology. The total number of wires was considered for
the NoC with 12-core 2-D Torus.

Router
Area
(µm2)

Critical
Path
Delay
(ns)

Router Pow-
er (µW)@
Max. Freq.

Router
Power
(µW)@
300MHz

Total
of

Wires

8
Bits

Non-protected 5360.3 1.11 334.06 111.3 864
LAR 5260.3 1.11 338.19 112.7 864
ATARDS
(DS on)

6978.7 1.71 498.49 255.9 864

ATARDS
(DS off)

6978.7 1.71 216.64 112.7 864

HC 5948.8 2.04 295.21 180.6 1152
32
Bits

Non-protected 13850.3 1.26 811.04 306.8 2592
LAR 14071.3 1.26 819.12 308.4 2592
ATARDS
(DS on)

19910.4 2.09 1392.5 873.6 2592

ATARDS
(DS off)

19910.4 2.09 488.95 308.4 2592

Some power and energy results also are available for the SoCIN NoC with 12-core

2-D Torus [16]. A 4 x 3 NoC is often used by MPEG4 and VOPD benchmarks. As the
behavior of these two applications is very similar, the results are in a very close range,
and could be aggregated in the same value of power overhead. Figure 8 shows the
best case scenario at power consumption and fault coverage for each approach (HC,
ATARDS, DS and LAR). HC copes with up to 72 faulty channels, but a single-fault

Fig. 8. The number of faulty wires tolerated by each fault-tolerant technique (considering the
best fault distribution scenario) and the power penalty results, on the average, for MPEG4 and
VOPD benchmarks mapped into a12-core 2-D Torus NoC. The values are very similar between
8 and 32-bit links. The results are normalized according to the power of the original non-
protected NoC.

158 A. Kologeski et al.

needs to be considered in each channel, showing its limitations. LAR can tolerate up
to 7 completely faulty links, in a specific configuration. For multiple faulty wires and
faulty links scenario HC and DS are not a solution, on the other hand, ATARDS can
cope with better than just DS.

To measure the energy and power consumption of wires and routers in the NoC we
considered a generic packet injection rate (1 flit/node/cycle) and a NoC size with 12-
core. The power consumption in each wire has been calculated using simulations at
Spice level based on the distributed π-model for the wires [17]. We assumed values
between 1 mm and 1.5 mm of wire length for each link in 8 bits. The total power is
the sum of the power in the router and in the wires. Figure 9 depicts the energy over-
heard having the non-protected router as base, for a case considering the average be-
tween VOPD and MPEG4. The energy overhead was obtained multiplying the total
power by the communication time (in seconds) at maximum frequency. HC has the
higher overhead in energy because there are 4 extra wires in an 8-bit link design. LAR
solution has a low impact in energy, because it is similar to non-protected router. For
ATARDS there is a variable impact in energy. When there are few faulty links in the
network, some ATARDS routers can avoid the DS block to improve the energy, by-
passing it. For instance, when there are only 1 faulty link requiring two routers with
DS on, minimizing the energy results. So, all the other routers will run with LAR on,
and their DS block turned off. In the HC case, there is no variation with or without
faults, and there is almost 110% of energy overhead.

Figure 10 depicts power overhead at 300 MHz. For the experiment in Figure 10,
all proposed scenarios are running at the same frequency. The injection rate reduced
to 25% of switching activity. ATARDS has 22% of power overhead in relation to the
non-protected router, while the Hamming code has 37% of power overhead. The
power results can be easily converted to energy results if you consider an equal ex-
ecution time for all proposed scenarios. Latency and throughput results are not taken
into account, because the frequency for the considered techniques is 300 MHz, conse-
quently the traffic is the same for all situations.

Fig. 9. The percentage overhead in energy for each configuration approach with 8-bit link
design

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 159

Fig. 10. Power penalty @300MHz for all strategies with 8-bit link design

6 Conclusion

An adaptive strategy for fault tolerance in NoC interconnections has been presented.
The strategy named ATARDS is able to improve the yield in the presence of many
faulty wires and many faulty interconnections. The technique merges LAR, DS and
memory elements (latches) to decrease latency and sustain reliability. When a data
uses data splitting, it is sent using only one clock cycle and no time penalty is incurred
to transmit the packet through the NoC.

The DS block is used only in situations that LAR cannot cope with it. In fault-free
situations, DS can be turned off to save power consumption and energy, and
ATARDS runs like a LAR router. Besides that, there is no need for extra wires in
ATARDS, and because that we can obtain good energy results. Moreover, ATARDS
has a variable impact in power dissipation, depending on the faults location, while the
HC has an excessive and constant impact. The energy can be saved when compared to
well-known strategies such as Hamming code.

For MPEG4, the strategy can sustain high connectivity even when there are 60% of
faulty wires, considering the 8-bit link design with the best distribution of faults.
Meanwhile, HC can protect the NoC only if no more than 8.3% of the wires are faul-
ty, considering a single-fault scenario per link.

References

1. Dehon, A., Naeimi, H.: Seven strategies for tolerating highly defective fabrication. IEEE
Design & Test of Computers 22(4), 306–315 (2005)

2. Frantz, A.P., Kastensmidt, F.L., Carro, L., Cota, E.: Dependable Network-on-Chip Router
Able to Simultaneously Tolerate Soft Errors and Crosstalk. In: Proceedings of 2006 Inter-
national Test Conference (ITC), vol. 1, pp. 1–9 (2006)

3. Lehtonen, T., Liljeberg, P., Plosila, J.: Online Reconfigurable Self-Timed Links for Fault
Tolerant NoCs. In: VLSI Design, vol. 2007, Article ID 94676, pp. 1–13 (2007)

160 A. Kologeski et al.

4. Braga, M., Cota, E., Kastensmidt, F.L., Lubaszewski, M.: Efficiently using data splitting
and retransmission to tolerate faults in networks-on-chip interconnects. In: Proceedings of
2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4101–4104
(2010)

5. Ganguly, A., Pande, P.P., Belzer, B.: Crosstalk-Aware Channel Coding Schemes for Ener-
gy Efficient and Reliable NOC Interconnects. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 17(11), 1626–1639 (2009)

6. Kakoee, M.R., Bertacco, V., Benini, L.: ReliNoC: A reliable network for priority-based
on-chip communication. In: Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), March 14-18, pp. 1–6 (2011)

7. Palesi, M., Kumar, S., Catania, V.: Leveraging Partially Faulty Links Usage for Enhancing
Yield and Performance in Networks-on-Chip. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 29(3), 426–440 (2010)

8. Koibuchi, M., Matsutani, H., Amano, H., Mark Pinkston, T.: A Lightweight Fault-Tolerant
Mechanism for Network-on-Chip. In: 2nd ACM/IEEE International Symposium on Net-
works-on-Chip, pp. 13–22 (2008)

9. Tornero, R., Sterrantino, V., Palesi, M., Ordua, J.M.: A multi-objective strategy for con-
current mapping and routing in networks on chip. In: IEEE International Symposium on
Parallel & Distributed Processing, pp. 1–8 (2009)

10. Concatto, C., Almeida, P., Kastensmidt, F., Cota, E., Lubaszewski, M., Herve, M.: Im-
proving yield of torus NoCs through fault-diagnosis-and-repair of interconnect faults. In:
15th IEEE International On-Line Testing Symposium, IOLTS 2009, June 24-26, pp. 61–66
(2009)

11. Agrawal, V.D.: Testing for Faults, Looking for Defects. In: 2011 12th Latin American
Test Workshop (LATW), Keynote Talk (March 2011)

12. Kologeski, A., Concatto, C., Carro, L., Kastensmidt, F.L.: Adaptive approach to tolerate
multiple faulty links in Network-on-Chip. In: 2011 12th Latin American Test Workshop
(LATW), March 27-30, pp. 1–6 (2011)

13. Shih-yu, Y., Papachristou, C.A.: A method for detecting interconnect DSM defects in sys-
tems on chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(1), 197–204 (2006)

14. Changbo, L., Lei, H.: Distributed sleep transistor network for power reduction. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12(9), 937–946 (2004)

15. Shi, K., Howard, D.: Sleep Transistor Design and Implementation - Simple Concepts Yet
Challenges To Be Optimum. In: International Symposium on VLSI Design, Automation
and Test, pp. 1–4 (2006)

16. Zeferino, C.A., Susin, A.A.: SoCIN: a parametric and scalable network-on-chip. In: Pro-
ceedings of the 16th Symposium on Integrated Circuits and Systems Design, SBCCI 2003,
September 8-11, pp. 169–174 (2003)

17. Sakurai, T.: Approximation of wiring delay in MOSFET LSI. IEEE Journal of Solid-State
Circuits 18(4), 418–426 (1983)

18. Zeferino, C.A., Kreutz, M.E., Susin, A.A.: RASoC: a router soft-core for networks-on-
chip. In: Design, Automation and Test in Europe Conference and Exhibition, vol. 3,
pp. 198–203 (2004)

19. Cota, E., Kastensmidt, F.L., Cassel, M., Herve, M., Almeida, P., Meirelles, P., Amory, A.,
Lubaszewski, M.: A High-Fault-Coverage Approach for the Test of Data, Control and
Handshake Interconnects in Mesh Networks-on-Chip. IEEE Transactions on Comput-
ers 57(9), 1202–1215 (2008)

 Fault-Tolerant Techniques to Manage Yield and Power Constraints 161

20. Shih-Yu, Y., Papachristou, C.A., Taib-Azar, M.: Improving bus test via IDDT and boundary
scan. In: Proceedings of the Design Automation Conference, pp. 307–312 (2001)

21. Grecu, C., Pande, P., Ivanov, A., Saleh, R.: BIST for network-on-chip interconnect infra-
structures. In: Proceedings of the 24th IEEE VLSI Test Symposium, April 30-May 4,
pp. 30–35 (2006)

22. Kologeski, A., Concatto, C., Carro, L., Kastensmidt, F.L.: Improving Reliability in NoCs
by Application-Specific Mapping Combined with Adaptive Fault-Tolerant Method in the
Links. In: 2011 16th IEEE European Test Symposium (ETS), May 23-27, pp. 123–128
(2011)

23. Tornero, R., Sterrantino, V., Palesi, M., Orduna, J.: A multi-objective strategy for concur-
rent mapping and routing in networks on chip. In: IEEE International Symposium on Pa-
rallel & Distributed Processing, pp. 1–8 (2009)

24. Choudhury, A., Palermo, G., Silvano, C., Zaccaria, V.: Yield Enhancement by Robust Ap-
plication-specific Mapping on Network-on-Chips. In: NoCArc 2009 - Second International
Workshop on Network on-Chip Architectures, pp. 37–42 (2009)

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 162–180, 2013.
© IFIP International Federation for Information Processing 2013

On the Automatic Generation of Software-Based
Self-Test Programs for Functional Test

and Diagnosis of VLIW Processors

Davide Sabena, Luca Sterpone, and Matteo Sonza Reorda

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{davide.sabena,luca.sterpone,matteo.sonzareorda}@polito.it

Abstract. Software-Based Self-Test (SBST) approaches have shown to be an
effective solution to detect permanent faults, both at the end of the production
process, and during the operational phase. However, when Very Long Instruc-
tion Word (VLIW) processors are addressed these techniques require some op-
timization steps in order to properly exploit the parallelism intrinsic in these ar-
chitectures. In this chapter we present a new method that, starting from pre-
viously known algorithms, automatically generates an effective test program
able to still reach high fault coverage on the VLIW processor under test, while
minimizing the test duration and the test code size. Moreover, using this me-
thod, a set of small SBST programs can be generated aimed at the diagnosis of
the VLIW processor. Experimental results gathered on a case study show the ef-
fectiveness of the proposed approach.

Keywords: SBST, VLIW processor, Fault Simulation, Fault Diagnosis.

1 Introduction

The continuous scaling in the semiconductor fabrication process combined with the
progressive growth of the integrated circuits operation frequency pushes processor
cores to face more difficult testability problems. Furthermore, several phenomena
such as metal migration or aging become more likely, thus increasing the occurrence
of permanent faults in the generic system, in particular during the circuit operational
phase. For these reasons, in order to provide high fault coverage with acceptable
costs, new test solutions are being investigated and evaluated (e.g., in terms of silicon
area overhead, required test infrastructure and test time).

Software-Base Self-Test (SBST) has been demonstrated to be a promising and ef-
fective approach for the test of processors and processor-based systems [1]. The
SBST main idea is to generate test programs to be executed by the processor under
test, able to fully stimulate the processor itself or other components belonging to the
system, and to detect possible faults by looking at the produced results. The SBST
technique does not require any additional hardware; therefore, the whole test cost is
reduced and no performance penalty is introduced. Moreover, the SBST technique
allows at-speed testing and can be easily used even for on-line test purposes. Hence,

 Automatic Generation of SBST Programs for Functional Test Programs 163

processor and System on Chip (SoC) testing approaches are increasingly adopting
SBST techniques, often in combination with other approaches.

Correct identification of the most common defective parts in a SoC helps to cha-
racterize the technological process. The localization of a fault allows to effectively
direct physical investigation of the underlying defects [2]. Moreover, a good diagnosis
capability is fundamental for the devices containing self-repair skills. On the other
side, it is well known that the complexity of diagnostic test generation is much higher
than that of detection-oriented test generation [3]. Among the various diagnosis tech-
niques, the Software-Based Diagnosis (SBD) methodology has turned out to be a
suitable solution for processor cores embedded in SoCs [2][3].

Today, several applications demand for high performance while exposing a consider-
able amount of Instruction Level Parallelism (ILP), such as Digital Signal Processing
[4]: among the various microprocessor architectures, Very Long Instruction Word
(VLIW) processors have been demonstrated to be extremely attractive for such kinds of
applications. Nowadays, several products for embedded applications adopt VLIW pro-
cessors; therefore, the problem of testing them is increasingly relevant.

A major difference of VLIW processors with respect to traditional superscalar pro-
cessors is the instruction format. Several VLIW instructions, named micro-
instructions, are grouped into one large macro-instruction (also called bundle) where
all micro-instructions within the bundle are executed in parallel computational units;
each one is independent and referred to as Computational Domain. The operation
scheduling performed by VLIW architectures is executed at compile time; therefore,
the compiler is responsible for allocating the execution of each instruction to a specif-
ic Functional Unit (FU).

Due to these characteristics, VLIW processors are suitable for safety-critical sys-
tems adopted in mission-critical applications such as space, automotive or rail-
transport fields which require computationally intensive functionalities combined
with low power consumption. For example, the processor Tilera TILE64TM, com-
posed of several VLIW cores, is used to efficiently perform image analysis on-board a
Mars rover in support of autonomous scientific activities [5][6].

Few previously developed SBST approaches may be found in the literature in order
to properly test VLIW processors against permanent faults; more in particular, part of
them rely on suitable instructions belonging to the original processors instruction set
to apply the test patterns previously generated by automated test pattern generation
(ATPG) tools, which particularly focus on internal components [7]. These methods
present some drawbacks: first of all, transforming the test patterns generated by the
ATPG into test programs is not always straightforward; secondly, the resulting test
programs are not optimized, especially in terms of test duration; finally, the attainable
fault coverage is rarely as high as it may be required.

VLIW processors include a register file having some characteristics (in particular,
the fact that it can be accessed from different domains) that make it different than the
one in other processors. In [8] we focused on this component and proposed a solution,
based on a SBST approach, which resulted to be quite effective.

Considering the diagnosis problem in VLIW processor, in the literature there is on-
ly a preliminary work aimed at the localization of permanent defects inside VLIW

164 D. Sabena, L. Sterpone, and M. Sonza Reorda

components, and the provided solution is a combination of several self-test techniques
(SBST and BIST) [9].

In this chapter we focus on the generation of effective SBST test programs for VLIW
processors, characterized by minimal size, minimal duration and maximum fault cover-
age. The proposed method starts from existing SBST test programs developed for the
different FUs embedded into most processors (e.g., ALUs, adders, multipliers and
memory units). Although the characteristics of FUs used within a VLIW processor are
similar to those used in traditional processors, generating optimized code to effectively
test these units is not a trivial task: our test generation procedure addresses the several
units embedded into distinct parallel computational domains, thus taking into considera-
tion the inherently parallel architecture of VLIW processors. Another goal of our work
was the development of a general approach that could lead to the automatic generation
of the test program for a VLIW processor, once the test code for testing each unit is
available, and the processor configuration is known. The architecture of a VLIW pro-
cessor does not include any custom hardware module, but rather a combination of
common Functional Units. Our solution allows test program generation and optimiza-
tion to be performed autonomously, while automatically exploiting the VLIW characte-
ristics, without any further manual effort. The proposed method allows to generate
highly optimized test programs which exploit most of the VLIW processor features and
are aimed at minimizing the test time and the test program size. Besides, the method
does not require the usage of any ATPG tool, since it is fully functional. Finally, without
any additional effort, it is possible to exploit the test programs developed during the
proposed flow to perform fault diagnosis and thus identify the faulty unit among the
most relevant modules of the considered VLIW processors.

The main contribution of this chapter is the description of the first technique able
to completely automate the generation of effective Software-Based Self-Testing pro-
grams for VLIW processors, while guaranteeing that the resulting programs are op-
timal in terms of duration and size. Exploiting this automatic method, test programs
having some diagnostic properties can also be generated. The proposed method has
been evaluated on a VLIW platform based on the Delft University ρ-VEX VLIW
processor [10][11] which supports most of the features of industrial VLIW architec-
tures. The results we achieved clearly demonstrate the effectiveness of our approach.
Considering the generation of the optimized test programs, clock cycles have been
reduced by approximately 54% with respect to the original test programs, while the
size of the optimized test program decreased by approximately 58%. When the diag-
nosis capabilities are considered, given a generic fault in the VLIW processor under
test, we are able to distinguish it uniquely in the 2.78% of the cases; moreover, in
79.15% of cases we are able to identify the faulty module containing the fault itself,
while in the remaining cases we are able to narrow down the set of candidate faulty
modules to 2 modules (54.52%) or to 3 modules (38.81%).

The chapter is organized as follows. Section 2 gives an overview of the VLIW archi-
tecture. Section 3 describes the related work on Software-Based Self-Test techniques
specifically oriented to VLIW processors, while Section 4 explains in detail the pro-
posed method. Experimental results on the selected case study and their analysis are
presented in Section 5. Finally, conclusions and future work are described in Section 6.

 Automatic Generation of SBST Programs for Functional Test Programs 165

2 VLIW Architecture Summary

The main characteristic of a VLIW processor is the fact that all the operations are
executed by parallel Computational Domains, each one characterized by its own
Functional Units. Besides, the scheduling is totally static, since compile tools prelimi-
nary define it at compile time. As illustrated in Fig. 1, the assembly code for a VLIW
processor is drastically different from the point of view of the machine code with
respect to a superscalar processor: several instructions are grouped together in a single
macro-instruction (named Bundle) and for each instruction there are some information
items that allow to assign its execution to a specific Computational Domain. Conse-
quently, in a VLIW processor there isn’t any hardware instruction scheduler, and the
tasks typically performed by this component are done by the compiler. The power
consumption is thus reduced and the silicon area decreases if compared to traditional
superscalar processors. Furthermore, the Instruction Level Parallelism (ILP) can be
adequately exploited (at least in the case of data intensive applications) since a good
compiler is able to decide which instructions can be executed in parallel by checking
the entire program at compile time [8].

A generic VLIW processor parametric architecture may have a variable number of
functional units (FUs), so that different options, such as the number and type of func-
tional units, the number of multi-ported registers (i.e., the size of the register file), the
width of the memory buses and the type of different accessible FUs, can be modified
depending on the application requirements [4].

Fig. 1. Architectural differences between a superscalar and a VLIW CPU

All the characteristics of a specific VLIW processor are grouped together and are
listed in the so called VLIW manifest. The manifest specifies the number of computa-
tional domains, the number and type of the Functional Units embedded into each
computational domain, the size and access mode of the register file and any other
feature that must be taken into account when developing the code for the processor.

3 Related Work

Methodologies that require an external tester to perform the test are infeasible
without the use of very expensive Automatic Test Equipments (ATEs); however the

F. U.

SC
H

ED
U

LE
R

 ASM Code VLIW
ASM Code

(a) Superscalar Architecture (b) VLIW Architecture

F. U.

F. U.

F. U.

F. U.

F. U.

F. U.

F. U.

166 D. Sabena, L. Sterpone, and M. Sonza Reorda

increasing gap between maximum ATE frequencies and SoC operating frequencies
makes external at-speed testing problematic and expensive; at-speed testing is needed
because of failures detectable only when the test is performed at the device operating
frequency. Moreover, external test often involves long time and significant efforts to
introduce the required hardware and may be characterized by long test application
times [12]. While ATEs use external resources to perform testing task, BIST involves
internal hardware resources: additional hardware and software are integrated into the
circuit to allow it to perform self-testing. The usage of BIST leads to lower the cost of
the complete test as well as the test time, maintaining or improving the fault coverage,
at the cost of additional silicon area [8].

