
David Eyers
Karsten Schwan (Eds.)

 123

LN
CS

 8
27

5

ACM/IFIP/USENIX 14th International Middleware Conference
Beijing, China, December 2013
Proceedings

Middleware 2013

Lecture Notes in Computer Science 8275
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

David Eyers Karsten Schwan (Eds.)

Middleware 2013
ACM/IFIP/USENIX
14th International Middleware Conference
Beijing, China, December 9-13, 2013
Proceedings

13

Volume Editors

David Eyers
University of Otago
Department of Computer Science
PO Box 56, Dunedin, 9054, New Zealand
E-mail: dme@cs.otago.ac.nz

Karsten Schwan
Georgia Tech
College of Computing
266 Ferst Drive, Atlanta, GA 30332-0765, USA
E-mail: schwan@cc.gatech.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45064-8 e-ISBN 978-3-642-45065-5
DOI 10.1007/978-3-642-45065-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953718

CR Subject Classification (1998): C.2, D.2, H.4, H.2, H.3, C.4, K.6.5, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This edition marks the 14th ACM/IFIP/USENIX Middleware Conference. The
conference has an increasingly long history, with the first event being held in
1998, in the Lake District of England. At that time, the growing significance of
middleware technology was recognized, as was the need to support the active,
rigorous, expanding, and evolving research discipline coupled with the middle-
ware technology. The definition of the term “middleware” has also evolved sig-
nificantly over time, but retains, at its core, the notion of different levels and
layers of abstraction in distributed-computing systems. Cloud computing, and
other topics connected to increasingly massive distributed systems, are helping
maintain an increasing pace of middleware evolution. As always, the Middle-
ware Conference aims to be a premier forum for the discussion of innovations
and recent advances in all aspects of middleware systems.

The 2013 Middleware Conference included a variety of papers spanning the
design, implementation, deployment, and evaluation of middleware for next-
generation platforms such as cloud computing, social networks, and large-scale
storage and distributed systems. The middleware solutions introduced provide
features such as availability, efficiency, scalability, fault-tolerance, trustworthy
operation, and support security and privacy needs.

The research track of the conference this year reflected a very strong tech-
nical program, with 24 papers accepted out of 189 submissions. The papers
were judged based on originality, contribution, presentation quality, relevance to
the conference, and potential impact on the field. The reviewing process again
included an author feedback phase, which stimulated discussion within the Pro-
gram Committee. We accepted “big ideas” and “systems and experience” papers
as well as normal research submissions. This year, three of the accepted research
track papers are “systems and experience” papers. The main program addition-
ally included six high-quality submissions from the industry track. We were also
delighted to provide an opportunity for a retrospective discussion from the au-
thors of the paper deemed to have had highest impact from the program 10 years
ago, in this case on the topic of peer-to-peer keyword searching.

The program also included workshops on topics such as adaptive/reflective
middleware; cloud-enabled sensing; middleware modeling and evaluation; and
cloud monitoring and management. Other important events within the confer-
ence included a significantly expanded poster and demonstration session, and a
set of three tutorials. Finally, to help mentor the next generation of middleware
researchers, the conference continued its long-running doctoral symposium.

It is our privilege to have had the opportunity to serve as the Program Chairs
of the 2013 Middleware Conference and we would like to thank everyone who
made the conference so successful. The Organizing Committee provided excellent
support throughout the preparation of the conference—their many and varied

VI Preface

roles are listed after this preface. The General Chairs, Gang Huang and Rick
Schantz, consistently provided support that we greatly appreciated. The Pro-
gram Committee did a thorough job of evaluating the submissions. The Steering
Committee provided critical advice and insight, always provided in a timely
manner—particular thanks is owed to the Steering Committee Chair, Gordon
Blair. Last but not least, we would like to thank all of the authors—the out-
standing quality of the papers within the 2013 ACM/IFIP/USENIX Middleware
Conference represents significant, high-impact work that will provide an endur-
ing contribution to the middleware research field.

December 2013 David Eyers
Karsten Schwan

Organization

Middleware 2013 was organized under the joint sponsorship of the Association
for Computing Machinery (ACM), the International Federation for Information
Processing (IFIP), and USENIX.

Organizing Committee

General Chairs

Gang Huang Peking University, China
Rick Schantz BBN Technologies, USA

Program Committee Chairs

David Eyers University of Otago, New Zealand
Karsten Schwan Georgia Institute of Technology, USA

Industry Chairs

Angelo Corsaro PrismTech, UK
Tiancheng Liu IBM Research China, China

Workshop and Tutorial Chairs

Laurent Réveillère LaBRI, University of Bordeaux, France
Hailong Sun Beihang University (BUAA), Beijing, China

Demo and Poster Chairs

Songlin Hu Institute of Computing of CAS, China
Zibin Zheng Chinese University of Hong Kong, China

Doctoral Symposium Chairs

Anders Andersen University of Tromsø, Norway
Chang Xu Nanjing University, China

Sponsorship Chairs

Xiaojun Ye Tsinghua University, China
Teng Teng Kingdee Middleware, China

VIII Organization

Local Arrangements Chair

Xuanzhe Liu Peking University, China

Web Chair

Ying Zhang Peking University, China

Proceedings Chair

Dan O’Keeffe Imperial College London, UK

Registration Chair

Yingfei Xiong Peking University, China

Publicity Chairs

Tudor Dumitras Symantec Research Labs, USA
Jatinder Singh University of Cambridge, UK
Wenbo Zhang Institute of Software of CAS, China

Steering Committee

Gordon Blair Lancaster University, UK (Chair)
Jan De Meer SmartSpaceLab, Germany
Fred Douglis EMC Backup Recovery Systems, USA
Hans-Arno Jacobsen University of Toronto, Canada
Cecilia Mascolo University of Cambridge, UK
Indranil Gupta University of Illinois at Urbana-Champaign,

USA
Guruduth Banavar IBM, USA
Anne-Marie Kermarrec Inria, France
Fabio Kon University of São Paulo, Brazil
Paulo Ferreira INESC-ID, Portugal
Lúıs Veiga INESC-ID, Portugal
Rui Oliveira University of Minho, Portugal
Bettina Kemme McGill University, Canada
Priya Narasimhan Carnegie Mellon University, USA
Peter Triantafillou University of Glasgow, UK

Program Committee

Lisa Amini IBM Research, Ireland
Jean Bacon University of Cambridge, UK
Ken Birman Cornell University, USA

Organization IX

Gordon Blair Lancaster University, UK
Rajkumar Buyya The University of Melbourne, Australia
Roy Campbell University of Illinois Urbana-Champaign, USA
Antonio Carzaniga University of Lugano, Switzerland
António Casimiro University of Lisbon, Portugal
Abhishek Chandra University of Minnesota, USA
Lucy Cherkasova HP Labs, USA
Brian Cooper Google, USA
Dilma Da Silva Qualcomm, USA
Sudipto Das Microsoft Research, USA
Xavier Défago JAIST, Japan
Tudor Dumitras Symantec Research Labs, USA
Frank Eliassen University of Oslo, Norway
Patrick Eugster Purdue University, USA
Pascal Felber University of Neuchatel, Switzerland
Paulo Ferreira INESC ID / Technical University of Lisbon,

Portugal
Jose Fortes University of Florida, USA
Davide Frey Inria, France
Xiaohui Gu North Carolina State University, USA
Rachid Guerraoui EPFL, Switzerland
Matti Hiltunen AT&T Labs Research, USA
Kévin Huguenin EPFL, Switzerland
Valerie Issarny Inria, France
Arun Iyengar IBM Research, USA
Hans-Arno Jacobsen University of Toronto, Canada
Wouter Joosen KU Leuven, Belgium
Vana Kalogeraki AUEB, Greece
Bettina Kemme McGill University, Canada
Anne-Marie Kermarrec Inria, France
Fabio Kon University of São Paulo, Brazil
Vibhore Kumar IBM Research, USA
Ying Li Peking University, China
Harry Li Facebook, USA
Joseph Loyall Raytheon BBN Technologies, USA
Sebastian Michel Saarland University, Germany
Dejan Milojicic HP Labs, USA
Elie Najm Telecom-ParisTech, France
Priya Narasimhan Carnegie Mellon University, USA
Nikos Ntarmos University of Glasgow, UK
Adam Oliner University of California, Berkeley, USA
Esther Pacitti LIRMM and Inria, University of Montpellier

2, France
Peter Pietzuch Imperial College London, UK

X Organization

Padmanabhan Pillai Intel Labs, USA
Rick Schlichting AT&T Labs Research, USA
Douglas Schmidt Vanderbilt University, USA
Swami Sivasubramanian Amazon, USA
Mike Spreitzer IBM Research, USA
Peter Triantafillou University of Patras, Greece
Lúıs Veiga INESC ID / Technical University of Lisbon,

Portugal
Nalini Venkatasubramanian University of California Irvine, USA
Stratis Viglas University of Edinburgh, UK
Spyros Voulgaris VU University, The Netherlands
Dave Ward Amazon, USA
Huaimin Wang National University of Defense Technology,

China
Charles Zhang The Hong Kong University of Science and

Technology, China
Xiaoyun Zhu VMware, USA

Additional Reviewers

João Barreto
Alysson Bessani
Benjamin Billet
Kelly Rosa Braghetto
Antorweep Chakravorty
Daniel Cordeiro
Fernando Costa
William Culhane
Wilfried Daniels
Kashif Sana Dar
Maarten Decat
Ngoc Do
Stylianos Doudalis
Sérgio Esteves
Xavier Guerin
Meng Han
Benjamin Heintz
Danny Hughes
Arnaud Jegou
Bert Lagaisse
Giljae Lee
Tongping Liu

Lúıs Marques
Ioannis Mpoutsis
Navneet Kumar Pandey
Davy Preuveneers
Lucas Provensi
Zhijing Qin
Reza Rahimi
Heverson Ribeiro
Remi Sharrock
José Simão
Julian Stephen
Vinaitheerthan Sundaram
Amir Taherkordi
Patrick Valduriez
Bart Vanbrabant
Stefan Walraven
Long Wang
Peter Westerink
Nikos Zaheilas
Apostolos Zarras
Wenjie Zhang
Ye Zhao

Organization XI

Sponsoring Institutions

International Federation for Information Processing
http://www.ifip.org

Association for Computing Machinery
http://www.acm.org

Advanced Computing Systems Association
http://www.usenix.org

National Natural Science Foundation of China
http://www.nsfc.gov.cn

Peking University
http://www.pku.edu.cn

Corporate Sponsors

IBM
http://www.ibm.com

Kingdee
http://kingdee.com

Table of Contents

Distributed Protocols

FastCast: A Throughput- and Latency-Efficient Total Order Broadcast
Protocol . 1

Gautier Berthou and Vivien Quéma

VICINITY: A Pinch of Randomness Brings out the Structure 21
Spyros Voulgaris and Maarten van Steen

Experiences with Fault-Injection in a Byzantine Fault-Tolerant
Protocol . 41

Rolando Martins, Rajeev Gandhi, Priya Narasimhan, Soila Pertet,
António Casimiro, Diego Kreutz, and Paulo Veŕıssimo

SplayNet: Distributed User-Space Topology Emulation 62
Valerio Schiavoni, Etienne Rivière, and Pascal Felber

Assured Cloud-Based Data Analysis with ClusterBFT 82
Julian James Stephen and Patrick Eugster

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 103
Viswanath Nagarajan, Joel Wolf, Andrey Balmin, and
Kirsten Hildrum

Cloud Computing

DVFS Aware CPU Credit Enforcement in a Virtualized System 123
Daniel Hagimont, Christine Mayap Kamga, Laurent Broto,
Alain Tchana, and Noel De Palma

Elastic Remote Methods . 143
K.R. Jayaram

Atmosphere: A Universal Cross-Cloud Communication Infrastructure . . . 163
Chamikara Jayalath, Julian James Stephen, and Patrick Eugster

VMAR: Optimizing I/O Performance and Resource Utilization in the
Cloud . 183

Zhiming Shen, Zhe Zhang, Andrzej Kochut, Alexei Karve,
Han Chen, Minkyong Kim, Hui Lei, and Nicholas Fuller

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 204
Shripad Nadgowda, Praveen Jayachandran, and Akshat Verma

XIV Table of Contents

Cross-Tier Application and Data Partitioning of Web Applications for
Hybrid Cloud Deployment . 226

Nima Kaviani, Eric Wohlstadter, and Rodger Lea

Sprinkler — Reliable Broadcast for Geographically Dispersed
Datacenters . 247

Haoyan Geng and Robbert van Renesse

Storage

Transactional Failure Recovery for a Distributed Key-Value Store 267
Muhammad Yousuf Ahmad, Bettina Kemme, Ivan Brondino,
Marta Patiño-Mart́ınez, and Ricardo Jiménez-Peris

Views and Transactional Storage for Large Graphs 287
Michael M. Lee, Indrajit Roy, Alvin AuYoung, Vanish Talwar,
K.R. Jayaram, and Yuanyuan Zhou

Efficient Batched Synchronization in Dropbox-Like Cloud Storage
Services . 307

Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y. Zhao,
Cheng Jin, Zhi-Li Zhang, and Yafei Dai

Back to the Future: Using Magnetic Tapes in Cloud Based Storage
Infrastructures . 328

Varun S. Prakash, Xi Zhao, Yuanfeng Wen, and Weidong Shi

Efficient Node Bootstrapping for Decentralised Shared-Nothing
Key-Value Stores . 348

Han Li and Srikumar Venugopal

Services

Testing Idempotence for Infrastructure as Code . 368
Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and
Tamar Eilam

Self-scalable Benchmarking as a Service with Automatic Saturation
Detection . 389

Alain Tchana, Bruno Dillenseger, Noel De Palma, Xavier Etchevers,
Jean-Marc Vincent, Nabila Salmi, and Ahmed Harbaoui

Ditto – Deterministic Execution Replayability-as-a-Service for Java
VM on Multiprocessors . 405

João M. Silva, José Simão, and Lúıs Veiga

Table of Contents XV

Social Networks

DynaSoRe: Efficient In-Memory Store for Social Applications 425
Xiao Bai, Arnaud Jégou, Flavio Junqueira, and Vincent Leroy

O2SM : Enabling Efficient Offline Access to Online Social Media and
Social Networks . 445

Ye Zhao, Ngoc Do, Shu-Ting Wang, Cheng-Hsin Hsu, and
Nalini Venkatasubramanian

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 466
Pedro Alves and Paulo Ferreira

Ten Year Best Paper

Peer-to-Peer Keyword Search: A Retrospective . 485
Patrick Reynolds and Amin Vahdat

Author Index . 497

FastCast: A Throughput- and Latency-Efficient

Total Order Broadcast Protocol

Gautier Berthou1 and Vivien Quéma2

1 Grenoble University
2 Grenoble INP

Abstract. Many uniform total order broadcast protocols have been de-
signed in the last 30 years. Unfortunately, none of them achieves both
optimal throughput and low latency. Indeed, protocols achieving optimal
throughput rely on a ring dissemination pattern, which induces high la-
tencies. Protocols achieving low latency rely on IP multicast and fail to
achieve good throughput because of message losses. In this paper, we de-
scribe FastCast, the first protocol that achieves both optimal throughput
and low latency. To achieve low latency, FastCast relies on IP multicast.
To achieve optimal throughput, FastCast defines a protocol responsi-
ble for dynamically computing the throughput at which processes can
send IP multicast messages. Thanks to this dynamic bandwidth alloca-
tion protocol, FastCast allows multiple processes to simultaneously send
messages, while avoiding message losses. An evaluation of FastCast on a
cluster of 8 machines shows that it indeed achieves optimal throughput
and a very low latency.

1 Introduction

State-machine replication [1] is a popular technique to ensure fault-tolerance
in computer systems. The operating principle of state-machine replication is
simple: several replicas of the same software object are maintained on different
machines (also called processes). Each replica executes the same requests in the
same order and is thus consistent with other replicas. Consequently, if one or
more replicas fail, remaining replicas are consistent and guarantee accessibility
to the object. To ensure that replicas execute requests in the same order, each
replica broadcasts the requests it receives to other replicas using a uniform total
order broadcast [2], and executes requests in the order in which they are delivered
by the protocol. A uniform total order broadcast protocol ensures the following
properties for all messages that are broadcast: (1) Uniform agreement: if a replica
delivers a message m, then all correct replicas eventually deliver m; (2) Strong
uniform total order: if some replica delivers some message m before message m′,
then a replica delivers m′ only after it has delivered m.

Many uniform total order broadcast protocols have been designed in the last
30 years [3]. They can be classified into two categories: those targeting low la-
tency, and those targeting high throughput. Latency measures the time required
to complete a single message broadcast without contention, whereas throughput

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 1–20, 2013.
c© IFIP International Federation for Information Processing 2013

2 G. Berthou and V. Quéma

measures the number of broadcasts that the processes can complete per time
unit when there is contention.

Protocols targeting low latency usually rely on IP multicast, a low-level net-
working protocol allowing senders to reach multiples destinations using a single
message. These protocols do not achieve high throughput for the following rea-
son: IP multicast messages are dropped when the network is congested. To limit
congestion, protocols are designed in such a way that only one process at a time
can send IP multicast messages. As we explain in Section 3.2, this does not allow
achieving optimal throughput.

Protocols targeting high (actually optimal) throughput [4, 5] organize pro-
cesses in a virtual ring topology: each process only communicates with its suc-
cessor on the ring, using a reliable point-to-point communication protocol: TCP.
These protocols achieve significantly higher throughput than protocols targeting
low latency, e.g. +25% in a system comprising 4 processes. Nevertheless, these
protocols have a significant drawback: because of the ring topology they rely on,
latency linearly increases with the number of processes in the system.

In this paper, we present, FastCast, the first protocol that achieves both opti-
mal throughput1 and low latency. To achieve low latency, FastCast relies on IP
multicast. To achieve optimal throughput, FastCast allows multiple processes to
simultaneously send IP multicast messages. Message ordering is achieved by a
fairly classical fixed-sequencer scheme [3]. The novelty in FastCast lies in a sub-
protocol executed by all processes that dynamically computes at which through-
put each process can send IP multicast messages.

We have implemented FastCast in C++ and have compared its performance
to that achieved by two recent state-of-the-art protocols: LCR [5] and Ring-
Paxos [6]. The former achieves optimal throughput, whereas the latter aims at
achieving both high throughput and low latency. Our evaluation on a cluster of 8
machines shows that FastCast achieves optimal throughput and very low latency.
More precisely, FastCast achieves up to 86% faster throughput than RingPaxos,
and up to 247% lower latency than LCR.

This paper is organized as follows. Section 2 gives a brief overview of the
related work. Section 3 presents the FastCast protocol. A detailed performance
evaluation is provided in Section 4, before concluding the paper in Section 5.

2 Related Work

Various total order broadcast protocols have been devised during the past 30
years [3]. We can distinguish two classes of protocols: those providing uniform
agreement and those providing non-uniform agreement. In uniform agreement
protocols, if a process delivers a message, then all correct processes will even-
tually deliver it. This is not necessarily the case in non-uniform protocols: if a
node delivers a message and subsequently fail, the message might not be deliv-
ered by remaining (correct) processes. Total order broadcast protocols ensuring

1 As proved in [5], a total order broacast protocol can only achieve optimal throughput
if all processes simultaneously broadcast messages.

The FastCast Protocol 3

uniform agreement are more complex to implement and are often less efficient
than non-uniform protocols. Nevertheless, they can be used for a much broader
sets of applications. Consequently, the protocol we propose in this paper imple-
ments uniform agreement. In the remainder of this section, we do thus put more
emphasis on uniform total order broadcast protocols.

Défago and Schiper have written an extensive survey on total order broad-
cast protocols [3]. They distinguish five types of total order broadcast protocols:
fixed-sequencer, moving sequencer, privilege-based, communication history, and
destination agreement. As is explained in the survey [3], “communication his-
tory” and “destination agreement” protocols [7–16] are less efficient than other
types protocols. The three other types of protocols work as follows. In a fixed
sequencer protocol [6, 17–23], a single process is elected as the sequencer and is
responsible for the ordering of messages. The sequencer is unique, and another
process is elected as a new sequencer only in the case of sequencer failure.Moving
sequencer protocols [24–27] are based on the same principle as fixed sequencer
protocols, but allow the role of the sequencer to be passed from one process
to another (even in failure-free situations). This is achieved by a token which
carries a sequence number and constantly circulates among the processes. The
motivation is to distribute the load among sequencers, thus avoiding the bot-
tleneck caused by a single sequencer. When a process p wants to broadcast a
message m, it sends it to all other processes. Upon receiving m, processes store
it into a receive queue. When the current token holder q has a message in its
receive queue, q assigns a sequence number to the first message in the queue
and broadcasts that message together with the token. For a message m to be
delivered, it has to be acknowledged by all processes. Acks are gathered by the
token. Finally, privilege-based protocols [28–33] rely on the idea that senders can
broadcast messages only when they are granted the privilege to do so. The priv-
ilege to broadcast (and order) messages is granted to only one process at a time,
but this privilege circulates from process to process in the form of a token. As
with moving sequencer protocols, the throughput when all processes broadcast
cannot be higher than when only one process broadcasts.

All the protocols mentioned above have been designed with the goal to en-
sure low broadcast latency. Latency measures the time required to complete a
single message broadcast without contention. As shown in [5], above-mentioned
protocols are far from sustaining optimal throughput. Throughput measures the
number of broadcasts that the processes can complete per time unit. In some
high load environments, e.g. database replication for e-commerce, throughput is
often more important than latency. Indeed, under high load, the time spent by a
message in a queue before being actually disseminated can grow indefinitely. A
high throughput broadcast protocol reduces this waiting time. The authors of [5]
prove that in a system comprising N nodes interconnected by a fully-switched
network where each link has a bandwidth of B, the optimal throughput that can
be achieved by a total order broadcast protocol is equal to B ∗N/(N − 1). For
instance, in a system with 4 nodes interconnected by a gigabit ethernet switch
(B=1Gb/s), each node can deliver messages at a throughput of 1,33Gb/s. The

4 G. Berthou and V. Quéma

only protocol currently able to sustain that throughput is the LCR protocol [5].
In other protocols, the maximum throughput at which a node can deliver mes-
sages is B (1Gb/s in the example taken before). This is for instance the case of
protocols known to be efficient such as Spread [33], RingPaxos [6], or the protocol
designed by Chang and Maxemchuck [24]. The reason why these protocols do not
achieve optimal throughput is that only one node at a time is allowed to broad-
cast a message. As explained in [5], optimal throughput can only be achieved
when all nodes are allowed to simultaneously broadcast messages. Throughput-
wise, LCR is thus much more efficient than other protocols. Nevertheless, the
throughput-efficiency of LCR comes at a price: latency linearly increases with
the number of nodes in the system. This comes from the fact that, in order to
sustain high throughput, LCR uses a ring-based pipelining patterns: nodes are
organized in a virtual ring. Each node only communicates with its successor in
the ring. This pipelining pattern is efficient as it avoids message collisions, but it
is not latency-efficient. In this paper, we propose a protocol that reaches optimal
throughput, but that achieves a much lower latency than the LCR protocol.

3 The FastCast Protocol

In this section, we describe the FastCast protocol. We start by a description of
the system model we consider. We then give an overview of FastCast, followed
by a description of the three subprotocols that compose it.

3.1 System Model

We have designed the FastCast protocol for small clusters of homogeneous ma-
chines interconnected by a local area network. We assume that machines can only
fail by crashing (i.e. Byzantine failures are out of the scope of this paper), that
crashes are rare, and that each node is equipped with a perfect failure detector
(P) [34]. A perfect failure detector outputs the list of alive processes and guar-
antees strong accuracy (correct machines are never suspected to have crashed)
and strong completeness (every crash is eventually detected). In order to imple-
ment a perfect failure detector, eachmachine creates a TCP connection to all other
machines and maintains this connection during the entire execution of the proto-
col (unless the machine fails). When a connection fails, the machine tries to re-
establish it five times. If the machine does not succeed, it considers that the other
machine crashed. This is a reasonable assumption provided that, on a cluster, the
latency of the network interconnecting the machines is very low [35].

3.2 Overview

Our goal is to design a uniform total order broadcast protocol achieving optimal
throughput, while guaranteeing a low latency. In order to ensure low latency, the
best option is to use IPmulticast. Indeed, using IPmulticast, a process can reach all
other processes in the system sending a single message. This choice is natural and

The FastCast Protocol 5

most total order broadcast protocols rely on IP multicast. Unfortunately, IP mul-
ticast is not reliable: messages are dropped as soon as the network gets congested.

In order to reduce the ratio of message losses, most state-of-the-art total order
broadcast protocols rely on a simple technique: only one process is allowed to
send IP multicast messages. That way, it is easy to avoid network congestion
by controlling the rate at which the sending process broadcasts IP multicast
messages. Unfortunately, using one single sender is not enough to reach optimal
throughput. To clarify that point, we depict in Figure 1 a system comprising
3 nodes interconnected by a 1Gb/s ethernet switch. On the left part of the
Figure, only one node sends IP multicast messages. The maximum throughput
at which nodes of the system can deliver messages in that configuration is 1Gb/s.
On the right part of the Figure, we display a configuration where the 3 nodes
simultaneously send IP multicast messages. Each node sends at a throughput of
500Mb/s. In that configuration, the maximum throughput at which nodes of the
system can deliver messages is equal to 1,5Gb/s: each node delivers 500Mb/s that
it produces itself, and 1Gb/s that are sent by other nodes. This is explained by
two facts: (i) network cables and Network Interface Cards (NIC) are full-duplex
(i.e. a node can simultaneously send and receive messages on the same network
cable), and (ii) switches only forward IP multicast messages to nodes other than
the source (i.e. a node does not receive its own messages via the network).

Fig. 1. Multicasting messages (one sender on the left, multiple senders on the right)
in a system comprising 3 nodes

As the goal of FastCast is to reach optimal throughput while ensuring low la-
tency, the protocol allows multiple processes to simultaneously send IP multicast
messages. There are well-known algorithms for ensuring uniform total order of
messages multicast by different senders [3]. In this paper, our goal is not to design
a new one. Therefore, we take the simplest one, called fixed-sequencer protocol
(see Sections 3.3 and 3.4 for a short description). Rather, we focus on designing
a subprotocol in charge of synchronizing the various senders (see Section 3.5).
More precisely, our protocol allows every sender to gather the bandwidth require-
ments of other senders and to adapt its bandwidth accordingly (using a max-min
fair bandwidth allocation algorithm [36]). The idea implemented by the protocol
is simple and, as we show in Section 4, yields excellent performance.

6 G. Berthou and V. Quéma

3.3 Ordering Subprotocol

FastCast is a uniform total order broadcast protocol exporting two primitives,
utoBroadcast and utoDeliver, and ensuring the following four properties:

– Validity: if a correct process pi utoBroadcasts a message m, then pi eventu-
ally utoDelivers m.

– Integrity: for any message m, any correct process pj utoDelivers m at most
once, and only if m was previously utoBroadcast by some correct process pi.

– Uniform Agreement: if any process pi utoDelivers any message m, then
every correct process pj eventually utoDelivers m.

– Total Order: for any two messages m and m′, if any process pi utoDelivers
m without having delivered m′, then no process pj utoDelivers m′ before m.

The ordering subprotocol implementing these four properties is given in Fig-
ure 2. This is a fairly classical fixed-sequencer pattern [3]. One process is desig-
nated leader, and is in charge of assigning and broadcasting sequence numbers.
It is important to notice that the leader is not in charge of forwarding content
messages (named Data message in Figure 2). Rather, these are processes that
are in charge of sending their Data messages to all other processes (line 10). In
order to ensure uniform agreement on message delivery, every node acknowledges
the reception of the messages and the sequence numbers associated with them
(line 19 for the leader, and line 24 for other processes). Every node waits for an
acknowledgment from all nodes before delivering a message (lines 30 and 31).
That way, a node is sure that the message it delivers is known (together with
its sequence number) by all other nodes and will thus be delivered by all correct
nodes even if it subsequently fails. Note that to handle message losses, a node
that broadcasts a message uses a timer (line 12). If after some amount of time, a
node has not delivered its own message (i.e. the message is still in the pendings
array as checked in line 35), it resends the message (line 36).

3.4 Membership Management Subprotocol

In order to handle nodes joining and leaving the system, the FastCast protocol
is built on top of a group communication system [37] relying on a perfect failure
detector [34]. Processes are organized into groups, which they can leave or join.
When a process joins or leaves a group, this triggers a view change protocol.
Thanks to the perfect failure detector, faulty processes are excluded from the
group after crashing. Upon a membership change, processes agree on a new view:
the current view vr is replaced by a new view vr+1.

The view change procedure is detailed in Figure 3. Note that when a view
change occurs, every process first completes the execution (if any) of all other
procedures described in Figure 2. It then freezes those procedures and executes
the view change procedure. The latter works as follows (Note that the view
change functions make use of two primitives Rsend and Rreceive that implement
reliable communication channels. In our implementation, these primitives are
implemented using TCP): every process sends its pendings and seqnos arrays to

The FastCast Protocol 7

Procedures executed by any process pi

1: procedure initialize(initial view)
2: pendings[] ← ∅
3: seqnos[] ← ∅
4: acks[][]← ∅
5: snToDeliver ← 0
6: leader = p0

7: sn← 0

8: procedure utoBroadcast(m)
9: idm ← hash(pi,m)
10: Send 〈Data, idm,m〉 to all processes
11: pendings[idm]← m
12: SetTimeout 〈idm〉

13: upon Receive 〈Data, idm,m〉 from pj do
14: if pi = leader then
15: if � ∃ seqnos[idm] then
16: seqnos[idm]← sn
17: sn ← sn + 1
18: acks[idm][pi] = 1
19: Send 〈Ack, idm, seqnos[idm]〉 to all processes
20: pendings[idm]← m
21: tryDeliver()

22: upon Receive 〈Ack, idm, snm〉 from pj do
23: if pj = leader and ∃ pendings[idm] then
24: Send 〈Ack, idm, snm〉 to all processes
25: acks[idm][pi] = 1
26: seqnos[idm]← snm

27: acks[idm][pj] = 1
28: tryDeliver()

29: procedure tryDeliver()
30: while ∃ idm s.t. (seqnos[idm] = snToDeliver and sum(acks[idm]) = n) do
31: utoDeliver(m)
32: snToDeliver ← snToDeliver + 1
33: pendings ← pendings − pendings[idm]

34: upon Timeout〈idm〉 do
35: if ∃ pendings[idm] then
36: Send 〈Data, idm, pendings[idm]〉 to all processes
37: SetTimeout 〈idm〉

Fig. 2. Pseudo-code of the ordering mechanism

all other processes (line 2). Upon receiving these arrays, every process updates
its own pendings and seqnos arrays using those received from all other processes
(lines 15 and 17). Then, the processes send back an Ack Recover message
(line 18). Processes wait until they receive Ack Recover messages from all
processes (line 3) before sending an End Recovery message to all (line 4).
When a process receives End Recovery messages from all processes (line 5), it
can deliver all the messages for which it has a sequence number (lines 19 to 24).
Thus, at the end of the view change procedure, all processes belonging to the
new view will have delivered the same messages in the same order. Each process
then empties its pendings, seqnos and acks arrays (lines 8 to 10). Moreover, each
process uses as new leader the first process in the new view (line 11).

8 G. Berthou and V. Quéma

Procedures executed by any process pi

1: upon view change(new view) do
2: Rsend 〈Recover, pi, pendings, seqnos〉 to all pj ∈ new view
3: Wait until received 〈Ack Recover〉 from all pj ∈ new view
4: Rsend 〈End Recovery〉 to all pj ∈ new view
5: Wait until received 〈End Recovery〉 from all pj ∈ new view
6: forceDeliver()
7: view ← new view
8: pendings[] ← ∅
9: seqnos[] ← ∅
10: acks[][]← ∅
11: leader = first process in view
12: sn← nextToDeliver

13: upon Rreceive 〈Recover, pendingspj , seqnospj 〉 from pj do

14: for each [idm] ∈ pendingspj do

15: pendings[idm]← pendingspj [idm]

16: if ∃ seqnospj [idm] then

17: seqnos[idm]← seqnospj [idm]

18: Rsend 〈Ack Recover〉 to pj

19: procedure forceDeliver()
20: for each idm ∈ seqnos[idm], ordered by increasing sequence number do
21: if ∃ pendings[idm] and seqnos[idm] ≥ snToDeliver then
22: toDeliver(pendings[idm])
23: pendings ← pendings − pendings[idm]
24: snToDeliver ← seqnos[idm] + 1
25: for each idm ∈ keys(pending[idm]), ordered by increasing idm do
26: toDeliver(pendings[idm])
27: pendings ← pendings − pendings[idm]

Fig. 3. Pseudo-code of the membership management subprotocol

3.5 Bandwidth Allocation Subprotocol

In this section, we describe the bandwidth allocation protocol implemented in
FastCast. We start by describing the principles underlying its design. We then
comment a detailed pseudo-code. Finally, we give an illustration of its behavior.

Principles. The goal of the bandwidth allocation protocol is to allocate band-
width for each sending node in order to allow multiple nodes to simultaneously
send IP multicast packets, while avoiding message losses. As explained before,
having multiple senders is a requirement to ensure that the full network capa-
bility is used. If we assume that at a given time, all nodes know the bandwidth
requirements of all other nodes, it is easy to allocate bandwidth using a max-
min fair bandwidth allocation algorithm [36]. For instance, let us consider a
system comprising 3 nodes interconnected by a 1Gb/s ethernet switch. Let us
assume that each node knows that, e.g. node 1 requires 700Mb/s, node 2 requires
600Mb/s, and node 3 requires 300Mb/s. Each node can deterministically com-
pute the following fair bandwidth allocation: 500Mb/s for nodes 1 and 2, and
300Mb/s for node 3. It is indeed not possible to allocate more than 500Mb/s to
nodes 1 and 2. Otherwise, node 3 would have to receive messages at a higher
throughput than 1Gb/s, which it cannot do. Indeed, the network link connecting
node 3 to the switch has a capability of 1Gb/s.

The FastCast Protocol 9

It is possible to design a protocol allowing nodes to exchange their bandwidth
requirements and ensuring that every node knows, at any time, the bandwidth
requirements of other nodes. Such a protocol would nevertheless be costly and
would require to force all nodes to synchronize whenever one node wants to
change its bandwidth. Interestingly, it is possible to fairly allocate bandwidth
with a weaker requirement: it is enough that every node receive the various
bandwidth requirements from other nodes in the same order. This property can
be easily achieved by leveraging the FastCast protocol itself. Each time a node
wants to modify its allocated bandwidth (e.g. to increase it, or to decrease it),
it sends a message to all other nodes using the FastCast protocol. That way, all
nodes receive the bandwidth requirement messages in the same order.

The question that remains to answer is: when can nodes actually modify
their bandwidth? A node behaves differently depending on whether it requires
a decrease of its bandwidth or an increase of its bandwidth. In the case of a
bandwidth decrease, the node actually decreases its bandwidth before sending
the message notifying other nodes. That way, when other nodes receive its noti-
fication message, they know that the node already decreased its bandwidth and
they can recompute the bandwidth allocation and possibly decide to increase
their own bandwidth. In the case of a bandwidth increase, a node n cannot di-
rectly increase its bandwidth (otherwise, that could congest the network). The
node does thus first send the message notifying others that it wants to increase
its bandwidth. Upon receiving the notification that node n wants to increase
its bandwidth, other nodes locally recompute the bandwidth allocation (based
on the new bandwidth requirement sent by node n) and possibly reduce their
own bandwidth. Then, each node sends an acknowledgement to node n. It is
only after it has received acknowledgments from all other nodes that node n can
actually increase its bandwidth (by locally computing the bandwidth allocation).

Detailed Pseudo-Code. Figure 4 gives the pseudo-code of the bandwidth al-
location protocol. Every node stores the bandwidth requirements of other nodes
in the bwRequirements array and its current bandwidth in the currentBW vari-
able. The ongoing increase, delivered req, and acks fields are used when a node
wants to increase its bandwidth: ongoing increase stores the required increase
(before being stored in bwRequirements when all other processes will have ac-
knowledged it); the delivered req field indicates whether the increase notification
message has been delivered by the requiring node itself (if that is not the case,
the requiring node cannot take its own request into account even if it received
an acknowledgement from all other processes); finally, the acks field is used to
count the number of acknowledgements that have been received for the ongoing
bandwidth increase request.

Before going into the details of the protocol, let us remark that the
BW allocation function (lines 34 to 47) implements a classical max-min fair band-
width allocation algorithm [36]. The only important point to mention is that it
uses a variable, called availableBW, that represents the maximum capability of
a network link. This capability is dependent from the average message size (it is
well-known that the larger the messages, the higher the throughput that can be

10 G. Berthou and V. Quéma

Procedures executed by any process pi

1: procedure initialize(initial view)
2: bwRequirements[] ← [0, · · · , 0]
3: currentBW ← 0
4: ongoing increase← 0
5: delivered req ← false
6: acks← 0

7: procedure increase BW(amount)
8: wait until ongoing increase = 0
9: ongoing increase← amount
10: utoBroadcast 〈Incr, amount〉 to all processes

11: upon utoDeliver 〈Incr, amount〉 from pj �= pi do
12: bwRequirements[pj]← bwRequirements[pj] + amount
13: currentBW ← BW allocation()
14: Rsend 〈Ack〉 to pj

15: upon utoDeliver 〈Incr, amount〉 from pi do
16: delivered req ← true

17: upon Rreceive 〈Ack〉 from pj do
18: acks← acks + 1
19: if acks = N − 1 then
20: wait until delivered req = true
21: bwRequirements[pi]← bwRequirements[pi] + ongoing increase
22: currentBW ← BW allocation()
23: acks← 0
24: ongoing increase← 0
25: delivered req ← false

26: procedure decrease BW(amount)
27: wait until ongoing increase = 0
28: bwRequirements[pi]← bwRequirements[pi]− amount
29: currentBW ← BW allocation()
30: utoBroadcast 〈Decr, amount〉 to all processes

31: upon utoDeliver 〈Decr, amount〉 from pj �= pi do
32: bwRequirements[pj]← bwRequirements[pj]− amount
33: currentBW ← BW allocation()

34: function BW allocation()
35: nodes← pi and the (N-2) other iggest values in bwRequirements
36: availableBW ← B
37: do
38: allocated = false
39: for pj in nodes do
40: if bwRequirements[pj] ≤ availableBW/size(nodes) then
41: nodes← nodes − pj

42: availableBW ← availableBW − bwRequirements[pj]
43: allocated = true
44: while(nodes �= ∅ and allocated = true)
45: if pi ∈ nodes then
46: return availableBW/size(nodes)
47: return bwRequirements[pi]

Fig. 4. Pseudo-code of the bandwidth allocation protocol

The FastCast Protocol 11

achieved by a communication protocol [5,6]). In our implementation, we use 4kB
as the average message size and set the value of availableBW to the capability
that the network links exhibit when used with 4kB messages (this capability
is close to the optimal one). To be sure that this is the actual capability that
network links will have at runtime, the FastCast protocols batches messages to
ensure that sent messages are at least 4kB large (unless there is no contention, in
which case small messages can be sent as the protocol does not need to sustain
high throughput in such cases).

Let us now describe the bandwidth allocation subprotocol. A node can ei-
ther ask to increase its bandwidth (using the increase BW procedure at line 7)
or to decrease it (using the decrease BW procedure at line 26). Let us first de-
scribe what happens when a node wants to increase its bandwidth. The node
calls the increase BW procedure. Inside this procedure, the node utoBroadcasts

Table 1. A first example execution of the bandwidth allocation protocol

st
ep

p
ro
ce
ss

bw
R
eq
u
ir
em

en
ts

cu
rr
en

tB
W

on
g
oi
n
g
in
cr
ea

se

a
ck

s
d
el
iv
er
ed

re
q

S1
p0 [0, 0, 0] 0 0 0 -

Initial statep1 [0, 0, 0] 0 0 0 -
p2 [0, 0, 0] 0 0 0 -

S2
p0 [0, 0, 0] 0 800 0 -

p0 calls increase BW(800)
p1 calls increase BW(300)

p1 [0, 0, 0] 0 300 0 -
p2 [0, 0, 0] 0 0 0 -

S3
p0 [0, 0, 0] 0 800 0 -

p2 utoDelivers 〈Incr, 800〉p0
p2 utoDelivers 〈Incr, 300〉p1p1 [0, 0, 0] 0 300 0 -

p2 [800,300, 0] 0 0 0 -

S4
p0 [0, 0, 0] 0 800 1 -

p0 Rreceives 〈Ack〉p2
p1 Rreceives 〈Ack〉p2p1 [0, 0, 0] 0 300 1 -

p2 [800, 300, 0] 0 0 0 -

S5
p0 [0,300, 0] 0 800 1

√
p0 utoDelivers 〈Incr, 800〉p0
p0 utoDelivers 〈Incr, 300〉p1p1 [0, 0, 0] 0 300 1 -

p2 [800, 300, 0] 0 0 0 -

S6
p0 [0, 300, 0] 0 800 1

√
p1 Rreceives 〈Ack〉p0p1 [0, 0, 0] 0 300 2 -

p2 [800, 300, 0] 0 0 0 -

S7
p0 [0, 300, 0] 0 800 1

√
p1 utoDelivers 〈Incr, 800〉p0
p1 utoDelivers 〈Incr, 300〉p1p1 [800,300, 0] 300 0 0 -

p2 [800, 300, 0] 0 0 0 -

S8
p0 [800, 300, 0] 700 0 0 -

p0 Rreceives 〈Ack〉p1p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 0 0 -

12 G. Berthou and V. Quéma

Table 2. A second example execution of the bandwidth allocation protocol

st
ep

p
ro
ce
ss

bw
R
eq
u
ir
em

en
ts

cu
rr
en

tB
W

on
g
oi
n
g
in
cr
ea

se

a
ck

s
d
el
iv
er
ed

re
q

S9
p0 [800, 300, 0] 700 0 0 -

Initial state
(equal to S8 in Table 1)

p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 0 0 -

S10
p0 [800, 300, 0] 700 0 0 -

p2 calls increase BW(600)p1 [800, 300, 0] 300 0 0 -
p2 [800, 300, 0] 0 600 0 -

S11
p0 [800, 300, 600] 500 0 0 - p0 utoDelivers 〈Incr, 600〉p2

p1 utoDelivers 〈Incr, 600〉p2
p2 utoDelivers 〈Incr, 600〉p2

p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 0] 0 600 0

√

S12
p0 [800, 300, 600] 500 0 0 -

p2 Rreceives 〈Ack〉p0p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 0] 0 600 1

√

S13
p0 [800, 300, 600] 500 0 0 -

p2 Rreceives 〈Ack〉p1p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 600] 500 0 0 -

an Incr message to all other processes (line 10). When delivering this mes-
sage, other processes update their bwRequirements array (line 12), recompute
the bandwidth allocation (line 13) using the BW allocation function, and sends
an Ack message back to the requiring process (line 14). When the requiring
node has both received an acknowledgement from all other nodes and delivered
its own increase request (line 16), it updates its bwRequirements array (line 21)
and recompute the bandwidth allocation (line 22).

Let us now describe what happens when a node wants to decrease its band-
width. The node calls the decrease BW procedure. Inside this procedure, the node
updates its bwRequirements array (line 28) and recompute the bandwidth allo-
cation (line 29). The requiring node then utoBroadcasts a Decr message to all
other processes (line 30). When delivering this message, other processes update
their bwRequirements array (line 32) and recompute the bandwidth allocation
(line 33), using the BW allocation function.

Illustration. We provide three illustrations of the bandwidth allocation protocol
in Table 1, Table 2, and Table 3. We consider a system with 3 processes intercon-
nected by a 1Gb/s switch. In each table, we describe a set of steps that happen
in the system and we illustrate how the different fields of the three processes are
updated. Initially, the three processes have a null bandwidth (currentBW is equal
to 0 in Table 1, step S1). In Table 1 we depicts what happens when from this initial

The FastCast Protocol 13

Table 3. A third example execution of the bandwidth allocation protocol

st
ep

p
ro
ce
ss

bw
R
eq
u
ir
em

en
ts

cu
rr
en

tB
W

on
g
oi
n
g
in
cr
ea

se
a
ck

s
d
el
iv
er
ed

re
q

S14
p0 [800, 300, 600] 500 0 0 -

Initial state
(equal to S13 in Table 2)

p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 600] 500 0 0 -

S15
p0 [800, 300, 600] 500 0 0 -

p2 calls decrease BW(500)p1 [800, 300, 600] 300 0 0 -
p2 [800, 300, 100] 100 0 0 -

S16
p0 [800, 300, 100] 700 0 0 - p0 utoDelivers 〈Decr, 500〉p2

p1 utoDelivers 〈Decr, 500〉p2
p2 utoDelivers 〈Decr, 500〉p2

p1 [800, 300, 100] 300 0 0 -
p2 [800, 300, 100] 100 0 0 -

state, p0 calls increase BW(800) and p1 calls increase BW(300). Processes reach a
state (step S8) in which p0 has its currentBW variable equal to 700Mb/s and p1
has its currentBW variable equal to 300Mb/s. From that state (also depicted in
Table 2, step S9), Table 2 depicts what happens when p2 calls increase BW(600).
Processes reach a state (step S13) in which p0 and p2 both have their currentBW
variable equal to 500Mb/s, and p1 has its currentBW variable equal to 300Mb/s.
From that state (also depicted in Table 3, step S14), Table 3 depicts what happens
when p2 calls decrease BW(500). Processes reach a state (step S16) in which p0 has
its currentBW variable equal to 700Mb/s, p1 has its currentBW variable equal to
300Mb/s and p2 has its currentBW variable equal to 100Mb/s.

4 Performance Evaluation

In this section, we assess the performance of the FastCast protocol and compare
them to that achieved by two state-of-the-art protocols: LCR [5] and Ring-
Paxos [6]. All three protocols ensure uniform total order delivery of messages.
We chose LCR because it is the only existing protocol ensuring optimal through-
put [5]. Moreover, the choice of RingPaxos is motivated by the fact, as shown
in [6], it is the only protocol to “achieve very high throughput while providing low
latency”. The experiments only evaluate the failure free case because failures are
expected to be very rare in the targeted environment. Note that in the faulty
case, the performance of FastCast would be very similar to that of LCR pro-
vided that both protocols implement almost similar recovery algorithms. LCR
and FastCast relies on the use of a perfect failure detector, whereas RingPaxos
assumes a bound on the number of faulty processes.

14 G. Berthou and V. Quéma

We start by a description of the experimental setup. We then assess the band-
width allocation protocol of FastCast, and the throughput, the response time,
and the latency of FastCast, LCR and RingPaxos. Our evaluation shows that
FastCast is both throughput- and latency-efficient. More precisely, throughput-
wise, FastCast is as efficient as LCR. Latency-wise, FastCast is more efficient
than RingPaxos.

4.1 Experimental Setup

The experiments were run on a cluster comprising eight 8-core machines inter-
connected by a gigabit ethernet switch. Each core runs at 2.5GHz and is equipped
with 16GB of RAM. Moreover, each machine runs a Linux 2.6.32 kernel. The
raw bandwidth over IP between two machines (measured with Netperf [38]) is
equal to 942Mb/s. In order to ensure that the evaluation is fair, we have im-
plemented the FastCast and LCR protocols in C++, using the same code base
as the RingPaxos protocol. Finally, all the presented experiments start with a
warm-up phase, followed by a phase during which performance are measured.
The measurement phase lasts 5 minutes.

4.2 Bandwidth Allocation Assessment

We first assess the bandwidth allocation protocol implemented in FastCast. For
that purpose, we perform the following experiment. We deploy 4 nodes that
send messages of variable sizes: from 1kB to 6kB. The bandwidth requirements
of nodes vary during the experiment: initially all nodes require one fourth of the
total available bandwdith. After 10s, node 0 decreases its requirements, followed
by node 1 at time 20s. At time 30s, node 2 increases its bandwidth requirement.
Finally, at time 40s, node 0 increases its bandwidth requirement, whereas node
2 decreases them. The results are depicted in Figure 5. The X axis represents
the time, whereas the Y axis is used to represent the bandwidth requirements of
the 4 nodes, as well as the achieved and optimal throughput. We observe that
the achieved throughput is very close to the optimal one, thus confirming that
the bandwidth allocation protocol works efficiently. Moreover, we have used that
experiment to assess the time it takes for a node to increase its bandwidth, i.e.
the time that elapses between the moment when the node notifies other nodes
that it has new bandwidth requirements and the moment when the node is
allowed to increase its bandwidth. We have run that experiment multiple times
and the average time required by the different nodes to increase their bandwidth
was 3.8ms.

4.3 Throughput Assessment

To assess the throughput of the three protocols, we run the following benchmark:
we deploy N nodes that broadcast messages at the maximum throughput they
can sustain. The message size is fixed and set to 10kB, which allows reaching
the best possible throughput for each studied protocol. Each process periodically
computes the throughput at which it delivers messages. In this experiment, the

The FastCast Protocol 15

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

node 0
node 1
node 2
node 3

achieved
optimal

Fig. 5. Assessment of FastCast’s bandwidth allocation protocol

throughput is calculated as the ratio of delivered bytes over the time elapsed
since the end of the warm-up phase. The plotted throughput is the average of
the values computed by each process.

 0

 500

 1000

 1500

 2000

 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
b/

s)

Number of nodes

FastCast
LCR

RingPaxos
Optimal

Fig. 6. Throughput as a function of the number of nodes in the system for the FastCast,
LCR, and RingPaxos protocols

Figure 6 plots the throughput achieved by FastCast, LCR and RingPaxos
when varying the number of nodes from 2 to 8. As reference, we plot the opti-
mal throughput that can be achieved by (N/(N − 1) times the maximum link
speed of 942Mb/s). We can make several observations. First, the throughput of
FastCast and LCR is very close to optimal. As mentioned in the previous section,
this confirms the fact that the bandwidth allocation algorithm works efficiently.
Second, the throughput of RingPaxos is almost constant (at 939Mb/s). Again,

16 G. Berthou and V. Quéma

this behavior is expected: in RingPaxos, only one process at a time is allowed to
send IP multicast messages. This limits the throughput that can be sustained
by the protocol. For instance, with 4 nodes, FastCast and LCR are about 25%
faster than RingPaxos. In a system with 2 nodes, FastCast and LCR are about
86% faster than RingPaxos.

4.4 Response Time Assessment

In this section, we evaluate the response time of FastCast, LCR, and RingPaxos
in a system comprising 8 nodes. In this experiment, we vary the throughput at
which the nodes inject new messages in the system. The size of messages that
are broadcast is 10kB. During the measurement phase, for every message m it
broadcasts, a sender evaluates the elapsed time between the broadcast and the
delivery of m. For each protocol, we stop the curve when the injected load is
higher than the throughput the protocol is able to sustain.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 100 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
tim

e
(m

s)

Throughput (Mb/s)

FastCast
LCR

RingPaxos

Fig. 7. Response time as a function of the aggregated sending throughput for the
FastCast, LCR, and RingPaxos protocols

Results are depicted in Figure 7. The X axis represents the aggregated send-
ing throughput, whereas the Y axis represents the response time. We observe
that FastCast exhibits a consistently lower response time than both LCR and
RingPaxos. More precisely, FastCast achieves an up to 400% lower response time
than LCR and an up to 246% lower response time than RingPaxos. This comes
from the fact that both LCR and RingPaxos rely on a ring topology for sending
some of the messages that are exchanged among nodes: data messages in the case
of LCR, and ordering messages in the case of RingPaxos (notice that, unlike in
LCR, in RingPaxos, not all processes are organized in a ring [6]). The pipelining
pattern introduced by a ring topology increases the time it takes to process each
message with respect to a pure IP multicast protocol such as FastCast in which
no pipelining pattern is used.

The FastCast Protocol 17

4.5 Latency Assessment

In this section, we evaluate the latency achieved by the FastCast, LCR, and
RingPaxos protocols. We vary the size of the system from 2 to 8 nodes. Recall
that latency is defined as the time required to complete a message broadcast
when there is no contention. In order to measure the latency of the various pro-
tocols, we perform the following experiment: one node in the system broadcasts
10kB messages at a very low throughput (1Mb/s). The sending node evaluates
the average time that elapses between the broadcast of each message and its
delivery.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 3 4 5 6 7 8

La
te

nc
y

(m
s)

Number of nodes

FastCast
LCR

RingPaxos

Fig. 8. Latency as a function of the number of nodes in the system for the FastCast,
LCR, and RingPaxos protocols

Results are depicted in Figure 8. The X axis represents the number of nodes,
whereas the Y axis represents the latency. We observe that FastCast exhibits
a consistently lower latency than both LCR and RingPaxos. More precisely,
FastCast achieves an up to 465% lower latency than LCR and an up to 247%
lower latency than RingPaxos. Moreover, we observe that the latency of FastCast
is constant, whereas that of RingPaxos and LCR increases with the number of
nodes. This again comes from the fact that both LCR and RingPaxos rely on
a ring topology for sending some of the messages. The reason why the curve
for RingPaxos is not linear is that in RingPaxos only a majority of nodes need
to be present in the ring. For instance, RingPaxos uses the same ring size (3)
for systems comprising 4 and 5 nodes, whereas in LCR, the ring size linearly
increases with the number of nodes in the system.

5 Conclusion

We have presented FastCast, a uniform total order broadcast protocol that
achieves both optimal throughput and very low latency. Unlike previous

18 G. Berthou and V. Quéma

throughput-optimal protocols, FastCast does not rely on a ring topology for
message dissemination. Rather, FastCast uses IP multicast, a low-level commu-
nication protocol that allows reaching multiple processes using a single message.
To avoid network congestion (and thus IP multicast packet drops), FastCast
implements a subprotocol in charge of dynamically computing the throughput
at which processes are allowed to send IP multicast messages. We have evalu-
ated FastCast on a cluster of 8 machines and have compared its performance
to that achieved by two recent state-of-the-art protocols: LCR and RingPaxos.
The evaluation shows that FastCast achieves optimal throughput and very low
latency.

Currently, FastCast assumes that it is the only source of network traffic. In our
future work, we plan to study extensions of FastCast to take into account back-
ground traffic. Our intuition is that a possible approach is to have all applications
running on a set of nodes share the same bandwidth allocation mechanism.

Acknowledgements. We would like to thank Baptiste Lepers and the anony-
mous reviewers for their useful feedback on this work. Moreover, the pre-
sented work has been funded by the French ANR project called SocEDA
(http://www.soceda.org) and by the EU FP7 Specific Targeted Research
Project “PLAY” (http://www.play-project.eu).

References

1. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

2. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems, pp. 97–
145 (1993)

3. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv. 36(4), 372–421 (2004)

4. Guerraoui, R., Levy, R.R., Pochon, B., Quéma, V.: High Throughput Total Or-
der Broadcast for Cluster Environments. In: IEEE International Conference on
Dependable Systems and Networks (DSN 2006), Philadelphia, PA, USA (2006)

5. Guerraoui, R., Levy, R.R., Pochon, B., Quéma, V.: Throughput optimal total order
broadcast for cluster environments. ACM Trans. Comput. Syst. 28(2), 5:1–5:32
(2010), http://doi.acm.org/10.1145/1813654.1813656

6. Marandi, P., Primi, M., Schiper, N., Pedone, F.: Ring paxos: A high-throughput
atomic broadcast protocol. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 527–536 (2010)

7. Peterson, L., Buchholz, N., Schlichting, R.: Preserving and using context infor-
mation in interprocess communication. ACM Trans. Comput. Syst. 7(3), 217–246
(1989)

8. Malhis, L., Sanders, W., Schlichting, R.: Numerical performability evaluation of a
group multicast protocol. Distrib. Syst. Enj. J. 3(1), 39–52 (1996)

9. Ezhilchelvan, P., Macedo, R., Shrivastava, S.: Newtop: a fault-tolerant group com-
munication protocol. In: Proceedings of the 15th International Conference on Dis-
tributed Computing Systems (ICDCS 1995). IEEE Computer Society, Washington,
DC (1995)

http://www.soceda. org
http://www.play-project.eu
http://doi.acm.org/10.1145/1813654.1813656

The FastCast Protocol 19

10. Ng, T.: Ordered broadcasts for large applications. In: Proceedings of the 10th IEEE
International Symposium on Reliable Distributed Systems (SRDS 1991), pp. 188–
197. IEEE Computer Society, Pisa (1991)

11. Moser, L., Melliar-Smith, P., Agrawala, V.: Asynchronous fault-tolerant total or-
dering algorithms. SIAM J. Comput. 22(4), 727–750 (1993)

12. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

13. Birman, K., Joseph, T.: Reliable communication in the presence of failures. ACM
Trans. Comput. Syst. 5(1), 47–76 (1987)

14. Luan, S., Gligor, V.: A fault-tolerant protocol for atomic broadcast. IEEE Trans.
Parallel Distrib. Syst. 1(3), 271–285 (1990)

15. Fritzke, U., Ingels, P., Mostefaoui, A., Raynal, M.: Consensus-based fault-tolerant
total order multicast. IEEE Trans. Parallel Distrib. Syst. 12(2), 147–156 (2001)

16. Anceaume, E.: A lightweight solution to uniform atomic broadcast for asyn-
chronous systems. In: Proceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS 1997). IEEE Computer Society, Washington, DC
(1997)

17. Kaashoek, F., Tanenbaum, A.: An evaluation of the amoeba group communication
system. In: Proceedings of the 16th International Conference on Distributed Com-
puting Systems (ICDCS 1996). IEEE Computer Society, Washington, DC (1996)

18. Armstrong, S., Freier, A., Marzullo, K.: Multicast transport protocol. RFC 1301,
IETF (1992)

19. Carr, R.: The tandem global update protocol. Tandem Syst. Rev. 1, 74–85 (1985)
20. Garcia-Molina, H., Spauster, A.: Ordered and reliable multicast communication.

ACM Trans. Comput. Syst. 9(3), 242–271 (1991)
21. Birman, K., van Renesse, R.: Reliable Distributed Computing with the Isis Toolkit.

IEEE Computer Society Press (1993)
22. Wilhelm, U., Schiper, A.: A hierarchy of totally ordered multicasts. In: Proceedings

of the 14th Symposium on Reliable Distributed Systems. IEEE Computer Society,
Washington, DC (1995)

23. Ban, B.: JGroups – A Toolkit for Reliable Multicast Communication (2007),
http://www.jgroups.org

24. Chang, J.-M., Maxemchuk, N.: Reliable broadcast protocols. ACM Trans. Comput.
Syst. 2(3), 251–273 (1984)

25. Whetten, B., Montgomery, T., Kaplan, S.: A high performance totally ordered
multicast protocol. In: Birman, K.P., Mattern, F., Schiper, A. (eds.) Theory and
Practice in Distributed Systems. LNCS, vol. 938, pp. 33–57. Springer, Heidelberg
(1995)

26. Kim, J., Kim, C.: A total ordering protocol using a dynamic token-passing scheme.
Distrib. Syst. Eng. J. 4(2), 87–95 (1997)

27. Cristian, F., Mishra, S., Alvarez, G.: High-performance asynchronous atomic
broadcast. Distrib. Syst. Eng. J. 4(2), 109–128 (1997)

28. Friedman, T., Renesse, R.V.: Packing messages as a tool for boosting the perfor-
mance of total ordering protocls. In: Proceedings of the 6th International Sympo-
sium on High Performance Distributed Computing (HPDC 1997). IEEE Computer
Society, Washington, DC (1997)

29. Cristian, F.: Asynchronous atomic broadcast. IBM Technical Disclosure Bul-
letin 33(9), 115–116 (1991)

http://www.jgroups.org

20 G. Berthou and V. Quéma

30. Ekwall, R., Schiper, A., Urban, P.: Token-based atomic broadcast using unreliable
failure detectors. In: Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems (SRDS 2004), pp. 52–65. IEEE Computer Society,
Washington, DC (2004)

31. Amir, Y., Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Ciarfella, P.: The
Totem single-ring ordering and membership protocol. ACM Transactions on Com-
puter Systems 13(4), 311–342 (1995)

32. Gopal, A., Toueg, S.: Reliable broadcast in synchronous and asynchronous environ-
ments (preliminary version). In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989.
LNCS, vol. 392, pp. 110–123. Springer, Heidelberg (1989)

33. Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., Stanton, J.: The spread
toolkit: Architecture and performance. CNDS-2004-1, Johns Hopkins University,
Tech. Rep. (2004)

34. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43(2), 225–267 (1996)

35. Dunagan, J., Harvey, N.J.A., Jones, M.B., Kostic, D., Theimer, M., Wolman, A.:
Fuse: Lightweight guaranteed distributed failure notification. In: Proceedings of
6th Symposium on Operating Systems Design and Implementation, OSDI 2004
(2004)

36. Le Boudec, J.-Y.: Rate adaptation, congestion control and fairness: A tutorial.
Ecole Polytechnique Fédérale de Lausanne (2012)

37. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In:
Proceedings of the Eleventh ACM Symposium on Operating Systems Principles
(SOSP 1987), pp. 123–138. ACM Press, New York (1987)

38. Jones, R.: Netperf (2007), http://www.netperf.org/

http://www.netperf.org/

VICINITY: A Pinch of Randomness Brings
out the Structure

Spyros Voulgaris and Maarten van Steen

VU University, Amsterdam, The Netherlands
{spyros,steen}@cs.vu.nl

Abstract. Overlay networks are central to the operation of large-scale decentral-
ized applications, be it Internet-scale P2P systems deployed in the wild or cloud
applications running in a controlled—albeit large-scale—environment. A num-
ber of custom solutions exist for individual applications, each employing a tailor-
made mechanism to build and maintain its specific structure. This paper addresses
the role of randomness in developing and maintaining such structures. Taking
VICINITY, a generic overlay management framework based on self-organization,
we explore tradeoffs between deterministic and probabilistic decision-making for
structuring overlays. We come to the conclusion that a pinch of randomness may
even be needed in overlay construction, but also that much randomness or ran-
domness alone is not good either.

1 Introduction

Does randomness matter? In this paper we claim it does, and, in fact, that incorporating
randomness into distributed algorithms may even be necessary. We do not claim that
randomness is necessary for all algorithms (which would clearly be wrong), but that for
many large-scale distributed algorithms it is important to strive for simplicity through
loose control. What is lost is determinism and the potential to formally prove correct-
ness. Instead, at best only statistical properties can be shown to hold, but what can be
achieved is that those properties emerge from very simple principles. A fundamental
principle being that decisions concerning selection, of whatever kind, are sometimes
random.

To substantiate our claim, we consider the influence of randomness in distributed
gossiping algorithms. Gossiping is a well-known, and simple technique, widely de-
ployed for a range of applications, including data replication, information dissemina-
tion, and system management. Gossiping is often deterministic: the rules for selecting
whom to gossip with and what to gossip are strict, with no probabilistic element. On
the other hand, there are also many gossiping algorithms that incorporate probabilistic
decision-making, yet lack an examination of why such decision-making is so effective.

We have no general answer to where the effectiveness of randomness comes from,
yet we believe such understanding is crucial for designing large-scale distributed sys-
tems. As a step toward such understanding, we concentrate in this paper on deploying
a gossiping algorithm called VICINITY, for constructing overlay networks. It is not our
purpose to advocate our solution to overlay construction. Instead, we use VICINITY as a
framework to demonstrate how crucial incorporating randomness is. More specifically,

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 21–40, 2013.
c© IFIP International Federation for Information Processing 2013

22 S. Voulgaris and M. van Steen

we show that there is a subtle balance to be sought between deterministic and proba-
bilistic decision-making. A pinch of randomness is enough, too much randomness will
spoil matters.

Our main contribution is systematically exploring the effect of randomness in gossip-
based overlay construction. This brings us to the conclusion that such exploration can
be crucial and that deciding in advance on the amount of randomness is difficult, if not
impossible. As a side-effect of this exploration, we present VICINITY, a novel gossiping
algorithm that can be deployed for a wide range of applications.

The rest of the paper is organized as follows. Section 2 defines our system model.
Section 3 presents the VICINITY protocol, starting from its intuition, a baseline model,
and the detailed design decisions that lead to the complete version of the protocol.
Section 4 sheds some light on the individual roles of determinism and randomness.
Section 5 offers an evaluation of VICINITY through two scenarios that portray the in-
terplay between determinism and randomness and highlight their individual strengths
and weaknesses. Section 6 discusses related work, and Section 7 communicates our
overall conclusions from this work.

2 System Model

The Network. We consider a set of N nodes connected over a routed network infras-
tructure. Each node has a profile, containing some application-specific data of the node,
determining the node’s neighbors in the target structure. Such a profile could contain a
node’s geographic coordinates, a vector of preferences, social network information, or
in general any other metric that the application uses for defining the target structure.

Knowledge regarding neighbors is stored and exchanged by means of node descrip-
tors. The descriptor of a given node can be generated exclusively by that very node, but
it can be freely handed by any third node to any other. The descriptor of a node is a
tuple containing the following three fields:

1. the node’s address (i.e., IP address and port)
2. the descriptor’s age (a numeric field)
3. the node’s application-specific profile

We consider that nodes are connected over a network that supports routing. That is,
any node can send a message to any other, provided that the sender knows the receiver’s
address (i.e., IP address and port, on the Internet).

To enable communication with other nodes, each node maintains a small dynamic
list of neighbors, called its view, V . A node view is essentially a list of descriptors of
the node’s neighbors. Node views have a small fixed length, �. Their contents are dy-
namic, and are updated in an epidemic fashion through pairwise node communication.
Although this is not binding, for simplicity we will consider that all nodes have the
same view length.

The network is inherently dynamic and unreliable. Nodes can join, leave, or crash at
any time and without prior notice. In particular, we make no distinction between node
crashes and node leaves. Additionally, nodes are also free to dynamically update their
profiles. Messages may be lost, or delayed. Byzantine behavior is beyond the scope of
this work.

VICINITY: A Pinch of Randomness Brings out the Structure 23

Node p

Vicinity y
Vstr

lstr links

Peer Sampling Service
Vrnd

lrnd links

Node x
(related to p)

Vicinity y
Vstr

lstr links

Peer Sampling Service
Vrnd

lrnd links

Vicinity y
Vstr

lstr links

Peer Sampling Service
Vrnd

lrnd links

Node y
(uniformly random)

grnd links

gstr links

gossip

gossip

Fig. 1. The VICINITY framework

Finally, we consider that nodes participate in a peer sampling service [4], which
provides them with a continuous stream of links to nodes picked uniformly at random
among all alive nodes. Peer sampling protocols form a fundamental ingredient of many
peer-to-peer applications nowadays, they are completely decentralized, and they have
shown to be remarkably inexpensive.

As VICINITY strives for creating structure, we will be referring to its view as Vstr,
to its view’s length as �str, and to its gossip length (i.e., the number of descriptors ex-
changed in each direction in a gossip interaction) as gstr. Likewise, as the peer sampling
service is responsible for randomness, its view, view length, and gossip length will be
referred to as Vrnd , �rnd , and grnd , respectively.

The Target Overlay. We also consider a selection function SELECT(p,D,k), that,
given the descriptor of node p and a set D of node descriptors, returns the set of k
descriptors (or all of them, if |D| < k) that best approximate p’s outgoing links in the
target structure. The selection is based on node profiles. We assume function SELECT

to be globally known by all nodes in the system.
The selection function essentially defines the target structure. Each node p aims at

eventually establishing links to the “best” �str nodes, as defined by the outcome of SE-
LECT(p,D∗

p,�str), where D∗
p is the set of descriptors of all nodes in the network exclud-

ing p.
Often, the selection function SELECT is based on a globally defined node proximity

metric. That is, SELECT(p,D,k) sorts all descriptors in D with respect to their proxim-
ity to node p, and selects the k closest ones. Typical proximity metrics include seman-
tic similarity, ID-based sorting, domain name proximity, geographic- or latency-based
proximity, etc. Some applications may apply composite proximity metrics, combining
two or more of the above. In certain cases, though, selecting appropriate neighbors
involves more than a mere sorting based on some metric, typically when a node’s sig-
nificance as a neighbor depends not only on the its proximity to a given node, but also
on which other nodes are being selected.

24 S. Voulgaris and M. van Steen

We assume that the selection function exhibits some sort of transitivity, in the sense

that if node b is a “good” selection for node a (a
SELECT��� b), and c is a “good” selection for

b (b
SELECT��� c), then c tends to be a “good” selection for a too (a

SELECT��� c). Generally, the
“better” a selection node q is for node p, the more likely it is that q’s “good” selections
are also “good” for p.

This transitivity is essentially a correlation property between nodes sharing common
neighbors, embodying the principle “my friend’s friend is also my friend”. Surely, this
correlation is fuzzy and generally hard to quantify. It is more of a desired property
rather than a hard requirement for our topology construction framework. The framework
excels for networks exhibiting strong transitivity. However, its efficiency degrades as
the transitivity becomes weaker. In the extreme case that no correlation holds between
nodes with common neighbors, related nodes eventually discover each other through
random encounters, although this may take a long time.

3 The VICINITY Protocol

3.1 VICINITY: The Intuition

The goal is to organize all VICINITY views so as to approximate the target structure as
closely as possible. To this end, nodes regularly exchange node descriptors to gradually
evolve their views towards the target. When gossiping, nodes send each other a subset
of their views, of fixed small length gstr, known as the gossip length. The gossip length
is the same for all nodes.

From our previous discussion, we are seeking a means to construct, for each node and
with respect to the given selection function, the optimal view from all nodes currently
in the system. There are two sides to this construction.

First, based on the assumption of transitivity in the selection function, SELECT, a
node should explore the nearby nodes that its neighbors have found. In other words,
if b is in a’s VICINITY view, and c is in b’s view, it makes sense to check whether c
would also be suitable as a neighbor of a. Exploiting the transitivity in SELECT should
then quickly lead to high-quality views. The way a node tries to improve its VICIN-
ITY view resembles hill-climbing algorithms [9]. However, instead of trying to locate
a single optimal node, here the objective is to optimize the selection of a whole set of
nodes, namely the view. In that respect, VICINITY can be thought of as a distributed,
collaborative hill-climbing algorithm.

Second, it is important that all nodes be examined. The problem with following tran-
sitivity alone is that a node will be eventually searching only in a single cluster of related
nodes, possibly missing out on other clusters of also related—but still unknown—peers,
in a way similar to getting locked in a local maximum in hill-climbing algorithms.
Analogously to the special “long” links in small-world networks [12], a node needs to
establish links outside its neighborhood’s cluster. Likewise, when new nodes join the
network, they should easily find an appropriate cluster to join. These issues call for a
randomization of candidates for including in a view.

VICINITY: A Pinch of Randomness Brings out the Structure 25

Active Thread (on node p)
1 while true do
2 wait(T time units)
3 q← SELECTRANDOMNEIGHBOR ()
4 bufsnd ← Vstr

⋃ {p}
5 bufsnd ← SELECT(q, bufsnd , gstr)
6 SEND(q, bufsnd) ���������������
7 .
8 .
9 bufrcv ← RECEIVE(q) ���������������

10 bufrcv ← bufrcv
⋃

Vstr // discard duplicates
11 Vstr ← SELECT(p, bufrcv , �str)

Passive Thread (on node q)
1 while true do
2 .
3 .
4 .
5 .
6 bufrcv ← RECEIVE(p) // pcan be any node
7 bufsnd ← Vstr

⋃ {q}
8 bufsnd ← SELECT(p, bufsnd , gstr)
9 SEND(p, bufsnd)

10 bufrcv ← bufrcv
⋃

Vstr // discard duplicates
11 Vstr ← SELECT(q, bufrcv , �str)

Fig. 2. Baseline version of the VICINITY protocol

In our design we decouple these two aspects by adopting a two-layered gossiping
framework, as can be seen in Figure 1. The lower layer is the peer sampling service,
responsible for maintaining a connected overlay and for periodically feeding the top-
layer protocol with nodes uniformly randomly selected from the whole network. In its
turn, the top-layer protocol, called VICINITY, is in charge of discovering nodes that
are favored by the selection function. Each layer maintains its own, separate view, and
communicates to the respective layer of other nodes.

3.2 VICINITY: Baseline Version

To better grasp the principal operation of the protocol, we first present a baseline ver-
sion of VICINITY, shown in Figure 2. In this baseline version, each node periodically
contacts a random node from its view, and the two nodes send each other the best—
with respect to the receiver’s profile—gstr neighbors they have in their views. Note
that this baseline version of VICINITY is completely equivalent to the related T-MAN

protocol [5].
As can be seen in the pseudocode of Figure 2, each node, p, periodically picks from

its view a random node, q, to gossip with (line 3). It then applies the SELECT function
to select the gstr nodes that are best for q, from the union of its own view and p itself
(lines 4-5), and sends them to q (line 6). Upon reception of p’s message, q selects the
gstr best nodes for p among all nodes in its view and q itself (lines 7-8), and sends them
back to p (line 9). Finally, each node updates its own view, by selecting the �str best
neighbors out of its previous view and all received descriptors (line 11).

Note that the code for selecting and sending descriptors to the other side is symmetric
for the two nodes (lines 4-6 vs. lines 7-9), as well as the code for merging the received
descriptors to the current view (lines 11).

Each node essentially runs two threads. An active one, which periodically wakes up
and initiates communication to another node, and a passive thread, which responds to
the communication initiated by another node.

26 S. Voulgaris and M. van Steen

100

101

102

103

104

 0 10 20 30 40 50 60 70

m
is

si
ng

 li
nk

s

round

Complete
Vicinity

Baseline
Vicinity

Baseline Vicinity
+ Round-Robin
+ Max Diversity

+ Randomness for Me
+ Randomness for All

Fig. 3. Self-organization in a 100× 100 torus, demonstrating the performance for different ver-
sions of VICINITY, ranging from the baseline to the complete one.

3.3 VICINITY: Fine-Tuning the Nuts and Bolts

A number of interesting design choices can substantially boost the performance of the
baseline VICINITY protocol. In this section, we will motivate them and demonstrate
them in parallel. For our demonstration we will consider a sample testbed, simulated
on PeerNet [6], an open-source simulation and emulation framework for peer-to-peer
networks written in Java, branching the popular PeerSim simulator [7].

Our testbed consists of a network of 10,000 nodes, assigned distinct 2D coordinates
from a 100×100 grid, and whose aim is to self-organize in the respective torus overlay,
starting from an arbitrary random topology. Nodes maintain a short view of �str=12
descriptors each, which is initially filled with 12 neighbors picked uniformly at random
from the whole network. When gossiping, nodes send gstr=12 descriptors to each other.
The selection function selects, out of a given set, the k neighbors that are the closest to
the reference node in Euclidean space. The goal of a node is to discover its four closest
nodes out of the whole network, that is, to get their descriptors in its view. For example,
the node with coordinates (20,40) should get nodes (19,40), (21,40), (20,39), and
(20,41) among its neighbors. We consider space to wrap around the edges of the grid,
resulting in a torus topology. For example, the four closest nodes for node (0,0) are
(99,0), (1,0), (0,99), and (0,1).

Figure 3 plots the number of target links that are missing from all nodes’ views,
collectively. Initially, this accounts to 40,000 links, i.e., four for each of the 10,000
nodes. The red plot corresponds to the baseline version of VICINITY, detailed in the
previous section. Clearly, target links are being discovered at exponential speed, and
within 61 rounds nodes have self-organized to a complete torus structure. Nevertheless,
as we see, the baseline is the slowest of all five versions shown.

Round-Robin Neighbor Selection. The first improvement concerns the policy for se-
lecting which neighbor to gossip with. Rather than picking from one’s view at random,
we impose a round robin selection of gossip partners. The motivation behind this policy
is twofold.

VICINITY: A Pinch of Randomness Brings out the Structure 27

First, contacting one’s neighbors in a round-robin order improves the node’s chances
to optimize its view faster, by increasing the number of different potentially good neigh-
bors the node encounters. It is not hard to envisage that probing a single neighbor mul-
tiple times in a short time frame has little value, as the neighbor is unlikely to have
new useful information to trade every time. In contrast, maximizing the intervals at
which a given neighbor is probed, maximizes the potential utility of each gossip ex-
change. Given the rather static nature of a node’s VICINITY view when converged, this
is achieved by visiting neighbors in a round-robin fashion.

The second motivation for the round-robin policy is that, in the case of a dynamic
network, it serves garbage collection of obsolete node descriptors. A descriptor may be-
come obsolete as a result of network dynamics, if the node it points at is no longer alive.
By picking neighbors in round-robin order, neighbors are being contacted in roughly
uniform time periods, preventing any single—and possibly obsolete—descriptor from
lingering indefinitely in a node’s view.

The green plot of Figure 3 shows the evolution of the same experiment, with round-
robin neighbor selection enabled. The improved performance over the baseline version
is evident already from the early rounds of the experiment.

Maximize Descriptor Diversity. Another way to squeeze more benefit out of a sin-
gle gossip exchange, is to increase the diversity of descriptors exchanged between the
nodes. When responding to a node’s gossip request, there is no value in sending back
descriptors that were also included in that node’s message. That node has these descrip-
tors already. This can be very common especially when the network is in a converged
or nearly converged state, in which case nodes are highly clustered. In that respect, a
node’s passive thread should exclude all received descriptors from the set of potential
descriptors to send back.

The dark blue plot of Figure 3 presents the evolution of the experiment, this time
applying both the round-robin and the diversity maximization policies. The plot con-
firms our reasoning, and shows that the discovery of target links is indeed accelerated,
particularly at the stages closer to convergence, as anticipated.

Randomness for Me. Let us now take a ground-breaking twist in our design. All
configurations considered so far have been too narrowly structure-oriented. They all
exploit a single input channel of information for improving structure, and that channel
is nothing more than other nodes’ structure information. We have created a feedback
loop on structure for structure! Or rather, a vicious cycle around structure.

Depending on the scenario, this can be a strength or a weakness. Once connected
to some “good” neighbors, the chances to be introduced to additional “good” nodes
increases. Once, however, connected exclusively to largely irrelevant nodes, navigating
towards one’s “neighborhood” can be slow, or in certain occasions impossible. We defer
this discussion to Section 4.

With the intent of breaking the closed loop on structural information, we introduce
randomness as a second input channel. Rather than having nodes discover new neigh-
bors exclusively through their current neighbors’ structural links, we also offer them
the chance to sample nodes from the whole network at random.

28 S. Voulgaris and M. van Steen

To this end, we employ CYCLON [10] as a peer sampling protocol, to provide nodes
with a stream of random neighbors. In each round, each node’s active thread pulls the
random descriptors provided by its CYCLON instance, merges them with its normal
VICINITY view, and filters the union through the SELECT function to keep the best �str

neighbors. This way, if CYCLON encounters a good neighbor by chance, that neighbor
is picked up by VICINITY to improve its view.

For the sake of a fair comparison, we maintain the number of descriptors exchanged
per round the same as in the baseline configuration, that is, 12 descriptors per round.
However, now we exchange gstr=6 descriptors on behalf of VICINITY, and another six
descriptors on behalf of CYCLON. This creates precisely the same bandwidth require-
ments as in the previous configurations, although distributed in a double number of
half-sized packets.

The magenta plot of Figure 3 confirms that the configuration combining structure
with randomness significantly outperforms all previous versions. It is worth emphasiz-
ing that the rate of discovering target links is significantly faster for the whole extent
of the experiment, from its early stages until full convergence, despite the fact that
only six links are exchanged per round by VICINITY as opposed to 12 in previous
configurations.

Randomness for All. A final optization is to borrow the random links obtained through
CYCLON not only to improve a node’s own structure links, but also to improve the
quality of links it sends to other nodes.

The dark blue plot of Figure 3 clearly shows that this optimization further improves
performance. This last configuration constitutes the complete VICINITY protocol, and
will be the one used by default for the rest of the paper, unless otherwise mentioned.

3.4 VICINITY: The Complete Protocol

The complete VICINITY protocol is presented—in pseudocode—in Figure 4. The rest
of this section discusses the differences to the baseline protocol.

The round-robin neighbor selection policy is implemented by means of the age field
in descriptors. The age of a descriptor gives an approximate estimation of how many
rounds ago that descriptor either (i) was introduced in that node’s VICINITY view, or
(ii) was last used by the node for gossiping with the respective neighbor. Neighbors
of higher age are given priority when choosing a neighbor for gossiping (line 3), and
subsequently their age is zeroed, which results in a round-robin selection policy.

To approximate the number of rounds some descriptor has been in a node’s view, any
new descriptor entering a view is initialized with zero age (lines 9–active, 13–both), and
the ages of all descriptors in the view are incremented by one once per round (line 5).
Also, when a node is selected for gossiping (line 3), it is also removed from the view
(line 4), as a means for garbage collection of descriptors. If that neighbor is still alive
and responds, its fresh descriptor (with age zero) will be inserted anew to the view.

The role of randomness can be seen in lines 6–active and 9–passive, where random
neighbors are also considered in the message to send to the other peer, as well as in
line 10–active, where a node pulls “good” neighbors from its randomized view into its
structured view.

VICINITY: A Pinch of Randomness Brings out the Structure 29

Active Thread (on node p)
1 while true do
2 wait(T time units)
3 q← SELECTOLDESTNEIGHBOR ()
4 Vstr ← Vstr \{q} // for garbage collection
5 INCAGE(Vstr)
6 bufsnd ← Vstr

⋃
Vrnd

⋃ {p}
7 bufsnd ← SELECT(q, bufsnd , gstr)
8 SEND(q, bufsnd) ���������������
9 ZEROAGE(Vrnd)

10 Vstr ← SELECT(p, Vstr
⋃

Vrnd, �str)
11 .
12 bufrcv ← RECEIVE(q) ���������������
13 ZEROAGE(bufrcv)
14 bufrcv ←Vstr

⋃
bufrcv // duplicates: keep oldest

15 Vstr ← SELECT(p, bufrcv , �str)

Passive Thread (on node q)
1 while true do
2 .
3 .
4 .
5 .
6 .
7 .
8 bufrcv ← RECEIVE(p) // pcan be any node
9 bufsnd ← Vstr

⋃
Vrnd

⋃{q}
10 bufsnd ← bufsnd \bufrcv // max diversity
11 bufsnd ← SELECT(p, bufsnd , gstr)
12 SEND(p, bufsnd)
13 ZEROAGE(bufrcv)
14 bufrcv ←Vstr

⋃
bufrcv // duplicates: keep oldest

15 Vstr ← SELECT(q, bufrcv, �str)

Fig. 4. The complete VICINITY protocol

From this point on, by VICINITY we will be referring to the complete version of the
protocol, including all the design optimizations presented so far.

4 How Much Randomness Is Enough?

Randomness is good. At least for the specific scenario of the previous section. But how
general can this claim be? How good is randomness in other scenarios? Just good, or
rather necessary? How much randomness is “enough”, and how much can it assist in
structuring? Although it is infeasible to give a universal rule to quantitatively assess the
value of randomness, in this section we aim at shedding some light at these questions.

To answer these questions, we delve into the principles governing self-organization,
and we distinguish the specific roles of determinism and randomness in it.

4.1 The Role of Determinism

To explore the role of determinism, alone, isolated from the effects of randomness, let us
consider self-organization without randomness, relying exclusively on structure. To fur-
ther isolate our reasoning from the effects of randomness, including pseudo-randomness
due to nodes continuously replacing their links during the process of convergence, it
may help to think of fresh nodes joining an already converged network.

The whole operation of self-organization relies on the ability to periodically compare
potential neighbors, and on being able to determine which ones are a step closer to your
targets. We are looking, therefore, at some form of routing or orientation property in the
target overlay.

For simplicity, let us consider a very trivial case. The whole network has converged,
except for a single node, x. Node x has one target, z, and currently has exactly one
neighbor, y. Imagine, for instance, a fresh node x joining an already converged network
using an arbitrary node y as its bootstrap node. For self-organization to be successful, x
should be able to reach z through y, y’s neighbors, y’s neighbors’ neighbors, and so on.
And this should be the case for any y and any z. This dictates the first required property

30 S. Voulgaris and M. van Steen

for self-organization based exclusively on structure to be correct: the target topology
should form a strongly-connected graph.

This, however, is not sufficient. Even if a directed path from y to z exists, say con-
sisting of nodes y1, y2, . . . , yk, the selection function should be such that a call to SE-
LECT(x,Neighbors(y),gstr) returns a subset of y’s neighbors that contains y1, then a call
to SELECT(x,Neighbors(y1),gstr) returns a set of nodes that contains y2, and so on.
We will refer to this property as navigability, and we state the second required prop-
erty for correctness: the given selection function should render the given target overlay
navigable.

Note that navigability is a property of the combination of (i) the target overlay and
(ii) the selection function. Clearly, a strongly connected target overlay with a selection
function that returns “bad” selections, will not let a network self-organize. The other
way around, a selection function that works for some particular overlay will not neces-
sarily be sufficient for any overlay. For instance the proximity-based selection function
used in Section 3 is excellent for uniformly populated topologies, but it can get some
nodes trapped in “local optima” in the presence of a U-shaped gap, a well known prob-
lem of greedy geographic routing protocols [1].

4.2 The Triple Role of Randomness

Having discussed the weaknesses of determinism in self-organization, it is not hard to
imagine the benefits offered by randomization.

First, maintaining the whole overlay in a single connected partition is the cornerstone
of any large-scale decentralized application. This need is even more pressuring in the
case of a custom overlay management protocol, as the target overlay may per se con-
sist of multiple distinct components. Keeping the whole overlay connected in a single
component allows the joining of new nodes at arbitrary bootstrap points, and generally
allows the reconfiguration of nodes in case of updates to their profiles.

Second, feeding nodes with neighbors picked uniformly at random from the whole
overlay, prevents them from getting indefinitely stuck in local optima. Similarly to hill
climbing algorithms, random sampling is crucial at helping nodes reach their global
optimum.

Finally, even in target overlays and selection functions that guarantee a strongly con-
nected, navigable target overlay, the diameter of that overlay is often large. When new
nodes join a converged overlay at an arbitrary bootstrap node, it may take them long to
gradually navigate to their optimal neighbors. Having a continuous stream of random
samples from the whole network, however, gives them the opportunity to take a shortcut
link close to their target, a well-known property of random, complex networks.

5 Evaluation

Given VICINITY’s generic applicability, it is practically infeasible to provide an ex-
haustive evaluation of the framework. Instead, we will focus on the following two test
cases that underline its two key components: its reliance on structure and its benefit
from randomness:

VICINITY: A Pinch of Randomness Brings out the Structure 31

Two-dimensional Torus. This is the same overlay structure we used in Section 3.
Nodes are assigned two-dimensional coordinates, and their goal is to establish links
to their closest neighbors. Building this target topology is primarily based on the
Euclidean proximity heuristic. Informally speaking, the general idea is that nodes
gradually improve their views with closer neighbors, which they then probe to find
new, even closer ones, eventually reaching their closest neighbors. This emphasizes
the utility of the deterministic component of VICINITY.

Clustering Nodes in Groups. In this test case, nodes are split up in uncorrelated groups.
Each node’s goal is to cluster with other nodes of the same group. The key difference
with the previous test case is that nodes cannot gradually connect to groups “closer”
to their own, as there is no notion of proximity between groups. The target overlay is
explicitly clustered in non-connected components, therefore it is neither (strongly)
connected nor navigable. Finding a node of the same group can be accomplished only
by means of random encounters, which highlights the role of randomness. Once a
node of the same group is found, though, the two nodes can grreatly assist each other
by sharing their further knowledge of same group neighbors.

5.1 Two-Dimensional Torus

Overview. We consider a two-dimensional space. We assign each node (x,y) coor-
dinates, such that they are (virtually) aligned in a regular square grid organization. A
node’s coordinates constitute its profile. Each node’s goal is to establish links to its four
closest neighbors, to the north, south, east, and west (wrapping around the grid’s edges).

The natural choice of a selection function for such a target topology is one that
gives preference to neighbors spatially closer to the reference node. More formally, we
define the distance between two nodes a and b, with coordinates (xa,ya) and (xb,yb),
respectively, to be their two-dimensional Euclidean distance, assuming that space wraps
around the edges to form a torus:

dx = min{|xa− xb|, width−|xa− xb|}

dy = min{|ya− yb|, height−|ya− yb|}

dist(a,b) =
√

dx2 + dy2

The selection function SELECT(p,D,k) sorts all node descriptors in D by their distance
to the reference node p, and returns the k closest ones.

Figure 5 graphically illustrates the self-organization of a “toy-size” network of 1024
nodes into a torus overlay, depicting snapshots of the overlay at different stages. Nodes’
deterministic and randomized views have been set to a size of six, each. For clarity of
the snapshots, only the best four outgoing links of each node are shown in the figure.
Note the existence of either one or two lines between two connected nodes. This is
because links are directed. A single line denotes a single link only from one node to the
other (directionality not shown). A double line means that both nodes have established
a link to each other. In the completed target topology (last snapshot) all links are double.

32 S. Voulgaris and M. van Steen

after 1 round after 3 rounds after 6 rounds after 12 rounds

Fig. 5. Self-organization in a 32×32 torus topology

Experimental Analysis. Let us now observe the progress of self-organization for dif-
ferent network sizes and protocol configurations. Figure 6 plots the fraction of missing
target links as a function of the experiment round, for networks of size 212, 214, and
216 nodes, respectively. For each network size we present the progress of five different
configurations. For a fair comparison, we have fixed the total number of descriptors
exchanged in a single round by a node’s active thread to 12.

The thick solid blue and green lines correspond to trading exclusively deterministic
or randomized links, respectively. That is, all 12 links exchanged come either from the
deterministic view or from the randomized view, respectively. The fine line of a given
color corresponds to a very close configuration to its solid line counterpart, where just
one link has been reserved for trading neighbors of the other view type. E.g., a fine blue
line corresponds to the settings gstr=11 and grnd=1. Finally, the red line corresponds to
an equally balanced use of determinism and randomness: six links are being traded per
round for each view type.

A number of observations can be made from these graphs. Most importantly, we
easily identify determinism as the primary component responsible for efficient self-
organization. On the contrary, when randomness is used alone (solid green line), it per-
forms several orders of magnitude worse than the other protocol configurations, whose
performances are comparable to each other. This indicates that, for the given target
topology, the crucial element accelerating self-organization is determinism.

It is not hard to see why using randomness alone is so inefficient. A node’s only
chance to find a target neighbor is if that neighbor shows up in its peer sampling ser-
vice view, which is periodically refreshed with random nodes. In other words, a node is
fishing for target neighbors blindly. As expected, its time to converge increases signifi-
cantly as the size of the network grows, since the probability of spotting a target link at
random diminishes.

Note that just a “pinch” of structure in a nearly random-only configuration (fine green
line) brings a dramatic improvement to the outcome. This emphasizes the importance
of structure, particularly in an overlay as navigable as a torus topology. In this scenario,
a node has plenty of random input, while that single structured link deterministically
brings it closer to its target neighborhood in each round.

VICINITY: A Pinch of Randomness Brings out the Structure 33

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Torus, 4096 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Torus, 16384 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Torus, 65536 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li

ne
ar

)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

Fig. 6. Progress of self-organization in a torus overlay, for different configurations of VICINITY

and a total gossip length (gstr+grnd) fixed to 12

When determinism is in exclusive control (blue line), convergence comes fast as
node views deterministically improve in each round. An important observation, though,
is that in all network sizes, the determinism-only experiment slows down when ap-
proaching complete convergence. This can be explained as follows. In these experi-
ments nodes are initialized with a few random links all over the network, which are
generally long-range links. Nodes that are priviledged to be initialized with links close
to their target neighborhood, take a shortcut and converge very fast, replacing all their
initial random links with very specific, short ones. Soon enough, the network becomes
nearly converged, and nearly all long-range links have been replaced by local ones.
This, however, creates an obstacle to nodes that have not managed to converge yet, as
they can only navigate slowly, in small local steps, towards their target neighborhoods,
“crawling” in an almost converged overlay.

The aforementioned issue is circumvented by adding a “pinch” of randomness in an
otherwise fully-deterministic configuration (fine blue line). This provides nodes with an
extra source of random, potentially long-range, links. In accordance to our explanation
in the previous paragraph, this visibly accelerates the last few stages of convergence.

34 S. Voulgaris and M. van Steen

100

101

102

103

104

 0 2 4 6 8 10 12

ro
un

ds
 to

 c
on

ve
rg

e
(9

9%
)

structure (left) vs. randomness (right)

100

101

102

103

104

 0 2 4 6 8 10 12

ro
un

ds
 to

 jo
in

structure (left) vs. randomness (right)

(a) Bootstrapping of the entire network (b) Nodes joining a converged network

Fig. 7. Structure vs. Randomness in a torus topology. These graphs show the number of rounds
it takes to reach the 99th percentile of convergence when bootstrapping an entire network (left),
and the number of rounds for new nodes to join an already converged overlay (right). In all exper-
iments, exactly 12 links are being exchanged by nodes when gossipping. Each line corresponds
to a different network size (from 210 at the bottom to 217 at the top), and each dot corresponds to
a different allocation of the 12 gossip slots to structured and randomized links.

Quite clearly, the balanced use of determinism and randomness (red line) outper-
forms all other configurations. This is a firm validation of our claim that both policies
have distinct advantages to offer, which are best utilized in combination.

Determinism vs. Randomness Space Exploration. Having developed an understand-
ing on the specific roles of determinism and randomness in self-organization in a torus
topology, we now run an extensive set of experiments to create a complete picture of
their interaction.

We considered eight different network sizes, namely 210 (1024), 211, 212, 213, 214,
215, 216, and 217 (131072), and for each network size we considered all possible com-
binations of deterministic and randomized gossip lengths, so that the total gossip length
stays fixed and equal to 12. This accounts to 13 experiments per network size, that
is, all combinations such that gstr∈ [0,12] and grnd= 12−gstr. For each experiment we
recorded the number of rounds it took to establish 99% of the target links.

Figure 7(a) presents the results of these experiments. Each experiment is represented
by a single dot, while dots corresponding to experiments on the same network size have
been connected by lines. The lowest line corresponds to networks of 210 nodes and the
highest one to networks of 217 nodes. The horizontal axis shows the specific combi-
nation of determinism and randomness used in each experiment. More specifically, the
value on the horizontal axis corresponds to the gstr value of each configuration.

The first observation is that the dynamics of convergence follow the same patterns
in all network sizes. It should be particularly noted that these results correspond to a
single run per configuration, which prevents loss of information due to averaging.

The most distinguishing message from this graph is that the use of randomness alone
(rightmost column) performs orders of magnitude worse than any other configuration.
It can also be observed that the other extreme, that is, complete determinism (leftmost
column) performs a bit worse than most other configurations that combine the two.

VICINITY: A Pinch of Randomness Brings out the Structure 35

Node Joins. In addition to the experiments carried out so far, where all nodes start the
VICINITY protocol at the same time, we also want to explore the behavior of VICINITY

when nodes join an already converged overlay.
We considered the same combinations of network sizes and protocol configurations

as the ones of Figure 7(a). In each experiment, we first let the network converge to the
target topology, and then we inserted a new node initialized with exactly one neighbor
picked at random, and we recorded how many rounds it took for that node to find its
target neighbors.

Figure 7(b) shows the number of rounds it took a node to reach its target vicinity in
networks of the aforementioned sizes and configurations.

As expected, purely randomized views result in slower convergence. However, we
observe remarkably bad behavior also for determinism-only configurations. The expla-
nation is that, as has also been discussed earlier, navigating in an already converged
overlay in the absence of random long-range shortcuts is a slow process.

These graphs emphasize our claim, that neither of the two policies is sufficiently
good on its own. Determinism and randomness appear to be complementary in creating
structure.

5.2 Clustering Nodes in Groups

Overview. In this scenario, we assign each node a group ID, which constitutes its
profile. The goal is to form clusters of nodes that share the same group IDs. From a
node’s perspective, the goal is to establish links to other nodes with the same group ID.

The only comparison operator defined on node profiles is equality of group IDs. By
comparing their profiles, nodes can tell whether they belong to the same group or not.
However, no other type of comparison or proximity metrics apply: any foreign group is
“equally foreign”, there is no notion of ranking or proximity. The target topology has
been explicitly selected to form a non-connected, non-navigable graph, to shed light at
the operation of VICINITY in such overlays.

The selection function SELECT(p,D,k) is simple and straightforward. It starts by
selecting in a random sequence descriptors from D whose group ID is the same as
p’s. If these are fewer than k, it continues by selecting randomly from the rest of the
descriptors.

Similarly to the torus scenario, Figure 8 provides a graphical illustration of an 1024-
node network self-organizing into the target overlay. Again, nodes’ deterministic and
randomized views have been set to a size of six, each. Nodes are assigned group IDs
such that a total of 16 groups exist, each having 64 nodes. Nodes are plotted in a layout
that places members of the same group together, purely to make visualization intuitive.
As far as the protocol operation is concerned, nodes do not have coordinates, but only
their group ID. To avoid cluttering the graph, only two random outgoing links of each
node’s Vstr view are shown, with links to foreign groups given higher priority. This way,
when a node in Figure 8 appears to have no links to groups other than its own, it is
guaranteed that all its Vstr links point at nodes within its group.

Experimental Analysis. Figure 9 presents the progress of self-organization of the
grouping scenario, for the same network sizes and protocol settings used in the torus

36 S. Voulgaris and M. van Steen

after 1 round after 2 rounds after 5 rounds after 8 rounds

Fig. 8. Self-organization into 16 groups of 64 nodes each, in a 1024-node network

overlay. That is, network sizes of 212, 214, and 216 have been considered, and the sum
of the structured (gstr) and randomized (grnd) gossip length has been fixed to 12. Note
that in this scenario, the group size is fixed to 64 nodes, therefore the networks of 4096,
16384, and 65536 nodes consist of 64, 256, and 1024 groups, respectively.

To better interpret the experimental results, we should build a good understanding of
nodes’ goals in this scenario. A node’s task is divided in two steps: first, discover the
right cluster; second, get well connected in it. The deterministic component of VICIN-
ITY excels in the second. Through a single link to the target cluster, a node rapidly learns
and becomes known to additional nodes in that cluster. It turns out that the crucial step
in this test case is the first one: discovering the target cluster.

Returning now to the results of Figure 9, the most important observation is that, con-
trary to the torus scenario, randomness is clearly the key component for self-organization.
Determinism alone (solid blue line) is consistently unable to let nodes find their group
partners, indefinitely failing to build the target topology.

It is not hard to see why pure determinism fails. As nodes start clustering with other
nodes of the same group, the pool of intergroup links in the network shrinks signifi-
cantly. As explained above, once a node forms a link and gossips to one other node of
its group, chances are it will acquire plenty of links to more nodes of the same group,
rapidly trading its intergroup for intragroup links. In not so many rounds, most nodes
end up having neighbors from their own groups exclusively. The problem comes with
nodes that have not encountered nodes of their group early enough. If a node’s neigh-
bors are all from other groups, and these groups have already clustered into closed,
self-contained clusters, the node has no chances whatsoever to be handed a link to a
node of its own group, ever. A neighbor from such a self-contained foreign group can
only provide alternative neighbors of that same, foreign group. The node, thus, finds
itself in a dead end.

This demonstrates the need of a source of random, long-range links, to prevent such
dead end scenarios. Indeed, just a “pinch” of randomness (fine blue line) is enough
to save the day. It may not account for the most efficient configuration, but it clearly
bridges the huge gap between dead end and convergence. This is a particularly sig-
nificant observation, as it clearly demonstrates that involving randomness, even just a
“pinch” of it, is not just a matter of performance, but a matter of correctness.

VICINITY: A Pinch of Randomness Brings out the Structure 37

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Clusters, 4096 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Clusters, 16384 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

10-5

10-4

10-3

10-2

10-1

100

 0 20 40 60 80 100

round

Clusters, 65536 nodes

 100 1000

fr
ac

tio
n

of
 m

is
si

ng
 li

nk
s

(li
ne

ar
)

(lo
ga

rit
hm

ic
)

Structure
Str. w/ pinch Rnd.

Half - half
Rnd. w/ pinch Str.

Randomness

Fig. 9. Progress of self-organization in disjoint groups, for different configurations of VICINITY

and a total gossip length (gstr+grnd) fixed to 12

When randomness acts on its own (solid green line), exposing each node to 12 ran-
dom links in each round, convergence is certainly faster. However, in the lack of the
deterministic component of VICINITY, a node should rely on randomness to discover
independently each of the 12 target nodes of the same group.

Augmenting an almost complete randomness-based configuration with just a “pinch”
of determinism (fine green line), gives the best achievable results. This was expected.
Nodes, in this configuration, put nearly all of their communication quota on the hunt
for same group nodes, through randomization. At the same time, this single link they
reserve for targeted, deterministic communication, is sufficient to let them discover very
fast all nodes of their group once they have discovered at least one of them.

Finally, the middleground configuration (red line), combining the deterministic and
randomized components each with a gossip length of six descriptors, performs reason-
ably well in all cases, even if giving higher priority on randomness seems to improve
things further for large networks.

38 S. Voulgaris and M. van Steen

100

101

102

103

104

 0 2 4 6 8 10 12

ro
un

ds
 to

 c
on

ve
rg

e
(9

9%
)

structure (left) vs. randomness (right)

100

101

102

103

104

 0 2 4 6 8 10 12

ro
un

ds
 to

 jo
in

structure (left) vs. randomness (right)

(a) Bootstrapping of the entire network (b) Nodes joining a converged network

Fig. 10. Structure vs. Randomness in group clustering. The number of rounds it takes to reach the
99th percentile of convergence when bootstrapping an entire network (left), and the number of
rounds for new nodes to join an already converged overlay (right). Experiments corresponding to
value 0 of the horizontal axis do not converge, as they rely exclusively on determinism without
any pinch of randomness.

Determinism vs. Randomness Space Exploration. Similarly to the torus scenario,
we perform a number of experiments to assess the performance of all combinations of
determinism and randomness for a number of different network sizes.

Figure 10(a) plots the number of rounds needed for each experiment to build the
target overlay. Recall that in the node grouping scenario, we identified randomness as
being the key component for self-organization. This is clearly depicted in this graph,
as the more randomness we use the faster we converge. However, when randomness is
used exclusively, without any assistance from determinism (rightmost column), conver-
gence is slower.

Note that experiments corresponding to a determinism-only configuration (leftmost
column) did not converge, hence they were omitted from the plots.

Node Joins. Finally, we want to assess the number of rounds it takes new nodes to find
their location in the target overlay, when joining an already converged network.

Figure 10(b) presents the results of these experiments. In accordance with the number
of rounds it takes a whole network to converge from scratch, the rounds it takes nodes
to join already converged overlays is very comparable.

The clear message from this graph is that, as we have consistently experienced also
in our previous experiments, the two extremes should be avoided. Pure determinism in
the case of node grouping, with a non-connected target structure, should be avoided
by all means, as it will fail to build the target overlay. Pure randomness should also be
avoided, as it will provide poor performance.

Concluding our entire evaluation of self-organization, we can state that picking a
configuration that balances determinism with randomness, is a safe option for a system
that self-organizes the network efficiently and works for diverse topologies.

VICINITY: A Pinch of Randomness Brings out the Structure 39

6 Related Work

The work most closely related to VICINITY is the T-MAN protocol, by Jelasity et.
al. [2,3,5]. T-MAN is focused exclusively on the deterministic structuring aspect in self-
organization of overlays. Although its design does employ a peer sampling service, this
is used exclusively for providing nodes with random views once, during intialization, as
well as for synchronizing nodes to start the topology building process together. As such,
it is targeted at bootstrapping overlays, rather than maintaining them under dynamic
network conditions. For example, garbage collection for stale descriptors and support
for nodes joining an already converged overlay have not been considered in the design.
The baseline version of VICINITY, shown in Figure 2, is nearly equivalent to the T-
MAN protocol.

Earlier efforts for self-organization of overlays have led to solutions that are tai-
lormade for specific applications, such as [11], which clusters users of a file-sharing
application based on the content they share.

BuddyCast is a file recommendation mechanism embedded in the Tribler [8] Bit-
Torrent client. Inspired by [11], it essentially constitutes a deployment of VICINITY in
the real world, clustering users by their file content preferences, to provide them with
relevant recommendations.

7 Conclusions

Does randomness matter? The main conclusion from our research is a clear affirmative
answer. In some cases, having probabilistic decision-making is even necessary.

In our study, we have concentrated exclusively on overlay construction and main-
tenance. For this domain it is also clear that structure matters as well. Having only
randomness may severely affect the behavior of our overlay-maintenance algorithm.
What is striking, however, is that adding either a pinch of randomness accompanying
an otherwise deterministic technique, or adding a pinch of structure to an otherwise
fully random process can have dramatic effects. In our examples we have been able to
trace with reasonable confidence why such pinches of randomness or structure helped,
but there is still much research to be done when it comes to developing more general
insights and to identifying which classes of algorithms and data structures benefit from
randomness and which not.

The foundational question is why a specific mix of randomness and structure works
so well, and how much of a pinch will indeed do the job. Our study sheds some light
on this question, but also makes clear that much more work, and extended to other
subfields, is necessary to come to a principled approach when dealing with designing
large-scale distributed systems.

References

1. Cadger, F., Curran, K., Santos, J., Moffett, S.: A survey of geographical routing in wireless
ad-hoc networks. IEEE Communications Surveys Tutorials 15(2), 621–653 (2013)

2. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based Overlay Topology Management. In:
Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005.
LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

40 S. Voulgaris and M. van Steen

3. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay topology management. In: Brueck-
ner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS
(LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

4. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic net-
works. ACM Trans. Comp. Syst. 23(3), 219–252 (2005)

5. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: Gossip-based fast overlay topology con-
struction. Comput. Netw. 53(13), 2321–2339 (2009)

6. PeerNet, http://acropolis.cs.vu.nl/PeerNet
7. PeerSim, http://peersim.sourceforge.net
8. Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema, D.H.J., Rein-

ders, M., van Steen, M.R., Sips, H.J.: Tribler: a social-based peer-to-peer system: Research
articles. Concurr. Comput.: Pract. Exper. 20(2), 127–138 (2008)

9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall
Press, Upper Saddle River (2009)

10. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for
unstructured p2p overlays. Journal of Network and Systems Management 13(2), 197–217
(2005)

11. Voulgaris, S., van Steen, M.: Epidemic-Style Management of Semantic Overlays for Content-
Based Searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
1143–1152. Springer, Heidelberg (2005)

12. Watts, D.J.: Small Worlds, The Dynamics of Networks between Order and Randomness.
Princeton University Press, Princeton (1999)

http://acropolis.cs.vu.nl/PeerNet
http://peersim.sourceforge.net

Experiences with Fault-Injection in a Byzantine

Fault-Tolerant Protocol

Rolando Martins1, Rajeev Gandhi1, Priya Narasimhan1, Soila Pertet1,
António Casimiro2, Diego Kreutz2, and Paulo Veŕıssimo2

1 Department of Electrical & Computer Engineering, Carnegie Mellon University
rolandomartins@cmu.edu, priya@cs.cmu.edu, {rgandhi,spertet}@ece.cmu.edu
2 Departamento de Informática, Universidade de Lisboa, Faculdade de Ciências

{casim,pjv}@di.fc.ul.pt, kreutz@lasige.di.fc.ul.pt

Abstract. The overall performance improvement in Byzantine fault-
tolerant state machine replication algorithms has made them a viable
option for critical high-performance systems. However, the construction
of the proofs necessary to support these algorithms are complex and
often make assumptions that may or may not be true in a particular
implementation. Furthermore, the transition from theory to practice is
difficult and can lead to the introduction of subtle bugs that may break
the assumptions that support these algorithms. To address these issues
we have developed Hermes, a fault-injector framework that provides an
infrastructure for injecting faults in a Byzantine fault-tolerant state ma-
chine. Our main goal with Hermes is to help practitioners in the complex
process of debugging their implementations of these algorithms, and at
the same time increase the confidence of possible adopters, e.g., systems
researchers, industry, by allowing them to test the implementations. In
this paper, we discuss our experiences with Hermes to inject faults in
BFT-SMaRt, a high-performance Byzantine fault-tolerant state machine
replication library.

Keywords: Byzantine fault-injector, failure diagnosis, cloud-computing,
Byzantine fault-tolerance, intrusion-tolerance.

1 Introduction

Recent improvements in the performance of Byzantine Fault-Tolerant (BFT) pro-
tocols have made such protocols feasible for building fault- and intrusion-tolerant
systems. Presently, there are multiple implementations of BFT protocols at dis-
posal of systemdevelopers tomake their own system fault/intrusion-tolerantwith-
out worrying about having to implement the functionality by themselves.
However, as other research projects [1] have observed, while current state-of-the-
art BFT protocol implementations have considerably improved the performance
of the fault-free path, they often fail to properly handle all of the corner cases.
The end result is that while many BFT implementations can efficiently handle the
complexity of Byzantine failures, they often suffer from multiple orders of mag-
nitude reductions in throughput and long periods of unavailability when in the

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 41–61, 2013.
c© IFIP International Federation for Information Processing 2013

42 R. Martins et al.

presence of non-independent faults, such as colluding malicious nodes. This often
poses a dilemma for system programmers – on the one hand the use of a publicly
available implementation of BFT protocol allows programmers to develop fault-
and intrusion-tolerant systems without worrying about implementing these com-
plicated aspects themselves while, on the other hand, there is a question about the
ability of an implementation to actually handle complex as well as simple failures
in an efficient manner.

System developers often need answers to multiple questions about a particular
BFT protocol before they are able to select it and be confident that the imple-
mentation will actually meet all of their requirements. Questions can vary from
performance to robustness and trustworthiness, such as the following examples.
What kind of faults does the system tolerates? Does it really tolerates arbitrary
faults? Or only more common faults, e.g. crash faults? What is the degradation
of system throughput in the presence of faults? Are there thresholds for fault-
arrival rates, beyond which the system breaks down? How does a BFT protocol
compare with others?

Software fault injection is often used in software testing to quantitatively as-
sess the impact of faults/bugs in the software. We use a similar approach to
assess the performance of a BFT protocol and answer questions like the afore-
mentioned ones that developers may have about the behavior of a protocol in
the presence of faults. In this paper, we describe Hermes, our fault injection
framework created to help BFT protocol developers in the strenuous task of
testing the behavior of a BFT implementation under a diverse and broad range
variety of faults. To show its usability, we used Hermes to assess the behavior of
BFT-SMaRt [2], a well-known BFT protocol implementation.

Hermes allows system developers to get insight into the performance of a
BFT protocol implementation by allowing them to inject faults and observe the
behavior of the system. Hermes’s fault injection architecture is flexible and allows
protocol independent faults (like crash faults, network faults) as well as protocol
dependent faults (like corrupt headers, forged signatures) to be injected into a
BFT protocol. Our approach is clearly distinguished from existing ones by the
fact that we provide a way to simultaneously inject faults across multiple nodes,
allowing different type of faults to be injected in different nodes. Furthermore,
by simply selecting the appropriate set of faults, the user can enforce a specific
fault model, e.g., if collusion is outside the fault model, then no collusion faults
can be used.

We built Hermes using AspectJ [3], for the JAVA runtime, and AspectC++ [4],
for the C++ runtime, which allows it to seamlessly weave the fault-injecting
infrastructure into the target protocol. The use of Aspect-Oriented Programming
(AOP) was to avoid source-code modifications on the target system, especially
in context-free faults, i.e., faults that do not modify or access any internal state
of the protocol. We decided not to use dynamic weaving because it would in-
troduce further complexity into the infrastructure. As such, the injection points
are statically weaved and compiled into the target source code.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 43

Hermes does not require a system developer to be familiar with the BFT
protocol or its implementation for injecting protocol independent faults. On the
other hand, protocol dependent faults, such as payload size corruption, require
that the developer performs some modifications to the source code. A minimal
amount of adaptation is unavoidable because it depends on the specific details
of protocol in use. In our experience with BFT-SMaRt, it took us about two
hours to inject protocol dependent faults.

2 Related Work

There has been considerable work done in developing fault injection systems [5–8]
and analyzing the dependability of fault-tolerant systems [9–11]. Loki [5] is a
fault injector for distributed systems that injects faults based on a partial view
of the global system state. Loki allows the user to specify a state machine and a
fault injection campaign in which faults are triggered by state changes. DBench
Project [6] aimed to develop standards for creating dependability benchmarks
for computer systems. This joint cooperation characterized benchmarks as rep-
resenting an agreement that is widely accepted both by the computer industry
and/or by the user community. Orchestra [9] is a fault injector that uses an
interception approach similar to ours to inject communication faults into any
layer in the protocol stack. The fault injection core provides the ability to filter,
manipulate, and inject new messages. Ferrari [12] (Fault and Error Automatic
Real-Time Injection) uses software traps to inject CPU, memory, and bus faults.
The Fault Tolerance and Performance Evaluator (Ftape) [13] allows developers
to inject faults into user mode registers in CPUs, memory locations, and the
disk subsystem. Doctor [7] (Integrated Software Fault Injection Environment)
allows developers to inject CPU faults, memory faults, and network communica-
tion faults in a system. Xception [14] takes advantage of the advanced debugging
and performance monitoring features present in many modern processors to in-
ject more realistic faults. Ballista [15] is a “black box” software testing tool that
uses combinational tests of valid and invalid parameter values for subroutine
calls, methods and functions. A good survey of fault injection techniques and
tools for testing software dependability is provided in [16].

Some of the recent research has looked at the inefficiencies of BFT protocol
implementations to handle Byzantine as well as benign faults. In [1], the authors
provide a comparative in-depth analysis of several protocols, namely [17–20], in
their pursuit to build Aardvark. Their assessment is based mainly in the use of
flooding and packet delay (in both primary and non-primary nodes). Similarly,
in Prime [21], the authors provide an evaluation of PBFT [17], a leader-based
Byzantine fault-tolerant replication protocol, but mention that their approach
should work well with all BFT protocols that are leader based, such as [19,22–26].
The experiments conducted in Prime were based on two attacks. The first in-
volved delaying ”pre-prepare” messages, while the second consisted in time-
out manipulation, where the system would become stalled until large timeouts
occurred.

44 R. Martins et al.

Fig. 1. Overview of the Hermes’s architecture

3 Hermes’s Overview

Our fault-injection platform, shown in Figure 1, is governed by a fault-injection
orchestrator that enables the injection of multiple faults, simultaneous or not,
across multiple remote nodes. The actual fault injection is performed by Hermes’s
runtime, which is incorporated into the BFT replica (through code-weaving).
The initial deployment, i.e., the initial view, of both replicas and client is ac-
complished through the use of the deployment service. However, a BFT protcol
can still reconfigure, e.g., adding a new replica, using its usual facilities without
having to interact with the deployment service, because the runtime is able to
transparently connect to Hermes’s orchestrator.

We start by characterizing the types of faults we consider in this work, followed
by the description of the orchestrator, runtime and deployment service.

3.1 Faults

We consider two types of faults, context-free faults and context-dependent faults.
The first relates to faults that can be injected without any context information.
For instance, for injecting CPU load it is not necessary to access any information
on the protocol. The second, the context-dependent faults need to access data
of the protocol being injected in the system. For example, corrupting a specific
packet type for a given consensus instance, we need to access the data contained
in the protocol header.
Context-Free Faults

· CPU Load - injects a specified amount of CPU load.
· Crash - crashes the runtime and associated BFT replica.
· Sleep - delays processing for a specified amount of time.
· Drop packet - induces a packet drop following a pre-defined policy (one-
time or percentage-wise).

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 45

Context-Dependent Faults

· Corrupt header - corrupts a packet header with the main goal of breaking
low-level protocol buffering, i.e., underflow and overflow.

· Corrupt payload - corrupts the payload of a packet with erroneous and
random information.

· Forge signatures - substitutes part of the signature set with forged signa-
tures, in an effort to convince correct nodes of an erroneous value.

· DDOS - causes the malicious nodes to start multicast messages to all correct
nodes.

3.2 Orchestrator

The orchestrator is the main component of Hermes and its goal is to provide the
orchestration between the various runtimes, that are built-in into the replicas
and client, and act as a front-end to the developer. In Section 4, we provide an
overview of the implementation and an example of its usage.

The interactions between the orchestrator and runtime are built on top of
three communication primitives: RemoteAction, Action and Notification.

Fig. 2. Action operation overview

Action

An Action is used by the runtime to verify if the fault that is about to be
injected into the replica is enabled and ready, or alternatively, if the fault is
disabled. While this operation could be used to retrieve information from the
overall execution of the injection protocol, its main purpose is to serve as syn-
chronization barrier (shown in Figure 2) for the injection of simultaneous faults.
For example, a fault is injected in the packet send procedure but it could only
be run (injected) when all the malicious nodes reach the same fault. This allows
us to test colluding among malicious nodes and also target specific test cases in
order to explore specific and tricky/uncommon faults.

46 R. Martins et al.

For achieving this, each active runtime calls an Action when it is about to
inject the fault. Because it is a synchronous operation, the runtime waits for the
reply from the orchestrator. This reply is only sent by the orchestrator when
all the malicious nodes reach the synchronization point, that is, when all the
runtimes have called the same Action. After receiving the reply, each runtime
proceeds and injects the fault.

(a) (b)

Fig. 3. RemoteAction (left) and Notification (right) operations

RemoteAction

The RemoteAction, shown in Figure 3a, is used by the orchestrator to perform
remote procedure calls in the replicas’s runtime, and it can be used to manipulate
the state of the runtime, or to retrieve some portion of state from the replica.

Notification

The notification mechanism, shown in Figure 3b, provides an asynchronous mes-
sage passing interface from a runtime to the orchestrator. Its main purpose is to
avoid the overhead associated with synchronous operations, i.e. an Action, and
is used to inform the orchestrator of the progress of the algorithm.

3.3 Runtime

The runtime’s main responsibility is to inject faults accordingly to the indica-
tions of the orchestrator. The actual fault injection is achieved through the use
of Aspect-Oriented Programming (AOP) [27]. We use aspects as a way to seam-
lessly introduce fault injection points, as well as all the necessary networking
infrastructure needed to interact with the orchestrator. We provide more details
in Section 4.

3.4 Deployment Service

The deployment service was built to allow remote bootstrap and closure of ap-
plications. While it is a general purpose deployment service, its main purpose
is to launch replicas and clients to construct the initial view of the system. It
should be noted that this does not represent an obstacle for any possible built-in
reconfiguration mechanisms, e.g., adding or removing replicas, within the BFT
protocol. All the necessary infrastructure to use Hermes is encapsulated inside
the runtime, that in turn, is weaved into the replica’s (and client) code. Thus,
independently of how a replica is deployed, the runtime will perform all the
necessary logistics.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 47

4 Implementation

We have implemented the orchestrator in JAVA, while the runtime has imple-
mentations in both JAVA and C++. To avoid the complexity/overhead intro-
duced by JAVA existing serialization mechanisms, we custom built a binary
protocol that uses little endian encoding without padding. This also allowed us
to easily extend Hermes runtime to C++, and in the future will allow to ex-
tend to other programming languages, such as python. The implementations are
freely available as open-source projects (under an Apache license version 2) at:

- https://github.com/rolandomar/hermes (JAVA runtime and orchestration)

- https://github.com/rolandomar/hermesCPP (C++ runtime)

Bootstrap Process

It is assumed that each of the hosting nodes has the deployment service running.
The orchestrator upon start-up uses the deployment service to create and boot-
strap the target protocol nodes, which in this paper are BFT-SMaRt [2] replicas
and clients. These nodes were previously weaved, with our runtime and faults,
through the use of aspects (shown in Listings 1.3 and 1.4).

After its creation by the deployment service, the runtime within each protocol
node bootstraps and connects back to the orchestrator. In turn, the orchestrator
creates a barrier for synchronizing the start of all the nodes.

4.1 Orchestrator

An overview of the API provided by the orchestrator is shown in the appendix
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps.
The faultInjection() and simultaneousFaultInjection() are the two most
important operations offered by the orchestrator. They allow for a single and si-
multaneous fault injection, respectively. In order to provide further control over
the activation of the faults, on the remote runtimes, we use the Action primitive.

1 public ActionResult onAction(

OrchestrationNodeServerClient client, Action action)

2 switch (action.getSerialID()) {
3 case CheckFaultInjectionAction.SERIAL ID: {
4 CheckFaultInjectionAction cfa =

(CheckFaultInjectionAction) action;

5 String faultID = cfa.getFaultID();

6 /∗ omitted code ∗/
7 return new CheckFaultInjectionActionResult(

(cfa.getFaultContext().getRun() < 500));

8 }
9 /∗ omitted code ∗/
10 }

Listing 1.1. Orchestration code for fine control over fault injection

https://github.com/rolandomar/hermes
https://github.com/rolandomar/hermesCPP
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps

48 R. Martins et al.

When a runtime reaches a fault, it then uses the Action primitive to check if
it should proceed with the injection. For example, we use it to only allow the
faults to become active after the 500th invocation has taken place (shown in
Listing 1.1). For now this value is fixed but can be easily ported as a parameter.

Listing 1.2 shows the code associated with Attack 1 presented in our evalua-
tion (Section 5). The attack simulates a simultaneous crash of a set of malicious
nodes. It starts with the creation of a CrashFault associated with the specific
injection point, given by faultID. In line 5, the orchestrator generates a simul-
taneous fault, in this case a crash fault. At this point, the orchestrator sends the
fault information to the malicious nodes. The test run starts with the creation
and bootstrap of a client (line 6-8), identified by "1001", that with perform 1000
invocations, with each invocation incrementing the service counter by 1.

1 public void attack1(String[] malicious) {
2 String faultID =

"2B4FA20ED54E4DA9B6B2A917D1FA723F";

3 HermesFault fault = new CrashFault(faultID);

4 try {
5 HermesFuture<Boolean> future =

simultaneousFaultInjection(malicious,fault);

6 String command = HermesConfig.

getClientCommandLaunch();

7 String[] args =

new String[]command, "1001", "1", "1000";

8 launchHermesClient(command, args, 5000);

9 boolean ret = future.get(

TIMEOUT, TimeUnit.MILLISECONDS);

10 if(!ret){
11 /∗ handle error ∗/
12 }
13 } catch (Exception ex) {
14 /∗ handle error ∗/
15 }
16 }

Listing 1.2. Orchestrator-side code for Attack 1

4.2 Runtime Code-Weaving

One of our goals was to make our approach as little intrusive as possible. For
that purpose, and as previously explained we used AOP, through the use of As-
pectJ [3], for the JAVA runtime, and AspectC++ [4] for the C++ runtime. We
use two distinct aspects, shown in Listings 1.3 and 1.4.

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 49

Runtime Startup Aspect

To seamlessly bootstrap Hermes’s runtime into the replica’s code, we use aspect
HermesStartupAspect depicted in Listing 1.3. The aspect is executed before the
actual execution of the main() procedure. It starts by retrieving the runtime
identifier from the list of the application arguments (line 5-6). This identifier is
then used to instantiate the singleton’s instance (line 7-10). The bootstrap of
the runtime is followed by the call to the actual application’s main() (line 11).

1 @Aspect

2 public class HermesStartupAspect {
3 @Around("execution (∗ bftsmart.demo.counter.

CounterServer.main*(..))")

4 public void advice(ProceedingJoinPoint jp)

throws Throwable

5 String[] args = (String[]) jp.getArgs()[0];

6 String id = args[0];

7 HermesRuntime.getInstance().setID(id);

8 try {
9 HermesRuntime.getInstance().open();

10 } catch (Exception e) { /∗ handle error ∗/}
11 jp.proceed();

12 }

Listing 1.3. Runtime bootstrap aspect for replicas and client

ServersCommunication Aspect

We needed to access the underlying communication infrastructure to inject low-
level faults, such as payload corruption. For that purpose, we created the aspect
shown in Listing 1.4. For the sake of simplicity and space we only shown the
code associated with the payload corruption attack.

The initial portion of the aspect, lines 7-13, checks if the fault is active, and
if so retrieves the information about the Paxos protocol, namely, the execution
identifier and packet type, e.g., weak and strong packet types. If this information
could not be retrieved, i.e., the message is not related to core Paxos protocol,
but belongs to surrounding infrastructure such as state transfer, we bypass the
fault injection and execute the target code (line 11). In line 14, we update the
execution identifier within the fault’s context. This information is later sent to
the orchestrator in the fault validation, that is executed in line 19.

Because this is a context-dependent fault, the execution of the fault only
triggers the verification of the fault’s validity. The actual injection is performed
in the sendBytesFailureInjected()procedure. This procedure is a duplicate of
the original code with the added fault injection mechanisms. It was not possible
to weave code around this procedure, because it was necessary to access the
underlying infrastructure, i.e., in the packet formation we needed to corrupt
payload but leave the header intact.

50 R. Martins et al.

1 @Aspect

2 public class ServerConnectionAspect {
3 static public String faultID =

"5B4FA20ED54E4DA9B6B2A917D1FA724F";

4 @Around("execution (∗ bftsmart.communication.

server.ServersCommunicationLayer.send*(..))")

5 public void advice(ProceedingJoinPoint jp)

throws Throwable {
6 HermesFault fault = HermesRuntime.getInstance().

getFaultManager().getFault(faultID);

7 if (fault != null && fault.isEnabled()) {
8 byte[] msgData = (byte[]) jp.getArgs()[0];

9 PaxosInfo info = deserialize(msgData);

10 if (info == null) {
11 jp.proceed();

12 return;

13 }
14 fault.updateCtx("RUN", info.getRun());

15 try {
16 switch (fault.getSerialID()) {
17 case BFTForgePayloadFault.SERIAL ID: {
18 BFTForgePayloadFault faultImpl =

(BFTForgePayloadFault) fault;

19 faultImpl.execute();

20 int type = faultImpl.getType();

21 Integer attack =

checkAttack(type,paxosInfo);

22 ServerConnection obj = (ServerConnection)

jp.getTarget();

23 boolean useMac = (boolean) jp.getArgs()[1];

24 obj.sendBytesFailureInjected(

attack,msgData,useMac);

25 return;

26 }
27 /∗ other faults omitted ∗/
28 }
29 } catch (Exception ex) {
30 /∗ handle error case ∗/}
31 }
32 jp.proceed();

33 }
34 }

Listing 1.4. ServerConnection aspect

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 51

5 Evaluation

Hardware Setup

We used a NUMA (Non-Uniform Memory Access) workstation with dual hexa-
cores, for a total of 12 physical cores and 24 logical threads, with 32GB of RAM
and 512GB of RAID-0 storage, comprising 2 SSDs with 256GB each.

For simulating a distributed environment we created 11 virtual machines
(VMs), using QEMU/KVM, 10 of which were dedicated to run BFT replicas
and 1 for the client. Each VM was allocated with 2GB of RAM and 2 virtual
CPUs. The orchestrator ran on the host operating system. Both host the guests
used Ubuntu 12.10 LTS as their operating system. Because the virtualized envi-
ronment already introduces delay and jitter in the network stack (around 1ms la-
tency while measuring with ICMP pings), we only constrained the total amount
of bandwidth available (both in-bounding and out-bounding) in each VM to
100Mbit/s, and thus effectively creating a 100Mbit/s network. For the purpose,
we used the TC command to manipulate the underlying network stacks, with
the following commands:
tc qdisc add dev eth0 handle ffff: ingress

tc filter add dev eth0 parent ffff: protocol ip prio 50 /

u32 match ip src 0.0.0.0/0 police rate 100mbit /

burst 100mbit drop flowid :1

5.1 Experiments

Experimental Setup

In order to assess the resiliency of BFT-SMaRt, we performed 1000 invocations
per run and injected the faults midpoint, i.e., in the 500th invocation. For such
purpose, we devised the following attacks:

· Attack 1 - Simultaneous crash: simultaneously crash all malicious nodes.
· Attack 2 - Payload forged with MAX INT : all malicious nodes forge their
payload size, setting it to MAX INT (2,147,483,647) bytes.

· Attack 3 - Delay Prepare messages below detection timeout : all malicious
nodes delay propose messages to 90% of the timeout used, e.g., for a timeout
of 3s the resulting delay would be of 2.7s.

· Attack 4 - Delay Prepare messages above detection timeout : all malicious
nodes delay propose messages by 5 times the value of the timeout, e.g., with
a timeout of 3s then the delay would be 15s.

Because of space constrains, we only show the results from attacks 1 to 4. The
remaining (5 to 9) are available for consultation in the appendix at http://www.
contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps.

For each attack, we tested it against 12 configurations, shown in Table 1, with
1f, 2f and 3f standing for 1, 2 and 3 faults injected, respectively. N is the total
number of replicas needed to enforce the 3f + 1 requirement, while M is the

http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps
http://www.contrib.andrew.cmu.edu/~martinsr/middleware13/apA.eps

52 R. Martins et al.

set of identifiers for the malicious nodes used in a particular configuration. For
example, M = {0} stands for the set of malicious nodes only containing node
“0”, whereas M = {x, y} represents a set with two randomly chosen identifiers.

Table 1. Configurations used in the attacks evaluation

Configurations

1f, |N | = 4 2f, |N | = 7 3f, |N | = 10

M # M # M

0 {0} 2 {0} 6 {0}
1 {x} 3 {x} 7 {x}

4 {0, 1} 8 {0, 1}
5 {x, y} 9 {x, y}

10 {0, 1, 2}
11 {x, y, z}

For each of these configurations we ran the attack 16 times, and computed the
average and the 95% confidence intervals. Each run (a single test) is comprised
of 1000 invocations. The maximum amount of time allowed for each run was 5
minutes. After this time, we considered that the run had failed, even if it was
not completely stalled or aborted, but rather progressing very slowly.

In our evaluation we collected the following data:

Failed Runs (FR) - the number of failed runs, including stalled or aborted
runs with a running time higher then 300s.
Fault-free Latency (LA) - the invocation latency before the fault was injected
(in milliseconds).
Faulty Latency (LB) - the invocation latency after the fault was injected (in
milliseconds).
Total Duration (D) - the total duration of the run. If the run timed out then
the total duration is 300s (in seconds).
Recovery Time (R) - the invocation latency for the 500th and 501st invoca-
tions (in seconds).
Total Faulty Invocations (FI) - the number of successful invocations per-
formed after the fault was injected. We only considered the faulty invocations
from runs that produced at least 5 invocations after the 500th invocation (oth-
erwise we considered them stalled without recovery).

The application that we chose to run was the bftsmart.demo.counter, a
simple counter built on top of the BFT-SMaRt protocol. On each invocation we
increment the counter by 1. After each successful invocation, the client sends
a notification to the orchestrator to report the invocation number and latency.
When the orchestrator receives the 1000th invocation from the client, it ends
the test and calculates the duration of that run.

The experiments were run twice. We first performed the experiments using the
default values and without any modification to the source code, whereas in the
second time we tuned the timeout values and made modifications to the source

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 53

code, of which we provide a detailed discussion on Section 5.3. The relevant
parameters used in this work are shown in Table 2.

Table 2. Parameters considered in the evaluation

Parameters
Parameter Name Default (ms) Tuned (ms)
SHORT TIMEOUT 3000 2000

TOTAL ORDER TIMEOUT 10000 3000
CONNECTION TIMEOUT 10000 3000
INVOCATION TIMEOUT 40000 60000

For certain cases the SHORT TIMEOUT is used to quickly trigger a reconfig-
uration, such as a voluntary exit from a group. The TOTAL ORDER TIMEOUT is
the main timeout used in the implementation and is used to detect when a re-
quest was not processed and subsequently trigger the leader-change protocol.
The CONNECTION TIMEOUT controls the timeout associated with the establish-
ment of a new connection to a replica. The last parameter, INVOCATION TIMEOUT,
is used by the client, more specifically through the ServiceProxy, to control the
timeout associated with each invocation.

5.2 Results

In this section we will start to discuss the performance using the default param-
eters and without any modifications to the source code (left sub-table on the
results tables 3 to 6). Later, using the knowledge gained throughout the first
round of our evaluation, we show how it helped us to track the underlying issues
and partially overcome them by tuning some of the system parameters (Table 2)
and by applying a modification to the source code (right sub-table).

Generically, we can see throughout the results that the increase in the num-
ber of nodes in the system, from 4 to 10 nodes (1f to 3f) results in a linear
increase on the fault-free invocation latency, from 16ms to 20ms (see column
LA in tables 3 to 6). In some cases, the faulty invocation latency drops after
a fault has occurred. Because the number of nodes decreases, the latency (and
overhead) associated with the protocol also decreases, except in attacks 3 and 4.
The recovery time is higher when the leaders are attacked, going upwards to 30s
in attack 3. We provide a discussion on the reasons beyond this high recovery
time in Section 5.3.

Attack 1

Our goal with attack 1 was to evaluate the impact of simultaneously crashing
multiple nodes in the system (for 2f and 3f configurations). The results from
the single fault scenario (1f configurations) are presented to provide a baseline
comparison. The results from our evaluation of attack 1 are shown in Table 3. In
our initial evaluation, using the default values and implementation, we encoun-
tered some issues with configurations 4, 8 and 10. These issues seemed related
with the change-leader protocol.

54 R. Martins et al.

After a manual inspection of logs, we found that the problem was a composi-
tion of several issues. First, we found that 40s invocation timeout (from within
the client’s ServiceProxy) was too short, and it should be at least 60s. The
stalls that we checked in the results were a direct result from this. When this
timeout is triggered, the client aborts its execution and the run ends. This also
hid the true values of the recovery time, that can reach roughly 60s (which we
concluded after some additional experimentation with larger timeouts).

Overall, we found that the default timeout values (associated with the repli-
cas) were too high for a LAN (Ethernet based network). But that did not account
for the low performance that we detected in the protocol after the injections of
the faults. After an inspection to the source code, we found a subtle bug in the
timeout management that leads to problems in the change-leader protocol. We
provide a better explanation to this problem later in Section 5.3.

Table 3. Attack 1 with the default (left) and the tuned (right) configurations

Attack 1 (Crash Fault)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 0 16±2 9±0 37±0 20±0 499±0 0 16±2 9±0 23±0 6±0 499±0
1 0 16±2 9±0 19±3 2±3 499±0 0 16±2 8±0 18±1 1±1 499±0

2 0 18±1 10±0 38±0 20±0 499±0 0 18±1 10±0 24±0 6±0 499±0
3 0 17±1 10±0 22±3 3±3 499±0 0 17±1 10±0 18±0 0±0 499±0
4 100 18±1 N/A 300±0 N/A N/A 0 18±1 11±0 30±0 11±0 499±0
5 6 17±1 11±0 38±33 2±3 499±0 0 17±1 11±0 21±1 2±1 499±0

6 0 20±0 12±0 41±0 20±0 499±0 0 20±0 12±0 27±0 6±0 499±0
7 0 20±0 12±0 21±2 1±2 499±0 0 20±0 12±0 20±0 0±0 499±0
8 100 20±0 N/A 300±0 N/A N/A 0 20±0 12±0 32±0 12±0 499±0
9 0 20±0 12±0 26±4 6±4 499±0 0 20±0 12±0 21±1 0±0 499±0
10 100 20±0 N/A 300±0 N/A N/A 0 20±0 14±1 36±0 14±0 499±0
11 13 20±0 13±0 55±45 0±0 499±0 0 20±0 13±0 22±1 1±1 499±0

Attack 2

We designed attack 2 for assessing the impact of overflowing in the protocol.
This was achieved by modifying the length field on the PaxosMessage packet.
The results from our evaluation are show in Table 4.

The presence of failures indicates that the protocol is susceptible to the over-
flow attack (also to underflow and payload corruption, c.f. in appendix under
attacks 6 and 7). Furthermore, the failure pattern from attack 2 closely resem-
bles the pattern of attack 1, which indicates that the underlying causes should
be the same or similar.

Using this insight, we were able to successfully track down the root of this
behavior within the source code. We found that the crash (caused by the overflow
or underflow) of the deliver thread in the low-level communication infrastructure
is omitted from the overall leader module management. The same applies when

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 55

Table 4. Attack 2 with the default (left) and the tuned (right) configurations

Attack 2 (Value/Corruption Fault)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 0 16±2 8±0 36±0 20±0 499±0 0 16±2 8±0 23±0 6±0 499±0
1 0 16±2 8±0 21±4 5±4 499±0 0 16±2 8±0 17±0 0±0 499±0

2 0 18±1 10±0 38±0 20±0 499±0 0 17±1 10±0 24±0 6±0 499±0
3 0 17±1 10±0 23±4 5±4 499±0 0 17±1 10±0 18±0 0±0 499±0
4 100 18±1 N/A 300±0 N/A N/A 0 18±1 11±0 27±0 9±0 499±0
5 13 17±1 11±0 63±43 11±5 499±0 0 17±1 11±0 20±1 1±1 499±0

6 0 20±0 13±0 40±0 20±0 499±0 0 20±0 13±0 26±0 6±0 499±0
7 0 20±0 13±0 22±2 1±2 499±0 0 20±0 13±0 21±0 0±0 499±0
8 100 20±0 N/A 300±0 N/A N/A 0 20±0 13±0 30±0 9±0 499±0
9 6 20±0 14±0 42±32 4±4 499±0 6 20±0 13±0 39±32 1±1 499±0
10 100 20±0 N/A 300±0 N/A N/A 0 20±0 15±0 34±0 12±0 499±0
11 0 20±0 15±0 31±4 10±4 499±0 0 20±0 15±0 24±1 2±1 499±0

we corrupt the payload of messages. The deliver thread detects the mismatch
between the payload and the signature but silently ignores it. The protocol is
able to recover because the timeout associated with the request is triggered
forcing the leader-change sub-protocol to change the leader. It is important to
note that BFT-SMaRt is implemented using the principle of decoupling the total
ordering of requests from the actual consensus primitive [28]. The client sends its
requests to every replica, not only the leader. This is done to prevent a malicious
leader to stall the protocol. When a replica (non-leader) detects that the leader
did not propose the request, it forwards the request to the current leader and
activates a new timeout. If this fails, then a new regency is activated through
the leader-change sub-protocol. Later in Section 5.3, we discuss the impact of
this decision on the overall protocol performance.

Possibly it would be feasible to use information from the low-level commu-
nication layer to provide further knowledge to the leader module in order to
speedup the recovery process when malicious nodes are in the role of the leader.
We discuss a possible implementation of this approach later in Section 5.3.

Attack 3 and 4

The use of a leader in BFT protocols creates a potential attack point. This
subject was previously explored by Prime [21], which shows the impact of the
presence of a malicious leader. We devised attacks 3 and 4 for assessing the
resilience of BFT-SMaRt to this kind of attack.

In certain cases, a reconfiguration can be triggered with a short timeout, that
is about one third of the regular timeout (3s in the default configuration and
2s in our tuned configuration). To avoid detection, we delay conservatively the
sending of prepare messages by 90% of the value of this timeout (2.7s for the
default configuration and 1.8s for the tuned configuration). The results from
attack 3 (Table 5) show that delay of the prepare messages by leader causes a

56 R. Martins et al.

increase of invocation latency to around 2.7s, as expected, causing the runs to
fail as they take more than 300s to finish.

Alternatively, in attack 4 (Table 6) we used 5 times the value of the short
timeout, resulting in a timeout of 15s, for the default configuration, and 10s
for the tuned version. This clearly triggers the change-leader sub-protocol but
eventually the protocol itself stalls when about 15 faulty invocations have been
processed. Again, the failure pattern also shows some correlation with the failure
pattern of attack 1.

Table 5. Attack 3 with the default configuration (left) and the tuned version (right)

Attack 3 (Timing Fault, Delay Below Timeout)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 100 16±2 2723±0 300±0 5±0 104±0 100 16±2 1822±0 300±0 3±0 157±0
1 13 16±2 86±10 51±46 0±0 449±63 19 16±2 130±10 69±54 0±0 434±65

2 100 18±1 2729±0 300±0 5±0 104±0 100 18±1 1828±0 300±0 3±0 156±0
3 13 17±1 88±10 53±45 0±0 449±64 6 17±1 46±5 35±33 0±0 477±40
4 100 18±1 2730±0 300±0 5±0 104±0 100 18±1 1828±0 300±0 3±0 156±0
5 25 17±1 186±16 88±59 1±1 400±83 38 17±1 296±16 123±66 1±0 370±81

6 100 20±0 2737±0 300±0 5±0 103±0 100 20±0 1835±0 300±0 3±0 154±0
7 6 20±0 49±7 38±33 0±0 474±46 13 20±0 89±8 55±45 0±0 456±55
8 100 20±0 2736±0 300±0 5±0 103±0 100 20±0 1835±0 300±0 3±0 154±0
9 19 20±0 136±13 73±53 1±1 424±75 19 20±0 134±10 72±53 0±0 434±65
10 100 20±0 2737±0 300±0 5±0 103±0 100 20±0 1836±0 300±0 3±0 154±0
11 38 20±0 312±22 126±66 2±1 350±93 50 20±0 444±21 160±68 1±0 327±84

Table 6. Attack 4 with the default configuration (left) and the tuned version (right)

Attack 4 (Timing Fault, Delay Above Timeout)
Default Tuned

C
FR LB LA D R FI FR LB LA D R FI
(%) (ms) (ms) (s) (s) (#) (%) (ms) (ms) (s) (s) (#)

0 56 16±2 915±117 252±35 30±0 228±116 0 16±2 8±0 22±0 6±0 499±0
1 13 16±2 102±28 66±46 9±6 438±77 0 16±2 8±0 17±1 0±0 499±0

2 19 17±1 353±55 187±38 30±0 408±91 0 17±1 10±0 24±0 6±0 499±0
3 0 17±1 53±18 45±32 5±5 499±0 0 17±1 10±0 19±1 1±1 499±0
4 100 18±1 16058±574 300±0 30±0 15±1 0 17±1 11±0 30±0 12±0 499±0
5 0 17±1 89±24 64±42 7±6 499±0 0 17±1 10±0 20±1 2±1 499±0

6 38 20±0 357±66 202±39 30±0 336±116 0 20±0 12±0 26±0 6±0 499±0
7 6 20±0 34±15 38±33 1±3 468±58 0 20±0 12±0 21±1 1±1 499±0
8 100 20±0 16196±640 300±0 30±0 13±2 0 20±0 13±0 32±0 12±0 499±0
9 19 20±0 101±31 73±53 5±5 408±92 0 20±0 13±0 23±1 2±1 499±0
10 100 20±0 15968±521 300±0 30±0 14±2 0 20±0 27±5 40±0 12±0 499±0
11 25 20±0 154±38 91±59 7±6 379±101 0 20±0 16±0 25±3 3±2 499±0

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 57

5.3 Lessons Learned

Although we are still in the process of analyzing all the data and logs that we have
collected, we found some interesting issues within BFT-SMaRt implementation.
Although the BFT-SMaRt is a leader-based BFT protocol we were surprised to
verify the impact of simple crash faults on the system. While the implementation
was able to sustain flawlessly single crash faults or even multiple random crash
faults, it was vulnerable, performance wise, to the simultaneous injection of crash
faults within the first elements of the nodes, i.e., the initial leaders.

1) After analyzing the code, we detected a misconfiguration of the client, which
normally has a default 40s request timeout. When this timeout is triggered within
the client, it aborts the execution of the run. This was the reason behind the stalls
we detected while using the default timeout values and original implementation.

2) Because BFT-SMaRt is leader-based, faults in the leader have a high impact
on the overall performance (and recovery) of the protocol. After increasing this
timeout we were able to measure a recovery time around 60s. The high recovery
time that we measured is only partially explained by the high timeout values.
An analysis of the source code revealed that the protocol, in the presence of a
request timeout, first tries to forward pending requests to the current leader.
This was done to accommodate the possibility that the current leader did not
propose the request because it might have been dropped by the underlying net-
work infrastructure. However, in the presence of a single malicious leader, this in
fact doubles the recovery time. This is because the request is first forwarded to
the leader, and the change-leader sub-protocol only runs after this operation has
timed out. On top of this, the leader-change protocol goes sequentially through
the processes list to find the next leader (from the lowest to the highest identi-
fier). Because we intentionally injected simultaneous faults in the nodes with the
lowest identifiers (that are the first nodes to be elected as leaders), this resulted
in the protocol having to go through all the malicious nodes. Furthermore, they
immediately assume the roles of leaders, introducing further delays. To minimize
this situation, we lowered the timeout values (shown in Table 2).

3) However, this alone did not fully explain the extensive recovery times. A
closer inspection of the source code reveled a subtle implementation artifact. The
timer used for failure detection (RequestsTimer) for all the pending requests
present in the system gets its timeout value doubled each time the change-
leader protocol is triggered (for example, when receiving a STOP and STOP DATA

messages from other nodes), but it is never reduced, even in the presence of more
favorable system conditions, such as the absence of failures or timeouts. Given
this, we introduced a modification to the original source code that consisted
on only doubling the timeout within the same regency (i.e., the same leader)
on the current view, otherwise the value is reset to the default value. Using
our tuned parameters and correction to the source code (right sub-table on the
results tables) we were able to almost avoid any failed runs, except in attack
3. Sporadically we got a failed run while using attack 2. We are in the process

58 R. Martins et al.

of analyzing the logs to determine the underlying issues associated with those
failed runs.

4) Attack 3 was designed in light to previous work on Prime [21], and was de-
signed to degrade overall performance of the system by delaying the sending of
propose messages. The attack was designed so that the leader was not suspected
by the other nodes, by limiting the amount of delay just below to the detec-
tion timeout value. By lowering the timeout value we were able to minimize the
impact of this type of attack, although it is evident that a more proactive and
structural approach has to be taken to solve this issue when using leader-based
BFT protocols. While Prime provides a way to minimize this situation, it still
does not provide a complete solution, because of the limitations derived from
the use of Diffserv [29], because a flooding attack would compromise the mea-
surements used to adapt the timeouts. We tried to perform a full evaluation of
Prime but we discover after the initial tests that the protocol was not completely
implemented. Therefore, we were unable to verify their results. To corroborate
our findings, we can see in attack 4 that if a sufficiently small timeout is chosen
then the attack is contained, with no apparent loss in performance (except for
the recovery time associated with the election of the new leaders).

5) For Attack 2 we were able to manually verify the code and found a missing ver-
ification in the creation of the packet by the receiving thread (ReceiverThread
in the ServerConnection class). Because it does not verify the size of the pay-
load, it allows the attacker to crash the thread either with overflow or underflow
attacks. While JAVA provides a managed memory system, some vulnerabilities
have been found in the past that explore such cases.

6) Taking the knowledge gathered throughout our evaluation we implemented
a second modification to the original protocol. As stated in the discussion of
Attack 2, we make use of the low-level network events such as unexpected net-
work errors (e.g., closing of TCP connections) or packet malformation (such as
mismatched signatures) to trigger the change-leader sub-protocol. The results
from this second modification are shown in the appendix, under section ”Sec-
ond Round of Corrections”. We were able to cut roughly in half the recovery
time from our first implementation modification (and timeout tuning). From
the original implementation and timeout values we were able to provide up to a
10 fold improvement. Nevertheless, it should be noted that these modifications
come at a price. Because we are assuming a more synchronous network layer
and assuming that any type of fault we get from the network is malicious, we
could be inducing false suspicion on nodes leading to unnecessary leader changes.
However, this would only affect performance but not correctness.

BFT Limitations and Future Directions

It seems clear that leader-based BFT protocols have their weakest point in the
leader and change-leader sub-protocol. The timeout settings also play an impor-
tant role in the overall performance.

For situations without the presence of malicious node, the introduction of
adaptive timeouts like in Adaptare-FD [30], could improve seamlessly the over-

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 59

all performance. However to efficiently deal with the presence of malicious nodes,
current approaches [21] are still not able to deliver degradation-free performance.
While making the assumption that the network is totally asynchronous makes
a strong case from a standpoint of correctness and safety, we feel that in order
to bridge theory and practice, stronger, yet realistic, assumptions must be made
about underlying network infrastructure. The use of software-defined network-
ing, for instance by OpenFlow [31], could allows us to improve on the current
state-of-the-art, such as avoiding the issues related with flooding attacks [1].

6 Conclusions and Future Work

In this paper we presented a novel fault-injecting framework that enables the
assessment of BFT implementations. Furthermore, we demonstrate the impor-
tance of providing support for non-independent faults. Using our approach we
were able to detect 2 implementation bugs. The first, at the low communication
level, allowed overflow and underflow attacks caused by a missing size verifica-
tion on packet reception, whereas the second bug was related to a high level
implementation artifact derived from the ever-increasing timeout values within
the leader-change sub-protocol, that in certain cases would effectively stall the
protocol for more than 60s in the presence of non-independent faults. Lastly,
we proposed a second set of modifications to the source code, where we avoid
forwarding messages to a possibly malicious leader prior to a change in regency
and enhance it by using low-level networking exceptions/events, such as signa-
ture mismatch, to trigger a leader change when in the suspicion of the presence
of a malicious leader.

Using our tuned parameters and source code modifications we were able to
provide up to a 10 fold improvement over the original implementation and default
parameters.

6.1 Future Work

We expect to enhance Hermes by providing the necessary infrastructure to sup-
port proof forging, by coordinating and distributing all the necessary keys across
the malicious nodes. Furthermore, we want to expand the work accomplished in
this paper, by introducing a visualization tool that continuously monitors and
traces all the nodes present in the protocol with the goal of providing the initial
support for debugging.

Acknowledgments. We thank Alysson Bessani and the conference reviewers
for their feedback. This research was sponsored in part by the project CMUP-
T/RNQ/0015/2009 (TRONE - Trustworthy and Resilient Operations in a Net-
work Environment), and by Intel via the Intel Science and Technology Center
for Cloud Computing (ISTC-CC).

