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Abstract. The cold start problem is a potential issue in computer-based 
information systems that involve a degree of automated data modeling. 
Specifically, the system cannot infer a rating for users or items that are new to 
the recommender system when no sufficient information has been gathered. 
Currently, more websites are providing the relationships between users, e.g., the 
trust relationships, to help us alleviate the cold start problem. In this paper, we 
proposed a trust-based recommender model (RSOL) that is able to recognize the 
user’s recommendation quality for different items. A user’s recommendation 
quality contains two parts: “Rating Confidence”- an indicator of the user’s 
reliability when rating an item, and “Proximity Prestige”- an indicator of the 
user’s influence on a trust network. In our experimental results, the proposed 
method outperforms the Collaborative Filtering and trust-based methods on the 
Epinions dataset. 
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1 Introduction 

1.1 Background 

The recommender system is an important technology to help users find relevant and 
useful information in the information explosion era. For example, there are 
recommenders for movies, music [4], etc., such as MovieLens and Netflix. 
Recommender system analyze many factors, including the user’s explicit preferences 
(rating history and user/item latent features), implicit preferences (the trust network), 
and other users’ profiles, and recommend the items (movie, music, etc.) to users. 

With the development of the internet, more and more websites, such as Epinions.com 
have provided the trust relationships between users, so trust-based recommendation 
methods have been highly developed. The trust-based methods use the information from 
the given user’s neighbors in a trust network for recommendations. 

In this paper, we expect to predict the ratings of users who have fewer rating 
profiles to be observed. To consider enough ratings for reliable users, we proposed a 
Recommender System with Opinion Leadership model (RSOL) that combines two 
indicators: Rating Confidence and Proximity Prestige. The name also represents a 
solution of a recommender system; that is why we named our model RSOL. 
                                                           
* Corresponding author. 
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[2, 5-8] and memory-based [1, 3, 10]. In model-based approaches, a model should be 
learned; the model stores the model parameters. In memory-based approaches, no 
model will be learned first; it learns by exploring neighbors from dataset. 

TidalTrust [1] is a trust-based method; it is a modified breadth-first search 
algorithm in a trust network. It predicts that people who users trust highly at the 
shortest distance are the most important users. The TidalTrust algorithm explores all 
the users at the shortest distance from the source user, and then it averages their 
ratings, weighted by the trust value between the source user and the users being 
explored. To compute the indirect trust value between user u and v, it aggregates the 
trust value between u’s direct neighbors, weighted by the direct trust values of u and 
its direct neighbors. TidalTrust uses ratings that are dependent on the users at shortest 
distance, but it does not consider that whether we should trust these users about the 
target item. Additionally, TidalTrust only considers the users who are at the shortest 
distance; it ignores the trustworthy users who are slightly farther from the source user 
in the trust network. 

MoleTrust [10] is also a trust-based method. The idea of MoleTrust is similar to 
TidalTrust. MoleTrust also weights the ratings of trusted users with a trust score, but 
it considers all users up to a maximum depth. However, the larger the maximum 
depth is, the higher the cost of MoleTrust, so previous works consider the users up to 
a maximum depth of 6. Because MoleTrust considers the users who are close to the 
source user, within a maximum depth of 6, it does not consider different set of users 
who are also appropriate to target item. It loses many users who are trustworthy or 
have rated the target item but are far from the source user. 

TrustWalker [3] has been introduced as a random walk method that combines a 
trust-based and item-based recommendation to predict the rating of single items. 
TrustWalker performs random walks on the trust network to find ratings for the target 
items or similar items. The prediction from TrustWalker is based on the ratings from 
these trusted users up to a certain depth (which is 6) and the similar items rated by 
them. However, when finding the trusted users who can appropriately predict an 
rating for a target item, TrustWalker is not dependent on the target item but only on 
the users on the trust network. It may lose the users who are trustworthy about the 
target item because of the sparsity of trust network. 