SBST techniques represent a special solution for on-chip testing [12], since they
adopt existing processor resources and instructions to perform self-testing without any
intrusiveness. The main advantage of the SBST methodology is that it uses only the
processor functionality and instruction set for both test pattern application and output
data evaluation, and thus does not introduce any hardware overhead in the design.
However, software-based self-test methods may require very long programs to
achieve high fault coverage of the device under test, and require ad-hoc techniques for
generating suitable test programs [1][12]. Several papers are available in the literature
related to methods for the functional self-test of processors, but only few of them refer
to the test of Very Long Instruction Word (VLIW) processors [8][13][14][15].

In [8] we proposed a new SBST algorithm oriented to the test of the Register File of
a generic VLIW processor; that paper highlights the particular structure of the register
file belonging to a VLIW processor, that presents a particular structure since it is shared
by all the computational domains of the processor; in particular, the proposed algorithm
is able to efficiently test the complex cross-bar switch embedded into the component.
Another technique able to obtain a good diagnostic resolution with a low hardware
overhead is proposed in [14]; this technique combines scan and SBST and it is oriented
to the test of VLIW processors. The specific characteristic of that approach is the ability
to detect faults inside the processor functional units, obtained by loading the same test
patterns directly to the test registers of all the computational domains. The proper func-
tionality of each domain is tested by comparing the test response of all domains, which
should be the same than in the fault-free case. This solution involves a hardware over-
head of about 6% and requires that the processor run in self-test mode.

Similar to test approaches, several Software-Based Diagnosis (SBD) methods ap-
plied to processors have been recently developed. In [2] a new cost-effective approach
is presented: the approach is based on the automatic generation of a diagnostic test set
using an existing post-production test set; the authors propose to improve that set
using an evolutionary method. In [9] the authors present a new diagnostic method for
VLIW processors, based on scan-based BIST and SBST, aimed at a good diagnostic
resolution with low hardware overhead. Software-based BIST is introduced for a fast
diagnosis of the Computational Domains of the processor. This is an initial work in
the field and it is based on the use of several existing self-test techniques; moreover, it
is based on a specific VLIW processor and requires the introduction of several hard-
ware test module in the considered processor.

 Automatic Generation of SBST Programs for Functional Test Programs 167

4 The Proposed Method

In this chapter we describe a new method that allows the automatic generation of an
optimized SBST program for a generic VLIW processor, once its specific configura-
tion is known. The proposed method is composed of two main steps, denoted as
Fragmentation and Customization; moreover, we propose two different flows specifi-
cally oriented to test and diagnosis, respectively. Considering the test flow, step C.1 is
characterized by Selection and Scheduling; considering the diagnosis flow, step C.2 is
characterized by Classification and Equivalence Check (Fig. 2); hereafter, the detailed
description of each of these steps will be provided.

Fig. 2. The flow of the proposed test and diagnosis method

The only two requirements for the global generation flow are the manifest of the
VLIW processor under test, containing all the features of the processor itself, and a
library containing a set of programs able to autonomously test the different modules
within the processor. The library is a collection of generic SBST programs taken from
the literature [8][12][16][17][18]: it contains some functional test code able to test the

Fragmentation

Customization

Fragments
Library

Library

Custom
Fragments

Library

Fault
Simulation

Selection

Scheduling

VLIW Test
program

VLIW
manifest

Step A

Step B

Step C.1

Classification

Test
Flow

Diagnosis
Flow

Equivalence
Check

Diagnosis
Evaluation

Step C.2

168 D. Sabena, L. Sterpone, and M. Sonza Reorda

most relevant Functional Units of a generic VLIW processor. The codes stored into
the library are purely functional (i.e., do not require any Design for Testability fea-
ture) and are completely independent of any physical implementation of the Function-
al Unit they refer; these codes are described with a pseudo-code based on C language.
The mapping process of these codes to the specific architecture under test is per-
formed by the second step of the proposed method (i.e., the Customization step).

4.1 Fragmentation

The goal of the Fragmentation phase is the minimization of the number of test opera-
tions in order to generate optimized and efficient test programs. Two main tasks are
performed by the Fragmentation phase: the first is the selection from the library of the
test programs needed to test the VLIW processor under test, ignoring those which
refer to Functional Units that are not belonging to the processor itself. The second
task performed by this step is the fragmentation of each selected test program into a
set of smaller pieces of code, named Fragments, containing few test operations and
the other instructions needed to perform an independent test. The generation of a
fragment is done by building it around a single instruction, and includes some prelim-
inary instructions required to correctly perform it and to forward the results into ob-
servable locations [2][19]; the description of a Fragment is performed through some
architecture-independent code. On the other hand, a test program is typically com-
posed of a set of test operations enclosed in a loop; a series of short test programs are
generated by simply separating the test operations using the Loop Unrolling tech-
nique, as shown into the pseudo-code of Fig. 3.

The code is then optimized by executing the Fragmentation phase, which exploits the
fact that a VLIW processor is composed of parallel computational domains that execute
several operations in parallel, as described in Section 2. Due to this feature, when a
SBST program is executed with the purpose of testing a selected unit, at the same time
several operations can also be executed on other parallel units. In Fig. 4 an example of
this concept is shown, where it is possible to notice that by applying the SBST program
for the test of the VLIW register file [8] several faults related to the Functional Units
(e.g., the adders and the MEM unit) are also covered. The main idea behind test pro-
gram fragmentation is to divide the original programs in atomic test units in order to
effectively evaluate each one of them; multiple fault coverage is therefore avoided and
the test code can be optimized in terms of test time and used resources. Once the Frag-
mentation phase is completed, a new library called Fragments Library is obtained, that
contains the set of architecture-independent Fragments.

Fig. 3. The pseudo-code of the Fragmentation phase

1. for each cycle C of the loop L {
1.1. S = set of performed operations;
1.2. PI = input pattern applied to S into the cycle C;
1.3. R = expected results performing S using PI as

input pattern;
1.4. GENERATE_NEW_FRAGMENT (PI, S, R);

2. }

 Automatic Generation of SBST Programs for Functional Test Programs 169

Fig. 4. The Fault Coverage of the test program for the Register File with respect to faults in the
other modules of the processor

4.2 Customization

The translation of the generic architecture-independent test programs into the VLIW
code is managed by the Customization step, which uses the Instruction Set Architec-
ture (ISA) of the considered processor. In detail, starting from the VLIW manifest and
from the Fragments Library, the method translates each generic Fragment into a Cus-
tom Fragment that can be executed by the processors under test. A Custom Fragment
is defined as a set of instructions related to the ISA of the processor under test that
performs several operations in order to test the addressed Functional Unit. In Table 1
an example of the Customization process is reported, where the code of a Fragment
before and after the Customization phase appears. The example is based on a multip-
lication instruction, and the produced result is saved into the memory. As the reader
can notice, at the beginning the code is a generic ISA-independent code, while after
the Customization step, a VLIW code is generated, exploiting the ρ-VEX processor
ISA [10][11].

The Customization phase performs two relevant tasks: the definition of the re-
sources needed to execute the code (such as the memory area required and the regis-
ters) and the introduction of the information, inside the code, that assign the execution
of an instruction to a defined VLIW Computational Domain. In Table 1, it is reported
an example of this translation, where CDx is the Computational Domain in charge of
executing the addressed instruction.

98%

48%

20%

48%

22%

60%

30%

55%

20%

70%

0
10
20
30
40
50
60
70
80
90

100
Fa

ul
t C

ov
er

ag
e

[%
]

Functional Unit

170 D. Sabena, L. Sterpone, and M. Sonza Reorda

Table 1. Example of the translation performed by the customizer

Before Customization
R = mul (All 0’s, All 0’s);

Store(R , memory);

After Customization
;;----Macro-instruction 1----
CD0 : mov R1 = 0;

CD1 : mov R2 = 0;

;;----Macro-instruction 2----
CD0 : mul R3 = R1, R2;

;;----Macro-instruction 3----
CD0 : stw 4[R7] = R3; //R7 is the stack pointer
;;----------------------------

The translation of each Fragment is performed independently from the others; fur-

thermore, one architecture-independent Fragment can be translated into several archi-
tecture-dependent Fragments, following the features listed in the VLIW manifest,
such as the type of functional units contained in each Computational Domain: for
example, if in the considered VLIW processor there are 4 adder units, one for each of
the 4 Computational Domains, the generic Fragment related to the test of an adder is
translated into 4 architecture-dependent Fragments, one for each adder unit embedded
into the Computational Domains. When the Customization phase is terminated, each
architecture-dependent Fragment is fault simulated in order to compute a detailed list
of faults covered by the specific test program considering all the resources of the
VLIW processor. Finally, a library called Custom Fragments Library is obtained: it
contains all the architecture-dependent Fragments used to test the processor under test
and the list of faults covered by each of them. As shown in Fig. 2, the fault lists asso-
ciated to each Custom Fragment are also used for the diagnosis flow, as we will ex-
plain in Section 4.4.

4.3 Selection and Scheduling

During this phase two important processes are performed: the selection of the Custom
Fragments, according to the objective to be achieved, and the merge of these in order
to obtain a compact and efficient test program.

Considering the Selection step, the Custom Fragments are selected by an algo-
rithm which implements two alternative rules depending on the user requirements.
The first rule is based on the selection of the minimum number of Custom Fragments
that allow to reach the maximum coverage with respect to all resources of the proces-
sor under test. In this way several Custom Fragments are not selected since the faults
covered by these Fragments are already covered by other fragments previously se-
lected. The pseudo-code of this algorithm is shown in Fig. 5.

 Automatic Generation of SBST Programs for Functional Test Programs 171

1. FL = Fault List of the considered processor;
2. CFL = Custom Fragments Library;
3. SFL = Selected Fragments List;
4. while (CFL is not empty AND found) {

4.1. select Fragment F that allows to maximize

the coverage of FL;

4.2. if (F exists){
• put F into SFL;

• remove F from CFL;

• found = TRUE;

4.3. } else

• found = FALSE;

5. }

Fig. 5. The pseudo-code of the algorithm for the selection of the Custom Fragments

The second rule is based on optimizing the number of resources used by the
selected Custom Fragments. The maximal number of usable resources, in terms of
registers and memory words, can be specified by the user. On the basis of these con-
straints, the algorithm selects the Custom Fragments that allow to reach the maximum
coverage without using more resources than those specified. In this way the method is
able to generate test programs depending on the final requirements: for example, if
the final goal is to generate test programs for on-line testing, with the use of this algo-
rithm we are able to generate test codes that exploit only a limited set of registers and
memory words.

At the end of the Selection phase, the selected Custom Fragments enter the Sche-
duling phase: this process is responsible for the integration of the Custom Fragments,
in order to obtain an optimized and efficient final test program. To reach this goal the
scheduler optimizes and merges the codes contained into the Custom Fragments ex-
ploiting the VLIW features; in particular, it compacts the test programs aiming at
maximizing the ILP of the processor. To perform the merge operation two techniques
are defined and adopted; considering two or more Custom Fragments, the former is
based on the exploitation of the common input pattern belonging to different instruc-
tions: in this case it is not required to define two instances of the same input data to
perform the test instructions; an example of this operations is shown in Table 2, where
two Custom Fragments, related to the test of the adder units embedded into the Com-
putational Domain 0 and 1, are merged into a single test program. In this way the ILP
is better exploited and the number of macro-instructions required is less than the sum
of the macro-instructions of the two Fragments. The latter technique is based on the
maximization of the ILP of the VLIW architecture: starting from the code of the se-
lected Custom Fragments, the macro-instructions of these codes are merged together
in order to maximize the parallel operations executed by the code.

172 D. Sabena, L. Sterpone, and M. Sonza Reorda

Table 2. Example of the optimization operations performed by the scheduler

Custom Fragment A Custom Fragment B
;;--Macro-instruction A1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;--Macro-instruction A2
CD0 : add R8 = R1, R2;

;;--Macro-instruction A3
CD0 : stw 0[R1] = R8;
;;----------------------

;;--Macro-instruction B1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;--Macro-instruction B2
CD1 : add R9 = R1, R2;

;;--Macro-instruction B3
CD0 : stw 0[R1] = R9;
;;-----------------------

Final Test Program F
;;-- Macro-instruction F1
CD0 : mov R1 = 0;
CD1 : mov R2 = 0;
;;-- Macro-instruction F2
CD0 : add R8 = R1, R2; //tests the adder of CD0
CD1 : add R9 = R1, R2; //tests the adder of CD1
;;-- Macro-instruction F3
CD0 : stw 0[R7] = R8; //R7 is the stack pointer
;;-- Macro-instruction F4
CD0 : stw 4[R7] = R9; //R7 is the stack pointer
;;----------------------

The goal of this scheduling technique is to generate the macro-instructions of the

final test program, thus reducing the whole test time. Three analysis steps are required
to acquire the necessary information with respect to each Custom Fragment: the re-
sources required by the code, such as the registers, the memory words and the Func-
tional Units exploited; the temporal characteristics, defined as the number of clock
cycles where the resources mentioned above are employed in the execution of the
code; finally, the data dependences between the instructions belonging to the Custom
Fragments. These pieces of information are used to create the final test program, ac-
cording to the features of the VLIW processor described in the VLIW manifest. In
order to do this, the scheduler uses three structures: the first is an activity frame
schedule that is used to schedule the execution of the Custom Fragments into the
Computational Domains: an example of this is reported in Fig. 6, where the chart
representation of the activity frame schedule of the code listed in Table 2 is reported,
consisting of two Custom Fragments, called A and B, each composed of three macro-
instructions called A-1, A-2, A-3 and B-1, B-2, B-3, respectively. The second
structure needed to create the final test program is a graph structure, where the depen-
dences between the instructions composing the program are saved; in Fig. 7 is
reported the graph structure related to the simple example shown in Table 2. Finally,
the last structure is a graph containing the information about the resources, such as
registers and memory word, used by the final test program for each clock cycle. At
the end of this step, the final test program is generated.

 Automatic Generation of SBST Programs for Functional Test Programs 173

Fig. 6. The chart representation of the activity frame schedule

Fig. 7. The graph structure for the instruction dependence

4.4 Classification and Equivalence Check

In some situations, diagnosis is required, which means that the goal becomes the iden-
tification of the fault existing in the unit under test. For example, diagnosis is crucial
in the ramp-up phase of a new product, when the yield of the production process is
expected to grow thanks to the tuning of the process (which requires knowing where
the faults are) [20]. Another typical scenario where diagnosis is crucial is when sys-
tem reconfiguration can be performed after a fault is detected, e.g., thanks to the
adoption of a programmable architecture: in this case diagnosis is crucial to identify
(once a fault is detected during the operational phase) the partition containing the
fault, so that the system can be reconfigured and the partition can be substituted by a
fault-free one [21].

Given the importance of diagnosis, we performed a preliminary analysis about the
diagnostic power of the test programs generated by our method, and we made some
considerations aimed at improving their diagnosis capabilities.

First of all, we will define the notation to be used and the steps of the diagnosis
method; then, we will report some experimental figures (in Section 5.2) about the
diagnostic capabilities of the test programs generated by the proposed method.

Notation. Let us call F = {f0, f1, …, fn-1} the set of n faults that can affect the Unit
Under Test (UUT). Each of these faults causes the UUT to produce a given output
behavior b when a given sequence of input stimuli is applied; let bi denote the output
behavior produced by fault fi, and bg the output behavior of the fault-free circuit.
Clearly, bi = bg for all undetected faults fi. In the literature (and in practice) the output

Resources

clock
cycle

CD 0

CD 1

A - 1

A - 2

A - 3 B - 1 B - 2 B - 3

Custom Fragment A Custom Fragment B

B - 1

A - 2

B - 2 B - 3

A - 3

1 2 3 4

B-1

A-2 B-2

A-3 B-3

174 D. Sabena, L. Sterpone, and M. Sonza Reorda

behavior can be observed (for the purpose of diagnosis) resorting to two different
criteria:

• Criterion #1: the output behavior of a fault is simply the sequence of time instants
in which the fault is detected. Therefore, according to this criterion bi = bj iff the
two faults fi and fj are detected in the same time instants.

• Criterion #2: the output behavior of a fault is the sequence of output values pro-
duced by the fault. Therefore, according to this criterion bi = bj iff the two faults fi
and fj always produce the same output values.

For the purpose of this paper we will consider a criterion which is a mix of crite-
rion #1 and criterion #2. In particular, we will classify faults according to an output
behavior corresponding to the set of values produced by the program at the end of its
execution. Therefore, according to this criterion bi = bj iff the two faults fi and fj pro-
duce the same output values in memory at the end of their execution.

A given pair of faults (fi, fj) is said to be distinguished by a given sequence of input
stimuli I iff bi ≠ bj. Otherwise, they are said to be equivalent wrt I. All faults that are
equivalent wrt to a give sequence of input stimuli I are said to belong to the same
Equivalence Class wrt I. A detected fault fi is said to be fully diagnosed by a sequence
of input stimuli I iff any couple of faults (fi, fj) including fi is distinguished by I. Since
two faults fi, fj can never be distinguished if they are functionally equivalent, the num-
ber of fully diagnosed faults in a circuit is typically rather low.

Several possible metrics can be adopted to measure the diagnostic capabilities of a
sequence of input stimuli I [22]. A popular one is the so-called diagnostic resolution,
or DR(I), which corresponds to the fraction of all pairs of detected faults that are dis-
tinguished by I.

When diagnosis is used in reconfigurable system for identifying the partition in-
cluding the fault, the precision required is lower: in fact, the final goal in this case is
to be able to distinguish all pairs of faults belonging to different partitions, while dis-
tinguishing pairs of faults belonging to the same partitions is not of interest. Hence, in
this case a different definition of the diagnostic resolution can be introduced, based on
a given partition of the circuit elements among P partitions. Assuming that the generic
fault fi is associated to the partition pi, we will only consider those pairs of faults (fi, fj)
such that pi ≠ pj and define the partition-oriented diagnostic resolution of a given
sequence of input stimuli I, or PRDR(I), as the fraction of all pairs of detected faults
belonging to different partitions that are distinguished by I.

Method. Considering the Diagnosis flow, shown in Fig. 2 Step C.2, there are two
main steps necessary to acquire the diagnostic data.

First of all the fault lists associated to each Custom Fragment, and generated
through fault simulation (Fig 2, Step B) are analyzed and compared: the goals of this
analysis are (1) the classification of each fault, belonging to the VLIW processor un-
der test, in the class of distinguished faults and equivalent faults, respectively, and (2)
the creation of the equivalence classes, according to the notation described in the
previous paragraph.

 Automatic Generation of SBST Programs for Functional Test Programs 175

The second step is the analysis and the classification of the equivalence classes; for
each of them, the classification is based on the number of partitions that have at least
one fault in the considered equivalence class; the composition of the partition defines
the granularity of the diagnosis and it is managed by the final user, according to the
chosen diagnosis goal.

At the end of these two steps, using the obtained data and given a fault in the con-
sidered VLIW processor, we will be able to either uniquely identify it (if the fault is
distinguished), or to identify the partition (one or more) containing the fault itself and
the equivalent faults (if the fault has one or more equivalent).

5 Experimental Results

In this section, we present the experimental results, both for the optimized generation
of the SBST program and for the diagnosis evaluation; the ρ-VEX VLIW processor
has been used as a case study (Fig. 8).

The ρ-VEX is a VLIW processor released by researchers from Delft University of
Technology [10][11]. Among its main features, the most important advantage is the
possibility of reconfiguring the pipeline according to the user need. The pipeline, in
the standard configuration, is composed of four stages: fetch, decode, execute and
write-back. Following the VLIW architecture principles, the decode, execute and
write-back stages are divided into four Computational Domains (CD). The fetch unit
is in charge of fetching a VLIW macro-instruction from the attached instruction
memory; then, it splits the considered macro-instruction into several (according to the
processor configuration) micro-instructions; finally, these are passed in parallel to the
decode unit. In the decoding stage two main tasks are executed: firstly, the operations
are performed, and secondly the registers used as operands are fetched from the gen-
eral purpose register file (the GR module of Fig. 8) and from the branch management
register file (the BR module of Fig. 8). The micro-operations are then forwarded to
the parallel execution units, that in this case are ALUs (1 ALU for each CD) and
MULs (2 MULS, embedded in the second and in the third CD).

Fig. 8. The ρ-VEX VLIW processor [10][11]

In
st

ru
ct

io
n

M
em

or
y

Fetch Decode Execute Writeback

D
at

a
M

em
or

y

A

A

A

A

M

M

MEMBR

CTRLGRPC

ρ-VEX processor

176 D. Sabena, L. Sterpone, and M. Sonza Reorda

In order to perform the stuck-at fault simulation experiments, we synthesized and
implemented the ρ-VEX processor using a standard ASIC gate library. In total the
number of faults is 387,290. The assembly code generated following the described
method has been inserted into the instruction memory; then, a fault simulation expe-
riment has been performed. Moreover, we wrote a prototypical tool (composed of
about 3K lines of C++ code) implementing the proposed methods.

