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Abstract. In this paper we present a fast video inpainting technique to infer
the unknown information in the target region by maximizing box-based self-
similarity and coherence measure. The video inpainting is already proposed in
the literature and some of them are able to produce good quality results. How-
ever, the bottleneck of those algorithms is they are painfully slow. Here we fill the
texture in the target region that preserves the smooth motion of the object without
inclusion of any artifacts in reasonable amount of time. Our experiments show
that the proposed method is quite efficient to synthesize unknown information in
a video and comparable to the existing state-of-the-art methods. Moreover, pro-
posed method is based on box filling and optimization is done on multiple scale
using EM algorithm, and is computationally faster than the existing ones.
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1 Introduction

Video inpainting or completion is a method to fill-in the unknown regions in a video or
image sequence. This is an extension to image inpainting problem in some sense where
fill-in occurred in an unknown region in the place of the object we wish to remove from
an input image. But here in video inpainting, target region placed in all the frames of the
video at same location or continuous moving location. We can think the target region
as a “hole” or “tunnel” in the video. In video inpainting techniques, the hole is filled by
the known matter in such a way that it possess a smooth transition of the object having
a motion and passing through the hole. Here we develop similar kind of method people
use for image inpainting.

Approaches to image inpainting may be divided roughly into three categories: (i) par-
tial differential equation (PDE) based approach for structure propagation, (ii) exemplar-
based approach for texture synthesis and (iii) coherency-based approach for global
consistency. PDE-based approaches [1] fill the target region of an image by diffusing
the known data from the source region towards the interior of the target region. The
exemplar-based approach infer unknown information by copying most similar patch
from the source region and filling in the unknown region [2,3,4]. In the process of
copying patches to the target region, a number of authors suggested to incorporate some
spatial coherence in the texture synthesis process [5,6]. The basic idea of this type of
approach is to assign each pixel in the target region based on the correspondence of
the neighbouring pixels. Bugeau et al. [7] proposed a combination of three previously
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mentioned methods, namely texture synthesis, diffusion (PDE) and coherence in a sin-
gle framework to take the advantages of all the methods. In this paper, we focus on
exemplar based video inpainting method that extend exemplar-based image inpainting
methods.

Wexler et al. [8] are first to explore region completion for video. They solved the
video completion problem as optimization of global objective function using coherence
structure. They used an iterative method for filling-in each pixel of the target region in
multiple scale. Similar kind of work for repairing damaged video has been reported in
[9]. Though this method is able to produce good results in difficult cases, their method
involve combining different techniques making the process of inpainting very slow and
complicated. The algorithm in [10,11] estimates the motion information for each pixel
in the video frame in order to determine whether a pixel belongs to a moving object
or belongs to static background accordingly inpaint the moving objects based on the
information at stationary background. Their assumption was that the target region is
much smaller than moving object size, having stationary background (static camera)
which may not be the case in real scenario. This method is comparatively fast but not
up-to that level.

In this paper, we extend the method of self similarity and coherency proposed in
various image inpainting techniques to video inpainting and try to develop an algorithm
which is computationally efficient compare to the existing methods. Here we suggest to

– model the problem of video inpainting as a energy minimization task;
– incorporate the strength of self-similarity along with coherency in a comprehensive

framework;
– Reduce the computational cost by incorporating 3D-box based processing and fill-

ing instead of one pixel at a time.

Our algorithm try to approximate to a global optimization problem that combines two
fundamental concepts of self-similarity and coherency.

The rest of the paper is organized as follows. In the following Section 2 describes
proposed 3D box-filling based coherent texture synthesis procedures in detail and more
implementation issues are discussed in Section 5. At the end, we show some experi-
mental results in Section 4 where some practical evidences are also presented and then
conclude with mentioning some pros and cons in Section 5.

2 Proposed Video Inpainting

Here we want to infer the unknown/target regions in a given video from the
known/source region without introducing any artifacts. The challenge of this type of
problem is to complete target regions of the video sequence in such a way that it allows
moving objects to transmit smoothly through the target region. If the target region is
smaller compared to the moving object then difficulty is much less than when the target
region is quite larger than the moving object. Traditional image inpainting technique in
general fails to generate temporal information of the moving object.

Let V and T ⊂V be a video and a target region either fixed or continuously moving
throughout the sequence. Since video is a space-time volume, we define spatio-temporal
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3D box Sp(x,y, t) of size (n× n× n) centering at the location of a pixel (x,y) in the tth

frame. Let us denote the set of all 3D box (full or partial) in the target region T by
Δ and set of all box in the whole sequence V by Γ . We extend the texture synthesis
technique proposed by [7] for video by finding the correspondence map τ : Γ → Γ \Δ
that associates the boxes from V to the boxes of known portions V \T such that

τ(Sp) =

{
Sp, if Sp ∈ Γ \Δ
Sq ∈ Γ \Δ , if Sp ∈ Δ

(1)

where Sq is a 3D box from known region, most similar to the box Sp of target region.
If we can able to find out an efficient correspondence map τ that can map each box of
the target region to known region, then we can fill the boxes in the target region by the
mapped boxes in the source region. Thus we eventually solve the inpainting problem.
Therefore in the proposed method we seek for the optimal relevant corresponding map.