60 R. Martins et al.

References

1. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzan-
tine Fault Tolerant Systems Tolerate Byzantine faults. In: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2009, Berkeley, CA, USA, pp. 153–168. USENIX Association (2009)

2. BFT-SMaRt: High-Performance Byzantine Fault-tolerant State Machine Replica-
tion, http://code.google.com/p/bft-smart/ (accessed November 4, 2013)

3. Kiczales, G., Hilsdale, E.: Aspect-Oriented Programming. In: ACM SIGSOFT Soft-
ware Engineering Notes, vol. 26, p. 313. ACM (2001)

4. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: an Aspect-Oriented
Extension to the C++ Programming Language. In: Proceedings of the 40th Inter-
national Conference on Tools Pacific: Objects for Internet, Mobile and Embedded
Applications, pp. 53–60. Australian Computer Society, Inc. (2002)

5. Chandra, R., Levefer, R.M., Cukier, M., Sanders, W.H.: Loki: A State-Driven Fault
Injector for Distributed Systems. In: International Conference on Dependable Sys-
tems and Networks, pp. 237–242 (June 2000)

6. DBench Project Final Report (May 2004)
7. Han, S., Rosenberg, H.A., Shin, K.G.: Doctor: An integrated software fault in-

jection environment. In: International Computer Performance and Dependability
Symposium, pp. 204–213 (April 1995)

8. Alvarez, G.A., Cristian, F.: Centralized Failure Injection for Distributed, Fault-
Tolerant Protocol Testing. In: International Conference on Distributed Computing
Systems, pp. 78–85 (May 1997)

9. Dawson, S., Jahanian, F., Mitton, T., Tung, T.-L.: Testing of Fault-Tolerant and
Real-Time Distributed Systems via Protocol Fault Injection. In: Symposium on
Fault Tolerant Computing, pp. 404–414 (June 1996)

10. Looker, N., Xu, J.: Assessing the Dependability of OGSA Middleware by Fault
Injection. In: Proceedings of the 22nd IEEE International Symposium on Reliable
Distributed Systems, SRDS 2003, pp. 293–302 (October 2003)

11. Marsden, E., Fabre, J.-C.: Failure Analysis of an ORB in Presence of Faults. Tech-
nical report (October 2001)

12. Kanawati, G.A., Kanawati, N.A., Abraham, J.A.: FERRARI: A Flexible Software-
Based Fault and Error Injection System. IEEE Transactions on Computers 44(2),
248–260 (1995)

13. Tsai, T.K., Iyer, R.K.: Measuring Fault Tolerance with the FTAPE Fault Injection
Tool. In: Beilner, H., Bause, F. (eds.) MMB 1995 and TOOLS 1995. LNCS, vol. 977,
pp. 26–40. Springer, Heidelberg (1995)

14. Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Mon-
itoring in Processor Functional Units. In: Proceedings of the 5th Annual IEEE
International Working Conference on Dependable Computing for Critical Applica-
tions, DCCA 1995, pp. 135–149 (1995)

15. DeVale, J., Koopman, P., Guttendorf, D.: The Ballista Software Robustness Testing
Service. In: Proceedings of Testing Computer Software (1999)

16. Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault Injection Techniques and Tools. Com-
puter 30(4), 75–82 (1997)

17. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-
ery. ACM Transactions on Computer Systems 20(4), 398–461 (2002)

18. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.:
Fault-scalable Byzantine Fault-Tolerant Services. SIGOPS Operating Systems Re-
view 39(5), 59–74 (2005)

http://code.google.com/p/bft-smart/

Experiences with Fault-Injection in a Byzantine Fault-Tolerant Protocol 61

19. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault folerance. In: Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles, SOSP 2007, pp. 45–58. ACM, New York (2007)

20. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ Replication: A
Hybrid Quorum Protocol for Byzantine Fault Tolerance. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, SOSDI 2006, pp.
177–190. USENIX Association (2006)

21. Amir, U., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine Replication under At-
tack. IEEE Transactions on Dependable and Secure Computing 8(4), 564–577
(2011)

22. Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-Rotaru, C., Olsen,
J., Zage, D.: Steward: Scaling Byzantine Fault-Tolerant Replication to Wide Area
Networks. IEEE Transactions on Dependable and Secure Computing 7(1), 80–93
(2010)

23. Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating Agree-
ment From Execution for Byzantine Fault Tolerant Services. ACM SIGOPS Oper-
ating Systems Review 37(5), 253–267 (2003)

24. Martin, J.-P., Alvisi, L.: Fast byzantine consensus. IEEE Transactions on Depend-
able and Secure Computing 3(3), 202–215 (2006)

25. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Customizable Fault Tolerance forWide-
Area Replication. In: Proceedings of the 26th IEEE International Symposium on
Reliable Distributed Systems, SRDS 2007, pp. 65–82. IEEE (2007)

26. Li, J., Mazieres, D.: Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant
Systems. In: Proceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2007 (2007)

27. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

28. Sousa, J., Bessani, A.: From Byzantine Consensus to BFT State Machine Repli-
cation: A Latency-Optimal Transformation. In: Proceedings of the 9th European
Dependable Computing Conference, EDCC 2012, pp. 37–48. IEEE Computer So-
ciety, Washington, DC (2012)

29. IETF. An Architecture for Differentiated Services, http://www.ietf.org/rfc/

rfc2475.txt (accessed October 17, 2011)
30. Dixit, M., Casimiro, A., Lollini, P., Bondavalli, A., Verissimo, P.: Adaptare: Sup-

porting Automatic and Dependable Adaptation in Dynamic Environments. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 7(2), 18 (2012)

31. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Computer Communication Review 38(2), 69–74 (2008)

http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2475.txt

SplayNet: Distributed User-Space

Topology Emulation

Valerio Schiavoni, Etienne Rivière, and Pascal Felber

University of Neuchâtel, Switzerland

Abstract. Network emulation allows researchers to test distributed ap-
plications on diverse topologies with fine control over key properties such
as delays, bandwidth, congestion, or packet loss. Current approaches to
network emulation require using dedicated machines and low-level oper-
ating system support. They are generally limited to one user deploying
a single topology on a given set of nodes, and they require complex man-
agement. These constraints restrict the scope and impair the uptake of
network emulation by designers of distributed applications. We propose
a set of novel techniques for network emulation that operate only in
user-space without specific operating system support. Multiple users can
simultaneously deploy several topologies on shared physical nodes with
minimal setup complexity. A modular network model allows emulating
complex topologies, including congestion at inner routers and links, with-
out any centralized orchestration nor dedicated machine. We implement
our user-space network emulation mechanisms in SplayNet, as an ex-
tension of an open-source distributed testbed. Our evaluation with a
representative set of applications and topologies shows that SplayNet

provides accuracy comparable to that of low-level systems based on ded-
icated machines, while offering better scalability and ease of use.

Keywords: Topology emulation, large-scale networks, testbeds.

1 Introduction

A key aspect of distributed systems evaluation is the capacity to deterministi-
cally reproduce experiments and compare distributed applications in the same
deployment context, and in particular when operating under the same network
conditions. Distributed testbeds such as PlanetLab (www.planet-lab.org) allow
testing applications in real-world conditions, by aggregating a large number of
geographically distant machines. While extremely useful for large-scale systems
evaluation, such testbeds cannot be reconfigured to expose a variety of network
infrastructures or topologies. Furthermore, the high load and the unpredictable
running conditions of shared testbeds are a hindrance for the reproducibility of
evaluation results, or for the fair comparison of different applications.

Network emulation supports controllable and reproducible distributed systems
evaluation. It allows running a distributed application on dedicated machines as
if it were running on an arbitrary network topology, and observe the behavior of
the application in various network conditions. The emulation of communication

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 62–81, 2013.
c© IFIP International Federation for Information Processing 2013

www.planet-lab.org

SplayNet: Distributed User-Space Topology Emulation 63

links is based on an input topology, i.e., a graph representation of nodes, routers,
and the properties of their connections. A cluster with a high-performance local
network can typically support the execution of applications and the emulation
of topologies.

The focus of this paper is on providing support for easy evaluation of net-
worked applications (e.g., indexing [35], streaming [5], coding [15], data pro-
cessing over non-standard topologies [11], etc.) under diverse yet reproducible
networking conditions. Furthermore, we seek to provide support for concur-
rent deployments of emulated topologies and distributed applications, where the
physical nodes of a cluster can be used for running multiple experiments with
different topologies, without interference and loss of accuracy for any of the ex-
periments. Finally, we posit that the uptake of network emulation mechanisms
will be greater if the setup of such mechanisms remain simple and cross-platform,
and if they are integrated with a toolkit that facilitates distributed systems pro-
totyping and evaluation, for researchers, students, and engineers. This requires
mechanisms and tools for rapid development, deployment, observation, and con-
trol of distributed experiments. Note that our work focuses on the evaluation
of networked applications on top of standard TCP and UDP connections, when
presented with various end-to-end characteristics: bandwidth, delay, packet loss,
and congestion. We do not consider the evaluation of the network stack itself,
or the evaluation of low-level network characteristics and protocols, which is the
focus of other tools [23].

Existing solutions [1,7,16,18,19,26,28–30,33,34,38–40] support emulation of
part or all of the characteristics of a topology, but present a number of limitations.
None allows researchers to deploy several network topologies at the same time
and on the same physical nodes over a shared platform. Indeed, they enforce
that a node of the testbed is used by one user, for one topology: this requires a
large amount of physical resources, or imposes severe restrictions on the number
of users and/or the size of their experiments. Furthermore, existing approaches
require privileged or root access to the machines of the testbed, and often the
use of dedicated machines or specialized operating systems to support network
emulation. Finally, most of them require to completely reconfigure testbed nodes
for every new emulated topology.

Contributions. The main contributions of this paper are the following:

– We propose a novel approach for supporting network emulation with user-
space mechanisms and without support from the operating system. Our ap-
proach allows emulating complex topologies for which existing systems would
require network queues implemented in the kernel space of dedicated emula-
tion nodes.

– Our approach features configurable and modular network models. It supports
complex topologies with inner routers and links, link sharing models, and
overheads emulation.

– We introduce a fully decentralized monitoring algorithm for emulation of con-
gestion, delays, and packet loss for inner nodes of the topology, without actu-
ally instantiating inner nodes nor requiring a centralized control point.

64 V. Schiavoni, E. Rivière, and P. Felber

– We present support mechanisms for network emulation that enable simple se-
lection and sharing of resources between multiple concurrent topologies and
application deployments, without need for the user to directly access the phys-
ical nodes.

– We describe an implementation of our system, SplayNet, developed as an
extension of the Splay [25], an open-source distributed framework that pro-
vides comprehensive facilities for the simple prototyping and deployment of
networked applications and protocols.

– We evaluate our approach with several micro-benchmarks and networked ap-
plications deployed over various topologies. We compare our system to Model-
Net [38] and Emulab [18, 40]. Results indicate that SplayNet achieves simi-
lar accuracy for network emulation but with lower resource requirements, and
supports concurrent deployments without degradation of accuracy. Our ap-
proach scales well under heavy load and large topologies can be deployed with
minimum management effort.

SplayNet is freely available as open-source software. It can be downloaded from
http://www.splay-project.org/splaynet together with all data and source
code for reproducing the experiments presented in this paper.

Outline. The paper is organized as follows. Section 2 reviews related work.
Section 3 briefly introduces the open-source framework SplayNet builds upon.
The design and internals of our system are described in Section 4. We present a
detailed evaluation of SplayNet in Section 5 and conclude in Section 6.

2 Related Work

We classify work related to SplayNet along several perspectives, presented
in Table 1. We distinguish solutions based on their operational mode (user
or kernel), their need for specialized hardware or dedicated devices (switches,
VLANs), and the type of orchestration for the emulation of the traffic at in-
ner nodes/routers of the topology.1 We also consider the support for concurrent
deployments : multiple emulated topologies onto the same set of machines, for dif-
ferent users and different applications. We finally consider the ability to emulate
traffic congestion along routing paths, as well as end-to-end bandwidth, delay,
and packet loss. Although hardware-only emulation systems exist [21], in the
remainder of this section we focus on solutions that operate partly or entirely in
software. We do not consider emulators specializing in wireless networks [22,43],
nor do we focus on simulation tools [37].

ModelNet [38] uses a set of dedicated machines organized in a cluster, called
emulator nodes. These nodes are in charge of shaping all the traffic emitted
and received by the edge nodes supporting the application. ModelNet requires
modifying the routing tables of the kernel at edge nodes to redirect all outgoing
traffic toward emulator nodes. Traffic shaping rules (bandwidth and delay) are

1 Centralized means that a single node is in charge of emulating the traffic for a given
inner link, while different machines may be in charge of emulating different inner
nodes. Decentralized on the other hand means that several nodes coordinate for
emulating the same inner link.

http://www.splay-project.org/splaynet

SplayNet: Distributed User-Space Topology Emulation 65

Table 1. Classification of network emulation tools (B/D/P=bandwidth/delay/packet
loss emulation)

HW Concur. Path Emul.
Name Mode Sup. Orchestr. deploy. congest. B D P

ModelNet [38] Kernel × Centralized × √ √ √ √
Emulab [18,40] Kernel

√
Centralized × √ √ √ √

SliceTime [39] Kernel
√

Centralized × √ √ √ ×
Nist NET [7] Kernel × Centralized × × √ √ √

ACIM [33] Kernel × Centralized × √ √ √ √
P2PLab [28] Kernel × Centralized × × √ √ √
IMUNES [30] Kernel

√
Centralized × × √ √ √

Netkit [29] Kernel × Centralized × √ √ √ √
NetEm [16] Kernel × (N/A: single link emulation only) × √ √

EmuSocket [1] User × (N/A: single link emulation only)
√ √ ×

MyP2P-World [34] User × Centralized × × √ √ √
WiDS [26] User × Centralized × × × √ √

Mininet [24] User × Centralized × × √ √ √
SplayNet User × Decentralized

√ √ √ √ √

applied to all packets by the means of DummyNet [6] pipes set up in the kernel
of emulator nodes. It is possible to deploy only one emulated topology at a time.
Every topology modification requires root access to the cluster for redeploying
all emulator nodes and updating the kernel routing tables at edge nodes.

Emulab [18, 40] is a shared platform that runs experiments on a dedicated
emulation testbed. Although Emulab allows users to deploy several experiments
under different network conditions, once a machine of the testbed is assigned to
an experiment it cannot be used for any other. Emulab uses the same mecha-
nisms as ModelNet [38] to shape traffic. To reduce the number of host machines
required by each experiment, Emulab supports an end-node-traffic-shaping mode:
the application’s nodes shape the outgoing traffic themselves, relying on tc [16]
or DummyNet [6] for, respectively, Linux- and BSD-based experiments.

Some network emulation tools are based on virtual machine deployment util-
ities. SliceTime [39] solves the time-drifting problem for large-scale experiments
by providing a synchronization component to the deployed virtual machines.
It relies on the Xen hypervisor [3]. SplayNet does not require the use of a
hypervisor on the host machines, it only spawns new user-space processes to
accommodate concurrent experiments.

P2PLab [28] relies on DummyNet mechanisms built in a BSD kernel. It orga-
nizes emulated networks in subnets. Each physical machine in a P2PLab cluster
is responsible for a subnet and manages all the traffic within this subnet. Along
the same lines, IMUNES [30] operates through a set of virtual machines inter-
connected via DummyNet pipes. Its originality resides in the management of
the cluster hosting the virtual machines, which is driven by a peer-to-peer pro-
tocol. The protocol monitors the state of the machines and notifies the other
nodes about failures and load conditions. This information is subsequently used
when dispatching virtual machines. Network emulation itself operates similarly

66 V. Schiavoni, E. Rivière, and P. Felber

to other DummyNet-based emulators, and it requires the physical network host-
ing the experiments to provide programmable VLAN support.

Mininet [24] uses lightweight virtualization mechanisms to emulate software-
defined networks on a single host. In contrast, SplayNet and the systems pre-
sented above target deployments onto a cluster of networked machines, allowing
computationally intensive tasks and greater scalability. Other low-level tools aim
at shaping the traffic originated by user-space processes. Trickle [12] is a user-
space bandwidth shaper for unmodified Unix applications. DelayLine [19] requires
the target program to statically link against traffic-shaping libraries. The authors
of [1] and [34] both propose user-space emulation tools targeting P2P protocols im-
plemented in Java: the latter provides bytecode-level compatibility with existing
applications, whereas the former offers specialized APIs. These systems only sup-
port emulation of end-to-end links characteristics and not of complete topologies,
thus categorizing them as traffic shapers rather than topology emulators.

In [31], the authors propose to deploy distributed rate limiters (DRL) for gen-
eral purpose cloud services. Rate limiter nodes synchronize through a lightweight
UDP protocol, which shares similarities with our decentralized congestion mon-
itoring approach (Section 4.3). DRL does not provide any support for rate-
limiting multiple services concurrently running on the same nodes. SplayNet

provides a per-destination dedicated token bucket, while DRL mimics the be-
havior of a centralized token bucket algorithm at each rate limiter node.

The support of concurrent deployments requires appropriate resource selection
mechanisms. Since physical network links will be shared by multiple emulated
links, the resource selection must ensure that the capacity of the physical link
is sufficient for all emulated links. No emulators feature such capabilities, and
most require to deploy topologies on distinct sets of nodes, thus greatly impair-
ing scalability. The few systems that support concurrent deployments on the
same nodes leave to the user the responsibility of provisioning sufficient physical
capacity for emulated links.

The present work represents the first attempt to propose user-space network
emulation within an integrated distributed systems evaluation framework. It pro-
vides support for concurrent deployments while offering comparable performances
to single-topology and kernel-space solutions, as will be shown in Section 5.

3 Background

We implement the contributions presented in this paper as an extension to the
Splay [25] open-source distributed systems evaluation framework. We chose
to build upon Splay as it allows to quickly prototype, deploy, and manage
distributed experiments. We present in this section some background information
about Splay. We note, however, that our contributions are not specific to Splay.
User-level network emulation techniques presented in this paper are applicable
to other systems and platforms.

Splay’s goal is to ease rapid prototyping and development of distributed proto-
cols. It features a concise and easy-to-learn language based on Lua (www.lua.org).
The associated libraries support the functionalities that are typically required to

www.lua.org

SplayNet: Distributed User-Space Topology Emulation 67

Users

c
Virtual

topology

Physical
nodes

c

s

sc

xml lua

D
efi

ne
D

ep
lo

y
E

xe
cu

te

Splay
daemon

Bandwidth
shaping

Delay
emulation

Decentralized
congestion
monitoring

Splay
controller

Topology
parsing

Topology
deployment

Resource
allocation

Job
deployment

User Topology
definition

Job
definition

Architectural
components

Topologies, code,
churn traces, ...

On
every
node

trc

out Tasks and
modules

Distributed testbed ᔕᕈᒪᐱᓭ

Results

r

r
r

Fig. 1. The SplayNet architecture

implement distributed algorithms. The language and libraries allow implemen-
tations to be comparable in size (i.e., lines of code) to pseudo-code descriptions.
This feature is on par with our objective of making network-emulated experi-
ments and prototyping simple and fast. An example given in [25] is the Chord
DHT [35]. A running implementation uses 58 lines of code, comparable in size
with the pseudo-code in the original paper [35]. We use this implementation as
an example application in our evaluation (Section 5). We note that the use of
Lua also allows using existing code (e.g., C-based), by embedding it as a library,
although we did not need to use this feature for our evaluation.

Splay also supports our objective of simplifying the usage of a testbed by pro-
viding simple multi-user resource management and deployment support. Splay
runs a set of Splay daemons (splayds) on every node of the testbed. These
daemons are deployed once, by the testbed administrator. They implement sand-
boxing by controlling and restricting usage to resources on the nodes. This is
useful in a non-dedicated environment. A single access point, the Splay con-
troller (splayctl), orchestrates the deployment of applications. It is the sole
point of access to the system for users, who do not need to have administrative
access or user accounts for the machines of the testbed. The splayctl allows
users to select nodes for deploying an application according to various criteria,
and dispatches the code to the corresponding splayds. The experiment is moni-
tored and managed directly from the splayctl. The splayctl allows fine grain
control of the experiments, for instance by replaying a churn trace that describe
the dynamics of the system and is replayed by each of the splayds participat-
ing to the experiment, individually for each user and for each experiment. Our
approach to topology emulation is inspired by this mechanism: a topology is
provided by the user along with her code and is dispatched by the splayctl to
all selected splayds part of the emulation. We describe these mechanisms and
their integration in the next section.

4 The SPLAYNET Architecture

In this section we describe the various components necessary for supporting
user-space network emulation and their integration in our SplayNet prototype.
Figure 1 presents an overview of the implementation.

68 V. Schiavoni, E. Rivière, and P. Felber

4Mb/s
20ms

2Mb/s
30ms

Bandwidth
Latency

Virtual node

Router

Stub-stub

Client-stub

B
L

1Mb/s
50ms4Mb/s

50ms
4Mb/s
100ms

4Mb/s
100ms

0

2

3

54Mb/s
70ms1

(...)
<edge src="1" dbl_kbps="4096"
 dest="4" delayms="70"/>
<edge src="4" dbl_kbps="1024"
 dest="5" delayms="50"/>
<edge src="5" dbl_kbps="400"
 dest="4" delayms="50"/>
(...)

400kb/s
50ms

4

Fig. 2. Graphical representation of a topology and excerpt of its description in XML

4.1 Topology Definition and Parsing

The first step is to define a network topology to emulate. Users write an abstract
description that maps vertices and edges of an undirected cyclic graph to the
physical connections of a network (Figure 1-➊). Users can specify the intercon-
nections between nodes and routers, as well as the physical properties of the
links (delays, bandwidth, and packet loss rate). Application nodes can be inner
nodes in the topology (and not only end-nodes), in order to support relay-based
applications such as coding [15] or in-network aggregation [11]. SplayNet sup-
ports two topology description formats: the ModelNet XML-based language [42]
and the Emulab TCL-based language, itself based on the one used by the NS-2
network simulator [14]. A sample topology and an excerpt of its description in
XML are given by Figure 2.

The second step is the deployment (Figure 1-➋). The user submits to the
Splay controller the topology description, the code to execute, and any addi-
tional files required to drive the experiments. SplayNet’s topology parser ex-
tracts the graph topology. Links in the topology description are uni-directional.
Non-connected topologies are rejected. The user can however request implicit
link symmetry: when there is no link between two elements but a corresponding
reverse link exists, an implicit link can be created, with the same characteristics
as the reverse one. This operation does not modify any of the links present in the
original topology, thus supporting topologies where both symmetric and asym-
metric links coexist. We then use an all-pairs-shortest-path algorithm based on
links delays2 and, for every shortest path, derives the maximum available band-
width along the path (link with the lowest bandwidth), the overall delay (sum
of the delays of individual links), and the packet loss probability (product of the
packet loss of individual links).

4.2 Resource Allocation and Deployment

SplayNet allocates testbed resources for executing the user code on the emu-
lated topology (Figure 1-➌). In the context of Splay, this problem corresponds
to selecting a minimal set of splayds for executing the job. The allocation pro-
cedure ensures that the deployment of a topology does not impair on the ac-
curacy of other deployed topologies, by avoiding saturating the bandwidth of

2 Upon tie, we select a random link to balance the load but other strategies are possible,
e.g., link with minimum latency or maximum bandwidth.

SplayNet: Distributed User-Space Topology Emulation 69

physical links beyond a safety margin. Finding a minimal set that satisfies all
constraints on a shared infrastructure is a NP-hard problem [32]. Although effi-
cient heuristics are known [10,32,41], they require knowing the start and duration
of all experiments in advance, a requirement that is not met in our context. In
SplayNet, we adopt a simple greedy approach to guide the selection of splayds.
The objective is that all links in all emulated topologies are supported by physi-
cal links with enough available capacity. We do not consider delays as a selection
criterion as we assume that SplayNet will be deployed in a cluster where the
latencies observed on physical links are stable and much smaller than the latency
requested for the emulated paths. The splayctl also keeps track of the current
load of the machines, as part of the regular Splay operation. The administrator
provides the maximal emulated bandwidth that can be emulated on a single
physical link. This value depends on the cluster hardware and network. We use
a value of 100 Mb/s in our experiments, as illustrated by the concurrent deploy-
ment experiment of Section 5.3. If several splayds are deployed on the same
physical machine, the bandwidth available to each splayd is a fraction of the
total available bandwidth and this value must be adjusted accordingly. For a new
job, we select the least loaded nodes that satisfy the connectivity requirements,
i.e., that have physical links to other nodes with sufficient available capacity
taking into account the topology being deployed and those already running. If
no such set of splayds is found, deployment is not allowed.

We only need to map application nodes to splayds. Routers are implicitly em-
ulated by the communication links between the edge nodes. The advantages of
this approach are twofold: first, it significantly reduces the amount of resources
required to emulate large topologies; second, it frees the system from the need
of powerful machines dedicated to shaping the traffic at routers. ModelNet [38]
adopts a similar technique to reduce the amount of resources required for emula-
tion in its end-to-end mode, but it does not emulate congestion at intermediary
hops under this execution mode. We emulate traffic congestion at inner nodes
with a distributed protocol and a link sharing model, described in Section 4.3.

The Splay controller finally dispatches the code to be executed to the se-
lected splayds, along with the topology information required to initialize the
network emulation layer (Figure 1-➍). This information is encoded with a com-
pact marshaller that has negligible overhead on the traffic sent to the nodes. As
an example, the information necessary to emulate the topology of Figure 2 adds
only 430 bytes to the data sent to each splayd for the job deployment.

4.3 User-Space Network Emulation

SplayNet performs link and topology emulation only in user-space, and inde-
pendently for the different deployed jobs on the same splayd. This brings a
number of benefits. First, administrators do not need to have privileged access
to the machines of the testbed nor to set up any hardware network infrastruc-
ture, since the emulated network layers are initialized at the application level.
Second, it overcomes a common limitation of most other state-of-the-art systems
by supporting the emulation of several topologies simultaneously.

70 V. Schiavoni, E. Rivière, and P. Felber

Latency and Packet Loss Emulation. Links of the topology are first char-
acterized by latency values and packet loss rates. To account for the associated
delays, the splayd instantiates a countdown queue for each outgoing link of the
node of the topology being emulated. Outgoing packets traverse this queue be-
fore they reach the network. A countdown timer is initialized to the link latency
value when a packet enters the queue and, upon expiration, the packet is sent
over the wire. Note that the actual latency of the physical topology is assumed
to be orders of magnitude smaller than the emulated one, as all splayds are
typically executed on a cluster. Otherwise, the value of the countdown timer
should be adjusted to take into account delays observed at the physical level.

The reactivity to the timer expiration is crucial for accurate emulation, es-
pecially when emulating low-latency links, thus the choice of the underlying
operating system plays an important role for achieving good performance in link
delay emulation. We evaluated the scheduling accuracy on various operating sys-
tems, and reproduced results on par with those presented in [13]. Scheduling
accuracy is around 0.1 ms for Linux 2.6, and in the order of a few milliseconds
for Linux 2.4 and FreeBSD 7.3. This indicates that accurate latency emulation
is achievable, with measurable errors in the order of milliseconds.

Packet loss is enforced by simply dropping random packets at the source
according to the calculated loss rate on the path to their destination. Here again,
we assume that the underlying physical network has a negligible packet loss rate
that we do not need to compensate.

Bandwidth Shaping. In addition to latency, a topology specifies the maximal
bandwidth for each of its links. The actual bandwidth available to the application
will be smaller, and depends on the size of the messages sent through the socket.
Our model takes into account emulation of overhead as follows.

For TPC/IP and UDP/IP, we use the default Ethernet MTU size of 1500 B
(bytes). Ethernet overheads consist of 38 B for each message: 12 B of source
and destination addresses, 8 B of preamble, 14 B of header, and 4 B of trailer.
We then add the overhead of IPv4 (20 B), and TCP or UDP headers (20 and
28 B, respectively). The overhead factors in the number of packets for a given
application-level message, and determines the bandwidth that is actually used
on the emulated link. This overhead model, which can be easily modified to
account for different network settings, allows us to precisely emulate the actual
bandwidth available to an application sending messages of various sizes. It is also
independent from the configuration of the supporting physical network (e.g., the
use of jumbo frames).

We use a token bucket algorithm [36] to cap the throughput of outgoing
traffic to the value specified in the emulated topology.3 The algorithm operates
by inserting a number of tokens at a fixed rate (determined according to the
available bandwidth) into a virtual bucket. Each token represents a fixed amount
of bytes that can be sent. Application-level packets are delivered over the wire

3 The tc [16] tool integrated in the Linux kernel uses a similar approach to bandwidth
shaping. However, SplayNet is cross-platform and does not rely on any kernel
support as it integrates its own shaping mechanism.

SplayNet: Distributed User-Space Topology Emulation 71

only if the corresponding amount of tokens is available in the bucket. Otherwise,
they are re-queued in the bucket. This simple strategy guarantees a consistent
average throughput during emulation.

The bucket fill rates are initially configured to the minimum available band-
width across all hops on the shortest path between the source and destination
nodes. Afterwards, fill rates are dynamically adjusted by the decentralized con-
gestion monitoring protocol based on the actual available bandwidth on the path,
dynamically considering other flows taking place in the topology.

Decentralized Congestion Emulation. The delay emulation and bandwidth
shaping mechanisms are the foundations of a decentralized network emulation
platform, and are the first components of the emulated network model. They
are, however, not sufficient for accurately emulating network congestion across
multi-hop routing paths. This task is the responsibility of a decentralized conges-
tion monitoring protocol, which constitutes the second part of our model. Note
that the network model is modular: both parts can be modified independently
of the emulation framework, and new models can be integrated, with different
overheads, link sharing, or QoS policies.

In a centralized solution such as ModelNet [38], one or a small set of dedicated
hosts are continuously keeping track of the network traffic on all possible paths
of the topology, since all packets are routed through these hosts. This global view
of the network allows throttling the data rates according to the limits imposed
by the topology.

We advocate the use of a decentralized architecture that does not require
specific nodes to handle all traffic passing across the topology. Instead, we rely
on a distributed protocol to promptly distribute notifications about the start
and end of data streams. These notifications are disseminated to all the nodes
involved in the emulation of a given topology through fast and reliable UDP
multicast channels (PGM).

View update. Whenever a node starts or stops sending data using TCP, it first
updates its local view of ongoing network flows by incrementing the number
of competing flows on every hop from itself to the destination node. Then, it
disseminates this information to the other nodes by specifying the source, the
destination, and the virtual routing hops involved in the stream. In the context
of a large-scale topology deployment (Section 5.4) with 150 nodes, we observe
average dissemination delays of 7.36 ms. Upon receiving this information, the
other nodes adjust their local view accordingly by updating the number of com-
peting streams on affected links and, if necessary, the token bucket’s fill rates.
In the case of UDP streams, it is not possible to determine the end of a commu-
nication as with TCP. Hence, we adopt a periodic report strategy: every 50 ms,
the amount of data sent through the socket is propagated to other nodes, which
update their state based on information from the previous period.

Each node needs to maintain an up-to-date view of ongoing data flows on the
emulated network, whether originated by itself or by other nodes, and determine
how internal links bandwidth is shared between competing flows. This view is
efficiently modeled as a n-ary tree rooted at the local node.

72 V. Schiavoni, E. Rivière, and P. Felber

The leaves of the tree represent the other virtual end-nodes, while inner nodes
correspond to the routers. Edges of the tree are labeled with their maximum
bandwidth capacity and latency, and they embed a counter that keeps track of
the number of active data streams on the associated links. Each leaf is augmented
with a token bucket that specifies the maximum data rate allowed to reach the
corresponding node. The initial fill rate for each token bucket corresponds to the
bandwidth allowed by the path from the local node to the leaf.

Link sharing model. Whenever multiple streams share a segment of the routing
path, the token bucket fill rates are adjusted to split the bandwidth between
the competing streams, for each of the internal links of the topology supporting
multiple streams. The split depends on a bandwidth sharing models. The basic
Max-Min sharing model introduced in [4] does not correctly reflect actual sharing
behaviors [9]. Therefore, we use the RTT-aware Max-Min sharing model [20,27],
which is widely considered as accurate.

First, the allocation of bandwidth ρi for each flow fi on a link is capped by
the limitation of its bandwidth-delay product: the flow is capped by the ratio of
the sending window size Wi and roundtrip RTTi: ρi ≤ Wi/RTTi.

4 Second, the
sum of ρi for all flows on the link must not exceed the capacity of the link F . The
share ρi of the available bandwidth for each flow is then inversely proportional
to the flow RTTi, i.e., ρi = F × ((RTTi)

−1 ∑
j=1..n (RTTj)

−1) when the first
capacity constraint does not apply to any flow. The allocation takes into account
the fact that some hops in end-to-end paths are not able to use their full share of
a given emulated link. In this case, the remaining bandwidth is redistributed to
other existing communication flows under the model constraints until no further
refinement is possible.5

0

1

4

5

2 3

2

4 4 4

1

1

4

5

2 3

*0

*2 4 4

1

—

1

4

5

2 3

0

2 4 4

*0

——

—— —2 —2

1

4

5

2 3

0

*1.5 *3.5 4

0

0.5

—1.5

3-4-5 0-1-4-50-1-3

Available
bandwidth
(*=updated)

Bucket fill
rate (Mb/s)

0 0 0

(1) Initial state (2) Flow 0 2 (3) Flow 3 5 (4) Flow 0 5

Fig. 3. Evolution of the tree maintained by node 0 for the
topology of Figure 1 with the establishment of 3 communi-
cation flows

Example. Figure 3 il-
lustrates the tree main-
tained by node 0 in
the topology of
Figure 2 as communi-
cation flows are estab-
lished between nodes.
Initially, no communi-
cation takes place and
the buckets are idle
(first tree in the fig-
ure). Then, node 0
starts communicating
with node 2. To that
end, it sends to other nodes information about the path that has been estab-

4 We use a default value of 64 KB for the sending window size Wi, as found on most
wired networked system.

5 Note that the current model considers that the reverse-path bandwidth is sufficient
to accommodate the traffic of ACKs. Refinement of the model may include these
aspects, e.g., based on [17].

SplayNet: Distributed User-Space Topology Emulation 73

lished, and it updates its local view by adjusting the available bandwidth on
links and the fill rate of the bucket at leaf 2 (second tree in the figure). After
receiving a message from node 3 that starts sending data to node 5, node 1 sim-
ply updates the available bandwidth on the links but does not need to change
the bucket fill rates as there is no competition with one of its communication
flows (third tree in the figure). Finally, node 1 communicates with node 5. The
new flow competes with the previous two as it shares a link with each of them:
link 0→1 for the first flow, and link 4→5 for the second. The sharing of these
links is determined according to the RTT-aware Min-Max sharing model and
the bucket fill rate of leaves 2 and 5 are adjusted accordingly (fourth tree in the
figure). From the topology description in Figure 2, we obtain the following RTTs:
0→2 is 100 ms, 3→5 is 300 ms and 0→5 is 300 ms. As a result, the 2 Mb/s of
the link 0→1 are shared as 75% of 2 Mb/s = 1.5 Mb/s for 0→2, and 25% of
2 Mb/s = 0.5 Mb/s for 0→5. Note that the bandwidth allocated to flow 0→5
is the maximal allocatable, as link 4→5 is shared with flow 3→5 with the same
RTT for both flows.

5 Evaluation

In this section we present an extensive evaluation of our contributions. We com-
pare SplayNet with the de facto reference network emulators ModelNet [38]
and Emulab [18,40]. Similarly to SplayNet, both systems provide complete em-
ulation toolsets, from a topology description language to topology deployment
facilities. We use the same application code over the three emulation systems,
by using Splay and Lua stand-alone libraries on ModelNet and Emulab.

In Section 5.1 we first present a set of micro-benchmarks that measure the
accuracy of the delay and bandwidth emulation on simple yet representative
topologies. Our study then proceeds with a set of macro-benchmarks based on
real-world applications (Section 5.2). We use the Chord DHT [35] as an example
of delay-sensitive application and collaborative application-level multicast using
parallel n-ary trees [5] as an example of a bandwidth-sensitive application.

One of the distinctive features of SplayNet is the support for concurrent
deployments of multiple topologies on the same testbed. In Section 5.3, we inves-
tigate the scalability and accuracy of SplayNet when concurrently deploying
several topologies. Finally, Section 5.4 concludes this evaluation by presenting
the behavior of SplayNet when emulating large and complex topologies.

We set up a SplayNet cluster on top of a 1 Gb/s switched network with
60 machines, each with 8-Core Xeon CPUs and 8 GB of RAM. The ModelNet
cluster is deployed on the samemachines. We used the similarly powerful pc30006

machines for Emulab experiments.
The SplayNet modules executed by the splayds for network shaping are

implemented in pure Lua. We use version 5.1.4 of the Lua virtual machine for
all the experiments. The splayctl extensions are implemented in Ruby. Due to
the small number of machines typically available on Emulab, we had to restrict
our evaluations on this platform to a maximum of 20 nodes per experiment.
6 emulab.net/shownodetype.php3?node_type=pc3000

emulab.net/shownodetype.php3?node_type=pc3000

74 V. Schiavoni, E. Rivière, and P. Felber

5.1 Micro-Benchmarks

Latency. To evaluate the accuracy of link latency emulation, we deploy a simple
client-server application using remote procedure calls (RPCs) at the edges of the
topology, as shown in Figure 4.a (top). We measure the accuracy of the RPC’s
round-trip-time (RTT) for increasing emulated latencies. This experiment also
includes results for Emulab configured in end-node-traffic-shaping (ENTS) mode
to remove any latency overhead toward a third-party shaping node.

c

Bandwidth
Latency

Virtual node

Router

B
L

r s

10Mb/s
—c 10Mb/s

—r s

—
10/25/50/75/100ms

—
10/25/50/75/100ms

(a) Topologies: latency (top) and bandwidth (bottom).

 0

 20

 40

 60

 80

 100

40 +5% +10%

 %
 (

C
D

F
)

100 +5%

Emulab

-2% 200 +2%

RTT delays (milliseconds)

Emulab ENTS

300 +1% +2%

Modelnet

400 +1%

SplayNet

(b) Link latency emulation.

9

9.5

10

 0 10 20 30 40 50 60

T
hr

og
hp

ut
 (

M
b/

s)

Time (seconds)

Emulab ModelNet SplayNet

(c) Link bandwidth emulation.

Fig. 4. Link latency and bandwidth emulation for a
client-server RPC benchmark

Figure 4.b presents the
cumulative distribution
function (CDF) of ob-
served delays. The ex-
pected RTT is shown on
the x-axis for each of the
link latency values, with
variations expressed as per-
centages. Performance over
the 3 testbeds is very
similar: emulated latencies
never deviate more than
10% from the expected val-
ues, and never more than
5 milliseconds in absolute
terms.

Bandwidth. Our second
micro-benchmark evaluates
the accuracy of the band-
width emulation. We de-
ploy the point-to-point
topology of Figure 4.a (bot-
tom) with two nodes con-
nected by a single router.
Link latencies are close to
zero (bare latencies of the
support cluster) to miti-
gate any bandwidth-delay-
product effect [20,27] and to allow the maximum theoretical throughput. Emulab
and ModelNet’s link queue sizes are configured to the default size of 100 slots.

The client node continuously streams data to a server over a 10 Mb/s link via
a pre-established TCP connection. Figure 4.c shows how the three systems let
the application-level data stream, and emulated overhead, saturate the available
link bandwidth up to the theoretical limits. ModelNet and Emulab present os-
cillations in the observed instantaneous throughput, while SplayNet provides
a more steady download rate. This is a result of our choice of a decentralized,
model-based network emulation that does not use kernel-level buffers at dedi-
cated nodes. Oscillations are observed in real networks but to a much smaller

SplayNet: Distributed User-Space Topology Emulation 75

c s2r

s1

s3

BW (Mb/s)
Latency (ms)

Virtual node

Router

B
L

10
—

10
—

10
—

10
—

10
—

10
—

10
—

c1

c2 r

c3

s2r

s1

s3

10
—

10
—

10
—

10
—

c1

c2 r

c3

s10
—

10
—

10
—

10
—

(a) Topologies for bandwidth emulation micro-benchmarks (N→R→3N, 3N→R→N,
3N→R→R→3N).

3.3
5

10

 0 25 50 75 100 125

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

Emulab: N ➝ R ➝ 3xN

3.3
5

10

 0 25 50 75 100 125

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

ModelNet: N ➝ R ➝ 3xN

3.3
5

10

 0 25 50 75 100 125

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

SplayNet: N ➝ R ➝ 3xN

Node 1 Node 2

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

Emulab: 3xN ➝ R ➝ N

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

ModelNet: 3xN ➝ R ➝ N

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

SplayNet: 3xN ➝ R ➝ N

Node 3

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

Emulab: 3xN ➝ R ➝ R ➝ 3xN

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

ModelNet: 3xN ➝ R ➝ R ➝ 3xN

3.3
5

10

 0 25 50 75 100 125
Time (seconds)

SplayNet: 3xN ➝ R ➝ R ➝ 3xN

Client 1 Server 1

(b) Observed throughput at client nodes.

Fig. 5. Bandwidth shaping accuracy

extent than with ModelNet and Emulab. For the range of application of Splay-
Net (evaluation of networked protocols), the current model allows reproducibil-
ity between runs and between applications. We emphasize that oscillatory band-
width allocation or reverse ACK traffic [17] can be integrated in the model
without re-engineering the other elements of SplayNet.

We deploy more complex scenarios in order to evaluate the accuracy of Splay-
Net’s bandwidth emulation when multiple clients concurrently stream data
through common intermediate nodes. We use three topologies shown in Fig-
ure 5.a. Nodes are linked via 10 Mb/s links. Client nodes stream 50 MB of data
to server nodes, competing for the bandwidth on the link that connects the
client to the router (topology on the left, labeled N→R→3N), the link that con-
nects the router to the server (topology on the center, labeled 3N→R→N), or the
link between the two router nodes (topology on the right, labeled 3N→R→R→3N).
Streams are started at intervals of 5 seconds. For the sake of clarity, in the case
of 3N→R→R→3N, we only present the observed throughput at one client and

76 V. Schiavoni, E. Rivière, and P. Felber

one server. In order to isolate bandwidth emulation evaluation from the sharing
model, we consider equal delays on all links (bare delay from the underlying
network). The observed throughput in Figure 5.b indicates that SplayNet pro-
vides each stream with a fair amount of bandwidth even when competing with
other streams, without dedicated machines to emulate routers and with no cen-
tralized traffic shaping orchestration. The results obtained with ModelNet and
Emulab provide the applications an average throughput that is reasonably close
to the expected value, but they are hardly reproducible from one run to another
or over the duration of an experiment.

10Mb/s
10 ms

10Mb/s
10 ms

10Mb/s
10 ms

10Mb/s
5 ms

10Mb/s
30 ms

c1

c2

s1

s2

r r

(a) Topology.

3.3

5

6.6

10

 0 5 10 15 20 25 30 35 40 45

T
hr

ou
gh

pu
t (

M
b/

s)

Time (seconds)

Client 1, RTT=50ms Client 2, RTT=100ms

(b) Observed bandwidth at servers s1 and s2.

Fig. 6. RTT-aware Max-Min sharing of 10 Mb/s bot-
tleneck link

Link Sharing.We now eval-
uate the effectiveness of the
RTT-aware Max-Min link
sharing model introduced in
Section 4.3. We use the
topology described by Fig-
ure 6.a and set up two flows
from c1 to s1 and from c2 to
s2. The r→r link is shared
by the two flows and the
maximal bandwidth achiev-
able by both due to their
bandwidth-delay product is
greater than the link’s capac-
ity of 10 Mb/s. The first flow
starts at second 5 while the
second starts at second 10.
As expected, when the inter-
mediate link is traversed by
both flows, its capacity is split according to the inverse of each flow’s RTT:
50
150 = 2

3 of 10 Mb/s for client 1 (∼6.66 Mb/s), and the remaining 1
3 of 10 Mb/s

for client 2 (∼3.33 Mb/s).

5.2 Macro-Benchmarks

For our set of macro-benchmarks, we deploy complete implementations of two
representative distributed protocols, for which network emulation can be instru-
mental to evaluate the performance and behavior. For both experiments, using
the Chord DHT [35] and a collaborative multicast application [5], nodes are de-
ployed on an emulated star topology where all end-nodes are connected through
a single central inner router. All links from the end-nodes to the router are
emulated at 10 Mb/s (symmetric) with 30 ms latency.

Delay-sensitive: Chord DHT. Our first representative protocol is the Chord
DHT [35]. After 20 nodes form a stabilized Chord ring, each node submits 50
queries for random keys. Note that the constructed rings do not perfectly overlap
due to the nature of Chord node identifiers. In particular, node identifiers are
initialized by hashing their IP and port, and Emulab does not allow choosing
the network mask of the assigned machines.

SplayNet: Distributed User-Space Topology Emulation 77

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5

 %
 (

C
D

F
)

Query routing delays (seconds)

Emulab ModelNet SplayNet

 0 1 2 3 4 5

Routing hops

Fig. 7. Routing in a 20 nodes Chord ring

Figure 7 presents the
CDF of the delays for all
queries (left) and the CDF
of the number of hops re-
quired by the queries to
reach the node in charge of
the key (right). The results
demonstrate similar behav-
ior across all the testbeds in
terms of latency emulation.

Bandwidth-sensitive: multicast. We now evaluate how SplayNet performs
compared to ModelNet and Emulab for bandwidth-intensive protocols. We use a
multicast protocol based on parallel n-ary trees [5]. We create n=4 distinct trees
as done in SplitStream [8]. Each of the 20 nodes is an inner member in one tree
and a leaf in the others. The data to transmit is split into 16 blocks of 2.5 MB
each. Blocks are propagated in parallel along the 4 trees using a round-robin
policy for tree selection.

 0

 20

 40

 60

 80

 100

 100 110 120 130 140 150 160 170 180 190 200

 %
 (

C
D

F
)

Completion time (seconds)

Emulab ModelNet SplayNet

Fig. 8. Multicast diffusion on n-ary trees

Figure 8 presents the
CDF of the download com-
pletion time for all 4 trees
at all nodes. The results
indicate that the three plat-
forms offer comparable per-
formance in terms of band-
width emulation.

5.3 Concurrent Deployments

We now evaluate the impact of concurrent deployments in the same testbed on
the emulation accuracy for both delay- and bandwidth-sensitive protocols. In
these experiments, we use only 10 physical nodes of our cluster to enforce a
high level of concurrency. Each individual deployment consists of 20 nodes in
a star-like topology with 30 ms latency and 10 Mb/s bandwidth links. In the
most extreme case of 50 concurrent jobs, up to 1,000 application nodes run
simultaneously on the testbed. We start with a delay-sensitive application.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 5 10 25 50

R
ou

tin
g

de
la

ys
 (

se
co

nd
s)

Concurrent jobs (Chord DHT)

25
-t

h
pe

rc
en

til
e

50
-t

h
pe

rc
en

til
e

90
-t

h
pe

rc
en

til
e

99
-t

h
pe

rc
en

til
e

 0

 25

 50

90
 99

 0.49
 0.73

%
 (

C
D

F
)

Fig. 9. Impact of concurrent deployments on delay-
sensitive protocol Chord

Figure 9 presents the re-
sults of query routing delays
when deploying up to 50 con-
current jobs, each running
one instance of the Chord
DHT. Each bar in a group
of four presents a represen-
tative percentile (the first
quartile, the median, the
90th and 99th percentile) of
the routing delays for 50

78 V. Schiavoni, E. Rivière, and P. Felber

random queries issued by the nodes. The inner graph shows the CDF of the
routing delays for the queries issued by the nodes in the case of two concur-
rently deployed jobs, for which the percentiles give a compact representation.
The standard deviation for each quantile is indicated on each bar.

For instance, the median routing delay for two concurrent experiments are
0.49 s and 0.73 s, yielding an average median of 0.61 s and a standard deviation
of 0.17 s. The small standard deviations and consistent quantiles confirm the
lack of variation between the observed performances of concurrently deployed
jobs.

We continue by performing multiple concurrent deployments of a bandwidth-
sensitive protocol, the parallel n-ary tree protocol previously described. Our
objective is that concurrent experiments have little to no impact on one another,
and in particular on the behavior of the protocol under test. The behavior of a
set of protocols is represented by the CDF of the completion time for retrieving a
file from the parallel trees. We use a star topology with low and high bandwidth
requirements.

 0

 20

 40

 60

 80

 100

 300 350 400 450 500

 %
 (

C
D

F
)

Completion time (seconds)

1, 5, 2, 10, 25, 50

Fig. 10. Concurrent n-ary tree deployments: 2 MB of
data with 128 Kb/s links (the number of concurrent
deployments is indicated next to the respective lines)

In low bandwidth settings,
each link in the topology
supports a bandwidth of
128 Kb/s and the transmit-
ted file size is 2 MB. We
observe in Figure 10 that
the deployment of 1 to 50
concurrent instances of the
protocol have no impact on
their performance, allowing
to safely rely on a shared
emulation testbed. The emu-
lated traffic passing through each physical link of the cluster is below the thresh-
old of 100 Mb/s we use in our experiments.

We also experimented in high bandwidth settings, with 10 Mb/s links in the
emulated topology and a file size of 40 MB, and observed consistent behavior of
the protocols and topologies from 1 to 5 concurrently deployed topologies. With
more, as expected, concurrent deployments adversely impact one another due to
the maximal emulated traffic of 100 Mb/s per physical link.

5.4 Scalability

In this last experiment, we evaluate the accuracy and scalability of SplayNet

when emulating large and complex topologies. We compare the accuracy of the
emulation against “ideal” results obtained using a centralized and omniscient
simulation. Based on the full list of exchanges, we determine the exact con-
gestion on inner links and decide on appropriate bandwidth allocation with no
synchronization delay. The simulation uses the same mechanisms for deciding on
bandwidth allocation (Section 4.3) but applies them to the full topology graph.
We use a set of three topologies of size 50, 100, and 150 nodes, constructed using

SplayNet: Distributed User-Space Topology Emulation 79

the preferential attachment method [2]. We start with a single node and add
new nodes one by one, each with one outgoing link. We pick the destination
of that link such that the selection probability is proportional to each node’s
actual in-degree. This method yields scale-free networks, representative of the
characteristics of Internet topologies, with distribution of the degrees following
a power-law. Nodes with no incoming link act as application nodes while other
nodes are routers. Due to the scale-free nature of the graph, a large majority
of paths between end-nodes share common inner links in the topology. This is
a challenge for the distributed congestion evaluation mechanism. Each link has
a random delay in the [10:30] ms range. Bandwidth between routers is 1 Mb/s,
and 10 Mb/s from end-nodes to their respective routers, to prevent the last link
be a bottleneck and to emphasize the effect of congestion on inner links.

Table 2. Accuracy versus centralized simulation, on large
scale-free topologies, of a randomized high-bandwidth com-
munication workload

flows/s accur. error (±%)
nodes routers avg. time avg. stdev. min. max.

30 20
4.54 398.92 s 1.02 0.92 0.04 2.61
9.78 719.11 s 3.89 2.14 0.08 8.15

62 38
7.49 400.85 s 3.45 2.12 0.65 8.52

15.34 959.56 s 5.63 3.38 1.46 17.12

98 52
9.79 566.56 s 4.00 1.80 1.83 7.68

19.09 1201.38 s 11.94 4.75 0.23 24.48

We mimic a
randomized band-
width-sensitive com-
munication workload.
Some application
nodes initiate a sin-
gle communication of
10 MB of data over
TCP to a randomly
selected other node.
This is similar to
what would happen
for instance in a BitTorrent dissemination. For each topology, we use two work-
loads: a light and a heavy one (first and second line of Table 2, respectively),
which differ in particular in the number of (concurrent) exchanges. The last
four columns present the statistics for the accuracy, that is, the variation over
the ideal simulation for the same exchanges. The average accuracy ranges from
±1.02% to ±11.94%, with only small variations across all flows and in all cases,
i.e., a low standard deviation. Minimal and maximal inaccuracy is particularly
low for the smallest graph and remains reasonable for the two others, well in the
usability range for large-scale network emulation. We were not able to deploy
the same experiment on Emulab due to the low number of available nodes on
this platform.

6 Conclusion

Network emulation allows researchers to evaluate distributed applications by
deploying them in a variety of network conditions. Previous solutions often relied
on dedicated machines to shape the network traffic across the nodes involved in
an experiment, and did not allow the concurrent deployment of different network
topologies on the same nodes of a testbed.

This paper introduced SplayNet, an integrated user-space network emula-
tion framework. SplayNet uses a distributed orchestration protocol to emulate
congestion at inner nodes in a decentralized manner and without instantiating

80 V. Schiavoni, E. Rivière, and P. Felber

these inner nodes on physical machines. It allows the deployment of multiple ex-
periments, each under different network emulation conditions, and running con-
currently on the same set of machines. SplayNet offers equivalent performance
to state-of-the-art systems, both in terms of latency emulation and bandwidth
shaping accuracy. It has shown to scale well for concurrent deployments of real-
world distributed protocols and large topologies. This work was partly supported
by the Swiss National Foundation under agreement number 200021-127271/1.

References

1. Avvenuti, M., Vecchio, A.: Application-level network emulation: the EmuSocket
toolkit. Journal of Network and Computer Applications 29(4) (2006)

2. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286
(1999)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP (2003)

4. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall (1992)
5. Biersack, E.W., Rodriguez, P., Felber, P.: Performance analysis of peer-to-peer

networks for file distribution. In: Solé-Pareta, J., Smirnov, M., Van Mieghem, P.,
Domingo-Pascual, J., Monteiro, E., Reichl, P., Stiller, B., Gibbens, R.J. (eds.)
QofIS 2004. LNCS, vol. 3266, pp. 1–10. Springer, Heidelberg (2004)

6. Carbone, M., Rizzo, L.: Dummynet revisited. SIGCOMM Comput. Commun.
Rev. 40(2), 12–20 (2010)

7. Carson, M., Santay, D.: NIST Net-a linux-based network emulation tool. SIG-
COMM Comput. Commun. Rev. 33(3), 111–126 (2003)

8. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
Splitstream: high-bandwidth multicast in cooperative environments. In: SOSP
(2003)

9. Chiu, D.M.: Some observations on fairness of bandwidth sharing. In: ISCC (2000)
10. Coffman Jr, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing:

A survey. In: Approximation algorithms for NP-hard problems, pp. 46–93. PWS
Publishing Co. (1996)

11. Costa, P., Donnelly, A., Rowstron, A., O’Shea, G.: Camdoop: exploiting in-network
aggregation for big data applications. In: NSDI (2012)

12. Eriksen, M. Trickle: A userland bandwidth shaper for unix-like systems. USENIX
ATC (2005)

13. Etsion, Y., Tsafrir, D., Feitelson, D.: Effects of clock resolution on the scheduling
of interactive and soft real-time processes. In: SIGMETRICS (2003)

14. Fall, K.: Network emulation in the Vint/NS simulator. In: ISCC (1999)
15. Gkantsidis, C., Rodriguez, P.: Network coding for large scale content distribution.

In: INFOCOM (2005)
16. Hemminger, S.: Network emulation with NetEm. In: Linux Conference (2005)
17. Heusse, M., Merritt, S.A., Brown, T.X., Duda, A.: Two-way tcp connections: old

problem, new insight. SIGCOMM Comput. Commun. Rev. 41(2), 5–15 (2011)
18. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb, K.,

Lepreau, J.: Large-scale virtualization in the emulab network testbed. USENIX
ATC (2008)

19. Ingham, D.B., Parrington, G.D.: Delayline: a wide-area network emulation tool.
Comput. Syst. 7(3), 313–332 (1994)

20. Kelly, F.P.: Charging and rate control for elastic traffic. European Trans. on
Telecommunications 8, 33–37 (1997)

SplayNet: Distributed User-Space Topology Emulation 81

21. Kodama, Y., Kudoh, T., Takano, R., Sato, H., Tatebe, O., Sekiguchi, S.: GNET-1:
Gigabit ethernet network testbed. In: CLUSTER (2004)

22. Kojo, M., Gurtov, A., Manner, J., Sarolahti, P., Alanko, T., Raatikainen, K.: Sea-
wind: a wireless network emulator. In: MMB (2001)

23. Kristiansen, S., Plagemann, T., Goebel, V.: Towards scalable and realistic node
models for network simulators. In: SIGCOMM (2011)

24. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: HotNets (2010)

25. Leonini, L., Rivière, E., Felber, P.: SPLAY: Distributed systems evaluation made
simple. In: NSDI (2009)

26. Lin, S., Pan, A., Zhang, Z., Guo, R., Guo, Z.: WiDS: an integrated toolkit for
distributed system development. In: HotOS (2005)

27. Massoulié, L., Roberts, J.: Bandwidth sharing: objectives and algorithms.
IEEE/ACM Trans. Netw. 10(3), 320–328 (2002)

28. Nussbaum, L., Richard, O.: Lightweight emulation to study peer-to-peer systems.
Concur. and Comput.: Practice and Experience 20(6), 735–749 (2008)

29. Pizzonia, M., Rimondini, M.: Netkit: easy emulation of complex networks on inex-
pensive hardware. In: TridentCom (2008)

30. Puljiz, Z., Penco, R., Mikuc, M.: Performance analysis of a decentralized network
simulator based on IMUNES. In: SPECTS (2008)

31. Raghavan, B., Vishwanath, K., Ramabhadran, S., Yocum, K., Snoeren, A.: Cloud
control with distributed rate limiting. SIGCOMM Comput. Commun. Rev. 37,
337–348 (2007)

32. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem.
SIGCOMM Comput. Commun. Rev. 33(2), 65–81 (2003)

33. Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M., Atkinson, K., Zhang, J.,
Kasera, S., Lepreau, J.: The Flexlab approach to realistic evaluation of networked
systems. In: NSDI (2007)

34. Roverso, R., Al-Aggan, M., Naiem, A., Dahlstrom, A., El-Ansary, S., El-Beltagy,
M., Haridi, S.: MyP2PWorld: Highly reproducible application-level emulation of
P2P systems. In: SASOW (2008)

35. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: A scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

36. Tang, P., Tai, T.: Network traffic characterization using token bucket model. In:
INFOCOM (2009)

37. Tazaki, H., Asaeda, H.: DNEmu: Design and implementation of distributed network
emulation for smooth experimentation control. In: Korakis, T., Zink, M., Ott, M.
(eds.) TridentCom 2012. LNICST, vol. 44, pp. 162–177. Springer, Heidelberg (2012)

38. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker,
D.: Scalability and accuracy in a large-scale network emulator. In: OSDI (2002)

39. Weingärtner, E., Schmidt, F., Lehn, H., Heer, T., Wehrle, K.: SliceTime: a platform
for scalable and accurate network emulation. In: NSDI (2011)

40. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: OSDI (2002)

41. Yin, Q., Roscoe, T.: VF2x: Fast, efficient virtual network mapping for real testbed
workloads. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST,
vol. 44, pp. 271–286. Springer, Heidelberg (2012)

42. Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: IN-
FOCOM (1996)

43. Zheng, P., Ni, L.: Empower: A network emulator for wireline and wireless networks.
In: INFOCOM (2003)

Assured Cloud-Based Data Analysis

with ClusterBFT�

Julian James Stephen and Patrick Eugster

Purdue University

Abstract. The shift to cloud technologies is a paradigm change that
offers considerable financial and administrative gains. However govern-
mental and business institutions wanting to tap into these gains are con-
cerned with security issues. The cloud presents new vulnerabilities and
is dominated by new kinds of applications, which calls for new security
solutions.

Intuitively, Byzantine fault tolerant (BFT) replication has many ben-
efits to enforce integrity and availability in clouds. Existing BFT sys-
tems, however, are not suited for typical “data-flow processing” cloud
applications which analyze large amounts of data in a parallelizable man-
ner: indeed, existing BFT solutions focus on replicating single monolithic
servers, whilst data-flow applications consist in several different stages,
each of which may give rise to multiple components at runtime to exploit
cheap hardware parallelism; similarly, BFT replication hinges on com-
parison of redundant outputs generated, which in the case of data-flow
processing can represent huge amounts of data. In fact, current limits
of data processing directly depend on the amount of data that can be
processed per time unit.

In this paper we present ClusterBFT, a system that secures compu-
tations being run in the cloud by leveraging BFT replication coupled
with fault isolation. In short, ClusterBFT leverages a combination of
variable-degree clustering, approximated and offline output comparison,
smart deployment, and separation of duty, to achieve a parameterized
tradeoff between fault tolerance and overhead in practice. We demon-
strate the low overhead achieved with ClusterBFT when securing data-
flow computations expressed in Apache Pig, and Hadoop. Our solution
allows assured computation with less than 10 percent latency overhead
as shown by our evaluation.

Keywords: Cloud, Byzantine fault, replication, integrity, data analysis.

1 Introduction

The cloud as a computing platform is getting more popular and mature every
day. Computational needs of industry, academia, and government are being in-
creasingly met by processing data in the cloud. Recently announced government

� This work has been financially supported by DARPA grant # N11AP20014,
Northrop Grumman Information Systems, Purdue Research Foundation grant #
204533, and Google Research Award “Geo-Distributed Big Data Processing”.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 82–102, 2013.
c© IFIP International Federation for Information Processing 2013

Assured Cloud-Based Data Analysis with ClusterBFT 83

policies [4] clearly show an urgent economic requirement for processing data in
the cloud. Yet, a major roadblock to adopting cloud technologies is the lack of
trust on the various facets of cloud computing. The fact that a potentially ma-
licious entity can legally access computing resources in the same datacenter or
even on the same machines as well-intended users increases the risk associated
with moving computations into the cloud. Malicious programs, faulty hardware,
and software bugs can lead to corrupt data or cause services to fail.

Model. In many scenarios, institutions can trust the cloud providers them-
selves, but not the users of the system. If we take the example of the US intelli-
gence community, different agencies have their own inhouse clouds. They want
to improve sharing of information with each other without exposing their own
systems to potential weaknesses or infections in their peer systems [4]. Such a
partial trust model also applies to many large corporations which include subdi-
visions hosting their own datacenters. Within this scenario, the present paper is
concerned with ensuring (a) integrity and (b) availability, i.e., that computations
indeed perform what they were supposed to (e.g., to avoid obfuscating terrorist
activities), and that these computations can be performed in a timely manner
(e.g., to be able to react to real threats on time). While our solution also includes
mechanisms for confidentiality we focus on (a) and (b) in this paper.

State of the Art. Most approaches to cloud security focus by and large on
either (a) communication, (b) data, or (c) computation. Communication-centric
approaches (a) to security in public or inhouse clouds focus on setting up thick
firewalls, which monitor in - and outbound traffic. Typically, ports that accept
incoming data and specific protocols and services are allowed or disallowed based
on the configuration of the firewall. Though required, such perimeter security is
not sufficient to secure computations because, zero-day attacks may compromise
one or many of the internal nodes. Once an internal node is compromised, it can
alter computation output even without any communication across the perime-
ter. This can break the integrity of the system. In addition, as illustrated over
and over again by the alleged organized attacks of chinese hacker groups on US
installations, if there is a vulnerability in the perimeter defense system, it is very
difficult to detect an ongoing attack. Data-centric approaches (b) protect data
from malicious and benign failures but mainly focus on data at rest. In all func-
tional systems, data is under constant churn. Computation adds, deletes and
morphs data into new forms. Further, in many cloud storage systems data mod-
ification is replaced with data creation (append-only semantics) for performance
and reliability reasons. Under such conditions, it is impossible to ensure integrity
of data without assuring computations that work on data. Typical data-centric
approaches focus on ensuring confidentiality when that data is accessed or com-
puted on but do not verify computations themselves. Computation-centric ap-
proaches (c) to securing computation focus on fine-grained information-flow [17].
As with data-centric approaches, information-flow approaches aim at protecting
(sensitive) data from leaking. However, they do not ensure that the computa-
tion is behaving according to specification, i.e., ensuring the computation is doing

84 J.J. Stephen and P. Eugster

what it was intended to. In typical cloud data-flow processing applications, where
new data-sets are generated as outcome of analysis and correlation of existing
data-sets and stored for subsequent use, these outcomes must be trustworthy.
In fact, since in the larger picture data-sets are derived from earlier data-sets,
any false results computed violate integrity of the semantic information in the
original data-sets.

BFT in Clouds. Intuitively, Byzantine fault tolerant (BFT) replication [23]
is a powerful means of securing computation and thus achieving integrity and
availability in cloud-based computing. BFT suggests the use of multiple replicas
of a sensitive component, and hinges on the comparison of outcomes produced
by these replicas to determine components with erratic behavior (assuming a
correct “majority”). While several fundamental assumptions of BFT replication
— e.g., determinism in replicas for comparisons, possibility of exploiting redun-
dant hardware — are largely met by typical cloud-based data-flow applications,
existing BFT systems are inapplicable to such applications: these focus on se-
curing single monolithic servers, and only little work exists on applying BFT
replication beyond such stand-alone servers. Cloud-based data-flow processing
systems, inversely, leverage cheap hardware by breaking down applications into
small components which are amenable to parallel execution. When applying BFT
replication to any one of these components by running multiple replicas of each
and comparing their respective outcomes overheads sum up very quickly.

ClusterBFT. This paper presents ClusterBFT for cloud-based assured data
processing and analysis. ClusterBFT utilizes BFT techniques which impose less
overhead than existing cryptographic primitives, but breaks away from the mold
of individually replicating every client request. More precisely, ClusterBFT cre-
ates sub-graphs from acyclic data-flow graphs that are then replicated. This
means, rather than enduring the overhead of BFT consensus at each component
involved in the data-flow processing, we have a system with much less overhead
that can dynamically adapt to changes in required responsiveness and perceived
threat level as well as to dynamic deployment (elasticity). We use a combination
of variable-grain clustering with approximated and offline comparison, separation
of duty, and smart deployment to keep overheads of BFT repliation low while
providing good fault isolation properties. In summary, the main contributions of
the paper are (1) identification of challenges and solutions for achieving availabil-
ity and integrity of cloud-based data-flow computations with BFT replication,
(2) the architecture and implementation of a BFT solution for such computa-
tions, and (3) the evaluation of this solution. Our evaluation shows less than 10
percent latency overhead in most cases for even complex data analysis jobs.

Roadmap. The remainder of this paper is structured as follows. Section 2
provides background information. Section 3 lists design principles and challenges.
Section 4 describes the ClusterBFT architecture in detail. Section 5 describes its
implementation. Section 6 presents evaluation results. Section 7 presents related
work. Section 8 draws conclusions.

Assured Cloud-Based Data Analysis with ClusterBFT 85

2 Background and Preliminaries

This section presents information pertinent to the remainder of the paper.

2.1 BFT

Byzantine failures [23] model arbitrary faults that may occur in a process during
execution, including malign and benign faults. In order to explain our system
better, we further distinguish Byzantine failures by classifying them based on
how they allow deviation from correct execution. We use the categorization of
Kihlstrom et al. [20] which classifies Byzantine failures as follows:

– Omission (detectable): An omission failure occurs when a process does not
send a message that it is expected to send. These can be detected by setting
timeouts for messages. It is important to note here that in an asynchronous
system, a timeout does not necessarily imply a faulty component.

– Commission (detectable): A commission failure occurs when a process sends
a message it is not supposed to send. Such failures can be detected by check-
ing if the message is in agreement with at least f+1 other replicas.

– Unobservable (non-detectable): Unobservable failures are those which other
processes cannot detect based on the messages they receive.

– Undiagnosable (non-detectable): Undiagnosable failures are those that can-
not be attributed to a specific process.

2.2 MapReduce and Pig

Big data analysis is one of the major use cases for moving towards cloud com-
puting and most cloud-specific programming models reflect this. Corresponding
runtime systems try to make use of large numbers of nodes available for data
analysis to decrease latency. The popular MapReduce [16] framework partitions
input data and assigns a mapper process to each input partition. These mapper
processes produce “intermediate” key-value pairs as output which are grouped
by key and fed by key to reducer processes which use these to generate final
output. Hadoop [37] is a popular open source implementation of MapReduce.

Apache Pig [3] is a platform for data analysis that consists of the PigLatin [28]
high-level language for expressing data analysis programs, and a runtime system.
Pig Latin scripts are typically compiled to MapReduce jobs that are executed
using a MapReduce engine such as Hadoop for Pig. To illustrate the benefits of
our concepts, we focus in this paper on Pig data analysis jobs.

Throughout the paper, unless otherwise specified, we use the term script to
refer to a Pig (Latin) script. We use the term job to refer to a MapReduce job
and task to refer to map or reduce tasks within a MapReduce job. We use the
term job cluster to refer to the group of nodes involved in executing a specific
job.

86 J.J. Stephen and P. Eugster

2.3 System Model

We assume that the system is deployed on a cloud service that leases out vir-
tual machines to users. We refer to one such virtual computation unit as a
node. This means that there could be multiple nodes on the same physical ma-
chine. We assume that the number of nodes that are faulty at a given time is
bounded. For the purpose of this paper we focus on computation and assume
a trusted storage layer. We are aware that assuming correctness of a storage
system prone to Byzantine faults is ambitious, but it is not unrealistic either.
Systems like DepSky [8] show its feasibility. Further, the challenges that need
to be solved even with the presence of a trusted storage are tough and warrant
investigation. We present a system for two adversary models. For both models,
we assume that the adversary cannot manipulate the cloud service provider or
violate its specifications. This includes preventing communication between any
two nodes, spawning new Byzantine nodes, and breaking computationally hard
cryptographic primitives. A strong adversary can manipulate all internal aspects
of a node and collude with other adversaries. This includes full control over the
executing processes, physical memory and messages being sent out of the node.
A weak adversary shares the same properties of a strong adversary, but may
only cause omission or commission faults.

3 ClusterBFT Design

This section presents first our motivation for using BFT techniques in the cloud,
before outlining challenges in such adoption and finally our solutions for over-
coming these.

3.1 BFT and the Cloud

We decided to adopt BFT replication due to several intuitive benefits:

Attribution: Along with tolerating benign or malign failures, BFT techniques
can also point to potentially faulty components which helps for attribution
as well as auditing. Indeed, being able to shield computation from malicious
entities is one thing, but in a sea of nodes such as a cloud datacenter it is
also necessary to keep track of where such accesses were attempted, as these
may hint to exploited leaks and intruders.

Portability and interoperability: BFT techniques can be applied at a higher
level in the protocol stack — here typically at the level of data-flow program
execution — which allows them to be deployed easily across different cloud
platforms and infrastructures, thus supporting portability, cloud interoper-
ability, and the cloud-of-clouds paradigm [38].

Determinism: Popularity of data-flow languages like PigLatin or DryadLINQ
[40] shows the relevance of data analysis jobs that can be modeled as di-
rect acyclic graphs (DAGs). These computations and their constituents are
by-and-large deterministic, which simplifies the comparison of redundant

Assured Cloud-Based Data Analysis with ClusterBFT 87

Fig. 1. Part (i) shows a data-flow graph with 7 phases. (ii) focuses on n×m replication
of jobs J1, J2 and J3. (iii) shows clustered replication of J1, J2, J3 requiring only one
round of BFT consensus. For simplicity we only show one map and one reduce task
per MapReduce job.

results. Inversely, concurrent client accesses pose challenges when replicat-
ing large monolithic servers. Recent trends in cloud-based data process-
ing include support for iterative and incremental jobs which contradict the
straightforward DAG model [41] but do not hamper determinism.

Heterogeneity: BFT relies on heterogeneity of replicas to ensure that a ma-
jority of replicas are not compromised simultaneously by means of the same
vulnerability. Cloud platforms do expose a uniform hypervisor layer on which
operating systems are deployed, but cloud providers offer a variety of op-
erating system images that can be deployed on these nodes. Within an
operating system itself, adoption of address space layout randomization (AD-
SLR) introduces further heterogeneity. DARPA’s Mission-Resilient Cloud
program [25] funds several projects aiming at creating moving targets specif-
ically to further narrow this gap [27].

3.2 Challenges in Adopting BFT in the Cloud

Though intuitively BFT seems like a good match in many ways for ensuring
computation in the cloud, it has thus far not been adopted widely in such a
context due to a variety of open challenges:

C1. Scalability: Datasets are typically many magnitudes higher in cloud-based
programming than in previous scenarios. As BFT replication protocols hinge
on comparison of redundant outcomes, this translates to large overheads.

C2. Granularity: Data analysis scripts also tend to have multiple jobs where
output of one is fed to the second. This creates a job-chain in which a
process that was a server for one job acts as a client for the second job.
Ideally, every process is fine-grained and can be deployed dynamically. This
means, näıve BFT replication of each job will result in R = 3f+1 replicas for
each task, with n×m communication [31] and synchronization after every

88 J.J. Stephen and P. Eugster

stage. This is illustrated by Figure 1. The left part (i) shows a Pig-style data-
flow graph, while the middle part (ii) illustrates the n×m interaction [31]
occurring as a result of replicating every node in the (sub)graph obtained
after compilation to MapReduce jobs: every edge corresponds here in fact
corresponds to 4 × 4 interactions. This causes very high resource usage,
limiting availability and increasing cost for huge data-flows.

C3. Rigidity: Clouds represent very dynamic environments, being marketed to
meet instantaneous demands rather than having to over-provision constantly
to meet occasional spikes. This calls for solutions that are flexible and can
be adapted to some degree. The main knob to turn in BFT is the replication
degree, which however represents a coarse granularity: typically a replica-
tion degree of 3f + 1 = 4 with f = 1 already leads to substantial overhead.
The next larger step, 3f + 1 = 7, to tolerate up to 2 failures already leads
to prohibitively larger overhead.

There are are also non-technical factors deterring BFT adoption in the cloud.
As explained by Birman et al. [9], many cloud middleware service providers
have an inherent “fear of synchronization” irrespective of the existence of fast
consensus protocols and success stories like Chubby [11].

3.3 ClusterBFT Principles and Architecture Overview

ClusterBFT addresses the challenges C1-C3 above as follows:

Variable Granularity: Observe that nothing forces us to replicate every indi-
vidual node in the data-flow graph. We could in fact replicate the execution
of an entire data-flow graph 3f + 1-fold, and compare the outcomes at the
very end. More generally speaking, we can choose any intermediate level
for clustering nodes in the graph and replicate these subgraphs (addressing
C2 above). This is illustrated by the right part (iii) of Figure 1, where the
sub-graph of (ii) is replicated as a whole and comparison only occurs at the
end of this sub-graph. The potential downside of such regrouping is that it
may diminish the degree of fault tolerance and precision of fault attribution:
a single deviant node in a group hampers the outcome of that replica, and
identifying which node(s) in the group exhibit Byzantine behavior becomes
harder. In addition, if we do not end up having sufficiently many identical
replica responses, it takes longer to run additional replicas thus increasing
job latency. This tradeoff leads to an additional knob for users to tweak (C3).

Variable Replication: The BFT replication model allows control over how
resources are utilized. Based on the user’s confidence in the cluster, different
degrees of replication can be adopted with different guarantees. A user can
specify an optimistic, f+1 replicas. In this case, the execution ensures safety,
but may require repeated runs to get correct output. If the user specifies
2f +1 replicas, a correct result can be guaranteed if all replicas always reply
(no omission failures). If 3f +1 replicas are specified, a correct result can be
guaranteed under combination of any kind of Byzantine failure.

Assured Cloud-Based Data Analysis with ClusterBFT 89

Approximate, Offline Redundancy: Instead of comparing the entire out-
puts of a replica set in one go upon sub-job completion, we can choose to (1)
only compare digests, (2) start doing so before sub-job completion, and (3)
allow the follow-up sub-job to proceed based on the complete output before
comparison completes. This reduces the overhead of putting redundancy to
work (addressing C1) in a way allowing further fine-tuning of tradeoffs be-
tween performance and security by control of the resilience of the digests
(C3).

Separation of Duty: Rather than baking the entire data-flow handling logic
into every node, we can separate architecturally the “front-end” of a data-
flow processing system which accepts jobs from the actual cluster of worker
nodes such as MapReduce nodes executing the jobs. This architectural divi-
sion is illustrated in Figure 2 which outlines the architecture of our solution
ClusterBFT detailed in the next section. Components in the control tier
are command and control processes that provide direction and coordinate
computations in the computation tier. The former tier is trusted, which is
achievable by BFT replication or by implicitly trusting the nodes, i.e., by
closely (even manually) monitoring nodes, or using nodes in the client net-
work or private cloud. The benefit of this separation is that it limits certain
strong assumptions and expensive mechanisms to the front-end, allowing the
cluster to focus on work (cf. [39]) and to be handled more dynamically (C3).
This in turns allows the worker node cluster to be adapted dynamically,
by adding and removing nodes based on resource requirements, measured
performance, and of course suspicions.

Fault Isolation: Another net advantage of the separation of duty is that the
front-end can keep track of suspicions observed, and can use specific de-
ployment policies to, for instance, narrow down the (set of) faulty node(s)
in a replication group delivering a faulty response by intentionally partly
overlaying the replication group of a different job on the same nodes. Simi-
larly, dummy jobs can be used to further probe nodes in such a suspicious
replication group. Thus the tradeoff with attribution precision introduced by
variable granularity does not become a one-way path but becomes a tradeoff
with the time it takes to recover precision (C3).

In the following section we describe the architecture of ClusterBFT and how we
put these principles to work.

4 ClusterBFT Architecture and Components

In this section we look at the different components that make up ClusterBFT
(see Figure 2). Table 1 presents a summary of the symbols used in the following.

4.1 Request Handler

The request handler component is in the control tier. It accepts scripts submitted
by the client and submits the script for execution. It consists of three logical
subcomponents outlined below.

90 J.J. Stephen and P. Eugster

Fig. 2. Architecture

Table 1. Symbols

Symbol Meaning
r Replication factor
n Number of verification points
f Number of expected failures
s Suspicion level

Client Handler. The client sub-
mits the script to the client handler.
The client also specifies the number
of expected failures f , a replication
factor r and the total number of ver-
ification points n based on the per-
ceived threat level. Verification points
are vertices in the data-flow graph af-
ter which output from different replicas are matched. The client handler gener-
ates a logical plan from the script. This is given as input to the graph analyzer
described below.

Graph Analyzer. In order to reduce overhead and improve utilization, we need
to identify verification points in the data-flow graph that are most effective.
Running verification after every operation will cause very high overhead and
running verification scarcely will result in more re-computations (hence higher
resource usage) when failures occur. The graph analyzer component, based on
the adversary model, identifies points in the data-flow graph for performing
verification. Under the strong adversary model, only points that correspond to
data-flow between jobs are considered for verification. Under a weak adversary
model, any point in the data flow graph can be considered for verification.

With n verification points requested by the user, we use the marker function
defined in Figure 3 to identify the actual points. We explain the intuition behind
the marker function using an example. Consider the data-flow graph in Figure 4
and assume the user specified one verification point. If we decide to perform
verification right after the vertex Load1, then the probability of identifying a
fault is very low. There is a much higher probability that at least one of the

Assured Cloud-Based Data Analysis with ClusterBFT 91

Table 2. Notation

Notation Meaning

ir[v] Input ratio of v
parents(v) All parents of vertex v

level(v)

⎧⎨
⎩
1 if v = Load

max
p∈parents(v)

1 + level(p) else

min(v,M)
Number of edges between v and
the vertex closest to v in M

V � Vertex set
n � Number of verification points
function mark(V, n)

M ← ∅ � Set of marked vertices
for 1.. n do

max ← 0
for all v ∈ V do

scorev ← ir[v] +min(v,M)
if scorev > max then

m ← v
max ← scorev

end if
end for
M ← M ∪ {m}

end for
end function

Fig. 3. Marker function

Fig. 4. Annotated data-flow graph

v � a vertex ∈ V
function input ratio(v)

if v is Load then
ir[v] ← input size(v)

total input size

else

ir[v] ←
∑

p∈parents(v)

ipr[p]

∑

level(n)=level(v)−1

ipr[n]

end if
end function

Fig. 5. Computing input ratios

nodes that execute the vertices below Load1 is faulty simply because there are
more of them. On the other end, if we run verification after Join2, then we most
probably will know if result is going to be faulty, but the cost of re-computation,
in case f+1 replicas do not agree becomes high; the entire sequence of operation
needs to be recomputed. The marker function considers two main parameters to
arrive at a verification point that is a good tradeoff between these two extremes.
The ratio of input data that flows through a vertex and distance of a vertex from
another verification point. Using these two values, the marker function arrives
at a mid point suitable for verification. Once the verification point is identified,
the logical plan is instrumented with a verification function and given to the job
initiator. Details of what a verification function are described next.

Job Initiator and Verifier. The instrumented script gets compiled into one
or more MapReduce jobs and the job initiator associates a sub graph identifier
sid with each such job. The job initiator submits a total of r replicas of the job
for execution to the execution handler. All replicas are configured to have the
same number of reduce tasks. The verification function instrumented into the
MapReduce job uses a cryptographic hash function (SHA-256 in our prototype)

92 J.J. Stephen and P. Eugster

to compute a digest of the data streaming through the verification point and
sends this digest to the verifier. The verifier compares corresponding digests
from different replicas and asserts that at least f + 1 are same. The verifier is
also responsible for isolating failures and updating the suspicion level s for each
node.The suspicion level of a node is defined as total number of faults associated
with the node divided by the total number of jobs executed on the node. For
clarity, details of fault isolation is specified as a separate section (4.2), after we
introduce the remaining components in our architecture.

4.2 Execution Handler

Figure 6 shows the internals of the execution handler and how it interacts with
the request handler.

Execution Tracker. The job submitted by the request handler is executed by
the execution tracker. Resources available in nodes are partitioned into uniform
resource units ru. A list of all resources is initially loaded from an administrator-
provided inclusion list into the resource table as a tuple 〈nid,#ru, 〈sid...〉, s〉. One
tuple represents a node id nid, the number of resource units ru in that node, the
current allocation of sids and suspicion level s of a node. When the job initiator
submits a job, the job is first added to the job queue. The main sequence of
operations that take place after this is shown in Figure 6 (others are omitted for
simplicity), and detailed below:

Fig. 6. Execution tracker & resource manager

1. A node in the untrusted domain with id nid sends a heartbeat message to
the execution tracker.

2. The execution tracker checks with the resource manager to see if there is a
task that can be scheduled on node nid.

3. The resource manager queries the resource allocation table to retrieve the
sids of tasks currently running on node nid. Using this, the resource manager
looks at the list of running or submitted jobs to check if a there is a task
from a job that does not already have a task running on node nid.

4. The resource manager provides a list of ready tasks corresponding to the
number of free rus in node nid.

Assured Cloud-Based Data Analysis with ClusterBFT 93

5. The execution tracker replies to the heartbeat message with the task that
needs to be executed.

6. During task execution, the verification function creates a message digest of
data streaming through the verification point and sends the digest to the
verifier. The verifier checks for f+1 matching message digests from different
replicas. If the verifier times out without obtaining f + 1 matching message
digests, the job is initiated again with a higher value for r.

7. Based on the number of non-matching digests, the verifier updates the sus-
picion levels of node nid. in the resource table.

Resource Manager. We already outlined how the resource manager functions
as part of the working of the execution tracker. There are two goals that we try to
achieve by proper task selection: efficient execution and fast fault identification.
Data local tasks enable faster execution. For fast fault identification job clusters

1: D ← A set of disjoint sets.
2: O ← A set of overlapping sets.
3: function Fault Analyzer(S) �

S, the set of nodes in a cluster that just
returned a commission fault.

4: if ∀X | X ∈ D,S ∩X = ∅ then
5: D ← {S} ∪D
6: else if ∃Y | Y ∈ D and S ⊂ Y then
7: D ← D \ {Y }
8: O ← O ∪ {Y }
9: D ← D ∪ {S}

10: else
11: O ← O ∪ {S}
12: if |D| = f then
13: for each X ∈ D do
14: A← A ∪X
15: for each X ∈ O do
16: X ← X ∩A
17: for each X ∈ D do
18: for each Y ∈ O do
19: if X ∩ Y �= ∅ then
20: I ← I ∪ (X ∩ Y)

21: if | I |= 1 then
22: D ← D \ {X}
23: D ← D ∪ {I}
24: end function

Fig. 7. Fault analyzer function

can be overlapped in specific pat-
terns. The scheduling strategy we
use is to cause as many intersec-
tions as there are resource units in
a node. That means if one node
has three resource units, we try
to pick tasks from three differ-
ent jobs to execute. Other strate-
gies can also be used to overlap
clusters which we intend to ex-
plore in future work. The admin-
istrator can also configure a sus-
picion threshold such that if s >
threshold, then the resource man-
ager will remove that node from
its inclusion list and ignore fur-
ther requests from that node. At
this point administrators can in-
tervene to re-initialize the node by
taking the node off the grid, ap-
plying securing patches and rein-
serting the node.

4.3 Fault Identification and
Isolation

As described in Section 4.2, the
output verifier collects output di-
gests and asserts that at least f+1
digests are the same. If the veri-
fier receives an incorrect digest or

94 J.J. Stephen and P. Eugster

does not receive a digest from nodes executing the data-flow, the suspicion level
of all involved nodes is updated. This means if there is a faulty node that is part
of multiple job clusters, that faulty node is likely to have a higher suspicion level.
Once the verifier identifies a job cluster as returning incorrect result, the fault
analyzer function in Figure 7 is used to further narrow down the list of suspicious
nodes. The fault analyzer works in two stages. In the first stage disjoint subsets
of suspicious nodes are isolated. This set of subsets is denoted by D (line 1). This
is done until the number of such subsets becomes equal to the highest value of f
the system has seen so far (line 12). This allows us to identify subsets of nodes
such that there is exactly one fault per subset. The second stage (lines 13-23)
reduces the number of nodes in these subsets by creating the intersection of a
subset with other sets of faulty nodes. The intuition for the second stage is that
if there are f subsets in D and a new set of faulty nodes intersects with only
one of those f subsets, then the nodes in the intersection must be faulty.

Byzantine behavior also means an infected node may be mostly producing
correct output, and produce incorrect results occasionally. This means if nodes
show malicious intent/fail frequently, fault isolation becomes faster.

5 Implementation

This section presents our prototype implementation of ClusterBFT. ClusterBFT
is implemented in Java by modifying Hadoop 1.0.4 [19] and Pig 0.9.2. For in-
strumenting the Pig logical plan we modified the Penny [29] monitoring tool,
distributed as part of Pig 0.9.2 source.

5.1 Hadoop

Hadoop uses a centralized job tracker and task trackers on each computation
node. The job tracker initiates a MapReduce job and task trackers spawn map
or reduce tasks for the job, and send heartbeat messages and job status updates
to the job tracker. It is relevant here to note that Hadoop allocates resources in
a node as task slots. Each node may have multiple task slots depending on the
number of CPU cores and physical memory available for processing. Typically
3-4 slots can be configured on a node with 4 CPU cores.

5.2 Request Handler

Penny consists of Penny agents that are inserted between Pig script states. These
agents in turn are implemented as user defined functions that can exchange mes-
sages with other agents and a Penny coordinator. Our changes involve creating
a verifying function as a Penny tool that creates a SHA-256 digest and sends the
digest back to the coordinator in the trusted tier. We modified the Penny infras-
tructure to allow creation of multiple coordinators, so that different replicas can
reply back to different coordinators.

Assured Cloud-Based Data Analysis with ClusterBFT 95

5.3 Execution Handler

We implement the resource manager by creating a new task scheduler that ex-
tends the TaskScheduler class in Hadoop. Hadoop allows creation of multiple job
queues to which jobs can be submitted. In ClusterBFT each replica of a job can
be submitted to one queue. In order to tolerate faulty nodes, we also need to
ensure that tasks from more than one replica of a job are not scheduled on a
same node at any point of time. Such a collocation could result in one faulty
node modifying the outcome of more than one replica and thus violating safety.
Note that this does not prevent us from collocating tasks from different jobs
on the same node. We added data structures to the JobInProgress class that
will keep track of replica information to prevent this during task scheduling. We
also added a new alphanumeric parameter sub.graph.id to the JobConf class.
sub.graph.id corresponds to sid in Section 4.1 and is set during job initiation.
All replicas of a single job must have the same sub.graph.id. JobTracker itself
works without any modifications as our execution tracker.

5.4 Ensuring Determinism

The data parallelism leveraged by MapReduce may naturally lead to
non-determinism, which can be observed through differing digest values across
replicas even without faulty processes. For example in order to calculate an av-
erage, instead of finding the sum of all values of a key and dividing it by the
number of values, users may decide to maintain a moving average, causing final
outputs to differ (in the least few significant bits of precision). Our current pro-
totype works around this issue by ensuring that the user programs deal with only
integer values or truncate the last few decimal points before performing arith-
metic operations. For a more general solution we intend to address this issue in
future work by ordering the intermediate mapper output based on mapper ids.

6 Evaluation

To assess the benefits of our approach, we evaluate (a) overhead incurred by
ClusterBFT, (b) gains of ClusterBFT under different replication degrees in the
presence of failures (c) effectiveness of fault isolation algorithm and (d) system
performance for higher approximation accuracy.

Setup. For evaluations in Section 6.1 and 6.2, we use planet-lab based Vicci [1]
as our testbed. Machines are 12-core Intel Xeon servers with 48GB RAM vir-
tualized using Linux containers. Our untrusted tier consists of 32 nodes and
our trusted tier consists of 2 nodes. We use Amazon EC2 for the evaluation in
Section 6.4 with 8 nodes in the untrusted tier and 4 nodes in the trusted tier.

96 J.J. Stephen and P. Eugster

Fig. 8. Data-flow graph for (i) Twitter Follower Analysis (ii) Twitter Two Hop Anal-
ysis, (iii) Air Traffic Analysis

Fig. 9. Latency of running Twitter Fol-
lower Analysis

Fig. 10. Digest computation overhead for
Twitter Two Hop Analysis

6.1 Verification Overhead: Twitter Data Analysis

First we measure the overhead involved in computing digests required for verifi-
cation. For this we use the Twitter data-set from [22] and compute SHA-256 di-
gests at different points for two Pig scripts. The data-set consists of two columns,
user-id and follower-id represented as numeric values. We run two Pig scripts
outlined in [6]. The first script (Twitter Follower Analysis) counts the number
of followers for each user. It loads the data, filters out empty records, groups
the record by user-id, calculates the counts and saves the user-id and respective
counts. The second script (Twitter Two Hop Analysis) lists pairs of users that
are are two hops away from one another. This job does a self-join that matches

Assured Cloud-Based Data Analysis with ClusterBFT 97

one user with all its follower’s followers. The data-flow graphs for these two
scripts are presented in Figure 8 (i) and (ii) respectively. Figures 9 and 10 shows
the total time taken for job completion when digests are computed at different
points of the respective jobs. In both graphs, Single Execution shows the time
taken by a single replica of the script and BFT Execution shows the time taken
by 4 replicas of the script to execute. BFT Execution also includes the overhead
of matching f +1 digests generated by the replicas. Pure Pig shows the baseline
run with no verification points or replication. When digests are computed at
multiple points in the data-flow graph, it is abbreviated using the first letter
of the verification point. When digests are computed at multiple points in the
data-flow graph, it is abbreviated using the first letter of the verification point.
Figure 9 show a minimal overhead of 8% and worst case of 9%, 14% and 19%
overhead with 1, 2 and 3 verification points respectively.

Table 3. ClusterBFT in the presence of Byzantine failures

r =2 r = 3, case 1 r = 3, case 2 r = 4
Measure C P C P C P C P

Latency (s) 1.6× 2.1× 1.1× 1.1× 1.6× 2.1× 1.1× 1.1×
CPU time spent (ms) 3.5× 4.1× 3.1× 3.1× 4.5× 6.2× 4.2× 4.2×
File read (Bytes) 3.6× 4× 2.6× 3× 4.7× 6× 3.6× 4×
File write(Bytes) 3.4× 4× 2.4× 3× 4.7× 6× 3.4× 4×
HDFS write (Bytes) 2× 4× 2× 3× 2× 6× 3× 4×

6.2 Performance Under Failures: IRTA Airline Traffic Analysis

Next we look at ClusterBFT’s performance in the presence of node failures. The
input data-set for this evaluation is a 1.3GB subset of airline data-set provided
by RITA [2]. We run a multi-store query outlined in [6] that finds the top 20
airports with respect to incoming flights, outgoing flights, and overall. The data-
flow graph for this script is shown in Figure 8 (iii). The evaluation is set up
for f = 1 and we show the benefits of ClusterBFT under various replication
degrees with 2 verification points. We compare ClusterBFT (C in Table 3) with
modified version of Pig which verifies digest of the final output only and not
anywhere else in the data-flow graph (P in Table 3). The results are shown in
terms of a multiplier over a single run of standard Pig without replication or
digest computation. For both executions (C and P), one node was set up to
always produce commission failures resulting in an incorrect digest. Also for
r = 3, we took two measurements. The first measurement (case 1) shows results
when all computations got done within the verifier timeout value. The second
measurement (case 2) shows one correct replica not responding within the verifier
timeout causing the script to be scheduled again with higher timeout value.
Results show that latency decreases by 23% (r = 2, r = 3 case 2) for test runs
that require rescheduling. For runs that do not require rescheduling, our latency
is on par with running multiple replicas, and show up to 14% reduced overhead.

98 J.J. Stephen and P. Eugster

6.3 Effectiveness of Fault Isolation: Simulation

Next we evaluate the fault analyzer algorithm outlined in Figure 7. We wrote a
Java-based simulator that mimics resource allocation in a 250 node Hadoop clus-
ter. Each node is given 3 slots on which tasks can be scheduled.

Fig. 11. Number of jobs required to iden-
tify disjoint set of faults

Fig. 12. Suspicion level changes over time

Fig. 13. Suspicion level spike as a result of
multiple large clusters with faulty nodes

We consider jobs as falling under
three categories: large (requiring 20 to
30 slots), medium (10 to 15 slots) and
small (3 to 5 slots). The exact num-
ber of slots is determined uniformly
at random. Each job is also associ-
ated with a unit of time as length. We
studied the algorithm under various
ratios of small, medium and large jobs
as well as various length for jobs. We
present a subset of our results here.
Figure 11 shows the average number
of jobs that got completed when the
number of disjoint faulty sets (D) be-
comes equal to f (Figure 7 line 12).
This point is important because the
number of suspicious nodes will not
increase after this point. We show
measurements for two ratios of job
sizes and two values of f . Job size ra-
tio r1 indicates |large| : |medium| :
|small| = 6 : 3 : 1 and r2 indicates
2 : 2 : 1. For f = 1, we used 4 repli-
cas and f = 2, we used 7 replicas.
The abscissa shows the probability
with which a faulty node produces a
commission failure. This result shows
that if a node produces commission
faults with very high probability, then
by the time 10 jobs complete execu-
tion, we can isolate the fault to a
much smaller subset. If a node pro-
duces commission faults with proba-
bility of .6 or more, less than 20 jobs
are required to isolate the fault. The
size of these subsets indicate the number of suspicious nodes, and this is ex-
plored in Figure 12 and Figure 13. In order to understand the number of nodes
suspected by the algorithm and the suspicion level (s) of these nodes, we group
suspicion level into four categories: no suspicion, Low (with 0 < s <= 0.33),
Med (0.33 < s ≤ 0.66) and High (0.66 < s ≤ 1). The goal of the algorithm is
to narrow the suspicion down to fewer nodes, or in other words, we should have

Assured Cloud-Based Data Analysis with ClusterBFT 99

less nodes with high value for s. Figure 12 shows how s changes with time. The
initial values (T ime < 15) indicates that no job has so far showed a commission
fault. After this point we see that the number of nodes with s > 0 increases. It
is also worthwhile to note that at around T ime = 25, |D| becomes equal to f
and the number of nodes with s > 0 does not increase further. The graph clearly
shows that nodes start with High and Med suspicion levels, but over time, the
suspicion levels of faulty nodes remain High, and of others are reduced. In fact,
in these trials, by T ime = 50, only the real faulty nodes were left in the High
suspicion category. In Figure 13, we show occasional spikes in the number of
suspicious nodes that we observed in some of the runs. This happens before |D|
becomes equal to f . This is because it may so happen that two replicas of large
jobs show commission fault and all nodes in them gets a non zero value for s. But
within a few more runs the algorithm prunes the suspicion list and increasingly
suspects the real faulty nodes as can be seen when T ime > 35.

6.4 Approximation Accuracy: Weather Average Temperature

Here we test how ClusterBFT performs if we increase the approximation accu-
racy from the default, one digest at one verification point, to multiple digests at
each verification points. For this experiment we move away from the assumption
of implicit trust within the trusted tier and instantiate 3f +1 replicas of the re-
quest handler. We use the BFT-SMaRT [5] library for achieving Byzantine fault
tolerance within these request handler replicas. Input data for this experiment
is a 640MB subset of the Daily Surface Summary of Day weather data [26]. The
script involves finding average temperate over multiple years for each weather
station followed by counting the number of stations with the same average. We
take measurements for different values of f and change the number of lines d
for which a digest is created. Figure 14 shows the results. In the figure, Full
refers to script execution with digest computed and verified only for the output.
ClusterBFT refers to using ClusterBFT with 2 verification points and Individual
refers to digest computed for each vertex of the data-flow graph. Results show
that latency overhead of ClusterBFT is within 10-18% of full replication even
with increasing approximation accuracy.

7 Related Work

BFT. Works like PBFT [12], Q/U protocol [7] and HQ Replication [15] show
how to make BFT s in general practical. Libraries like UpRight [13], BFT-
SMaRt [5] and EBAWA [35] make it practical for anyone to efficiently and
quickly implement some of these systems. Recent work like Zyzzyva [21] (based
on Fast Paxos [24,18]) further improve the performance and efficiency of some
of these solutions. All these solutions focus on replicating monolithic servers and
do not provide parameterizable tradeoffs between overhead and fault tolerance.
Yin et al. [39] separate request ordering from request execution in BFT server

100 J.J. Stephen and P. Eugster

Fig. 14. Computing average weather temperatures

replication; we separate our architecture based on differences in the guarantees
offered by nodes and not for consistency (no mutable shared state).

BFT in Cloud. With respect to cloud-based computations, Byzantine Fault
Tolerant Mapreduce [14] explores executing Byzantine fault tolerant MapReduce
jobs in the cloud and tries to reduce overhead by only starting f + 1 replicas
of map and reduce tasks. Byzantine fault tolerance is achieved by restarting
map and reduce tasks if f +1 replicas do not agree on the output. This reduces
the overhead when failures are not frequent but does not reduce the number
of synchronization points required during job execution. BFTCloud [42] tries to
secure generic computations run on voluntary resource clouds, but does not look
at data-flow job specific optimizations. None of these solutions try to reduce the
number of consensus instances required, or to actively identify faulty nodes by
overlapping job clusters. ClusterBFT also provides parameterizeable tradeoffs
between overhead and performance.

Verifiability. Works like Pepper [34] and Ginger [36] show that output verifia-
bility is becoming more practical. These systems allows the computation initiator
to encode the computation in such a way that it is possible to verify the result
using the computation output and key. Pinocchio [30] further reduces the over-
head involved and allows public verifiability. Even with these considerable im-
provements, these systems incur an overhead that is linearly proportional to the
complexity of the computation. These systems are also limited with respected to
computations involving dynamic looping constructs; requiring the programmer
to inform the compiler how far the loop should be unrolled.

Confidentiality. We do not target to address confidentiality in this paper, but
look at systems that preserve data privacy that can use ClusterBFT to secure
computations. Airavat [33] adds operating system level mandatory access con-
trol to MapReduce to provide differential privacy. This allows untrusted mappers
to work on sensitive data. It is possible to merge ClusterBFT with this system as
they operate on mutually exclusive subsystems of Hadoop. sTile [10] distributes
the input, output and intra-computation data across multiple nodes in the
cloud, making it prohibitively costly for an attacker to piece together meaningful

Assured Cloud-Based Data Analysis with ClusterBFT 101

information. CryptDB [32] preserves privacy by executing queries directly over
encrypted data in a centralized database.

8 Conclusion

We presented the design and evaluation of ClusterBFT, a system for assured
data processing and analysis. ClusterBFT achieves its objectives with practical
overheads by using variable-degree clustering, approximated output comparison,
and separation of duty. We are working towards providing confidentiality by
using ClusterBFT for analyzing data encrypted using partially homomorphic
cryptosystems.

Acknowledgements. We are very grateful to Larry Peterson for making it
possible for us to evaluate ClusterBFT on Vicci.

References

1. A programmable cloud-computing research testbed, http://www.vicci.org
2. Airline Data, http://stat-computing.org/dataexpo/2009/the-data.html
3. Apache Pig, http://pig.apache.org
4. Department of Defense Information Enterprise Strategic Plan (2011-2012),

http://dodcio.defense.gov/docs/DodIESP-r16.pdf

5. High-performance Byzantine Fault-Tolerant State Machine Replication,
https://code.google.com/p/bft-smart/

6. Pig Lab,
https://github.com/michiard/CLOUDS-LAB/wiki/Hadoop-Pig-Laboratory

7. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable Byzantine Fault-tolerant Services. In: SIGOPS OSR, pp. 59–74 (2005)

8. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable
and Secure Storage in a Cloud-of-Clouds. In: EuroSys 2011 (2011)

9. Birman, K., Chockler, G., van Renesse, R.: Toward a Cloud Computing Research
Agenda. SIGACT News, 68–80 (2009)

10. Brun, Y., Medvidovic, N.: Keeping Data Private while Computing in the Cloud.
In: CLOUD 2012 (2012)

11. Burrows, M.: The Chubby Lock Service for Loosely-coupled Distributed Systems.
In: OSDI 2006 (2006)

12. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: OSDI 1999 (1999)
13. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.:

Upright Cluster Services. In: SOSP 2009 (2009)
14. Costa, P., Pasin, M., Bessani, A., Correia, M.: Byzantine Fault-Tolerant MapRe-

duce: Faults are Not Just Crashes. In: CloudCom 2011 (2011)
15. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ Replication: A

Hybrid Quorum Protocol for Byzantine Fault Tolerance. In: OSDI 2006 (2006)
16. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-

ters. Commun. ACM, 107–113 (2008)
17. Denning, D.: A Lattice Model of Secure Information Flow. Commun. ACM 19(5)

(1976)
18. Dutta, P., Guerraoui, R., Vukolic, M.: Best-Case Complexity of Asynchronous

Byzantine Consensus. Tech. rep., EPFL (2005)
19. Hadoop: Hadoop, http://hadoop.apache.org/

http://www.vicci.org
http://stat-computing.org/dataexpo/2009/the-data.html
http://pig.apache.org
http://dodcio.defense.gov/docs/DodIESP-r16.pdf
https://code.google.com/p/bft-smart/
https://github.com/michiard/CLOUDS-LAB/wiki/Hadoop-Pig-Laboratory
http://hadoop.apache.org/

102 J.J. Stephen and P. Eugster

20. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine Fault Detectors for
Solving Consensus. The Computer Journal, 16–35 (2003)

21. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
Byzantine Fault Tolerance. In: SOSP 2007 (2007)

22. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a Social Network or a
News Media? In: WWW 2010 (2010)

23. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Trans. Prog. Lang. and Sys., 382–401 (1982)

24. Lamport, L.: Lower bounds for asynchronous consensus. In: Schiper, A., Shvarts-
man, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Dis-
tributed Computing. LNCS, vol. 2584, pp. 22–23. Springer, Heidelberg (2003)

25. MRC: DARPA-BAA-11-55: I2O Mission-oriented Resilient Clouds (MRC),
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-55/listing.html

26. NCDC: weatherdata snapshot, http://aws.amazon.com/datasets/2759
27. Newell, A., Obenshain, D., Tantillo, T., Nita-Rotaru, C., Amir, Y.: Increasing

Network Resiliency by Optimally Assigning Diverse Variants to Routing Nodes.
In: DSN 2013 (2013)

28. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: PigLatin: A Not-so-
foreign Language for Data Processing. In: SIGMOD 2008 (2008)

29. Olston, C., Reed, B.: Inspector Gadget: A Framework for Custom Monitoring and
Debugging of Distributed Dataflows. In: SIGMOD 2011 (2011)

30. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly Practical Veri-
fiable Computation. Cryptology ePrint Archive, Report 2013/279 (2013)

31. Pleisch, S., Kupsys, A., Schiper, A.: Preventing Orphan Requests in the Context
of Replicated Invocation. In: SRDS 2003 (2003)

32. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: Protect-
ing Confidentiality with Encrypted Query Processing. In: SOSP 2011 (2011)

33. Roy, I., Setty, S., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and
Privacy for MapReduce. In: NSDI 2010 (2010)

34. Setty, S., McPherson, R., Walfish, A.J.B.: M.: Making Argument Systems for Out-
sourced Computation Practical (Sometimes). In: NDSS 2012 (2012)

35. Santos Veronese, G., Correia, M., Bessani, A., Lung, L.C.: Ebawa: Efficient byzan-
tine agreement for wide-area networks. In: HASE 2010 (2010)

36. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
Proof-based Verified Computation a Few Steps Closer to Practicality. In: Security
2012 (2010)

37. Shvachko, K., Hairong, K., Radia, S., Chansler, R.: The Hadoop Distributed File
System. In: MSST 2010 (2010)

38. Verissimo, P., Bessani, A., Pasin, M.: The TClouds Architecture: Open and Re-
silient Cloud-of-Clouds Computing. In: DSN Workshops 2012 (2012)

39. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating Agree-
ment from Execution for Byzantine Fault Tolerant Services. SIGOPS OSR, 253–267
(2003)

40. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.:
DryadLINQ: a System for General-purpose Distributed Data-parallel Computing
using a High-level Language. In: OSDI 2008 (2008)

41. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In: NSDI 2012 (2012)

42. Zhang, Y., Zheng, Z., Lyu, M.R.: BFTCloud: A Byzantine Fault Tolerance Frame-
work for Voluntary-Resource Cloud Computing. In: CloudCom 2012 (2012)

https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-55/listing.html
http://aws.amazon.com/datasets/2759

FlowFlex: Malleable Scheduling

for Flows of MapReduce Jobs

Viswanath Nagarajan1, Joel Wolf1, Andrey Balmin2,�, and Kirsten Hildrum1

1 IBM T. J. Watson Research Center
{viswanath,jlwolf,hildrum}@us.ibm.com

2 GraphSQL
andrey@graphsql.com

Abstract. We introduce FlowFlex, a highly generic and effective sched-
uler for flows of MapReduce jobs connected by precedence constraints.
Such a flow can result, for example, from a single user-level Pig, Hive
or Jaql query. Each flow is associated with an arbitrary function de-
scribing the cost incurred in completing the flow at a particular time.
The overall objective is to minimize either the total cost (minisum) or
the maximum cost (minimax) of the flows. Our contributions are both
theoretical and practical. Theoretically, we advance the state of the art
in malleable parallel scheduling with precedence constraints. We employ
resource augmentation analysis to provide bicriteria approximation algo-
rithms for both minisum and minimax objective functions. As corollar-
ies, we obtain approximation algorithms for total weighted completion
time (and thus average completion time and average stretch), and for
maximum weighted completion time (and thus makespan and maximum
stretch). Practically, the average case performance of the FlowFlex sched-
uler is excellent, significantly better than other approaches. Specifically,
we demonstrate via extensive experiments the overall performance of
FlowFlex relative to optimal and also relative to other, standard MapRe-
duce scheduling schemes. All told, FlowFlex dramatically extends the
capabilities of the earlier Flex scheduler for singleton MapReduce jobs
while simultaneously providing a solid theoretical foundation for both.

1 Introduction

MapReduce [8] is a fundamentally important programming paradigm for pro-
cessing big data. Accordingly, there has already been considerable work on the
design of high quality MapReduce schedulers [26,27,25,1,24]. All of the schedulers
to date have quite naturally focused on the scheduling of collections of singleton
MapReduce jobs. Indeed, single MapReduce jobs were the appropriate atomic
unit of work early on. Lately, however, we have witnessed the emergence of more
elaborate MapReduce work, and today it is common to see the submission of
flows of interconnected MapReduce jobs. Such a MapReduce flow can result,
for example, from a single user-level Pig [11], Hive [20] or Jaql [4] query. Each
flow can be represented by a directed acyclic graph (DAG) in which the nodes

� Work performed while at IBM Almaden Research Center.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 103–122, 2013.
c© IFIP International Federation for Information Processing 2013

104 V. Nagarajan et al.

are singleton Map or Reduce phases and the directed arcs represent precedence.
Significantly, flows have become the basic unit of MapReduce work, and it is
the completion times of these flows that determines the appropriate measure of
goodness, not the completion times of the individual MapReduce jobs.

This paper introduces FlowFlex, a scheduling algorithm for flows of MapRe-
duce jobs. FlowFlex can attempt to optimize an arbitrary metric based on the
completion times of the flows. Common examples include makespan, average
completion time, average and maximum stretch1 and metrics involving one or
more deadlines. Any given metric will be appropriate for a particular scenario,
and the precise algorithmic variant FlowFlex applies will depend on that met-
ric. For example, in a batch environment one might care about makespan, to
ensure that the batch window is not elongated. In an interactive environment
users would typically care about average or maximum completion time, or about
average or maximum stretch. There are also a variety of metrics associated with
hard or soft deadlines. To the best of our knowledge scheduling schemes for flows
of MapReduce jobs have never been considered previously in the literature.

Our contributions are both theoretical and practical. We advance the theory of
malleable parallel scheduling with precedence constraints. Specifically, we employ
resource augmentation analysis to provide bicriteria approximation algorithms
for both minisum and minimax objective functions. As corollaries, we obtain
approximation algorithms for total weighted completion time (and thus average
completion time and average stretch), and for maximum weighted completion
time (and thus makespan and maximum stretch). We also produce a highly
generic and practical MapReduce scheduler for flows of jobs, called FlowFlex,
and demonstrate its excellent average case performance experimentally.

The closest previous scheduling work for MapReduce jobs appeared in [25].
The Flex scheduler presented there is now incorporated in IBM BigInsights [5].
(See also the FlexSight visualization tool [7].) Flex schedules to optimize a vari-
ety of metrics as well, but differs from the current work in that it only considers
singleton MapReduce jobs, not flows. Architecturally, Flex sits on top of the Fair
MapReduce scheduler [26,27], essentially overriding its decisions while simulta-
neously making use of its infrastructure. The FlowFlex scheduling problem is
clearly a major generalization of the Flex problem. With modest caveats, it can
also be said that the FlowFlex algorithms significantly generalize those of Flex.
They are also much more theoretically grounded. See also the special purpose
schedulers [1] and CircumFlex [24], built to amortize shared Map phase scans.

There are fundamental differences between Fair and the three schedulers in
the Flex family: Fair makes its decisions based on the current moment in time,
and thus considers only the resource (slot) dimension. Fair is indeed fair in the
sense of instantaneous progress, but does not directly consider completion time.
On the other hand, Flex, CircumFlex and FlowFlex think in two dimensions,
both resource and time. And they optimize towards completion time metrics.
It is our contention that completion time rather than instantaneous progress
determines the true quality of a schedule.

1 Stretch is a fairness metric in which each flow weight is the reciprocal of its size.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 105

The rest of this paper is organized as follows. Section 2 gives preliminaries
and describes the good fit between the theory of malleable scheduling and the
MapReduce enviornment. Section 3 introduces the scheduling model and lists
our formal theoretical results. The FlowFlex scheduling algorithms are described
in Section 4, and the proofs of the performance guarantees are outlined there.
Space limitations prevent us from detailing all of these proofs, but interested
readers can find them in [2]. In Section 5 we compare FlowFlex experimentally
with Fair and FIFO, both naturally extended in order to handle precedence
constraints. We also explain the practical considerations associated with imple-
menting FlowFlex as an epoch-based scheduler. Conclusions appear in Section 6.

2 Preliminaries

The theory of malleable scheduling fits the reality of the MapReduce environment
well. To understand this we give a brief, somewhat historically oriented overview
of theoretical parallel scheduling and its relation to MapReduce.

The first parallel scheduling implementations and theoretical results involved
what are today called rigid jobs. These jobs run on a fixed number of processors
and are presumed to complete their work simultaneously. One can thus think of
a job as corresponding to a rectangle whose height corresponds to the number
of processors p, whose width corresponds to the execution time t of the job, and
whose area s = p · t corresponds to the work performed by the job. Early papers,
such as [6], focused on the makespan metric, providing some of the very first
approximation algorithms. (These are polynomial time schemes with guaranteed
performance bounds.)

Subsequent parallel scheduling research took a variety of directions, again
more or less mirroring real scenarios of the time. One such direction involved
what has now become known as moldable scheduling: Each job can be run on an
arbitrary number of processors, but with an execution time which is a monotone
non-increasing function of the number of processors. Thus the height of a job is
turned from an input parameter to a decision variable. The first approximation
algorithm for moldable scheduling with a makespan metric appeared in [23].
Later, [22] found the first approximation algorithm for both rigid and moldable
scheduling problems with a (weighted) average completion time metric.

The notion of malleable scheduling is more general than moldable. Here the
number of processors allocated to a job is allowed to vary over time. However,
each job must still perform its fixed amount of work. One can consider the most
general problem variant in which the rate at which work is done is a function
of the number of allocated processors, so that the total work completed at any
time is the integral of these rates through that time. However, this problem is
enormously difficult, and so the literature to date [9,16] has focused on the special
case where the speedup function is linear through a given maximum number
of processors, and constant thereafter. Clearly, malleable schedules can only
improve objective function values relative to moldable schedules. On the other
hand, malleable scheduling problems are even harder to solve well than moldable
scheduling problems. We will concentrate on malleable scheduling problems with

106 V. Nagarajan et al.

linear speedup up to some maximum, with flow precedence constraints and any
of several different metrics on the completion times of the flows. See [9,16] for
more details on both moldable and malleable scheduling. The literature on the
latter is quite limited, and this paper is a contribution.

Why does MapReduce fit the theory of malleable scheduling with linear
speedup and processor maxima so neatly? There are multiple reasons.

1. MapReduce and malleable scheduling are about allocation: There is a natural
decoupling of MapReduce scheduling into an Allocation Layer followed by
an Assignment Layer. In the Allocation Layer, quantity decisions are made,
and that is where any mathematical complexity resides. The Assignment
Layer then implements these allocation decisions (to the extent possible,
given locality issues [27] and such) in the MapReduce cluster. Fair, Flex,
CircumFlex and our new FlowFlex scheduler reside in the Allocation Layer.
The malleable (as well as rigid and moldable) scheduling literature is also
about allocation rather than assignment.2

2. MapReduce work exhibit roughly linear speedup, and maximum constraints
occur naturally: Both the Map and Reduce phases are composed of many
small, independent tasks. Because they are independent they do not need
to start simultaneously and can be processed with any degree of parallelism
without significant overhead. This, in turn, means that the jobs will have
nearly linear speedup: Remember that linear speedup is a statement about
the rate at which work is completed. Maximum constraints in either the Map
or Reduce phase occur because they happen to be small (and thus have few
tasks), or when only a few tasks remain to be allocated.

3. MapReduce fits the malleable model well: Assuming the tasks are many and
small, the decisions of the scheduler can be approximated closely. To under-
stand this, consider Figure 1, which depicts the Assignment Layer imple-
menting the decisions of the Allocation Layer. The Allocation Layer output
is a hypothetical malleable schedule for three jobs. The Assignment Layer
works locally at each node in the cluster. Suppose a task on that node com-
pletes, freeing a slot. The Assignment Layer simply determines which job is
the most relatively underallocated according to the Allocation Layer sched-
ule. And then, within certain practical constraints, it acts greedily, assigning
a new task from that job to the slot. Examining the figure, the tasks are
represented as “bricks” in the Assignment Layer. The point is that the large
number and small size of the tasks makes the right-hand side a close approx-
imation to the left-hand side. That is, Assignment Layer reality will be an
excellent approximation to Allocation Layer theory.

The model is not perfect, of course. For example, if the number of tasks in
a MapReduce job is modest, the idealized scenario depicted in Figure 1 will be
less than perfect. Furthermore, there is a somewhat delicately defined notion3

2 In MapReduce, the atomic unit of allocation is called a slot, which can be used for
either Map or Reduce tasks. So “processor” in the theoretical literature corresponds
to “slot” in a MapReduce context.

3 This will be clarified in Subsection 5.2.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 107

Fig. 1. MapReduce and Malleable Scheduling

of precedence between Map and Reduce tasks that is not cleanly modeled here.
Recall that we model a single MapReduce job as a Map phase followed by a
Reduce phase. In reality, some Reduce tasks can begin before all the Map tasks
complete. But recall that Flex suffers from precisely the same issues, and has
been used successfully in IBM BigInsights [5] for several years.

Practically speaking, FlowFlex and its predecessors are epoch-based. In each
epoch FlowFlex wakes up, considers the current version of the scheduling prob-
lem, produces a hypothetical malleable schedule and outputs the initial alloca-
tions to be implemented by the assignment layer. Thus the size data as well as
the flows and jobs themselves are each updated for each FlowFlex run, making
the scheduler more robust.

Other Models for MapReduce. We briefly mention some other MapReduce mod-
els that have been considered in the literature. Moseley et al. [18] consider a
“two-stage flexible flow shop” [21] model, and give approximation and online
algorithms for total completion time of independent MapReduce jobs. Berlinska
and Drozdowski [3] use “divisible load theory” to model a single MapReduce job
and its communication details. Theoretical frameworks for MapReduce compu-
tation have been proposed in [14,15].

Compared to our setting, these models are at a finer level of granularity, that of
individual Map and Reduce tasks. Our model, as described above, decouples the
quantity decisions (allocation) from the actual assignment details in the cluster.
We focus on obtaining algorithms for the allocation layer, which is abstracted
as a precedence constrained malleable scheduling problem.

3 Formal Model and Results

As discussed, we model the MapReduce application as a parallel scheduling
problem. There are P identical processors that correspond to resources (slots)
in the MapReduce cluster. Each flow j is described by means of a directed
acyclic graph. The nodes in each of these DAGs are jobs, and the directed arcs
correspond to precedence relations. We use the standard notation i1 ≺ i2 to
indicate that job i1 must be completed before job i2 can begin. Each job i must
perform a fixed amount of work si (also referred to as the job size), and can

108 V. Nagarajan et al.

be performed on a maximum number δi ∈ [P] of processors at any point in
time.4 We consider jobs with linear speedup through their maximum numbers
of processors: the rate at which work is done on job i at any time is proportional
to the number of processors p ∈ [δi] assigned to it. Job i is complete when si
units of work have been performed.

We are interested in malleable schedules. In this setting, a schedule for job i
is given by a function τi : [0,∞) → {0, 1, . . . , δi} where

∫∞
t=0

τi(t) dt = si. Note
that this satisfies both linear speedup and processor maxima. We denote the
start time of schedule τi by S(τi) := argmin{t ≥ 0 : τi(t) > 0}; similarly the
completion time is denoted C(τi) := argmax{t ≥ 0 : τi(t) > 0}. A schedule for
flow j (consisting of jobs Ij) is given by a set {τi : i ∈ Ij} of schedules for its
jobs, where C (τi1) ≤ S (τi2) for all i1 ≺ i2. The completion time of flow j is
maxi∈Ij C (τi), the maximum completion time of its jobs. Our algorithms make
use of the following two natural and standard lower bounds on the minimum
possible completion time of a single flow j. (See, for example, [9].)
• Total load (or squashed area): 1

P

∑
i∈Ij si.

• Critical path: maximum of
∑�

r=1
sir
δir

over all chains5 i1 ≺ · · · ≺ i� in flow j.

Each flow j also specifies an arbitrary non-decreasing cost function wj :
R+ → R+ where wj(t) is the cost incurred when job j is completed at time
t. We consider both minisum and minimax objective functions. The minisum
(resp. minimax) objective minimizes the sum (resp. maximum) of the cost func-
tions over all flows. In the notation of [9,16] this scheduling environment is

P |var, pi(k) = pi(1)
k , δi, prec|∗.6 We refer to these problems collectively as prece-

dence constrained malleable scheduling with linear speedup. Our highly general
cost model can solve all the commonly used scheduling objectives: weighted
average completion time, makespan (maximum completion time), average and
maximum stretch, and deadline-based metrics associated with number of tardy
jobs, service level agreements (SLAs) and so on. Figure 2 illustrates 4 basic types
of cost functions.

Fig. 2. Typical Cost Functions Types

The objective functions we consider are either minisum or minimax: Minisum
scheduling problems involve the minimization of the (possibly weighted) sum of

4 Throughout the paper, for any integer � ≥ 1, we denote by [�] the set {1, . . . , �}.
5 Chains are a special case of flows in which precedence is sequential.
6 Here var stands for malleable scheduling, pi(k) =

pi(1)
k

denotes linear speedup, δi is
processor maxima, prec stands for precedence, and ∗ is for any objective function.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 109

individual flow metrics, or, equivalently, their (weighted) average. On the other
hand, minimax scheduling problems involve the minimization of the maximum
of individual metrics, an indication of worst case flow performance.

Definition 1. A polynomial time algorithm is said to be an α-approximation if
it produces a schedule that has objective value at most α ≥ 1 times optimal.

We would like to provide approximation algorithms for the above malleable
scheduling problems. But as shown in [10], even under very special precedence
constraints (chains of length three) the general minisum and minimax prob-
lems admit no finite approximation ratio unless P=NP. Hence we use resource
augmentation [13] and focus on bicriteria approximation guarantees.

Definition 2. A polynomial time algorithm is said to be an (α, β)-bicriteria
approximation if it produces a schedule using β ≥ 1 speed processors that has
objective value at most α ≥ 1 times optimal (under unit speed processors).

Our main result is that we can find approximation algorithms in some cases and
bicriteria approximation algorithms in all others.

Theorem 1. The precedence constrained malleable scheduling problem with lin-
ear speedup admits the following guarantees.
• (2, 3)-bicriteria approximation algorithm for general minisum objectives.
• (1, 2)-bicriteria approximation algorithm for general minimax objectives.
• 6-approximation algorithm for total weighted completion time (including
total stretch).
• 2-approximation algorithm for maximum weighted completion time (includ-
ing makespan and maximum stretch).

The first two results on general minisum and minimax objectives imply the other
two as corollaries. The main idea in our algorithms (for both minisum and mini-
max) is a reduction to strict deadline metrics, for which a simple greedy scheme is
shown to achieve a good bicriteria approximation. The reduction from minisum
objectives to deadline metrics is based on a minimum cost flow relaxation, and
“rounding” the optimal flow solution. The reduction from minimax objectives
to deadlines is much simpler and uses a bracket and bisection search.

4 The FlowFlex Scheduling Algorithm

Our scheduling algorithm has three sequential stages. See Figure 3 for an algo-
rithmic overview. In a little more detail, the stages may be described as follows.
1. First we consider each flow j separately, and convert its (general) prece-

dence constraint into a chain (total order) precedence constraint. We create
a pseudo-schedule for each flow that assumes an infinite number of proces-
sors, but respects precedence constraints and the bounds δi on jobs i. Then
we partition the pseudo-schedule into a chain of pseudo-jobs, where each
pseudo-job k corresponds to an interval in the pseudo-schedule with uniform
processor usage. Just like the original jobs, each pseudo-job k specifies a size

110 V. Nagarajan et al.

sk and bound δk of the maximum number of processors it can be run on.
We note that (unlike jobs) the bound δk of a pseudo-job may be larger than
P . An important property here is that the squashed-area and critical-path
lower bounds of each chain equal those of its original flow.

2. We now treat each flow as a chain of pseudo-jobs, and obtain a malleable
schedule consisting of pseudo-jobs. This stage has two components:
a. We first obtain a bicriteria approximation algorithm in the special case

of metrics based on strict deadlines, employing a natural greedy scheme.
b. We then obtain a bicriteria approximation algorithm for general cost

metrics, by reduction to deadline metrics. For minisum cost functions
we formulate a minimum cost flow subproblem based on the cost metric,
which can be solved efficiently. The solution to this subproblem is then
used to derive a deadline for each flow, which we can use in the greedy
scheme. For minimax cost metrics we do not need to solve an minimun
cost flow problem. We rely instead on a bracket and bisection scheme,
each stage of which produces natural deadlines for each chain. We thus
solve the greedy scheme multiple times.

These performance guarantees are relative to the squashed-area and critical-
path lower bounds of the chains, which, by Stage 1, equal those of the re-
spective original flows. We now have a malleable schedule for the pseudo-jobs
satisfying the chain precedence within each flow as well as the bounds δk.

3. The final stage combines Stages 1 and 2. We transform the malleable schedule
of pseudo-jobs into a malleable schedule for the original jobs, while respecting
the precedence constraints and bounds δi. We refer to this as shape shifting.
Specifically, we convert the malleable schedule of each pseudo-job k into a
malleable schedule for the (portions) of jobs i that comprise it. The full set
of these transformations, over all pseudo-jobs k and flows j, produces the
ultimate schedule.

1: for j = 1, . . . ,m do
2: Run Stage 1 scheme on flow j, yielding pseudo-schedule for chain of pseudo-jobs.
3: Stage 2 scheme begins.
4: if minsum objective then
5: Run algorithm in Figure 6.
6: else
7: Run minimax algorithm in Figure 8.
8: Stage 2 scheme ends.
9: Run Stage 3 shape shifting algorithm using Stages 1 and 2 output.

Fig. 3. High Level Scheme FlowFlex Overview

4.1 Stage 1: General Precedence Constraints to Chains

We now describe a procedure to convert an arbitrary precedence constraint on
jobs into a chain constraint on “pseudo-jobs”. Consider any flow with n jobs
where each job i ∈ [n] has size si and processor bound δi. The precedence
constraints are given by a directed acyclic graph on the jobs.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 111

Construct a pseudo-schedule for the flow as follows. Allocate each job i ∈ [n] its
maximal number δi of processors, and assign job i the smallest start time bi ≥ 0
such that for all i1 ≺ i2 we have bi2 ≥ bi1 +

si1
δi1

. The start times {bi}ni=1 can be

computed in O(n2) time using dynamic programming. The pseudo-schedule runs
each job i on δi processors, between time bi and bi+

si
δi
. Given an infinite number

of processors the pseudo-schedule is a valid schedule satisfying precedence.
Next, we will construct pseudo-jobs corresponding to this flow. Let T =

maxni=1(bi +
si
δi
) denote the completion time of the pseudo-schedule; observe

that T equals the critical path bound of the flow. Partition the time interval
[0, T] into maximal intervals I1, . . . , Ih so that the set of jobs processed by the
pseudo-schedule in each interval stays fixed. For each k ∈ [h], if rk denotes the
total number of processors being used during Ik, define pseudo-job k to have
processor bound δ(k) := rk and size s(k) := rk · |Ik| which is the total work done
by the pseudo-schedule during Ik. (We employ this subtle change of notation
to differentiate chains from more general precedence constraints.) Note that a
pseudo-job consists of portions of work from multiple jobs; moreover, we may
have rk > P since the pseudo-schedule is defined independent of P . Finally we
enforce the chain precedence constraint 1 ≺ 2 ≺ · · ·h on pseudo-jobs. Notice
that the squashed area and critical path lower bounds remain the same when
computed in terms of pseudo-jobs instead of jobs.7

Figure 4(a) illustrates the directed acyclic graph of a particular flow. Fig-
ure 4(b) shows the resulting pseudo-schedule. Figures 4(c) and (d) show the
decomposition into maximal intervals.

Fig. 4. FlowFlex Stage 1

7 Clearly, the total size of pseudo-jobs
∑h

k=1 sk =
∑n

i=1 si the total size of jobs.
Moreover, there is only one maximal chain of pseudo-jobs, which has critical path∑h

k=1
sk
δk

=
∑h

k=1 |Ik| = T , the original critical path bound.

112 V. Nagarajan et al.

4.2 Stage 2: Scheduling Flows with Chain Precedence Constraints

In this section, we consider the malleable scheduling problem on P parallel pro-
cessors with chain precedence constraints and general cost functions. Each chain
j ∈ [m] is a sequence kj1 ≺ kj2 ≺ · · · kjn(j) of pseudo-jobs, where each pseudo-job

k has a size s(k) and specifies a maximum number δ(k) of processors that it can
be run on. We note that the δ(k)s may be larger than P . Each chain j ∈ [m] also
specifies a non-decreasing cost function wj : R+ → R+ where wj(t) is the cost
incurred when chain j is completed at time t. The objective is to find a malleable
schedule on P identical parallel processors that satisfies precedence constraints
and minimizes the total cost.

Malleable schedules for pseudo-jobs (resp. chains of pseudo-jobs) are defined
identically to jobs (resp. flows). To reduce notation, we denote a malleable sched-
ule for chain j by a sequence τ j = 〈τ j1 , . . . , τ jn(j)〉 of schedules for its pseudo-jobs,
where τ jr is a malleable schedule for pseudo-job kjr for each r ∈ [n(j)]. Note that
chain precedence implies that for each r ∈ {1, . . . , n(j) − 1}, the start time of
kjr+1, S(τ

j
r+1) ≥ C(τ jr), the completion time of kjr. The completion time of this

chain is C(τ j) := C(τ jn(j)).

Unfortunately, as shown in [10], this problem does not admit any finite ap-
proximation ratio unless P=NP. Given this hardness of approximation, we focus
on bicriteria approximation guarantees. We first give a (1, 2)-approximation al-
gorithm when the cost functions are based on strict deadlines. Then we obtain
a (2, 3)-approximation algorithm for arbitrary minisum metrics and a (1, 2)-
approximation algorithm for arbitrary minimax metrics. Importantly, all these
performance guarantees are based on the squashed-area and critical-path lower
bounds of the chains. Since the Stage 1 transformation (flows to chains) main-
tains these same lower bounds, the guarantees in Stage 2 are relative to the
lower bounds of the original flows. So the objective value incurred in Stage 2
is a good approximation to the optimum of the scheduling instance under the
original flows.

Scheduling with Strict Deadlines. We consider the problem of scheduling
chains on P parallel processors under a strict deadline metric. That is, each
chain j ∈ [m] has a deadline dj and its cost function is: wj(t) = 0 if t ≤
dj and ∞ otherwise.

We show that a natural greedy algorithm is a good bicriteria approximation.

Theorem 2. There is a (1, 2)-bicriteria approximation algorithm for malleable
scheduling with chain precedence constraints and a strict deadline metric.

Proof Sketch. By renumbering chains, we assume that d1 ≤ · · · ≤ dm. The
algorithm schedules chains in increasing order of deadlines, and within each chain
it schedules pseudo-jobs greedily by allocating the maximum possible number of
processors. A formal description appears as Figure 5. The utilization function
σ : R+ → {0, 1, . . . , P} denotes the number of processors being used by the
schedule at each point in time.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 113

1: Initialize utilization function σ : [0,∞) → {0, 1, . . . , P} to zero.
2: for j = 1, . . . ,m do
3: for i = 1, . . . , n(j) do
4: Set S(τ j

i) ← 0 if i = 1 and S(τ j
i) ← C(τ j

i−1) otherwise.

5: Initialize τ j
i : [0,∞) → {0, . . . , P} to zero.

6: For each time t ≥ S(τ j
i) in increasing order, set

τ j
i (t) ← min

{
P − σ(t) , δ(kj

i)
}
, (1)

until the area
∫
t≥S(τ

j
i)

τ j
i (t) dt = s(kj

i) the size of pseudo-job kj
i .

7: Set C(τ j
i) ← max{z : τ j

i (z) > 0}.
8: Update utilization function σ ← σ − τ j

i .
9: Set C(τ j) ← C(τ j

n(j)).

10: if C(τ j) > 2 · dj then
11: Instance is infeasible.

Fig. 5. Algorithm for Scheduling Chains with Deadline Metric

Notice that this algorithm produces a valid malleable schedule that respects
the chain precedence constraints and the maximum processor bounds. To prove
the performance guarantee, we show that if there is any solution that meets all
deadlines {d�}m�=1 then the algorithm’s schedule satisfies C(τ j) ≤ 2 · dj for all
chains j ∈ [m]. The main idea is to divide the time C(τ j) taken to complete
any chain j into two types of events according to Equation (1), namely times
where all P processors are fully utilized (i.e. τ ji (t) = P − σ(t)) and times where

a pseudo-job is fully run (i.e. τ ji (t) = δ(kji)). The first event is bounded by the
total area in the earliest j chains and the second by the critical path of chain j,
each of which is at most dj . So chain j’s completion time C(τ j) ≤ 2 · dj .

Minisum Scheduling. We now consider the problem of scheduling chains on
P parallel processors under arbitrary minisum metrics. Recall that there are m
chains, each having a non-decreasing cost function wj : R+ → R+, where wj(t)
is the cost of completing chain j at time t. The goal in the minisum problem is
to compute a schedule of minimum total cost. Let opt denote the optimal value
of the given minisum scheduling instance.

Theorem 3. There is a (2, 3+o(1))-bicriteria approximation algorithm for mal-
leable scheduling with chain precedence constraints under minisum cost metrics.

For each chain j ∈ [m], define

Qj := max

⎧⎨
⎩

n(j)∑
i=1

s(kji)

δ(kji)
,

1

P

n(j)∑
i=1

s(kji)

⎫⎬
⎭ , (2)

the maximum of the critical path and area lower bounds. Note that the comple-
tion time of each chain j (even if it is scheduled in isolation) is at least Qj. So
the optimal value opt ≥∑m

j=1 wj(Qj).

114 V. Nagarajan et al.

We may assume, without loss of generality, that every schedule for these chains
completes by time H := 2m · �maxj Qj�. In order to focus on the main ideas,
we assume here that (i) each cost function wj(·) has integer valued breakpoints
(i.e. times where the cost changes) and (ii) provide an algorithm with runtime
polynomial in H . In the full version, we show that both these assumptions can
be removed. Before presenting the algorithm, we recall:

Definition 3 (Minimum cost flow). The input is a network given by a di-
rected graph (V,E) with designated source/sink nodes and demand ρ, where each
arc e ∈ E has a capacity αe and cost (per unit of flow) of βe . A flow satisfies
arc capacities and node conservation (in-flow equals out-flow), and the goal is to
find a flow of ρ units from source to sink having minimum cost.

Our algorithm works in two phases. In the first phase, we treat each chain
simply as a certain volume of work, and formulate a minimum cost flow sub-
problem using the cost functions wjs. The solution to this subproblem is used
to determine candidate deadlines {dj}mj=1 for the chains. Then in the second
phase, we run our algorithm for deadline metrics using {dj}mj=1 to obtain the
final solution. The algorithm is described in Figure 6, followed by a high-level
proof sketch (the details can be found in the full version).

1: Set volume Vj ← ∑n(j)
i=1 s(kj

i) for each chain j ∈ [m].
2: Define network N on nodes {a1, . . . , am} ∪ {b1, . . . , bH} ∪ {r, r′}, where r is the

source and r′ the sink.
3: Define arcs E = E1 ∪E2 ∪E3 ∪E4 of N as follows (see also Figure 7).

E1 := {(r, aj) : j ∈ [m]}, arc (r, aj) has cost 0, capacity Vj ,

E2 := {(aj , bt) : j ∈ [m], t ∈ [H], t ≥ Qj}, arc (aj , bt) has cost
wj(t)

Vj
, capacity ∞,

E3 := {(bt, r′) : t ∈ [H]}, arc (bt, r
′) has cost 0, capacity P , and

E4 = {(bt+1, bt) : t ∈ [H − 1]}, arc (bt+1, bt) has cost 0, capacity ∞.

4: Compute minimum-cost flow f in N of ρ :=
∑m

j=1 Vj demand from r to r′.
5: Set deadline dj ← argmin

{
t :

∑t
s=1 f(aj , bs) ≥ Vj/2

}
, for all j ∈ [m].

6: Solve this deadline metric instance using Algorithm 5.

Fig. 6. Algorithm for Scheduling Chains with Minisum Metric

Proof Sketch of Theorem 3. In the first phase of our algorithm (Steps 1-4) we
treat each chain j ∈ [m] as work of volume Vj , which is the total size of pseudo-
jobs in j. The key property of this phase is that the network flow instance on N
is a relaxation of the original scheduling instance, i.e. the minimum cost flow f
is at most opt. This property relies on the construction of N , where the nodes
ajs correspond to chains and bts correspond to intervals [t − 1, t) in time. The
arcs E1 (together with the demand ρ =

∑m
j=1 Vj) enforce that Vj amount of flow

is sent to each aj , i.e. Vj work is done on each chain j. The arcs E2 ensure that

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 115

r r′

a1

am

b1

bt

bH

cost wi(t)/Vj

cap Vj
cap P

When unspecified,

aj

Arcs E2

Arcs E1 Arcs E3

The dashed arcs are E4.

cost = 0, cap =∞.

Fig. 7. The Minimum Cost Flow Network

flow from aj can only go to nodes bt with t ≥ Qj, i.e. chain j can complete only
after Qj . See (2). These arcs also model the minisum cost objective. Finally, arcs
E3 and E4 correspond to using at most P processors at any time.

In the second phase of the algorithm (Steps 5-6) we use the min-cost flow
solution f to obtain a feasible malleable schedule for the m chains. The candidate
deadlines {dj}mj=1 correspond to times when the chains are “half completed” in

the solution f . Since the costs wj(·) are non-decreasing, the cost
∑m

j=1 wj(dj)
of completing chains by their deadlines is at most 2 · cost(f) ≤ 2 · opt. Then,
using the definition of network N , we show that for each chain j, its critical path
is at most dj and the squashed area of earlier-deadline chains is at most 2 · dj .
These two bounds combined with the analysis of the deadline metric algorithm
(Theorem 2) imply that each chain j ∈ [m] is completed by time 3 · dj .

In practice we could round the flow based on multiple values, not just the sin-
gle halfway point described above. This would yield, in turn, multiple deadlines,
and the best result could then be employed.

We note that in some cases the bicriteria guarantees can be combined.

Corollary 1. There is a 6-approximation algorithm for minimizing weighted
completion time in malleable scheduling with chain precedence constraints, in-
cluding average stretch.

Proof. This follows directly by observing that if a 3-speed schedule is executed
at unit speed then each completion time scales up by a factor of three.

Minimax Scheduling Here we consider the problem of scheduling chains on P
parallel processors under minimax metrics. Recall that there are m chains, each
having a non-decreasing cost function wj : R+ → R+. The goal is to compute a
schedule that minimizes the maximum cost of the m chains.

Theorem 4. There is a (1, 2+o(1))-bicriteria approximation algorithm for mal-
leable scheduling with chain precedence constraints under minimax cost metrics.

116 V. Nagarajan et al.

Recall the definition of Qjs (maximum of critical path and area lower bounds)
from (2); and H = 2m · �maxmj=1 Qj� an upper bound on the length of any
schedule. The algorithm given below is based on a bracket and bisection search
that is a common approach to many minimax optimization problems, for example
[12]. It also relies on the algorithm for deadline metrics. See Figure 8.

1: Set lastsuccess ← maxm
j=1 wj(H) and lastfail ← 0.

2: while lastsuccess− lastfail > 1 do
3: Set L ← (lastsuccess+ lastfail)/2.
4: for j = 1, . . . ,m do
5: Compute deadline Dj := argmax{t : wj(t) ≤ L} for each chain j ∈ [m].
6: Solve this deadline-metric instance using Algorithm 5.
7: if schedule is feasible with 2-speed then
8: Set lastsuccess ← L.
9: else
10: Set lastfail ← L.
11: Output the schedule corresponding to lastsuccess.

Fig. 8. Algorithm for Scheduling Chains with Minimax Objective

Proof. Let opt denote the optimal minimax value of the given instance. Clearly,
0 ≤ opt ≤ maxj wj(H). (We assume that the cost functions wjs are integer
valued: this can always be ensured at the loss of a 1 + o(1) factor.)

Observe that for any value L ≥ opt, the deadline instance in Step 5: the opti-
mal schedule itself must meet the deadlines {Dj}. Combined with the deadline-
metric algorithm (Theorem 2), it follows that our algorithm’s schedule for any
value L ≥ opt is feasible using 2-speed. Thus the final lastsuccess value is at
most opt, which is also an upper bound on the algorithm’s minimax objective.

As in Corollary 1, the bicriteria guarantees can be combined for some metrics.

Corollary 2. There is a 2-approximation algorithm for minimizing maximum
completion time in malleable scheduling with chain precedence constraints, in-
cluding makespan and maximum stretch.

4.3 Stage 3: Converting Pseudo-Job Schedule into Valid Schedule

The final stage combines the output of Stages 1 and 2, converting any malleable
schedule of pseudo-jobs and chains into a valid schedule of the original jobs and
flows. We consider the schedule of each pseudo-job k separately. Using a general-
ization of McNaughton’s Rule [17], we will construct a malleable schedule for the
(portions of) jobs comprising pseudo-job k. The original precedence constraints
are satisfied since the chain constraints are satisfied on pseudo-jobs, and the jobs
participating in any single pseudo-job are independent.

Consider any pseudo-job k that corresponds to interval Ik in the pseudo-
schedule (recall Stage 1), during which jobs S ⊆ [n] are executed in parallel

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 117

for a total of rk =
∑

i∈S δi processors. Consider also any malleable schedule of
pseudo-job k, that corresponds to a histogram σ (of processor usage) having area
sk = |Ik| · rk and maximum number of processors at most rk.

We now describe how to shape shift the pseudo-schedule for S in Ik into a valid
schedule given by histogram σ. The idea is simple: Decompose the histogram σ
into intervals J of constant numbers of processors. For each interval J ∈ J ,
having height (number of processors) σ(J), we will schedule the work from a

time |J|·σ(J)rk
sub-interval of Ik; observe that the respective areas in σ and Ik are

equal. Since
∑

J∈J |J | ·σ(J) = sk = |Ik| ·rk, taking such schedules over all J ∈ J
gives a full schedule for Ik. For a particular interval J , we apply McNaughton’s
Rule to schedule the work from its Ik sub-interval. This rule was extended in
[10] to cover a scenario more like ours. It has linear complexity. McNaughton’s
Rule is basically a wrap-around scheme: We order the jobs, and for the first job
we fill the area horizontally, one processor at a time, until the total amount of
work involving that job has been allotted. Then, starting where we left off, we
fill the area needed for the second job, and so on. All appropriate constraints
are easily seen to be satisfied.

Figure 9(a) shows a Stage 1 pseudo-schedule and highlights the first pseudo-
job (interval I1). The lowest histogram σ of Figure 9(b) illustrates the corre-
sponding portion for this pseudo-job in the Stage 2 malleable greedy schedule;
the constant histogram ranges are also shown. The equal area sub-intervals in
I1 are shown as vertical lines in Figure 9(a). Applying McNaughton’s Rule to
the first sub-interval of I1 we get the schedule shown at the bottom-left of Fig-
ure 9(b). The scheme then proceeds with subsequent sub-intervals.

Fig. 9. FlowFlex Stage 3: Shape Shifting

5 Experimental Results

5.1 Simulation Experiments

In this section we describe the performance of our FlowFlex algorithm via a
variety of simulation experiments. We consider two competitors, Fair [26] and

118 V. Nagarajan et al.

FIFO. We will compare the performance of each of these three in terms of the
best lower bounds we can find for these NP-hard problems. (There is no real
hope of finding the true optimal solutions in a reasonable amount of time, but
these lower bounds will at least give pessimistic estimates of the quality of the
FlowFlex, Fair and FIFO schedules.) We will consider nearly all combinatorial
choices of scheduling metrics, from five basic types. They are based on either
completion time, number of tardy jobs, tardiness and SLA step functions. (See
Figure 2.) They can be either weighted or non-weighted, and the problem can
be to minimize the sum (and hence average) or the maximum over all flows.
So, for example, average and weighted average completion time are included
for the minisum case. So is average stretch, which is simply completion time
weighted by the reciprocal of the amount of work associated with the flow.
Similarly, makespan (which is maximum completion time), maximum weighted
completion time, and thus maximum stretch is included for the minimax case.
Weighted or unweighted numbers of tardy jobs, total tardiness, total SLA costs
are included in the minisum case. Maximum tardy job cost, maximum tardiness
and maximum SLA cost are included in the minimax case. (A minimax problem
involving unit weight tardy jobs would simply be 1 if tardy flows exist, and 0
otherwise, so we omit that metric.) We note that that these experiments are
somewhat unfair to both Fair and FIFO, since both are completely agnostic
with respect to the metrics we consider. But they do at least make sense, when
implemented as ready-list algorithms. (In other words, they simply schedule all
ready jobs by either Fair or FIFO rules, repeating as new jobs become ready.)
We chose not to compare FlowFlex to Flex, because that algorithm does optimize
to a particular metric, and it is not at all obvious how to “prorate” the flow-level
metric parameters into a set of per job parameters.

The calculation of the lower bound depends on whether the problem is min-
isum or minimax. For minisum problems the solution to the minimum cost flow
problem provides a bound. For minimax problems the maximum of the critical
path objective function values provides a lower bound. But we can also po-
tentially improve this bound based on the solution found via the bracket and
bisection algorithm. We perform an additional bisection algorithm between the
original lower bound and our solution, since we know that the partial sums of
the squashed area bounds must be met by the successive deadlines.

Each simulation experiment was created using the following methodology. The
number of flows was chosen from a uniform distribution between 5 and 20. The
number of jobs for a given flow was chosen from a uniform distribution between
2 and 20. These jobs were then assumed to be in topological order and the
precedence constraint between jobs j1 and j2 was chosen based on a probability
of 0.5. Then all jobs without successors were assumed to precede the last job in
the flow, to ensure connectivity. Sampling form a variety of parameters governed
whether the flow itself was “big” in volume, and also whether the jobs in that
flow were “tall” and/or “wide” (that is, having maximum height equal to the
number of slots). Weights in the case of completion time, number of tardy jobs
and tardiness were also chosen from a uniform distribution between 1 and 10.

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 119

The one exception was for stretch metrics, where the weights are predetermined
by the size of the flow.) Similarly, in the case of SLA metrics, the number of
steps and the incremental step heights were chosen from similar distributions
with a maximum of 5 steps. Single deadlines for the tardy and tardiness cases
was chosen so that it was possible to meet the deadline, with a uniform random
choice of additional time given. Multiple successive deadlines for the SLA case
were chosen similarly. The number of slots was set to 25.

Fig. 10. Minisum Simulation Results: Average and Worst Case

Fig. 11. Minimax Simulation Results: Average and Worst Case

Figure 10 illustrates both average and worst case performance (given 25 sim-
ulation experiments each) for 9 minisum metrics. Each column represents the
ratio of the FlowFlex, Fair or FIFO algorithm to the best lower bound avail-
able.8 Thus each ratio must be at least 1. Ratios close to 1 are by definition very
good solutions, but, of course, solutions with poorer ratios may still be close to
optimal. Note that FlowFlex performs significantly better than either Fair or
FIFO, and often is close to optimal. FIFO performs particularly poorly on av-
erage stretch, because the weights can cause great volatility. FlowFlex also does
dramatically better than either Fair or FIFO on the tardiness metrics. Similarly,

8 To deal with lower bounds of 0, which is possible for some metrics, we added 1 to
both the numerator and denominator. The effect is typically quite modest.

120 V. Nagarajan et al.

Figure 11 illustrates the comparable minimax experiments, for those 8 metrics
which make sense. Here one sees that makespan is fine for all schemes, which
is not particularly surprising. But FlowFlex does far better than either Fair or
FIFO on all the others, and some of these are very difficult problems. Again,
some of the Fair and FIFO ratios can be quite bad. In all 8 sets of experiments,
FlowFlex is within 1.26 of “optimal” on average, and generally quite a lot better.

5.2 Cluster Experiments

We have prototyped FlowFlex on the IBM Platform Symphony MapReduce
framework with IBM’s BigInsights product [5].

We used a workload based on the standard Hadoop Gridmix2 benchmark.
For each experiment we ran 10 flows, each consisting of 2 to 10 Gridmix jobs
of random sizes, randomly wired into a dependency graph by the same basic
procedure we used for simulation experiments. The experiment driver program
submitted a job only when it was ready. That is, all of the jobs it depended upon
were completed. We ran two sets of experiments: one where all flows arrived
at once and another where flows arrived at random intervals chosen from an
exponential distribution. For each type of experiment we ran three different
random sets of arrival times and job sizes.

Fig. 12. Cluster Experiments, Gridmix2-based Live Benchmark

In these cluster experiments, the schedulers are running in something more
like their natural environment. Specifically, they are epoch-based: Every epoch
(roughly 2 seconds) they examine the newly revised problem instance. Thus the
job sizes for FlowFlex change from epoch to epoch. And, of course, flows and jobs
arrive and complete. FlowFlex then produces complete (theoretical) schedules for
internal consumption, but also, more importantly, initial allocation suggestions.
This is then implemented to the extent possible by the Assignment Layer.

A few comments should be mentioned here. First, we have not yet focused on
integrating schemes for estimating the amount of work of each job in the various
flows. We do know the number of tasks per job, however, and estimate work

FlowFlex: Malleable Scheduling for Flows of MapReduce Jobs 121

for unstarted jobs by using a default work prediction per task. For running jobs
we continue to refine our work estimates by extrapolating based on data from
the completed tasks. All of this can be improved in the future, for example by
incorporating the techniques in [19]. Better estimates should improve the quality
of our FlowFlex scheduler. The second comment is that we are using a slight
variant of FlowFlex for minisum problems. This variant avoids the minimum cost
flow problem. It is faster and approximately as effective. The third comment is
that the Reduce phase is ready precisely when some fixed fraction of the Map
phase tasks preceeding it have finished. FlowFlex simply coalesces all such ready
tasks within a single MapReduce job and adjusts the maxima accordingly.

We compared FlowFlex to Fair and FIFO running for submitted jobs. (They
were not aware of jobs that were not yet submitted.) Figure 12 reports the
relative performance improvement of FlowFlex for average completion time,
makespan, and average and maximum stretch for both sets of experiments. Es-
sentially, we are evaluating the four most commonly used scheduling metrics.

6 Conclusion

In this paper we have introduced FlowFlex, a MapReduce scheduling algorithm
of both theoretical and practical interest. Theoretically, we have extended the
literature on malleable parallel scheduling with precedence constraints, linear
speedup and processor maxima. We have provided a unified three-stage algo-
rithm for any scheduling metric, and given worst-case performance bounds.
These include approximation guarantees where possible, and bicriteria approxi-
mation guarantees where not. Practically, FlowFlex is the natural and ultimate
extension of Flex, a MapReduce scheduler for singleton jobs already in use in
IBM’s BigInsights. We have evaluated FlowFlex experimentally, showing its ex-
cellent average case performance on all metrics. And we have shown the superi-
ority of FlowFlex to natural extensions of both Fair and FIFO.

References

1. Agrawal, P., Kifer, D., Olston, C.: Scheduling Shared Scans of Large Data Files.
In: Proceedings of VLDB (2008)

2. Balmin, A., Hildrum, K., Nagarajan, V., Wolf, J.: Malleable Scheduling for Flows
of MapReduce Jobs, Research Report RC25364, IBM Research (2013)

3. Berlinska, J., Drozdowski, M.: Scheduling Divisible MapReduce Computations.
Journal of Parallel and Distributed Computing 71, 450–459 (2011)

4. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.-C.,
Ozcan, F., Shekita, E.: Jaql: A Scripting Language for Large Scale Semistructured
Data Analysis. In: Proceedings of VLDB (2011)

5. BigInsights: http://www-01.ibm.com/software/data/infosphere/biginsights/
6. Coffman, E., Garey, M., Johnson, D., Tarjan, R.: Performance Bounds for Level-

Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Computing 9(4),
808–826 (1980)

7. De Pauw, W., Wolf, J., Balmin, A.: Visualizing Jobs with Shared Resources in Dis-
tributed Environments. In: IEEE Working Conference on Software Visualization,
Eindhoven, Holland (2013)

http://www-01.ibm.com/software/data/infosphere/biginsights/

122 V. Nagarajan et al.

8. Dean, J., Ghemawat, S.: Mapreduce: Simplified Data Processing on Large Clusters.
ACM Transactions on Computer Systems 51(1), 107–113 (2008)

9. Drozdowski, M.: Scheduling for Parallel Processing. Springer (2009)
10. Drozdowski, M., Kubiak, W.: Scheduling Parallel Tasks With Sequential Heads

and Tails. Annals of Operations Research 90, 221–246 (1999)
11. Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S., Olston, C.,

Reed, B., Srinivasan, S., Srivastava, U.: Building a High-Level Dataflow System on
Top of MapReduce: The Pig Experience. In: Proceedings of VLDB (2009)

12. Hochbaum, D.S., Shmoys, D.B.: A Unified Approach to Approximation Algorithms
for Bottleneck Problems. J. ACM 33(3), 533–550 (1986)

13. Kalyanasundaram, B., Pruhs, K.: Speed is as Powerful as Clairvoyance. J.
ACM 47(4), 617–643 (2000)

14. Karloff, H., Suri, S., Vassilvitskii, S.: A Model of Computation for MapReduce. In:
SODA, pp. 938–948 (2010)

15. Koutris, P., Suciu, D.: Parallel evaluation of conjunctive queries. In: PODS, pp.
223–234 (2011)

16. Leung, J.: Handbook of Scheduling. Chapman and Hall/CRC (2004)
17. McNaughton, R.: Scheduling with Deadlines and Loss Functions. Management Sci-

ence 6(1), 1–12 (1959)
18. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On Scheduling in Map-Reduce

and Flow-Shops. In: SPAA, pp. 289–298 (2011)
19. Popescu, A., Ercegovac, V., Balmin, A., Branco, M., Ailamaki, A.: Same Queries,

Different Data: Can We Predict Runtime Performance? In: ICDE Workshops, pp.
275–280 (2012)

20. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S., Liu,
H., Murthy, R.: Hive - a Petabyte Scale Data Warehouse using Hadoop. In: ICDE,
pp. 996–1005 (2010)

21. Schuurman, P., Woeginger, G.J.: A Polynomial Time Approximation Scheme for
the Two-Stage Multiprocessor Flow Shop Problem. Theor. Comput. Sci. 237(1-2),
105–122 (2000)

22. Schwiegelshohn, U., Ludwig, W., Wolf, J., Turek, J., Yu, P.: Smart SMART Bounds
for Weighted Response Time Scheduling. SIAM Journal on Computing 28(1), 237–
253 (1999)

23. Turek, J., Wolf, J., Yu, P.: Approximate Algorithms for Scheduling Parallelizable
Tasks. In: SPAA (1992)

24. Wolf, J., Balmin, A., Rajan, D., Hildrum, K., Khandekar, R., Parekh, S., Wu, K.-
L., Vernica, R.: On the Optimization of Schedules for MapReduce Workloads in
the Presence of Shared Scans. VLDB Journal 21(5) (2012)

25. Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.-
L., Balmin, A.: FLEX: A Slot Allocation Scheduling Optimizer for MapReduce
Workloads. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010. LNCS, vol. 6452,
pp. 1–20. Springer, Heidelberg (2010)

26. Zaharia, M., Borthakur, D., Sarma, J., Elmeleegy, K., Schenker, S., Stoica, I.: Job
Scheduling for Multi-User MapReduce Clusters, UC Berkeley Technical Report
EECS-2009-55 (2009)

27. Zaharia, M., Borthakur, D., Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster
Scheduling. In: EuroSys (2010)

DVFS Aware CPU Credit Enforcement
in a Virtualized System

Daniel Hagimont1, Christine Mayap Kamga1,
Laurent Broto1, Alain Tchana2, and Noel De Palma2

1 University of Toulouse
first.last@enseeiht.fr

2 Joseph Fourier University
first.last@imag.fr

Abstract. Nowadays, virtualization is present in almost all computing infras-
tructures. Thanks to VM migration and server consolidation, virtualization helps
reducing power consumption in distributed environments. On another side, Dy-
namic Voltage and Frequency Scaling (DVFS) allows servers to dynamically
modify the processor frequency (according to the CPU load) in order to achieve
less energy consumption. We observed that these two techniques have several in-
compatibilities. For instance, if two virtual machines VM1 and VM2 are running
on the same physical host (with their respective allocated credits), VM1 being
overloaded and VM2 being underloaded, the host may be globally underloaded
leading to a reduction of the processor frequency, which would penalize VM1
even if VM1’s owner booked a given CPU capacity. In this paper, we analyze
the compatibility of available VM schedulers with DVFS management in virtu-
alized environments, we identify key issues and finally propose a DVFS aware
VM scheduler which addresses these issues. We implemented and evaluated our
prototype in the Xen virtualized environment.