First of all, we have selected 6 SBST programs [8][12] [16][17][18] from the lite-
rature for testing the Functional Units embedded in the processor: each of them has
been encoded in architecture-independent pseudo-code and has been inserted in the
starting library. At the end of the fragmentation step we obtained a Fragments Library
composed of 520 architecture-independent Fragments, while at the end of the
Customization step the Custom Fragments Library was composed of 989 Custom
Fragments.

5.1 Optimized SBST Program Generation Results

Using the technique for the maximum coverage with the minimum number of Frag-
ments, 768 Custom Fragments have been selected and subjected to the scheduling
step. At the end, we obtained the final test program for the test of the ρ-VEX proces-
sor: the generation time was approximately 40 hours, of which about 95% used for the
fault simulation of the Custom Fragment. Computational time has been evaluated on a
workstation with an Intel Xeon Processor E5450. We compared the test program gen-
erated by our approach with a test program consisting in several literature-based test
programs simply queued in a unique test program, without performing any selection
or scheduling steps, therefore adopting a realistic test estimation of what can be
achieved with previously developed test algorithms without any optimization method.
In order to fairly evaluate the two solutions, the original test programs have been ap-
plied using the loop-unrolling technique, as it is common for any VLIW application.
In Table 3 we compare the obtained results.

As the reader can notice, while the coverage remains at the 98%, the number of
clock cycles and the size of the test program generated with the proposed method
decreased significantly. This is due to two causes: the former is that not all the Cus-
tom Fragments are chosen in the selection step; in fact the maximum coverage is
reached with about 78% of the Custom Fragments. This comes from the fact that
some fragments are aimed at detecting faults in some unit, which were already cov-
ered by Fragments targeted at other units. The latter is related to the scheduling step,
that optimizes the code compacting the instructions, exploiting the VLIW features,
and parallelizing as much as possible the execution of the Custom Fragments; conse-
quently, the amount of clock cycles required by the final test program, is about 54%
less than in the test program obtained using previously developed test programs with-
out any selection or scheduling improvements.

It is also worth mentioning that the proposed method was able to reduce by about
58% the size of the test code. In Table 4 the achieved coverage for the relevant units
of the ρ-VEX processor are reported.

 Automatic Generation of SBST Programs for Functional Test Programs 177

Table 3. Optimized SBST program generation: obtained results

Test
Program

Clock
cycle [#]

Fault
Coverage

Size
[KB]

Original Test Programs 18,540 98.2% 3,894
Proposed method 8,447 98.2% 1,612

Table 4. Details of the achieved fault coverage

ρ-VEX Components
Faults

[#]
Fault

coverage
Fetch 2,156 99.2%
Decode 269,196 98.1%

Execute
4 ALU 75,554 98.3%
2 MUL 37,244 98.6%

MEM 1,730 97.2%
Writeback 1,420 98.1%

Total 387,290 98.2%

5.2 Diagnosis Evaluation Results

First of all we wrote a C++ program able to compare the fault lists generated by the
Fault Simulation step (Section 4.2); the goal of this program is the detection of the
number of distinguished faults and the classification of the undistinguished faults, i.e.,
the equivalent faults, in two categories: the first is composed of the faults which are
equivalent and belonging to the same partition, while the second is composed of the
faults belonging to different partitions. For this purpose, we divided the ρ-VEX pro-
cessor in 10 partitions: the fetch unit, the decode unit, the general-purpose register
file, the branch-management register file, the write-back unit, and one for each Com-
putational Domains (i.e., 4) in which the functional units are embedded.

Then, we run this program using two different sets of fault lists: the first contains
only the fault lists associated to the Custom Fragments selected by the Selection step
(Fig. 2, Step C.1) of the optimized generation of the SBST program, which are 78%
of the total; the second set, instead, contains the fault lists of all the Custom Frag-
ments generated by the Customization step. In Table 5 the results of these two expe-
riments are reported.

As it is possible to notice, the set of all fault lists (set 2) allows to increment the
number of distinguished faults and the number of the equivalent faults belonging to
the same partition. Consequently, considering the results of Table 5, given a fault in
the ρ-VEX processor, in about 82% of the cases we are able to identify the partition
affected by the fault itself.

In Table 6 the evaluation of the Equivalence Classes, generated when all the fault
lists of the all Custom Fragments are considered (fault lists set 2), is shown; the pur-
pose of this evaluation is the classification of each equivalence class, based on the
number of partitions with at least one fault in the considered equivalence class. As

178 D. Sabena, L. Sterpone, and M. Sonza Reorda

reported in Table 6, about 93% of the equivalence classes are composed of faults
belonging to the same partition. In the other cases, as reported in the graph of Fig. 9,
most of the classes are composed of equivalent faults belonging to two (54.52%) or
three (38.81%) different partitions.

Table 5. Faults classification: diagnosis point of view

Faults lists
set

Distinguished
Faults

Equivalent Faults
SAME

partition
DIFFERENT

partitions
TOTAL

1 – Optimized Test 1.13% 63.29% 35.59% 98.87%
2 - All 2.78% 79.15% 18.07% 97.22%

Table 6. Equivalence classes evaluation

Partition [#] E.C. [#] E.C. [%] Faults Category
1 14,319 92.90 % Equivalent – SAME partition

2 597 54.52 %

Equivalent – DIFFERENT
partition

3 425 38.81 %
4 42 3.84 %
5 21 1.92 %
6 9 0.82 %
7 0 0.00 %
8 1 0.09 %
9 0 0.00 %

10 0 0.00 %

Fig. 9. The classification of the equivalent classes calculated using all the available faults lists

2 Modules = 597
3 Modules = 425

4 Modules = 42

5 Modules = 21 6 Modules = 9
8 Modules = 1

Equivalence Class Evaluation

 Automatic Generation of SBST Programs for Functional Test Programs 179

6 Conclusions and Future Work

In this chapter we presented the first method able to automatically generate optimized
Software-Based Self-Test programs for VLIW processors. The obtained results, with
respect to the selected case study, clearly demonstrate the efficiency of our method,
that allows to reduce significantly both the number of clock cycles and the required
memory resources with respect to the plain application of previous methods. Moreo-
ver, it is also possible to exploit the proposed method to obtain a set of small SBST
programs useful for the diagnosis of the considered VLIW processor.

As future work we plan to better evaluate the performance of the proposed solu-
tion with the use of another VLIW model with different Functional Units; moreover,
we plan to generate small optimized SBST programs that can be specifically used for
on-line testing and able to improve the diagnosis capabilities.

References

1. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda, M.: Microprocessor software-
based self-testing. IEEE Design & Test of Computers 2(3), 4–19 (2010)

2. Bernardi, P., Sànchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective
Technique for Minimizing the Cost of Processor Software-Based Diagnosis in SoCs. In:
Design, Automation and Test in Europe, DATE 2006, vol. 1, pp. 1–6 (March 2006)

3. Chen, L., Dey, S.: Software-Based Diagnosis for Processors. In: Design Automation Con-
ference 2002, pp. 259–262 (2002)

4. Fisher, J.A., Faraboschi, P., Young, C.: Embedded computing: a VLIW approach to archi-
tecture, compilers and tools. Morgan Kaufmann (2004)

5. Bornstein, B., Estlin, T., Clement, B., Springer, P.: Using a multicore processor for rover
autonomous science. In: IEEE Aerospace Conference, pp. 1–9 (March 2011)

6. Tilera Corporation, “Multicore Development Environment User Guide,” Doc #UG201 Re-
lease 1.2 (February 2008)

7. Beardo, M., Bruschi, F., Ferrandi, F., Sciuto, D.: An approach to functional testing of VLIW
architectures. In: IEEE High-Level Design Validation and Test Workshop, pp. 29–33 (2000)

8. Sabena, D., Sonza Reorda, M., Sterpone, L.: A new SBST algorithm for testing the register
file of VLIW processors. In: IEEE International Conference on Design, Automation &
Test in Europe (DATE), pp. 412–417 (March 2012)

9. Ulbricht, M., Schölzer, M., Koal, T., Vierhaus, H.T.: A New Hierarchical Built-In Self-
Test with On-Chip Diagnosis for VLIW Processors. In: 2011 IEEE 14th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp.
143–146 (April 2011)

10. Wong, S., Anjam, F., Nadeem, F.: Dynamically reconfigurable register file for a softcore
VLIW processor. In: IEEE International Conference on Design, Automation and Test in
Europe (DATE), pp. 962–972 (March 2010)

11. Wong, S., Van As, T., Brown, G.: ρ-VEX: a reconfigurable and extensible softcore VLIW
processor. In: International Conference on ICECE Technology, pp. 369–372 (December
2010)

12. Kranitis, N., Paschalis, A., Gizopoulos, D., Xenoulis, G.: Software-based self-testing of
embedded processors. IEEE Transactions on Computers 54(4), 461–475 (2005)

180 D. Sabena, L. Sterpone, and M. Sonza Reorda

13. Koal, T., Vierhaus, H.T.: A software-based self-test and hardware reconfiguration solution
for VLIW processors. In: IEEE Symposium on Design and Diagnostic of Electronic Cir-
cuits and Systems (DDECS), pp. 40–43 (April 2010)

14. Ulbricht, M., Scholzel, M., Koal, T., Vierhaus, H.T.: A new hierarchical built-in self-test
with on-chip diagnosis for VLIW processors. In: IEEE Symposium on Design and Diag-
nostic of Electronic Circuits and Systems (DDECS), pp. 143–146 (April 2011)

15. Pillai, A., Zhang, W., Kagaris, D.: Detecting VLIW hard errors cost-effectively through a
software-based approach. In: Advanced Information Networking and Applications Work-
shops, pp. 811–815 (2007)

16. Gizopoulos, D., Psarakis, M., Hatzimihail, M., Maniatakos, M., Paschalis, A., Raghuna-
than, A., Ravi, S.: Systematic software-based self-test for pipelined processors. IEEE
Transaction on Very Large Scale Integration (VLSI) Systems 16(11), 1441–1453 (2008)

17. Paschalis, A., Gizopoulos, D., Kranitis, N., Psarakis, M., Zorian, Y.: Deterministic soft-
ware-based self-testing of embedded processor cores. In: IEEE International Conference
on Design, Automation and Test in Europe (DATE), pp. 92–96 (2001)

18. Kranitis, N., Gizopoulos, D., Paschalis, A., Psarakis, M.: Instruction-based self-testing of
processor cores. In: IEEE VLSI Test Symposium, pp. 223–228 (2002)

19. Sanchez, E., Sonza Reorda, M., Squillero, G.: On the transformation of manufacturing test
sets into on-line test sets for microprocessor. In: IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 494–502 (October 2005)

20. Bernardi, P., Sánchez, E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective
Technique for the Automatic Generation of Diagnosis-Oriented Programs for Processor
Cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 27(3), 570–574 (2008)

21. Koester, M., Luk, W.S., Hagemeyer, J., Porrmann, M., Rückert, U.: Design Optimizations
for Tiled Partially Reconfigurable Systems. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 19(6), 1048–1061 (2011)

22. Ryan, P.G., et al.: Fault dictionary compression and equivalence class computation for se-
quential circuits. In: Proc. IEEE Int. Conf. Comput.-Aided Des., pp. 508–511 (1993)

SEU-Aware Low-Power Memories
Using a Multiple Supply Voltage Array Architecture

Seokjoong Kim and Matthew R. Guthaus

University of California Santa Cruz, Santa Cruz, CA US
{seokjkim,mrg}@soe.ucsc.edu

Abstract. Electric devices should be resilient because reliability issues are in-
creasingly problematic as technology scales down and the supply voltage is low-
ered. Specifically, the Soft-Error Rate (SER) increases due to the reduced feature
size and the reduced charge. This paper describes an adaptive method to lower
memory power using a dual Vdd in a column-based Vdd memory with Built-In
Current Sensors (BICS). Using our method, we reduce the memory power by
about 40% and increase the error immunity of the memory without the signifi-
cant power overhead as in previous methods.

Keywords: Low-Power Memories, Single Event Upset(SEU), Soft-Error Rate
(SER), Built-In Current Sensors(BICS).

1 Introduction

Single Event Upsets (SEUs) are caused by alpha particles or cosmic rays which create
temporary electron-hole pairs upon collision with a silicon surface. In the past, these
were common only in high-altitude (space) applications, but they are becoming more
significant as process geometries and supply voltages shrink. Figure 1(a) shows the case
when a particle hits the channel of a transistor. Depending on the energy and incident
angle of the particle, an amount of electron hole pairs are created which can affect
certain characteristics of the transistor, such as the drain current Ids.

Many previous works have proposed methods to analyze transient errors induced by
radiation [14, 18, 20, 27]. Basically, these methods have used a simulated pulse to em-
ulate the spike induced by SEUs to simulate the effect at transistor/gate level as shown
in Figure 1(b). In memory devices, this pulse targets the most sensitive storage node in
the memory cell. The Soft-Error Rate (SER) [16,29], however, depends on the location,
altitude and surrounding energy level [12] in which the circuit is operating. Researchers
often use an empirical model for SER based on the critical charge Qcrit [4,7], but both
the environmental and critical charge parameters of this model are challenging to es-
timate due to technology scaling and process variation. Other prior works [13] have
proposed to use real measured data from radiation chambers to increase the accuracy of
the prior models. This method improves the error rate accuracy, but it is costly in terms
of resources and time to properly calibrate the model for the each chip designed.

To reduce the soft error rate, many previous works employ architectural techniques
such as Error Correcting Codes (ECC) [5]. Error Correction Codes (ECC) add addi-
tional parity bits to original data bits to detect/correct errors. ECC can detect soft errors

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 181–195, 2013.
c© IFIP International Federation for Information Processing 2013

182 S. Kim and M.R. Guthaus

Gate
Drain Source

P Substrate

Oxide

- +
- + - +

- +
- + - +

- +
- + - +

- +
- + - +

Gate

P Sub

ide

- +
- + - +

- +
- + - +

- +
- + - +

- +
- + - +

Energy Particles

Energy Particles

Correct Output

Incorrect Output
Input

(a) Single Event Upsets (SEU) cause
electron hole pairs in the transistor chan-
nel and incorrect output

(b) Gate-level soft error simulation of the impact
requires temporal modeling of the charged parti-
cles

Fig. 1. Single Event Upset (SEU) example and gate-level SEU simulation methodology are used
to analyze circuit robustness.

depending on the the number of parity bits. Single Error Correction Double Error De-
tection (SECDED) scheme is normally used for ECC due to its simple architecture, but
Double Error Correction (DEC) can be implemented using more logics and gates and
increases power. Also circuit sizing methods were also proposed [2]. Circuit level tech-
niques can increase the soft error immunity using hardened memory cells. The basic
idea of hardened memory cell is increasing a capacitance of stored node to increase the
critical charge Qcrit level. This method improves the soft error tolerance but it affects
to the memory performance due to the increased capacitance.

The major issue with the prior approaches is that they can’t dynamically react to
immediate changes in the flux energy level. Built-In Current Sensors (BICS) have been
proposed that detect transient errors in real time [15, 19] so that the errors may be
immediately detected and corrected by Error Correction Codes (ECC). This enables the
SER to be controlled within a recoverable range while the memory operates. Although it
keeps the SER within recoverable margins, the additional BICS and ECC may increase
the cost and power consumption of the chip.

Dynamic Noise Margin (DNM) has been previously introduced to quantify the tran-
sient response of SRAM cells in the presence of noise [3]. DNM quantifies a memory
cell’s fault tolerance to a transient voltage instead of static voltage. This means that
DNM can more accurately quantify the tolerance of a memory cell to realistic exter-
nal noise since SEUs from alpha and neutron particles have both temporal and voltage
level components. Previous researchers have proposed many different analysis methods
to compute DNM [8, 22, 23, 25].

In this work, we propose a SEU-tolerant SRAM architecture using BICS to detect
SEUs and then improve the dynamic noise immunity using a dual-supply Dynamic
Voltage Scaling (DVS) scheme. Since most memory designs perform DVS by selecting
from pre-defined Vdd, we propose the methods to determine the optimal supply voltage
levels considering both error tolerance and power reduction based on column-based Vdd

array architecture with BICS.

SEU-Aware Low-Power Memories 183

Our major contributions are as follows:

– We are the first to propose an adaptive architecture using BICS in column-based
Vdd memory architecture.

– We are the first to quantify the optimal voltage considering power and SEU toler-
ance through a new Monte Carlo framework.

– We analyze the impact of peak current variation and explicitly consider the Dy-
namic Noise Margin (DNM) of the memory cells.

– We also show the SER improvement by increasing transistor size in memory cell.

The rest of this paper proceeds as follows: Section 2 describes the overview of our
BICS architecture, Section 3 introduces our MC framework and calculates the optimal
voltage levels, Section 4 describes our power model using the dual Vdd, Section 5 shows
our experimental setup and results, and Section 6 concludes the paper.

2 Background

This section describes previous works that systematically detect transient errors in
memory arrays and recent research into dual-supply voltage column based memories.
The two components are integral to our approach which is presented next in Section .

2.1 Dynamic Transient Error Detection

Researchers have proposed built-in sensors to detect transient errors dynamically [15,
19,21]. Figure 2(a), for example, shows a Built-In Current Sensor (BICS) implemented
alongside a representative 6T SRAM cell. The BICS connects to each column at the
bottom of the array. When a particle strikes an internal node of any memory cell in the
column, the voltage of the internal node fluctuates due to the electron-hole pairs and
immediately decreases the virtual Vdd (VVDD) of the BICS. This fluctuation turns on
the PMOS transistor in pull-up path of the BICS which asserts the UPSET signal to
indicate the presence of a transient particle.

2.2 Column-Based Supply Vdd Array Architecture

Column-based Vdd memories have been recently proposed to reduce memory array
power consumption [6, 26]. Figure 2(b) shows the memory array structure with each
memory cell’s Vdd is connected to the global Vdd in each column. Since SRAM read
operations need higher Vdd for improved noise margins compared to write operations, a
dual supply voltage saves power without performance or reliability degradation. When
a column is read, the supply voltage is set to Vhigh and when a column is written, it is
set to Vlow. This approach reduces power by minimizing the supply voltage depending
on the read/write operating pattern.

184 S. Kim and M.R. Guthaus

6T CELL

BL BLB

VDD

VVDD

VGND

WL

UPSET

(a) Built-In Current Sensors (BICS) detect particle
strikes by monitoring the virtual supply voltage and
ground

Column MUX

Vhigh
Vlow

WL

WL

WL

WL

BL BL BL BL BL BL BL BL

(b) The column-based Vdd enables
BICS monitoring and supply selec-
tion of individual memory columns

Fig. 2. Previous works have separately used Built-In Current Sensor (BICS) for error detection
and column-based Vdd arrays for dynamic power savings depending on the operation (read or
write)

3 Proposed Work

While column-based Vdd memory architectures have been used for power reduction in
the previous section, our approach instead assumes the same voltage level for both op-
erations (read and write). We alternatively combine the BICS and column-based Vdd

array to dynamically select the minimum supply voltage to retain data values according
to the present external noise conditions as shown in Figure 3. The combination of these
two techniques lowers power consumption by dynamically adjusting what would oth-
erwise be a conservative worst-case static guardband voltage while maintaining fault
tolerance.

3.1 SEU-Aware Low-Power Memory Array

Our method uses the column-based Vdd memory architecture and BICS to detect tran-
sient errors and dynamically compensate for the noise in the memory cell using a high
supply voltage. Our common-case strategy is to use a low voltage Vdd in normal stand-
by operation and adapt with a high voltage, Vhigh, for active operation and to improve
fault recovery time response. Because most memory cells spend most time in a stand-
by mode, the low Vdd voltage efficiently reduces the stand-by leakage power. However,
a low Vdd also reduces the robustness by directly increasing the memory cell recovery
time due to transient errors. Figure 4 shows an example that illustrates how the recovery
time depends on the supply voltage. The recovery time is faster with the high voltage
than the low voltage.

SEU-Aware Low-Power Memories 185

WL

WL

WL

WL

Vhigh

DRV

Read Transient Error

Access
address

6T CELL

BL BLB

VDD

VVDD

VGND

WL

UPSET

VVVV

.

BICS

Vhigh

DRVDD

Access
addressa

VDDD

VGND VGND

UPSETU

BICS

Fig. 3. Our approach uses Built-In Current Sensor (BICS) together with a Column-based Vdd

Array to detect SEUs at a column granularity

In our approach, the supply voltage of a column is adjusted to Vhigh when a SEU is
detected in memory cells in non-accessed columns. The low Vdd could be the Data Re-
tention Voltage (DRV), for example, but we need a method to improveDRV robustness.

Figure 3 shows the architecture using Vhigh andDRV . Vhigh is only enabled through
the supply mux when (1) the SEU occurs or (2) the column address (read/write) is
addressed. To do this, we add a logical OR operation to the bottom of each column and
connect UPSET signal and Column Selection (CS) signal as inputs. For example, if the
SEU occurs in column 2 and the CS signal for read operation accesses column 4, only
two columns are connected to Vhigh. The rest of columns are still connected to the low
Vdd.