2.1 Coherency and Self-similarity

In iterative texture synthesis or image inpainting, self-similarity is used to refine the
assignment of patches or, more accurately, pixels in each iteration. The idea is to use
the output at the previous iteration as input for the current iteration. Efros et al. [12]
proposed texture synthesis for images in the terms of correspondence map τ . Note that
here we use τ as a correspondence map of boxes Sp ∈ Δ . In the proposed method, we
assume that our target portions T of the given video V has self-similarity and coherency
with known parts of the video. In other words, we wish to complete the target portions
T with some new data T̂ such that resulting video V̂ has as much self-similarity and
global visual coherence as the source portions V \T . Therefore, we seek a solution of
the following maximization problem

τ̂ = max
τ

[Coherence(V̂ , V \T)] (2)

where τ is the correspondence map. The Coherence(V̂ , V \T ) is the measure of self-
similarity and global visual coherence, defined as

Coherence(V̂ , V \T) = ∑
Sp∈Δ

s(Sp,τ(Sp)) (3)

where s(Sp,τ(Sp)) is the similarity measure between box around the voxel p and cor-
responding mapped box around voxel q (where Sq = τ(Sp)). A formalism similar to eq.
(3) was already used in [8] for summarizing visual data. In our case we have considered
the similarity measure as:

s(Sp,τ(Sp)) = exp

(−dSSD (Sp, τ(Sp))

2σ2

)
, (4)

where dSSD (Sp, τ(Sp)) computes the sum of square differences (SSD) of the pixel val-
ues between boxes Sp and τ(Sp). In the proposed method, we have considered some
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features to represent the boxes instead of simple pixel values (RGB). The detail descrip-
tion of the features are mentioned in Section 3.2. The parameter σ is chosen manually
to a high value. However, the choice is not critical for producing good output.

As we discussed, solution to the video inpainting problem would be given by the cor-
responding map τ that maximizes (2) defining self-similarity and coherency. Since the
optimization problem (2) involves a non-linear objective function (NP hard), it is diffi-
cult to solve in a straight-forward method way. So we propose to proceed with iterative
Expectation-Maximization (EM) algorithm. First, we initialize the correspondence map
τ by random guess. In E-step, we generate target texture according to given correspon-
dence map τ based on the source texture, and in the following M-step, we update the
current guess of τ by assigning the boxes in the target region to the boxes in the source
region. The E-step and M-step inherently maximizes the coherency and self-similarity
of the filled region with the known portion respectively. We enforce self-similarity in
the correspondence map τ by assigning nearby boxes by their neighbouring boxes. The
coherence between boxes in T and those in rest of the video V \T as shown in eq. (2) is
maximized if for every box Sp ∈ Δ all the surrounding boxes [Sp1 , Sp2 , . . ., Spk] agree
on the box assignment at τ(Sp)) with all the corresponding location of [τ(Sp1), τ(Sp2),
. . ., τ(Spk)] appear in the video V \T . Therefore, the iterative E-step aims to satisfy this
condition for every box Sp ∈ Δ , and the M-step searches for the best similar box in the
box subspace Γ \Δ of the unaltered region V \T of the video V . Let [Sq1 , Sq2 , . . ., Sqk]
denotes the boxes in V \T that are most similar to [Sp1 , Sp2 , . . ., Spk]. Then the predicted
Spi would be reliable if si = s(Spi , Sqi) ≈ 1. Therefore ,at each iteration, for each box
Sp ∈ Δ and corresponding surrounding box Spi , we need to find out best possible box
Sqi in V \T . Then we replace the box at Sp by the weighted average of the box at the
corresponding locations of the similar boxes Sqi . The weights are simply taken as the
similarity measure si between the corresponding boxes Spi and Sqi . Now the required
huge computation for searching process to find the nearest neighbour (most similar) is
reduced significantly by compensating it to approximate nearest neighbourhood [13].
This procedure may be expressed explicitly in the following way
E-step:

V̂ :=V \T ∪ T̂ (5)

where T̂ is obtained from T by replacing each 3D-box Sp by τ(Sp). Usually the boxes
are overlapping and the boxes are aggregated in overlapping region. The aggregation is
done by the weighted average of the overlapping boxes where the weights come from
the similarity measure (SSD) between boxes Sp and τ(Sp).
M-step:

τ̂ := argmaxτ ∑Sp∈Δ s(Sp,τ(Sp))

:= argminτ exp

(
−dSSD(Sp, τ(Sp))

σ 2

)
(6)

where τ̂ is the modified estimation of τ . At each iteration we update the target region
T and for each box Sp ∈ Δ (full or partially unknown box space), we find most similar
boxes (candidates) τ(Sp) as the box Sq ∈ Γ \Δ . If there are several boxes minimizing
this quantity we select one arbitrarily. The iterative process should end when the corre-
spondence map τ̂ remains unchanged in two consecutive iterations, i.e., τ(Sp) assigns
same Sq ∈ Γ \Δ , ∀Sp ∈ Δ in two consecutive iterations. However, the solution of the
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maximization problem may not converge to the actual global minimum or to a station-
ary point. As there is no guarantee that the iterative process converge to a stationary
point, we set the stopping criterion as the maximum number of iterations.