3 Method 

Our model consists of two indicators: the Rating Confidence for each user on different 
items and the Proximity Prestige of user on the trust network. First of all, we do the 
item clustering, and then calculate the distance between users’ preferences and  
characteristic of target item and Proximity Prestige on different sub-network. We then 
return the ratings of each user with high recommendation quality. In the following 
subsections, we will discuss the details of our RSOL model. 
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vector of ck. h is a vector that represents an item. Additoinally, we use the Euclidian 
distance to compute the confidence of a user about the characteristics of the target 
item. ju denotes the preference vector of the user u and i is the target item’s 
characteristic vector. ݀ሺ݅, ݆௨ሻ ൌ ඥሺ݅ଵ െ ݆௨ଵሻଶ ൅ ሺ݅ଶ െ ݆௨ଶሻଶ ൅ ڮ ൅ ሺ݅ௗ െ ݆௨ௗሻଶ                          ሺ2ሻ 

We have two types of Rating Confidence, Global and Local. Global Rating 
Confidence calculates the distance between the user and the centroids of the clusters. 
Every item in the same cluster will have the same Rating Confidence for a user who is 
involved in the cluster. Local Rating Confidence calculates the distance between the 
users and the items in a cluster. Every item will have different Rating Confidence for 
different users involved in the cluster. 

Item Representation 

Matrix Factorization [6] decomposes the ratings matrix into two lower dimension 
matrices ܲ א ܴ|௎|ൈௗ  and ܳ א ܴ|ூ|ൈௗ  which contain corresponding vectors with 
length k for every user and item. The resulting dot product, qi

Tpu, captures the 
interaction between user u and item i – the user’s overall interest in the item’s 
characteristics. ̂ݎ௨௜ ൌ  ௨                                                                        ሺ3ሻ݌௜்ݍ

To determine the latent feature vectors (pu and qi), the system minimizes the 
regularized squared error on the set of observed ratings: ݉݅݊௉כ,ொכ ෍ ൫ݎ௨௜ െ ௨ܲ ௜ܳ ்൯ଶ ൅ ሺԡߣ ௨ܲԡଶ ൅ ԡ ௜ܳԡଶሻሺ௨,௜ሻאோ೚                             ሺ4ሻ 

Here, Ro is the set of the (u,i) pairs for which rui is observed. 
Thus, Matrix Factorization characterizes every user and item by assigning them a 

latent feature vector. We use the item feature vector qi to represent each item. 

Example 2: Fig. 3 is an example of Rating Confidence. Suppose we have three users: 
Alan, Bobby, and Claire. None of them have watched movie 1; Alan has watched 
movie 2 and 3. Bobby has watched movie 4 and 5. Claire has watched movies 6 and 
7. Training the Matrix Factorization model with ݇ ൌ 2 yields two matrices P and Q 
consisting of user and item factor vectors: 

 

R ൌ ൥0 5 4 0 0 0 00 0 0 3 1 0 00 0 0 0 0 4 2൩ ,   Q ൌ
ێێۏ
ێێێ
0.75ۍ 0.831.1 0.20.1 1.20.2 1.20.9 1.01.3 0.30.9 1.1 ۑۑے

ۑۑۑ
ې   ୷୧ୣ୪ୢୱሱۛ ሮۛ   p୳,୫ଵୀ อ 0.65 0.640.375 1.151.16 0.56อ 
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Here, ug denotes the given user, i denotes the target item, ܫ௖ೖ denotes a set of items 
in a cluster k, and ݎҧ௖ೖሺݑሻ denotes the average rating of user u in cluster ck. ܴܥ௨,௜ denotes the RC of user u for target item i, and ܲ ௨ܲ denotes PP of user u in trust 
network. ݎ௨೒,௜ -denotes the predicted rating of given user ug for target item i. 

4 Experiments 

4.1 Dataset Description and Experiment Design 

The Epinions dataset [9] is very sparse (99.99% and 99.97%). It contains 49k users 
with at least one rating, of which 16k users (34.3%) are cold start users who have less 
than 5 ratings (similar to previous works [3, 10]). It is important to consider the 
performance of the recommendation system for cold start users. The statistics for the 
Epinions rating data are summarized in Table 1. 

Table 1. Statistics for the Epinions dataset 

 

Table 2. The number of ratings, users, and items in four types of cold start users. CS-1 denotes 
cold start user who has one rating, and so on 

 Density #Rating #User #Item 
CS-1 0.000192 7,739 7,739 5,201 

CS-2 0.000362 7,874 3,937 5,518 
CS-3 0.000485 8,751 2,917 6,188 
CS-4 0.000619 9,268 2,317 6,461 

 
Table 2 shows the number of the cold start users, ratings they have, and items 

included, and the density of the user item matrix. 