Keywords: DVFS, virtual machines, scheduling.

1 Introduction

Nowadays, many organizations tend to outsource the management of their physical
infrastructure to hosting centers. They subscribe for a quality of service (QoS) and
expect providers to fully meet it. By acting this way, companies aim at reducing their
costs by paying only for what they really need. The providers, instead, are interested in
saving resources while guaranteeing customers QoS requirements.

On the provider side, virtualization was introduced in order to facilitate resource
management. Virtualization is a software-based solution for building and running si-
multaneously several operating systems (called guest OS or Virtual Machine) on top of
an underlying OS (called host OS or hypervisor). In hosting centers, virtualization is
a means to implement server consolidation. Indeed, servers being underutilized most
of the time (below 30% of processor utilization [17]), VM (Virtual Machine) migra-
tion helps achieving better server utilization by migrating VMs on a minimal set of
machines, and switching unused machines off in order to save energy.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 123–142, 2013.
c© IFIP International Federation for Information Processing 2013

124 D. Hagimont et al.

However, powerful computers with high processor frequency, multiple cores and
multiple CPUs are an important factor contributing to the continuous increase of en-
ergy consumption in computing infrastructures. To reduce power consumption of such
infrastructures, processor manufacturers have developed a hardware technology called
Dynamic Voltage and Frequency Scaling (DVFS). DVFS [12] allows dynamic processor
frequency control, and hence, helps in reducing power consumption.

DVFS is largely used in non-virtualized systems, but its implementation in virtu-
alized architectures reveals some incompatibilities with VM schedulers. In virtualized
systems, VMs are generally created and configured with a fixed CPU share. DVFS,
according to the host’s global CPU load, dynamically scales the processor frequency
regardless of the VM local loads. In a scenario with some overloaded VMs, but a glob-
ally underloaded host, DVFS will scale down processor frequency, which will penalize
overloaded VMs.

The contributions of this paper are two folds. First, we analyze and highlight the
incompatibility of available VM schedulers with DVFS management in virtualized sys-
tems. Second, we identify the key issues and propose a DVFS aware VM scheduler
which addresses these issues. To demonstrate the effectiveness of our approach, we
implemented and evaluated a prototype in the Xen [1] virtualized environment.

The rest of this paper is structured as follows. Section 2 presents the context of our
work. Section 3 analyzes VM schedulers and DVFS principles and pinpoints their in-
compatibilities. In Section 4, we present our DVFS aware VM scheduler prototype.
Section 5 presents our experiments and results. After a review of related works in sec-
tion 6, we conclude the article in Section 7.

2 Context

In this section, we introduce the basic concepts of virtualization and DVFS.

2.1 Virtualization

Virtualization is a software and/or hardware-based solution for building and running
simultaneously several guest OS on top of an underlying host OS. The key technique is
to share hardware resources safely and efficiently between these guest OS. In the host
OS, a hypervisor implements several execution environments also known as Virtual
Machines (VM) in which guest OS can be executed. Thanks to the hypervisor, guest OS
are isolated from each other, and have the illusion of being in the presence of several
separate machines. The hypervisor is also the program that ensures good sharing of
hardware resources among multiple guest OS. It emulates the underlying hardware for
VMs1 and enables communication between guest OS and real devices.

The hypervisor is responsible for scheduling VMs on the processor. Initially, VMs
are created and configured in order to have, among other parameters, an execution pri-
ority and a CPU credit. The hypervisor scheduler chooses the VM to execute, according

1 Each guest OS has the illusion of having host’s processor, memory and other resources all to
itself.

DVFS Aware VM Management 125

to its scheduling algorithm and the VM parameters. It ensures dynamic and fair allo-
cation of CPU resources to VMs. However, in each VM, the execution of a guest OS
implies the execution of processes scheduled by another process scheduler. Therefore,
the execution of an application in a virtualized environment involves different levels of
scheduler, but the hypervisor is not conscious of it. From its point of view, VMs are
just processes which are scheduled in such a way that each VM receives its associated
credit of the CPU [18] (a percentage of the CPU time).

In the rest of the article, we will use the term VM to refer to a guest OS running in a
virtual machine.

2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Today, all processors integrate dynamic frequency scaling (also known as CPU throt-
tling) to adjust frequency at runtime. The system service which adapts frequency in the
operating system is called a governor. Different governors can be implemented with
different policies regarding frequency management.

In the Linux kernel, the Ondemand governor changes frequency depending on CPU
utilization. It changes frequency between the lowest level (when CPU utilization is less
than 20% [22]) and the highest level (when CPU load is higher). The Performance
governor always keeps the frequency to the highest value while the Powersave gov-
ernor keeps it at the lowest level. The Conservative governor decreases or increases
frequency by one level through a range of values supported by the hardware, according
to the CPU load. Finally, the Userspace governor allows user applications to manually
set the processor frequency [13].
In order to control the CPU frequency, governors rely on an underlying subsystem in-
side the kernel called cpufreq [22]. Cpufreq provides a set of modularized interfaces to
allow changing the CPU frequency.

As aforementioned, effective usage of DVFS brings the advantage of reducing power
consumption by lowering the processor frequency. Moreover, almost all computing in-
frastructures rely on multi-core and high frequency processors. Therefore, the benefit
from using DVFS has been experienced in many different systems.

2.3 Consolidation and DVFS

Virtualization allows VMs to be dynamically migrated between hosts, generally accord-
ing to the CPU load on the different hosts, and to switch unused machines off. Ideally,
a consolidation system should gather all the VMs on a reduced set of machines which
should have a high CPU load, and DVFS would therefore be useless.

However, as argued in [16], an important bottleneck of such consolidation systems is
memory. Any VM, even idle, needs physical memory, which limits the number of VMs
that can be executed on a host. Therefore, even if consolidation can reduce the number
of active machines in a hosting center, it cannot optimally guarantee full usage of CPU
on active machines as it is memory bound. Consequently, DVFS is complementary to
consolidation.

The next section analyzes the incompatibilities between virtualization and DVFS for
energy saving.

126 D. Hagimont et al.

3 Analysis

The overall goal of this paper is to show that combining virtualization and DVFS man-
agement may raise incompatibilities and that it is required a smart coordination between
DVFS management and VM management (i.e., VM scheduling). In this section, we first
review VM schedulers, especially those that are effectively used in virtualization solu-
tions (such as Xen). We then analyze the issues that are raised when these schedulers
are combined with DVFS management.

3.1 VM Schedulers

VM schedulers are in charge of allocating CPU to VMs. Commonly, schedulers are
classified into three categories: share, credit allocation and preemption [6]. In our work,
we focus on credit allocation schedulers as they aim at allocating a portion of processor
to a VM. This portion of the processor corresponds to a SLA (service level agreement)
negotiated between the provider and the customer, i.e. this portion of the CPU was
bought by the client and has to be guarantee by the provider.

In the credit scheduler category, we distinguish: fix credit and variable credit sched-
ulers.

With fix credit scheduler2, the CPU credit of each VM is guaranteed, which means
that the VM always obtains the time slices corresponding to this credit (a percentage of
the processor). For instance, if two VMs are running on the same physical host with the
same priority and CPU credit (50%), then each of them will receive at most 50% of the
CPU time even if one of them becomes inactive.

With variable credit scheduler3, the CPU credit of each VM is also guaranteed, but
only if the VM has a computation load to effectively use it. In the case of unused CPU
time slices, they are redistributed among active VMs. It means that the processor is
idle only if there is no more runnable VM. For example, with two VMs with the same
priority and CPU credit (50%), each of them will receive 50% of the CPU time slices
if they are both fully using their time slices, but if one of them becomes inactive, the
active VM may receive up to 100% of the CPU.

In this paper, we conducted our experiments with the Xen system (version 4.1.2).
Xen has three schedulers called Credit, Simple Earliest Deadline First (SEDF) and
Credit2. Credit2 scheduler is an updated version of Credit scheduler, with the intention
of solving some of its weaknesses. This scheduler is currently available in a beta ver-
sion. Credit is the default Xen scheduler and SEDF is about to be removed from Xen
sources. In the following, we only consider credit and SEDF schedulers as they allow
illustrating the incompatibilities (with DVFS) we aim at addressing.

Xen Credit scheduler is primarily a fix credit scheduler. A VM can be created with
a given priority and a given credit, and the VM credit is always guaranteed. The only
exception is when allocating a VM with a null credit. In this latter case, the VM will not
have any credit limit and it can use any CPU time slices that are not used by other VMs
(such a VM behaves as with a variable credit scheduler, except that it does not have any
guaranteed credit).

2 Also called non-work conserving scheduler
3 Also called work conserving scheduler

DVFS Aware VM Management 127

With Xen SEDF scheduler, each VM is configured with a triplet (s,p,b), where s
represents the lowest slice of time during each period of length p where the VM will
use the CPU. The boolean flag b, indicate whether the VM is eligible or not to receive
extra CPU time slices that are not used by other VMs. Therefore SEDF can be both used
as a fix or variable credit scheduler (according to the b flag), and the credit allocated to
a VM can be defined with the s and p parameters.

In our experiments, we create VMs with a given fraction of the CPU capacity (a
credit corresponding to a SLA) and we illustrate the incompatibilities between DVFS
and VM schedulers by using Xen Credit scheduler as fix credit scheduler and Xen SEDF
scheduler as variable credit scheduler.

In the rest of the paper, we will not consider different VM priorities as we assume
that the overall goal of a hosting center provider is to allocate portions of a processor
(with VMs) to customers, without any priority between customers.

3.2 Combining DVFS and VM Scheduling

In version 4.1.2, Xen supports four governors (as described in Section 2.2): ondemand,
performance, powersave and userspace.

The Ondemand governor is the most used for DVFS. Depending on the global host
CPU load, the governor adjusts the processor frequency between the highest and the
lowest level. However, the VM scheduler selects and executes VMs regardless of pro-
cessor frequency, and therefore a processor frequency reduction influences VM perfor-
mance.

Let us consider a Xen virtualized system with two VMs (V20 and V70) running on
the same physical host. They are respectively configured with 20% and 70% of credit.
The Ondemand governor will set the suitable processor frequency according to the load.
We assume in the illustrative example used below that reducing the processor frequency
slows down the processor by 50%.

Then, let us consider, the two following scenarios (with different schedulers).

Scenario 1 - Fix Credit Scheduler. We assume that the host is working with a fix
credit scheduler. If V20 is overloaded (100% of its 20% CPU credits) and V70 is un-
derloaded (0% of its 70% CPU credits), then the host is globally underloaded (the load
is theoretically 20%). The Ondemand governor scales down the processor frequency.
This reduction saves energy, but V20 is heavily penalized. Indeed, instead of receiving
its percentage (20%) of the computing capacity, V20 receives less (50% of 20%) be-
cause of the frequency reduction. When a credit is allocated to a VM as a percentage
of the total host CPU capacity, this percentage is a fraction of the processor capacity
at the maximum frequency. If the processor frequency is decreased because V70 is not
using its allocated credit (and the host is therefore globally underloaded), V20 does not
obtain its initially allocated credit.

In summary in this scenario, scaling down frequency decreases V20’s performance
and therefore its applications QoS, because the fix credit scheduler is not aware of
processor frequency scaling.

128 D. Hagimont et al.

Scenario 2 - Variable Credit Scheduler. Now, consider that our host is working with
a variable credit scheduler. With the same assumptions than in the previous section
(V20 overloaded, V70 underloaded), V70’s unused CPU time slices can be given to
V20, because of variable credit allocation, which counterbalances the effects described
with fix credit scheduler if we would have a frequency reduction. However, we will
not have any frequency reduction. All the V70 unused time slices can be given to V20
(without any limit), which leads to a globally overloaded host, which in turn prevents
the processor frequency be scaled down.

In this scenario, the problem with the variable credit scheduler is that by giving
unused time slices to V20, it will prevent frequency scaling, thus wasting energy from
the point of view of the provider.

Design Principles of Power Aware Scheduling. Because of the independence of VM
schedulers and DVFS governors, either the provider cannot guarantee the QoS required
by the customers (with the fix credit scheduler) or a VM will be allowed to use more
CPU than its allocated credit, preventing DVFS scaling (with the variable credit sched-
uler). The previous scenarios reveal incompatibilities between schedulers and gover-
nors.

Our proposal is to take advantage of DVFS to lower power consumption while guar-
anteeing the credits allocated to VMs. Concretely, when the processor frequency is
modified, we reconsider the credit associated with VMs in order to counterbalance the
effect of the frequency modification. The consequence is that:

– the initially configured credit of a VM is a percentage of the computing capacity
of the processor at the maximum frequency (20% for V20 and 70% for V70 in our
scenario)

– a VM will see its credit increased (resp. decreased) whenever the processor fre-
quency is decreased (resp. increased), this credit (at the new frequency) being
equivalent to the initial credit (at the maximum frequency). In the previous sce-
nario, when the processor frequency is decreased (slowing down the processor by
50%), V20 will be given 40% of credit to counterbalance the frequency reduction.

– a VM is never given more computing capacity than its allocated credit, enabling
frequency reductions

The next section details this contribution.

4 Contributions

As previously argued, DVFS and VM schedulers have incompatibilities. DVFS was in-
troduced for power reduction, but cannot directly be exploited for the same purpose
in virtualized systems. Our contribution aims at managing DVFS in a virtualized envi-
ronment while (i) benefiting from power reduction and (ii) guaranteeing allocated CPU
credits.

We implemented our Power Aware Scheduler (PAS for short) in the Xen environment
as an extension of the Xen Credit scheduler, which is the default and most achieved
VM scheduler. The following subsections present our implementation choices and the
implementation of the PAS scheduler.

DVFS Aware VM Management 129

4.1 Implementation Choices

We considered three possible implementations for our PAS scheduler:

– user level - credit management. In this design, we let the Ondemand governor man-
age the processor frequency. Then, a user level application monitors the processor
frequency, and periodically computes and sets VM credits in order to guarantee
initially allocated credits.

– user level - credit and DVFS management. In this design, a user level application
monitors the VM loads. Periodically, it computes and sets the processor frequency
which can accept the load, and it also computes and sets the updated VM credits.
With this solution, the VM credits can be updated each time the processor frequency
is modified.

– in the Xen system - credit and DVFS management: A user level implementation
can be quite intrusive because of system calls and it may lack reactivity. Another
possibility is to implement it as an extension of the VM scheduler. DVFS and VM
credit computations and adaptations are then performed each time a scheduling
decision is made.

We experimented with these three solutions. The results reported in this paper are
based on the third implementation.

4.2 PAS Scheduler Implementation

In our implementation of the PAS scheduler, we rely on two main assumptions:

– proportionality of frequency and performance. This property means that if we mod-
ify the frequency of the processor, the impact on performance is proportional to the
change of the frequency.

– proportionality of credit and performance. This property means that if we modify
the credits allocated to a VM, the impact on performance is proportional to the
change of the credits.

Proportionality of Frequency and Performance
This proportionality is defined by:

Lmax

Li
=

Fi

Fmax
× cfi (cfi is very close to 1) (1)

which means that if we decrease the frequency from Fmax down to Fi, the load will
proportionally increase from Lmax to Li. For instance, if Fmax is 3000 and Fi is 1500,
the frequency ratio is 0.5 which means that the processor is running 50% slower at Fi

compared to Fmax. So if we consider a load (Lmax) of 10% at Fmax, the load (Li)
should be 10%

0.5 = 20% at Fi.
Even if cfi is very close to 1, we kept this variable in our equations as we observed

that it may vary according to the machine architecture and the considered frequencyFi.

130 D. Hagimont et al.

A similar proportionality is defined for execution times. But we add here that exe-
cution times depend on the credit (j) allocated to the VM which hosts the computation
(VM credits are considered below)4.

T j
max

T j
i

=
Fi

Fmax
× cfi (2)

We define the frequency ratio as ratioi = Fi

Fmax
.

Proportionality of Credit and Performance
This proportionality is defined by:

T init
i

T j
i

=
Cj

Cinit
(3)

which means that if we increase the credits of a VM from Cinit up to Cj , the execu-
tion time will proportionally decrease from T init

i to T j
i . Here, the execution time also

depends on the frequency (i) of the processor. For instance, if we increase the credits
allocated to a VM from 10% to 20%, we double the computing capacity of the VM.
Then the execution time should become half of the initial execution time.

These proportionality rules are validated at the beginning of the evaluation section
(Section 5).

In our algorithms, the first equation (1) is used to estimate, for a given CPU load,
what would be the load at a different processor frequency. Therefore, if we measure a
load Li at frequency Fi, we can compute the absolute load, i.e., the equivalent load at
Fmax which is Li ∗ ratioi ∗ cfi. And if we want to check whether such an absolute load
can be supported at a different frequency (i), we will check whether this absolute load
is less than 100 ∗ ratioi ∗ cfi.

The two other equations (2 and 3) are used to compute the modification of VM cred-
its, which can compensate the performance penalty incurred by a frequency reduction.
Assume that a VM is initially allocated credit Cinit (which is a fraction of the proces-
sor at frequency Fmax). Then assume that the frequency of the processor is reduced
down to Fi. We are looking for the new credit Cj to assign to this VM, so that its ex-
ecution time would be the same as with credit Cinit and frequency Fmax, i.e. so that
T j
i = T init

max.

According to equation 3, Cj =
T init
i ∗ Cinit

T j
i

According to equation 2, T j
i =

T j
max

ratioi ∗ cfi
, so T init

i =
T init
max

ratioi ∗ cfi

Therefore, Cj =
T init
max ∗ Cinit

ratioi ∗ cfi ∗ T j
i

and we want that T j
i = T init

max

So Cj =
T init
max ∗ Cinit

ratioi ∗ cfi ∗ T init
max

= Cinit

ratioi ∗ cfi

4 in the following, frequencies are show as subscripts and credits as exponents

DVFS Aware VM Management 131

In summary:

Cj =
Cinit

ratioi ∗ cfi
(4)

This means that with our assumptions, we can compensate the performance penalty
incurred by a frequency reduction as follows:

– If we run a computation in a VM with 20% credit at the Fmax frequency.
– If we reduce the processor frequency from Fmax to Fi, for instance half the maxi-

mum frequency, so that ratioi is 0.5.
– we can change the credit to 20%÷0.5 = 40% in order to have the same computing

capacity, and we will have the same computation time or the same computation
load under this new frequency (assuming that cfi=1).

We now describe the implementation of the PAS scheduler.
The PAS scheduler relies on a set of variables that are used for the computation of

the processor frequency to be used and the credits to be associated with VMs. We also
define additional variables that are used to explain the behavior of our PAS scheduler in
the evaluation section.

– VM[] is a table of the VMs managed by the scheduler and nbVM the number of
VMs.

– Credit[] is a table of the credit associated with each VM.
– Freq[] is a table of the possible processor frequencies and fmax is the number of

frequencies (so Freq[fmax] is the maximum frequency).
– CF[] is a table of the variables (cfi) associated with the different frequencies.
– CurrentFreq is the current frequency of the processor.
– VM load is the observed load of a VM (e.g., V20 has a VM load of 100% in our

previous scenario).
– VM global load is the contribution of a VM to the load of the processor (e.g., V20

which is allocated a credit of 20% and which has a VM load of 100%, contributes
to the processor load for 100% of 20%, that is 20%). If a VM is allocated a credit
of VM credit, then VM global load = VM load * VM credit.

– Global load is the load of the processor. Therefore,
Global load =

∑
VM global load. 5

– Absolute load is the processor load that we would have if processor was running at
the maximum frequency. According to our previous assumption regarding frequen-
cies, we have:
Absolute load = Global load * CurrentFreq

Freq[max] * cfCurrentFreq.

As mentioned in Section 4.1, the PAS scheduler has been implemented both at user
level and at system level. In the following, we rely on the system implementation.

At each tick in the VM scheduler, we compute the appropriate processor frequency
according to the Absolute load, as depicted in the algorithm below (Listing 1.1). We

5 Note that, each time we consider the Global load, it represents an average of three successive
processor utilization.

132 D. Hagimont et al.

iterate on the processor frequencies (line 2). Following our assumption regarding fre-
quencies, we compute for each frequency the frequency ratio (line 3) and check if the
computing capacity of the processor at that frequency can absorb the current absolute
load (line 4).

i n t computeNewFreq () {
f o r (i =1 ; i<=fmax ; i ++) {

i n t r a t i o = Freq [i] / Freq [fmax] ;
i f (r a t i o ∗ 100 ∗ CF [i] > A b s o l u t e l o a d)

r e t u r n Freq [i] ;
}

r e t u r n Freq [fmax] ;
}

Listing 1.1. Algorithm for computing the next processor frequency

At each tick, we need to compute the new credits associated with VMs and to mod-
ify VM credits and the processor frequency. This is described in the algorithm below
(Listing 1.2). For the new frequency of the processor, we compute the frequency ratio
(line 3) and for each VM, we compute the new credit that has to be associated with each
VM (line 5) and assign it (line 6). The credit of a VM increases when the frequency of
the processor decreases. Finally, we modify the processor frequency (line 7).

An important remark is that with this algorithm, when the processor frequency is
low, the sum of the VM credits may be more than 100%, because we computed the new
credit limit for each VM.

void u p d a t e D v f s A n d C r e d i t s () {
i n t newFreq = computeNewFreq () ;
i n t r a t i o = newFreq / Freq [fmax] ;
f o r (vm=1; i<=nbVM ; vm++) {

i n newCred i t = C r e d i t [vm] / (r a t i o ∗ CF [newFreq]) ;
s e t C r e d i t (VM[vm] , newCred i t) ;

}
s e t F r e q u e n c y (newFreq) ;

}
Listing 1.2. Algorithm for computing VM credits, and setting VM credits and processor fre-
quency

Some of these VM are active and some are lazy. For active VM, this new limit ex-
tends their computing capacities and compensate the frequency reduction. For lazy VM,
this new limit is meaningless as it will not be reached (if the load of lazy VMs increases,
the processor frequency will increase and VM credits will be decreased).

5 Evaluation

5.1 Environment

Our experiments were performed on a DELL Optiplex 755, with an Intel Core 2 Duo
2.66GHz with 4G RAM. We run a Linux Debian Squeeze (with the 2.6.32.27 kernel)

DVFS Aware VM Management 133

in a single processor mode. The Xen hypervisor (in his 4.1.2 version) is used as virtu-
alization solution.

The evaluation described below were performed with two applications:

– when we aim at measuring an execution time, we use an application which com-
putes an approximation of π. This application is called π-app.

– when we aim at measuring a CPU load, we use a web application (a Joomla CMS
server) which receives a load generated by httperf [14]. This application is called
Web-app. The Joomla server consists of Joomla 1.7, relying on Apache 2.2.16, PHP
5.3.3 installed into Apache with modphp5 and MySQL 5.1.49. This application is
called Web-app in the following.

5.2 Verification of Our Assumptions

As said at the beginning of Section 4, the implementation of our PAS scheduler relies
on two main assumptions: proportionality of frequency and performance (equation 1 &
2) and proportionality of credit and performance (equation 3).

In order to validate these two assumptions, we conducted the following experiments:

– Proportionality of frequency and performance. We ran different Web-app work-
loads at the different processor frequencies. For each workload, we measured the
loads L(freq) at the different freq processor frequencies and we drew for each work-
load the ratios L(freqmax)

L(freq) and freq
freqmax , in order to compute the cfi values for each

frequency and to verify that they were constant under various workloads (thus val-
idating equation 1). We also ran different π-app workloads at different processor
frequencies and measured the execution times, allowing us to verify the propor-
tionality of frequency ratios and execution time ratios (equation 2).

– Proportionality of credit and performance. We ran different π-app workloads on
VMs configured with different credits (with the Xen credit scheduler). For each
workload and credit (index j), we measured the execution time and computed the

credit ratio (Cj

Cinit) and the execution time ratio (T
init
i

T j
i

), in order to verify equa-

tion 3.

These experiments allowed to validate these proportionality assumptions and to com-
pute the cfi values (more details are given in Section 5.8).

Finally, in order to verify the accuracy of equation 4 which is used to compensate
(with a credit allocation) the performance penalty incurred by a frequency reduction,
we executed π-app at the maximum frequency (2667 MHz) with different initial credits
(10, 20, 30 . . .), then we ran the same experiment at frequency 2133 MHz, but computed
with equation 4 what should be the associated credits which compensate this frequency
reduction. Figure 1 shows our results. The X axis at the bottom gives the initial credits,
the X axis at the top gives the computed credits, and the Y axis gives the execution
times. This experiments shows that we can effectively compensate a frequency reduc-
tion with a credit allocation.

134 D. Hagimont et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 10 20 30 40 50 60 70 80 90 100

13 25 38 50 63 75 88 100 113 125

E
x
e
c
u
ti
o
n
 T

im
e

Initial credit (%)

New credit (%)

Maximum Frequency (2667 MHz)
New Frequency (2133 MHz)

Fig. 1. Compensation of Frequency Reduction with Credit Allocation

5.3 Execution Profile

In the rest of this evaluation section, we rely on the Web-app application previously
described and we consider 2 virtual machines called V20 and V70, with respectively
20% and 70% of initially allocated credit. The remaining 10% of credit are allocated
for the hypervisor (the Dom0 in Xen) which is configured with the highest priority in
the VM scheduler. The two VMs have the same priority.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 2. Load profile (at the maximum frequency)

DVFS Aware VM Management 135

The objective of the execution profile we are considering is to reveal the scheduling
problem we are addressing and to demonstrate the effectiveness of our solution (the
PAS scheduler). Both VMs have a three-phase profile: inactive-active-inactive:

– inactive. During the inactive phase, the VM does not receive any load from the load
injector (httperf).

– active. During the active phase, the VM may receive two types of load: either the
injector is configured to generate a load which represents 100% of the VM capacity
but not more (we call such a load an exact load), or it is configured to generate a
load which exceeds the VM capacity (we call such a load a thrashing load).

Figure 2 shows the VM global load (as defined in Section 4, the contribution of the
VM to the load of the processor) for both VMs when executing this profile with the
credit scheduler, and with the processor frequency being kept at its maximum value
(the frequency is shown on the Y axis on the right side). Notice here that the same
performance figure is obtained with an exact load or a thrashing load, since the credit
scheduler limits the amount of CPU that a VM may use (according to its initially allo-
cated credit). This figure characterizes the execution profile we will use in the rest of
the article.

5.4 Credit Scheduler in Default

We now run the same execution profile (with an exact load) with the credit scheduler,
but with the Ondemand DVFS management governor.

As observed on Figure 3, the default Ondemand governor is quite aggressive and
unstable. Therefore, we implemented our own (ondemand) governor, which is less ag-
gressive and more stable, and consequently saves less energy. We performed the same
experiments with both governors and observed the same overall behaviors (Figure 4),
but without such oscillations with our governor (that we use in rest of this evaluation
for readibility of figures).

In the two previous figures, when a VM is in the active phase, its VM global load is
70% for V70 and 20% for V20 (its contribution to the load of the processor).

While the previous Figures gave the observed VM global loads, Figure 5 shows
the Absolute load (defined in Section 4 as the processor load that it represents with
a processor running at the maximum frequency, or more precisely Absolute load =
Global load * CurrentFreq

Freq[max] * cfCurrentFreq). We observe that in the first phase (when
V20 is active and V70 inactive), the absolute load of V20 is close to 10%. This is due
to the lowered processor frequency, since the global load of the processor is only 20%.
However, as soon as V70 becomes active, the global load of the processor becomes high
enough to scale up the processor frequency at the maximum level, and then the absolute
load of V20 climbs to 20%. In summary, V20 is only granted its allocated (absolute)
credit (20%) when the processor frequency is at the maximum level.

5.5 SEDF Scheduler Brings a Solution

We ran the same experiment with the SEDF scheduler. Remind that with SEDF, unused
CPU time slices can be given to active VMs. Therefore, as observed on Figure 6, in

136 D. Hagimont et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000
0

1600

1867

2133

2400

2667

C
P

U
 L

o
a

d
 (

%
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Execution Time

Frequency
V20
V70

Fig. 3. Global loads with Ondemand gover-
nor / Credit scheduler / exact load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000
0

1600

1867

2133

2400

2667

C
P

U
 L

o
a

d
 (

%
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Execution Time

Frequency
V20
V70

Fig. 4. Global loads with our gover-
nor / Credit scheduler / exact load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 5. Absolute loads with our governor / Credit scheduler / exact load

the first phase (when V20 is active and V70 inactive), V20 has a global load of 35%,
because it is given time slices which are not used by V70. And when V70 becomes
active, then the initially allocated credits are respected and V20 ends up with 20% of
global load (at the maximum processor frequency).

And if we observe the absolute load in this experiment (Figure 7), we see that unused
time slices that were given to V20 allowed to compensate the penalty of the lowered
processor frequency. V20 has a 20% absolute load during the entire experiment. There-
fore, SEDF brings a solution to our identified issue, i.e., the fact that an active VM can
be victim of a frequency reduction (due to other VM laziness).

5.6 SEDF Scheduler in Default

However, the SEDF scheduler does not actually solve the problem. In the previous
experiments, we used exact loads (which represents 100% of the VM capacity but not
more). If we use thrashing loads (which exceed VM capacities), we observe (Figure 8)
that in the first phase (when V20 is active and V70 inactive), the SEDF scheduler gives
unused time slices to V20, which in turn brings the processor frequency at the highest
level. In this first phase, V20 is allowed to consume 85% of the processor. This is not
consistent from the point of view of the provider in a hosting infrastructure, since V20

DVFS Aware VM Management 137

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 6. Global loads with our ondemand gover-
nor / SEDF scheduler / exact load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 7. Absolute loads with our gover-
nor / SEDF scheduler / exact load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 8. Global or absolute loads with our governor / SEDF scheduler / thrashing load

was initially allocated 20% of credit and the provider does not benefit from a frequency
reduction due to V70 inactivity.

In the second phase, when V70 becomes active, the SEDF scheduler guarantee the
initially allocated credits and V20 cannot benefit from unused time slices anymore.

Notice here that in this experiment, the global and absolute load figures are the same
(we only show a single figure) since the processor frequency is kept at the highest level
during the whole experiment.

5.7 PAS Scheduler Solves the Problem

Our PAS scheduler recomputes credits allocated to VMs according to the frequency of
the processor. Therefore, it provides the same benefits than the SEDF scheduler with the
exact load, but also guarantees the respect of credits under thrashing loads. In Figure 9,
the PAS scheduler computes that in the first phase, V20 should be granted 33% of credit
in order to compensate the low processor frequency (1600 MHz). In the second phase,
V20 is granted 20% of credit as the processor frequency reaches the maximum value.
With this strategy, the absolute loads of each VM is consistent with credit allocations
(Figure 10).

138 D. Hagimont et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 9. Global loads with the PAS sched-
uler / thrashing load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000
0

1600

1867

2133

2400

2667

C
P

U
 L

oa
d

(%)

Fr
eq

ue
nc

y
(M

H
z)

Execution Time

Frequency
V20
V70

Fig. 10. Absolute loads with the PAS sched-
uler / thrashing load

5.8 Other Environments

In order to study the applicability of this approach in other environments, we experi-
mented with different hardware architectures and different virtualization systems.

Other Hardware. We verified that our proportionality assumptions, described in Sec-
tion 4.2 and validated in Section 5.2 are valid on other hardware architectures. Therefore,
we measured for different workloads the introduced variable cfi, which may depend on
the hardware architecture, for different types of machines available on Grid5000, the
french national grid (Table 1). We report the measurements (cfi) only for the minimal
frequency, as many processors only have 2 available frequencies. We observed that even
is cfmin is most of the time equal to one, it may significantly vary on particular archi-
tectures (e.g. Intel Xeon E5-2620).

Table 1. cfmin on different processors

Intel Xeon Intel Xeon Intel Xeon AMD Opteron Intel Core
X3440 L5420 E5-2620 6164 HE i7-3770

cfmin 0,94867 0,99903 0,80338 0,99508 0,86206

Other Virtualization Platforms. We verified that the issue we address is relevant in
other virtualization platforms. Therefore, we ran the same scenario as in Section 5.3
on different virtualization environments and measured the execution time of the V20
virtual machine (Table 2). V20 can be penalized by a frequency reduction when V70 is
lazy. These measurements were performed on the leading virtualization products (com-
mercial or open-source) that we installed on the same hardware configuration, a HP
compaq Elite 8300 (with an Intel Core i7-3770 3.4GHz with 8G RAM). This machine
embeds hardware assisted virtualization technologies that were enabled in all our ex-
periments. On the left part of the table, we compare solutions with a fix VM credit
scheduler. The V20 virtual machine is significantly penalized on Hyper-V Server 2012,
Vmware ESXi 5 and Xen (with its credit scheduler), and our PAS scheduler in Xen

DVFS Aware VM Management 139

cancels this degradation by allocating additional credits to V20. On the right part of the
table, solutions with variable credit schedulers have a much faster execution time, since
the CPU capacity of V70 is given to V20 when V70 is lazy. However, V20 may con-
sume any amount of unused CPU capacity, which prevents a reduction of the processor
frequency, thus wasting energy.

Table 2. Execution Times on Different Virtualization Platforms

Fix credit scheduler Variable credit scheduler
Hyper-V VMware Xen/credit Xen/PAS Xen/SEDF KVM Vbox

Performance 1601 1550 1559 1559 616 599 625
OnDemand 3212 2132 2599 1560 616 599 625

Degradation(%) 50 27 40 0 0 0 0

6 Related Work

In recent years, we observed the rapid development of hosting infrastructures and their
energy consumption became an important issue.

Energy saving in hosting centers
In order to better manage hosting center energy consumption, the Green Grid [2] as-
sociation defined metrics, such as Power Usage Effectiveness (PUE). PUE is a mea-
sure of how efficiently a hosting center uses its power; specifically, how much of the
power is actually used for computing (in contrast to cooling and other overheads). It
is computed as follows: PUE = TotalFacilityPower

ITEquipmentPower where TotalFacilityPower and
ITEquipmentPower represent respectively the global power consumption of the host-
ing center and the power associated with all the IT equipment (computers, storage, net-
work equipments, etc.). The ideal value of PUE should be 1, meaning that all the power
consumed by the hosting center is dedicated for computing. Such metrics allow the
estimation of the energy efficiency of hosting centers, to compare the results against
other hosting centers, and to determine if any energy management improvements can
be made. For example, in [10], James Hamilton exploits the PUE metrics to determine
the power distribution of his computing infrastructure in order to reduce high-scale data
center costs.

Energy Saving for Computing Servers
Many research projects have focused on reducing the energy consumed by servers in
hosting centers. The general orientation is to rely on dynamic resource allocation. In
hosting centers, hardware resources are mutualized among multiples customers, which
is a means to use less resources while fulfilling the requirements of customers. Cus-
tomers subscribe for resources, but those resources are made available to customers
only if effectively used. Therefore the amount of active resources can be reduced, thus
leading to energy saving. Such energy management policies are generally implemented
at the level of servers.

In 2001, Chase et al. [4] showed that hosting center servers used at least 60% of their
peak power in idle state. Therefore, it is beneficial to gather computations on a reduced

140 D. Hagimont et al.

set of servers and to switch idle servers off. In this vein, servers Vary-On/Vary-Off
(VOVO) [19] strategies have been proposed and adopted by many researchers. They
consist in load-balancing a computing load on a set of servers, and according to the
load, increasing or decreasing the number of active servers in that set [20]. Chen at
al. [5] investigated the use of this strategy for power saving in a HPC system.

However, such VOVO approaches require applications to be structured following
a master-slave model where a load-balancer balances the load between a number of
slave servers, which can be adapted according to the received load. This is an important
constraint on the design of applications.

Energy Saving in Virtualization Environments
If virtualization technologies were first introduced about 30 years ago [9], they are now
increasingly used for resource management in hosting centers. In this context, the main
advantage of virtualization is to relax the previous constraints on applications [21]. Ap-
plication services can be deployed on separate virtual machines and a global resource
manager is responsible for the allocation of resources to these VMs according to the
load. This global manager can notably rely on VM migration [8] to gather VMs on
fewer physical machines and to switch unused machines off. Such an approach is gen-
erally known as server consolidation [3,15]. Another important advantage of virtual-
ization is isolation of applications, as consolidation may collocate VMs from different
applications on the same physical host [1].

Energy Saving with Frequency Scaling
Beside the reduction of the number of active machines in a hosting center, another way
to reduce energy consumption is to dynamically adapt the frequency of active machines
according to the CPU load on these machines. Such techniques are known as Dynamic
Voltage and Frequency Scaling (DVFS). Several studies showed that DVFS allows sig-
nificant energy consumption reductions [7,11]. Moreover, recent works studied the im-
pact of DVFS on applications performance and their Quality of Service. Chengjian Wen
et al. [23] proposed to combine DVFS management and VM scheduling in a cluster in
order to ensure fairness in the energy consumption of VMs, by accounting VMs power
usage and prioritizing VMs accordingly. In the same vein, Laszewski et al. [12] inves-
tigated a similar approach while ensuring QoS in terms of execution times.

Positioning Our Contribution
Our contribution shares many objectives with the works mentioned in the previous para-
graph. Similarly, our goal was to guarantee a QoS allocated to VMs while saving energy
thanks to DVFS. However, these projects didn’t consider that a VM is allocated a com-
puting capacity (a credit) at creation time and that it has to be managed as a Service
Level Agreement (SLA). Our Power-Aware Scheduler (PAS) allows DVFS manage-
ment while guaranteeing that the computing capacity allocated to a VM (and bought by
a customer) is available. We are not aware of any similar contribution to this issue.

7 Conclusion and Perspective

With the emergence of cloud computing environments, large scale hosting centers are
being deployed and the energy consumption of such infrastructures has become a

DVFS Aware VM Management 141

critical issue. In this context, two main orientations have been successfully followed
for saving energy:

– Virtualization which allows to safely host several guest operating systems on the
same physical machines and more importantly to migrate guest OS between ma-
chines, thus implementing server consolidation.

– DVFS which allows adaptation of the processor frequency according to the CPU
load, thus reducing power usage.

We observed that these two techniques suffer from incompatibilities, as DVFS gov-
ernors are implemented in the hypervisor and don’t take into account the existence of
different VMs with allocated credits and different loads. If a machine is globally under-
loaded but hosts a loaded VM (which consumes a significant part of its credit), then the
frequency of the processor may be scaled down, thus affecting the computing capacity
of the loaded VM.

In this paper, we proposed a Power-Aware Scheduler (PAS) which addresses this
issue. A credit is associated with a VM at creation time and represents its allocated
computing capacity. If the machine which hosts the VM is underloaded and its fre-
quency is therefore scaled down, the credit associated with the VM is recomputed in
order to maintain its computing capacity.

Our PAS scheduler was implemented in the Xen hypervisor and evaluated through
different scenarios which demonstrate its advantage over the Credit and SEDF sched-
ulers, the two schedulers available in Xen.

Our main perspective is to address the issue presented in Section 2.3. Memory is
the main limitation factor for an efficient consolidation system. We are investigating
energy aware resource management strategies which would coordinate VM scheduling,
frequency scaling and memory management in a hosting center. Furthermore, we plan
to extend our scheduler and take into account other technology factors such as hyper-
threading, multi-core, per-socket DVFS, and per-core DVFS.

Acknowledgements. The work reported in this article benefited from the support of the
French National Research Agency through projects Ctrl-Green (ANR-11-INFR-0012).

References
1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

Warfield, A.: Xen and the art of virtualization. In: Proceedings of the 9th ACM Symposium
on Operating Systems Principles (2003)

2. Belady, C., Rawson, A., Pfleuger, J., Cader, T.: The green grid data center power efficiency
metrics: PUE and DCiE. White paper (2007), http://www.thegreengrid.org/en/
Global/Content/white-papers/The-Green-Grid-Data-
Center-Power-Efficiency-Metrics-PUE-and-DCiE

3. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data
centers. In: Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (2010)

4. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M.: Managing energy and server re-
sources in hosting centers. In: Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (2001)

5. Chen, W., Jiang, F., Zheng, W., Zhang, P.: A dynamic energy conservation scheme for clusters
in computing centers. In: Yang, L.T., Zhou, X.-S., Zhao, W., Wu, Z., Zhu, Y., Lin, M. (eds.)
ICESS 2005. LNCS, vol. 3820, pp. 244–255. Springer, Heidelberg (2005)

http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE
http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

142 D. Hagimont et al.

6. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three CPU schedulers in Xen.
SIGMETRICS Performance Evaluation Review 35(2) (2007)

7. Chung-Hsing, H., Wu-Chun, F.: A Feasibility Analysis of Power Awareness in Commodity-
Based High-Performance Clusters. In: Proceedings of the 7th IEEE International Conference
on Cluster Computing (2005)

8. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.:
Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation (2005)

9. Gum, P.H.: System/370 extended architecture: facilities for virtual machines. IBM Journal
of Research and Development 27(6) (1983)

10. Hamilton, J.: Cooperative Expendable Micro-Slice Servers (CEMS): Low Cost, Low Power
Servers for Internet-Scale Services. In: Proceedings of the Fourth Biennial Conference on
Innovative Data Systems Research (2009)

11. Hsu, C., Feng, W.: A Power-Aware Run-Time System for High-Performance Computing. In:
Proceedings of the ACM/IEEE Conference on Supercomputing (2005)

12. Laszewski, G.V., Wang, L., Younge, A.J., He, X.: Power-aware scheduling of virtual ma-
chines in DVFS-enabled clusters. In: Proceedings of the IEEE International Conference on
Cluster Computing and Workshops (2009)

13. Miyakawa, D., Ishikawa, Y.: Process Oriented Power Management. In: Proceedings of the
2nd International Symposium on Industrial Embedded Systems (2007)

14. Mosberger, D., Jin, T.: httperf - A tool for measuring web server performance. SIGMETRICS
Performance Evaluation Review 26(3) (1998)

15. Nathuji, R., Schwan, K.: VirtualPower: coordinated power management in virtualized enter-
prise systems. In: Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles (2007)

16. Norris, C., Cohen, H.M., Cohen, B.: Leveraging IBM eX5 Systems for Breakthrough Cost
and Density Improvements in Virtualized x86 Environments. White paper (2011),
ftp://public.dhe.ibm.com/common/ssi/ecm/en/xsw03099usen

17. Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.G.: Performance evaluation of virtualiza-
tion technologies for server consolidation. HP Laboratories Palo Alto (2007),
http://www.hpl.hp.com/techreports/2007/HPL-2007-59.pdf

18. Padhy, R.P., Patra, M.R., Sarapathy, S.C.: Virtualization Techniques & Technologies: State
of the Art. Journal of Global Research in Computer Science 2(12) (2011)

19. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Compilers and operating systems for low
power. In: The Book Dynamic Cluster Reconfiguration for Power and Performance. Kluwer
Academic Publishers

20. Rajamanin, K., Lefurgy, C.: On evaluating request-distribution schemes for saving energy
in server clusters. In: Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (2003)

21. Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating
system virtualization: a scalable, high-performance alternative to hypervisors. In: Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (2007)

22. Pallipadi, V., Starikovskiy, A.: The ondemand governor: past, present and future. In: Pro-
ceedings of Linux Symposium (2006)

23. Wen, C., He, J., Zhang, J., Long, X.: PCFS: Power Credit Based Fair Scheduler Under DVFS
for Muliticore Virtualization Platform. In: Proceedings of the IEEE/ACM International Con-
ference on Green Computing and Communications (2010)

24. Motahari-Nezhad, Hamid, R., Stephenson, B., Singhal, S.: Outsourcing business to cloud
computing services: Opportunities and challenges. In: IEEE Internet Computing, Palo Alto
(2009)

ftp://public.dhe.ibm.com/common/ssi/ecm/en/xsw03099usen
http://www.hpl.hp.com/techreports/2007/HPL-2007-59.pdf

Elastic Remote Methods

K.R. Jayaram�

HP Labs, Palo Alto, CA
jayaramkr@hp.com

Abstract. For distributed applications to take full advantage of cloud
computing systems, we need middleware systems that allow developers
to build elasticity management components right into the applications.

This paper describes the design and implementation of ElasticRMI,
a middleware system that (1) enables application developers to dynam-
ically change the number of (server) objects available to handle remote
method invocations with respect to the application’s workload, without
requiring major changes to clients (invokers) of remote methods, (2) en-
ables flexible elastic scaling by allowing developers to use a combination
of resource utilization metrics and fine-grained application-specific in-
formation like the properties of internal data structures to drive scaling
decisions, (3) provides a high-level programming framework that handles
elasticity at the level of classes and objects, masking low-level platform
specific tasks (like provisioning VM images) from the developer, and (4)
increases the portability of ElasticRMI applications across different pri-
vate data centers/IaaS clouds through Apache Mesos [5].

Keywords: programmable elasticity, scalability, distributed objects.

1 Introduction

Elasticity, the key driver of cloud computing, is the ability of a distributed
application to dynamically increase or decrease its use of computing resources,
to preserve its performance in response to varying workloads. Elasticity can
either be explicit or implicit.

Implicit vs. Explicit Elasticity. Implicit elasticity is typically associated with
a specific programming framework or a Platform-as-a-Service (PaaS) cloud. Ex-
amples of frameworks providing implicit elasticity in the domain of “big data an-
alytics” are map-reduce (Hadoop [13] and its PaaS counterpart Amazon Elastic
Map Reduce [10]), Apache Pig [2], Giraph [12], etc. Implicit elasticity is handled
by the PaaS implementation and is not the responsibility of the programmer.
Despite being unable to support a wide variety of applications and computa-
tions, each of these systems simplifies application development and deployment,
and employs distributed algorithms for elastic scaling that are optimized for its
programming framework and application domain.

� Thanks to Patrick Eugster and Hans Boehm for helpful feedback.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 143–162, 2013.
c© IFIP International Federation for Information Processing 2013

144 K.R. Jayaram

ExplicitElasticity, on the other hand, is typically associatedwith Infrastructure-
as-a-Service (IaaS) clouds and/orprivatedata centers,which typically provide elas-
ticity at the granularity of virtualized compute nodes (e.g., Amazon EC2) or
virtualized storage (e.g.,AmazonElasticBlock Store (EBS)) in away that is agnos-
tic of the application using these resources. It is the application developer’s or the
system administrator’s responsibility to implement robust mechanisms to moni-
tor the application’s performance at runtime, request the addition or removal of
resources, and perform load-balancing, i.e., redistribute the application’s workload
among the new set of resources.

Programmable Elasticity. To optimize the performance of new or existing dis-
tributed applications while deploying or moving them to the cloud, engineering
robust elasticity management components is essential. This is especially vital for
applications that do not fit the programming model of (implicit) elastic frame-
works like Hadoop, Pig, etc., but require high performance (high throughput
and low latency), scalability and elasticity – the best example is the class of dat-
acenter infrastructure applications like key-value stores (e.g., memcached [22],
Hyperdex [23]), consensus protocols (e.g., Paxos [15]), distributed lock managers
(e.g., Chubby [7]) and message queues. Elasticity frameworks which rely on ex-
ternally observable resource utilization metrics (CPU, RAM, etc.) are insufficient
for such applications (as we demonstrate empirically in Section 5). A distributed
key value store, for example, may have high CPU utilization when there is high
contention to update a certain set of “hot keys”. Relying on CPU utilization to
simply add additional compute nodes will only degrade its performance further.
Hence, there is an emerging need for a elasticity framework that bridges the gap
between implicit and explicit elasticity, allowing the use fine grained applica-
tion specific metrics (e.g., size of a queue/heap, number of aborted transactions
or average number of attempts to acquire certain locks) to build an elasticity
management component right into the application without compromising (1) se-
curity, by revealing application-level information to the cloud service provider,
and (2) portability across different cloud vendors.

Why RMI?. Despite being criticized for introducing direct dependencies across
nodes through remote object references, Remote Method Invocation (RMI) and
Remote Procedure Call (RPC) remain a popular paradigm [3] for distributed
programming, because of their simplicity. Their popularity has led to the devel-
opment of Apache Thrift [3] with support for RPC across different languages,
and the design of cloud computing paradigms like RAMCloud [16] with support
for low-latency RPC. However, high-level support for elasticity is limited in ex-
isting RPC-like frameworks; and such support is vital to engineering efficient
distributed applications and migrating existing applications to the cloud.

Contributions. This paper makes the following technical contributions:

1. ElasticRMI – A framework for elastic distributed objects in Java:
(a) with the same simplicity and ease of use of the Java RMI, handling

elasticity at the level of classes and objects, while supporting implicit
and explicit elasticity. (Section 2)

Elastic Remote Methods 145

Client object
(makes RMI calls to
the server object)

Client-side Stub

RMI Call

Return
value

Client class ElasticRMI
preprocessor

requires no code changes,
just preprocessing

javac

pre-processor
generates stub

Skeleton

Server object

Elastic Object Pool

Skeleton

Server object

Skeleton

Server object

Skeleton

Server object

ElasticRMI
preprocessor

pre-processor
generates skeleton

Server
class

RMI Call

Return
value javac

Fig. 1. ElasticRMI – Overview

(b) that enables application developers to dynamically change the number
of (server) objects available to handle remote method invocations with
respect to the application’s workload, without requiring any change to
clients (invokers) of remote methods. (Section 3)

(c) enables flexible elastic scaling by allowing developers to use a combina-
tion of resource utilization metrics and fine-grained application-specific
information to drive scaling decisions. (Section 3)

2. A runtime system that handles all the low-level mechanics of instantiating
elastic objects, monitoring their workload, adding/removing additional ob-
jects as necessary and load balancing among them. (Section 4)

3. Performance evaluation of ElasticRMI using elasticity metrics defined by
SPEC [24] and using four existing real world applications – Marketcetera fi-
nancial order processing, Paxos consenus protocol, Hedwig publish/subscribe
system and a distributed coordination service. (Section 5)

2 ElasticRMI – Overview

Figure 1 illustrates the architecture of ElasticRMI. In designing ElasticRMI,
our goals are (1) to retain the simple programming model of Java RMI, and
mask the low level details of implementing elasticity like workload monitoring,
load balancing, and adding/removing objects from the application developer. (2)
require minimal changes, if any, to the clients of an object (3) makeElasticRMI

applications as portable as possible across different IaaS cloud implementations.

2.1 Elastic Classes and Object Pools

An ElasticRMI application consists of multiple components (implemented as
classes) interacting with each other. The basic elasticity abstraction in Elas-

ticRMI is an elastic class. An elastic class is also a remote class, and (some)
of its methods may be invoked remotely from another JVM. The key difference
between an elastic and a regular remote class is that an elastic class is instanti-
ated into a pool of objects (referred to as elastic object pool), with each object
executing on a separate JVM. But, the presence of multiple objects in an elastic
object pool is transparent to its clients, because the pool behaves as a single
remote object. Clients can only interact with the entire object pool, by invoking

146 K.R. Jayaram

its remote methods. The interaction between a client and an elastic object pool
is unicast interaction, similar to Java RMI. The processing of the method invo-
cation, i.e., the method execution happens at a single object in the elastic object
pool chosen by the ElasticRMI runtime, and not the client. ElasticRMIs
runtime can redirect incoming method invocations to one of the objects in the
pool, depending on various factors and performance metrics (Section 4 describes
load balancing in detail). The runtime automatically changes the size of the
pool depending on the pool’s “workload”. ElasticRMI is different from certain
frameworks where the same method invocation is multicast and consequently
executes on multiple (replicated) objects for fault-tolerance.

2.2 Shared State and Consistency

In Java RMI, the state of a remote (server) object is a simple concept, because it
resides on a single JVM and there is exactly one copy of all its fields. Clients of
the remote object can set the value of instance fields by calling a remote method,
and access the values in subsequent method calls. In ElasticRMI, on the other
hand, the entire object pool should appear to the client as a single remote object
– thereby necessitating coordination between the objects in the pool to consis-
tently update the values of instance fields. For consistency, we employ an external
in-memory key-value store (HyperDex [23] in our implementation) to store the
state (i.e., public, private, protected and static fields) of the elastic remote object
pool. The key-value store is not used to store local variables in methods/blocks
of code and parameters in method declarations. Local variables are instantiated
on the JVM in which the object resides. The key-value store is shared between
the objects in the pool, and executes on separate JVMs.

2.3 Stubs and Skeletons

ElasticRMI modifies the standard mechanisms used to implement RPCs and
Java RMI, as illustrated by Figure 1. The ElasticRMI pre-processor analyzes
elastic classes to generate stubs and skeletons for client-server communication.
As in Java RMI, a stub for a remote object acts as a client’s local representative
or proxy for the remote object. The caller invokes a method on ElasticRMI’s
local stub which (1) initiates a connection with the remote JVM, serializes and
marshals parameters, waits for the result of the method invocation and un-
marshals the return value/exception before returning it to the sender, and (2)
performs load balancing among the objects in the elastic pool as necessary. The
stub is generated by the ElasticRMI preprocessor and is different from the
client application, to which the entire object pool appears as a single object,
i.e., the existence of a pool of objects is known to the stub but not to the client
application. In the remote JVM, each object in the pool has a corresponding
skeleton, which in addition to the duties performed in regular Java RMI, can
also perform dynamic load balancing based on the CPU utilization of the object
and redirect all further method invocations to other objects in the pool after
ElasticRMI decides to shut it down in response to decreasing workload.

Elastic Remote Methods 147

2.4 Instantiation of Object Pools in a Cluster

An elastic class can only be instantiated by providing a minimum and maximum
number of objects that constitute its elastic object pool. Obviously, instantiat-
ing all objects in the pool on separate JVMs on the same physical machine may
degrade performance. Hence, ElasticRMI attempts to instantiate each object
in a virtual node in a compute cluster. Virtual nodes can be obtained either (1)
from IaaS clouds by provisioning and instantiating virtual machines, or (2) from
a cluster management/resource sharing system like Apache Mesos [5]. Our im-
plementation of ElasticRMI uses Apache Mesos [5] because it supports both
clusters of physical nodes (in private data centers) or virtual nodes (from IaaS
clouds). Mesos can also be viewed as a thin resource-sharing layer that manages
a cluster of physical nodes/virtual machines. It divides these nodes into “slices”
(called resource offers or slave nodes [5]), with each resource offer containing a
configurable reservation of CPU power (e.g., 2 CPUs at 2GHz), memory (e.g.,
2GB RAM), etc. on one of the nodes being managed. Mesos implements the
“slice” abstraction by using Linux Containers (http://lxc.sourceforge.net)
to implement lightweight virtualization, process isolation and resource guaran-
tees (e.g., 2CPUs at 2GHz) [5]. While instantiating an elastic class, the Elas-

ticRMI runtime requests Mesos for a specified number of slave nodes, instanti-
ating an object on each slave node.

Mesos aids in portability of ElasticRMI applications, just like the JVM
aids the portability of Java applications. Mesos can be installed on private data
centers and many public cloud offerings (like Google Compute Engine, Amazon
EC2, etc.). As long as Mesos is available, ElasticRMI applications can be
executed, making them portable across different cloud vendors.

Physical Node/VM
instance

Physical Node/
VM instance

M
es

o
s

E
la

st
ic

R
M

I R
u

n
ti

m
e

Skeleton

Server object

Mesos Slice

JVM

Skeleton

Server object

Mesos Slice

JVM

In-Memory Key
Value Store

2 Mesos Slices

Elastic Object Pool

U
n

u
se

d
M

es
o

s
sl

ic
e

U
n

u
se

d
M

es
o

s
sl

ic
e

U
n

u
se

d
M

es
o

s
sl

ic
e

U
n

u
se

d
M

es
o

s
sl

ic
e

U
n

u
se

d
M

es
o

s
sl

ic
e

ElasticRMI
runtime daemon

JVM

G
et

 N
ew

 S
lic

e

U
n

u
se

d
M

es
o

s
sl

ic
e

G
et

 N
ew

 S
lic

e

U
n

u
se

d
M

es
o

s
sl

ic
e

Fig. 2. ElasticRMI – Server Side

2.5 Automatic Elastic Scaling

The key objective of ElasticRMI is to change the number of objects in the
elastic pool based on its workload. The “workload” of an elastic object can have
several application-specific definitions, and consequently, ElasticRMI allows

http://lxc.sourceforge.net

148 K.R. Jayaram

programmers to define the workload of an elastic class and specify the condi-
tions under which objects should be added or removed from the elastic pool.
This can be done by overriding select methods in the ElasticRMI framework,
as discussed in detail in (the next) Section 3.1. During the lifetime of the elas-
tic object, the ElasticRMI runtime monitors a elastic object pool’s workload
and decides whether to change its size either based on default heuristics or by
applying the programmer’s logic by invoking the overridden methods discussed
above.

If a decision has been made to increase the size of the pool, the ElasticRMI

runtime interacts with the Mesos master node to request additional compute
resources. If the request is granted, ElasticRMI runtime instantiates the ad-
ditional object, and adds it to the pool (See Figure 2 for an illustration). If the
decision is to remove an object, ElasticRMI communicates with its skeleton
to redirect subsequent remote method calls to other objects in the pool. Once
redirection starts, ElasticRMI sends a shutdown message to the object. The
object acknowledges the message, and waits for all pending remote method invo-
cations to finish execution or throw exceptions indicating abnormal termination.
Then the object notifies the ElasticRMI runtime that it is ready to be shut-
down. ElasticRMI terminates the object and relinquishes its slice to Mesos.
This slice is then available to other elastic objects in the cluster, or for subse-
quent use by the same elastic object if a decision is made in the future to increase
the size of its pool.

3 Programming with ElasticRMI

This section illustrates the use of ElasticRMI for both implicit and explicit
elasticity through examples, along with an overview of how to make such de-
cisions with a global view of the entire application. Our implementation also
includes a preprocessor similar to rmic which in addition to generating stubs and
skeletons, converts ElasticRMI programs into plain Java programs that can
be compiled with the javac compiler.

3.1 ElasticRMI Class Hierarchy

A distributed application built using ElasticRMI consists of interfaces declar-
ing methods and classes implementing them. The key features of ElasticRMI

API (Figure 3) are:

– java.elasticrmi is the top-level package for programming ElasticRMI server
classes.

– An elastic interface is one that declares the set of methods that can be in-
voked from a remote JVM (client). All elastic interfaces must extend Elasti-

cRMI’s marker interface – java.elasticrmi.Elastic, either directly or indirectly.
– The ElasticObject class implements all the basic functionalities of Elasti-

cRMI. An application-defined class becomes elastic by implementing one or
more elastic interfaces and by extending ElasticObject.

Elastic Remote Methods 149

interface Elastic extends Remote { } //marker interface used by preprocessor
// Optionally implemented by the application
abstract class Decider extends UnicastRemoteObject implements Elastic {

abstract int getDesiredPoolSize(ElasticObject o);
}
abstract class ElasticObject extends UnicastRemoteObject {

ElasticObject() //Default constructor
ElasticObject(Decider d) //Consult d for scaling decisions

void setMinPoolSize(int s) //Set min pool size
void setMaxPoolSize(int s) //Set max pool size
void setBurstInterval(float ival) //Make scaling decisions every ’ival’ ms
void setCPUIncrThreshold(float t) //Add objects when CPU util > t
void setCPUDecrThreshold(float t) //Remove objects when CPU until < t
void setRAMIncrThreshold(float t) //Add objects when RAM util > t
void setRAMDecrThreshold(float t) //Remove objects when RAM until < t

float getAvgCPUUsage() //Get CPU util averaged over burst interval
public float getAvgRAMUsage() //Get RAM util averaged over burst interval
int getPoolSize() // Get pool size
//Returns average # of calls to each remote method over the burst interval
HashMap <String,float > getMethodCallStats() {...}

//Called by the runtime to poll each object about changes to the size of
//the pool. Can return positive or negative integers
abstract int changePoolSize();

}

Fig. 3. A snapshot of the ElasticRMI server-side API.

class CacheImplicit
extends ElasticObject {
CacheImplicit() {

setMinPoolSize(5);
setMaxPoolSize(50);

}
...

}

(a) Implicit elasticity

class CacheExplicit1 extends ElasticObject {
CacheExplicit1() {

setMinPoolSize(5); setMaxPoolSize(50);
setBurstInterval(5*60*1000); //5mins
setCPUIncrThreshold(85); setRAMIncrThreshold(70);
setCPUDecrThreshold(50); setRAMDecrThreshold(40);

} ...
}

(b) Explicit elasticity using coarse-grained metrics.

Fig. 4. Example of two distributed cache classes implemented in ElasticRMI

3.2 Programming with Implicit Elasticity

ElasticRMI supports implicit elastic scaling, using average CPU utilization
across the objects in an elastic pool as the default coarse-grained metric. A time
interval, referred to as the burst interval (default 60s) is used to decide whether
to change the size of elastic object pool. ElasticRMI measures the average
CPU utilization of each object in the elastic pool every 60s – objects are added
(in increments of 1 object) when the average utilization exceeds 90% and re-
moved when average utilization falls below 60%. Figure 4a shows an example
of a distributed cache class (e.g., a web cache, content/object cache) that relies
on ElasticRMI’s implicit elasticity mechanisms. The programmer simply im-
plements a cache store based on some well-known algorithm and specifying the
minimum and maximum size of the pool, without worrying about adapting to
new resources and load balancing.

150 K.R. Jayaram

3.3 Programming with Explicit Elasticity

ElasticRMI also allows programmers to explicitly define the workload of an
elastic class and specify the conditions under which objects should be added or
removed from the elastic pool. Workload definitions can either be coarse-grained
or fine-grained.

Coarse-Grained Metrics. A programmer can override the default burst inter-
val, and the average CPU utilization thresholds used for changing the number
of objects in the pool by calling the appropriate methods (setBurstInterval(...),
setCPUIncrThreshold(...) and setCPUDecrThreshold(...)) in java.elasticrmi.ElasticObject

which is available in all elastic classes since they extend ElasticObject (see Fig-
ure 3).

Figure 4b shows an example of a cache class that changes the CPU and mem-
ory (RAM) utilization thresholds that trigger elastic scaling. The core Elasti-

cRMI API includes specific methods to set CPU and memory thresholds because
they are commonly used for elastic scaling – if both CPU and RAM thresholds
are set, the runtime interprets them using a logical OR, i.e., in the example
shown in Figure 4b, the ElasticRMI runtime increases the size of the pool by
in increments of 1 object every five minutes, either if average CPU utilization
exceeds 85% or if average memory utilization exceeds 70% across the JVMs in
the elastic object pool.

Fine-grained Metrics. ElasticRMI provides additional support, through the
changePoolSize method (see Figure 3) which can be overridden by any elastic class.
The runtime periodically (every “burst interval”) invokes changePoolSize to poll
each object in the elastic object pool, about desired changes to the size of the
pool. The method returns an integer – positive or negative corresponding to
increasing or decreasing the pool’s size. The values returned by the various ob-
jects in the pool are averaged to determine the number of objects that have to
be added/removed. The logic used to decide on elastic scaling is left to the devel-
oper, and it may be based on (1) parameters of the JVM on which each object
resides, (2) properties of shared instance fields of the elastic object, or of data
structures used by the object, e.g., number of pending client operations stored
in a queue, and (3) metrics computed by the object like average response time,
throughput, etc. ElasticRMI allows classes to use only a single decision mech-
anism for elastic scaling, i.e., if changePoolSize is overridden, then scaling based on
CPU/Memory utilization is disabled.

Figure 5 illustrates the use of changePoolSize to make scaling decisions. The
CacheExplicit2 class is implemented to use metrics specific to distributed object
caches, e.g., avgLockAcqFailure (which measures the failure rate of acquiring write
locks to ensure consistency during a put operation on the cache) and avgLockAcqLatency

(which measures the average latency to acquire write locks) to make decisions
about changing the size of the elastic object pool. In Figure 5, the CacheExplicit2

class does not add new objects to the pool when there is a lot of contention. When
the failure rate for acquiring write locks (avgLockAcqFailure is greater than 50%) or

Elastic Remote Methods 151

public class CacheExplicit2 extends ElasticObject {
float avgLockAcqFailure, avgLockAcqLatency
public int changePoolSize() {

HashMap <String, float > sMap;
sMap = getMethodCallStats();

float putLatency = sMap.get("put").getLatency();
float getLatency = sMap.get("get").getLatency();
if(putLatency > 100 || putLatency > 3*getLatency) {

if(avgLockAcqFailure > 50) return 0;
if(avgLockAcqLatency >= 0.8* putLatency) return 0; else return 2;

}
}

}

Fig. 5. A distributed cache class which relies on ElasticRMI’s explicit elasticity sup-
port using fine-grained application-specific metrics.

when the predominant component of putLatency is avgLockAcqLatency, no additional ob-
jects are added to the pool because there is already high contention among objects
serving client requests to acquire write locks. When these conditions are false, the
size of the pool is increased by two – controlling the number of objects added is
another feature of changePoolSize.

Making Application-Level Scaling Decisions. The mechanisms described above
involve makes scaling decisions local to an elastic class, and may not be optimal
for applications using multiple elastic classes (where the application contains
tiers of elastic pools). ElasticRMI also supports decision making at the level
of the application using the Decider class. It is the developer’s responsibility to
ensure that elastic objects being monitored communicate with the monitoring
components, either by using remote method invocations or through message
passing. The ElasticRMI runtime assumes responsibility for calling changePoolSize

method of the monitoring class to get the desired size of each elastic object pool,
and determines whether objects have to be added or removed. Due to space lim-
itations, we refer the reader to our tech report for additional details [20].

4 The ElasticRMI Runtime

The runtime (1) handles shared state among the objects in an elastic object
pool, (2) instantiates each object of a pool, (3) performs load balancing, and (4)
is responsible for fault-tolerance.

4.1 Shared State and Consistency

The objects in the elastic object pool coordinate to update the state of its in-
stance fields (public, private, protected) and static fields. For consistency, we use
HyperDex [23], a distributed in-memory key-value store (with strong consis-
tency). Using an in-memory store provides the same data durability guarantees
as Java RMI which stores the state of instance fields in RAM in a single Java

152 K.R. Jayaram

virtual machine heap. HyperDex is different from the distributed cache in the
examples of Section 3, which is used for illustration purposes only. The Elasti-
cRMI preprocessor translates reads and writes of instance and static fields into
get(...) and put(...) method calls of HyperDex.

class C1 |class C1Processed {
extends ElasticObject { | void foo() {
int x, z; | int x=Store.get("C1$x");

| if(x==5)
void foo() { | Store.put("C1$z", 10);

if(x = 5) z = 10; | }
} | void bar() {
synchronized | while (!ERMI.lock("C1")) ;

void bar() { | ...
... | ERMI.unlock("C1");

} | }
} |}

Fig. 6. Handling shared state through an in-memory store
(HyperDex [23] here)

Figure 6 shows a
simple elastic class
C1 and how it is
transformed by the
ElasticRMI prepro-
cessor to insert calls
to HyperDex
(abstracted by Store

) and ElasticRMI’s
runtime (abstracted
by ERMI). For vari-
able x, C1$x is used
as the key in Store.
For synchronized meth-
ods, ElasticRMI uses a lock per class named after the class – the example in
Figure 6 uses a lock called "C1".

If an elastic class has an instance or static field f , a method call on f is
handled as follows:

– If f is a remote or elastic object, the method invocation is simply serialized
and dispatched to the remote object or pool as the case may be.

– Else, if m is synchronized. the method call is handled as in Figure 6, but the
runtime acquires a lock on f through HyperDex. In this case, ElasticRMI

guarantees mutual exclusion for the execution of f.m(...) with respect to
other methods of f .

– Else, (i.e., m is neither remote, elastic nor synchronized), f.m(...) involves
retrieving f from HyperDex and executing m(...) locally on an object in
the elastic object pool, and storing f back into HyperDex after m(...) has
completed executing.

ElasticRMI aims to increase parallelism and hence the number of remote
method executions per second when there is limited or no shared state. In-
creasing shared state increases latency due to the network delays involved in
accessing HyperDex. Having shared state and mutual exclusion through locks
or synchronized methods further decreases parallelism. However, we note that
this is not a consequence of ElasticRMI, but rather dependent on the needs
of the distributed application. If the developer manually implements all aspects
of elasticity by using plan Java RMI and an existing tool like Amazon Cloud-
Watch+Autoscaling, he still has to use something like a key-value store to handle
shared state. ElasticRMI cannot and does not attempt to eliminate this prob-
lem – it is up to the programmer to reduce shared state.

Elastic Remote Methods 153

Note that ElasticRMI does not guarantee a transactional (ACID) execution
of m(...) with respect to other objects in the pool, and using synchronized does not
provide ACID guarantees either in RMI or in ElasticRMI.

4.2 Instantiation of Elastic Objects

An elastic class can only be instantiated by providing a minimum (≥ 2) and max-
imum number of objects that constitute its elastic object pool (see Figure 3).
During instantiation, if the minimum number of objects is k, ElasticRMI’s run-
time creates k objects on k new JVM instances on k virtual nodes (Mesos slices),
if k virtual nodes are available from Mesos [5]. If only l < k are available, then
only l objects are created. Under no circumstance does ElasticRMI create two
or more JVM instances on the same slice obtained from Mesos. Then, Elasti-
cRMI instantiates the HyperDex on one additional Mesos slice, and continues to
monitor the performance of the HyperDex over the lifetime of the elastic object.
ElasticRMI may add additional nodes to HyperDex as necessary. Elasti-
cRMI also enables administrators to be notified if the utilization of the Mesos
cluster exceeds or falls below (configurable) thresholds, enabling the proactive
addition of computing resources before the cluster runs out of slices.

4.3 Load Balancing

Unlike websites or web services, where load balancing has to be performed on
the server-side, ElasticRMI has the advantage that both client and server pro-
grams are pre-processed to generate stubs and skeletons respectively. Hence, we
employ a hybrid load balancing model involving both stubs and skeletons – note
that all load balancing code is generated by the pre-processor, and the program-
mer does not have to handle any aspect of it explicitly. Please also note that this
section describes the simple load balancing techniques used in ElasticRMI,
but we do not claim to have invented a new load balancing algorithm.

On the server side, the runtime, while instantiating skeletons in an elastic
object pool, assigns monotonically increasing unique identifiers (uid) to each
skeleton, and stores this information in HyperDex. The skeleton with the lowest
uid is chosen by the runtime to be the leader of the elastic object pool, called the
sentinel. This is similar to leader election algorithms that use a so-called “royal
hierarchy” among processes in a distributed system. The sentinel, in addition to
performing all the regular functions (forwarding remote method invocations) to
its object in the pool, also helps in load balancing. The client stub created by
the ElasticRMI preprocessor (see Section 2.4) has the ability to communicate
with the sentinel to invoke remote methods. While contacting the sentinel for
the first time, the stub on the client JVM requests the identities (IP address and
port number) of the other skeletons in the pool from the sentinel.

For load-balancing on the client-side, the stub then re-directs subsequent
method invocations to other objects in the object pool either randomly or in
a round-robin fashion. If an object has been removed from the pool after its

154 K.R. Jayaram

identity is sent to a stub, i.e., if the sending itself fails, the remote method in-
vocation throws an exception which is intercepted by the client stub. The stub
then retries the invocation on other objects including the sentinel. If all attempts
to communicate with the elastic object pool fail, the exception is propagated to
the client application.

For load-balancing on the server side, the sentinel is also responsible for collect-
ing and periodically broadcasting the state of the pool – number of objects, their
identities and the number of pending invocations – to the skeletons of all its mem-
bers. We use the JGroups group communication system for broadcasts. If the sen-
tinel notices that any skeleton is overloaded with respect to others, it instructs the
skeleton to redirect a portion of invocations to a set of other skeletons. To decide
the number of invocations that have to be redirected fromeach overloaded skeleton,
our implementation of the sentinel uses the first-fit greedy bin-packing approxima-
tion algorithm (See http://en.wikipedia.org/wiki/Bin_packing_problem).
As mentioned in the previous paragraph, client-side load balancing occurs at the
stubwhile server-side loadbalancing involves skeletons and the sentinelwhichmon-
itor the state of the JVM and that of the elastic object pool to redirect incoming
method invocations.

4.4 Fault Tolerance

Existing RMI applications implement fault tolerance protocols on top of Java
RMI’s fault- and fault tolerance model, where objects typically reside in main
memory, and can crash in the middle of a remote method invocation. !e want
to preserve it to make adoption of ElasticRMI easier. In short, ElasticRMI

does not hide/attempt to recover from failures of client objects, key-value store
(HyperDex) or the server-side runtime processes and propagates corresponding
exceptions to the application. However, ElasticRMI attempts to recover from
failures of the sentinel and from Mesos-related failures. Sentinel failure triggers
the leader election algorithm described in 4.3 to elect a new sentinel, and mesos-
related failures affect the addition/removal of new objects until Mesos recovers.

5 Evaluation

In this section, we evaluate the performance of ElasticRMI, using metrics
relevant to elasticity. Due to space limitations, we refer the reader to our tech
report for additional details [20].

5.1 Elasticity Metrics

Measuring elasticity is different from measuring scalability. (Recall that) Scala-
bility is the ability of a distributed application to increase its “performance” pro-
portionally (ideally linearly) with respect to the number of available resources,
while elasticity is the ability of the application to adapt to increasing or de-
creasing workload; adding or removing resources to maintain a specific level of

http://en.wikipedia.org/wiki/Bin_packing_problem

Elastic Remote Methods 155

“performance” or “quality of service (QoS)”[24]. Performance/QoS is specific to
the application – typically a combination of throughput and latency. A highly
elastic system can scale to include newer compute nodes, as well as quickly pro-
vision those nodes. There are no standard benchmarks for elasticity, but the
Standard Performance Evaluation Corporation (SPEC) has recommended elas-
ticity metrics for IaaS and PaaS clouds [24].

Agility. This metric characterizes the ability of a system provisioned to be as
close to the needs of the workload as possible [24]. Assuming a time interval
[t, t′], which is divided into N sub-intervals, Agility maintained over [t, t′] can be
defined as: 1

N
(

N∑
i=0

Excess(i) +
N∑
i=0

Shortage(i))

where (1)Excess(i) is the excess capacity for interval i as determined by
Cap prov(i) − Req min(i), when Cap prov(i) > Req min(i) and zero other-
wise. (2) Shortage(i) is the shortage capacity for interval i as determined by
Req min(i)−Cap prov(i), when Cap prov(i) < Req min(i) and zero otherwise.
(3) Req min(i) is the minimum capacity needed to meet an application’s quality
of service (QoS) at a given workload level for an interval i. (4) Cap prov(i) is
the recorded capacity provisioned for interval i, and (5) N is the total number
of data samples collected over a measurement period [t, t′], i.e., one sample of
both Excess(i) and Shortage(i) is collected per sub-interval of [t, t′].

Elasticity measures the shortage and excess of computing resources over a
time period. For example, a value of elasticity of 2 over [t, t′] when there is no
excess means that there is a mean shortage of 2 “compute nodes” over [t, t′]. For
an ideal system, agility should be as close to zero as possible – meaning that
there is neither a shortage nor excess. Agility is a measurement of the ability
to scale up and down while maintaining a specified QoS. The above definition
of agility will not be valid in a context where the QoS is not met. It should be
noted that there is ongoing debate over whether Shortage and Excess should
be given equal weightage[24] in the Agility metric, but there are disagreements
over what the weights should be otherwise.

Provisioning Interval. Provisioning Interval is defined as the time needed to
bring up or drop a resource. This is the time between initiating the request to
bring up a new resource, and when the resource serves the first request.

5.2 ElasticRMI Applications for Evaluation and Workloads

We have re-implemented four existing applications using ElasticRMI to add
elasticity management components to them. This does not involve altering the
percentage of shared state or the frequency of accesses (reads or writes) to said
state.

156 K.R. Jayaram

5000 100 200 300 400

Time (minutes)

W
o

rk
lo

ad
Abrupt increase

Abrupt decrease

A

(a) Pattern for abruptly changing work-
load for all four systems. The pattern re-
mains the same, but the meaning and
magnitude vary for the four systems.

5000 100 200 300 400

Time (minutes)

W
o

rk
lo

ad

B

(b) Cyclical workload example for all four
systems. As in Figure 7a, the pattern re-
mains the same for all four systems but
the meaning and magnitude are different.

0 50 100 150 200 250 300 350 400 450
Time(minutes)

0
5

10
15
20
25
30
35
40

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(c) Marketcetera – abrupt workload.

0 100 200 300 400 500
Time(minutes)

0
5

10
15
20
25
30
35
40

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(d) Marketcetera – cyclical workload.

0 50 100 150 200 250 300 350 400 450
Time(minutes)

0

5

10

15

20

25

30

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(e) Hedwig – abrupt workload.

0 100 200 300 400 500
Time(minutes)

0
5

10
15
20
25
30
35
40

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(f) Hedwig – cyclical workload.

0 50 100 150 200 250 300 350 400 450
Time(minutes)

0
5

10
15
20
25
30
35

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(g) Paxos – abrupt workload.

0 100 200 300 400 500
Time(minutes)

0

1

2

3

4

5

6

A
g
ili

ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(h) Paxos – cyclical workload.

0 50 100 150 200 250 300 350 400 450
Time(minutes)

0

5

10

15

20

25

30

A
g

ili
ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(i) DCS – abrupt workload.

0 100 200 300 400 500
Time(minutes)

0

1

2

3

4

5

A
g
ili

ty

ElasticRMI

Overprovisioning

CloudWatch ElasticRMI-CPUMem

(j) DCS – cyclical workload.

Fig. 7. Elasticity Benchmarking of Marketcetera order routing, Hedwig, Paxos and
DCS. We compare the ElasticRMI implementation of these applications with two
other systems described in Section 5.4.

Elastic Remote Methods 157

Marketcetera [11] Order Routing. Marketcetera is an NYSE-recommended al-
gorithmic trading platform. The order routing system is the component that
accepts orders from traders/automated strategy engines and routes them to var-
ious markets (stock/commodity), brokers and other financial intermediaries. For
fault-tolerance, the order is persisted (stored) on two nodes. The workload for
this system is a set of trading orders generated by the simulator included in the
community edition of Marketcetera [11].

Apache Hedwig [14]. Hedwig is a topic-based publish-subscribe system designed
for reliable and guaranteed at-most once delivery of messages from publishers
to subscribers. Clients are associated with (publish to and subscribe from) a
Hedwig instance (also referred to as a region), which consists of a number of
servers called hubs. The hubs partition the topic ownership among themselves,
and all publishes and subscribes to a topic must be done to its owning hub. The
workload for this system is a set of messages generated by the default Hedwig
benchmark included in the implementation.

Paxos [15]. Paxos is a family of protocols for solving consensus in a distributed
system of unreliable processes. Consensus protocols are the basis for the state
machine approach to distributed computing, and for our experiments we im-
plement Paxos using a widely-used specification by Kirsch and Amir [15]. The
workload for this system is the default benchmark included in libPaxos [21].

DCS. DCS is a distributed co-ordination service for datacenter applications,
similar to Chubby [7] and Apache Zookeeper [25]. DCS has a hierarchical name
space which can be used for distributed configuration and synchronization. Up-
dates are totally ordered. The workload for this system is the default benchmark
included in Apache Zookeeper [25].

5.3 Workload Pattern

To measure how well the system adapts to the changing workload, we use two
patterns shown in Figures 7a and 7b. These two patterns capture all common
scenarios in elastic scaling which we have observed by analyzing real world ap-
plications. The abrupt pattern shown in Figure 7a has all possible scenarios
regarding abrupt changes in workload – gradual non-cyclic increase, gradual
decrease, rapid increases and rapid decrease in workload. A cyclic change in
workload is shown by the second pattern in Figure 7b. So, together the patterns
in Figures 7a and 7b exhaustively cover all elastic scaling scenarios we observed.
Note however, that although the pattern remains the same for varying the work-
load while evaluating all the four systems, the magnitude differs depending on
the benchmark used, i.e., the values of points A and B in Figures 7a and 7b are
different for the four systems depending on the benchmark. Point A, for example,
is 50,000 orders/s for Marketcetera, 75,000 updates/s for DCS, 24,000 consensus
rounds/s for Paxos and 30,000 messages/s for Hedwig. We set Point B at 20%
above Point A – note that the specific values of Points A and B are immaterial
because we are only measuring adaptability and not peak performance.

158 K.R. Jayaram

5.4 Overprovisioning and CloudWatch

We compare the ElasticRMI implementation of the applications in Section 5.2
with the existing implementations of the same applications in two deployment sce-
narios – (1) Overprovisioning and (2) Amazon AutoScaling + CloudWatch [4][1].
The overprovisioningdeployment scenario is similar to an “oracle” – the peak work-
load arrival rate i.e., point A for the abruptly changing workload and point B for
the cyclic workload are known a priori to the oracle; and the number of nodes re-
quired to meet a desired QoS (throughput, latency) at A and B respectively is
determined by the oracle through experimental evaluation. The oracle then pro-
visions the application on a fixed set of nodes – the size of which is enough to
maintain the desired QoS even at the peak workload arrival rate (A and B respec-
tively). In a nutshell, the over provisioning scenario can be described as “knowing
future workloadpatterns and provisioning enough resources tomeet its demands”.
Overprovisioning is the alternative to elastic scaling – there are going to be excess
provisioned resources when the workload is below the peak (A and B), but provi-
sioning latency is zero because all necessary resources are always provisioned. In
the CloudWatch scenario, we use a monitoring service – Amazon CloudWatch to
collect utilization metrics (CPU/Memory) from the nodes in the cluster and use
conditions on these metrics to decide whether to increase or decrease the number
of nodes. The ElasticRMI implementation of the above applications, however,
uses a combination of resource utilization and application-level properties specific
to Marketcetera, DCS, Paxos and Hedwig respectively to decide on elastic scaling.
Since ElasticRMI and CloudWatch are two different systems, we also compare
the ElasticRMI implementation of the four applications with another version,
referred to as ElasticRMI-CPUMem in Figure 7, where no application-level prop-
erties are used but only the the conditions based on CPU/Memory utilization in
CloudWatch are used.

0 50 100 150 200 250 300 350 400 450
Time (minutes)

0

5

10

15

20

25

30

35

P
ro

vi
si

o
n

in
g

 la
te

n
cy

 (
s) Marketcetera

Overprovisioning

Hedwig

DCS

Paxos

(a) Provisioning latency – Abrupt Work-
load

0 50 100 150 200 250 300 350 400 450
Time (minutes)

0

5

10

15

20

P
ro

vi
si

o
n

in
g

 la
te

n
cy

 (
s) Marketcetera

Overprovisioning

Hedwig

DCS

Paxos

(b) Provisioning latency – Cyclic Workload

Fig. 8. Provisioning latency in seconds for ElasticRMI and Overprovisioning (which is
always 0). Provisioning latency for Amazon CloudWatch is not plotted because it is in
several minutes and hence well above that of both ElasticRMI and Overprovisioning.
You can see repeating patterns corresponding to the cyclic workload.

5.5 Agility Results

In this section, we compare the Agility of the ElasticRMI implementation of all
four systems against Overprovisioning, CloudWatch and ElasticRMI-CPUMem.

Elastic Remote Methods 159

Marketcetera Order Routing. The relevant QoS metrics for the order routing
subsystem are order routing throughput, which is the number of orders routed
from traders to brokers/exchanges per second and order propagation latency,
which is the time taken for an order to propagate from the sender to the re-
ceiver. We compare the elasticity of the three deployments of the order routing
system described in Section 5.4. The results are illustrated in Figure 7. Figures 7c
and 7d plot the agility over the same time period as in Figures 7a and 7b for
all the four deployments. From Figures 7c and 7d, we observe that the agility of
ElasticRMI is better than CloudWatch, ElasticRMI-CPUMem and overprovi-
sioning. Ideally, agility must be zero, because agility is essentially a combination
of resource wastage or resource under-provisioning. We observe that for abruptly
changing workloads, agility of ElasticRMI is close to 1 most of the time, and
increases to 5 during abrupt changes in workload. We also observe that the
the agility of ElasticRMI oscillates between 0 and a positive value frequently.
This proves that the elastic scaling mechanisms of ElasticRMI perform well
in trying to achieve optimal resource utilization, i.e., react aggressively by try-
ing to push agility to zero. In summary, the average agility of ElasticRMI for
abruptly changing workload is 1.37. As expected, the agility of overprovisioning
is the worst, up to 24× that of ElasticRMI. This is not surprising, because its
agility does reach zero at peak workload, when the agility of ElasticRMI is 5,
thus illustrating that overprovisioning optimizes for peak workloads. The average
agility of overprovisioning is 17.2 for the cyclical workload and 24.1 for abruptly
changing workload. CloudWatch performs much better than overprovisioning,
but it is less agile than ElasticRMI. Its agility is approximately 3.4× that of
ElasticRMI on average for abruptly changing workloads, and it does not oscil-
late to zero frequently like ElasticRMI. The agility of ElasticRMI-CPUMem
is approximately equal to CloudWatch and is 3.02× that of ElasticRMI on
average – this is in spite of ElasticRMI-CPUMem and CloudWatch being dif-
ferent systems. having different provisioning latencies. This is because the same
conditions are used to decide on elastic scaling and because the provisioning
latency of CloudWatch is well within the sampling interval of 10 minutes used
in Figure 7.

Figure 7d shows that the agility of ElasticRMI is again better than that
of CloudWatch and overprovisioning for cyclic workloads. We also observe that
as in the case of abrupt workloads, the agility of ElasticRMI tends to de-
crease to zero more frequently than the other two deployments. Figure 7d also
demonstrates the oscillating pattern in the agility of overprovisioning – the initial
agility is high (and comes from Excess), and as the workload increases, Excess
decreases, thereby decreasing Agility and bringing it to zero corresponding to
Point B. Then Excess increases again as the workload decreases thereby increas-
ing Agility. This repeats three times. As expected, the agility of ElasticRMI-
CPUMem is similar to that of CloudWatch.

Hedwig. The relevant QoS metrics for Hedwig are also throughput and latency
– the number of messages published per second and time taken for the message
to propagate from the publisher to the subscriber. Figures 7e and 7f illustrate

160 K.R. Jayaram

the agility corresponding to our experiments with Hedwig. From Figures 7e and
7f, we observe similar trends as in the case of Marketcetera order processing.
ElasticRMI has lower agility values than the other two deployments, and the
agility of ElasticRMI tends to oscillate between zero and a positive value. The
agility values of CloudWatch are more than 4.5× that of ElasticRMI, on av-
erage for abrupt workloads and 3× that of ElasticRMI for cyclic workloads.
As expected, the agility of over provisioning is the highest, and is worse than the
values observed for Marketcetera in the case of cyclic workloads. We also observe
a similar oscillating trend in the agility values of the overprovisioning deploy-
ment as in Marketcetera, but the agility values oscillate more frequently because
Req min(i) – the minimum capacity needed to maintain QoS under a certain
workload changes more erratically than Marketcetera due to the replication and
at-most once guarantees provided by Hedwig for delivered messages.

Paxos. The relevant QoS metrics for Paxos are the number of consensus rounds
executed successfully per second, and the time taken to execute a consensus
round. Figures 7g and 7h illustrate the agility corresponding to our experiments
with Paxos. From Figures 7g and 7h, we observe similar trends to Hedwig and
Marketcetera. The agility of CloudWatch in this case is 6.6× than of Elas-

ticRMI, on average for abrupt workloads and 2.2× that of ElasticRMI for
cyclic workloads. We also observe that the agility of ElasticRMI returns to
zero (the ideal agility) most frequently among the three deployments.

DCS The relevant QoS metrics for DCS are the number of updates to the hierar-
chical name-space per second and the end-to-end latency to perform an update
as measured from the client. Figures 7i and 7j illustrate the agility correspond-
ing to our experiments with DCS. From Figures 7i and 7j, we observe that the
agility of CloudWatch in this case is 7.2× than of ElasticRMI, on average for
abrupt workloads and 3.2× that of ElasticRMI for cyclic workloads.

5.6 Provisioning Latency

Figures 8a and 8b plot the provisioning latency of ElasticRMIfor both abrupt
and cyclic workloads. We observe that the provisioning latency of ElasticRMI

is less than 30 seconds in all cases, which compares very favorably to the time
needed to provision new VM instances in Amazon CloudWatch (which is in
the order of several minutes, and hence omitted from Figure 8). Provisioning
latency is zero for the overprovisioning scenario, and that is the main purpose of
overprovisioning – to have resources always ready and available. Also, we observe
that as the workload increases, provisioning interval also increases, due to the
overhead in determining the remote method calls that have to be redirected
and also due to increasing demands on the resources of the sentinel object in
ElasticRMI’s object pools.

Elastic Remote Methods 161

6 Related Work

J-Orchestra [8,9] automatically partitions Java applications and makes them into
distributed applications running on distinct JVMs, by using byte code transfor-
mations to change local method calls into distributed method calls as neces-
sary. The key distinctions between J-Orchestra and ElasticRMI are that (1)
J-Orchestra tackles the complex problem of automatic distribution of Java pro-
grams while ElasticRMI aims to add elasticity to already distributed programs
and (2) ElasticRMI partitions different invocations of a single remote method.

Self-Replicating Objects (SROs) [17] is a new elastic concurrent programming
abstraction. An SRO is similar to an ordinary .NET object exposing an arbitrary
API but exploits multicore CPUs by automatically partitioning its state into a
set of replicas that can handle method calls (local and remote) in parallel, and
merging replicas before processing calls that cannot execute in replicated state.
SRO also does not require developers to explicitly protect access to shared data;
the runtime makes all the decisions on synchronization, scheduling and split-
ting/merging state. Live Distributed Objects (LDO) [19] is a new programming
paradigm and a platform, in which instances of distributed protocols are mod-
eled as live distributed objects. Live objects can be used to represent distributed
multi-party protocols and application components. Shared-state and synchro-
nization between the objects is maintained using Quicksilver [18], a group com-
munication system. Automatic scaling is not supported and must be explicitly
implemented by the programmer using the abstractions provided by LDO.

Quality Objects (QuO) [6] is a seminal framework for providing quality of ser-
vice (QoS) in network-centric distributed applications. When the requirements
are not being met, QuO provides the ability to adapt at many levels in the
system, including the middleware layer responsible for message transmission. In
contrast to QuO, ElasticRMI attempts to increase quality of service by chang-
ing the size of the remote object pool, and does not change the protocols used
to transmit remote method invocations.

7 Conclusions

We have described the design and implementation of ElasticRMI and have
demonstrated through empirical evaluation using real-world applications that it
is effective in engineering elastic distributed applications. Our empirical eval-
uation also demonstrates that relying solely on externally observable metrics
like CPU/RAM/network utilization decreases elasticity, as demonstrated by the
high agility values of CloudWatch. We have shown that our implementation
of ElasticRMI reduces resource wastage, and is sufficiently agile to meet the
demands of applications with dynamically varying workloads. Through an im-
plementation using Apache Mesos, we ensure portability of ElasticRMI appli-
cations across Mesos installations, whether it is a private datacenter or a public
cloud or a hybrid deployment between private data centers and public clouds.

162 K.R. Jayaram

We have demonstrated that ElasticRMI applications can use fine-grained ap-
plication specific metrics without revealing those metrics to the cloud infrastruc-
ture provider, unlike CloudWatch.

References

1. Amazon Web Services (AWS) Inc. Amazon CloudWatch (2012),
http://aws.amazon.com/cloudwatch/

2. Apache Pig (2013), http://pig.apache.org
3. Apache Thrift (2012), http://thrift.apache.org/
4. AWS Inc. Amazon Auto Scaling (2012), http://aws.amazon.com/autoscaling/
5. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A., Katz, R.,

Shenker, S., Stoica, I.: Mesos: A Platform for Fine-grained Resource Sharing in
the Data Center. In: NSDI 2011 (2011), http://incubator.apache.org/mesos/

6. BBN Technologies. Quality Objects (QuO) (2006), http://quo.bbn.com/
7. Burrows, M.: The Chubby Lock Service for Loosely-coupled Distributed Systems.

In: OSDI 2006 (2006)
8. Tilevich, E., Smaragdakis, Y.: J-Orchestra: Automatic Java Application Partition-

ing. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 178–204. Springer,
Heidelberg (2002)

9. Tilevich, E., Smaragdakis, Y.: Portable and Efficient Distributed Threads for Java.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 478–492. Springer,
Heidelberg (2004)

10. Elastic Map Reduce (2013), http://aws.amazon.com/elasticmapreduce/
11. Miller, G., Kuznets, T., Agostino, R.: Marketcetera Automated Trading Platform

(2012), http://www.marketcetera.com/site/
12. Giraph (2013), http://incubator.apache.org/giraph/
13. Hadoop (2013), http://hadoop.apache.org
14. Hedwig (2013), https://cwiki.apache.org/ZOOKEEPER/hedwig.html
15. Kirsch, J., Amir, Y.: Paxos for Systems Builders (2008),

http://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf
16. Ousterhout, J., et al.: The Case for RAMCloud. In: CACM (2011)
17. Ostrowski, K., Sakoda, C., Birman, K.: Self-replicating Objects for Multicore Plat-

forms. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 452–477. Springer,
Heidelberg (2010)

18. Ostrowski, K., Birman, K., Dolev, D.: Quicksilver Scalable Multicast (QSM). In:
NCA 2008 (2008)

19. Ostrowski, K., Birman, K., Dolev, D., Ahnn, J.H.: Programming with Live Dis-
tributed Objects. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 463–489.
Springer, Heidelberg (2008)

20. Jayaram, K.R.: Elastic Remote Methods. Technical Report (2013),
http://www.jayaramkr.com/elasticrmi

21. LibPaxos (2013), http://libpaxos.sourceforge.net/
22. Memcached (2013), http://www.memcached.org
23. Escriva, R., Wong, B., Sirer, E.: HyperDex: a Distributed, Searchable Key-Value

Store. In: SIGCOMM 2012 (2012)
24. SPEC Open Systems Group (OSG). Report on Cloud Computing to the OSG

Steering Committee (2012),
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf

25. Zookeeper (2013), http://zookeeper.apache.org/

http://aws.amazon.com/cloudwatch/
http://pig.apache.org
http://thrift.apache.org/
http://aws.amazon.com/autoscaling/
http://incubator.apache.org/mesos/
http://quo.bbn.com/
http://aws.amazon.com/elasticmapreduce/
http://www.marketcetera.com/site/
http://incubator.apache.org/giraph/
http://hadoop.apache.org
https://cwiki.apache.org/ZOOKEEPER/hedwig.html
http://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf
http://www.jayaramkr.com/elasticrmi
http://libpaxos.sourceforge.net/
http://www.memcached.org
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf
http://zookeeper.apache.org/

Atmosphere: A Universal Cross-Cloud Communication
Infrastructure�

Chamikara Jayalath, Julian James Stephen, and Patrick Eugster

Purdue University, Department of Computer Science,
305 N. University Street, West Lafayette, IN 47907

{cjayalat,stephe22,peugster}@cs.purdue.edu

Abstract. As demonstrated by the emergence of paradigms like fog comput-
ing [1] or cloud-of-clouds [2], the landscape of third-party computation is mov-
ing beyond straightforward single datacenter-based cloud computing. However,
building applications that execute efficiently across data-centers and clouds is te-
dious due to the variety of communication abstractions provided, and variations
in latencies within and between datacenters.

The publish/subscribe paradigm seems like an adequate abstraction for sup-
porting “cross-cloud” communication as it abstracts low-level communication
and addressing and supports many-to-many communication between publishers
and subscribers, of which one-to-one or one-to-many addressing can be viewed
as special cases. In particular, content-based publish/subscribe (CPS) provides an
expressive abstraction that matches well with the key-value pair model of many
established cloud storage and computing systems, and decentralized overlay-
based CPS implementations scale up well. On the flip side, such CPS systems per-
form poorly at small scale. This holds especially for multi-send scenarios which
we refer to as entourages that range from a channel between a publisher and a
single subscriber to a broadcast between a publisher and a handful of subscribers.
These scenarios are common in datacenter computing, where cheap hardware is
exploited for parallelism (efficiency) and redundancy (fault-tolerance).

In this paper, we present Atmosphere, a CPS system for cross-cloud communi-
cation that can dynamically identify entourages of publishers and corresponding
subscribers, taking geographical constraints into account. Atmosphere connects
publishers with their entourages through überlays, enabling low latency commu-
nication. We describe three case studies of systems that employ Atmosphere as
communication framework, illustrating that Atmosphere can be utilized to con-
siderably improve cross-cloud communication efficiency.

Keywords: cloud, publish/subscribe, unicast, multicast, multi-send.

1 Introduction

Consider recent paradigm shifts such as the advent of cloud brokers [3] for mediating
between different cloud providers, the cloud-of-clouds [2] paradigm denoting the in-
tegration of different clouds, or fog computing [1] which similarly signals a departure

� Supported by DARPA grant # N11AP20014, PRF grant # 204533, Google Research Award
“Geo-Distributed Big Data Processing”, Cisco Research Award “A Fog Architecture”.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 163–182, 2013.
c© IFIP International Federation for Information Processing 2013

164 C. Jayalath, J.J. Stephen, and P. Eugster

from straightforward third-party computing in a single datacenter. However, building
cross-cloud applications — applications that execute across datacenters and clouds —
is tedious due to the variety of abstractions provided (e.g., Infrastructure as a Service
vs. Platform as a Service).

Cross-Cloud Communication. One particularly tedious aspect of cross-cloud inte-
gration, addressed herein, is communication. Providing a communication middleware
solution which supports efficient cross-cloud deployment goes through addressing a
number of challenges. A candidate solution should namely

R1. support a variety of communication patterns (e.g., communication rate, number of
interacting entities) effectively. Given the variety of target applications (e.g., social
networking, web servers), the system must be able to cope with one-to-one com-
munication as well as different forms of multicast (one-to-many, many-to-many).
In particular, the system must be able to scale up as well as down (“elasticity”)
based on current needs [4] such as number of communicating endpoints.

R2. run on standard “low-level” network layers and abstractions without relying on any
specific protocols such as IP Multicast [5] that may be deployed in certain clouds
but not supported in others or across them [6].

R3. provide an interface which hides cloud-specific hardware addresses and integrates
well with abstractions of widespread cloud storage and computing systems in order
to support a wide variety of applications.

R4. operate efficiently despite varying network latencies within/across datacenters.

Publish/Subscribe for the Cloud. One candidate abstraction is publish/subscribe.
Components act as publishers of messages, and dually as subscribers by delineating
messages of interest. Examples of publish/subscribe services designed for and/or de-
ployed in the cloud include Amazon’s Simple Notification Service (SNS) [7], Apache
Hedwig [8], LinkedIn’s Kafka [9], or Blue Dove [4]. Intuitively, publish/subscribe is an
adequate abstraction because it supports generic many-to-many interaction, shields ap-
plications from specific lower-level communication — in particular hardware addresses
— thus supporting application interoperability and portability. In particular, content-
based publish/subscribe (CPS) [10,11,12,13,14] promotes an addressing model based
on message properties and corresponding values (subscribers delineate values of inter-
est for relevant properties) which matches well the key-value pair abstractions used by
many cloud storage (e.g., [15,16]) and computing (e.g., [17]) systems.

Limitations. However, existing publish/subscribe systems for the cloud are not de-
signed to operate beyond single datacenters, and CPS systems focus on scaling up
to large numbers of subscribers: to “mediate” between published messages and sub-
scriptions, CPS systems typically employ an overlay network of brokers, with filtering
happening downstream from publishers to subscribers based on upstream aggregation
of subscriptions. When messages from a publisher are only of interest to one or few
subscribers, such overlay-based multi-hop routing (and filtering) will impose increased
latency compared to a direct multi-send via UDP or TCP from the publisher to its
subscribers. Yet such scenarios are particularly wide-spread in third-party computing

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 165

models, where many cheap resources are exploited for parallelism (efficiency) or redun-
dancy (fault-tolerance). A particular example are distributed file-systems, which store
data in a redundant manner to deal with crash failures [18], thus leading to frequent
communication between an updating component and (typically 3) replicas. Another ex-
ample for multi-sends are (group) chat sessions in social networks.

Existing approaches to adapting interaction and communication between participants
based on actual communication patterns (e.g., [19,4,20]) are agnostic to deployment
constraints such as network topology. Topic-based publish/subscribe (TPS) [21,22] —
where messages are published to topics and delivered to consumers based on topics they
subscribed to — is typically implemented by assigning topics to nodes. This limits the
communication hops in multi-send scenarios, but also the number of subscribers.

In short, CPS is an appealing, generic, communication abstraction (R2, R3), but
existing implementations are not efficient at small scale (R1), or, when adapting to
application characteristics, do not consider deployment constraints in the network (R4);
inversely, TPS is less expressive than CPS, and existing systems do not scale up as well.

Atmosphere. This paper describes Atmosphere, a middleware solution that aims at
supporting the expressive CPS abstraction across datacenters and clouds in a way which
is effective for a wide range of communication patterns. Specifically, our goal is to sup-
port the extreme cases of communication between individual pairs of publishers and
subscribers (unicast) and large scale CPS, and to elastically scale both up and down
between these cases, whilst providing performance which is comparable to more spe-
cialized solutions for individual communication patterns. This allows applications to
focus on the logical content of communication rather than on peer addresses even in the
unicast case: application components need not contain hardcoded addresses or use cor-
responding deployment parameters as the middleware automatically determines associ-
ations between publishers and subscribers based on advertisements and subscriptions.

Our approach relies on a CPS-like peer-based overlay network which is used primar-
ily for “membership” purposes, i.e., to keep participants in an application connected,
and as a fallback for content-based message routing. The system dynamically identifies
clusters of publishers and their corresponding subscribers, termed entourages while tak-
ing network topology into account. Members of such entourages are connected directly
via individual “over-overlays” termed überlays, so that they can communicate with low
latency. The überlay may only involve publishers and subscribers or may involve one
or many brokers depending on entourage characteristics and resource availabilities of
involved publishers, subscribers, brokers, and network links. In any case, these direct
connections which are gradually established based on resource availabilities, will effec-
tively reduce the latency of message transfers from publishers to subscribers.

Contributions. Atmosphere adopts several concepts proposed in earlier CPS systems.
In the present paper, we focus on the following novel contributions of Atmosphere:

1. a technique to dynamically identify topic-like entourages of publishers in a CPS
system. Our technique hinges on precise advertisements. To not compromise on
flexibility, advertisements can be updated at runtime;

2. a technique to efficiently and dynamically construct überlays interconnecting mem-
bers of entourages with low latency based on resource availabilities;

166 C. Jayalath, J.J. Stephen, and P. Eugster

Subscriber
Inter-DC link

Intra-DC link

Region - Provider 1

Region - Provider 2

Publisher

(a) Regions

Broker

(b) Brokers

Fig. 1. Bird’s-eye View

3. the implementation of a scalable fault tolerant CPS system for geo-distributed de-
ployments named Atmosphere that utilizes our entourage identification and überlay
construction techniques;

4. an evaluation of Atmosphere using real-life applications, including social network-
ing, news feeds, and the ZooKeeper [23] distributed lock service, demonstrating the
efficiency and versatility of Atmosphere through performance improvements over
more straightforward approaches.

Roadmap. Section 2 provides background information and related work. Section 3
presents our protocols. Section 4 introduces Atmosphere. Section 5 evaluates our solu-
tion. Section 6 draws conclusions.

2 Background and Related Work

This section presents background information and work related to our research.

2.1 System Model

We assume a system of processes communicating via unicast channels spanning g cloud
datacenters or more generally regions. Regions may be operated by different cloud
providers. Each region contains a number of components that produce messages and/or
that are interested in consuming messages produced. Figure 1(a) shows an example sys-
tem with three regions from two different providers where each region hosts a single
producing and multiple consuming components.

2.2 CPS Communication

With content-based publish/subscribe (CPS), a message produced by a publisher con-
tains a set of property-value pairs; inversely, components engage into consumption of
messages by issuing subscriptions which consist in ranges of values – typically defined
indirectly through operators such as ≤ or ≥ and corresponding threshold values.

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 167

A broker overlay network typically mediates the message distribution between pub-
lishers and subscribers. A broker, when receiving a message, analyzes the set of property-
value pairs, and forwards the message to its neighbors accordingly. (For alignment with
the terminology used in clouds we may refer to properties henceforth as keys.) Siena [24]
is a seminal CPS framework for distributed wide-area networks that spearheaded the
above-mentioned CPS overlay model. Siena’s routing layer consists of broker nodes
that maintain the interests of sub-brokers and end hosts connected to them in a par-
tially ordered set (poset) structure. The root of the poset is sent to the parent broker to
which the given broker is subscribed to. CPS systems like Siena employ subscription
summarization [10,25] for brokers to construct a summary of the interests of the sub-
scribers and brokers connected to it. This summary is sent to neighboring brokers. A
broker that receives a published message determines the set of neighbors to which the
message has to be forwarded by analyzing the corresponding subscription summaries.
Summaries are continuously updated to reflect the changes to the routing network, oc-
curring for instance through joins, leaves, and failures of subscribers or brokers.

2.3 Existing CPS System Limitations

When deployed naı̈vely, i.e., without considering topology, in the considered multi-
region model (see Figure 1(a)) CPS overlays will perform poorly especially if fol-
lowing a DAG as is commonly the case, due to the differences in latencies between
intra- and inter-region links. To cater for such differences, a broker network deployed
across regions could be set up such that (1) brokers in individual regions are hierar-
chically arranged and each subscriber/publisher is connected to exactly one broker (see
Figure 1(b)), and (2) root brokers of individual regions are connected (no DAG). The
techniques that we propose shortly are tailored to this setup.

However, the problem with such a deployment is still that — no matter how well the
broker graph matches the network topology — routing will happen in most cases over
multiple hops which is ineffective for multi-send scenarios where few subscribers only
are interested in messages of a given publisher. In the extreme case where messages pro-
duced by a publisher are consumed by a single subscriber there will be a huge overhead
from application-level routing and filtering over multiple hops compared to a direct use
of UDP or TCP. The same holds with multiple subscribers as long as the publisher has
ample local resources to serve all subscribers over respective direct channels.

While several authors have proposed ways to identify and more effectively intercon-
nect matching subscribers and publishers, these approaches are deployment-agnostic in
that they do not consider network topology (or resource availabilities). Thus they trade
logical proximity (in the message space) for topological proximity.

Majumder et al. [26] for instance show that using a single minimum spanning or a
Steiner tree will not be optimal for subscriptions with differing interests. They propose
a multiple tree-based approach and introduce an approximation algorithm for finding
the optimum tree for a given type of publications. But unlike in our approach these
trees are location agnostic hence when applied to our model a given tree may contain
brokers/subscribers from multiple regions and a given message may get transmitted
across region boundaries multiple times unnecessarily increasing the transmission la-
tency. Sub-2-Sub [19] uses gossip-based protocols to identify subscribers with similar

168 C. Jayalath, J.J. Stephen, and P. Eugster

subscriptions and interconnect them in an effective manner along with their publishers.
In this process, network topology is not taken into account, which is paramount in a
multi-region setup with varying latencies. Similarly, Tariq et al. [20] employ spectral
graph theory to efficiently regroup and connect components with matching interests,
but do not take network topology or latencies into account. Thus these systems can
not be readily deployed across regions. Publiy+ [27] introduces a publish/subscribe
framework optimized for bulk data dissemination. Similar to our approach, brokers of
Publiy+ identify publishers and their interested subscribers and instruct them to directly
communicate for disseminating large bulk data. Publiy+ uses a secondary content-based
publish/subscribe network only to connect publishers and interested subscribers in dif-
ferent regions. Publiy+ is not designed for dissemination of large amounts of small
messages since the data dissemination between publishers and subscribers is always
direct and the publish/subscribe network is only used to form these direct connections.

2.4 Other Solutions for Cloud Communication

Cloud service providers such as Microsoft and Amazon have introduced content deliv-
ery networks (CDNs) for communication between their datacenters. Microsoft Azure
CDN caches Azure blob content at strategic locations to make them available around the
globe. Amazon’s CloudFront is a CDN service that can be used to transfer data across
Amazon’s datacenters. CloudFront can be used to transfer both static and streamed con-
tent using a global network of edge locations. CDNs focus on stored large multimedia
data rather than on live communication. Also, both above-mentioned CDN networks
can be used only within their respective service provider boundaries and regions.

Volley [28] strategically partitions geo-distributed stored data so that the individual
data items are placed close to the global “centroid” of the past accesses.

Use of IP Multicast has been restricted in some regions and across the Internet due
to difficulties arising with multicast storms or multicast DOS attacks. Dr. Multicast [6]
is a protocol that can be implemented to mitigate these issues. The idea is to introduce
a new logical group addressing layer on top of IP Multicast so that access to physical
multicast groups and data rates can be controlled with a acceptable user policy. This
way system administrators can place caps on the amount of data exchanged in groups
and the members that can participate on a group. Dr. Multicast specializes on intra-
datacenter communication and does not consider inter-datacenter communication.

3 Entourage Communication

In this section, we introduce our solution for efficient communication between pub-
lishers and “small” sets of subscribers on a two-level geo-distributed CPS network of
brokers with hierarchical deployments within individual regions as outlined in Figure 2
for two regions. This solution can be adapted to existing overlay-based CPS systems
characterized in Section 2.2.

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 169

Broker
group

Fig. 2. Broker Hierarchies

3.1 Definition of Entourages

The range of messages published by a publisher p are identified by advertisements τp,
which, as is customary in CPS, include the keys and the value ranges for each key.
Analogously, the interest range of each subscriber or broker n is denoted by τn. τp∩τn
denotes the common interest between a publisher p and a subscriber or broker n.

We define the interest match between a publisher p and a subscriber/broker n as a
numerical value that represents the fraction of the publisher’s messages that the sub-
scriber/broker is interested in assuming the publisher to have an equal probability of
publishing a message with any given value within its range. If the range τp of p is de-
noted by 〈key1, range1〉, 〈key2, range2〉, ..., 〈keyx, rangex〉 and
〈key1, range′1〉, 〈key2, range′2〉, ..., 〈keyx, range′x〉 denotes the range τn of n, then the
interest match is given by:

Πx
i=1

|rangei ∩ range′i|
|rangei|

So, the interest match is defined to be the product of the intersection of the value
ranges that corresponds to the same key. If ranges that correspond to a given key have
an empty intersection, then n is not interested in messages with the publishers value
range for that key, hence there is zero interest match.

A publisher p and a set Φp of subscribers/brokers form a ψ-close entourage if each
member of Φp has at least a ψ interest match with p where 0 ≤ ψ ≤ 1. ψ is a parameter
that defines how close the cluster is to a topic. If ψ = 1, each member of the cluster is
interested in every message published by p, hence the cluster can be viewed as a topic.

3.2 Solution Overview

Next we describe our solution to efficient cross-cloud communication in entourages.
The solution consists of three main parts which we describe in turn.

1. A decentralized protocol that can be used to identify entourages in a CPS system.
2. A mechanism to determine the maximum number Kp of direct connections a given

publisher p can maintain without adversely affecting message transmission.
3. A mechanism to efficiently establish auxiliary networks termed überlay between

publishers and their respective subscribers using information from above two.

170 C. Jayalath, J.J. Stephen, and P. Eugster

1: id {ID of the broker}
2: super {ID of the parent broker}
3: subbrokers {Sub-brokers}
4: subscribers {Subscribers directly connected to the broker}
5: wait← 0 {# of records to be received by sub-brokers}
6: results← ∅ {Results to be sent to the parent broker}
7: when RECEIVE(COUNT , p, τp) from id′

8: end← false {Whether will be forwarding COUNT}
9: for all node ∈ subbrokers ∪ subscribers do
10: if interestMatch(τnode, τp) ≥ ψ then {Sufficient interest}
11: if node ∈ subbrokers then
12: SEND(COUNT , p, τp) to subbroker {Forward COUNT}
13: wait← wait + 1 {# of results to wait for}
14: else
15: results← results ∪ {〈node, 1〉} {Add node}
16: else
17: end← true
18: if |wait| + |results| = 0 then {No matching nodes found}
19: end← true
20: if end = true then
21: results ← ∅ {Resetting records; any responses discarded}
22: reply ← false
23: if end = true or (|results| > 1 and wait = 0) then
24: reply ← true {Send the COUNTREPLY to parent broker}
25: if reply = true or |results| + wait > 1 then
26: results ← results ∪ {〈id, 0〉} {Adding current broker}
27: if reply = true then
28: SEND(COUNTREPLY , p, results) to super {Sending COUNTREPLY}
29: when RECEIVE(COUNTREPLY , p, results′) from id′

30: for all 〈id′′, depth〉 ∈ results′ do
31: results ← results ∪ {〈id′′, depth + 1〉} {Depth + 1}
32: wait ← wait− 1 {Have to wait for 1 less record}
33: if wait = 0 then
34: SEND(COUNTREPLY , p, results) to super {Got all responses}

Fig. 3. DCI Protocol

3.3 Entourage Identification

We describe the DCI (dynamic entourage identification) protocol that can be used to
identify entourages in a CPS-based application. The protocol assumes the brokers in
region i to form a hierarchy, starting from one or more root brokers. An abstract version
of the protocol is given in the Figure 3.

The protocol works by disseminating a message named COUNT along the message
dissemination path of publishers. A message initiated by a publisher p contains τp and
ψ values. Once the message reaches a root node of the publishers region, it is forwarded
to each of the remote regions.

The brokers implement two main event handlers, (1) to handle COUNT messages
(line 7) and (2) to handle replies to COUNT messages – COUNTREPLY messages (line 29.)

COUNT messages are embedded into advertisements and carry the keys and value
ranges of the publisher. When a broker receives a COUNT message via event handler
(1), it first determines the subscribers/brokers directly attached to it that have an interest
match of at least ψ with the publisher p. If there is at least one subscriber/broker with a
non-zero interest match that is smaller than ψ then the count message is not forwarded
to any child. Otherwise the COUNT message is forwarded to all interested children.
This is because children with less than ψ interest match are not considered to be direct

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 171

members of the p’s entourage and yet messages published by p have to be transmitted
to all interested subscribers including those with less than ψ interest match. In such
a situation, instead of creating direct connections with an ancestor node and some of
the descendants, we choose to only establish direct connections with the ancestor node
since establishing direct connections with both an ancestor and a descendent will result
in duplicate message delivery and unfair latency advantages to a portion of subscribers.
A subscriber or a broker that does not forward a COUNT message immediately creates
a COUNTREPLY message with its own information and sends it back to the parent.

A broker does not add its own information to the reply sent to the parent broker
if the broker forwarded the COUNT message to exactly one child. This is because a
broker that is only used to transfer traffic between two other brokers or a broker and a
subscriber has a child that has the same interest match with p but is hop-wise closer to
the subscribers. This child is a better match when establishing an entourage.

In the latter event handler (2), a broker aggregates COUNTREPLY messages from
its children that have at least a ψ interest match with p, and send this information to
its respective parent broker through a new COUNTREPLY message. Aggregated COUN-
TREPLY messages are ultimately sent to p. To stop the COUNTREPLY messages from
growing indefinitely, a broker may truncate COUNTREPLY messages that are larger than
a predefined size M . When truncating, entries from the lowest levels of the hierarchy
are removed first. When removing an entry, entries of all its siblings (i.e., entries that
have the same parent) are also removed. This is because as mentioned before, our en-
tourage establishment protocol does not create direct connections with both a ancestor
node and one of its descendants.

A subscriber or a broker may decide to respond to its parent with a COUNTREJECT

message instead of a COUNTREPLY, either due to policy decisions or local resource
limitations. A broker that receives a COUNTREJECT from at least one of its children will
discard COUNTREPLY messages for the same publisher from the rest of its children.

As a publisher’s range of values in published messages evolves, it will have to send
new advertisements with COUNT messages to keep its entourage up to date. This is
supported in our system Atmosphere presented in the next section by exposing an ad-
vertisement update feature in the client API.

3.4 Entourage Size

We devise a heuristic to determine the maximum number of direct connections a given
publisher can maintain to its entourage without adversely affecting the performance of
transmission of messages.

Factors and Challenges. Capabilities of any node connected to a broker network are
limited by a number of factors. A node obviously has to spend processor and memory
resources to process and publish a stream of messages. The bandwidth between the node
and the rest of the network could also become a bottleneck if messages are significantly
large, or transmitted at a significantly high rate. This is particularly valid in a multi-
tenant cloud environment. The transport protocols used by the publisher and latencies
between it and the receivers could limit the rate at which the messages are transmitted.

172 C. Jayalath, J.J. Stephen, and P. Eugster

If the implementation is done in a smart enough way, the increase in memory foot-
print and the increase in latency due to transport deficiencies can be minimized. The
additional memory required for creating data-structures for new connections is much
smaller compared to the RAM available in todays computers (note that we do not con-
sider embedded agents with significantly low memory footprints). The latencies could
become a significant factor if the transport protocol is implemented in a naı̈ve manner,
e.g., with a single thread that sends messages via TCP directly to many nodes, one by
one. The effect could be minimized by using smarter implementation techniques, e.g.,
by using features such as multi-threaded transport layers, custom built asynchronous
transport protocols, and message aggregation.

Conversely, the processor and bandwidth consumption could significantly increase
with the number of unicast channels maintained by a publisher as every message has
to be repeatedly transmitted over each connection and every transmission requires CPU
cycles and network bandwidth.

Number of Connections. First we determine the increase in processor usage of a given
publisher due to establishing direct connections with subscribers or brokers. With each
new direct connection, a publisher has to repeatedly send its messages along a new
transport channel. So a safe worst case assumption is to assume that the amount of
processing power needs to be proportional to the number of connections over which
messages are transmitted.

Additionally, as mentioned previously, a given publisher p will have a bandwidth
quota of Wp when communicating with remote regions. Considering both these factors,
the number of direct connections Kp which publisher p can establish can be approxi-
mated by the expression min(1

Up
,

Wp

rp×sp).
This requires the publishers to keep track of their processor utilization; in most of

the operating systems, processor utilization can be determined by using system services
(e.g., the top command in Unix). The above bound on the number of directly connected
nodes is not an absolute bound, but rather a initial measure used by any publisher to
prevent itself from creating an unbounded number of connections. A publisher that
establishes Kp connections and needs more connections will reevaluate its processor
and bandwidth usage and will create further direct connections using the same heuristic,
i.e., assuming the required processor and bandwidth usage to be proportional to the
number of connections established.

3.5 Überlay Establishment

We use information obtained through the techniques described above to dynamically
form “over-overlays” termed überlays between members of identified entourages so
that they can communicate efficiently and with low latency.

Graph Construction. A publisher first constructs a graph data structure with the infor-
mation received from the DCI protocol. This graph gives the publisher an abstract view
of how its subscribers are connected to the brokers. There are three important differ-
ences between the graph constructed by the publisher (G1) and a graph constructed by
globally observing the way subscribers are actually networked with the brokers (G2).

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 173

S1 S2

S3

B3

B4

B6

(a) G1

P S1 S2

S3

B1 B2

B3B4

B5B6

S4 S5

(b) G2

Fig. 4. Graph vs Overlay

a. G1 only shows brokers that distribute the publisher’s traffic to two or more sub-
brokers while G2 will also show any broker that simply forwards traffic between
two other brokers or a broker and a subscriber.

b. G1 may have been truncated to show only a number of levels starting from the first
broker that distribute the publisher’s traffic into two children while G2 will show
all the brokers and subscribers that receive the publisher’s traffic.

c. G1 will only show brokers/subscribers that have at least a ψ interest match with the
publisher while G2 will show all brokers/subscribers that show interest in some of
the publisher’s messages.

Figures 4(a) and 4(b) show an example graph constructed by a publisher and an
actual network of brokers and subscribers that will result in the graph respectively. The
broker B5 was not included in the former due to a. above and subscribers S4 and S5
may not have been included either due to b. or c. (i.e., either because the graph was
truncated after three levels or because subscriber S4 or S5 did not have at least ψ
interest match with the publisher p) or simply because S4 or S5 decided to reject the
COUNT message from its parent due to one of many reasons given previously.

Connection Establishment. Once the graphs are established for each remote region
publisher can go ahead and establish überlays. The publisher determine the number
of direct connections it can establish with each remote region r (Kr

p) by dividing Kp

among regions proportional to the sizes (number of nodes) of respective G1 graphs.
For each region r the publisher tries to decide if it should create direct connections

with brokers/subscribers in one of the levels of the graph, and if so with which level.
The former question is answered based on the existence of a non-empty graph. If the
graph is empty, this means that none of the brokers/subscribers had at least ψ interest
match with the publisher and hence forming an entourage for distributing messages of p
is not viable. To answer the latter question, i.e., the level with which direct connections
should be created, we compare two properties of the graph.

ad – the average distance to the subscribers.
cv – the portion of the total overlay of the region that will be covered by the selection.

By creating direct connections closer to the subscribers, the entourage will be able to
deliver messages with low latency. By creating direct connections at higher levels, the

174 C. Jayalath, J.J. Stephen, and P. Eugster

direct connections will cover a larger portion of the region’s broker network, hence re-
ducing the likelihood of having to recreate the direct connections due to new subscriber
joins. This is especially important in the presence high levels of churn (chr for region
r). Additionally the publisher can create direct connections which are also bounded by
the value of Kr

p for the considered region. The publisher proceeds by selecting the level
to which it will establish direct connections (Lp) based on the following heuristic.

cvLp×chr+1

adLp+1 ≥ cvl×chr+1
adl+1 ∀ l ∈ {1...�logKr

p�}

Basically the heuristic determines the level which gives the best balance between the
coverage and the average distance to subscribers. The importance of coverage depends
on the churn of the system. Each factor of the heuristic is incremented by one so that
the heuristic gives a non-zero and deterministic value when either churn or distance is
zero. To measure the churn, each broker keeps track of the rate at which subscribers
join/leave it. This information is aggregated and sent upwards towards the roots where
the total churn of the region is determined.

If there are more than Kr
p nodes at the selected level then the publisher will first

establish connections with Kr
p randomly selected nodes there. The publisher will keep

sending messages through its parent so that the rest of the nodes receive the published
messages. Any node that already establishes direct connections with the publisher will
discard any message from the publisher received through the node’s parent. Once these
connections are established the publisher as mentioned previously reevaluates its re-
source usage and creates further direct connections as necessary.

If a new subscriber that is interested in messages from the publisher joins the sys-
tem, initially it will get messages routed via the CPS overlay. The new subscriber will
be identified, and a direct connection may be established in the next execution of the
DCI protocol. If a node that is directly connected to the publisher needs to discard the
connection, it can do so by sending a COUNTREJECT message directly to the publisher.
A publisher upon seeing such a message will discard the direct connection established
with the corresponding node.

4 Atmosphere

In this section, we describe Atmosphere, our CPS framework for multi-region deploy-
ments which employs the DCI protocol introduced previously. The core implementation
of Atmosphere in Java has approximately 3200 lines of code.

4.1 Overlay Structure

Atmosphere uses a two-level overlay structure based on broker nodes. Every application
node that wishes to communicate with other nodes has to initially connect to one of the
brokers which will be identified as the node’s parent. A set of peer brokers form a broker
group. Each broker in a group is aware of other brokers in that group. Broker-groups are
arranged to form broker-hierarchies. Broker-hierarchies are illustrated in Figure 2. As
the figure depicts, a broker-hierarchy is established in each considered region. A region

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 175

can typically represent a LAN, a datacenter, or a zone within a datacenter. At the top
(root) level broker-groups of hierarchies are connected to each other. The administrator
has to decide on the number of broker-groups to be formed in each region and the
placement of broker-groups.

Atmosphere employs subscription summarization to route messages. Each broker
summarizes the interests of its subordinates and sends the summaries to its parent bro-
ker. Root-level brokers of a broker-hierarchy share their subscription summaries with
each other. At initiation, the administrator has to provide each root-level group the iden-
tifier of at least one root-level broker from each of the remote regions.

4.2 Fault Tolerance and Scalability

Atmosphere employs common mechanisms for fault tolerance and scalability. Each bro-
ker group maintains a strongly consistent membership, so that each broker is aware of
the live brokers within its group. A node that needs to connect to a broker-group has
to be initially aware of at least one live broker (which will become the node’s parent).
Once connected, the parent broker provides the node with a list of live brokers within
its broker-group and keeps the node updated about membership changes. Each broker,
from time to time, sends heartbeat messages to its children.

If a node does not receive a heartbeat from its parent for a predefined amount of time,
the parent is presumed to have failed, and the node connects to a different broker of the
same group according to the last membership update from the failed parent. A node
that wishes to leave, sends an unsubscription message to its parent broker. The parent
removes the node from its records and updates the peer brokers as necessary.

Atmosphere can be scaled both horizontally and vertically. Horizontal scaling can
be performed by adding more brokers to groups. Additionally, Atmosphere can be ver-
tically scaled by increasing the number of levels of the broker-hierarchy. Nodes may
subscribe to a broker in any level.

4.3 Flexible Communication

Atmosphere implements the DCI protocol of Section 3. To this end, each publisher
sends COUNT messages to its broker. These messages are propagated up the hierarchy
and once the root brokers are reached, distributed to the remote regions to identify
entourages. Once suitable entourages are identified, überlays are established which are
used to disseminate messages to interested subscribers with low latency.

When changes in subscriptions (e.g., joining/leaving of subscribers) arrive at bro-
kers these may propagate corresponding notifications upstream even if subscriptions
are covered by existing summaries; when arriving at brokers involved in direct con-
nections these can notify publishers directly of changes, prompting these to re-trigger
counts.

4.4 Advertisements

By wrapping it with the client library of Atmosphere the DCI protocol for publishers/-
subscribers is transparent to application components, at the exception of advertisements
which publishers can optionally issue to make effective use of direct connections.

176 C. Jayalath, J.J. Stephen, and P. Eugster

Advertisements are supported in many overlay-based CPS systems, albeit not strictly
required. Similarly, publishers in Atmosphere are not forced to issue such advertise-
ments as Atmosphere, although effective direct connection establishment hinges on ac-
curate knowledge of publication spaces. Atmosphere can employ runtime monitoring
of published messages if necessary. For such inference, the client library of Atmosphere
compares messages published by a given publisher against the currently stored adver-
tisement and adapts the advertisement if required. When witnessing significant changes,
the new advertisement is stored and the DCI protocol is re-triggered.

Note that messages beyond the scope of a current advertisement are nonetheless
propagated over the direct connections in addition to the overlay. The latter is necessary
to deal with joining subscribers in general as mentioned, while the former is done for
performance reasons – the directly connected nodes might be interested in the message
since the publisher’s range of publications announced earlier can be a subset of the
ranges covered by any subscriptions.

The obvious downside of obtaining advertisements only by inference is that überlay
creation is delayed and thus latency is increased until the ideal connections are es-
tablished. To avoid constraining publishers indefinitely to previously issued advertise-
ments, the Atmosphere client library offers API calls to issue explicit advertisement
updates. Such updates can be viewed as the publisher-side counterpart of parametric
subscriptions [29] whose native support in a CPS overlay network have been shown to
not only have benefits in the presence of changing subscriptions, but also to improve
upstream propagation of changes in subscription summaries engendered via unsubscrip-
tions and new subscriptions.

5 Evaluation

We demonstrate the efficiency and versatility of Atmosphere via several microbench-
marks and real-life applications.

5.1 Setup

We use two datacenters for our experiments, both from Amazon EC2. The datacenters
are located in US east coast and US west coast respectively. From each of these data-
centers we lease 10 small EC2 instances with 1.7GB of memory and 1 virtual core and
10 medium EC2 instances with 3.7GB of memory and 2 virtual cores each.

Our experiments are conducted using three publish/subscribe systems: (1) Atmo-
sphere with DCI protocol disabled, representing a pure CPS system (referred to as CPS
in the following); (2) Atmosphere with DCI protocol enabled (Atmosphere); (3) Apache
ActiveMQ topic-based messaging system [21] (TPS). ActiveMQ is configured for fair
comparison to use TCP just like Atmosphere and to not persist messages. All code is
implemented in Java.

5.2 Microbenchmarks

We first assess the performance benefits of Atmosphere via micro-benchmarks.

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 177

 10 15 20 25 30 35

100

60

70

80

90

of Subscribers

La
te

nc
y (

m
s)

Atmosphere
CPS

(a) 50 msgs/s

 10 15 20 25 30 35

180

40

60

80

100

120

140

160

of Subscribers

La
ten

cy
 (m

s) Atmosphere
CPS Kp=26

(b) 200 msgs/s

 4 10 15 20 25 30 35

100

50

60

70

80

90

of Subscribers

La
te

nc
y (

m
s)

CPS
Atmosphere

(c) All Subscribers - 50 msgs/s

Fig. 5. Latency and all Subscribers for 50 msgs/s

Latency. We conduct experiments to observe the message transmission latency of At-
mosphere with and without DCI protocol enabled. The experiment is conducted across
two datacenters and use small EC2 instances. A single publisher is deployed in the first
datacenter, while between 10 and 35 subscribers are deployed in the second datacenter.
Each datacenter maintain three root brokers.

Figures 5(a) and 5(b) show the latency for message rates 50 msgs/s and 200 msgs/s
while Figures 6(a) and 6(b) show the standard latency deviations for the same rates.
We separate latency from its standard deviation for clarity. Figures 5(c) and 6(c) show
the average message transmission latency to individual subscribers for message rates
50 msgs/s and 200 msgs/s respectively.

As the graphs clearly show, when the number of interested subscribers is small, main-
taining unicast channels between the publisher and the subscribers pays off, even con-
sidering that the relatively slow connection to the remote datacenter is always involved,
and only local hops are avoided. This helps to dramatically reduce both the average mes-
sage transmission latency and the variance of latency across subscribers. For message
rates 50 and 200, when the number of subscribers is 10, maintaining direct connections
reduce the latency by 11% and 31% respectively.

For message rates 50 and 200, the value of Kp is determined to be 50 and 26 re-
spectively. The Figure 5(b) and 6(b) show that both the message transmission latency
and the variation of it considerably increase when the publisher reaches this limit. Also
the figures show the benefit of not using the überlay after the number of subscribers
exceed Kp. For example, as shown in Figure 5(b) when publisher move from maintain-
ing a überlay with its entourage to communicating using CPS (25 to 30 subscribers)
the average message transmission latency reduce by 24%. The increase in latency at
35 subscribers is due to brokers being overloaded, which can be avoided in practical
systems by adding more brokers to the overlay and distributing the subscribers among
them. Also note that the broker overlay used for this experiment consist of only two
levels which is the case where entourage überlays exhibit least benefits.

Number of Subscribers in an Entourage. We conduct experiments using three pub-
lisher setups: (1) a publisher uses a small EC2 instance (1 core) and sends messages of
size 4KB (p1); (2) a publisher uses a medium EC2 instance (2 cores) and sends mes-
sages of size 4KB (p2); (3) a publisher uses a small EC2 instance and sends messages
of size 8KB (p3). Subscribers and publishers are placed in two different datacenters as

178 C. Jayalath, J.J. Stephen, and P. Eugster

 10 15 20 25 30 35

40

0
5

10
15
20
25
30
35

of Subscribers

St
an

da
rd

 D
ev

ia
tio

n

Atmosphere
CPS

(a) 50 msgs/s

400 5 10 15 20 25 30 35

140

0
20
40
60
80

100
120

of Subscribers
St

an
da

rd
 D

ev
ia

tio
n

Atmosphere
CPS

Kp=26

(b) 200 msgs/s

 10 15 20 25 30 35

500

40

100
150
200
250
300
350
400
450

of Subscribers

La
ten

cy
 (m

s)

CPS
Atmosphere

(c) All Subscribers - 200 msgs/s

Fig. 6. Standard Deviation of Latency and all Subscribers for 200 msgs/s

160 2 4 6 8 10 12 14

100

71

76

80

84

88

92

96

of Subscribers

T
h
ro

u
g
h
p
u
t

(m
s
g
s
/
s
)

TPut, 4 KB, 2 cores

TPut, 4 KB, 1 core
TPut, 8 KB, 1 core

(a) Throughput

160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

200

40
60
80

100
120
140
160
180

of Subscribers

La
te

n
cy

 (
m

s)

2 core,4 KB1 core,8 KB

1 core,4KB

(b) Latency

160 2 4 6 8 10 12 14

80

0
10
20
30
40
50
60
70

of Subscribers
St

an
da

rd
 D

ev
ia

tio
n

1 core, 4 KB

2 core, 4 KB

1 c
ore

, 8
 KB

(c) Standard Latency Deviation

Fig. 7. Effects of Resource Usage

previously. Publishers produce at the highest possible rate here. Figures 7(a), 7(b),
and 7(c) show how message latency, throughput, and standard latency deviation, re-
spectively, vary for these setups as the number of subscribers changes.

The throughput of p2 is significantly higher than that of p1. This is expected since the
rate at which messages can be transmitted increases with the processing power within
the relevant confines. Interestingly though, the average message transmission latency
for p2 is higher than the average transmission latency of messages published by p1. This
suggests that the latency depends on the throughput and not directly on the processing
power; the throughput itself of course depends on processing power.

The size of the transmitted messages has a substantial effect on both throughput and
latency. The latter effect becomes significant as the number of subscribers increases.
Additionally, Figure 7(c) shows that the variation in transmission latency can be signif-
icantly reduced by increasing the processing power of the publisher or by decreasing
the size of the transmitted messages (e.g., by using techniques such as compression).

Effect of ψ. To study the effects of the clustering factor (ψ) on latency, we deploy a
system of one publisher and multiple subscribers. We generated subscribers with inter-
est ranges (of size 20) starting randomly from a fixed set of 200 interests. The publisher
publishes a message to one random interest at specific intervals. Brokers are organized
into a fully complete binary tree with 3 levels and 40 subscribers are connected to
leaf level brokers. On this setup, latency measurements are taken with different ψ val-
ues. Figure 8(a) shows the results. When ψ is high, entourages are not created because
no broker has an interest match as high as ψ. This means messages get delivered to

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 179

 80 70 50

60

0
10
20
30
40
50

Cluster Factor

La
te

n
cy

 (
m

s)

(a) ψ

 200 400 600 800 1000

70

20

30

40

50

60

of Friends

L
a
te

n
c
y
 (

s
)

CPS TPS Atmosphere

(b) Status

 200 400 600 800 1000

360

150

180

210

240

270

300

330

of Friends

L
a
te

n
c
y
 (

s
)

CPS TPS Atmosphere

(c) Friend

Fig. 8. Effect of ψ and Evaluation of our Social Network App

root-level brokers which causes higher delays as the messages need to travel through
all the levels in the broker network. For a lower value of ψ, an entourage is established,
reducing latency.

5.3 Case Studies

We developed three test applications to show how Atmosphere can be used to make real
world applications operate efficiently.

Social Network. Typical IM clients attached to social networking sites support the fol-
lowing two operations: (1) status updates, in which the current status (Busy/Active/Idle
or a custom message) of a user is propagated to all users in his/her friend list; (2) the
ability to start a conversation with another user in the friend list. Even when explicit
status updates are infrequent, IM clients automatically update user status to Idle/Active
generating a high number of status updates. We developed an instant messaging service
that implements this functionality either on top of Atmosphere or ActiveMQ.

Figure 8(b) shows latency measurements for status updates. Figures 8(c) shows la-
tency measurements for a randomly selected friend. For conversations, we use actual
conversation logs posted by users of Cleverbot [30]. We evaluate this type of commu-
nication on Atmosphere, pure CPS with Atmosphere, and ActiveMQ. The results show
that our system is 40% faster than pure CPS and 39% faster than ActiveMQ in deliver-
ing instant messages. For delivering status messages, in the worst case, Atmosphere is
on par with both systems because our system distinguishes between the communication
types required for status updates and instant message exchange and dynamically forms
entourage überlays for delivering instant messages only.

News Service. We developed an Atmosphere-based news feed application that delivers
news to subscribed clients. Our news service generates two types of messages: (1) mes-
sages containing news headlines categorized according to the type of news (e.g., sports,
politics, weather); (2) messages containing detailed news items of a given category.
This service can also operate on top of either Atmosphere or ActiveMQ.

In Figures 9(a), 9(b), and 9(c) we explore latency of the news application for three
different communication patterns. The total number of subscribers varies from 200 to
1000 with a subset of 30 subscribers interested in sports-based news and a subset of 20

180 C. Jayalath, J.J. Stephen, and P. Eugster

 200 400 600 800 1000

120

20

40

60

80

100

of Subscribers

L
a
te

n
c
y
 (

s
) CPS TPS Atmosphere

(a) Headlines

 200 400 600 800 1000

120

20

40

60

80

100

of Subscribers

L
a
te

n
c
y
 (

s
)

CPS TPS Atmosphere

(b) Sports

 200 400 600 800 1000

120

20

40

60

80

100

of Subscribers

L
a
te

n
c
y
 (

s
)

CPS TPS Atmosphere

(c) Weather

Fig. 9. News App Evaluation

subscribers interested in weather reports. We measure the average latency for deliver-
ing sports news and weather reports to these 30 and 20 subscribers. Other subscribers
receive all news. Here again our system delivers sports and weather reports 35% faster
than a pure CPS system and around 25% faster than ActiveMQ. This is because Atmo-
sphere automatically creates entourages for delivering these posts.

Geo-distributed Lock Service. We implemented a geo-distributed lock service that
can be used to store system configuration information in a consistently replicated man-
ner for fault tolerance. The service is based on Apache ZooKeeper [23], a system for
maintaining distributed configuration and lock services. ZooKeeper guarantees scalabil-
ity and strong consistency by replicating data across a set of nodes called an ensemble
and by executing consensus protocols among these nodes.

 0 10 20 30 40 50 60 70 80 90 100

140,000

0

20,000

40,000

60,000

80,000

100,000

120,000

Percentage of read requests

Re
qu

es
ts

 p
er

 se
co

nd

Atmosphere 3 servers
Atmosphere 6 servers
Atmosphere 9 servers
Distributed 3 servers
Distributed 6 servers
Distributed 9 servers

Fig. 10. Lock Service

We maintain a ZooKeeper ensemble per data-
center and interconnect the ensembles (i.e., han-
dle the application requests over the ensembles)
using Atmosphere. We compare the Atmosphere-
based lock service with a naı̈ve distributed de-
ployment of ZooKeeper (Distributed) where all
ZooKeeper nodes participated in a single geo-
distributed ensemble. This experiment uses three
datacenters. For each run, a constant number of
ZooKeeper servers are started at each datacenter.
Our system provides the same guarantees as naı̈ve
ZooKeeper except the rare scenario of datacenter
failure (in this case Atmosphere deployment may loose a part of the stored data).

We vary the percentage of read requests and observed the maximum load the sys-
tems could handle with 3, 6, and 9 total nodes forming ensembles. Figure 10 shows the
results of the experiment for Atmosphere-based (Atmosphere) deployment and a dis-
tributed deployment of ZooKeeper where all ZooKeeper nodes participated in a single
geo-distributed ensemble (Distributed). The figure shows that by establishing überlays,
Atmosphere deployment can handle a larger load.

These case studies illustrate the general applicability of Atmosphere.

Atmosphere: A Universal Cross-Cloud Communication Infrastructure 181

6 Conclusions

Developing and composing applications executing in the cloud-of-clouds requires
generic communication mechanisms. Existing CPS frameworks — though providing
generic communication abstractions — do not operate efficiently across communica-
tion patterns and regions, exhibiting large performance gaps to more specific solutions.
In contrast, existing simpler TPS solutions cover fewer communication patterns but
more effectively – in particular scenarios with few publishers and many subscribers
which are wide-spread in cloud-based computing.

We introduced the DCI protocol, a mechanism that can be used to adapt existing so-
lutions to efficiently support different patterns, and presented its implementation in At-
mosphere, a scalable and fault-tolerant CPS framework suitable for multi-region-based
deployments such as cross-cloud scenarios. We illustrated the benefits of our approach
through different experiments evaluating multi-region deployments of Atmosphere.

We are currently working on complementary techniques that will further broaden
the range of efficiently supported communication patterns, for example the migration
of subscribers between brokers guided by resource usage on these brokers. Addition-
ally we are exploring the use of Atmosphere as the communication backbone for other
systems including our Rout [31] framework for efficiently executing Pig/PigLatin work-
flows in geo-distributed cloud setups and our G-MR [32] system for efficiently execut-
ing sequences of MapReduce jobs on geo-distributed datasets. More information about
Atmosphere can be found at http://atmosphere.cs.purdue.edu.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog Computing and its Role in the Internet of
Things. In: MCC (2012)

2. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable and Se-
cure Storage in a Cloud-of-Clouds. In: EuroSys (2011)

3. Grivas, S., Uttam, K., Wache, H.: Cloud Broker: Bringing Intelligence into the Cloud. In:
CLOUD (2010)

4. Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: A Scalable and Elastic Publish/Subscribe Service.
In: IPDPS (2011)

5. Deering, S., Cheriton, D.: Multicast Routing in Datagram Internetworks and Extended LANs.
ACM TOCS 8(2), 85–110 (1990)

6. Vigfusson, Y., Abu-Libdeh, H., Balakrishnan, M., Birman, K., Burgess, R., Chockler, G.,
Li, H., Tock, Y.: Dr. Multicast: Rx for Data Center Communication Scalability. In: EuroSys
(2010)

7. Amazon Inc.: Amazon SNS (2012), http://aws.amazon.com/sns/
8. Apache Software Foundation: Apache BookKeeper: Hedwig,

http://zookeeper.apache.org/bookkeeper/
9. Kreps, J., Narkhede, N., Rao, J.: Kafka: a Distributed Messaging System for Log Processing.

In: NetDB (2011)
10. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving Scalability and Expressiveness in an

Internet-scale Event Notification Service. In: PODC (2000)
11. Pietzuch, P., Bacon, J.: Hermes: A Distributed Event-Based Middleware Architecture. In:

ICDCSW (2002)

http://atmosphere.cs.purdue.edu
http://aws.amazon.com/sns/
http://zookeeper.apache.org/bookkeeper/

182 C. Jayalath, J.J. Stephen, and P. Eugster

12. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting Mobility in Content-Based Pub-
lish/Subscribe Middleware. In: Endler, M., Schmidt, D. (eds.) Middleware 2003. LNCS,
vol. 2672, pp. 103–122. Springer, Heidelberg (2003)

13. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching Events in
a Content-based Subscription System. In: PODC (1999)

14. Li, G., Hou, S., Jacobsen, H.A.: A Unified Approach to Routing, Covering and Merging in
Publish/Subscribe Systems Based on Modified Binary Decision Diagrams. In: ICDCS (2005)

15. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-Value
Store. In: SOSP (2007)

16. Das, S., Agrawal, D., Abbadi, A.E.: G-Store: A Scalable Data Store for Transactional Multi
Key Access in the Cloud. In: SOCC (2010)

17. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
CACM 51(1), 107–113 (2008)

18. Apache Software Foundation: Apache HDFS, http://hadoop.apache.org
19. Voulgaris, S., Riviere, E., Kermarrec, A.M., van Steen, M.: Sub-2-Sub: Self-Organizing

Content-Based Publish Subscribe for Dynamic Large Scale Collaborative Networks. In:
IPTPS (2006)

20. Tariq, M., Koldehofe, B., Koch, G., Rothermel, K.: Distributed Spectral Cluster Manage-
ment: A Method for Building Dynamic Publish/Subscribe Systems. In: DEBS (2012)

21. Apache Software Foundation: Active MQ, http://activemq.apache.org/
22. IBM Inc.: Websphere MQ,

http://www-01.ibm.com/software/integration/wmq/
23. Apache Software Foundation: Apache ZooKeeper,

http://hadoop.apache.org/zookeeper/
24. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area Event Noti-

fication Service. ACM TOCS 19(3), 332–383 (2001)
25. Triantafillou, P., Economides, A.A.: Subscription Summarization: A New Paradigm for Effi-

cient Publish/Subscribe Systems. In: ICDCS (2004)
26. Majumder, A., Shrivastava, N., Rastogi, R., Srinivasan, A.: Scalable Content-Based Routing

in Pub/Sub Systems. In: INFOCOM (2009)
27. Kazemzadeh, R.S., Jacobsen, H.A.: Publiy+: A Peer-Assisted Publish/Subscribe Service for

Timely Dissemination of Bulk Content. In: ICDCS (2012)
28. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley: Automated

Data Placement for Geo-Distributed Cloud Services. In: NSDI (2010)
29. Jayaram, K.R., Eugster, P., Jayalath, C.: Parametric Content-Based Publish/Subscribe. ACM

TOCS 31(2), 4:1–4:52 (2013)
30. Carpenter, R.: Cleverbot, http://cleverbot.com/
31. Jayalath, C., Eugster, P.: Efficient Geo-Distributed Data Processing with Rout. In: ICDCS

(2013)
32. Jayalath, C., Stephen, J., Eugster, P.: From the Cloud to the Atmosphere: Running MapRe-

duce across Datacenters. IEEE TC - Special Issue on Cloud of Clouds (to appear)

http://hadoop.apache.org
http://activemq.apache.org/
http://www-01.ibm.com/software/integration/wmq/
http://hadoop.apache.org/zookeeper/
http://cleverbot.com/

VMAR: Optimizing I/O Performance and Resource

Utilization in the Cloud

Zhiming Shen1,�, Zhe Zhang2, Andrzej Kochut2, Alexei Karve2, Han Chen2,
Minkyong Kim2, Hui Lei2, and Nicholas Fuller2

1 Cornell University
zshen@cs.cornell.edu

2 IBM T. J. Watson Research Center
{zhezhang,akochut,karve,chenhan,minkyong,hlei,nfuller}@us.ibm.com

Abstract. A key enabler for standardized cloud services is the encap-
sulation of software and data into VM images. With the rapid evolution
of the cloud ecosystem, the number of VM images is growing at high
speed. These images, each containing gigabytes or tens of gigabytes of
data, create heavy disk and network I/O workloads in cloud data cen-
ters. Because these images contain identical or similar OS, middleware,
and applications, there are plenty of data blocks with duplicate content
among the VM images. However, current deduplication techniques can-
not efficiently capitalize on this content similarity due to their warmup
delay, resource overhead and algorithmic complexity.

We propose an instant, non-intrusive, and lightweight I/O optimiza-
tion layer tailored for the cloud: V irtual M achine I/O Access Redirection
(VMAR). VMAR generates a block translation map at VM image creation /
capture time, and uses it to redirect accesses for identical blocks to the
same filesystem address before they reach the OS. This greatly enhances
the cache hit ratio of VM I/O requests and leads to up to 55% perfor-
mance gains in instantiating VM operating systems (48% on average),
and up to 45% gain in loading application stacks (38% on average). It
also reduces the I/O resource consumption by as much as 70%.

1 Introduction

The economies of scale of cloud computing, which differentiates it from transi-
tional IT services, comes from the capability to elasticallymultiplex different work-
loads on a shared pool of physical computing resources. This elasticity is driven
by the standardization of workloads into moveable and shareable components. To
date, virtual machine images are the de facto form of standard templates for cloud
workloads. Typically, a cloud environment provides a set of “golden master” im-
ages containing the operating system and popular middleware and application
software components. Cloud administrators and users start with these images and

� This work was conducted when Zhiming Shen was an intern at IBM and a Ph.D.
student at North Carolina State University.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 183–203, 2013.
c© IFIP International Federation for Information Processing 2013

184 Z. Shen et al.

create their own images by installing additional components. Through this pro-
cess, a hierarchy of deviations of VM images emerges. For example, in [24], Peng et
al. have studied a library of 355 VM images and constructed a hierarchical struc-
ture of images based onOS and applications, where the majority of images contain
Linux with variation only on minor versions (i.e., v5.X).

Today’s production cloud environments are facing an explosion of VM im-
ages, each containing gigabytes or tens of gigabytes of data. As of August 2011
Amazon Elastic Compute Cloud (EC2) has 6521 public VM images [4] (data
on private EC2 VM images is unavailable). Storing and transferring these im-
ages introduces heavy disk and network I/O workloads on storage and com-
pute/hypervisor servers. On the other hand, the evolutionary nature of the VM
“ecosystem” determines that different VM images are likely to contain identical
chunks of data. It has been reported that a VM repository from a production
cloud environment contains around 70% redundant data chunks [15]. This has
indicated rich opportunities to deduplicate the storage and I/O of VM images.

Fig. 1. Comparison of storage deduplication, memory deduplication, and VMAR.

To exploit this content redundancy, storage deduplication techniques have
been actively studied and widely used [10,11,12,13,21,26,31]. As illustrated in
Figure 1, storage deduplication mostly works on the block device layer and
merges data blocks with identical content. The scope of storage deduplication
is mainly to save storage capacity rather than to optimize the performance and
resource consumption of I/O operations. As a matter of fact, most of them cause
various degrees of overhead to both write and read operations.

On the other hand, memory deduplication techniques [5,7,16,18,28,29] save
memory space by scanning the memory space and compressing identical pages.
They also reduce the I/O bandwidth consumption by improving cache hit ratio.
However, existing memory deduplication methods suffer from 2 fundamental

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 185

drawbacks when applied to VM I/O optimization. First, savings can only be
achieved after a “warm-up” period where similar data chunks are brought in the
memory and become eligible for merging. Second, the merging process, includ-
ing content identification, page table modification, as well as the copy-on-write
logic (triggered when a shared page is updated), requires complex programs and
competes with primary applications for computing resources.

As an alternative, this paper proposes VMAR, an instant, non-intrusive, and
lightweight I/O optimization method tailored for cloud environments. VMAR is
based on the idea of V irtual M achine I/O Access Redirection. It is a lightweight
extension to the virtualization layer that can be easily deployed into the cloud
incrementally, and does not need any modification to the guest OS or application
stack. Compared to existing deduplication and I/O optimization methods, VMAR
has two key distinctions.

1. Ahead of I/O requests: VMAR detects identical data blocks when VM images
are captured and generates a block translation map. This way, even before
a VM starts running, VMAR has rich knowledge on its future I/O accesses
and is capable of linking them to other VMs’ data blocks. The data hashing
and comparison can be done lazily because a VM image is typically captured
when the VM using it has just been terminated. By batching these operations
at image capture time, VMAR also avoids keeping large amount of hash values
as deduplication metadata at compute nodes.