Our method adjusts Vdd of each column depending on whether a SEU is located in a
column according to the BICS. This can happen in the background during idle periods.
Therefore, the power consumption is reduced by only using the high supply voltage
when necessary. We calculate the Vhigh supply voltages by analyzing the memory ac-
cess delay constraint of a read operation and calculate the DRV using Monte-carlo
SNM analysis [9]. The write operation is not directly considered, because the read op-
eration has less noise margin and is more critical than the write operation [26].

3.2 Memory Characterization Framework

Figure 5 shows our Monte Carlo framework that is used to analyze the impact of SEUs
on memory timing. It uses several configuration parameters to specify the supply volt-
age, memory size, device parameters, and transistor variation. Among the parameters,
we consider Vth variation only for simplicity. It then executes two independent pro-
cesses. One process performs worst case delay characterization during normal memory

186 S. Kim and M.R. Guthaus

trecover

t

V(t)

trecover Low Vdd

High Vdd

Fig. 4. Low Vdd reduces the cell recovery time from transient error

SRAM Worst delay
Characterization

(t_worst @ Vdd)

Monte-Carlo Based
Memory

Characterization
Built-In Current
Sensor Analysis
(t_recover @ Vdd)

Parameters
(VDD, Temperature , Array_size, Cell_size,

Model_parameter, Vth var)

Power Model using Dual Voltages
Total Power = f (Vhigh, Vtol, Vlow)

Voltage Analysis using Timing
constraints

 # of memories Vhigh Vtol Vlow
 Array NxM #1: 0.860V 0.843V 0.450V
 Array NxM #2: 0.870V 0.823V 0.459V

Optimal Recovery
Voltage Calculation

Probabilistic Power
Calculation

Fig. 5. A Monte Carlo framework is used to analyze the timing and power of the low and high
supply voltage levels

operation while the other analyzes the recovery time when performing an access with
Vhigh during a SEU. Both modules internally perform a voltage sweep to study the
impact of Vdd.

The worst case delay is a quadratic function of the supply voltage with the coefficient
depending on the array size,

tworst(Vdd) = f(Vdd,M,N). (1)

Figure 6(a) shows this using simulation data (Vdd and array size N×M). Similarly, the
recovery time from a SEU using the BICS architecture is measured as the time required
for a memory node voltage to fully recover (99.9% of Vdd) using the dual voltage. This
is a function of the memory column height due to the bit-line and supply rail capacitance
and the supply voltage due to the memory cell drive strength,

trecover(Vdd) = f(Vdd, DRV,N). (2)

Figure 6(b) shows the recovery time trecover depending on column height N . As ex-
pected, large column height N increases trecover in both cases (Ipeak=2.25E-05 and
Ipeak=6.25E-05) due to the linear increase in capacitance.

SEU-Aware Low-Power Memories 187

0.8

W
or

st
 A

cc
es

s
Ti

m
e

(s
ec

)

VDD (V)
1.10.7 0.9 1.0 1.2 1.3

4 bit
8 bit

16 bit
32 bit
64 bit

256 bit

256 bit

64 bit

16, 32 bit

4, 8 bit

2

3

4

5

6

7

8
x 10

-10

(a) Worst case delay is fit to a non-linear
model for various array sizes

(b) Plot (Column size N vs. trecover) in different
Ipeak

Fig. 6. The worst delay tworst and the recovery time trecover are characterized independently in
our Monte-Carlo Based framework

Once the memory characterization step is finished, the timing constraints are used to
calculate the dual supply voltages as described in Section 3.3 and then they are used to
calculate the memory power as described in Section 4.

3.3 Optimal Recovery Voltage Vhigh Analysis

Vhigh must be large enough to prevent transient errors, but it should be set at a low value
to preserve power. Granting that low Vhigh can reduce the power, making Vhigh too low
will reduce the transistor’s driving strength so that it causes read violation errors. Our
method considers the recover time trecover of a memory cell and the worst case delay
tworst without a SEU as a constraint to find a proper value of Vhigh. In our feedback
architecture, the UPSET signal is fed to a mux to adjust the voltage to Vhigh, tMUX

is the time required to select the Vdd through the mux so that node voltage can be
eventually recovered when the SEU occurs. Even after the supply voltage is adjusted to
Vhigh, additional time is required to increase the voltage of memory cell internal nodes.
The total recovery time is

trecover = tBICS + tMUX + tcell. (3)

Two of the sub-components (tBICS , tMUX) depend on the column height N while tcell
is largely determined by the supply voltage and cell driving strength.

The timing relation between tworst and trecover is established as:

Criterion 1. If a memory cell has a recovery time (trecover) larger than the worst delay
(tworst), the memory cell can not recover from SEU.

A proper Vhigh lower-bound must be calculated using two delay parameters (trecover
and tworst) at a given Vdd. In other words, the condition (trecover > tworst) will cause
transient errors. Therefore, we can formulate the condition to avoid transient errors as:

trecover(Vdd) ≤ tworst(Vdd). (4)

188 S. Kim and M.R. Guthaus

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5
x 10

−9

VDD (V)

T
im

e
(s

ec
)

t
recover

 (V
dd

)

t
worst

(V
dd

)

Optimal Vdd
trecover(Vdd) <= tworst(Vdd)

Fig. 7. Calculation of Vhigh lower-bound using tworst model and trecover simulation with
Ipeak=3.25E-05 shows that the criterion is satisfied around 0.9V in 1024K SRAM

Vhigh is the lowest Vdd that satisfies Equation (4) for an given Ipeak . We can expect that
different Ipeak can change Vhigh. This will be discussed in Section 5.1.

For example, Figure 7 shows the plot of SRAM cell trecover and tworst at various
Vhigh supply voltages. Using this plot, the Vhigh lower bound condition is satisfied near
Vdd=0.9V . It is interesting to note that the quadratic coefficient of the recovery time
is much less than the worst case memory. This is because the higher supply voltage
enables the memory cell to recover more quickly from a SEU.

4 Power Calculation

Our architecture employs a dual voltage (Vhigh and DRV) selectively depending on
the SEU occurrence and active operation frequency. This means that the Vhigh duration
time differs depending on the circumstances (e.g. altitude and location) due to the flux
of SEUs. This can be modeled probabilistically to estimate overall memory power.

4.1 Probabilistic Power Model using Vhigh and DRV

There are several components that must be considered to compute the power of our pro-
posed approach. First, the column-based architecture needs an additional mux in each
column to select the proper supply voltage level. Also, the BICS operates independently
from read/write operations to detect transient errors. The total memory power consid-
ering these issues is estimated as

Pmemory = Parray + PMUX + PBICS . (5)

where Parray is the N×M array power and denoted as Parray(Vhigh, DRV) using a
cell power Pcell and a ratio p and (1-p). p ∈ [0, 1] means the ratio of Vhigh duration

SEU-Aware Low-Power Memories 189

time over total transient time. Inversely, (1-p) means the ratio of DRV duration over
total transient time.

Parray is calculated using one of the following approaches: In one approach, we can
see the dual Vdd effect in a traditional row-based array, applying Vhigh and DRV to an
entire array and estimate the power as:

Parray = p ·
N∑
i=1

M∑
j=1

Pcell(i,j)(Vhigh) + (1 − p) ·
N∑
i=1

M∑
j=1

Pcell(i,j)(DRV). (6)

In another approach, we can apply Vhigh and DRV to columns selectively and estimate
the power as:

Parray = p · {Pcol(Vhigh) + (M − 1) · Pcol(DRV)} + (1− p)M · Pcol(DRV)(7)

In Equation (7), Pcol shows the power consumption of a column according to

Pcol =
N∑
i=1

Pcell(i, j) (8)

assuming a one bit word size. Since the memory array consists of multiple bit words,
Equation (7) uses the word size W to estimate the array power according to:

Parray = p · {Pcol(Vhigh) ·W + (M −W) · Pcol(DRV)}
+ (1− p) ·M · Pcol(DRV). (9)

In order to consider the power overhead of PMUX and PBICS , we simulate each
component using the dual voltage stimulus with probabilities p and (1 − p) of SEUs
occurring and sum up the respective power based on the corresponding memory column
size M to calculate the overall power.

5 Experimental Results

All simulations use the 45nm PTM technology models [1] with a temperature of 25◦C.
We assume that transistors have independent ±15%/3σ variation of the nominal Vth.
The pull-up/pull-down SRAM transistor width size ratio is 0.5 and PR

CR= 90nm/45nm
180nm/45nm

with identical gate lengths [11, 17]. The maximum particle flux is set to the typical
ground-level total neutron (Nflux=56.5m−2s−1 [28]) while the cross-sectional area
is assumed to be CS=0.296μm2 [24]. We generate memories ranging from 1K-256K
using a memory compiler and then calculate the worst access delay based on bit-cell
location using Hspice simulation. The worst case delay model tworst is fit using the
Matlab command nlinfit due to the large tworst simulation time on large memory arrays.

Our results are compared to a typical guardbanded approach. The transient error
tolerant voltage Vtol [10] is selected such that no transient errors are expected with the
given maximum particle flux.

190 S. Kim and M.R. Guthaus

5.1 Various Peak Current Ipeak Impact on Vhigh

Previous works modeled atomic spike pulse as an artificial current sources. The current
sources are modeled as triangular model for simplicity [14, 18, 20, 27]. Without loss of
generality, the energy particle injection occurs during very small time periods (less than
ps). In reality, however, the induced peak current Ipeak can be various depending on
location, altitude and circumstance energy level.

We analyzed the various peak current Ipeak (1.315E-5A to 3.215E-5A) impact on
Vhigh. Figure 8 shows that Ipeak has linear impact on Vhigh according to measurements
on a 1K SRAM. We observed that the data can be modeled as linear equation

Vhigh = a · Ipeak + b (10)

where a and b coefficients calculated from the curve fitting. Equation (10) implies that
high supply voltage Vhigh is necessary for low SER condition (when higher Ipeak ex-
ists) to error tolerant. If circuits are supposed to operate with low power and designed to
be tolerable, the situation that Vhigh exceeds the maximum voltage limit of the design
at certain Ipeak would be a problem, because transient errors still occur even though
Vhigh is applied. So we applied some techniques to avoid this situation in Section 5.2.

Fig. 8. Peak current’s amplitude (Ipeak) vs. Vhigh in 1K SRAM

5.2 Transistor Sizing Impact on Vhigh

We also analyzed the impact of transistor sizing on reducing Vhigh in the case that
a transient error happens even with Vhigh when Vhigh may exceed the voltage bud-
get of design. In this case, we increased width(W) and length(L) size of the SRAM
cell transistors while keeping the original W/L ratio of PMOS(W/L=90nm/45nm) and
NMOS(W/L=180nm/45nm) to not affect tworst. We observed that transistor sizing can
reduce Vhigh effectively. We increased PMOS and NMOS size by 20% and compared

SEU-Aware Low-Power Memories 191

to to the original Ipeak and Vhigh plot as shown in Figure 8. Sizing up transistors by
50% also show a similar trend.

For example, when the original sized SRAM cell failed at Vhigh=0.9V with given
peak current Ipeak=2.915E-5 under the maximum budget Vdd=0.8V , sizing up transis-
tors by 20% can satisfy the voltage budget Vdd=0.8V . In the 20% sized-up SRAM plots
in Figure 8, the Vhigh that satisfies the SEU tolerance under Ipeak=2.915E-5 is about
Vhigh=0.75V .

5.3 Dynamic Noise Margin (DNM) for SEU Analysis

We first analyze the Dynamic Noise Margin (DNM) during an SEU. Figure 9 shows a
plot with the x-axis representing the induced peak current Ipeak and the y-axis as recov-
ery time trecover. Figure 9 shows three cases using dual Vdd (0.4V/0.9V , 0.4V/1.2V ,
and 0.4V/1.5V). The vertical lines are failure points. The lines show the maximum in-
duced noise that can be tolerated given a recovery time constraint. Using this data, we
can study the DNM when dual Vdd can aid recovery from SEUs. and we can find the
optimal Vdd at given Ipeak .

Fig. 9. Peak current’s amplitude (Ipeak) vs. trecover in different dual Vdd combinations (1K
SRAM). Vhigh determines the memory tolerance to a given Ipeak amplitude and it should be
calculated to optimal Vdd level to reduce the power.

The DNM analysis describes whether a SEU creates a transient error or not at given
Ipeak condition. This means that we can know how dual Vdd schemes are tolerant to a
given Ipeak . For example, all three dual Vdd strategies can recover from a SEU at the
condition Ipeak = 2.25E − 05 although trecover in the case of Vdd = 0.4V/0.9V is
doubled compared to trecover of Vdd = 0.4V/1.2V . However, at the condition Ipeak =
3.75E − 05, the Vdd = 0.4V/0.9V case fails to recover. This means that the DNM of
the memory cell determines the maximum peak noise tolerance as Ipeak = 3.75E− 05

192 S. Kim and M.R. Guthaus

Table 1. Power Reduction Results when Radiation strikes memory Once (p = 0.1)

SRAM Our Proposed I Our Proposed II
with Vtol (Vhigh,DRV to array) (Vhigh,DRV to column)

Size only Word size = 32 Word size = 32 Word size = 8
Power (W) Power (W) Improv.(%) Power (W) Improv.(%) Power (W) Improv.(%)

1K 3.336E-06 3.430E-06 -2.81% 2.767E-06 17.06% 2.431E-06 27.14%
4K 1.321E-05 1.115E-05 15.65% 6.963E-06 47.31% 6.293E-06 52.37%
16K 5.286E-05 3.883E-05 26.54% 1.944E-05 63.23% 1.810E-05 65.76%
64K 2.114E-04 1.363E-04 35.55% 5.836E-05 72.40% 5.572E-05 73.65%
256K 8.457E-04 5.448E-04 35.58% 2.075E-04 75.46% 2.022E-04 76.09%

Avg. Improvement(%) 16.38% 55.09% 59.00%

Table 2. Power Reduction Results when Radiation strikes memory Twice (p = 0.2)

SRAM Our Proposed I Our Proposed II
with Vtol (Vhigh,DRV to array) (Vhigh,DRV to column)

Size only Word size = 32 Word size = 32 Word size = 8
Power (W) Power (W) Improv.(%) Power (W) Improv.(%) Power (W) Improv.(%)

1K 3.336E-06 3.744E-06 -12.23% 3.216E-06 3.61% 2.543E-06 23.78%
4K 1.321E-05 1.299E-05 1.68% 7.856E-06 40.55% 6.517E-06 50.69%
16K 5.286E-05 4.744E-05 10.25% 2.122E-05 59.86% 1.854E-05 64.92%
64K 2.114E-04 1.735E-04 17.92% 6.189E-05 70.73% 5.660E-05 73.23%
256K 8.457E-04 6.975E-04 17.53% 2.146E-04 74.62% 2.040E-04 75.88%

Avg. Improvement(%) 7.03% 49.87% 57.70%

in the case Vdd = 0.4V/0.9V . Similarly, Ipeak = 5.45E − 05 is the maximum peak
current tolerated with Vdd = 0.4V/1.2V and Vdd = 0.4V/1.5V .

The DNM analysis can also be used to determine the optimal Vdd that can tolerate a
given noise Ipeak . As expected, higher Vdds enable a faster recovery time. The recovery
time trecover of the memory cell using Vdd=0.4V and 1.5V ’s is faster than the other
cases at same Ipeak . The higher Vdd increases the power unnecessarily although it en-
ables the memory cell to recover more quickly. For example, both Vhigh = 1.2V and
Vhigh = 1.5V have the same tolerance, however, the lower voltage should be selected
to save power. For this reason, the power-optimal Vdd should be near Vhigh = 1.2V not
1.5V .

5.4 Power Reduction

We now analyze the optimal supply voltages depending on the peak current Ipeak
that a flux generates [28]. The optimal voltages are calculated as Vhigh = 0.948V ,
Vtol = 0.607V at a flux Nflux = 56.5m−2s−1 and DRV = 0.186V . Table 1 shows
the comparison of our two strategies: 1) our proposed method with Vhigh and DRV
applied to the entire array (column 3-column 4), b) our proposed method with Vhigh

and DRV applied to the selected columns (column 5-column 8). The baseline is a tra-
ditional SRAM with a guard-banded error-tolerant supply voltage Vtol (column 2).

SEU-Aware Low-Power Memories 193

Table 1 and Table 2 compare proposed methods when energy particles strike the
memory with probabilities p = 0.1 and p = 0.2, respectively. We assume two cases
since the p value is not fixed and depends on the environment where the memory oper-
ates. It can be a large number when the radiation particles strike frequently. According
to Table 1, simply applying Vhigh and DRV to the entire array can reduce the power
consumption by an average of 16.38% compared to an SRAM with a guard-banded
supply voltage, Vtol. Applying Vhigh to the column with SEU and active columns se-
lectively reduces the power consumption by an average of 55.09% compared to the
guard-banded supply voltage SRAM, Vtol. When particles hit the memory more fre-
quently as shown in Table 2, the power reduction decreases to 7.03% and 49.87% com-
pared to each case in Table 1 since Vhigh is needed two times more than Table 1 to avoid
errors.

We also observe that our proposed architecture increases the power consumption in
the case of small memories such as 1K, due to the additional circuitry to implement the
column-based Vdd. The additional circuitry power overwhelms the small memory array
power consumption, but in large memories (4K-256K) this cost is amortized and our
architecture reduces the overall power more effectively.

In both tables, we use a 32-bit word size, but we have also performed analysis with
an 8-bit word size. Smaller word sizes improve the power consumption, because our ar-
chitecture enables fewer columns during active read/write operations. The background
recover power of memory cells in stand-by mode is not affected by the word size.

6 Conclusions

We presented a soft-error tolerant low-power memory architecture that employs BICS
in column-based Vdd SRAM to adaptively select from dual supply voltages. We then
used a Monte Carlo framework to calculate the optimal dual supply voltages and demon-
strated that our architecture can significantly reduce power compared to traditional
guard-banded static supply voltage architectures. On average, our architecture is able
to reduce the power by an average of 39.5% without sacrificing error tolerance for an
range of memory array sizes.

Acknowledgments. This work was supported in part by the National Science Founda-
tion under grant CNS-1205493.