4.2 Comparison Methods and Evaluation Metrics 

In our experiments, we compare the results with two baselines and three state-of-the-
art methods. The following is the description of the labels we use to denote the 
methods: 

Rating Data Epinions
#-of-User 49,288
#-of-Item 139,783
#-of-Rating 664,824
Min Rating 1
Max Rating 5
Avg. Rating 3.99
Rating Sparsity 99.98%

Trust Data Epinions
Nodes 49,288
Edges 487,183
Avg. Node Degree 19.77
Avg. Shortest Path 4
Diameter 14
Avg. Trustor 2,070
Avg. Trustee 3,338
Trust Network Sparsity 99.96%
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User-based CF: We implemented the user-based Collaborative Filtering method 
[12], with the Pearson Correlation as the similarity measure. Item-based CF: We 
implemented the item-based Collaborative Filtering method [11] with the Pearson 
Correlation as similarity measure. TidalTrust is the trust-based approach from a 
previous study [1], proposed by Golbeck. MoleTrust: This is the approach in a paper 
[10], which is similar to TidalTrust. We use max_depth=6 for MoleTrust as well. 
TrustWalker is the approach in a paper [3], which combine the trust-based and item-
based recommendations. RSOLRC(Global) and RSOLRC(Local): This method is one version 
of our RSOL model in which we only consider the RC metric for all <user, item> 
pairs. RSOLPP(Global) and RSOLPP(Local): This method is another version of our RSOL 
model in which we only consider the PP metric for all users on a trust network in 
different item clusters. RSOLAll: This is the full version of the RSOL model. We 
combine the two user metrics to help us choose the trustworthy users. 

We perform leave-one-out cross validation in our experiment which is the same as 
the previous works [1, 10, 11]. In the leave-one-out cross validation, we try to predict 
a target item rating by using the remain ratings and the trust relationships between 
users in trust network. In our experiment, the evaluation metric we use to measure the 
error is the Root Mean Squared Error (RMSE) which is defined as follows: 

RMSE ൌ ඨ∑ ሺr୳୧ െ rො୳୧ሻଶழ௨,௜வאR౪౨౗౟౤|R୲୰ୟ୧୬|                                            ሺ7ሻ 

As the paper [3] discussed, the purpose of using trust is primarily enhancing the 
Coverage without sacrificing the Precision. We use the Coverage, Precision, F-
Measure metric that is mentioned in the paper. 

Precision ൌ 1 െ RMSE4                                                      ሺ8ሻ 

F െ Measure ൌ 2 ൈ Precision ൈ CoveragePrecision ൅ Coverage                                      ሺ9ሻ 

4.3 Evaluation Results 

Fig. 5 is the results of RMSE for different values of the parameter k, which is one of 
the versions of the RSOL model. We use a different threshold for RC to select the 
reference users to conduct our experiments. The result of the RSOLRC(Local) is better 
than the RSOLRC(Global), because RSOLRC(Local) considers the RC of every user for 
different items. We can select different set of the trustworthy users according to the 
target items in a cluster that we want to predict. In contrast, RSOLRC(Global) just selects 
the same set of the trustworthy reference users for different target items in a cluster. 
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Fig. 5. RMSE of RSOLRC(Global) and RSOLRC(Local) for different values of k 

 

Fig. 6. RMSE of RSOLPP(Global) and RSOLPP(Local) for different values of k 

Fig. 6 is the RMSE for different values of the parameter k in two versions of the 
RSOL model. We use Top-n users with highest PP to select the reference users to 
perform our experiments. Fig. 10 shows us that the result of Global PP is better than 
Local PP. Now we have two metrics, Local RC and Global PP, that have smaller 
square errors. We combine these two metrics to help us find trustworthy users. 

Fig. 7 shows us that the combination of Global PP and Local PP is the best of the 
four previously mentioned versions of our RSOL model. By using two metrics, we can 
find the trustworthy users who are have the highest recommendation confidence for 
the target items and prestige in the trust network. The two metrics help us decide 
which benefits the predictions. 

As shown in Table 3, also shows the F-Measure together with Precision and 
Coverage for all methods. When comparing the RMSE of “Local” and “Global” 
shows that considering the effect of items in different cluster reduces the square error. 
It shows that all four versions of RSOL model outperform all other methods according 
to the combination of precision and coverage. Notably, RSOL's coverage is 29.83% 
more than that of TrustWalker, which makes RSOL model is best in terms of F-
Measure. 

 
 



510 J.-Y. Wang and H.-Y

Fig. 7. RMS
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