2. Upstream in the I/O architecture: Using the block translation map, VMAR
redirects VM read accesses for identical blocks to the same filesystem address
above the hypervisor Virtual Filesystem (VFS) layer, which is the entry point
for all file I/O requests into the OS. Since I/O operations are merged from
the upstream instead of on the storage layer, each VM has a much higher
chance to hit the file system page cache, which is already “warmed up” by
its peers. The reduction of warmup phase is critical to cloud user experience,
especially in development and test environments where VMs are short-lived.

We have implemented VMAR as a QEMU image driver. Our evaluation shows
that in I/O-intensive settings VMAR reduces VM boot time by 39 ∼ 55% (48%
on average) and application loading time by 24 ∼ 45% (38% on average). It also
saves up to 70% of I/O traffic and memory cache usage.

The reminder of this article is organized as follows. Section 2 provides a back-
ground of VM image I/O. Section 3 details the design and implementation of
VMAR. Section 4 presents the evaluation results. Section 5 surveys related work
in storage and memory deduplication. Finally, section 6 concludes the paper.

2 Background

Most virtualization technologies present to VMs a virtual disk interface to em-
ulate real hard disks (also known asVM image). Virtual disks typically appear
as regular files on the hypervisor host (i.e., image files). I/O requests received
at virtual disks are translated by the virtualization driver to regular file I/O
requests to the image files.

186 Z. Shen et al.

Due to the large amount and size of VM images, it is impossible to store all
image files on every hypervisor host. A typical cloud environment has a shared
image storage system, which has a unified name space and is accessible by each
hypervisor host. One commonly used architecture is to set up the shared storage
system on a separate cluster from the hypervisor hosts, and connect the storage
and hypervisor clusters via a storage area network. Another emerging scheme is
to form a distributed storage system by aggregating the locally attached disks
of hypervisor hosts [14]. In either scenario, when a VM is to be started on a
hypervisor host, the majority of its image data is likely to be located remotely.

Network

Storage Server

Hypervisor

raw qcow2 dm-snapshot

local FS iSCSI NFS

Guest VM Instance

Virtual Disk

Image Files

Image
Encoding

Access
Methods

⇐

⇐

Fig. 2. Different configurations of virtual disks

Figure 2 illustrates different combinations of virtual disk configurations. First,
VM images can be stored in different formats. The most straightforward option
is the raw format, where I/O requests to the virtual disk are served via a simple
block-to-block address mapping. In order to support multiple VMs running on
the same base image, copy-on-write techniques have been widely used, where
a local snapshot is created for each VM to store all modified data blocks. The
underlying image files remain unchanged until new images are captured. As
shown in Figure 2, there are different copy-on-write schemes, including Qcow2 [1],
dm-snapshot, FVD [27], VirtualBox VDI [3], VMware VMDK [2], and so forth.

The second dimension of virtual disk configuration is how VM images are
accessed. One way is to pre-copy the entire image from the image storage to the
local file system of the target hypervisor before starting up a VM instance. Since
a typical VM image file contains multiple gigabytes, or even tens of gigabytes of
data, it may take a long time to start up a VM instance under this scheme. To
overcome this problem, an alternative method is to fetch parts of a VM image
from the storage system on-demand. Under the on-demand configuration, image
data may need to be fetched from the remote storage during runtime, causing
extra delay. However, as shown in [8], the runtime performance degradation is
very limited. Therefore, in the rest of the paper, we have focused on applying
VMAR on top of the on-demand configuration.

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 187

3 Design and Implementation

Figure 3 illustrates how VMAR interacts with a VM during its lifetime. First,
when a new VM image is inserted into the image repository, either copied from
external sources or captured from the disk of a VM, VMAR compares it against
the existing images in the repository. It then generates the meta-data of the new
image, including a block map that identifies common blocks between this image
and other images in the repository. Section 3.1 discusses details of the block map
generation process. When a new VM is created from the base image, the meta-
data is forwarded to the compute node, and an image in VMAR format is created.
With the VMAR images serving as the backing files for the Qcow2 images, I/O
accesses to VM images are redirected and consolidated. Section 3.2 describes
the access redirection mechanism. Finally, Section 3.3 presents techniques to
optimize block map size and lookup performance.

Fig. 3. Flow of VMAR

3.1 Hash-Based Block Map Generation

The block map generator of VMAR uses 4 KB blocks as the base unit. Each data
block is identified by its hash value as the fingerprint. In capturing the content
similarities among VM images, we leverage the concept of metadata clusters
proposed in [17]. Each cluster represents the set of blocks that are common
across a subset of images. The main benefit of using clusters in VMAR is that
they greatly facilitate the search of all VM images having content overlaps with
a given image. Therefore, when an image is modified or deleted from the image
repository, it is easy to identify entries in the block map that should be updated.

For completeness we first briefly describe the concept of metadata clusters.
Consider a simple example of three images: Image-0, Image-1 and Image-2 as
shown in Fig. 4. In this illustration, CL-001, CL-010, CL-100 are singleton clus-
ters, containing the blocks only from Image-0, 1 and 2, respectively. For example,

188 Z. Shen et al.

Image-2 {A,C
1
,D,K,C

2
,L,C

3,
M}

Fig. 4. Illustration of clusters for three example images

block with hash G is unique to Image-0. CL-011 is the cluster with blocks from
Image-0 and 1, which have hash values E and F. We use subscripts to denote
identical blocks within an image. For example, hash value C appears in Image-0
3 times, as C1, C2 and C3.

When a new image is added to the library, the system computes the SHA1
hash for each block and compare it against existing clusters. Then each cluster
is divided into two new clusters: one that contains the new block and another
one that doesn’t. The hash values in the new images that do not belong to the
any current clusters are put into a new singleton cluster. A certain hash value
can appear in multiple images. The block mapping protocol should be consis-
tent and and ensure all requests for identical blocks are redirected to the same
address. For this purpose we always use the image with the smallest sequence
ID as the mapping destination. Alternative consistent mapping protocols can be
considered as future work – for instance, the least fragmented image [20] or the
most used image can be used as the target. These optimizations can potentially
improve I/O sequentiality.

Hash
Contained
images

Block list

C

Image-0 0,1,5
Image-1 2
Image-2 1,4,6

D

Image-0 2
Image-1 4
Image-2 2

Fig. 5. Meta-data of cluster CL-111

Block
number

Hash Cluster
Target
image

Target
block number

0 A CL-110 Image-1 0
1 B CL-010 Image-1 1
2 C CL-111 Image-0 0
3 A CL-110 Image-1 0
4 D CL-111 Image-0 2
5 E CL-011 Image-0 4
6 F CL-011 Image-0 6

Fig. 6. Block map for Image-1

Fig. 5 illustrates the meta-data of cluster CL-111. Cluster CL-111 contains
two hash values that are shared by all three images, so the accesses to any block
belonging to CL-111 should be redirected to Image-0, which has the smallest
ID. It is possible that there are multiple blocks having the same hash value in

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 189

function update block(s, block)
hash prev: previous hash value of the block;
hash new: new hash value of the block;
add s to update list;
let c = find cluster from hash(hash prev);
remove block in the block list of hash prev for image s in c;
if the updated block list becomes empty:

move the entry of hash prev in c to the corresponding cluster;
if the minimal image ID containing hash prev is changed:

for each image t that contains hash prev do:
add t to update list;

end for;
let c′ = find cluster from hash(hash new);
if c′ = None:

add block into singleton of s;
else:

add block to c′;
if s does not contain c′:

move the entry of hash new in c′ to the corresponding cluster;
if the minimal image ID containing hash new is changed:

for each image t that contains hash new do:
add t to update list;

end for;
for each image t in update list do:

re-construct the block map for image t;
end for;

end function;

Fig. 7. Pseudo-code of updating an image

Image-0, such as the blocks with hash value C. In this case, we always map them
to the block with the smallest block number. For example, in the illustrated case,
any block with hash value C will be mapped to block 0 in Image-0. Given the
hash value of a block, we can quickly identify the target image and block we
should map by looking up the hash table in each cluster. Fig. 6 shows the map
for Image-1 and the cluster meta-data we use to construct the map.

The method update map in Fig. 7 is executed when a VM image is updated. It
search for all other images having blocks pointing to this image with the cluster
data structure, and consequently update the map entries. A hash value can also
be moved to another cluster if the ownership is changed due to the update.

Finally, to illustrate the offline computational overhead for creation of clusters
and map, that is a one time cost to prepare the image library for redirection, we
have run an experiment on a VM with 2.2 GHz cpu and 16 GB memory. We have
used an image library with 84 images with total size of 1.5 TB. The images were
a mix of Windows and Linux images of varying sizes ranging between 4 GB and
100 GB (used in a production Cloud). This image library resulted in creation of
453 clusters. The total time to create the clusters and mappings for all images was
15 minutes.

3.2 I/O Deduplication through Access Redirection

Figure 8 illustrates the overall architecture of VMAR’s access redirection mecha-
nism. The VMAR image serves as the backing file of the Qcow2 image. When a
read request R is received by the QEMU virtual I/O driver, the copy-on-write

190 Z. Shen et al.

Image 1 Image 2 Image 3

Image 1 Image 2 Image 3

Compute node

Image repository

Block map
generator

Image remote access protocol (NFS, iSCSI, etc.)

Guest OS/APP

KVM process

QEMU virtio

Qcow2 driver

VMAR driver

Qcow2
image

VMAR
image

Read/write requests Dirty
blocks

Image
meta-data

Read requests

VFS

VM

Qcow2

Raw

Fig. 8. Architecture of VMAR

logic in Qcow2 first checks whether it is for base image data or VM private/dirty
data. If R is for VM private/dirty data, Qcow2 forwards the request to a local
copy-on-write file. If R is for base image data, the Qcow2 driver forwards the
request to the backing image. In both cases, R is translated as a regular file
request which is handled by the VFS layer of the host OS. Unless the file is
opened in direct I/O mode, R will be checked against the host page cache before
being sent to the host hard disk drive.

The VMAR image driver implements address translation and access redirection.
When a read request R is received, VMAR looks up the block map introduced
in Section 3.1 to find the destination addresses of the requested blocks. If the
requested blocks belong to different base images, or are noncontinuous in the
same base image, then R is broken down into multiple smaller “descendant”
requests. The descendant requests are sent to the corresponding base images.
Upon the completion of all descendant requests, the VMAR driver returns the
whole buffer back to the Qcow2 driver.

The descendant requests are issued concurrently to maximize throughput.
We leverage the asynchronous I/O threadpool in the KVM hypervisor to issue
concurrent requests. To serve a request R, the application’s buffer is divided into
multiple regions and a set of I/O vectors are created. Each I/O vector represents
a region of the buffer and fills the region with the fetched data. A counter for the
application buffer keeps track of the number of issued and completed descendant
requests. The last callback of the descendant request will return the buffer back
to the application.

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 191

VMAR updates the inode numbers of the descendant requests of R to the des-
tination / redirected base image files before sending them to the host OS VFS
layer and checked against the page cache. If the corresponding blocks in the des-
tination files have been read into the page cache by other VMs, the new requests
will hit the cache as “free riders”. As discussed in Section 3.1, if a block appears
in multiple images, the block map entry always points the image with the small-
est ID. Therefore, all requests for the same content are always redirected to the
same destination address, which increases the chance of “free riding”.

VMAR redirects accesses to VM images, but not to private/dirty data. The reason
is twofold. First, the data generated during runtime has a much smaller chance
to be shared than that of the data in the base images, which contain operating
systems, libraries and application binaries. Second, deduplication of private/dirty
data incurs significant overheadbecause the content of each newly generated block
has to be hashed and compared to existing blocks during runtime.

3.3 Block Map Optimizations

Block Map Size Reduction. A straightforwardmethod to support redirection
lookup is to create a block-to-block map. Based on the offset of the requested
block in the source image, we can calculate the position of its entry in the block
map directly. Each map entry has two attributes: {IDtarget, Blocktarget}. The
lookup of block-to-block map is fast. However, the map size will grow linearly
with the image size. For example, Figure 9 shows that the map size for a 32 GB
image can grow up to 64 MB before optimization.

4 6 8 10 32
0

10

20

60

66

B
lo

ck
 m

a
p

 s
iz

e
 (

M
B

)

Image s ize (G B)

 B lock-to-block map
 V MAR

Fig. 9. Block map size optimization.

1 10 100 1000 10000
0

25

50

75

100

C
u

m
u

la
tiv

e
 p

e
rc

e
n

ta
g

e
 o

f
th

e
 v

o
lu

m
e

 (
%

)

Number of blocks represented in a map entry

64 2045

Fig. 10. CDF of the volume in the clus-
ters with different sizes.

To reduce the map size and increase the scalability, we merge the map entries
for the blocks that are continuous in the source image, and are also mapped
continuously into the same target image. Since they are mapped continuously, we
can use a single entry with four attributes to represent all of them: {offsetsource,
length, IDtarget, offsettarget}. Note that the length that each entry represents
may be different. Thus, the lookup of the map requires checking whether a given
block number falls into the range represented by an entry.

192 Z. Shen et al.

B inary Indexed
binary

Indexed binary
+ B loom filter

0

5

10

15

20

0.2
1.1

A
ve

ra
g

e
 s

e
a

rc
h

 d
e

p
th

18.6

Fig. 11. Average binary search depth for each search scheme

To further reduce the map size, we also eliminate map entries for zero blocks.
If a block cannot find a corresponding entry in the map, it is a zero block. In this
case, the VMAR driver simply uses memset to create a zero-filled memory buffer.
This saves the time and bandwidth overheads of a full memory copy.

Figure 9 shows that after optimization, the map size for VMAR is reduced sig-
nificantly (mostly under 5 MB). In the VM images we have worked on, many
continuous clusters have been detected. This is because the common sharing
granularity between pairs of VM images is the files stored on their virtual disks.
For example, the ram-disk file of the kernel, application binaries and libraries.
Figure 10 presents the cumulative percentage of the the number of blocks repre-
sented in a single map entry. Map entries containing more than 64 blocks cover
around 75% of the blocks. Some “big” map entry covers a significant portion
of blocks. For example, map entries with a size more than 2,045 blocks covers
around 25% of blocks.

Block Map Lookup Optimization. After the above optimization for the
map size, each map entry represents different lengths. Thus, we cannot perform
a simple calculation to get the position of the desired map entry. A linear search
is inefficient. Note that the block map is sorted according to the source block
offset. So we adopt binary search as the basic lookup strategy.

Since we still have many entries in the map, the depth of the binary search is
typically high. So we have applied two mechanisms to further reduce the lookup
time. First, we create an index to divide a large map into equal-sized sections.
Each index entry has two pointers pointing the first and the last entry in the map
that covers the corresponding section. Since the sections are equal-sized, given
a block offset we can directly calculate the corresponding index entry. From the
index entry, we can get the range within which we should perform binary search.
This mechanism reduces search depth significantly. Second, to avoid searching
to the maximum depth for zero blocks, we use a bloom filter to quickly identify
them. Figure 11 shows the average search depth during the VM instantiation
and application loading stage. We can see that our optimization mechanisms
reduce the average search depth from 18.6 to 0.2.

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 193

4 Evaluation

4.1 Experiment Setup

We have implemented VMAR based on QEMU-KVM 0.14.0, and conducted the
experiments using two physical hosts. Each host has two Intel Xeon E5649 pro-
cessors (12 MB L3 Cache, 2.53 GHz) with 12 hyper-threading physical cores (24
logical cores in total), 64 GB memory, and gigabit network connection. The hosts
run Red Hat Enterprise Linux Server (RHEL) release 6.1 with kernel 2.6.32 and
libvirt 0.8.7. One host serves as the image repository and the other one is the
compute node on which the VMs will be created. The compute node accesses
the images repository using the iSCSI protocol.

To drive the experiments, we have obtained a random subset of 40 images
from a production enterprise cloud. The size of the images ranges from 4 GB
to over 100 GB. The VMs are instantiated using libvirt. Each VM is configured
with two CPU cores, 2 GB memory, bridged network and disk access through
virtio in the Qcow2 format. 23 of the images run RHEL 5.5, and 17 of them run
SUSE Linux Enterprise Server 11.

The impact of VMAR on the VM instantiation performance is assessed by start-
ing VMs from the images and measuring the time it takes before the VMs can
be accessed from the network. This emulates the service response time that a
customer perceives for provisioning new VMs in an Infrastructure as a Service
(IaaS) cloud. In each image, we have added a simple script to send a special net-
work packet right after the network is initialized. Most time is spent on booting
up the OS and startup services. A daemon on the compute node waits for the
packet sent by our script and records the timing.

After VM instantiation, another time-consuming step in cloud workload de-
ployment is to load the application software stack into the VM memory space.
This can take even longer in complex enterprise workloads, where a software in-
stallation (e.g., database management system) contains hundreds of megabytes
or gigabytes of data. Due to the lack of semantic information on the production
images, we added four additional images into the repository. On each image,
we installed IBM DB2 database software version X and WebSphere Application
Server (WAS) version Y , where X ∈ {9.0, 9.1} and Y ∈ {7.0.0.17, 7.0.0.19} 1.
These images run RHEL 6.0 and use the same VM configuration as other im-
ages. We have measured the application software loading time in the four images,
while instantiating other images as a background workload.

As discussed in section 2, our evaluation uses the on-demand policy as the
baseline configuration, where VM images stay in the storage server and the com-
pute node obtains required blocks through the iSCSI protocol. Besides VMAR we
have also included lessfs [19] and KSM [5] in the evaluation, which are widely
used storage and memory deduplication mechanisms for Linux. Therefore, the
rest of this section compares 4 configurations to the baseline: 1) VMAR used to
start VMs on compute node; 2) lessfs used on storage server to store VM im-
ages; 3) KSM used on compute node to merge memory pages (KSM is triggered

1 DB2+WAS is commonly used in online transaction processing (OLTP) workloads.

194 Z. Shen et al.

only when the system is under memory pressure, therefore only evaluated in such
settings); 4) lessfs (on storage server) +VMAR (on compute node). The first 3 con-
figurations represent the typical usage of the individual optimization techniques.
The fourth configuration explores using VMAR on top of storage deduplication to
save both storage and I/O resources.

In our experiments, the arrival of VM instantiation commands follows a Pois-
son distribution. Different Poisson arrival rates have been used to emulate vari-
ous levels of I/O workload. Each experiment is repeated three times and average
values are reported with the standard deviation as error bars.

4.2 Experiment Results

This section shows the experiment results, including an analysis of content sim-
ilarity in the VM image repository we use, the results for VM instantiation and
application loading, and the overhead of VMAR.

1 20 40 60 80 100
0

20

40

60

80

100

C
u

m
u

la
tiv

e
 p

e
rc

e
n

ta
g

e
 (

%
)

Number of duplicated blocks

(a) Block duplication in the whole repos-
itory

1 10 20 30 40
0

20

40

60

80

100

C
u

m
u

la
tiv

e
 p

e
rc

e
n

ta
g

e
 (

%
)

T imes a block appears in different images

(b) Inter-image duplication

Fig. 12. Image blocks similarity statistics

Similarity in the Image Repository. We first analyze the content similarity
among our 40 images. In this analysis, we only consider non-zero data blocks.
Figure 12(a) shows the CDF of the number of duplicated blocks in the entire
repository of 40 images. More than 60% of the blocks are duplicated at least
twice, and 10% of the blocks are duplicated more than eight times. This verifies
the intuition that duplicated blocks are common in the VM image repositories of
production clouds. A block can be duplicated within the same image, or across
different images. Figure 12(b) shows the CDF of of the number of times that a
block appears in different images. More than 50% of the blocks are shared by
at least two images. Around 25% of the blocks are shared by more than three
images. Therefore, opportunities are rich for VMAR to deduplicate accesses to
identical blocks.

VM Instantiation Figure 13 shows the performance and resource consump-
tion of VM instantiation when different numbers of VMs are booted. In this
experiment, a new VM is provisioned every five seconds on average. During the

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 195

20 30 40
0

100

200

300

400

500

Number of V Ms

B
o

o
t

tim
e

 (
s)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(a) Boot time

20 30 40
0

3

6

Number of V Ms

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

20 30 40
0

3

6

Number of V Ms

M
e

m
o

ry
 c

a
ch

e
d

 (
G

B
)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(c) Memory cached

Fig. 13. Comparison of performance and resource utilization in VM instantiation, with
different number of VMs

VM instantiation phase, the majority of the I/O workload is to load the OS into
the VM’s memory, causing few data re-accesses within a single VM. Therefore,
under the baseline configuration, almost every read request goes through the
network and the disk, and the data block eventually enters the memory cache
of the compute node. As shown in Figures 13(b) and 13(c), the amount of I/O
traffic and memory cache space usage are roughly the same, both increasing al-
most linearly with the number of VMs. Consequently, as shown in Figure 13(a),
the average time it takes for a VM to boot up is over 100 seconds. The boot
time increases when more VMs are booted, causing the disk and the network to
be more congested.

With VMAR, each VM benefits from the data blocks brought into the hypervi-
sor’s memory page cache by other VMs that are booted earlier. Therefore, the
average boot time is significantly reduced (by 39 ∼ 55%). Moreover, the average
boot time with VMAR decreases when more VMs are booted and the cache is
“warmer”. VMAR also reduces I/O traffic and memory consumption by 63 ∼ 68%,
by trimming unnecessary disk and network accesses up in the memory cache.

196 Z. Shen et al.

0.1 0.2 1
0

100

200

300

400

500

 V M arrival rate (V M/s)

B
o

o
t

tim
e

 (
s)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(a) Boot time

0.1 0.2 1
0

3

6

 V M arrival rate (V M/s)

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

Fig. 14. Comparison of performance and I/O traffic in VM instantiation, with different
VM arrival rates

High Medium Low
0

100

200

300

400

500

600

Memory pressure

B
o

o
t

tim
e

 (
s)

 B aseline
 Lessfs
 K S M
 B aseline+V MAR
 Lessfs+VMAR

(a) Boot time

High Medium Low
0

3

6

9

Memory pressure

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 K S M
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

Fig. 15. Comparison of VM boot time and I/O traffic in VM instantiation, with dif-
ferent available memory sizes

More importantly, the I/O traffic grows at a much slower rate than the baseline
because the amount of “unique” content in every incoming VM image drops
quickly as the hypervisor hosts more images. This is a critical benefit in resource
overcommitted cloud environments.

With lessfs, the I/O traffic and memory cache usage are about the same as
the baseline. This is because lessfs compresses data on the block storage layer,
which is below VFS and thus doesn’t change cache hit/miss events or the number
of disk I/O requests. The VM boot time is worse than the baseline, mainly
because it runs in the user space (based on FUSE), and incurs high context
switch overhead. Deduplication techniques implemented in the kernel could have
smaller overhead, but similar to lessfs, they will not improve filesystem cache
performance and utilization. When lessfs+VMAR is used, the majority of I/O

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 197

20 30 40
0

300

600

900

Number of V Ms

A
p

p
lic

a
tio

n
 lo

a
d

 t
im

e
 (

s)
 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(a) Application load time

20 30 40
0

6

12

18

Number of V Ms

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

Fig. 16. Comparison of performance and I/O traffic in application loading, with dif-
ferent number of VMs

0.1 0.2 1
0

300

600

900

 V M arrival rate (V M/s)

A
p

p
lic

a
tio

n
 lo

a
d

 t
im

e
 (

s)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(a) Application load time

0.1 0.2 1
0

5

10

15

 V M arrival rate (V M/s)

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

Fig. 17. Comparison of performance and I/O traffic in application loading, with dif-
ferent VM arrival rates

requests hit the page cache of the compute node without reaching to lessfs at
all. This improves the boot time results. However, the degree of performance
improvement (7% on average) is much lower than the saving in I/O traffic (66.6%
on average). This is because both VMAR and lessfs break sequential I/O patterns,
thereby exaggerating the context switch and disk seek overhead. To mitigate
this issue, replica selection optimizations similar to [18] can be investigated as
interesting future work.

Figure 14 presents the performance and resource consumption of VM instan-
tiation under different VM arrival rates, while the total number of instantiated
VMs is fixed at 30. Figure 14(a) shows the average boot time when a new VM
is provisioned every {10 − 5 − 1} seconds on average. Since higher VM arrival
rates lead to more severe I/O contentions, the average boot time with the base-
line scheme increases quickly. In contrast, with the help of VMAR, a lot of disk

198 Z. Shen et al.

High Medium Low
0

300

600

900

1200

1500

Memory pressure

A
p

p
lic

a
tio

n
 lo

a
d

 t
im

e
 (

s)
 B aseline
 Lessfs
 K S M
 B aseline+V MAR
 Lessfs+VMAR

(a) Application load time

High Medium Low
0

5

10

15

20

25

Memory pressure

I/
O

 t
ra

ffi
c

(G
B

)

 B aseline
 Lessfs
 K S M
 B aseline+V MAR
 Lessfs+VMAR

(b) I/O traffic

Fig. 18. Comparison of performance and I/O traffic in application loading, with dif-
ferent available memory sizes

accesses from the VMs hit the memory cache and return directly without trigger-
ing any real device access. Therefore, in comparison to the baseline, the average
boot time with VMAR is much lower, and increases slowly with the arrival rate.
Figure 14(b) shows that the VM arrival rate does not significantly affect the
total amount of I/O traffic 2. This confirms that the increase in boot time under
baseline is due to the increased I/O contention, which is mitigated by VMAR.
Finally, it can be observed that the overhead of lessfs grows fast with the level
of I/O contention.

Figure 15 presents the performance and I/O traffic of VM instantiation with
different available memory sizes on the host. In this experiment, the number of
VMs is set to 30 and the arrival rate is set to 0.2. From previous experiments,
which uses all 64 GB memory, we observe that the memory usage of the host
during runtime is around 11 GB, 4 GB of which is for caching. Thus, we test
the scenarios where the available memory size is 9 GB and 11 GB respectively.
Under all configurations, the instantiation time is insensitive to memory pressure,
and the reason is twofold. First, VMAR has consolidated the I/O traffic and only
requires very small amount of memory (∼1.5 GB) to cache all I/O requests,
which can be satisfied even under high memory pressure. Second, without VMAR,
data re-access rate is very low, which diminishes the benefit of abundant memory.
The page sharing counter ofKSM indicates that it saves∼ 3.5 GB of memory by
compressing similar pages. However, because the saving is achieved after the data
blocks are loaded into memory, it incurs almost the same amount of I/O traffic
as baseline, and therefore does not lead to notable performance improvement.

Application Loading. Figures 16, 17, and 18 show the results of application
loading performance and I/O traffic. Again, in Figure 16, {20− 30 − 40} VMs
are booted with a fixed arrival rate of 0.2; in Figure 17, the number of VMs is set

2 In the rest of this section, memory usage results will be omitted because they are
similar to the amount of I/O traffic.

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 199

to 30, and {10− 5− 1} VMs are booted every second; in Figure 18, 30 VMs are
booted at a rate of 0.2, under different memory pressures. As discussed above,
we replace 4 of the production images with 4 new images installed with different
versions of IBM DB2 and WAS, and only measure the application loading time
of the 4 images. Other VMs serve as the background workload.

Loading enterprise applications is an I/O intensive workload, where a large
number of application binaries and libraries are read into the memory. The 4
images we measure contain different versions of the same application stack, and
thus share a lot of data blocks. Therefore, the results demonstrate a similar
trend as that of the VM instantiation experiments. With the help of VMAR, the
average load time and I/O traffic are much lower, and increase at a much slower
pace with resource contention than the baseline. The lessfs scheme still causes
significant overhead to I/O performance. When the system is under memory
pressure, KSM is not able to reduce I/O traffic or improve performance.

Compared to lessfs, the lessfs+VMAR configuration improves application load-
ing time by 15% on average, which is more than twice the improvement in VM
instantiation time (7%). This is because in the application loading workload,
data sharing among images is in large sequential chunks, which enables VMAR to
redirect large I/O requests without creating too many descendants.

R andom read S equential read
0.0

0.5

1.0

N
o

rm
a

liz
e

d
 r

u
n

tim
e

 R aw
 V MAR

Fig. 19. Comparison of runtime for running random/sequential reading benchmark

Runtime Overhead. VMAR intercepts each read request to the VM image and
incurs additional processing (address translation and redirection). We test this
overhead with both random and sequential I/O by issuing dd commands within
a VM, with 1 MB block size and direct I/O mode. For random I/O, 3,000 non-
zero blocks are read on random locations of the virtual disk. For sequential I/O,
a 350 MB non-zero file is read. To eliminate the impact of other factors, the
benchmarks run twice when the VM is idle. After the first run, all the data has
been brought into the host page cache. We measure the runtime of the second
run, which only copies the data from the host memory. Figure 19 shows the
runtime normalized to using a raw image. The result shows that the overhead
of VMAR is within 5% for sequential I/O and negligible for random I/O.

200 Z. Shen et al.

5 Related Work

This section surveys existing efforts on I/O resource optimization by leveraging
data content similarities in various workload scenarios.

5.1 Deduplicated Storage and File Systems

Deduplication for Backup Data. Due to the explosive generation of dig-
ital data, deduplication techniques have been widely used to reduce the stor-
age capacity in backup and archival systems. In general, storage deduplication
techniques break each dataset (file or object) into smaller chunks, compare the
content of each chunk, and merge chunks with the same content. Much research
effort has been made to enhance the effectiveness and efficiency of these opera-
tions [10,11,13,21,31]. For instance, Zhu et al. [31] have proposed three techniques
to improve the deduplication throughput, which improve the content identifica-
tion performance, deduplicated storage layout, and metadata cache management
respectively. Meyer et al. [21] have provided the insight that deduplication on
the whole-file level can achieve about 3

4 of the space savings of block-level dedu-
plication, while significantly reducing disk fragmentations.

Deduplication for Primary Data. Many recent papers have focused on
the deduplication of primary data, namely datasets supporting runtime I/O re-
quests [12,18,19,23,26]. They tackle the problem of I/O latency caused by dedu-
plication from different angles. In [12], a study has been presented to analyze the
file-level and chunk-level deduplication approaches using the dataset of primary
data collected from Windows servers. Based on the findings, a deduplication sys-
tem has been developed, where data scanning and compression are performed
offline without interfering with file write operations. Ng et. al have proposed
optimized metadata management schemes for inline deduplication of VM im-
ages [23]. iDedup [26] has used a minimum sequence threshold to determine
whether to deduplicate a group of blocks, and thereby preserving the spatial
locality in the disk layout. DEDE [9] focuses on distributing the workload of du-
plicate detection to the cluster of compute notes. It also demonstrates that the
VM instantiation time can be significantly improved by improving the storage
array cache hit rate.

5.2 Memory Deduplication

Many techniques have been proposed to leverage the similarities among processes
or VMs running on a physical server and reduce their memory usage. Back in
1997, Disco [7] has introduced page sharing in NUMA multiprocessors. More
recently, VMware ESX Server [28] has proposed content-based page sharing, in
which pages with identical content can be shared by modifying the page table
supporting the VMs. When a shared page is modified, the copy-on-write logic
is triggered and a private copy of the page is created. Many optimizations have

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 201

been proposed to reduce the memory scanning overhead and increase sharing
opportunities [16,18,22,25,29].

Among the above techniques, Satori [22] and I/O Deduplication [18] are the
most relevant to VMAR. The sharing-aware block device in Satori and the content-
based cache in I/O Deduplication both capture short-lived sharing opportunities
by detecting similar pages at page loading time. However, Satori consolidates
pages belonging to different VMs by modifying the guest OS, while VMAR works
entirely on the host level and stays transparent to VM guests. I/O Deduplication
introduces a secondary content-based cache under the VFS page cache, making
it difficult to avoid duplicates across the two caching levels. As a matter of fact,
VMAR may complement both by providing the block maps as hints for identical
pages, which they need at page loading time.

6 Conclusion

In this paper we propose VMAR, which is a thin I/O optimization layer that
improves VM instantiation and runtime performance by redirecting data accesses
between pairs of VM images. By creating a content-based block map during
image capture time and always directing accesses of identical blocks to the same
destination address, VMAR enables VMs to give each other “free rides” when
bringing their image data to the memory page cache. Compared to existing
memory and I/O deduplication techniques, VMAR operates ahead of VM I/O
requests and upstream in the I/O architecture. As a result, VMAR incurs small
overhead and optimizes the entire I/O stack. Moreover, implemented as a new
image format, VMAR is a configurable option for each VM. This enables cloud
administrators to “test drive” it before complete deployment.

On top of the main access redirection mechanism, VMAR also includes two
optimizations of the block map. The first one is to reduce block map size by
merging contiguous map entries. The second one is to reduce the number of
block map lookup operations by using an index to quickly guide a request into
the correct region of the map. Experiments have demonstrated that in I/O-
intensive settings VMAR reduces VM boot time by as much as 55% and reduces
application loading time up to 45%.

VMAR is a disk image driver and does not rely on any specific CPU/memory
virtualization technology. Thus, it is straightforward to make it work with other
virtualization platforms such as Xen [6]. Currently VMAR works entirely on the
host level. As future work, we plan to integrate VMAR with our previous work on
VM exclusive caching [30] to achieve further savings on the VM level. We also
plan to evaluate VMAR in an image pool with a larger scale and more types of
operating systems, and explore adding a second level of redirection on the block
storage layer to enhance sequential I/O pattern.

References

1. The QCOW2 Image Format, http://www.linux-kvm.org/page/Qcow2
2. Virtual machine disk format (VMDK),

http://www.vmware.com/technical-resources/interfaces/vmdk.html

http://www.linux-kvm.org/page/Qcow2
http://www.vmware.com/technical-resources/interfaces/vmdk.html

202 Z. Shen et al.

3. Virtualbox vdi image storage, http://www.virtualbox.org/manual/ch05.html
4. Amazon Web Services (AWS). Elastic Compute Cloud (EC2),

http://aws.amazon.com (VM image data retrieved from AWS console on July 08,
2011)

5. Arcangeli, A., Eidus, I., Wright, C.: Increasing memory density by using KSM. In:
Linux Symposium 2009 (2009)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003 (2003)

7. Bugnion, E., Devine, S., Govil, K., Rosenblum, M.: Disco: running commodity
operating systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15(4)
(November 1997)

8. Chen, H., Kim, M., Zhang, Z., Lei, H.: Empirical study of application runtime
performance using on-demand streaming virtual disks in the cloud. In: Middleware
2012 (2012)

9. Clements, A.T., Ahmad, I., Vilayannur, M., Li, J.: Decentralized deduplication in
SAN cluster file systems. In: USENIX ATC 2009 (2009)

10. Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., Shilane, P.: Tradeoffs in
scalable data routing for deduplication clusters. In: FAST 2011 (2011)

11. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P.,
Szczepkowski, J., Ungureanu, C., Welnicki, M.: HYDRAstor: a Scalable Secondary
Storage. In: FAST 2009 (2009)

12. El-Shimi, A., Kalach, R., Kumar, A., Oltean, A., Li, J., Sengupta, S.: Primary
Data Deduplication Large Scale Study and System Design. In: USENIX ATC 2012
(2012)

13. Guo, F., Efstathopoulos, P.: Building a high-performance deduplication system.
In: USENIX ATC 2011 (2011)

14. Gupta, K., Jain, R., Koltsidas, I., Pucha, H., Sarkar, P., Seaman, M., Subhraveti,
D.: GPFS-SNC: An enterprise storage framework for virtual-machine clouds. IBM
Journal of Research and Development 55(6) (November-December 2011)

15. Jayaram, K. R., Peng, C., Zhang, Z., Kim, M., Chen, H., Lei, H.: An empirical
analysis of similarity in virtual machine images. In: Middleware 2011 (2011)

16. Kim, H., Jo, H., Lee, J.: XHive: Efficient Cooperative Caching for Virtual Machines.
IEEE Trans. Comput. 60 (January 2011)

17. Kochut, A., Karve, A.: Leveraging Local Image Redundancy for Efficient Virtual
Machine Provisioning. In: NOMS 2012 (2012)

18. Koller, R., Rangaswami, R.: I/O Deduplication: Utilizing content similarity to
improve I/O performance. Trans. Storage 6(3) (September 2010)

19. Koutoupis, P.: Data deduplication with Linux. Linux Journal 207 (2011)
20. Liang, S., Jiang, S., Zhang, X.: STEP: Sequentiality and Thrashing Detection

Based Prefetching to Improve Performance of Networked Storage Servers. In:
ICDCS 2007 (2007)

21. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. In: FAST 2011
(2011)

22. Mi�lós, G., Murray, D.G., Hand, S., Fetterman, M.A.: Satori: enlightened page shar-
ing. In: USENIX ATC 2009 (2009)

23. Ng, C.-H., Ma, M., Wong, T.-Y., Lee, P.P.C., Lui, J.C.S.: Live deduplication storage
of virtual machine images in an open-source cloud. In: Kon, F., Kermarrec, A.-M.
(eds.) Middleware 2011. LNCS, vol. 7049, pp. 81–100. Springer, Heidelberg (2011)

24. Peng, C., Kim, M., Zhang, Z., Lei, H.: VDN: Virtual machine image distribution
network for cloud data centers. In: INFOCOM 2012 (2012)

http://www.virtualbox.org/manual/ch05.html
http://aws.amazon.com

VMAR: Optimizing I/O Performance and Resource Utilization in the Cloud 203

25. Sharma, P., Kulkarni, P.: Singleton: system-wide page deduplication in virtual
environments. In: HPDC 2012 (2012)

26. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: iDedup: Latency-aware,
Inline Data Deduplication for Primary Storage. In: FAST 2012 (2012)

27. Tang, C.: FVD: a high-performance virtual machine image format for cloud. In:
USENIXATC 2011 (2011)

28. Waldspurger, C.A.: Memory Resource Management in VMware ESX Server. In:
OSDI 2002 (2002)

29. Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E., Corner, M.D.:
Memory buddies: exploiting page sharing for smart colocation in virtualized data
centers. In: VEE 2009 (2009)

30. Zhang, Z., Chen, H., Lei, H.: Small is big: functionally partitioned file caching in
virtualized environments. In: HotCloud 2012 (2012)

31. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain
deduplication file system. In: FAST 2008 (2008)

I2Map: Cloud Disaster Recovery
Based on Image-Instance Mapping

Shripad Nadgowda, Praveen Jayachandran, and Akshat Verma

IBM Research, India
{shnadgow,praveen.j,akshatverma}@in.ibm.com

Abstract. Virtual machines (VMs) in a cloud use standardized ‘golden master’
images, standard software catalog and management tools. This facilitates quick
provisioning of VMs and helps reduce the cost of managing the cloud by reducing
the need for specialized software skills. However, knowledge of this similarity is
lost post-provisioning, as VMs could experience different changes and may drift
away from one another. In this work, we propose the I2Map system, which main-
tains a mapping between each instance and the golden master image from which it
was created, consisting of a record of all changes to the instance since provision-
ing. We motivate that this mapping can aid several cloud management activities
such as disaster recovery, system administration, and troubleshooting. We build
a host-based disaster recovery solution based on I2Map, which is ideally suited
for low cost cloud VMs that do not have access to dedicated block-based storage
recovery solutions. Our solution deduplicates changes across VMs and needs to
replicate only the unique changes, significantly reducing replication traffic on end
hosts. We demonstrate that I2Map is able to deliver on tight recovery time and
recovery point objectives of the order of minutes with low overhead. Compared
to state-of-the-art host-based recovery solutions, I2Map is able to save 50-87%
network bandwidth on the primary data center.

1 Introduction

Enterprises are moving their IT infrastructure to cloud in order to gain greater flexi-
bility in acquiring and relinquishing resources on demand, focus on core capabilities,
reduce costs and avoid capital lock-in. Despite the obvious advantages of the cloud
delivery model, CIOs remain skeptical about its potential with concerns primarily re-
garding availability. A survey [7] attributes increasing customer reluctance to move to
the cloud to the problem of poor performance. For instance, outages in Amazon’s EC2
and AWS [2] have costed companies millions of dollars. While most cloud providers
offer high availability services [3,11,22,8], these come at a premium that is unafford-
able for many enterprises. Block-based storage replication solutions such as [15,13]
require expensive specialized storage controllers, storage area networks, or other hard-
ware. Network-based replication is performed by a separate component from SAN/NAS
or the hosts and can work between multi-vendor products. However, these solutions re-
quire intelligent switches which are expensive. Highly available cloud services at an
affordable cost remains a distant dream. There is a need for solutions that can work
with commodity hardware, is cheap, and yet provides good recovery performance.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 204–225, 2013.
c© IFIP International Federation for Information Processing 2013

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 205

Host-based solutions [4,16] are cheaper and less complex than storage-based or
network-based solutions as they can be implemented completely in software. They do
not require any specialized hardware. They are usually file-based and asynchronous,
and work by trapping and forwarding write changes to the replication target. Their
overheads and performance are also typically worse than the other two approaches.

The core idea of this work is to leverage the similarity of virtual machines (VMs) in
a data center to provide a low-cost host-based disaster recovery solution. A few stan-
dardized ‘golden master’ images are used to provision VMs in a cloud, to ensure quick
provisioning and to reduce management costs. Hence, VMs which are provisioned from
the same golden master tend to be similar to one another. However, knowledge of this
similarity is lost post-provisioning as instances could be used for different purposes
and may drift away from one another. We build I2Map, which maintains a record of all
changes to an instance, as a mapping between the instance and the golden master image
from which it was provisioned. A light-weight agent running on each VM records all
changes and transmits them to a set of aggregators. The aggregators deduplicate these
changes across VMs, store only the unique changes, and maintain the mapping for each
VM. A snapshot-mirroring technique can then be applied to backup the aggregators
on to a remote site. This recovery process allows us to trade-off recovery performance
for cost. We evaluate I2Map on representative activities such as installing new software,
patching the operating system, and running hadoop-based applications. We demonstrate
that individual VMs can receive good recovery performance of a few minutes without
having to invest in dedicated and specialized hardware. We conduct a 24-hour high-
load case study experiment where we recover a failed VM within a recovery time of 20
minutes and having a recovery point of less than 4 minutes. We show that I2Map uses
50-87% lesser network bandwidth on the primary data center compared to the state-of-
the-art host-based recovery solutions.

The image-instance mapping can potentially be used for other applications such as
system administration or troubleshooting failures. We discuss these as part of future
work in Section 7. For the rest of this paper, we focus on the disaster recovery solution.

The rest of this paper is organized as follows. We provide some background and
motivate our problem and solution in Section 2. We present the design of I2Map in Sec-
tion 3. Section 4 describes our implementation of I2Map and certain optimizations we
performed. We evaluate I2Map and report the results in Section 5. Section 6 discusses
related work, and Section 7 highlights the limitations and other potential applications
of I2Map. We finally conclude this paper in Section 8.

2 Background and Motivation

The motivation for our work stems from two important trends in cloud computing.
The first trend is increased standardization and automation of IT services delivery

in clouds. Virtual servers are created automatically from virtual image templates and
managed via standard tools and processes [21]. Applications are deployed from stan-
dard software catalog, which contain standardized version of popular middleware and
application software. Cloud computing providers use standardization to drive automa-
tion of IT delivery as well as to keep the costs down. It has been widely reported that

206 S. Nadgowda, P. Jayachandran, and A. Verma

standardization allows system management costs to be significantly reduced [1]. Stan-
dardization of virtual image templates, software catalog and management tools lead to
high similarity in cloud managed servers. Servers in a data center are already known to
exhibit high similarity [5,14] and standardization increases content similarity in virtual
machines even further.

The second trend that drives our work is the increasing use of commodity servers
and storage in infrastructure clouds. This helps cloud present a low-cost IT model by
achieving significant cost-savings. While there are several block-based disaster recov-
ery solutions [3,13,11,8,15] that provide replication across different availability zones,
they all require high-end servers and storage technologies like SAN. By contrast, clouds
often use commodity servers with attached storage. Commodity hardware does not con-
tain enterprise features like high-availability, block-level replication, fault tolerance and
these features need to be implemented at cluster management layer. Disaster recovery
is a popular system management functionality, which is impacted by use of commod-
ity hardware. Disaster recovery is often characterized by the Recovery Time Objective
(RTO) or the time taken to recover a protected server, the Recovery Point Objective
(RPO) or the maximum period of data loss, and the impact of replication on application
performance. In a low-cost cloud, disaster recovery depends on host-based replication,
which leads to high network traffic and impacts application performance.

In this work, we conjecture that standardization-induced similarity in cloud managed
servers can significantly improve system management. Virtual servers instantiated from
common image templates and with software deployed from a common catalog, share
common content. However, current system management technologies work within vir-
tual server boundaries and are unable to leverage this similarity. If we can create a
succinct representation of instances as they evolve from a common image template and
software catalog, this representation captures the similarity between instances in an in-
stantly usable format. We call this representation an image-instance mapping called
I2Map and capture it as a tree, where the master image is the root and each leaf node is
a virtual server instance.

We use the I2Map tree to implement improved disaster recovery in low cost clouds.
Replicating the I2Map tree to a secondary site is enough to recreate all the virtual
servers on the secondary site. Hence, disaster recovery is trivially supported using the
I2Map tree. The I2Map tree keeps only one copy of an update even if the update is made
across a large number of cloud instances. Hence, the tree automatically eliminates re-
dundancy and reduces network traffic, while replicating the tree on a secondary site.
We also design techniques to ensure that the tree can be created without propagating
updates from end hosts, leading to low traffic overhead even within the primary site.

3 Design

In this work, we design and build I2Map, a host-based disaster recovery solution that
leverages redundancy in operations across VMs in a data center. We first outline the
challenges we faced, describe the I2Map architecture, and then highlight the key design
ideas that helped overcome the challenges.

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 207

3.1 Design Challenges

Identify Duplicates Across VMs without Transferring Data: Every write operation
incurs an overhead with storage-based deduplication. Network-based techniques dedu-
plicate only across data centers after bytes have been transmitted over the internal net-
work. Host-based replication techniques deduplicate changes only on the backup server.
Can we exclude duplicates across VMs without transferring the actual data?

Control Overhead: Although, host-based techniques have a low cost and complexity
of implementation, they have the disadvantage of having an agent running on each of
the VMs. The agent uses network, CPU and memory resources leading to application
impact. It is critical to control the overhead incurred by this agent and ensure that run-
ning applications are not affected.

Handle Large Files with Small Changes: Large files (e.g., log files) could undergo
few minor changes or additions. How do we avoid transmitting the entire file each time
they are modified?

Handle High Load: When the load is high, the agent should not consume more re-
sources. The overhead needs to be bounded.

Handle Rapid Updates to the Same File: Rapid updates are typically correlated with
high load. How can we handle rapid updates within the bounded resources?

Scaling Deduplication: Deduplication often requires centralization. How do we scale
deduplication in a cloud with thousands of servers?

3.2 I2Map Architecture

In this section, we present the architecture and main components of our I2Map disaster
recovery solution. A light-weight agent runs on each VM that continuously monitors
and reports meta-information regarding any changes on the VM. Dedicated aggregator
machines collect reports from all the VMs, identify duplicates, request for and retrieve
unique data from the agents running on the VMs. The aggregators also maintain infor-
mation regarding which files are contained in each VM. Snapshots of the aggregators
are backed up on to a remote site periodically. As copies of the aggregators are available

iWatch Log
Parser

Data Handler

Master

Job Queue

Agent on VM

Aggregator

Dedup Engine

Backup Engine

Aggregator

Agent on VM

Agent on VM

Remote
Recovery Site

Snapshot/Recover

Fig. 1. Architecture of I2Map

208 S. Nadgowda, P. Jayachandran, and A. Verma

on the remote site, any VM can be easily retrieved using its golden master image and
the catalog of changes to the file system for the VM.

The I2Map agent comprises of three components. A file system monitor such as
iWatch in Linux, monitors all changes to the file system. A Parser identifies files with
changes to their meta-information (such as permissions and ownership) or to their con-
tent. A report of these changes (without file content) is sent to the aggregators. Files
with changes in content are added to a job queue. The Master module picks up files
from the job queue and computes Rabin fingerprints [18]. Rabin fingerprinting creates
cryptographic hashes for variable size shift-resistant blocks. The hashes for each block
are then transmitted to the aggregators. The Dedup Engine on the aggregator identi-
fies blocks that are unique and requests one of the VMs holding each block to transmit
the contents. The Data Handler on the agent receives these requests and transmits all
blocks requested from it. The Backup engine on the aggregator maintains the I2Map
tree and records the changes to the file system for each VM. Periodically, snapshots of
the aggregator are transmitted to a remote recovery site. Recovery for any VM can then
be performed on-demand on the remote site. We describe the functioning of each of
these modules in detail in Section 4.

3.3 Key Design Ideas

We next highlight and discuss certain key design ideas that enabled us overcome the
challenges identified in Section 3.1.

Two-Round Data Transfer: In order to ensure that duplicate data is not transferred
from a protected host, we transfer data from agent to aggregator in a two round scheme.
In the first round, fingerprints of file segments are sent to the aggregator. The aggregator
maintains a hash index of fingerprints for all data that it has aggregated and requests data
only for segments that are not already present in its hash index.

Separating Deduplication and Replication: We separate duplicate identification from
data replication. Duplicate identification and aggregation of unique data is handled us-
ing a two round protocol between agent and aggregator. Data replication to secondary
site is performed independently by the aggregators. This allows duplicate elimination
to work at LAN speed, while replication can be performed at WAN speed.

Variable Size Duplicate Identification: For each file that is written, the agent com-
putes a Rabin fingerprint. Rabin fingerprints are shift-resistant, as the division into
variable-size blocks and hash computation is based on the content of each block rather
than any fixed offset. The hashes for the various blocks are sent to the aggregator. There-
fore, even if a small change is made to a large file, only a small block of data around the
change will need to be transmitted to the aggregator. The remaining blocks will be iden-
tified by the aggregator as duplicates of blocks already present and will not have to be
transmitted. This helps us to reduce the overhead of file-based replication significantly.

Pipelining Fingerprint Computation with Data Transfer: A two-round protocol can
lead to high Recovery Point Objective (RPO), if the rounds were serialized. Further,
both rounds may need to perform disk I/O for a file segment. In order to speed up
the process of identifying duplicates and aggregating unique data, we pipeline the

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 209

different operations performed on the agent. The Parser, Master, and Data Handler
are implemented as separate threads in order to allow them to progress parallelly acting
on different data elements. Further, Master and Data Handler use a producer-consumer
cache to minimize disk I/O. Master populates the cache with file segments, when it
computes the fingerprints in the first round. In the second round, when Data Handler
needs to send data, it reads the file segment from the cache, instead of reading it again
from the disk.

Change Coalescing: The agent’s parser module looks ahead and identifies multiple
successive writes to a file within a short duration and transmits information only once
to the aggregator. This change coalescing helps I2Map deal with rapid updates to a file
even during periods of high load.

Agent Throttling: We allow the agent to be configured with a throttling parameter, in
order to ensure that it does not consume too much of the CPU and memory resources of
the VM. This further reduces the overhead and ensures that applications that generate
high I/O load operate smoothly.

Stable Aggregator Mapping: In order to scale to large data centers, we allow multiple
aggregators to be created in I2Map. If multiple agents find common content, duplicate
elimination requires all (or at least most) agents to send this content to the same aggre-
gator. Clearly, this requires aggregator mapping to be defined based on content. Further,
if a part of the file changes, we would like to send only the changed content to the ag-
gregator. This places a restriction that the aggregator mapping should not change due to
a small change in content. In order to deal with these conflicting requirements, we use
hash of the first 4KB of a file to map its aggregator. Changes in other parts of the file do
not lead to change in aggregator. Also, files across VMs with the same content, map to
the same aggregator most of the time, meeting both our requirements.

4 Implementation

In this section, we describe the implementation of I2Map and highlight important opti-
mizations that helped us keep overhead in check.

4.1 I2Map Agent

The agent comprises of three modules as depicted in Figure 1, implemented in Python.

iWatch and Parser. The agent, at its core uses iWatch, a real-time file monitoring
utility written in perl, based on iNotify, a file change notification system in the linux
kernel. We monitor the entire file system excluding device files and temporary files in
folders such as /dev. Whenever a file’s contents or metadata (including permissions and
ownership) is modified, iWatch generates a log. The Parser module thread checkpoints
the log, processes all entries up to the checkpoint, and then zeroes all lines up to the
checkpoint. This ensures that the iWatch log file is never too large, and I2Map does not
incur the overhead of opening a large file to read.

The Parser computes a hash of the first 4KB of each file that is written. This hash
is used to decide which aggregator is in charge of holding the file (we choose the first

210 S. Nadgowda, P. Jayachandran, and A. Verma

4KB only, to ensure content-based stable mapping). The vector space of all the hash
values is evenly split among all the aggregators and each aggregator is responsible for
managing files with hash values in its vector space. The Parser creates reports, one
for each aggregator, with meta-information regarding all changes to files managed by
that aggregator. Information regarding files that are deleted are sent to all aggregators,
and the aggregator to which the file is relevant can then delete the file. Files that are
modified are treated as a delete followed by a create.

The Parser also adds any files that are newly created or have changed in content
on to a job queue. The job queue contains the ID of the aggregator responsible for the
file along with certain file meta-data. However, before adding the file entry, the Parser
takes a peek at the job queue. If an entry already exists for the file, then the Parser
skips entering the file again into the job queue. This allows the agent to optimize during
periods of rapid writes, when a file is written multiple times in quick succession.

Fig. 2. Detailed Design of I2Map Agent

Master. The Parser and the Master share a producer-consumer relationship with re-
spect to the elements in the job queue (Figure 2). The job queue is controlled by a
lock and both the Parser and the Master need to acquire the lock before writing to
it. The Master picks up each file entry written by the Parser, and computes a Rabin
fingerprint for the file, implemented in C. The Rabin fingerprint divides each file into
variable-sized blocks based on the content rather than any fixed offset. This makes these
blocks shift-resistant, that is, for example changes to the start of a file will not affect all
the blocks. The fingerprint consists of cryptographic hash values for each of the blocks.
The Master sends the hash values for blocks of each file to the corresponding aggre-
gator, as identified in the job queue. In our implementation, we did not limit the size of
the job queue, as we observed that the size never grew beyond 700 entries, with each
entry being less than 30 bytes.

In order to ensure that even under high I/O load the agent does not consume too
much of the VM’s resources, I2Map can be configured with a throttling parameter.
For instance, a throttling parameter of 67% would run the agent for 5s and then sleep
for the next 10s. In our implementation, we kept the awake time to be constant at 5s,
and alter the sleep time based on the throttling parameter. We observed that the Ra-
bin fingerprinting and the actual data transfer were the costliest operations, while the
parser was extremely light-weight. A crucial design choice was to selectively throttle
the Master and the Data Handler, but not the Parser. Apart from throttling the most
time-consuming tasks of the agent, this had the added advantage that any duplicate file

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 211

writes within the VM would be safely omitted by the parser, as the file has not yet been
read by the Master. Separating these modules into parallel threads and having the job
queue as a shared resource between them was important to achieve this.

Data Handler. The Data Handler responds to requests from each aggregator, with
the content of the specific blocks of files requested by that aggregator. We noticed that
we were reading the file twice, once for computing the Rabin fingerprint and a second
time for the block transfer. This was adversely affecting performance. To alleviate this
problem, we introduced a key-value store cache (Figure 2). When computing the Rabin
fingerprint, the Master would write the blocks onto this cache. The Data Handler will
look into the cache first for each block, and will read the file system only if it is unable
to find the block in the cache. If found, the Data Handler would remove the entry from
cache, after use. The Data Handler also removes those entries from the cache, which
the aggregator already has and does not require. This ensures that only file segments
not yet processed by the Data Handler stay in cache.

This considerably helped improve performance. From our experiments, we observed
that typically the cache had about 400-500 entries (even for data-intensive hadoop ex-
periments), with each entry holding a Rabin fingerprint for a block. The lag between
computing the Rabin fingerprint and the data transfer was always small enough to keep
the cache small. We limited the cache to 1000 entries and Rabin fingerprint blocks were
restricted to a maximum size of 64KB, ensuring that the cache had a maximum size of
64MB. Since the workload is scan-based, we never replace unprocessed entries from
the cache. Instead, the Master waits till a cache block is made available by the Data
Handler. We also conducted a few overload experiments where the cache was fully uti-
lized and tested a few replacement algorithms. We observed that not replacing entries
in the cache, if the cache was full performed the best.

When transmitting blocks of requested files to an aggregator, the Data Handler
sends at most 500 blocks at a time, to ensure that packet sizes aren’t too big. We used a
base64 encoding for file transfer as some files, especially those written by hadoop, had
certain special characters.

4.2 Aggregator

The aggregator consists of two main modules. The Dedup Engine communicates with
the agents and identifies blocks that are unique. For each unique block, it requests the
contents of the block from one of the VMs holding it. The Backup Engine maintains a
record of all the files and blocks (among those managed by this aggregator) contained
in each VM. An I2Map tree is constructed for each golden-master image, where the
master image is the root, and each leaf node is a virtual machine instance. Edges in the
tree represent changes to files. If a set of VMs experience the same changes to files (e.g.,
a patch is applied), the Dedup Engine would ensure that only one copy of the change
is stored. Replicating this tree on a remote site is sufficient for disaster recovery, as any
VM can now be recreated by starting with its golden master image.

Interestingly, for the disaster recovery use case, I2Map does not even need to create
the entire tree. Instead, what we maintain is a list of instances that are relevant for each
update to the tree. For example, if a file got overwritten in 5 instances, we store the

212 S. Nadgowda, P. Jayachandran, and A. Verma

change along with the 5 instances, whose I2Map tree contain the change. The I2Map
tree is thus stored as a set of nodes (one node for the golden master and one node
for each instance). The intermediate nodes, which capture the transition from a golden
master to an instance are not stored. Instead, a list of all changes are stored along with
the impacted instances. Multiple updates to the same file segment are merged leading
to a compact I2Map tree, whose size is proportional to the minimum set of changes
needed to convert a golden master to any required instance.

4.3 Remote Recovery

The remote recovery site maintains periodic incremental snapshots of all aggregators.
Snapshots are taken at 5 minute intervals (a configurable parameter) for each aggregator.
We use Linux rsync [20] to transmit the snapshots to the recovery site. Prior to taking
a snapshot, the aggregator waits for any packets sent on the wire, freezes all operations
for an instant, and takes a filesystem dump of the database and tree. This operation,
including taking the snapshot, takes less than a second. In the event of a site failure,
the aggregators are recreated and the I2Map tree with record of changes to files is used
to recreate VMs. We perform incremental recovery by merging updates for each VM
periodically (default is 24 hours). This does not require a live VM at the recovery site
as only the updates are gathered and stored in an offline VM image. When recovery is
triggered, the latest updates are merged and an instance is provisioned from this image.

The Recovery Point Objective (RPO), or the worst-case duration for which recovery
cannot be guaranteed, that I2Map can support depends on two factors - the maximum
time lag of all agents to send data to the aggregators, and the snapshot interval. The
RPO for host failure is the lag between agents and aggregator, whereas the RPO for site
failure is the sum of the two lags. We show in our evaluation that I2Map can guarantee
an RPO of less than 4 minutes for host failures and an RPO of less than 9 minutes for
site failure, sufficient for most non-critical applications (assuming 70 MBps within the
primary site, 700-3300 KBps over WAN, and 1 GB data generated per minute).

Aggregators maintain a heartbeat among one another. In the event of an aggregator
failure, one of the live aggregators (e.g., a chosen leader) takes up the responsibility
of storing content on behalf of the failed aggregator. Agents are intimated accordingly.
Recovery is initiated for the aggregator using snapshots on the remote site. Until recov-
ery for the aggregator is complete, the acting aggregator may not be able to perform
efficient deduplication. This, however, does not compromise safety of the system.

5 Evaluation

We evaluate I2Map on a heterogeneous set of 6 VMs running Ubuntu 10.04.2 64-bit.
The VMs were hosted on 2 IBM BladeCenter servers, one with 4 cores 2.33GHz and
8GB memory, and the other with 8 cores 3GHz and 16GB memory. The memory and
CPU specifications of the VMs are shown in Table 1. We did not set an upper limit to the
CPU available for a VM, and it was bounded only by the availability of resources on the
server hosting it. The aggregator was run on a physical server with an 8-core 2.27GHz
Xeon processor and 16GB memory. Recovery is performed on a server with 24-core

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 213

3.07GHz Xeon(R) processor and 64GB memory. The primary site was located in New
Delhi and the remote recovery site was located in Bangalore, over 2000kms away. We
observed speeds of about 70MBps within the primary site (between the agents and the
aggregators). The WAN bandwidth between New Delhi and Bangalore varied with time
of the day and was between 700KBps to 3.3MBps. With better network speeds, our
recovery performance will only improve.

Table 1. Virtual Machine Specifications

VM-ID Memory (MB) vCPUs CPU Reservation
vm-1 1024 4 0
vm-2 2048 2 684
vm-3 2048 2 684
vm-4 2048 2 1500
vm-5 3072 4 2300
vm-6 3072 2 0

We evaluate I2Map based on several metrics. We define dedup as the ratio of the
total bytes written on a VM to the bytes transferred from the VM to the aggregators.
1− 1/dedup captures the reduction in network traffic for each VM by I2Map over
state-of-the-art host-based replication solutions. We also define dedup aggr, which is
the aggregated measure of the total bytes written across all VMs to the total bytes trans-
ferred from all VMs to the aggregator. This is a measure of savings in storage and
network transfer within the data center due to I2Map over state-of-the-art techniques.
We measure the (time lag) between when a file is written and when it is transmitted to
the aggregator (if requested by the aggregator). This measure captures the RPO for host
failure and together with the time taken to transfer from the aggregators to the remote
recovery node, represents the RPO for site failure. We also measure the CPU and mem-
ory utilization (CPU Util and Mem Util) of our agent running on each VM to quantify
the overhead of our approach. Finally, in the event of an actual failure of a VM, we
measure the recovery time objective (RTO) achieved by I2Map.

5.1 Micro Experiments

In this section, we describe micro experiments that we conducted to analyze the per-
formance of I2Map. We chose three common activities in a cloud - namely, software
installation from a software catalog, patching VMs in a change window, and running
clustered applications, for these experiments.

Software Installation. For this experiment we downloaded and installed two software
along with all their dependencies, with a 150s sleep time between the two. This process
was repeated in sequence on 6 VMs. We chose freecad, an open source autocad soft-
ware, and avgscan, an anti-virus scanning software, for their relatively large size and
the number of dependencies with other software and libraries. It is possible that some
VMs already had the dependent software and didn’t need them to be installed. Freecad
had a download size of 60.6MB and an install size of 197MB. Avgscan had a download
size of about 100MB and a similar install size. The software installation scenario is one
where a large number of files are written within a very short duration of time.

214 S. Nadgowda, P. Jayachandran, and A. Verma

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400

P
ro

ce
ss

 T
im

e
(s

ec
)

File Number

iWatch
Rabin

Data Handler

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

%
C

P
U

 U
se

Time(Sec)

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

M
em

or
y

U
se

d(
M

B
)

Time(Sec)

(a) (b) (c)

Fig. 3. (a)Time plot showing the split between iWatch, Rabin, and data transfer on vm-1 (b) CPU
Utilization (c) Memory Usage

For each file modified or added on a VM, we monitored the time at which the Parser
(iWatch), Master (Rabin), and Data Handler handled the file. We plot this in Fig-
ure 3(a) for one of the VMs (other VMs were similar). The difference between the suc-
cessive operations shows the time lag in executing these steps. Observe that the Freecad
installation wrote about 1250 files in about 20s (the iWatch curve), and the data handler
was able to catch up with this load at around 170s. The figure also shows that the Rabin
fingerprinting and the data transfer took nearly equal amount of time. Avgscan, on the
other hand, writes only about 150 files (has bigger files than Freecad). I2Map is able
to handle this load better and has a lag of only about 30s, with most of the delay being
due to the data transfer. Hence, I2Map is able to achieve an RPO for host failure of less
than 3 mins.

Figures 3(b) and (c) show the CPU and memory usage of I2Map during this exper-
iment for one VM. We notice that CPU utilization is below 10% except for a couple
of brief spikes and the memory usage is less than 250MB, which for servers today is
less than 10% of total available memory. Note that this experiment was run without
throttling and the resource consumption can be made even lower with throttling.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250

T
im

e
La

g
(s

ec
)

Process Time (sec)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
La

g
(s

ec
)

Process Time (sec)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400

T
im

e
La

g
(s

ec
)

Process Time (sec)

(a) vm-1 (b) vm-3 (c) vm-6

Fig. 4. Time lag vs process time plot for three VMs

We next take a closer look at the time lag of I2Map over the course of the experiment.
At any given time instant, the time lag is measured as the amount of time required
by I2Map to process and transmit files written up to that time instant, and plotted in
Figure 4 for three VMs. The lag increases in spurts when files are written, but then tapers
down as I2Map catches up. Unlike vm-1 and vm-3, vm-6 does not have a large spike
at the start of the experiment as files were quickly identified as duplicates. However, it

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 215

has a sharp increase in time lag for the avgscan installation (it was the first to perform
it), where it had several files to transmit to the aggregators. These files were identified
as duplicates for the other VMs and the experiment concluded earlier for them. Overall,
the time lag never increased beyond 160s, which is sufficiently low compared to the
aggregator snapshot period and the recovery point objective.

Table 2. Average time lag and overhead for each VM

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 78 4.97 170
vm-2 52 1.30 33
vm-3 100 2.81 148
vm-4 88 3.80 114
vm-5 82 1.65 67
vm-6 64 2.41 170

We summarize the average lag and the average CPU and memory usage for each of
the six VMs in Table 2. The average lag is less than 100s, and the average CPU and
memory utilization is less than 5% and 170MB respectively. Note that the installation
was performed on vm-1 first before the other VMs, and so vm-1 was responsible for
transferring most of the data to the aggregators. This was the reason why vm-1 con-
sumed more CPU and memory compared to the other VMs. This is also corroborated
in Table 3, which shows for each VM the number of file system change notifications,
the number of notifications processed after the Parser eliminated intra-VM duplicates,
the number of bytes written to disk and the number of bytes transferred to aggregators.

Table 3. Comparison of dedup values with and without removing duplicate writes for each VM

VM-ID Total FS Notifications Processed Notifications Total Data Change(MB) Transferred Data (MB) Dedup
vm-1 21893 2357 447 276 1.62
vm-2 14643 847 337 0.11 3063.6
vm-3 30811 2350 450 1.2 375
vm-4 20041 2802 438 0.54 811.1
vm-5 33320 2335 437 0.09 4855.6
vm-6 49668 1526 551 80.32 6.86

Total 2660 358.26 7.42

We make several interesting observations. First, while around 1400 unique files were
written during the experiment (from Figure 3), 20000-40000 file writes were generated
on each VM. However, I2Map only processed less than 3000 notifications for each
VM. This justifies our design choice of pipelining and change coalescing for multiple
changes to the same file. Any storage-based deduplication technique such as [15,8] in-
curs an overhead for each of the 20000-40000 file writes. In terms of the number of
bytes, observe that vm-1 transmitted only 276MB, compared to the 447MB written to
disk. This is primarily due to the division into blocks performed by Rabin fingerprinting
and any blocks that did not change would not be transmitted to the aggregators, justify-
ing the use of variable size blocks. The other VMs transfer negligible amounts of data

216 S. Nadgowda, P. Jayachandran, and A. Verma

to the aggregator as they were similar to vm-1 and our two-round data transfer proto-
col helped them eliminate transfer of duplicate data. vm-6 was an exception as it was
the first to have avgscan installed. It therefore transmitted an additional 80MB. If every
write were to be captured and replicated, like in other host-based solutions, without the
‘deduplication before data transfer’ feature of I2Map, a total of 2660MB of data would
need to be transferred. In comparison, I2Map transfers only 358.6MB of data between
the agents and the aggregators, a reduction by a factor of over 7 (dedup aggr).

Patching. In our next micro experiment, we apply a set of 55 security patches for
Ubuntu on 6 VMs. For one of the VMs, vm-6, 19 of these patches were relevant, while
for the other VMs, 49-52 patches were relevant (10 patches were not relevant for at least
one VM excluding vm-6). The total download size of the 55 patches was about 480MB,
with 4 patches each about 100MB, and 30 patches each less than 500KB. We used
Tivoli Endpoint Manager [12], an endpoint management tool, to apply the patches in an
automated fashion. The experiment took between 130 and 170 minutes to complete on
each of the VMs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000 3500

P
ro

ce
ss

 T
im

e
(s

ec
)

File Number

iWatch
Rabin

Data Handler

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

%
C

P
U

 U
se

Time(Sec)

CPU Usage

CPU Use

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
em

or
y

U
se

d(
M

B
)

Time

(a) (b) (c)

Fig. 5. (a) Time plot showing the split between iWatch, Rabin, and data transfer on vm-2 (b) CPU
utilization (c) Memory usage

In Figure 5(a) we present the split between when Parser (iWatch), Master (Rabin),
and Data Handler process each file for one sample VM, vm-2. Over 3000 files are
modified in about 140 minutes. We observe that the time lag is less than 100s most of
the time. The CPU utilization is less than 10%, except for a couple of spikes, and the
memory usage is less than 120MB as shown in Figures 5(b) and (c).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
La

g
(s

ec
)

Process Time (sec)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
La

g
(s

ec
)

Process Time (sec)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
La

g
(s

ec
)

Process Time (sec)

(a) vm-4 (b) vm-5 (c) vm-6

Fig. 6. Time lag vs process time plot for 3 VMs

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 217

Table 4. Average time lag, and overhead for each VM

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 58 1.14 106
vm-2 69 1.24 148
vm-3 75 0.98 94
vm-4 65 1.19 143
vm-5 46 1.80 207
vm-6 72 1.05 112

Similar to the software install experiment, Figure 6 depicts the time lag of I2Map
over the course of the experiment. As most patches are small in size, we see many small
spikes in the time lag. The larger patches take longer to download and are processed in
the second half of the experiment with fewer spikes.

A summary of the average lag and the average CPU and memory usage for each
VM is presented in Table 4. The average time lag is less than 80s for all the VMs.
Unlike the software installation experiment, where the first VM transferred all the data
to the aggregators, the patches were applied in different orders on the VMs. Hence, the
overhead is more or less uniform across all the VMs.

Table 5. Comparison of dedup values with and without removing duplicate writes for each VM

VM-ID Total FS Notifications Processed Notifications Unique Data (MB) Dedup Data (MB) Transferred Data (MB) Dedup
vm-1 63017 16990 10 212 38 5.84
vm-2 32877 10038 10 124 62 2.16
vm-3 62533 16789 13 209 101 2.20
vm-4 63064 16916 10 199 36 5.81
vm-5 55000 15112 10 184 74 2.62
vm-6 58323 3890 106 353 397 1.16

Total 159 1281 708 2.03

Table 5 summarizes the deduplication information for the patch experiment similar
to Table 3. The intra-VM deduplication and change coalescing of I2Map reduces the
number of writes that need to be processed to about 16000 from about 60000 total
writes. This is not as significant a reduction as in the software install case, as the same
files are not rewritten multiple times and the time between file writes is longer reducing
the amount of intra-VM deduplication possible. The deduplication achieved is mainly
due to multiple patches writing the same files. The total data change is split into unique
data and dedup data in Table 5. Unique data represents the amount of data that is unique
to that VM, and dedup data represents the amount of data that is found in at least one
other VM. Observe that a large fraction of the data written on each VM has duplicates.
vm-6 is an exception with a larger fraction of unique data. Since, it had only 19 patches
relevant, TEM got to apply patches on vm-6 ahead of the other VMs (patches on all 6
VMs were started simultaneously). Hence, a bulk of the data got transferred from vm-6
on to the aggregators, serendipitously achieving load-balancing. The total amount of
data transferred to the aggregators was 708MB, only a half of the 1440MB (1281MB+
159MB) of total data written across all the VMs (dedup aggr = 2.03).

218 S. Nadgowda, P. Jayachandran, and A. Verma

Hadoop Sort. Our third and final micro experiment is with running the Hadoop Teragen-
Terasort application on a cluster of 5 VMs. Terasort is a distributed sort algorithm on
1GB data, that is created by Teragen. The sorted data is written separately from the input
data. Hadoop uses a distributed file system that is append-only. This creates a challenge
for I2Map as it creates and appends data on to large files. It waits until a block reaches
64MB and then writes the block to disk. Further, we employ triple replication of data
within Hadoop’s file system, so the experiment wrote 6GB of data in all by the end of
the experiment. Identifying and leveraging this replication is critically dependent on the
shift-resistant blocks created by the fingerprint. The triple replication also means that a
tremendous amount of data is written within a very short amount of time, stress testing
both the disk as well as I2Map. If ineffective, we may end up transferring a lot of dupli-
cate data. Unless specified otherwise, we use a default value of 67% throttling for this
experiment, where the agent is awake for 5s and then sleeps for 10s.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80

P
ro

ce
ss

 T
im

e
(s

ec
)

File Number

iWatch
Rabin

Data Handler

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

%
C

P
U

 U
se

Time(Sec)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500

M
em

or
y

U
se

d(
M

B
)

Time(Sec)

(a) (b) (c)

Fig. 7. (a) Time plot showing the split between iWatch, Rabin, and data transfer on vm-2 (b) CPU
Utilization (c) Memory Utilization

We observe from Figure 7(a) that the time lag never exceeds 100s. This is better
compared to the install and patch experiments as data writes are more or less uniform
and don’t happen in a burst. However, CPU and memory usage are higher as observed
in Figures 7(b) and (c). This can be attributed to the larger file sizes, the append-only
behavior of hadoop, and the triple replication (the total amount of data written during
this experiment is 6GB in about 450s).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

T
im

e
La

g
(s

ec
)

Process Time (sec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
La

g
(s

ec
)

Process Time (sec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

T
im

e
La

g
(s

ec
)

Process Time (sec)

(a) Throttle 50% (b) Throttle 67% (c) Throttle 75%

Fig. 8. Time lag vs process time plot for different values of throttling agent process

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 219

Figure 8 shows the time lag as a function of the process time for one VM for different
values of the throttling parameter. The lag uniformly increases till about 80s. Then, we
observe a pause in file writes till about 225s, as hadoop gathers data till it can write
64MB blocks. This is followed by another set of writes. More strikingly, increasing the
throttling does not discernably increase the time lag, suggesting that much of the lag is
due to the network transfer between the agent and the aggregators. This is encouraging
as a better network would help reduce the overhead of I2Map.

Table 6. Overhead for each VM and on aggregator

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 41 2.46 360
vm-2 33 1.33 257
vm-3 38 2.02 363
vm-4 59 8.91 361
vm-5 50 2.86 257

Avg %CPU Avg Mem (MB)
36.86 103

Table 6 shows the average lag and overhead for each of the VMs and the aggregator
for the above experiment. The average lag is more or less uniform and less than 60s
for all the VMs. vm-4 handled the maximum data transfer (as we show in Table 8),
which explains the higher lag and overhead seen. The aggregator doesn’t perform any
file based computations, and only needs to dedup file blocks and receive data from the
agents, leaving it with a relatively low memory footprint, but a higher CPU consump-
tion. Even at such a high load, one aggregator can handle 17 agents without throttling
and up to 25 agents with throttling, which is an acceptable management overhead (the
system can easily scale by adding more aggregators as needed).

Table 7. Average time lag for different values of throttling agent process

Throttle 50% Throttle 75%
VM-ID Avg Lag (sec) %CPU Avg Lag (sec) %CPU
vm-1 35 2.64 43 1.43
vm-2 37 1.91 39 1.80
vm-3 46 5.95 64 7.78
vm-4 51 3.36 62 1.67
vm-5 53 3.30 61 2.03

The above experiment was conducted with the default throttling value of 67%. We
ran the experiment with 50% (5s wake and 5s sleep) and 75% (5s wake and 15s sleep)
throttling, the results of which are presented in Table 7. The average overhead values
typically decrease as we increase throttling, but is not strictly the case. This aberration
is an artifact of how hadoop assigns jobs to nodes and is not something we can explicitly
control. While the overall CPU and memory utilization can be reduced using throttling,
we observe that the time lag increases only marginally for increasing throttling values.

We summarize the deduplication information for the 5 VMs in Table 8. As noted
earlier, this experiment has significantly fewer file writes, but each write is for a large
chunk of data. This would mean that we will need to process most of the file writes as

220 S. Nadgowda, P. Jayachandran, and A. Verma

Table 8. Comparison of dedup values with and without removing duplicate file writes on VM

VM-ID Total FS Notifications Processed Notifications Unique Data (MB) Dedup Data (MB) Transferred Data (MB) Dedup
vm-1 93 67 0.66 910 90 10.11
vm-2 135 79 0.02 1136 270 4.20
vm-3 132 85 0.02 1617 67 24.13
vm-4 90 69 0.03 1174 669 1.75
vm-5 188 139 0.02 3326 1007 3.30

Total 0.7 8163 2103 3.88

they are sufficiently separated in time from one another. The effectiveness of I2Map is
demonstrated by the high volume of data in each VM identified as duplicate with at least
one other VM. Further, compared to the total amount of data generated, 8163.7MB, the
amount of data actually transferred is only 2103MB across all VMs, which is a reduction
by a factor of 3.88 (dedup aggr).

Summary. Our micro-benchmark experiments establish the effectiveness of I2Map. We
are able to ensure an RPO of less than 3 minutes for VM and host failure, reduce the
replication traffic by a factor of 2 to 7.5 (dedup aggr), while using less than 5% CPU
and 400MB memory during periods of intense I/O loads. The reduction in replication
traffic translates into network bandwidth savings of 50− 87% (1− 1/dedup aggr) in
the primary data center, compared to state-of-the-art host-based recovery solutions. We
are able to reduce the number of file changes we process by a factor of 2 to 10 due
to change coalescing and need only 1 aggregator per 25 managed VMs. While our
experiments were conducted with 6 VMs, having a larger pool of VMs using I2Map
will only increase the deduplication possible. Under normal operation, we believe we
can achieve even better performance at lower resource overheads.

5.2 Case Study

We conducted a 24 hour case study where we mimicked a real-world scenario where
an application is running continuously at high load, is then brought down, the operating
system is patched, rebooted, and the application is restored once again. At the end of
the 24 hours we artificially failed one VM, which triggered recovery. In this section, we
report results from this experiment, including I2Map’s recovery performance.

Fig. 9. Gannt chart showing duration of each
hadoop run during the case study experiment

VM-ID Avg Lag Max Lag Avg %CPU Avg Mem
vm-1 49s 210s 0.50 115 MB
vm-2 62s 196s 0.65 138 MB
vm-3 52s 243s 0.65 57 MB
vm-4 76s 189s 0.71 113 MB
vm-5 58s 227s 0.69 113 MB
vm-6 75s 192s 1.01 112 MB

Fig. 10. Average time lag, and overhead for each
VM

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 221

We successively ran Teragen-Terasort on hadoop on the 6 VMs. Between every two
runs of Teragen-Terasort we added a think time derived from a lognormal distribution
with a mean of 120s. About 19 hours into the experiment, we brought down the hadoop
application and started patching the VMs. This patch experiment was similar to the
micro-experiment that we conducted, and lasted about 3 hours. Once patching of all
VMs completed, we rebooted the VMs and restored the hadoop application. A Gannt
chart showing the duration of each hadoop run and the think time between them is
plotted in Figure 5.2. Overall, the hadoop-based application was running for 87.6% of
the time. This is a very high load (as most enterprise systems run at a load of about
25%), created to stress-test I2Map. Notice the long sleep time between about 1150 and
1330 minutes, which was when the patching experiment was conducted.

Figure 10 shows the average and maximum time lag for agents to transfer files to the
aggregator, as well as the average CPU and memory usage for each VM. We observe
that the average lag is less than 1.5 minutes and the maximum lag at any instant is about
4 minutes. Thus, I2Map is able to achieve an RPO for host failures of approximately
4 minutes, even during periods of high write load. Including the time to transmit snap-
shots to the recovery site, the RPO for site failures is less than 9 minutes. This is very
competitive compared to a best guarantee of 15 minutes provided by many commer-
cial disaster recovery solutions [22,8]. The average CPU usage was under 1% for all
the VMs, and the memory usage was less than 140MB. Despite heavy load from the
hadoop application, I2Map was able to operate with minimal overhead on the agents.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350

B
ac

ku
p

La
g

(s
ec

)

Snapshots

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300

T
ra

ns
fe

rr
ed

 D
at

a
(M

B
)

Snapshots

(a) Remote Backup Lag (b) Remote Data Transfer

Fig. 11. Snapshot Backup Lag and Data Transfer

Snapshots of the aggregator were taken every 5 minutes and transmitted to the re-
mote recovery site using Linux rsync [20]. Figure 11(a) shows the snapshot lag, the
duration of time between when a snapshot was taken and when it was fully saved on
the remote site, for each snapshot. This is primarily the delay over the network between
the primary site and the remote backup site. Observe that the maximum lag is about 7.5
minutes, which happens whenever a new run of hadoop is started and Teragen generates
new data. For most snapshots the lag is negligible. Figure 11(b) shows the amount of
data transferred for each incremental snapshot, which is about 1− 1.7 GB for the large
spikes. Most snapshots transmit only about 100MB of data. The total data transferred
across the Delhi-Bangalore WAN during the course of the experiment was about 26GB.
In comparison, the total data written on all the 5 VMs taken together was about 70GB.
The total aggregated deduplication dedup aggr can be calculated as 70/26 = 2.69.

222 S. Nadgowda, P. Jayachandran, and A. Verma

At the end of 24 hours, we artificially failed a VM, which triggered recovery on the
remote site. We mounted a copy of the golden master image corresponding to the VM,
identified files belonging to the VM, and wrote their current version on to the mounted
copy. This recovered the VM to its last known state. This process involved writing
14.88GB of data and took 719s, at 21.19MBps. If a snapshot was being transferred to
the remote site when the VM failed, then recovery may be delayed until completion of
the transfer, adding up to 8 minutes to the recovery time. Hence, the total recovery time
achieved by I2Map for this experiment can be estimated as 12− 20 minutes for a VM
with plenty of writes, which is highly competitive with commercial DR solutions.

6 Related Work

Disaster recovery, as a concept, has existed for over three decades. Today, it forms the
cornerstone of business continuity and every major IT service provider has a disaster
recovery solution. These solutions require NAS/SAN arrays, storage controllers, smart
network switches, or other specialized hardware. With the gaining popularity of the
cloud, enterprises are looking to reduce their IT-spend and disinvest in hardware. In a
bid to meet the expectations of their clients, cloud service providers are building low-
cost clouds using commodity off-the-shelf hardware. In this section, we discuss the pros
and cons of various replication and disaster recovery technologies. They can be broadly
classified into storage-based, network-based, and host-based solutions.

There are several storage-based recovery solutions for cloud. Block-based storage
replication requires expensive NAS/SAN arrays and storage controllers. But, they have
the advantage of being independent of the operating system running on the server.
Amazon’s AWS provides multiple disaster recovery solutions that use Amazon S3 for
backup [3]. These are either snapshot-based or storage replication solutions and do
not perform any deduplication across VMs. IBM’s GlobalMirror [13] provides an ex-
tremely high-end disaster recovery solution. It replicates all updates over a SAN and
provides an RPO of 3-5 seconds. Other examples are VMware’s Site Recovery Man-
ager [22] and IBM’s SmartCloud Virtualized Server Recovery [11]. Notably, the lowest
RPO guarantee provided by VMware’s Site Recovery Manager [22] is 15 minutes. We
have demonstrated that I2Map’s host-based solution can provide a comparable RPO,
perform deduplication, and work using commodity hardware.

There are several disaster recovery solutions that do perform different kinds of dedu-
plication. Dell’s AppAssure [8] deduplicates and compresses data on the WAN while
replicating storage disks. We argue that deduplicating data on the WAN is still too late
as costly storage and network resources are consumed within the primary data center
to support disaster recovery. NetApp’s storage solutions [15] are specialized storage
devices that perform deduplication using the Data ONTAP operating environment and
the WAFL file system. They report that each write operation incurs a 7% additional
overhead, in return for considerable savings in storage, which also translates into lower
network bandwidth consumed when replicating the data across a WAN, using their
SnapMirror solution [17]. However, deduplication can only be performed across VMs
stored on the same storage device and comes with the cost burden of additional special-
ized hardware.

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 223

Network-based disaster recovery solutions perform deduplication on the bytes trans-
mitted over the network. While useful, they do not leverage deduplication within the
primary data center. Individuals VMs or servers are still required to transmit all their
data across the local network. Some examples include Riverbed [19] and EMC’s Re-
coverPoint [9]. Citrix cloud solution for disaster recovery [6] uses a combination of
storage-based and network-based optimizations.

Host-based solutions have the advantage of not requiring specialized hardware and
not locking the user into using a specific kind of storage device. Disadvantages include
solution being dependent on the operating system used and having an agent running
on the host and using its computing resources. Examples of existing solutions include
CA’s ARCserve [4] and Neverfail [16]. Neither of them perform deduplication on the
primary data center. While ARCserve performs deduplication of data on the backup
server (after the individual VMs have transmitted all their data), Neverfail uses what
they call WANsmart in-line data deduplication, a form of network-based deduplication.

The concept of transmitting only the incremental changes relative to a base VM and
dynamically synthesizing them at the time of provisioning has been used in the context
of Cloudlets [10]. VM-based cloudlets have been proposed as offload sites for resource
intensive or latency sensitive computations for mobile multimedia applications. The
technique in [10] works by creating a binary difference between VM images, which
is computed only on-demand when required. This is not a disaster recovery solution
where continuous monitoring and data replication is desired.

In summary, there are a wide range of disaster recovery solutions that use a variety
of technologies, have different requirements, and support different RTO and RPO guar-
antees. However, these solutions do not cater to the express need of low-cost clouds to
support an efficient disaster recovery solution that can perform effective and early dedu-
plication within and across VMs without transferring data, and work with commodity
hardware. The I2Map disaster recovery solution presented in this paper addresses this
concern, and its various optimizations ensure a competitive RPO and RTO guarantee
along with low overhead on the VMs.

7 Limitations and Future Work

The disaster recovery solution presented in this paper caters to a specific need for having
a low-cost, low-overhead solution that can work with commodity hardware. However,
it does have its limitations. As with other host-based solutions, it requires an agent to be
running on each VM, using up its computing resources. While we have demonstrated
that the overhead can be contained to less than 5%, for many security-critical applica-
tions it may be inadmissible to have an agent (trusted as it might be) running on the
VM. I2Map is not suitable for such applications. A majority of system management
tools require agents (e.g., for monitoring, patching, backup) and we believe that having
a well-tested agent with minimal performance impact may be acceptable to a large frac-
tion of customers. Also, if the data is encrypted in the file system, I2Map will be unable
to perform deduplication across VMs effectively. Security over the network is another
issue faced by all DR solutions. This can be overcome by adding a layer of encryption
before transmitting over network. Further, our current implementation of I2Map works

224 S. Nadgowda, P. Jayachandran, and A. Verma

only for linux-based VMs and new agents need to be developed for supporting any other
operating systems.

Another issue that we have not investigated in this paper is the requirement and load
on aggregators. If we were to scale up our disaster recovery solution to several hundred
VMs, we may need more aggregators. This is an additional cost burden and we need
ways to reduce the number of aggregators needed. The two round data transfer using
aggregators does have its advantages, as it ensures that duplicate data is not transferred
from protected hosts. Further, the aggregators separate the protected hosts from any
WAN overheads, in case the transfer over the WAN were to be slow. As part of future
work, we intend to study the costs and benefits of aggregators, especially at scale.

A limitation of all DR solutions (including I2Map) is that they only recover the state
of the disk and not the memory. The state of memory is far more dynamic and one would
have to quiesce any running applications in order to get a snapshot of memory. This is
done in certain scenarios (e.g., live migration of a VM), but would be prohibitively
expensive to perform on a regular basis and is not required by I2Map.

The notion of similarity captured by the I2Map tree can be used for performing other
data center management tasks as well. The first is in troubleshooting software failures.
For instance, system administrators routinely apply software upgrades and patches on
a large set of VMs in the data center. If some of these upgrades fail, they have no clue
to the cause of the failure. Analyzing the I2Map tree for similarities and differences
between VMs could provide crucial insight into why the upgrade might have failed,
and could even provide clues to how the situation can be remedied. Second, similarity
between VMs as captured by the I2Map tree can also be used in assigning admins to
VMs in a data center. Each admin could manage their VMs better, if they were all
similar and had the same software. We intend to explore these applications of I2Map in
our future work.

8 Conclusion

In this paper, we present I2Map, a host-based disaster recovery solution. I2Map lever-
ages similarity across VMs in a data center and performs intra- and inter-VM dedupli-
cation to reduce the overhead of the solution. It maintains a mapping between instances
and the golden master image from which it was created as an I2Map tree, which cap-
tures all the changes to the instance with respect to the master image. Unlike existing
disaster recovery solutions, I2Map does not require any expensive specialized storage
devices or hardware. It separates deduplication and replication, allowing deduplication
to be performed even before any data is transferred from a protected host. Extensive
evaluation demonstrates that I2Map provides competitive recovery point and recovery
time objective of the order of minutes, with low overhead.

References

1. IDC Linux Standardization White Paper: Executive Summary (2011),
http://www.redhat.com/f/pdf/IDC_Standard-ize_RHEL_1118_Exec_summary.pdf

2. Amazon: Summary of the AWS Service Event in the US East Region (2012),
http://aws.amazon.com/message/67457/

http://www.redhat.com/f/pdf/IDC_Standard-ize_RHEL_1118_Exec_summary.pdf
http://aws.amazon.com/message/67457/

I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 225

3. Amazon: Using Amazon Web Services for Disaster Recovery. White paper (2012)
4. Associates, C.: ARCServe, http://www.arcserve.com
5. Campello, D., Crespo, C., Verma, A., Rangaswami, R., Jayachandran, P.: Coriolis: Scalable

VM Clustering in Clouds. In: USENIX ICAC (2013)
6. Citrix: Citrix Cloud Solution for Disaster Recovery. White paper (2010)
7. Compuware: Performance in the cloud. White paper (2011)
8. Dell: AppAssure (2012),

http://www.appassure.com/downloads/Dell_AppAssure_Specsheet.pdf
9. EMC, C.: EMC RecoverPoint Support for Cisco MDS 9000 SANTap Service: Intelligent

Fabric-based Data Replication. White paper (2007)
10. Ha, K., Pillai, P., Richter, W., Abe, Y., Satyanarayanan, M.: Just-in-time provisioning for

cyber foraging. In: ACM Mobisys, pp. 153–166 (2013)
11. IBM: SmartCloud Virtualized Server Recovery,

http://www-935.ibm.com/services/in/en/it-services/
smartcloud-virtualized-server-recovery-service.html

12. IBM: Tivoli Endpoint Manager,
http://www-01.ibm.com/software/tivoli/solutions/endpoint/

13. IBM: Global Mirror Whitepaper. White paper (2008)
14. Jayaram, K.R., Peng, C., Zhang, Z., Kim, M., Chen, H., Lei, H.: An Empirical Analysis of

Similarity in Virtual Machine Images. In: ACM Middleware (Industrial Track) (2011)
15. NetApp: Back to Basics: Deduplication (2012),

https://communities.netapp.com/docs/DOC-9949
16. NeverFail: Continuous Availability Suite: Neverfail Solution Architecture. White paper

(2012)
17. Patterson, H., Manley, S., Federwisch, M., Hitz, D., Kleiman, S., Owara, S.: Snapmirror: File

system based asynchronous mirroring for disaster recovery. In: USENIX FAST (2002)
18. Rabin, M.O.: Fingerprinting by random polynomials. Tech. Rep. TR-15-81, Center for Re-

search in Computing Technology, Harvard University (1981)
19. Riverbed Technologies: Riverbed Whitewater WAN Optimization and Steelhead Cloud Stor-

age, http://www.riverbed.com
20. Tridgell, A., Mackerras, P.: The rsync algorithm. Tech. Rep. TR-CS-96-05, Australian Na-

tional University (1996)
21. Viswanathan, B., Verma, A., Krishnamurthy, B., Jayachandran, P., Bhattacharya, K., Anan-

thanarayanan, R.: Rapid adjustment and adoption to MIaaS clouds. In: ACM Middleware,
Industry Track (2012)

22. VMware: vSphere Site Recovery Manager (2012), http://www.vmware.com/files/pdf/
products/SRM/VMware-vCenter-SRM-Datasheet.pdf

http://www.arcserve.com
http://www.appassure.com/downloads/Dell_AppAssure_Specsheet.pdf
http://www-935.ibm.com/services/in/en/it-services/smartcloud-virtualized-server-recovery-service.html
http://www-935.ibm.com/services/in/en/it-services/smartcloud-virtualized-server-recovery-service.html
http://www-01.ibm.com/software/tivoli/solutions/endpoint/
https://communities.netapp.com/docs/DOC-9949
http://www.riverbed.com
http://www.vmware.com/files/pdf/products/SRM/VMware-vCenter-SRM-Datasheet.pdf
http://www.vmware.com/files/pdf/products/SRM/VMware-vCenter-SRM-Datasheet.pdf

Cross-Tier Application and Data Partitioning of

Web Applications for Hybrid Cloud Deployment

Nima Kaviani, Eric Wohlstadter, and Rodger Lea

{nkaviani,wohlstad}@cs.ubc.ca, rlea@magic.ubc.ca
University of British Columbia, Vancouver, Canada

Abstract. Hybrid cloud deployment offers flexibility in trade-offs be-
tween the cost-savings/scalability of the public cloud and control over
data resources provided at a private premise. However, this flexibility
comes at the expense of complexity in distributing a system over these
two locations. For multi-tier web applications, this challenge manifests
itself primarily in the partitioning of application- and database-tiers.
While there is existing research that focuses on either application-tier or
data-tier partitioning, we show that optimized partitioning of web ap-
plications benefits from both tiers being considered simultaneously. We
present our research on a new cross-tier partitioning approach to help
developers make effective trade-offs between performance and cost in a
hybrid cloud deployment. In two case studies the approach results in
up to 54% reduction in monetary costs compared to a premise only de-
ployment and 56% improvement in execution time compared to a näıve
partitioning where application-tier is deployed in the cloud and data-tier
is on private infrastructure.

1 Introduction

While there are advantages to deploying Web applications on public cloud in-
frastructure, many companies wish to retain control over specific resources [8]
by keeping them at a private premise. As a result, hybrid cloud computing, has
become a popular architecture where systems are built to take advantage of
both public and private infrastructure to meet different requirements. However,
architecting an efficient distributed system across these locations requires sig-
nificant effort. An effective partitioning should not only guarantee that privacy
constraints and performance objectives are met, but also should deliver on one
of the primary reasons for using the public cloud, a cheaper deployment.

In this paper we focus on partitioning of Online TransactionProcessing (OLTP)
style web applications. Such applications are an important target for hybrid ar-
chitecture due to their popularity. Web applications follow the well known multi-
tier architecture, generally consisting of tiers such as: client-tier, application-tier1

(serving dynamic web content), and back-end data-tier. Since the hybrid architec-
ture is motivated by the management of sensitive data resources, our research fo-
cuses on combined partitioning of the data-tier (which hosts data resources) and

1 In the rest of the paper we use the terms code and application-tier interchangeably.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 226–246, 2013.
c© IFIP International Federation for Information Processing 2013

Cross-Tier Application and Data Partitioning of Web Applications 227

Fig. 1. High-level hybrid architecture with cross-tier partitioning of code and data

the application-tier (which directly uses data resources). Figure 1 shows a high-
level diagram of these tiers being jointly partitioned across a hybrid architecture,
which we refer to as cross-tier partitioning.

Existing research only applies partitioning to one of the application- or data
tiers and does not address cross-tier partitioning. Systems such as CloneCloud
[11], Cloudward Bound [14], Leymann et al.’s [20], and our own work on Manti-

core [17] partition only software but not data. Other work in the area provides
for partitioning of relational databases [18] or Map-Reduce job/data compo-
nents [6,19,29]. Unfortunately, one cannot “cobble together” a cross-tier solution
by using independent results from such approaches. A new approach is needed
that integrates application and data partitioning natively. Thus we argue that
research into cross-tier partitioning is both important and challenging.

First, cross-tier partitioning is important because the data-flow between these
tiers is tightly coupled. The application-tier can make several queries during its
execution, passing information to and from different queries; an example is dis-
cussed in Section 2. Even though developers follow best practices to ensure the
source code for the business logic and the data access layer are loosely coupled,
this loose coupling does not apply to the data-flow. The data-flow crosscuts
application- and data-tiers requiring an optimization that considers the two si-
multaneously. Any optimization must avoid, whenever possible, the latency and
bandwidth requirements imposed by distributing such data-flow.

Second, cross-tier partitioning is challenging because it requires an analysis
that simultaneously reasons about the execution of application-tier code and
data-tier queries. On the one hand, previous work on partitioning of code is not
applicable to database queries because it does not account for modeling of query
execution plans. On the other hand, existing work on data partitioning does
not account for the data-flow or execution footprint of the application-tier [18].
To capture a representation for cross-tier optimization, our contribution in this
paper includes a new approach for modeling dependencies across both tiers as a
combined binary integer program (BIP) [25].

We provide a tool which collects performance profiles of web application ex-
ecution on a single host and converts it to the BIP format. The BIP is fed
to an off-the-shelf optimizer whose output yields suggestions for placement of
application- and data-tier components to either public cloud or private premise.
Using proper tooling and middleware, a new system can now be distributed

228 N. Kaviani, E. Wohlstadter, and R. Lea

across the hybrid architecture using the optimized placement suggestions. To
the best of our knowledge, we provide the first approach for partitioning which
integrates models of both application-tier and data-tier execution.

2 Motivating Scenario

As a motivating example, assume a company plans to take its on-premise trad-
ing software system and deploy it to a hybrid architecture. We use Apache
DayTrader [1], a benchmark emulating the behavior of a stock trading system,
to express this scenario. DayTrader implements business logic in the application-
tier as different request types, for example, allowing users to login (doLogin),
view/update their account information (doAccount & doAccountUpdate), etc.
At the data-tier it consists of tables storing data for account, accountprofile,
holding, quote, etc. Let us further assume that, as part of company regulations,
user information (account & accountprofile) must remain on-premise.

Figure 2 shows the output of our cross-tier partitioning for doLogin. The
figure shows the call-tree of function execution in the application-tier as well
as data-tier query plans at the leaves. In the figure, we see four categories of
components: (i) data on premise shown as black nodes, (ii) data in the cloud
as square nodes, (iii) functions on premise as gray nodes, and (iv) functions in
the cloud as white nodes. Here we use each of these four categories to motivate
cross-tier partitioning.

First, some data is not suitable for deployment in the cloud due to privacy con-
cerns or regulations [14]. Thus, many enterprises avoid committing deployment
of certain data in the public cloud, instead hosting it on private infrastructure
(e.g., account & accountprofile in Figure 2). Our primary usecase here is to
support cases with restrictions on where data is stored not where it flows.

Second, function execution requires CPU resources which are generally cheaper
and easier to scale in the public cloud (some reports claim a typical 80% savings
using public cloud versus on-premise private systems [21]). Thus placing func-
tion execution in the public cloud is useful to limit the amount of on-premise
infrastructure. On the other hand, sunk cost of existing hardware encourages
some private deployments. So without regard to other factors, we would want to
execute application-tier functions in the cloud and yet utilize existing hardware.

Fig. 2. A cross-tier partitioning suggested by our tool for the doLogin request from
DayTrader showing a partitioned application- and data-tier: data on premise (black
nodes), data in the cloud (square nodes), functions on premise (gray nodes), and func-
tions in the cloud (white nodes)

Cross-Tier Application and Data Partitioning of Web Applications 229

Third, since we would like to deploy functions to the cloud, the associated data
bound to those functions should be deployed to the cloud, otherwise we will incur
additional latency and bandwidth usage. So there is motivation to move non-
sensitive data to the cloud. However, such non-sensitive data may be bound to
sensitive data through queries which operate over both. For this reason, moving
non-sensitive data to the public cloud is not always a winning proposition. We
will need an analysis which can reason about the benefit of moving data closer
to functions executing in the public cloud versus the drawback of pulling it away
from the sensitive data on premise.

Finally, executing all functions in the public cloud is also not always a win-
ning proposition. Some functions are written as transactions over several data
resources. Such functions may incur too much communication overhead if they
execute in the public cloud but operate on private premise data. So the benefit
of executing them in the cloud needs to be balanced with this overhead.

These four cases help to illustrate the inter-dependencies between the
application-tier and data-tier. In the case of doLogin, a developer may man-
ually arrive at a similar partitioning with only minor inconvenience. However,
to cover an entire application, developers need to simultaneously reason about
the effects of component placements across all request types. This motivates the
need for research on automation for cross-tier partitioning.

3 Background: Application-Tier Partitioning

Binary Integer Programming [25] has been utilized previously for partitioning
of applications (although not for cross-tier partitioning) [10,17,22,30]. A binary
integer program (BIP) consists of the following:
– Binary variables: A set of binary variables x1, x2, ..., xn ∈ {0, 1}.
– Constraints: A set of linear constraints between variables where each con-

straint has the form: c0x0+c1x1+...+cnxn {≤,=,≥} cm and ci is a constant.
– Objective: A linear expression to minimize or maximize: cost1x1+cost2x2+

... + costnxn, with costi being the cost charged to the model when xi = 1.
The job of a BIP optimizer is to choose the set of values for the binary
variables which minimize/maximize this expression.

Formulating a cross-tier BIP for partitioning will require combining one BIP for
the application-tier and another for the data-tier. Creating each BIP consists of
the same high-level steps (although the specific details vary): (i) profiling, (ii)
analysis, (iii) generating the BIP constraints and (iv) generating the BIP objec-
tive function. The overall process of applying cross-tier partitioning is shown in
Figure 3. In the top left we see an application before partitioning. Notice that
the profiling results are split in two branches. Here we focus on the flow follow-
ing from the Profiling Logs branch, discussing the Explain Plan flow in Section
4. Our approach for generating a BIP for the application-tier follows from our
previous work on Manticore [17] and is summarized as background here.

230 N. Kaviani, E. Wohlstadter, and R. Lea

Fig. 3. The overall process of applying cross-tier partitioning to a monolithic web
application (process flows from left to right)

Profiling: The typical profiling process for application partitioning starts by
taking existing software and applying instrumentation of its binaries. The soft-
ware is then exercised on representative workloads, using the instrumentation to
collect data on measured CPU usage of software functions and data exchange
between them. This log of profiling information will be converted to the relevant
variables and costs of a BIP.

Analysis: The log of profile data is converted to a graph model before being
converted to a BIP, as shown in the top flow of Figure 3. Let App(V,E) represent
a model of the application, where ∀v ∈ V , v corresponds to a function execution
in the application. Similarly ∀u, v ∈ V , e(u,v) ∈ E implies that there is data
exchange between functions in the application corresponding to u and v in App.
∀e(u,v) ∈ E, we define du↔v as the amount of data exchanged between u to v.

BIP Constraints: The graph model is then used to formulate a BIP. For every
node u in the model we consider a variable xu ∈ {0, 1}. Using input from a
developer some nodes can be constrained to a particular location by fixing their
value, e.g., (0: private premise, 1: public cloud). Unconstrained variables are free
for an optimizer to choose their values so as to minimize the objective function.
These values are then translated to placement decisions for function executions.

BIP Objective: For each v ∈ V we define costexecv to represent the cost of
executing v on-premise and cost′execv to represent cost of executing v in the
cloud. We also define latency(u,v) to represent the latency cost on edge e(u,v)
and calculate the communication cost (costcommu,v) for edge e(u,v) as follows:

costcommu,v = latency(u,v) +
du↔v

Dunit
× costcommunit (1)

where Dunit would be the unit of data to which cloud data charges are applied
and costcommunit would be the cloud charges for Dunit of data transfer, and
du↔v represents data exchange between vertices u and v. As demonstrated by
work such as Cloudward Bound [14], in a cloud computing setting such raw per-
formance costs such as measured CPU usage and data transfer can be converted

Cross-Tier Application and Data Partitioning of Web Applications 231

to monetary costs using the advertised infrastructure costs of vendors such as
Amazon EC2. This allows developers to optimize for trade-offs in performance
cost and monetary cost objectives.

Using such costs we can define an objective expression (The non-linear expres-
sion in the objective function can be relaxed by making the expansion in [22]):

min
∑
i∈V

xicostexeci +
∑

(i,j)∈E
(xi − xj)

2costcommi,j (2)

Finally, the BIP is fed to a solver which determines an assignment of functions
to locations. By choosing the location for each function execution, the optimizer
chooses an efficient partitioning by placing functions in the cloud when possible
if it does not introduce too much additional latency or bandwidth requirements.

Different from previous work, our cross-tier partitioning incorporates a new
BIP model of query plan execution into this overall process. In the next section,
we describe these details which follow the bottom flow of Figure 3.

4 BIP for Data-Tier Partitioning

The technical details of extending application-tier partitioning to integrate the
data-tier are motivated by four requirements: (i) weighing the benefits of dis-
tributing queries, (ii) comparing the trade-offs between join orders, (iii) taking
into account intra-request data-dependencies and (iv) providing a query execu-
tion model comparable to application-tier function execution. In this section, we
first further motivate cross-tier partitioning by describing each of these points,
then we cover the technical details for the steps of partitioning as they relate
to the data-tier. We focus on a data-tier implemented with a traditional SQL
database. While some web application workloads can benefit from the use of
alternative NoSQL techniques, we chose to focus initially on SQL due to its
generality and widespread adoption.

First, as described in Section 2, placing more of the less-sensitive data in the
cloud will allow for the corresponding code from the application-tier to also be
placed in the cloud, thus increasing the overall efficiency of the deployment and
reducing data transfer. However, this can result in splitting the set of tables
used in a query across public and private locations. For our DayTrader example,
each user can have many stocks in her holdings which makes the holding table
quite large. As shown in Figure 2, splitting the join operation can push the
holdings table to the cloud (square nodes) and eliminate the traffic of moving
its data to the cloud. This splitting also maintains our constraint to have the
privacy sensitive account table on the private premise. An effective modeling
of the data-tier needs to help the BIP optimizer reason about the trade-offs of
distributing such queries across the hybrid architecture.

Second, the order that tables are joined can have an effect not only on tradi-
tional processing time but also on round-trip latency. We use a running example
throughout this section of the query shown in Figure 4, with two different join
orders, left and right. If the query results are processed in the public cloud

232 N. Kaviani, E. Wohlstadter, and R. Lea

Fig. 4. Two possible query plans from one of the queries in DayTrader:
SELECT p.*, h.* FROM holding h, accountprofile p, account a WHERE

h.accountid = a.accountid AND a.userid = p.userid AND h.quote symbol = ?

AND a.accountid = ?

where the holding table is in the cloud and account and accountprofile

are stored on the private premise, then the plan on the left will incur two-round
trips from the public to private locations for distributed processing. On the other
hand, the query on the right only requires one round-trip. Modeling the data-
tier should help the BIP optimizer reason about the cost of execution plans for
different placements of tables.

Third, some application requests execute more than one query. In these cases,
it may be beneficial to partition functions to group execution with data at a
single location. Such grouping helps to eliminate latency overhead otherwise
needed to move data to the location where the application-tier code executes.
An example of this is shown in Figure 2, where a sub-tree of function executions
for TradeJdbc:login are labeled as “private” (gray nodes). By pushing this sub-
tree to the private premise, the computation needed for working over account
and accountprofile data in the two queries under TradeJdbc:login can be
completed at the premise without multiple round-trips between locations.

Fourth, since the trade-offs on function placement depend on the placement
of data and vice-versa, we need a model that can reason simultaneously about
both application-tier function execution and query plan execution. Thus the
model for the data-tier should be compatible for integration with an approach
to application partitioning such as the one described in Section 3.

Having motivated the need for a model of query execution to incorporate
the data-tier in a cross-tier partitioning, we now explore the details, following
the bottom flow of Figure 3. The overall process is as follows. We first, profile
query execution using Explain Plan (Section 4.1). This information is used
to collect statistics for query plan operators by interrogating the database for
different join orders (Section 4.2). The statistics are then used to generate both
BIP constraints (Section 4.3) and a BIP objective function (Section 4.4). Finally,
these constraints and objective are combined with that from the application-tier
to encode a cross-tier partitioning model for a BIP solver.

4.1 Database Profiling with Explain Plan

Profiling information is available for query execution through the Explain

Plan SQL command. Given a particular query, this command provides a tree-
structured result set detailing the execution of the query. We use a custom JDBC

Cross-Tier Application and Data Partitioning of Web Applications 233

driver wrapper to collect information on the execution of queries. During appli-
cation profiling (cf. Section 3) whenever a query is issued by the application-tier,
our JDBC wrapper intercepts the query and collects the plan for its execution.
The plan returned by the database contains the following information:

1. type(op): Each node in the query plan is an operator such as a join, table
access, selection (i.e. filter), sort, etc. To simplify presentation of the technical
details, we assume that each operator is either a join or a table access.
Other operators are handled by our implementation but they don’t add
extra complexity compared to a join operator. For example, in Figure 4, the
selection (i.e. filter) operators are elided. We leverage the database’s own cost
model directly by recording from the provided plan how much each operator
costs. Hence, we don’t need to evaluate different operator implementations to
evaluate their costs. On the other hand, we do need to handle joins specially
because table placement is greatly affected by their ordering.

2. cpu(op): This statistic gives the expected time of execution for a specific
operator. In general, we assume that the execution of a request in a hybrid
web application will be dominated by the CPU processing of the application-
tier and the network latency. So in many cases, this statistic is negligible.
However, we include it to detect the odd case of expensive query operations
which can benefit from executing on the public cloud.

3. size(op): This statistic captures the expected number of bytes output by
an operator which is equal to the expected number of rows times the size of
each retrieved row. From the perspective of the plan tree-structure, this is
the data which flows from a child operator to its parent.

4. predicates(joinOp): Each join operator combines two inputs based on
a set of predicates which relate those inputs. We use these predicates to
determine if alternative join orders are possible for a query.

When profiling the application, the profiler observes and collects execution statis-
tics only for plans that get executed but not for alternative join orders. However,
the optimal plan executed by the database engine in a distributed hybrid deploy-
ment can be different from the one observed during profiling. In order to make
the BIP partitioner aware of alternative orders, we have extended our JDBC
wrapper to consult the database engine and examine the alternatives by utiliz-
ing a combination of Explain Plan and join order hints. Our motivation is
to leverage the already existing cost model from a production database for cost
estimation of local operator processing, while still covering the space of all query
plans. The profiler also captures which sets of tables are accessed together as
part of an atomic transaction. This information is used to model additional costs
of applying a two-phase commit protocol, should the tables get partitioned.

4.2 Join Order Enumeration

We need to encode enough information in the BIP so it can reason over all
possible plans. Otherwise, the BIP optimizer would mistakenly assume that the
plan executed during our initial profiling is the only one possible. For example,

234 N. Kaviani, E. Wohlstadter, and R. Lea

during initial profiling on a single host, we may only observe the left plan from
Figure 4. However, in the example scenario, we saw that the right plan introduces
fewer round-trips across a hybrid architecture. We need to make sure the right
plan is accounted for when deciding about table placement. Our strategy to
collect the necessary information for all plans consists of two steps: (i) gather
statistics for all operators in all plans irrespective of how they are joined, and
(ii) encode BIP constraints about how the operators from step (i) can be joined.
Here we describe step 1 and then describe step 2 in the next subsection. The
novelty of our approach is that instead of optimizing to a specific join order in
isolation of the structure of application-tier execution, we encode the possible
orders together with the BIP of the application-tier as a combined BIP.

As is commonly the case in production databases, we assume a query plan
to be left-deep. In a left-deep query plan, a join takes two inputs: one from a
single base relation (i.e. table) providing immediate input (referred to as the
“inner relation”); and another one potentially derived as an intermediate result
from a different set of relations (the “outer relation”). The identity of the inner
relation and the set of tables comprising the outer relation uniquely determine
the estimated best cost for an individual join operator. This is true regardless
of the join order in which the outer relation was derived [26]. For convenience in
our presentation, we call this information the operator’s id, because we use it to
represent an operator in the BIP. For example, the root operator in Figure 4a
takes accountProfile as an inner input and {holding, account} as an outer
input. The operator’s id is then {(holding, account), accountProfile}. We
will refer to the union of these two inputs as a join set (the set of tables joined
by that operator). For example, the join set of the aforementioned operator is
{holding, account, accountProfile}. Notably, while the join sets for the
roots of Figures 4a & 4b are the same, Figures 4b’s root node has the operator
id {(accountProfile, account), holding} allowing us to differentiate the
operators in our BIP formulation. Our task in this section is to collect statistics
for the possible join operators with unique ids.

Most databases provide the capability for developers to provide hints to the
query optimizer in order to force certain joins. For example in Oracle, a developer
can use the hint LEADING(X, Y, Z, ...). This tells the optimizer to create a
plan where X and Y are joined first, then their intermediate result is joined with
Z, etc. We use this capability to extract statistics for all join orders.

1 Function collectOperatorStats(Q)

2 tables ← getTables(Q);
3 for i ← 1 to |tables| do
4 foreach t ∈ tables do
5 foreach S ∈ Pi(tables− {t}) do
6 if isJoinable(S, t) then
7 explainPlanWithLeadingRelations(S, t);

Algorithm 1. Function to collect statistics for alternative query plan operators

for the input query Q. Pi is the powerset operator over sets of size i.

Cross-Tier Application and Data Partitioning of Web Applications 235

Algorithm 1 takes as input a query observed during profiling. In line 2, we
extract the set of all tables referenced in the query. Next, we start collecting
operator statistics for joins over two tables and progressively expand the size
through each iteration of the loop on line 3. The table t, selected for each iter-
ation of line 4 can be considered as the inner input of a join. Then, on line 5
we loop through all sets of tables of size i which don’t contain t. On line 6, we
verify if t is joinable with the set S by making sure that at least one table in
the set S shares a join (access) predicate with t. This set forms the outer input
to a join. Finally, on line 7, we collect statistics for this join operator by forcing
the database to explain a plan in which the join order is prefixed by the outer
input set, followed by the inner input relation. We record the information for
each operator by associating it with its id. For example, consider Figure 4 as the
input Q to Algorithm 1. In a particular iteration of line 5, i might be chosen as
2 and t as accountProfile. Since accountProfile has a predicate shared
with account, S could be chosen as the set of size 2: {account, holdings}.
Now on line 6, explainPlanWithLeadingTables({account, holdings}, ac-
countProfile) will get called and the statistics for the join operator with the
corresponding id will get recorded.

The bottom-up structure of the algorithm follows similarly to the classic dy-
namic programming algorithm for query optimization [26]. However, in our case
we make calls into the database to extract costs by leveraging Explain Plan

and the LEADING hint. The complexity of Algorithm 1 is O(2n) (where n is
the number of tables in each single query); i.e., same as the classic algorithm for
query optimization [26], so our approach scales in a similar fashion. Even though
Algorithm 1’s complexity is exponential, queries typically operate on an order
of tens of tables.

4.3 BIP Constraints

Now that we know the statistics for all operators with a unique id, we need to
instruct the BIP how they can be composed. Our general strategy is to model
each query plan operator, op, as a binary variable in a BIP. The variable will
take on the value 1 if the operator is part of the query plan which minimizes
the objective of the BIP and 0 otherwise. Each possible join set is also modeled
as a variable. Constraints are used to create a connection between operators

Table 1. Constraint generation functions

Function genChoice(joinSet, {op1 ... opn})
Generated constraint op1 + ... + opn = joinSet

Description a joinSet is produced by one and only one of
the operators op1 ... opn

Function genInputConstraint(op, {inleft, inright})
Generated constraint −2× op + inleft + inright ≥ 0

Description If op is 1, then variables representing its
left and right inputs (inleft and inright) must both be 1

236 N. Kaviani, E. Wohlstadter, and R. Lea

1 Function createConstraints(joinSet)
2 ops ← getOperatorsForJoinSet(joinSet);
3 genChoice(joinSet, ops);
4 foreach op ∈ ops do
5 inputs ← getInputs(op);
6 genInputConstraint(op, inputs);
7 if sizeof(left(inputs)) > 0 then
8 createConstraints(left(inputs));

Algorithm 2. Constraint generation, using functions from Table 1. The details

for the functions getOperatorsForJoinSet, getInputs, sizeof, and left are not

shown but their uses are described in the text.

that create a join set and operators that consume a join set (cf. Table 1). The
optimizer will choose a plan having the least cost given both the optimizers choice
of table placement and function execution placement (for the application-tier).
Each operator also has associated variables opcloud and oppremise which indicate
the placement of the operator. Table placement is controlled by each table’s
associated table access operators. The values of these variables for operators in
the same query plan will allow us to model the communication costs associated
with distributed queries.

Our algorithm to formulate these composition constraints makes use
of two helper functions as shown in Table 1, namely genChoice and
genInputConstraint. When these functions are called by our algorithms, they
append the generated constraint to the BIP that was already built for the
application-tier. The first function, genChoice, encodes that a particular join set
may be derived by multiple possible join operators (e.g., {holding, account,
accountprofile} could be derived by either of the root nodes in Figure 4). The
second function, genInputConstraint, encodes that a particular join operator
takes as inputs the join sets of its two children. It ensures that if op is selected,
both its children’s join sets (inleft and inright) are selected as well, constraining
which subtrees of the execution plan can appear under this operator. The “≥”
inequality in Table 1 helps to encode the boolean logic op→ inleft ∧ inright.

Starting with the final output join set of a query, Algorithm 2 recursively
generates these constraints encoding choices between join operators and how
parent operators are connected to their children. It starts on line 2 by calling
a function to retrieve all operator ids which could produce that join set (these
operators were all collected during the execution of Algorithm 1). It passes this
information to genChoice on line 3. On line 4, we loop over all these operator
ids, decomposing each into its two inputs on line 5. This information is then
passed to genInputConstraint. Finally on line 7, we test for the base case of
a table access operator. If we have not hit the base case, then the left input
becomes the join set for recursion on line 8.

Cross-Tier Application and Data Partitioning of Web Applications 237

4.4 BIP Objective

Creating the optimization objective function consists of two parts: (i) deter-
mining the costs associated with the execution of individual operators, and
(ii) creating a mathematical formulation of those costs. The magnitude of the
execution cost for each operator and the communication cost between operators
that are split across the network are computed using a similar cost model to
previous work [31]. This accounts for the variation between local execution and
distributed execution in that the latter will make use of a semi-join optimiza-
tion to reduce costs (i.e. input data to a distributed join operator will transmit
only the columns needed to collect matching rows). We extend the previous cost
model to account for possible transaction delays. We assume that if the tables
involved in an atomic transaction are split across the cloud and the private
premise, by default the transaction will be resolved using the two-phase commit
protocol.

Performance overhead from atomic two-phase distributed transactions comes
primarily from two sources: protocol overhead and lock contention. Protocol
overhead is caused by the latency of prepare and commit messages in a database’s
two-phase commit protocol. Lock contention is caused by queuing delay which
increases as transactions over common table rows become blocked. We provide
two alternatives to account for such overhead:

– For some transactions, lock contention is negligible. This is because the ap-
plication semantics don’t induce sharing of table rows between multiple user
sessions. For example, in DayTrader, although Account and Holdings ta-
bles are involved in an atomic transaction, specific rows of these tables are
only ever accessed by a single user concurrently. In such cases we charge the
cost of two extra round-trips between the cloud and the private premise to
the objective function, one to prepare the remote site for the transaction and
another to commit it.

– For cases where lock contention is expected to be considerable, developers
can request that certain tables be co-located in any partitioning suggested
by our tool. This prevents locking for transactions over those tables to be
delayed by network latency. Since such decisions require knowledge of appli-

Table 2. Functions for generating objective helper constraints

Function genAtMostOneLocation(op)

Generated constraint opcloud + oppremise = op

Description If the variable representing op is 1, then either the variable
representing it being placed in the cloud is 1 or the variable
representing it being place in the premise is 1

Function genSeparated(op1 , op2)

Generated constraint op1cloud + op2premise - cutop1,op2 ≤ 1
op1premise + op2cloud - cutop1,op2 ≤ 1

Description If the variables representing the locations of two operators
are different, then the variable cutop1,op2 is 1

238 N. Kaviani, E. Wohlstadter, and R. Lea

cation semantics that are difficult to infer automatically, our tool provides
an interactive visualization of partitioning results, as shown in Figure 2.
This allows developers to work through different “what-if” scenarios of table
co-location constraints and the resulting suggested partitioning. We plan to
further assist developers in making their decisions by profiling the frequency
for concurrent transactions to update rows.

Next, we need to encode information on CPU and data transmission costs into
the objective function. In addition to generating a BIP objective, we will need
some additional constraints that ensure the calculated objective is actually fea-
sible. Table 2 shows functions to generate these constraints. The first constraint
specifies that if an operator is included as part of a chosen query plan (its associ-
ated id variable is set to 1), then either the auxiliary variable opcloud or oppremise

will have to be 1 but not both. This enforces a single placement location for op.
The second builds on the first and toggles the auxiliary variable cutop1,op2 when
op1cloud and op2premise are 1, or when op1premise and op2cloud are 1.

The objective function itself is generated using two functions in Table 3. The
first possibly charges to the objective function either the execution cost of the
operator on the cloud infrastructure or on the premise infrastructure. Note that
it will never charge both due to the constraints of Table 2. The second function

Table 3. Functions for generating objective function

Function genExecutionCost(op)

Generated objective component opcloud× execCostcloud(op) +
oppremise× execCostpremise(op)

Description If the variable representing op deployed in the
cloud/premise is 1, then charge the associated cost of
executing it in the cloud/premise respectively

Function genCommCost(op1 , op2)

Generated objective component cutop1,op2× commCost(op1, op2)

Description If cutop1,op2 for two operators op1 and op2 was
set to 1, then charge their cost of communication

1 Function createObjFunction(joinSet)
2 ops ← getOperatorsForJoinSet(joinSet);
3 foreach op ∈ ops do
4 genAtMostOneLocation(op);
5 genExecutionCost(op);
6 inputs ← getInputs(op);
7 foreach input ∈ inputs do
8 foreach childOp ∈ getOperatorsForJoinSet(input) do
9 genSeparated(op, childOp);

10 genCommCost(op, childOp);

11 if sizeof(left(inputs)) > 0 then
12 createObjFunction(left(inputs));

Algorithm 3. Objective generation

Cross-Tier Application and Data Partitioning of Web Applications 239

charges the communication cost between two operators if the associated cut
variable was set to 1. In the case that there is no communication between two
operators this cost is simply 0.

Algorithm 3 takes a join set as input and follows a similar structure to Algo-
rithm 2. The outer loop on line 3, iterates over each operator that could produce
the particular join set. It generates the location constraints on line 4 and the
execution cost component to the objective function on line 5. Next, on line 7, it
iterates over the two inputs to the operator. For each, it extracts the operators
that could produce that input (line 8) and generates the communication con-
straint and objective function component. Finally, if the left input is not a base
relation (line 11), it recurses using the left input now as the next join set.

Having appended the constraints and objective components associated with
query execution to the application-tier BIP, we make a connection between the
two by encoding the dependency between each function that executes a query
and the possible root operators for the associated query plan.

5 Implementation

We have implemented our cross-tier partitioning as a framework. It conducts
profiling, partitioning, and distribution of web applications which have their
business logic implemented in Java. Besides the profiling data, the analyzer also
accepts a declarative XML policy and cost parameters. The cost parameters
encode the monetary costs charged by a chosen cloud infrastructure provider
and expected environmental parameters such as available bandwidth and net-
work latency. The declarative policy allows for specification of database table
placement and co-location constraints. In general we consider the placement of
privacy sensitive data to be the primary consideration for partitioning decisions.
However, developers may wish to monitor and constrain the placement of func-
tion executions that operate over this sensitive data. For this purpose we rely on
existing work using taint tracking [9] which we have integrated into our profiler.

For partitioning, we use the off-the-shelf integer programming solver
lp solve [2] to solve the discussed BIP optimization problem. The results lead
to generating a distribution plan describing which entities need to be separated
from one another (cut-points). A cut-point may separate functions from one an-
other, functions from data, and data from one another. Separation of code and
data is achievable by accessing the database engine through the database driver.
Separating inter-code or inter-data dependencies requires extra middleware.

For functions, we have developed a bytecode rewriting engine as well as an
HTTP remoting library that takes the partitioning plan generated by the ana-
lyzer, injects remoting code at each cut-point, and serializes data between the
two locations. This remoting instrumentation is essentially a simplified version
of J-Orchestra [28] implemented over HTTP (but is not yet as complete as the
original J-Orchestra work). In order to allow for distribution of data entities,
we have taken advantage of Oracle’s distributed database management system
(DDBMS). This allows for tables remote to a local Oracle DBMS, to be identified

240 N. Kaviani, E. Wohlstadter, and R. Lea

and queried for data through the local Oracle DBMS. This is possible by provid-
ing a database link (@dblink) between the local and the remote DBMS systems.
Once a bidirectional dblink is established, the two databases can execute SQL
statements targeting tables from one another. This allows us to use the distribu-
tion plan from our analyzer system to perform vertical sharding at the level of
database tables. Note that the distributed query engine acts on the deployment
of a system after a decision about the placement of tables has been made by our
partitioning algorithm. We have provided an Eclipse plugin implementation of
the analyzer framework available online [3].

6 Evaluation

We evaluate our work using two different applications: DayTrader [1] and RU-
BiS [4]. DayTrader (cf. Section 2) is a Java benchmark of a stock trading system.
RUBiS implements the functionality of an auctioningWeb site. Both applications
have already been used in evaluating previous cloud computing research [16,27].

We can have 9 possible deployment variations with each of the data-tier and
the application tier being (i) on the private premise, (ii) on the public cloud, or
(iii) partitioned for hybrid deployment. Out of all the placements we eliminate
the 3 that place all data in the cloud as it contradicts the constraints to have
privacy sensitive information on-premise. Also, we consider deployments with
only data partitioned as a subset of deployments with both code and data parti-
tioned, and thus do not provide separate deployments for them. The remaining
four models deployed for evaluations were as follows: (i) both code and data
are deployed to the premise (Private-Premise); (ii) data is on-premise and code
is in the cloud (Näıve-Hybrid); (iii) data is on-premise and code is partitioned
(Split-Code); and (iv) both data and code are partitioned (Cross-Tier).

For both DayTrader and RUBiS, we consider privacy incentives to be the
reason behind constraining placement for some database tables. As such, when
partitioning data, we constrain tables storing user information (account and
accountprofile for DayTrader and users for RUBiS) to be placed on-premise.
The remaining tables are allowed to be flexibly placed on-premise or in the cloud.

We used the following setup for the evaluation: for the premise machines, we
used two 3.5 GHz dual core machines with 8.0 GB of memory, one as the appli-
cation server and another as our database server. Both machines were located at
our lab in Vancouver, and were connected through a 100 Mb/sec data link. For
the cloud machines, we used an extra large EC2 instance with 8 EC2 Compute
Units and 7.0 GB of memory as our application server and another extra large
instance as our database server. Both machines were leased from Amazon’s US
West region (Oregon) and were connected by a 1 Gb/sec data link. We use Jetty
as the Web server and Oracle 11g Express Edition as the database servers. We
measured the round-trip latency between the cloud and our lab to be 15 mil-
liseconds. Our intentions for choosing these setups is to create an environment
where the cloud offers the faster and more scalable environment. To generate
load for the deployments, we launched simulated clients from a 3.0 GHz quad

Cross-Tier Application and Data Partitioning of Web Applications 241

core machine with 8 GB of memory located in our lab in Vancouver. DayTrader
comes with a random client workload generator with uniform distribution on all
requests. For RUBiS, we used its embedded client simulator in its buy mode, with
an 80-20 ratio of browse-to-buy request distribution. In the rest of this section
we provide the following evaluation results for the four deployments described
above: execution times (Section 6.1), expected monetary deployment costs (Sec-
tion 6.2), and scalability under varying load (Section 6.3).

6.1 Evaluation of Performance

We measured the execution time across all business logic functionality in Day-
Trader and RUBiS under a load of 100 requests per second, for ten minutes. By
execution time we mean the elapsed wall clock time from the beginning to the
end of each servlet execution. Figure 5 shows those with largest average execution
times. We model a situation where CPU resources are not under significant load.
As shown in Figure 5, execution time in cross-tier partitioning is significantly
better than any other model of hybrid deployment and is closely comparable to
a non-distributed private premise deployment. As an example, response time for
DayTrader’s doLogin under Cross-Tier is 50% faster than Näıve-Hybrid while
doLogin’s response time for Cross-Tier is only 5% slower compared to Private-
Premise (i.e., the lowest bar in the graph). It can also be seen that, for doLogin,
Cross-Tier has 25% better response time compared to Split-Code, showing its
effectiveness compared to partitioning only at the application-tier.

0 100 200 300

doLogin

doBuy

doPortfolio

doAccount

doQuotes

doAccountUpdate

doSell

Execution time / Request (milliseconds)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(a) Execution times for DayTrader

0 200 400 600

AboutMe

ViewBidHistory

ViewItem

ViewUserInfo

BrowseCategories

SearchItemsByCategory

SearchItemsByRegion

Execution time / Request (milliseconds)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(b) Execution times for RUBiS

Fig. 5. Measured execution times for selected request types in the four deployments
of DayTrader and RUBiS

242 N. Kaviani, E. Wohlstadter, and R. Lea

Similarly for other business logic functionality, we note that cross-tier par-
titioning achieves considerable performance improvements when compared to
other distributed deployment models. It results in performance measures broadly
similar to a full premise deployment. For the case of DayTrader - across all busi-
ness logic functionality of Figure 5a - Cross-Tier results in an overall performance
improvement of 56% compared to Näıve-Hybrid and a performance improvement
of around 45% compared to Split-Code.

We observed similar performance improvements for RUBiS. Cross-Tier RUBiS
performs 28.3% better - across all business logic functionality of Figure 5b - com-
pared to its Näıve-Hybrid, and 15.2% better compared to Split-Code. Based on
the results, cross-tier partitioning provides more flexibility for moving function
execution to the cloud and can significantly increase performance for a hybrid
deployment of an application.

6.2 Evaluation of Deployment Costs

For computing monetary costs of deployments, we use parameters taken from the
advertised Amazon EC2 service where the cost of an extra large EC2 instance is
$0.48/hour and the cost of data transfer is $0.12/GB. To evaluate deployment
costs, we apply these machine and data transfer costs to the performance results
from Section 6.1, scale the ten minute deployment times to one month, and
gradually change the ratio of premise-to-cloud deployment costs to assess the
effects of varying cost of private premise on the overall deployment costs.

As shown in both graphs, a Private-Premise deployment of web applications
results in rapid cost increases, rendering such deployments inefficient. In con-
trast, all partitioned deployments of the applications result in more optimal

1 3 5 7 9

1,000

2,000

3,000

Ratio of Premise to Public Machine Costs

E
x
p
e
c
te
d

D
e
p
lo
y
m
e
n
t
C
o
st

($
/
M

o
n
th

)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(a) Monthly deployment costs for DayTrader

1 3 5 7 9

0

1,000

2,000

3,000

4,000

5,000

Ratio of Premise to Public Machine Costs

E
x
p
e
c
te
d

D
e
p
lo
y
m
e
n
t
C
o
st

($
/
M

o
n
th

)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(b) Monthly deployment costs for RUBiS

Fig. 6. Monthly cost comparison for different deployments of DayTrader and RUBiS

Cross-Tier Application and Data Partitioning of Web Applications 243

deployments with Cross-Tier being the most efficient. For a cloud cost 80%
cheaper than the private-premise cost (5 times ratio), DayTrader’s Cross-Tier is
20.4% cheaper than Private-Premise and 11.8% cheaper than Näıve-Hybrid and
Split-Code deployments. RUBiS achieves even better cost savings with Cross-
Tier being 54% cheaper than Private-Premise, 29% cheaper than Näıve-Hybrid,
and 12% cheaper than Split-Code. As shown in Figure 6a, in cases where only
code is partitioned, a gradual increase in costs for machines on-premise eventu-
ally results in the algorithm pushing more code to the cloud to the point where
all code is in the cloud and all data is on-premise. In such a situation Split-Code
eventually converges to Näıve-Hybrid; i.e., pushing all the code to the cloud.
Similarly, Cross-Tier will finally stabilize. However since in Cross-Tier part of
the data is also moved to the cloud, the overall cost is lower than Näıve-Hybrid
and Split-Code.

6.3 Evaluation of Scalability

We also performed scalability analyses for both DayTrader and RUBiS to see
how different placement choices affect application throughput. For both Day-
Trader and RUBiS we used a range of 10 to 1000 client threads to send requests
to the applications in 5 minute intervals with 1 minute ramp-up. Results are
shown in Figure 7. As the figure shows, for both applications, after the num-
ber of requests reaches a certain threshold, Private-Premise becomes overloaded.
For Näıve-Hybrid and Split-Code, the applications progressively provide better
throughput. However, due to the significant bottleneck when accessing the data,
both deployments maintain a consistent but rather low throughput during their
executions. Finally, Cross-Tier achieved the best scalability. With a big portion

10 100 300 500 1,000

100

200

300

400

500

600

700

800

900

1,000

Number of Simulated Users

T
h
ro

u
g
h
p
u
t
(r
e
q
/
se
c
)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(a) Scalability tests for DayTrader

10 100 300 500 1,000

100

200

300

400

500

600

700

800

900

Number of Simulated Users

T
h
ro

u
g
h
p
u
t
(r
e
q
/
se
c
)

Private-Premise Näıve-Hybrid

Split-Code Cross-Tier

(b) Scalability tests for RUBiS

Fig. 7. Scalability tests for full premise, full cloud, and hybrid deployments

244 N. Kaviani, E. Wohlstadter, and R. Lea

of the data in the cloud, the underlying resources for both code and data can
scale to reach a much better overall throughput for the applications. Despite
having part of the data on the private premise, due to its small size the database
machine on premise gets congested at a slower rate and the deployment can keep
a high throughput.

7 Related Work

Our research bridges the two areas of application and database partitioning but
differs from previous work in that it uses a new BIP formulation that considers
both areas. Our focus is not on providing all of the many features provided by
every previous project either on application partitioning or database partition-
ing. Instead, we have focused on providing a new interface between the two using
our combined BIP. We describe the differences in more detail by first describing
some related work in application partitioning and then database partitioning.

Application Partitioning: Coign [15] is an example of classic application par-
titioning research which provides partitioning of Microsoft COM components.
Other work focuses specifically on partitioning of web/mobile applications such
as Swift [10], Hilda [30], and AlfredO [24]. However that work is focused on parti-
tioning the application-tier in order to off-load computation from the server-side
to a client. That work does not handle partitioning of the data-tier.

Minimizing cost and improving performance for deployment of software ser-
vices has also been the focus of cloud computing research [19]. While ap-
proaches like Volley [6] reduce network traffic by relocating data, others like
CloneCloud [11], Cloudward Bound[14], and our own Manticore [17] improve
performance through relocation of server components. Even though Volley ex-
amines data dependencies and CloneCloud, Cloudward Bound, and Manticore

examine component or code dependencies, none of these approaches combine
code and data dependencies to drive their partitioning and distribution deci-
sions. In this paper, we demonstrated how combining code and data dependen-
cies can provide a richer model that better supports cross-tier partitioning for
web application in a hybrid architecture.

Database Partitioning: Database partitioning is generally divided into hori-
zontal partitioning and vertical partitioning [7]. In horizontal partitioning, the
rows of some tables are split across multiple hosts. A common motivation is
for load-balancing the database workload across multiple database manager in-
stances [12,23]. In vertical partitioning, some columns of the database are split
into groups which are commonly accessed together, improving access locality [5].
Unlike traditional horizontal or vertical partitioning, our partitioning of data
works at the granularity of entire tables. This is because our motivation is not
only performance based but is motivated by policies on the management of data
resources in the hybrid architecture. The granularity of logical tables aligns more
naturally than columns with common business policies and access controls. That

Cross-Tier Application and Data Partitioning of Web Applications 245

being said, we believe if motivated by the right use-case, our technical approach
could likely be extended for column-level partitioning as well.

8 Limitations, Future Work, and Conclusion

While our approach simplifies manual reasoning for hybrid cloud partitioning, it
requires some input from a developer. First, we require a representative workload
for profiling. Second, a developer may need to provide input about the impact
that atomic transactions have on partitioning. After partitioning, a developer
may also want to consider changes to the implementation to handle some trans-
actions in an alternative fashion, e.g. providing forward compensation [13]. Also
as noted, our current implementation and experience is limited to Java-based
web applications and SQL-based databases.

In future work we plan to support a more loosely coupled service-oriented ar-
chitecture for partitioning applications. Our current implementation of data-tier
partitioning relies on leveraging the distributed query engine from a production
database. In some environments, relying on a homogeneous integration of data
by the underlying platform may not be realistic. We are currently working to
automatically generate REST interfaces to integrate data between the public
cloud and private premise rather than relying on a SQL layer.

In this paper we have demonstrated that combining code and data depen-
dency models can lead to cheaper and better performing hybrid deployment of
Web applications. In particular, we showed that for our evaluated applications,
combined code and data partitioning can achieve up to 56% performance im-
provement compared to a näıve partitioning of code and data between the cloud
and the premise and a more than 40% performance improvement compared
to when only code is partitioned (see Section 6.1). Similarly, for deployment
costs, we showed that combining code and data can provide up to 54% expected
cost savings compared to a fully premise deployment and almost 30% expected
savings compared to a näıvely partitioned deployment of code and data or a
deployment where only code is partitioned (cf. Section 6.2).

References

1. Apache DayTrader, https://cwiki.apache.org/GMOxDOC20/daytrader.html
2. lp solve Linear Programming solver, http://lpsolve.sourceforge.net/
3. Manticore Homepage, http://nima.magic.ubc.ca/manticore
4. RUBiS: Rice University Bidding System, http://rubis.ow2.org/
5. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Sw-store: a vertically par-

titioned dbms for semantic web data management. VLDB Jour. 18(2) (2009)
6. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A.: Volley: Automated

data placement for geo-distributed cloud services. In: Proc. of NSDI (2010)
7. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-

ing into automated physical database design. In: Proc. of SIGMOD (2004)
8. Armbrust, M., Fox, A., Griffith, R., et al.: Above the Clouds: A Berkeley View of

Cloud Computing. Technical Report UCB/EECS-2009-28, UC Berkeley (2009)

https://cwiki.apache.org/GMOxDOC20/daytrader.html
http://lpsolve.sourceforge.net/
http://nima.magic.ubc.ca/manticore
http://rubis.ow2.org/

246 N. Kaviani, E. Wohlstadter, and R. Lea

9. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proc. of
Wsh. on Secure Web Services (2009)

10. Chong, S., Liu, J., Myers, A., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Building
secure web applications with automatic partitioning. In: Proc. of SOSP (2009)

11. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proc. of EuroSys (2011)

12. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach
to database replication and partitioning. Proc. VLDB Endow. 3(1-2) (2010)

13. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of SIGMOD (1987)
14. Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawar-

malani, M.: Cloudward bound: planning for beneficial migration of enterprise ap-
plications to the cloud. In: Proc. of SIGCOMM (2010)

15. Hunt, G., Scott, M.: The Coign automatic distributed partitioning system. In:
Proc. of Symp. on Operating Systems Design and Implementation, OSDI (1999)

16. Iqbal, W., Dailey, M.N., Carrera, D.: SLA-driven dynamic resource management
for multi-tier web applications in a cloud. In: CCGRID (2010)

17. Kaviani, N., Wohlstadter, E., Lea, R.: Manticore: A Framework for Partitioning of
Software Services for Hybrid Cloud. In: Proc. of IEEE CloudCom (2012)

18. Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: Risk-Aware Data Processing
in Hybrid Clouds. Technical report, University of Texas at Dallas (2011)

19. Ko, S.Y., Jeon, K., Morales, R.: The HybrEx model for confidentiality and privacy
in cloud computing. In: Proc. of HotCloud (2011)

20. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving appli-
cations to the cloud: an approach based on application model enrichment. Int. J.
Cooperative Inf. Syst. 20(3), 307–356 (2011)

21. Microsoft. The Economics of the Cloud, USA (November 2010)
22. Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden, S.: Wishbone: Profile-

based Partitioning for Sensornet Applications. In: Proc. of NSDI (2009)
23. Pavlo, A., Curino, C., Zdonik, S.: Skew-aware automatic database partitioning in

shared-nothing, parallel oltp systems. In: Proc. of SIGMOD (2012)
24. Rellermeyer, J.S., Riva, O., Alonso, G.: AlfredO: An architecture for flexible inter-

action with electronic devices. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 22–41. Springer, Heidelberg (2008)

25. Schrijver, A.: Theory of Linear and Integer Programming. Wiley & Sons (1998)
26. Selinger, G., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access path se-

lection in a relational database management system. In: SIGMOD (1979)
27. Stewart, C., Leventi, M., Shen, K.: Empirical examination of a collaborative web

application. In: IISWC 2008 (2008)
28. Tilevich, E., Smaragdakis, Y.: J-Orchestra: Automatic Java Application Partition-

ing. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 178–204. Springer,
Heidelberg (2002)

29. Wieder, A., Bhatotia, P., Post, A., Rodrigues, R.: Orchestrating the deployment
of computations in the cloud conductor. In: Proc. of NSDI (2012)

30. Yang, F., Shanmugasundaram, J., Riedewald, M., Gehrke, J.: Hilda: A high-level
language for data-driven web applications. In: WWW (2006)

31. Yu, C.T., Chang, C.C.: Distributed Query Processing. Comp. Surv. (1984)

Sprinkler — Reliable Broadcast

for Geographically Dispersed Datacenters

Haoyan Geng and Robbert van Renesse

Cornell University, Ithaca, New York, USA

Abstract. This paper describes and evaluates Sprinkler, a reliable high-
throughput broadcast facility for geographically dispersed datacenters.
For scaling cloud services, datacenters use caching throughout their in-
frastructure. Sprinkler can be used to broadcast update events that inval-
idate cache entries. The number of recipients can scale to many thousands
in such scenarios. The Sprinkler infrastructure consists of two layers: one
layer to disseminate events among datacenters, and a second layer to dis-
seminate events among machines within a datacenter. A novel garbage
collection interface is introduced to save storage space and network band-
width. The first layer is evaluated using an implementation deployed on
Emulab. For the second layer, involving thousands of nodes, we use a
discrete event simulation. The effect of garbage collection is analyzed
using simulation. The evaluation shows that Sprinkler can disseminate
millions of events per second throughout a large cloud infrastructure,
and garbage collection is effective in workloads like cache invalidation.

Keywords: Broadcast, performance, fault tolerance, garbage collection.

1 Introduction

Today’s large scale web applications such as Facebook, Amazon, eBay, Google+,
and so on, rely heavily on caching for providing low latency responses to client
queries. Enterprise data is stored in reliable but slow back-end databases. In or-
der to be able to keep up with load and provide low latency responses, client query
results are computed and opportunistically cached in memory on many thousands
of machines throughout the organization’s various datacenters [21]. But when a
database is updated, all affected cache entries have to be invalidated. Until this is
completed, inconsistent data can be exposed to clients. Since the databases cannot
keep track of where these cache entries are, it is necessary to multicast an invalida-
tion notification to all machines that may have cached query results. The rate of
such invalidations can reach hundreds of thousands per second. If any invalidation
gets lost, inconsistencies exposed to clientsmaybe long-term.Other importantuses
of reliable high-throughput broadcast throughout a geoplex of datacenters include
disseminating events inmulti-player games and stock updates in financial trading.

Much work has been done on publish-subscribe and broadcast mechanisms
(see Section 6). Pub-sub services focus on support for high throughput in the face
of many topics or even content-based filtering, but reliability is often a secondary
issue and slow subscribers may not see all updates. Some recent systems [4,20]

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 247–266, 2013.
c© IFIP International Federation for Information Processing 2013

248 H. Geng and R. van Renesse

do provide high reliability and many topics, but the number of subscribers per
topic is assumed to be small (such as a collection of logging servers). Group
communication systems focus on high reliability, but such systems may stall in
the face of slow group members and, partly for that reason, assume that group
membership is small.

This paper describes Sprinkler, a high-throughput broadcast facility that is
scalable in the number of recipients while providing reliable delivery. Sprinkler
achieves its objectives through a novel broadcast API that includes support for
garbage collection and through a careful implementation that is cognizant of the
physical networking infrastructure.

Garbage collection both reduces load and makes it easier for clients or dat-
acenters to recover from an outage. For example, if there are two updates or
invalidations to the same key, then the first update is obsolete and it is no longer
necessary to try and deliver it to clients. Similarly, if a temporary key is deleted,
all outstanding updates can be garbage collected. As we show in Section 5, in
applications where there are many updates to a small set of popular keys, and
where there is significant use of temporary keys, such garbage collection can
significantly reduce the demands on the broadcast service.

Sprinkler is designed for a system consisting of a small and mostly static num-
ber of datacenters each containing a large and dynamic set of machines. Con-
sequently, Sprinkler uses two protocols: reliable multi-hop broadcast between
datacenters, followed by reliable broadcast within a datacenter. Each datacenter
deploys a replicated proxy to participate in the first protocol. While the de-
tails are different, both protocols depend on each peer periodically notifying its
neighbors about its state (i.e., gossip [13]).

To evaluate Sprinkler and find suitable values for certain configuration pa-
rameters, we conducted throughput, latency, and fault tolerance experiments.
We first evaluated an incomplete prototype implementation of Sprinkler. Using
Emulab [1] we were able to emulate realistic deployment scenarios and see what
broadcast throughput is possible through a small number of datacenters. As
a datacenter may contain thousands or tens of thousands of clients, we evalu-
ated a complete implementation of the protocol through simulation, calibrated
using measurements from experiments on the prototype implementation. We
also quantified the effectiveness of garbage collection by conducting a simulation
study on savings in storage space and network bandwidth using a workload mim-
icking cache invalidation in Facebook [21]. As a result of these experiments, we
believe that Sprinkler is capable of disseminating millions of events per second
throughout a large cloud infrastructure even in the face of failures.

The scientific contributions of this paper can be summarized as follows:

– the design and implementation of Sprinkler, a reliable high-throughput
broadcast facility that scales in the number of recipients;

– a novel garbage collection interface that allows publishers to specify which
messages are obsolete and do not need to be delivered;

– an evaluation of the throughput, latency, fault tolerance, and garbage col-
lection of Sprinkler.

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 249

This paper is organized as follows. We start by giving an overview of the
Sprinkler interface, as well as of the environment in which Sprinkler is intended
to be deployed, in Section 2. Section 3 provides details of the various protocols
that make up Sprinkler. Section 4 briefly describes the current implementation of
Sprinkler. Evaluation of Sprinkler is presented in Section 5. Section 6 describes
background and related work in the area of publish-subscribe and broadcast
facilities. Section 7 concludes and presents areas for future work.

2 System Overview

2.1 Sprinkler Interface

Sprinkler has the following simple interface:

– client.getEvent()→ event – client.publish(event)

Each event e belongs to a stream, e.stream. There are three types of events: data
events, garbage collection events, and tombstone events. Data events are simple
byte arrays. A garbage collection event is like a data event, but also contains a
predicate P (e) on events e—if P (e) holds, then the application considers e ob-
solete. A tombstone event is a placeholder for a sequence of events all of which
are garbage collected. An event is considered published once the corresponding
client.publish(event) interface returns. We consider each event that is pub-
lished unique. An event e is considered delivered to a particular client when
client.getEvent() → e′ returns and either e′ = e or e′ is a tombstone event
for e.

The interfaces satisfy the following: Sprinkler only delivers data and garbage
collection events that are published, or tombstone events for events that were pub-
lished and garbage collected. Published events for the same stream s are ordered
by a relation ≺s, and events for s are delivered to each client in that order. If the
same client publishes e and e′ for stream s in that order, then e ≺s e

′.
For each event e that is published for stream s, each client is either delivered

e or tombstone event for e followed by a matching garbage collection event g. A
garbage collection event g containing predicate g.P matches e if g.P (e)∧ e ≺s g
holds—that is, a garbage collection event cannot match a future event. A garbage
collection event g can match another garbage collection event g′. In that case we
require (of the application programmer) that ∀e : e ≺s g

′ ⇒ (g′.P (e)⇒ g.P (e)).
For example, if g′ matches all events (prior to g′) that are red, then g also
matches all events (prior to g′) that are red. The intention is to ensure that
garbage collection is final and cannot be undone.

A tombstone event matches a sequence of events that have been garbage
collected. For each event being garbage collected, at least one tombstone event
matching it is generated. A tombstone event t can also be garbage collected
by another tombstone event t′ that contains all events in t. For example, two
consecutive tombstone events as well as two overlapping tombstone events can be
replaced by a single tombstone event. However, tombstone events cannot contain
“holes” (missing events in a consecutive sequences of events).

250 H. Geng and R. van Renesse

These properties hold even in the case of client crashes, except that events
are no longer delivered to clients that have crashed. Sprinkler is not designed
to deal with Byzantine failures. Note that the Sprinkler interface requires that
all events are delivered to each correct client, and events can only be garbage
collected if matched by a garbage collection event. Trivial implementations that
deliver no events or garbage collect all events are thereby prevented.

2.2 Implementation Overview

Sprinkler is intended for an environment consisting of a relatively small and
static number of datacenters, which we call regions, each containing a large and
dynamic number of clients. A stream belongs to a region—we support only a
small number of streams per region. A typical stream is “key invalidation” and
a corresponding event contains the (hash of the) key that is being invalidated.
The key’s master copy is stored in the stream’s region, as only the key’s master
copy broadcasts invalidation messages.

The rate at which events get published may be high, so high throughput is
required. Low latency is desirable as well, although the environment is asyn-
chronous and thus we cannot guarantee bounds on delivery latencies.

Each region runs a service, called a proxy, each in charge of a small number of
streams. The proxy may be replicated for fault-tolerance. Sprinkler clients con-
nect to the local proxy. When a client publishes an event, it connects to the proxy
that manages the stream for the event. (Typically a client only publishes events
to streams that are local to the client’s region.) The proxy assigns a per-stream
sequence number to the event and disseminates the event among the other proxies
through the proxy-level protocol (PLP). Each proxy that receives the event stores
the event locally and disseminates the event among the local clients through the
region-level protocol (RLP). The details of the two protocols are described in the
next section, and more on the implementation follows in Section 4.

3 Details of the Protocols

3.1 Proxy-Level Protocol (PLP)

Figure 1 contains a state-transition specification for proxies. The state of a proxy
p is contained in the following variables:

– pxIDp contains a unique immutable identifier for p;
– streamsp contains the set of streams that p is responsible for;
– Histp contains the events received by p and that are not yet garbage collected.

Histp is empty initially;
– cntsp: an event counter for each stream s, initially 0;
– expectssp: for each stream s, a tuple consisting of a proxy identifier, a counter,

and a timestamp.

Events are uniquely identified by the tuple (e.type, e.stream, e.seq, e.range). Here
e.type is one of DATA, GC, or TOMBSTONE; e.stream is the stream of the event,

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 251

specification Proxy-Level-Protocol:
state:

pxIDp: unique id of proxy p
streamsp: set of stream ids managed by p
Histp: set of events that proxy p stores
cntsp: counters for each stream s
expectssp: (proxy, counter, time)

initially:
∀p :

Histp := ∅
∀p′ : p′ �= p ⇒

pxIDp �= pxIDp′
streamsp ∩ streamsp′ = ∅

∀s:
cntsp = 0
expectssp = (⊥, 0, 0)

transition addLocalEvent(p, e):
precondition:

e.stream ∈ streamsp ∧ e.seq = ⊥
action:

cnte.streamp := cnte.streamp + 1;
e.seq := cnte.streamp ;
Histp := filter(Histp ∪ {e});

transition addRemoteEvent(p, e):
precondition:

e.stream �∈ streamsp ∧ e.seq > cnte.streamp

action:
cnte.streamp := e.seq;
Histp := filter(Histp ∪ {e});

transition rcvAdvertisement(p, p′, cnt , T):
precondition:

TRUE
action:

∀s �∈ streamsp:
if cnts > expectssp.seq +

C/(T − expectssp.time) then
if expectssp.source �= p′.pxID then

if expectssp.source �= ⊥ then
Unsubscribe(expectssp.source , T)

Subscribe(p′.pxID , s, cnts)
expectssp = (p′.pxID , cnts, T)

Fig. 1. Specification of a proxy. filter(H) is a function on histories that replaced all
events from H that are matched by a garbage collection event in H with a tombstone
event.