References

1. ASU. Predictive Technology Model (PTM), http://ptm.asu.edu
2. Bhattacharya, K., Ranganathan, N.: RADJAM: A novel approach for reduction of soft errors

in logic circuits. In: VLSI Design, pp. 453–458 (January 2009)
3. Ding, L., Mazumder, P.: Dynamic noise margin: definitions and model. In: Proceedings of

the 17th International Conference on VLSI Design, pp. 1001–1006 (2004)
4. Freeman, L.B.: Critical charge calculations for a bipolar SRAM array. IBM Journal of Re-

search and Development 40, 119–129 (1996)

http://ptm.asu.edu

194 S. Kim and M.R. Guthaus

5. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Jour-
nal 26(2), 147–160 (1950)

6. Hamzaoglu, F., Wang, Y., et al.: Bit cell optimizations and circuit techniques for nanoscale
sram design. IEEE Design & Test of Computers 28(1), 22–31 (2011)

7. Hazucha, P., Svensson, C.: Impact of CMOS technology scaling on the atmospheric neutron
soft error rate. IEEE Transactions on Nuclear Science 47(6, Part 3), 2586–2594 (2000)

8. Huang, G., Dong, W., et al.: Tracing SRAM separatrix for dynamic noise margin analysis
under device mismatch. In: IEEE International Behavioral Modeling and Simulation Work-
shop, BMAS 2007, pp. 6–10 (September 2007)

9. Kim, S., Guthaus, M.: Leakage-aware redundancy for reliable sub-threshold memories. In:
2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 435–440 (June
2011)

10. Kim, S., Guthaus, M.: Low-power multiple-bit upset tolerant memory optimization. In: 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 577–581
(November 2011)

11. Kim, S., Guthaus, M.: SNM-aware power reduction and reliability improvement in 45nm
SRAMs. In: 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip
(VLSI-SoC), pp. 204–207 (October 2011)

12. Lesea, A., Drimer, S., et al.: The rosetta experiment: atmospheric soft error rate testing in
differing technology fpgas. IEEE Transactions on Device and Materials Reliability 5(3),
317–328 (2005)

13. Michalak, S., Harris, K., et al.: Predicting the number of fatal soft errors in los alamos na-
tional laboratory’s ASC Q supercomputer. IEEE Transactions on Device and Materials Reli-
ability 5(3), 329–335 (2005)

14. Murley, P.C., Srinivasan, G.R.: Soft-error monte carlo modeling program, SEMM. IBM Jour-
nal of Research and Development 40(1), 109–118 (1996)

15. Neto, E., Ribeiro, I., et al.: Using bulk built-in current sensors to detect soft errors. IEEE
Micro 26(5), 10–18 (2006)

16. Normand, E.: Single event upset at ground level. IEEE Transactions on Nuclear Sci-
ence 43(6), 2742–2750 (1996)

17. Pavlov, A., Sachdev, M.: CMOS SRAM circuit design and parametric test in nano-scaled
technologies: process-aware SRAM design. Springer (January 2008)

18. Rajaraman, R., Kim, J.S., et al.: SEAT-LA: A soft error analysis tool for combinational logic.
In: VLSI Design (2006)

19. Reviriego, P., Maestro, J.A., et al.: Reliability analysis of memories protected with BICS and
a per-word parity bit. ACM Trans. Des. Autom. Electron. Syst. 15, 18:1–18:15 (2010)

20. Shivakumar, P., Kistler, M., et al.: Modeling the effect of technology trends on the soft er-
ror rate of combinational logic. In: Proceedings of International Conference on Dependable
Systems and Networks (DSN), pp. 389–398 (2002)

21. Vargas, F., Nicolaidis, M.: SEU-tolerant SRAM design based on current monitoring. In:
Proceedings of the 24th International Symposium on Fault-Tolerant Computing (FTCS),
pp. 106–115 (June 1994)

22. Vatajelu, E., Pau, G., et al.: Transient noise failures in SRAM cells: Dynamic noise margin
metric. In: 2011 20th Asian Test Symposium (ATS), pp. 413–418 (November 2011)

23. Wang, J., Nalam, S., Calhoun, B.: Analyzing static and dynamic write margin for nanome-
ter SRAMs. In: 2008 ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED, pp. 129–134 (August 2008)

24. Yang, F.-L., Huang, C.-C., et al.: 45nm node planar-SOI technology with 0.296 μm2 6T-
SRAM cell. In: Symposium on VLSI Technology. Digest of Technical Papers, pp. 8–9 (June
2004)

SEU-Aware Low-Power Memories 195

25. Zhang, B., Arapostathis, A., et al.: Analytical modeling of SRAM dynamic stability. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 315–322
(November 2006)

26. Zhang, K., Bhattacharya, U., et al.: A 3-ghz 70-mb SRAM in 65-nm CMOS technology with
integrated column-based dynamic power supply. IEEE Journal of Solid-State Circuits 51(1),
146–151 (2006)

27. Zhang, M., Shanbhag, N.: Soft-error-rate-analysis (SERA) methodology. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 25(10), 2140–2155 (2006)

28. Ziegler, J.F.: Terrestrial cosmic rays. IBM Journal of Research and Development 40, 19–39
(1996)

29. Ziegler, J.F., Lanford, W.A.: Effect of cosmic rays on computer memories. Science 206(4420),
776–788 (1979)

CMOS Implementation of Threshold Gates

with Hysteresis

Farhad A. Parsan and Scott C. Smith

University of Arkansas, Fayetteville AR 72701, USA
{fparsan,smithsco}@uark.edu

Abstract. NULL Convention Logic (NCL) is one of the mainstream
asynchronous logic design paradigms. NCL circuits use threshold gates
with hysteresis. In this chapter, the transistor-level CMOS design of NCL
gates is investigated, and various gate styles are introduced and com-
pared to each other. In addition, a novel approach to design static NCL
gates is introduced. The new approach is based on integrating each pair
of pull-up and pull-down transistor networks into one composite transis-
tor network. The new static gates are then compared to the original ones
in terms of delay, area, and energy consumption. It will be shown that
the new gate style is significantly faster with negligible area and energy
overhead.

Keywords: NULL convention logic, NCL, C-element, threshold gate.

1 Introduction

Delay-insensitive asynchronous circuits have been the target of a renewed re-
search effort because of the advantages they offer over traditional synchronous
circuits. Minimal timing analysis, inherent robustness against power-supply, tem-
perature, and process variations, reduced energy consumption, less noise and
EMI emission, and easy design reuse are some of the benefits of these circuits
[1]. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic
design paradigms that has been shown to be a promising method for design-
ing delay-insensitive asynchronous circuits [2–4]. NCL circuits are correct-by-
construction [3], requiring very little timing analysis, if any. In today’s nanometer
processes where meeting timing closure is becoming increasingly more difficult
due to increasing clock rates and process variation, this quality is very attractive.
NCL has been used for a number of industrial designs [4, 5], and is becoming
more popular as design automation tools and techniques are being developed to
automate the design process [6].

NCL circuits utilize threshold gates with hysteresis to maintain delay insensi-
tivity. The general form of an NCL gate is very similar to a C-element [7]. Several
CMOS implementation schemes have been introduced for NCL gates, including:
dynamic, static, semi-static, and differential [8–10]. Each implementation offers
some advantages and has some drawbacks in terms of delay, area, and power
consumption. It is important for an NCL circuit designer to choose the CMOS

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 196–216, 2013.
c© IFIP International Federation for Information Processing 2013

CMOS Implementation of Threshold Gates with Hysteresis 197

Black BoxInput Output

Fig. 1. Symbolically complete logic concept

implementation that best fits an application. In this chapter, we introduce differ-
ent CMOS implementations of NCL gates and discuss their tradeoffs. In addition,
a new approach to design static NCL gates is proposed and compared with the
traditional approach in terms of delay, area, and energy consumption. It will be
shown that the new static gates offer faster operation, with a small increase in
area, and consume almost the same amount of energy. It will be also shown that
when the NCL static gates are sized for improved switching speed, the slight
area disadvantage is eliminated, resulting in better speed and area.

This chapter is organized as follows: an overview of NCL logic is presented in
Section 2; Section 3 discusses different CMOS implementations of NCL gates and
compares them against each other; the new static gate design is then introduced
in Section 4 and compared to the traditional static gate design; sizing both
versions of static gates is discussed in Section 5; and these static gate styles (sized
and unsized) are used to implement NCL multipliers in Section 6 to compare
transistor-level simulations; and finally, Section 7 presents conclusions.

2 NCL Overview

NCL is a delay-insensitive asynchronous logic design paradigm in which control
is inherent within each datum. It follows the so-called “weak conditions” of
Seitz’s delay-insensitive signaling scheme [11]. Similar to other delay-insensitive
logic design paradigms, NCL assumes that wire forks are isochronic [12]. NCL is a
“symbolically complete” logic meaning that the output validity is unambiguously
determined regardless of time reference [3]. Fig. 1 shows an unknown circuit
inside a black box. Assuming that the unknown circuit is a traditional Boolean
combinational circuit, once the inputs are asserted, it is impossible to determine
when the outputs become valid unless the circuit’s delay is known. However, if
the unknown circuit is using a symbolically complete logic, such as NCL, one can
determine the output validity without needing to know the circuit’s delay. This
is because NCL uses delay-insensitive codes for data communication, alternating
between set and reset phases. In the set phase, data changes from spacer (called
NULL) to a proper codeword (called DATA); and in the reset phase it changes
back to NULL. NCL combines DATA and NULL into a single path presented
by dual-rail, quad-rail, or in general, any Mutually Exclusive Assertion Group
(MEAG) signals [13].

In practice, dual-rail signal encoding is more popular, since it is most similar
to traditional Boolean logic. Table 1 shows the dual-rail signal encoding. A dual-
rail signal, D, consists of two wires, D0 and D1. D is logic 0 (DATA0) when D0

198 F.A. Parsan and S.C. Smith

Table 1. Dual-rail encoding

DATA0 DATA1 NULL Illegal

D0 1 0 0 1

D1 0 1 0 1

= 1 and D1 = 0; it is logic 1 (DATA1) when D0 = 0 and D1 = 1; and it is NULL
when D0 = 0 and D1 = 0. D0 and D1 are mutually exclusive, such that they are
never asserted at the same time; doing so would produce an illegal codeword.

Fig. 2 shows a simple Boolean AND gate versus a dual-rail NCL circuit that
performs the same AND operation. For the Boolean AND gate, inputs X, and
Y, and output Z use only one wire, but the dual-rail NCL AND circuit uses
two wires for each input and output. For the Boolean AND gate, initially X =
1 and Y = 0, so output Z is 0. For the NCL AND circuit, initially X is DATA1
(X1 = 1, X0 = 0) and Y is DATA0 (Y0 = 1, Y1 = 0); therefore, output Z is
DATA0 (Z0 = 1, Z1 = 0). For the Boolean AND gate, once input Y is asserted,
output Z becomes invalid until the signal propagates through the AND gate
and asserts the output (in this example after 1 ns). For the NCL AND circuit,
however, before input Y changes to its next DATA value, all inputs must first
transition to the NULL state (i.e., all input rails must go to 0) and we must wait
until the output then transitions to NULL. At this point, the circuit is ready to
accept a new DATA set, so X and Y can both change from NULL to DATA1.
Consequently, output Z then changes from NULL to DATA1 after some time (1
ns in this example). An NCL circuit always cycles through NULL and DATA
phases so the validity of the output can always be unambiguously determined
by merely looking at the output. A NULL at the output means that the output
is not valid and a DATA at the output means that the output is valid. For a
Boolean circuit, on the other hand, the output validity can only be determined
if we know when the inputs change and the worst-case propagation delay of the
circuit.

NCL circuits are comprised of 27 threshold gates with hysteresis [2]. Each
gate is denoted as THmnWw1w2. . . wr in which m is the threshold of the gate,
n is the number of inputs, and wr is the weight of input r if its weight is greater
than 1. Fig. 3(a) shows the symbol of an NCL gate. For an NCL gate with no
weighted inputs, the output is asserted when at least m out of n inputs are
asserted. As an example, the TH23 gate asserts its output when at least two out
of three inputs are asserted; therefore, assuming the inputs are A, B, and C, the
set function of a TH23 gate can be expressed as F = AB + AC + BC. Fig. 3(b)
shows a TH23w2 gate, where input A has a weight of two. Therefore, asserting
A alone asserts the gate output. The set function of the TH23w2 gate can then
be expressed as F = A + BC.

The standard NCL gate library is shown in Table 2. Since NCL gates have
hysteresis, once the output is asserted, it remains asserted until all the inputs
are deasserted. Hysteresis behavior is required to ensure the delay-insensitivity

CMOS Implementation of Threshold Gates with Hysteresis 199

X

Y
Z

X

Y

Z
Valid

Output
Invalid
Output

Valid
Output

1 ns

0
1

0
1
0
1

NCL AND
Circuit

X0

X1

Y0

Y1

Z0

Z1

Valid
Output

NULL
Output

Valid
Output

0
1

0
1
0
1

X0

X1

Y0

0
1

0
1
0
1

Y1

Z0

Z1

1 ns1 ns

(a) (b)

Fig. 2. (a) Boolean AND gate versus (b) NCL AND circuit

m
Input 0
Input 1
Input n

Output 2
A
B
C

Output

(a) (b)

TH23w2

Fig. 3. (a) NCL threshold gate symbol (b) a weighted NCL threshold gate

of NCL circuits [2]. A non-weighted NCL gate with m = n (i.e., THnn) is a
special case of NCL gates that is equivalent to an n-input C-element [14]. C-
elements are well-known gates used in many other asynchronous logic design
styles. A non-weighted NCL gate with m = 1 (i.e., TH1n) is another special
case of NCL gates that is equivalent to an n-input Boolean OR gate. Among
the 27 NCL gates, there are 3 gates (TH24comp, Thand0, THxor0) that are not
actually threshold gates, but can be made by combining other threshold gates.
These gates are included in the standard NCL gate library so that any function
of 4 or fewer variables directly maps to one of these 27 NCL gates. Due to
hysteresis, NCL gates act as memory elements; therefore, like any other memory
element they have to be initialized. Initialization can be performed implicitly by
asserting/deasserting all the gate inputs, or it can be done explicitly by adding a
reset input to the gate. Depending on whether the reset signal asserts or deasserts
the gate output, resettable gates are denoted with an ‘n’ (output deasserted) or
a ‘d’ (output asserted) at the end of their name. Additionally, the output of
an NCL gate can be provided in its inverted form; this is denoted by a small
circle at the output of the gate symbol and a ‘b’ at the end of the gate name.
Fig. 4 shows how the NCL AND circuit in Fig. 2 can be built using two NCL
gates, based on the canonical SOP equations for both the rail1 and rail0 outputs,

200 F.A. Parsan and S.C. Smith

Table 2. Standard NCL gate library

NCL Gate Set Function

TH12 A + B
TH22 AB
TH13 A + B + C
TH23 AB + AC + BC
TH33 ABC
TH23w2 A + BC
TH33w2 AB + AC
TH14 A + B + C + D
TH24 AB + AC + AD + BC + BD + CD
TH34 ABC + ABD + ACD + BCD
TH44 ABCD
TH24w2 A + BC + BD + CD
TH34w2 AB + AC + AD + BCD
TH44w2 ABC + ABD + ACD
TH34w3 A + BCD
TH44w3 AB + AC + AD
TH24w22 A + B + CD
TH34w22 AB + AC + AD + BC + BD
TH44w22 AB + ACD + BCD
TH54w22 ABC + ABD
TH34w32 A + BC + BD
TH54w32 AB + ACD
TH44w322 AB + AC + AD + BC
TH54w322 AB + AC + BCD
THxor0 AB + CD
THand0 AB + BC + AD
TH24comp AC + BC + AD + BD

shown in equations 1 and 2, respectively, and mapping these to the set function
of the gates shown in Table 2.

Z1 = X1Y 1 (1)

Z0 = X0Y 0 +X0Y 1 +X1Y 0 (2)

Therefore, output Z becomes DATA1 when both X and Y are DATA1 and it
becomes DATA0 when either input is DATA0 and the other input is DATA (i.e.,
DATA0 or DATA1). Reference [2] elaborates on how to design more complex
combinational logic circuits using NCL.

The NCL design framework consists of delay-insensitive (DI) Combinational
Logic blocks sandwiched between DI Registers. This design framework, shown in
Fig. 5, is very similar to the traditional synchronous design framework, except
that Completion Detection blocks are used to synchronize data communication

CMOS Implementation of Threshold Gates with Hysteresis 201

2

TH22

A
B
C
D

THand0

X1Y1
X0Y0

Z1

Z0

Fig. 4. NCL AND circuit

DI
Register

KiKo

DI
Combinational

Logic

DI
Register

KiKo

Completion
Detection

DI
Combinational

Logic

DI
Register

KiKo

Completion
Detection

DI
Register

KiKo

Fig. 5. NCL design framework

instead of a global clock. Completion Detection checks the output of a regis-
ter to see if the previous DATA (NULL) has successfully propagated through
the Combinational Logic; if so, it then allows the next NULL (DATA) to start
propagating through the Combinational Logic. Ki and Ko are the handshak-
ing signals used for requesting and acknowledging DATA and NULL. A typical
DATA/NULL cycle is shown in Fig. 6. It starts with DATA propagating through
a combinational block; once DATA passes the following register, the completion
detection block acknowledges that DATA evaluation is finished and that NULL
can now propagate. Then NULL propagates through the combinational block
and clears the previous DATA; once NULL passes the register, the completion
detection block acknowledges that NULL propagation is complete and allows the
next DATA to start propagating through the combination block. The time pe-
riod between two consequent DATA phases is called the DATA-to-DATA Cycle
Time (TDD), and is a measure of an NCL pipeline’s throughput.

A single-bit dual-rail NCL register is shown in Fig. 7, where I0 and I1 are the
input rails and O0 and O1 are the output rails. A single-bit NCL register is com-
prised of two TH22n gates and one inverting TH12 gate. When a combinational
block is ready for DATA, Ki is asserted, allowing DATA to pass through the reg-
ister; and once DATA is evaluated by the combinational block, Ki is deasserted,
allowing NULL to pass through. The Ki signals of a multi-bit register are all
connected together and connected to the output of the completion detection
block of the next register.

The completion detection block detects whether there is a complete DATA/
NULL set at the output of a register. When a register’s output is NULL (i.e.,

202 F.A. Parsan and S.C. Smith

NULL
Completion

Acknowledgement

DATA
Combinational

Evaluation

DATA
Completion

Acknowledgement

NULL
Combinational

Evaluation

DATA-to-DATA Cycle Time (TDD)

Fig. 6. DATA/NULL cycle

2n

2n

1

O0

O1

Ki

Reset

Ko

I0

I1

Fig. 7. A single-bit dual-rail NCL register

both output rails in Fig. 7 are deasserted), the inverting TH12 gate is asserted to
request the next DATA (rfd). When a register’s output is DATA (i.e., either of the
output rails in Fig. 7 is asserted), the inverting TH12 gate is deasserted to request
NULL (rfn). All Ko outputs of a multi-bit register are input to a completion
detection block that asserts its output when all Ko signals are rfd, and deasserts
its output when all Ko signals are rfn. An n-bit completion detection block,
shown in Fig. 8, is equivalent to an n-input C-element, comprised of THnn
gates. The minimum number of levels required for a completion detection block
is
log4n �, where n is the number of Ko signals [2].

3 CMOS NCL Gate Design

3.1 Dynamic Gates

The dynamic implementation of NCL gates can be used in real-time computing
applications where a minimum data rate is guaranteed so that the state informa-
tion can be maintained on an isolated node. The structure of an NCL dynamic
gate is shown in Fig. 9(a).

The set block realizes the set function of an NCL gate, such that when the
set function becomes true, the set block becomes active and discharges the in-
ternal node Y, causing output Z to be asserted. Similarly, when all inputs are
deasserted, the reset block becomes active and charges the internal node Y to

CMOS Implementation of Threshold Gates with Hysteresis 203

C
Ko1
Ko2

C

Kon
Kon-1

C Ko

C

C

CC

Fig. 8. NCL completion detection block

VDD, causing output Z to be deasserted. In a CMOS implementation of NCL
dynamic gates, the set block is a pull-down network of NMOS transistors, de-
rived from the equations in Table 2 for each of the 27 NCL gates. On the other
hand, the reset block is always a series chain of PMOS transistors consisting
of one transistor per input; therefore, NCL gates that have the same number
of inputs have the same reset block. The reset function of an NCL gate with n
inputs can be expressed as:

reset = I ′1 • I ′2 • . . . • I ′n (3)

where In represents input n. For most NCL gates, the set and reset functions
are not complements of each other, so there are times when neither the set nor
reset block is active. In a dynamic implementation, when neither is active, the
internal node Y will be floating, so its value will be preserved on its parasitic
capacitance, Cparasitic, for a few milliseconds before its charge leaks away, en-
abling the NCL gate to maintain its state, but only for a finite amount of time.
Therefore, once the set function becomes true and the output is asserted, it re-
mains asserted until the reset function becomes true and deasserts the output
(hysteresis behavior). Fig. 9(b) shows the dynamic implementation of a TH23
gate, whose set function is:

F = AB +AC +BC (4)

The set function can then be factored to reduce the number of transistors:

F = A (B + C) +BC (5)

The NCL dynamic implementation is the smallest and fastest NCL gate style,
and consumes the least amount of energy; however, since its output cannot

204 F.A. Parsan and S.C. Smith

A

B C C

B

C

B

A

Y Z

set

reset

Y Z

re
se
t

se
t

(b)(a)

Cparasitic

Fig. 9. (a) Structure of NCL dynamic gates (b) TH23 dynamic gate

be held indefinitely when neither set nor reset is active, it is not considered a
delay-insensitive solution. Moreover, since the state information is stored on a
small parasitic capacitance, it is very vulnerable to noise and charge sharing
effects, although the latter can be alleviated by transistor reordering in the pull-
down network [8], careful transistor sizing, and post-layout simulations. For these
reasons, dynamic NCL gates are rarely used in real applications.

3.2 Semi-Static Gates

The semi-static (or pseudo-static) implementation of NCL gates utilizes feedback
to maintain state information, and therefore, does not require a minimum input
data rate, since it can hold the output state indefinitely. The structure of an
NCL semi-static gate is shown in Fig. 10(a). In a semi-static implementation, the
state information is maintained via a staticizer, in the form of a weak feedback
inverter. The weak feedback inverter compensates for the leakage current that
discharges the internal node Y when both set and reset blocks are inactive. This
implementation is also more robust to noise and charge sharing effects because
the weak feedback inverter, if carefully sized, can restore the value on the internal
node Y in a reasonably short time. The semi-static implementation of a TH23
gate is shown in Fig. 10(b).

Appropriate weak feedback inverter sizing is essential for correct operation of
a semi-static gate. If a feedback inverter is made very weak, it will not be able to
compensate for the leakage current on the internal node, and consequently, the
charge on internal node Y will leak away and the gate output Z may become
invalid or switch value altogether. On the other hand, a feedback inverter that
is not weak enough will require a large contention current from the pull-down
network (set block) or pull-up network (reset block) to switch the output value,

CMOS Implementation of Threshold Gates with Hysteresis 205

A

B C C

B

C

B

A

Y Z

set

reset

Y Z

re
se
t

se
t

(b)(a)

Fig. 10. (a) Structure of NCL semi-static gates (b) TH23 semi-static gate

in which case the gate’s output may get stuck at a high or low value. The ap-
propriate feedback inverter sizing also determines the performance of the gate.
The weaker the feedback inverter, the more similar the semi-static implementa-
tion is to the dynamic implementation; therefore, it would be faster and would
consume less energy. But, similar to the dynamic implementation, making the
feedback inverter very weak makes the gate more vulnerable to noise and charge
sharing effects. A more analytical discussion of semi-static C-elements, which
are a special case of semi-static NCL gates, can be found in [7].