3 Implementation Details

The algorithm is applied on a video V with target region T where inside T information
is missing and the algorithm is supposed to infer missing information from the rest of
the video V \ T . The proposed algorithm is an iterative method and in each iteration
3D boxes within T are refined according to the maximization of coherency and self-
similarity.

Nearest neighbour search is an important problem in a variety of applications, includ-
ing the knowledge discovery and data mining, pattern recognition and classification.
The important task is to build a fast algorithm that could able to find nearest neigh-
bour of every patches of an image. Obviously the problem can be solved in O(dn) time
through simple brute-force search for n points in d dimensional space. We use an ef-
ficient optimal algorithm for approximate nearest neighbour search [14] that can solve
the problem in O(d logn) or less time.

Instead of using discrete patches, we use overlapping ones and use simple weighted
average over the overlapping portions where the weights are computed as proportional
to the similarity measure of the patches.

3.1 Multiscale Implementation

To enforce the global consistency further and also to speed up convergence, we per-
form the iterative process in multiple scales in both spatial and temporal directions.
Each of the scale makes the resolution a fraction of the resolution of the upper scale.
Scaling factor 1.25− 2.00 can produce significant result in most of the cases. In all of
our experiments, we have chosen resolution scale to be 1.5 in both the directions. The
optimization is done by using EM technique starting at coarsest scale and the solution is
propagated to finer levels for further refinement. Initially, we fill the the target region for
each frame of the video by some random texture at the coarsest scale followed by a few
EM iterations. The filled region gets refined as iteration goes. Then, both T and V \T
are gradually upsampled to finer resolutions, followed by more EM iterations, until the
final fine resolution is obtained. We fix the number of iteration as the stopping criterion
to terminate the process. However, we can terminate during the iterative process at the
topmost scale when we achieve acceptable visual quality.

3.2 Spatio-temporal Similarity Measure

The Sum of Square Differences (SSD) of color channels is widely used in image in-
painting but it is inadequate to produce the desired result in spatio-temporal space.
Since human visual system is very sensitive to motion, a well-behaved measure needs
to acknowledge human visual perception. For this we would like to incorporate some
motion information into our algorithm. We add optical flow in our measure to obtain
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motion information. Suppose a pixel at location p = (x,y, t) in one frame moved to
(x+∂x,y+∂y, t +∂ t) in the next frame. Then vx(p) = ∂x/∂ t and vy(p) = ∂y/∂ t gives
the motion estimation at p. If the motion is only in the horizontal direction, then ux

captures the instantaneous motion in the x direction. Similarly for vertical direction, vy

captures instantaneous motion in the y direction. These two measures depend upon the
spatial and temporal changes while capturing object velocities. We add these two com-
ponents after scaling the RGB values to obtain a five-dimensional representation for
each space-time point: (R,G,B,vx,vy). We apply SSD to this 5D feature vector to cap-
ture spatial and temporal similarities simultaneously. So for two space-time boxes Sp

and Sq, we have dSSD(Sp,Sq) = ‖u(Sp)− u(Sq)‖2
2. We take nearest neighbours of each

box in the target portion T using the distance measure dSSD on the 5D representation of
space-time points and keep it to update the pixels in the target region.

Fig. 1. Results of proposed video inpainting method. The first column contains some frames of
the input video where the umbrella is removed during video completion. The second column are
the result of Wexler et al. [15] and the right column represents resultant frames using proposed
method.

4 Experiment and Results

In this section experimentally we set different parameters used in our algorithm and test
it for some videos. In our experiment, the size of the box is chosen as 5× 5× 5 with
3-pixel overlap. For faster synthesizing process, the number of scale in the pyramid
is chosen as 4 with resolution factor 1.6 and the number of iterations in each scale is
chosen as 10.

In Fig. 1, we displayed the result of proposed video completion techniques. We have
displayed only some frames to demonstrate the motion preservation of the object while
filling the target hole. We observe comparable result with Wexler et al. [15] and no
additional artificial distortions occurred during box-based filling. This result is gener-
ated within 20 minutes where as Wexler et al. had reported more than 10 hrs to get that
output. with other videos also we experience these faster completion.
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5 Conclusion

In this paper we describe a fast video inpainting algorithm by maximizing box-based
self-similarity and coherency in a comprehensive framework. We combine these two
concepts into a maximization problem and optimize by EM-algorithm to produce the
inpainted video. Experimental results show that the output of the proposed method is
comparable to existing approaches.
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