252 H. Geng and R. van Renesse

and e.seq is the sequence number of the event. For tombstone events, e.range is the
number of garbage-collected events representedby the tombstone—and e.seq is the
sequence number of the last such event. For non-tombstone events, e.range = 1.

Transition addLocalEvent(p, e) is performed when proxy p receives an event
from a client that is trying to publish the event. The proxy only accepts the event
if it manages the stream of the event, and in that case assigns a sequence number
to the event. Finally, e is added to the history and a filter is applied to replace
garbage collected events by tombstone events and to aggregate consecutive and
overlapping tombstone events into single tombstone events.

Events for a stream s are ordered by their sequence number, that is, e ≺s e′

iff e.stream = e′.stream = s ∧ e.seq < e′.seq.
Proxies forward events to one another over FIFO channels. Performing tran-

sition addRemoteEvent(p, e) adds an event to p’s history for a stream that is not
managed by p but by some other proxy. The transition applies the same filter to
replace events that are garbage collected by tombstone events, and also updates
cnte.streamp to keep track of the maximum sequence number seen for e.stream.

It is an invariant that Histp does not contain any events e for which e.seq >
cnte.streamp , as is clear from the specification. We note without proof that it is
also invariant that Histp contains all published events with e.seq ≤ cnte.streamp ,
or matching tombstone event and garbage collection events.

Fig. 2. Space-time diagram for
subscription change when the link
between two datacenters goes down

A simple way for events to propagate be-
tween proxies would be to have each proxy
broadcast its events to the other proxies.
However, such an approach may not work if
certain datacenters can no longer communi-
cate directly. To address this, the way a proxy
receives events from another proxy is through
a subscription mechanism. For each non-local
stream, a proxy subscribes to events from at
most one other proxy, which does not have
to be the owner of that stream. Periodically,
each proxy p′ broadcasts advertisements con-
taining cntp′ to the other proxies, notifying
them of its progress on each stream.

Proxy pmaintains for each stream s a vari-
able expectssp, containing a tuple consisting of
a proxy identifier, a sequence number, and
a timestamp. If p is not subscribed for the
stream as is initially the case, then the tu-
ple is (⊥, 0, 0). If p is subscribed to receiv-
ing events from p′, then expectssp contains the
proxy identifier of p′, and the sequence num-
ber and time that p received in the latest ad-
vertisement from p′.

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 253

Transition rcvAdvertisement(p, p′, cntp′ , T) shows what happens when proxy
p receives an advertisement from p′ at time T . For each non-local stream, p checks
to see if the advertisement is further advanced than the last advertisement that it
got for the same stream and by howmuch. C is a configuration variable. If set to 0,
proxies tend to switch between subscriptions too aggressively.We divide C by the
time expired since the last advertisement so that a proxy does not indefinitely wait
for a proxy that may have crashed. When switching from one proxy to another p′,
p specifies to p′ how far it got so that p′ knows which event to send to p first.

Figure 2 illustrates how the subscription pattern changes adaptively in the
presence of network outage. The figure shows three proxies X , Y , and Z, and
messages flowing between them. For convenient reference, all messages are num-
bered. Initially, proxies can communicate with each other directly. Proxy Y is in
charge of stream s, and events up to 3 have already been published. Proxies X
and Z do not yet store any events for s, and are not subscribed to any source.

Messages 1 and 2 are advertisement messages for s, in which the count for
s is 3. (Actual advertisement messages also include counters for other streams,
but only s is shown for brevity.) Proxies X and Z send messages 3 and 4 to
subscribe to stream s from proxy Y . In response, proxy Y starts sending events
for s to proxies X and Z, shown as messages 5 through 11. The network between
proxies Y and Z goes down at the broken line that is labeled 12, and subsequent
events published by proxy Y cannot get through to Z (message 13). Message
14 is an advertisement message sent from proxy X to proxy Z for stream s,
which contains a larger sequence number for stream s than the most recent
advertisement message that proxy Z received from Y . So proxy Z changes its
subscription to proxy X using message 15, and consequently starts receiving
events from proxy X (messages 16 and 17). Meanwhile, proxy X continues to
receive events for s directly from proxy Y , as illustrated by messages 18 and 19.

3.2 Region-Level Protocol (RLP)

The Region-Level Protocol delivers events from a proxy to all the clients within
the region of the proxy. Reliability and throughput are key requirements: all
events should be delivered to each correct client at high rate as long as it does
not crash. Compared to the Proxy-Level Protocol, there are the following im-
portant differences: First, there are only a few number of proxies and the set of
proxies is more or less static, while there are many clients in a region (on the
order of thousands typically) and clients come and go as a function of reconfig-
urations for a variety of reasons. Second, proxies are dedicated, high-end, and
homogeneous machines with resources chosen for the task they are designed for,
while clients have other tasks and only limited resources for event dissemination.
Third, proxies may be replicated for fault tolerance of event dissemination, but
clients cannot be.

The Region-Level Protocol (RLP) consists of two sub-protocols: a gossip-
based membership protocol based on [5], combined with a peer-to-peer event
dissemination protocol loosely based on Chainsaw [23]. The membership protocol
provides each client with a view that consists of a small random subset of the

254 H. Geng and R. van Renesse

other clients in the same region. The views are updated frequently through
gossip. At any particular time, the clients and their views induce a directed
graph over which clients notify their progress to their neighbors and request
missing events, similar to the Proxy-Level Protocol. However, unlike proxies,
clients do not keep track of old events for long because they have only limited
capacity. But clients that cannot retrieve events from their neighbors can always
fall back onto their local proxy, a luxury proxies do not possess.

We describe the two protocols in more detail below.

Membership Protocol. In the membership protocol, each client maintains a
local view, which is a subset of other clients that has to grow logarithmically
with the total number of clients. In the current implementation, the maximum
view size V is configured and should be chosen large enough to prevent parti-
tioning [5]: selecting a large view size increases overhead but makes partitions
in the graph less likely and reduces the diameter of the graph and consequently
event dissemination latency. Typically, V is on the order of 10 to 20 clients.

We call the members of the view the client’s neighbors. A client periodically
updates its local view by periodically gossiping with its neighbors. When a client
c receives a view from its neighbor c′, c computes the union of its own view and
the view of c′, and then randomly removes members from the new view until it
has the required size. However, it makes sure that c′ is in the new view. This last
constraint, called reinforcement [5], is subtle but turns out to be important—
without it the induced graph is likely to become star-like rather than to converge
to a random graph. [5] shows that with reinforcement the protocol maintains
a well-connected graph of clients with O(logN) diameter, where N is the total
number of clients. Clients that have crashed or have been configured to no longer
participate in the protocol automatically disappear from views of other clients
because they do not reinforce themselves.

The Sprinkler membership protocol deviates from [5] in only minor ways. The
local proxy is one of the clients that is gossiping. While partitioning in this graph
is rare, it can happen. For this reason, each client occasionally gossips with its
local proxy even if the proxy is not in its view. This causes partitions to fix
themselves automatically. As shown in [5], partitions tend to be small in size: on
the order of two to three clients. Therefore, if the view of a Sprinkler client is
smaller than V , the client adds the local proxy to its view automatically. Such
small partitions thus join the larger graph immediately. New clients start with
a view consisting of only the local proxy.

Data Dissemination Protocol. Figure 3 presents a state-transition diagram
for the data dissemination protocol. The state of a client c is contained in the
following variables:

– Recvc contains the events delivered to c and that are not yet discarded. Recvc
is empty initially. If c is a proxy, then Recvc = Histc;

– cntsc: is the sequence number for the last event that c received for stream s,
initially −1;

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 255

specification Region-Level-Protocol:
state:

Recvc: set of events that node c stores
cntsc: counters for delivered events for stream s
nextsc: counters for requests for stream s

initially:
Recvc := ∅
∀t:

cntsc = −1
nextsc = 0

transition deliverEvent(c, e):
precondition:

e.seq− e.range ≤ cnte.streamc < e.seq
action:

Recvc := filter(Recvc ∪ {e})
cnte.streamc := e.seq
sendNotify(e.stream, cnte.streamc)

transition receiveNotify(c, c′, s, cnt):
precondition:

nextsc ≤ cnt
action:

sendRequest(c′, s,nextsc, cnt)
nextsc := cnt+ 1

transition receiveRequest(c, c′, s,nxt, cnt):
precondition:

TRUE
action:

E := {e ∈ Recvc | e.stream = s ∧
∃s ∈ (e.seq− e.range, e.seq] : nxt ≤ s ≤ cnt}

sendEvents(c′, cntsc, E)

transition discardEvent(c, e):
precondition:

e ∈ Recvc
action:

Recvc := Recvc − {e}
transition requestFromProxy(c, p, s):

precondition:
cntsc < nextsc − 1
s ∈ p.streams

action:
sendRequest(p, s, cntsc + 1, nextsc − 1)

Fig. 3. Specification of a client for data dissemination

256 H. Geng and R. van Renesse

– nextsc: is the sequence number of the next event that c wants to request for
stream s, initially 0.

Performing transition deliverEvent(c, e) delivers an event to client c. If c is a
proxy, this corresponds to c receiving the event in an addLocalEvent(c, e) or
addRemoteEvent(c, e) transition. Otherwise c is an ordinary client that received
the event either from the proxy or from a peer client in its region. Event e is
delivered only if its sequence number is directly after the maximum sequence
number delivered to c. When delivered, e is added to Recvc and cnte.streamc is
updated. Finally, client c broadcasts a NOTIFY message its current neighbors
(determined by the membership protocol), notifying them of its progress with
respect to e.stream.

Transition receiveNotify(c, c′, s, cnt) shows what happens when client c re-
ceives a NOTIFY message from client c′ for stream s. If the sequence number in
the NOTIFY message exceeds the events that client c has already requested, then
c sends a REQUEST message to c′ for the missing events.

Transition receiveRequest(c, c′, s,nxt, cnt) is performed when client c re-
ceives a request from client c′ for stream s. The client responds with an EVENTS

message containing all events between nxt and cnt (possibly a sequence with
holes, or even an empty sequence). The message also contains cntsc so the recip-
ient can detect what events exactly are missing from Recvc.

Non-proxy clients may have limited space to store events. The Sprinkler spec-
ification gives clients the option of not keeping all events. In our implementation
each client c has only limited capacity in Recvc and replace the oldest events
with the newest events. Transition discardEvent(c, e) happens when client c
removes event e from Recvc.

Because clients do not keep all events, clients sometimes need to request miss-
ing events from the local proxy. In transition requestFromProxy(c, p, e), client
c sends a REQUEST to the client’s local proxy p. The client only sends requests
for events that it previously requested from other clients.

Shuffling. In the protocol described above, a client c broadcasts a NOTIFY

message to all its neighbors, each neighbor immediately sends REQUEST message
to c, and c immediately responds with the requested events. Depending on the
view size of c (bounded by V), this could create a large load on c.

In order to deal with this imbalance, each client only broadcasts the NOTIFY

message to a subset of its neighbors of size F (for Fanout). This subset is of
configurable size, and is changed periodically, something we call a shuffle. In the
limit F = 1, but as we shall see in evaluation studies, a slightly larger subset has
benefits for performance. We provide a simulation-based analysis on the effect
of choosing different values for F and the shuffle time.

3.3 Fault Tolerance of a Proxy

So far we have described a proxy as if it were a single process, and as such it would
be a single point of failure, depriving clients in its region from receiving events.

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 257

The Sprinkler proxy is replicated using Chain Replication [27]. To tolerate f
failures in a region, there are f + 1 proxy replicas configured in a chain. Clients
submit events by sending them to the head of the chain. The events are forwarded
along the replicas in the chain, each replica storing the events in its copy of Hist.
The tail of the chain communicates with the head replicas of its peer proxies,
and also participates in the local RLP.

The chain is under the management of a local configuration service. In case a
replica fails, it is removed from the chain. If the removed replica is not the tail, the
impact is minimal—the predecessor of the replica may have to retransmit missing
events to its new successor. It the head is removed, peer proxies and clients that
try to publish events have to be notified. If it is the tail that is removed, a new tail
ensues that has to set up new connections with the head nodes of its peer prox-
ies. Both endpoints on each new connection exchange advertisements to allow the
proxies to recover. A beneficial feature of Chain Replication is that the new tail is
guaranteed to have all events that the old tail stored, and thus no events can get
lost until all replicas in the chain fail and lose their state.

Sprinkler allows recovery of a crashed replica, as well as adding a replica with
no initial state. The replica to the end of the chain, beyond the current tail, and
will start receiving the events that it missed. Once the new tail is caught up, the
old tail gives up its function and passes a token to the new replica. The replica
then sets up new connections as described above.

3.4 Garbage Collection

In typical settings, Sprinkler broadcasts each event to thousands of hosts. All the
events that are not garbage collected are stored at each of the proxies. In an en-
vironment with high load, the amount of data needs to be stored and transferred
is huge. Efficient garbage collection would save critical storage space and network
bandwidth. In this section, we give two examples of garbage collection policy.

One possible approach for garbage collection is to keep only the most recent
events, and discard old events once they meet certain “age” criteria. An example
is to keep only the most recent N events. In this case, each data event is also
a garbage collection event: an event at index i collects all events with indices
less that i−N . Another example is to discard all the events that are older than
a certain period of time, say, k days. If this policy is enforced in a daily basis,
the system generates one garbage collection event each day that collects all the
events that are more than k days old. Such approach is useful if there is time
bound on the usefulness of the data. LinkedIn uses such approach in processing
log data with Kafka [20].

Another class of policy is key-based. In applications like cache invalidation,
each data event states that the cache entry for a specific key is no longer valid.
For any two events invalidates the same key, the later event implies the earlier
one. From a client’s perspective, if the later event is delivered, there is no need
for the earlier one. So in this case, each data event is also a garbage collection
event that collects all previous events on the same key.

258 H. Geng and R. van Renesse

The effectiveness of the key-based policy depends on actual workload. We
show in section 5 that it is effective under our synthesized workload that shares
similar properties to that of a popular, real web service.

4 Implementation

We have implemented a limited prototype of Sprinkler in the C programming
language. We also have implemented a discrete event simulator of the full Sprin-
kler protocol described in this paper.

Nodes in the Sprinkler prototype communicate by exchanging messages across
TCP connections. Each message starts with a header followed by an optional
payload that contains the application data if needed. Batching of multiple events
within a message is extensively used to optimize throughput.

We also have an initial implementation of the client library, except that we do
not yet provide a comprehensive evaluation of it. Instead, in our evaluation, each
client is configured to just receive events from proxies. Each proxy process also
acts as client and is running both the Proxy-Level Protocol and the Region-Level
Protocol. Proxy replication has only been implemented in the simulator.

5 Evaluation

In this section we evaluate the throughput and latency provided by Sprinkler
for various scenarios, determine good values for parameters such as the fanout
F , and investigate the efficacy of fault tolerance mechanisms within Sprinkler.

The performance of Sprinkler depends on both the Proxy-Level Protocol and
the Region-Level Protocol. Given the small number of regions in a typical cloud
infrastructure, we can use a prototype implementation of proxies to evaluate the
Proxy-Level Protocol. However, since each region may have many thousands of
clients, we evaluate the Region-Level Protocol using discrete event simulation.
We use experimental measurements of the prototype implementation to calibrate
the simulation of a large number of clients. For these measurements, each proxy
is configured with a static view of clients.

5.1 Throughput of Proxy-Level Protocol

We tested the Proxy-Level protocol on an Emulab cluster1. Each node in the
cluster is equipped with an AMD 1.6 GHz Opteron 242 processor and 16 GB of
RAM. Nodes are connected to a single gigabit Ethernet switch.

We set up experiments with one, two, or three proxies. In these experiments,
each proxy can communicate directly with each other proxy. The maximum view
size V and the fanout F are both set to 3, and as described above, the local view
of proxies do not change over time. Consequently there is no shuffling present in
these experiments.

1 We used the Marmot cluster of the PRObE project [3].

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 259

(a) Aggregate throughput (b) Throughput per driver

Fig. 4. Throughput as a function of the number of drivers per proxy

Some clients are used to publish events, and we call those clients drivers.
Drivers do not receive any events—they just send events to proxies. Conse-
quently, drivers do not run the Region-Level Protocol. Each driver invokes
publish() in a closed loop with no wait time between invocations. The size
of each event is fixed at 10 bytes, large enough to contain the hash of a key to
be invalidated, say. Each published event is a garbage collection event: an event
at index i specifies that all events with indices less than i− 100, 000, 000 can be
garbage collected. We control the load on Sprinkler by varying the number of
drivers attached to a proxy. In our experiments, each process, whether proxy,
client, or driver, runs on a separate machine.

Figure 4(a) shows the throughput as a function of the number of drivers per
proxy. Each data point shows an average over five experiments, as well as minima
and maxima. The graph has three lines, one for each scenario. As the number
of drivers increases, the throughput increases until the traffic load saturates the
system. Peak throughput decreases slightly as the number of proxies increases
because of the overhead of forwarding events between proxies. Figure 4(b) shows
the throughput per driver for the same experiment.

5.2 Simulation Study

In the next experiment, we evaluate the performance of the complete Sprinkler
protocol using discrete time simulation. The basic settings are as follows: There
are three regions connected by 10 Gbps links (the bandwidth that is provided by
the National Lambda Rail, a transcontinental fiber-optic network). Figure 5(a)
shows the latencies between the three regions, chosen to reflect typical latencies
for datacenters located on the west coast and the east coast of the United States.

Within a region, processes communicate over 1 Gbps networks and one-way
latencies are 1ms. Each region has 1000 clients and a proxy that has three repli-
cas. Each client (as well as the tail server of the proxy) maintains a maximum
view size of 20 peers.

In the 3-region prototype experiment of the previous section, the throughput
peaks between 2.6-2.7 million events per second. We send 864k events per second
to each proxy at a fixed rate, for a total of 2.592 million events per second,
approximately matching the maximum throughput of the prototype.

260 H. Geng and R. van Renesse

(a) Topology (b) Throughput

Fig. 5. (a) The experimental topology used to simulate throughput and latency. (b)
Average throughput as a function of shuffle time.

(a) Origin: region 0 (b) Origin: region 1

Fig. 6. Average latency and throughput observed as load is increased. The figures
shows events added by clients in two different regions. The third region is similar.

Figure 5(b) shows the average throughput the simulator achieves varying the
fanout F and the shuffle time. We do not show variance for clarity—it is small
in our simulations. Each data point is the average throughput. To remove bias,
measurements do not start until 300ms into an experiment, at which point the
subscriptions are established and the throughput has stabilized. As can be seen,
a consequence of this is that the throughput is slightly higher than the load
added to the system, as the proxies catch up to deliver old events. Eventually,
the throughput matches the load imposed on the system. The best throughput
is achieved for a fanout of 4. For larger fanouts, the outbound bandwidth of a
client gets exhausted for a relatively small number of events. Such clients cannot
forward other events and start dropping events from their Recv buffer. This in
turn results in an increase of requests made for missing events to the proxy,
competing with bandwidth for normal traffic.

A similar effect happens when the fanout is small, but the shuffle time is long.
Decreasing the shuffle time allows a client to forward events to more neighbors,
effectively reducing the diameter of the forwarding graph, in turn reducing event
loss in clients and the load on proxies.

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 261

(a) Average throughput (b) Average latency

Fig. 7. Performance over time with inter-region link failure

Figure 6 shows latency and throughput as load is increased, for various values
for the fanout F . The latency of an event is the time from the event arriving at the
local proxy until it is delivered to all clients. The shuffle time in these experiments
is fixed at 30ms. In each line there are 6 data points, corresponding to increasing
the load. At the first (leftmost) data point, 1/6 of the maximum throughput
of the prototype implementation is introduced, that is, 1/6th of 2.592 million
events per second. At the next data points we add 1/3rd of the load successively.
Consequently, at the last data point we introduce 1/6 + 5 × 1/3 = 11/6 of the
maximum load achieved on the prototype implementation. The halfway point on
the line corresponds to the maximum load. Note that in some experiments the
system becomes overloaded and cannot keep up with the load. We show results
for events originating from different regions separately.

Fig. 8. The experimental
topology used to simulate the
impact of inter-region link fail-
ure, with the failed link (15ms)
on the right side

As shown in the figure, throughput gradually
goes up until the system saturates. Before satura-
tion, latency of events disseminated to 3000 clients
is generally below 300ms.

5.3 Impact of Inter-Region Link Failure

Inter-region link failure blocks one region from
communicating directly with another. The Proxy-
Level Protocol supports indirect routing through
other regions, and thus as long as there is transi-
tive connectivity events should continue flowing to
all clients. To evaluate this, we set up a four-region
network, with inter-region latencies as shown in
Figure 8. Latencies are chosen based on typical
numbers for cross-country datacenter deployment.
At the start of the experiment, all regions can directly communicate. After time
t = 19, the link between regions 2 and 3 is taken out, and restored at time t = 41.

Figure 7a shows throughput as a function of time. The network outage results
in the brief drop in throughput at time t = 19, caused by the interruption of
events flowing between regions 2 and 3. The throughput recovers shortly after
time t = 20, after the new advertisement messages from regions 0 and 1 arrive
and regions 2 and 3 update their subscriptions accordingly. The throughput

262 H. Geng and R. van Renesse

increases for about five seconds before returning to normal, as regions 2 and 3
catch up. Note the slight glitch after time t = 41 when the link is restored and
regions 2 and 3 resume sending their events directly to one another.

For the same experiment, Figure 7b shows the latencies over time for events
added from regions 0 and 2. Note that only the latter is directly connected to the
failed link. Before the outage, the latencies of events added from the two regions
are similar, both around 200ms. Latencies of events from region 2 significantly
increase at the time the link is taken out, because those events cannot reach the
proxy in region 3 until the subscription changes. The latencies of events from
region 2 recover after the new subscription. Latencies are slightly higher than
before because the path to region 3 has greater latency. After the link is restored,
latencies drop to the original level after a short period of adjustment.

5.4 Effectiveness of Garbage Collection

In this section, we first describe the workload we use to evaluate the efficacy of
garbage collection and show the workload is realistic. Next we show simulation
results of the effectiveness of garbage collection.

Fig. 9. Number of invalidations to keys
with varying time since their addition.
skew is the parameter for the Zeta distri-
bution, while λ is the parameter for the
Poisson distribution of inter-arrival times
of invalidation events.

Workload Description. In our
model, there are two kinds of updates:
1) keys are updated with new values,
and 2) new keys are added.

Each update event invalidates a ran-
dom key from the current set of keys.
The probability for a key to be selected
follows a Zipf distribution. We assume
that inter-arrival times of key update
events are Poisson distributed.

New keys are added to the set at
random. In our model, the initial pop-
ularity of new keys also follows a
heavy-tailed distribution. We choose a
Zeta distribution (Zipf distribution over an infinite set) because for simulation
purposes it is easy to scale up to a large number of keys. A single parameter,
skew, determines the shape of a Zeta distribution. For simplicity, we assume that
the Zeta distribution has the same skew as the Zipfian popularity distribution
of keys. We also assume that inter-arrival times for new key events are Poisson
distributed—we fix the parameter λ at 10 for these experiments.

Figure 9 shows the aggregated number of invalidation events on keys as a func-
tion of age. A data point at coordinates (x, y) shows that during the experiment,
y invalidations are made to any object that have been inserted x ticks ago when
such an invalidation was generated. The figure shows that new objects tend to
attract more updates than old objects, because over time new objects come in,
making old ones gradually less popular. popularity decrease also roughly follows

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 263

(a) The Zeta model: infinite key set (b) The Zipf model: finite key set

Fig. 10. Number of events stored at each proxy as a function of total number of events
generated on log-log scale

a Zipf-like distribution. The slope of the line is steeper with larger skew, since the
most popular objects get invalidated with higher probability. For the same skew,
the plotted line is higher for larger λ as more invalidation events are generated.

In private communication with an engineer at a popular social network based
web service provider, we confirmed that our workload, in particular the line with
skew = 1.1, λ = 200, exhibits properties similar to their real workload.

Evaluation Results. We evaluated the performance of garbage collection with
the workload described above. The metric is the amount of storage needed at
each proxy. Note that since events of the same stream arrive in FIFO order at
each proxy, there is no need to store tombstone events explicitly. A tombstone
event is always followed by a corresponding data event.

Figure 10a shows the number of events to be stored at each proxy as new
events are generated. Garbage collection saves roughly three-fourths of the space
needed to store events. The effect becomes more significant if the workload is
more heavily skewed.

In a real-world application, the number of keys are generally bounded. Fig-
ure 10b shows the same experiment on a slight variant of the above model: the
set of possible keys is finite, and a Zipf distribution over the finite set is used
to model the popularity. In this experiment, there are 100, 000 keys in the set
initially. For each chosen skew value, we study two cases: a) the set of keys is
fixed over time; and b) new keys are inserted into the system with a 1 : 10 inser-
tion/invalidation ratio. The result shows that garbage collection saves roughly
85% of the space with a skew of 1.1, and more with a higher skew. Only the
results for the case of fixed set of keys are shown in the figure, since the addition
of new keys makes little difference to the results.

6 Related Work

Sprinkler provides roughly similar functionality to topic-based publish-subscribe
systems such as Information Bus [22] (TIBCO), iBus [6], JMS Queue [12], Web-
Sphere MQ [2], and so on. The main focus of such systems is to support high
throughput, but, unlike Sprinkler, slow subscribers or subscribers that join late
may not receive all updates. Topic-based pub-sub systems are closely related
to group communication systems [24], as topics can be viewed as groups [14].

264 H. Geng and R. van Renesse

Examples of group communication systems such as ISIS [8] focus on reliability,
but throughput is limited by the slowest group member.

Apache HedWig [4] is a recent publish-subscribe system that is designed to
distribute data across the Internet. Like Sprinkler, HedWig provides reliable de-
livery. However, HedWig is intended for a large number of topics with a small
number of subscribers per topic (no more than about 10). In contract, Sprinkler
can support only a small number of streams but can scale to hundreds of thou-
sands of subscribers per stream. HedWig uses a separate coordination service
(ZooKeeper [17]) to keep its metadata. To provide high throughput in the face
of slow subscribers, HedWig logs all events to disk before delivery.

LinkedIn’s Kafka [20] is another recent publish-subscribe system that provides
high throughput and persistent on-disk storage of large amounts of data. Mes-
sages are guaranteed to be delivered and in order within a so-called partition
(a sharding unit within a topic). Like HedWig, Kafka relies on ZooKeeper to
maintain group membership and subscription relationships, but unlike Sprinkler
does not deal with deployments in geographically dispersed locations.

Sprinkler is strongly inspired by gossip protocols. Proxies as well as clients
gossip their state to their peers, and Sprinkler’s per-region membership protocol
is gossip-based as well. First introduced in [13], gossip has received consider-
able research. The first gossip protocols assumed all participants to gossip all
their state with all other participants, providing strong reliability properties but
limiting scalability drastically. Bimodal multicast [7] is an IP-multicast protocol
that provides reliability with high probability through such a gossip mechanism.
However, both IP multicast and uniform gossip limits its scalability. To obtain
good scalability it is necessary to gossip in a more restricted manner.

Another gossip-based option is to provide each member with a small and dy-
namic view consisting of a random subset of peers, inducing a random graph
that is connected with high probability [15,16,25,5]. SelectCast [9] (based on As-
trolabe [26]) is a publish-subscribe protocol that builds a tree-structured overlay
on participants using gossip. The overlay is then used to disseminate events.
Sprinkler’s membership protocol is entirely based upon [5]. Our Region-Level
Protocol is influenced by the Chainsaw protocol [23]. While Chainsaw is in-
tended for streaming video and can afford to lose video frames, RLP provides
provides reliable delivery of (usually) small events.

Early large scale multicast protocols such as [18] build network overlays, but
only provide best effort service. Multicast protocols such as SCRIBE [10], Split-
Stream [11] and Bullet [19] use Distributed Hash Tables to build tree-based
overlays. Such protocols, besides providing only best effort service, tend to suf-
fer from relatively high “stretch” as messages are forwarded pseudo-randomly
through the overlay.

7 Conclusion and Future Work

We have described the design, implementation, and initial evaluation of Sprin-
kler, a high-throughput reliable broadcast facility that scales in the number
of recipients. Prior approaches either assume a small number of recipients per

Sprinkler — Reliable Broadcast for Geographically Dispersed Datacenters 265

topic or drop events to slow recipients or temporarily disconnected recipients.
In order to reach our objectives, we have added a garbage collection facility
that replaces application-specified obsolete events with tombstone events. Such
tombstone events can be readily aggregated. Garbage collection is particularly
effective in the face of updates to keys that are skewed by popularity, or in the
face of keys that are used temporarily for intermediate results. Combined with a
careful design that separates inter-datacenter forwarding from intra-datacenter
forwarding and specializes each case, we have shown that Sprinkler can provide
high throughput in the face of millions of recipients.

At the time of this writing, we only have an initial implementation and eval-
uation of Sprinkler. Garbage collection events currently support predicates that
remove events prior to a certain sequence number, or all previous events for the
same key. We want to support a richer language for predicates, but have to ensure
that Sprinkler proxy CPUs do not get overloaded by evaluation of predicates. We
are working on a design of a predicate evaluation language as well as an index for
events that allow fast identification of events that match a predicate.

Proxies have the option to maintain all events in memory, or to sync events
onto disk to make them persistent. For this paper, we only implemented and
evaluated the first option. While keeping everything in memory works well if
garbage collection is sufficiently effective and replication prevents data loss, we
want to evaluate the performance of storing events on disk. Most access will
be sequential writing, and modern disks spin at an impressive 15,000rpm. As
disks are cheap, we can deploy multiple disks in parallel to further increase
bandwidth. Also SSDs are becoming increasingly cost effective. Cache controllers
with battery-backed caches mask the latency of disks—they can complete writes
even as the main CPU has crashed. We thus do not expect massive slowdown in
the face of disk logging of events.

Acknowledgements. We are grateful for the anonymous reviews and the par-
tial funding by grants from DARPA, AFOSR, NSF, ARPAe, iAd, Amazon.com
and Microsoft Corporation.

References

1. Emulab, http://www.emulab.net
2. IBM WebSphere MQ, http://www.ibm.com/WebSphere-MQ
3. PRObE: Parallel Reconf. Observational Env.,

http://newmexicoconsortium.org/probe
4. Apache HedWig (2010), https://cwiki.apache.org/ZOOKEEPER/hedwig.html
5. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership

protocol. In: Proc. of the 24th ACM Symp. on Principles of Distributed Computing,
pp. 292–301 (2005)

6. Altherr, M., Erzberger, M., Maffeis, S.: iBus - a software bus middleware for the
Java platform. In: Proceedings of the Workshop on Reliable Middleware Systems,
pp. 43–53 (1999)

7. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
Multicast. ACM Transactions on Computer Systems 17(2), 41–88 (1999)

8. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems.
In: Proc. of the 11th ACM Symp. on Operating Systems Principles (1987)

http://www.emulab.net
http://www.ibm.com/WebSphere-MQ
http://newmexicoconsortium.org/probe
https://cwiki.apache.org/ZOOKEEPER/hedwig.html

266 H. Geng and R. van Renesse

9. Bozdog, A., van Renesse, R., Dumitriu, D.: SelectCast – a scalable and self-
repairing multicast overlay routing facility. In: First ACM Workshop on Survivable
and Self-Regenerative Systems, Fairfax, VA (October 2003)

10. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications (JSAC) 20(8) (2002)

11. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: high-bandwidth multicast in cooperative environments. In: Proc. of
the 19th ACM Symp. on Operating Systems Principles, pp. 298–313 (2003)

12. Curry, E.: Message-Oriented Middleware. In: Mahmoud, Q.H. (ed.) Middleware for
Communications, Chichester, UK. John Wiley and Sons, Ltd. (2005)

13. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proc. of the 6th ACM Symp. on Principles of Distributed Computing, pp. 1–12
(1987)

14. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

15. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-
M.: Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21(4), 341–374
(2003)

16. Ganesh, A.J., Kermarrec, A.-M., Massoulié, L.: Peer-to-peer membership manage-
ment for gossip-based protocols. IEEE Trans. Comput. 52(2), 139–149 (2003)

17. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: Proceedings of the 2010 USENIX Annual Technical
Conference, pp. 145–158 (2010)

18. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., O’Toole, J.W.: Overcast: Reli-
able multicasting with an overlay network. In: Proc. of the 4th Symp. on Operating
Systems Design and Implementation (October 2000)

19. Kostić, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: high bandwidth data
dissemination using an overlay mesh. In: Proc. of the 19th ACM Symp. on Oper-
ating Systems Principles, pp. 282–297 (2003)

20. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log pro-
cessing. In: 6th International Workshop on Networking Meets Databases, NetDB
2011 (2011)

21. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.:
Scaling Memcache at Facebook. In: Proc. of the 10th Symp. on Networked Systems
Design and Implementation, Lombard, IL (April 2013)

22. Oki, B.M., Pfluegl, M., Siegel, A., Skeen, D.: The Information Bus—an architecture
for extensible distributed systems. In: Proc. of the 14th ACM Symp. on Operating
Systems Principles, Asheville, NC, pp. 58–68 (December 1993)

23. Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.E.: Chainsaw:
Eliminating trees from overlay multicast. In: van Renesse, R. (ed.) IPTPS 2005.
LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005)

24. Powell, D.: Group communication. Commun. ACM 39(4), 50–53 (1996)
25. Shen, K.: Structure management for scalable overlay service construction. In: Proc.

of the 1st Symp. on Networked Systems Design and Impl., pp. 281–294 (2004)
26. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-

nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2), 164–206 (2003)

27. van Renesse, R., Schneider, F.B.: Chain Replication for supporting high throughput
and availability. In: Proc. of the 6th Symp. on Operating Systems Design and
Implementation (December 2004)

Transactional Failure Recovery

for a Distributed Key-Value Store

Muhammad Yousuf Ahmad1, Bettina Kemme1,
Ivan Brondino2, Marta Patiño-Mart́ınez2 and Ricardo Jiménez-Peris2

1 McGill University
2 Universidad Politécnica de Madrid

Abstract. With the advent of cloud computing, many applications have
embraced the ensuing paradigm shift towards modern distributed key-
value data stores, like HBase, in order to benefit from the elastic scal-
ability on offer. However, many applications still hesitate to make the
leap from the traditional relational database model simply because they
cannot compromise on the standard transactional guarantees of atomic-
ity, isolation, and durability. To get the best of both worlds, one option
is to integrate an independent transaction management component with
a distributed key-value store. In this paper, we discuss the implications
of this approach for durability. In particular, if the transaction manager
provides durability (e.g., through logging), then we can relax durability
constraints in the key-value store. However, if a component fails (e.g., a
client or a key-value server), then we need a coordinated recovery pro-
cedure to ensure that commits are persisted correctly. In our research,
we integrate an independent transaction manager with HBase. Our main
contribution is a failure recovery middleware for the integrated system,
which tracks the progress of each commit as it is flushed down by the
client and persisted within HBase, so that we can recover reliably from
failures. During recovery, commits that were interrupted by the failure
are replayed from the transaction management log. Importantly, the re-
covery process does not interrupt transaction processing on the available
servers. Using a benchmark, we evaluate the impact of component failure,
and subsequent recovery, on application performance.

Keywords: Cloud computing, key-value store, transaction processing,
OLTP, fault tolerance, failure recovery.

1 Introduction

Traditional online transaction processing (OLTP) applications generally cannot
compromise on the basic transactional guarantees of atomicity, consistency, iso-
lation, and durability. On the other hand, modern distributed key-value data
stores do not provide transactional semantics out of the box. One way to bridge
this gap is through the integration of an independent transaction management
component with a distributed key-value store. This approach can allow a tra-
ditional OLTP application to benefit from the elastic scalability of cloud com-
puting infrastructure without sacrificing on transactional semantics. Providing

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 267–286, 2013.
c© IFIP International Federation for Information Processing 2013

268 M. Yousuf Ahmad et al.

Fig. 1. System Architecture

transactional properties for key-value stores has been proposed in several con-
texts [7,8,17,19,20]. Figure 1 shows the principle architecture of our approach.
The interface of the key-value store is enhanced to provide the transactional
primitives begin, commit, and abort, and all read and write accesses to the key-
value store are encapsulated in a transactional context. Existing solutions vary
in how they implement the various transactional properties as well as how tightly
or loosely coupled transaction management is with the data store. We believe
that transaction management is ideally as much separated from the data stor-
age as possible, i.e., it should mainly be the transaction management component,
rather than the key-value store, that provides the transactional properties.

While the tasks of isolation and atomicity have been the main topic for most of
the work so far, relatively little attention has been given to durability. In general,
current key-value stores provide durability as they typically persist each update
they receive, i.e., they provide durability on a per-object basis. This can be ex-
ploited by the transaction manager, since all updates are automatically durable
at the time of commit. However, this per-object durability is very costly, in par-
ticular as many key-value stores use a reliable file system for persistence that
leads to further distribution and replication. Thus, end-to-end latency suffers
significantly.

In fact, the cost of writing all changes individually to stable storage before
commit is already considered unacceptable in traditional monolithic database
systems. Instead, they provide durability with the help of a recovery log [10]. All
the changes a transaction performs are recorded in an append-only recovery log
that is made persistent just before the transaction commits with a single I/O
operation. In contrast, the updates on the actual data pages are not written to
stable storage before commit, since this is expensive in terms of I/O. In case of a
failure, the updates in the recovery log are replayed to put the stable storage back

Transactional Failure Recovery for a Distributed Key-Value Store 269

into a consistent state. As it would be extremely costly as well as unnecessary to
replay the entire recovery log since system startup (as most updates are likely
to be already persisted), checkpoints are used to accelerate the recovery process.

In this paper, we propose to use a similar mechanism within the transaction
manager of our transactional cloud data store: the transaction manager takes re-
sponsibility for the durability of a committed transaction by means of a recovery
log, while the key-value store does not need to persist its updates immediately
upon receiving them. Rather, it can almost instantly store the updates in, and
serve them out of its main memory, thereby reducing end-to-end latency. In fact,
when durability is achieved through the recovery log maintained by the transac-
tion manager, it might not even be necessary to send updates to the key-value
store before the commit, further increasing the performance during standard
processing. However, given the more complex architecture of the multi-layered
system, both checkpointing as well as recovery become more complicated, since
a transaction crosses several layers and might perform updates on several data
store servers. As a result, figuring out the set of transactions that are actually
affected by a failure becomes more complicated. Furthermore, both client and
server failures have to be considered. In the event that a key-value server fails,
updates that were still in the server’s memory (and not yet persisted to the
underlying reliable filesystem) must be replayed. In case a client fails, we must
replay the updates of transactions that were already committed but whose writes
were not yet fully flushed to the data store.

In summary, this paper presents a comprehensive solution to recovery in a
multi-tier transactional key-value store where most of the transaction manage-
ment tasks are performed by a middleware-based transaction manager. In par-
ticular we make the following contributions.

– We rely on efficient transaction logging for persistence in order to provide
fast execution for OLTP workloads. As such, there are no forced flushes
to stable storage at the key-value store. Updates can even be sent to the
key-value store after commit.

– We handle failures of key-value clients and servers. Upon failure, we deter-
mine exactly which updates were not persisted at the server-side, and re-
play those updates before resuming normal processing. For this, we perform
lightweight observations at clients and servers during normal processing,
somewhat similar to checkpointing in a traditional database system.

– Our approach attempts to separate transaction management as much as pos-
sible from data processing. Our extensions to the key-value store to provide
a transactional interface and failure recovery are kept to a minimum.

– We have implemented and evaluated our approach using HBase1, a dis-
tributed key-value store that uses HDFS2 for persistence. Our analysis shows
that recovery-related tasks during normal processing incur little overhead
and recovery is smooth and efficient.

1 http://hbase.apache.org/
2 http://hadoop.apache.org/

http://hbase.apache.org/
http://hadoop.apache.org/

270 M. Yousuf Ahmad et al.

2 System Model

In this section, we discuss the main components of both the distributed key-value
store and an independent transaction manager that are relevant for durability
and atomicity. Note that, while we assume that the system also implements
some form of concurrency control in order to achieve isolation, isolation and
concurrency control are outside the scope of this paper.

2.1 HBase

HBase is a modern distributed key-value data store based on Google BigTable
[5]. We believe that it is a representative candidate since many other key-value
stores have similar features. HBase offers the abstraction of a table. Each row in
a table represents a key-value pair – it is uniquely identified by a key and can
have an arbitrary number of secondary columns. Each table is partitioned into
one or more chunks called regions. A region is a contiguous set of rows sorted by
key. Every region is assigned to one of the multiple region servers in the HBase
cluster. A master server coordinates region assignment. Through well-balanced
region placement, the application workload can be evenly distributed across
the cluster. Moreover, when the existing region servers become overloaded, new
region servers can be added dynamically, thus allowing for elastic scalability.

HBase persists its data in the Hadoop Distributed File System (HDFS), which
is a reliable and scalable filesystem based on the Google File System [9]. In the
HDFS layer, a region is physically stored as one or more immutable files.

An HBase region server serves read requests by fetching the requested data
from the underlying filesystem. Typically, it has a large main-memory cache to
reduce interactions with HDFS. Additionally, it also maintains, per region, an
in-memory store (memstore) that stores the latest updates performed on that
region. The contents of each memstore are flushed to HDFS in a batch.

When a server fails, its regions are re-assigned to other servers. Although
the persisted data of a region can be read back from HDFS, any in-memory
updates that had not yet been persisted to the filesystem are lost. To provide
durability against this data loss, HBase first persists each incoming update to
its write-ahead log (also stored in HDFS) before applying it to the in-memory
store. In this way, after a server failure, the HBase recovery procedure is able to
recover lost in-memory updates by replaying them from its log, thus bringing the
data store back to a consistent state. As soon as a region has been re-assigned
to an available server and recovered to a consistent state, it is made available
once again. Each region server maintains a single write-ahead log, to which all
updates, whichever region they belong to, are appended. Therefore, the recovery
procedure first needs to split the log file and group the updates by region. Once
this is done, any region server attempting to recover a region’s data can simply
read the group of updates associated with that region and apply them to a
freshly initialized memstore. Note that, for performance reasons, HBase allows
the deactivation of a synchronous flush of the write-ahead log to HDFS. In
this case, the server may return from an update operation before the update is

Transactional Failure Recovery for a Distributed Key-Value Store 271

persisted to HDFS. In this case, HBase’s own recovery cannot guarantee that all
updates executed before a server’s failure will be recovered.

Applications interact with HBase through an embedded HBase client, a library
that provides an advanced interface with get/put operations to access individual
key-value pairs and filtered scans for fetching larger result sets.

2.2 Transaction Management

Applications interact with the system through one or more client processes. The
task of the independent transaction management is to provide transactional
properties (isolation, durability and atomicity) to the application. The applica-
tion must be provided with an appropriate interface so that it can start, commit,
and abort transactions. Also, the system must be able to associate read and write
operations to the data store with a unique transaction context. We assume each
transaction is executed by a single client and it may touch one or more key-value
servers. A client can execute multiple transactions concurrently.

Transaction Execution. The HBase client is the interface between the appli-
cation and the HBase servers. Thus, the HBase client must be extended to offer
a transactional interface to the client. It is also the key player that interacts with
the transaction manager, while the modifications to the HBase server have been
kept to a minimum. The extended client interface needs to provide the trans-
actional primitives begin, commit, and abort. When the application calls begin,
a transactional context is created, and all subsequent read/write calls, as well
as a final commit/abort, can be associated with this context. The creation and
management of the transactional context is the responsibility of the transaction
management component and therefore is outside the scope this paper.

In our current approach, we assume that transaction execution follows a
deferred-update approach, i.e., updates are not propagated to the HBase servers
before commit. This approach is beneficial since it greatly reduces the commu-
nication between remote components. For our solution, it is not relevant where
the updates are buffered (they could be buffered at the application, the HBase
client, or the transaction manager). In our concrete implementation, we keep
the write-set of a transaction (i.e., the set of values that a transaction inserts,
updates, or deletes), at the HBase client. We assume that updates are idempo-
tent, i.e., applying the write-set at the key-value store multiple times produces
the same result every time. This is possible since HBase allows us to specify a
version number for each update, and we stamp each transaction’s write-set (i.e.,
each of its updates) with a unique version number, i.e., the commit timestamp
of that transaction.

When the application calls commit, the transaction termination phase starts.
If the transaction manager decides that the transaction can commit, the trans-
action receives a commit timestamp and its write-set, together with the commit
timestamp and a client identifier, is flushed to the recovery log to make it per-
sistent. At this point, the transaction is considered committed. The write-set is

272 M. Yousuf Ahmad et al.

flushed to the HBase servers only after the commit. Note that a transaction might
have updates for several servers and many updates for a single server. Thus,
the flush is usually a non-atomic operation. Once the entire write-set has been
flushed, transaction termination is completed. Depending on the concurrency
control mechanism implemented in the transaction manager, there could be sev-
eral transactions terminating concurrently and they could flush their write-sets
in any order. The transaction manager would have to ensure that serializability
guarantees are not violated (basically, these transactions should not conflict).
Focusing on durability and recovery, we assume that commit timestamps are
monotonically increasing and that the commit timestamp determines the serial-
ization order for transactions. In other words, if the recovery procedure applies
write-sets in commit timestamp order, then this produces a correct execution.

If the application submits an abort request or the transaction manager decides
to abort a transaction, the buffered write-set can simply be discarded. It is not
stored in the recovery log nor flushed to the HBase servers.

As the transaction manager guarantees the immediate durability of committed
write-sets, we deactivate the synchronous flushing of the HBase write-ahead
log. Thus, upon receiving an update, the HBase server first appends it to its
(in-memory) write-ahead log buffer, then applies it to the memstore, and then
immediately returns to the client. Shortly thereafter, (i.e., asynchronously), we
sync the write-ahead log buffer to HDFS. At some point later, the actual updates
in the memstore are eventually persisted to HDFS.

Transaction Phases. In summary, an update transaction can be in one of the
following states at any given time.

– executing – the transaction has been started but not yet committed or
aborted by the transaction manager

– aborted – the transaction manager has aborted the transaction
– committed – the transaction manager has declared the transaction as com-

mitted, having persisted the write-set to its log
– flushed – the committed write-set has been received by all participating

HBase servers and applied to their in-memory stores
– persisted – the flushed write-set has been persisted by all participating

servers (at least the HBase write-ahead log was persisted to HDFS)

3 Recovery Management

In this section, we present our implementation of a failure detection and re-
covery service for the integrated system. The primary aim is to detect client
and server failures and recover from them reliably so that we do not violate the
atomicity and durability of committed transactions. The HBase client and server
components have been enhanced to provide the necessary support for recovery
purposes. Furthermore, we implement a recovery manager, which is a middle-
ware service associated with the transaction manager, that coordinates failure
detection and recovery actions across clients and servers.

Transactional Failure Recovery for a Distributed Key-Value Store 273

When an HBase client fails, the recovery manager’s recovery procedure replays
from the transaction manager’s recovery log any of the client’s write-sets that
were committed but not yet completely flushed to their participating servers.
This is necessary because our client holds the write-set until commit time, so we
may lose the committed write-set if a client failure occurs before or during the
flush phase. Note that write-sets that were not yet committed to the transaction
manager’s recovery log are permanently lost when the client fails. These transac-
tions are considered aborted. This is not a problem because only the durability
of committed transactions must be guaranteed. Uncommitted transaction can
be restarted on another client by the application.

When an HBase server fails, the recovery procedure has to replay all com-
mitted write-sets that this server participated in that were flushed by the client
but not persisted before the server failure occurred. This is necessary because
our server persists received write-sets asynchronously, so we may lose a write-set
if a server failure occurs before or during the persist phase. Once a write-set
has been fully persisted by its participating servers, we can then rely on the
key-value store to guarantee the durability of the write-set.

In principle, it would be correct if the recovery manager simply replays all
write-sets that exist in the recovery log, as replaying write-sets is idempotent.
That is, if a write-set is already reflected in the data store, replaying it will not
lead to a different state. However, replaying all write-sets would be extremely
inefficient. In a traditional database system, relevant checkpointing information
is added to the recovery log during normal processing to determine during recov-
ery the subset of transactions that actually have to be replayed. In a distributed
environment, obtaining such checkpointing information is, however, more com-
plex. In our solution, the recovery manager relies on the HBase client and server
components to provide the relevant information. On a regular basis, both send
the information of what they have flushed and persisted, respectively. This in-
formation can be sent asynchronously, or even periodically, as it will serve as a
lower bound on which write-sets have to be replayed in case of recovery.

In the following, we first show how the HBase client and recovery manager
collaborate in order to: (1) be able to detect client failures, (2) keep track of the
transactions that the client has already flushed to the servers, and (3) recover
after a client failure. Then we show the corresponding steps for the HBase server.

3.1 Handling Client Failures

Algorithm 1 describes what is done within the HBase client. Algorithm 2 de-
scribes the actions performed by the recovery manager to handle client failures.

Client Failure Detection. To detect client failures, we implement a simple
heartbeat mechanism. When a client initializes, it registers its heartbeat with
the recovery manager, which then starts to monitor the heartbeat. The client
regularly sends heartbeat messages to the recovery manager with a configurable
frequency. When the client completes execution correctly, it unregisters from

274 M. Yousuf Ahmad et al.

Algorithm 1. At client c

1: On startup:

2: register(c) � register with recovery manager
3: TF ← T ∗

F � local ts threshold
4: FQ ← synchronized priority queue � committed txns in commit order
5: FQ′ ← synchronized priority queue � flushed txns in commit order

6: On shutdown: � clean shutdown
7: heartbeat() � pre-shutdown heartbeat
8: unregister(c) � unregister with recovery manager

9: On heartbeat: � called periodically

10: while |FQ| > 0 AND |FQ′| > 0 do
11: if FQ.head = FQ′.head then � earliest tracked flush completed?
12: TF ← FQ′.head � make local progress
13: FQ.dequeue() � remove its trackers
14: FQ′.dequeue()
15: else
16: break � respect local commit ordering

17: send heartbeat(c, TF) � to recovery manager

18: On receiving commit timestamp T : � received commit ts

19: FQ.enqueue(T) � add commit tracker

20: On post-flush of transaction T : � called by commit protocol after flush

21: FQ′.enqueue(T) � add post-flush tracker

the recovery manager cleanly. However, if the recovery manager detects that the
client has missed successive heartbeats, it declares the client dead and imme-
diately initiates a recovery procedure. Since we treat a network partition as a
crash failure, if any further messages are received from a dead client, they are
ignored until the recovery procedure is completed. If a network partition is the
cause, the client heartbeat will not be able to contact the recovery manager,
which will result in it terminating itself.

Client Tracking. The recovery manager relies on the HBase clients to keep
track of when write-sets are flushed to the server. Each client piggybacks the
relevant information on its heartbeat messages. In a simple approach, the client
could simply send to the recovery manager the commit timestamps of all transac-
tions for which it has completely flushed the write-set to all participating servers.
However, that can incur considerable overhead in terms of message size. Instead,
each client c maintains a threshold timestamp TF (c) and sends this timestamp
with its heartbeat messages. TF (c) obeys the following local invariant: the write-
set of every local transaction, executing at this client c, with commit timestamp
T smaller than or equal to TF (c) (i.e., where T ≤ TF (c)) has been fully flushed
to its participant servers. Periodically, we advance TF (c) as local transactions
are committed and flushed. TF (c) increases monotonically, in increments that
correspond to the local commit sequence. In other words, for any two local

Transactional Failure Recovery for a Distributed Key-Value Store 275

Algorithm 2. At recovery manager (client related)

1: On register(c): � register client

2: C.add(c)
3: T r

F (c) ← T ∗
F

4: On unregister(c): � unregister client

5: C.remove(c)
6: T r

F .remove(c)

7: On receive heartbeat(c, TF):

8: T r
F (c) ← TF � keep track of threshold

9: T ∗
F ← ∀i ∈ C : min(T r

F (i)) � update global flushed ts threshold

10: On failure(c): � client failure detected (missed heartbeats)

11: L ← fetch logs(c, T r
F (c)) � fetch from log txns committed by c after T r

F (c)
12: for each (T,WS(T)) in L do
13: cR.flush(T , WS(T)) � replay write-set using recovery client cR

transactions with commit timestamps Ti < Tj, TF (c) will always advance from
Ti to Tj , even if the flush of Tj is completed before that of Ti.

Maintaining TF (c) is not trivial, since cmay flush its transactions in any order.
However, the transaction manager ensures that c’s transactions receive commit
timestamps that are monotonically increasing, i.e., if T receives its timestamp
before T ′, then T < T ′. In our implementation, a client keeps track of TF (c) with
the help of two queues: FQ keeps track of all transactions in the commit phase,
and FQ′ keeps track of all transactions that have been successfully flushed.
When the timestamps at the heads of both queues match up, we can dequeue
that timestamp and advance TF (c) accordingly. Thus, by adding transactions
to FQ in commit timestamp order, we guarantee that TF (c) is advanced in the
proper order.

For each client c, the recovery manager keeps track of the threshold timestamp
T r
F (c) it has received through the last heartbeat message received from c. Due

to the periodic delay in heartbeat messages, T r
F (c) is a conservative threshold

representing the flushing process at client c. In order words, while c might have
progressed further than T r

F (c) since its last heartbeat was received, the recovery
manager uses T r

F (c) to represent the current state of c’s progress. No transactions
with timestamp T < T r

F (c) have to replayed in case c fails.
Furthermore, the recovery manager maintains a global client threshold T ∗F =

∀c : min(T r
F (c)), which is the lowest T r

F (c) among all clients. It represents a
system-wide threshold that upholds the following global invariant: all transac-
tions that were committed up until time T ∗F have been flushed to and received
in full by their participant servers.

Note that maintaining a conservative threshold means that some write-sets
might be replayed unnecessarily during recovery. However, this overhead only
presents itself during the recovery process and does not affect performance during
normal operation. Moreover, the number of write-sets that need to be recovered
upon failure is bound by the client’s throughput and heartbeat interval.

276 M. Yousuf Ahmad et al.

Finally, in order to ensure that T ∗F advances, clients that shut down properly
have to unregister cleanly so that the recovery manager does not take them into
consideration anymore for maintaining T ∗F .

Client Recovery. When the recovery manager detects that a client c has failed,
it will fetch and replay from the transaction management log those write-sets
that were committed by c after time T r

F (c), which is the TF (c) received by
the recovery manager with the most recent heartbeat from c (before it failed).
The recovery manager replays these updates via its local client cR, which differs
from a regular client in that it replays the recovered updates using the commit
timestamp of the original transaction, rather than obtaining a new one.

3.2 Handling Server Failures

Algorithm 3 describes what is done within the HBase server. Algorithm 4 de-
scribes the actions performed by the recovery manager to handle server failures.

Server Failure. For server failure, we depend on HBase to notify us when-
ever one of its servers dies. Internally, HBase, too, uses heartbeats to monitor
server health. When HBase detects that one of its servers has died (due to a
crash failure or network partition), the master server initiates a recovery pro-
cedure that reassigns the regions of the failed server to other live servers. We
added a hook in the master server that notifies our recovery manager whenever
a server fails. Each affected region, upon being reassigned to some live server,
undergoes HBase’s internal recovery procedure during initialization as outlined
in Section 2.1. Note that different regions can be assigned to different servers
leading to parallel recovery. Recovery replays any un-persisted updates that are
associated with this region from the HBase write-ahead log of the failed server.
We add another hook in the region initialization process that notifies our re-
covery manager once this internal recovery procedure is completed, and then
waits for a response from our recovery manager before proceeding to actually
declare the region online. When the recovery manager receives the notification
from the hook, it initiates our transactional recovery procedure for the region.
Once our recovery procedure is completed, we notify the region waiting on us
that it may proceed to declare itself online. Delaying transaction execution until
our recovery procedure is completed, ensures that transactional atomicity is not
violated, since, if a region affected by a server failure is brought online before our
recovery manager has supplemented the internal region recovery process, clients
can potentially end up reading partially recovered write-sets.

Server Tracking. Similar to the client case, each server keeps track of up to
which transaction the received write-sets have been persisted to HDFS (i.e.,
to the HBase write-ahead log). It also sends this information to the recovery
manager via regular heartbeat messages. Persisted transactions do not need

Transactional Failure Recovery for a Distributed Key-Value Store 277

Algorithm 3. At server s

1: On startup:

2: register(s) � register with recovery manager
3: TP ← T ∗

F � local ts threshold
4: PQ ← synchronized priority queue � received write-sets in commit order

5: On shutdown: � clean shutdown
6: heartbeat() � pre-shutdown heartbeat
7: unregister(s) � unregister with recovery manager

8: On heartbeat:
9: T ′

P ← T ∗
F � read latest T ∗

F from recovery manager
10: while |PQ| > 0 do
11: (T,WS(T)) ← PQ.dequeue()
12: persist(WS(T)) � persist write-set

13: TP ← T ′
P � make local progress

14: send heartbeat(s, TP) � to recovery manager

15: On receive(T , WS(T)): � received write-set from client

16: apply(WS(T)) � apply updates to in-memory store
17: PQ.queue((T,WS(T))) � add tracker

18: On receive(T , WS(T), TP (s
′)): � received write-set from recovery client

19: receive(T , WS(T)) � process as usual
20: if TP (s

′) < TP then
21: TP ← TP (s

′) � inherit responsibility for replayed updates
22: heartbeat() � persist and inform recovery manager

23: On opening region(r): � hook after internal recovery completed...

24: � but before declaring r online
25: wait � until transactional recovery completed...
26: until is recovered(r) � by recovery manager

to be replayed during recovery in case the server fails. To keep track of these
transactions in a compact form, each server s maintains a threshold timestamp
Tp(s) that obeys the following local invariant: the write-set of every transaction
with commit timestamp T smaller than or equal to TP (s) (i.e., where T ≤ Tp(s)),
and where the server is a participant, has been received in full by the server and
fully persisted (that is, the part of the write-ahead log containing these write-sets
has been written to HDFS).

However, it is not that simple for a server to deduce that this invariant holds.
While clients know exactly which transactions are currently active, and thus,
know which transactions with lower timestamps have been completely flushed,
things are not as simple at the server. For instance, assume a server has received
and persisted write-sets of transactions with timestamps 20, 22, and 23, but
misses 21. Then, it could be that the server is not a participant in transaction
21, in which case, its Tp(s) should be set to 23; but it could also be that the
client executing transaction 21 has simply not yet flushed this write-set (but will
do so in the future), in which case, Tp(s) should be held at 20.

278 M. Yousuf Ahmad et al.

Algorithm 4. At recovery manager (server related)

1: On register(s): � register server

2: S.add(s)
3: T r

P (s) ← T ∗
P

4: On unregister(s): � unregister server

5: S.remove(s)
6: T r

P .remove(s)

7: On receive heartbeat(s, TP):

8: T r
P (s) ← TP � update threshold ts

9: T ∗
P ← ∀i ∈ S : min(T r

P (i)) � update global persisted ts threshold

10: On failure(s): � notified of server failure (by key-value store)

11: L ← fetch logs(T r
P (s)) � fetch from log txns committed after T r

P (s)
12: R ← affected regions(s) � fetch from master server
13: for each r ∈ R do � recover each affected region one-by-one
14: for each (T,WS(T)) in L do
15: replay(T , WS(T), s, r)

16: notify region(r) � notify region so it can go online

17: On replay(T , WS(T), s, r): � replay write-set using recovery client cR

18: T ′ ← T � new txn with same commit timestamp
19: for each u in WS(T) do � for each update in recovered write-set
20: if u.region = r then � if the update u falls in region r
21: WS(T ′).add(u) � else skip other updates

22: if |WS(T ′)| > 0 then � if any updates were selected
23: cR.flush(T

′, WS(T ′), T r
P (s)) � replay recovered updates

Therefore, we use a conservative value for Tp(s) by ensuring that TP (s) ≤ T ∗F .
For any committed transaction with timestamp T ≤ T ∗F , we know that its write-
sets have been successfully flushed to all participating servers. That is, if a server
s has received and persisted a transaction T ≤ T ∗F , then s knows that it also has
received all transactions with timestamp T ′ < T . Therefore, periodically, we can
persist all write-sets received up until T ∗F and then advance TP (s) to T ∗F . For
that purpose, each server has to receive the latest value of T ∗F from the recovery
manager on a regular basis.

For each server s, the recoverymanager keeps track of the threshold timestamp
T r
P (s) it has received through the last heartbeat message received from s. T r

P (s)
is a conservative threshold of what s has persisted so far. No transactions with
timestamp T < T r

P (s) have to be replayed in case s fails.
Furthermore, we saw earlier that T r

P (s) < T ∗F . Based on this information, the
recovery manager can declare that T ∗P = ∀s : min(T r

P (s)), i.e., the lowest T r
P (s)

among all servers, is a system-wide threshold that upholds the following global
invariant: all transactions that were committed up until time T ∗P have been
flushed to, received in full, and safely persisted by their participant servers.
Therefore, T ∗P also represents a global checkpoint for the purposes of commit

Transactional Failure Recovery for a Distributed Key-Value Store 279

logging and failure recovery. That is, transactions with timestamp T < T ∗P may
be truncated from the recovery log since they have been safely persisted.

Server Recovery. In the event of a server failure, we lose the state of the in-
memory store on that server. Since we persist these updates and the HBase write-
ahead log asynchronously, lost updates must be recovered from the transaction
management log to ensure their durability.

When the recovery manager detects that a server s has failed, it will first wait
for the key-value store to perform its standard recovery process to recover, one-
by-one, the set R(s) of regions affected by this failure. For each affected region r,
once its in-memory store has been reconstructed by HBase, our recoverymanager
will take over. It will replay from the transaction manager’s recovery log those
write-sets that were committed after time T r

P (s), which is the piggybacked value
received by the recovery manager with the most recent heartbeat from server
s (before it failed). These are the write-sets that have potentially not yet been
persisted. The recovery manager replays them via its local client cR. Once our
recovery process for a region r has completed, the region is brought back online.
Server recovery is complete once all affected regions have been recovered.

There are three important ways in which the recovery client cR differs from
a regular client. First, it replays the recovered updates using the commit times-
tamp of the original (recovered) transaction, rather than requesting a fresh com-
mit timestamp from the transaction manager. This applies also to client recovery.
The other two modifications apply only to server recovery. During server recov-
ery, when replaying a write-set to an affected region r, the recovery client checks
each update in the write-set to see if it falls within r, replaying it if it does,
and skipping it otherwise. This means that we only replay those updates that
were left un-persisted due to this specific server failure. Secondly, the recovery
client piggybacks T r

P (s) on every replayed update when performing the recovery
procedure for a failed server s. To understand why this is necessary, consider
the following scenario. During recovery, we replay an update u, which belongs
to the write-set of some transaction T , where T r

P (s) < T , and which falls under
region r, one of the affected regions in R(s). A live server s′, which now hosts
r, receives u, applies it to its in-memory store, queues it for persistence, and
then returns to the client. At this point, if s′ fails, we can end up losing u under
the following condition: T r

P (s) < T ≤ T r
P (s
′), since the recovery procedure for s′

will only recover write-sets of transactions committed later than T r
P (s
′). In order

to avoid this situation, once we add u to the in-memory store of s′, we modify
TP (s

′) to T r
P (s), before returning to the client. This ensures that s′ correctly

inherits the responsibility for the recovered updates of s.
One scenario that we must also consider is that a server failure will interrupt

any incoming client flushes. A client c in this situation will retry, multiple times,
to flush the remaining part of the write-set to the target regions. As soon as the
affected regions are recovered and brought back online, the client will be able
to proceed again normally and complete any interrupted flushes. However, if a
client flush eventually runs out of retries or times out, TF (c) can be permanently

280 M. Yousuf Ahmad et al.

blocked from advancing, even after the affected regions comes back online a little
later. Even though other concurrent flushes of the same client c may have been
unaffected by the failure, we cannot advance TF (c), since it must advance in step
with the local commit order at c. This will then block the progress of our global
timestamp thresholds, since T ∗F is bound to the lowest TF (c) among all clients,
and T ∗P is bound to T ∗F . Therefore, we work around this by removing the retry
and timeout limits so that the client keeps retrying until it succeeds. During this
time, the client can at least continue to execute read-only transactions on older
snapshots of the data. Alternatively, we could terminate the client to induce the
recovery manager to attempt a recovery of the interrupted write-set.

If a region remains unavailable forever (i.e., it cannot be recovered for some
reason), then a system administrator must intervene and manually recover the
region. In order to detect such incidents, each client/server monitors the size of
its flush/persist queue (which reflects the transactions flushed/persisted, but not
yet reflected in the corresponding threshold timestamps) and alerts the recovery
manager if the size exceeds a configurable threshold. Once the problematic region
is recovered, the blocked timestamp thresholds are able to advance until they
become current again.

3.3 Recovery Manager Failure

As a final note, the failure of the recovery manager also has to be considered. The
only data the recovery manager maintains are the threshold timestamps. These
timestamps can also be written to the recovery log periodically or stored in a
highly reliable service such as ZooKeeper3. Our implementation uses ZooKeeper
for coordination between the recovery manager and clients/servers (i.e., heart-
beat messages are exchanged via ZooKeeper). Upon failure, the recovery man-
ager is restarted and contacts ZooKeeper to catch up with the system’s progress.
Transaction processing can continue while the recovery manager is down.

4 Performance Evaluation

In this section, we present a preliminary performance evaluation of our integrated
implementation. We first look at the performance benefits of asynchronous versus
synchronous persistence. Next, we show that the overhead for providing a reliable
transaction processing framework for HBase, using our failure recovery scheme,
is small. Finally, we look at the effects of a server failure on runtime performance.
Our experiments measure transaction throughput and response time.

4.1 Benchmark and Setup

We use YCSB4 to evaluate our implementation. We extended YCSB to sup-
port true transactional workloads and implemented a simple type of update

3 http://zookeeper.apache.org/
4 http://github.com/brianfrankcooper/YCSB

http://zookeeper.apache.org/
http://github.com/brianfrankcooper/YCSB

Transactional Failure Recovery for a Distributed Key-Value Store 281

transaction that executes 10 random row operations, with a 50/50 ratio of
reads/updates. We loaded our test table with half a million rows.

We ran our experiments on virtual machines hosted on a cluster of Dell R310
quad-core servers. Each VM was allocated two processor cores and 2 GB of main
memory. The machines were connected over a 100 Mbps Ethernet switch. We
ran our experiments using one client node and two server nodes. On each server
node, we ran an HBase region server co-located with an HDFS datanode. We
allocated two thirds of the region server’s available memory for the block cache
(for reads) and the remaining one third for the memstore (for updates). The
size of our test dataset was chosen such that it could fit completely into the
cumulative block cache of a single region server, so that we could compensate
for the failure of one of the servers. We used a data replication factor of two
(instead of the default of three) in HDFS. We populated a fresh dataset and
warmed up the block cache before the start of each experiment.

The transaction management and recovery management components were co-
hosted on one VM. The transaction management component provides an effi-
cient concurrency control mechanism based on snapshot isolation. Its internal
structure is highly scalable and fully reliable. The overall architecture of the
transaction management component will soon be submitted for publication in
an independent manuscript, and thus, is not further detailed here. The logging
sub-component supports group commit, has access to its own high performance
stable storage, and can be distributed across several nodes should one logging
node not be sufficient. It offers the interface methods for the recovery manager
to retrieve the necessary logs at the time of recovery.

4.2 Benefits of Asynchronous Persistence

We evaluated the advantages of persisting updates asynchronously to the key-
value store. We used two region servers. Figure 2(a) shows a performance com-
parison between synchronous and asynchronous persistence. The graph shows
response time (in milliseconds) against throughput (in transactions per second
(tps)). We achieve lower response times with asynchronous persistence. These
results reflect our original premise that asynchronous persistence offers a perfor-
mance advantage because it eliminates the latency associated with flushing and
persisting updates to the key-value store from end-to-end response times.

Note that our transactions are quite short, in which case, transaction manage-
ment related tasks make up a considerable part of the execution time (timestamp
management, logging, etc.). With longer transactions that perform more read
and write operations one can expect a larger performance gain. Also, we can
expect the gap between the two curves to be greater if the HDFS data nodes
are not physically co-located with the HBase servers, as that worsens end-to-end
latency under synchronous persistence.

282 M. Yousuf Ahmad et al.

150
200
250
300

ns
e

Ti
m

e
(m

s)
Sync Persist Async Persist

50
100

50 100 150 200 250 300

Re
sp

on

Throughput (tps)

(a) Asynchronous persistence benefits

200

250

300

Throughput (tps) Response time (ms)

150
50 250 1000 5000 10000

Heartbeat interval (ms)

(b) Transaction tracking overheads

Fig. 2. Performance improvements and overheads

4.3 Overhead of Providing Reliability

We evaluated the overhead associated with providing reliability under the asyn-
chronous persistence approach. Each client and server component performs some
light-weight tracking of their local transaction progress. This tracking involves
the use of synchronized data structures. Periodically, just before sending its
heartbeat, each component updates its local tracking information, which the
recovery manager then uses to update its global trackers. The system through-
put and the length of the heartbeat interval together determine the amount of
processing performed with each heartbeat. The shorter the interval, the more
frequently we update the tracking information and the less the information pro-
cessed per heartbeat. On the other hand, our tracking data structures need to be
synchronized, since they are accessed concurrently by multiple threads. Thus,
updating the tracking information too frequently can potentially reduce per-
formance due to added contention. We use trial-and-error to determine a good
heartbeat interval. In our experiments, we varied this interval from 50 ms to 10
seconds for 50 client threads and two region servers. As Figure 2(b) shows, both
throughput and response time vary as a function of the heartbeat interval, and
we are able to find a good interval value for our setup.

4.4 Evaluating Failure Recovery

We evaluated the effects of a component failure on transaction processing. We
measured the runtime performance of 50 client threads with two region servers.
We simulated a workload of 250 tps, which in our setup is near the peak capacity
for a single region server serving 50 client threads. We set the heartbeat intervals
to one second. In Figure 3, runtime throughput and response time readings are
plotted on the vertical axis against wall-clock time on the horizontal axis. We
manually induced a server failure during the experiment. The server crash causes
a sharp drop in throughput and a corresponding peak in response time. The
performance returns to nearly pre-failure readings over the next 30 seconds. In
our tests, we observed that the actual recovery process takes only a few seconds,
whereas the longer delay in returning to pre-failure performance levels is due

Transactional Failure Recovery for a Distributed Key-Value Store 283

400

300

400
(t

ps
)

200

300

gh
pu

t(
tp

s)

100

200

Th
ro

ug
hp

ut
(t

0

100

0 60 120 180 240 300

Th
ro

ug

0
0 60 120 180 240 300

Time (s)Time (s)

(a) Throughput

800

500

600

700

800

e
(m

s)

400

500

600

700

se
tim

e
(m

s)

200

300

400

500

Re
sp

on
se

tim
e

0

100

200

300

0 60 120 180 240 300

Re
sp

on
s

0
0 60 120 180 240 300

Time (s)Time (s)

(b) Response time

Fig. 3. Failure detection and recovery

to the region server cache taking a while to warm up to the recovered regions’
data. Note that transaction processing is not interrupted (i.e., transactions are
not lost) by the failure.

5 Related Work

There has been considerable work in adding transaction functionality to key-
value stores [7,8,17,19,20], some of which discusses logging and recovery to some
extend. CloudTPS [20] supports scalable transactions by distributing the trans-
action management among a set of local transaction managers and partitioning
the data using the key-value store for persistence. Similar to our model, the up-
dates are not written to the storage during commit but buffered in-memory for
performance reasons and only sent to the key-value store periodically. Updates
are replicated across several local transaction managers (LTMs) to guarantee
availability in the advent of failures. This requires coordination among the repli-
cas. If there is a failure, data is recovered from a LTM replica. Since some data
items in the replica may have been written to storage, to avoid repeating writes,
they keep track and replicate in some LTMs the latest checkpointed timestamp
for each data item. Again timestamps are replicated in batches. Compared to
our approach, the checkpointing overhead is considerably larger as it is on a
per-item basis vs. per-transaction basis. Furthermore, their approach assumes
that once data is written to the data store it is persistent, while we also handle
asynchronous writes at the data store.

Calvin [19] is a fault-tolerant replicated transactional system that provides
transactions across multiple data partitions. In contrast to our approach, their
transaction management and data store are tightly coupled and build a holis-
tic system, while our approach keeps the data store backend nearly unchanged.
Calvin logs the history of transactional input (that is, logical logging instead
of physical logging). If there is a failure, the input can be replayed during re-
covery. Different checkpointing techniques are implemented to limit the number
of transactions that are re-executed. Checkpointing, however, has considerable
performance implications during normal processing.

284 M. Yousuf Ahmad et al.

Sinfonia [1] provides serializable minitransactions for accessing the data that
is distributed on a set of memory nodes. Minitransactions are executed in the
first phase of the two-phase commit protocol (2PC) at the memory nodes. The
coordinator is the client and participants are the memory nodes. In contrast to
traditional 2PC, the coordinator does not log any information and failures of the
coordinator do not block the system. However, a crashed participant can block
progress. Additionally, a dedicated recovery coordinator deals with the recovery
of transactions that are in-doubt based on participant votes. Memory nodes
can be replicated to avoid the blocking behavior, using primary-copy replication
during the first phase of 2PC. Our approach targets regular transactions. It does
not resort to 2PC, thereby avoiding blocking situations. Recovery only uses the
information in the log and does not contact data nodes to decide on the outcome
of transactions. Data is kept in HBase/HDFS, which eventually provides data
durability without adding extra latency to transaction execution.

Omid is similar to our system in that it implements transactions on top of
HBase [11,21]. According to [11], Omid updates the data in HBase as part of
the transaction execution, whereas our proposal is based on the deferred-update
model (changes are only applied to HBase after the transaction commits). Omid
uses a distributed logging service, BookKeeper5, for write-ahead logging. Recov-
ery is not described.

G-Store [8] provides transactions over partitioned groups of keys on top of
a key-value store. Groups are dynamically created. One of the keys in a group
is the leader, which grants read/write access to the group’s keys. G-Store uses
write-ahead logging and flushes changes asynchronously to the data store. All
the information related to groups is also logged, and recovery deals also with in-
progress creation and deletion of groups at the time the failure occurred. How-
ever, recovery itself is not discussed. No checkpointing mechanism is described
that would show how to limit recovery costs.

ElasTraS [7] provides an elastic key-value data store where transactions ex-
ecute within a single data partition (static partitions), and partitions can be
migrated online from one server to another. ElasTraS uses write-ahead logging
for durability and stores the log in HDFS. Once data is persisted in the key-value
store, the log is updated in order to enable truncation. However, no further anal-
ysis is provided regarding the logging and recovery processes.

In [4], a database is built on top of Amazon S3, analyzing how various Ama-
zon services can be used for database purposes. The approach presents a global
solution where transaction management is tightly integrated with the other com-
ponents. Amazon’s Simple Queuing System is used to store log records. However,
failure and recovery are not described or analyzed in detail.

Deuteronomy [14] supports transactions over arbitrary data. It decouples
transaction processing from data storage, as already done in [15,16]. Just as
in our approach logging is done at the transaction manager, which has to coor-
dinate with the data stores. In the case of Deuteronomy, the transaction manager
tells the data store when to persist data items. In contrast, we let the clients

5 http://zookeeper.apache.org/bookkeeper/

http://zookeeper.apache.org/bookkeeper/

Transactional Failure Recovery for a Distributed Key-Value Store 285

and servers tell the recovery manager what has been flushed and persisted, re-
spectively. In Deuteronomy, if the transaction manager fails, a new transaction
manager is initialized and performs recovery using the log. Recovery may also
need to undo updates, which is not necessary in our approach since we only flush
after commit.

In recent years, geo-replicated transactions have received attention in order
to achieve consistency across geographically distributed data stores [6,12,18].
The idea is to remain available through wide-area replication even if individual
data centers go down. The main focus is coordination through 2PC and Paxos
[13]. In such a context, recovery costs are less important because availability is
maintained through replication, and the costs of persistence play a lesser role as
wide-area coordination is the main factor.

Hyder [2] is a log-structured multi-version key-value database shared by many
servers where the log not only guarantees durability but also is used to update
the actual server state. The idea is that server caches are a (partial) copy of the
database. Transactions write their changes to the log, and servers run a meld
algorithm [3] that traverses the log to keep the cache copy up-to-date while at
the same time performing concurrency control.

6 Conclusion

In this paper, we present a logging and recovery infrastructure where a modular
transaction manager is combined with a distributed key-value store. Transaction
write-sets are persisted to the transaction manager’s recovery log at commit time
and then flushed asynchronously to the key-value store and then eventually
persisted to the distributed filesystem. Transaction progress is tracked at the
key-value clients and servers. Light-weight checkpointing is performed in order
to limit the amount of recovery that has to be performed at recovery time.

Acknowledgments. This research has been partially funded by the Ministère
de l’Enseignement supérieur, de la Recherche, de la Science et de la Technologie
of Quebec and by the European Commission under project CumuloNimbo (FP7-
257993), the Madrid Regional Council (CAM), FSE and FEDER under project
CLOUDS (S2009TIC-1692), and the Spanish Research Agency MICINN under
project CloudStorm (TIN2010-19077).

References

1. Aguilera, M.K., Merchant, A., Shah, M.A., Veitch, A.C., Karamanolis, C.T.: Sinfo-
nia: A new paradigm for building scalable distributed systems. ACM Trans. Com-
put. Syst. 27(3) (2009)

2. Bernstein, P.A., Reid, C.W., Das, S.: Hyder - a transactional record manager for
shared flash. In: CIDR, pp. 9–20 (2011)

3. Bernstein, P.A., Reid, C.W., Wu, M., Yuan, X.: Optimistic concurrency control by
melding trees. PVLDB 4(11), 944–955 (2011)

286 M. Yousuf Ahmad et al.

4. Brantner, M., Florescu, D., Graf, D.A., Kossmann, D., Kraska, T.: Building a
database on s3. In: SIGMOD Conference, pp. 251–264 (2008)

5. Chang, F., et al.: Bigtable: a distributed storage system for structured data. In:
Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2006, vol. 7, p. 15. USENIX Association, Berkeley (2006)

6. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI 2012, pp. 251–264. USENIX Association, Berkeley (2012)

7. Das, S., Agrawal, D., El Abbadi, A.: Elastras: an elastic transactional data store
in the cloud. In: Proceedings of the 2009 Conference on Hot Topics in Cloud Com-
puting, HotCloud 2009. USENIX Association, Berkeley (2009)

8. Das, S., Agrawal, D., El Abbadi, A.: G-store: a scalable data store for transactional
multi key access in the cloud. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, pp. 163–174. ACM, New York (2010)

9. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP, pp.
29–43 (2003)

10. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

11. Junqueira, F., Reed, B., Yabandeh, M.: Lock-free transactional support for large-
scale storage systems. In: DSN Workshops, pp. 176–181 (2011)

12. Kraska, T., Pang, G., Franklin, M.J., Madden, S., Fekete, A.: Mdcc: multi-data
center consistency. In: EuroSys, pp. 113–126 (2013)

13. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

14. Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteronomy: Transaction
support for cloud data. In: CIDR, pp. 123–133 (2011)

15. Lomet, D.B., Fekete, A., Weikum, G., Zwilling, M.J.: Unbundling transaction ser-
vices in the cloud. In: CIDR (2009)

16. Lomet, D.B., Mokbel, M.F.: Locking key ranges with unbundled transaction ser-
vices. PVLDB 2(1), 265–276 (2009)

17. Peng, D., Dabek, F.: Large-scale incremental processing using distributed transac-
tions and notifications. In: OSDI, pp. 251–264 (2010)

18. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP, pp. 385–400 (2011)

19. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin:
fast distributed transactions for partitioned database systems. In: SIGMOD Con-
ference, pp. 1–12 (2012)

20. Wei, Z., Pierre, G., Chi, C.H.: Cloudtps: Scalable transactions for web applications
in the cloud. IEEE T. Services Computing 5(4), 525–539 (2012)

21. Yabandeh, M., Gómez Ferro, D.: A critique of snapshot isolation. In: Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys 2012, pp.
155–168. ACM, New York (2012)

Views and Transactional Storage

for Large Graphs

Michael M. Lee1, Indrajit Roy2, Alvin AuYoung2, Vanish Talwar2,
K. R. Jayaram2, and Yuanyuan Zhou1

1 University of California, San Diego
{mmlee,yyzhou}@cs.ucsd.edu

2 HP Labs
{indrajitr,alvina,vanish.talwar,jayaramkr}@hp.com

Abstract. A growing number of applications store and analyze graph-
structured data. These applications impose challenging infrastructure
demands due to a need for scalable, high-throughput, and low-latency
graph processing. Existing state-of-the-art storage systems and data pro-
cessing systems are limited in at least one of these dimensions, and simply
layering these technologies is inadequate.

We present Concerto, a graph store based on distributed, in-memory
data structures. In addition to enabling efficient graph traversals by
co-locating graph nodes and associated edges where possible, Concerto
provides transactional updates while scaling to hundreds of nodes. Con-
certo introduces graph views to denote sub-graphs on which user-defined
functions can be invoked. Using graph views, programmers can perform
event-driven analysis and dynamically optimize application performance.
Our results show that Concerto is significantly faster than in-memory
MySQL, in-memory Neo4j, and GemFire for graph insertions as well as
graph queries. We demonstrate the utility of Concerto’s features in the
design of two real-world applications: real-time incident impact analysis
on a road network and targeted advertising in a social network.

Keywords: Graphs, transactions, views, event-driven analysis.

1 Introduction

Graph-processing applications are quickly emerging as a critical component in
domains like social networks, road traffic, and biological networks where data
exhibit natural graph structure. Building large-scale graph applications requires
middleware support for storing data and for accelerating graph queries. Many of
today’s graph applications exhibit a need for high volume storage, low-latency
updates, and interactive responsiveness. Individually, these requirements do not
present a unique challenge, but taken together, they pose a significant challenge
to both state-of-the-art storage and data-processing systems. We detail two of
these emerging requirements, and how they translate into challenges for the
supporting system infrastructure:

– Scalability and consistency. Because many of today’s graph applications
run on the critical path of an on-line workflow, a graph store needs to provide

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 287–306, 2013.
c© IFIP International Federation for Information Processing 2013

288 M.M. Lee et al.

a combination of adequate query throughput and data ingestion rate. For
example, Facebook receives more than 200,000 events per second [1] while
Twitter ingests approximately 80 TB/day of new data [2]. However, without
meaningful consistency semantics, such as transactional guarantees, writing
distributed graph applications will be difficult and error prone.

– Event-driven processing. Some graph applications, such as those used by
emergency technicians to respond to incidents, must be real-time to be use-
ful [3]. For example, the California highway road sensors requires ingestion of
new data every 30 seconds for over 26,000 sensors [4]. Such an application is
largely event-driven based upon incidents (i.e., accidents, slowdowns) occur-
ring on the road graph, and triggers computation to predict the spread and
duration of the incidents. Supporting an API with flexible event processing
on the graph store eases the development of these graph applications. Mul-
tiple applications monitoring similar events can avoid redundant client-side
computation on event detection. Moreover, events can be used to monitor
and dynamically optimize the store itself (such as graph layout) to further
improve query performance.

1.1 Limitations of Current Systems

State-of-the-art solutions are not designed to address these challenges simulta-
neously. Traditional storage systems such as relational databases and NoSQL
stores do not inherently retain the structure of the graph, and are unsuitable for
computing graph algorithms [5]. As shown in Table 1, using a fast caching layer
such as Memcached on top of a relational database can scale the performance of
resolving graph queries. However, this approach relies on pre-computing the set
of queries, and thus requires the workload to be known in advance, or returning
a computation based upon stale data.

Distributed in-memory stores (GemFire [6]) provide dynamic scalability and
high performance while also supporting transactions. However, similar to tradi-
tional relational databases, they do not provide native support for graph objects
and hence are slow for graph queries.

Contemporary data-processing frameworks such as MapReduce [7], Pregel [5],
Spark [8], or GraphLab [9] optimize for batch analysis by assuming data is largely
read-only, and hence are ill-suited for concurrent read and write queries. Since
many of these systems are designed for long running distributed graph analyses,
the overhead from additional communication and setup costs may exceed the
actual computation time for small graph queries [10].

In contrast, specialized graphdatabases perform complex graph queries quickly,
and concurrentlywith graph updates [11,12,13,14,15,16]. These systems are, how-
ever, limited to a single machine (or a set of replicated images) and therefore
do not scale with either the query rate, storage capacity, or data ingestion rate.
Trinity [17], a distributed graph engine, lacks support for transactional storage of
graph objects. Additionally, none of these graph databases support event-driven
processing.

Views and Transactional Storage for Large Graphs 289

Table 1. Comparison with competitive approaches. Concerto has multiple advantages
over each system.

Technology Graph queries Transactions Event processing Scalable
RDBMS Slow due to Yes Yes, using No
(MySQL, etc.) table joins triggers
RDBMS + Fast but No No Yes
memcached [18] stale results
Distributed Slow Yes Yes, using Yes
in-memory stores [6] triggers
Batch graph frameworks [5] Fast but offline No No Yes
Graph DBs Fast, online Yes No No
(Neo4j [12], DEX [15])
Trinity [17] Fast, online No, explicit locks No Yes

Concerto Fast, online Yes Yes Yes
Design choice → In-memory Distributed Graph views, Distributed

data structures transactions notifications processing

1.2 Contributions

We have designed Concerto, a graph store that preserves the functionality of
specialized graph databases without sacrificing the ability to scale or build event-
driven applications. As shown in Table 1, Concerto differs from existing work in
its combination of two fundamental design principles.

First, Concerto provides distributed, in-memory, transactional storage of graph
elements. Unlike traditional databases, Concerto embeds the graph structure
within the aggregate memory of the cluster. While this layout incurs more stor-
age than a traditional table-based layout, it enables otherwise expensive graph
traversals to be performed quickly. Unlike existing graph databases, Concerto is
designed to maintain data consistency across multiple servers using distributed
transactions. The costs of the distributed transaction protocol are compensated
by several performance optimizations: in-memory representation, fewer network
roundtrips, and parallel computation.

Second, Concerto introduces the notion of graph views, which allows an appli-
cation to denote subgraphs of interest. Applications can compose different views
to form meaningful groups and run graph analysis on them. Applications can also
register user-defined event handlers on a view. As we discuss in Section 6, some
graph applications are naturally expressed as event-driven programs, and in our
experience, the extensibility provided by Concerto improves performance and
simplifies application programming. Moreover, views act as hints about which
graph entities are related, thereby providing a means to enhance data migration,
or partitioning policies [19,20,21] and reduce communication overhead.

We empirically compare Concerto against in-memory executions of MySQL, a
standard relational database; Neo4j, an open-source graph database; and Gem-
Fire, a commercial in-memory distributed store. Concerto is 10× faster in bulk
insertion throughput than Neo4j while consuming 3× less memory. Similarly,
Concerto is more than 7× faster than MySQL for interactive k-hop query per-
formance. Scaling results on 64 instances shows that Concerto can complete a
3-core computation of a 90-million node graph in only 12 minutes, compared
to nearly 6 hours on 64 instances of GemFire. We also demonstrate Concerto’s

290 M.M. Lee et al.

features through two real-world inspired applications: real-time incident impact
analysis on a road network, and targeted advertising in a social network.

2 Graph Storage

Concerto stores graph objects in memory and across distributed commodity
servers in data centers (Figure 1a). A distributed shared memory implementation
provides a global address space on which graph objects are allocated. Graph
traversals take place on the distributed graph representation using server-side
RPC calls batched for performance. Concerto’s key contributions are in the in-
memory graph representation and the use of efficient, distributed transactions to
provide concurrent access and online data migration.

2.1 Graph Representation

Concerto has three basic data types to store the application graph data: vertex,
edge, and property. A property element contains attributes and can be at-
tached to a vertex or edge. Vertices and edges can have multiple properties.
Concerto exposes APIs to graph applications to create and update the above
graph elements. New graph objects are allocated on a global address space pro-
vided by Sinfonia [22], a distributed shared memory system. Sinfonia exposes a
flat memory region per-server called memnode which are combined to create a
single global address space.

Concerto stores the logical graph using a layout optimized for in-memory
reads and inserts. As shown in Figure 1b, vertices, edges, and properties are
represented as records with pointers. A vertex has a pointer to a list of its
outgoing edges. An edge has pointers to its source and destination vertices and
to the next edge of the source vertex. Thus, all outgoing edges of a vertex can
be accessed consecutively starting from the first edge. Co-locating vertices and
edges in contiguous blocks of memory, and storing pointers to related graph
objects allow graph traversals to be performed quickly at the cost of additional
storage. Similar to edges, properties are chained together as a list. Both vertex
and edge records point to the head of their property lists.

In Concerto, each vertex and edge is a fixed-size record while properties can be
of variable size. Using an appropriate fixed size, a vertex or edge can be retrieved
in one read transaction (one network roundtrip between a client and a Concerto
server) as both the address and size of the data are known in advance. However,
accessing properties of a vertex or edge may require more than one transaction.
First, the vertex has to be read to determine the address of the property and
then the property is read in the next transaction. In some applications, certain
properties are accessed often. To retrieve these frequently accessed objects in
one read transaction, properties can optionally be embedded in the vertex or
edge records. Figure 1b depicts embedded properties attached to vertices and
edges.

Views and Transactional Storage for Large Graphs 291

Graph
application

Graph
application

Graph
application

Transactional
interface

Graph Allocator Notifications

Graph query engine

Di t ib t d Si f i d

Graph data objects (vertices, edges, views)

Distributed Sinfonia memnodes

Servers

(a) Concerto architecture

Source

Edge

Id

Destination

Properties

Next edge

Vertex

Edges

Properties

g

Key

Value

PropertyEmbedded
property

Views
Next
propertyView Id

Next view

View list
Embedded
property

(b) Internal structure of a vertex.
An embedded property is optional.

Clients

Concerto

Graph Allocators

mini transactions
Allocation
meta data

Global Address Space

Sinfonia memnodes

(c) Distributed graph allocation.

Memnode

Viper

Po

Shifu

Michael Grad: UCSD
Intern: HP

Pre-allocated block
(for vertices and edges)

Dynamic size blocks
(for properties)

M P M
V V S

M S V
P

S
M

S
V

Key
‘Grad’

Value
‘UCSD’

P
M

Key
‘Intern’

Value
‘HP’

(d) Example graph layout in
memnode; vertices and edges are
referred to by their first letters.

Fig. 1. Overview of Concerto

2.2 Use of Transactions

Concerto uses distributed transactions to provide consistency and concurrency
for graph allocation, access, and updates. Unlike simple key-value data, graph
data can seldom be partitioned into shared nothing regions, and hence we need
to support transactions that occur across machines. To balance consistency with
efficiency, Concerto leverages a distributed compare-and-swap primitive called a
mini-transaction provided by Sinfonia to support such distributed transactions.
Mini-transactions are a performance-optimized implementation of the two-phase
commit protocol. Concerto also provides other optimizations to minimize the
number of transactions used. These include batching graph operations during
traversals and reducing the number of indirections for graph object access. Us-
ing these optimizations, Concerto can, in the common case, perform reads of
vertices, edges or attributes in a single network roundtrip, and finish writes in
two network roundtrips. By comparison, transactionally updating even a single
value in GemFire requires at least three network roundtrips. Below, we discuss
examples of how transactions are used in Concerto.

Graph Allocation. During allocation of new graph elements (e.g., vertex,
edge) it is important to ensure a unique address is assigned to the graph ele-
ment even if two concurrent users request memory. Concerto uses transactions to
achieve this. As shown in Figure 1c, whenever an allocation request is received,
the Concerto graph allocator contacts the Sinfonia memnode. Upon allocation of

292 M.M. Lee et al.

an address space, an entry is made to the allocation meta-data on the memnode.
Concerto wraps these operations in transactions which ensures that the meta-
data for the allocator remains consistent during concurrent allocation requests.
Note that the use of transactions to allocate and manage each element incurs
overhead, especially for vertices and edges which are only a few tens of bytes.
To reduce this, Concerto pre-allocates large memory blocks from memnodes and
appends new vertices and edges until the block fills up. Pre-allocated blocks
reduce the amount of meta-data stored on memnodes, and also the number of
network roundtrips (and possible write conflicts) from allocation requests. Fig-
ure 1d illustrates how pre-allocated blocks store vertices and edges.

Graph Updates. Transactions are also used to allow in-place updates to ex-
isting graph elements with other (concurrent) accesses. Internally, the Concerto
transaction API calls the Sinfonia mini-transaction subsystem which allows up-
dates to be made to graph elements on distributed machines (in this case source
and destination vertices).

Graph Partitioning. Concerto uses transactions to provide online data mi-
gration for an application to optimize a graph partition. This can be used, for
example, when adding or removing servers, or when handling data hotspots. Ta-
ble 2 shows the three migrate functions available to applications. These functions
implement migration as a series of tasks wrapped inside distributed transactions.
For example, when migrating a vertex, the vertex and its associated data are
copied to the new server, the original copy is deleted, and all incoming pointers
to the vertex are updated. These tasks happen inside a transaction during which
time other non-conflicting operations can continue concurrently.

Table 2. Functions to migrate data

Function Description

migrateVertex(V, s) Move V and its data to server s

migrateView(View, s) Move view elements to server s

migrateGraph(View, map) Move elements based on map

3 Graph Views

The primary programming innovation of Concerto is the notion of application-
specific event processing using graph views. The concept of views is well-studied
in the database literature. Concerto extends this concept to distributed graph
stores. In Concerto, a view is a subgraph of interest on which applications can
run graph algorithms and also register generic event handlers. By using event
handlers, an application is easily expressed as an event-driven program.

3.1 Programming Model

Concerto provides a View class to create and manage graph views. Views are
subgraphs and comprise of a list of vertices, edges, and properties. Views are

Views and Transactional Storage for Large Graphs 293

Table 3. View API for event-driven processing

Function Description

onReadVertex(V)
Invoked on read operation. Passes
element where read occurred.

onReadEdge(E)
onReadProperty(P)

onUpdateVertex(V)
Invoked on write operation. Passes
element where write occurred. Old
value of property also passed.

onUpdateEdge(E)
onUpdateProperty(P, val)

primarily created to isolate regions of interest and can constrain a query to
execute only on a subgraph. For example, Concerto applications use the BSP
programming model to implement distributed graph algorithms by specifying
code that runs on each vertex [5,23]. Graph views provide application-specific
semantics to these algorithms: applications can compose multiple views and then
execute a distributed algorithm on the complex view. Consider the example
mentioned in the introduction where the graph G represents a road traffic network
and the graph application performs real-time accident impact analysis [3] on G.
The application developer might create a view P and M corresponding to the
cities of Palo Alto and Mountain View, respectively. If an accident occurs in
Palo Alto, then the application can localize the execution of its impact analysis
algorithm on P and demarcate the affected region I=impactAnalysis(P). Now,
the application can be easily extended to provide useful functionality; to find
the best path from a location in Mountain View to Palo Alto, while avoiding
the impacted region, a user would simply run a shortest path algorithm on
the composed view:(P - I)∪M. Concerto supports basic set operations, such as
union, intersection, and subtraction, on views. For example, two views can be
merged or their common elements subtracted.

Views simplify the support for event-driven processing. Applications can de-
fine a view upon which to register event handlers. The View API (Table 3)
can be invoked when read or write events occur in the subgraph. For example,
onreadVertex function can be invoked when a read event occurs on a vertex
in the view, and onUpdateProperty function is invoked on a write event to a
property element in the view. To implement function invocation, the view point-
ers are stored in graph elements (Figure 1b). Specifically, whenever a read or an
write occurs on a graph element, the view pointer(s) associated with the graph
element are traversed and the corresponding function is invoked.

Applications can invoke custom code using the View API. In our experience,
read functions are broadly useful for gathering statistics and for monitoring the
store. For example, the onReadVertex function can be overwritten to determine
whether too many clients are reading the view members. By monitoring read
throughput, data may be migrated proactively to reduce hotspots. Handlers for
write events may benefit from more customization. For example, in our road
traffic application, write events might specify the location of an accident, which
would trigger execution of the traffic impact analysis in that region.

294 M.M. Lee et al.

3.2 Data Structures

Supporting graph views requires a trade-off between compact storage and fast sub-
graph traversal. For fast graph traversals, the ideal approach makes a copy of the
subgraph corresponding to a view, enabling traversals to occur directly on the sub-
graph.However, this approachhas serious shortcomings. For large graphs, applica-
tions may create hundreds or thousands of views. Some of these viewsmay overlap
and store (possibly) large, redundant portions of the original graph.Therefore, this
approach may lead to unnecessary space explosion from duplicate copies of nodes
and edges.Additionally,whenupdates occur, preserving the structural consistency
across the views and the original graph will result in significant overhead.

To overcome these problems, the View class only stores the identifiers of its
members (vertices and edges), and a scratch space to store properties about
the view itself. Therefore, views store only membership information and not
structural information. This storage format has the singular advantage of low
space overhead. However the compact representation has the unfortunate side-
effect that by looking at only the internal representation of a view, it is not
possible to traverse the subgraph. For example, the view may not contain enough
information to determine the neighbors of a certain vertex. Instead, the view’s
stored information has to be combined with the actual graph to traverse the
subgraph contained in the view.

Concerto uses hash maps to speed up traversals on a view’s subgraph. Vertex
and edge identifiers are hashed for fast lookups. To execute a graph algorithm on
a view, the application specifies the code that runs at each vertex, but Concerto
ensures that the algorithm will be constrained to only the view members.

3.3 Event-Driven Processing

Supporting event processing in a graph store raises several questions. Since events
on a graph can span different servers, how should the graph store aggregate
such information? Intercepting each event may introduce undesirable processing
overhead. If so, how do we prevent event processing from unduly impacting the
query throughput of the graph store?

Concerto Store

Events
(create, read,

modify)

View

AP
I

Runtime

Communication

Registered

CallbackRegister
functionsCo

nc
er
to

A

Active function queue
Registered
functions

F1 F2 ..

Fig. 2. Control flow of event processing

Views store the functions to be
invoked when specified events oc-
cur. For example, views map the six
function names in Table 3, such as
onUpdateVertex, to the programmer-
specified functions. Whenever events
occur in a view, the runtime in-
vokes the corresponding functions.
Applications register functions to a
view by calling register() on the
the view. For example, V.register(
onUpdateVertex, myFunc) will register the function myFunc. Concerto will in-
voke this function whenever any vertex is updated in the view V. Internally, the
function is stored as an executable.

Views and Transactional Storage for Large Graphs 295

When the events of interest, e.g., vertex updates, occur on a graph element,
the Concerto runtime needs to determine which function registered with the view
should be invoked. As explained in Section 2, view members, such as vertices,
have a reverse pointer to their view object. This pointer is used to reach the
functions that need to be executed after the event occurs at the graph element.
Figure 2 illustrates the control flow during event-driven processing. The invoked
functions are first appended to a queue. These queued functions are executed
by a dedicated thread pool (separate from those handling queries) and, hence,
provide coarse-grain performance isolation between queries and event processing.
During execution, these functions can use the Concerto runtime for read access
to elements of the view. For example, after a traffic accident the impact analysis
function may traverse the vertices in the view to determine the affected region.
The invoked functions can also store persistent data in the property fields of the
view for subsequent processing. For example, a monitoring function may store
statistics about reads and writes as a property of the view.

Concerto can leverage off-the-shelf publish-subscribe systems for large-scale
event propagation. We believe our work to be complementary to these systems.

4 Fault Tolerance and Security

Concerto simplifies the graph store architecture by delegating most of the fault
recovery mechanisms to Sinfonia. Sinfonia provides atomicity, consistency, iso-
lation, durability (ACID), and availability if replication is enabled. These guar-
antees are independent of client-failures and the size of the graph. This design
choice ensures that the graph store can easily be ported to other platforms such
as distributed key-value stores. The Concerto prototype uses Sinfonia’s disk-
logging mechanisms to recover from memnode failures.

Sinfonia’s fault tolerant global address space implies that data stored in Con-
certo is recoverable. However, we need mechanisms in Concerto to regain con-
sistency (upon recovery) of the graph allocators. Graph allocators store all their
meta-data in the memnodes. However, if a graph allocator fails then some of
the memory may be leaked (e.g., pre-allocated blocks may be left dangling).
The recovery process in Concerto goes through the allocator meta-data in each
memnode and entrusts any dangling memory block to an active graph allocator.

Unlike data operations, event processing in Concerto’s current prototype is not
completely fault-tolerant. The difference in guarantees occurs because events are
processed asynchronously to isolate query performance from event processing.As a
result, an untimely fault can result in lost events. For example, when an update oc-
curs, the write operationmay return results to the client even though the triggered
event processing codemay still be executing a computation. If there is a fault before
the update operation returns, then Concerto’s recovery process will ensure that
both the write operation and the event-processing code is correctly re-executed (or
the client is notified of the failure and can retry). However, if a fault occurs after
the update operation completes but before the event processing code completes,
then the event may be lost. One can make event-processing fault tolerant by using
a fault-tolerant message queue which we plan as future work.

296 M.M. Lee et al.

Concerto assumes that functions registered with views are written by trusted
applications. Malicious code can impact both the graph store and the stored
data. The current prototype does not provide additional security features to
constrain malicious functions. In the future, standard security techniques, such as
sandboxes, may be used to limit the power of these functions [24]. Also, eventual
consistency will let Concerto scale to more servers, improve its performance
via asynchronous updates, and may decrease the latency of graph operations.
However, eventual consistency is difficult to reason about and program.

5 Evaluation

Concerto consists of approximately 4, 500 lines of C++ code for distributed data
allocation, query API, distributed graph traversals, and event processing. These
lines of code do not include the Sinfonia codebase.

We compare Concerto against MySQL, a well known relational database;
against Neo4j, a commercial graph database; and GemFire [6], a commercial, in-
memory distributed data management platform. GemFire uses hashing to store
data in memory regions distributed over multiple nodes and provides a SQL-like
interface. All experiments are performed using a cluster of 100 HP SL390 servers
running Ubuntu 11.04. Each server has two Intel Xeon X5650 processors (total
of twelve 2.67GHz cores), 96GB of DRAM, 120GB SSD drives, and 10 Gbps
NIC. In some cases, where the 96 GB memory limit was exceeded, we ran Neo4j
on a separate 1 TB memory server, however 96 GB was never approached for a
single Concerto memnode in these graphs.

In our experiments, all systems run in-memory: Neo4j is run on a ramfs par-
tition, MySQL uses its memory engine, and Concerto is run without replication.
GemFire is run with one logical data region, distributed over multiple nodes (the
number of nodes is specified in each experiment). In MySQL and GemFire, the
graph is stored as a table of edges. We optimize MySQL query performance by
using B-tree and hash indexes (GemFire uses hash maps). Workload generators
are located on different servers from those hosting the store.

From our evaluation, we find that:

– Concerto is fast. It can ingest millions of vertices and edges per second and
is more than 25× faster than other systems for k-core on large graphs and
uses 3× less memory than Neo4j.

– Concerto’s performance scales with the additional servers. It can calculate
the 3-core on a 90 million vertex graph in less than 12 minutes on 64 instances
compared to 45 minutes on a single memnode. The same computation takes
more than 6 hours by GemFire.

– Concerto’s graph views provide extensibility. Due to views and event-
processing, Concerto’s implementation of a road traffic application is 10×
faster than a poll based system.

Table 4 describes the graphs used in our experiments. For example, Twitter-L
represents 51 million users with 2 billion follower relationships that was collected

Views and Transactional Storage for Large Graphs 297

Table 4. Graphs used in different experiments

Graph Vertices Edges File size Experiments
Twitter-S 33M 282M 6.5GB Insert, k-hop,

monitoringTwitter-L 51M 2B 38GB
Social-S 3M 13M 197MB

Insert, k-core
Social-L 90M 405M 7.5GB
Road-CA [26] 2M 5M 84MB Traffic analysis

Table 5. Comparison of insertion throughput. Concerto/GemFire-1,10 represent run-
ning with 1 and 10 instances, respectively

Inserts/sec Vertex Edge Vertex(bulk) Edge(bulk)
Neo4j 282 337 6,120 6,467
MySQL 21,898 15,457 504,209 324,352
GemFire-1 5,234 6,001 153,245 165,324
Concerto-1 6,584 7,089 1.1 million 0.9 million

GemFire-10 27,512 23,092 1.3 million 1.0 million
Concerto-10 29,695 27,122 2.6 million 1.8 million

from the Twitter Web site. The Social-S/L graphs represent synthetic social
network graphs generated using the model proposed by Newman [25].

5.1 Performance Results

We first compare the insertion throughput and query latency of Concerto, Neo4j,
GemFire, and MySQL.

Insertion throughput. Table 5 compares how many vertex and edge elements can
be inserted per second by the different stores for the Twitter-S graph. We also
compare bulk loading all the vertices and edges of the Twitter-S graph for the
different stores. Bulk loading avoids overhead from multiple memory allocations
by inserting vertices and edges in one request. Insertion requests are issued from
multiple clients to maximize the throughput. Our results show that a single in-
stance Concerto is more than 21× faster than Neo4j. For example, Concerto can
insert more than 6,500 vertices/second compared to only 282 vertices/second for
Neo4j. Inserting single data items into MySQL is faster than a single-server in-
stance of Concerto and GemFire because MySQL is highly tuned and stores the
graph in a simple table format. However, as we discuss in the next section, this
table representation considerably limits graph query performance in MySQL.
GemFire and Concerto exhibit similar performance with single-item insertions,
but Concerto is 1.8 − 7× faster than GemFire with bulk insertions. Similar to
single-insertion, GemFire still needs to hash every element in the bulk inser-
tion case resulting in lower performance. Concerto can parallelize ingestion to
increase throughput. With 10 instances, Concerto inserts approximately 2.6 mil-
lion vertices/second and 1.8 million edges/second. Scaling ingestion throughput
is particularly useful for applications that must load very large graphs.

Graph query: k-hop. A common query in many graph applications is to retrieve
a vertex and its neighbors that are k-hop distance away. Figure 3 compares the

298 M.M. Lee et al.

3

4

5

6

7

8

ut
io
n
tim

e
(m

in
s)

MySQL

Neo4j

Concerto 1

GemFire 10

Concerto 10

5+ hours 5+ hours

0

1

2

3 hop 4 hop 5 hop

Ex
ec
u

(a)

System 1-hop 2-hop
(ms) (ms)

MySQL (in-memory) 9 303
Neo4j (in-memory) 42 1,320
Concerto-1 2 340
GemFire-10 10 295
Concerto-10 2 265

(b)

Fig. 3. K-hop latency. For clarity, 1 and 2 hop results are in the table

latency of retrieving upto 5-hop neighbors of a vertex in the different systems.
For a 1-hop distance, MySQL and Concerto have similar performance, while
Neo4j is noticeably slower. Neo4j’s Java implementation is the main reason for
the slowdown. However, for queries requiring more than 2-hops, MySQL is the
slowest. This result is not surprising because for each hop, it has to perform a join
operation, which is known to be an expensive operation for a database. For fewer
than 3-hops, the overhead from two table join operations is insignificant due to
use of the MySQL index. On the other hand, graph databases are optimized
for such larger traversals. For greater than 2-hops, both Neo4j and Concerto-
1 are at least 2-100× faster than MySQL, with the speedup increasing with
the number of hops in the query. GemFire-1 performs worse than MySQL and
hence we show only the GemFire-10 numbers. While Neo4j exhibits similar or
better performance than the single-server instantiation of Concerto, Concerto-10
is 2-6× faster than Neo4j and and 5× faster than GemFire-10.

System Social-S Social-L
Neo4j 6 min 64 hrs
GemFire-1 5 min 25 hrs
MySQL 4 min 22 hrs
Concerto-1 1 min 45 min

Fig. 4. 3-core execution time

Graph algorithm: k-core. The k-core of a
graph determines the subgraph where each
vertex has at least k neighbors on the induced
subgraph. Vertices with a larger “coreness”
value (i.e. k) correspond to nodes with a more
central position in the network structure [27].
The k-core of a graph is obtained by recur-
sively deleting vertices with degree less than k, until the degrees of remaining
vertices is larger than or equal to k.

For Concerto, we implement the parallel k-core decomposition algorithm [27].
Table 4 shows the time taken by different systems to calculate the 3-core of
two social graphs. For the 3 million vertex Social-S graph, MySQL, GemFire
and Neo4j perform similarly, computing the 3-core of the graph in 4, 5 and
6 minutes respectively. Concerto, however, computes the 3-core much faster,
requiring only 1 minute. For the 90 million vertex Social-L graph, Neo4j requires
over two days to compute the 3-core, whereas MySQL and GemFire complete
the same computation in 22 and 25 hours, respectively. Concerto completes the
computation in only 45 minutes.

To understand these numbers, we observe that each round of the k-core de-
composition consists primarily of two phases: a graph scan to find the vertices

Views and Transactional Storage for Large Graphs 299

1
2
4
8

16
32
64

128
256
512

N
eo

4j

Ge
m

Fi
re

Co

nc
er

to

M
yS

Q
L

N
eo

4j

Ge
m

Fi
re

Co

nc
er

to

M
yS

Q
L

N
eo

4j

Ge
m

Fi
re

Co

nc
er

to

M
yS

Q
L

N
eo

4j

Ge
m

Fi
re

Co

nc
er

to

M
yS

Q
L

Twitter-S Twitter-L Social-S Social-L

M
em

or
y

U
sa

ge
 (G

B)

Fig. 5. Comparison of memory usage

250,0000 50,000 100,000 150,000 200,000

650

0

50

100

150

200

250

300

350

400

450

500

550

600

Updates/s

L
at

en
cy

 (
m

s) Concerto-1

Concerto-10

Fig. 6. View update latency

that need to be deleted, and a short traversal of each vertex to find their degree
in the induced subgraph. The bottleneck in Neo4j is the part of the algorithm
that must perform a scan of all the data; such scans are known to be slow in
Neo4j for large graphs. MySQL’s and GemFire’s advantage in scans and pred-
icate evaluation (using indexes) is the primary reason for the speedup relative
to Neo4j for large datasets. We note that for the Social-L graph we used a hash
index since MySQL could not create such a large B-Tree index due to a known
unresolved bug in its implementation 1. In contrast, the design of Concerto allows
it to perform both graph scans and traversals quickly. It calculates the 3-core
in approximately 45 minutes, which is 29× faster than MySQL, 33× faster than
GemFire, and 85× faster than Neo4j.

5.2 Memory Footprint

In Figure 5, we compare the storage footprint of each system, which, in this
case, is entirely in memory. For MySQL we quote the numbers when only a hash
index is created, which is much more memory efficient than creating a B-Tree
index. Over all data-sets, MySQL has the smallest storage footprint as it stores
only the edge information in the form of a table. Concerto requires 1.3 − 4.7×
more storage than MySQL, and requires similar storage as GemFire but is 2.8−
22.7× more space efficient compared to Neo4j. GemFire consumes less memory
than Neo4j due to optimizations in object serialization and deserialization –
only cached objects exist in deserialized forms, while remaining objects exist
in smaller, serialized form. Apart from the overhead of Java, Neo4j also stores
extra metadata and hence consumes more memory than Concerto. For example,
in Neo4j the outgoing edges of a vertex are stored in a doubly linked list which
incurs the additional cost of a back pointer per edge.

Revisiting the performance numbers from k-hop and k-core in the context of
memory footprint reveals that for simple queries (e.g., 1-hop or 3-core) over small
data sets, running in-memory MySQL offers roughly the same performance-vs-

1 http://bugs.mysql.com/bug.php?id=44138

http://bugs.mysql.com/bug.php?id=44138

300 M.M. Lee et al.

memory trade-off as single-server Concerto and a better trade-off than Concerto-
10. However, as the data set size or query complexity increases, the additional
performance improvement of Concerto outweighs the additional storage require-
ment. For example, when running k-core, single-server Concerto requires 4.7×
more storage than MySQL, but improves k-core latency by a factor of 29×. In
the case of Neo4j, this difference is even more pronounced, where Concerto re-
quires 3.3× less storage, and yet improves k-core latency by a factor of 85×.
Compared to GemFire, Concerto consumes a similar amount of memory but is
33× faster on k-core.

5.3 View Updates

Figure 6 is a microbenchmark to measure the latency in processing view updates.
We created a view on the Twitter-S graph such that 20% of the vertices are part
of the view (around 7M). We use a client to send randomly generated updates to
vertices both within and outside the view . Whenever a vertex is updated in the
view, we use event-processing to increment the count of writes occurring on the
view. The Y-axis in the plot shows the time interval between a vertex update
and the completion of the event handler. In Concerto-1, the latency increases
substantially as the update rate becomes more than 50K/s. The increased latency
is because the single server reaches full capacity utilization and incurs queuing
delay. In Concerto-10, the view update latency is higher than Concerto-1 initially,
due to the network communication to update the view statistic that resides
at one server. However, since the graph is distributed across multiple nodes,
Concerto-10 can handle a higher update rate. The average delay is under 150ms
for Concerto-10 even when the update rate is 250K updates/s. As a reference
point for update rates, Twitter and Facebook receive 100K-200K update events
per second [1,2].

5.4 Scalability Results

Unlike Neo4j, Concerto can leverage distributed parallelism to improve perfor-
mance. Figure 7 shows the effect of scaling on the execution time of 3-core on
the Social-L graph. As we increase the number of Concerto instances to 64,
the execution time drops from 45 minutes to 12 minutes. At four Concerto in-
stances the execution time is higher than the single server case because of the
extra communication required. Similarly, beyond 80 instances the communica-
tion overhead for this dataset overshadows the benefit of increasing parallelism.
The table in Figure 7 shows that GemFire’s performance improves with more
instances. However, even at 64 instances it still requires 6 hours to complete.

6 Case Studies with Views

In this section, we consider how views and event-processing in Concerto can ease
development and improve performance of real-world inspired applications.

Views and Transactional Storage for Large Graphs 301

30
40
50
60
70
80
90

ce
rt
o
ex
ec
.t
im

e
(m

in
s)

0
10
20

1 4 8 16 32 64 80 100

Co
nc

Number of instances

#Instances 1 4 8 16 32 64
GemFire (Time in hrs) 25 16 13 10 9 6

Fig. 7. Distributed k-core: Concerto,
GemFire execution time (Social-L)

0.001

0.01

0.1

1

10

Co
nc

er
to

Po
ll-

ba
se

d

Co
nc

er
to

Po
ll-

ba
se

d

Co
nc

er
to

Po
ll-

ba
se

d

Co
nc

er
to

Po
ll-

ba
se

d

Co
nc

er
to

Po
ll-

ba
se

d

Incident 1 Incident 2 Incident 3 Incident 4 Incident 5

La
te

nc
y

(s
ec

on
ds

)

Compute Update Queuing Polling

Fig. 8. End-to-end latency in finding in-
cident impact region: Comparison be-
tween Concerto and a polling based
system. Lower is better.

6.1 Real-Time Traffic Impact Analysis

The California Performance Measurement System (PeMS) is a network of road
sensors spanning the major metropolitan freeways in California; these 26,000
sensors collect data every 30 seconds, generating over 2 GB of data each day [4].
The primary challenge isn’t the scale of the data, but the real-time nature of the
application. We revisit the example described in sub-section 3.1 and implement
an application considered by both Kwon et al., and Miller et al: a statistical
technique to estimate the time and spatial impact of a road incident (e.g., an ac-
cident, obstruction) on surrounding traffic [3,28]. When any such incident occurs,
the application needs to react by analyzing the road network graph to predict
the impact region of this incident, and possible re-calculated the shortest path
between two endpoints of an impacted commute. Low latency is of the essence
in order to notify the appropriate authorities to respond [3].

The application leverages Concerto in three ways. First, road sensors are
stored as vertices, and connecting road segments are stored as associated edges
in a graph. Each vertex contains information collected by its associated sensor
(i.e., traffic flow, velocity, external incidents, which are uploaded from external
sources). Second, a specific region of interest – for example, a municipality –
forms a graph view such that the relevant client can run analysis when events
occur. Finally, a function is registered with each view to run the impact analy-
sis algorithm upon occurrence of an incident. The analysis function can use the
information contained in the sensors that span the view.

We construct a graph based on the California road network [26], and generate
10 independent views (non-overlapping subgraphs) of size 2000 to approximate
independent municipalities. We drive the experiment using synthetic traffic and
incident data over a 25-minute window; this data is drawn from a distribution
sampled by historical PeMS data, and approximately matches the findings of
Miller, et al [3]. Therefore, at every 30-second interval, a traffic update invokes
an updateProperty(sensorID,sensorData) in Concerto, and when an inci-
dent occurs (also associated with a specific sensor), updateProperty(sensorID,
incident) is invoked. Upon completing the incident impact analysis, a shortest

302 M.M. Lee et al.

0

1

2

3

4

5

6

7

20 70 120 180 240 290

La
te

nc
y

(m
s)

Time (sec)

hotspot-avg
bkgd-avg

Fig. 9. Request latency observed during
a hotspot and migration (clipped points
represent downtime)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

20 70 120 180 240 290

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Time (sec)

total
background
hotspot

Fig. 10. Throughput observed during a
hotspot and migration

path between a fixed source and destination municipality is recalculated, with
any impacted subgraph removed from the calculation.

Figure 8 shows the end-to-end latency of determining the impact region for
the first five incidents. To measure the performance benefit of using Concerto, we
compare the latency of implementing this application in Concerto without event-
driven processing, thus requiring polling and client side processing (poll-based in
Figure 8). We show a breakdown of the time it takes to compute the impacted
region, update the incident sensor, and from queueing delay, and polling over-
head. We use a 10-second polling interval, which is close to the time taken to
scan all the vertices in the ten views and read whether an incident has occurred.
In Figure 8 we see that Concerto can find the impacted region in less than 100
milliseconds, largely due to server-side processing in both the event handling and
code execution. The polling-based system takes from 1 to 10 seconds, and thus
is slower by upto two orders of magnitude from Concerto. Even discounting the
polling overhead, the poll-based system takes one second to complete because of
the costly client-side graph traversal.

6.2 Hotspot Migration

Large social networks such as Facebook expose their infrastructure to third-
party advertisers wishing to target particular users (e.g, through Facebook Ads
API [29]). An increase in targeted advertising usually coincides with increases in
traffic from trending topics or external events that impact the social graph (e.g.,
the Super Bowl). This rapid increase in traffic can cause a workload hotspot,
especially if members of the view are co-located on the same set of physical
servers. Concerto can dynamically load balance data corresponding to a view
to mitigate such workload hotspots. To demonstrate these features, we replay
a synthetic trace of read and write traffic on the Twitter-S graph stored across
three Concerto instances. To simulate peak load, we create a view (called hotspot)
by randomly selecting 1, 000 Twitter users (these correspond to vertices in the
Twitter-S graph) stored in the same Concerto sever. We assign a designated set
of clients to this view to simulate heavy-hitters and continuously send requests to
those vertices. Concerto handles the heavy hitters by using a migration policy

Views and Transactional Storage for Large Graphs 303

such that the view members are evenly distributed across the three Concerto
servers. This policy is implemented by gathering statistics of the number of
requests hitting the view and when it exceeds a threshold (i.e hotspot occurs),
the data migration policy is invoked. All of this is done using the View event-
driven processing API described in Section 3.1. Figure 9 shows the timeline for
the above scenario. The hotspot occurs at time 70 seconds, at that time the
average request latency seen by the heavy hitters (hotspot-avg) increases to 6ms
compared to less than a millisecond initially. The average latency of other clients
in the store also increases (bkgd-avg) as some of their queries are on the view data.
At time 180 seconds, the migration starts and moves approximately one-third of
the view members to the remaining servers. During migration 683 vertices have to
be moved which requires updating 10, 916 edges. The total migration time takes
approximately 19.3 seconds, representing a downtime window during which the
heavy hitters cannot access the store. Note that our migration implementation
isn’t well optimized and the migration time of 19.3 seconds is on the higher
side which can be reduced. At the end of the migration, the average latency for
both the heavy hitters and the other users becomes the same. Also, as shown
in Figure 10, after the migration, the store can handle more traffic from the
heavy hitters as the data is now spread across more servers. The effect of this
migration is reflected by the increase in the total throughput beyond time 200
seconds. Online data migration can also be used to optimize query performance
in other cases. For example, in another experiment, we observe that executing
3-core on the 3M vertex graph (Social-S) is 1.6× better running on 10 Concerto
servers than executing it on 32 instances. Due to the communication overhead,
it takes 24 seconds to calculate 3-core on 32 instances compared to less than
15 seconds with only 10 instances. Therefore, in this case, the social media
application can move the data of a view to span fewer machines before running
the k-core query. Note that Concerto does not automatically partition the graph
for optimal performance. But applications can use known partitioning schemes
and register the partitioning logic with Concerto for dynamic data partitioning.

7 Related Work

Relational Databases. Common graph queries such as shortest-path and k-
hop are both difficult to express and inefficient to implement in a relational
model. Because these queries cannot be completed quickly enough to support
interactive or real-time responses. Web 2.0 sites such as Facebook, Flickr, and
Wikipedia complement their SQL-based backing store with an in-memory cache
such as Memcached [18] to provide low-latency response. Unfortunately the need
to use a caching layer to achieve performance scalability comes at the cost of
relaxed transactional semantics, a severely restricted set of supported graph
queries, and lack of extensibility using application defined functions.

Distributed Datastores. GemFire [6] is the most closely related system to
Concerto in that it is a scalable datastore that supports parallel query pro-
cessing, event-driven processing and transactions. It exports an SQL-like query

304 M.M. Lee et al.

interface on top of a distributed key-value storage layer. It is capable of perform-
ing dynamic load balancing, event-processing over data, and in-memory caching
of data objects across servers. Like relational databases and key-value stores,
however, it does not provide explicit support for graph objects, thereby making
graph queries inefficient.

Batch Analysis. Existing approaches to large graph analysis focus on optimiz-
ing offline computation. Systems like Pregel [5], GraphLab [9], Horton [30] and
algorithmic methodologies in the high-performance community [31,32] primarily
address the challenge of scaling computation with the size of graph data, gen-
erally on the order of billions of nodes and edges. As a result, these domains
restrict themselves to immutable, read-only data. On the other hand, Concerto
is designed to address the challenge of providing low-latency computation with
transactional semantics for complex graph problems where data is continuously
ingested and modified.

Graph Databases. Many specialized graph databases provide transactional
guarantees and are optimized for typical graph operations, but largely do not
scale storage [12,14,15] or storage or computation [11,16] to multiple servers.
Kineograph [33] and Trinity [17] are the most closely related graph projects to
Concerto, but do not provide semantics for user-defined functions or event-based,
active computation. Kineograph is designed to provide transactional support
for real-time graph updates in a distributed graph storage system; however, it
does not explicitly support fast graph computations and instead stores graph
elements using hash-based partitioning across graph storage nodes. Trinity does
not provide transactional storage, and makes a different trade-off with how edges
are named and represented in the graph. In the case of InfiniteGraph, no detailed
technical documentation is available to provide a more informed comparison.

Graph Views. Gutierrez et. al. [34] proposed database graph views as an ab-
straction mechanism on relational and object oriented databases. Their work
includes derivation operators such as union, intersection, difference to define
new graph views. However, their work is in the context of traditional databases
and they do not provide a specific implementation. Concerto’s view mechanisms
build upon this prior work and provide a specific implementation in a distributed
environment for non-relational, in-memory graph stores.

8 Conclusion

Many emerging applications require both scalable, transactional data storage,
and interactive, low-latency graph analysis. Concerto is a distributed graph store
that fills the gap between tiered database systems that scale, but perform poorly
on graph queries, and recent graph frameworks which can efficiently compute
graph algorithms but are offline and don’t provide transactional storage seman-
tics. Concerto’s abstraction of graph views simplifies how graph applications are
expressed, and provides mechanisms that can sustain update rates reported by
Twitter and Facebook.

Views and Transactional Storage for Large Graphs 305

Acknowledgments. We thank the anonymous reviewers for their valuable feed-
back. Part of this research was sponsored by the DARPA GRAPHS program
(BAA-12-01).

References

1. Facebook’s new realtime analytics system: Hbase to process 20 billion events per
day, http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-
analytics-system-hbase-to-process-20.html

2. Twitter by the numbers, http://mehack.com/twitter-by-the-numbers
3. Miller, M., Gupta, C., Wang, Y.: An empirical analysis of the impact of incidents

on freeway traffic. Research paper HPL-2011-134, Hewlett Packard, Palo Alto, CA,
USA (2011)

4. Caltrans performance measurement system (pems), http://pems.dot.ca.gov/
5. Malewicz, G., Austern, M.H., Bik, A.J., Dehñert, J.C., Horn, I., Leiser, N., Cza-

jkowski, G.: Pregel: A system for large-scale graph processing. In: Proceedings of
SIGMOD, pp. 135–146 (2010)

6. GemFire: Technical white paper, copyright 2005 by gemstone systems (2005),
http://community.gemstone.com/display/

gemfire60/EDF+Technical+White+Paper

7. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proceedings of OSDI 2004, pp. 137–150 (December 2004)

8. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of NSDI, San Jose, CA, pp.
1–14 (2012)

9. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of OSDI,
Hollywood, pp. 1–14 (October 2012)

10. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving
graph problems in mapreduce. In: Proceedings of SPAA, 85–94 (2011)

11. Infinitegraph: The distributed graph database, http://www.infinitegraph.com/
12. Neo4j: Nosql for the enterprise, http://neo4j.org/
13. Twitter flockdb,

http://engineering.twitter.com/2010/05/introducing-flockdb.html

14. Iordanov, B.: HyperGraphDB: A generalized graph database. In: Shen, H.T., Pei,
J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.)
WAIM 2010. LNCS, vol. 6185, pp. 25–36. Springer, Heidelberg (2010)

15. Mart́ınez-Bazan, N., Gómez-Villamor, S., Escale-Claveras, F.: Dex: A high-
performance graph database management system. In: Proceedings of IEEE ICDE
Workshop on Graph Data Management, pp. 124–127. IEEE (2011)

16. Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., Haridasan, M.: Man-
aging large graphs on multi-cores with graph awareness. In: Proceedings of USENIX
ATC, Berkeley, CA, USA, pp. 1–12 (2012)

17. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud.
In: Proceedings of SIGMOD (2013)

18. Fitzpatrick, B.: Distributed caching with memcached. Linux Journal 2004(124), 5
19. Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs,

1123–1134 (August 2011)

http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
http://mehack.com/twitter-by-the-numbers
http://pems.dot.ca.gov/
http://community.gemstone.com/display/gemfire60/EDF+Technical+White+Paper
http://community.gemstone.com/display/gemfire60/EDF+Technical+White+Paper
http://www.infinitegraph.com/
http://neo4j.org/
http://engineering.twitter.com/2010/05/introducing-flockdb.html

306 M.M. Lee et al.

20. Karypis, G., Kumar, V.: Metis - unstructured graph partitioning and sparse matrix
ordering system. Technical report, University of Minnesota (1995)

21. Mondal, J., Deshpande, A.: Managing Large Dynamic Graphs Efficiently. In: Pro-
ceedings of SIGMOD, pp. 145–156 (2012)

22. Aguilera, M.K., Merchant, A., Shah, M.A., Veitch, A.C., Karamanolis, C.T.: Sinfo-
nia: A new paradigm for building scalable distributed systems. ACM Trans. Com-
put. Syst. 27(3), 1–5 (2009)

23. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33, 103–
111 (1990)

24. Geambasu, R., Levy, A.A., Kohno, T., Krishnamurthy, A., Levy, H.M.: Comet: An
active distributed key-value store. In: Proceedings of OSDI, pp. 1–13 (2010)

25. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social
networks. Proceedings of the National Academy of Sciences of the United States
of America 99, 2566–2572 (2002)

26. Stanford large network dataset collection,
http://snap.stanford.edu/data/index.html

27. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition.
In: Proceedings of PODC, pp. 207–208 (2011)

28. Kwon, J., Mauch, M., Varaiya, P.: The components of congestion: delay from in-
cidents, special events, lane closures, weather, potential ramp metering gain, and
demand. In: Proceedings of the TRB 85th Annual Meeting (2006)

29. Facebook developers: custom audience targeting,
https://developers.facebook.com/docs/reference/

ads-api/custom-audience-targeting/

30. Sarwat, M., Elnikety, S., He, Y., Kliot, G.: Horton: Online query execution engine
for large distributed graphs. In: Proceedings of ICDE. Demonstration (2012)

31. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph exploration on
multicore processors. In: Proceedings of ACM/IEEE Supercomputing, pp. 1–11.
IEEE Computer Society, Washington, DC (2010)

32. Pearce, R., Gokhale, M., Amato, N.M.: Multithreaded asynchronous graph traver-
sal for in-memory and semi-external memory. In: Proceedings of ACM/IEEE Su-
percomputing, pp. 1–11. IEEE Computer Society, Washington, DC (2010)

33. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L.,
Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected
world. In: Proceedings of EuroSys, pp. 85–98. ACM, New York (2012)

34. Gutiérrez, A., Pucheral, P., Steffen, H., Thévenin, J.M.: Database graph views: A
practical model to manage persistent graphs. In: Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, VLDB (1994)

http://snap.stanford.edu/data/index.html
https://developers.facebook.com/docs/reference/ads-api/custom-audience-targeting/
https://developers.facebook.com/docs/reference/ads-api/custom-audience-targeting/

Efficient Batched Synchronization
in Dropbox-Like Cloud Storage Services

Zhenhua Li1,2, Christo Wilson3, Zhefu Jiang4, Yao Liu5,
Ben Y. Zhao6, Cheng Jin7, Zhi-Li Zhang7, and Yafei Dai1

1 Peking University
2 Tsinghua University

3 Northeastern University
4 Cornell University

5 Binghamton University
6 UCSB

7 University of Minnesota
{lizhenhua1983,guokeno0,jincheng117}@gmail.com,

cbw@ccs.neu.edu, yaoliu@cs.binghamton.edu, ravenben@cs.ucsb.edu,
zhzhang@cs.umn.edu, dyf@pku.edu.cn

Abstract. As tools for personal storage, file synchronization and data sharing,
cloud storage services such as Dropbox have quickly gained popularity. These
services provide users with ubiquitous, reliable data storage that can be automat-
ically synced across multiple devices, and also shared among a group of users.
To minimize the network overhead, cloud storage services employ binary diff,
data compression, and other mechanisms when transferring updates among users.
However, despite these optimizations, we observe that in the presence of frequent,
short updates to user data, the network traffic generated by cloud storage services
often exhibits pathological inefficiencies. Through comprehensive measurements
and detailed analysis, we demonstrate that many cloud storage applications gen-
erate session maintenance traffic that far exceeds the useful update traffic. We
refer to this behavior as the traffic overuse problem. To address this problem, we
propose the update-batched delayed synchronization (UDS) mechanism. Acting
as a middleware between the user’s file storage system and a cloud storage ap-
plication, UDS batches updates from clients to significantly reduce the overhead
caused by session maintenance traffic, while preserving the rapid file synchro-
nization that users expect from cloud storage services. Furthermore, we extend
UDS with a backwards compatible Linux kernel modification that further im-
proves the performance of cloud storage applications by reducing the CPU usage.

Keywords: Cloud storage service, Dropbox, Data synchronization, Traffic
overuse.

1 Introduction

As tools for personal storage, file synchronization and data sharing, cloud storage ser-
vices such as Dropbox, Google Drive, and SkyDrive have become extremely popular.
These services provide users with ubiquitous, reliable data storage that can be synchro-
nized (“sync’ed”) across multiple devices, and also shared among a group of users.

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 307–327, 2013.
c© IFIP International Federation for Information Processing 2013

308 Z. Li et al.

Dropbox is arguably the most popular cloud storage service, reportedly hitting more
than 100 million users who store or update one billion files per day [4].

Cloud storage services are characterized by two key components: a (front-end) client
application that runs on user devices, and a (back-end) storage service that resides
within the “cloud,” hosting users’ files in huge data centers. A user can “drop” files
into or directly modify files in a special “sync folder” that is then automatically syn-
chronized with cloud storage by the client application.

Cloud storage applications typically use two algorithms to minimize the amount of
network traffic that they generate. First, the client application computes the binary diff
of modified files and only sends the altered bits to the cloud. Second, all updates are
compressed before they are sent to the cloud. As a simple example, if we append 100
MB of identical characters (e.g. “a”) to an existing file in the Dropbox sync folder (thus
the binary diff size is 100 MB), the resulting network traffic is merely 40 KB. This
amount of traffic is just slightly more than the traffic incurred by appending a single
byte “a” (i.e. around 38 KB, including meta-data overhead).

The Traffic Overuse Problem. However, despite these performance optimizations,
we observe that the network traffic generated by cloud storage applications exhibits
pathological inefficiencies in the presence of frequent, short updates to user data. Each
time a synced file is modified, the cloud storage application’s update-triggered real-
time synchronization (URS) mechanism is activated. URS computes and compresses the
binary diff of the new data, and sends the update to the cloud along with some session
maintenance data. Unfortunately, when there are frequent, short updates to synced files,
the amount of session maintenance traffic far exceeds the amount of useful update traffic
sent by the client over time. We call this behavior the traffic overuse problem. In essence,
the traffic overuse problem originates from the update sensitivity of URS.

Our investigation into the traffic overuse problem reveals that this issue is perva-
sive among users. By analyzing data released from a large-scale measurement of Drop-
box [17], we discover that for around 8.5% of users, ≥10% of their traffic is generated
in response to frequent, short updates (refer to § 4.1). In addition to Dropbox, we ex-
amine seven other popular cloud storage applications across three different operating
systems, and discover that their software also exhibits the traffic overuse problem.

As we show in § 4, the traffic overuse problem is exacerbated by “power users” who
leverage cloud storage in situations it was not designed for. Specifically, cloud storage
applications were originally designed for simple use cases like storing music and shar-
ing photos. However, cloud storage applications are now used in place of traditional
source control systems (Dropbox markets their Teams service specifically for this pur-
pose [6]). The problem is especially acute in situations where files are shared between
multiple users, since frequent, short updates by one user force all users to download
updates. Similarly, users now employ cloud storage for even more advanced use cases
like setting up databases [1].

Deep Understanding of the Problem. To better understand the traffic overuse prob-
lem, we conduct extensive, carefully controlled experiments with the Dropbox appli-
cation (§ 3). In our tests, we artificially generate streams of updates to synced files,
while varying the size and frequency of updates. Although Dropbox is a closed-source

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 309

Dropbox
Sync Folder

User

File Edits Batched Updates

Continuous Updates

Cloud Sync
UDS

SavingBox Cloud

Fig. 1. High-level design of the UDS middleware

application and its data packets are SSL encrypted, we are able to conduct black-box
measurements of its network traffic by capturing packets with Wireshark [10].

By examining the time series of Dropbox’s packets, coupled with some analysis of
the Dropbox binary, we quantitatively explore the reasons why the ratio of session main-
tenance traffic to update traffic is poor during frequent, short file updates. In particular,
we identify the operating system features that trigger Dropbox’s URS mechanism, and
isolate the series of steps that the application goes through before it uploads data to the
cloud. This knowledge enables us to identify the precise update-frequency intervals and
update sizes that lead to the generation of pathological session maintenance traffic. We
reinforce these findings by examining traces from real Dropbox users in § 4.

UDS: Addressing the Traffic Overuse Problem. Guided by our measurement find-
ings, we develop a solution to the traffic overuse problem called update-batched delayed
synchronization (UDS) (§ 5). As depicted in Fig. 1, UDS acts as a middleware between
the user’s file storage system and a cloud storage client application (e.g. Dropbox).
UDS is independent of any specific cloud storage service and requires no modifica-
tions to proprietary software, which makes UDS simple to deploy. Specifically, UDS
instantiates a “SavingBox” folder that replaces the sync folder used by the cloud stor-
age application. UDS detects and batches frequent, short data updates to files in the
SavingBox and delays the release of updated files to the cloud storage application. In
effect, UDS forces the cloud storage application to batch file updates that would other-
wise trigger pathological behavior. In practice, the additional delay caused by batching
file updates is very small (around several seconds), meaning that users are unlikely to
notice, and the integrity of cloud-replicated files will not be adversely affected.

To evaluate the performance of UDS, we implement a version for Linux. Our proto-
type uses the inotify kernel API [8] to track changes to files in the SavingBox folder,
while using rsync [9] to generate compressed diffs of modified files. Results from our
prototype demonstrate that it reduces the overhead of session maintenance traffic to less
than 30%, compared to 620% overhead in the worst case for Dropbox.

UDS+: Reducing CPU Overhead. Both URS and UDS have a drawback: in the case
of frequent data updates, they generate considerable CPU overhead from constantly re-
indexing the updated file (i.e. splitting the file into chunks, checksumming each chunk,
and calculating diffs from previous versions of each chunk). This re-indexing occurs
because the inotify kernel API reports what file/directory has been modified on disk,
but not how it has been modified. Thus, rsync (or an equivalent algorithm) must be run
over the entire modified file to determine how it has changed.

To address this problem, we modify the Linux inotify API to return the size and lo-
cation of file updates. This information is readily available inside the kernel; our mod-
ified API simply exposes this information to applications in a backwards compatible
manner. We implement an improved version of our system, called UDS+, that leverages

310 Z. Li et al.

the new API (§ 6). Microbenchmark results demonstrate that UDS+ incurs significantly
less CPU overhead than URS and UDS. Our kernel patch is available at https://
www.dropbox.com/s/oor7vo9z49urgrp/inotify-patch.html.

Although convincing the Linux kernel community to adopt new APIs is a difficult
task, we believe that our extension to inotify is a worthwhile addition to the operating
system. Using the strace command, we tracked the system calls made by many com-
mercial cloud storage applications (e.g. Dropbox, UbuntuOne, TeamDrive, SpiderOak,
etc.) and confirmed that they all use the inotify API. Thus, there is a large class of
applications that would benefit from merging our modified API into the Linux kernel.

2 Related Work

As the popularity of cloud storage services has quickly grown, so too have the number of
research papers related to these services. Hu et al. performed the first measurement study
on cloud storage services, focusing on Dropbox, Mozy, CrashPlan, and Carbonite [21].
Their aim was to gauge the relative upload/download performance of different services,
and they find that Dropbox performs best while Mozy performs worst.

Several studies have focused specifically on Dropbox. Drago et al. study the detailed
architecture of the Dropbox service and conduct measurements based on ISP-level
traces of Dropbox network traffic [17]. The data from this paper is open-source, and
we leverage it in § 4 to conduct trace-driven simulations of Dropbox behavior. Drago
et al. further compare the system capabilities of Dropbox, Google Drive, SkyDrive,
Wuala, and Amazon Cloud Drive, and find that each service has its limitations and ad-
vantages [16]. A study by Wang et al. reveals that the scalability of Dropbox is limited
by their use of Amazon’s EC2 hosting service, and they propose novel mechanisms
for overcoming these bottlenecks [31]. Dropbox cloud storage deduplication is studied
in [20] [18], and some security/privacy issues of Dropbox are discussed in [25] [21].

Amazon’s cloud storage infrastructure has also been quantitatively analyzed. Burgen
et al. measure the performance of Amazon S3 from a client’s perspective [11]. They
point out that the perceived performance at the client is primarily dependent on the
transfer bandwidth between the client and Amazon S3, rather than the upload bandwidth
of the cloud. Consequently, the designers of cloud storage services must pay special
attention to the client-side, perceived quality of service.

Li et al. develop a tool called “CloudCmp” [23] to comprehensively compare the
performances of four major cloud providers: Amazon AWS [22], Microsoft Azure [14],
Google AppEngine and Rackspace CloudServers. They find that the performance of
cloud storage can vary significantly across providers. Specifically, Amazon S3 is ob-
served to be more suitable for handling large data objects rather than small data objects,
which is consistent with our observation in this paper.

Based on two large-scale network-attached storage file system traces from a real-
world enterprise datacenter, Chen et al. conduct a multi-dimensional analysis of data
access patterns at the user, application, file, and directory levels [15]. Based on this
analysis, they derive 12 design implications for how storage systems can be specialized
for specific data access patterns. Wallace et al. also present a comprehensive characteri-
zation of backup workloads in a large production backup system [30]. Our work follows

https://www.dropbox.com/s/oor7vo9z49urgrp/inotify-patch.html
https://www.dropbox.com/s/oor7vo9z49urgrp/inotify-patch.html

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 311

a similar methodology: study the data access patterns of cloud storage users and then
leverage the knowledge to optimize these systems for improved performance.

Finally, there are more works related to Dropbox-like cloud storage services, such as
the cloud-backed file systems [28] [29], delta compression [27], real-time compres-
sion [19], dependable cloud storage design [24] [12], and economic issues like the
market-oriented paradigm [13] and the Storage Exchange model [26].

3 Understanding Cloud Storage Services

In this section, we present a brief overview of the data synchronization mechanism of
cloud storage services, and perform fine-grained measurements of network usage by
cloud storage applications. Although we focus on Dropbox as the most popular service,
we demonstrate that our findings generalize to other services as well.

3.1 Data Synchronization Mechanism of Cloud Storage Services

Amazon S3

File
Content

Meta-
Data

Liveness
Beacons

Amaz Dropbox

Fig. 2. Dropbox data sync mechanism

Fig. 2 depicts a high-level outline of Drop-
box’s data sync mechanism. Each instance
of the Dropbox client application sends
three different types of traffic. First, each
client maintains a connection to an index
server. The index server authenticates each
user, and stores meta-data about the user’s
files, including: the list of the user’s files,
their sizes and attributes, and pointers to
where the files can be found on Ama-
zon’s S3 storage service. Second, file data
is stored on Amazon’s S3 storage service. The Dropbox client compresses files before
storing them in S3, and modifications to synced files are uploaded to S3 as compressed,
binary diffs. Third, each client maintains a connection to a beacon server. Periodically,
the Dropbox client sends a message to the user’s beacon server to report its online sta-
tus, as well as receives notifications from the cloud (e.g. a shared file has been modified
by another user and should be re-synced).

Relationship between the Disk and the Network. In addition to understanding the
network connections made by Dropbox, we also seek to understand what activity on
the local file system triggers updates to the Dropbox cloud. To measure the fine-grained
behavior of the Dropbox application, we leverage the Dropbox command-line interface
(CLI) [2], which is a Python script that enables low-level monitoring of the Dropbox
application. Using Dropbox CLI, we can programmatically query the status of the Drop-
box application after adding files to or modifying files in the Dropbox Sync folder.

By repeatedly observing the behavior of the Dropbox application in response to
file system changes, we are able to discern the inner workings of Dropbox’s update-
triggered real-time synchronization (URS) system. Fig. 3(a) depicts the basic operation
of URS. First, a change is made on disk within the Dropbox Sync folder, e.g. a new
file is created or an existing file is modified. The Dropbox application uses OS-specific

312 Z. Li et al.

Time

File
Update

Sync to
the Cloud

Ack from
the Cloud{

Re-Indexing
Updated File

{

Waiting for
Response

(a) {

Cannot be Sent: Waiting for Ack

(b)

Sync SyncAck

{
Cannot be Sent: Indexing Interrupted

(c)

Sync

(d)

Sync SyncAck SyncAck

Fig. 3. Diagrams showing the low-level behavior of the Dropbox application following a file
update. (a) shows the fundamental operations, while (b) and (c) show situations where file updates
are batched together. (d) shows the worst-case scenario where no file updates are batched together.

APIs to monitor for changes to files and directories of interest. After receiving a change
notification, the Dropbox application indexes or re-indexes the affected file(s). Next, the
compressed file or binary diff is sent to Amazon S3, and the file meta-data is sent to the
Dropbox cloud. This process is labeled as “Sync to the Cloud” in Fig. 3(a). After these
changes have been committed in the cloud, the Dropbox cloud responds to the client
with an acknowledgment message. In § 3.2, we investigate the actual length of time it
takes to commit changes to the Dropbox cloud.

Although the process illustrated in Fig. 3(a) appears to be straightforward, there are
some hidden conditions that complicate the process. Specifically, not every file update
triggers a cloud synchronization: there are two situations where file updates are batched
by the Dropbox application before they are sent to the cloud.

The first scenario is depicted in Fig. 3(b). In this situation, a file is modified numerous
times after a cloud sync has begun, but before the acknowledgment is received. URS
only initiates one cloud sync at a time, thus file modifications made during the network
wait interval get batched until the current sync is complete. After the acknowledgment
is received, the batched file changes are immediately synced to the cloud.

The second scenario is shown in Fig. 3(c). In this situation, a file is modified several
times in such rapid succession that URS does not have time to finish indexing the file.
Dropbox cannot begin syncing changes to the cloud until after the file is completely
indexed, thus these rapid edits prevent the client from sending any network traffic.

The two cases in Fig. 3(b) and 3(c) reveal that there are complicated interactions be-
tween on-disk activity and the network traffic sent by Dropbox. On one hand, a carefully
timed series of file edits can generate only a single network transfer if they occur fast
enough to repeatedly interrupt file indexing. On the other hand, a poorly timed series of
edits can initiate an enormous number of network transfers if the Dropbox software is
not able to batch them. Fig. 3(d) depicts this worst-case situation: each file edit (regard-
less of how trivially small) results in a cloud synchronization. In § 4, we demonstrate
that this worst-case scenario actually occurs under real-world usage conditions.

3.2 Controlled Measurements

Our investigation of the low-level behavior of the Dropbox application reveal complex
interactions between file writes on disk and Dropbox’s network traffic to the cloud. In
this section, we delve deeper into this relationship by performing carefully controlled

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 313

Table 1. Network traffic generated by adding new files to the Dropbox Sync folder

New File Size Index Server Traffic Amazon S3 Traffic α Sync Delay (s)
1 B 29.8 KB 6.5 KB 38200 4.0

1 KB 31.3 KB 6.8 KB 40.1 4.0
10 KB 31.8 KB 13.9 KB 4.63 4.1

100 KB 32.3 KB 118.7 KB 1.528 4.8
1 MB 35.3 KB 1.2 MB 1.22 9.2
10 MB 35.1 KB 11.5 MB 1.149 54.7

100 MB 38.5 KB 112.6 MB 1.1266 496.3

microbenchmarks of cloud storage applications. In particular, our goal is to quantify
the relationship between frequency and size of file updates with the amount of traffic
generated by cloud storage applications. As before we focus on Dropbox, however we
also demonstrate that our results generalize to other cloud storage systems as well.

All of our benchmarks are conducted on two test systems located in the United States
in 2012. The first is a laptop with a dual-core Intel processor @2.26 GHz, 2 GB of
RAM, and a 5400 RPM, 250 GB hard drive disk (HDD). The second is a desktop with
a dual-core Intel processor @3.0 GHz, 4 GB of RAM, and a 7200 RPM, 1 TB HDD.
We conduct tests on machines with different hard drive rotational speeds because this
impacts the time it takes for cloud storage software to index files. Both machines run
Ubuntu Linux 12.04, the Linux Dropbox application version 0.7.1 [3], and the Dropbox
CLI extension [2]. Both machines are connected to a 4 Mbps Internet connection, which
gives Dropbox ample resources for syncing files to the cloud.

File Creation. First, we examine the amount of network traffic generated by Dropbox
when new files are created in the Sync folder. Table 1 shows the amount of traffic sent
to the index server and to Amazon S3 when files of different sizes are placed in the
Sync folder on the 5400 RPM machine. We use JPEG files for our tests (except the
1 byte test) because JPEGs are a compressed file format. This prevents the Dropbox
application from being able to further compress data updates to the cloud.

Table 1 reveals several interesting facets about Dropbox traffic. First, regardless of
the size of the created file, the size of the meta-data sent to the index server remains
almost constant. Conversely, the amount of data sent to Amazon S3 closely tracks the
size of the created file. This result makes sense, since the actual file data (plus some
checksumming and HTTP overhead) are stored on S3.

The α column in Table 1 reports the ratio of total Dropbox traffic to the size of new
file. α close to 1 is ideal, since that indicates that Dropbox has very little overhead
beyond the size of the user’s file. For small files, α is large because the fixed size of
the index server meta-data dwarfs the actual size of the file. For larger files α is more
reasonable, since Dropbox’s overhead is amortized over the file size.

The last column of Table 1 reports the average time taken to complete the cloud syn-
chronization. These tests reveal that, regardless of file size, all cloud synchronizations
take at least 4 seconds on average. This minimum time interval is dictated by Dropbox’s
cloud infrastructure, and is not a function of hard drive speed, Internet connection speed
or RTT. For larger files, the sync delay grows commensurately larger. In these cases, the
delay is dominated by the time it takes to upload the file to Amazon S3.

314 Z. Li et al.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

D
ro

pb
ox

 T
ra

ffi
c

(K
B

)

Time (s)

Index Server
Amazon S3

Beacons

Fig. 4. Dropbox traffic corresponding to rapid,
1 byte appends to a file (5400 RPM HDD)

 0

 400

 800

 1200

 1600

 2000

 0 200 400 600 800 1000

D
ro

pb
ox

 T
ra

ffi
c

(K
B

)

Time (s)

Index Server
Amazon S3

Beacons

Fig. 5. Dropbox traffic corresponding to rapid,
1 byte appends to a file (7200 RPM HDD).

 0

 5

 10

 15

 20

0.2 0.3 0.4 0.5 1 5 10

D
ro

pb
ox

 T
ra

ffi
c

(M
B

)

Time Between File Appends (s)

Amazon S3
Index Server

Total

Fig. 6. Dropbox traffic as the
time between 1 byte appends is
varied (5400 RPM HDD)

 0

 5

 10

 15

 20

 25

 30

0.2 0.3 0.4 0.5 1 5 10

D
ro

pb
ox

 T
ra

ffi
c

(M
B

)

Time Between File Appends (s)

Amazon S3
Index Server

Total

Fig. 7. Dropbox traffic as the
time between 1 byte appends is
varied (7200 RPM HDD)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F

Indexing Time (ms)

7200 RPM
5400 RPM

Fig. 8. Distribution of Dropbox
file indexing time. Total file
size is 1 KB

Short File Updates. The next set of experiments examine the behavior of Dropbox in
the presence of short updates to an existing file. Each test starts with an empty file in the
Dropbox Sync folder, and then periodically we append one random byte to the file until
its size reaches 1 KB. Appending random bytes ensures that it is difficult for Dropbox
to compress the binary diff of the file.

Fig. 4 and 5 show the network traffic generated by Dropbox when 1 byte per second
is appended on the 5400 RPM and 7200 RPM machines. Although each append is only
1 byte long, and the total file size never exceeds 1 KB, the total traffic sent by Dropbox
reaches 1.2 MB on the 5400 RPM machine, and 2 MB on the 7200 RPM machine. The
majority of Dropbox’s traffic is due to meta-data updates to the index server. As shown
in Table 1, each index server update is roughly 30 KB in size, which dwarfs the size of
our file and each individual update. The traffic sent to Amazon S3 is also significant,
despite the small size of our file, while Beacon traffic is negligible. Overall, Fig. 4
and 5 clearly demonstrate that under certain conditions, the amount of traffic generated
by Dropbox can be several orders of magnitude larger than the amount of underlying
user data. The faster, 7200 RPM hard drive actually makes the situation worse.

Timing of File Updates. As depicted in Fig. 3(b) and 3(c), the timing of file updates
can impact Dropbox’s network utilization. To examine the relationship between up-
date timing and network traffic, we now conduct experiments where the time interval
between 1 byte file appends in varied from 100 ms to 10 seconds.