There are different ways of weakening the feedback inverter. In the standard
way, shown in Fig. 11(a), usually the length of the NMOS transistor in the feed-
back inverter is increased. This makes the feedback inverter weak enough to be
overpowered by the reset block PMOS transistor chain. The length of the PMOS
transistor in the feedback inverter can also be increased or left minimum-sized
since the set block pull-down network (PDN) is made of NMOS transistors and,
due to the higher mobility of NMOS transistors compared to PMOS transis-
tors, the PDN is usually able to overpower the weak inverter’s PMOS transistor.
Besides increasing the length of the feedback inverter’s NMOS transistor, some-
times it is better to increase the width of the reset block PMOS transistor chain.
The minimum set of transistors that usually need to be sized in a standard
semi-static gate is shown with dashed circles in Fig. 11(a). In order to save area,
sometimes it is better to add series transistors with the feedback inverter [15].
This weakening method is shown in Fig. 11(b). Here, the added series transistors
limit the current available to the feedback inverter, making it weaker. The mini-
mum set of transistors that usually need to be sized is shown with dashed circles.
Finally, one can save even more area by using diode-connected transistors in se-
ries with the feedback inverter, as shown in Fig. 11(c) [16]. Using this method,
the feedback inverter becomes weak enough even with minimum-sized transis-
tors; therefore, no sizing is usually required. Again, weakening the feedback

206 F.A. Parsan and S.C. Smith

(a)

PDN PDN

(b)

PDN

(c)

ZZZ

Fig. 11. Different feedback inverter weakening methods (a) standard method (b) using
current limiters (c) using diode-connected current limiters

inverter makes the gate faster and less energy hungry, but the gate becomes
more vulnerable to noise and charge sharing effects, so a trade-off is involved. In
practice, optimal sizing of the feedback inverter is not trivial; a more analytic
sizing approach is described in [17].

Among the other implementations of the NCL gates (except dynamic imple-
mentation), semi-static gates are usually considered to be small (i.e., having
minimal number of transistors) and low-energy; however, this image of semi-
static NCL gates significantly depends on the weak feedback inverter sizing.
The relative sizing requirements for semi-static gates makes this implementa-
tion less robust to PVT variations. Also, due to the inherent contention between
the set/reset blocks and the weak feedback inverter for switching the output,
this implementation is usually slower than the other implementations. This con-
tention can be minimized by appropriate weak feedback inverter sizing, but it
can never be removed. A comparison of various semi-static implementations with
the other implementations can be found in [16].

3.3 Differential Gates

The differential implementation of NCL gates [9] [15] is most similar to a Differ-
ential Cascode Voltage-Switch Logic (DCVSL) implementation of Boolean gates
[18], with the exception of using cross-coupled inverters instead of cross-coupled
PMOS transistors. A differential NCL gate is shown in Fig. 12(a). The major
difference between the semi-static implementation of NCL gates and the dif-
ferential implementation is that the reset block is now connecting output Z to
ground through a pull-down network. Due to this change in the circuit structure,
the reset block should use NMOS transistors instead of PMOS transistors, and
therefore requires the input complements instead. Since each differential NCL
gate provides both output Z and its complement, Z, no extra logic is necessary
to invert inputs. Fig. 12(b) shows the differential implementation of a TH23

CMOS Implementation of Threshold Gates with Hysteresis 207

A

B C C

B

set reset
(b)

ZZ

A

B

C
re
se
t

se
t

(a)

ZZ

Fig. 12. (a) Structure of NCL differential gates (b) TH23 differential gate

gate. In a differential NCL gate, asserting an output requires pulling the other
output low through a pull-down network (either set or reset block); therefore,
before outputs switch value, there is always a short time when both outputs
become low. Since in a circuit realized with differential NCL gates, the inputs
of each differential gate come from the outputs of other differential gates, this
ensures that before a pull-down block becomes active, the other pull-down block
becomes inactive first, therefore, no contention between pull-down blocks will
ever happen.

Enabling the reset block to use higher-mobility NMOS transistors instead
of PMOS transistors improves the differential implementation in several ways.
These improvements are mainly because of the reset block being stronger than
before so it can switch the state of the cross-coupled inverters with less effort.
The immediate result being that the differential implementation is usually faster
than the semi-static implementation. Also, less aggressive sizing is now required,
so the differential implementation is usually smaller than the semi-static imple-
mentation. In fact, a differential NCL gate can usually use all minimum-sized
transistors and still function correctly. In addition, due to the symmetry of the
differential implementation, the cross-coupled inverters are usually sized equally
and the whole structure is therefore less sensitive to sizing, and consequently,
more robust to PVT variations.

3.4 Static Gates

All the CMOS NCL gate implementations discussed so far rely on either a par-
asitic capacitance to maintain state information, such as in the dynamic imple-
mentation, or rely on a simple feedback mechanism via an inverter, such as in
the semi-static and differential implementations. As discussed, relying on the
parasitic capacitance makes NCL gates vulnerable to leakage, noise, and charge
sharing problems, and eliminates their delay-insensitivity, while a feedback in-
verter slows down the gates due to the intrinsic switching contention involved.
A static NCL gate implementation removes all these drawbacks, offering faster
and more reliable operation.

208 F.A. Parsan and S.C. Smith

A

B C C

B A

C

B

A B C

A B

C

B C

Y Z

set hold1

hold0reset

Y Z

ho
ld
0

ho
ld
1

re
se
t

se
t

(b)(a)

Fig. 13. (a) Structure of NCL static gates (b) TH23 static gate

As depicted in Fig. 13(a), static NCL gates are comprised of 4 transistor
networks: set, reset, hold1, and hold0. Similar to other implementations, the
set block determines the gate’s functionality as one of the 27 NCL gates. Once
the set function becomes true, the output is asserted. The output then remains
asserted through the hold1 block until all inputs are deasserted. The hold1 block
is simply made by ORing all inputs together; therefore, it is the same for gates
having the same number of inputs. The hold1 function of a static NCL gate with
n inputs can be expressed as:

hold1 = I1 + I2 + . . .+ In (6)

where In represents input n. Since both set and hold1 blocks contribute to
asserting Z and maintaining its assertion, the set equation of a static NCL gate
can be described as:

Z = set+
(
Z− • hold1) (7)

Where Z− is the previous output value of the gate and Z is the new output
value. As an example, as depicted in Fig. 13(b), the TH23 gate has the following
set and hold1 functions: set = A (B + C) +BC; hold1 = A+B + C.

In order to implement a static NCL gate in CMOS technology, the comple-
ment of Z is also required. The complement of Z, denoted as Z ′, is realized with
reset and hold0 blocks. The reset block, similar to the previous implementa-
tions, consists of all complemented inputs ANDed together. Once all inputs are
deasserted, the reset block becomes active and deasserts the output. The output
then stays deasserted through the hold0 block until new input values activate
the set block to assert the output again. The reset equation of a static NCL gate
can therefore be described as:

CMOS Implementation of Threshold Gates with Hysteresis 209

A

B C

Z

C

B

Z

A

C

B

A Z B C

A

Z

Y Z

(a)

A

B C Z

C

B

C

B

A
Z

Y Z

A

C

B
Z

A

B C

(b)

Fig. 14. (a) Original TH23 static gate (b) Proposed TH23 static gate

Z ′ = reset+
(
Z−′ • hold0

)
(8)

It can be proven that the following relations exist between set, reset, hold1,
and hold0 functions:

set = hold0′ (9)

reset = hold1′ (10)

Equation 10 can be directly inferred from the definition of reset and hold1
functions and DeMorgan’s law; and equation 9 is the logical consequence of the
fact that in a static implementation, the pull-up and pull-down networks must
be complements of each other to avoid a short-circuit path or a floating node.
According to the above equations, the equations for a static TH23 gate are:
hold0 =A

′
(B

′
+ C

′
)+ B′C′ and reset=A′B′C′. The CMOS implementation of

the static TH23 gate is shown in Fig. 13(b).
In contrast to the semi-static implementation, the static implementation ofNCL

gates is faster since output switching does not involve contention. It is also very
robust to leakage, noise, and charge sharing since for any input combination the
internal nodeY is connected to either VDD through the pull-up network, or GND
through the pull-down network. Moreover, the switching threshold of static gates
being typically around VDD/2 adds to their noise immunity. Additionally, tran-
sistor sizing in a static implementation only impacts its performance, not its func-
tionality; therefore, the static implementation is very robust to PVTvariations. Its
main drawback is the area overhead from adding hold0 and hold1 blocks. For ex-
ample, in the case of the TH23 gate, the static implementation shown in Fig. 13(b)
requires 20 transistors, while the semi-static and differential implementations only
require 12 transistors. A more analytical discussion of static C-elements, that are
a special case of static NCL gates, can be found in [7].

210 F.A. Parsan and S.C. Smith

4 New Static Gates

In the previous section, area overhead was mentioned to be the main draw-
back of static NCL gates; however, sometimes it is possible to share transistors
between each pair of pull-up (reset and hold0) or pull-down (set and hold1)
networks to reduce area. For example, the direct static implementation of the
TH23 gate, shown in Fig. 13(b), consists of 20 transistors; but after sharing
transistors, the optimized implementation only requires 18 transistors, as shown
in Fig. 14(a). There are two types of transistors in a static NCL gate: switchers,
which contribute to switching the gate’s output, and keepers, which only con-
tribute to retaining the gate’s state when neither set nor reset blocks are active.
In Fig. 14(a) the keepers are shown in boldface.

The development of the new static NCL gates is inspired by the observation
that in a traditional static NCL gate, the hold0 and hold1 transistor networks
are only used for retaining the gate’s state when neither set nor reset functions
are true. In other words, the hold0 and hold1 transistor networks only contribute
to holding the output state but not switching it. The idea behind the new static
NCL gates is to integrate the set and hold1 transistor networks as well as the
reset and hold0 transistor networks into a single composite transistor network
such that it involves more transistors in output switching. Fig. 14(b) shows the
application of this idea to the TH23 gate. The new gate structure differs from
the original one in two ways. First, the reset network has been duplicated and
rearranged, and then some extra PMOS transistors are added to realize the hold0
function by connecting appropriate nodes of the two PMOS transistor chains.
Second, the hold1 function is realized by duplicating and flipping a portion of
the set network and then connecting the middle nodes with an NMOS transistor.
The new gate consists of 19 transistors, which is one transistor more than the
original one; however, compared to the original gate, the number of keepers has
been reduced from 8 to 3 (shown in boldface), while the number of switchers
has increased from 8 to 14, resulting in faster switching compared to the original
gate.

The correctness of the new gate structure can be easily proved using Boolean
algebra. For the pull-up network, when Z = 1 both PMOS keepers are off so the
function of the pull-up network can be expressed as:

A′B′C′ +B′C′A′ = A′B′C′ (11)

which is the same as the function of the reset block, and when Z = 0 both
PMOS keepers turn on so the function of the pull-up network can be expressed
as:

(A′ +B′) (B′ + C′) (C′ +A′) = A′ (B′ + C′) +B′C′ (12)

which is the same as the function of the hold0 block. Similarly, for the pull-
down network, when Z = 0 the NMOS keeper is off so the function of the
pull-down network can be expressed as:

CMOS Implementation of Threshold Gates with Hysteresis 211

Table 3. Original complex static gates versus the new versions

TH24comp THand0 THxor0

O
ri
g
in
a
l

C

B

A

D

A

C

Z
Z

Z
C

D

B

DZ

D

C

Z

A

C

A

C

Z

B

Z
Z

Z

B

D

A

D

A

B

Z

B

C

C

A

B

A

B

A

B

Z
Z

C

D

C

D

A

C

Z

C D

B

D

N
e
w

B

A

A

C

Z

C

D

B

D

Z

D

C

A

B

Z C

A

D

B

A
Z

DB

Z B

A

D

C

A
Z

B

D

A

B

Z

C

B

C

Z
Z

A

B

B

A

Z C

D

D

C

Z

C

A

B

D

Z

D

B

A

C

Z

Z

(B + C)A+A (B + C) +BC = A (B + C) +BC (13)

which is the same as the function of the set block, and when Z = 1 the NMOS
keeper turns on so the function of the pull-down network can be expressed as:

(B + C +A) (A+B + C) +BC = A+B + C (14)

which is the same as the function of the hold1 block.
The new gate structure also speeds-up output switching in one additional

way. Careful investigation shows that the number of transistors in a series chain
for holding the gate’s state when neither set nor reset functions are true has in-
creased. For example, the hold0 path that was originally going through Z→B→C
is now going through B→Z→B→C, which is one transistor longer than the orig-
inal path. Similarly, the hold1 path that was originally going through B→Z is
now going through B→Z→B. Hence, the new gate structure’s transistor chain
length for hold0 and hold1 paths has increased by one transistor. This is equiva-
lent to weaker hold0 and hold1 networks (i.e., the paths have higher resistance);
therefore, the set and reset networks can switch the gate’s output faster. This
might look confusing since, as mentioned before, the set and hold0 (and simi-
larly reset and hold1) networks are complements of each other such that they are

212 F.A. Parsan and S.C. Smith

Table 4. Original C-elements versus the new versions

TH22 TH33 TH44

O
ri
g
in
a
l

A

C

B

A A B C

B C

C

B

A

Z

Z

Z

A

B

A A B

B

B

A

Z

Z

Z

A

D

C

B A B C

B C

D

C

B

Z

Z

Z

A

D

A

D

N
e
w C

B

A

C

B

A

Z

Z
C

B

A
Z

C

B

A

Z

Z

B

A

B

A

Z

A

BZ

A

B

Z

D

C

B

D

C

B

Z

A

A

Z

Z

C

D

A

B

Z

Z

C

D

A

B

Z

Z

Z

Z

never asserted simultaneously; therefore, the set network never needs to over-
power the hold0 network (or reset network overpower hold1). However, since at
the time of switching there is a short moment when both pull-up and pull-down
networks turn on and create a short-circuit path from VDD to GND (similar
to static Boolean gates), a pull-up (pull-down) network with higher resistance,
and consequently less current flow, helps the pull-down (pull-up) network pull
the internal node to GND (VDD) with less effort, resulting in faster switching.
The last interesting feature of the new static gate structure is that it is more
symmetric than the original structure, resulting in closer output rise/fall times.

Converting traditional static gates to the new ones is not always easy and
straightforward, especially for more complex gates. Additionally, although in the
case of the TH23 gate there was only one transistor overhead for the new gate
style, sometimes area overhead is more than a few transistors, resulting in an area
versus delay tradeoff. Based on how complex the gate is, sometimes it is possible
to partially apply this technique (e.g., to only the pull-up or pull-down network,
or even just a portion of them). Table 3 shows the design of a few complex
NCL gates using both the original and the new method, with keeper transistors

CMOS Implementation of Threshold Gates with Hysteresis 213

Table 5. Comparison between original and new static gate styles

TPLH [ps] TPHL [ps] Energy [fJ] Transistors

Gate N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

O
v
e
rh

e
a
d

TH22 155 168 7.70% 83 123 32.20% 18.4 18.5 0.60% 12 12 0

TH33 174 197 11.40% 128 193 33.90% 20.2 19.4 -4.50% 18 16 2

TH44 198 226 12.00% 183 262 30.20% 23.1 20.2 -14.30% 26 20 6

TH44w2 200 214 6.40% 179 198 9.70% 22.3 20.6 -7.80% 25 22 3

TH23 172 180 4.50% 115 207 44.30% 20 20.3 1.40% 19 18 1

TH34w2 191 194 1.70% 150 222 32.10% 21.6 20.3 -6.30% 27 22 5

TH24comp 160 188 14.80% 134 217 38.20% 19.8 20.4 3.00% 20 18 2

THxor0 167 189 12.00% 142 255 44.20% 20.4 20.7 1.80% 23 20 3

TH22n 167 189 11.50% 86 138 37.80% 18.7 18.9 1.30% 16 16 0

THand0 180 195 7.50% 195 252 22.80% 20.6 21.2 2.80% 21 20 1

Average 177 194 9.00% 139 207 32.50% 20.5 20.1 -2.20% 20.7 18.4 2.3

shown in boldface. The first row of gates pertains to the original design, while
the second row shows the new designs. Comparing the new versions with the
original ones shows that the number of keepers has been reduced in all the new
versions. For the THand0 gate, the pull-up network could not be converted to
utilize fewer keepers, so it is not changed. Table 4 compares the original and the
new static C-elements. For the TH22 gate, the new version is equivalent to the
symmetric C-element design in [12]. As mentioned before, converting the original
static design to the new one is not always easy and does not follow strict rules.
However, the following guidelines are helpful:

1. Remove the hold1/hold0 networks from the original design
2. Duplicate the set/reset networks
3. Rearrange/flip the duplicated networks and connect their internal nodes to

the original network by adding keepers such that the hold1/hold0 function-
ality is ensured

4. If the new structure requires more keepers in the pull-up or pull-down net-
works then try to apply this technique partially or just use the original
design

Table 5 shows a comparison between the new gates and the original ones in
terms of delay, area, and energy consumption. The gates are implemented and
simulated using the IBM CMOS9SF 90nm CMOS process. All simulations are
performed under the following conditions: typical process corner, nominal power
supply voltage of 1.2 V, temperature of 27 ◦C, and capacitive load of 10 fF. Both
high-to-low (TPHL) and low-to-high (TPLH) propagation delays are included in
this table. The simulation results show that on average the new gates offer 9%

214 F.A. Parsan and S.C. Smith

improvement in TPLH and 32.5% improvement in TPHL, with a 2.2% increase
in energy consumption and an average of 2.3 additional transistors per gate.
For the results in Table 5, all transistors are minimum-sized and the results are
averaged over all possible input combinations.

5 Sizing New Static Gates

The new static gate design speeds up switching with a reasonable area overhead
(2.3 transistors per gate). However, the new static gates have the potential to be
smaller than the original static gates when both gate styles are properly sized
for faster switching. For example, assume that the TH23 gates in Fig. 14 need to
be sized. Since only the switchers are responsible for output switching, one can
double their width while allowing the keepers to stay minimum-sized. This is
shown in Fig. 15. The keepers are all minimum-sized (1X) in this figure, so their
size is not shown. The size of the switchers in the original static gate, however,
has doubled, even for the parallel switchers, in order to account for when only one
of them contributes to output switching. The switchers in the new static gate are
then sized such that they provide the same pull-up/pull-down resistance as the
original static gate on the switching paths. Finally, the output inverter for each
gate can be sized such that it offers a balanced output rise/fall time targeting
a certain output load. Assuming that the output inverters would have almost
similar (or comparable) sizes, the new static gate would be smaller than the
original one, shown by adding up the size of transistors for each gate. In the case
of the TH23 gate, the original gate size is 24X while the new gate size is 19X.

6 Simulation Results

In order to measure the performance of the new static gate style at the circuit
level and compare it to the original static gate style, a delay-insensitive NCL
4×4 pipelined multiplier [19] was simulated at the transistor level using each
gate style. The results, averaged over all 256 input combinations, are shown in
Table 6. All simulations are performed under the following conditions: typical
process corner, nominal power supply voltage of 1.2 V, and temperature of 27
◦C. In order to measure the minimum power supply voltage for each variation
of multiplier, VDD is dropped to the point where the NCL multiplier outputs
wrong data or completely stalls due to deadlock [2].

For the minimum-sized gates, the multiplier using the new gate style is 27%
faster and requires 5% more area, with approximately the same energy per op-
eration and the same low-voltage operation capability. Table 6 also shows the
comparison between the multipliers utilizing sized static gates. The multiplier
realized with the new sized gates is now both faster (24%) and smaller (8%)
than the multiplier using the original sized gates. In addition, the energy per op-
eration is now 10% lower, but the minimum power supply voltage has increased
by 22%.

CMOS Implementation of Threshold Gates with Hysteresis 215

A

B C

Z

C

B

Z

A

C

B

A Z B C

A

Z

Y Z

(a)

A

B C

Z

C

B

C

B

A

Z

Y Z

A

C

B
Z

A

B C

(b)

2X

2X

2X

2X

2X

2X

1X 1X

1X

1X

1X

1X

1X

1X

1X

1X 1X

2X

2X

1X

2X2X

Fig. 15. A sizing example for (a) original (b) new static TH23 gates

Table 6. Comparison of NCL multipliers realized with different static gate styles

Gate Style
Original
Minimum

New
Minimum

Original
Sized

New
Sized

Delay per operation [ns] 1.45 1.05 1.29 0.98
Energy per operation [pJ] 1.29 1.28 2.62 2.34

Area [μm2] 59.4 62.6 122.2 111.3
Minimum VDD [V] 0.25 0.26 0.22 0.27

7 Conclusion

In this chapter, different CMOS implementations of NCL gates were introduced
and their trade-offs were discussed. It was shown that each implementation offers
some advantages for designing NCL circuits. Omitting the dynamic implemen-
tation, since it is not delay-insensitive, comparison of the other implementations
shows that static gates tend to be faster and more robust to noise and PVT vari-
ations, while semi-static gates are more energy efficient, and differential gates
are more area efficient.