Fig. 6 and 7 display the amount of network traffic generated by Dropbox during each
experiment on the 5400 and 7200 RPM machines. The results show a clear trend: faster
file updates result in less network traffic. This is due to the mechanisms highlighted in
Fig. 3(b) and 3(c), i.e. Dropbox is able to batch updates that occur very quickly. This
batching reduces the total number of meta-data updates that are sent to the index sever,
and allows multiple appended bytes in the file to be aggregated into a single binary diff
for Amazon S3. Unfortunately, Dropbox is able to perform less batching as the time

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 315

 0

 10

 20

 30

 40

<1 1-4 4-7 7-10 10-20 >20

P
er

ce
nt

Sync Delay (s)

Fig. 9. Distribution of sync de-
lays. Total file size is 1 KB

 5
 5.2
 5.4
 5.6
 5.8

 6
 6.2

50 60 70 80 90 100

D
ro

pb
ox

 T
ra

ffi
c

(M
B

)

Appended Data (KBps)

Fig. 10. Network traffic as the
speed of file appends is varied

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

In
de

xi
ng

 T
im

e
(s

)

Appended Data (MB)

5400 RPM
7200 RPM

Fig. 11. File indexing time as
the total file size is varied

interval between appends grows. This is particularly evident for the 5 and 10 second
tests in Fig. 6 and 7. This case represents the extreme scenario shown in Fig. 3(d),
where almost every 1 byte update triggers a full synchronization with the cloud.

Indexing Time of Files. The results in Fig. 6 and 7 reveal that the timing of file up-
dates impacts Dropbox’s network traffic. However, at this point we do not know which
factor is responsible for lowering network usage: is it the network waiting interval as in
Fig. 3(b), the interrupted file indexing as in Fig. 3(c), or some combination of the two?

To answer this question, we perform microbenchmarks to examine how long it takes
Dropbox to index files. As before, we begin with an empty file and periodically append
one random byte until the file size reaches 1 KB. In these tests, we wait 5 seconds in-
between appends, since this time is long enough that the indexing operation is never
interrupted. We measure the time Dropbox spends indexing the modified file by moni-
toring the Dropbox process using Dropbox CLI.

Fig. 8 shows the indexing time distribution for Dropbox. The median indexing time
for the 5400 and 7200 RPM drives are≈400 ms and≈200 ms, respectively. The longest
indexing time we observed was 960 ms. These results indicates that file updates that oc-
cur within≈200-400 ms of each other (depending on hard drive speed) should interrupt
Dropbox’s indexing process, causing it to restart and batch the updates together.

Comparing the results from Fig. 6 and 7 to Fig. 8 reveals that indexing interrupts play
a role in reducing Dropbox’s network traffic. The amount of traffic generated by Drop-
box steadily rises as the time between file appends increases from 200 to 500 ms. This
corresponds to the likelihood of file appends interrupting the indexing process shown
in Fig. 8. When the time between appends is 1 second, it is highly unlikely that sequen-
tial appends will interrupt the indexing process (the longest index we observed took 960
ms). Consequently, the amount of network traffic generated during the 1 second interval
test is more than double the amount generated during the 500 ms test.

Although indexing interrupts are responsible for Dropbox’s network traffic patterns
at short time scales, they cannot explain the sharp increase in network traffic that occurs
when the time between appends rises from 1 to 5 seconds. Instead, in these situations the
delimiting factor is the network synchronization delay depicted in Fig. 3(b). As shown
in Fig. 9, one third of Dropbox synchronizations complete in 1-4 seconds, while another
third complete in 4-7 seconds. Thus, increasing the time between file appends from 1
to 10 seconds causes the number of file updates that trigger network synchronization to
rise (i.e. there is little batching of updates).

Long File Updates. So far, all of our results have focused on very short, 1 byte updates
to files. We now seek to measure the behavior of Dropbox when updates are longer. As

316 Z. Li et al.

before, we begin by looking at the amount of traffic generated by Dropbox when a file
in the Sync folder is modified. In these tests, we append blocks of randomized data to
an initially empty file every second until the total file size reaches 5 MB. We vary the
size of the data blocks between 50 KB and 100 KB, in increments of 10KB.

Fig. 10 shows the results of the experiment for the 5400 RPM test machine. Unlike
the results for the 1 byte append tests, the amount of network traffic generated by Drop-
box in these experiments is comparable to the total file size (5 MB). As the number
of kilobytes per second appended to the file increases, the ratio of network traffic to
total file size falls. These results reiterate the point that the Dropbox application uses
network resources more effectively when dealing with larger files.

Fig. 11 explores the relationship between the size of appended data and the file index-
ing time for Dropbox. There is a clear linear relationship between these two variables:
as the size of the appended data increases, so does the indexing time of the file. This
makes intuitive sense, since it takes more time to load larger files from disk.

Fig. 11 indicates that interrupted indexing will be a more common occurrence with
larger files, since they take longer to index, especially on devices with slower hard
drives. Therefore, Dropbox will use network resources more efficiently when dealing
with files on the order of megabytes in size. Similarly, the fixed overhead of updating
the index server is easier to amortize over large files.

3.3 Other Cloud Storage Services and Operating Systems

We now survey seven additional cloud storage services to see if they also exhibit the
traffic overuse problem. For this experiment, we re-run our 1 byte per second append
test on each cloud storage application. As before, the maximum size of the file is 1 KB.
All of our measurements are conducted on the following two test machines: a desktop
with a dual-core Intel processor @3.0 GHz, 4 GB of RAM, and a 7200 RPM, 1 TB
hard drive, and a MacBook Pro laptop with a dual-core Intel processor @2.5 GHz, 4
GB of RAM, and a 7200 RPM, 512 GB hard drive. The desktop dual boots Ubuntu
12.04 and Windows 7 SP1, while the laptop runs OS X Lion 10.7. We test each cloud
storage application on all OSes it supports. Because 360 CloudDisk, Everbox, Kanbox,
Kuaipan, and VDisk are Chinese services, we executed these tests in China. Dropbox,
UbuntuOne, and IDriveSync were tested in the US.

 0

 1

 2

 3

 4

 5

N
et

w
or

k
T

ra
ffi

c
(M

B
)

Cloud Storage Services

D
ro

pb
ox

 (
Li

nu
x)

D
ro

pb
ox

 (
W

in
7)

D
ro

pb
ox

 (
O

S
 X

)

U
bu

nt
uO

ne
 (

Li
nu

x)

U
bu

nt
uO

ne
 (

O
S

 X
)

ID
riv

eS
yn

c
(W

in
7)

ID
riv

eS
yn

c
(O

S
 X

)

36
0

C
lo

ud
D

is
k

(W
in

7)

E
ve

rb
ox

 (
W

in
7)

E
ve

rb
ox

 (
O

S
 X

)

K
an

bo
x

(W
in

7)

K
ua

ip
an

 (
W

in
7)

K
ua

ip
an

 (
O

S
 X

)

V
D

is
k

(W
in

7)

Fig. 12. Total network traffic for various cloud storage applications running on three OSes after
appending 1 byte to a file 1024 times

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 317

Fig. 12 displays the results of our experiments, from which there are two important
takeaways. First, we observe that the traffic overuse problem is pervasive across dif-
ferent cloud storage applications. All of the tested applications generate megabytes of
traffic when faced with frequent, short file updates, even though the actual size of the
file in only 1KB. All applications perform equal to or worse than Dropbox. Secondly,
we see that the traffic overuse problem exists whether the client is run on Windows,
Linux, or OS X.

3.4 Summary

Below we briefly summarize our observations and insights got from the experimental
results in this section.

– The Dropbox client only synchronizes data to the cloud after the local data has been
indexed, and any prior synchronizations have been resolved. File updates that occur
within 200-400 ms intervals are likely to be batched due to file indexing. Similarly,
file updates that occur within a 4 second interval may be batched due to waiting for
a previous cloud synchronization to finish.

– The traffic overuse problem occurs when there are numerous, small updates to files
that occur at intervals on the order of several seconds. Under these conditions, cloud
storage applications are unable to batch updates together, causing the amount of
sync traffic to be several orders of magnitude larger than the actual size of the file.

– Our tests reveal that the traffic overuse problem is pervasive across cloud storage
applications. The traffic overuse problem occurs on different OSes, and is actually
made worse by faster hard drive speeds.

4 The Traffic Overuse Problem in Practice

The results in the previous section demonstrate that under controlled conditions, cloud
storage applications generate large amounts of network traffic that far exceed the size of
users’ actual data. In this section, we address a new question: are users actually affected
by the traffic overuse problem? To answer this question, we measure the characteris-
tics of Dropbox network traffic in real-world scenarios. First, we analyze data from a
large-scale trace of Dropbox traffic to illustrate the pervasiveness of the traffic overuse
problem in the real world. To confirm these findings, we use data from the trace to drive
a simulation on our test machines. Second, we experiment with two practical Dropbox
usage scenarios that may trigger the traffic overuse problem. The results of these tests
reveal that the amount of network traffic generated by Dropbox is anywhere from 11 to
130 times the size of data on disk. This confirms that the traffic overuse problem can
arise under real-world use cases.

4.1 Analysis of Real-World Dropbox Network Traces

To understand the pervasiveness of the traffic overuse problem, we analyze network-
level traces from a recent, large-scale measurement study of Dropbox [5]. This trace is

318 Z. Li et al.

collected at the ISP level, and involves over 10,000 unique IP addresses and millions of
data updates to/from Dropbox. To analyze the behavior of each Dropbox user, we as-
sume all traffic generated from a given IP address corresponds to a single Dropbox user
(unfortunately, we are unable to disambiguate multiple users behind a NAT). For each
user, we calculate the percentage of Dropbox requests and traffic that can be attributed
to frequent, short file updates in a coarse-grained and conservative manner.

As mentioned in § 3.4, the exact parameters for frequent, short updates that trigger
the traffic overuse problem vary from system to system. Thus, we adopt the following
conservative metrics to locate a frequent, short update (Ui): 1) the inter-update time
between updates Ui and Ui−1 is <1 second, and 2) the size of (compressed) data asso-
ciated with Ui is <1 KB.

Figures 13 and 14 plot the percentage of requests and network traffic caused by fre-
quent, short updates, respectively. In both figures, users are sorted in descending order
by percentage of short, frequent requests/traffic. Fig. 13 reveals that for 11% of users,
≥10% of their Dropbox requests are caused by frequent, short updates. Fig. 14 shows
that for 8.5% of users, ≥10% of their traffic is due to frequent, short updates. These
results demonstrate that a significant portion of the network traffic from a particular
population of Dropbox users is due to the traffic overuse problem.

Log Appending Experiment. To confirm that frequent, short updates are the cause of
the traffic patterns observed in Figures 13 and 14, we chose one trace from an active
user and recreated her/his traffic on our test machine (i.e. the same Ubuntu laptop used
in § 3). Specifically, we play back the user’s trace by writing the events to an empty
log in the Dropbox Sync folder. We use the event timestamps from the trace to ensure
that updates are written to the log at precisely the same rate that they actually occurred.
The user chosen for this experiment uses Dropbox for four hours, with an average inter-
update time of 2.6 seconds. Fig. 15 shows the amount of network traffic generated by
Dropbox as well as the true size of the log file over time. By the end of the test, Dropbox
generates 21 times as much traffic as the size of data on disk. This result confirms that
an active real-world Dropbox user can trigger the traffic overuse problem.

4.2 Examining Practical Dropbox Usage Scenarios

In the previous section, we showed that real-world users are impacted by the traffic
overuse problem. However, the traces do not tell us what high-level user behavior gen-
erates the observed frequent, short updates. In this section, we analyze two practical use
cases for Dropbox that involve frequent, short updates.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

Dropbox Users (Sorted)

Short, Frequent
Network Requests

Fig. 13. Each user’s percentage
of frequent, short network re-
quests, in descending order

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

Dropbox Users (Sorted)

Short, Frequent
Network Traffic

Fig. 14. Each user’s percentage
of frequent, short network traf-
fic, in descending order

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
B

Time (Hour)

Dropbox Traffic
Append Size

Fig. 15. Dropbox network traf-
fic and log size corresponding
to an active user’s trace

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 319

 0

 25

 50

 75

 100

 0 100 200 300 400 500

N
et

w
or

k
T

ra
ffi

c
(M

B
)

Time (s)

Amazon S3 Upload
HTTP Download

Index Server Upload

Fig. 16. Dropbox upload traffic
as a 5MB file is downloaded
into the Sync folder via HTTP.

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

R
at

io

Average HTTP Download Rate (Kbps)

Dropbox Traffic / File Size
HTTP Traffic / File Size

Fig. 17. Ratio of network traffic
to real file size for the Dropbox
upload and HTTP download.

 100

 200

 300

 400

 500

 600

 100 200 300 400
 2

 4

 6

 8

 10

A
vg

. I
nt

er
-U

pd
at

e
T

im
e

(m
s)

A
vg

. U
pd

at
e

Le
ng

th
 (

K
B

)

Average HTTP Download Rate (Kbps)

Time

Length

Fig. 18. Average inter-update
time and data update length as
HTTP download rate varies.

HTTP File Download. One of the primary use cases for Dropbox is sharing files with
friends and colleagues. In some cases, it may be expedient for users to download files
from the Web directly into the Dropbox Sync folder to share them with others. In this
case, the browser writes chunks of the file to disk as pieces arrive via HTTP from the
web. This manifests as repeated appends to the file at the disk-level. How does the
Dropbox application react to this file writing pattern?

To answer this question, we used wget to download a compressed, 5 MB file into
the Dropbox Sync folder. All network traffic was captured using Wireshark. As before,
we use a compressed file for the test because this prevents Dropbox from being able to
perform any additional compression while uploading data to the cloud.

Fig. 16 plots the amount of traffic from the incoming HTTP download and the out-
going Dropbox upload. For this test, we fixed the download rate of wget at 80 Kbps.
The 75 MB of traffic generated by Dropbox is far greater than the 5.5 MB of traffic
generated by the HTTP download (5 MB file plus HTTP header overhead). Fig. 16 and
Fig. 4 demonstrate very similar results: in both cases, Dropbox transmits at least one
order of magnitude more data to the cloud than the data in the actual file.

We now examine the behavior of the Dropbox software as the HTTP download rate
is varied. Fig. 17 examines the ratio of network traffic to actual file size for Dropbox and
HTTP as the HTTP download rate is varied. For the HTTP download, the ratio between
the amount of incoming network traffic and the actual file size (5 MB) is constantly 1.1.
The slight amount of overhead comes from the HTTP headers. For Dropbox, the ratio
between outgoing traffic and file size varies between 30 and 1.1. The best case occurs
when the HTTP download rate is high.

To explain why the network overhead for Dropbox is lowest when the HTTP down-
load rate is high, we examine the interactions between wget and the hard drive. Fig. 18
shows the time between hard drive writes by wget, as well as the size of writes, as
the HTTP download rate is varied. The left hand axis and solid line correspond to the
inter-update time, while the right hand axis and dashed line depict the size of writes.
The network overhead for Dropbox is lowest when the HTTP download rate is ≥200
Kbps. This corresponds to the scenario where file updates are written to disk every
300 ms, and the sizes of the updates are maximal (≈ 9 KB per update). Under these
conditions, the Dropbox software is able to batch many updates together. Conversely,
when the HTTP download rate is low, the inter-update time between hard disk writes
is longer, and the size per write is smaller. Thus, Dropbox has fewer opportunities to
batch updates, which triggers the traffic overuse problem.

320 Z. Li et al.

In addition to our tests with wget, we have run identical experiments using Chrome
and Firefox. The results for these browsers are similar to our results for wget: Dropbox
generates large amounts of network traffic when HTTP download rates are low.

Collaborative Document Editing. In this experiment, we simulate the situation where
multiple users are collaboratively editing a document stored in the Dropbox Sync folder.
Specifically, we place a 1 MB file full of random ASCII characters in the Dropbox Sync
folder and share the file with a second Dropbox user. Each user edits the document by
modifying or appending l random bytes at location x every t seconds, where l is a
random integer between 1 and 10, and t is a random float between 0 and 10. Each user
performs modifying and appending operations with the same probability (=0.5). If a
user appends to the file, x is set to the end of the file.

We ran the collaborative document editing experiment for a single hour. During this
period of time, we measured the amount of network traffic generated by Dropbox. By
the end of the experiment, Dropbox had generated close to 130 MB of network traffic:
two orders of magnitude more data than the size of the file (1 MB).

5 The UDS Middleware

In § 3, we demonstrate that the design of cloud storage applications gives rise to situa-
tions where they can send orders-of-magnitude more traffic than would be reasonably
expected. We follow this up in § 4 by showing that this pathological application behav-
ior can actually be triggered in real-world situations.

To overcome the traffic overuse problem, we implement an application-level mecha-
nism that dramatically reduces the network utilization of cloud storage applications. We
call this mechanism update-batched delayed synchronization (UDS). The high-level op-
eration of UDS is shown in Fig. 1. Intuitively, UDS is implemented as a replacement for
the normal cloud sync folder (e.g. the Dropbox Sync folder). UDS proactively detects
and batches frequent, short updates to files in its “SavingBox” folder. These batched
updates are then merged into the true cloud-sync folder, so they can be transferred to
the cloud. Thus, UDS acts as a middleware that protects the cloud storage application
from file update patterns that would otherwise trigger the traffic overuse problem.

In this section, we discuss the implementation details of UDS, and present bench-
marks of the system. In keeping with the methodology in previous sections, we pair
UDS with Dropbox when conducting experiments. Our benchmarks reveal that UDS
effectively eliminates the traffic overuse problem, while only adding a few seconds of
additional delay to Dropbox’s cloud synchronization.

5.1 UDS Implementation

At a high level the design of UDS is driven by two goals. First, the mechanism should fix
the traffic overuse problem by forcing the cloud storage application to batch file updates.
Second, the mechanism should be compatible with multiple cloud storage services.
This second goal rules out directly modifying an existing application (e.g. the Dropbox
application) or writing a custom client for a specific cloud storage service.

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 321

To satisfy these goals, we implement UDS as a middleware layer that sits between
the user and an existing cloud storage application. From the user’s perspective, UDS
acts just like any existing cloud storage service. UDS creates a “SavingBox” folder on
the user’s hard drive, and monitors the files and folders placed in the SavingBox. When
the user adds new files to the SavingBox, UDS automatically computes a compressed
version of the data. Similarly, when a file in the SavingBox folder is modified, UDS
calculates a compressed, binary diff of the file versus the original. If a time period t
elapses after the last file update, or the total size of file updates surpasses a threshold
c, then UDS pushes the updates over to the true cloud sync folder (e.g. the Dropbox
Sync folder). At this point, the user’s cloud storage application (e.g. Dropbox) syncs
the new/modified files to the cloud normally. In the event that files in the true cloud
sync folder are modified (e.g. by a remote user acting on a shared file), UDS will copy
the updated files to the SavingBox. Thus, the contents of the SavingBox are always
consistent with content in the true cloud-synchronization folder.

As a proof of concept, we implement a version of UDS for Linux. We tested our
implementation by pairing it with the Linux Dropbox client. However, we stress that it
would be trivial to reconfigure UDS to work with other cloud storage software as well
(e.g. Google Drive, SkyDrive, and UbuntuOne). Similarly, there is nothing fundamental
about our implementation that prevents it from being ported to Windows, OS X, or
Linux derivatives such as Android.

Implementation Details. Our UDS implementation uses the Linux inotify APIs to
monitor changes to the SavingBox folder. Specifically, UDS calls inotify add watch()
to set up a callback that is invoked by the kernel whenever files or folders of interest
are modified by the user. Once the callback is invoked, UDS writes information such
as the type of event (e.g. file created, file modified, etc.) and the file path to an event
log. If the target file is new, UDS computes the compressed size of the file using gzip.
However, if the target file has been modified then UDS uses the standard rsync tool to
compute a binary diff between the updated file and the original version in the cloud-
synchronization folder. UDS then computes the compressed size of the binary diff.

Periodically, UDS pushes new/modified files from the SavingBox to the true cloud
sync folder. In the case of new files, UDS copies them entirely to the cloud sync folder.
Alternatively, in the case of modified files, the binary diff previously computed by UDS
is applied to the copy of the file in the cloud sync folder.

Internally, UDS maintains two variables that determine how often new/modified files
are pushed to the true cloud sync folder. Intuitively, these two variables control the
frequency of batched updates to the cloud. The first variable is a timer: whenever a file
is created/modified, the timer gets reset to zero. If the timer reaches a threshold value t,
then all new/modified files in the SavingBox are pushed to the true cloud sync folder.

The second variable is a byte counter that ensures frequent, small updates to files are
batched together into chunks of at least some minimum size before they get pushed to
the cloud. Specifically, UDS records the total size of all compressed data that has not
been pushed to cloud storage. If this counter exceeds a threshold c, then all new/modified
files in the SavingBox are pushed to the true cloud-synchronization folder. Note that all
cloud storage software may not use gzip for file compression: thus, UDS’s byte counter
is an estimate of the amount of data the cloud storage software will send on the network.

322 Z. Li et al.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

N
et

w
or

k
T

ra
ffi

c
(M

B
)

Threshold of the UDS Byte Counter (KB)

UDS Sync Traffic
Real Data Size (5 MB)

Fig. 19. Network traffic corresponding to vari-
ous thresholds of the UDS byte counter c

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

S
yn

c
D

el
ay

 (
s)

Threshold of the UDS Byte Counter (KB)

Fig. 20. Sync delay corresponding to various
thresholds of the UDS byte counter c

Although UDS’s estimate may not perfectly reflect the behavior of the cloud storage
application, we show in the next section that this does not impact UDS’s performance.

As a fail-safe mechanism, UDS includes a second timer that pushes updates to the
cloud on a coarse timeframe. This fail-safe is necessary because pathological file update
patterns could otherwise block UDS’s synchronization mechanisms. For example, con-
sider the case where bytes are appended to a file. If c is large, then it may take some time
before the threshold is breached. Similarly, if the appends occur at intervals < t, the first
timer will always be reset before the threshold is reached. In this practically unlikely
but possible scenario, the fail-safe timer ensures that the append operations cannot per-
petually block cloud synchronization. In our UDS implementation, the fail-safe timer
automatically causes UDS to push updates to the cloud every 30 seconds.

5.2 Configuring and Benchmarking UDS

In this section we investigate two aspects of UDS. First, we establish values for the UDS
variables c and t that offer a good tradeoff between reduced network traffic and low syn-
chronization delay. Second, we compare the performance of UDS to the stock Dropbox
application by re-running our earlier benchmarks. In this section, all experiments are
conducted on a laptop with a dual-core Intel processor 2.26GHz, 2 GB of RAM, and a
5400 RPM, 250 GB hard drive. Our results show that when properly configured, UDS
eliminates the traffic overuse problem.

Choosing Threshold Values. Before we can benchmark the performance of UDS, the
values of the time threshold t and byte counter threshold c must be established. Intu-
itively, these variables represent a tradeoff between network traffic and timeliness of
updates to the cloud. On one hand, a short time interval and a small byte counter would
cause UDS to push updates to the cloud very quickly. This reduces the delay between
file modifications on disk and syncing those updates to the cloud, at the expense of in-
creased traffic. Conversely, a long timer and large byte counter causes many file updates
to be batched together, reducing traffic at the expense of increased sync delay.

What we want is to locate a good tradeoff between network traffic and delay. To
locate this point, we conduct an experiment: we append random bytes to an empty file
in the SavingBox folder until its size reaches 5 MB while recording how much net-
work traffic is generated by UDS (by forwarding updates to Dropbox) and the resulting
sync delay. We run this experiment several times, varying the size of the byte counter
threshold c to observe its impact on network traffic and sync delay.

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 323

 0
 10
 20
 30
 40
 50
 60
 70

 0 100 200 300 400 500

N
et

w
or

k
T

ra
ffi

c
(M

B
)

Time (s)

Dropbox Traffic
UDS Traffic

Real File Size

Fig. 21. Dropbox and UDS traffic as a 5 MB
file is downloaded into the Sync folder

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
et

w
or

k
T

ra
ffi

c
(M

B
)

Time (Hour)

Dropbox Traffic
UDS Traffic

Append Size

Fig. 22. Dropbox and UDS traffic correspond-
ing to an active user’s log file backup process

Fig. 19 and 20 show the results of this experiment. As expected, UDS generates a
greater amount of network traffic but incurs shorter sync delay when c is small be-
cause there is less batching of file updates. The interesting feature of Fig. 19 is that
the amount of network traffic quickly declines and then levels off. The ideal tradeoff
between network traffic and delay occurs when c = 250 KB; any smaller and network
traffic quickly rises, any larger and there are diminishing returns in terms of enhanced
network performance. On the other hand, Fig. 20 illustrates an approximately linear
relationship between UDS’s batching threshold and the resulting sync delay, so there is
no especially “good” threshold c in terms of the sync delay. Therefore, we use c = 250
KB for the remainder of our experiments.

We configure the timer threshold t to be 5 seconds. This value is chosen as a quali-
tative tradeoff between network performance and user perception. Longer times allow
for more batching of updates, however long delays also negatively impact the perceived
performance of cloud storage systems (i.e. the time between file updates and availability
of that data in the cloud). We manually evaluated our UDS prototype, and determined
that a 5 second delay does not negatively impact the end-user experience of cloud stor-
age systems, but is long enough to mitigate the traffic overuse problem.

Although the values for c and t presented here were calculated on a specific machine
configuration, we have conducted the same battery of tests on other, faster machines as
well. Even when the speed of the hard drive is increased, c = 250 KB and t = 5 seconds
are adequate to prevent the traffic overuse problem.

UDS’s Performance vs. Dropbox. Having configured UDS’s threshold values, we can
now compare its performance to a stock instance of Dropbox. To this end, we re-run 1)
the wget experiment and 2) the active user’s log file experiment from § 4. Fig. 21 plots
the total traffic generated by a stock instance of Dropbox, UDS (which batches updates
before pushing them to Dropbox), and the amount of real data downloaded over time
by wget. The results for Dropbox are identical to those presented in Fig. 16, and the
traffic overuse problem is clearly visible. In contrast, the amount of traffic generated by
UDS is only slightly more than the real data traffic. By the end of the HTTP download,
UDS has generated 6.2 MB of traffic, compared to the true file size of 5 MB.

Fig. 22 plots the results of the log file append test. As in the previous experiment,
the network traffic of UDS is only slightly more than the true size of the log file, and
much less than that of Dropbox. These results clearly demonstrate that UDS’s batching
mechanism is able to eliminate the traffic overuse problem.

324 Z. Li et al.

6 UDS+: Reducing CPU Utilization

In the previous section, we demonstrate how our UDS middleware successfully reduces
the network usage of cloud storage applications. In this section, we take our evaluation
and our system design to the next level by analyzing its CPU usage. First, we analyze
the CPU usage of Dropbox and find that it uses significant resources to index files (up to
one full CPU core for megabyte sized files). In contrast, our UDS software significantly
reduces the CPU overhead of cloud storage. Next, we extend the kernel level APIs of
Linux in order to further improve the CPU performance of UDS. We call this modified
system UDS+. We show that by extending Linux’s existing APIs, the CPU overhead of
UDS (and by extension, all cloud storage software) can be further reduced.

6.1 CPU Usage of Dropbox and UDS

We begin by evaluating the CPU usage characteristics of the Dropbox cloud storage
application by itself (i.e. without the use of UDS). As in § 3, our test setup is a generic
laptop with a dual-core Intel processor @2.26 GHz, 2 GB of RAM, and a 5400 RPM,
250 GB hard drive. On this platform, we conduct a benchmark where 2K random bytes
are appended to an initially empty file in the Dropbox Sync folder every 200 ms for
1000 seconds. Thus, the final size of the file is 10 MB. During this process, we record
the CPU utilization of the Dropbox process.

Fig. 23 shows the percentage of CPU resources being used by the Dropbox applica-
tion over the course of the benchmark. The Dropbox application is single threaded, thus
it only uses resources on one of the laptop’s two CPUs. There are two main findings
visible in Fig. 23. First, the Dropbox application exhibits two large jumps in CPU uti-
lization that occur around 400 seconds (4 MB file size) and 800 seconds (8 MB). These
jumps occur because the Dropbox application segments files into 4 MB chunks [25].
Second, the average CPU utilization of Dropbox is 54% during the benchmark, which
is quite high. There are even periods when Dropbox uses 100% of the CPU.

CPU usage of UDS. Next, we evaluate the CPU usage of our UDS middleware when
paired with Dropbox. We conduct the same benchmark as before, except in this case
the target file is placed in UDS’s SavingBox folder. Fig. 24 shows the results of the
benchmark (note that the scale of the y-axis has changed from Fig. 23). Immediately, it
is clear that the combination of UDS and Dropbox uses much less CPU than Dropbox
alone: on average, CPU utilization is just 12% during the UDS/Dropbox benchmark.
Between 6% and 20% of CPU resources are used by UDS (specifically, by rsync),
while the Dropbox application averages 2% CPU utilization. The large reduction in
overall CPU utilization is due to UDS’s batching of file updates, which reduces the
frequency and amount of work done by the Dropbox application. The CPU usage of
UDS does increase over time as the size of the target file grows.

6.2 Reducing the CPU Utilization of UDS

Although UDS significantly reduces the CPU overhead of using cloud storage software,
we pose the question: can the system still be further improved? In particular, while

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 325

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

Fig. 23. Original CPU utiliza-
tion of Dropbox

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

UDS
Dropbox

Fig. 24. CPU utilization of
UDS and Dropbox

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

UDS+
Dropbox

Fig. 25. CPU utilization of
UDS+ and Dropbox

developing UDS, we noticed a shortcoming in the Linux inotify API: the callback that
reports file modification events includes parameters stating which file was changed, but
not where the modification occurred within the file or how much data was written. These
two pieces of information are very important to all cloud storage applications, since they
capture the byte range of the diff from the previous version of the file. Currently, cloud
storage applications must calculate this information independently, e.g. using rsync.

Our key insight is that these two pieces of meta-information are available inside the
kernel; they just are not exposed by the existing Linux inotify API. Thus, having the
kernel report where and how much a file is modified imposes no additional overhead on
the kernel, but it would save cloud storage applications the trouble of calculating this
information independently.

Table 2. Modified kernel functions.
fsnotify create event()
fsnotify modify()
fsnotify access()
inotify add watch()
copy event to user()
vfs write()
nfsd vfs write()
compat do readv writev()

To implement this idea, we changed the inotify
API of the Linux kernel to report: 1) the byte off-
set of file modifications, and 2) the number of bytes
that were modified. Making these changes requires
altering the inotify and fsnotify [7] functions listed
in Table 2 (fsnotify is the subsystem that inotify is
built on). Two integer variables are added to the fs-
notify event and inotify event structures to store
the additional file meta-data. We also updated ker-
nel functions that rely directly on the inotify and fsnotify APIs. In total, we changed
around 160 lines of code in the kernel, spread over eight functions.

UDS+. Having updated the kernel inotify API, we created an updated version of UDS,
called UDS+, that leverages the new API. The implementation of UDS+ is significantly
simpler than that of UDS, since it no longer needs to use rsync to compute binary diffs.
Instead, UDS+ simply leverages the “where” and “how much” information provided by
the new inotify APIs. Based on this information, UDS+ can read the fresh data from the
disk, compress it using gzip, and update the byte counter.

To evaluate the performance improvement of UDS+, we re-run the earlier bench-
mark scenario using UDS+ paired with Dropbox, and present the results in Fig. 25.
UDS+ performs even better than UDS: the average CPU utilization during the UDS+
test is only 7%, compared to 12% for UDS. UDS+ exhibits more even and predictable
CPU utilization than UDS. Furthermore, the CPU usage of UDS+ increases much more
slowly over time, since it no longer relies on rsync.

326 Z. Li et al.

7 Conclusion

In this paper, we identify a pathological issue that causes cloud storage applications
to upload large amount of traffic to the cloud: many times more data than the actual
content of the user’s files. We call this issue the traffic overuse problem.

We measure the traffic overuse problem under synthetic and real-world conditions to
understand the underlying causes that trigger this problem. Guided by this knowledge,
we develop UDS: a middleware layer that sits between the user and the cloud storage
application, to batch file updates in the background before handing them off to the true
cloud storage software. UDS significantly reduces the traffic overhead of cloud storage
applications, while only adding several seconds of delay to file transfers to the cloud.
Importantly, UDS is compatible with any cloud storage application, and can easily be
ported to different OSes.

Finally, by making proof-of-concept modifications to the Linux kernel that can be
leveraged by cloud storage services to increase their performance, we implement an
enhanced version of our middleware, called UDS+. UDS+ leverages these kernel en-
hancements to further reduce the CPU usage of cloud storage applications.

Acknowledgements. This work is supported in part by the National Basic Research
Program of China (973) Grant. 2011CB302305, the NSFC Grant. 61073015, 61190110
(China Major Program), and 61232004. Prof. Ben Y. Zhao is supported in part by the
US NSF Grant. IIS-1321083 and CNS-1224100. Prof. Zhi-Li Zhang is supported in part
by the US NSF Grant. CNS-1017647 and CNS-1117536, the DTRA Grant. HDTRA1-
09-1-0050, and the DoD ARO MURI Award W911NF-12-1-0385.

We appreciate the instructive comments made by the reviewers, and the helpful ad-
vice offered by Prof. Baochun Li (University of Toronto), Prof. Yunhao Liu (Tsinghua
University), Dr. Tianyin Xu (UCSD), and the 360 CloudDisk development team.

References

1. Dropbox-as-a-Database, the tutorial, http://blog.opalang.org/2012/11/
dropbox-as-database-tutorial.html

2. Dropbox CLI (Command Line Interface),
http://www.dropboxwiki.com/Using_Dropbox_CLI

3. Dropbox client (Ubuntu Linux version),
http://linux.dropbox.com/packages/ubuntu/
nautilus-dropbox 0.7.1 i386.deb

4. Dropbox is now the data fabric tying together devices for 100M registered users who save 1B
files a day, http://techcrunch.com/2012/11/13/dropbox-100-million

5. Dropbox traces, http://traces.simpleweb.org/wiki/Dropbox_Traces
6. DropboxTeams, http://dropbox.com/teams
7. fsnotify git hub, https://github.com/howeyc/fsnotify
8. inotify man page, http://linux.die.net/man/7/inotify
9. rsync web site, http://www.samba.org/rsync

10. Wireshark web site, http://www.wireshark.org
11. Bergen, A., Coady, Y., McGeer, R.: Client Bandwidth: The Forgotten Metric of Online Stor-

age Providers. In: Proc. of PacRim (2011)

http://blog.opalang.org/2012/11/dropbox-as-database-tutorial.html
http://blog.opalang.org/2012/11/dropbox-as-database-tutorial.html
http://www.dropboxwiki.com/Using_Dropbox_CLI
http://linux.dropbox.com/packages/ubuntu/nautilus-dropbox_0.7.1_i386.deb
http://linux.dropbox.com/packages/ubuntu/nautilus-dropbox_0.7.1_i386.deb
http://techcrunch.com/2012/11/13/dropbox-100-million
http://traces.simpleweb.org/wiki/Dropbox_Traces
http://dropbox.com/teams
https://github.com/howeyc/fsnotify
http://linux.die.net/man/7/inotify
http://www.samba.org/rsync
http://www.wireshark.org

Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services 327

12. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable and Se-
cure Storage in a Cloud-of-clouds. In: Proc. of EuroSys (2011)

13. Buyya, R., Yeo, C., Venugopal, S.: Market-oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities. In: Proc. of HPCC (2008)

14. Calder, B., et al.: Windows Azure Storage: A Highly Available Cloud Storage Service with
Strong Consistency. In: Proc. of SOSP (2011)

15. Chen, Y., Srinivasan, K., Goodson, G., Katz, R.: Implications for Enterprise Storage Systems
via Multi-dimensional Trace Analysis. In: Proc. of SOSP (2011)

16. Drago, I., Bocchi, E., Mellia, M., Slatman, H., Pras, A.: Benchmarking Personal Cloud Stor-
age. In: Proc. of IMC (2013)

17. Drago, I., Mellia, M., Munafò, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside Dropbox:
Understanding Personal Cloud Storage Services. In: Proc. of IMC (2012)

18. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of Pwnership in Remote Stor-
age Systems. In: Proc. of CCS (2011)

19. Harnik, D., Kat, R., Sotnikov, D., Traeger, A., Margalit, O.: To Zip or Not to Zip: Effective
Resource Usage for Real-Time Compression. In: Proc. of FAST (2013)

20. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side Channels in Cloud Services: Deduplication
in Cloud Storage. IEEE Security & Privacy 8(6), 40–47 (2010)

21. Hu, W., Yang, T., Matthews, J.: The Good, the Bad and the Ugly of Consumer Cloud Storage.
ACM SIGOPS Operating Systems Review 44(3), 110–115 (2010)

22. Jackson, K., et al.: Performance Analysis of High Performance Computing Applications on
the Amazon Web Services Cloud. In: Proc. of CloudCom (2010)

23. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: Comparing Public Cloud Providers.
In: Proc. of IMC (2010)

24. Mahajan, P., et al.: Depot: Cloud Storage with Minimal Trust. ACM Transactions on Com-
puter Systems (TOCS) 29(4), 12 (2011)

25. Mulazzani, M., Schrittwieser, S., et al.: Dark Clouds on the Horizon: Using Cloud Storage
as Attack Vector and Online Slack Space. In: Proc. of USENIX Security (2011)

26. Placek, M., Buyya, R.: Storage Exchange: A Global Trading Platform for Storage Services.
In: Proc. of EuroPar (2006)

27. Shilane, P., Huang, M., Wallace, G., Hsu, W.: WAN Optimized Replication of Backup
Datasets Using Stream-informed Delta Compression. In: Proc. of FAST (2012)

28. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: Filesystem Backup to the Cloud. ACM
Transactions on Storage (TOS) 5(4), 14 (2009)

29. Vrable, M., Savage, S., Voelker, G.: Bluesky: A Cloud-backed File System for the Enterprise.
In: Proc. of FAST (2012)

30. Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., et al.: Characteristics of Backup
Workloads in Production Systems. In: Proc. of FAST (2012)

31. Wang, H., Shea, R., Wang, F., Liu, J.: On the Impact of Virtualization on Dropbox-like Cloud
File Storage/Synchronization Services. In: Proc. of IWQoS (2012)

Back to the Future: Using Magnetic Tapes

in Cloud Based Storage Infrastructures

Varun S. Prakash, Xi Zhao, Yuanfeng Wen, and Weidong Shi

Department of Computer Science, University of Houston
4800 Calhoun Road, Houston, TX 77004, U.S.A

vsprakash@uh.edu, xzhao21@central.uh.edu, {wyf,larryshi}@cs.uh.edu

Abstract. Data backup and archiving is an important aspect of busi-
ness processes to avoid loss due to system failures and natural calamities.
As the amount of data and applications grow in number, concerns re-
garding cost efficient data preservation force organizations to scout for
inexpensive storage options. Addressing these concerns, we present Tape
Cloud, a novel, highly cost effective, unified storage solution. We leverage
the notably economic nature of Magnetic Tapes and design a cloud stor-
age infrastructure-as-a-service that provides a centralized storage plat-
form for unstructured data generated by many diverse applications. We
propose and evaluate a proficient middleware that manages data and
IO requests, overcomes latencies and improves the overall response time
of the storage system. We analyze traces obtained by live archiving ap-
plications to obtain workload characteristics. Based on this analysis, we
synthesize archiving workloads and design suitable algorithms to evaluate
the performance of the middleware and storage tiers. From the results,
we see that the use of the middleware provides close to 100% improve-
ment in task distribution efficiency within the system leading to a 70%
reduction in overall response time of data retrieval from storage. Due
to its easy adaptability with the state of the art storage practices, the
middleware contributes in providing the much needed boost in reducing
storage costs for data archiving in cloud and colocated infrastructures.

Keywords: Data Storage, Backup, Archiving, Cloud, Data Centers,
Cost Efficiency, Magnetic Tapes, Middleware, Read Probability Weight,
Priority Queue.

1 Introduction

The last decade has witnessed an explosion of data generated by individuals
and organizations. For instance, the amount of video data captured by a single
HD surveillance camera at 30fps in 14 days requires 1TB storage space [1]. The
number of CCTV cameras in UK alone is estimated to be 1.85 million [2]. One
of the major concerns that is correlated with managing such data is its storage
and backup[3]. In cloud based storage services, there are usually more than one
players involved, such as service providers and users. From the service user’s
perspective, the motives for choice of storage would be reduced costs per unit

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 328–347, 2013.
c© IFIP International Federation for Information Processing 2013

Back to the Future: Using Magnetic Tapes 329

Client Client Side
Interface

Disk based Library

Tape based storage for
archiving

Dropbox, Google
Cloud, etc

Tape Cloud

Backup Engine

Fig. 1. Tape Cloud is a cloud storage service that uses magnetic tapes as the main
storage media to store unstructured and big data unlike most of the commercial cloud
storage solution available today

data stored, efficient retrieval, data criticality dependent support benefits and a
secure, long term data storage. But, a service provider’s considerations span op-
erating cost efficiency, labor, scalability, support for different types of data, varied
policies from multiple clients and managing workload uncertainty among others.
A closer observation shows that the cost factor favors either players but rarely
both. The likelihood of recovery of data after back up, also firmly influences both
players. Varying archiving rates and backup needs of multiple clients is an em-
inently common feature leading to the need for multiple storage configuration.
Thus, a sensible inclusion in the storage tiers to archive low-read/write-only data
would be a low cost, low maintenance yet durable media [4].

Magnetic tapes, which started of as a primary storage media decades ago,
have been preferred for archiving data generated by organizations for a long
time now. Despite the advantages of tapes, there has not been a steady increase
in its usage due to high initial investment needed for the operating hardware
and its inability to promise high data rate transactions[5]. By addressing these
key issues, it is possible to tap into the economic advantages that the tape media
provides.

Tape Cloud (figure 1) is a venture that seeks to find suitable solutions to
these issues. Tape Cloud is a cloud based, nearline storage Infrastructure-as-a-
Service which makes use of magnetic tapes as the main backend storage media.
The cloud model exempts users from the large initial investments needed for
in-house backup infrastructure, external tiers for archiving legacy data and its
maintenance. From the service providers perspective, using tapes allows has-
sle free scaling of systems and reduces the total cost of ownership due to its
characteristic low power usage, durability and form factor per unit data.

Our principle intention is to 1. Reduce the average response times for read
requests issued by applications; 2. Conjointly, ensure efficient data writes to the
tapes tier of storage; and 3. Strengthen the infrastructure’s support for a large
and diverse client base[6]. However, overcoming the latency offered by tapes is
a complex problem to be solved. Even with the latest in tape technology, high
performance in terms of fast data read and efficient data write cannot be achieved
as delays caused due to seeking and winding of tapes is still persistent. There is
also a delay induced by the stock robots and other ambulatory mechanics within
the tape library which physically handle and move the tape cartridges.

330 V.S. Prakash et al.

The main contributions of our work are follows,

– We propose and evaluate a middleware that is designed to work with Tape
Cloud. The functions of the middleware includes the aggregation and batch
processing of data, IO request management and efficient distribution of data
over available resources.

– The middleware, which is constituted by a FUSE based filesystem, imple-
mentation of priority based queuing of IO tasks and a latency preemptive,
probabilistic data distribution scheme, acts between the backup application
tier and proprietary filesystems that is commonly used with tapes.

– We observe and record the common delays incurred in the operation of com-
mercially available tape libraries. Some of the latencies of tape drives and
tape filesystem are analysed using typical benchmarking tools. This data,
along with delay is used to model the performance characteristics of unit
hardware, which is later used to simulate large scale data centers.

– Backup and archiving application traces are analysed to obtain typical work-
load characteristics. We employ methods to trace the operations at different
stages in the infrastructure and aggregate them into meaningful statistics.
This not only provides information about backend storage media activity,
but also provides data at the application server and filesystem levels.

– We use synthetic workloads which emphasise prominent features of backup
applications to evaluate the impact of using the proposed middleware in
a simulation of a large scale deployment of Tape Cloud. In keeping with
our goals, we demonstrate the improved data distribution ability, improved
response time for read requests originating from each of the applications and
regulation of write requests that the middleware provides.

– The proposed tape cloud framework points to a new direction for creating
service oriented, cost effective, massive scale infrastructure to meet the grow-
ing storage challenge in the coming era of big data enabled industries and
research.

2 Analyzing and Modeling Tape Associated Latencies

2.1 The Tape, Library and the Drive

In order to design an infrastructure around a particular storage media, it is im-
portant to understand the characteristics, related costs, advantages and weak-
nesses that are associated with it. A clear understanding of the media and devices
can lead to its large scale deployment in data centers.

We evaluate the state of the art in tape technology with the use of a com-
mercially available Tandberg T24 LTO5 tape library. The tape library has an
HP tape drive and slots that can hold 12 LTO5 Ultrium tapes each of 2.5TB
capacity and can be extended to 24 tapes. At full capacity, the library can hold
60TB of uncompressed data. The tape library depends on robotic carriers that
grab tapes from the slots, carries them to the tape drive at the end of the library
and loads the tape for IO operations. The robots instills a greater delay into the

Back to the Future: Using Magnetic Tapes 331

Table 1. Tandgerg T24 Robot, Load and Unload Delays

Type From To Motion Load Type From To Motion Load
(slot) (sec) (sec) (slot) (sec) (sec)

LOAD 1 Drive 52.4 23.3 UNLOAD Drive 1 51.6 20.1
LOAD 2 Drive 52.9 21.9 UNLOAD Drive 2 52.3 20.6
LOAD 3 Drive 54.06 22.6 UNLOAD Drive 3 52.26 20.3
LOAD 4 Drive 55.2 24.6 UNLOAD Drive 4 54.0 20.3
LOAD 5 Drive 52.42 24.0 UNLOAD Drive 5 51.3 20.9
LOAD 6 Drive 53.3 23.6 UNLOAD Drive 6 51.76 21.01
LOAD 7 Drive 54.2 21.3 UNLOAD Drive 7 52.22 20.1
LOAD 8 Drive 55.45 23.9 UNLOAD Drive 8 53.8 19.62
LOAD 9 Drive 51.8 24.0 UNLOAD Drive 9 50.7 20.3
LOAD 10 Drive 52.3 21.6 UNLOAD Drive 10 51.4 20.34
LOAD 11 Drive 53.7 22.23 UNLOAD Drive 11 51.97 23.9
LOAD 12 Drive 54.02 23.8 UNLOAD Drive 12 53.6 22.59

Average − − 53.52 23.1 Average − − 52.24 21.21

system in addition to the one caused by tape drives. The averages from multi
trail recordings of the traverse time of the robots and loading time is provided
in table 1.

0

2000

4000

6000

8000

8 32 128 512 2048 8192

Mb
 p
er

 m
in

ut
e

Transfer Size (Kb)

Hitachi HDS725050KLA360 Write
Hitachi HDS725050KLA360 Read
Tandberg Tape Write
Tandberg Tape Read
Fujitsu MPE3084AE Write
Fujitsu MPE3084AE Read
Seagate ST380215A Read
Seagate ST380215A Write

Fig. 2. Sequential read and write performance of
an LTO5 tape drive in comparison with commercial
hard disks

The results of a study
performed for various block
sizes show that tape drives
have a uniform data transfer
rate compared to three other
hard disks shown in figure 2.
However, a difference in per-
formance can be seen when
random reads and writes are
performed. The time spent in
changing tapes, loading and
seeking to the correct point on
the tape creates delays that
are out of proportion as com-
pared to the sequential per-

formance of tapes. An important takeaway from the results is to assure the
tape drive and the infrastructure spends most of the time either writing or read-
ing to tapes and less time performing seek operations. This helps us in deciding
important parameters such as rate of batch processing of data.

2.2 Generic Models for Tape Based Latency

Based on the facts obtained about the hardware and delays, we try to model
the latency for generic cases[7]. For the models, the following are some of the
constants that need to be considered.

– Tsearch(i) is the time taken by the robot to locate and move to the tape to
execute the ith request in the task queue.

– Tload is the time taken to load the tape into the drive.

– Tunload is the time taken to unload the tape from the drive.

332 V.S. Prakash et al.

– Tseek(average) is the time to wind the tape to seek to the position of the
first byte to execute the new task. We consider the average time for LTO5
tapes in this case.

– γread is the data transfer rate for read operations of the tape. Similarly γwrite

is the data transfer rate for write operations of the tape.
– The smallest unit of a data that is considered in this case is a block. A single
read or write might involve transaction of a varying number of blocks. We
represent a unit block as BLK.

We aim to employ able techniques to reduce the average response time Tread

for read tasks and furthermore, ensure that these read-friendly techniques, cause
minimal distortion to the throughput and total time Twrite required to collect
data and write it onto tapes. Thus, for a workload Θ,

Topt(Θ) = min(Tread(Θ) +ΔTwrite(Θ)) (1)

Where Topt(Θ) is the minimal optimal time required to complete the execution of
workloadΘ. We analyse some of the latencies and overhead incurred in achieving
this goal in different scenarios. These scenarios are commonly occurring cases in
storage systems.

Scenario 1: Single Read/Write Task in Queue: When there is a single
read task in the task queue, the total amount of time required to complete the
task and obtain the data is given as the sum of times taken for a series of events.
Thus TsingleRead = Tsearch+Tload+Tseek+n(BLK

γread
) where n is the total number

of unit blocks that need to be read. BLK
γread

is a constant, the total time required
to read a single block and can be substituted by Γread to get

TsingleRead = Tsearch + Tload + Tseek + nΓread (2)

Similarly, a single write operation in a queue undergoes similar delays as read
operations, the only difference being the rate at which data is written to tapes.
The delay for a single write operation is given by

TsingleWrite = Tsearch + Tload + Tseek + nΓwrite (3)

Scenario 2: Write task(s) before Read task in Queue: In scenarios
where there are one or more write tasks in the queue before a read task, the
total time required to obtain the data will include the time required to complete
the write task too. For a single write task before the read task, the total time
required to complete the task will be equal to Ttotal = Tsearch + Tload + Tseek +
nΓwrite + Tunload + Tsearch + Tload + Tseek + nΓread. This can simply be written
as Ttotal = TsingleWrite + Tunload + TsingleRead. Generalizing this, when we have
N write tasks before a read task, we have

Ttotal = N(TsingleWrite) + ξ(Tunload) + TsingleRead (4)

Back to the Future: Using Magnetic Tapes 333

where 0 ≤ ξ ≤ (N − 1). ξ is called the tape switch rational which determines the
probable number of tape changes that need to be made and is based on BLK
and n. Thus BLK is an important value that influences the efficiency of write
operations and helps in deciding the maximum size of data that can be written
as a continuous process on to a single tape.

Scenario 3: Other Read Task(s) before Read Task in Queue: The total
time required for a particular read task to complete when there are one or more
read task ahead of it differs from the previous scenarios in that, read requests
are usually not localized to a single tape mostly due to replication and data
striping. Continuous read requests mean more number of search, load and seek
operations, thus increasing the overall time taken. In the worst case, the total
time taken can be given by

Ttotal = (N + 1)(TsingleRead) + (N)(Tunload) (5)

where there are N read requests ahead of the read task in question. This not
only causes excessive delays in retrieving data but also leads to the pile up of
write tasks at the queue in scenarios where there is an equal ratio of read to
write requests.

3 Proposed System’s Approach to Overcome Latency

3.1 Prioritizing Read Tasks over Write Tasks

From equation 4, we can see that a major share of the delay occurs due to the
tasks ahead of the read task in the queue. In order to reduce the over all time
taken for retrieving data, an approach that can be opted is biasing between read
and write tasks. The read tasks can be given a higher preference over write tasks.
For this, we create a Priority Queue for read tasks for each tape drive. When
a read task arrives at a tape drive, the subsequent write task is blocked and
the tape drive immediately caters to the read task after finishing the current
execution. Thus we have

T (Pri)total = Ttotal−(N(TsingleWrite)+ξ(Tunload))+(Tunload+TsingleRead) (6)

T (Pri)total = ρ+ Tunload + TsingleRead (7)

where T (Pri)total is the total time taken when priority queueing is applied. ρ
is the time spent for completion of current task and �ρ� = TsingleWrite and
0 ≤ ξ ≤ (N − 1). By implementing the priority queuing, read tasks can be
accelerated to be completed much faster.

3.2 Read Probability Weight (RPW) Based Data Distribution

Under the circumstances of scenario 3, applying priority queueing would not sig-
nificantly reduce the total response time as subsequent read operations that need

334 V.S. Prakash et al.

to be performed on different tapes still induce delay associated with the search
and seeking processes. We propose a method to overcome this by considering
the Balls into Bins problem [8][9][10].

Every block of data that needs to be written to tapes have a certain proba-
bility of being read again. This probability or “weight” is based on the type of
application and its historic transactions with the storage system. Intuitively we
can see that blocks of data with a higher weight causes higher delay when written
to tapes by the same tape drive as compared to data with lower weight (because
the read requests that come in eventually still have to be queued at the same tape
drive). So the motive to reduce this delay has to be to distribute the data blocks
of higher weight equally among the available tape drives such that a single tape
drive need not take the entire burden of heavy weighted objects. This is similar
to a Balls into Bins problem except that in our case, balls are of different weights.
Assume that there are n types of data blocks, where Wn = {P 1

r , P
2
r ...P

n
r } are

its respective weights. Given m tape drives Tdrive = {t1, t2...tm}, the RPW data
distribution makes sure that

∀tε(Tdrive), (

k∑
i=0

P i
r)/k � ϕ(Wn) (8)

where ϕ(Wn) is the arithmetic mean of all the elements in the set (Wn) and

p/2∑
j=0

((
k∑

i=0

P i
r)/k)−

m∑
j=p/2

((
k∑

i=0

P i
r)/k) � 0 (9)

Where k is the total number of write tasks in a particular queue t. If data orig-
inating from an application q is assigned a weight Pq at any point of time, then

each queue will have a weight Sq equivalent to Pq/
N∑

n=1
Pn of data pertaining to

application q where N is the total number of weighted tasks in the queue. No sin-
gle application can have all its data written to a single location. RPW based data
distribution coupled with priority queueing not only improves average response
time efficiency, but also contributes towards maintaining write throughput as it
reduces the overall delay caused due to continuous blocking of write tasks by a
series of read tasks. An evaluation of RPW usage has been shown in figure 12.

4 System and Middleware Design

Figure 3 shows a bird/s eye view of the Tape Cloud architecture. We propose a
hybrid middleware that performs efficient hard disk caching, data block manage-
ment, data distribution and IO task scheduling. This middleware functions as an
agent arbitrating various components in order to reduce the overhead caused by
using the slower backend media. Figure 4 provides the logical representation of
the middleware and some of its functionalities. The data that needs to be writ-
ten to tapes is collected and channelled suitably before it reaches its destination.
Data is processed in batches. This helps in easy retrieval of data from collection
servers and fixed set of parameters for efficient distribution.

Back to the Future: Using Magnetic Tapes 335

CLIENT CLOUD

COLLECTION
SERVER

LOAD
BALANCING

SERVER

METASERVER/MEMCACHE

BLOCK DATABASE

TAPE INTERFACE
M

ACHINES

TAPE LIBRARIES

COLLECTION
SERVER

Fig. 3. Implementation Architecture of Tape Cloud. The arrows represent the direction
of flow of data. The infrastructure is a hybrid structure which makes use of hard disk
caches and databases.

4.1 Data Source or Clients

The focus of Tape Cloud is consistent with most cloud based services and pro-
vides an efficient storage service for a variety of data. Clients who wish to archive
data on Tape Cloud, run a service to deliver data to the storage collection
servers(see figure 3). One of the features of Tape Cloud is that it allows clients
to deliver data in more than one ways. Large data sets(which is an unavoidable
attribute of archive data) can also be delivered by mailing the media itself. From
the storage system’s perspective, each client is tagged and labelled based on the
physical attributes of the data, relative storage activity over time, space require-
ments and the frequency of requests for data IO that is derived from the clients.
This information serves as policies which is used by the middleware to make de-
cisions on the location of data, level of security, distribution of data blocks and
also provides the recipe to cook the read probability weight (RPW) information
of data pertaining to particular clients. The data manager, with access to the
central block database, updates and maintains mapping of blocks of data to its
physical location on tapes, in libraries and section of the data center.

4.2 Data and Resource Manager

The Data Manager is the point of interaction between the clients and the storage
infrastructure. More importantly, it is the interaction point between the client
application and the middleware as no data is directly written to tapes without
the data manager’s consent. The data manager module runs on the load balanc-
ing server and manages the other parts of the middleware such as the filesystem,
task queues and data distribution modules. To perform efficient management,
the data manager relies on informative references to the actual client data. These
references or metadata contains details about the blocks of data such as its lo-
cation in the filesystem, size, type and RPW along with other client specific
information. The metadata is used as representatives of data blocks in the queu-
ing and the distribution modules of the middleware. This prevents the overhead
of moving around large amounts of data within the system.

336 V.S. Prakash et al.

FUSE Based Filesystem

Data
Manager

Probabilistic
Task

Distribution

Priority
Task

Queuing

Tape Filesystems

LTFS

LTFS

LTFS

Tape Libraries
Cl

ie
nt

s/
Ar

ch
ivi

ng
 A

pp
lic

ai
to

ns

Boundary of Middleware

Fig. 4. The placement and interfacing of the functional blocks of the Middleware. The
solid lines show the path taken by control statements and meta data while dotted lines
show the path of the actual data blocks to be stored on tapes.

An important task the data manager undertakes is the grouping of data stored
in the middleware’s filesystem to be processed in batches. The data manager
employs a specific technique to pick metadata pertaining to blocks of data which
are most probable to be retrieved as a single unit from the filesystem, packages
them and passes them to the data distribution module. Other responsibilities
include the attestation of data deposition requests from and client and allocating
suitable resources.

4.3 Multi Tier File System

FUSE [11] is a framework to help develop customized file system. FUSE module
has been officially merged into the Linux kernel tree since kernel version 2.6.14.
FUSE provides 35 interfaces to fully comply with POSIX file operations. We
design a file system using FUSE to operate in the middleware of the architecture.
The implementation presents a monolithic image of the filesystem, but internal
divisions exist based on functionalities. Figure 5 shows the pathway taken by
data to be written to tapes and the various operations that act upon it. The
filesystem depends on external databases to maintain records of the locations of
blocks of data. In order to prevent loss of data due to server failure, the filesystem
performs a replication of similar data in multiple location similar to HDFS.

The filesystem manages data and chunks based on a hierarchical partitioning
technique of the data set. Tape Cloud follows an application centric approach
to group data chunks to be written to tapes and a method called hierarchical
partitioning that is used, contributes to this cause. Every file that needs to
be written to or read from tapes is encrypted, optionally segmented(to avoid
singular large files) and replicated to result in a unit entity or chunk. The chunks
of data are grouped and bagged in structures called containers. Based on the
load, these containers are then distributed to the tape interface machines to be
written to tapes.

4.4 Probabilistic Data Distribution

The analysis of latencies that is performed leads to induction of a technique
where some of the delays are preempted before data is written to tapes. As

Back to the Future: Using Magnetic Tapes 337

Collection

Client Client

Distribution

Distribution
Policies

Block
Database

Blocking and
Encryption Policies

Obtain Client Data
over Network

Obtain Client Data
through Media

Block Creation

Tape Storage

Metadata

Fig. 5. Stages and functions of each stage of the filesystem for Tape Cloud. Although
distributed by functionality, the filesystem is monolithic across the storage system.

discussed in section 3, this is to ensure that a small group of task queues do not
take the burden of a large number of discontinuous read tasks. The probabilistic
data distribution module is an important part of the middleware that distributes
blocks of data to the tape interface machines based on a particular weight asso-
ciated with the data. The weight or the read probability weight (RPW) is the
probability of the block of data being read once written onto tape. The proba-
bilistic data distribution module is designed to obtain the RPW by two ways. It
can be enclosed in the metadata that is handed down by the data manager. The
other avenue that can be taken to deduce the RPW is over time, when the mid-
dleware notices that there are some blocks of data that have undergone access
in a manner inconsistent with its knowledge about the RPW. In this scenario,
the middleware updates the RPW of data incoming from the client and adapts
to the workloads of different clients over time. After the references have been
assigned specific tapes or drives, the references of data blocks are handed over
to the task queuing module of the middleware.

4.5 Task Queueing

The large scale operation of the storage system involves the use of multiple tape
drives. The entire tape storage facility is divided into sections, each of which can
be serviced by a tape drive. Each of these tape drives have an exclusive queue
assigned to it which holds the IO task to be performed on tapes which are in its
logical vicinity. These tasks queues are maintained and used by the middleware
and should not be confused with the ones that are used by the storage media
or drivers. One of the approaches to decrease the delay in retrieving data is to
prioritize between the read and write requests as discussed in section 3. The task
queueing module caters to this need by assigning each tape drive with two virtual
queues, one each for write and read requests. Read requests having higher priority
over write requests are granted resources immediately after the completion of
the current task regardless of the depth of the write queue. After completion
of the read task, the system continues with the execution of other tasks in
the write queues. Assuming an efficient distribution of data, the task queueing
module ensures that read tasks are performed under strict time constraints while
maintaining acceptable standards of throughput for write tasks. The task queues
provide periodic feedbacks to the data manager about the overall time taken in

338 V.S. Prakash et al.

Table 2. Applications Contributing Workload Traces for Evaluation of Middleware

Sl. No. Archiving Type Description

1 Periodic Full Backup 10 disk array on 3 networked attached storage (NAS)
servers archiving surveillance video and security data.
Videos and related information is collected from local
systems once every 24 hours through a customized asyn-
chronous pull server based system. High churn rate.

2 Periodic Full Backup + LRU Archiving Application archived least recently used support files on
larger disk based backend storage with smaller churn rate.
Deployment details and infrastructure unknown.

3 Incremental+Full Backup Incremental backup of hard disks and virtual disks at the
end of every login session and periodic full backup of 22
computers on hard disk based NAS storage running Cryp-
toNAS software.

4 Non Periodic Mirroring Backup Document archiving of unknown number of computers.
Simple FreeNAS storage with a duplication based archiv-
ing client running on individual computers.

performing tasks associated with a specific batch. This feedback is used by the
data manager to assess the overall performance of the data distribution module
and the distribution parameters in the system.

5 Synthesis of Workload for Middleware Evaluation

5.1 Characterizing Archive Workload from Traces

The accepted method to evaluate a storage infrastructure is by testing its per-
formance with benchmark workloads. While a number of articles provide bench-
marks and suggest methods to evaluate various aspects of storage such as the
media, queues, IO charecterization[12] and filesystem [13][14], there has been
a comparatively limited literature about performance of archival storage sys-
tems. Kavalanekar et. al.[15] provide elaborate results on storage workloads from
production windows servers. But the variation in workload type between non
archival and archival storage varies as suggested by Lee et. al. in [16], who make
an attempt to create benchmarks. But their work is limited to providing a bet-
ter understanding of the type of files and sizes rather than provide a complete
set of results. Another important contribution has been provided by Wallace et.
al.[17] for EMC production servers. Although a large number of aspects have
been covered, the impact of different types of archiving and application level
transactions with the storage have not been projected.

In order to perform a bias free evaluation of the middleware, we subject it to
a workload that has been characterized by traces obtained from live archiving
applications. The traces are collected from the archiving infrastructure of IVigil,
a company that provides video surveillance services to a local client base. The
backed up data usually includes surveillance videos, security related data, vir-
tual disks and documents that are wielded by the company on a daily bases.
Aspects which are important to the working of the middleware such as rate of
requests with respect time, inter arrival time of requests and a comparison of
the rate of read to write request are recorded and analysed. Table 2 provides
some information about the characteristics of the infrastructure.

The applications show characteristics that prove common beliefs about archival
data wrong[16]. The application level traces help in understanding the frequency
withwhich IO requests are generated.This serves as a clear indicator of howbackup

Back to the Future: Using Magnetic Tapes 339

0

0.25

0.5

0.75

1

1

100

10000

1000000

0 12 24 36 48

CD
F

No
.
of
 r

eq
ue
st

s
(L
og
)

Hours

REQ
CDF

(a)

0

0.25

0.5

0.75

1

1

100

10000

1000000

0 12 24 36 48

CD
F

No
.

of
 r
eq
ue
st
s

(L
og
)

Hours

REQ
CDF

(b)

0

0.25

0.5

0.75

1

1

100

10000

1000000

0 12 24 36 48

CD
F

No
.

of
 R
eq

ue
st

s
(L
og
)

Hours

Series1
Series2

(c)

0

0.25

0.5

0.75

1

1

100

10000

1000000

0 12 24 36 48

CD
F

No
.
of
 R

eq
ue
st

s
(L

og
)

Hours

REQ
CDF

(d)

Fig. 6. The total number of requests generated by archiving applications 1(a), 2(b),
3(c) and 4(d). The number of requests are collected at the application level for discrete
read or write requests to the underlying filesystems.

types differ from each other. The filesystem level traces provide a defined under-
standing of what each IO request generated by the application demands. Each of
the applications vary in infrastructure so it is important to co-relate traces obtained
to reflect a common operation at each stage. The following are the results of the
characteristic extraction from the traces.

Figure 6 is the total number of IO requests generated by the archiving ap-
plications and figure 7, the interarrival time of these requests. These have been
recorded at the application level or at the first level of the storage infrastructure.
The number of storage requests generated is an important feature to be consid-
ering as it provides valuable insight into the nature of application and guidelines
on the capacity that the middleware needs to cope. Interarrival time helps in
setting parameters such as the queue lengths, batch processing rate etc.

As discussed earlier, random IO is responsible for the major share of the delay
in a tape infrastructure. Figure 8 and figure 9 provides a better understanding
of the number of read requests obtained as a ratio of write requests and how
frequently 200 individual “hot” files are accessed within the storage system.

5.2 Workload Modeling and Generation

There have been many projects in developing synthetic workload to test storage
systems such as [18][7] which depend on models created by Markov chains of

340 V.S. Prakash et al.

0

0.25

0.5

0.75

1

0

25000

50000

75000

100000

0 2.8 5.6 8.4

CD
F

No
.

of
 R

eq
ue

st
s

Interarrival Time (min)

No of
Requests
CDF

(a)

0

0.25

0.5

0.75

1

0

25000

50000

75000

100000

0 2.2 4.4 6.6

CD
F

No
.
of
 R

eq
ue
st
s

Interarrival Time (min)

No of
Requests
CDF

(b)

0

0.25

0.5

0.75

1

0

25000

50000

75000

100000

0 1.5 3 4.5

CD
F

No
.

of
 R
eq
ue

st
s

Interarrival Time (min)

No. of
Requests
CDF

(c)

0

0.25

0.5

0.75

1

0

7000

14000

21000

28000

35000

0 0.82 1.64 2.46 3.28 4.1

CD
F

No
.
of
 R
eq
ue
st

s

Interarrival Time (min)

No. of
Requests
CDF

(d)

Fig. 7. Interarrival(IA) time of requests generated by archiving applications 1(a), 2(b),
3(c) and 4(d). Application, type of data, file sizes and temporal locality are some of
the factors influencing interarrival time. The asynchronous nature of some applications
and storage system softwares also affect IA time.

0

25

50

75

100

0-12 12-24 24-36 36-48

%
of

 T
ot

al
 R

eq
ue

st
s

Hours

(a)

0

25

50

75

100

0-12 12-24 24-36 36-48

%
of

 T
ot

al
 R

eq
ue

st
s

Hours

(b)

0

25

50

75

100

0-12 12-24 24-36 36-48

%
of
 T
ot

al
 R
eq
ue
st

s

Hours

(c)

0

25

50

75

100

0-12 12-24 24-36 36-48

%
of

 T
ot

al
 R

eq
ue

st
s

Hours

(d)

Fig. 8. Average number of read requests as a percentage of the total IO requests in 12
hour buckets by archiving applications 1(a), 2(b), 3(c) and 4(d). The whiskers show
the maximum percent of read requests received during the particular 12 hour interval.

Back to the Future: Using Magnetic Tapes 341

0

0.7

1.4

2.1

2.8

1 51 101 151 201

%
of
 t
ot
al
 R
ea
ds

File Ranks

(a)

0

0.7

1.4

2.1

2.8

1 51 101 151 201

%
of
 t
ot
al

 R
ea

ds

File Ranks

(b)

0

0.7

1.4

2.1

2.8

1 51 101 151 201

%
of
 t

ot
al
 R
ea
ds

File Ranks

(c)

0

0.7

1.4

2.1

2.8

1 51 101 151 201

%
of
 t

ot
al

 R
ea
ds

File Ranks

(d)

Fig. 9. Total number of read requests for the 200 most frequently accessed files as a
percentage of the total read requests received by archiving applications 1(a), 2(b), 3(c)
and 4(d).

APPLICATION 1 APPLICATION 2 APPLICATION 3

No. of Requests, % of
Read Requests, File

sizes, interarrival times
1 Minute Section 1 Minute Section

SYNTHETIC WORKLOAD

Features of 1 minute section

Weighted Aggregation
of features

1 Minute Section of New
Workload

48 hour trace48 hour trace 48 hour trace

Aggregation Scheme

(0.6)W1,(3)
W2,W3

Fig. 10. The process of synthesizing a workload based on previously analysed appli-
cation traces. The traces are divided based on a user defined time interval, features
extracted and an aggregation performed to create a block of the new artificial workload

states and virtualized environments. The commendable results focus on work-
loads that vary from archiving workloads. We synthesize a workload using
Vdbench[19] in order to test the middleware’s performance. The workload gen-
erator is carefully designed by performing a sectional analysis of the results ob-
tained in the real archive workload traces. The real time workloads are spliced
on the basis of a user defined time interval and the features of each division
such as number of requests, types of requests, file sizes and interarrival times
are extracted. The newly created workload is essentially a time based, weighted
aggregation hybrid of the workloads. The weighted aggregation provides the flex-

342 V.S. Prakash et al.

ibility to produce workloads in any combination of amounts of the given traces.
It depends on a workload aggregation scheme provided by the user which gener-
ates a Vdbench script based on the input. For example, an aggregation scheme
(W1,W2,W3,W4) would produce a workload from the 4 participating workloads
in equal proportion, ((2)W1,(0.5)W2,W3) would produce twice the amount of
workload 1, half the amount of workload 2 with no change to workload 3 an no
trace of workload 4. This type of modelling has proven to provide a wide range
of options for generating workloads. The focus of this paper being the evaluation
of the middleware, we use an equal proportion workload to record the difference
in performance.

6 Experiment Results

6.1 Experimental Methodology

-10

-6

-2

2

6

10

AA 1 AA 2 AA 3 AA 4

%
Er

ro
r

Archiving Application

REQUESTS IA Time
READ REQ FILE SIZE

Fig. 11. The difference or error % between the ac-
tual and synthetic workloads used in the experi-
ments.

We perform our evaluation
experiments using the models
and synthetic workload cre-
ated on the basis of the ac-
tual archiving workloads. The
performance of the middle-
ware and its contribution in
achieving the goals to min-
imize average response time
and efficient data distribu-
tion, are assessed by sub-
jecting the backend storage
system to the synthetic work-
load in the absence and
presence of the middleware
on simulated, resource config-
urable data center test bed. In
the former case, we make use of commonly preferred ways of task and data dis-
tribution at the application and middleware levels such as First Come First
Serve (FCFS)+Round Robin and Application specific task queuing techniques.
To evaluate the middleware, we consider the Priority Queuing and evaluate its
performance. As mentioned in section 2, the priority queueing technique has a
few drawbacks which is then overcome with RPW Data distribution method. All
tests are conducted along with the middleware filesystem. First of all, it is impor-
tant to check for inconsistencies in the synthetic workloads as compared to the
real time workloads obtained from traces. Figure 11 gives the error percentage
of the synthetic workloads.

6.2 Read Probability Weight based Data Distribution

The novel idea of preempting delay caused due to large number of read requests
especially in a system like Tape Cloud calls for preliminary evaluation of the

Back to the Future: Using Magnetic Tapes 343

0

0.25

0.5

0.75

1

1 101 201 301 401 501

Av
er

ag
e
We

ig
ht

Bin ID

FCFS IDEAL RPW

(a)

0

0.25

0.5

0.75

1

1 201 401 601 801 1001

Av
er

ag
e
We

ig
ht

Bin ID

FCFS IDEAL RPW

(b)

Fig. 12. Verifying the correctness of the RPW approach. Compared to FCFS, RPW
offers a higher convergence to the ideal case. Here Fig(a) is with 500 bins and Fig(b)
is with 1000 bins. The arrow points to the queue ID which serves as the point of
distribution balance.

technique. RPW considers the probability of a block of data being read once
written to tapes and distributes blocks based on this probability. To verify the
correctness of our assumption, we consider 10000 randomly weighted objects and
distribute them into bins. Two tests are performed, where each has 500 and 1000
bins. This emulates blocks with different probabilities that need to be assigned
to different tape drives. Figure 12 shows that RPW offers a distribution that is
closer to the ideal case than other approaches like FCFS in both cases.

In evaluating the RPW using the synthetic workload, we consider two cases
where we have 500 tape drives (figure 13) and 1000 tape drives (figure 14). We
compare RPW with FCFS and Application Specific Queueing which distributes
data blocks generated by specific applications to specific queues. The application
specific approach has clear boundaries between queues for each application in the
system. When we vary the number of total requests generated by the synthetic
workload, we see that RPW provides a more efficient distribution where the gap
between the queue with the largest average weight and the queue with smallest
average weight is much lesser than that of the other approaches. The whiskers
show the largest and smallest average weights of queues.

6.3 Average Response Time for Read Requests

The use of RPW based data distribution helps in avoiding long stretches of read
operations that is localized to a small set of task queues. This in turn reduces the
average delay caused at each of the queues. When we test Tape Cloud with the
synthetic workload, the absence of the middleware leads us to use conventional
data distribution and queueing techniques such as FCFS, Round Robin and
application specific queueing of tasks. But with the middleware and enhanced
task management, there is an overall reduction in the response time for read
tasks generated by every application as shown in figure 15. The graphs have Log
values in X axis which show the rate of change of average response time when
number of requests are varied and the RPW have negligible rate of change of
response time even for large number of requests.

344 V.S. Prakash et al.

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(a)

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(b)

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(c)

Fig. 13. The gap between the average weights of the heaviest and lightest queues
for different number of requests for 500 queues. FCFS (a) and Application Specific
Queueing (b) show inefficient weight distribution as compared to RPW (c).

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(a)

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(b)

0

0.25

0.5

0.75

1

10 100 1000 10000 100000 1000000

Ga
p

Number of Requests (Log)

(c)

Fig. 14. The gap between the average weights of the heaviest and lightest queues
for different number of requests for 1000 queues. FCFS (a) and Application Specific
Queueing (b) show inefficient weight distribution as compared to RPW (c).

One of the notable differences that can be seen in the traces of the four ap-
plication is the variation in number of requests over time. Theoretically, the
induction of RPW based data distribution along with priority queueing must
make the average response time immune to the number of total number of re-
quests. We perform an hourly analysis of average response time for read requests
from application 1 and application 2 because application 1 has the highest write
requests and application 2 has the highest read requests. We see from figure 16
that, along with having the smallest response time, the combination of priority
queueing and RPW distribution provides a nearly constant response time over
the entire period of the test, making it independent of other requests.

6.4 Preserving Rate of Write Task Execution

In keeping with our goals, we test if the middleware brings about a negative
impact on the write task completion rate of the workload. Figure 17 provides
a comparison of the write performance before and after the deployment of the
middleware. We test cases that present extreme scenarios such as application 1
which has the highest write requests and application 2 which has the highest read
requests for the aggregation scheme in use and it is very clear that, along with
dutifully improving data retrieval efficiency, the middleware also maintains that
similar justice be done to write tasks as well. There is only a negligible reduction

Back to the Future: Using Magnetic Tapes 345

0

150

300

450

1 10 100

Av
er

ag
e
Re

sp
on

se
 T

im
e
(s

ec
)

of requests (*1000)

FCFS/RoundRobin
Ap. Specific
Priority Queuing
RPW Dist.

(a)

0

150

300

450

1 10 100

Av
er

ag
e
Re

sp
on
se

 T
im
e
(s

ec
)

of requests (*1000)

FCFS/RoundRobin Ap. Specific

Priority Queuing RPW Dist.

(b)

0

150

300

450

1 10 100

Av
er

ag
e
Re

sp
on
se

 T
im
e
(s

ec
)

of requests (*1000)

FCFS/RoundRobin Ap. Specific

Priority Queuing RPW Dist.

(c)

0

150

300

450

1 10 100

Av
er

ag
e
Re

sp
on
se

 T
im

e
(s

ec
)

of requests (*1000)

FCFS/RoundRobin Ap. Specific

Priority Queuing RPW Dist.

(d)

Fig. 15. The average response time of read requests under the synthetic workload for
application 1 (a), application 2 (b), application 3 (c) and application 4 (d). Note the
clear difference and reduction of the average response time for each of the applications.
Also, RPW based data distribution offers very small rate of increase of response time
even over larger variations of the number of requests

0

100

200

300

400

0-12 12-24 24-36 36-48

Av
er

ag
e
Re

sp
on
se

 T
im
e
(s

ec
)

Hours

FCFS Ap. Specific
Priority Queue RPW Dist.

(a)

0

100

200

300

400

0-12 12-24 24-36 36-48

Av
er

ag
e
Re

sp
on
se

 T
im
e
(s

ec
)

Hours

FCFS Ap. Specific
Priority Queue RPW Dist.

(b)

Fig. 16. Time based average response time for application 1 (a) and application 2 (b).
Applications 1 and 2 are considered because application 1 has the highest write requests
and application 2 has highest read requests. Compared to the other methods such as
FCFS and Application specific Queuing, RPW based data distribution maintains a
stable average response time regardless of the density of the workload

346 V.S. Prakash et al.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8

av
g.

 w
ri

te
 r
eq
ue

st
s
/

mi
n

Time Interval (*6 hours)

Without MW

With MW

(a)

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8

av
g.
 w
ri
te
 r
eq
ue
st
s
/
mi
n

Time Interval (*6 hours)

Without MW

With MW

(b)

Fig. 17. The difference in write throughput with and without the middleware for ap-
plication 1 (a) and application 2 (b). Although small differences exist, the middleware
successfully provides a nearly equal write rate to all applications.

in the number of write tasks performed per minute in both cases proving the
abilities of the middleware.

7 Conclusion and Future Work

We present and evaluate the design for a cost efficient, hybrid, cloud based storage
which mainly makes use of magnetic tapes as backend storage media. Although
tapes have been widely categorised as a slow and unpopular storage media, it out-
performsmagnetic disks in total cost of ownership and energy consumption (tapes
don’t consume power when stored in a tape library), which makes tape technol-
ogy an ideal choice for cloud based archiving services. We explore the benefits of
the state of the art in tape storage technology. The need for a managerial mid-
dleware, which is a combination of algorithms and data distribution policies, that
contributes in overcoming the latency offered by tapes in order to improve per-
formance of IO processes is proposed and evaluated. The middleware serves its
purpose and by improving data distribution efficiency and decreasing the overall
response time for read requests. The test cases have been generated using the ex-
tensive analysis of live archiving workloads and modelling techniques.

One of the most exciting aspects of our work is the doors of opportunity
it opens for new research. Understanding the economics of revisiting a legacy
system to solve the data explosion problems of today requires an overhaul of
nearly every piece of technology associated with the storage system. Future plans
of the project include the improvement of the middleware and the filesystem to
support message passing enabled, adaptive data weight management and IO
paralellization. Another area of focus is the elaboration of operation of Tape
Cloud for a variety of data types, application and magnitude of serviceability.

References

1. Seagate, Video surveillance storage: How much is enough?
2. County of cameras: Cheshire constabulary aims to count every private camera in

the county, CCTV Image Online

Back to the Future: Using Magnetic Tapes 347

3. Chamness, M.: Capacity forecasting in a backup storage environment. In: Usenix
LISA 2011 (2011)

4. Jackson, J.: Most network data sits untouched. Government Computer News (July
2008), http://gcn.com/Articles/2008/07/01/
Most-network-data-sits-untouched.aspx

5. Sandst̊a, O., Olav, S., St, A., Midtstraum, R.: Improving the access time perfor-
mance of serpentine tape drives (1999)

6. Giurgiu, I., Castillo, C., Tantawi, A., Steinder, M.: Enabling efficient placement
of virtual infrastructures in the cloud. In: Narasimhan, P., Triantafillou, P. (eds.)
Middleware 2012. LNCS, vol. 7662, pp. 332–353. Springer, Heidelberg (2012)

7. Gulati, A., Kumar, C., Ahmad, I.: Modeling workloads and devices for io load
balancing in virtualized environments. SIGMETRICS Perform. Eval. Rev.

8. Raab, M., Steger, A.: “Balls into bins” - A simple and tight analysis. In: Rolim,
J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998)

9. Peres, Y., Talwar, K., Wieder, U.: The (1 + β)-choice process and weighted balls-
into-bins

10. Berenbrink, P., Friedetzky, T., Hu, Z., Martin, R.: On weighted balls-into-bins
games. Theor. Comput. Sci.

11. Fuse filesystem project, http://fuse.sourceforge.net/
12. Ahmad, I.: Easy and efficient disk i/o workload characterization in vmware esx

server. In: Proceedings of the 2007 IEEE 10th International Symposium on Work-
load Characterization, IISWC 2007, IEEE Computer Society, Washington, DC
(2007)

13. Agrawal, N., Bolosky, W.J., Douceur, J.R., Lorch, J.R.: A five-year study of file-
system metadata. Trans. Storage

14. Douceur, J.R., Bolosky, W.J.: A large-scale study of file-system contents. In: Pro-
ceedings of the 1999 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS 1999. ACM, New York
(1999)

15. Kavalanekar, S., Worthington, B., Zhang, Q., Sharda, V.: Characterization of stor-
age workload traces from production windows servers. In: IEEE International Sym-
posium on Workload Characterization, IISWC 2008, pp. 119–128 (2008)

16. Lee, D., O’Sullivan, M., Walker, C.: Benchmarking and modeling disk-based storage
tiers for practical storage design. SIGMETRICS Perform. Eval. Rev. 40(2), 113–
118 (2012), http://doi.acm.org/10.1145/2381056.2381080

17. Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., Chamness, M., Hsu,
W.: Characteristics of backup workloads in production systems

18. Delimitrou, C., Sankar, S., Vaid, K., Kozyrakis, C.: Decoupling datacenter studies
from access to large-scale applications: A modeling approach for storage workloads.
In: 2011 IEEE International Symposium on Workload Characterization, IISWC
(2011)

19. Vdbench, http://vdbench.sourceforge.net/

http://gcn.com/Articles/2008/07/01/Most-network-data-sits-untouched.aspx
http://gcn.com/Articles/2008/07/01/Most-network-data-sits-untouched.aspx
http://fuse.sourceforge.net/
http://doi.acm.org/10.1145/2381056.2381080
http://vdbench.sourceforge.net/

Efficient Node Bootstrapping for Decentralised

Shared-Nothing Key-Value Stores

Han Li and Srikumar Venugopal

The University of New South Wales
Sydney, Australia

{hli,srikumarv}@cse.unsw.edu.au

Abstract. Distributed key-value stores (KVSs) have become an impor-
tant component for data management in cloud applications. Since re-
sources can be provisioned on demand in the cloud, there is a need
for efficient node bootstrapping and decommissioning, i.e. to incorpo-
rate or eliminate the provisioned resources as a members of the KVS.
It requires the data be handed over and the load be shifted across the
nodes quickly. However, the data partitioning schemes in the current-
state shared nothing KVSs are not efficient in quick bootstrapping. In
this paper, we have designed a middleware layer that provides a de-
centralised scheme of auto-sharding with a two-phase bootstrapping. We
experimentally demonstrate that our scheme reduces bootstrap time and
improves load-balancing thereby increasing scalability of the KVS.

Keywords: Cloud computing,Key-valueStores,Elasticity,Performance.

1 Introduction

Distributed key-value stores (KVSs) [3,5,10] have become a standard component
for many web services and applications due to their inherent scalability, reliabil-
ity and data availability, even in the face of hardware failures. While KVSs have
been mostly used in data centres, many enterprises are now adopting them for
use on servers leased from Infrastructure-as-a-Service (IaaS) cloud.

IaaS providers offer compute resources in the form of virtual machines (VMs),
which can be provisioned or de-provisioned anytime on-demand. To deal with
increasing workload, new VMs are acquired to improve the system’s capacity
(i.e. scale up). Since IaaS providers normally follow the “pay-as-you-go” pricing
model, redundant VMs can be shut down in the face of declining demand (i.e.
scale down) to save on economic costs . In this paper, the process of incorporating
a new empty VM as a member of KVS is termed as node bootstrapping. In
contrast, the process of eliminating an existing member with redundant data off
the KVS is called node decommissioning.

The storage model of a KVS determines its performance of data movement
during node bootstrapping and decommissioning. In shared storage KVSs, the
persistent data is stored in the underlying networked attached storage or dis-
tributed file system (DFS). The data can be migrated between nodes without

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 348–367, 2013.
c© IFIP International Federation for Information Processing 2013

Efficient Bootstrapping for Decentralised Key-Value Stores 349

actual data transfer, simply by exchanging the metadata (e.g., identifiers or own-
ership) of data blocks in the shared storage [9]. In contrast, shared-nothing KVSs
consist of distributed nodes, each with their own separate storage, coordinated
as a distributed hash table (DHT). When a new node joins the system, it has
to obtain data from its peers. This process is slow in the case of KVS with large
data volume. Thus, it is non-trivial to bootstrap or decommission a node quickly
and frictionlessly, i.e. without affecting the online query processing.

The challenge of node bootstrapping in the shared-nothing KVSs lies in re-
distributing the data when a new node is added. Specifically, it requires a mech-
anism that partitions the key space of a database and then re-allocates the
partition replicas during node bootstrapping. Moreover, most shared-nothing
KVSs [10,15] are essentially DHTs, deployed in a completely decentralised archi-
tecture (i.e. peer-to-peer, or P2P). There is a need for decentralised coordination
between the peers to execute data partitioning.

This paper aims at improving the efficiency of node bootstrapping for de-
centralised shared-nothing KVSs. The goal of efficiency is three-fold. First, the
side-effect of data movement (against front-end query processing) should be min-
imised. Second, data consistency and availability should be maintained during
bootstrapping. Third, the load in terms of both data volume and workload that
each node undertakes, should be re-balanced after bootstrapping. Node decom-
missioning is also discussed, but it is applied with caution to avoid data loss.

In this paper, we describe the design of a middleware layer that provides a
decentralised scheme of data partitioning and placement to improve the efficiency
of node bootstrapping. The main contribution of this paper is a decentralised
auto-sharding scheme, extending from the concept of “virtual node” [19], that
consolidates each partition of data into single transferable replicas to eliminate
the overhead of migrating individual key-value pairs. Through sharding, the data
volume of each partition replica is confined into a bounded range.

We also discuss a related placement algorithm, that evenly re-allocates the
partition replicas when a node is bootstrapped and decommissioned, with the
objectives of: i) rebalancing the volume of data; ii) maintaining high data avail-
ability; and iii) minimising data movement at startup for quick bootstrapping.
We have also implemented a token ownership mechanism to provide eventual
consistency when a replica is migrated between nodes.

We have implemented these partitioning and placement mechanisms on top of
Apache Cassandra, an open source KVS, to build ElasCass. We present experi-
mental evaluations, carried out using public IaaS cloud, that demonstrate that
our proposed scheme of data partitioning and placement reduces the time to
bootstrap nodes, distributes data and workload more evenly among the nodes,
and improves throughput of the KVS.

The rest of this paper is structured as follows. In the next section, we discuss
the state-of-the-art in node bootstrapping and replica placement in distributed
databases. The system design is presented in Section 3. The data consistency
issue is discussed in Section 4. We present the experimental evaluations in Sec-
tion 5. Finally, we conclude in Section 6.

350 H. Li and S. Venugopal

A

B

G

F

C

D

E

I

H

D B
E H
I G

A C
D F
G I

A B
C E
I

C D
F H
G

B A
E F
H

B2
B1

Node 1 Node 2

Node 3 Node 4

New NodeA

HI B2

C CD

B2
A B1

Node 1 Node 2

Node 3 Node 4

New Node ②②

B1 B2

I

B1

B2
A

B1

Master Replica
Slave Replica To be deleted

①
③

Split-Move ApproachKey space Virtual-Node Approach

A

......

Fig. 1. A node joins the key-value store

2 Background and Related Work

The bootstrap process for a KVS executing on IaaS begins with provisioning
a VM as a node and starting a KVS process. The next step is for the node
to acquire a list of key ranges from existing nodes. Finally, the node acquires
the data belonging to the key ranges. At this point, the node is ready to serve
queries. We denote the time between the start of the KVS process and the point
when the node is ready to serve queries as the bootstrap time. The efficiency of
bootstrap is determined by the acquisition of the key ranges and the associated
data. This is determined by the data management - partitioning and placement
- strategies, the state-of-the-art in which is discussed in the following sections.

2.1 Partitioning in Key-Value Stores

Figure 1 illustrates several approaches for migrating the data during node boot-
strapping, described as follows.

Split-Move Approach. This approach is commonly used in distributed hash
tables (DHTs), and was adopted by Cassandra [15]. Typically, consistent hash-
ing [13] is used, as it introduces minimal disruption when a hash table (e.g. a key
range or a partition) is resized during node bootstrapping. The key space is split
into a list of consecutive key ranges, each assigned to one node. Thereby, each
node maintains one master replica for its own range, and also stores the slave
replicas of several other key ranges for high availability. When a new node joins
the KVS, the key space of the database is re-partitioned. One or several existing
partitions are split into two sets of data (e.g. B1 and B2 as in Figure 1). One is
retained in the existing nodes. The other set of data is moved pair-by-pair and
reassembled at the new node.

There are multiple drawbacks to this approach. One is the overhead of moving
individual key-value pairs. When a partition is split, the node contributing the
subset has to scan its entire dataset to prepare a list of key-value pairs for the
new node, which, on receiving the data, has to reassemble the key-value pairs
into files. Both scanning and reassembling are heavyweight operations.

The other drawback is that, consistent hashing aims at remapping a min-
imised number of keys when the number of nodes changes. As a result, only a
limited number of nodes can participate in bootstrapping, each undertaking rel-
atively heavy workload. According to Amazon [10], this bootstrapping approach

Efficient Bootstrapping for Decentralised Key-Value Stores 351

is highly resource intensive, and is only suitable to run at a lower priority. How-
ever, low priority results in significantly slow bootstrapping, which adapts less
quickly to dynamic load.

Virtual-Node Approach. A virtual node is a consolidated data partition
that is transferable as a single unit. The idea of “virtual node” was introduced
in Chord [19] and other consistent hashing systems, upon which KVSs such as
Dynamo [10], Voldemort 1 and Cassandra [15] are based. Other KVSs, such as
BigTable [3] and PNUTS [5], use the term “tablet” instead.

This approach avoids the overhead of scanning and reassembling as in the
split-move approach. In practice, the key space is over-partitioned, such that
the number of virtual nodes is made much greater than the data nodes. Each data
node is assigned many virtual nodes. Hence, a new node can be bootstrapped by
multiple existing nodes, each offering one or several virtual nodes. Thereby, each
participating node shares a relatively small amount of workload in bootstrapping.

However, there is a lack of efficient data partitioning schemes for completely
decentralised KVSs. The current-state research efforts [10,15] use a simplified
partitioning strategy, wherein the key space is split into static key ranges of
equal length, or hashed into buckets with equal capacity. Although this strategy
avoids complex coordination amongst the peer nodes, it leads to data skew for
biased key distributions. Data skew results in some “giant” partitions that are
difficult to migrate because of the large volume of data [5].

One refinement is to re-hash the inserted keys using uniform hash functions,
most of which, however, are not order-preserving, making the support of range
queries more difficult. For those uniform order-preserving hash functions, there
is a fundamental limitation: the key space is discrete and cannot adapt to any
arbitrary application key distributions [1]. Alternatively, PNUTS [5] proposed
to shard the tablets (i.e. partitions) into bounded sizes. However, it relies on a
centralised component that limits the efficiency of partitioning in the KVS.

Metadata-Only Approach. This approach is used by shared storage KVSs
such as BigTable [3], Spanner [7] and HBase 2. The persistent data is not stored
in the nodes of KVSs, but in underlying distributed file systems such as GFS [11]
or HDFS [18]. For this storage model, Das et al. [9] proposed that data can be
migrated by exchanging only themetadata (i.e. identifiers or ownership) of data
blocks between the nodes of database systems (or KVSs), while the persistent
data remains unmoved in the shared storage. A centralised controller is also used
for metadata management. Although this approach minimises the cost of data
migration, it is not applicable to decentralised shared-nothing KVSs.

2.2 Data Placement

The data placement problem has been extensively studied in literature. The com-
mon approach in state-of-the-art KVSs to data placement is to manage the data
through coarse grain structures such as buckets or virtual nodes rather than iden-
tifying an optimal placement strategy at the granularity of single data items [14].

1 Voldemort: http://www.project-voldemort.com/voldemort
2 Apache HBase: http://hbase.apache.org

http://www.project-voldemort.com/voldemort
http://hbase.apache.org

352 H. Li and S. Venugopal

Consistent hashing-based KVSs [10,15] have typically adopted a random place-
ment strategy, in which a random hash function is used to assign groups of data
items (i.e. buckets or virtual nodes) to nodes. This allows key lookups to be
performed locally, in a very efficient manner [10]. Other KVSs [3,7,5] rely on
dedicated directory services that provide flexible mapping from virtual nodes to
physical nodes. Essentially, this approach also uses random placement strategy.
The advantages of this strategy are simplicity and the effectiveness of load-
balancing [10,3].

There is also extensive work of finding optimal data placement strategies.
Ursa [21] and Schism [8] rely on centralised components to compute the place-
ment and to maintain a location map, which is not applicable to our system.
Others research efforts [16,22] have proposed distributed replica placement algo-
rithms. However, these efforts only consider the placement of read-only replicas,
while we discuss the ownership management of virtual nodes to support both
read and write operations.

In this paper, we extend the virtual-node approach to confine each trans-
ferable partition into a bounded size, that is enforced by auto-sharding, to avoid
data skew. The novelty lies in executing auto-sharding using decentralised coor-
dination. We also describe a random placement scheme to compliment the auto-
sharding mechanism, in order to achieve fast bootstrap time and load-balancing.

3 Design

Our system follows the typical decentralised shared-nothing architecture. The
key space of a database is hashed into multiple partitions. Each partition, de-
noted as Pi, is replicated to multiple nodes for high availability. The data is
stored in a separate persistent storage volume, each attached to an individual
node. Each node (denoted as ni) serves many partitions for load balancing pur-
poses. The nodes are organised as peer-to-peer (P2P), similar to DHTs [17,19].
Each node maintains enough routing information locally so as to route a request
to the appropriate node directly, i.e. in 0-hop [12]. Thus, clients can connect to
any node for query execution.

We have designed a middleware layer that sits between the key space of a
database and the storage of nodes. This middleware was implemented on a KVS
that already has gossip-based [20] membership protocol and failure detection,
hinted handoff [10] to handle node failures, and timestamp based reconciliation to
ensure eventual consistency. This section describes the synthesis of decentralised
auto-sharding and replica placement algorithms in this layer that improves the
efficiency of node bootstrapping.

3.1 Data Partitioning for Building Transferable Replicas

Our partitioning algorithm builds on consistent hashing [13], in which the largest
hash value is wrapped around to the smallest to form a ring of key space.

Efficient Bootstrapping for Decentralised Key-Value Stores 353

NP
1P

2P

iPkP

NT 1T

2T

i-1T

iTk-1T

N-1T

kT

...

......

...

(a) Consistent hashing

Non-coordinatorsNN ddi tNon-coordinators

Synchronise peers
Finish

NNoonn-cccooooorrddinnnaattoorssNNoonnn cccooorddiinnaaatoorrssNNoonnn-cccooorrdddiinnnaatooorssNNoonnn-cccooorrdddiinnaatooorssNon-coordinatorsElection

Build replicas for the new key range

Update key range

Time Replace Replicas

Coordinator

Announce: Successful

Notification

①

②

③

④

(b) Auto-sharding with election-based coordination

Fig. 2. Data Partitioning

As shown in Figure 2(a), when a database is created, a number of tokens,
{Ti : 0 < i ≤ N}, are generated to segment the key space of the database
into N consecutive equal-size key ranges, where N is configurable by the KVS
administrators. Each key range defines one partition of data. Therefore, each
partition Pi can be associated with the token Ti, which defines the upper bound
of Pi. The lower bound is determined by the predecessor Ti−1.

Sharding Operations. The aim of auto-sharding is to confine the actual vol-
ume of data in each partition. Building on the virtual-node approach described
in Section 2, we propose to shard the partitions online to address the problem of
data skew. Let Size(Pi) be the data volume of partition Pi. The maximum size
Θmax and the minimum size Θmin are defined as in Equation 1 and Equation 2,
respectively.

∀i ∈ [1, N], Size(Pi) ≤ Θmax (1)

∀i ∈ [1, N − 1], Size(Pi) + Size(Pi+1) ≥ Θmin (2)

The partition Pi is split when Size(Pi) exceeds Θmax. A new token Tnew is
inserted between Ti−1 and Ti, such that the resulting sub-ranges (Ti−1, Tnew]
and (Tnew, Ti] contain roughly equal volumes of data. In contrast, two adjacent
partitions (e.g. Pi and Pi+1) are merged, if their total size is below Θmin. To
merge Pi and Pi+1, the token Ti that sets the boundary of these two partitions
is removed. Thus, the merged key range is (Ti−1, Ti+1].

The challenge of sharding, either split or merge, lies in the consolidation of
each partition replica as a single transferable unit for better performance of
data migration. To consolidate a replica, key-value pairs belonging to different
partitions, are stored in separated files. To execute a sharding, new replicas (i.e.
data files) are created, to store every (and only) key-value pair belonging to the
sharded partition. Hence, rebuilding replicas of the affected partition is the key
operation in sharding.

In addition, we discuss the need for merging partitions. In practice, there is
less harm in retaining “sparse” partitions that contain small volume of data,
rather than merging them aggressively, since a small-sized partition replica is
easy to move. Nevertheless, in order to reduce the number of sparse partitions
for better performance of query processing, we attempt to merge partitions when

354 H. Li and S. Venugopal

applicable. The extra conditions for the merge operation are as follows. Firstly,
if two adjacent partitions are not stored on the same set of nodes, then they
are not merged. Secondly, we try to maintain a minimum number of partitions
in each key space. If the actual number of partitions is no greater than the
predefined value N , then the merge operation will not be triggered. Lastly, to
avoid oscillation of split and merge, we set Θmax ≥ 2Θmin. Therefore, the size of
a newly-merged partition is not greater than Θmax/2, which is not big enough
to trigger a split. Also, each sub-partition of a newly split partition is not less
than Θmin, which is not small enough to trigger a merge.

Coordinating Sharding. The key operation of sharding is rebuilding replicas.
However, since each partition is replicated to multiple nodes, the operation of
rebuilding each local replica is executed by different nodes asynchronously. Thus,
coordination is required to ensure the consistency of the key space and persistent
data across the nodes that participate in sharding. As shown in Figure 2(b),
sharding in a distributed KVS is coordinated in four steps:

Step 1: Election. When the data volume of a partition replica reaches the
boundary (Θmax or Θmin), the node that serves the partition initiates the shard-
ing. A coordinator is elected with a distributed consensus policy. In this paper,
we have leveraged the Chubby implementation [2] for electing the coordinator.
According to Chubby, the coordinator must obtain votes from a majority of the
participating nodes, plus promises that those participating nodes will not elect
a different coordinator for a time interval known as the master lease, which is
periodically renewed. In our implementation, the node that initiates the shard-
ing retrieves the complete list of nodes that store the partition. The list is sorted
by certain criteria, and the node on top is voted as the coordinator (for this
single operation only). The other participating nodes also vote for the node on
top of the list. Since every node maintains the complete partition-node mapping
locally, the sorted list is unique. The node on top wins a majority of the vote.

Step 2: Notification. There is a prerequisite before launching the shard-
ing. In the case of split, the coordinator calculates the splitting token Tnew that
will be used by all the participating nodes. In the case of merge, the coordina-
tor examines whether the extra conditions for merging are satisfied. Once the
prerequisite is met, the coordinator notifies that a sharding should be launched.
Then, all the participating nodes start to shard their own replica simultaneously.

Step 3: Synchronisation. The operation of rebuilding replicas is executed
and completed asynchronously by different nodes. When a node finishes, it noti-
fies the coordinator and then waits for further announcement. The coordinator
synchronises this operation until all the participating nodes have finished.

Step 4: Announcement. Once the coordinator has received the notification
of Finish from all the participating nodes, it announces globally that the key
range of the affected partition should be updated to the new range. On receiving
this final announcement, every node in the KVS updates the query routing
information, and each participating node replaces the old replicas with the newly-
built replicas asynchronously. In this way, a sharding operation is completed.

Efficient Bootstrapping for Decentralised Key-Value Stores 355

Non-
coordinators

NN nNNoonNon-
coordinators

nn--
dii t rsss

NNNNoonnnNNNooonnnNNNooonnn
ccooooooorrddiinnaaattooorrsscccoooooorddiinnnaaaatooorrsscccoooooorddiinnnaaaatooorrss

Non-
coordinators

 Fail-TypeYes

N>1

N=1

Notification:
Shard Pi

Pause to
resurrect

No

Yes

Synchronise
Peers

 Timeout

Abort

Invalidate Pi
in this node

Yes

Time

Before
execution

During
execution

After
execution

Failed

Replace
Replicas

Coordinator

Announce:
Successful

 3. Finish Sharding

4. Update

 1: Election

2. Start Sharding

IsCoordinator

N=1

N>1

No

Failed

Re-election
Failed

No
OldCoordinator

NewCoordinator

Yes

No

Fig. 3. Failure recovery in the election-based coordination

Failover During Sharding. Based on the four-step coordination as described,
we discuss how to handle node failures during a sharding operation. Figure 3,
extended from Figure 2(b), depicts the failure recovery.

The failure detection in our system is gossip-based [20]. We assume detection
error exists, since a failure detector is not always completely accurate. A detec-
tion error, when caused by message loss, is false-positive, in which case a node is
not dead, but detected as dead. In contrast, in a false-negative detection error,
due to the delay in detection, a node is actually dead but considered as still alive.
In our design, the communication between a coordinator and a non-coordinator
follows the typical handshake policy. Hence, the false-negative error can be easily
corrected. Therefore, we focus on addressing the false-positive detection error.

This failover scheme focuses on two scenarios: i) if only one participating node
fails during the process, the sharding can succeed with or without the failed
node’s resurrection; ii) if more than one participating node fail, the sharding can
be aborted and rolled back without data loss. We discuss the failover when a
participating node is detected as failed (by gossip) before, during, or after the
execution of rebuilding replicas of Pi. In the following, Tpause is defined as a time
period that is longer than twice the end-to-end gossip broadcast delay.

Before the execution, if a participating node is detected as failed, the sharding
procedure is paused for Tpause, to await whether the failed node can resurrect
(e.g., due to false detection). If it is the coordinator node that fails, a different
coordinator should be elected following the pause, even when the previous coor-
dinator resurrects. After the pause, the sharding continues if at most one node
fails, or is aborted (by any participating node) if there are more than one node
failures. Nodes resurrecting after Tpause can no longer serve Pi.

During the execution, every participating node maintains the complete list
of nodes that are sharding Pi. Whenever more than one participating nodes are
detected as failed, and remain dead for a period of Tpause, any participating node
that detects this event can abort the sharding via broadcast. Otherwise, if only
one node (even the coordinator) fails, every other participating node continues
the operation of rebuilding replicas regardlessly.

356 H. Li and S. Venugopal

After all the living nodes have finished the execution, if there is one failed
node, the sharding procedure is paused for Tpause to await the node’s resurrec-
tion. If the node resurrects within Tpause, the other nodes should await until the
resurrected node finishes the sharding. Otherwise, the failed node is announced
dead and then removed. In addition, if the dead node is the coordinator, a new
coordinator is elected amongst the living nodes. Finally, the (new) coordina-
tor announces that the sharding is successful. Similarly, nodes resurrecting after
Tpause cannot serve Pi, so their replicas of Pi are invalidated. Nevertheless, these
nodes can replicate the partition from the other successful nodes.

The sharding can be aborted, whenever more than one node failures are de-
tected, or any other unexpected events occur. Such abortion does not incur any
data loss, since the original partition replicas are in use before the announce-
ment of success. The details of maintaining data consistency are discussed in
Section 4.1. The aborted sharding will be reinitiated after a long pause.

Thus, our partitioning algorithm consolidates partitions that are suitable for
efficient data migration. Based on such consolidated replicas, we discuss the data
placement strategy for node bootstrapping (and decommissioning).

3.2 Selecting Partition Replicas for Bootstrapping

The aim of replica placement is to achieve load balancing and quick node boot-
strapping. When a new empty node is to be bootstrapped, it selects and pulls a
list of partition replicas from the existing nodes based on a set of rules.

Rule 1: Complexity Reduction. Partition reallocation and sharding are
mutually exclusive. That is, partitions that are being sharded will not be selected
for replication, and partitions that are being reallocated will not be sharded.
Hence, we reduce the complexity of coordinating data reallocation and sharding.

Rule 2: High Availability. Each partition Pi has νi replicas allocated in νi
different nodes. We defined the replication number K, such that ∀i ∈ [1, N], νi ≥
K, wherein N is the number of partitions. If a partition has less than K replicas
(e.g. due to node failure), a replica is duplicated to the new node.

Rule 3: Load Balancing. The nodes with higher workloads have higher
priority to offer replicas. Hence, heavily loaded nodes have the priority to move
out more replicas (thus shifting the workload) to the new node.

Rule 4:DataBalancing. Since each partition replica is confined into bounded
sizes by sharding, balancing the number of partition replicas can result in balancing
the volume of data stored in eachnode. LetRbe the average number of replicas each
node has. Before bootstrapping, the new node recalculates R =

∑N
i=1 νi/(n+ 1),

in which n is the number of existing nodes. The new node can obtain no more than
R replicas, while an existing node can offer (i.e. move out) replicas as long as it has
more than R replicas.

To achieve quick bootstrapping, we propose a two-phase data migration strat-
egy. In the pre-bootstrapping phase, the new node aims at maintaining high
availability (referring to Rule 2) and alleviating the nodes that are under heavy
workloads (Rule 3). Each heavily loaded node is requested to move out a small
portion, e.g. 10%, of its replicas. Once the new node receives these replicas, it

Efficient Bootstrapping for Decentralised Key-Value Stores 357

completes bootstrapping and starts serving queries as a member of the KVS
immediately. In our implementation, we used the CPU usage to estimate the
workload each node undertakes. The CPU usage is piggybacked on the heart-
beat gossip message, sent by each living node periodically and cached by every
other node. Therefore, a new node can download the complete workload infor-
mation from any existing node. A node is marked (by the new node) as heavily
loaded, if its CPU usage is over 50% and reasonably (e.g. 20%) greater than the
average of all the nodes. The threshold for identifying a heavily-load node is
configurable by the system administrators.

In the post-bootstrapping phase, as long as Rule 4 is satisfied, the newly joined
node continues to pull in more replicas from a list of nodes sorted according to
Rule 3. This process is run in a background thread, with data transfer rate throt-
tled, such that the side-effects towards front-end query processing are minimised.
In this two-phase procedure, the new node receives the majority of its replicas
in the post-bootstrapping phase, since in the pre-bootstrapping phase there are
limited number of heavily loaded nodes, each offering only a small number of
replicas. Therefore, the new node completes the pre-bootstrapping phase in a
timely manner, i.e. quick bootstrapping.

There are also considerations on how to select partition replicas when an exist-
ing node is requested (e.g. by the new node) to offer data. Each node maintains
an exponential moving average (EMA) of the local hit count for each replica,
which is updated periodically as in Equation 3. The moving average hit count of
partition Pi at time t is denoted as Hi,t, and the actual hit count of Pi between
time t − 1 and t is denoted as hi,t−1. The coefficient α represents the degree of
weighting decrease.

Hi,t = αhi,t−1 + (1− α)Hi,t−1 (3)

To select a replica to move out, the node sorts its own replicas by the EMA of
hit count. We avoid the greedy heuristic (i.e. move the hottest or coldest replica),
since it may destabilise the system by causing more data movement. Instead, the
node traverses the list starting from the middle, until it finds the first replica
that does not exist in the destination node.

3.3 Node Decommissioning

We have also designed a replica placement scheme for node decommissioning.
There are circumstances when node decommissioning is necessary: i) a living
node is misbehaving, e.g. it is failing more often than it should or its performance
is noticeably slow. ii) there are redundant compute resources, e.g. none of the
living nodes is heavily loaded and there exists nodes that receive less queries
than expected. In any case, the decision to decommission a node is made by the
KVS administrators. In this paper we only discuss how to reallocate the replicas
when node decommissioning is requested.

The node to be decommissioned moves out its replicas one by one to the other
living nodes. It can safely leave the KVS when there is no more replica under its
ownership. To choose a destination node for a replica (e.g. Pi), the node retrieves
a list of living nodes that do not own Pi. Then it selects the least loaded node

358 H. Li and S. Venugopal

from the list as the destination. We prefer to balance the query workload (i.e.
CPU usage) rather than the data volume, since storage is rarely the bottleneck
in the cloud. Note that the workload information is gossiped periodically. Each
time when the node attempts to move out a replica, it may choose a different
node as the destination. In this way, the decommissioning node distributes its
own replicas to the peers, and then leaves the KVS without data loss.

4 Data Recovery and Consistency

As our implementation builds on the Apache Cassandra project, we have lever-
aged hinted handoff [10] implemented in Cassandra to recover the data for node
failure. When a replica node for the key is down, a hint is written to the coordina-
tor node of the related partition. The coordinator node is chosen with the same
election policy as in auto-sharding. However, unlike Cassandra, wherein users
can define a consistency level for each individual query, we proposed to enforce
each write to be saved in every replica of the targeted partition. Therefore, our
consistency strategy caters for read-intensive workloads. The consistency issues
during partition sharding and replica movement are discussed as follows.

4.1 Data Consistency During Sharding

While the replicas of a partition is being rebuilt during sharding, there are two
sets of replicas (i.e. data files) coexisting in each participating node. One set
belongs to the original partition, and the other set of data files belongs to the
future partition (i.e. after sharding). Reads and writes of a key-value pair are
treated differently to maintain data consistency.

Writes (i.e. update or delete) are saved in the data files of the future partition.
If the sharding is completed successfully, the files of the original partition can be
abandoned safely. Otherwise, if the operation fails, the key-value pairs written
to the future partition are merged back to the original partition. In the extreme
case where the sharding fails very often, writes are enforced in “dual play”, i.e.
saved in both the original and future partitions. Thereby, the data files of the
future partition can be safely discarded whenever a sharding fails.

Reads are dealt with depending on how writes are processed. If writes are
enforced in “dual play”, the data value can be retrieved directly from the replicas
of the original partition. Otherwise, if writes are saved to the replicas of the future
partition only, the node retrieves the data value from both the original and future
partitions. We have leveraged timestamp-based reconciliation in Dynamo [10] to
allow multiple versions of an object to be present in the system. The timestamps
of multiple collided values are compared, and the latest value “wins”. Thereby,
we maintain eventual consistency across different sets of replicas.

At the end of sharding, after the operation is announced successful, the file
handlers of the partition replica is replaced in an atomic operation within each
participating node, independently and asynchronously from other nodes. Thus,
data files of the original partitions are deleted safely from all the nodes.

Efficient Bootstrapping for Decentralised Key-Value Stores 359

na

nb

Ti,r
Ti,w

Ti,r
Ti,w

Data Transfert0 t1 t3 t4t2

Negative Positive

Fig. 4. Switching token values during replica migration for data consistency

4.2 Data Consistency When Moving Replicas

We have implemented a token ownership policy to ensure data consistency for
partition replicas that are being moved or duplicated. As discussed, a list of
tokens {Ti} split the key space into consecutive key ranges. Each partition Pi is
associated with one token Ti. For query-execution purpose, every node maintains
two boolean values for each Pi: one readable token Ti,r, and one writable token
Ti,w. The nodes that own the positive value of Ti,r or Ti,w are entitled to serve
reads or writes from Pi, respectively.

Figure 4 depicts when and how to switch the values of Ti,r and Ti,w, when a
replica of the partition Pi is moved from na to nb. The time intervals between
(t0, t1), (t2, t3) and (t3, t4) are longer than the end-to-end gossip broadcast delay,
so that every updated value is well propagated. Before and during data migra-
tion, the source node na, which is serving Pi, owns the positive Ti,r and Ti,w.
The destination nb, which does not serve Pi initially, owns the negative tokens.
Before the data is transferred, nb switches its Ti,w to positive at t0, so that nb

is entitled to receive the latest updates destined for Pi. After the data is trans-
ferred, nb switches its Ti,r to positive at t3, since nb is now eligible to serve reads
from Pi. After nb has taken over Pi, na resets both its tokens to negative at t4.
In the end, the replica of Pi in na is discarded.

The operation of duplicating replicas (e.g. from na to nb) is very similar to
moving replicas. The only difference is that, in duplication, the source node na

owns the positive Ti,r and Ti,w at all times. Thus, na neither resets tokens to
negative at t4, nor deletes replicas at the end of data transfer.

5 Evaluation

We have evaluated ElasCass against Apache Cassandra (version 1.0.5) that uses
split-move as discussed in Section 2. Thus, this section evaluates the efficiency
of the proposed approach against the split-move approach for node bootstrap-
ping. Hence, the experimental results of Cassandra are labeled as split-move.

5.1 Experimental Setup

The experiments were conducted on Amazon EC2. Each VM runs as one node
of the KVS. All of the VM instances are based off a common Linux image. The

360 H. Li and S. Venugopal

Table 1. Compute capacity of VMs in experiments

Name Value

OS Ubuntu 12.04, 3.2.0-29-virtual, x86 64

File system ext3

Instance Type m1.large

Memory 7.5 GB

CPU 2 virtual cores with 2 EC2 Compute Units each

Storage 2 ephemeral storage with 420GB each

Disk I/O High

Table 2. Parameters configured in YCSB

Name Value

records size = 1KB, count = 100 million

insert order hashed with 64-bit FNV

read/update ratio 50/50 for write-intensive, 95/5 for read-intensive

request distribution zipfian (constant = 0.99)
hotspot (80% of requests targeting at 20% of data)

ConsistencyLevel write: ALL; read: ONE

compute capacity is shown in Table 1. For performance reasons, the persistent
data of the KVS was stored on the 400 GB ephemeral storage of the VM, rather
than on an Elastic Block Storage (EBS) volume. This is consistent with known
production deployments of Cassandra on EC2 [4]. The I/O performance of this
ephemeral storage is categorised as “High”. According to Amazon3, High I/O
instances can deliver in excess of 100,000 random read IOPS and as many as
80,000 random write IOPS.

The YCSB benchmark (version 0.1.4) [6] was used in this experiment with
parameters configured as shown in Table 2. The dataset is generated by the
YCSB client in the loading section. The total size is approximately 100GB.
The inserted keys are hashed with the 64-bit FNV function4, so the hotspot
data is scattered onto many partitions. Both write-intensive and read-intensive
workloads were generated using YCSB. Each workload was generated with two
different request distributions, i.e. zipfian and hotspot. The consistency level5 is
set as ALL for write operations, and ONE for read operations. This parameter
specifies how many replicas must respond before a result is returned to the client.
It tunes response time versus data accuracy, but does not affect the eventual
consistency in key-value stores.

To evaluate load balancing, an imbalance index IL is defined to indicate the
imbalance in load {Li}ni=1 across a group of n nodes. Let IL = σL/L, where L

3 http://aws.amazon.com/ec2/instance-types/
4 FowlerNollVo is a non-cryptographic hash function created by Glenn Fowler, Landon
Curt Noll, and Phong Vo.

5 http://www.datastax.com/docs/1.0/dml/data_consistency

http://aws.amazon.com/ec2/instance-types/
http://www.datastax.com/docs/1.0/dml/data_consistency

Efficient Bootstrapping for Decentralised Key-Value Stores 361

is the average value of all the loads {Li}ni=1, and σL is the standard deviation of
{Li}ni=1. This index shows the proportion of the variation (or dispersion) from
the average. A smaller value of IL indicates better load balancing. We have
evaluated the balancing of both the data volume and the query workload.

In addition, the average CPU utilisation is used to quantify the workload per
node. We monitored the CPU usage periodically using the linux command “sar
-u 5 2”, which reports the average CPU usage every 10 seconds.

5.2 Node Bootstrapping

In this experiment, we demonstrate the effects of bootstrapping nodes one after
another, in a relatively short time, in each KVS. Apart from the bootstrap
time, we measure the volume of data acquired by a node at bootstrap (bootstrap
volume). Ideally, the ith node should share 1/i of the total volume of data in
the system (BalanceVolume). However, this is affected by the partitioning and
placement strategies employed. Therefore, we also measure the imbalance index
of data distribution across the nodes.

Both ElasCass and the original Apache Cassandra were initialised with one
node. The 100GB data was loaded on to the first node, with Θmax=2GB and
Θmin=1GB in ElasCass. The replication level of both systems is configured
as K = 2. Therefore, when the next node was added, the 100GB data was
automatically replicated to the second node fully. From two nodes onwards, one
empty node was added at each time. The data was reallocated according to
different strategies in these two systems.

During the whole process of node bootstrapping, both systems were subjected
to a read-intensive background workload that followed the hotspot distribution
(Table 2). Each time before a new node was initiated, we made sure that ev-
ery existing node had been serving queries for at least 15 minutes as a normal
member of the KVS. Then, we tuned the number of threads in the YCSB client,
such that the CPU usage of the most loaded node was less than 80%, while the
average CPU usage of all the existing nodes fluctuated around 50%. Therefore,
both systems were moderately loaded before a new node was added.

Figure 5(d) shows the bootstrap times for ElasCass and original Cassandra
with increasing number of nodes. The bootstrap time for ElasCass is bounded
while Cassandra, following the split-move approach, starts with a high bootstrap
time (over 100 minutes) that reduces with the number of nodes. This can be
explained by the bootstrap volume as shown in Figure 5(a). At all scales from
three nodes onwards, ElasCass managed to transfer less than 10GB of data
constantly at bootstrap, as the remaining replicas were migrated in the post-
bootstrapping phase. In contrast, with the split-move approach, the volume of
data migrated decreases from over 80GB to merely 1GB. Specifically, from seven
nodes onwards, the split-move approach did not migrate enough data as ElasCass
did, thus requiring less time for bootstrapping. The penalty is that split-move
suffered from load imbalance issue, revealed in Figure 5(e).

Figure 5(b) depicts the volume of data transferred in ElasCass during and
after bootstrap. As shown, the total volume of data transferred in both phases

362 H. Li and S. Venugopal

(a) Bootstrap volume com-
parison

(b) Data acquisition in Elas-
Cass

(c) Number of partitions se-
lected at bootstrap

(d) Bootstrap time (e) Imbalance index for data (f) Disk usage at each scale

Fig. 5. Performance of bootstrapping one node with different nodes

is roughly equal to BalanceVolume at each scale. Figure 5(c) demonstrates the
same result in the form of numbers of partition replicas moved. The total number
of replicas moved is exactly equal to the average number of replicas each node
owns. This means that the data distribution in ElasCass is closer to the ideal
than that produced by the split-move approach.

With the split-move approach, the data volume drops exponentially as the
system scales up. The reason is that, when a key range of data is moved to the
new node, the persistent data is retained in (but no longer served by) the source
node, until the files are re-compacted, so as to avoid the loss of data and the
overhead of deleting large amounts of individual key-value pairs. However, since
file compaction is a heavyweight operation, it is rarely triggered when serving
read-intensive workloads. As a result, during the evaluation, all the new nodes
chose the same node (i.e. the node with the most data on disk) as the data
source. Even worse, each time the chosen node had to offer half of its remaining
key range, which was reduced exponentially as new nodes were added.

Figure 5(e) backs this up by comparing the imbalance indices for both Elas-
Cass and the split-move approach. The imbalance index of ElasCass is low, which
indicates that the data is evenly distributed. In contrast, in the split-move ap-
proach, the data is less balanced when more new nodes are added. Figure 5(f)
shows the average volume of data stored on disk in all the nodes. The split-
move approach occupies more storage because the source node that offers data
at bootstrap tends to retain the invalid data on disk.

Overall, this experiment demonstrates that, as the system scales, ElasCass is
able to: i) bootstrap an empty node within a relatively short time (i.e. 10 min-
utes), by limiting the number of partition replicas transferred pre-bootstrapping;
ii) distributes the data more evenly amongst the nodes in the post-bootstrapping
phase; and iii) occupy less storage than the split-move approach.

Efficient Bootstrapping for Decentralised Key-Value Stores 363

(a) Write-intensive Throughput (b) Read-intensive Throughput

Fig. 6. The performance of query processing with zipfian distribution

5.3 Performance of Query Processing

We focussed on the improvement of workload throughput as the system scaled.
In order to measure the steady-state throughput, we set an upper-bound for
the average read latency as 100 milliseconds. Before each test, we tuned the
number of threads in the YCSB client, such that the average read latency is
one-step below this bound. Based on this latency, we tuned the operation count
(i.e. number of requests), so that the test can last long enough (at least 1000
seconds). Therefore, in all the tests presented, the average read latency is slightly
less than 100 ms, and each run lasts at least 1000 seconds.

Apart from workload throughput, we also measure the CPU utilisation to
quantify the workload each node undertakes. We calculate the average CPU
usage per node to indicate resource utilisation, and the imbalance index (defined
in Subsection 5.1) of the CPU usage of all the nodes to evaluate load balancing
in the system. The experimental results for the workload following the zipfian
distribution are extremely similar to the results for the hotspot distribution. Due
to space limits, we present the experimental results for the zipfian distribution
only in this section.

Figure 6 depicts the throughputs of query processing in Cassandra (using
split-move) and ElasCass against increasing number of nodes. As can be seen
in Figure 6(a), when the system is subject to write-intensive workloads, the
throughput of the KVS using split-move stops improving after adding the 5th

node, while in ElasCass, the throughput increases linearly with the number of
nodes. Figure 6(b) depicts a similar trend. ElasCass continues to demonstrate
better scalability than split-move under read-intensive workloads.

Moreover, if we compare Figure 6(b) with 6(a), it can be seen that both
systems have higher throughputs under write-intensive workloads than read-
intensive. This is because write operations are buffered in memory and written in
batch mode, while read operations require random disk I/Os, which are confined
by the I/O performance.

The reason why ElasCass outperformed the KVS using split-move by such an
extent is due to the imbalance in data distribution in the latter (Figure 5(e)).
Due to the lack of data moved to the new nodes, the split-move approach was
not able to scale properly. In practice, a compaction can be launched manually

364 H. Li and S. Venugopal

(a) Average CPU usage per node (b) Imbalance Index of CPU usage

Fig. 7. How the workload is balanced across nodes under read-intensive workloads
following the zipfian distribution

before bootstrapping a node. Compaction will update the information about the
data volume on each node, so that a new node can choose source nodes more
appropriately. However, this evaluation was designed to demonstrate how the
system will behave without human intervention. The KVS using split-move was
not able to complete a file compaction during the evaluation, which makes it
unadaptable in the scenario where new nodes are added one after another in
a relatively short time. In contrast, ElasCass is able to move a small portion
of partitions from heavily loaded nodes during the pre-bootstrapping phase for
quick bootstrapping, and then retrieves a large volume of data in the post-
bootstrapping phase to achieve the balancing of workload and data volume.

Figure 7 shows the average CPU usage of all the nodes during the tests under
the read-intensive workloads. The results for the write-intensive workloads show
a similar trend, so they are not presented due to page limit. As seen, the average
CPU usage of ElasCass remains above 70%. However, in the KVS using split-
move, the CPU usage declines gradually as the system scales up. The results
indicate that ElasCass is able to fully utilise the provisioned compute resources
at different scales for serving queries, while in Cassandra the newly added nodes
were not efficiently incorporated into query processing.

Figure 7(b) presents the imbalance index of the CPU usage. With the split-
move approach, the imbalance index climbs up as the system scales. From the
scale of eight nodes onwards, the index even goes beyond 1.0, which means that
the standard deviation of the CPU usages is even greater than the average usage.
The results indicate that some nodes are heavily loaded, while the others remain
idle. The workload was not balanced with split-move. However, this index in
ElasCass remains below 0.2 in all the tests. A small value of imbalance index
indicates that the workload is well balanced in ElasCass.

Overall, this set of experiments demonstrates that, due to better balancing
of data volume in ElasCass, it outperforms the KVS using split-move in query
processing by a large extent in terms of scalability and load balancing.

5.4 Data Partitioning

In this experiment, we demonstrate how the maximum size Θmax and the mini-
mum size Θmin (defined in Equation 1 and 2) can affect the partitioning results

Efficient Bootstrapping for Decentralised Key-Value Stores 365

(a) Number of partitions (b) Data volumes (c) Fullness of partitions

Fig. 8. Partitioning 100GB of data under different sharding threshold

with our sharding strategy. We used the same setting for the YCSB client to gen-
erate the 100GB dataset (Table 2), but the dataset was loaded independently
in each test with different values of Θmax and Θmin. There are six tests, in
which the maximum size Θmax increases from 1GB to 32GB exponentially. The
minimum size is set as one half of the upper, i.e. Θmin = Θmax/2.

Given different values of Θmax, Figure 8(a) shows the total number of par-
titions generated, while Figure 8(b) shows the volume of data stored in the
partitions. As can be seen, as the value of Θmax increases, the resulted num-
ber of partitions decreases inversely, whilst the average volume of data in each
partition grows linearly with Θmax.

Different settings of Θmax can affect the system’s performance. If Θmax is too
small, partitions are sharded very frequently, which increases the overhead of
building replicas. In addition, small Θmax results in a large number of partitions,
which increases the complexity of partition reallocation. On the other hand, if
Θmax is too large, the resulted partitions will contain a large volume of data.
Moving a large-size partition replica may end up in overwhelming the node that
takes it over. Moreover, it takes substantially long time to reallocate a large-size
replica, which is not efficient. Therefore, in the remaining evaluations, we set
Θmax=2GB and Θmin=1GB.

In Figure 8(c), we use the term “fullness” to compare the data volume shown in
Figure 8(b). The value of fullness is calculated as the data volume of the partition
divided by Θmax. In other words, the fullness indicates how full the partition is
before it reaches the maximum capacity. Figure 8(c) shows that the average full-
ness of the partition ranges between 60% and 80%, and the standard deviation of
fullness is consistently below 20% given different Θmax. The results indicate that
the dataset is effectively segmented into a list of partitions that are of roughly
equal sizes, without sparse partitions (i.e. having little data) generated. In addi-
tion, there is a trend that larger values of Θmax tend to result in greater fullness.
This is because smaller upper bounds increase the frequency of partition splitting.
Note that when a partition is split, the data volume of the resulting partitions is
only half of Θmax, i.e. the fullness is 50%.

6 Conclusion

Efficient node bootstrapping is an important feature for distributed KVSs run-
ning on IaaS. We have presented a decentralised scheme of data partitioning

366 H. Li and S. Venugopal

and placement to efficiently bootstrap nodes in shared nothing KVSs. Our
auto-sharding scheme, extended from the virtual-node based data management,
improves the efficiency of data movement at bootstrap, by consolidating each
partition into single transferable units without data skew. Using a two-phase
placement strategy, we minimise the data movement during bootstrap to achieve
fast bootstrapping, while populating the newly-added nodes after bootstrap to
achieve well balanced workload and data distribution.

We have implemented the proposed scheme in Apache Cassandra [15] that
follows the split-move strategy, to present ElasCass. We evaluated our scheme
against the split-move approach, by experimentally evaluating ElasCass against
Cassandra using YCSB on public IaaS. We demonstrated that ElasCass was
capable of incorporating new empty nodes consecutively in a relatively short
time, with ideally balanced data distribution and much better balanced work-
load than Cassandra. As a result, ElasCass exhibited better resource utilisation
in compute and storage, and outperformed Cassandra in scalability by a large
extent under the biased workloads. We also demonstrated the capability of our
auto-sharding scheme to confine each partition into a bounded size, without data
skew or sparse partitions.

In the future, we plan to augment this scheme with the control logic that de-
termines when and how many nodes should be bootstrapped or decommissioned.
This control logic along with the ability to add and remove nodes efficiently, form
the basis for autonomous elasticity in shared nothing KVSs on IaaS platforms.

Acknowledgments. The authors would like to thank Smart Services CRC Pty
Ltd for the grant of Services Aggregation project that made this work possible.

References

1. Aberer, K.: Peer-to-peer data management. Synthesis Lectures on Data Manage-
ment 3(2), 1–150 (2011)

2. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, pp. 335–350. USENIX Association (2006)

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS) 26(2), 1–26 (2008)

4. Cockroft, A.: Netflix goes global. In: Proc. 14th International Workshop on High
Performance Transaction Systems (HPTS). USENIX (2011)

5. Cooper, B., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Ja-
cobsen, H., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment 1(2), 1277–1288 (2008)

6. Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

7. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Googles globally-
distributed database. In: Proceedings of OSDI, vol. 1 (2012)

Efficient Bootstrapping for Decentralised Key-Value Stores 367

8. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB En-
dowment 3(1-2), 48–57 (2010)

9. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Albatross: lightweight elasticity
in shared storage databases for the cloud using live data migration. Proceedings of
the VLDB Endowment 4(8), 494–505 (2011)

10. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP, vol. 7, pp. 205–220 (2007)

11. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)

12. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays.
In: HotOS, pp. 7–12 (2003)

13. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pp. 654–663. ACM (1997)

14. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM Trans-
actions on Networking (TON) 8(5), 568–582 (2000)

15. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

16. Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish
replication. IEEE Transactions on Parallel and Distributed Systems 17(12), 1401–
1413 (2006)

17. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

18. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. ACM SIGCOMM Com-
puter Communication Review 31(4), 149–160 (2001)

20. Van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service.
In: Middleware 1998, pp. 55–70. Springer (1998)

21. You, G.-W., Hwang, S.-W., Jain, N.: Scalable Load Balancing in Cluster Storage
Systems. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049,
pp. 101–122. Springer, Heidelberg (2011)

22. Zaman, S., Grosu, D.: A distributed algorithm for the replica placement problem.
IEEE Transactions on Parallel and Distributed Systems 22(9), 1455–1468 (2011)

Testing Idempotence for Infrastructure as Code

Waldemar Hummer1, Florian Rosenberg2, Fábio Oliveira2, and Tamar Eilam2

1 Distributed Systems Group, Vienna University of Technology, Austria
hummer@dsg.tuwien.ac.at

2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{rosenberg,fabolive,eilamt}@us.ibm.com

Abstract. Due to the competitiveness of the computing industry, soft-
ware developers are pressured to quickly deliver new code releases. At the
same time, operators are expected to update and keep production sys-
tems stable at all times. To overcome the development–operations bar-
rier, organizations have started to adopt Infrastructure as Code (IaC)
tools to efficiently deploy middleware and applications using automa-
tion scripts. These automations comprise a series of steps that should be
idempotent to guarantee repeatability and convergence. Rigorous testing
is required to ensure that the system idempotently converges to a de-
sired state, starting from arbitrary states. We propose and evaluate a
model-based testing framework for IaC. An abstracted system model is
utilized to derive state transition graphs, based on which we systemati-
cally generate test cases for the automation. The test cases are executed
in light-weight virtual machine environments. Our prototype targets one
popular IaC tool (Chef), but the approach is general. We apply our
framework to a large base of public IaC scripts written by operators,
showing that it correctly detects non-idempotent automations.

Keywords: Middleware Deployment, Software Automation, Idempo-
tence, Convergence, Infrastructure as Code, Software Testing.

1 Introduction

The ever-increasing need for rapidly delivering code changes to satisfy new re-
quirements has led many organizations to rethink their development practices.
A common impediment to this demand for quick code delivery cycles is the
well-known tension between software developers and operators: the former are
constantly pressured to deliver new releases, whereas the latter must keep pro-
duction systems stable at all times. Not surprisingly, operators are reluctant to
accept changes and tend to consume new code slower than developers would like.

In order to repeatedly deploy middleware and applications to the production
environment, operations teams typically rely on automation logic (e.g., scripts).
As new application releases become available, this logic may need to be revisited
to accommodate new requirements imposed on the production infrastructure. As
automation logic is traditionally not developed following the same rigor of soft-
ware engineering used by application developers (e.g., modularity, re-usability),

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 368–388, 2013.
c© IFIP International Federation for Information Processing 2013

Testing Idempotence for Infrastructure as Code 369

automations tend to never achieve the same level of maturity and quality, incur-
ring an increased risk of compromising the stability of the deployments.

This state-of-affairs has been fueling the adoption of DevOps [1,2,3] practices
to bridge the gap between developers and operators. One of the pillars of DevOps
is the notion of Infrastructure as Code (IaC) [1,4], which facilitates the develop-
ment of automation logic for deploying, configuring, and upgrading inter-related
middleware components following key principles in software engineering. IaC au-
tomations are expected to be repeatable by design, so they can bring the system
to a desired state starting from any arbitrary state. To realize this model, state-
of-the-art IaC tools, such as Chef [5] and Puppet [6], provide developers with
several abstractions to express automation steps as idempotent units of work.

The notion of idempotence has been identified as the foundation for repeat-
able, robust automations [7,8]. Idempotent tasks can be executed multiple times
always yielding the same result. Importantly, idempotence is a requirement for
convergence [7], the ability to reach a certain desired state under different cir-
cumstances in potentially multiple iterations. The algebraic foundations of these
concepts are well-studied; however, despite (1) their importance as key elements
of DevOps automations and (2) the critical role of automations to enable frequent
deployment of complex infrastructures, testing of idempotence in real systems
has received little attention. To the best of our knowledge, no work to date has
studied the practical implications of idempotence or sought to support develop-
ers ascertain that their automations idempotently make the system converge.

We tackle this problem and propose a framework for systematic testing of IaC
automation scripts. Given a formal model of the problem domain and input cov-
erage goals based on well-defined criteria, a State Transition Graph (STG) of the
automation under test is constructed. The resulting STG is used to derive test
cases. Although our prototype implementation is based on Chef, the approach
is designed for general applicability. We rely on Aspect-Oriented Programming
(AOP) to seamlessly hook the test execution harness into Chef, with practi-
cally no configuration effort required. Since efficient execution of test cases is a
key issue, our prototype utilizes Linux containers (LXC) as light-weight virtual
machine (VM) environments that can be instantiated within seconds. Our ex-
tensive evaluation covers testing of roughly 300 publicly available, real-life Chef
scripts [9]. After executing 3671 test cases, our framework correctly identified 92
of those scripts as non-idempotent in our test environment.

Next, we provide some background on Chef and highlight typical threats to
idempotence in automations (§ 2), present an overview of our approach (§ 3), de-
tail the underlying formal model (§ 4), delve into STG-based test case generation
and execution (§ 5), unveil our prototype implementation (§ 6), discuss evalua-
tion results (§ 7), summarize related work (§ 8), and wrap up the paper (§ 9).

2 Background and Motivation

In this section we explain the principles behind modern IaC tools and the im-
portance of testing IaC automations for idempotence. Although we couch our
discussion in the context of Chef [5], the same principles apply to all such tools.

370 W. Hummer et al.

Chef Background. In Chef terminology, automation logic is written as recipes,
and a cookbook packages related recipes. Following a declarative paradigm, recipes
describe a series of resources that should be in a particular state. Listing 1.1
shows a sample recipe for the following desired state: directory “/tmp/my dir”
must exist with the specified permissions; package “tomcat6” must be installed;
OS service “tomcat6” must run and be configured to start at boot time.

Each resource type (e.g., package) is implemented by platform-dependent
providers that properly configure the associated resource instances. Chef en-
sures the implementation of resource providers is idempotent. Thus, even if our
sample recipe is executed multiple times, it will not fail trying to create a direc-
tory that already exists. These declarative, idempotent abstractions provide a
uniform mechanism for repeatable execution. This model of repeatability is im-
portant because recipes are meant to be run periodically to override out-of-band
changes, i.e., prevent drifts from the desired state. In other words, a recipe is
expected to continuously make the system converge to the desired state.

� �

1 directory ”tmp/my dir ” do
2 owner ” root ”
3 group ” root ”
4 mode 0755
5 action : c r e a t e
6 end
7 package ” tomcat6 ” do
8 action : i n s t a l l
9 end

10 service ” tomcat6 ” do
11 action [: s t a r t , : enab le]
12 end
� �

Listing 1.1. Declarative Chef Recipe

� �

1 bash ” bu i ld php” do
2 cwd Conf ig [: f i l e c a c h e p a t h]
3 code <<−EOF
4

5 t a r −zxv f php−#{ vers ion} . t a r . g z
6 cd php−#{ vers ion}
7 . / c on f i gu r e #{ opt ions}
8 make && make i n s t a l l
9

10 EOF
11 not i f ”which php”
12 end
� �

Listing 1.2. Imperative Chef Recipe

Supporting the most common configuration tasks, Chef currently provides
more than 20 declarative resource types whose underlying implementation guar-
antees idempotent and repeatable execution. However, given the complexity of
certain tasks that operators need to automate, the available declarative resource
types may not provide enough expressiveness. Hence, Chef also supports imper-
ative scripting resources such as bash (shell scripts) or ruby block (Ruby code).

Listing 1.2 illustrates an excerpt from a recipe that installs and configures
PHP (taken from [9]). This excerpt shows the common scenario of installing
software from source code—unpack, compile, install. The imperative shell state-
ments are in the code block (lines 5–8). To encourage idempotence even for arbi-
trary scripts, Chef gives users statements such as not if (line 11) and only if

to indicate conditional execution. In our sample, PHP is not compiled and in-
stalled if it is already present in the system. Blindly re-executing those steps
could cause the script to fail; thus, checking if the steps are needed (line 11) is
paramount to avoid errors upon multiple recipe runs triggered by Chef.

Threats to Overall Idempotence. Idempotence is critical to the correctness of
recipes in light of Chef’s model of continuous execution and desired-state

Testing Idempotence for Infrastructure as Code 371

convergence. Nonetheless, we identify several challenges when it comes to ensur-
ing that a recipe as a whole is idempotent and can make the system converge to a
desired state irrespective of the system’s state at the start of execution. Because
of these challenges, IaC automation developers need thorough testing support.

First, for imperative script resources, the user has the burden of implementing
the script in an idempotent way. The user has to decide the appropriate granu-
larity at which idempotence must be enforced so that desired-state convergence
can always be achieved with no failures or undesirable side effects. This may not
be trivial for recipes with long code blocks or multiple script resources.

Second, the need to use script resources, not surprisingly, occurs often. E.g.,
out of all 665 publicly available cookbooks in the Opscode community [9] (as of
February 2013, only counting cookbooks with at least one resource), we found
that 364 (more than 50%) use at least one script resource. What is more, out of
7077 resources from all cookbooks, almost 15% were script resources.

Third, although Chef guarantees that the declarative resource types (e.g.,
directory) are idempotent, there is no guarantee that a sequence of multiple
instances as a whole is idempotent, as outlined in [7], specially in the face of
script resources. Recall that a recipe typically contains a series of several resource
instances of different types, and the entire recipe is re-executed periodically.

Finally, if recipes depend on an external component (e.g., a download server),
writing the recipe to achieve overall idempotence may become harder due to
unforeseen interactions with the external component (e.g., server may be down).

3 Approach Synopsis

Our work proposes an approach and framework for testing IaC automations for
idempotence. We follow a model-based testing approach [10], according to the
process outlined in Figure 1. The process contains five main steps with different
input and output artifacts. Our test model consists of two main parts: 1) a system
model of the automation under test and its environment, including the involved
tasks, parameters, system states, and state changes; 2) a state transition graph
(STG) model that can be directly derived from the system model.

The input to the first step in Figure 1 consists of the IaC scripts, and addi-
tional metadata. The scripts are parsed to obtain the basic system model. IaC
frameworks like Chef allow for automatic extraction of most required data, and
additional metadata can be provided to complete the model (e.g., value domains

Fig. 1. Model-based testing process

372 W. Hummer et al.

for automation parameters). Given the sequence of tasks and their expected
state transitions, an STG is constructed which models the possible state transi-
tions that result from executing the automation in different configurations and
starting from arbitrary states. Step three in the process derives test case spec-
ifications, taking into account user-defined coverage criteria. The test cases are
materialized and executed in the real system in step four. During execution, the
system is monitored for state changes by intercepting the automation tasks. Test
analysis is applied to the collected data in step five, which identifies idempotence
issues based on well-defined criteria, and generates a detailed test report.

4 System Model

This section introduces a model for the IaC domain and a formal definition of
idempotence, as considered in this paper. The model and definitions provide the
foundation for test generation and the semantics of our test execution engine.

Table 1. System Model

Symbol Description

K,V Set of possible state property keys (K) and values (V).

d : K → P(V) Domain of possible values for a given state property key.

P := K × V Possible property assignments. ∀ (k, v) ∈ P : v ∈ d(k)

S ⊆ [K → V] Set of possible system states. The state is defined by (a
subset of) the state properties and their values.

A = {a1, a2, .., an} Set of tasks (or activities) an automation consists of.

p : A → I Set of input parameters (denoted by set I) for a task.

D ⊆ P(A× A) Task dependency relationship: task a1 must be executed
before task a2 iff (a1, a2) ∈ D.

R = {r1, r2, .., rm} Set of all historical automation runs.

E = {e1, e2, .., el} Set of all historical task executions.

r : E → R Maps task executions to automation runs.

e : (A ∪R) → EN List of task executions for a task or automation run.

o : E → {success, error} Whether a task execution yielded a success output.

succ, pred : A → A ∪∅ Task’s successor or predecessor within an automation.

st, ft : (E ∪R) → N Timestamp of the start time (st) and finish time (ft).

t : (S ×A) → S Expected state transition of each task. Pre-state maps
to post-state.

c : EN → [S → S] Actual state changes effected by a list of task executions.
(state difference between first pre-state and last post-state)

pre, post : A → P(S)
pre, post : E → S

Return all potential (for a task) or concrete (for a task
execution) pre-states (pre) and post-states (post).

Table 1 describes each element of our model and the used symbols. Note
that P denotes the powerset of a given set. We use the notation x[i] to refer to
the ith item of a tuple x, whereas idx(j, x) gives the (one-based) index of the
first occurrence of item j in tuple x or ∅ if j does not exist in x. Moreover,
XN :=

⋃
n∈N Xn denotes the set of all tuples (with any length) over the set X .

Testing Idempotence for Infrastructure as Code 373

4.1 Automation and Automation Tasks

An automation (A) consists of multiple tasks with dependencies (D) between
them. We assume a total ordering of tasks, i.e., ∀a1, a2 ∈ A : (a1 �= a2) ⇐⇒
((a1, a2) ∈ D) ⊕ ((a2, a1) ∈ D). An automation is executed in one or multiple
automation runs (R), which in turn consist of a multitude of task executions (E).

Table 2. Key Automation Tasks of the Sample Scenario

Task Parameters

a1 Install MySQL -

a2 Set MySQL password p2 = root password

a3 Install Apache & PHP p3 = operating system distribution (e.g., ’debian’)

a4 Deploy Application p4 = application context path (e.g., ’/myapp’)

For clarity, we relate the above concepts to a concrete Chef scenario. Consider
a Chef recipe that installs and configures a LAMP stack (Linux-Apache-MySQL-
PHP) to run a Web application. For simplicity, let us assume our recipe defines
four resource instances corresponding to the tasks described in Table 2.

A Chef recipe corresponds to an automation, and each resource in the recipe
is a task. Given our model and the recipe summarized in Table 2, we have
A = {a1, a2, a3, a4}. Note that a1 could be a package resource to install MySQL,
similar to the package resource shown in the recipe of Listing 1.1, whereas a3
could be implemented by a script resource similar to the one shown in Listing 1.2
(see Section 2). Table 2 also shows the input parameters consumed by each task.

As discussed in Section 2, an automation (Chef recipe) is supposed to make
the system converge to a desired state. Each task leads to a certain state tran-
sition, converting the system from a pre-state to a post-state. A system state
s ∈ S consists of a number of system properties, defined as (key,value) pairs. For
our scenario, let us assume we track the state of open ports and OS services in-
stalled, such thatK = {‘open ports’, ‘services’}. Also, suppose that, prior to the
automation run, the initial system state is given by s0 = {(‘open ports’, {22}),
(‘services’, {‘ssh’, ‘acpid’})}, i.e., port 22 is open and two OS services (ssh and
acpid) are running. After task a1’s execution, the system will transition to a new
state s1 = {(‘open ports’, {22, 3306}), (‘services’, {‘ssh’, ‘acpid’, ‘mysql’})}, i.e.,
task a1 installs the mysql service which will be started and open port 3306. Our
prototype testing framework tracks the following pieces of state: network routes,
OS services, open ports, mounted file systems, file contents and permissions, OS
users and groups, cron jobs, installed packages, and consumed resources.

We distinguish the expected state transition (expressed via function t) and
the actual state change (function c) that took place after executing a task. The
expected state transitions are used to build a state transition graph (Section 4.2),
whereas the actual state changes are monitored and used for test result analysis.

4.2 State Transition Graph

The system model established so far in this section can be directly translated
into a state transition graph (STG) which we then use for test generation. The

374 W. Hummer et al.

Fig. 2. Simple State Transition Graph Corresponding to Table 2

STG = (VG, TG) is a directed graph, where VG represents the possible system
states, and TG is the set of edges representing the expected state transitions.

Figure 2 depicts an STG which contains the pre-states and post-states of
the four tasks used in our scenario. For illustration, a tuple of four properties
is encoded in each state: my (MySQL installed?), pw (password configured?),
php (Apache and PHP installed?), and app (set of applications deployed in the
Apache Web server). For space limitations, branches (e.g., based on which oper-
ating system is used) are not included in the graph, and the wildcard symbol (∗)
is used as a placeholder for arbitrary values. The pre-states of each task should
cover all possible values of the state properties that are (potentially) changed
by this task. For instance, the automation should succeed regardless of whether
MySQL is already installed or not. Hence, the pre-states of task t1 contain both
values my = F and my = T . Note that instead of the wildcard symbol we could
also expand the graph and add one state for each possible value, which is not
possible here for space reasons.

4.3 Idempotence of Automation Tasks

Following [7], a task a ∈ A is idempotent with respect to an equivalence relation
≈ and a sequence operator ◦ if repeating a has the same effect as executing it
once, a ◦ a ≈ a. Applied to our model, we define the conditions under which a
task is considered idempotent based on the evidence provided by historical task
executions (see Definition 3). As the basis for our definition, we introduce the
notion of non-conflicting system states in Definition 1.

Definition 1. A state property assignment (k, v2) ∈ P is non-conflicting with
another assignment (k, v1) ∈ P , denoted nonConf((k, v1), (k, v2)), if either 1)
v1 = v2 or 2) v1 indicates a state which eventually leads to state v2.

That is, non-conflicting state is used to express state properties in transition.
For example, consider that k denotes the status of the MySQL server. Clearly,
for two state values v1 = v2 = ‘started’, (k, v2) is non-conflicting with (k, v1). If
v1 indicates that the server is currently starting up (v1 = ‘booting’), then (k, v2)
is also non-conflicting with (k, v1). The notion of non-conflicting state properties
accounts for long-running automations which are repeatedly executed until the

Testing Idempotence for Infrastructure as Code 375

target state is eventually reached. In general, domain-specific knowledge is re-
quired to define concrete non-conflicting properties. By default, we consider state
properties as non-conflicting if they are equal. Moreover, if we use a wildcard
symbol (∗) to denote that the value of k is unknown, then (k, vx) is considered
non-conflicting with (k, ∗) for any vx ∈ V .

Definition 2. A state s2 ∈ S is non-conflicting with some other state s1 ∈ S if
∀(k1, v1) ∈ s1, (k2, v2) ∈ s2 : (k1 = k2) =⇒ nonConf((k1, v1), (k2, v2)).

Put simply, non-conflicting states require that all state properties in one state
be non-conflicting with corresponding state properties in the other state. Based
on the notion of non-conflicting states, Definition 3 introduces idempotent tasks.

Definition 3. An automation task a ∈ A is considered idempotent with respect
to its historical executions e(a) = 〈e1, e2, . . . , en〉 iff for each two executions
ex, ey ∈ e(a) the following holds:
(ft(ex) ≤ st(ey) ∧ o(ex) = success)⇒
(o(ey) = success ∧ (c(〈ey〉) = ∅ ∨ nonConf(post(ey), pre(ey))))

In verbal terms, if a task execution ex ∈ e(a) succeeds at some point, then all
following executions (ey) must yield a successful result, and either (1) effect no
state change, or (2) effect a state change where the post-state is non-conflicting
with the pre-state. Equivalently, we define idempotence for task sequences.

Definition 4. A task sequence aseq = 〈a1, a2, ..., an〉 ∈ An is considered idempo-
tent iff for each two sequences of subsequent task executions e′seq, e

′′
seq ∈ (e(a1) ×

e(a2)× ...× e(an)) the following holds:
ft(e′seq[n]) ≤ st(e′′seq[1])⇒
((∀i ∈ {1, . . . , n} : o(e′seq[i]) = success⇒ o(e′′seq [i]) = success) ∧
(c(e′′seq) = ∅ ∨ nonConf(post(e′′seq [i]), pre(e′′seq[i]))))

Note that our notion of idempotence basically corresponds to the definition in [7],
with two subtle differences: first, we not only consider the tasks’ post-state, but
also distinguish between successful/unsuccessful task executions; second, we do
not require post-states to be strictly equal, but allow for non-conflicting states.

�

Fig. 3. Idempotence for Different Task Execution Patterns

376 W. Hummer et al.

Figure 3 illustrates idempotence of four distinct task execution sequences.
Each execution is represented by a rounded rectangle which contains the result
and the set of state changes. For simplicity, the figure is based on a single task a1,
but the same principle applies also to task sequences. Sequence 1 is clearly idem-
potent, since all executions are successful and the state change from pre-state
(k, v1) to post-state (k, v2) only happens for the first execution. Sequence 2 is
idempotent, even though it contains an unsuccessful execution in the beginning.
This is an important case that accounts for repeatedly executed automations
which initially fail until a certain requirement is fulfilled (e.g., Apache server
waits until MySQL has been configured on another host). Sequence 3 is non-
idempotent (even though no state changes take place after the first execution)
because an execution with error follows a successful one. As a typical exam-
ple, consider a script resource which moves a file using command “mv X Y”. On
second execution, the task returns an error code, because file X does not exist
anymore. In sequence 4, idempotence depends on whether (k, v3) represents a
state property value that is non-conflicting with (k, v2). For instance, assume
k = ‘service.mysql’ denotes whether MySQL is started. If v2 = ‘booting’ and
v3 = ‘started’, then a1 is considered idempotent. Otherwise, if v2 = ‘booting’
and v3 = ‘stopped’, then v3 is conflicting with v2, and hence a1 is not idempotent.

5 Test Design

This section details the approach for testing idempotence of IaC automations.
In Section 5.1, we discuss how test cases are derived from a graph representation
of the possible system states and transitions, thereby considering customizable
test coverage goals. Section 5.2 covers details about the test execution in isolated
virtualized environments, as well as test parallelization and distribution.

5.1 STG-Based Test Generation

We observe that the illustrative STG in Figure 2 represents a baseline vanilla
case. Our aim is to transform and “perturb” this baseline execution sequence in
various ways, simulating different starting states and repeated executions of task
sequences, which a robust and idempotent automation should be able to handle.
Based on the system model (Section 4) and user-defined coverage configuration,
we systematically perform graph transformations to construct an STG for test
case generation. The coverage goals have an influence on the size of the graph
and the set of generated test cases. Graph models for testing IaC may contain
complex branches (e.g., for different test input parameters) and are in general
cyclic (to account for repeated execution). However, in order to efficiently apply
test generation to the STG, we prefer to work with an acyclic graph (see below).

In the following, we briefly introduce the test coverage goals applied in our ap-
proach, discuss the procedure for applying the coverage configuration to concrete
graph instances, and finally define the specification of test cases.

Testing Idempotence for Infrastructure as Code 377

Test Coverage Goals. We define specific test coverage goals that are tailored
to testing idempotence and convergence of IaC automations.
idemN : This coverage parameter specifies a set of task sequence lengths for
which idempotence should be tested. The possible values range from idemN =
{1} (idempotence of single tasks) to idemN = {1, . . . , |A|} (maximum sequence
length covering all automation tasks). Evidently, higher values produce more test
cases, whereas lower values have the risk that problems related to dependencies
between “distant” tasks are potentially not detected (see also Section 7.2).
repeatN : This parameter controls the number of times each task is (at most)
repeated. If the automation is supposed to converge after a single run (most
Chef recipes are designed that way, see our evaluation in Section 7), it is usually
sufficient to have repeatN = 1, because many idempotence related problems
are already detected after executing a task (sequence) twice. However, certain
scenarios might require higher values for repeatN , in particular automations
that are continuously repeated in order to eventually converge. The tester then
has to use domain knowledge to set a reasonable upper bound of repetitions.
restart: The boolean parameter restart determines whether tasks are arbitrar-
ily repeated in the middle of the automation (restart = false), or the whole
automation always gets restarted from scratch (restart = true). Consider our
scenario automation with task sequence 〈a1, a2, a3, a4〉. If we require idemN = 3
with restart = true, then the test cases could for instance include the task se-
quences 〈a1, a1, ...〉, 〈a1, a2, a1, ...〉, 〈a1, a2, a3, a1, ...〉. If restart = false, we have
additional test cases, including 〈a1, a2, a3, a2, a3, ...〉, 〈a1, a2, a3, a4, a2, a3, ...〉, etc.
forcePre: This parameter specifies whether different pre-states for each task are
considered in the graph. If forcePre = true, then there needs to exist a graph
node for each potential pre-state s ∈ pre(a) of each task a ∈ A (see, e.g., Figure
2). Note that the potential pre-state should also cover all post-states, because of
repeated task execution. Contrary, forcePre = false indicates that a wildcard
can be used for each pre-state, which reduces the number of state nodes in Figure
2 from 9 to 5. The latter (forcePre = false) is a good baseline case if pre-states
are unknown or hard to produce. In fact, enforcing a certain pre-state either
involves executing the task (if the desired pre-state matches a corresponding
post-state) or accessing the system state directly, which is in general not trivial.
graph: This parameter refers to the STG-based coverage goal that should be
achieved. Offut et al. [11] define four testing goals (with increased level of cov-
erage) to derive test cases from state-based specifications. Transition coverage,
full predicate coverage (one test case for each clause on each transition predicate,
cf. Figure 2), transition-pair coverage (for each state node, all combinations of
incoming and outgoing transitions are tested), and full sequence coverage (each
possible and relevant execution path is tested, usually constrained by applying
domain knowledge to ensure a finite set of tests [11]). By default, we utilize
transition coverage on a cycle-free graph. Details are discussed next.

Coverage-Specific STG Construction. In Figure 4, graph construction is il-
lustrated by means of an STG which is gradually enriched and modified as new
coverage parameters are defined. The STG is again based on our scenario (labels

378 W. Hummer et al.

Fig. 4. Coverage-Specific STG Construction

of state properties and transition predicates are left out). First, forcePre = false
reduces the number of states as compared to Figure 2. Then, we require that task
sequences of any length should be tested for idempotence (idemN = {1, 2, 3, 4}),
which introduces new transitions and cycles into the graph. The configuration
restart = true removes part of the transitions, cycles still remain. After the fourth
configuration step, repeatN = 1, we have determined the maximum number of it-
erations and construct an acyclic graph.

To satisfy the graph = transition criterion in the last step, we perform a deep
graph search to find any paths from the start node to the terminal node. The
procedure is trivial, since the graph is already acyclic at this point. Each gener-
ated execution path corresponds to one test case, and the transition predicates
along the path correspond to the inputs for each task (e.g., MySQL password
parameter p2, cf. Figure 2). For brevity, our scenario does not illustrate the use
of alternative task parameter inputs, but it is easy to see how input parameters
can be mapped to transition predicates. As part of our future work, we consider
combining our approach with combinatorial testing techniques [12] to cover dif-
ferent input parameters. It should be noted, though, that (user-defined) input
parameters in the context of testing IaC are way less important than in tradi-
tional software testing, since the core “input” to automation scripts is typically
defined by the characteristics of the environment they operate in.

Test Case Specification. The coverage-specific graph-based test model is used
to generate executable tests. Table 3 summarizes the key information of a test
case: 1) the input parameters consumed by the tasks (in), 2) the end-to-end
sequence of tasks to be executed (seq), and 3) the automation run that resulted
from executing the test case (res), which is used for result analysis. For 1),
default parameters can be provided along with the system model (cf. Figure 1).
Moreover, automation scripts in IaC frameworks like Chef often define reasonable
default values suitable for most purposes. For 2), we traverse the cycle-free STG
constructed earlier, and each path (task sequence) represents a separate test.

5.2 Test Execution

Since our tests rely on extraction of state information, it is vital that each test
be executed in a clean and isolated environment. At the same time, tests should

Testing Idempotence for Infrastructure as Code 379

Table 3. Simplified Model for Test Case Specification

Symbol Description

C; T ⊆ C Set of all possible test cases (C) for the automation under test;
test suite (T) with the set of actual test cases to be executed.

in : C → [I → V] Parameter assignmentwith concrete input values for a test case.

seq : C → AN Entire task sequence to be executed by a test case.

res : C → R Automation run that results from executing a test case.

Fig. 5. Test Execution Pipeline

be parallelized for efficient usage of computing resources. Virtual machine (VM)
containers provide the right level of abstraction for this purpose. A VM operates
within a host operating system (OS) and encapsulates the filesystem, network-
ing stack, process space, and other relevant system state. Details about VM
containers in our implementation are given in Section 6.

The execution is managed in a testing pipeline, as illustrated in Figure 5. Prior
to the actual execution, each container is provided with a short initialization time
with exclusive resource access for booting the OS, initializing the automation
environment and configuring all parameters. Test execution is then parallelized
in two dimensions: the tests are distributed to multiple testing hosts, and a
(limited) number of test containers can run in parallel on a single host.

6 Implementation

This section discusses the prototypical implementation of our distributed testing
framework. Figure 6 illustrates the architecture from the perspective of a single
testing host. A Web user interface guides the test execution. Each host runs a test
manager which materializes tests and creates new containers for each test case.

Our framework parallelizes the execution in two dimensions: first, multiple
testing hosts are started from a pre-configured VM image; second, each testing
host contains several containers executing test cases in parallel. We utilize the
highly efficient Linux containers1 (LXC). Each container has a dedicated root
directory within the host’s file system. We use the notion of prototype container

1 http://lxc.sourceforge.net/

http://lxc.sourceforge.net/

380 W. Hummer et al.

Fig. 6. Test Framework Architecture

templates (denoted ’proto’ in Figure 6) to provide a clean environment for each
test. Each prototype contains a base operating system (Ubuntu 12.04 and Fedora
16 in our case) and basic services such as a secure shell (SSH) daemon. Instead
of duplicating the entire filesystem for each container, we use a btrfs2 copy-on-
write (C-O-W) filesystem, which allows to spawn new instances within a few
seconds. To avoid unnecessary re-downloads of external resources (e.g., software
packages), each host is equipped with a Squid3 proxy server.

The test agent within each container is responsible for launching the automa-
tion scripts and reporting the results back to the test manager which stores them
in a MongoDB database. Our framework uses aquarium4, an AOP library for
Ruby, to intercept the execution of Chef scripts and extract the relevant system
state. Chef’s execution model makes that task fairly easy: an aspect that we
defined uses a method join point run action in the class Chef::Runner. The
aspect then records the state snapshots before and after each task. We created
an extensible mechanism to define which Chef resources can lead to which state
changes. For example, the user Chef resource may add a user. Whenever this
resource is executed we record whether a user was actually added in the OS. As
part of the interception, we leverage this mapping to determine the correspond-
ing system state in the container via Chef’s discovery tool Ohai. We extended
Ohai with our own plugins to capture the level of detail required. In future work,
we plan to additionally monitor the execution on system call level using strace,
which will allow to capture additional state changes that we currently miss.

If an exception is raised during the test execution, the details are stored in
the testing DB. Finally, after each task execution we check whether any task
needs to be repeated at this time (based on the test case specification).

2 https://btrfs.wiki.kernel.org/
3 http://www.squid-cache.org/
4 http://aquarium.rubyforge.org/

https://btrfs.wiki.kernel.org/
http://www.squid-cache.org/
http://aquarium.rubyforge.org/

Testing Idempotence for Infrastructure as Code 381

7 Evaluation

To assess the effectiveness of our approach and prototype implementation, we
have performed a comprehensive evaluation, based on publicly available Chef
cookbooks maintained by the Opscode community. Out of the 665 executable
Opscode cookbooks (as of February 2013), we selected a representative sample of
161 cookbooks, some tested in different versions (see Section 7.4), resulting in a
total of 298 tested cookbooks. Our selection criteria were based on 1) popularity
in terms of number of downloads, 2) achieving a mix of recipes using imperative
scripting (e.g., bash, execute) and declarative resources (e.g., service, file).

In Section 7.1 we present aggregated test results over the set of automation
scripts used for evaluation, Section 7.2 discusses some interesting cases in more
detail, in Section 7.3 we contrast the idempotence results for different task types,
and Section 7.4 analyzes the evolution of different versions of popular cookbooks.

7.1 Aggregated Test Results

In this section we summarize the test results achieved from applying our testing
approach to the selected Opscode Chef cookbooks. For space limitations, we can
only highlight the core findings, but we provide a Web page5 with accompanying
material and detailed test results. Table 4 gives an overview of the overall eval-
uation results. The “min/max/total” values indicate the minimum/maximum
value over all individual cookbooks, and the total number for all cookbooks.

Table 4. Aggregated Evaluation Test Results

Tested Cookbooks 298

Number of Test Cases 3671

Number of Tasks (min/max/total) 1 / 103 / 4112

Total Task Executions 187986

Captured State Changes 164117

Total Non-Idempotent Tasks 263

Cookbooks With Non-Idempotent Tasks 92

Overall Net Execution Time 25.7 CPU-days

Overall Gross Execution Time 44.07 CPU-days

We have tested a total of 298 cookbooks, selected by high popularity (down-
load count) and number of imperative tasks (script resources). Cookbooks were
tested in their most recent version, and for the 20 most popular cookbooks we
tested (up to) 10 versions into the past, in order to assess their evolution with
respect to idempotence (see Section 7.4). As part of the selection process, we
manually filtered cookbooks that are not of interest or not suitable for testing:
for instance, cookbook application defines only attributes and no tasks, or
cookbook pxe install server downloads an entire 700MB Ubuntu image file.

5 http://dsg.tuwien.ac.at/testIaC/

http://dsg.tuwien.ac.at/testIaC/

382 W. Hummer et al.

The 298 tested cookbooks contain 4112 tasks in total. In our experiments,
task sequences of arbitrary length are tested ({1, .., |A|}), tasks are repeated at
most once (repeatN = 1), and the automation is always restarted from the first
task (restart = true). Based on this coverage, a total of 3671 test cases (i.e.,
individual instantiations with different configurations) were executed. 187986
task executions were registered in the database, and 164117 state changes were
captured as a direct result. The test execution occupied our hardware for an
overall gross time of 44.07 CPU-days. Extracting the overhead of our tool, which
includes mostly capturing of system state and computation of state changes,
the net time is 25.7 CPU-days. Due to parallelization (4 testing hosts, max. 5
containers each) the tests actually finished in much shorter time (roughly 5 days).

The tests have led to the identification of 263 non-idempotent tasks. Recall
from Section 4 that a task is non-idempotent if any repeated executions lead to
state changes or yield a different success status than the previous executions.

7.2 Selected Result Details

To provide a more detailed picture, we discuss interesting cases of non-idempotent
recipes. We explain for each case how our approach detected the idempotence
issue. We also discuss how we tracked down the actual problem, to verify the
results and understand the underlying implementation bug. It should be noted,
however, that our focus is on problem detection, not debugging or root cause
analysis. However, using the comprehensive data gathered during testing, our
framework has also significantly helped us find the root of these problems.

Chef Cookbook timezone. A short illustrative cookbook is timezone v0.0.1
which configures the time zone in /etc/timezone. Table 5 lists the three tasks: a1
installs package tzdata and initializes the file with “Etc/UTC”, a2 writes “UTC”
to the file, and a3 reconfigures the package tzdata, resetting the file content.
For our tests, “UTC” and “Etc/UTC” are treated as conflicting property values.
Hence, tasks a2 and a3 are clearly non-idempotent, e.g., considering the execution
sequence 〈a1, a2, a3, a1, a2, a3〉: on second execution, a1 has no effect (package is
already installed), but a2, a3 are re-executed, effectively overwriting each other’s
state changes. Note that 〈a1, a2〉 and 〈a1, a2, a3〉 are idempotent as a sequence;
however, a perfectly idempotent automation would ensure that tasks do not
alternatingly overwrite changes. Moreover, the overhead of re-executing tasks
a2, a3 could be avoided, which is crucial for frequently repeated automations.

Table 5. Tasks in Chef Cookbook timezone

Task Resource Type Description

a1 package Installs package tzdata, writes “Etc/UTC” to /etc/timezone

a2 template Writes timezone value “UTC” to /etc/timezone

a3 bash Runs dpkg-reconfigure tzdata, again writes “Etc/UTC” to
/etc/timezone

Testing Idempotence for Infrastructure as Code 383

Chef Cookbook tomcat6. In the popular cookbook tomcat6 v0.5.4 (> 2000
downloads), we identified a non-trivial idempotence bug related to incorrect file
permissions. The version number indicates that the cookbook has undergone a
number of revisions and fixes, but this issue was apparently not detected.

Table 6. Tasks in Chef Cookbook tomcat6

Task Resource Type Description

.

a9 directory Creates directory /etc/tomcat6/

.

a16 bash Copies files to /etc/tomcat6/ as user tomcat; only executed
if /etc/tomcat6/tomcat6.conf does not exist.

.

a21 file Writes to /etc/tomcat6/logging.properties as user root.

a22 service Enables the service tomcat (i.e., automatic start at boot)

a23 file Creates file /etc/tomcat6/tomcat6.conf

.

The crucial tasks are outlined in Table 6 (the entire automation consists of
25 tasks). Applying the test coverage settings from Section 7.1, the test suite
for this cookbook consists of 23 test cases, out of which two test cases (denoted
t1, t2) failed. Test t1 is configured to run task sequence 〈a1, ..., a21, a1, ..., a25〉
(simulating that the automation is terminated and repeated after task a21), and
test t2 is configured with task sequence 〈a1, ..., a22, a1, ..., a25〉 (restarting after
task a22). Both test cases failed at the second execution of task a16, denoted
e(a16)[2] in our model, which copies configuration files to a directory previously
created by task a9. In the following we clarify why and how this fault happens.

The reason why t1 and t2 failed when executing e(a16)[2] is that at the time of
execution the file /etc/tomcat6/logging.properties is owned by user root, and
a16 attempts to write to the same file as user tomcat (resulting in “permission
denied” from the operating system). We observe that task a21 also writes to the
same file, but in contrast to task a16 not as user tomcat, but as user root. At exe-
cution e(a21)[1], the content of the file gets updated and the file ownership is set
to root. Hence, the cookbook developer has introduced an implicit dependency
between tasks a16 and a21, which leads to idempotence problems. Note that the
other 21 test cases did not fail. Clearly, all test cases in which the automation is
restarted before the execution of task a21 are not affected by the bug, since the
ownership of the file does not get overwritten. The remaining test cases in which
the automation was restarted after a21 (i.e., after a23, a24, and a25) did not fail
due to a conditional statement not if which ensures that a16 is only executed if
/etc/tomcat6/tomcat6.conf does not exist.

Chef Cookbook mongodb-10gen. The third interesting case we discuss is cook-
book mongodb-10gen (installsMongoDB), for which our framework allowed us to

384 W. Hummer et al.

detect an idempotence bug in the Chef implementation itself. The relevant tasks
are illustrated in Table 7: a11 installs package mongodb-10gen, a12 creates a direc-
tory, and a13 creates another sub-directory and places configuration files in it. If
installed properly, the package mongodb-10gen creates user and group mongodb on
the system. However, since the cookbook does not configure the repository prop-
erly, this package cannot be installed, i.e., task a11 failed in our tests. Now, as
task a12 is executed, it attempts to create a directory with user/group mongodb,
which both do not exist at that time. Let us assume the test case with task
sequence 〈a1, . . . , a13, a1, . . . , a13〉. As it turns out, the first execution of a13 cre-
ates /data/mongodb with user/group set to root/mongodb (even though group
mongodb does not exist). On the second execution of a12, however, Chef again
tries to set the directory’s ownership and reports an error that user mongodb

does not exist. This behavior is clearly against Chef’s notion of idempotence,
because the error should have been reported on the first task execution already.
In fact, if the cookbook was run only once, this configuration error would not
be detected, but may lead to problems at runtime. We submitted a bug report
(Opscode ticket CHEF-4236) which has been confirmed by Chef developers.

Table 7. Tasks in Chef Cookbook mongodb-10gen

Task Resource Type Description

.

a11 package Installs package mongodb-10gen

a12 directory Creates directory /data

a13 remote directory Creates directory /data/mongodb as user/group mongodb

Lessons Learned. The key take-away message of these illustrative real-world
examples is that automations may contain complex implicit dependencies, which
IaC developers are often not aware of, but which can be efficiently tested by our
approach. For instance, the conditional not if in a16 of recipe tomcat6 was
introduced to avoid that the config file gets overwritten, but the developer was
apparently not aware that this change breaks the idempotence and convergence
of the automation. This example demonstrates nicely that some idempotence and
convergence problems (particularly those involving dependencies among multiple
tasks) cannot be avoided solely by providing declarative and idempotent resource
implementations (e.g., as provided in Chef) and hence require systematic testing.

7.3 Idempotence for Different Task Types

Table 8 shows the number of identified non-idempotent tasks (denoted #NI)
for different task types. The task types correspond to the Chef resources used
in the evaluated cookbooks. The set of scripting tasks (execute, bash, script,
ruby block) makes up for 90 of the total 263 non-idempotent tasks, which con-
firms our suspicion that these tasks are error-prone. Interestingly, the service

task type also shows many non-idempotent occurrences. Looking further into this
issue, we observed that service tasks often contain custom code commands to
start/restart/enable services, which are prone to idempotence problems.

Testing Idempotence for Infrastructure as Code 385

Table 8. Non-Idempotent Tasks By Task Type

Task Type #NI Task Type #NI Task Type #NI

service 66 directory 10 link 3

execute 44 remote file 10 bluepill service 2

package 30 gem package 7 cookbook file 2

bash 27 file 5 git 2

template 19 python pip 5 user 2

script 15 ruby block 4 apt package 1

7.4 Idempotence for Different Cookbook Versions

We analyzed the evolution of the 20 most popular Chef cookbooks. The re-
sults in Table 9 leave out cookbooks with empty default recipes (application,
openssl, users) and cookbooks without any non-idempotent tasks: mysql, java,

postgresql, build-essential, runit, nodejs, git, ntp, python, revealcloud,

graylog2. For the cookbooks under test, new releases fixed idempotence issues,
or at least did not introduce new issues. Our tool automatically determines these
data, hence it can be used to test automations for regressions and new bugs.

Table 9. Evolution of Non-Idempotent Tasks By Increasing Version

Cookbook i-9 i-8 i-7 i-6 i-5 i-4 i-3 i-2 i-1 i

apache2 (i=1.4.2) 1 1 1 0 0 0 0 0 0 0

nagios (i=3.1.0) 1 1 0 0 0 0 0 0 0 0

zabbix (i=0.0.40) 2 2 2 2 2 2 2 2 2 2

php (i=1.1.4) 1 1 0 0 0 0 0 0 0 0

tomcat6 (i=0.5.4) 3 3 3 3 3 3 2 1

riak (i=1.2.1) 1 1 1 1 1 1 0 0 0 0

8 Related Work

Existing work has identified the importance of idempotence for building reli-
able distributed systems [13] and database systems [14]. Over the last years, the
importance of building testable system administration [8] based on convergent
models [15,7] became more prevalent. cfengine [16] was among the first tools in
this space. More recently, other IaC frameworks such as Chef [5] or Puppet [6]
heavily rely on these concepts. However, automated and systematic testing of IaC
for verifying idempotence and convergence has received little attention, despite
the increasing trend of automating multi-node system deployments (i.e., contin-
uous delivery [17]) and placement of virtual infrastructures in the Cloud [18].

Existing IaC test frameworks allow developers to manually write test code
using common Behavior-Driven Development (BDD) techniques. ChefSpec [19]
or Cucumber-puppet [20] allow to encode the desired behavior for verifying in-
dividual automation tasks (unit testing). Test Kitchen [21] goes one step further
by enabling testing of multi-node system deployments. It provisions isolated test

386 W. Hummer et al.

environments using VMs which execute the automation under test and verify
the results using the provided test framework primitives. This kind of testing is
a manual and labor intensive process. Our framework takes a different approach
by systematically generating test cases for IaC and executing them in a scalable
virtualized environment (LXC) to detect errors and idempotence issues.

Extensive research is conducted on automated software debugging and test-
ing techniques, including model-based testing [22] or symbolic execution [23], as
well as their application to specialized problem areas, for instance control flow
based [24] or data flow based [25] testing approaches. Most existing work and
tools, however, are not directly applicable to the domain of IaC, for two main
reasons: (i) IaC exposes fairly different characteristics than traditional software
systems, i.e., idempotence and convergence; (ii) IaC needs to be tested in real en-
vironments to ensure that system state changes triggered by automation scripts
can be asserted accordingly. Such tests are hard to simulate, hence symbolic
execution would have little practical value. Even though dry-run capabilities
exist (e.g, Chef’s why-run capability), they cannot replace systematic testing.
The applicability of automated testing is a key requirement identified by other
approaches [26,27,28], whether the test target is system software or IaC.

Existing approaches for middleware testing have largely focused on perfor-
mance and efficiency. Casale et al. [29] use automatic stress testing for multi-tier
systems. Their work places bursty service demands on system resources, in order
to identify performance bottlenecks as well as latency and throughput degrada-
tions. Other work focuses on testing middleware for elasticity [30], which is
becoming a key property for Cloud applications. Bucur et al. [26] propose an
automated software testing approach that parallelizes symbolic executions for
efficiency. The system under test can interact with the environment via a “sym-
bolic system call” layer that implements a set of common POSIX primitives.
Their approach could potentially enhance our work and may speed up the per-
formance, but requires a complete implementation of the system call layer.

Other approaches deal with finding and fixing configuration errors [31,32].
Faults caused by configuration errors are often introduced during deployment
and remain dormant until activated by a particular action. Detecting such errors
is challenging, but tools like AutoBash [32] or Chronus [31] can effectively help.
A natural extension would be to also take into account the IaC scripts to find
the configuration parameter that potentially caused the problem. Burg et al. [28]
propose automated system tests using declarative virtual machines. Declarative
specifications describe external dependencies (e.g., access to external services)
together with an imperative test script. Their tool then builds and instantiates
the virtual machine necessary to run the script. Our approach leverages pre-
built containers in LXC; dynamically creating a declarative specification would
be possible but building a VM is more costly than bringing up an LXC container.

9 Conclusion

We propose an approach for model-based testing of Infrastructure as Code, aim-
ing to verify whether IaC automations, such as Chef recipes, can repeatedly

Testing Idempotence for Infrastructure as Code 387

make the target system converge to a desired state in an idempotent manner.
Given the IaC model of periodic re-executions, idempotence is a critical prop-
erty which ensures repeatability and allows automations to start executing from
arbitrary initial or intermediate states. Our extensive evaluation with real-world
IaC scripts from the OpsCode community revealed that the approach effectively
detects non-idempotence. Out of roughly 300 tested Chef scripts, almost a third
were identified as non-idempotent. In addition, we were able to detect and report
a bug in the Chef implementation itself.

Our novel approach opens up exciting future research directions. First, we
will extend our prototype to handle the execution of distributed automations
with cross-node dependencies, which is often used to deploy multi-node systems.
Second, we plan to apply the approach to other IaC frameworks like Puppet,
whose execution model does not assume total task ordering. Third, we envision
that systematic debugging/analysis can be pushed further to identify implicit
dependencies introduced by IaC developers. Moreover, we are currently extend-
ing the state capturing mechanism to detect fine-grained changes on system call
level. The hypothesis is that the improved mechanism can lead to detection of
additional non-idempotence cases stemming from side effects we currently miss.

References

1. Hüttermann, M.: DevOps for Developers. Apress (2012)
2. Loukides, M.: What is DevOps? O’Reilly Media (2012)
3. Schaefer, A., Reichenbach, M., Fey, D.: Continuous Integration and Automation

for Devops. IAENG Trans. on Engineering Technologies 170, 345–358 (2013)
4. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly (2011)
5. Opscode: http://www.opscode.com/chef/
6. Puppet Labs: http://puppetlabs.com/
7. Couch, A.L., Sun, Y.: On the algebraic structure of convergence. In: Brunner, M.,

Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 28–40. Springer, Heidelberg
(2003)

8. Burgess, M.: Testable system administration. Commun. ACM 54(3), 44–49 (2011)
9. Opscode Community: http://community.opscode.com/

10. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability 22(5), 297–312 (2012)

11. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-
based specifications. Software Testing, Verification and Reliability 13, 25–53 (2003)

12. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comp. Surv. (2011)
13. Helland, P.: Idempotence is not a medical condition. ACM Queue 10(4) (2012)
14. Helland, P., Campbell, D.: Building on quicksand. In: Conference on Innovative

Data Systems Research, CIDR (2009)
15. Traugott, S.: Why order matters: Turing equivalence in automated systems ad-

ministration. In: 16th Conference on Systems Administration (LISA), pp. 99–120
(2002)

16. Zamboni, D.: Learning CFEngine 3: Automated system administration for sites of
any size. O’Reilly Media, Inc. (2012)

17. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional (2010)

http://www.opscode.com/chef/
http://puppetlabs.com/
http://community.opscode.com/

388 W. Hummer et al.

18. Giurgiu, I., Castillo, C., Tantawi, A., Steinder, M.: Enabling efficient placement
of virtual infrastructures in the cloud. In: Narasimhan, P., Triantafillou, P. (eds.)
Middleware 2012. LNCS, vol. 7662, pp. 332–353. Springer, Heidelberg (2012)

19. ChefSpec: https://github.com/acrmp/chefspec
20. Cucumber-puppet:

http://projects.puppetlabs.com/projects/cucumber-puppet

21. Test Kitchen: https://github.com/opscode/test-kitchen
22. Pretschner, A.: Model-based testing. In: Proceedings of the 27th International Con-

ference on Software Engineering, ICSE 2005, pp. 722–723 (2005)
23. Cadar, C., Godefroid, P., et al.: Symbolic execution for software testing in practice:

preliminary assessment. In: 33rd Int. Conf. on Software Engineering, ICSE (2011)
24. Benavides Navarro, L.D., Douence, R., Südholt, M.: Debugging and testing middle-

ware with aspect-based control-flow and causal patterns. In: Issarny, V., Schantz,
R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 183–202. Springer, Heidelberg
(2008)

25. Hummer, W., Raz, O., Shehory, O., Leitner, P., Dustdar, S.: Testing of data-centric
and event-based dynamic service compositions. In: Softw. Test., Verif. & Reliab.
(2013)

26. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for auto-
mated real-world software testing. In: ACM EuroSys. Conf., pp. 183–198 (2011)

27. Candea, G., Bucur, S., Zamfir, C.: Automated software testing as a service. In: 1st
ACM Symposium on Cloud Computing (SoCC), pp. 155–160 (2010)

28. van der Burg, S., Dolstra, E.: Automating system tests using declarative virtual
machines. In: 21st Int. Symposium on Software Reliability Engineering (2010)

29. Casale, G., Kalbasi, A., Krishnamurthy, D., Rolia, J.: Automatic stress testing
of multi-tier systems by dynamic bottleneck switch generation. In: Bacon, J.M.,
Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 393–413. Springer,
Heidelberg (2009)

30. Gambi, A., Hummer, W., Truong, H.L., Dustdar, S.: Testing Elastic Computing
Systems. IEEE Internet Computing (2013)

31. Whitaker, A., Cox, R., Gribble, S.: Configuration debugging as search: finding the
needle in the haystack. In: Symp. on Op. Sys. Design & Impl (OSDI), p. 6 (2004)

32. Su, Y.Y., Attariyan, M., Flinn, J.: AutoBash: improving configuration management
with operating system causality analysis. In: SOSP (2007)

https://github.com/acrmp/chefspec
http://projects.puppetlabs.com/projects/cucumber-puppet
https://github.com/opscode/test-kitchen

Self-scalable Benchmarking as a Service

with Automatic Saturation Detection

Alain Tchana1, Bruno Dillenseger2, Noel De Palma1, Xavier Etchevers2,
Jean-Marc Vincent1, Nabila Salmi2, and Ahmed Harbaoui2

1 Joseph Fourier University, LIG, Grenoble, France
first.last@imag.fr

2 Orange Labs, Grenoble, France
firstname.lastname@orange.com

Abstract. Software applications providers have always been required
to perform load testing prior to launching new applications. This crucial
test phase is expensive in human and hardware terms, and the solutions
generally used would benefit from further development. In particular, de-
signing an appropriate load profile to stress an application is difficult and
must be done carefully to avoid skewed testing. In addition, static test-
ing platforms are exceedingly complex to set up. New opportunities to
ease load testing solutions are becoming available thanks to cloud com-
puting. This paper describes a Benchmark-as-a-Service platform based
on: (i) intelligent generation of traffic to the benched application with-
out inducing thrashing (avoiding predefined load profiles), (ii) a virtu-
alized and self-scalable load injection system. This platform was found
to reduce the cost of testing by 50% compared to more commonly used
solutions. It was experimented on the reference JEE benchmark RUBiS.
This involved detecting bottleneck tiers.

Keywords: Benchmarking as a service, Saturation detection, Cloud.

1 Introduction

Software applications providers have always been required to perform load and
performance testing. This crucial activity is expensive in both human and re-
source terms. Traditionally, testing leverages a platform capable of generating
enough traffic to stress a System Under Test (SUT), and thus determine its lim-
its. This stress aims to detect the maximal throughput for a distributed system
while ensuring an acceptable response time, to determine where bottlenecks lie
or how performance is affected by adjusting configuration parameters.

To generate an appropriate level of traffic, commonly used solutions are based
on load profiles designed by testers, using empirical expertise. Profiles should
be designed to stress the system without trashing it. As IT systems become
increasingly complex and distributed, the task of designing an appropriate load
profile has become increasingly difficult.

In addition to this increasing difficulty, static testing platforms are exceedingly
complex to set up, and are prohibitively costly in terms of human and hardware

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 389–404, 2013.
c© IFIP International Federation for Information Processing 2013

390 A. Tchana et al.

resources. A typical test campaign requires several load injection machines to
generate enough traffic to the SUT (see Fig. 1), but the number of necessary
load injection machines is not known in advance.

To overcome this uncertainty, the injection machines are generally statically
provisioned, with the risk of encountering resource shortage or waste. In sum-
mary, the tester must empirically cope with two risks:

– provisioning too few load injection machines, which may distort the bench-
marking results;

– provisioning too many load injection machines, resulting in useless expenses.

Test system scalability may benefit greatly from the opportunities presented
by cloud computing, through its capacity to deliver IT resources and services
automatically on-demand, as part of a self-service system. Cloud computing
allows IT resources to be provisioned in a matter of minutes, rather than days
or weeks. This allows load testing solutions to be developed on-demand as a
service on the cloud. This type of Benchmark-as-a-Service platform (BaaSP)
provides significant benefits in terms of cost and resources as hardware, software
and tools are charged for on a per-use basis. The platform setup for the tests
is also greatly simplified, allowing testers to focus on analyzing test campaign
results. This paper describes a BaaSP, Benchmark-as-a-Service platform, that:

– returns the maximum number of virtual users a system under test (SUT) can
serve, while satisfying operational constraints (e.g. avoid CPU or memory
saturation) as well as quality of service constraints (e.g. acceptable response
time). This set of constraints is referred to as the saturation policy.

– automates load injection until saturation is reached. This eliminates the need
for a predefined load profile.

– automates provisioning of load injection virtual machines when necessary,
avoiding resource over-booking for BaaSP itself. For detecting when a new
virtual machine is required for load injection, the platform uses the same
mechanism as the one used to detect SUT saturation.

We tested our platform by stressing a JEE benchmark (RUBiS [1]) to de-
termine the bottleneck tiers. Our solution halved the cost of the test (in terms
of VMs uptime) compared to a statically provisioned testing platform. The re-
sults for this particular use case show that the data base tier is the bottleneck
when receiving a browsing workload. These results are consistent with previous
research [13].

Section 2 of this article presents the load injection framework our work is
based on for traffic generation. Section 3 describes the BaaSP’s architecture,
while section 4 details its design. Section 5 presents the experiments performed
as part of this study; section 6 related work; and section 7 concludes our study.

2 The CLIF Load Injection Framework

This work builds on previous work [4] based on the CLIF load injection frame-
work [2]. The CLIF open source project provides Java software to define, deploy

Self-scalable Benchmarking as a Service 391

Fig. 1. Overview of the load testing infrastructure

and run performance tests on many kinds of SUT. A CLIF workload is specified
through a scenario defining the traffic generated by each load injector. A scenario
defines one or several virtual user (vUser) behaviors, and the number of active
vUsers of each behavior over time. This is known as the load profile. A behavior
is basically a sequence of requests separated by think times (i.e. pauses), but it
can be enriched by adding conditional and loop statements, as well as proba-
bilistic branches. Beyond this logical constructs, behaviors make use of plug-ins
to support a variety of features, mainly injection protocols (HTTP, FTP, SIP...)
and external data provisioning to enable variability in request parameters.

As shown by figure 1, a CLIF test consists of a number of distributed compo-
nents: load injectors, to generate traffic, and probes, to monitor resources usage.
Each injector contributes to the global workload by executing a scenario, and
measures the response time of each generated request. Probes measure how given
resources (CPU, memory, network adapter or equipment, database, middleware,
etc.) are used. Injectors and probes are bound to a central test control and
monitoring component, the Supervisor, and a central Storage component which
gathers all measurements upon test completion. The next section describes how
we adapted CLIF to design the BaaSP platform.

3 Architecture Overview

BaaSP is based on the CLIF load injection framework; it automatically and
dynamically drives the number of active virtual users to test a system’s capac-
ity. Starting with a minimal load, i.e. a single virtual user, BaaSP increases the
number of virtual users step-by-step until the saturation policy is violated. Step
duration and increment levels are defined by an injection policy, which is com-
puted from a live queuing model equivalent to the SUT. This protocol relies on

392 A. Tchana et al.

the dynamic addition of injectors once current injector VMs become saturated.
This dynamic addition avoids static injector dimensioning. Fig. 2 presents the
architecture of BaaSP, the main elements of which are:

– Deployer. The deployer automates VM allocation in the Cloud and deploys
and configures all BaaSP and SUT components. The SUT can also be de-
ployed and configured long before the BaaSP, through an independent de-
ployment system. The cloud platform running the BaaSP can be different
from that running the SUT (which may not be run on a cloud platform at
all).

– Injectors and Probes. Injectors implement the requested injection mecha-
nism. They also compute the response time and throughput metrics for the
SUT, which can be used to provide statistics relating to its state. Probe
components monitor the injector VMs and provide information relating to
their saturation.

– InjectionController. The Injection Controller implements the injection pol-
icy. The injection controller examines the state of the SUT, based on injector
statistics, and decides how much and when to increase vUsers and to dis-
patch them to the injector VMs. A delicate balance must be maintained,
with stress applied progressively to the application. The ideal level of stress
is near the application’s limit, but without causing application trashing.

– InjectorsSaturationController. The injector saturation controller monitors
saturation of injector VMs (via their associated probes) and triggers the
addition of new injector VMs in line with the saturation policies.

– SutSaturationController. The SUT saturation controller monitors SUT sat-
uration using injector statistics and based on the SUT’s saturation policies.
When the SUT becomes saturated, the SUT saturation controller returns the
number of vUsers causing saturation, the maximum throughput, the aver-
age response time and the resource consumption. The next section provides
details on how our solution was designed.

4 Automated Load Injection Design

The self-regulated load injection approach we are using in this work comes from
our earlier results [4] and has been extended with dynamic provisioning of injec-
tion virtual machines as described in this section.

4.1 Injection Policy

On start-up, BaaSP makes minimal assumptions about SUT performance, ap-
plying a single virtual user workload and observing requests response times and
throughput. Then, as illustrated on Fig. 3, the virtual user population is in-
creased step-by-step. Each step is characterized by:

– the number of virtual users to add (injection step);

Self-scalable Benchmarking as a Service 393

Fig. 2. The BaaSP Architecture

– the step duration, which can be subdivided into a stabilization time and a
sampling time. The stabilization time begins with a fixed ramp-up delay,
which allows these virtual users to be added progressively.

The ramp-up delay is used to avoid stressing the SUT and the load injectors.
Excessive stress and trashing could be induced by a sudden increase in workload.
BaaSP aims to determine the maximum number of virtual users possible in stable
workload conditions. As part of this, response time measurements are discarded
during the ramp-up to ignore transitional effects. Similarly, measurements are
also discarded during stabilization. The initial stabilization time is given as a
parameter, but subsequent stabilization times are computed for each step by
estimating the convergence time for the Markov chain [5], [6] underlying the
queue model representing the SUT.

The sampling time is the period for measuring response times. Because of
networking and computing overload threats, it is not possible to get all response
time measurements during test run-time. Instead, BaaSP relies on CLIF’s ability
to deliver moving statistics on load injectors and probes. Over a polling period,
the injection controller obtains the continuous statistics from the injectors: mean
and standard deviation for response times, and the total number of requests
issued. Using these numbers, the injection controller periodically assesses the
significance of the statistical sample by combining the following two criteria:
(1) the minimal number of requests issued (given as a parameter), and (2) the

394 A. Tchana et al.

Fig. 3. Queue model-based automatic control of load injection

stability of measurements, based on a formula derived by Jain et al. [7]. This
formula can be used to calculate the sample size required to achieve a given level
of accuracy and confidence interval. We apply this formula, given the mean and
standard deviation values determined by CLIF’s moving statistics.

When the sampling time is complete for the current step, BaaSP estimates
the queue model parameters, as explained in the next section.

4.2 Estimation of Maximal Load

The Kendall notation [5] of an elementary queuing system, denoted by T/X/K,
was used in our estimation of the maximal load permissible for a SUT. In this
notation, T indicates the distribution of the inter-arrival times, X the service
times distribution, and K the number of servers (K ≥ 1). The number of servers
is representative of the parallel processing capability, which is bound to, but not
predefined by, the number of physical processing cores. To simplify calculations,
K is generally considered to be an integer number, although in reality it is more
likely to be a decimal number.

The maximal supported load, Ĉmax, is first estimated from an initial load
injection phase assuming a minimal value of 1 for K. During this phase, the
SUT is loaded with markovian interarrival requests from a single virtual user,
and statistics on response times R are polled from the load injectors. When a
single client arrives in an empty queue, there is no concurrence and the waiting
time is zero. In such conditions, the service rate μ, i.e. the server’s maximum
throughput in terms of requests processed per second, equals 1

R
, where R is the

mean response time. Assuming K = 1, the first estimation of Ĉmax equals μ.
With an M/G/K model, the rate of request arrivals converges to K ∗ μ. If

the SUT becomes saturated, then the previous assumption on K is confirmed.
BaaSP stops load injection and returns the number of active virtual users of the

Self-scalable Benchmarking as a Service 395

latest step completed without saturation. But, when Ĉmax is reached without
saturating the server, the assumed value of K is incremented, and the assumption
on Ĉmax is upgraded to K ∗ μ, with K = 2, 3, 4 . . . for subsequent iterations.

When BaaSP upgrades the assumed value of K, the workload increase towards
the new target Ĉmax is split into a number of steps, determined by a BaaSP
parameter in the benchmark policy: the fineness factor f . The injection step is
the number of new virtual users to add to go for the next step. The injection

step equals Ĉmax

f∗λ , where λ is the mean request throughput issued by each virtual
user. Greater values for f will give more accurate results but will result in longer
experience time.

4.3 Dynamic Injector Provisioning

As shown for the BaaSP architecture (Fig. 2), all injector VMs are equipped
with monitoring probes. The InjectorsSaturationController is configured with
one or more saturation policies based on information gathered by the monitoring
probes. As presented above, a saturation policy takes the form of a threshold
policy. For example, the CPU load of the injector VM should be below 100%.
Thus, the InjectorsSaturationController periodically compares the information
it receives with saturation policies. When a policy is violated, a new injector VM
will be added. The injection provisioning protocol is summarized in Fig. 4 and
can be interpreted as follows:

(a) The InjectorsSaturationController asks the Deployer to create a new injector
VM. The InjectorsSaturationController then disables its saturation detection
process (to avoid further new additions before the current one has been
treated).

(b) The Deployer asks the IaaS (cloud) to start a new VM.
(c) The VM is equipped with a deployment agent which informs the Deployer

that it is started.
(d) The Deployer sends its configuration to the new injector.
(e) The injector registers its configuration by contacting the Supervisor.
(f) The Supervisor integrates the new injector configuration in its injector list

and forwards this configuration to its inner component. The Supervisor then
requests that the injectors added start their load injection (by setting the
SUT URI). The Supervisor also informs the InjectionController of the pres-
ence of a new injector. The InjectionController registers the new injector and
dispatches the number of vUsers equally between injectors.

(g) Finally, the InjectionController tells the InjectorsSaturationController to re-
enable its saturation detection process.

This protocol was successfully applied in several use cases, which are presented
in the next section.

4.4 BaaSP Cost Benefit

As we mentioned in Section 1, one of the main contribution of our platform is
the reduction of the cost of the test over the cloud (in terms of VMs uptime)

396 A. Tchana et al.

Fig. 4. Injector VM addition process

compared to a statically provisioned testing. The cost of running BaaSP in a
commercial cloud (such as Amazon EC2) includes several parameters: the num-
ber of VM, their uptime, their type, outgoing network traffics, the number of
IO operations, etc. Therefor, modeling the cost of the test should consider dif-
ferent circumstances, including the location of the injection system towards the
SUT. We limit our evaluation to one circumstance: the SUT and BaaSP are on
the same cloud. For comparison, we also consider that the static load injection
tool runs in the same cloud as the BaaSP and they use the same type of VM.
With statically provisioned injectors, the number of injector VMs is constant
throughout the test. For our comparison, we assume that this number is the
total number of VM instantiated by the BaaSP (i.e. the tester choose exactly
the right maximum number of VM, which is extremely unusual). The cost of the
test in this case (noted Cost0) can be calculated by the following formula:

Cost0 = nbInjVM ∗ TestUpT ime ∗ Costtu (Equation 1),
where nbInjVM is the total number of injector VMs, TestUpT ime is the dura-
tion of the test, and Costtu is the cost of running a VM in the cloud for a given
unit of time.

With scalable injector provisioning, the execution time of the i-th injector

VM is about TestUpTime∗(nbInjV M−i+1)
nbInjV M . Thus, the cost of a test in this case is

CostBaaSP = [
∑nbInj

i=1
TestUpTime∗(nbInjV M−i+1)

nbInjV M] ∗ Costtu, which corresponds

to CostBaaSP = [TestUpTime∗(nbInjV M+1)
2] ∗ Costtu (Equation 2).

Regarding (Equation 1) and (Equation 2), the cost of the test is halved
when using our platform. Notice that the evaluation of Cost0 is the most
optimistic one since we don not consider the possible repetitions of the test to
determine the appropriate workload. Also we assume that the tester in that case
does not overestimate the number of VMs required for the test.

Self-scalable Benchmarking as a Service 397

5 BaaSP Use Cases: Benchmarking a JEE Application

We tested how well our solution could determine the bottleneck tiers of a JEE
application, and tune it to improve performance.

5.1 Experimental Context

SystemUnder Test. We tested RUBiS [1], a JEE benchmark which implements
an auctionweb sitemodeled on eBay. It defines interactions such as registering new
users, browsing, buying and selling items. This application is deployed on a load-
balanced architecture composed of virtual machines providing the following mid-
dleware: Apache Tomcat (7.0) as servlet container, and a MySQL server (5.1.36)
to host auction items (about 48 000 items). We used a HAProxy load balancer in
front of Tomcat servers when several Tomcat servers were tested. The MySQL-
Proxy load balancer was also used. To remain within the allowable page length
for this article, this paper oly presents experimental results for browsing requests.
Fig. 5 summarizes the architecture of these applications.

Fig. 5. Architecture of a JEE application

Cloud Environment. Our experiments were carried out using the Grid’5000
[10] platform, which is composed of clusters in different areas of France. We
used two Grid’5000’s clusters (Chinqchint and Chicon) to deploy the SUT and
the injection platform separately. The two clusters run OpenStack [11] and Xen
hypervisors (version 3.2) to set up a virtualized cloud providing VMs with con-
figurations similar to the Amazon EC2 [12] Small one. All VMs run the same
operating system as the nodes which host them: Linux Ubuntu 10.0.4 distribu-
tion with a 2.6.30 kernel, over a gigabit connection. Fig. 6 summarizes the cloud
environment configuration.

398 A. Tchana et al.

Fig. 6. Configuration of our experimental cloud platform (Grid’5000)

Experimental Objectives. In these experiments, we position ourselves as an
application provider who wants to benchmark an application to determine the
bottleneck tiers. For these experiments, we considered the following metrics:

– The CPU and memory loads of VM servers;
– The response time for requests and their throughput;
– The number of vUsers.

We focus on the maximal throughput provided by the SUT which maintain a per-
centage of requests under a given response time threshold. The SUT is considered
to be saturated when the response time for more than 10% of requests exceeds this
threshold (set to 5 seconds). This is in line with the conclusion of [13],where a re-
sponse time longer than 5 seconds was described as likely to make 10% of potential
customers navigate away in a e-commerce application. Based on these parameters,
we defined the notions of goodThroughput (respectively badThroughput), which
represents the throughput of requests below the threshold (respectively above the
threshold). The throughput metric determines the capacity of the RUBiS appli-
cation while ensuring an SLO response time. In addition to throughput, we con-
sidered the number of vUsers causing SUT saturation. The response time metric
in these experiments was computed with a +-30ms margin error; for throughput,
the margin of error was +-10req/s. The last metric we assessed was the cost of the
experiment. Our solution, based on dynamic injector provisioning, was compared
to a static injectors provisioning solution.

Configuration. The servers were configured with default values, with one ex-
ception. The JVM of the Tomcat server was configured to avoid invocation of
the garbage collector during experiments. The RUBiS servlets handling injected
requests manage a JDBC connexion pool. The size of this pool is equal to the
sum of max connections configured for the MySQL servers.

Self-scalable Benchmarking as a Service 399

The Deployer system is deployed on a VM on the Chicon cluster, while other
BaaSP components (SutSaturationController, InjectorsSaturationController, In-
jectionController, and CLIF) are all deployed on a single Small VM. Each CLIF
injector is equipped with a CPU probe and deploys automatically (when re-
quested) on a separate Small VM. The InjectorsSaturationController is config-
ured to detect injector saturation when CPU load reaches 100% (using the mean
from 50 statistical values). The InjectionController uses a ramp up and stabi-
lization time (about 35 seconds) when adding vUsers.

5.2 Detecting Bottleneck Tiers.

For this experiment, all RUBiS servers were deployed on Small VMs.

MySQL. The first bottleneck tier was the one limiting application performance
(maximum throughput in our case). To identify this tier, we tested a RUBiS con-
figuration comprising a Tomcat server linked to a MySQL server. The results
of this experiment, performed using BaaSP, using up to 3 injector VMs and
with about 250 vUsers are shown in Fig. 7. It is clear that the MySQL VM
CPU reaches 100% at 380s (Fig. 7(a)), while the Tomcat VM CPU load is neg-
ligible (close to 1%). In terms of memory load, neither VM becomes saturated
(Fig. 7(b)). The maximum throughput for the application (about 180 req/s)
is shown to be achieved when the CPU load of MySQL VM reaches 100%.
In fact, the throughput increases until 380s, and remains constant for the re-
mainder of the experiment, whereas the number of vUsers continues to increase
(Fig. 7(c)). For the response time (Fig. 7(d)), there is no badThroughput un-
til the MySQL VM CPU reaches 100% (time 380s, curve ”Good SLA”). After
this time, some requests take more than 10s to execute (curve ”Bad SLA”).
This causes the SUTSaturationController to terminate the experiment. In con-
clusion, the bottleneck tier is MySQL and its bottleneck resource is
the CPU.

To check that the BaaSP effectively detects the bottleneck tier of the SUT,
we performed the same experiment without BaaSP. To do that, we use a former
version of the CLIF tool which allows the tester to design the workload he wants
to submit (a function of the number of vUsers over the time). Based on the
results of the first experiment with BaaSP, we design a workload which follows
the shape of the one generated by the BaaSPs InjectionController component.
Notice that in a normal situation, the tester should test several workload to
determine the appropriate shape. In order to show that the saturation point de-
termined by BaaSP is correct (about 180 req/s), we run the test until the SUT
trashes and observe this point is met or exceed. To prevent a lack of injector
VMs, we statically provision up to 50 VMs. Fig. 8 shows the last results of this
experiment after several attempts. Fig. 8 (a) shows that the application trashes
with more than 25000 vUsers. The maximum throughput (the saturation point)
is the same as in the previous experiment (180 req/s) with BaaSP. About 50%
of requests took more than 20000 ms to treat (Fig 8 (b)) with more than about
4500 vUsers.

400 A. Tchana et al.

Fig. 7. Bottleneck tier detection: the MySQL server is CPU-bound. (a) Server CPU
load, (b) Server memory load, (c) Application throughput, and (d) application response
time (below and above the threshold)

Tomcat. MySQL is the first bottleneck tier; in this step, we determined the
saturation point for the Tomcat server (i.e., how many replicated MySQL servers
are needed to make Tomcat into the bottleneck tier). To do this, the experiment
was repeated varying the number of MySQL servers. Experiments were stopped
when the SUT’s capacity (maximum throughput) in the current experiment
(running n MySQL servers) was the same as in the previous experiment (running
n-1 MySQL servers); n-1 MySQL servers are therefore required to saturate the
Tomcat tier. This was performed for one (Fig. 9(a)) and two (Fig. 9(b)) Tomcat
instances.

With one Tomcat instance (Fig. 9(a)) 18 instances of MySQL fully saturate
the Tomcat tier. Up to 14 injector VMs were dynamically provisioned as nec-
essary to complete this experiment. Plotting the CPU and memory loads for
different servers in these experiments reveals Tomcat as the first bottleneck tier,
with a CPU load of 100% (Fig. 10).

With two Tomcat instances (Fig. 9(b)) the Tomcat tier became saturated
with 30 MySQL instances (with 25 injector VMs required to perform the test).
Note that even when the number of Tomcat instances is doubled, the number
of MySQL instances needed to saturate the Tomcat tier does not increase pro-
portionally. Indeed, the application’s performance is not doubled either. This is
also the case when MySQL instances are doubled.

Self-scalable Benchmarking as a Service 401

Fig. 8. Experiments without BaaSP: the application trashes with over 25000 vUsers,
we observe the same saturation point as with BaaSP

(a)

(b)

Fig. 9. How many instances of MySQL makes Tomcat the bottleneck tier with one (a)
and two (b) Tomcat instances?

402 A. Tchana et al.

Fig. 10. CPU and Memory loads for Tomcat, MySQL-Proxy and a MySQL server
when assessing 19 MySQL instances

6 Related Work

Very few studies have been published on adaptive benchmarking tools. However,
we have discovered some work loosely based on this topic. Unibench [15] is an
automated benchmarking tool which can remotely deploy both the SUT and the
benchmarking components in a cluster similar to that presented here. Almeida
and Vierra present the research challenges surrounding the implementation of
benchmarking tools for self-adaptative systems [16]. Except for the definition
of metrics and some principles defining the workload, the self-adaptation of the
benchmarking tool itself is not covered. CloudGauge [17] is an open source frame-
work similar to ours. It uses the cloud environment as the benchmarking context.
Unlike BaaSP, which assesses an SUT running in the cloud, CloudGauge’s SUT is
the cloud and its capacity to consolidate VMs. CloudGauge dynamically injects
workloads into the cloud VM and adds/removes/migrates VMs according to fluc-
tuations in the workload. Like our InjectionController component, CloudGauge
automatically adjusts the workload during benchmarking. Since the SUT is the
cloud, injectors are deployed inside VMs. Thus, there is no separation between
injector nodes and SUT nodes. This means that, unlike with BaaSP, there is
no need to dynamically create injector nodes. Other tools such as VSCBench-
mark [18] and VMark [19] are comparable to CloudGauge. They allow a dynamic
workload to be defined to consolidate VM benchmarking in a cloud environment.

To our knowledge, BaaSP is the only open source benchmarking framework
to offer automated benchmarking in a cloud-based platform. Expertus [20] au-
tomates the benchmarking process, but does not implement dynamic injector
provisioning, or automated load generation features. One of the advantages of
Expertus is that it generates code to automate the execution of a set of tests.
BlazeMeter [21] is an evolution of JMeter [22], it allows dynamic injector allo-
cation and de-allocation in the cloud to reduce the cost of tests. As this tool
is proprietary, no technical or scientific description is available, making com-
parisons difficult. NeoLoad [23] is similar to BlazeMeter, it allows deployment of

Self-scalable Benchmarking as a Service 403

injectors in a cloud environment to benchmark an application. New injectors can
be integrated throughout the benchmarking process. However, this integration
must be initiated by the administrator through planning. Unlike BaaSP, Ne-
oLoad does not include an automated injector saturation detection component.

7 Conclusion

This paper explores Cloud Computing features to facilitate application bench-
marking and to test scalability. Load testing solutions can be provided on-
demand in the cloud and can benefit from self-scalability.

We describe a Benchmark-as-a-Service platform that provides a number of
benefits in terms of self-traffic generation, reduced cost and resource savings.
Traffic is generated automatically without tester intervention, as with non-cloud-
based BaaSP. The traffic-generating algorithm uses statistical formulas based on
the computed response time and throughput of the SUT. The self-scalability of
the platform facilitates benchmarking and reduces reduces the cost for lengthy
campaigns. In fact, it requires no static provisioning, which can become pro-
hibitive in terms of human and hardware resources. Experiments on the RUBiS
benchmark show how BaaSP determines the bottleneck tiers of a JEE applica-
tion. The same experiments done by hand without BaaSP show the same results,
but with more hardware resources used after several attempts.

We next plan to add auto-scalability to the RUBiS benchmark and to enhance
our Benchmark-as-a-service platform to report the resource provisioning of the
self-scalable RUBiS itself.

Acknowledgment. This work is supported by the French Fonds National pour
la Societe Numerique (FSN) and Poles Minalogic, Systematic and SCS, through
the FSN Open Cloudware project.

References

1. Amza, C., Cecchet, E., Chanda, A., Cox, A.L., Elnikety, S., Gil, R., Marguerite,
J., Rajamani, K., Zwaenepoel, W.: Specification and implementation of dynamic
web site benchmarks. In: IEEE Annual Workshop on Workload Characterization,
Austin, TX, USA, pp. 3–13 (2002)

2. Dillenseger, B.: CLIF, a framework based on fractal for flexible, distributed load
testing. In: Annals of Telecommunications, vol. 64(1-2), pp. 101–120. Springer,
Paris (2009)

3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An Open Com-
ponent Model and Its Support in Java. In: Crnković, I., Stafford, J.A., Schmidt,
H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Hei-
delberg (2004)

4. Harbaoui, A., Salmi, N., Dillenseger, B., Vincent, J.: Introducing Queuing Network-
Based Performance Awareness in Autonomic Systems. In: Proceedings of the In-
ternational Conference on Autonomic and Autonomous Systems, Cancun, Mexico,
pp. 7–12 (2010)

404 A. Tchana et al.

5. Kleinrock, L.: Queueing Systems. Wiley-Interscience, New York (1975) ISBN
0471491101

6. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton (1994) ISBN 0691036993

7. Jain, R.K.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and modelling. John Wiley and
Sons, Inc., Canada (1991) ISBN 0471503363

8. Oracle, Java Message Service, (October 2012),
http://docs.oracle.com/cd/E19957-01/816-5904-10/816-5904-10.pdf

9. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

10. Grid’5000: a scientific instrument designed to support experiment-driven research
(October 2012),
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

11. Openstack web site (October 2012), http://openstack.org/
12. Amazon Web Services, Amazon EC2 auto-scaling functions (October 2012),

http://aws.amazon.com/fr/autoscaling/
13. Simic, B.: The performance of web applications: Customers are won or lost in one

second. A. R. Library (2008)
14. Wang, Q., Malkowski, S., Jayasinghe, D., Xiong, P., Pu, C., Kanemasa, Y., Kawaba,

M., Harada, L.: The impact of soft resource allocation on n-tier application scala-
bility. In: Proceedings of the 2011 IEEE International Parallel & Distributed Pro-
cessing Symposium, Washington, DC, USA, pp. 1034–1045 (2011)

15. Rolls, D., Joslin, C., Scholz, S.-B.: Unibench: a tool for automated and collaborative
benchmarking. In: Proceedings of the IEEE International Conference on Program
Comprehension, Braga, Portugal, pp. 50–51 (2010)

16. Almeida, R., Vieira, M.: Benchmarking the resilience of self-adaptive software sys-
tems: perspectives and challenges. In: Proceedings of the International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, Waikiki, Hon-
olulu, HI, USA, pp. 190–195 (2011)

17. El-Refaey, M.A., Rizkaa, M.A.: CloudGauge: a dynamic cloud and virtualization
benchmarking suite. In: Proceedings of the IEEE International Workshops on En-
abling Technologies: Infrastructures for Collaborative Enterprises, Larissa, Greece,
pp. 66–75 (2010)

18. Jin, H., Cao, W., Yuan, P., Xie, X.: VSCBenchmark: benchmark for dynamic server
performance of virtualization technology. In: Proceedings of the International Fo-
rum on Next-Generation Multicore/Manycore Technologies, Cairo, Egypt, pp. 1–8
(2008)

19. Makhija, V., Herndon, B., Smith, P., Roderick, L., Zamost, E., Anderson, J.: VM-
mark: a scalable benchmark for virtualized systems, Technical Report VMware-
TR-2006-002, Palo Alto, CA, USA (September 2006)

20. Jayasinghe, D., Swint, G.S., Malkowski, S., Li, J., Park, J., Pu, C.: Expertus: A
Generator Approach to Automate Performance Testing in IaaS Clouds. In: Pro-
ceedings of the IEEE International Conference on Cloud Computing, Honolulu,
HI, USA, pp. 115–122 (June 2012)

21. BlazeMeter, Dependability benchmarking project (October 2012),
http://blazemeter.com/

22. The Apache Software Foundation, Apache JMeter (October 2012),
http://jmeter.apache.org/

23. Neotys, NeoLoad: load test all web and mobile applications (October 2012),
http://www.neotys.fr/

http://docs.oracle.com/cd/E19957-01/816-5904-10/816-5904-10.pdf
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
http://openstack.org/
http://aws.amazon.com/fr/autoscaling/
http://blazemeter.com/
http://jmeter.apache.org/
http://www.neotys.fr/

Ditto – Deterministic Execution

Replayability-as-a-Service for Java VM on
Multiprocessors

João M. Silva1, José Simão2,3, and Lúıs Veiga1,2

1 Instituto Superior Técnico - ULisboa
2 INESC-ID Lisboa

3 Instituto Superior de Engenharia de Lisboa (ISEL)
joao.m.silva@ist.utl.pt, jsimao@cc.isel.ipl.pt, luis.veiga@inesc-id.pt

Abstract. Alongside the rise of multi-processor machines, concurrent
programming models have grown to near ubiquity. Programs built on
these models are prone to bugs with rare pre-conditions, arising from
unanticipated interactions between parallel tasks. Replayers can be ef-
ficient on uni-processor machines, but struggle with unreasonable over-
head on multi-processors, both concerning slowdown of the execution
time and size of the replay log. We present Ditto, a deterministic replayer
for concurrent JVM applications executed on multi-processor machines,
using both state-of-the-art and novel techniques. The main contribu-
tion of Ditto is a novel pair of recording and replaying algorithms that:
(a) serialize memory accesses at the instance field level, (b) employ par-
tial transitive reduction and program-order pruning on-the-fly, (c) take
advantage of TLO static analysis, escape analysis and JVM compiler op-
timizations to identify thread-local accesses, and (d) take advantage of a
lightweight checkpoint mechanism to avoid large logs in long running ap-
plications with fine granularity interactions, and for faster replay to any
point in execution. The results show that Ditto out-performs previous
deterministic replayers targeted at Java programs.

Keywords: Deterministic Replay, Concurrency, Debugging, JVM.

1 Introduction

The transition to the new concurrent paradigm of programming has not been
the easiest, as developers struggle to visualize all possible interleavings of paral-
lel tasks that interact through shared memory. Concurrent programs are harder
to build than their sequential counterparts, but they are arguably even more
challenging to debug. The difficulty in anticipating all possible interactions be-
tween parallel threads makes these programs especially prone to the appearance
of bugs triggered by rare pre-conditions, capable of evading detection for long
periods. Moreover, the debugging methodologies developed over the years for se-
quential programs fall short when applied to concurrent ones. Cyclic debugging,
arguably the most common methodology, depends on repeated bug reproduction

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 405–424, 2013.
c© IFIP International Federation for Information Processing 2013

406 J.M. Silva, J. Simão, and L. Veiga

to find its cause, requiring the fault to be deterministic given the same input.
The inherent memory non-determinism of concurrent programs breaks this as-
sumption of fault-determinism, rendering cycling debugging inefficient, as most
time and resources are taken up by bug reproduction attempts [1]. Furthermore,
any trace statements, added to the program in an effort to learn more about
the problem, can actually contribute further to the fault’s evasiveness. Hence,
cyclic debugging becomes even less efficient in the best case, and ineffective in
the worst.

Memory non-determinism, inherent to concurrent programs, results from the
occurrence of data races, i.e., unsynchronized accesses to the same shared mem-
ory location in which at least one is a write operation. The outcomes of these
races must be reproduced in order to perform a correct execution replay. In uni-
processors, these outcomes can be derived from the outcomes of a much smaller
subset of races, the synchronization races, used in synchronization primitives to
allow threads to compete for access to shared resources. Efficient deterministic
replayers have been developed taking advantage of this observation [2–5].

Replaying executions on multi-processors is much more challenging, because
the outcomes to synchronization races are no longer enough to derive the out-
comes to all data races. The reason is that while parallelism in uniprocessors
is an abstraction provided by the task scheduler, in multi-processor machines it
has a physical significance. In fact, knowing the task scheduling decisions [6, 7]
does not allow us to resolve races between threads concurrently executing in
different processors. Deterministic replayers have difficulties with unreasonable
overhead when applied in this context, as the instructions that can lead to data
races make up a significant amount of the instructions executed by a typical
application. Currently there are four distinct approaches to deal with this open
research problem, discussed in Section 2. Even using techniques to prune the
events of interest, long running applications can make the log of events grow
to an unmanageable size. To avoid this, a checkpointing mechanism can also
be used to transparently save the state of the program, with the events before
the checkpoint truncated from the log. The last saved state, may be potentially
smaller than the original untruncated log, and can also be used as a starting
point for a future replay allowing for a faster replay solution.

In this paper, we present Ditto, our deterministic replayer for unmodified
user-level applications executed by the JVM on multi-processor machines. It
integrates state-of-the-art and novel techniques to improve upon previous work.
The main contributions that make Ditto unique are: (a) A novel pair of logical
clock-based [8] recording and replaying algorithms. This allows us to leverage
the semantic differences between load and store memory accesses to reduce trace
data and maximize replay-time concurrency. Furthermore, we serialize memory
accesses at the finest possible granularity, distinguishing between instance fields
and array indexes; (b) Reduced trace and log space. We use a constraint pruning
algorithm based on program order and partial transitive reduction to reduce the
amount of trace data on-the-fly and a checkpointing mechanism to employ in long
running applications; (c) A trace file optimization that highly reduces the size of

Deterministic Execution Replay for Java VM on Multiprocessors 407

logical clock-based traces; Though we discuss and implement Ditto in the context
of a JVM runtime, its underlying techniques may be directly applied to other
high-level, object-oriented runtime platforms, such as the Common Language
Runtime (CLR).

We implemented Ditto on top of the open-source JVM implementation Jikes
RVM (Research Virtual Machine). Ditto is evaluated to assess its replay cor-
rectness, bug reproduction capabilities and performance. Experimental results
show that Ditto consistently out-performs previous state-of-the-art determinis-
tic replayers targeted at Java programs in terms of record-time overhead, trace
file size and replay-time overhead. It does so across multiple axes of application
properties, namely number of threads, number of processors, load to store ratio,
number of memory accesses, number of fields per shared object, and number of
shared objects.

The rest of the paper is organized as follows: Section 2 describes some in-
stances of related work; Section 3 explains the base design and algorithms of
Ditto; Section 4 presents fundamental optimizations; Section 5 discusses some
implementation related details; Section 6 presents and analyzes evaluation re-
sults; and Section 7 concludes the paper and offers our thoughts on the directions
of future work.

2 Related Work

Deterministic replayers for multi-processor executions can be divided into four
categories in terms of the approach taken to tackle the problem of excessive
overhead. Some systems replay solely synchronization races, thus guaranteeing
a correct replay up until the occurrence of a data race. RecPlay [3] and JaRec
[4] are two similar systems that use logical clock-based recording algorithms to
trace a partial ordering over all synchronization operations. RecPlay is capable of
detecting data races during replay. Nonetheless, we believe the assumption that
programs are perfectly synchronized severely limits the effectiveness of these
solutions as debugging tools in multi-processor environments.

Researchers have developed specialized hardware-based solutions. FDR [9]
extends the cache coherence protocol to propagate causality information and
generate an ordering over memory accesses. DeLorean [10] forces processors to
execute instructions in chunks that are only committed if they do not conflict
with other chunks in terms of memory accesses. Hence, the order of memory
accesses can be derived from the order of chunk commits. Though efficient, these
techniques have the drawback of requiring special hardware.

A more recent proposal is to use probabilistic replay techniques that explore
the trade-off between recording overhead reduction through partial execution
tracing and relaxation of replay guarantees. PRES partially traces executions
and performs an offline exploration phase to find an execution that conforms
with the partial trace and with user-defined conditions [11]. ODR uses a formula-
solver and a partial execution trace to find executions that generate the same
output as the original [12]. These techniques show a lot of potential as debugging

408 J.M. Silva, J. Simão, and L. Veiga

tools, but are unable to put an upper limit on how long it takes for a successful
replay to be performed, though the problem is minimized by fully recording
replay attempts.

LEAP is a relevant Java deterministic replayer that employs static analysis,
to identify memory accesses performed on actual thread-shared variables, hence
reducing the amount of monitored accesses [13]. Because LEAP recording algo-
rithm associates access vectors to fields, it can not distinguish accesses to the
same field of different objects. In workloads where there are many objects of a
single type but they are not shared among threads, this will diminish the concur-
rency of the recording and replaying mechanisms. ORDER [14] is, like Ditto, an
object centric recorder. From a design point of view, ORDER misses support for
online pruning of events and a checkpoint mechanism for faster replay. Regarding
current implementation, the baseline code base (Apache harmony) is now dep-
recated, while Ditto was developed in a research oriented, yet production-like
quality JVM, that is widely supported by the research community.

Deterministic replay can also be used as an efficient means for a fault-tolerant
system to maintain replicas and recover after experiencing a fault [15, 16].

3 Ditto – System Overview

Ditto must record the outcomes of all data races in order to support repro-
duction of any execution on multi-processor machines. Data races arise from
non-synchronized shared memory accesses in which at least one is a write oper-
ation. Thus, to trace outcomes to data races, one must monitor shared memory
accesses. The JVM’s memory model limits the set of instructions that can ma-
nipulate shared memory to three groups: (i) accesses to static fields, (ii) accesses
to object fields, and (iii) accesses to array fields of any type.

In addition to shared memory accesses, it is mandatory that we trace the
order in which synchronization operations are performed. Though these events
have no effect on shared memory, an incorrect ordering can cause the replayer
to deadlock when shared memory accesses are performed inside critical sections.
They need not, however, be ordered with shared memory accesses. In the JVM,
synchronization is supported by synchronized methods, synchronized blocks and
synchronization methods, such as wait and notify. Since all these mechanisms
use monitors as their underlying synchronization primitive, their acquisitions
are the events that Ditto intercepts. For completeness, we also record values and
orderings of external input to threads, such as random numbers and from other
library functions, while assuming the content of input from files is available.

3.1 Base Record and Replay Algorithms

The recording and replaying algorithms of Ditto rely on logical clocks (or Lam-
port clocks) [8], a mechanism designed to capture chronological and causal re-
lationships, consisting of a monotonically increasing software counter. Logical
clocks are associated with threads, objects and object fields to identify the order

Deterministic Execution Replay for Java VM on Multiprocessors 409

Algorithm 1. Load wrapper

Parameters: f is the field, v is the value loaded
1: method wrapLoad(f ,v)
2: monitorEnter(f)
3: t← getCurrentThread()
4: trace(f.storeClock)
5: f.loadCount← f.loadCount+ 1
6: if f.storeClock > t.clock then
7: t.clock← f.storeClock
8: end if
9: v ← load(f)
10: monitorExit(f)
11: end method

Algorithm 2. Store wrapper

Parameters: f is the field, v is the value stored
1: method wrapStore(f ,v)
2: monitorEnter(f)
3: t← getCurrentThread()
4: trace(f.storeClock, f.loadCount)
5: clock← max(t.clock, f.storeClock) + 1
6: f.storeClock← clock
7: f.loadCount← 0
8: t.clock← clock
9: store(f, v)
10: monitorExit(f)
11: end method

between events of interest. For each such event, the recorder generates an order
constraint that is later used by the replayer to order the event after past events
on which its outcome depends.

Recording: The recorder creates two streams of order constraints per thread –
one orders shared memory accesses, while the other orders monitor acquisitions.
The recording algorithm for shared memory accesses was designed to take ad-
vantage of the semantic differences between load and store memory accesses. To
do so, Ditto requires state to be associated with threads and fields. Threads are
augmented with one logical clock, the thread’s clock, incremented whenever it
performs a store operation. Fields are extended with (a) one logical clock, the
field’s store clock, incremented whenever its value is modified; and (b) a load
counter, incremented when the field’s value is loaded and reset when it is mod-
ified. The manipulation of this state and the load/store operation itself must
be performed atomically. Ditto acquires a monitor associated with the field to
create a critical section and achieve atomicity. It is important that the moni-
tor is not part of the application’s scope, as its usage would interfere with the
application and potentially lead to deadlocks.

When a thread Ti performs a load operation on a field f , it starts by acquiring
f ’s associated monitor. Then, it adds an order constraint to the trace consisting
of f ’s store clock, implying that the current operation is to be ordered after the
store that wrote f ’s current value, but specifying no order in relation to other
loads. Thread and field state are then updated by incrementing f ’s load count,
and the load operation itself performed. Finally, the monitor of f is released. If Ti

instead performs a store operation on f , it still starts by acquiring f ’s monitor,
but follows by tracing an order constraint composed of the field’s store clock and
load count, implying that this store is to be performed after the store that wrote
f ’s current value and all loads that read said value. Thread and field states are
then updated by increasing clocks and resetting f ’s load count. Finally, the store
is performed and the monitor released. Algorithms 1 and 2 list pseudo-code for
these recording processes.

Unlike memory accesses, performed on fields, monitor acquisitions are per-
formed on objects. As such, we associate with each object a logical clock. More-
over, given that synchronization is not serialized with memory accesses, we add

410 J.M. Silva, J. Simão, and L. Veiga

Algorithm 3. Recording monitor acqui-
sition operations

Parameters: o is the object whose monitor
was acquired

1: method afterMonitorEnter(o)
2: t← getCurrentThread()
3: trace(o.syncClock)
4: clk←max(t.syncClock, o.syncClock)+1
5: o.syncClock← clk
6: t.syncClock← clk
7: end method

Algorithm 4. Replaying load memory ac-
cess operations

Parameters: f is the field whose value is being
loaded into v and is protected by a monitor

1: method wrapLoad(f ,v)
2: t← getCurrentThread()
3: clock← nextLoadConstraint(t)
4: while f.storeClock < clock do
5: wait(f)
6: end while
7: v ← load(f)
8: t← getCurrentThread()
9: if f.storeClock > t.clock then
10: t.clock← f.storeClock
11: end if
12: f.loadCount← f.loadCount+ 1
13: notifyAll(f)
14: end method

a second clock to threads. When a thread Ti acquires the monitor of an object
o, it performs Algorithm 3. Note that we do not require a monitor this time,
as the critical section of o’s monitor already protects the update of thread and
object state.

Consistent Thread Identification: Ditto’s traces are composed of individual
streams for each thread. Thus, it is mandatory that we map record-time threads
to their replay-time counterparts. Threads can race to create child threads, mak-
ing typical Java thread identifiers, attributed in a sequential manner, unfit for
our purposes. To achieve the desired effect, Ditto wraps thread creation in a
critical section and attributes a replay identifier to the child thread. The mon-
itor acquisitions involved are replayed using the same algorithms that handle
application-level synchronization, ensuring that replay identifiers remain consis-
tent across executions.

Replaying: As each thread is created, the replayer uses its assigned replay identi-
fier to pull the corresponding stream of order constraints from the trace file. Before
a thread executes each event of interest, the replayer is responsible for using the
order constraints to guarantee that all events on which its outcome depends have
already been performed. The trace does not contain metadata about the events
from which it was generated, leaving the user with the responsibility of providing
a program that generates the same stream of events of interest as it did at record-
time. Ditto nonetheless allows the original program to be modified while maintain-
ing a constant event stream through the use of Java annotations or command-line
arguments, an important feature for its usage as a debugging tool.

Replaying Shared Memory Accesses: Using the order constraints in a trace file,
the replayer delays load operations until the value read at record-time is avail-
able, while store operations are additionally delayed until that value has been
read as many times as it was during recording, using the field’s load count.

Deterministic Execution Replay for Java VM on Multiprocessors 411

This approach allows for maximum replay concurrency, as each memory access
waits solely for those events that it affects and is affected by.

When a thread Ti performs a load operation on a field f , it starts by reading
a load order constraint from its trace, extracting a target store clock from it.
Until f ’s store clock equals this target, the thread waits. Upon being notified and
positively re-evaluating the conditions for advancement, it is free to perform the
actual load operation. After doing so, thread and field states are updated and
waiting threads are notified of the changes. Algorithm 4 lists pseudo-code for this
process. If Ti was performing a store operation, the process would be the same,
but a store order constraint would be loaded instead, from which a target store
clock and a target load count would be extracted. The thread would proceed
with the store once f ’s store clock and load count both equaled the respective
targets. State would be updated according to the rules used in Algorithm 1.
Replaying monitor acquisitions is very similar to replaying load operations, with
two differences: (i) a sync order constraint is read from the trace, from which
a target sync clock is extracted and used as a condition for advancement; and
(ii) thread and object state are updated according to the rules in Algorithm 3.

Notice that during replay there is no longer a need for protecting shared
memory accesses with a monitor, as synchronization between threads is now
performed by Ditto’s wait/notify mechanism. Furthermore, notice that the load
counter enables concurrent loads to be replayed in an arbitrary order, hence in
parallel and faster, rather than being serialized unnecessarily.

3.2 Wait and Notify Mechanism

During execution replay, threads are often forced to wait until the conditions
for advancement related to field or object state hold true. As such, threads
that modify the states are given the responsibility of notifying those waiting for
changes. Having threads wait and notify on the monitor associated with the field
or object they intend to, or have manipulated, as suggested in Algorithms 1-2
and 3, is a simple but sub-optimal approach which notifies threads too often
and causes bottlenecks when they attempt to reacquire the monitor. Ditto uses
a much more refined approach, in which threads are only notified if the state
has reached the conditions for their advancement.

Replay-time states of fields and objects are augmented with a table indexed
by three types of keys: (i) load keys, used by load operations to wait for a specific
store clock; (ii) store keys, used by store operations to wait for a specific com-
bination of store clock and load count; and (iii) synchronization keys, used by
monitor acquisitions to wait for a specific synchronization clock. Let us consider
an example to illustrate how these keys are used. When a thread Ti attempts
to load the value of a field f but finds f ’s store clock lower than its target store
clock (tc), it creates a load key using the latter. Ti then adds a new entry to
f ’s table using the key as both index and value, and waits on the key. When
another thread Tj modifies f ’s store clock to contain the value tc, it uses a load

412 J.M. Silva, J. Simão, and L. Veiga

key (tc) and a store key (tc, 0) to index the table. As a result of using the load
key, it will retrieve the object on which Ti is waiting and invokes notifyAll on
it. Thus, Ti is notified only once its conditions for proceeding are met.

3.3 Lightweight Checkpointing

For long running applications, and especially those with fine-grained thread in-
teractions, the log can grow to a large size. Furthermore, the replay can only be
necessary to be done from a certain point in time because the fault is known to
occur only at the end of execution. Ditto uses a lightweight checkpointing mech-
anism [17] to offer two new replay services: (i) replay to most recent point before
fault; (ii) replay to any instant M in execution. Checkpoint is done recording
each thread stack and reachable objects. In general, the checkpoint size is closely
related to the size of live objects, plus the overhead of booking metadata neces-
sary for recovery. While the size of live objects can remain consistent over time,
the log size will only grow. Regarding scenario (i), replay starts by recovering
from the last checkpoint and continues with the partial truncated log. So, the
total recording space is sizeof(lastCheckpoint) + sizeof(truncatedLog) which
is still bounded to be smaller than 2 ∗ sizeof(checkpointSize), since we trigger
checkpointing when the log reaches a size close to the total memory used by
objects (90%). In scenario (ii), replay starts with the most recent checkpoint
before instant M (chosen by the user), and the partial log collected after that
instant. In this case, the total recording space is N ∗ sizeof(checkpoint) +N ∗
sizeof(truncatedLog), where N is the number of times a checkpoint is done. In
this case there is a trade-off between overhead in execution time and granularity
in available replay start times [17]. Even so, the total recording space is bounded
to be smaller than 2 ∗N ∗ sizeof(checkpoint).

3.4 Input Related Non-Deterministic Events

Besides access to shared variables, another source of non-determinism is the in-
put some programs use to progress their calculus. This input can come from
information asked to the program’s user or from calling non-deterministic ser-
vices, such as the current time or the random number generator. All such services
are either available through the base class library or calls using the Java Native
Interface. Each time a call is made to a method that is a source of input non-
determinism (e.g. Random.nextInt, System.nanoTime), the result is saved in
association with the current thread. If the load/store is made over a shared
field, the replay mechanism will already ensure the same thread interleaving as
occurred in the recording phase. Regarding non shared fields, the replay of de-
terministic information can occur in a different order than the one of the original
execution. This is not a problem since the values are affiliated with a thread and
are delivered using FIFO order during each thread execution.

Deterministic Execution Replay for Java VM on Multiprocessors 413

4 Additional Optimizations

4.1 Recording Granularity

Ditto records at the finest possible granularity, distinguishing between differ-
ent fields of individual instances when serializing memory accesses. Previous
deterministic replayers for Java programs had taken sub-optimal approaches:
(i) DejaVu creates a global-order [2]; (ii) LEAP generates a partial-order that dis-
tinguishes between different fields, but not distinct instances [13]; and (iii) JaRec
does the exact opposite of LEAP [4]. The finer recording granularity maximizes
replay-time concurrency and reduces recording overhead due to lower contention
when modifying recorder state. The downside is higher memory consumption as-
sociated with field states. If this becomes a problem, Ditto is capable of operating
with an object-level granularity.

Array indexes are treated like object fields, but with a slight twist. To keep
index state under control for large arrays, a user-defined cap is placed on how
many index states Ditto can keep for each array. Hence, multiple array indexes
may map to a single index state and be treated as one program entity in the
eyes of the recorder and replayer. This is not an optimal solution, but it goes
towards a compromise with the memory requirements of Ditto.

4.2 Pruning Redundant Order Constraints

The base recording algorithm traces an order constraint per event of interest.
Though correct, it can generate unreasonably high amounts of trace data, mostly
due to the fact that shared memory accesses can comprise a very significant
fraction of the instructions executed by a typical application. Fortunately, many
order constraints are redundant, i.e., the order they enforce is already indirectly
enforced by other constraints or program order. Such constraints can be safely
pruned from the trace without compromising correctness. Ditto uses a pruning
algorithm that does so on-the-fly.

Pruning order constraints leaves gaps in the trace which our base replay al-
gorithm is not equipped to deal with. To handle these gaps, we introduce the
concept of free runs, which represent a sequence of one or more events of interest
that can be performed freely. When performing a free run of size n, the replayer
essentially allows n events to occur without concerning itself with the progress
of other threads. Free runs are placed in the trace where the events they replace
would have been.

Program Order Pruning: Consider the recorded execution in Figure 1(a), in
which arrows represent order constraints traced by the base recording algorithm.
Notice how all dashed constraints enforce orderings between events which are
implied by program order. To prune them, Ditto needs additional state to be
associated with fields: the identifier of the last thread to store a value in the field,
and a flag signaling whether that value has been loaded by other threads. Poten-
tial load order constraints are not traced if the thread loading the value is the

414 J.M. Silva, J. Simão, and L. Veiga

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1 2 3

4
5

6 7 8 9

11
10

(a) Order constraints traced by base
recording algorithm.

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1 2 3

4
5

6 7 8 9

11
10

(b) Pruning constraints implied by pro-
gram order.

Fig. 1. Example of Ditto’s constraint pruning algorithm

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1 2 3

4
5

6 7 8 9

11
10

Fig. 2. Pruning constraints implied by pre-
vious constraints

TA
S0(x)

TB

TC

S0(y)

L0(y) S1(y)

L2(y) L0(z) L0(x)

1

3
2

L1(x)

54

S0(z)

Fig. 3. Example of partial transitive re-
duction

one that wrote it. Thus, constraints 1, 2, 4, 10 and 11 in Figure 1(a) are pruned,
but not constraint 6. Similarly, a potential store order constraint is not traced
if it is performed by the thread that wrote the current value and if that value
has not been loaded by other threads. Hence, constraints 3 and 5 are pruned,
while 9 is not, as presented in Figure 1(b). Synchronization order constraints
are handled in the same way as load operations, but state is associated with an
object instead of a field.

Partial Transitive Reduction: Netzer introduced an algorithm to find the optimal
set of constraints to reproduce an execution [18], which was later improved upon
in RTR [19] by introducing artificial constraints that enabled the removal of
multiple real ones. Ditto does not directly employ any of these algorithms for
reasons related to performance degradation and the need for keeping flexibility-
limiting state, such as Netzer’s usage of vector clocks, requiring the number
of threads to be known a priori. Instead, Ditto uses a novel partial transitive
reduction algorithm designed to find a balance between trace file size reduction
and additional overhead.

Transitive reduction prunes order constraints that enforce orderings implicitly
enforced by other constraints. In Figure 1, for example, TB performs three con-
secutive load operations which read the same value of x, written by TA. Given
that the loads are ordered by program order, enforcing the order S2(x)→ L3(x)
is enough to guarantee that the following two loads are also subsequent to S2(x).
As such, constraints 7 and 8 are redundant and can be removed, resulting in the
final trace file of Figure 2 with only 2 constrains.

Deterministic Execution Replay for Java VM on Multiprocessors 415

To perform transitive reduction, we add a table to the state of threads that
tracks the most recent inter-thread interaction with each other thread. Whenever
a thread Ti accesses a field f last written to by thread Tj (with Ti �= Tj), f ’s store
clock is inserted in the interaction table of Ti at index Tj . This allows Ditto to
declare that order constraints whose source is Tj with a clock lower than the one
in the interaction table are redundant, implied by a previous constraint. Figure
3 shows a sample recording that stresses the partial nature of Ditto’s transitive
reduction, since the set of traced constraints is sub-optimal. Constraint 4 is
redundant, as the combination of constraints 1 and 2 would indirectly enforce
the order S0(x) → L0(x). For Ditto to achieve this conclusion, however, the
interaction tables of TB and TC would have to be merged when tracing constraint
2. The merge operation proved to be too detrimental to efficiency, especially given
that the benefit is limited to one order constraint, as the subsequent constraint
5, similar to 4, is pruned. In summary, Ditto is aware of thread interactions that
span a maximum of one traced order constraint.

4.3 Thread Local Objects and Array Escape Analysis

Thread Local Objects (TLO) static analysis provides locality information on
class fields, that is, it determines fields which are not involved in inter-thread
interactions, aiming to save execution time and log space. The output of this
kind of analysis is a classification of either thread-local or thread-shared for
each class field. We developed a stand-alone application that uses the TLO
implementation in the Soot bytecode optimization framework1 to generate a
report file that lists all thread-shared fields of the analyzed application. This
file can be fed as optional input to Ditto, which uses the information to avoid
intercepting accesses to thread-local fields.

TLO analysis provides very useful information about the locality of class
fields, but no information is offered on array fields. Without further measures, we
would be required to conservatively monitor all array fields accesses. Ditto uses,
at runtime, information collected from the just-in-time compiler to do escape
analysis on array references and avoid monitoring accesses to elements of arrays
declared in a method whose reference never escapes that same method. This
analysis, although simple, can still avoid some useless overhead at little cost.
Nonetheless, there is a lot of unexplored potential for this kind of analysis on
array references to reduce recording overhead which we see as future work.

4.4 Trace File

Ditto’s traces are composed of one order constraint stream per record-time
thread. Organizing the trace by thread is advantageous for various reasons. The
first is that it is easy to intercept the creation and termination of threads. Inter-
cepting these events is crucial for the management of trace memory buffers, as

1 http://www.sable.mcgill.ca/soot/

416 J.M. Silva, J. Simão, and L. Veiga

they must be created when a thread starts and dumped to disk once it termi-
nates. Moreover, it allows us to place an upper limit on how much memory can
be spent on memory buffers, as the number of simultaneously running threads
is limited and usually low. Other trace organizations, such as the field-oriented
one of LEAP [13], do not benefit from this – the lifetime of a field is the lifetime
of the application itself. A stream organized by instance would be even more
problematic, as intercepting object creation and collection is not an easy task.

The trace file is organized as a table that maps thread replay identifiers to the
corresponding order constraint streams. The table and the streams themselves
are organized in a linked list of chunks, as a direct consequence of the need to
dump memory buffers to disk as they become full. Though sequential I/O is
generally more efficient than random I/O, using multiple sequential files (one
per thread) turned out to be less efficient than updating pointers in random file
locations as new chunks were added to it. Hence, Ditto creates a single-file trace.

Given that logical clocks are monotonically increasing counters, they are ex-
pected to grow to very large values during long running executions. For the trace
file, this would mean reserving upwards of 8 bytes to store each clock value. Ditto
uses a simple but effective optimization that stores clock values as increments
in relation to the last one in the stream, instead of as absolute values. Consider-
ing that clocks always move forward and mostly in small increments, the great
majority of clock values can be stored in 1 or 2 bytes.

5 Implementation Details

Ditto is implemented in Jikes RVM, a high performance implementation of the
JVM written almost entirely in a slightly enhanced Java that provides “magic”
methods for low-level operations, such as pointer arithmetic [20]. The RVM is
very modular, as it was designed to be a research platform where novel VM
ideas could be easily implemented and evaluated. This was the main reason we
developed Ditto on it.

The implementation efforts were done in two main sub-systems: threading
and compiler. Regarding the threading system, each Java thread is mapped to a
single native thread. This is relevant to Ditto, as it means scheduling decisions
are offloaded to the OS and cannot be traced or controlled from inside the RVM.
As a consequence, Java monitors are also implemented with resort to OS locking
primitives. Regarding the compiler, Jikes RVM does not interpret bytecode; all
methods are compiled to machine code on-demand. The VM uses an adaptive
compilation system in which methods are first compiled by a fast baseline com-
piler which generates inefficient code. A profiling mechanism detects hot methods
at runtime, which are then recompiled by a slower but much better optimizing
compiler. This compiler manipulates three intermediate representations (IR) on
which different optimizations are performed. The high-level IR (HIR) is very
similar to the bytecode instruction set, but subsequent IRs are closer to actual
processor ISAs.

Deterministic Execution Replay for Java VM on Multiprocessors 417

Intercepting Events of Interest: Implementing Ditto in Jikes RVM required in-
tercepting the events of interest through hooks in the thread management sub-
system and the addition of instrumentation phases to the compilers. Moreover,
mechanisms were added to manage thread, object and field states. A drawback
of Jikes being written in Java is that it uses the same mechanisms for execut-
ing as the application. As such, when intercepting events, we must ignore those
triggered by the VM. Depending on the event, the VM/application distinction is
done using either static tests that rely on package names, or runtime tests that
inspect the Java stack.

Ditto intercepts thread creation, both before and after the launch of the na-
tive thread, and thread termination, mainly for the purpose of initializing and
dumping trace memory buffers. The thread creation hooks are also used to enter
and exit the critical section protecting replay identifier assignment. If the event
occurs in the context of a synchronized method or block, Ditto simply replaces
the usual method used to implement the monitor enter operation with a wrap-
per method during compilation. Monitor acquisitions performed in the context
of synchronization methods like wait or notify are intercepted by a hook in the
VM’s internal implementation of said methods. To avoid costly runtime tests,
call sites are instrumented to activate a thread-local flag which lets Ditto know
that the next executed synchronization method was invoked by the application.
Events triggered through the JNI interface are also intercepted by a hook inside
the VM, but they require a runtime test to ascertain the source, as we do not
compile native code.

During method compilation, accesses to shared memory are wrapped in two
calls to methods that trace the operation. Instrumentation is performed after
HIR optimizations have been executed on the method, allowing Ditto to take
advantage of those that remove object, array or static field accesses. Such opti-
mizations include common sub-expression elimination and object/array replace-
ment with scalar variables using escape analysis, among others.

Threading and State: Thread state is easily kept in the VM’s own thread objects.
Object and field states are kept in a state instance whose reference is stored in the
object’s header. After modifying the GC to scan these references, this approach
allows us to create states for objects on-demand and keep them only while the
corresponding object stays alive. Ditto requires the trace file to be finalized in
order to replay the corresponding execution. When a deadlock occurs, the JVM
does not shutdown and the trace memory buffers are never dumped, leaving the
trace in an unfinished state. The problem is solved by adding a signal handler to
Jikes which intercepts SIGUSR1 signals and instructs the replay system to finish
the trace. The user is responsible for delivering the signal to Jikes before killing
its process if a deadlock is thought to have been reached.

Trace File: In Section 4 we described the way thread order constraint streams
are located in the trace file using a combination of table and linked list struc-
tures. Structuring the streams themselves is another issue, as Ditto’s recording
algorithm generates three types of values that must be somehow encoded in

418 J.M. Silva, J. Simão, and L. Veiga

the stream: (i) clock increment values; (ii) free run values; and (iii) load count
values. Furthermore, the clock value optimization, also presented in Section 4,
makes value sizes flexible, requiring the introduction of a way to encode this
information as well.

The three kinds of values are encoded using the two most significant bits of
each value as identification metadata. However, adding two more bits for size
metadata would severely limit the range of values that each entry could represent.
Moreover, it is usual for consecutive values to have equal size, leading to a lot
of redundant information if the size is declared for each individual entry. Taking
these observations in mind, we introduce meta-values to the stream which encode
the size and number of the values that follow them in the stream. The meta-
values take up two bytes, but their number is insignificant in comparison to the
total amount of values stored in the trace. Ditto uses a VM’s internal thread
whose only purpose is to write trace buffers to disk. By giving each thread two
buffers, we allow one buffer to be dumped to disk by the writer thread while the
other is concurrently filled. In most cases, writing to disk is faster than filling a
second buffer, allowing threads to waste no time waiting for I/O operations.

6 Evaluation

We evaluate Ditto by assessing its ability to correctly replay recorded executions
and by measuring its performance in terms of recording overhead, replaying over-
head and trace file size. Performance measurements are compared with those of
previous approaches, which we implemented in Jikes RVM using the same fa-
cilities that support Ditto itself. The implemented replayers are: (a) DejaVu
[2], a global-order replayer; (b) JaRec [4], a partial-order, logical clock-based re-
player; and (c) LEAP [13], a recent partial-order, access vector-based replayer.
We followed their respective publications as closely as possible, introducing mod-
ifications when necessary. For instance, DejaVu and JaRec, originally designed
to record synchronization races, were extended to deal with all data races, while
LEAP’s algorithm was extended to compress consecutive accesses to a field by
the same thread, absent in available codebase. Moreover, our checkpoint for
instant replay is deactivated for fairness.

We start by using a highly non-deterministic microbenchmark and a number
of applications from the IBM Concurrency Testing Repository2 to assess replay
correctness. This is followed by a thorough comparison between Ditto’s runtime
performance characteristics and those of the other implemented replayers. The
results are gathered by performing a microbenchmark and recording executions
of selected applications (because of space constraints) from the Java Grande and
DaCapo benchmark suites. All experiments were conducted on a 8-core 3.40Ghz
Intel i7 machine with 12GB of primary memory and running 64-bit Linux 3.2.0.
Baseline version of the Jikes RVM is 3.1.2. Ditto’s source will be available in the
Jikes RVM research archive.

2 https://qp.research.ibm.com/concurrency testing

Deterministic Execution Replay for Java VM on Multiprocessors 419

Replay Correctness: In the context of Ditto, an execution replay is said to be
correct if the shared program state goes through the same transitions as it did
during recording, even if thread local state diverges. Other types of determin-
istic replayers may offer more relaxed fidelity guarantees, as is the case of the
probabilistic replayers PRES [11] and ODR [12].

We design a microbenchmark to produce a highly erratic and non-deterministic
output, so that we can confirm the correctness of replay with a high degree of
assurance. This is accomplished by having threads randomly increment multiple
shared counters without any kind of synchronization, and using the final counter
values as the output. After a few iterations, the final counter values are com-
pletely unpredictable due to the non-atomic nature of the increments. Naively
re-executing the benchmark in hopes of getting the same output will prove un-
successful virtually every time. On the contrary, Ditto is able to reproduce the
final counter values every single time, even when stressing the system by using a
high number of threads and iterations. The microbenchmark will also be avail-
able in the Jikes RVM research archive. Regarding the IBM concurrency testing
repository, it contains a number of small applications that exhibit various con-
current bug patterns while performing some practical task. Ditto is capable of
correctly reproducing each and every one of these bugs.

6.1 Performance Results

After confirming Ditto’s capability to correctly replay many kinds of concurrent
bug patterns, we set off to evaluate its performance by measuring recording
overhead, trace file size and replaying overhead. To put experimental results
in perspective, we use the same performance indicators to evaluate the three
implemented state-of-the-art deterministic replay techniques for Java programs:
DejaVu (Global), JaRec, LEAP.

Microbenchmarking: The same microbenchmark used to assess replay correct-
ness is now used to compare Ditto’s performance characteristics with those of the
other replayers regarding recording time, trace size and replaying time, across
multiple target application properties: (i) number of threads, (ii) number of
shared memory accesses per thread, (iii) load to store ratio, (iv) number of fields
per shared object, and (v) number of shared objects, (vi) number of processors.

The results are presented in Figures 4 and 5. Note that graphs related to
execution times use a logarithmic scale due to the order of magnitude-sized
differences between replayers’ performance, and that in all graphs lower is better.

Figure 4 shows the performance results of application properties (i) to (iii).
Record and replay execution times grows linearly with the number of threads,
with Ditto taking the lead in absolute values by one and two orders of magnitude,
respectively. As for trace file sizes, Ditto stays below 200Mb, while no other
replayer comes under 500Mb. The maximum is achieved by LEAP at around
1.5Gb. Concerning the number of memory access operations, the three indicators
increase linearly with the number of memory accesses for all algorithms. We
attribute this result to two factors: (i) none of them keeps state whose complexity

420 J.M. Silva, J. Simão, and L. Veiga

Ditto Global JaRec LEAP Baseline

2 4 8 16 32 64

0.25

1

4

16

64

256

1024

R
e
c
o
r
d
in

g
T
im

e
(
s
)

0 2.5 5 7.5 10

0.25

1

4

16

64

256

1:1 2:1 4:1 8:1 16:1 32:1

0.5
1
2
4
8

16
32
64

2 4 8 16 32 64
0

500

1000

T
r
a
c
e

S
iz

e
(
M

b
)

0 2.5 5 7.5 10
0

200

400

600

800

1:1 2:1 4:1 8:1 16:1 32:1
0

50

100

150

200

2 4 8 16 32 64

0.25
1
4

16
64

256
1024
8192

No. of threads

R
e
p
la

y
in

g
T
im

e
(
s
)

0 2.5 5 7.5 10

0.25

1

4

16

64

256

1024

No. of memory accesses

1:1 2:1 4:1 8:1 16:1 32:1
0.25

1

4

16

64

256

Load to store ratio

Fig. 4. Recording time, trace size and replaying time as a function of the number of
threads, accesses per thread (x106) and load:store ratio

increases over time, and (ii) our conscious effort during implementation to keep
memory usage constant. Ditto is nonetheless superior in terms of absolute values.
Finally, regarding the load and store ratio, Ditto is the only evaluated replayer
that takes advantage of the semantic differences between load and store memory
accesses. As such, we expect it to be the only system to positively react in the
presence of a higher load:store ratio. The experimental results are consistent
with this, as we can observe reductions in both overheads and a very significant
reduction of the trace file size.

Figure 5 shows the performance results of application properties (iv) to (vi).
Stressing the system with an increasing number of fields per object, property (iv),
and number of shared objects, property (v), is crucial to measure the impact
of Ditto’s recording granularity. Ditto and LEAP are the only replayers that
improve performance (smaller recording and replaying times) as more shared
fields are present, though Ditto has the lowest absolute values. This result is
due to both replayers distinguishing between different fields when serializing
events. However, LEAP actually increases its trace file size as the number of
fields increases, a result we believe to be caused by their access vector-based
approach to recording.

Regarding the number of shared objects, JaRec is the main competitor of
Ditto as they are the only ones that can distinguish between distinct objects.
LEAP’s offline transformation approach does not allow it to take advantage from
this runtime information. Although JaRec is marginally better than Ditto past
the 64 object mark, it fails to take advantage of the number of shared objects
during the replay phase.

Deterministic Execution Replay for Java VM on Multiprocessors 421

Ditto Global JaRec LEAP Baseline

1 2 4 8 16

0.5
1
2
4
8

16
32
64

R
e
c
o
r
d
in

g
T
im

e
(
s
)

1 4 16 64 256 1024

0.5
1
2
4
8

16
32
64

1 2 4 8

0.5
1
2
4
8

16
32
64

128

1 2 4 8 16
0

50

100

150

200

T
r
a
c
e

S
iz

e
(
M

b
)

1 4 16 64 256 1024
0

50

100

150

200

1 2 4 8
0

100

200

300

400

1 2 4 8 16

0.25

1

4

16

64

256

No. of fields p/object

R
e
p
la

y
in

g
T
im

e
(
s
)

1 4 16 64 256 1024
0.25

1

4

16

64

256

No. of shared objects

1 2 4 8

1

4

16

64

256

1024

No. of processors

Fig. 5. Recording time, trace size and replaying time as a function of the number of
fields per object, shared objects and processors

Concerning the number of processors, the experimental results were obtained
by limiting the JikesRVM process to a subset of processors in our 8-core test
machine. Ditto is the only algorithm that lowers its record execution time as the
number of processors increases, promising increased scalability to future deploy-
ments and applications in production environments. Additionally, its trace file
size increases much slower than that of other replayers and the replay execution
time is three orders of magnitude lower than the second best replayer at the 8
processor mark.

Effects of the Pruning Algorithm: To assess the effects of Ditto’s pruning al-
gorithm we modified the microbenchmark to use a more sequential memory
access pattern in which each thread accesses a subset of shared objects that
overlaps with that of two other threads. Figure 6 shows the trace file size reduc-
tion percentage, the recording speedup and the replaying speedup over the base
recording algorithm from applying program order pruning only, and program
order pruning plus partial transitive reduction. The results clearly demonstrate
the potential of the algorithm, reducing the trace by 81.6 to 99.8%. With reduc-
tions of this magnitude, instead of seeing increased execution times, we actually
observe significant drops in overhead due to the avoided tracing efforts.

Looking at the results of all microbenchmark experiments, it is clear that
Ditto is the most well-rounded deterministic replayer. It consistently performs
better than its competitors in all three indicators, while other replayers tend to
overly sacrifice trace file size or the replay execution time in favor of recording
efficiency.

422 J.M. Silva, J. Simão, and L. Veiga

Program order only Program order & partial TR

2 4 8 16 32 64

80%

90%

100%

Number of Threads

T
r
a
c
e

F
il
e

R
e
d
u
c
t
io

n

2 4 8 16 32 64

1

2

3

4

Number of Threads

R
e
c
o
r
d

S
p
e
e
d
u
p

2 4 8 16 32 64

0

1

2

Number of Threads

R
e
p
la

y
S
p
e
e
d
u
p

Fig. 6. Effects of Ditto’s pruning algorithm

6.2 Complete Applications

In this section we use complete applications to compare the execution time
overhead and the log size of Ditto when compared to other state of the art
replayers. Furthermore, the impact of the TLO analysis is also evaluated. All
applications were parametrized to use 8 threads (i.e. the number of cores of
the available hardware). From the the Java Grande benchmark3 we selected
the multi-threaded applications, namely: (a) MolDyn, a molecular dynamics
simulation; (b) MonteCarlo, a monte carlo simulation; and (c) RayTracer, a 3D
ray tracer. Table 1 reports on the results in terms of recording overhead and
trace file size. Considering them, two main remarks can be made: Ditto’s record-
time performance is superior to that of competing replayers, and the trace files
generated by Ditto are insignificantly small. The result suggests that the static
analysis can be further improved to better identify thread-local memory accesses,
which represents a relevant future research topic.

From the DaCapo4 benchmark, we evaluate the record-time performance of
Ditto and the other replayers using the lusearch, xalan and avrora applications
with the large set. The results are shown in Table 1 and highlight an interest-
ing observation: for applications with very coarse-grained sharing, as is the case
of lusearch and xalan, Ditto’s higher complexity is actually detrimental. The
lack of stress allows the other algorithms to perform better in terms of record-
ing overhead, albeit generating larger trace files (with the exception of JaRec).
Nonetheless, Ditto’s recording overhead is still quite low.

7 Conclusions and Future Work

We presented Ditto, a deterministic replay system for the JVM, capable of
correctly replaying executions of imperfectly synchronized applications on multi-
processors. It uses a novel pair of recording and replaying algorithms that com-
bine state-of-the-art and original techniques, including (a) managing differences
between load and store memory accesses, (b) serializing events at instance field

3 http://www.epcc.ed.ac.uk/research/java-grande
4 http://dacapobench.org

Deterministic Execution Replay for Java VM on Multiprocessors 423

Table 1. Record-time performance results for representative Java workloads

Ditto Global JaRec LEAP
Overhead Trace Overhead Trace Overhead Trace Overhead Trace

MolDyn 2831% 239Kb >181596%* >2Gb* 3887% 188Mb >13956%* >2Gb
MonteCarlo 390% 248Kb 79575% 1273Mb 410% 0.39Kb 10188% 336Mb
RayTracer 4729% 4.72Kb >164877%* >2Gb* 5197% 21Mb >9697%* >2Gb*
lusearch 4.56% 3Kb 1.89% 288 Kb 2.26% 3Kb 0.69% 564Kb
xalan 5.23% 6kb 4.52% 475Kb 2.71% 0.2Kb 2.73% 485Kb
avrora 378% 22Mb 2771% 565Mb 372% 23Mb –* >2Gb*

* Current implementation cannot deal with trace files over 2 GB.

granularity, (c) pruning redundant constraints using program order and partial
transitive reduction, (d) taking advantage of TLO static analysis, escape anal-
ysis and compiler optimizations, and (e) applying a simple but effective trace
file optimization. Ditto was successfully evaluated to ascertain its capability to
reproduce different concurrent bug patterns and highly non-deterministic ex-
ecutions. Performance results show Ditto consistently outperforming previous
Java replayers across multiple application properties, in terms of overhead and
trace size, being the most well-rounded system, multicore scalable and leverag-
ing checkpointing and restore capabilities. Evaluation results suggest that future
efforts to improve deterministic replay should be focused on improving static
analysis to identify thread-local events.

Acknowledgments. This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecnologia, projects PTDC/EIA-
EIA/113613/2009, PTDC/EIA-EIA/102250/2008, PEst-OE/EEI/LA0021/2013
and the PROTEC program of the Polytechnic Institute of Lisbon (IPL)

References

1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev. 42, 329–
339 (2008)

2. Choi, J.D., Srinivasan, H.: Deterministic replay of java multithreaded applications.
In: Proceedings of the SIGMETRICS Symposium on Parallel and Distributed
Tools, SPDT 1998, pp. 48–59. ACM (1998)

3. Ronsse, M., De Bosschere, K.: Recplay: a fully integrated practical record/replay
system. ACM Trans. Comput. Syst. 17, 133–152 (1999)

4. Georges, A., Christiaens, M., Ronsse, M., De Bosschere, K.: Jarec: a portable
record/replay environment for multi-threaded java applications. Softw. Pract. Ex-
per. 34, 523–547 (2004)

5. Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen, P.M.: Execution replay
of multiprocessor virtual machines. In: Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE 2008, pp. 121–130. ACM (2008)

6. Russinovich, M., Cogswell, B.: Replay for concurrent non-deterministic shared-
memory applications. In: Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation, PLDI 1996, pp. 258–266.
ACM (1996)

424 J.M. Silva, J. Simão, and L. Veiga

7. Geels, D., Altekar, G., Shenker, S., Stoica, I.: Replay debugging for distributed
applications. In: Proceedings of the Annual Conference on USENIX 2006 Annual
Technical Conference, p. 27. USENIX Association (2006)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565 (1978)

9. Xu, M., Bodik, R., Hill, M.D.: A ”flight data recorder” for enabling full-system mul-
tiprocessor deterministic replay. In: Proceedings of the 30th Annual International
Symposium on Computer Architecture, ISCA 2003, pp. 122–135. ACM (2003)

10. Montesinos, P., Ceze, L., Torrellas, J.: Delorean: Recording and deterministically
replaying shared-memory multiprocessor execution efficiently. In: Proceedings of
the 35th Annual International Symposium on Computer Architecture, ISCA 2008,
pp. 289–300. IEEE Computer Society (2008)

11. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: Pres:
probabilistic replay with execution sketching on multiprocessors. In: Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. SOSP
2009, pp. 177–192. ACM (2009)

12. Altekar, G., Stoica, I.: Odr: output-deterministic replay for multicore debugging.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP 2009, pp. 193–206. ACM (2009)

13. Huang, J., Liu, P., Zhang, C.: Leap: lightweight deterministic multi-processor re-
play of concurrent java programs. In: Proceedings of the Eighteenth ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,l FSE
2010, pp. 207–216. ACM (2010)

14. Yang, Z., Yang, M., Xu, L., Chen, H., Zang, B.: Order: object centric determinis-
tic replay for java. In: Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC 2011, Berkeley, CA, USA. USENIX
Association (2011)

15. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. ACM Trans.
Comput. Syst. 14, 80–107 (1996)

16. Napper, J., Alvisi, L., Vin, H.M.: A fault-tolerant java virtual machine. In: DSN,
pp. 425–434. IEEE Computer Society (2003)

17. Simão, J., Garrochinho, T., Veiga, L.: A checkpointing-enabled and resource-aware
java virtual machine for efficient and robust e-science applications in grid environ-
ments. Concurrency and Computation: Practice and Experience 24(13), 1421–1442
(2012)

18. Netzer, R.H.B.: Optimal tracing and replay for debugging shared-memory paral-
lel programs. In: Proceedings of the 1993 ACM/ONR Workshop on Parallel and
Distributed Debugging, PADD 1993, pp. 1–11. ACM (1993)

19. Xu, M., Hill, M.D., Bodik, R.: A regulated transitive reduction (rtr) for longer
memory race recording. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS-XII, pp. 49–60. ACM (2006)

20. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd,
J.C., Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The jalapeño virtual
machine. IBM Syst. J. 39(1), 211–238 (2000)

DynaSoRe: Efficient In-Memory Store
for Social Applications

Xiao Bai1, Arnaud Jégou2, Flavio Junqueira3, and Vincent Leroy4

1 Yahoo! Research Barcelona
xbai@yahoo-inc.com

2 INRIA Rennes
arnaud.jegou@inria.fr

3 Microsoft Research Cambridge
fpj@apache.org

4 University of Grenoble - CNRS
vincent.leroy@imag.fr

Abstract. Social network applications are inherently interactive, cre-
ating a requirement for processing user requests fast. To enable fast re-
sponses to user requests, social network applications typically rely on
large banks of cache servers to hold and serve most of their content from
the cache. In this work, we present DynaSoRe: a memory cache system
for social network applications that optimizes data locality while placing
user views across the system. DynaSoRe storage servers monitor access
traffic and bring data frequently accessed together closer in the system
to reduce the processing load across cache servers and network devices.
Our simulation results considering realistic data center topologies show
that DynaSoRe is able to adapt to traffic changes, increase data locality,
and balance the load across the system. The traffic handled by the top
tier of the network connecting servers drops by 94% compared to a static
assignment of views to cache servers while requiring only 30% additional
memory capacity compared to the whole volume of cached data.

1 Introduction

Social networking is prevalent in current Web applications. Facebook, Twitter,
Flickr and Github are successful examples of social networking services that
allow users to establish connections with other users and share content, such
as status updates (Facebook), micro-blogs (Twitter), pictures (Flickr) and code
(Github). Since the type of content produced across application might differ,
we use in this work the term event to denote any content produced by a user
of a social networking application. For this work, the format of events is not
important and we consider each event as an application-specific array of bytes.

A common application of social networking consists of returning the latest
events produced by the connections of a user in response to a read request.
Given the online and interactive nature of such an application, it is critical to
respond to user requests fast. Therefore, systems typically use an in-memory

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 425–444, 2013.
c© IFIP International Federation for Information Processing 2013

426 X. Bai et al.

store to maintain events and serve requests to avoid accessing a persistent, often
slower backend store. Events can be stored in the in-memory store in the form
of materialized views. A view can be producer-pivoted and store the events
produced by a given user, or it can be consumer-pivoted and store the events
to be consumed by a given user (e.g., the latest events produced by a user’s
connections) [16]. We only consider producer-pivoted views in this work.

When designing systems to serve online social applications, scalability and
elasticity are critical properties to cope with a growing user population and an
increasing demand of existing users. For example, Facebook has over 1 billion
registered and active users. Serving such a large population requires a careful
planning for provisioning and analysis of resource utilization. In particular, load
imbalance and hotspots in the system may lead to severe performance degrada-
tion and a sharp drop of user satisfaction. To avoid load imbalances and hotspots,
one viable design choice is to equip the system with a mechanism that enables
it to dynamically adapt to changes of the workload.

A common way to achieve load balancing is to randomly place the views of
users across the servers of a system. This however incurs high inter-server traffic
to serve read requests since the views in a user’s social network have to be read
from a large amount of servers. SPAR is a seminal work that replicates all the
views in a user’s social network on the same server to implement highly efficient
read operations [15]. Yet, this results in expensive write operations to update the
large amount of replicated views. Moreover, SPAR assumes no bounds on the
degree of replication for any given view, which is not practical since the memory
capacity of each individual server is limited. Consequently, it is very important
to make efficient utilization of resources.

In this work, we present DynaSoRe (Dynamic Social stoRe), an efficient in-
memory store for online social networking applications that dynamically adapts
to changes of the workload to keep the network traffic across the system low. We
assume that a deployment of DynaSoRe comprises a large number of servers, tens
to hundreds, spanning multiple racks in a data center. DynaSoRe servers cre-
ate replicas of views to increase data locality and reduce communication across
different parts of data centers. We assume a realistic tree structure for the net-
working substrate connecting the servers and aim to reduce traffic at network
devices higher up in the network tree.

Our simulation results show that with 30% additional memory (to replicate
the views), DynaSoRe reduces the traffic going through the top switch by 94%
compared to a random assignment of views and by 90% compared to SPAR.
With 100% additional memory, DynaSoRe only incurs 2% of the total traffic
with the random assignment, significantly outperforming SPAR which incurs
35% of the traffic with the random assignment.

Contributions. In this paper, we make three main contributions:
– We propose DynaSoRe, an efficient in-memory store for online social appli-

cations, which dynamically adapts to changes of the workload to keep the
network traffic across the system low.

DynaSoRe: Efficient In-Memory Store for Social Applications 427

– We provide simulation results showing that DynaSoRe outperforms our base-
lines, random assignment and SPAR, and that it is able to reduce the amount
of network traffic across the system.

– We show that DynaSoRe is especially efficient compared to our baselines
when assuming a memory budget, which is an important practical goal due
to cost of rack space in modern data centers.

Roadmap. The remainder of this paper is structured as follows. We specify in
Section 2 the model and requirements of an efficient in-memory store. We present
the design of DynaSoRe in Section 3 and evaluate it in Section 4. We discuss
related work in Section 5 and present our conclusions in Section 6.

2 Problem Statement

2.1 System Model

DynaSoRe is a scalable and efficient distributed in-memory store for online social
applications that enable users to produce and consume events. We assume that
the social network is given and that it changes over time. The events users
produce are organized into views, and the views are producer-pivoted (contain
the events produced by a single user). A view is a list of events, possibly ordered
by timestamps. DynaSoRe supports read and write operations. A write request
from user u of an event e writes e to the view of u. A read request from user u
reads the views of all connections in the social network of u. This closely follows
the Twitter API. According to Twitter, status feeds represent by far the majority
of the queries received1. Consequently, the benefits of DynaSoRe (that are only
measured with the read/write operations) are significant even in a complete
social application that also supports other kinds of operations.

DynaSoRe spans multiple servers, as the views of all users cannot fit into the
memory of a single server. Distributing the workload across servers is critical for
scalability. Our applications reside in data centers. Servers inside a data center
are typically organized in a three-level tree of switches, which has a core tier at
the root of the tree, an intermediate tier, and an edge tier at the leaves of the tree
[1,7,8] as shown in Figure 1. The core tier consists of the top-level switch (ST),
which connects multiple intermediate switches. The intermediate tier consists of
intermediate switches (SI) and each of them connects a subset of racks. The edge
tier consists of racks and each rack is formed by of a set of servers connected by a
rack switch (SR). The network devices, i.e., switches at different levels of the tree
architecture, only forward network traffic. The views of users are maintained in
the servers (S), connected directly to rack switches. The servers have a bounded
memory capacity and we established its capacity by the number of views it can
host. We use b to denote the number of bytes we use for a view. Brokers (B)
are also servers connecting directly to rack switches and they are in charge of
reading and writing views on the different servers of the data center.
1 http://www.infoq.com/presentations/Twitter-Timeline-Scalability

http://www.infoq.com/presentations/Twitter-Timeline-Scalability

428 X. Bai et al.

Core

Intermediate

Edge

Rack

B1nB11

S11kS111

SI1

SR11

S1nkS1n1

SR1n
B2nB11

S21kS211

SI2

SR21

S2nkS2n1

SR2n
BmnBm1

Sm1kSm11

SIm

SRm1

SmnkSmn1

SRmn

ST

Fig. 1. System architecture of DynaSoRe

Note that DynaSoRe could be deployed on several data centers by adding a
virtual switch representing communications between data centers, which would
then be minimized by DynaSoRe . In practice, Web companies such as Facebook
do not have applications deployed across data centers. Instead, they replicate the
content of each data center through a master/slave mechanism[13]. Thus in this
work we focus on the case of a single data center.

In the system, events are organized in views and stored as key-value pairs.
Each key is a user id and the value is the user view comprising events the
user has produced. This memory store is back-ended by a persistent store that
ensures data availability in the case of server crashes or graceful shutdowns for
maintenance purposes. We focus in this work on the design of the memory store
and a detailed discussion of the design of the persistent store is out of scope.

2.2 Requirements

To provide scalable and efficient write and read operations, DynaSoRe provides
the following properties: locality, dynamic replication, and durability.

Locality. A user can efficiently read or write to a view if the network distance
between the server executing the operation and the server storing the view is
short. As one of our goals is to reduce the overall network traffic, we define the
network distance between two servers to be the number of network devices (e.g.,
switches) in the network path connecting them. DynaSoRe ideally ensures that
all the views related to a user (i.e., her own view and the views of her social
connections) are placed close to each other according to network distance so that
all requests can be executed efficiently. This requires flexibility with respect to
selecting the server that executes the requests and the servers storing the views.

Dynamic replication. Online social networks are highly dynamic. The structure
of the social network evolves as users add and remove social connections. User
traffic can be irregular, with different daily usage patterns and flash events gener-
ating a spike of activity. Adapting to the behavior of users requires a mechanism
to dynamically react to such changes and adjust the storage policy of the views
impacted, for both number and placement of replicas. One goal for DynaSoRe
is to trace user activity to enable an efficient utilization of its memory budget

DynaSoRe: Efficient In-Memory Store for Social Applications 429

through accurate choices for the number and placement of replicas. Such a repli-
cation policy needs also to consider load balancing and to satisfy the capacity
constraints of each server.

Durability and crash tolerance. We assume that servers can crash. Missing up-
dates because of crashes, however, is highly undesirable, so we guarantee that
updates to the system are durable. To do this, we rely upon a persistent store
that works independently of DynaSoRe. Updates to the data are persisted be-
fore they are written to DynaSoRe to guarantee that they can be recovered in
the presence of faulty DynaSoRe servers. Since we replicate some views in our
system, copies of data might be readily available even if a server crashes. In the
case of a single replica, we need to fetch data from the persistent store to build it.
In both cases, single or multiple replicas, crashes additionally require live servers
to dynamically adjust the number of replicas of views to the new configuration.

2.3 Problem Formulation

Given the system model and requirements, our objective is to generate an as-
signment of views to servers such that (i) each view is stored on at least one
server and (ii) network usage is minimized. The first objective guarantees that
any user view can be served from the memory store. We eliminate the trivial
case in which the cluster does not have the storage capacity to keep a copy of
each view. DynaSoRe is free to place views on any server, as long as it satisfies
their capacity constraints. Any available space can be used to replicate a view
and optimize the second objective. We define the amount of extra memory ca-
pacity in the system as follows : Given V the set of views in the system, and b
the amount of memory required to store a single view, the system has x% extra
memory if its total memory capacity is (1+x/100)× |V |× b. To reduce network
traffic, we need to assign views to servers such that it reduces the number of
messages flowing across network devices. Note that a message between servers
reaching the top switch also traverses two intermediate switches and two rack
switches. Consequently, minimizing the number of messages going through the
top switch is an important goal to reduce network traffic.

We show in Section 4 that DynaSoRe is able to dynamically adapt to workload
variations and to use memory efficiently. In this work, we focus on the mecha-
nisms to distribute user views across servers and on the creation and eviction
of their replicas. Although important, fault tolerance is out of the scope of this
work and we discuss briefly how one can tolerate crashes in Section 3.3.

3 System Design

In this section, we present the design of DynaSoRe. We first present its API,
followed by the algorithm we use to make replication decisions. We end this
section with a discussion on some software design issues.

430 X. Bai et al.

3.1 API

DynaSoRe is an in-memory store used in conjunction with a persistent store.
The API of DynaSoRe matches the one used by Facebook for memcache [13].
It consists of a read request that fetches data from the in-memory store, and
a write request that updates the data in the memory store using the persis-
tent store. Consequently, DynaSoRe can be used as a drop-in replacement of
memcache to cache user views and generate social feeds.
Read(u, L): u is a user id and L is a list of user ids to read from. For each id

u′ in L, it returns view(u′).
Write(u): u is a user id. It updates view(u) by fetching the new version from

the persistent store.

3.2 Algorithm

Overview. DynaSoRe is an iterative algorithm that optimizes view access lo-
cality. DynaSoRe monitors view access patterns to compute the placement of
views and selects an appropriate broker for executing each request. Specifically,
DynaSoRe keeps track, for each view, the rates it is read and written, as well as
the location of brokers accessing it. When DynaSoRe detects that a view is fre-
quently accessed from a distant part of the cluster, consuming large amounts of
network resources, it creates a replica of this view and places it on a server close
to those distant brokers. This improves the locality of future accesses and reduces
network utilization. Similarly, when a broker executes a request, DynaSoRe an-
alyzes the placement of the views accessed, and selects the closest broker as a
proxy for the next instance of this operation.

Routing. DynaSoRe optimizes view access locality by placing affine views on
servers that are close according to network distance, and replicating some of
the views on different cluster sub-trees to further improve locality. Using such
tailored policies for view placement requires a routing layer to map the identifiers
of requested views to the servers storing them.

Brokers. Each request submitted to DynaSoRe is executed by a broker. A request
consists of a user identifier and an operation: read or write. DynaSoRe creates,
for each user, a read proxy and a write proxy, each of them being an object
deployed on a broker. The motivation of using two different proxies per user
stems from the fact that they access different views. The write proxy updates the
view of a user, while the read proxy reads the views of a user’s social connections.
These views may be stored in different parts of the cluster. Allowing DynaSoRe
to select different brokers gives it more flexibility and impacts network traffic.
The mapping of proxies to brokers is kept in a separate store and is fetched by
the front-end as a user logs in. Once a front-end receives a user request, it sends
it to the broker hosting the proxy for execution.

DynaSoRe: Efficient In-Memory Store for Social Applications 431

Routing policy. When multiple servers store the same view, the routing layer
needs to select the most appropriate replica of the view for a given request. The
routing policy of DynaSoRe favors locality of access. Following the tree structure
of a cluster, a broker selects, among the servers storing a view, the closest one,
i.e. the one with which it shares the lowest common ancestor. This choice reduces
the number of switches traversed. When two replicas are at equal distance, the
broker uses the server identifier to break ties.

Routing tables. The write proxy of a user is responsible for updating all the
replicas of her view and for storing their locations. Whenever a new replica of
the view is created or deleted, the write proxy serves as a synchronization point
and updates its list of replicas accordingly.

The read proxy of a user is in charge of routing her read requests. To this end,
each broker stores in a routing table, for every view in the system, the location of
its closest replica according to the routing policy described earlier. The routing
table is shared by all the read proxies executed on a given broker. The write
proxy of a view is also responsible for updating the routing tables whenever a
view is created or deleted. As the routing policy is deterministic, only brokers
affected by the change are notified.

Servers also store some information about routing. Each view stores the loca-
tion of its write proxy, so that a server may notify a proxy in case of an eviction
or replication attempt of its replica. When several replicas of a view exist, each
replica also stores the location of the next closest replica. Both information are
used to estimate the utility of a view that will be described in Section 3.2.

Proxy placement. To reduce the network traffic, the proxies should be as close as
possible to the views they access. Whenever a request is executed, the proxy uses
the routing table to obtain the location of the views and execute the operation.
As a post-processing step, the proxy analyzes the location of these views and
computes a position that minimizes the network transfers. Starting at the root
of the cluster tree, the proxy follows, at each step, the branch from which most
views were transferred, until it reaches a broker. If the obtained broker is different
from the current one, the proxy migrates to the new broker for the next execution
of this request. In the case of a write proxy, this migration involves in sending
notification messages to view replicas.

Access Statistics. To dynamically improve view access locality, DynaSoRe
gathers statistics about the frequency and the origin of each access to a view. This
information is stored on the servers, along with the view itself. The origin of an
access to a view is the switch from which the request accessing this view comes.
Consequently, two brokers directly connected to the same switch correspond to
the same origin. The writes to a given view are always executed in the location
of its write proxy. However, reads can originate from any broker in the cluster.
This explains why their origins should be tracked.

To reduce the memory footprint of access recording, DynaSoRe makes the
granularity coarser as the network distance increases. Considering a tree-shaped

432 X. Bai et al.

topology, a server records accesses originating from all the switches located be-
tween the server and the top switch, as well as their siblings. For example, in
Figure 1 the server S111 records the accesses originating from the switches SR11

(the accesses from the local broker) to SR1n and from SI2 to SIm instead of an
individual record for every switch. In this way, in a cluster of m intermediate
switches and n rack switches per intermediate switch, every replica records max-
imum m − 1 + n origins instead of m × n origins. While significantly reducing
the memory footprint, this solution does not affect the efficiency of DynaSoRe.
The algorithm still benefits from precise information in the last steps of the con-
vergence, and relies on aggregated statistics over sub-trees for decisions about
more distant parts of the cluster.

DynaSoRe is a dynamic algorithm that is able to react to variations in the
access patterns over time. We use rotating counters to record the number of
accesses to views. Each counter is associated to a time period, and servers start
updating the following counter at the end of the period. For example, to record
the accesses during one day with a rotating period of one hour, we can use
24 counters of 1 byte. The number of counters, their sizes and their rotating
periods can be configured depending on the reactivity we expect from the system,
the accuracy of the logs and the amount of memory we can spend on it. It is
possible to compress these counters efficiently. For instance, one may decrease
the probability of logging an access as the counter increases to account for more
accesses on 1 byte. One may also store these counters on the disk of the server
to enable asynchronous updates of the counters. These optimizations are out of
the scope of this work, and in the remainder of this paper we assume that the
size of the counters is negligible with respect to the size of the views.

Storage Management. A DynaSoRe server is a in-memory key-value store
implementing a memory management policy. A server has a fixed memory ca-
pacity, expressed as the number of views it can store. DynaSoRe manages the
servers as a global pool of memory, ensuring that the view of each user is stored
on at least one server. Each server stores several views, some of them being the
only instance in the system, while others are replicated across multiple servers
and therefore optional. The objective of DynaSoRe is to select, for each server,
the views that will minimize network utilization, while respecting capacity con-
straint. We assume that the events generated by users have a fixed size, such as
those of Twitter (140 characters). Heavy content (e.g., pictures, videos, etc.) are
usually not stored in cache but in dedicated servers.

View utility. Each server maintains read and write access statistics for the views
it stores, as described in Section 3.2. Using these statistics, DynaSoRe can eval-
uate the utility of a view on a given server, i.e., the impact of storing the view
on this server in terms of network traffic. DynaSoRe uses the statistics about the
origins of read requests to determine which of them are impacted by the view.
It then computes the cost of routing them to the next closest replica instead of
this server, which represents the read gains of storing the view on the server.

DynaSoRe: Efficient In-Memory Store for Social Applications 433

Algorithm 1. Estimate Profit
1: function Estimate Profit(logs, server, nearest)
2: serverReadCost ← 0
3: nearestReadCost ← 0
4: for all < source, reads >∈ logs.reads() do
5: serverReadCost + = reads · cost(source, server)
6: nearestReadCost + = reads · cost(source, nearest)
7: serverWriteCost ← writes · cost(broker, server)
8: serverProfit ← nearestReadCost − serverReadCost − serverWriteCost
9: return serverProfit

The traffic generated by write requests represents the cost of maintaining this
view, and is subtracted from the read gains to obtain the utility. The details of
the utility computation are presented in Algorithm 1. The utility of a view is
positive if its benefits in terms of read requests locality outweighs the cost of
updating it when write requests occur. The goal of DynaSoRe is to optimize net-
work utilization. Hence, views with negative utility are automatically removed.

Replication of views. Servers regularly update the utility of the views they store
and use this information to maintain an admission threshold so that a sufficient
amount (e.g., 90%) of their memory is occupied by views whose utility is above
the admission threshold. If less memory is used, the admission threshold is 0.
These admission thresholds are disseminated throughout the system using a
piggybacking mechanism. Each broker maintains the admission threshold of the
servers located in its rack, and transmits the lowest threshold to other racks
upon accessing them. Thus, each server receives regular updates containing the
lowest access threshold in other racks. A replica of a view on a given server
serves either the brokers of the whole cluster, when this is the unique replica,
or the brokers of a sub-tree of the cluster, when multiple replicas exist. Upon
receiving a request for a view, a server updates its access statistics and evaluates
the possibility of replicating it on another server of this sub-tree. This procedure
is detailed in Algorithm 2. The utility of the replica is computed by simulating
its addition on one of the servers, following the approach described previously.
If the utility exceeds the admission threshold of the server, a message is sent to
the write proxy of the view to request the creation of a replica.

When no replicas can be created, the server attempts to migrate the view
to a more appropriate location. The computation of the utility of the view at
the new location is slightly different from the replication case, since it assumes
the deletion of the view on the current server and therefore generates higher
scores. Algorithm 3 details this procedure. The migration of the view is subject
to the admission threshold. Using the admission threshold avoids the migration
of views rarely accessed to servers with high replication demand.

Eviction of views. To easily deploy new views on servers, DynaSoRe ensures that
each server regularly frees memory. When the memory utilization of a server ex-
ceeds a given threshold (e.g., 95%), a background process starts evicting the
views that have the least utility. Views that have no other replica in the sys-
tem have infinite utility and cannot be evicted. Since multiples servers could

434 X. Bai et al.

Algorithm 2. Evaluate Creation of Replica
1: procedure Evaluate Creation of Replica(logs)
2: newReplica ← ∅
3: bestProfit ← 0
4: for all < source, reads >∈ logs.reads() do
5: profit ← Estimate Profit(logs, source, this)
6: threshold ← Admission threshold(source)
7: if profit > threshold & profit > bestProfit then
8: newReplica ← Least loaded server(source)
9: bestProfit ← profit
10: if newReplica �= ∅ then
11: Send(newReplica) to broker

try to evict the different replicas of the same view simultaneously, DynaSoRe
relies on the write proxy of the view as a synchronization point to ensure at
least one replica remains in the system. Servers typically manage to evict a suf-
ficient amount of views to reach 95% capacity. One exception happens when the
full DynaSoRe cluster reaches it maximum capacity, in which case there is no
memory left for view replication. This proactive eviction policy decouples the
eviction of replicas from the reception of requests, thus ensuring that memory
can be freed at any time even when some replicas do not receive any requests.

3.3 Software Design

Durability. DynaSoRe complies with the architecture of Facebook, and relies
on the same cache coherence protocol [13]. When a user writes an event, this
command is first processed by the persistent store to generate the new version
of the view of a user. The persistent store then notifies DynaSoRe by sending a
write request to the write proxy of the user, which fetches the new version of
the view from the persistent store and updates the replicas. The persistent store
logs write requests before sending them, so they can be re-emitted in case of a
crash. If a server crashes, the views can be safely recovered from the persistent
store. Also, frequently accessed views are likely to be already replicated in the
memory of other servers, allowing faster recovery and avoiding cache misses
during the recovery process. We have chosen this design because memory is
limited, and replicating frequently accessed views leads to higher performance
compared to replicating rarely accessed views for faster recovery. However, if a
large amount of memory is available, DynaSoRe can also be configured to keep
multiple replicas of each view on different servers. In that case, the threshold
for infinite utility is set to the minimum number of replicas and recovery is fully
performed from memory. The state of brokers and the location of the proxies
of users are persisted in a high performance disk-based write-ahead log such as
BookKeeper [10], so that the setup of DynaSoRe is also recoverable.

Cluster Modification. The configuration of the cluster on top of which
DynaSoRe is running may change over time. For example, the number of servers
allocated to DynaSoRe can grow as the number of users increase. There are three
different ways a server can be added to the system:

DynaSoRe: Efficient In-Memory Store for Social Applications 435

Algorithm 3. Compute Optimal Position of Replica
1: procedure Compute Optimal Position of Replica(logs)
2: nearest ← nearest replica
3: bestPosition ← this
4: bestProfit ← Estimate Profit(logs, this, nearest)
5: for all < source, reads >∈ logs.reads() do
6: profit ← Estimate Profit(logs, source, nearest)
7: threshold ← Admission threshold(source)
8: if profit > bestProfit & profit > threshold then
9: bestPosition ← Least loaded server(source)
10: bestProfit ← profit
11: if bestProfit < 0 then
12: Send(removeThis) to broker
13: else
14: if bestPosition �= this then
15: Send(bestPosition, removeThis) to broker

1. The additional server is added into an existing rack. In this case, the new
server will become the least loaded server in the rack, and all the new replicas
deployed into this rack are stored in this new server until it becomes as loaded
as the other servers in the rack.

2. A new rack is added below an existing intermediate switch. The same
reasoning for the previous case applies here. The new rack is automatically used
to reduce the traffic of the top router.

3. A new branch is added to the cluster by adding a new intermediate switch.
In this case, DynaSoRe has no incentive to add data to the new servers since no
requests will originate from there. When adding a new branch to the data center,
we consequently need to move some views and proxies onto the new servers to
bootstrap it. This procedure is, however, not detailed in this paper.
Removing servers on the other hand requires the views hosted by the servers
to be relocated. Before removing a server, the views that have no other replica
should be moved to a near server. The views that exist on multiple servers can
simply be deleted as DynaSoRe will recreate them if needed.

Managing the Social Network. As described earlier, DynaSoRe does not
maintain the social network, and instead receives the list of users from which
data need to be retrieved when executing a read request. Consequently, the only
direct impact of a modification to the social network is the modification of the
list of views accessed by reads. The addition of a link between users u1 and u2

increases the probability to have either u2’s view replicated near u1’s read proxy,
or u1’s read proxy migrated closer to a replica of u2’s view. DynaSoRe adapts
to the modifications to the social network transparently, without requiring any
specific action. When a new user enters the system, DynaSoRe needs to allocate
a read proxy, a write proxy, and a view on a server for this user. The server
chosen is the least loaded one at the time of the entrance of the user, and the
two proxies are selected to be as close as possible to this server.

436 X. Bai et al.

4 Evaluation

4.1 Baseline

Random In-memory storage systems, such as Memcached and Redis, rely on
hash functions to randomly assign data to servers. This configuration is static
in the sense that it is not affected by the request traffic. For this scheme, the
proxies of a user are deployed on the broker located in the same rack in which
the user view is located. This is the simplest baseline we compare against, as it
ignores the topology of the data center, the structure of the social graph, and
does not leverage free memory through replication.

METIS Graph data can be statically partitioned across servers using graph
partitioning. This leverages the clustering properties of social graphs and in-
creases the probability that social friends are assigned to the same sever. We
rely on the METIS library to generate partitions, and randomly assign each of
them to a server. The read and write proxies of users are deployed on the broker
located in the rack hosting their view. This solution does not take into account
the hierarchy of the cluster, and does not perform replication. It also does not
handle modifications to the social graph, and needs to re-partition the whole
social graph to integrate them.

Hierarchical METIS We improve the standard graph partitioning to ac-
count for the cluster structure. We first generate one partition for each inter-
mediate switch, and then recursively re-partition them to assign views to rack
switches and then servers. Compared to directly partitioning across servers, this
solution significantly reduces the network distance of views of social friends as-
signed to different servers.

SPAR SPAR [15] is a middleware that ensures the views of the social friends
of a user are stored on the same server as her own view. SPAR assumes that it
is always possible to replicate a view on a server, without taking into account
memory limitations. We adapt SPAR to limit its memory utilization. The views
of the friends of a user are copied to her server as long as storage is available.
When the server is full, these views are not replicated. Similarly to the graph
partitioning case, the proxies of a user are located in the rack hosting her view.

4.2 Datasets

Social Graphs. We evaluate the performance of DynaSoRe by comparing it
against our baselines on three different social networks (summarized in Table 1):

– a sample from the Twitter social graph from August 2009 [3]
– a sample from the Facebook social graph from 2008 [17]
– a sample from the LiveJournal social graph [2]

Request Log. In this section, we rely on two different kinds of request logs for
our experiments, a synthetic one and a real one. The real one is obtained from
Yahoo! News. We discuss the logs we used in more details below.

http://memcached.org/
http://redis.io/
http://glaros.dtc.umn.edu/gkhome/views/metis

DynaSoRe: Efficient In-Memory Store for Social Applications 437

Table 1. Number of users and links in
each dataset

users # links
Twitter 1.7M 5M

Facebook 3M 47M
LiveJournal 4.8M 69M

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

M
ill

io
n
s

o
f
e
ve

n
ts

Days

Writes
Reads

Fig. 2. Number of reads and writes in the
Yahoo! News Activity dataset

Synthetic logs. Huberman et al. [9] argue that the read and write activity of users
in social networks is proportional to the logarithm of their in and out degrees
in the social graphs. Silberstein et al. [16] observe that there are approximately
4 times more reads than writes in a social system. Using this information, we
create a random traffic generator matching these distributions and obtain, for
each social graph, a request log. We additionally assume that each user issues on
average one write request per day and that requests are evenly distributed over
time. Compared to real workloads, these synthetic workloads show low variation,
which enables DynaSoRe to accurately estimate read and write rates.

Real user traffic. Yahoo! News Activity is a proprietary social platform that
allows users to share (write) news articles, and view the articles that their
Facebook friends read (read). We use a two-week sample of the Yahoo! News
Activity logs as a source of real user traffic in the experiments. We focus in this
experiment on users who performed at least one read and one write during the
two weeks. This selection results in a dataset of 2.5M users with 17M writes and
9.8M reads. Figure 2 depicts the distribution of read and write activities per
day. Users can consult the activity of their friends both on the Yahoo! website,
or on Facebook. In the latter case, the reads are not processed by the Yahoo!
website and do not appear in the log, which explains the prevalence of writes
in our dataset. Because we do not have access to the Facebook social graph, we
map the users of Yahoo! News Activity to the users in the Facebook social graph
presented in Section 4.2. We rank both lists of users according to their number
of writes and their number of friends, respectively, and connect users with the
same rank. Because the Facebook social graph has more users, we only consider
the first 2.5 million users according to the number of friends.

4.3 Simulator and Cluster Configuration

We implement a cluster simulator in Java to evaluate the different view man-
agement protocols on large clusters. The simulator represents all the servers and
network devices in order to simulate their message exchanges and measure them.
The virtual data center used in our experiment is composed of a top switch, 5
intermediate switches, each connected to 5 rack switches, for a total of 25 racks
containing 10 machines each. In every rack, 1 machine is broker while the 9 others
are servers to store views. Servers keep view access logs using a sliding counter of
24 slots shifted every hour. After each shift, the replica utility is recomputed and

438 X. Bai et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 % 50 % 100 % 150 % 200 %

T
ra

ffi
c

(n
or

m
al

iz
ed

)

Extra memory

SPAR
DynaSoRe from Random

DynaSoRe from METIS
DynaSoRe from hMETIS

(a) Twitter, tree network topology

 0

 0.2

 0.4

 0.6

 0.8

 1

0 % 50 % 100 % 150 % 200 %

T
ra

ffi
c

(n
or

m
al

iz
ed

)

Extra memory

SPAR
DynaSoRe from Random

DynaSoRe from METIS
DynaSoRe from hMETIS

(b) LiveJournal, tree network topology

 0

 0.2

 0.4

 0.6

 0.8

 1

0 % 50 % 100 % 150 % 200 %

T
ra

ffi
c

(n
or

m
al

iz
ed

)

Extra memory

SPAR
DynaSoRe from Random

DynaSoRe from METIS
DynaSoRe from hMETIS

(c) Facebook, tree network topology

 0

 0.2

 0.4

 0.6

 0.8

 1

0 % 50 % 100 % 150 % 200 %

T
ra

ffi
c

(n
or

m
al

iz
ed

)

Extra memory

SPAR
DynaSoRe from Random

DynaSoRe from METIS

(d) Facebook, flat network topology

Fig. 3. Top switch traffic with varying memory capacity

the server’s admission threshold is updated. Each server has the same memory
capacity, and the total memory capacity is a parameter of each simulator run.
Finally, we assume that each application message, i.e., read, write request and
their answer, is 10 times longer than a protocol message. In fact, most protocol
messages do not carry any user data and are therefore much smaller.

4.4 Initial Data Placement and Performance

The random placement and graph partitioning approaches produce static assign-
ments of views to servers, which persists during the whole experiment. SPAR
places views as the structure of the social network evolves. We first create one
replica for each user, and we simulate the addition of all the edges of the social
graph to obtain the its view placement. Once the memory of all servers has been
used, the view layout remains constant. For DynaSoRe, the system is deployed
on an existing social platform and uses this configuration as an initial setup. It
then modifies this initial view placement by reacting to the request traffic.

We consider three different view placement strategies when initializing
DynaSoRe: Random, METIS and hierarchical METIS (hMETIS). Using the syn-
thetic request log, we evaluate the performance of each system after convergence,
i.e., once the content of the servers stabilizes. Figures 3a, 3b and 3c depict the
traffic of the top switch for the 3 different social graphs. The traffic is normalized
with respect to the traffic of Random. On the x-axis, we vary the extra memory
capacity of the cluster. x = 0% means the capacity matches exactly the space
required to store all the views without replication. With x = 100% memory
capacity doubles, so the algorithms can replicate views up to 2 times on average.

Considering the initial data assignment (x = 0%), we can clearly see that
graph partitioning approaches (METIS and hMETIS) outperform Random data

DynaSoRe: Efficient In-Memory Store for Social Applications 439

placement. Furthermore, hierarchical partitioning leads to a two-fold improve-
ment over standard clustering. These results are expected: partitioning increases
the probability that views of social friends will be stored on the same rack, which
reduces the traffic of the top switch upon accessing them. hMETIS further im-
proves this result by taking into account the hierarchy of the cluster. Thus, when
the views of 2 friends are not located on the same rack, they are likely to be
communicated through an intermediate switch rather than the top switch.

As we increase the memory capacity, both DynaSoRe and SPAR are able to
replicate and move views. Yet, the results indicate that DynaSoRe is much more
efficient than SPAR for using the available memory space. For example, in the
case of Twitter, with 30% memory in addition to the amount of data stored,
SPAR reduces the traffic by 42% compared to a Random, while DynaSoRe re-
duces it by 80%. These figures also demonstrate the importance of the initial
data placement in the case of DynaSoRe. As DynaSoRe relies on heuristics to
place views in the cluster, a good initial placement allows it to converge to bet-
ter overall configurations, while a random placement converges to slightly worse
performance. As the amount of available memory further increases, the perfor-
mance of DynaSoRe converges and part of the memory remains unused. Indeed,
DynaSoRe detects that replicating some views does not provide an overall bene-
fit, since the cost of writing to the extra replicas outweighs the benefits of reading
them locality, which induces higher network traffic.

Table 2 and Table 3 present the average switch traffic at the top, intermediate,
and rack levels for two memory configurations. We normalize the traffic value
by the equivalent switch traffic using Random. DynaSoRe is initialized using
hMETIS. Note that network traffic drops more significantly for the top switch
which is the most loaded with Random. As fewer requests access different racks,
rack switches also benefit from DynaSoRe, but to a lesser extent. Comparing
absolute values, the traffic of the top switch almost drops to the level of a rack
switch. Ultimately, DynaSoRe is able to relax the performance requirements for
top and intermediate switches.

Figure 4 shows the traffic on the top switch for the Facebook graph using the
real user traffic extracted from Yahoo! News Activity. For space reasons, we only
display the performances achieved by SPAR and DynaSoRe starting from the
placement generated by Random and METIS with 50% extra memory. The figure
shows the evolution of the traffic over time, and we can see that the traffic on the
top switch follows the request pattern observed in Figure 2. This figure shows
that DynaSoRe is able to converge to an efficient view placement configuration,

Table 2. Switch traffic, 30% extra memory

Facebook Twitter Live J.
Top switch DynaSoRe .07 .06 .04

Top switch SPAR .65 .55 .60
Inter switch DynaSoRe .14 .11 .08

Inter switch SPAR .77 .61 .70
Rack switch DynaSoRe .60 .59 .57

Rack switch SPAR .94 .84 .90

Table 3. Switch traffic, 150% extra mem.

Facebook Twitter Live J.
Top switch DynaSoRe .01 .01 .01

Top switch SPAR .24 .11 .26
Inter switch DynaSoRe .03 .02 .02

Inter switch SPAR .39 .13 .37
Rack switch DynaSoRe .54 .53 .53

Rack switch SPAR .77 .60 .75

440 X. Bai et al.

even in the case with high variance traffic. DynaSoRe still clearly outperforms
the baseline, confirming the results obtained with the synthetic logs. Our results
(not shown here for space reasons) show that the performance of DynaSoRe is
consistently better (3 times when starting from Random, 9 times when starting
from METIS) than Random independently of the traffic variation, confirming
the robustness of DynaSoRe under high traffic.

4.5 Behavior in Flat Network Topologies

The results presented above assume a tree topology for the network of the data
center. This setup is common in data centers, hence DynaSoRe was specifically
tailored for it. For the sake of fairness (as the baselines are designed without
considering any network topology of data centers), we also evaluate DynaSoRe
on a flat network topology. In this case, all of the 250 servers act as both caches
and brokers, and are directly connected to a single switch. This configuration
is similar to the one used to evaluate SPAR in [15]. Figure 3d shows that the
performances of DynaSoRe and SPAR on the Facebook social graph using the
synthetic request logs. Given that DynaSoRe was specifically tailored to tree
topologies, the performance gap between DynaSoRe and SPAR is not as large
as that presented in Figure 3c. DynaSoRe still clearly outperforms SPAR, in
particular in the configurations of low memory, thanks to its better replication
policy. In the remainder of the evaluation, we focus on the tree network topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

01 03 05 07 09 11 13

T
ra

ffi
c

(n
or

m
al

iz
ed

)

Days

Random
SPAR 50%

DynaSoRe from random, 50%
DynaSoRe from METIS, 50%

Fig. 4. Top switch traffic with Yahoo!
News Activity requests, Facebook

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10
 0

 2

 4

 6

 8

 10

A
vg

. n
b.

 o
f r

ep
lic

as

N
b.

 r
ea

ds
 /

10
 m

in
.

Days

Replicas
Reads / replica

Fig. 5. Flash event : Addition of 100 fol-
lowers, Facebook, 30% extra memory

4.6 Flash Events

Online social networks are often subject to flash events, in which the activity
of a subset of users suddenly spikes. To evaluate the reactivity of DynaSoRe,
we simulate a sudden increase of popularity of some users, and measure the
evolution of their number of replicas and the number of requests each of them
processes. More precisely, at time t = 2 days in the simulation run, we randomly
select a user and make this user popular by adding 100 random followers to read
her view. Five days later (t = 7 days) all these additional followers are removed.
We repeat this experiment 100 times on the Facebook dataset with a 30% extra
memory capacity. We present the average results in Figure 5.

At the beginning of the experiment, the user is not particularly active, and
has 1.15 replicas on average. As new followers arrive, DynaSoRe detects that the

DynaSoRe: Efficient In-Memory Store for Social Applications 441

number of reads of the view increases, and starts replicating it on other servers.
DynaSoRe stabilizes in a configuration close to 5 replicas for this view. Given
that the users reading this view are selected at random, they originate from all
racks of the cluster and DynaSoRe generates a replica per intermediate switch.
After replication, the average number of reads per replica is very close to the
initial situation. The utility of replicas is high enough to be maintained by the
system, but additional replicas do not pass the admission threshold. At the end
of this period, the number of reads per replica drops sharply. DynaSoRe is able
to detect and adjust the utility of the replicas, which leads to their eviction
before the end of the following day. These results illustrate DynaSoRe’s ability
to react quickly to flash events, and evict replicas once they become useless.

4.7 Convergence Time

SPAR and the three static approaches to assign views only require the social
graph to determine the assignment of views. They do not react dynamically
to traffic changes, and consequently, they do not require any time to converge
as long as the social graph is stable. For DynaSoRe, however, it is important to
evaluate the convergence time, using both stable synthetic traffic and real traffic.
Before converging to a stable assignment, DynaSoRe replicates views regularly.
This traffic of replicas generates messages that also consume network resources.
Once the system stabilizes, the overhead of system messages becomes negligible.

Figure 6a shows the traffic of the top switch when running DynaSoRe on the
Facebook social graph using synthetic traffic with an extra memory of 150%. We
separate the application traffic and the system traffic to study the convergence of
DynaSoRe over time (x axis). After a few hours of traffic, DynaSoRe has almost
reached its best performance, starting both from a random placement and from
a placement based on graph partitioning. The amount of system messages sent
by the protocol rapidly drops and reaches its minimum after one day. Note
that less memory capacity makes the time to converge shorter, since DynaSoRe
performs fewer replication operations. Figure 6b displays the results of the same
experiments executed using the real request trace from Yahoo! News Activity.
As the workload presents more variation, DynaSoRe does not fully converge, and
the system traffic remains at a noticeable level as views are created and evicted.
The request rate of the real workload is lower than the synthetic one, which
explains the slower convergence: DynaSoRe is driven by requests. Initializing
DynaSoRe using graph partitioning, however, induces an initial state that is more
stable, allowing the system traffic to remain low. Despite slower convergence, the
application traffic still reaches its best performance after one day.

5 Related Work

DynaSoRe enables online data placement in in-memory store for social network-
ing applications. We review in this section related work on in-memory storage
systems, offline data placement algorithms, online data placement algorithms,
and discuss their differences with DynaSoRe.

442 X. Bai et al.

 0

 0.2

 0.4

 0.6

 0 1 2
 0

 0.02

 0.04

 0.06
A

p
p
lic

a
tio

n
 (

n
o
rm

a
liz

e
d
)

S
ys

te
m

 (
n
o
rm

a
liz

e
d
)

Days

Application, from random
Application, from hMETIS

System, from random
System, from hMETIS

(a) Synthetic requests

 0

 0.2

 0.4

 0.6

 0 1 2 3 4 5
 0

 0.02

 0.04

 0.06

A
p
p
lic

a
tio

n
 (

n
o
rm

a
liz

e
d
)

S
ys

te
m

 (
n
o
rm

a
liz

e
d
)

Days

Application, from random
Application, from hMETIS

System, from random
System, from hMETIS

(b) Real requests

Fig. 6. Top switch traffic over time, Facebook, 150% extra memory

In-memory Storage. RAMCloud [14] is a large-scale in-memory storage sys-
tem that aggregates the RAM of hundreds of servers to provide a low-latency
key-value store. RAMCloud does not currently implement any data placement
policy, and could benefit from the algorithms used in DynaSoRe. RAMCloud
recovers from failures using a distributed log accessed in parallel on multiple
disks. This is similar to write-ahead logging approach described in Section 3.3
and could be also used in DynaSoRe.

Offline Data Placement. Curino et al. describe Schism [4], a partitioning
and replication approach for distributed databases to minimize the amount of
transactions executed across multiple servers. Schism uses an offline standard
graph partitioning algorithms on the request log graph to assign database tuples
to servers. DynaSoRe is an online strategy, creating and placing views dynami-
cally. As a consequence, it is much easier to react to changes in access patterns
that frequently occur in social applications. DynaSoRe benefits from graph clus-
tering techniques similar to those used in Schism to generate more effective initial
placement of views for faster convergence to ideal data placement.

Zhong et al. consider the case of object placement for multi-object opera-
tions [19]. Using linear programming, they place correlated objects on the same
nodes to reduce the communication overhead. However, this solution focuses on
correlation and does not take access frequencies into account. It does not account
for the hierarchy of network either.