Additionally, a new approach to designing static NCL gates was introduced.
The new gate style was compared to the original style in terms of delay, en-
ergy, and area, showing that the new gate style is significantly faster, while
requiring slightly more area and energy for minimum sized gates. After sizing
the gates, it was shown that the new gate style is faster, and requires less area
and energy. These conclusions are supported by transistor-level simulation of a
delay-insensitive NCL pipelined multiplier, to compare the different gate styles
on a larger scale.

216 F.A. Parsan and S.C. Smith

References

1. Beerel, P.A., Ozdag, R.O., Ferretti, M.: A designer’s guide to asynchronous VLSI.
Cambridge University Press (2010)

2. Smith, S.C., Di, J.: Designing asynchronous circuits using NULL Convention Logic
(NCL). In: Synthesis Lectures on Digital Circuits and Systems, vol. 4/1. Morgan
& Claypool Publishers (2009)

3. Fant, K.M.: Logically Determined Design: Clockless System Design with NULL
Convention Logic. Wiley-Interscience (2005)

4. Ligthart, M., Fant, K., Smith, R., Taubin, A., Kondratyev, A.: Asynchronous de-
sign using commercial HDL synthesis tools. In: Proc. Sixth Int. Symp. on Advanced
Research in Asynchronous Circ. and Syst., pp. 114–125 (April 2000)

5. McCardle, J., Chester, D.: Measuring an asynchronous processor’s power and noise.
In: Proc. Synopsys Users Group Conf. (SNUG). Synopsys, Mountain View, Calif.,
pp. 66–70 (2001)

6. Parsan, F.A., Al-Assadi, W.K., Smith, S.C.: Gate Mapping Automation for Asyn-
chronous NULL Convention Logic Circuits. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. (to be published),
http://dx.doi.org/10.1109/TVLSI.2012.2231889

7. Shams, M., Ebergen, J.C., Elmasry, M.I.: Modeling and comparing CMOS im-
plementations of the C-element. IEEE Trans. on Very Large Scale Integ. (VLSI)
Syst. 6, 563–567 (1998)

8. Sobelman, G.E., Fant, K.: CMOS circuit design of threshold gates with hysteresis.
In: Proc. of the IEEE Int. Symp. on Circ. and Syst., vol. 2, 62, pp. 61–64 (June
1998)

9. Yancey, S., Smith, S.C.: A differential design for C-elements and NCL gates. In:
53rd IEEE Int. Midwest Symp. on Circ. and Syst., pp. 632–635 (August 2010)

10. Parsan, F.A., Smith, S.C.: CMOS implementation of static threshold gates with
hysteresis: A new approach. In: 2012 IEEE/IFIP 20th International Conference on
VLSI and System-on-Chip (VLSI-SoC), pp. 41–45 (October 2012)

11. Seitz, C.L.: System timing. In: Introduction to VLSI Systems, pp. 218–262.
Addison-Wesley, MA (1980)

12. Berkel, K.V.: Beware the isochronic fork. Integr. VLSI J. 13, 103–128 (1992)
13. Verhoeff, T.: Delay-insensitive codes – an overview. Distributed Computing 3, 1–8

(1988)
14. Muller, D.E.: Asynchronous logics and application to information processing. Stan-

ford Univ. Press, Stanford (1963)
15. Shams, M., Ebergen, J.C., Elmasry, M.I.: Optimizing CMOS implementations of

the C-element. In: Proc. of IEEE Int. Conf. on Comp. Design, pp. 700–705 (October
1997)

16. Parsan, F.A., Smith, S.C.: CMOS implementation comparison of NCL gates.
In: 2012 IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS), pp. 394–397 (August 2012)

17. Li, D., Mazumder, P.: On circuit techniques to improve noise immunity of CMOS
dynamic logic. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 12, 910–925 (2004)

18. Heller, L., Griffin, W., Davis, J., Thoma, N.: Cascode voltage switch logic: A
differential CMOS logic family. IEEE Int. Solid-State Cir. Conf. Digest of Tech.
Papers, vol. XXVII, pp. 16–17 (February 1984)

19. Smith, S.C., DeMara, R.F., Yuan, J.S., Hagedorn, M., Ferguson, D.: Delay-
insensitive gate-level pipelining. The VLSI Journal Integ. 30, 103–131 (2001)

http://dx.doi.org/10.1109/TVLSI.2012.2231889

A. Burg et al. (Eds.): VLSI-SoC 2012, IFIP AICT 418, pp. 217–233, 2013.
© IFIP International Federation for Information Processing 2013

Simulation and Experimental Characterization
of a Unified Memory Device with Two Floating-Gates

Neil Di Spigna, Daniel Schinke, Srikant Jayanti, Veena Misra, and Paul Franzon

North Carolina State University, Department of Electrical and Computer Engineering,
Raleigh, NC USA

{nhdispig,djschink,sjayant2,vmisra,paulf}@ncsu.edu

Abstract. The operation of a novel unified memory device using two floating-
gates is described through experimental characterization of a fabricated proof-
of-concept device and confirmed through simulation. The dynamic, nonvolatile,
and concurrent modes of the device are described in detail. Simulations show
that the device compares favorably to conventional memory devices.
Applications enabled by this unified memory device are discussed, highlighting
the dramatic impact this device could have on next generation memory
architectures.

Keywords: memory, nonvolatile, dynamic, volatile, unified, floating-gate,
FLASH, DRAM, high-k dielectric, simulation.

1 Introduction

This chapter is in part based off previously published work on the demonstration of a
novel double floating-gate unified memory device [1]. In this paper, that work is
extended through device simulations and additional details on the fabrication,
operation, and design of circuits based on such a device. Such a unified memory
device could store both volatile (dynamic) and nonvolatile states simultaneously. This
could have a dramatic impact on traditional memory hierarchies [2-4]. For example,
the data stored in the nonvolatile mode of the device when the computer is powered
down could quickly be written to the dynamic state when the power is turned on,
allowing for instant-on computing. This data transfer could also operate in reverse as
dynamic data could be written to nonvolatile states to allow for full or partial
hibernation of the memory fabric. Alternatively, writing dynamic data quickly to
nonvolatile data could enable fast in-situ checkpointing. Finally, there are a number of
novel logic applications for such a device that could impact numerous areas of
computation [4].

Two floating-gates (FGs) have been used previously for enhancing memory operation
[5-8]. However, these designs typically have been used in an effort to increase the
memory window and data retention compared to single FG devices. For example, the
size of the nanocrystals in the two FG layers can be engineered to exploit the Coulomb
Blockade effect [8]. In this research, however, two FGs are used to enable a device which
can store both dynamic and nonvolatile states concurrently. The two modes of operation

218 N. Di Spigna et al.

are distinguished by the cha
mode when charge is simply
drawn up from the substrate
operation of the device req
merely redistributed betwee
allowing for the coexisten
engineering the vertical stac
the proof-of-concept device
based on those decisions are

2 Device Fabricat

The double FG MOSCAP
demonstrate and confirm th
The wafers were cleaned
oxidation. For the bottom F
and patterned using liftoff.
through Atomic Layer Dep
using palladium. ALD was
been previously shown to
memory technologies [9].
followed by a backside e
Micrograph (TEM) of the c

Fig. 1. Device F

Being a proof-of-concep
not aggressively scaled, w
relatively high operating vo
the materials has been s
optimize device performan
ends, a 65-nm gate length
modeled in Sentaurus TCAD

arge condition of the two FGs. The device is in the dyna
y redistributed between the two FGs. It is not until charg
e that the device enters its nonvolatile mode. Therefore,
quires the existence of a window between when charge
en the FGs, and when charge is drawn up from the chan
nce and selective control of both states. This requ
ck to create and fine tune such a window. The fabrication
e is discussed in the next section and the design trade
considered throughout.

ion and Modeling

Ps shown in Fig. 1 were fabricated to experimenta
he device operation. The process flow is outlined in Fig.

before a SiO2 gate oxide was grown through therm
FG, palladium was deposited through e-beam evaporat
. HfO2 was used as the inter-FG dielectric and deposi
osition (ALD). The top FG was then fabricated once ag
used to deposit the control dielectric of HfAlO, which
have low leakage that is required of ultra-scaled FLA
A palladium control gate was deposited and pattern

tch and aluminum deposition. A Transmission Elect
cross section of the fabricated device is shown in Fig. 1b

Fabrication. (a) Recipe and (b) TEM cross section.

pt structure, the layer thicknesses of the vertical stack w
which as will be shown later in this paper have led
oltages. Further device scaling combined with engineer
hown through simulation to lower operating voltag

nce and achieve high storage density [4]. Towards th
h MOSFET, with the properties listed in Table 1, w
D.

amic
ge is

the
e is

nnel;
uires
n of
offs

ally
 1a.
mal
tion
ited

gain
has

ASH
ned,
tron
b.

were
d to
ring
ges,
hese
was

 Simulation and Experimental Characterization of a Unified Memory Device 219

Table 1. Device Model Properties

Layer Material Thickness
Control Gate Molybdenum 10 nm

Control Dielectric HfO2 18 nm
Top FG Platinum 3 nm

Inter-FG Dielectric HfSiO 3.2 nm
Bottom FG Magnesium 3 nm

Gate Dielectric SiO2 4 nm
Substrate Bulk Si -

This model is used to confirm the characterized device operation and is the link

between the proof-of-concept structure and the circuit simulations discussed in
Section 6. In addition to more aggressive thickness scaling, some important material
distinctions can be made between the fabricated device and the simulated device. In
contrast to the fabricated device, different materials were chosen for the two FGs,
creating an asymmetry across the inter-FG dielectric, as can be seen in the energy
band diagrams for the simulated and fabricated devices shown in Fig. 2. A high work
function metal, Pt, was used for the top FG, whereas a low work function metal, Mg,
was used for the bottom FG. This results in fast dynamic programming as electrons
tunnel from the bottom FG to the top FG relatively easily. Once trapped, the deep
potential well of the top FG sustains sufficiently long retention times but comes at the
expense of dynamic erasing, as will be shown later in the circuit simulations. The
characterization and operation of this device is discussed in the following sections,
starting with the dynamic mode.

Fig. 2. The energy band diagrams of the (a) simulated and (b) fabricated devices

220 N. Di Spigna et al.

3 Dynamic Mode

The mode of the device
relatively small bias an
programmed/erased. The dy
device is swept from a ne
the negative voltage. Initia
the control gate, electrons
charge on the top FG, as pi
the bottom FG, closer to the
to the right, as can be seen
As the sweep continues, th
opposite charge condition
positive charge closer to t
positive charge closer to th
to the left, once again dem
dynamic operation, the hys
direction anticipated for tra
operation, the voltage appl
from the substrate, but rath
the FGs across the relativel
the charge on the FGs. Thi
the device.

Operation

is determined by the applied voltage envelope. Fo
nd short duration, the device’s dynamic mode
ynamic operation of the device is illustrated in Fig. 3. T
egative voltage, to a positive voltage, and then back

ally, as the device has a small negative voltage applied
will move to the bottom FG leaving behind a posit

ictured on the right-side of Fig. 3. The negative charge
e substrate, will cause a slight shift of the flat-band volt
in the measured CV characteristic of the fabricated dev
he voltage applied to the gate becomes positive, and
results. Electrons now move to the top FG resulting i

the substrate, as pictured on the left-side of Fig. 3. T
e substrate will cause a slight shift of the flat-band volt
monstrated by the measured CV characteristic. Thus,
steresis is counter-clockwise, which would be the oppo
aditional single FG devices. Notice that for dynamic m
lied to the control gate is insufficient to draw up cha
her is only strong enough to simply redistribute charge
ly thin inter-FG dielectric. Thus, there is no net increase
s condition is what distinguishes the mode of operation

Fig. 3. Dynamic Mode Operation

or a
is

The
k to
d to
tive

e on
tage
vice.

the
in a
This
tage
for

osite
mode
arge
e on
e in
n of

 Simulation and Exp

The flat-band voltage sh
envelope is shown in Fig. 4
device, there is a greater p
positive voltage envelopes c
symmetry in the characteris
FGs. As shown in Fig. 2b,
FGs such that the program a

Fig. 4

The simulations of the d
The initial uncharged devic
the control gate for 50 ns
After about 300 ms, the th
initial state of the device
difference is needed to dis
required. A 5 V refresh pul
fully decayed back to the i
40 ns, rather than the initial
can be seen in Fig. 5a, th
threshold voltage (4). This v
300 ms to retain the charge
device.

erimental Characterization of a Unified Memory Device

hift of the fabricated device relative to the applied volt
4. As greater negative voltage envelopes are applied to
positive shift in the flat-band voltage; whereas increas
causes a greater negative shift in the flat-band voltage. T
stics is indicative of the use of the same metal for the t
this results in a symmetric energy barrier between the t
and erase characteristics are also symmetric.

. Dynamic Program/Erase Characteristics

dynamic mode operation of the device are shown in Fig
ce characteristics are shown (1). A 5 V pulse is applied
causing the threshold voltage to shift about -330 mV
hreshold voltage decays about 220 mV back towards
(3). For these simulations, it is assumed that a 100 m

stinguish between the two distinct states, thus a refresh
lse is applied to the control gate. Since the device has
initial state, this refresh pulse only needs to be applied
l 50 ns applied to redistribute charge in the fresh device.
his refresh returns the device back to the charged s
volatile cycle continues, requiring a refresh period of ab
ed state, and thus demonstrating the dynamic mode of

221

tage
the

sing
The
two
two

g. 5.
d to
(2).
the

mV
h is
not
for

. As
tate

bout
the

222 N. Di Spigna et al.

Fig. 5. Dynamic Mode Simula
voltage.

The volatile nature illu
fabricated device, as shown
V pulse was applied to the
the left, as shown in Fig. 6
Fig. 5b. Once the bias to th
decay back to the original c
at 0.5 V is measured over ti
the flat-band voltage shifts
pF to ~6.4 pF. At this poin
once again refreshing the ch
band voltage to shift back
successfully demonstrating
dynamic mode operation.

ations. The (a) drain current and (b) capacitance vs. control g

ustrated by the device simulations was confirmed in
n in the dynamic retention characteristics of Fig. 6. A +
fabricated device which caused a flat-band voltage shif

6a. This is directly analogous to the simulations shown
he control gate was removed, the CV characteristics wo
curve. This is illustrated in Fig. 6b in which the capacita
ime. As the charge difference between the two FGs deca
to the right and the capacitance at 0.5 V decays from ~

nt, after ~22 s, the +10 V is reapplied to the control g
harge difference between the two FGs and causing the f
k to the left. This is shown for five cycles in Fig.
g and confirming the predicted volatile nature of

gate

the
+10
ft to
n in
ould
ance
ays,
~8.5
gate,
flat-
6b,
the

 Simulation and Exp

Fig. 6. Dynamic Mode Retent
control gate resulting in a nega
0.5 V over time for 5 cycles sh
the original CV curve.

Fig. 7. Dynamic Mode Endu
200,000 cycles with a ±7.5 V f

erimental Characterization of a Unified Memory Device

tion Characteristics. (a) A +10 V; ~500 ms pulse is applied to
ative flat-band voltage shift. (b) The capacitance was measure
howing the charge difference between the two FGs decay bac

urance Characteristics. The device characteristics are shown
for ~200 ms pulse.

223

o the
ed at
ck to

n for

224 N. Di Spigna et al.

Finally, the dynamic mo
consistent 300 mV window
as the device was cycled o
FG dielectric is critical in e
cycles required of DRAM
reduction of voltages and
mechanisms that will redu
dielectric for this inter-FG i

4 Nonvolatile Mod

The nonvolatile mode of th
control gate that is sufficien
FGs, as illustrated in Fig. 8
to a positive voltage, and t
dynamic mode operation,
substrate. As the voltage ap
towards the substrate leavi
charge on the FGs causes a
the measured CV character
gate becomes positive, and
a negative charge on the FG
charge on the FGs results in
the measured CV characte
expected for traditional sing

F

The dynamic mode oper
depicted in Fig. 8 are com
shown in Fig. 9. This clear
the applied voltage enve

de endurance of the fabricated device is shown in Fig. 7
w between the programmed and erased states is maintai

ver 105 times, though a cycling drift is present. The in
ensuring the stable operation over the extensive number
. As this dielectric is further scaled, this will permit
d fields, and thus the use of lower energy tunnel
uce the stress on this dielectric. Choosing an appropr
is actively being investigated.

de Operation

he device is entered when a voltage pulse is applied to
nt enough to draw up a net charge from the substrate to
8. Once again the device is swept from a negative volta
then back to the negative voltage. However, unlike in
the bias is large enough to draw up charge from

pplied to the gate starts out negative, electrons are repel
ing behind a positive charge on the FGs. A net posit
a negative shift in the flat-band voltage, as can be seen
ristic. As the sweep continues, the voltage applied to
electrons are now drawn up from the substrate resulting

Gs. The voltage is then swept in reverse, and the negat
n a positive flat-band voltage shift, once again witnessed
eristic. This results in a clockwise hysteresis, which
gle FG nonvolatile devices.

Fig. 8. Nonvolatile Mode Operation

ation depicted in Fig. 3 and the nonvolatile mode operat
mbined to demonstrate the program/erase characteris
ly illustrates how the mode of the device is determined

elope. The negative flat-band voltage window (CC

7. A
ned

nter-
r of
the

ling
riate

the
the

age,
the
the

lled
tive
n in
the

g in
tive
d in
h is

tion
stics
d by
CW

 Simulation and Exp

Fig. 9. Program/Erase Charac

hysteresis) is evidenced for
voltage window (CW hyste
without two FGs but with th

The nonvolatile program
Fig. 10. The asymmetry bet
shown in the band diagram
easily tunnel onto the FGs th
initial and after-60 second
after-60 second shift is more
as the bias is being applied
the top FG, relative to the b
redistributes between the tw
FG. Since the bottom FG is
greater flat-band voltage shi
simulations of the nonvolatil

Fig. 10.

erimental Characterization of a Unified Memory Device

cteristics. The dynamic mode of the curve is enlarged in the ins

r low voltages; while the more traditional positive flat-b
eresis) occurs at higher voltages. Control devices fabrica
he same dielectrics did now show the dynamic mode.

m/erase characteristics of the fabricated device are shown
tween the program and erase voltages is expected since
of Fig. 2b for the fabricated device, the electrons can m

hen they can tunnel back to the substrate. In Fig. 10, both
flat-band voltage shifts are plotted, and in every case,

e pronounced than the initial shift. This is due to the fact
to the control gate, more of the charge is being drawn up
bottom FG. When the external bias is removed, the cha

wo FGs resulting in an increase in the charge on the bott
s closer to the substrate, this charge redistribution leads t
ift over time as the charge settles. This is confirmed by
le mode of the modeled device shown in Fig. 11.

Nonvolatile Program/Erase Characteristics

225

set.

and
ated

n in
e, as
more
h the

the
that
p to
arge
tom
to a
the

226 N. Di Spigna et al.

Fig. 11. Nonvolatile Mode Si
gate voltage.