Duong et al. analyze the problem of statically sharding social networks to
optimize read requests [5]. They demonstrate the benefits of social-network
aware data placement strategies, and obtain moderate performance improve-
ments through replication. Nonetheless, these results are limited by the absence
of write requests in the cost model. In addition, it only supports static social
networks and does not account for network topology.

There are a few graph processing engines [6,12,18] that split graphs over sev-
eral machines using offline partitioning algorithms. Messages exchanged between
partitions are the results of partial computations, which can be further reduced
through the use of combiners. While these approaches lead to important gains,
they cannot be applied to all kind of requests, and they mostly benefit long
computational tasks rather than low latency systems considered in this paper.

Online Data Placement. SPAR [15] is a middleware for online social net-
working systems that ensures that the server containing the view of a user also

DynaSoRe: Efficient In-Memory Store for Social Applications 443

contains those of her friends. This favors reads, but sacrifices writes as all the
replica of a user’s view need to be updated. Similar to DynaSoRe, SPAR uses
an online algorithm that reacts to the evolution of the social network. The main
differences between SPAR and DynaSoRe stems from the assumption on the
storage layer. SPAR assumes that storage is cheap enough to massively replicate
views, up to 20 times for 512 servers, largely exceeding fault tolerance require-
ments. DynaSoRe is much more flexible, and operates at a sweet spot, trading a
small storage overhead for high network gains. By default, DynaSoRe does not
guarantee that each view is replicated multiple times, and relies on the stable
storage to ensure durability. Yet, DynaSoRe can be configured to provide an
in-memory replication equivalent to SPAR, as explained in Section 3.3.

Silberstein et al. propose to measure users’ events production and consump-
tion rates to devise a push-pull model for social feeds generation [16]. The spe-
cialized data transfer policy significantly reduces the load of the servers and
the network. DynaSoRe is inspired by this work and also relies on the rates of
reads and writes of events to decide when to replace views. However, DynaSoRe
addresses different problem and focuses on determining where to maintain the
views, which will lead to performance gain in addition to this approach.

DynPart [11] is a data partitioning algorithm triggered upon inserting tuples
in a database. DynPart analyzes requests matching a tuple and places the tuple
on the servers that are accessed when executing these requests. While DynPart
handles insertion of data, it never reverts previous decisions and therefore cannot
deal with new requests or changes in request frequency. Social networks are fre-
quently modified, leading to different requests, and are subject to unpredictable
flash events. For these reasons, DynaSoRe is a better fit for social applications.

6 Conclusion

Adapting to workload variations and incorporating detail of the underlying net-
work architecture are both critical for serving social networking applications ef-
ficiently. Typical designs that randomly and statically place views across servers
induce a significant amount of load to top tiers of tree-based network layouts.
DynaSoRe is an in-memory view storage system that instead adapts to work-
load variations and uses the network distance between servers to reduce traffic
at the top tiers. DynaSoRe analyzes request traffic to optimize view placement
and substantially reduces network utilization. DynaSoRe leverages free memory
capacity to replicate frequently accessed views close to the brokers reading them.
It selects the brokers that serve each request and places them close to the views
they fetch according to network distance. In our evaluation of DynaSoRe, we
used different social networks and showed that with only 30% additional mem-
ory, the traffic of the top switch drops by 94% compared to a static random view
placement, and 90% compared to the SPAR protocol.

Acknowledgement. This work was supported by the LEADS project (ICT-
318809), funded by the European Community, the Torres Quevedo Program
from the Spanish Ministry of Science and Innovation, co-funded by the European
Social Fund; and the ERC Starting Grant GOSSPLE number 204742.

444 X. Bai et al.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: Proceedings of SIGCOMM, pp. 63–74 (2008)

2. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of SIGKDD,
pp. 44–54 (2006)

3. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence
in Twitter: The Million Follower Fallacy. In: Proceedings of ICWSM (2010)

4. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach
to database replication and partitioning. In: Proceedings of the VLDB Endowment,
vol. 3(1-2), pp. 48–57 (2010)

5. Duong, Q., Goel, S., Hofman, J., Vassilvitskii, S.: Sharding social networks. In:
Proceedings of WSDM, pp. 223–232 (2013)

6. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of OSDI
(2012)

7. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. In:
Proceedings of SIGCOMM, pp. 51–62 (2009)

8. Hoelzle, U., Barroso, L.A.: The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan and Claypool Publishers (2009)

9. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter
under the microscope. First Monday 14(1) (2009)

10. Junqueira, F.P., Kelly, I., Reed, B.: Durability with bookkeeper. ACM SIGOPS
Operating Systems Review 47(1), 9–15 (2013)

11. Liroz-Gistau, M., Akbarinia, R., Pacitti, E., Porto, F., Valduriez, P.: Dynamic
workload-based partitioning for large-scale databases. In: Liddle, S.W., Schewe,
K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp.
183–190. Springer, Heidelberg (2012)

12. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
SIGMOD, pp. 135–146 (2010)

13. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.:
Scaling memcache at facebook. In: Proceedings of NSDI, pp. 385–398 (2013)

14. Ongaro, D., Rumble, S.M., Stutsman, R., Ousterhout, J., Rosenblum, M.: Fast
crash recovery in ramcloud. In: Proceedings of SOSP, pp. 29–41 (2011)

15. Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P., Ro-
driguez, P.: The little engine(s) that could: scaling online social networks. In: Pro-
ceedings of SIGCOMM, pp. 375–386 (2010)

16. Silberstein, A., Terrace, J., Cooper, B.F., Ramakrishnan, R.: Feeding frenzy: selec-
tively materializing users’ event feeds. In: Proceedings of SIGMOD, pp. 831–842
(2010)

17. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in
social networks and their implications. In: Proceedings of Eurosys, pp. 205–218
(2009)

18. Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for
large graphs. In: Proceedings of SIGMOD, pp. 517–528 (2012)

19. Zhong, M., Shen, K., Seiferas, J.: Correlation-aware object placement for multi-
object operations. In: Proceedings of ICDCS, pp. 512–521 (2008)

O2SM : Enabling Efficient Offline Access to Online
Social Media and Social Networks

Ye Zhao1, Ngoc Do1, Shu-Ting Wang2, Cheng-Hsin Hsu2, and Nalini
Venkatasubramanian1

1 Department of Information and Computer Science, University of California, Irvine, USA
2 Department of Computer Science, National Tsing Hua University, Hsin-Chu, Taiwan

Abstract. In this paper, we consider the problem of efficient social media access
on mobile devices, and propose an Offline Online Social Media (O2SM) Middle-
ware to: (i) rank the social media streams based the probability that a given user
views a given content item, and (ii) invest the limited resources (network, energy,
and storage) on prefetching only those social media streams that are most likely
to be watched when mobile devices have good Internet connectivity. The rank-
ing scheme leverages social network information to drive a logistic regression
based technique that is subsequently exploited to design an utility based content
prefetching mechanism. We implemented O2SM and a corresponding app, oFace-
book, on Android platforms. We evaluated O2SM via trace data gathered from a
user study with real world users executing oFacebook. Our experimental results
indicate that O2SM exhibits superior viewing performance and energy efficiency
for mobile social media apps; its lightweight nature makes it easily deployable
on mobile platforms.

1 Introduction

The last few years have witnessed the wild success of social networks and social media
sites such as Facebook, Twitter, LinkedIn, Google+, and Instagram – communications
using these networks have indeed become a part and parcel of our lives today. With the
growing popularity of mobile communications, users connect to these social networks
using mobile devices (e.g., smartphones, tablets) and expect to derive the same experi-
ence no matter how and where they connect. A market study reports that 37% of users
accessing rich content, e.g., video, audio, and images, on PCs have switched to mobile
devices; moreover, 55% of smartphone users use Facebook on their smartphones [4].
Another survey, done in Canada, shows that 61% of users access Facebook through
mobile devices [1]. These market reports indicate that social media streams, carrying
rich content, have become key aspects of how people view information and how soci-
ety interacts today. However, several challenges arise in enabling rich social media on
mobile devices including: (i) sporadic network availability causing intermittent access
(ii) bandwidth limitations in shared wireless media, and (iii) high access cost from vol-
ume driven dataplans – all of the above result in degraded user experience and limit the
exchanges of social media information on mobile devices.

A simple approach to cope with intermittent Internet access is to share or download
social media streams when possible, as if they were traditional media streams from con-
tent providers, such as Netflix and Hulu. However, there are key differences between

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 445–465, 2013.
c© IFIP International Federation for Information Processing 2013

446 Y. Zhao et al.

social media and traditional media streams that makes best effort downloads have infe-
rior performance in our case:

– Personalized preferences: The demands of traditional media streams are dictated
by global popularity (e.g., movies, television), whereas access to rich social media
streams are driven by user preferences and content characteristics. Therefore, tradi-
tional one-size-fits-all, popularity based content ranking mechanisms do not work
for social media streams.

– Dynamic, variable size contents: Compared to traditional media, social media
sharing is exemplified by more dynamic uploads (by users); the average size of
content that is shared during an update is also smaller than that of media content
providers. For example, it is reported that majority of YouTube videos are shorter
than 10 mins, while traditional video servers offer up to 2-hour videos [30].

– Sporadic viewing situations: Dynamic uploads by social network users and asyn-
chronous access (by their friends) result in sporadic access patterns, e.g., users
checking Facebook updates at a cafeteria line. Unlike media downloads where the
item of interest can be pre-specified by the users, users may wish to view newly
uploaded content in new situations, including those where mobile Internet access
is unavailable, intermittent, or expensive (e.g., on a bus/train).

Today, the social media mobile applications (apps), such as mobile Facebook [2],
are simple client side implementations that work as dedicated social media browsers.
In the absence of connectivity at the time users wish to use the apps, users do not have
access to up-to-date social media content. In this paper, we consider the problem of ef-
ficient social media access on mobile devices and develop solutions to make the mobile
social media experience seamless, personalized, and effective. We achieve this by: (i)
ranking the social media streams based the probability that a given user views a given
content item, and (ii) investing the limited resources (network, energy, and storage) on
prefetching only those social media streams that are most likely to be watched when
mobile devices have good Internet connectivity.

A comprehensive solution for these two tasks must account for multiple factors in-
cluding network conditions, content characteristics, device status, and users’ social net-
works. These factors are typically outside the purview of content providers (e.g., current
network conditions for a particular user) or the app at the user side (e.g., characteristics
of a specific content item). We develop a mobile middleware system that bridges the de-
vice OS and network environment to various social networking apps, such as Facebook,
Google+, LinkedIn, and Twitter to determine what content to prefetch and when. Such a
middleware approach allows us to: (i) reuse key techniques and implementations across
multiple devices/users (ii) make better prefetch decisions based on global information,
and (iii) control the overhead due to data transfers and environmental sensing. Note that
the proposed schemes are designed to work in tandem with user driven navigation of
social media content (e.g., through mobile Facebook) and not replace them. In fact, we
envision that users can provide feedback on relevance of the content through existing
well known frontends (such as mobile Facebook).

The key contributions of this paper are as follows:

– We design a comprehensive Offline Online Social Media (O2SM) middleware to
enable accessing social media on mobile devices with intermittent Internet access.

O2SM : Enabling Efficient Offline Access to Online Social Media 447

Fig. 1. The proposed system architecture and an example of social media stream metadata

– We develop, implement, and evaluate novel algorithms for content ranking and
prefetch planning to optimize the user experience of mobile social apps. The pro-
posed techniques are theoretically grounded using machine learning and optimiza-
tion based approaches.

– We implement a mobile middleware system and a concrete app, oFacebook (of-
fline Facebook), to automatically prefetch user-generated contents in social media
streams to provide mobile users uninterrupted access to social networks.

– We conduct a user study using oFacebook to collect trace data from 10 users, to
determine how users access media information on Facebook via mobile devices. We
perform extensive trace-driven simulations to evaluate the proposed middleware.

To the best of our knowledge, O2SM is the first system that enables a systematic, auto-
mated approach for viewing relevant and up-to-date social media in an offline manner.

2 System Architecture

Fig. 1(a) presents the architecture of our proposed middleware, O2SM that bridges the
mobile OS and social network apps running on a user’s mobile device. O2SM sys-
tematically detects user-generated rich content from the mobile user’s social media
streams (e.g., fresh photos or videos posted by the user’s friends), and intelligently
prefetches contents in order to cope with intermittent Internet access. The choice of
what to prefetch and when is crucial since the mobile device is limited in resources,
such as battery level and storage space - in the social media context, it is imperative
that the mobile user’s demands and preferences are taken into consideration while se-
lectively downloading content. Furthermore, energy efficient download is also a must
in order to achieve good user experience, e.g., overly-aggressive prefetching decisions
may drain the device battery , which prevents the user from using his or her phone for
necessary daily activities.

The O2SM middleware consists of five components: (1) system profiler, (2) user
activity profiler, (3) meta-data collector, (4) content ranker, and (5) content prefetcher.

448 Y. Zhao et al.

The system profiler monitors network and battery conditions on the device via various
performance metrics, including signal strength, network throughput, and battery level. It
also monitors the size of total downloads to avoid filling up the storage space. Based on
the current network conditions and past history of network profiles, the system profiler
forecasts the network connectivity and throughput in the near future. The user activity
profiler monitors the user’s activities on the device. In particular, it monitors the user’s
access patterns to social media streams, e.g., when and how long the user navigates
the social media streams, and forecasts the user’s future accesses. This information can
be collected from the history log of the social media apps built atop the middleware or
upon explicit user input. For example, if the user plans to go out for lunch in an hour, the
user can request the middleware to aggressively prefetch social media contents before,
so that he/she has something to watch while waiting in the restaurant.

The meta-data collector periodically pulls the meta-data from each of the social me-
dia streams to get updates of new rich contents since the last pull. This is done when
the network is available and the remaining battery level is above an operational thresh-
old, which is configurable by the user. The meta-data is usually small in size. Fig. 1(b)
shows an example meta-data request and its JSON responses for a media content using
Facebook Query Language (FQL) [3]. Our experiments show that the average meta-data
size is around 700 bytes per content, and is negligible when compared with the typical
data size of 140 KB of a photo or that of 3 MB of a 1.5-minutes video. The collected
meta-data is saved onboard the meta-data database for later processing.

To support intelligent content prefetching, the content ranker invoked by the content
prefetcher queries the database on fresh content items that have not been downloaded
by the system as yet, and predicts the probability the user would view them. The rank-
ing algorithm is based on social relations between entities in the social networks, user
interests and content popularity. The ranked contents are fed to the content prefetcher
to make decisions on which contents to prefetch and when to prefetch. The crux of
this component is a cost-benefit driven prefetch scheduling algorithm which aims to
maximize the overall prefetching gain (benefit-cost) by intelligently selecting contents
to download and scheduling their download time. This is achieved by carefully taking
into account the variations in the sizes of the contents (from content meta-data), their
expected probability of being watched (from the content ranker), predicted network
conditions such as the network connectivity and bandwidth (from the system profiler),
as well as predicted user activity such as when the user will navigate his/her social
media streams (from the user activity profiler). Once the contents are scheduled for
downloads, they are inserted into a download queue. The downloader downloads the
contents in the queue based on their scheduled times.

3 Social Media Content Ranking Component

Given resource constraints at mobile devices, a method to efficiently rank social media
contents based on their importance is critical. Prefetching all media contents that ac-
company heavy multimedia objects, e.g., images or videos, could not only be harmful
to user, when he or she is in need of phone battery to survive in daily work, but also
waste resources if the downloaded contents are not later viewed by user. This section is

O2SM : Enabling Efficient Offline Access to Online Social Media 449

dedicated to present the background and our approach to develop a ranking system that
works efficiently for mobile devices and scalably against the arrival of new contents.

Background: Traditional ranking systems can be classified into three categories: (1)
content based approaches [5, 9, 12], (2) collaborative filtering approaches [7, 20, 27],
and (3) social network based approaches [19, 21, 25]. Content based approaches [5, 9,
12] rank media contents using the correlation between the attributes of media content,
such as descriptions, keywords, tags, images, and video features (e.g., colors), and user
preferences. The basic process here matches up the attributes of the user profile (with
preferences,interests), with the attributes of contents. The performance of this category
is limited by dictionary-bound relations between the keywords obtained from users and
the descriptions of media contents. More comprehensive feature extraction (e.g., image
and video analysis) is expensive and hence not supported by most social media.

Collaborative filtering approaches [7,20,27] recommend media contents by first cal-
culating the similarity between all users in the system based on their previous ratings
of media contents. Ratings are, for example, represented using numeric scores from 1
to 5 and similarity is estimated using heuristic measures, such as the well known cosine
function. The system, then, projects a ranking a user is likely to give a piece of rec-
ommended content by aggregating the ratings of the user’s k nearest neighbors on the
content. Collaborative filtering approaches are useful for highly sparse data where the
matrix (ratings) is partially missing. Issues for these approaches include cold start, i.e.,
all ratings are missing, and high computation complexity, i.e., a large number of users
and contents involves an inference process, that is critical due to limited resources on
mobile devices.

The last category ranks social media contents via social networks. Social networks
are characterized by heterogeneous entities, e.g., contents, users, and social relations.
Recent studies [19,21,25] exploit relations among entities to recommend contents. For
example, a user is likely to view contents generated by friends, whom the user interacts
with frequently over social networks. The approaches in this category fit our system’s
goals best because they could utilize the underlying social relations captured in our sys-
tem. However, while the intuitions are appealing, a direct application of the existing
techniques to our system is not easy. For example, the work in [19] is based on a so-
cial graph to evaluate social relations among entities, and works only for a fixed set of
entities. It requires rebuilding the social graph and recalculation of weights when new
contents arrive, which happens frequently in our system. Extensions to the collabora-
tive filtering concept [21, 25] by employing relations to estimate similarity have been
studied, they suffers from high computation complexity that are unsuitable to mobile
deployment.

Our Approach: We inherit the spirit of the social network based recommendation
systems [19,21,25] to rank social media contents based on social relations and interac-
tions, but targets to work efficiently on mobile devices and be scalable to the arrivals of
new contents. Besides, we take user-poster interests and content popularity into account
to improve the ranking accuracy. In some sense, user-poster interests and content pop-
ularity can be considered as indirect content based features because they capture user
preferences and content impacts on viewers. The main design principles for the ranking

450 Y. Zhao et al.

Table 1. Representation of user interactions

Interaction Type Explanations
Post(u, f) User u writes a post on poster f ’s Wall page, tags f in a photo, a video

or an album of images.
Post(f , u) Vice versa.
Comment(u, f) User u comments on a post from f , or on a tag of a photo, a video or an

album from f .
Comment(f , u) Vice versa.
Like(u, f) User u likes a post uploaded by f , or an image, a video or an album

tagged by f , or u likes a comment from f .
Like(f , u) Vice versa.
Message(u, f) User u sends a private message to f .
Message(f , u) Vice versa.

component in our mobile system are light weight and fast provisions of ratings on newly
incoming contents.

Our approach first identifies and constructs social based features that can infer user-
content interactions. We then employ a supervised learning approach to predict the
probability of a social media content viewed by a user. In this paper, we develop our
ranking component to support content ranking on Facebook, but the approach is general
enough to be readily applied to other social networks, e.g., Twitter as presented in [13].

We construct the following features to capture the underlying social relations. Let u
be a user with a friend f . Table 1 presents key interaction types between u and f .

1. Post interactions: This feature captures the interactions between the user and a
friend of the user via posts on their social media sites, e.g., Facebook Wall page. It
is clear that u is likely more interested in f ’s posts if interaction between u and f is
high. We use the total number of interactions between u and f to quantify this fea-
ture. Post interactions include post(u, f), post(f , u), comment(u, f), comment(f ,
u), like(u, f), and like(f , u) as shown in Table 1. In Facebook, a user can post
message on his or her friend’s Wall page or tag the friend in a photo. A Twitter user
can retweet an interesting message or @reply a tweet from some person the user
follows. All of these are considered post interactions. Some social networks, for
example Facebook, allow users to subscribe or like a page (e.g., a soccer club like
Manchester United or a university like Harvard University). Any updates from the
page will be sent to the subscribers similar to those from a friend. For simplicity,
we consider a page as a friend of u.

2. Private message exchange: Different from post interactions, which may be avail-
able in public, private messages are only available to the recipients. We use the
total number of messages sent and received between user u and friend f of u to
quantify the feature (i.e., message(u, f) and message(f , u) in Table 1). The higher
number of exchanged messages, the higher the interaction level between u and f
and higher the probability that u views f ’s posts. In Facebook, users can send and
receive private email-like messages l to and from their friends (and even strangers).

O2SM : Enabling Efficient Offline Access to Online Social Media 451

Twitter and Weibo users can communicate with each other through direct messages
with a limited number of characters.

In addition to the above features, we extract and represent two others features - the
level of interest of a user u has to a specific friend f , and the popularity of a post.

1. User interest w.r.t to a friend: We measure the interest of u w.r.t to a friend f of u
by the number of view clicks to contents posted by f . The higher number of view
clicks indicates a higher interest level of u to f .

2. Post popularity: A post from friend f ,with a high number of comments and likes,
is likely interesting because it receives high attention from many viewers. It is there-
fore likely to be interesting to u even the viewers are not u’s friends. We thus em-
ploy the number of comments and likes in a post to predict the viewing probability.

In order to predict the probability a content is viewed by a user, we employ a well-
known supervised learning algorithm - logistic regression classifier. Logistic regression
is an additive model used to predict the probability of a discrete event given a set of
explanatory variables. It weights the impact of all constructed features with estimated
coefficients. In the literature, the logistic regression has been used for prediction, such
as friendship strength prediction [16]. We are the first applying the logistic regression
to predict the probability of user-content interactions based on the social networks.

Now we describe how to apply the logistic regression to our content ranking compo-
nent. The logistic regression in the training process learns a model of the form:

p(yi|xi) =
1

1 + e−(c0+
∑

n
1 cjx

j
i)
, (1)

where xi is a vector of the features (x1
i , ..., x

n
i) described above for content i, and yi

is 1 if the user clicks to view content i. Otherwise, yi is 0. The model is represented
by a vector of coefficients c, in which c0 is not multiplied with any feature and added
to the vector as noise. In the training process, the model is learned by maximizing the
log-likelihood of the logistic regression model. A well-known approach for the max-
imization problem is a trust region Newton method [18]. The resulting model is then
used to evaluate the viewing probability for a newly arriving media content by sim-
ply applying Eq. (1) to the features of the new content. In the evaluation section, we
will show that the training process that calculates the model parameters for our ranking
component is indeed light weight and fast. This technique is attractive in our setting
since the processing of newly arriving contents essentially reduces to that of applying
Eq. (1). Furthermore, the simplicity of the scheme lends itself to be easily deployed on
mobile devices.

4 Ranking-driven Social Media Prefetching

Prefetching social media contents has received attention at CDNs. [29] considered
the problem of efficient geo-replicating contents across multiple data-centers spread
around the world. However, little research has been done for prefetching social me-
dia contents to mobile clients. Mobile prefetching is an increasingly relevant topic of

452 Y. Zhao et al.

Algorithm 1. Prefetch Scheduling
Step 1-Read Unviewed Ranked Contents:
read the list of unviewed ranked contents output from the Content Ranking component.
Step 2-K Slot-ahead Forecast:
forecast the network conditions and user context for the next K slots.
Step 3-Offline Online Social Media Prefetch Scheduling (O2SMPS):
formulate an O2SMPS problem using a cost/benefit analysis to decide which contents to
download in each of the next K slots.
Step 4-Contents Download:
sequentially download contents that are scheduled for the current slot.

research. Techniques have been developed for determining when to prefetch based on
network conditions such as WiFi and cellular signal strength [10, 26, 28]. Minimizing
energy consumption during prefetching is critical for mobiles - studies [6, 11] indicate
that WiFi is typically more efficient than cellular networks, and techniques to aggregate
multiple data transfers to save energy have been developed. [8, 17] exploit social net-
works to assist prefetching video prefixes. In general, prefetching has been explored in
client-server and peer-to-peer settings using factors such as energy, transfer volume and
user preferences.

Much of the earlier work focuses on what to prefetch and does not explicitly ac-
count for whether the prefetched content is consumed or not. A more comprehensive
prefetching scheme must incorporate which items to prefetch for maximum benefit. [31]
observes that users tend to launch a fairly fixed sequence of the apps, and user locations
have a strong correlation with app usage so a decision engine was proposed to determine
which apps to prefetch. In contrast to the above approaches, we propose a comprehen-
sive scheme that exploits the previously described ranking mechanism to determine
what to prefetch and develops a efficient scheduling technique for when to prefetch.

The O2SM prefetcher divides time into prefetching period or slot (e.g., 15 minutes),
say Tprefetch, and runs the prefetch scheduling algorithm at the start of every slot. The
algorithm selects a number of contents for download in each prefetching period opti-
mizing for large time-scale prefetching. Algorithm 1 shows the flow of the scheduling
algorithm. The goal of the algorithm is to provide the best viewing experience when
the user navigates his/her social media streams, while keeping the prefetching cost low.
The O2SM prefetcher strives to balance the potential benefit of prefetching against its
cost: Since the prefetching benefit is different for different contents and the prefetching
cost of the same content varies over time when network condition changes, the prefetch
scheduling algorithm determines what to download and when to download by formu-
lating a Offline Online Social Media Prefetch Scheduling (O2SMPS) problem. In the
following sections we describe the cost/benefit modeling and the O2SMPS problem in
details, and discuss the forecasting techniques used in our system.

4.1 Cost/Benefit Modeling

Let I = {i1, i2, . . . , i|I|} be the list of ranked contents and qi is the likelihood of
content i will be viewed by the user. We evaluate the cost/benefit of content prefetching

O2SM : Enabling Efficient Offline Access to Online Social Media 453

in the next K slots to determine the best prefetching time by forecasting the network
conditions and user activity in the future. Let t = 1, 2, · · · ,K be the slotted time for
the next K prefetching slots. The system monitors the use of the 3G and WiFi network
interfaces for Internet access. Let pwifi(t) be the probability that the device uses the
WiFi interface for data transfer at slot t, and bwwifi(t) is the corresponding download
bandwidth. Similarly, pcell(t) and bwcell(t) are the probability and bandwidth for the
3G interface at slot t. The system also predicts how likely the user will actively navigate
his/her social media streams. Let pnav(t) denote the predicted likelihood that the user
may become active at slot t. We discuss the network and user activity profiling and
prediction techniques in the Sec. 4.2.

Inspired by [14], we estimate the cost and benefit of prefetching each content along
three dimensions: viewing performance, energy use, and data plan use. We consider
two costs involved in prefetching: the energy cost and the cellular data plan cost. The
cost for prefetching a content may vary over time when the network conditions change.
Formally, we define the estimated cost of prefetching a content i at slot tpre as:

C(i, tpre) = we × CEnergy(i, tpre) + wd × Ccell(i, tpre),

where we and wd are weighting coefficients for energy and cellular data consumption
respectively. The coefficients are configurable to the user. For instance, if the user uses
an unlimited cellular data plan so that the cellular data usage is not a concern, then wd

can be set to zero. On the other hand, if the user is discreet about energy use, he may
prefer a large value for we.

The benefit of prefetching is threefold: the viewing performance benefit, the energy
benefit and the cellular data plan benefit. The viewing performance benefit comes from
the improved user experience when the user views a prefetched content. The energy and
the data plan benefits are the saves in the energy use and data plan use that would be
otherwise consumed when the user views the content. Clearly, the benefit depends on:
(i) probability of the content to be viewed and (ii) network condition at the time when
the user navigates the streams. Formally, we define the estimated benefit to prefetch a
content i in case the user navigates his/her social media streams in slot tnav as:

B(i, tnav) = Bview(i, tnav) + we ×Benergy(i, tnav) + wd ×Bcell(i, tnav).

We next define Benergy(·). We adopt the energy models developed by PowerTu-
tor [32]. For downloading a content under WiFi at slot t, the energy cost is modeled as
ewifi(i, t) = cwifi× si

bwwifi(t)
, where cwifi is a power coefficient for WiFi interface. For

downloading under 3G, the energy cost is ecell(i, t) = ccell× si
bwcell(t)

+etail, where ccell
is a power coefficient for 3G and etail is an estimated 3G tail energy cost. Since contents
are prefetched in batches, to estimate the tail energy cost we let etail = ctail × Ttail

lavg

where ctail is the power coefficient for 3G tail energy, Ttail is the typical 3G tail time
(usually > 10 seconds), and lavg is the history average of the number of contents
downloaded in a batch by the prefetcher. To predict the 3G tail energy consumption for
on-demand fetches from the user, we let etail = ctail × min(Tinactive, Ttail) where

454 Y. Zhao et al.

Tinactive is the history average of the idle period between two consecutive content re-
quests from the user. Then, the expected energy to download a content i at slot t is:

E(i, t) =
pwifi(t)

pwifi(t) + pcell(t)
× ewifi(i, t) +

pcell(t)

pwifi(t) + pcell(t)
× ecell(i, t).

Since the prefetching energy cost Cenergy(i, tpre) = E(i, tpre), the energy benefit be-
comes Benergy(i, tnav) = qi×E(i, tnav), which takes the probability of the content to
be viewed into consideration.

We define Bcell(·) in a similar way. The expected cellular data plan use for down-
loading a content i at t is:

D(i, t) =
pcell(t)

pwifi(t) + pcell(t)
× si.

Therefore, the data plan cost Ccell(i, tpre) = D(i, tpre) and data plan benefit
Bcell(i, tnav) = qi ×D(i, tnav).

The viewing performance benefit is considered as the granted feasibility for offline
access if the user desires to view a content when he/she doesn’t have network access.
On the other hand, if the user checks the content when he/she has network access, the
benefit is the hidden latency of the on-demand content downloading/buffering. Assume
the download bandwidth at the time when the user requests the content is bw, the hid-
den latency can be formulated as d(i) = min(si,smax)

bw , where smax is the maximum
playback buffer size for videos, or smax = si for non-video content. Then, taking into
account the viewing probability of the content as well as the predicted network condi-
tions, for any time slot tnav that the user may actively navigate social media contents,
the expected viewing performance benefit for prefetching content i is:

Bview(i, tnav) = pwifi(tnav)× qi × dwifi(i, tnav) + pcell(tnav)× qi × dcell(i, tnav)

+woff × (1− pwifi(tnav)− pcell(tnav))× qi,

where dwifi(i, tnav) and dcell(i, tnav) are the predicted hidden latency under WiFi and
3G respectively, and woff is a relative benefit weight of viewing offline to viewing
online, that can be customized by the user.

4.2 O2SMPS Problem

The O2SMPS problem maximizes the prefetching gain as the benefit minus cost, by
allocating contents for downloads in each of the next K slots. We define a prefetch
scheduling matrix, Z = {zi,k}, where zi,k ∈ {0, 1}, such that zi,k = 1 if download
content i at slot k and zi,k = 0 otherwise. Furthermore, let yi(k) be another 0-1 variable
that indicates whether a content i has been downloaded before slot k. It is easy to see
that yi(1) = 0 and yi(k) =

∑k−1
l=1 zi,l under the constraint that

∑K
k=1 zi,k ≤ 1, i.e., a

content can not be scheduled for download more than once.
To be useful, a content must be prefetched before the user checks his/her social media

streams. Taking into account pnav(t), i.e., the likelihood that the user may actively

O2SM : Enabling Efficient Offline Access to Online Social Media 455

navigate social media contents at each of the K slots, we can calculate an expected
prefetch scheduling benefit for any scheduling Z = {zi,k} as:

Benefit(Z) = pnav(1)×
∑|I|

i=1 (B(i, 1) · yi(1))
+(1− pnav(1))pnav(2)×

∑|I|
i=1 (B(i, 2) · yi(2))

+ · · ·+∏K−1
k=1 (1− pnav(k))pnav(K)×∑|I|

i=1 (B(i,K) · yi(K)),

where each term on the right side of the equation specifics the expected prefetching ben-
efit if the next time when the user navigates his/her social media streams is at the kth

slot. On the other hand, the expected prefetch scheduling cost for the prefetch schedul-
ing Z is:

Cost(Z) =

|I|∑
i=1

K∑
k=1

C(i, k) · zi,k.

Now we formally define the O2SMPS problem as:

maximize Benefit(Z)− Cost(Z) (2a)

subject to
∑|I|

i=1 si · zi,k ≤ Tprefetch · bw(k) k = 1, . . . ,K; (2b)
∑K

k=1 zi,k ≤ 1 k = 1, . . . ,K; (2c)

zi,k ∈ {0, 1} i = 1, . . . , |I|; k = 1, . . . ,K, (2d)

where (2b) specifies that the total amount of data can be downloaded in a prefetching
slot is constrained by the average download bandwidth in the slot.

The above problem can be reduced to a Generalized Assignment Problem (GAP)
[23] that assigns |I| items to K bins and the value of each item varies for different bins
it puts in. The problem is known to be NP-hard, and its efficient approximation algo-
rithms has been studied extensively in literature. In this work, we adopt the polynomial-
time algorithm by Martello and Toth [22] that provides an approximate solution to the
problem under the overall time complexity of O(K|I|logK + |I|2).

The algorithm has two phases. The first phase tries to provide a reasonably good
assignment uses a measure of the desirability of assigning content i to slot t, say gi,t.
It iteratively considers all the unassigned contents, and picks the content with the max-
imum difference between the largest and second largest gi,t to get assigned first. The
intuition is such content is most critical since failing to assign it into its best slot will
negatively impact the overall performance most. We let gi,t =

fi,t
si

, where fi,t is the
gain of assigning content i to slot t derived from F , and si is the size of the content. So
gi,t is a measure of the unit gain of the content i in slot t. In the second phase, once all
contents have been assigned, the solution is improved through local exchanges. Readers
are referred to [22] for the algorithm details.

Forecasting Network Connectivities and User Activity. The prefetcher relies on two
predictions for each of the prefetching slots to make scheduling decisions: (a) a net-
work prediction in terms of the connectivity probability distribution vector pnet(k) =
[pwifi(k), pcell(k), (1− pwifi(k)− pcell(k))] as well as the bandwidth vector bw(k) =
[bwwifi(k), bwcell(k), 0]; and (b) a user activeness prediction as the likelihood pnav(k)
that the user might navigate his/her social media streams in the slot.

456 Y. Zhao et al.

Because people are creatures of habit, many existing profiling and forecasting
techniques (e.g., location-based or time series prediction) can be used by both pre-
diction problems to achieve highly accurate predictions. A notable technique is Bread-
Crumbs [24], which is a location-based prediction scheme. It tracks the movement of
the mobile device and utilizes a simple Markov model to generate connectivity fore-
casts. Their evaluation results indicate a very good accuracy. The technique requires
the location information either from the device’s GPS or techniques like Place Lab [15]
where the device has to communicate with a remote server to extract its location in-
formation from the information of its current WiFi access point and cellular towers. To
mitigate this constraint, we applied a another simple Markov model based technique
when the location information is not generally available.

We use a time-dependent Markov model for forecasting. The technique is applied to
both network connectivity and user activity forecast. To forecast network connectivity,
the states of the Markov model are WiFi, cellular and offline. To forecast user activeness,
the states are active and inactive. The transition matrix depends on the time of the day.
Since the prefetch schedule is slotted, say N slots a day, we maintain the same number
of transition matrix to capture the probability of a transition from a state at slot t to a
state at slot t + 1. For each state in the model and time boundary between slots, the
prediction component updates the corresponding Markov transition matrix whenever
the model is in the state and transitions to another or the time is moved to a new slot.
The future predictions can then be made from the trained transition matrix. For example,
let A(k) be the transition matrix for transition from slot k to slot k+1, given the network
connectivity at slot k as pnet(k), we can approximate the network connectivity k + 1
and slot k + 2 as pnet(k)A(k) and pnet(k)A(k)A(k + 1) respectively. Meanwhile, the
average bandwidth vector bw(k) can be easily derived for each time slot.

5 System and Application Implementation

As a proof-of-concept, we implemented O2SM as a userspace Java library targeted at
the Android platform. Our initial prototype supports prefetching of social media streams
from Facebook. In the future, we will extend the system for Instagram and Twitter
streams as well. Fig. 2 depicts the implemented system that includes two layers, the
O2SM middleware and oFacebook app.

Fig. 2. The proposed system’s implementation

The middleware layer runs as a service
on Android, which contains two main
threads, one to collect the meta-data for
the social media stream and the other
to prefetch media contents. Once the
user logs into his/her Facebook account,
collection of meta-data from newly up-
loaded contents is initiated. The prefetch-
ing thread implements the utility based
prefetch algorithm discussed earlier -
in principle, we can plug in alternate
prefetch techniques (e.g., prefetch all etc.). The middleware can also fetch media con-
tents on-demand when it receives requests from the oFacebook app.

O2SM : Enabling Efficient Offline Access to Online Social Media 457

(a) (b) (c)
Fig. 3. Snapshots of the oFacebook app: (a) show a video content, (b) show an album content,
and (c) set configuration parameters. App link: http://www.ics.uci.edu/∼dsm/oFacebook.

The oFacebook app (see Fig. 3) is implemented on top of the O2SM middleware.
The oFacebook app begins with the user logging into Facebook through its Authentica-
tor component. Once the user is logged in and authenticated, the metadata is obtained,
content ranked and downloaded, he/she can interact with the downloaded social media
stream, e.g., view a photo, watch a video, see comments and likes. Content items are
downloaded through the middleware either on-demand or via prefetching. The oFace-
book app captures metrics(e.g., user clicks to view) and passes this to the middleware to
learn how the user accesses the Facebook content - this will help the improve the rank-
ing process with use. The oFacebook app also provides interfaces to change system
settings (network and battery) through its Configurator component.

In our implementation, O2SM stores the prefetched contents in local storage so that
they can be accessed later via social media applications. The identifiers of the contents
are their original URLs; if the same content is referred by multiple social media streams
(e.g., a YouTube video is posted to both the user’s Facebook and Twitter account), only
one copy is prefetched and stored locally. This is realized by implementing a get(URL)
API that the SM app calls to access a specific content. If the content has been prefetched,
the content data is returned to the SM app; otherwise, the middleware fetches the content
using the on-demand fetcher module. All prefetched contents will be purged after a
specific period (configurable by user) to save storage - the default value is one week.
A mark(URL) API allows a user to permanently store a downloaded content, and a
unmark(URL) API to cancel a previous mark.

6 Performance Evaluations

To gain better understanding of the performance of the proposed system and algorithms,
we conducted a trace-driven evaluation. We distributed the oFacebook app to 10 partic-
ipants located in America, Asia and Europe to run for 10 days from May 15th to 24th,

458 Y. Zhao et al.

2013, and collected trace data to drive simulations to test the different algorithms. The
users were asked to accept the terms of services agreeing to let us store and send logs for
evaluation purposes. To secure the participants’ data, we did not log any private content
or person such as user names, message content, post descriptions and photo/video URLs.
We represent Facebook users by hashed user ids and represent Facebook contents and
multimedia objects (i.e. photos and videos) by hashed object ids using an one-way hash-
code function to prevent the trace back to the original information. The participants use
our system similarly to the standard mobile Facebook app: they install the system through
an Android executable file (.apk), login to Facecbook with their Facebook account, and
enjoy the downloaded Facebook newsfeed stream through a Facebook-similar naviga-
tion GUI. In the measurement version distributed in the user study, the ranker predicts a
viewing probability of 1 for all posted content; the prefetching thread simply downloads
all media contents - this allows us to measure user-content interaction behavior without
bias. Some information collected in the collected log traces is listed:

– Content: information on social media contents such as created time, author id, num-
ber of likes and comments, multimedia file size. (There are 12,596 contents col-
lected in 10 days for all users. The maximum number of contents for a single user
is 3,919 while the minimum number is 130.)

– user Activity: the time and content id when users click to view contents. (A single
participant clicks 693 times on average to view the downloaded contents. The max-
imum ratio of the number of views to the number of contents for a single user is
95% while the minimum ratio is 17%.)

– Friend: the ids of friends of users. (A single user has 310 friends on average. The
maximum number of friends a user has is 503 while the minimum number is 75.)

– System: information on the current network (e.g., connected or not, WiFi or cellular
networks, signal strength, and etc) and battery (e.g., charging or not, battery level,
and etc).

6.1 Integrated System Evaluations

We have implemented a trace driven simulator in Java to drive the evaluation of the pro-
posed system. The simulator implements a time slotted system, and runs simulations for
each of the ten users for a simulated time of 10 days using their own trace data. The sim-
ulator reads (a) the newsfeed stream trace to generate content items that arrive into the
system; (b) the network trace for the network condition at the simulated time; and (c) the
user activity trace for the viewing activity at the simulated time. Moreover, the Power-
Tutor energy model is implemented in the simulator to evaluate energy consumption for
content downloads. The contents derived from the trace data are ranked by the proposed
ranking technique. See Section 6.2 for a more detailed evaluation of our ranking scheme.

Since the middleware is intended to support multiple social media applications at
the same time, the content/data load is expected to be higher than that from the trace
where only one social media source is considered. To gain a better understanding of
the performance of each prefetching algorithm under a much higher data load, we have
implemented a synthetic stream generator to provide synthetic social media stream in-
put to the simulator. The synthetic stream generator uses a Poisson model to generate

O2SM : Enabling Efficient Offline Access to Online Social Media 459

social media contents that arrives to the system. Each social media content has a type
and size that are drawn randomly from the collected trace data. We consider a parame-
ter r, “video ratio”, to control the probability of drawing a video over an image in each
synthetic content. Moreover, to emulate the ranking on synthetic contents, the genera-
tor assigns a viewing probability to each item using a uniform-random distribution. To
emulate actual user viewing behavior on the ranked and downloaded content, we la-
bel content as viewed, again, using a uniform random distribution. Consequently, about
50% of the content will be considered as viewed, this yields an accuracy of 75% for the
emulated ranker (closely matches results from trace data).

Besides the synthetic stream generator, we also implemented a synthetic network
connectivity simulator to produce synthetic network connectivity. The purpose the syn-
thetic simulation is to evaluate the system under different network environments that
are not covered by the trace data. The network connectivity simulator is implemented
using a Markov model with three states: “WiFi connectivity”, “Cellular connectivity”
and “no connectivity”. State transitions occur every 15 minutes following the speci-
fied transition probability. The bandwidth of each state follows a Gaussian distribution,
except for the “no connectivity” state whose bandwidth is always zero.

We consider the following performance metrics in our evaluation:

– energy consumption: which has 2 aspects: (a) prefetch energy consumption for con-
tents that are prefetched and (b) on-demand fetch energy consumption for contents
not prefetched, but requested.

– prefetch energy per hit: which is evaluated as the total prefetch energy over the
number of prefetched contents being viewed by the user; since not all the prefetched
contents are viewed, this metrics serves as an indication of both prefetch accuracy
and prefetch energy efficiency.

– on-demand fetch delay: which is the downloading delay from on-demand fetching
contents if they are not prefetched by the time they are viewed; since this metric
aims to examine the latency that the user will experience for viewing unprefetched
contents, we also considered the difference for fetching photos and videos in the
simulator; For photo fetching, the delay is the latency for downloading the entire
content. For video fetching, the delay is the latency for downloading the first 1
MegaByte considered as the playback buffer size.

– cellular data consumption: which is the amount of data downloaded through the
3G/4G interface.

We compared our proposed prefetch scheduling algorithm with two baseline ap-
proaches. The“Aggressive” scheme periodically reads all feeds that arrive to the sys-
tem but have not been downloaded, ordered from the newest to oldest, and sequentially
downloads them whenever the network is available. The “Aggressive(Rank)” algorithm
takes into account the content rank derived from the ranking algorithm. It periodically
reads the most recent 100 feeds that have not been downloaded, but only downloads
contents whose predicted viewing probability is larger than 50% (i.e. considered more
likely to be viewed). Besides the baseline prefetching approaches, we also consider the
conventional scenario of social media access where no prefetching is used in order to
demonstrate the prefetching benefit.

460 Y. Zhao et al.

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

PS
(we

=
1)

O
2 SM

PS
(we

=
0.0

1)
0

1000

2000

3000

4000

5000

6000

7000
O

n-
de

m
an

d
F

et
ch

D
el

ay
(s

)

(a) On-demand fetch delay

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

(we
= 1)

O
2 SM

(we
= 0.0

1)

0.4

0.8

1.2

1.6

1.8

E
ne

rg
y

C
on

su
m

pt
io

n
(J

) ×104

prefetch

on-demand fetch

(b) Energy Consumption

Aggresive

Aggresive
(Rank)

O
2 SM

(we
=
1)

O
2 SM

(we
=
0.0

1)
0

2

4

6

8

10

12

P
re

fe
tc

h
E

ne
rg

y
pe

r
H

it
(J

)

(c) Prefetch Energy per Hit

Fig. 4. Evaluation on dataset

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

0

1

2

3

4

5

6

7

O
n-

de
m

an
d

F
et

ch
D

el
ay

(s
)

×104

(a) On-demand fetch delay

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

0.0

0.5

1.0

1.5

2.0
E

ne
rg

y
C

on
su

m
pt

io
n

(J
) ×105

prefetch

on-demand fetch

(b) Energy Consumption

Aggresive

Aggresive
(Rank)

O
2 SM

0

2

4

6

8

10

P
re

fe
tc

h
E

ne
rg

y
pe

r
H

it
(J

)

(c) Prefetch Energy per Hit

Fig. 5. Evaluation using synthetic contents where 50% are viewed

Experimental Results. Figure 4 reports the comparative performance of the O2SM
system with baseline schemes under purely trace based evaluations. We make several
observations. All prefetching approaches are able to significantly improve a user’s view-
ing experience by reducing the on-demand fetch delay for content viewing (Fig. 4a).
The ”‘Aggressive”’ approach improves the user’s viewing experience to the most ex-
tent, by downloading every content possible. However, its prefetch energy consumption
is significantly high (Fig. 4b). On the other hand, by taking into account the viewing
prediction from the ranking technique, the ”‘Aggressive(Rank)”’ and O2SM algorithms
provide much better energy efficiency by selectively downloading contents. Comparing
the two we can see that while both algorithms provide a similar viewing experience
improvement(Fig. 4a), the O2SM algorithm uses only around 1/4 of the prefetch energy
of the ”‘Aggressive(Rank)”’ algorithm (Fig. 4b and Fig.4c) by intelligently scheduling
the download when there are good connectivity.

We also evaluated the O2SM algorithm under different values of the we parameter,
which indicates the significance of the energy evaluation in the cost/benefit analysis. We
can see that with largerwe, the algorithm is more conservative on prefetching. It achieves
less energy use but results in less improved viewing performance because fewer contents
are downloaded. One way to take advantage of the effect of the parameter setting is to let
the system adaptively adjust the parameter value base on the current battery level. For
example, we can adaptwe to a lower (higher) value when the battery level is high(low)to
enable more(less) aggressive prefetching and tradeoff viewing performance for energy
conservation. We also tested the impact of the forecast range of network conditions and
user activities on the performance of the O2SM algorithm. We observe that when the
forecast range is larger, the algorithm performs marginally better and achieves lower
on-demand fetch delay and lower prefetch energy for a useful prefetch.

O2SM : Enabling Efficient Offline Access to Online Social Media 461

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

0.0

0.2

0.4

0.6

0.8

1.0

1.2
O

n-
de

m
an

d
F

et
ch

D
el

ay
(s

) ×105

(a) On-demand fetch delay

NoPrefetch

Aggresive

Aggresive
(Rank)

O
2 SM

0.0

0.5

1.0

1.5

2.0

2.5

E
ne

rg
y

C
on

su
m

pt
io

n
(J

) ×105

prefetch

on-demand fetch

(b) Energy Consumption

Aggresive

Aggresive
(Rank)

O
2 SM

0

10

20

30

40

50

P
re

fe
tc

h
E

ne
rg

y
pe

r
H

it
(J

)

(c) Prefetch Energy per Hit

Fig. 6. Evaluation using synthetic contents where 100% are viewed

To gain a better understanding of the performance of each algorithm under high
content/data loads especially when the network resources are not enough to ensure the
prefetch of all contents, we evaluated them through synthetic simulation using the syn-
thetic stream generator. The generator injects feeds into the system with Poisson mean
rate of 1 feed per 5 minute, and the video ratio is 0.33, i.e. 1/3 of all the feeds generated
are video feeds. We still use the trace data for network conditions.

Results in Fig. 5 show that under high content/data load, the “Aggressive” algorithm
performs poorly; the high energy cost incurred (Fig. 5b and 6b) does not lead to a
better viewing performance (Fig. 5a and 6a). This is because the aggressive scheme
wastes network and energy resources on content that will not be viewed. On the other
hand, O2SM exhibits the best energy efficiency of all techniques: it also has the lowest
total energy consumption and “prefetch energy per hit”. We also evaluated the sce-
nario where all contents will be viewed by the user. In this case, all content must be
prefetched, and selective downloads based on rank will not help prefetch performance.
The results are shown in Fig. 6. We observe that O2SM can still improve prefetch en-
ergy performance by scheduling contents downloads when the mobile device has good
network connectivity.

Since none of the users in our trace data have a 3G/4G data plan, to validate the
system under cellular network connectivity we further evaluated the algorithms under
synthetic network connectivity generated by the network connectivity simulator. The
transition matrix for the network connectivity is randomly created, however, with the
probability from any state to “cellular connectivity” larger than 50%. We still used the
trace data for contents generated in the simulation. Fig. 7 shows the simulation results
using synthetic network connectivity. We observe that by adjusting the wd parameter,
O2SM adjusts the cellular data plan use to improve prefetch performance, while keeping
a low prefetch energy cost.

6.2 Evaluations on the Content Ranker

We evaluate our ranking approach with Facebook data collected from the user study
by employing 5-fold cross validation. Here, we randomly partition our data sets into
5 equal size subsets. Among the 5 subsets, 4 are used for training and the last subset
is used for testing. This process is repeated 5 times, each time choosing one differ-
ent set for testing. We report the ranking component’s performance with two metrics
that are widely used in designing recommendation systems: (i) the Receiver Operator

462 Y. Zhao et al.

NoPrefetch

Aggresive

Aggresive(Rank)

Aggresive(Rank+NoCell)

O
2 SM

(wd
= 10

−3)

O
2 SM

(wd
= 1)

O
2 SM

(wd
= 10

6)
0

1

2

3

4

5

6

7

8

O
n-

de
m

an
d

F
et

ch
D

el
ay

(s
)

×103

(a) On-demand Fetch Delay

Aggresive

Aggresive(Rank)

Aggresive(Rank+NoCell)

O
2 SM

(wd
= 10

−3)

O
2 SM

(wd
= 1)

O
2 SM

(wd
= 10

6)
0

1

2

3

4

5

6

7

8

P
re

fe
tc

h
C

el
lD

at
a

U
se

(K
B

)

×105

(b) Cellular Data Plan Use

Aggresive

Aggresive(Rank)

Aggresive(Rank+NoCell)

O
2 SM

(wd
= 10

−3)

O
2 SM

(wd
= 1)

O
2 SM

(wd
= 10

6)
0

2

4

6

8

10

P
re

fe
tc

h
E

ne
rg

y
pe

r
H

it
(J

)

(c) Prefetch Energy per Hit

Fig. 7. Evaluation using synthetic network connectivity

Characteristic (ROC) curve and (ii) the area under the ROC curve (AUC). The ROC
curve compares the number of contents that are viewed by user (i.e., positives) and cor-
rectly predicted to be viewed (i.e., true) with the number of contents that are not actually
viewed (i.e., negatives) but incorrectly predicted (i.e., false). The ROC graph is plotted
on two axes where the Y axis depicts true positive rate, which is equal to the number of
correctly predicted positives divided by the number of positives, and the X axis shows
false positive rate, which is the number of wrongly predicted negatives divided by the
number of negatives. Intuitively, points in the upper left in the graph indicate better
performance . The second metric, AUC, is a measure for the effectiveness of diagnostic
tests; it is interpreted as the expected true positive rate, averaged over all false positive
rates. An AUC that is closer to 1 indicates a higher accuracy. AUC is known to be a
good metric to indicate accuracy for data set with skewed distributions.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

User

A
U

C

(a)

0 0.5 1
0

0.5

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

User 4
User 5
User 7
Random

(b)
Fig. 8. Evaluations on the content
ranker: (a) AUC for all users, (b)
the ROC curve for three users

Fig. 8a shows the AUCs for 10 participants. Our
ranking component achieves high performance with
the average accuracy of 71.7% (ranging from 81% to
62%). A random ranking in which contents are pre-
dicted randomly to be viewed or not be viewed (i.e.,
flip a coin) would yield 50% AUC. In Fig. 8b, we plot
the ROC curves for three users 4, 5, and 7, whose AUC
is the best, good and worst among the set of the partici-
pants respectively, to illustrate further the AUC results.
The line of the circles in Fig. 8b represents the random
ranking’s performance. The ROC curve results for the
users are consistent to the AUCs reported in Fig. 8a.
For example, it is shown that the curve of user 4 with
the highest AUC indeed dominates in Fig. 8b, and is
much higher than the random ranking’s line.

We further show the running time of the training
process. Since the whole data set is from our 10-day
experiment, the data for the training process includes
8-day contents (we use the 5-fold cross validation).
We use a DELL laptop with a dual core 1.8 Ghz CPU
and 4 GB RAM running on Windows 7, and employ
MATLAB (its logistic regression libraries are glmfit and glmval) to train and extract
the learning model. The average running time to come up with a model is only 0.006

O2SM : Enabling Efficient Offline Access to Online Social Media 463

seconds while the maximum running time measured is 0.138 seconds. These results
indicate that our ranking component is very efficient to mobile devices. Note that we
do not need to train the model frequently, but run it once per day with a data set of the
most recent 10 days to update the model with the current behaviors of the user.

We argue (and our results indicate) that the integrated system is inherently scalable
for the following reasons. Since it is designed as a system that executes primarily on
the user device (with little interaction between users for operation), we can scale to
an arbitrarily large number of users (limited only by the network and OSN provider).
Secondly, the ranking scheme, as illustrated is inherently low-overhead (avg. running
time of 0.006 secs) and can scale well both in terms of the social network size and the
number of content items that they upload - in general, the ranking overhead is minuscule
compared with the download/prefetch overhead for the rich content. Finally, since the
purpose of the system is to prefetch for future viewing, the sub-second latency has little
to no impact on viewing delay.

7 Concluding Remarks

In this paper, we designed and developed an offline and online social media middleware
system that prefetches media contents from online social networks for mobile users
who suffers from interruptions from the Internet. Our system is equipped with two main
components, media content ranker and prefetcher. Future work includes further research
on cross social media networks, i.e., systems support multiple social networks. We also
intend to explore the use of in-network resources, e.g., brokers/clouds, for storage and
complex content ranking mechanisms. Eventually, the merge of social media/network
and mobile computing will enable sharing and access of personalized content from
multiple sources. This paper is an enabling step in that direction.

References

1. Canada-new media trend watch long-haul, http://tinyurl.com/bv6p7mp
2. Facebook mobile app., https://www.facebook.com/mobile/
3. F.Q.L., https://developers.facebook.com/docs/reference/fql/
4. Ndp report, http://tinyurl.com/d3xq7dy
5. Ahn, J., Brusilovsky, P., Grady, J., He, D., Syn, S.: Open user profiles for adaptive news

systems: Help or harm? In: 16th International Conference on World Wide Web, pp. 11–20
(2007)

6. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in mo-
bile phones: a measurement study and implications for network applications. In: 9th Internet
Measurement Conference, pp. 280–293 (2009)

7. Cacheda, F., Carneiro, V., Fernandez, D., Formoso, V.: Comparison of collaborative filtering
algorithms: Limitations of current techniques and proposals for scalable, high-performance
recommender systems. ACM Transactions on the Web 5, 2 (2011)

8. Cheng, X., Liu, J.: Nettube: Exploring social networks for peer-to-peer short video sharing.
In: INFOCOM 2009, pp. 1152–1160 (2009)

http://tinyurl.com/bv6p7mp
https://www.facebook.com/mobile/
https://developers.facebook.com/docs/reference/fql/
http://tinyurl.com/d3xq7dy

464 Y. Zhao et al.

9. Chu, W., Park, S.: Personalized recommendation on dynamic content using predictive bilin-
ear models. In: 18th International Conference on World Wide Web, pp. 691–700 (2009)

10. Devlic, A., Lungaro, P., Kamaraju, P., Segall, Z., Tollmar, K.: Energy consumption reduction
via context-aware mobile video pre-fetching. In: IEEE International Symposium on Multi-
media, pp. 261–265 (2012)

11. Gautam, N., Petander, H.,, N.J.: A comparison of the cost and energy efficiency of prefetch-
ing and streaming of mobile video. In: 5th Workshop on Mobile Video, pp. 7–12 (2013)

12. Gemmis, M., Lops, P., Semeraro, G., Basile, P.: Integrating tags in a semantic content-based
recommender. In: ACM Conference on Recommender Systems, pp. 163–170 (2008)

13. Gilbert, E.: Predicting tie strength in a new medium. In: ACM Conference on Computer
Supported Cooperative Work, pp. 1047–1056 (2012)

14. Higgins, B., Flinn, J., Giuli, T., Noble, B., Peplin, C., Watson, D.: Informed mobile prefetch-
ing. In: 10th International Conference on Mobile Systems, Applications and Services, pp.
155–168 (2012)

15. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T.,
Howard, J., Hughes, J., Potter, F.: Place Lab: Device positioning using radio beacons in the
wild. In: 3rd International Conference on Perasive Computing, pp. 116–133 (2005)

16. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online
social networks. In: 19th International Conference on World Wide Web, pp. 641–650 (2012)

17. Li, Z., Shen, H., Wang, H., Liu, G., Li, J.: Socialtube: P2P-assisted video sharing in online
social networks. In: INFOCOM 2012, pp. 2886–2890 (2012)

18. Lin, C., Weng, R., Keerthi, R.: Trust region newton method for large-scale logistic regression.
The Journal of Machine Learning Research 9, 627–650 (2008)

19. Liu, D., Ye, G., Chen, C., Yan, S., Chang, S.: Hybrid social media network. In: 20th ACM
Internatioanl Conference on Multimedia, pp. 659–668 (2012)

20. Ma, H., King, I., Lyu, M.: Effective missing data prediction for collaborative filtering. In:
30th International Conference on Research and Development in Information Retrieval, pp.
39–46 (2007)

21. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regulariza-
tion. In: 4th ACM International Conference on Web Search and Data Mining, pp. 287–296
(2011)

22. Martello, S., Toth, P.: An algorithm for the generalized assignment problem. In: Operations
Research (1981)

23. Martello, S., Toth, P.: Generalized assignment problems. In: 3rd International Symposium on
Algorithms and Computation, pp. 351–369 (1992)

24. Nicholson, A., Noble, B.: BreadCrumbs: Forecasting mobile connectivity. In: 14th Interna-
tional Conference on Mobile Computing and Networking, pp. 46–57 (2008)

25. Noel, J., Sanner, S., Tran, K., Christen, P., Xie, L., Bonilla, E., Abbasnejad, E., Penna, N.:
New objective functions for social collaborative filtering. In: 21st International Conference
on World Wide Web, pp. 859–868 (2012)

26. Rahmati, A., Zhong, L.: Context-based network estimation for energy-efficient ubiquitous
wireless connectivity. IEEE Transaction on Mobile Computing 10, 54–66 (2011)

27. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recom-
mendation algorithms. In: 10th International Conference on World Wide Web, pp. 285–295
(2001)

28. Schulman, A., Navda, V., Ramjee, R., Spring, N., Deshpande, P., Grunewald, C., Jain, K.,
Padmanabhan, V.: Bartendr: A practical approach to energy-aware cellular data scheduling.
In: 16th International Conference on Mobile Computing and Networking, pp. 85–96 (2010)

O2SM : Enabling Efficient Offline Access to Online Social Media 465

29. Traverso, S., Huguenin, K., Trestian, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tail-
gate: Handling long-tail content with a little help from friends. In: 21st International Confer-
ence on World Wide Web, pp. 151–160 (2012)

30. Xu, C., Dale, C., Liu, J.: Statistics and social networking of youtube videos. In: 16th Inter-
national Workshop on Quality of Service, pp. 229–238 (2008)

31. Yan, T., Chu, D., Ganesan, D., Kansal, A., Liu, J.: Fast app launching for mobile devices
using predictive user context. In: 10th International Conference on Mobile Systems, Appli-
cations, and Services, pp. 113–126 (2012)

32. Zhang, L., Tiwana, B., Dick, R., Qian, Z., Mao, Z., Wang, Z., Yang, L.: Accurate online
power estimation and automatic battery behavior based power model generation for smart-
phones. In: IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, pp. 105–114 (2010)

AnonyLikes: Anonymous Quantitative Feedback
on Social Networks

Pedro Alves and Paulo Ferreira

Instituto Superior Técnico - ULisboa / INESC-ID
pedro.h.alves@gmail.com, paulo.ferreira@inesc-id.pt

Abstract. Social network applications (SNAs) can have a tremendous impact in
raising awareness to important controversial topics such as religion or politics.
Sharing and liking are powerful tools to make some of those topics emerge to a
global scale, as already witnessed in the recent Tunisian and Egyptian revolutions.

However, in several countries the simple act of liking an anti-government ar-
ticle or video can be (and has already been) used to pursue and detain activists.
Therefore, it is of utmost relevance to allow anyone to anonymously ”like” any
social network content (e.g. at Facebok) even in presence of malicious adminis-
trators managing the social network infrastructure.

We present anonyLikes, a protocol which allows SNAs users to ”like” a certain
post (e.g., news, photo, video) without revealing their identity (even to the SNA
itself) but still make their ”like” count to the total number of ”likes”. This is
achieved using cryptographic techniques such as homomorphic encryption and
shared threshold key pairs. In addition, the protocol ensures all other desirable
properties such as preventing users from ”liking” a particular post more than
once, while preserving anonymity.

The anonyLikes protocol is fully implemented using Facebook as an exam-
ple and can be easily used by developers (e.g. Facebook itself or other social
network applications and infrastructures) to provide an alternative ”like” button
called ”anonyLike”.

1 Introduction

Social network applications (SNAs) have achieved massive popularity in recent years,
with Facebook leading the way with its 900 million users1, but also Twitter and Linkedin
both with 200 million each.2

These applications allow people all over the world to connect each other at an un-
precedented scale. Although these connections are primarily being established to share
media and keep in touch with friends, family and colleagues, they are also being used to
raise awareness and coordinate large communities around important topics, such as the
political status of some countries. For example, Egyptian activist Wael Ghonim credited
Facebook with the success of the Egyptian people’s uprising, in particular for its key

1 http://www.statisticbrain.com/facebook-statistics/
2 http://blog.linkedin.com/2013/01/09/linkedin-200-million/,
http://mashable.com/2012/12/18/
twitter-200-million-active-users/

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 466–484, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.statisticbrain.com/facebook-statistics/
http://blog.linkedin.com/2013/01/09/linkedin-200-million/
http://mashable.com/2012/12/18/twitter-200-million-active-users/
http://mashable.com/2012/12/18/twitter-200-million-active-users/

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 467

role in organizing the most important protest on January 25th.3 During the revolution,
hundreds of thousands of Egyptians used Facebook to post, like and share news and
videos, raising global awareness about what was going on in the country.

However, that didn’t prevent Wael Ghonim from being arrested for 12 days, shortly
after the protest.4 Like Wael, many activists suffered from their activities on social
networks - Egypt and several other countries have been reported to track down activists
on social networks5 to the point where bloggers died while in custody for their anti-
government articles.6

We present AnonyLikes, a protocol which allows SNAs users to promote/raise aware-
ness to certain content (news, links, photos or videos which we will refer generically
as posts through the rest of the paper) without revealing their identity (even to social
networks administrators). Even though social networks typically go to great length to
protect the privacy of their users, they still have to abide by the legislation of each
country and may be forced to reveal internal data to governmental agencies under a
court order.7 Even if that doesn’t happen, there are still (less legal) ways to get access
to data, either by employing hackers8 or by tapping into internal disgruntled employ-
ees who have access to the social network database. Even under these potential attacks,
AnonyLikes always guarantees the anonymity of the users who have ”liked” some con-
tent. Our protocol uses cryptographic techniques (see below) to guarantee the privacy
of the ”like” activity (i.e., the information that an user ”liked” a given post) even with
access to the SNA’s database.

Our interaction model is similar to the one already existent and to which users are
accustomed - a ”like button”, which can be embedded into a blog or news site, asso-
ciated with a given post along with the number of ”likes” already submitted by other
users. Note that we will use the term ”like” for the rest of the paper as a generic verb
to denote an action that increases awareness of a certain post (it could also be ”share”,
”retweet”, ”reblog”, etc.).

Despite similarities with the existing interaction models (in particular, Facebook)
AnonyLikes is, in fact, a completely different protocol whereby messages exchanged
with the social network server are encrypted in such a way that:

– it is not possible to ascertain which post each user ”liked”;
– it is possible to know how many people ”liked” a certain post.

3 http://www.huffingtonpost.com/2011/02/11/
egypt-facebook-revolution-wael-ghonim_n_822078.html.

4 http://www.huffingtonpost.com/2011/02/07/
wael-ghonim-google-exec-egypt-protests_n_819438.html

5 http://readwrite.com/2011/06/15/the_arab_spring_a_status_
report

6 http://readwrite.com/2011/04/12/bahraini_blogger_dies_in_
custody

7 http://www.theregister.co.uk/2012/06/11/woman_wins_landmark_
trolling_case_against_facebook/

8 http://www.guardian.co.uk/media/2013/jan/31/
new-york-times-hacking-china-cybercrime

http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html.
http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html.
http://www.huffingtonpost.com/2011/02/07/wael-ghonim-google-exec-egypt-protests_n_819438.html
http://www.huffingtonpost.com/2011/02/07/wael-ghonim-google-exec-egypt-protests_n_819438.html
http://readwrite.com/2011/06/15/the_arab_spring_a_status_report
http://readwrite.com/2011/06/15/the_arab_spring_a_status_report
http://readwrite.com/2011/04/12/bahraini_blogger_dies_in_custody
http://readwrite.com/2011/04/12/bahraini_blogger_dies_in_custody
http://www.theregister.co.uk/2012/06/11/woman_wins_landmark _trolling_case_against_facebook/
http://www.theregister.co.uk/2012/06/11/woman_wins_landmark _trolling_case_against_facebook/
http://www.guardian.co.uk/media/2013/jan/31/new-york-times-hacking-china-cybercrime
http://www.guardian.co.uk/media/2013/jan/31/new-york-times-hacking-china-cybercrime

468 P. Alves and P. Ferreira

This is achieved using a combination of homomorphic encryption [23] and shared
threshold key pairs: [11]:

– Users can ”like” anything from an almost unlimited set of posts, i.e there is no limit
to the set of posts a user can ”like”;

– The period during which users can ”like” is unlimited, i.e.there is no closing date
after which a post can no longer be ”liked”.

In summary, the requirements that guide the design of the anonyLikes protocol are
the following:

– R1: Users should be able to ”like” a given post;
– R2: Only authenticated users can ”like”;
– R3: It must not be possible for anyone (including the social network infrastructure,

e.g., facebook.com) to know a certain user ”liked” a particular post;
– R4: ”Liking” a post must have an effect (even though not immediate) on the number

of ”likes” (count) of that post and that effect must be visible to everyone;
– R5: It must not be possible for someone to ”like” a particular post more than once;
– R6: The user interaction must be similar to the one already existent in major so-

cial network applications such as Facebook and Twitter (in particular, concerning
usability and performance).

Note that we cannot guarantee that the social network infrastructure servers (simply
referred as SNA-server from now on) don’t add fake ”likes” to a given post (although
this already happens today), i.e., it doesn’t artificially increment the ”likes” count. How-
ever, the SNA-server cannot ignore true ”likes” without raising suspicion since R4 man-
dates that the ”like” action must have an effect on ”likes” count.

In summary, the contributions of this work are:

– A protocol (AnonyLikes) that allows social network users to provide quantitative
feedback (e.g., ”like” on Facebook) about a certain post without revealing their
identity, even to the SNA-server itself. Using this protocol, social networks are still
able to calculate the sum of feedback (e.g., the number of people that ”liked” a
given post on Facebook) while preventing multiple ”likes” from the same user.

– A reference implementation of the AnonyLikes protocol for Facebook ”likes” that
can easily be used by Facebook itself or that can serve as the basis for other social
network implementations.

The remainder of this paper is organized as follows. The next section presents the
AnonyLikes protocol. After that, we describe the implementation of the prototype.
Section 4 presents an evaluation of the protocol regarding three aspects: Usability, Prob-
abilistic Duplicates Detection, and Performance. Finally, Sections 5 and 6, present rel-
evant related work and draw some conclusions, respectively.

2 Protocol

The anonyLikes protocol can be applied to any social network that has the concept of
quantitative feedback, i.e., that features an action that increments a number associated

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 469

Fig. 1. The 3 steps of the AnonyLikes protocol

with a post. For example, in Facebook and Tumblr, that action is ”like”, in Twitter is
”retweet”, etc. The general idea (see Figure 1) is to encrypt the ”likes” with a key that is
shared among the social network and a set of independent entities (e.g., NGOs) so that
none of these entities alone can decrypt it. By using a special property of the encryption
algorithm, the SNA-server is able to sum the number of ”likes” of a given post without
having to decrypt them (i.e., the sum is also encrypted). When the user wants to know
how many ”likes” are associated with a given post, it coordinates all the entities to
jointly decrypt the sum. We now present the details of this protocol.

The anonyLikes assumes a SNA-Server S (e.g., hosted at facebook.com) and a set
of Trustees Ti (e.g., public national institutes, NGOs, etc.). Clients exchange encrypted
messages with S and communicate with Ti to decrypt such messages (in particular, the
number of ”likes” of a given post).

There is an initial setup process where a shared threshold key pair is generated across
S and all Ti. The generated public key will be published and used to encrypt all the
”like” messages. Each entity (S and Ti) stores its part of the private key (also called
shadow). To decrypt such messages (or, better said, the result of operations on those
messages), a certain number of Ti (depending on the threshold) must collaborate, i.e.,
S alone is not be able to decrypt them.

After the setup stage, the social network is ready to accept ”like” messages. A ”like”
message is a tuple (post id, like), where post id is a unique identifier of the post, and
like is an integer telling whether the user ”liked” that post (value=1) or not (value=0).
On each one of these messages, the like value is encrypted with the previously gener-
ated public key and the tuple is then sent to S. Note that, since the post id is sent in
cleartext, the client cannot send only the posts the user ”likes”; it has to also send posts
the user didn’t ”like”. So, every time a user ”likes” a given post, the client sends not

470 P. Alves and P. Ferreira

only that post id but also n random other post ids, so that S is not able to know which
exact post the user ”liked”. S knows that the user ”liked” one of those posts but is not
sure which one. The post id has to be sent in cleartext to prevent duplicate ”likes”, as
explained in the next paragraph.

Sending multiple post ids each time the user ”likes” a post is crucial to satisfy re-
quirement R5 (it must not be possible for someone to ”like” a particular post more
than once - see Section 1). Since the ”likes” are encrypted, S has no way to know if
the user already ”liked” a given post (therefore satisfying requirement R3). However,
it knows that the user potentially ”liked” a given post - every post id sent to the SNA-
server (”liked” or not ”liked”) is a potential ”like” with probability 1/n (n is the number
of post ids sent for each ”like”). Based on this, S applies a probabilistic detection of
multiple ”likes” for the same post - it refuses post ids that has already received be-
cause there is a high probability that it is a ”like” for a post the user previously ”liked”.
Obviously, there may be false positives (i.e., S may refuse legitimate ”likes”) but the
probability is low enough to guarantee the usability and usefulness of the system. In
Section 4, we show that (being conservative) this probability is less than one collision
per year for Facebook users (i.e., of all the ”likes” the user does in Facebook during an
year, one of them won’t be successful).

Finally, the protocol allows users to see the number of ”likes” of a given post, with-
out knowing who did each individual ”like”. This is possible thanks to the additive
homomorphic properties of an ElGamal variant known as exponential ElGamal [9]. In
exponential ElGamal, it is possible to add two encrypted messages, without having to
decrypt them first, and the decryption of the encrypted sum equals the sum of the de-
crypted values. S applies this property by adding each encrypted ”like” (remember that
the ”like” value is either 1 or 0) with the already existent encrypted sum of that post id
(or zero if it is the first). When a user retrieves the number of ”likes” of a given post, it
is actually retrieving the encrypted sum associated with that post. The client is respon-
sible for coordinating with the necessary number of Trustees (based on a pre-defined
threshold) in order to decrypt that sum using their part of the private key.

2.1 Phases of the Protocol

We now detail the three phases of the protocol (setup, ”liking” a post, and retrieving
the number of ”likes”), starting with a brief summary of the cryptographic building
blocks (ElGamal cryptosystem, homomorphic encryption, threshold ElGamal, and zero
knowledge proof) which are used by the protocol.

Cryptographic Building Blocks

ElGamal. The anonyLikes protocol relies on the ElGamal cryptosystem [14]. ElGamal
works in the Z

∗
p subgroup Gq of order q, where p and q are large primes such that

p = 2q + 1. A secret key x ∈ Zq is selected and the corresponding public key y =
gx mod p is computed. A message m ∈ Gq is encrypted by selecting a random integer
value r ∈ Zq , and constructing the following pair (α, β) = (gr mod p,myr mod p).
Decryption is computed as m = α−xβ.

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 471

Fig. 2. Example of a post with the associated anonyLike button and the number of (anonymized)
people that ”liked” that post

Homomorphic Encryption. We say that ε is a (⊕,⊗)-homomorphic encryption scheme
if for any instanceE of the encryption scheme, given c1 = Er1(m1) and c2 = Er2(m2),
there exists an r such that c1⊗c2 = Er(m1⊕m2). This property is crucial in the anony-
Likes protocol to calculate the number of ”likes” (sum) of a given post without having
to decrypt individual ”like” messages. The ElGamal cryptosystem satisfies this property
for multiplication operations, so we need to use a variant known as exponential ElGa-
mal [9] that satisfies this property for additive operations, i.e. c1 ∗ c2 = Er(m1+m2).

Threshold ElGamal. The goal of a threshold scheme for public-key encryption is to
share a private key among a set of receivers such that messages can only be decrypted
when a substantial set of receivers cooperate [11]. In the anonyLikes protocol, the re-
ceivers are called Trustees. The main steps of a threshold system are: (i) a key genera-
tion step to generate the private key jointly by the receivers, and (ii) a decryption step to
jointly decrypt a ciphertext without explicitly reconstructing the private key. More de-
tails about both steps applied to the ElGamal cryptosystem can be found in Cramer[9].

Zero Knowledge Proof of Validity. In the anonyLikes protocol, each ”like” message
contains a set of tuples (post id, E(like)), where like can be either 0 or 1. S needs
to make sure that like has indeed one of those two values without revealing the exact
value. This is accomplished by attaching to each tuple a proof of validity (see Cramer[8]
for more details).

Setup. The setup phase occurs only once before the system is made available to the
public in general. Its primary goal is to generate a keypair responsible for the encryp-
tions/decryptions that occur in the other phases of the protocol.

S and all Ti create a shared threshold ElGamal key pair (εpk, εsk1, εsk2, ..., εskn).
εpk is published on S’s site and S and each Ti hold its part of the secret key.

”Liking” a Post. This phase occurs when the user clicks the ”AnonyLike” button that
is associated with a given post (see Figure 2). All ”likes” have to be authenticated, so
if the user has not previously authenticated himself on S he will be redirected to do so,
prior to submitting the ”like” message. We now detail all the steps since the user clicks
the ”AnonyLike” button until the SNA-server responds with a successful message.

472 P. Alves and P. Ferreira

1. User U clicks the AnonyLike button associated with a given post identified by
Plike, using the client software (e.g., browser).

2. The client software randomly chooses n other posts Pi that: (1) have occurred re-
cently (w.r.t. the age of the post being ”liked”); (2) are from the same topic (based
on hashtags, labels and words within the post) and (3) are public (i.e., not confined
to posts from friends). These three restrictions increase the difficulty for an attacker
to guess Plike from the several Pi. If it simply chose posts regardless of their age
or topic, the attacker could guess that the most recent or relevant Pi would be the
one with the ”like” (and this would be correct in the vast majority of cases). Also,
choosing only posts from friends would hugely reduce the set of posts from which
to draw the random ones so we use only public posts (which is usually the case for
the political/ideological posts that motivated this article).

3. The client software creates a messageM containing the tuple (Plike, Eεpk(1)) and a
set of n tuples (Pi, Eεpk(0)), 1 <= i <= n. This means the software encrypts ”1”
for the post the user ”likes” and ”0” for the others. The position of the Plike tuple
in the message is random (its index is obtained from a random number generator).

4. The client software sends this message to S (remember that U has already been
authenticated in S) plus a set of proofs Proofi (one for each tuple) that will be
used to verify that they contain valid ”like” values.

5. S uses Proofi to verify that the ”like” value for each post is either 0 or 1 (without
having to decrypt it).

6. S updates the vector of potencial ”likes” of this user Vu = (P0, ..., Pn). This vector
contains all Pi that ever came in a message associated with this user. If any Pi

contained in the message already exists in Vu, the SNA-server S returns an error.
This is to probabilistically prevent duplicated ”likes” from the same user for the
same post.

7. S updates its LikesStats table (Pi, Eεpk(num likes)) for every Pi in the message
using the additive property of homomorphic encryption, without having to decrypt
the tuples in the message. This table stores the total number of ”likes” of every post
in the system, encrypted by εpk. M can now be discarded.

8. S responds to the client software with a success message.

Note that, steps 5 and 6 prevent the submission of multiple ”likes” for the same post
(requirement R5). In addition, step 7 guarantees that the ”like” has an effect on the
number of ”likes” of the associated post while still preventing S from knowing which
particular post the user ”liked”.

Retrieving the Number of ”Likes”. This phase is responsible for retrieving the num-
ber of users that already ”liked” a given post, as shown in Figure 2. Usually, this is
calculated by the SNA-server but, in anonyLikes, the SNA-server has no way of know-
ing this number since it is encrypted with a shared key that is distributed among a set
of trustees (generated on the previously mentioned setup phase). Therefore, the client
software assumes the role of coordinating with the Trustees to decrypt that number.

1. The client software asks S for the number of ”likes” of a given post Pi;
2. S searches its LikesStats table for Pi and gets the corresponding Eεpk(num likes);

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 473

3. S partially decrypts the num likes - Dεsk1(Eεpk(num likes)) and returns this to the
client;

4. The client software sends Dεsk1(Eεpk(num likes)) to several Ti (previously chosen
by the user or random) until it is fully decrypted. Supposing we had 2 Trustees (T1

and T2), the final decrypted num likes would be the result of
DεskT2

(DεskT1
(DεskSNA−Server (Eεpk(num likes))))

5. Finally, the client software shows the user the number of ”likes”.

3 Implementation

To evaluate the anonyLikes protocol, we developed three components: the SNA-server
component, the trustee component and the client component. We used these compo-
nents to implement a web application that provides an interface showing several ran-
dom posts from Facebook (10 in the current implementation) along with an anonylikes
button and the anonymized number of people that ”liked” each one of such posts.

Due to the non-anonymous nature of Facebook, it is not possible to implement this
protocol on top of their API.9 For example, to use the API for submitting a ”like”,
the application has to provide the user who is ”liking”, therefore preventing any kind
of anonymization. Nothe that, using the same (fake) user for all ”likes” doesn’t work
because Facebook prevents more than one ”like” from the same user. Our SNA-server
component is therefore a simplified replica of Facebook with some adaptations to allow
the implementation of the anonyLikes protocol. This component can be the basis for
adaptations implemented by Facebook itself, should it decide to use the anonyLikes
protocol in the future.

Table 1 shows the responsibilities of each component. Note that the encryption/
decryption operations are all performed by the client component. We now look into
detail on each of such components.

3.1 SNA-Server Component

The SNA-server component is responsible for: (i) coordinating the distributed genera-
tion of the threshold shared key, (ii) receiving encrypted ”like” messages, and (iii) pro-
viding the encrypted sum of ”likes” that will be used to show how many people ”liked”
a given post. It is implemented as a Python/Django application and its source code
is fully available at https://bitbucket.org/anonymousJoe/anonylikes. AnonyLikes reuses
some code that was adapted from the Helios system [1] as it provides the implementa-
tion of some of the cryptography functions needed (and the code is open-source).10.

The SNA-server connects to a MySQL database with 3 tables: (i) PublicKey - con-
tains the public key used to encrypt ”likes”; (ii) LikesStats - contains tuples (post id,
encrypted num likes), and (iii) PotentialLikesUser - contains all the post ids that
each user has potentially ”liked”.

9 http://developers.facebook.com/docs/reference/api/publishing/
10 Available at https://github.com/benadida/helios-server

http://developers.facebook.com/docs/reference/api/publishing/
https://github.com/benadida/helios-server

474 P. Alves and P. Ferreira

Table 1. Responsibilities of each anonyLikes component

Comp. Responsibilities Impl.

SNA-Server Generate public key Django/

Coordinate generation of shared secret key Python

Store secret key (SNA-server part)

Receive encrypted ”Likes”

Provide encrypted sum of ”Likes”

Trustee Store secret key (trustee part) Bottle/

Provide decrypting factor Python

Client Retrieve random posts Browser/

Encrypt ”likes” Javascript

Send encrypted ”Likes”

Receive encrypted sum of ”Likes”

Get decryption factors

Decrypt sum of ”Likes”

Several actions in the SNA-server must be previously authenticated. We delegate
the authentication on Facebook using their OAuth implementation.11 If the user is not
already authenticated in our SNA-server, he is redirected to Facebook where he is asked
if he wants to login into AnonyLikes and provide his basic information and email (see
Figure 3).

Generation of the Shared Key. The generation of the shared key among all the
Trustees is partially executed in the browser and partially executed in the SNA-server.
The SNA-server starts by generating the public key and its part of the secret key. Then,
each Trustee opens the Trustee setup page using a browser to locally generate its part
of the secret key. This generation is performed in the browser using a Javascript im-
plementation of the ElGamal cryptosystem. Each Trustee stores locally the generated
secret key which is then cleared from the browser’s memory. Throughout the whole
process, the secret key never leaves the Trustee’s computer.

Receiving Encrypted ”Likes”. The SNA-server provides a REST endpoint to receive
encrypted ”like” messages. Although programmers can use this endpoint directly, we
also provide an embeddable html/javascript that can easily be included on any site to
add an ”AnonyLike” button (see Figure 2). In this case, all the encryption and commu-
nication is automatically handled by the embedded javascript code.

This endpoint verifies that all the encrypted ”likes” contained in the message are
valid ”likes” (i.e., contain the value 0 or 1) using a Zero Knowledge Proof Verification
algorithm (already mentioned in the Section 2). Then, for each one, it adds it (using
ELGamal homomorphic additive properties) to the existing number of ”likes” associ-

11 http://developers.facebook.com/docs/concepts/login/

http://developers.facebook.com/docs/concepts/login/

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 475

Fig. 3. Users login into AnonyLikes through Facebook

ated with that post using the LikesStats table. Finally, it updates the PotentialLikesUser
table with all the post ids contained in the message.

Providing the Encrypted Sum of ”Likes”. The SNA-server provides a REST end-
point that responds with the number of ”likes” of a given post. This is a simple query to
the LikesStats table. Since the SNA-server has one part of the shared secret key, it just
partially decrypts the number of ”likes” before returning it to the client.

3.2 Trustee Component

The trustee component is responsible for storing its part of the shared secret key and,
based on that, providing the decryption factor through a REST endpoint. It is imple-
mented as a Bottle server (very lightweight application server that runs Python) that is
easily installed on any hosting provider. This component should be installed by each
Trustee on a server of his choice. The url of such servers must be made public, so that
clients can choose among all the Trustees the ones that will be contacted to get the
decryption factor.

3.3 Client Component

The client component is where the encryption/decryption takes place using a Javascript
implementation of the ElGamal cryptosystem. Since the Javascript technology is too
slow for certain heavy operations such as generating randomness and modular expo-
nentiation, Java is utilized for such computation, using an applet running in the browser.

We now detail two important aspects of the Client component implementation: how
to embed the ”anonyLike” button, and how to retrieve random posts to go along the real
post (i.e the one ”liked”).

Embedding the ”Anonylike” Button. The client component consists of a javascript
file (anonyLikes.js) and several cryptographic libraries (e.g., elgamal.js). For conve-
nience, programmers only have to import anonyLikes.js as depicted in Figure 4 and all

476 P. Alves and P. Ferreira

Fig. 4. How to include the anonylikes javascript library and all its dependencies

Fig. 5. How to embed the anonylikes button

the required cryptographic libraries are automatically loaded. Then, programmers have
to insert HTML code similar to Figure 5 in the place where they want the ”anonyLike”
button to show up. anonyLikes.js inserts html code inside that < div > to show the but-
ton and the number of people that already ”liked” that post. This is very similar to how
the original Facebook ”like” button is embedded, so it is easy to include anonyLikes on
any site.

Retrieving Random Posts. Another important aspect of the Client component imple-
mentation is obtaining n random recent posts to go along the ”liked” post (recall that
the message sent to the SNA-server contains the post id the user ”liked” plus n random
post ids the user didn’t ”like”). This operation is performed by the browser using AJAX
calls to the Facebook’s API. Since Facebook’s API only provides a service to search for
posts, we get random posts by issuing random queries and getting the first result. This
operation (obtaining n random posts) is executed in the background as soon as the page
loads to minimize the time spent after clicking the ”anonyLike” button (see next section).
The user usually clicks the ”anonyLike” button after reading/watching the post, which
takes sufficient time for the background job to finish retrieving n random posts.

4 Evaluation

In this section, we present the response to the following questions that are crucial to the
success of anonyLikes:

– Usability - Can we satisfy requirement R6 (The user interaction must be similar to
the one already existent in major social network applications such as facebook and
twitter)?

– Duplicates Detection - Does our probabilistic duplicates detection mechanism (nec-
essary for requirement R5) affect the user experience?

– Performance - Is the performance of our prototype adequate to user expectations
(requirement R6)?

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 477

Table 2. Some statistics on Facebook usage

Total users 1.060 billion
Average daily ”likes” 2.7 billion
Average daily ”likes” per user 2.5 ”likes”
Number of ”likes” per year 912 ”likes”
Total number of location-tagged posts 17 billion

4.1 Usability

The AnonyLikes behavior is very similar to the original Facebook ”like” behavior from
the user’s perspective. As can be seen in Figure 2, the look of both the button and
number of users who already ”liked” is very similar to the original one. From the pro-
grammer’s perspective it is also very similar as programmers only need to import one
javascript library (see Figure 4) and define the placeholder where the button will show
up (see Figure 5).

So, from a usability point of view, the anonyLikes functionality is as easy as the
original Facebook ”like” functionality (which is already used by millions).

4.2 Probabilistic Duplicates Detection

The anonyLikes protocol relies on the assumption that it is highly unlikely that a user
will ”like” one of the random posts that is sent along the ”liked” one. This assumption
is the basis for duplicate ”like” detection: if the user ”likes” a post that he has already
potentially ”liked”, the SNA-server will not accept that action because it will assume
that the user is ”liking” the same post twice.

The actual probability of such occurrence is calculated taking into account three
variables: M being the total number of posts on Facebook (the universe from which
to grab the random posts); n being the number of post ids that are sent within each
message (n − 1 random posts plus the ”liked” one), and L being the number of ”like”
messages the user sends per year. Thus, the probability of getting a collision per year
is:

Prcollision =
Ln

M
(1)

In Table 2 we show some stats on Facebook.12 Unfortunately, the total number of
posts is not available (only the total number of location-tagged posts) so we will assume
17 billion as the total number of posts which is clearly a conservative assumption, given
that many posts are still not location-tagged. We are also making the very conservative
assumption the total number of posts is constant per year.

With these numbers, we can now calculate the Prcollision (per year), using n = 20:

Prcollision =
912 ∗ 20

17.000.000
= 0, 1% (2)

12 http://expandedramblings.com/index.php/
by-the-numbers-17-amazing-facebook-stats/

http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/
http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

478 P. Alves and P. Ferreira

Table 3. Average time spent on getting random posts from Facebook

Type n Avg. Time (s)

Sequential
4 6.5
6 8.5

12 18.3
18 26.9

Parallel
4 2.0
6 2.0

12 3.8
18 5.4

We can see that, even with our very conservative assumptions (we believe that this
probability is much lower), the user will have approx. one collision per year (0,1% of
912 posts). We believe that this is an acceptable collision rate; obviously, developers
can use higher n values to further decrease the number of collisions, although doing so
will also impact the performance of the application as explained in the next section.

4.3 Performance

There are three steps in the anonyLikes protocol that may take long enough to affect the
usability: (i) retrievingn random posts; (ii) encrypting the message with the ”likes”, and
(iii) decrypting the number of ”likes”. Their duration is related to CPU consumption and
time spent on network calls. We measured each of these steps.

Retrieving n Random Posts. To retrieve n random posts we issue n AJAX calls to
Facebook’s search API. We experimented with two different approaches: (i) sequential -
we make (synchronously) AJAX calls sequentially, and (ii) parallel - we make all AJAX
calls in parallel and wait until all of them finish. Using the Chrome browser connected to
the Internet through a regular domestic 6 Mb/s Cable connection (a common scenario),
we achieved the results shown in Table 3.

As expected, the parallel approach is much faster as the browser establishes multiple
connections with Facebook. However, per the HTTP specification, browsers put a cap
on the maximum number of connections to the same host (this cap is browser depen-
dent). In Chrome (the browser that was used for these tests) the cap is 6 connections
and that is the reason why the time to get 4 random posts is equal to the time needed to
get 6 random posts.

Even if we set n to be 18, and given the fact that we start fetching random posts as
soon as a page loads, we find 5.4 seconds to be a reasonable time that doesn’t affect
the usability because the user will generally take longer to read the page content before
clicking the ”anonyLike” button.

Encrypting ”Like” Messages. To measure the time spent on the ElGamal encryp-
tion algorithm, we used both Chrome and Firefox browsers running on a Intel Core
i7 Processor (4 cores) at 2.2Ghz (Windows 8). We experimented several values for n

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 479

Table 4. Average time spent encrypting the number of ”likes” (ms)

Operation Chrome Firefox

Encrypt ”likes” (n = 6) 1366 1324

Encrypt ”likes” (n = 12) 2742 2461

Encrypt ”likes” (n = 20) 4584 3968

Table 5. Average time spent on getting and decrypting the number of ”likes”

Operation Avg. time (ms)

Getting encrypted num of ”likes” from SNA-server 19

Getting decryption factor from one trustee 79

Decryption in the browser (Javascript) 30

Total (with three trustees) 286

(number of random posts that go along the ”liked” post) since this affects directly the
encryption time.

We can see in Table 4 that, although the ElGamal encryption is a heavy operation,
it consumes an acceptable amount of time. We can also see that Firefox is slightly
faster than Chrome but the difference is very small. To improve the user experience,
we use a similar technique to what we used for retrieving random posts (see previous
subsection): start encrypting the ”like” as soon as the page loads so that when the user
clicks the button it is (hopefully) already encrypted and the user only has to wait for
the SNA-server to respond. If the user takes longer than 10 secs to read the page, it is
long enough to hide the 5.4 secs retrieving random posts (as shown in previous section)
plus 4 secs encrypting; thus, the ”like” will have already been encrypted before the user
reads the page; otherwise he will have to wait a few seconds (during which a progress
dialog is shown).

Decrypting the Number of ”Likes”. Decrypting the number of ”likes” involves three
steps: (i) getting the encrypted number of ”likes” from the SNA-server; (ii) getting
the decryption factors from each trustee; (iii) use the decryption factors to decrypt the
number of ”likes”.

We can see that the time spent is split between network calls and CPU consump-
tion. To measure this operation, we used a Chrome browser running on a Intel Core i7
Processor (4 cores) at 2.2Ghz (Windows 8). We used three Trustees and both the SNA-
Server and the Trustees were in the same machine as the browser (localhost). Since we
cannot control the real network bandwidth that will be available to anonyLikes clients,
we measured this operation on the localhost. This way, we could understand how long
the SNA-server takes to respond with the encrypted number of ”likes” (step i), and how
long each trustee takes to respond with the decryption factor (step ii). Table 5 shows
the results. We can see that the whole operation is very fast (almost unnoticeable by the

480 P. Alves and P. Ferreira

user) with most time spent in getting the decryption factors from each trustee. Obvi-
ously, the more trustees needed to decrypt the message, the longer it will take.

We believe that three trustees is a reasonable number of trustees in a real-world
scenario (regarding the risk of collusion) but there is nothing in anonyLikes preventing
any other number of trustees. We have performed the same performance tests (as above)
with five and seven trustees and the whole operation is very fast as well (424 ms and
552 ms, respectively).

5 Related Work

AnonyLikes is motivated by the recent use of SNAs as a vehicle for activism and can
be related to previous work done in the area of electronic voting (considering a vote to
be similar to a ”like”). Therefore, we present related work pertaining both areas.

5.1 Activism and Privacy on Social Networks

The role of social networks during major political transitions such as the ones wit-
nessed in Tunisia, Egypt and Iran have raised interest on the research community in re-
cent years [20,2,24]. For example, the series of uprisings transforming the Arab world
(the so-called ”Arab Spring”) following the Tunisian revolution in January 2011 made
extensive use of SNAs coupled with mobile technology enabling citizens to create com-
munities bounded together by a common goal [22]. Also, some studies have shown the
impact of SNAs on civic activism (activism not targeted towards a government) such as
the Mexican Drug War [21]. These forms of activism all share concerns regarding the
privacy of the people involved, since the targeted entity (e.g., government, drug cartel)
can repress them by arresting, torturing and even killing.

To prevent these forms of repression, activists have to take special measures to pro-
tect themselves. They use pseudonyms instead of real names on their SNA accounts
[24]. However, using pseudonyms has several disadvantages: (1) people don’t trust
pseudonyms as much as real names; (2) pseudonyms can be used by the government
to post misleading activist content; (3) given enough history, it is possible to associate
pseudonyms with real identities [4].

More experienced users also hide their IP address (which can be used to identify
them by their location) when making connections with SNAs using proxy servers or
public hotspots [24]. However, this technique relies on technological know-how that the
majority of the users don’t have. One interesting (and effective) measure taken by the
authorities to suppress and obstruct the information flow between local internet activists
is to reduce the speed of data transfer on the local ISP (Internet Service Provider) thus
increasing the time to upload video materials to Facebook accounts. Activists get around
this restriction by sending the material abroad via email in low resolution to be uploaded
from there.

The use of pseudonyms raises a fundamental question: ”can I trust this person?”. For
example, Monroy-Hernandez [21] presents the difficulty on asserting the credibility of
information as one of the main conclusions of his work on the role of SNAs in Mexican
Drug War. One important technique outlined in his work is to test reproducibility - if

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 481

the same fact is present in posts coming from multiple disparate sources, than it must be
true. Based on this, some people have created special well-known Facebook accounts
to which everyone can send messages. If a lot of messages contain the same fact, that
fact is published on this account.

The anonyLikes protocol is designed to protect the privacy of content ”likers” and not
so much the content creators. However, it can also help anonymized (through
pseudonyms) content creators to get credibility through the amount of quantitative feed-
back their posts receive. Although not guaranteed, a post ”liked” by thousands of users
is more credible than a post ”liked” by only a few. By protecting the privacy of the
”likers”, this effect may be more visible on these environments.

5.2 Electronic Voting

Electronic voting has been a research topic for over 25 years [3,7]. Today, there is a
consensus on the minimum set of properties that these systems should satisfy [16]:

– Accuracy: (1) it is not possible for a vote to be altered, (2) it is not possible for a
validated vote to be eliminated from the final tally, and (3) it is not possible for an
invalid vote to be counted in the final tally.

– Democracy: (1) it allows only eligible voters to vote, and (2) it ensures that eligible
voters vote only once.

– Privacy: (1) neither authorities nor anyone else can link any ballot to the voter who
cast it, and (2) no voter can prove that he voted in a particular way.

– Verifiability: anyone can independently verify that all votes have been counted
correctly.

Note that when compared to our scenario of supporting anonymous ”likes” in social
networks, there are some relevant differences: i) users can ”like” anything from an al-
most unlimited set of posts while in elections there is a small limited set of candidates
from which to choose from, and ii) the period during which users can ”like” is unlim-
ited, while in an election there is not a point in time when the election is closed and the
number of votes revealed; this is also related to the fact that, while on elections it is not
possible to know intermediary results (i.e., to know the current vote count before the
voting period ends) in SNAs it is possible (and desirable) to know the current number
of ”likes” at any time.

Regarding the accuracy property, the anonyLikes protocol cannot ensure that it is not
possible to inject fake ”likes”. However, it ensures that a ”like” cannot be transformed
into a ”non-like” (since what is stored is the number of ”likes” and not the individ-
ual ”like”). AnonyLikes also satisfies the democracy and privacy properties but does
not satisfy the verifiability property. However, since users expect to see an immediate
increase on the number of ”likes” after their action, it would be very difficult to alter
(adding or decreasing) the ”likes” count without raising suspicions. This derives from
the fact that in anonyLikes, the effect of a ”like” must be visible to everyone (require-
ment R4).

Voting protocols can be categorized into three main categories accordingly to their
cryptographic primitives: mixnets [5,17], blind signatures [15,16] and homomorphic
encryption [3,9].

482 P. Alves and P. Ferreira

Mixnets create a robust anonymous channel by having encrypted votes going through
a collection of servers whose task is to shuffle them. To ensure that mix-servers do not
drop or replace votes, the servers must provide proofs of correct operation. One exam-
ple of mixnets applied to elections is the scheme proposed by Lee [18] consisting on
four steps. First, each voter prepares a first ballot by encrypting his vote. The ballot is
then sent to a tamper-resistant randomizer (TRR) for randomization. Second, the TRR
randomizes the first ballot with re-encryption to produce a final ballot. Third, the TRR
also produces a Designated Verifier Re-encryption Proof (DVRP) to prove the correct-
ness of re-encryption to the voter. The final ballot and the DVRP are then sent to the
voter. Finally, the voter checks the DVRP, then signs and submits the final ballot if the
check is accepted. A general criticism of mixnets is that the proofs of correction can be
complex, cumbersome and inefficient [15].

Blind signatures [6] are a class of digital signatures where a message gets digitally
signed without giving any knowledge about the message to the signer. This is similar
to putting a document and a sheet of carbon paper in a sealed envelope that somebody
signs on the outside. After removing the envelope we get the signed document. Apply-
ing this technique to electronic elections, voters obtain a blind signature on their ballot
from an administrator which is then submitted to a voting bulletin board. The bulletin
board will only accept votes signed by the administrator. This protocol has the advan-
tages of simplicity and low computational cost. The problem is that the submission of
votes to the bulletin board must use an anonymous channel which is hard to achieve.
Frequently, this anonymous channel is implemented using mixnets but if a mixnet is
available a blind signature is not required anymore.

Regarding SNAs, blind signatures have been used to design a privacy-enhanced vari-
ant of Twitter, where the content, hashtags and follower interests are encrypted and thus
not visible to the Twitter server [10]. However, this mechanism doesn’t provide anony-
mous quantitative feedback (e.g., number of retweets).

In a homomorphic encryption-based [23] voting scheme, votes are added while en-
crypted, so no individual vote ever needs to be revealed. In order to ensure that the
private decryption key of the election is not used to decrypt an individual vote, a thresh-
old encryption scheme must be applied to distribute the key among several authorities
in such a way that multiple authorities have to combine their shares in order to use
it. Although computationally expensive, this scheme has the big advantage of not re-
quiring an anonymous channel. In fact, voters may openly authenticate themselves to
the voting servers. Since the anonyLikes protocol is to be used in large-scale through
the Internet channel (increasing the complexity of creating an anonymous channel), we
chose homomorphic encryption as the underlying scheme for the anonyLikes protocol.

Homomorphic encryption has already been proposed as privacy-preserving mech-
anism for SNAs. For example, Domingo-Ferrer [12] proposes a system that uses ho-
momorphic encryption to preserve the privacy of social network relationships when
accessing a resource. It has also been used to preserve privacy when finding friends
within a certain geographical distance [13] and matching personal profiles [19] among
others.

To the best of our knowledge, anonyLikes is the first protocol to apply homomor-
phic encryption (or any cryptographic technique whatsoever) to quantitative feedback
in social networks.

AnonyLikes: Anonymous Quantitative Feedback on Social Networks 483

6 Conclusions

Quantitative feedback on SNAs has been shown to have profound impact on several
forms of activism, by raising awareness and giving voice to important and sensitive
topics in environments that otherwise constrain freedom of speech. Examples of such
environments are countries with authoritarian governments and cities controlled by drug
cartels. In these environments, people are afraid to use SNAs to promote their causes as
they can be subject to retaliations from the targeted entities.

In this paper, we propose anonyLikes, a protocol that enables SNAs users to give
quantitative feedback without revealing their identity, even to the social network infras-
tructure itself. This protocol employs strong cryptographic techniques (homomorphic
encryption, shared threshold key pairs) to guarantee the privacy of the users. In partic-
ular, what is stored on the SNA-server is not individual ”likes” but rather the count of
”likes” on any given post. Moreover, that count is encrypted in such a way that several
entities (trustees) must collaborate to decrypt it (i.e., it is not possible for a single entity
to decrypt it).

We are able to probabilistically prevent duplicated ”likes” without breaking user’s
privacy by mixing the real ”like” with several fake ”likes” (i.e. by sending several
post ids for which the SNA-server doesn’t know if they have been ”liked” or not). This
effectively prevents duplicated ”likes” but can wrongly prevent a legitimate ”like” al-
though this happens only once per year on average. We believe we have achieved an
acceptable tradeoff between privacy and usability.

We have implemented the anonyLikes protocol within a Facebook replica, using an
interaction model very similar to Facebook: developers can easily embed an ”anony-
Like” button next to any content (blog post, video, etc.). The same mechanism also
displays the current number of ”likes” of that post. This implementation is publicly
available and can be used by any SNA developer wishing to support privacy-preserving
quantitative feedback.

Finally, we evaluated the performance of the system and found that it can be imple-
mented today without breaking user expectations for this kind of applications. More-
over, since the performance is tied to CPU speed, it will tend to improve in the upcoming
years with advances in processor technology.

Acknowledgments. This work was partially supported by national funds through FCT
– Fundação para a Ciência e a Tecnologia, under projects Pest-OE/EEI/LA0021/2013
and PTDC/EIA-EIA/113993/2009.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium, pp. 335–
348 (2008)

2. Al-Ani, B., Mark, G., Chung, J., Jones, J.: The Egyptian blogosphere: a counter-narrative
of the revolution. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work (2012)

3. Benaloh, J.: Verifiable secret-ballot elections. PhD thesis, Yale University (1987)
4. Beresford, A., Stajano, F.: Location privacy in pervasive computing. In: IEEE Pervasive

Computing (2005)

484 P. Alves and P. Ferreira

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 24(2), 84–90 (1981)

6. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology: Pro-
ceedings of Crypto (1982)

7. Chaum, D.: Elections with unconditionally-secret ballots and disruption equivalent to break-
ing RSA. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 177–182.
Springer, Heidelberg (1988)

8. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified
design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174–187. Springer, Heidelberg (1994)

9. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. European Transactions on Telecommunications 8(5), 481–490 (1997)

10. Cristofaro, E.D., Soriente, C.: Hummingbird: Privacy at the time of twitter. In: 2012 IEEE
Symposium on Security and Privacy (SP), vol. 1692, pp. 285–299 (2012)

11. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

12. Domingo-Ferrer, J., Viejo, A., Sebé, F., González-Nicolás, U.: Privacy homomorphisms for
social networks with private relationships. Computer Networks 52(15), 3007–3016 (2008)

13. Dong, W., Dave, V., Qiu, L., Zhang, Y.: Secure friend discovery in mobile social networks.
In: 2011 Proceedings IEEE INFOCOM, pp. 1647–1655 (April 2011)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

15. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections.
In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer,
Heidelberg (1993)

16. Joaquim, R., Ferreira, P., Ribeiro, C.: EVIV: An end-to-end verifiable Internet voting system.
Computers & Security 32, 170–191 (2013)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceed-
ings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 61–70 (2005)

18. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing receipt-freeness in
mixnet-based voting protocols. In: Lim, J.I., Lee, D.H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 245–258. Springer, Heidelberg (2004)

19. Li, M., Cao, N., Yu, S., Lou, W.: FindU: Privacy-preserving personal profile matching in
mobile social networks. In: 2011 Proceedings IEEE INFOCOM, pp. 2435–2443 (April 2011)

20. Lotan, G., Graeff, E., Ananny, M., Gaffney, D., Pearce, I., Boyd, D.: The Revolutions Were
Tweeted: Information Flows During the 2011 Tunisian and Egyptian Revolutions. Interna-
tional Journal of Communication 5, 1375–1406 (2011)

21. Monroy-Hernández, A.: The new war correspondents: he rise of civic media curation in urban
warfare. In: Proceedings of the 2013 ACM Conference on Computer Supported Cooperative
Work, pp. 1443–1452 (2013)

22. Olaore, O.: Politexting: Using Mobile Technology to Connect the Unconnected and Expand-
ing the Scope of Political Communication. In: Information Systems Educators Conference
2011 ISECON Proceedings, pp. 1–8 (2011)

23. Rivest, R.: On data banks and privacy homomorphisms. Foundations of Secure Computa-
tion 4(11) (1978)

24. Wulf, V., Misaki, K., Atam, M.: On the ground’in Sidi Bouzid: investigating social media use
during the tunisian revolution. In: Proceedings of the 2013 ACM Conference on Computer
Supported Cooperative Work, pp. 1409–1418 (2013)

Peer-to-Peer Keyword Search: A Retrospective

Patrick Reynolds1 and Amin Vahdat2

1 GitHub, Inc.
2 University of California, San Diego and Google, Inc.

Abstract. Peer-to-peer systems have been an exciting area of research.
Challenges in building them have included scalability, reliability, security,
and—of particular interest to these authors—search functionality. This
paper surveys some of the history of the field, looks at the lasting impacts
of peer-to-peer research, and provides at least one view of where we go
from here.

1 Introduction

2001 was an exciting time for research on peer-to-peer systems. Napster [38]
had recently been shut down for abetting widespread copyright violation [18].
Gnutella [41] and Freenet [9,10] survived but used completely unstructured over-
lays that compromised performance and search completeness. Other peer-to-peer
systems reused Napster’s ideas or Gnutella’s protocol, and these too were even-
tually shut down [25,34,35,55]. Peer-to-peer systems needed both better protocol
design and applications other than file sharing.

Chord [46], CAN [39], Pastry [43], Tapestry [57], and Kademlia [36] collec-
tively introduced the idea of structured, decentralized overlay networks. The ab-
straction they implemented was a distributed hash table, or DHT, which mapped
fixed-size, opaque keys to arbitrary values. All of the DHTs were efficient, re-
quiring just O(lg n) operations to look up a key in an n-node system.

Soon after, distributed file systems like the Cooperative File System (CFS) [14]
and PAST [15] were built on top of DHTs. At least initially, however, neither
the DHTs nor the distributed file systems provided any search functionality.

In 2002, we set out to design a complete, efficient keyword search service [40]
for applications based on DHTs.

This paper revisits our original paper, surveys other interesting research on
peer-to-peer keyword searching, examines the state of peer-to-peer technologies
today, and identifies some of the lasting impacts that peer-to-peer networks
have had.

1.1 A definition

In 2001 as well as today, the definition of a peer-to-peer system is a fuzzy one.
The most prominent distinguishing characteristic of a peer-to-peer system is that
nodes owned by individuals make up the bulk of both the consumers (clients)

D. Eyers and K. Schwan (Eds.): Middleware 2013, LNCS 8275, pp. 485–496, 2013.
c© IFIP International Federation for Information Processing 2013

486 P. Reynolds and A. Vahdat

node sA node sB

client

A

1 2

3 4

B

3 4

5 6

A

1 2

3 4

B

3 4

5 6

(a) A simple approach to
“and” queries. Each node
stores a list of document
IDs corresponding to one
keyword.

node sA node sB

client

(1) request (6) A ∩ B ∩ C

(2) F (A)

(5) A ∩ C ∩ F (B)

node sC

(3) F (B ∩ F (A))

(4) C ∩ F (B ∩ F (A))

(b) Bloom filters help reduce the bandwidth re-
quirement of “and” queries. F (A) is a Bloom
filter representing the set A, and B ∩ F (A) is
the set of all elements from B that matched the
Bloom filter F (A).

Fig. 1. Adding a Bloom filter to DHT search

and providers (servers) of the service. A peer-to-peer service generally uses band-
width, storage, and/or CPU time provided by users of the service. Further, a
robust peer-to-peer service should be decentralized enough that no administrator
can disable the system.

Some prominent peer-to-peer services, including Napster, Skype prior to 2012,
and all BitTorrent search pages, rely on centralized components that can or could
be administratively disabled. We still consider them peer-to-peer services, albeit
ones with room for improvement.

2 Efficient Peer-to-Peer Searching

A good peer-to-peer search feature needs to be decentralized, efficient, and com-
plete. Early peer-to-peer systems were not. Napster’s search feature was central-
ized, which made it unscalable and easy to shut down. Gnutella’s search feature
was both inefficient and incomplete: it flooded queries throughout the network
up to a fixed number of hops away from the requester, limited by a time-to-live
(TTL) value. It could not locate any resources beyond that number of hops.
Early DHTs did not provide search at all.

2.1 Our Contribution

The simplest implementation of keyword search on a DHT uses an inverted index,
as shown in Figure 1(a). The DHT maps each keyword to a list of document IDs,
corresponding to the documents that contain the keyword. A client performing
a search for one keyword retrieves the list of document IDs associated with that
keyword. To perform a conjunctive (“and”) query of multiple keywords, the client

Peer-to-Peer Keyword Search: A Retrospective 487

Cache:
F (A)

node sA node sB

client

(1) request(5) A ∩B ∩ C

(4) A ∩ C ∩ F (B)

node sC

(2) F (B ∩ F (A))

(3) C ∩ F (B ∩ F (A))

(a) F (A) is already in the cache at node sB

node sA node sB

client

request

A ∩B

F (A1)

F (A2)

F (A3)

B ∩ F (A1)

B ∩ F (A2)

B ∩ F (A3)

A1

A2

A3 B

(b) Nodes send their data
one chunk at a time until
the desired intersection size is
reached

Fig. 2. Caching and incremental results

retrieves the list of document IDs for each keyword and locally calculates the
intersection. This approach is clearly decentralized and complete, but it is not
especially efficient. If the user searches for keywords that individually appear in
many documents but that rarely appear together, then downloading the entire
list of document IDs for each word is wasteful.

Our paper proposed three optimizations to this simple approach: Bloom filters,
caching, and incremental results. For these to work, we changed the protocol from
Figure 1(a) so that intersections are calculated within the DHT, as shown in Fig-
ure 1(b). In this revised protocol, the client sends the entire query—e.g., “efficient
AND network AND protocols”—to the node hosting the first keyword. That node
sends the remaining words in the query, along with a list of document IDs for the
first keyword, to the node responsible for the second keyword. This second node
calculates the intersection between the second keyword’s set of document IDs and
the set of document IDs it received from the first node. Forwarding continues in
this fashion until all keywords have been considered (all sets of document IDs have
been intersected), at which point the last node sends the final list—IDs of the doc-
uments containing all the keywords—back to the client.

Bloom filters [5,19,37] are a compact but lossy way to represent membership in
a set. They answer the question “Is element x in the set,” occasionally returning
false positives—a value of “true” even when x is not in the set. In our search
system, we used them as a compact way to represent the set of document IDs
for documents that contain a given keyword. Instead of transferring entire lists
of document IDs, the system transferred Bloom filters representing those lists.

Caching reduces both network traffic and latency by avoiding the transfer of
information that has been used recently. Our system cached Bloom-encoded lists
of document IDs corresponding to a given keyword. Figure 2(a) shows an example
where node sB already has the Bloom filter F (A); the client sends the query

488 P. Reynolds and A. Vahdat

directly to node sB, eliminating one hop and the cost of transferring F (A). Each
cache hit eliminates one hop and the associated transfer cost. Caching allowed
us to use larger Bloom filters, with a correspondingly lower false-positive rate.

Incremental results take advantage of the fact that users often only want a
few results—say, the best ten—even when many documents match their query.
At each hop, our system transferred only a few Bloom filter-encoded document
IDs at a time, rather than the whole list. This optimization tied the cost of
answering a query to the size of the answer the user wanted, rather than to the
total number of results available. Figure 2(b) shows an example in which three
chunks of the document list A are sent, and then the requested result size is
reached.

In addition, our system incorporated the idea of virtual hosts [14]. Peer-to-
peer systems are often heterogeneous in their capabilities: nodes differ in their
available CPU power and network capacity. Assigning more-capable nodes a
larger number of virtual hosts allowed us to take advantage of their additional
capacity.

We measured the effectiveness of our optimizations using a corpus of 105,593
HTML documents and a trace of 95,409 web searches. For each query, we cal-
culated the number of bytes transferred and the total time for the system to
satisfy the query. Taken together, our optimizations reduced the time to answer
a query by about an order of magnitude.

2.2 Similar Work

Other research projects tackled the problem of peer-to-peer keyword search dif-
ferently. This section explores three of those systems.

PIER. PIER [26] implements relational queries on top of a DHT, scalable to
at least thousands of nodes. Relations composed of tuples are stored in the
DHT; each tuple is stored according to its namespace and primary key. Joins
are performed by retrieving the relevant relations with multicast queries, then
storing them back in the DHT in temporary relations keyed (in the DHT) by
the appropriate column for the join. Joins based on Bloom filters are provided,
as well, to reduce the number of tuples that must be transferred to temporary
tables.

PIER provides expressiveness well beyond keyword-index systems, and it can
easily be used to implement keyword queries. However, we believe that the num-
ber of nodes involved in each query and the number of bytes transferred among
those nodes will be much higher than in a purpose-built keyword-search system.

PlanetP. PlanetP [13] is a file sharing system built with an emphasis on search-
ability. Each node in the system hosts the documents its user wishes to share,
as opposed to a DHT where those documents would be copied onto unrelated
nodes. Each node builds an inverted index of the keywords in the documents it
shares, then computes a Bloom filter to represent the set of keywords found in

Peer-to-Peer Keyword Search: A Retrospective 489

at least one document on that node. All nodes in the system flood their Bloom
filters to all other nodes, then gossip updates as the Bloom filters change. When
a user wants to perform a query, PlanetP uses the Bloom filters to figure out
which remote nodes to contact. The false-positive aspect of Bloom filters adds
an essentially harmless probability that some nodes will be contacted and return
zero results.

OverCite. OverCite [47] is a distributed version of CiteSeer, which is a library
and search engine for scientific research papers. OverCite distributes responsi-
bility for storing, indexing, and searching papers among all participating nodes
using a DHT. The responsibility for indexing those documents is divided among
k partitions; the nodes responsible for a partition in the DHT index the docu-
ments contained in the partition. The rationale for using partitions is to avoid
making every search query a broadcast. Each partition is 1/k the size of the
full index and is replicated n/k times, so each node must store 1/k of the total
index and will receive 1/n of the query load. Two additional optimizations are
proposed: replicating author and title metadata to all nodes, and replicating
common search terms on all nodes. Both optimizations allow certain queries to
be answered by a single node, rather than sending each query to k nodes to cover
all partitions.

3 Where We Are Now

Fifteen years have passed since Napster was released, and ten years have passed
since the first peer-to-peer search papers were published. Where are we now?

Very few prominent Internet services or businesses use peer-to-peer systems.
The most successful peer-to-peer system by far is file sharing, accounting for 10%
to 20% of traffic during peak hours, on fixed (not mobile) networks [52]. The
only other peer-to-peer system that is a household name in the U.S.—clearly a
subjective distinction on our part—is Spotify. Skype used to rely on a peer-to-
peer overlay but no longer does. Peer-to-peer networks are also popular for live
and on-demand video streaming services in China.

Spotify’s network is a hybrid of client-server and peer-to-peer protocols [29].
Each client keeps a persistent connection open to a Spotify server, through which
it can browse available content, learn about other clients currently online, and
receive the first fifteen seconds of any song where low latency is required. Desk-
top (not mobile) clients retrieve full songs directly from other clients whenever
possible. Clients form an unstructured overlay network and use flooding queries
with a TTL of two to search for songs.

Spotify’s central servers make the peer-to-peer protocol simpler by providing
lists of online clients and by providing a backstop data source for content not
present within two overlay hops. The peer-to-peer network offloads the majority
of song download traffic.

Skype originally used peer-to-peer technology to provide a user directory and
NAT traversal [45]. Audio and video streams and chat messages go directly from

490 P. Reynolds and A. Vahdat

one user to another whenever possible. Each supernode maintains a list of logged-
in users and a current IP address for each one. Supernodes also assist in routing
calls and chat messages to clients whose device is suspended or behind a firewall.
In 2012, Skype moved all supernode functionality off of end-user PCs and onto
dedicated mega-supernodes in data centers run by Microsoft [23, 24].

Two large, live-video streaming services in China, PPS.tv (PPStream) and
Funshion, use peer-to-peer technology. PPStream uses the DONet protocol,
which is an unstructured, mesh-style multicast [8, 56]. Funshion is based on
BitTorrent [20].

3.1 Disadvantages of Peer-to-Peer Systems

From the perspective of running an Internet service, peer-to-peer systems cou-
ple some desirable properties with some serious challenges. The most appealing
property of a peer-to-peer system is that it lets a business use customers’ band-
width and computing resources without paying for them. However, in most cases,
the challenges overwhelm this potential cost savings:

– Most last-mile connections have asynchronous bandwidth, heavily favoring
downloads over uploads. A bandwidth-limited peer-to-peer service like file
sharing or video streaming must therefore find many uploaders for each
downloader.

– End-user network connections, especially when geographically distant from
each other, have roughly 1,000 times lower bandwidth and 1,000 times higher
latency than connections within a data center.

– Using customers’ computers in unexpected ways can lead to bad publicity.
– Peer-to-peer services require users to download and install software, which

providers must write and maintain for each target platform. An unmodified
web browser can access centralized services, but it cannot access peer-to-peer
services.

– Customers turn off their computers more often than data centers do.
– Mobile devices, which account for a rapidly increasing fraction of Inter-

net traffic [52], magnify all of these issues: they are battery- and CPU-
constrained, their bandwidth is usually slower and often metered, and they
cannot run the same client software as desktop PCs.

– Customer-owned nodes are not trustworthy.
– Services with data retention or wiretap requirements will likely find it easier

to comply with the law if infrastructure is centralized [21].

Some of the limitations of customer-owned computing resources, particularly
security and reliability, can be overcome with software, at a cost of additional
redundancy and complexity. Others, including poor network connectivity and
customers’ aversion to installing additional software, are more stubborn. Overall,
the risks and costs of harnessing customer-owned resources are almost always
higher than the risks and costs of running services in professionally managed
data centers.

Peer-to-Peer Keyword Search: A Retrospective 491

Further, hosted computing, storage, and bandwidth resources have gotten
dramatically cheaper per unit in the last decade [54]. Utility computing, both
infrastructure as a service (IaaS) and platform as a service (PaaS), allows new
Internet services to start out cheaply with just a fraction of a single server, with-
out relying on peer-to-peer systems. Both Amazon and Google offer a resource-
limited tier of hosting services for free. At this point, even cash-strapped startups
favor starting new Internet services in data centers.

Web search in particular is a service that favors data centers over peer-to-peer
systems. Our test corpus contained 105,593 documents, while Google’s contains
around fifty billion. A fully featured web search service does things like spelling
suggestions, autocomplete, instant search, location awareness, and personaliza-
tion that are not amenable to caching or representation in Bloom filters. Our and
others’ search protocols mask wide-area bandwidth and latency constraints well
enough for the demands of a file-sharing service, perhaps, but not well enough
to be competitive with a modern search engine built with dedicated computing
resources.

3.2 Advantages of Peer-to-Peer Systems

In spite of the challenges, the most popular file-sharing services still use peer-
to-peer systems [2, 11, 30, 52]. We believe that this fact is due almost entirely to
censorship resistance. No matter how widely replicated an infrastructure-based
service is, it is still vulnerable to a well placed letter, phone call, domain seizure,
or DMCA takedown notice. Peer-to-peer systems have proven far more resilient.
In 1993, John Gilmore said, “The Net interprets censorship as damage and routes
around it” [17]. Peer-to-peer systems codify that ideal in software.

Much of the censorship exercised against web sites and peer-to-peer systems
is copyright related. Publishers of movies, songs, books, and software, among
others, hope to preserve their ability to charge for each copy made of their copy-
righted works. However, censorship happens for other reasons, too. For example:

– Political - In 2008, both the McCain [53] and Obama [16] campaigns had
political messages removed due to DMCA takedown notices. Also in 2008,
during the South Ossetia War, the nation of Georgia blocked all websites
with addresses ending in .ru [7].

– Moral - Russia has instituted an unpublished blacklist of sites relating to
drugs, suicide, or pornography [3]. The United Kingdom is creating its own
list, currently optional but enabled by default, to restrict access to pornogra-
phy; web forums; information about violence, terrorism, and eating disorders;
and “esoteric material” [27].

– Security - Volkswagen successfully sued to censor research about vulnerabil-
ities in its keyless entry systems [49]. Life science researchers have instituted
policies for censoring themselves when research seems to pose more risk than
social good [44].

– Competitive - Universal Music Group briefly had Megaupload’s “Mega
Song” removed from YouTube, despite not having any copyright claim
against it [33].

492 P. Reynolds and A. Vahdat

– Suppressing criticism - KTVU used DMCA takedown requests to remove
copies of a newscast in which its anchor read obviously fake and offensive
names for the pilots of Asiana flight 214 [28].

– Accidental - The U.S. Immigration and Customs Enforcement (ICE) ac-
cidentally took down the hip-hop music blog dajaz1.com for a year before
returning it without explanation [32]. YouTube’s Content ID system auto-
matically flags videos for possible removal, but it often flags videos that do
not contain copyrighted content or that might qualify as fair use [12]. While
attempting to prevent unauthorized distribution of Windows 8 and Office,
Microsoft has accidentally requested that Google remove links to the BBC,
Wikipedia, and OpenOffice, among others [50, 51].

In each case, censorship was possible because a small number of administra-
tive entities—ISPs, domain registrars, YouTube, research conference organizers,
etc.—could be compelled to block or remove the content. Peer-to-peer systems
provide an alternative distribution channel for content when censors get too
heavy handed.

Formal peer-to-peer systems are not the only way that the Internet routes
around censorship. Content that is small and not obviously offensive or copyright-
infringing will often end up widely distributed and widely mirrored if someone
tries to censor it. Far more people know what Barbara Streisand’s house looks
like, how badly the Suburban Express bus company treats its customers, and
how to 3D print a gun than would have if interested parties had not attempted
to censor that information [4,22,42]. In a sense, technology news sites, parodies,
memes, and web forums act like an informal peer-to-peer network when they
mirror content in this fashion.

3.3 Impacts

Several ideas from peer-to-peer systems have found their way into systems that
are not strictly peer-to-peer. Most large-scale Internet services are geographically
distributed, self-organizing, and resilient. Some systems, including the Cassandra
database and the Tahoe-LAFS file system, explicitly incorporate DHTs [1, 48].

BOINC—the computing platform that runs SETI@home [6]—runs primarily
on end users’ computers, much like a peer-to-peer system. Unlike nodes in a
peer-to-peer system, nodes in BOINC are only servers and do not consume the
service that other nodes provide. Also, nodes are centrally managed rather than
self-organizing. However, like a peer-to-peer system, BOINC successfully deals
with malicious participants and harnesses spare CPU cycles.

4 Where We Go from Here

We believe that peer-to-peer systems continue to have both technical and social
value. They may be a good way for modestly funded research groups to boot-
strap an Internet service. They provide a stress test for new protocols, because

dajaz1.com

Peer-to-Peer Keyword Search: A Retrospective 493

protocols and techniques that work within the resource and security constraints
of a peer-to-peer system will often work even better in a centralized system.
Finally, of course, they provide outstanding resistance to censorship, in a way
that commercial and centrally managed services cannot.

To that end, we believe the most important focus areas in peer-to-peer re-
search are:

– Security - Services that become popular, or that host content that someone
wishes to censor, become the target of attacks. Attackers may disrupt routing
or searching, or they may intercept or modify content. Peer-to-peer systems
have to deal with the possibility that nodes are Byzantine faulty [31].

– Anonymity - If the main use case for peer-to-peer systems is distributing
censored content, then participants might need to remain anonymous when
publishing or retrieving that content. Providing anonymity in a robust, effi-
cient way could provide immense social value.

– Searchability - Simply put, we cannot read what we cannot find. BitTorrent
users currently rely on centralized, commercial web sites to map keywords to
document identifiers. Eventually, whether through legal changes or technical
attacks, these sites will probably get shut down. Existing and new peer-
to-peer search technologies should be applied to ensure that users can find
content.

In 2013, as in 2001, peer-to-peer networking remains an exciting, fruitful area
of research.

References

1. The Apache Cassandra Project, http://cassandra.apache.org/ (accessed August
16, 2013)

2. Ares, http://aresgalaxy.sourceforge.net/ (accessed August 16, 2013)
3. Russia internet blacklist law takes effect. BBC News (October 2012)
4. US government orders removal of Defcad 3D-gun designs. BBC News (May 2013)
5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
6. BOINC, http://boinc.berkeley.edu/ (accessed August 16, 2013)
7. Reporters Without Borders War still having serious impact on freedom of expres-

sion (October 2010), http://bit.ly/14mTqDm (accessed August 16, 2013)
8. Chen, S., Huo, L., Fu, Q., Guo, R., Gao, W.: FBSA: a self-adjustable multi-source

data scheduling algorithm for P2P media streaming. In: Sebe, N., Liu, Y., Zhuang,
Y.-t., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 325–333. Springer,
Heidelberg (2007)

9. Clarke, I.: A distributed decentralised information storage and retrieval system.
Master’s thesis, University of Edinburgh (1999)

10. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Proceedings of the ICSI Workshop
on Design Issues in Anonymity and Unobservability (2000)

11. Cohen, B.: Incentives build robustness in BitTorrent. In: Proceedings of the Work-
shop on Economics of Peer-to-Peer Systems, vol. 6, pp. 68–72 (2003)

http://cassandra.apache.org/
http://aresgalaxy.sourceforge.net/
http://boinc.berkeley.edu/
http://bit.ly/14mTqDm

494 P. Reynolds and A. Vahdat

12. Content ID disputes - YouTube,
https://www.youtube.com/yt/copyright/content-id-disputes.html

(accessed August 16, 2013)
13. Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using gos-

siping to build content addressable peer-to-peer information sharing communities.
In: Proceedings of the International Symposium on High Performance Distributed
Computing (HPDC), pp. 236–246 (2003)

14. Dabek, F., Frans Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area coop-
erative storage with CFS. In: Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (October 2001)

15. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage
utility. In: Proceedings of Hot Topics in Operating Systems (HotOS), pp. 75–80.
IEEE (2001)

16. Eggerton, J.: NBC, Obama campaign spar over YouTube video (October 2008),
http://bit.ly/13GPgWW (accessed August 16, 2013)

17. Elmer-Dewitt, P.: First nation in cyberspace. TIME International (December 1993)
18. Evangelista, B.: Napster files for bankruptcy. San Francisco Chronicle (June 2004)
19. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area web

cache sharing protocol. In: Proceedings of ACM SIGCOMM, pp. 254–265 (1998)
20. Funshion online - about us, http://www.funshion.com/english/about_us.html

(accessed August 16, 2013)
21. Gallagher, R.: Skype won’t say whether it can eavesdrop on your conversations.

Slate (July 2012)
22. Gallagher, S.: Express to Internet hate: Bus company threatens redditor with law-

suit. Ars Technica (April 2013)
23. Gillett, M.: What does Skype’s architecture do? (July 2012),

http://blogs.skype.com/2012/07/26/what-does-skypes-architecture-do/

(accessed August 16, 2013)
24. Goodin, D.: Skype replaces P2P supernodes with Linux boxes hosted by Microsoft.

Ars Technica (May 2012)
25. Healey, J.: StreamCast’s undoing (May 2008),

http://opinion.latimes.com/bitplayer/2008/05/streamcasts-und.html (ac-
cessed August 16, 2013)

26. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the Internet with PIER. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB), pp. 321–332 (2003)

27. Killock, J.: Sleepwalking into censorship (July 2013),
https://www.openrightsgroup.org/blog/2013/sleepwalking-into-censorship

(accessed August 16, 2013)
28. Kravets, D.: Local newscast uses DMCA to erase air crash reporting blunder (July

2013),
http://www.wired.com/threatlevel/2013/07/youtube-newscast-asiana/

(accessed August 16, 2013)
29. Kreitz, G., Niemelä, F.: Spotify—large scale, low latency, P2P music-on-demand

streaming. In: Proceedings of the IEEE International Conference on Peer-to-Peer
Computing (P2P), pp. 1–10. IEEE (2010)

30. Kulbak, Y., Bickson, D.: The eMule protocol specification. eMule project (2005),
http://emule-project.net

31. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 4(3), 382–401 (1982)

https://www.youtube.com/yt/copyright/content-id-disputes.html
http://bit.ly/13GPgWW
http://www.funshion.com/english/about_us.html
http://blogs.skype.com/2012/07/26/what-does-skypes-architecture-do/
http://opinion.latimes.com/bitplayer/2008/05/streamcasts-und.html
https://www.openrightsgroup.org/blog/2013/sleepwalking-into-censorship
http://www.wired.com/threatlevel/2013/07/youtube-newscast-asiana/
http://emule-project.net

Peer-to-Peer Keyword Search: A Retrospective 495

32. Lee, T.B.: ICE admits year-long seizure of music blog was a mistake. Ars Technica
(December 2011)

33. Lee, T.B.: UMG claims right to block or remove YouTube videos it doesn’t own.
Ars Technica (December 2011)

34. Leeds, J.: Grokster calls it quits on sharing music files. New York Times (November
2005)

35. Liang, J., Kumar, R., Ross, K.W.: The KaZaA overlay: A measurement study. In:
Proceedings of the IEEE Annual Computer Communications Workshop, pp. 2–9.
IEEE (2004)

36. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

37. Mullin, J.: Optimal semijoins for distributed database systems. IEEE Transactions
on Software Engineering 16(5), 558–560 (1990)

38. Napster, http://opennap.sourceforge.net/napster.txt (accessed August 16,
2013)

39. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM (2001)

40. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Endler,
M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 21–40. Springer,
Heidelberg (2003)

41. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceed-
ings of the International Conference on Peer-to-Peer Computing, pp. 99–100. IEEE
(2001)

42. Rogers, P.: Streisand’s home becomes hit on Web. Mercury News (January 2003)

43. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

44. Selgelid, M.J.: Governance of dual-use research: an ethical dilemma. Bulletin of
the World Health Organization (June 2009)

45. Skype FAQ: What are P2P communications?
https://support.skype.com/en/faq/FA10983/what-are-p2p-communications

(accessed August 16, 2013)

46. Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for Internet applications. In: Proceedings of
ACM SIGCOMM (2001)

47. Stribling, J.: OverCite: A cooperative digital research library. Master’s thesis, Mas-
sachusetts Institute of Technology (2005)

48. Tahoe-LAFS, https://tahoe-lafs.org (accessed August 16, 2013)

49. Torchinsky, J.: VW demands British court censor scientific paper about car security
(July 2013), http://bit.ly/1c75SPx (accessed August 16, 2013)

50. Microsoft DMCA notice mistakenly targets BBC, Techcrunch, Wikipedia, and U.S.
govt (October 2012), http://bit.ly/QVArtf (accessed August 16, 2013)

51. Microsoft censors OpenOffice download links (August 2013),
http://bit.ly/1a5Tu1J (accessed August 16, 2013)

52. Sandvine Inc. ULC. Global Internet phenomena report, 1H (2013)

53. von Lohmann, F.: McCain campaign feels DMCA sting (October 2008),
https://www.eff.org/deeplinks/2008/10/mccain-campaign-feels-dmca-sting

(accessed August 16, 2013)

http://opennap.sourceforge.net/napster.txt
https://support.skype.com/en/faq/FA10983/what-are-p2p-communications
https://tahoe-lafs.org
http://bit.ly/1c75SPx
http://bit.ly/QVArtf
http://bit.ly/1a5Tu1J
https://www.eff.org/deeplinks/2008/10/mccain-campaign-feels-dmca-sting

496 P. Reynolds and A. Vahdat

54. Web hosting now vs 10 years ago (February 2008),
http://royal.pingdom.com/2008/02/19/web-hosting-now-vs-10-years-ago/

(accessed August 16, 2013)
55. Woody, T.: The race to kill Kazaa. Wired (February 2003)
56. Zhang, X., Liu, J., Li, B., Yum, T.-S.P.: CoolStreaming/DONet: a data-driven

overlay network for peer-to-peer live media streaming. In: Proceedings of IEEE
INFOCOM, vol. 3, pp. 2102–2111. IEEE (2005)

57. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer
Science Division (EECS), University of California, Berkeley (2001)

http://royal.pingdom.com/2008/02/19/web-hosting-now-vs-10-years-ago/

Author Index

Ahmad, Muhammad Yousuf 267
Alves, Pedro 466
AuYoung, Alvin 287

Bai, Xiao 425
Balmin, Andrey 103
Berthou, Gautier 1
Brondino, Ivan 267
Broto, Laurent 123

Casimiro, António 41
Chen, Han 183

Dai, Yafei 307
De Palma, Noel 123, 389
Dillenseger, Bruno 389
Do, Ngoc 445

Eilam, Tamar 368
Etchevers, Xavier 389
Eugster, Patrick 82, 163

Felber, Pascal 62
Ferreira, Paulo 466
Fuller, Nicholas 183

Gandhi, Rajeev 41
Geng, Haoyan 247

Hagimont, Daniel 123
Harbaoui, Ahmed 389
Hildrum, Kirsten 103
Hsu, Cheng-Hsin 445
Hummer, Waldemar 368

Jayachandran, Praveen 204
Jayalath, Chamikara 163
Jayaram, K.R. 143, 287
Jégou, Arnaud 425
Jiang, Zhefu 307
Jiménez-Peris, Ricardo 267
Jin, Cheng 307
Junqueira, Flavio 425

Karve, Alexei 183
Kaviani, Nima 226
Kemme, Bettina 267
Kim, Minkyong 183
Kochut, Andrzej 183
Kreutz, Diego 41

Lea, Rodger 226
Lee, Michael M. 287
Lei, Hui 183
Leroy, Vincent 425
Li, Han 348
Li, Zhenhua 307
Liu, Yao 307

Martins, Rolando 41
Mayap Kamga, Christine 123

Nadgowda, Shripad 204
Nagarajan, Viswanath 103
Narasimhan, Priya 41

Oliveira, Fábio 368

Patiño-Mart́ınez, Marta 267
Pertet, Soila 41
Prakash, Varun S. 328

Quéma, Vivien 1

Reynolds, Patrick 485
Rivière, Etienne 62
Rosenberg, Florian 368
Roy, Indrajit 287

Salmi, Nabila 389
Schiavoni, Valerio 62
Shen, Zhiming 183
Shi, Weidong 328
Silva, João M. 405
Simão, José 405
Stephen, Julian James 82, 163

Talwar, Vanish 287
Tchana, Alain 123, 389

Vahdat, Amin 485
van Renesse, Robbert 247

498 Author Index

van Steen, Maarten 21
Veiga, Lúıs 405
Venkatasubramanian, Nalini 445
Venugopal, Srikumar 348
Veŕıssimo, Paulo 41
Verma, Akshat 204
Vincent, Jean-Marc 389
Voulgaris, Spyros 21

Wang, Shu-Ting 445
Wen, Yuanfeng 328

Wilson, Christo 307

Wohlstadter, Eric 226

Wolf, Joel 103

Zhang, Zhe 183

Zhang, Zhi-Li 307

Zhao, Ben Y. 307

Zhao, Xi 328

Zhao, Ye 445

Zhou, Yuanyuan 287

	Preface
	Organization
	Table of Contents
	Distributed Protocols
	FastCast: A Throughput- and Latency-EfficientTotal Order Broadcast Protocol
	1 Introduction
	2 Related Work
	3 TheFastCast Protocol
	3.1 System Model
	3.2 Overview
	3.3 Ordering Subprotocol
	3.4 Membership Management Subprotocol
	3.5 Bandwidth Allocation Subprotocol

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Bandwidth Allocation Assessment
	4.3 Throughput Assessment
	4.4 Response Time Assessment
	4.5 Latency Assessment

	5 Conclusion
	References

	VICINITY: A Pinch of Randomness Brings out the Structure
	1 Introduction
	2 System Model
	3 TheVICINITY Protocol
	3.1 VICINITY: The Intuition
	3.2 VICINITY: Baseline Version
	3.3 VICINITY: Fine-Tuning the Nuts and Bolts
	3.4 VICINITY: The Complete Protocol

	4 How Much Randomness Is Enough?
	4.1 The Role of Determinism
	4.2 The Triple Role of Randomness

	5 Evaluation
	5.1 Two-Dimensional Torus
	5.2 Clustering Nodes in Groups

	6 Related Work
	7 Conclusions
	References

	Experiences with Fault-Injection in a ByzantineFault-Tolerant Protocol
	1 Introduction
	2 Related Work
	3 Hermes’s Overview
	3.1 Faults
	3.2 Orchestrator
	3.3 Runtime
	3.4 Deployment Service

	4 Implementation
	4.1 Orchestrator
	4.2 Runtime Code-Weaving

	5 Evaluation
	5.1 Experiments
	5.2 Results
	5.3 Lessons Learned

	6 Conclusions and Future Work
	6.1 Future Work

	References

	SplayNet: Distributed User-SpaceTopology Emulation
	1 Introduction
	2 Related Work
	3 Background
	4 TheSPLAYNET Architecture
	4.1 Topology Definition and Parsing
	4.2 Resource Allocation and Deployment
	4.3 User-Space Network Emulation

	5 Evaluation
	5.1 Micro-Benchmarks
	5.2 Macro-Benchmarks
	5.3 Concurrent Deployments
	5.4 Scalability

	6 Conclusion
	References

	Assured Cloud-Based Data Analysiswith ClusterBFT
	1 Introduction
	2 Background and Preliminaries
	2.1 BFT
	2.2 MapReduce and Pig
	2.3 System Model

	3 ClusterBFT Design
	3.1 BFT and the Cloud
	3.2 Challenges in Adopting BFT in the Cloud
	3.3 ClusterBFT Principles and Architecture Overview

	4 ClusterBFT Architecture and Components
	4.1 Request Handler
	4.2 Execution Handler
	4.3 Fault Identification and

	5 Implementation
	5.1 Hadoop
	5.2 Request Handler
	5.3 Execution Handler
	5.4 Ensuring Determinism

	6 Evaluation
	6.1 Verification Overhead: Twitter Data Analysis
	6.2 Performance Under Failures: IRTA Airline Traffic Analysis
	6.3 Effectiveness of Fault Isolation: Simulation
	6.4 Approximation Accuracy: Weather Average Temperature

	7 Related Work
	8 Conclusion
	References

	FlowFlex: Malleable Schedulingfor Flows of MapReduce Jobs
	1 Introduction
	2 Preliminaries
	3 Formal Model and Results
	4 TheFlowFlex Scheduling Algorithm
	4.1 Stage 1: General Precedence Constraints to Chains
	4.2 Stage 2: Scheduling Flows with Chain Precedence Constraints
	4.3 Stage 3: Converting Pseudo-Job Schedule into Valid Schedule

	5 Experimental Results
	5.1 Simulation Experiments
	5.2 Cluster Experiments

	6 Conclusion
	References

	Cloud Computing
	DVFS Aware CPU Credit Enforcement in a Virtualized System
	1 Introduction
	2 Context
	2.1 Virtualization
	2.2 Dynamic Voltage and Frequency Scaling (DVFS)
	2.3 Consolidation and DVFS

	3 Analysis
	3.1 VM Schedulers
	3.2 Combining DVFS and VM Scheduling

	4 Contributions
	4.1 Implementation Choices
	4.2 PAS Scheduler Implementation

	5 Evaluation
	5.1 Environment
	5.2 Verification of Our Assumptions
	5.3 Execution Profile
	5.4 Credit Scheduler in Default
	5.5 SEDF Scheduler Brings a Solution
	5.6 SEDF Scheduler in Default
	5.7 PAS Scheduler Solves the Problem
	5.8 Other Environments

	6 Related Work
	7 Conclusion and Perspective
	References

	Elastic Remote Methods
	1 Introduction
	2 ElasticRMI – Overview
	2.1 Elastic Classes and Object Pools
	2.2 Shared State and Consistency
	2.3 Stubs and Skeletons
	2.4 Instantiation of Object Pools in a Cluster
	2.5 Automatic Elastic Scaling

	3 Programming with ElasticRMI
	3.1 ElasticRMI Class Hierarchy
	3.2 Programming with Implicit Elasticity
	3.3 Programming with Explicit Elasticity

	4 TheElasticRMIRuntime
	4.1 Shared State and Consistency
	4.2 Instantiation of Elastic Objects
	4.3 Load Balancing
	4.4 Fault Tolerance

	5 Evaluation
	5.1 Elasticity Metrics
	5.2 ElasticRMI Applications for Evaluation and Workloads
	5.3 Workload Pattern
	5.4 Overprovisioning and CloudWatch
	5.5 Agility Results
	5.6 Provisioning Latency

	6 Related Work
	7 Conclusions
	References

	Atmosphere: A Universal Cross-Cloud Communication Infrastructure
	1 Introduction
	2 Background and RelatedWork
	2.1 System Model
	2.2 CPS Communication
	2.3 Existing CPS System Limitations
	2.4 Other Solutions for Cloud Communication

	3 Entourage Communication
	3.1 Definition of Entourages
	3.2 Solution Overview
	3.3 Entourage Identification
	3.4 Entourage Size
	3.5 U¨ berlay Establishment

	4 Atmosphere
	4.1 Overlay Structure
	4.2 Fault Tolerance and Scalability
	4.3 Flexible Communication
	4.4 Advertisements

	5 Evaluation
	5.1 Setup
	5.2 Microbenchmarks
	5.3 Case Studies

	6 Conclusions
	References

	VMAR: Optimizing I/O Performance and ResourceUtilization in the Cloud
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Hash-Based Block Map Generation
	3.2 I/O Deduplication through Access Redirection
	3.3 Block Map Optimizations

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Related Work
	5.1 Deduplicated Storage and File Systems
	5.2 Memory Deduplication

	6 Conclusion
	References

	I2Map: Cloud Disaster Recovery Based on Image-InstanceMapping
	1 Introduction
	2 Background and Motivation
	3 Design
	3.1 Design Challenges
	3.2
	3.3 Key Design Ideas

	4 Implementation
	4.1
	4.2 Aggregator
	4.3 Remote Recovery

	5 Evaluation
	5.1 Micro Experiments
	5.2 Case Study

	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References

	Cross-Tier Application and Data Partitioning ofWeb Applications for Hybrid Cloud Deployment
	1 Introduction
	2 Motivating Scenario
	3 Background: Application-Tier Partitioning
	4 BIP for Data-Tier Partitioning
	4.1 Database Profiling with
	4.2 Join Order Enumeration
	4.3 BIP Constraints
	4.4 BIP Objective

	5 Implementation
	6 Evaluation
	6.1 Evaluation of Performance
	6.2 Evaluation of Deployment Costs
	6.3 Evaluation of Scalability

	7 Related Work
	8 Limitations, Future Work, and Conclusion
	References

	Sprinkler — Reliable Broadcastfor Geographically Dispersed Datacenters
	1 Introduction
	2 System Overview
	2.1 Sprinkler Interface
	2.2 Implementation Overview

	3 Details of the Protocols
	3.1 Proxy-Level Protocol (PLP)
	3.2 Region-Level Protocol (RLP)
	3.3 Fault Tolerance of a Proxy
	3.4 Garbage Collection

	4 Implementation
	5 Evaluation
	5.1 Throughput of Proxy-Level Protocol
	5.2 Simulation Study
	5.3 Impact of Inter-Region Link Failure
	5.4 Effectiveness of Garbage Collection

	6 Related Work
	7 Conclusion and Future Work
	References

	Storage
	Transactional Failure Recoveryfor a Distributed Key-Value Store
	1 Introduction
	2 SystemModel
	2.1 HBase
	2.2 Transaction Management

	3 Recovery Management
	3.1 Handling Client Failures
	3.2 Handling Server Failures
	3.3 Recovery Manager Failure

	4 Performance Evaluation
	4.1 Benchmark and Setup
	4.2 Benefits of Asynchronous Persistence
	4.3 Overhead of Providing Reliability
	4.4 Evaluating Failure Recovery

	5 Related Work
	6 Conclusion
	References

	Views and Transactional Storagefor Large Graphs
	1 Introduction
	1.1 Limitations of Current Systems
	1.2 Contributions

	2 Graph Storage
	2.1 Graph Representation
	2.2 Use of Transactions

	3 GraphViews
	3.1 Programming Model
	3.2 Data Structures
	3.3 Event-Driven Processing

	4 Fault Tolerance and Security
	5 Evaluation
	5.1 Performance Results
	5.2 Memory Footprint
	5.3 View Updates
	5.4 Scalability Results

	6 Case Studies with Views
	6.1 Real-Time Traffic Impact Analysis
	6.2 Hotspot Migration

	7 Related Work
	8 Conclusion
	References

	Efficient Batched Synchronization in Dropbox-Like Cloud Storage Services
	1 Introduction
	2 Related Work
	3 Understanding Cloud Storage Services
	3.1 Data SynchronizationMechanism of Cloud Storage Services
	3.2 ControlledMeasurements
	3.3 Other Cloud Storage Services and Operating Systems
	3.4 Summary

	4 The Traffic Overuse Problem in Practice
	4.1 Analysis of Real-World Dropbox Network Traces
	4.2 Examining Practical Dropbox Usage Scenarios

	5 The UDS Middleware
	5.1 UDS Implementation
	5.2 Configuring and Benchmarking UDS

	6 UDS+: Reducing CPU Utilization
	6.1 CPU Usage of Dropbox and UDS
	6.2 Reducing the CPU Utilization of UDS

	7 Conclusion
	References

	Back to the Future: Using Magnetic Tapesin Cloud Based Storage Infrastructures
	1 Introduction
	2 Analyzing and Modeling Tape Associated Latencies
	2.1 The Tape, Library and the Drive
	2.2 Generic Models for Tape Based Latency

	3 Proposed System’s Approach to Overcome Latency
	3.1 Prioritizing Read Tasks over Write Tasks
	3.2 Read Probability Weight (RPW) Based Data Distribution

	4 System and Middleware Design
	4.1 Data Source or Clients
	4.2 Data and Resource Manager
	4.3 Multi Tier File System
	4.4 Probabilistic Data Distribution
	4.5 Task Queueing

	5 Synthesis of Workload for Middleware Evaluation
	5.1 Characterizing Archive Workload from Traces
	5.2 Workload Modeling and Generation

	6 Experiment Results
	6.1 Experimental Methodology
	6.2 Read Probability Weight based Data Distribution
	6.3 Average Response Time for Read Requests
	6.4 Preserving Rate of Write Task Execution

	7 Conclusion and Future Work
	References

	Efficient Node Bootstrapping for DecentralisedShared-Nothing Key-Value Stores
	1 Introduction
	2 Background and Related Work
	2.1 Partitioning in Key-Value Stores
	2.2 Data Placement

	3 Design
	3.1 Data Partitioning for Building Transferable Replicas
	3.2 Selecting Partition Replicas for Bootstrapping
	3.3 Node Decommissioning

	4 Data Recovery and Consistency
	4.1 Data Consistency During Sharding
	4.2 Data Consistency When Moving Replicas

	5 Evaluation
	5.1 Experimental Setup
	5.2 Node Bootstrapping
	5.3 Performance of Query Processing
	5.4 Data Partitioning

	6 Conclusion
	References

	Services
	Testing Idempotence for Infrastructure as Code
	1 Introduction
	2 Background and Motivation
	3 Approach Synopsis
	4 SystemModel
	4.1 Automation and Automation Tasks
	4.2 State Transition Graph
	4.3 Idempotence of Automation Tasks

	5 Test Design
	5.1 STG-Based Test Generation
	5.2 Test Execution

	6 Implementation
	7 Evaluation
	7.1 Aggregated Test Results
	7.2 Selected Result Details
	7.3 Idempotence for Different Task Types
	7.4 Idempotence for Different Cookbook Versions

	8 Related Work
	9 Conclusion
	References

	Self-scalable Benchmarking as a Servicewith Automatic Saturation Detection
	1 Introduction
	2 The CLIF Load Injection Framework
	3 Architecture Overview
	4 Automated Load Injection Design
	4.1 Injection Policy
	4.2 Estimation of Maximal Load
	4.3 Dynamic Injector Provisioning
	4.4 BaaSP Cost Benefit

	5 BaaSP Use Cases: Benchmarking a JEE Application
	5.1 Experimental Context
	5.2 Detecting Bottleneck Tiers.

	6 Related Work
	7 Conclusion
	References

	Ditto – Deterministic ExecutionReplayability-as-a-Service for Java VM onMultiprocessors
	1 Introduction
	2 Related Work
	3 Ditto – System Overview
	3.1 Base Record and Replay Algorithms
	3.2 Wait and Notify Mechanism
	3.3 Lightweight Checkpointing
	3.4 Input Related Non-Deterministic Events

	4 Additional Optimizations
	4.1 Recording Granularity
	4.2 Pruning Redundant Order Constraints
	4.3 Thread Local Objects and Array Escape Analysis
	4.4 Trace File

	5 Implementation Details
	6 Evaluation
	6.1 Performance Results
	6.2 Complete Applications

	7 Conclusions and Future Work
	References

	Social Networks
	DynaSoRe: Efficient In-Memory Storefor Social Applications
	1 Introduction
	2 Problem Statement
	2.1 System Model
	2.2 Requirements
	2.3 Problem Formulation

	3 System Design
	3.1 API
	3.2 Algorithm
	3.3 Software Design

	4 Evaluation
	4.1 Baseline
	4.2 Datasets
	4.3 Simulator and Cluster Configuration
	4.4 Initial Data Placement and Performance
	4.5 Behavior in Flat Network Topologies
	4.6 Flash Events
	4.7 Convergence Time

	5 Related Work
	6 Conclusion
	References

	O2SM: Enabling Efficient Offline Access to OnlineSocial Media and Social Networks
	1 Introduction
	2 System Architecture
	3 Social Media Content Ranking Component
	4 Ranking-driven Social Media Prefetching
	4.1 Cost/Benefit Modeling
	4.2 O2SMPS Problem

	5 System and Application Implementation
	6 Performance Evaluations
	6.1 Integrated System Evaluations
	6.2 Evaluations on the Content Ranker

	7 Concluding Remarks
	References

	AnonyLikes: Anonymous Quantitative Feedback on Social Networks
	1 Introduction
	2 Protocol
	2.1 Phases of the Protocol

	3 Implementation
	3.1 SNA-Server Component
	3.2 Trustee Component
	3.3 Client Component

	4 Evaluation
	4.1 Usability
	4.2 Probabilistic Duplicates Detection
	4.3 Performance

	5 Related Work
	5.1 Activism and Privacy on Social Networks
	5.2 Electronic Voting

	6 Conclusions
	References

	Ten Year Best Paper
	Peer-to-Peer Keyword Search: A Retrospective
	1 Introduction
	1.1 A definition

	2 Efficient Peer-to-Peer Searching
	2.1 Our Contribution
	2.2 Similar Work

	3 WhereWeAreNow
	3.1 Disadvantages of Peer-to-Peer Systems
	3.2 Advantages of Peer-to-Peer Systems
	3.3 Impacts

	4 Where We Go from Here
	References

	Author Index