The initial uncharged de
to the control gate for 30 μs
channel, resulting in a net i
is drawn up to the top FG,
minor positive threshold vo
Fig. 11a (2). However, afte
on the FGs redistributes r
voltage shift of about 1.52
occurred in the fabricated d
reach its stable state until a
applied pulse and the charg
and will have to be acco
simulation, a -8.5 V pulse a
1 s (5) returns the device ap

imulations. The (a) drain current and (b) capacitance vs. con

evice characteristics are shown (1). A 9 V pulse is appl
s (2). This pulse is large enough to pull up charge from
increase of charge on the FGs. Initially, most of the cha
limiting the impact on the channel. Thus, only a relativ

oltage shift occurs immediately after the pulse, as shown
er the voltage is removed from the control gate, the cha
resulting in a much more pronounced positive thresh
 V after about 1 s (3). This is the same phenomenon t

devices, though not to the same extent. The device does
after some time passes. The relationship between the ini
e redistribution settling time is currently being investiga
unted for at the circuit level. Finally, as shown in

applied for 30 μs (4) followed by a charge settling period
pproximately back to its uncharged state.

ntrol

lied
the

arge
vely
n in
arge
hold
that
not

itial
ated
the

d of

 Simulation and Exp

Fig. 12. The nonvola

To verify the nonvolati
nonvolatile mode is plotted
extrapolating the data out to
was demonstrated through o

5 Concurrent Mod

The device is not limited to
mode, but rather it can oper
time. The experimental veri
The device is first program
shown in Fig. 13a, which
charge is drawn up from th
operation, a dynamic state
state by the application of
some of the negative charg

erimental Characterization of a Unified Memory Device

atile mode (a) retention and (b) endurance characteristics

ile nature of the fabricated device, the retention of
d in Fig. 12a. A window of at least 4.5 V is maintained
o 10 years. Finally, the nonvolatile endurance of the dev
over 10,000 cycles, as shown in Fig. 12b.

de Operation

o operation in either the dynamic mode or the nonvola
rate in both the dynamic and nonvolatile modes at the sa
ification of concurrent mode operation is shown in Fig.

mmed into the nonvolatile state using a +17 V sweep
results in a positive flat-band voltage shift as negat

he substrate into the FGs. To demonstrate concurrent m
is then embedded on top of the programmed nonvola

f a dynamic pulse of +10 V. As a response to this pu
ge on the bottom FG is drawn up to the top FG, leav

227

the
d by
vice

atile
ame
13.
, as
tive

mode
atile
ulse,
ving

228 N. Di Spigna et al.

Fig. 13. Concurrent Mode
nonvolatile mode with a +17 V
programmed nonvolatile state
demonstrating the retention of
device returns to the programm

Operation. (a) The device is charged into the programm
V sweep. (b) A +10 V pulse embeds a dynamic state on top of
e. (c) The capacitance is measured at 3.25 V over 5 cy
f the embedded dynamic state. As the dynamic state decays,

med nonvolatile state, requiring a refresh.

med
f the
ycles
, the

 Simulation and Exp

behind a less negatively ch
voltage shift relative to the
Once this dynamic bias is
decays, and the flat-band v
state. This cycling of the
nonvolatile state is repeate
with that shown in Fig. 6, w
nonvolatile erased state, s
embedded on both the pro
mode operation of the fabri

The concurrent mode
programmed into its charge
results in about a -330 mV
charge redistributes and th
nonvolatile state (3). The CV
characterization shown in Fi
voltage in the negative direc
nonvolatile state flat-band v
voltage once again shifts to
dynamic mode can be embed

Fig. 14. Concurrent Mode Sim
gate voltage.

erimental Characterization of a Unified Memory Device

arged bottom FG, resulting in a slightly negative flat-b
e original charged nonvolatile state, as shown in Fig. 1
s removed, the charge difference between the two F

voltage shifts back to the original nonvolatile programm
e dynamic state embedded on top of the programm
ed five times, as shown in Fig. 13c. Combining this d
which represents the dynamic state embedded on top of
successfully demonstrates that the dynamic state can
ogrammed and erased nonvolatile states. Thus, concurr
cated device is experimentally verified.
simulations are shown in Fig. 14. The device is f

ed nonvolatile state (1). A dynamic pulse of 5 V for 50
threshold voltage shift (2). Upon cessation of the bias,

he threshold voltage starts decaying back to the char
V curve of Fig. 14b is directly analogous to the experime
ig. 13b. A relatively small dynamic pulse shifts the flat-b
ction, at which point it begins to decay back to the char
voltage, as shown in Fig. 13c. Upon a refresh, the flat-b
o the left (4). Thus, it is shown through simulation tha
dded on the charged nonvolatile state.

mulations. The (a) drain current and (b) capacitance vs. con

229

and
13b.
FGs
med
med
data
f the
n be
rent

first
0 ns

the
rged
ental
band
rged
band
at a

ntrol

230 N. Di Spigna et al.

The dynamic, nonvolatile
demonstrated. The character
device simulation, successfu
device. A memory array usin

6 Circuit Simulati

The memory array shown i
BSIM4.0 MOSFET model
the simulated device descr
substrate was SOI with a th
was used, and the control a
of this memory array is des

Fig. 1

Operation

Dynamic Prog
Dynamic Er

Dynamic Ref
Nonvolatile Pro

Nonvolatile E
Low Vt Re
High Vt Re

e, and concurrent mode operation have been experiment
rization of the fabricated devices has been confirmed thro
fully verifying the operation of this novel unified mem
ng this device is discussed in the next section.

ions

in Fig. 15 was designed in Cadence Virtuoso 2010 usin
with a 45-nm gate length and device parameters simila
ribed in Table 1. However, instead of bulk silicon,
hickness of 13 nm; an SiO2 back gate dielectric of 1.2

and back gates were composed of aluminum. The operat
cribed in Table 2.

15. Simulated memory array architecture

Table 2. Memory Array Operation

n Bias Across Gate
Stack

Duration

gram 5 V 50 ns
rase -5 V 10 μs
fresh 5 V 40 ns
ogram 9 V 30 μs

Erase -9 V 14 μs
ad 1.2 V 2.2 ns

ead 2.7 V 2.2 ns

tally
ough
mory

ng a
ar to

the
nm

tion

 Simulation and Experimental Characterization of a Unified Memory Device 231

To dynamically program a target device, 3 V is placed on the appropriate WL and -
2 V is placed on the appropriate SL. This results in a 5 V bias across its gate stack,
which when applied for 50 ns results in the target device being dynamically
programmed, as previously described in the device simulation. However, to prevent
inadvertent programming of non-target devices on that WL, the non-target SLs need
to be biased to 2 V such that there is only a 1 V bias across their gate stack. This
represents the dynamic retain condition.

As previously discussed, the device was engineered to have a low work function
metal for the bottom FG and a high work function metal for the top FG. This resulted
in an asymmetric barrier that allowed for fast dynamic programming and increased
dynamic retention as charge tunneled easily from the bottom FG into the deeper
energy well of the top FG, as shown in Fig. 2a. This resulted in a dynamic retention of
300 ms. However, this came at the expense of the dynamic erase; which as shown in
Table 2 takes 10 μs. This is much longer than conventional DRAM. If, on the other
hand, the materials are chosen to be symmetric, as was the case for the fabricated
device in which palladium was used for both the top and bottom FGs, the dynamic
erase time would reduce to 200 ns. Of course with a symmetric barrier, there is no
longer the deeper potential well for the charge in the dynamically programmed state
and so the retention time would also be reduced. However, for this device the
retention time would only reduce from 300 ms to 100 ms, which could prove a wise
tradeoff for reducing the dynamic erase time from 10 μs to 200 ns. Certainly further
work function engineering can be performed to tailor the device performance towards
target applications.

Another advantage of the device is that it operates more like an SRAM than a
DRAM, and thus the read operation takes only 2.2 ns, which is much faster than
DRAM. The read is also nondestructive, unlike DRAM. The memory array should
also have a higher density than DRAM due to the difficulty of scaling the DRAM
capacitor and maintaining sufficient charge sharing with the bitline. This device is
scalable, in bulk form, to at least the 16-nm node. Through stacking, it has the
potential to reach densities equivalent to the 8-nm node.

Overall, the device offers several advantages compared to conventional DRAM
[3]. However, such a comparison is ill-conceived. The device may not be wholly
superior to DRAM, nor to a similarly scaled single FG nonvolatile device, since it
requires an extra FG and the addition of an ultra-thin inter-FG dielectric layer; but the
device offers a tremendous advantage that neither of the other devices do singularly; it
can store both dynamic (DRAM) and nonvolatile (FLASH) states concurrently. Such
a unified memory device has enormous potential to impact next generation memory
architectures.

7 Applications

There are a number of applications for such a unified memory device. For example,
the device could be used to enable instant-on computing. The computer could quickly
be powered down by simply moving all of the dynamic states into their nonvolatile

232 N. Di Spigna et al.

states. If the entire memory array is written to its nonvolatile state in parallel, this
would take only about 30 ms. When the user wants to power the computer back on,
the memory controller simply needs to write back all of the nonvolatile data into the
dynamic state. Once again, when performed in parallel, this would take only about 14
ms. In theory, the user could power up and power down the computer in only a
fraction of a second. Beyond user convenience, this could allow for the operating
system to power down during moments of inactivity. For example, if the user walked
away from their computer to get a drink or take a phone call, the operating system
could power down and conserve battery life. When the user returned, the power up
penalty would only be a fraction of a second.

This device could also enable partial hibernation. For parts of the memory that are
not currently being used, those arrays could be written to the nonvolatile state in the
background as the user continues to operate their computer. This could enable a
flexible memory fabric that could be selectively powered down which could have a
significant impact on energy-proportional computing. An example application for this
would be Google servers. Recently, a study on their server power usage showed that
at utilization workloads that were common (20-30%), the servers operated at less than
half their peak energy efficiency performance [10]. Given the nature of their
utilization, current solutions to transfer to inactive modes are impractical because of
both a time latency and energy penalty. The device described in this chapter could
make such transitions practical by significantly reducing the wake-up penalties.
Alternatively, partial hibernation enabled by this device could be used to further
enhance active energy-saving schemes.

Another example application in which these devices could be beneficial is in-situ
checkpointing. The device could be running continuously in dynamic mode, and then
upon desire for a check-point, the entire memory array could be quickly written to the
nonvolatile state in only about 30 ms. This would be much more efficient than writing
through narrow channels to disk. Thus, more check-points could be efficiently taken,
improving the resiliency of the computer. Upon detection of an error, the correct state
could be recovered much faster than traditional memory hierarchies would permit.
Instant-on computers, energy-proportional computing, and in-situ checkpointing are
just a few examples of the potential that could be realized with a memory array
composed of this new unified memory device.

8 Conclusion

New unified memory devices using two FGs were modeled, simulated, fabricated and
characterized. The operation of the devices in dynamic, nonvolatile, and concurrent
modes were demonstrated in proof-of-concept MOSCAPs and confirmed through
device simulations. The programming, retention, and endurance characteristics were
demonstrated for the different modes. A memory array based on these devices was
designed and simulated. It was shown that these devices compare favorably to both
conventional DRAM and FLASH devices. However, the true potential of these
devices is not in their use as either a DRAM or FLASH replacement, but rather as a

 Simulation and Experimental Characterization of a Unified Memory Device 233

new unified memory device that can store both dynamic and nonvolatile states
concurrently. Applications for such a device were discussed that highlight the
significant impact this device could have on next generation memory architectures.

Acknowledgements. This article is in part based on works supported by the National
Science Foundation under award nos. 0811582 and 1065458. We thank Dr. Eric
Rotenberg, Steve Lipa, W. Shepherd Pitts, Shivam Priyadarshi, Vinodh Kotipalli and
Narayanan Ramanan for their valuable contributions to aspects of this effort. Thanks
to Dr. Dale Batchelor of AIF at NCSU for TEM analysis and to Jonathan Pierce for
FIB preparation of the TEM cross sections.

References

1. Di Spigna, N., Schinke, D., Jayanti, S., Misra, V., Franzon, P.: A Novel Double Floating-
Gate Device. In: IEEE/IFIP 20th International Conference on VLSI SoC, pp. 53–58 (2012)

2. Park, K.-H., Park, C.M., Kong, S.H., Lee, J.-H.: Novel Double-Gate 1T-DRAM Cell
Using Nonvolatile Memory Functionality for High-Performance and Highly Scalable
Embedded DRAMs. IEEE Transactions on Electron Devices 57(3), 614–619 (2010)

3. Han, J.-W., Ryu, S.-W., Kim, D.-H., Choi, Y.-K.: Polysilicon Channel TFT With
Separated Double-Gate for Unified RAM (URAM)-Unified Function for Nonvolatile
SONOS Flash and High-Speed Capacitorless 1T-DRAM. IEEE Transactions on Electron
Devices 57(3), 601–607 (2010)

4. Schinke, D., Di Spigna, N., Shiveshwarkar, M., Franzon, P.: Computing with Novel
Floating-Gate Devices. Computer 44(2), 29–36 (2011)

5. Afshari, K.: Nonvolatile Memory with Multi-Stack Nanocrystals as Floating Gates. In:
2007 NNIN REU Research Accomplishments, pp. 38–39 (2007)

6. Lee, C., Gorur-Seetharam, A., Kan, E.C.: Operational and Reliability Comparison of
Discrete-Storage Nonvolatile Memories: Advantages of Single- and Double-Layer Metal
Nanocrystals. In: IEDM 2003 Technical Digest, pp. 557–560 (2003)

7. Singh, P.K., Bisht, G., Hofmann, R., Singh, K., Krishna, N., Mahapatra, S.: Metal
Nanocrystal Memory with Pt Single- and Dual-Layer NC With Low-Leakage Al2O3
Blocking Dielectric. IEEE Electron Device Letters 29(12), 1389–1391 (2008)

8. Ohba, R., Sugiyama, N., Uchida, K., Koga, J., Toriumi, A.: Nonvolatile Si Quantum
Memory With Self-Aligned Doubly-Stacked Dots. IEEE Transactions on Electron
Devices 49(8), 1392–1398 (2002)

9. Jayanti, S., Yang, X., Suri, R., Misra, V.: Ultimate Scalability of TaN Metal Floating Gate
with Incorporation of High-K Blocking Dielectrics for Flash Memory Applications. In:
IEDM 2010 Technical Digest, pp. 106–109 (2010)

10. Barroso, L.A., Holzle, U.: The Case for Energy-Proportional Computing. Computer
40(12), 33–37 (2007)

Author Index

Andersson, Oskar 88
Atienza, David 88

Baas, Bevan 125
Beanato, Giulia 107
Benini, Luca 107
Burg, Andreas 88

Carro, Luigi 144
Claesen, Luc 45
Concatto, Caroline 144
Constantin, Jeremy 88

De Micheli, Giovanni 107
Di Spigna, Neil 217
Dogan, Ahmed 88

Felber, Norbert 1
Franchetti, Franz 21
Franzon, Paul 217

Greisen, Pierre 64
Gürkaynak, Frank K. 1, 64
Guthaus, Matthew R. 181

Heinzle, Simon 64

Jayanti, Srikant 217

Kastensmidt, Fernanda Lima 144
Keller, Christoph 1

Kim, Seokjoong 181
Kologeski, Anelise 144

Leblebici, Yusuf 107
Loi, Igor 107
Luu, Danny 64

Meinerzhagen, Pascal 88
Mikos, Val 64
Misra, Veena 217
Motten, Andy 45
Muehlberghuber, Michael 1

Pan, Yun 45
Parsan, Farhad A. 196
Pileggi, Larry 21

Rodrigues, Joachim 88

Sabena, Davide 162
Schaffner, Michael 64
Schinke, Daniel 217
Smith, Scott C. 196
Smolic, Aljoscha 64
Sonza Reorda, Matteo 162
Sterpone, Luca 162

Xiao, Zhibin 125

Zhu, Qiuling 21

	Preface
	Organization
	Table of Contents
	FPGA-Based High-SpeedAuthenticated Encryption System
	1 Introduction
	2 Related Work
	3 100Gbit/s Authenticated Encryption Alternatives
	3.1 Serpent Block Cipher
	3.2 Offset CodeBook Mode

	4 OCB-Serpent Hardware Architecture
	4.1 Pipelined Four-Core Serpent Architecture
	4.2 OCB - Authenticated Encryption
	4.3 Decryption

	5 Results
	6 100 Gbit/s Authenticated Encryption System Design
	6.1 FPGA Digital Design
	6.2 PCB Design

	7 Conclusion
	References

	A Smart Memory Accelerated Computed�Tomography Parallel Backprojection
	1 Introduction
	2 Background
	2.1 CT Scanning Method
	2.2 Shepp and Logan Backprojection Algorithm

	3 Memory Address Pattern Analysis
	3.1 Address Difference for Adjacent Projections
	3.2 Address Difference for Adjacent Pixels

	4 Backprojection Smart Memory Design
	4.1 Interpolation Memory
	4.2 Consecutive Access Memory
	4.3 Decoder-mux and Output-mux
	4.4 Horizontal and Vertical Parallel Backprojection

	5 Parallel Backprojection Architecture
	5.1 Parallel Pipeline BackProjection Architecture
	5.2 Advanced Memory Sharing Parallel Pipeline Backprojection Architecture

	6 Design Automation
	6.1 Design Tradeoff Space
	6.2 Chip Generator and Smart Memory Synthesizer

	7 Evaluation and Results
	7.1 Consecutive Access Memory Evaluation
	7.2 Backprojection Smart Memory Cost Evaluation
	7.3 Backprojection Accuracy Evaluation

	8 Conclusion
	References

	Trinocular Stereo Vision Using a Multi LevelHierarchical Classification Structure
	1 Introduction
	2 System Overview
	2.1 General Architecture

	3 Hierarchical Cla assification
	3.1 Feature Generation
	3.2 Classification Methods
	3.3 First Level Classific cation Evaluation
	3.4 Second Level Class sification Evaluation

	4 System Design
	4.1 Pre-Processing Mo dule
	4.2 Window Comparis on Module
	4.3 Hierarchical Classification Module

	5 n Implementation
	6 Conclusions and Future Work
	References

	Spatially-Varying Image Warping:Evaluations and VLSI Implementations
	1 Introduction
	2 Non-linear Image Warping
	2.1 Warping Basics
	2.2 Forward Mapping: EWA Splatting
	2.3 Backward Mapping

	3 Evaluations
	3.1 Quality Comparisons
	3.2 Computational Complexity
	3.3 Memory Bandwidth Evaluation

	4 Hardware Architectures
	4.1 EWA Splatting Architecture
	4.2 Bicubic Warping Architecture

	5 Implementation Results
	5.1 EWA Splatting:
	5.2 EWA Splatting:
	5.3 Bicubic Interpolation:
	5.4 Comparison

	6 Conclusions
	References

	An Ultra-Low-Power Application-Specific Processor with Sub-VT Memoriesfor Compressed Sensing
	1 Introduction
	2 Compressed Sensing
	2.1 Reduced Complexity Compression Algorithm
	2.2 Pseudo Random Number Generation

	3 Sub-VT CS Processor
	3.1 Processor Baseline Architecture
	3.2 Sub-VT Memories
	3.3 Index Sequence Implementations
	3.4 Instruction Set Extension for CS

	4 Power and Performance Results
	4.1 Synthesis and Energy Profiling
	4.2 Sub-VT Energy Profiling
	4.3 Simulation Results
	4.4 Case Study: CS-Based ECG Signal Compression

	5 Conclusion
	References

	Configurable Low-Latency Interconnectfor Multi-core Clusters
	1 Introduction
	2 2DNetwork
	2.1 Network Architecture Protocol
	2.2 Request Block
	2.3 Response Block

	3 3D Interconnection Network
	3.1 Network Architecture
	3.2 Network Operation

	4 Experimental Results
	4.1 Physical Analysis
	4.2 Power Analysis
	4.3 Timing Analysis

	5 Conclusion
	References

	A Hexagonal Processor and Interconnect Topology for Many-Core Architecturewith Dense On-Chip Networks
	1 Introduction
	2 Related Work
	3 Processor Shapes and Topologies
	3.1 NoC Topology Analysis Criteria
	3.2 Processor Tile Shapes
	3.3 The Proposed Topologies

	4 Application Mapping
	4.1 Target Interconnect Architecture
	4.2 Application Mapping Methodology
	4.3 Benchmark Application Mapping
	4.4 Application Mapping Results

	5 Physical Design Methodology and Hexagonal Processor Tile Design
	5.1 Physical Design Methodology
	5.2 Hexagonal Processor and CMP Design

	6 Experiment Results
	6.1 Processor Implementation
	6.2 Application Area and Power

	7 Conclusion
	References

	Fault-Tolerant Techniques to Manage Yield and PowerConstraints in Network-on-Chip Interconnections
	1 Introduction
	2 Fault and Test Models
	3 Related Work
	4 The Adaptive Technique Based on Adaptive Routing and Data Splitting: ATARDS
	4.1Fault Coverage
	4.2 Connectivity

	5 Experimental Results
	6 Conclusion
	References

	On the Automatic Generation of Software-Based Self-Test Programs for Functional Testand Diagnosis of VLIW Processors
	1 Introduction
	2 VLIW Architecture Summary
	3 Related Work
	4 The Proposed Method
	4.1 Fragmentation
	4.2 Customization
	4.3 Selection and Scheduling
	4.4 Classification and Equivalence Check

	5 Experimental Results
	5.1 Optimized SBST Program Generation Results
	5.2 Diagnosis Evaluation Results

	6 Conclusions and Future Work
	References

	SEU-Aware Low-Power MemoriesUsing a Multiple Supply Voltage Array Architecture
	1 Introduction
	2 Background
	2.1 Dynamic Transient Error Detection
	2.2 Column-Based Supply Vdd Array Architecture

	3 ProposedWork
	3.1 SEU-Aware Low-Power Memory Array
	3.2 Memory Characterization Framework
	3.3 Optimal Recovery Voltage Vhigh Analysis

	4 Power Calculation
	4.1 Probabilistic Power Model using Vhigh and DRV

	5 Experimental Results
	5.1 Various Peak Current Ipeak Impact on Vhigh
	5.2 Transistor Sizing Impact on Vhigh
	5.3 Dynamic Noise Margin (DNM) for SEU Analysis
	5.4 Power Reduction

	6 Conclusions
	References

	CMOS Implementation of Threshold Gateswith Hysteresis
	1 Introduction
	2 NCL Overview
	3 CMOSNCLGateDesign
	3.1 Dynamic Gates
	3.2 Semi-Static Gates
	3.3 Differential Gates
	3.4 Static Gates

	4 NewStaticGates
	5 Sizing New Static Gates
	6 Simulation Results
	7 Conclusion
	References

	Simulation and Experimental Characterizationof a Unified Memory Device with Two Floating-Gates
	1 Introduction
	2 Device Fabricat ion and Modeling
	3 Dynamic Mode Operation
	4 Nonvolatile Mod de Operation
	5 Concurrent de Mod Operation
	6 Circuit Simulati ions
	7 Applications
	8 Conclusion
	References

	Author Index

