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Abstract. While the computational complexity of many game-theoretic
solution concepts, notably Nash equilibrium, has now been settled, the
question of determining the exact complexity of computing an evolution-
arily stable strategy has resisted solution since attention was drawn to
it in 2004. In this paper, I settle this question by proving that deciding
the existence of an evolutionarily stable strategy is ΣP

2 -complete.
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1 Introduction

Game theory provides ways of formally representing strategic interactions be-
tween multiple players, as well as a variety of solution concepts for the result-
ing games. The best-known solution concept is that of Nash equilibrium [Nash,
1950], where each player plays a best response to all the other players’ strategies.
The computational complexity of, given a game in strategic form, computing a
(any) Nash equilibrium, remained open for a long time and was accorded signifi-
cant importance [Papadimitriou, 2001]. An elegant algorithm for the two-player
case, the Lemke-Howson algorithm [Lemke and Howson, 1964], was proved to
require exponential time on some game families [Savani and von Stengel, 2006].
Finally, in a breakthrough series of papers, the problem was established to be
PPAD-complete, even in the two-player case [Daskalakis et al., 2009; Chen et al.,
2009].1

Not all Nash equilibria are created equal; for example, one can Pareto-
dominate another. Moreover, generally, the set of Nash equilibria does not satisfy
interchangeability. That is, if player 1 plays her strategy from one Nash equi-
librium, and player 2 plays his strategy from another Nash equilibrium, the
result is not guaranteed to be a Nash equilibrium. This leads to the dreaded
equilibrium selection problem: if one plays a game for the first time, how is

1 Depending on the precise formulation, the problem can actually be FIXP-complete
for more than 2 players [Etessami and Yannakakis, 2010].
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one to know according to which equilibrium to play? This problem is ar-
guably exacerbated by the fact that determining whether equilibria with par-
ticular properties, such as placing probability on a particular pure strategy or
having at least a certain level of social welfare, exist is NP-complete in two-
player games (and associated optimization problems are inapproximable un-
less P=NP) [Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008]. In any
case, equilibria are often seen as a state to which play could reasonably con-
verge, rather than an outcome that can necessarily be arrived at immediately
by deduction. Many other solution concepts have been studied from a compu-
tational perspective, including refinements of Nash equilibrium [Hansen et al.,
2010; Sørensen, 2012], coarsenings of Nash equilibrium (such as correlated equi-
librium [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2013]
and equilibria of repeated games [Littman and Stone, 2005; Borgs et al., 2010;
Kontogiannis and Spirakis, 2008; Andersen and Conitzer, 2013]), and incompa-
rable concepts such as Stackelberg equilibrium [Conitzer and Sandholm, 2006;
von Stengel and Zamir, 2010; Conitzer and Korzhyk, 2011].

In this paper, we consider the concept of evolutionarily stable strategies, a
solution concept for symmetric games with two players. s will denote a pure
strategy and σ a mixed strategy, where σ(s) denotes the probability that mixed
strategy σ places on pure strategy s. u(s, s′) is the utility that a player playing
s obtains when playing against a player playing s′, and

u(σ, σ′) =
∑

s,s′
σ(s)σ′(s′)u(s, s′)

is the natural extension to mixed strategies.

Definition 1 (Price and Smith [1973]). Given a symmetric two-player game,
a mixed strategy σ is said to be an evolutionarily stable strategy (ESS) if both
of the following properties hold.

1. (Symmetric Nash equilibrium property) For any mixed strategy σ′, we have
u(σ, σ) ≥ u(σ′, σ).

2. For any mixed strategy σ′ (σ′ �= σ) for which u(σ, σ) = u(σ′, σ), we have
u(σ, σ′) > u(σ′, σ′).

The intuition behind this definition is that a population of players playing σ
cannot be successfully “invaded” by a small population of players playing some
σ′ �= σ, because they will perform strictly worse than the players playing σ and
therefore they will shrink as a fraction of the population. They perform strictly
worse either because (1) u(σ, σ) > u(σ′, σ), and because σ has dominant pres-
ence in the population this outweighs performance against σ′; or because (2)
u(σ, σ) = u(σ′, σ) so the second-order effect of performance against σ′ becomes
significant, but in fact σ′ performs worse against itself than σ performs against
it, that is, u(σ, σ′) > u(σ′, σ′).
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Example (Hawk-Dove game [Price and Smith, 1973]). Consider the fol-
lowing symmetric two-player game:

Dove Hawk
Dove 1,1 0,2
Hawk 2,0 -1,-1

The unique symmetric Nash equilibrium σ of this game is 50% Dove, 50% Hawk.
For any σ′, we have u(σ, σ) = u(σ′, σ) = 1/2. That is, everything is a best re-
ponse to σ. We also have u(σ, σ′) = 1.5σ′(Dove) − 0.5σ′(Hawk) = 2σ′(Dove) −
0.5, and u(σ′, σ′) = 1σ′(Dove)2 + 2σ′(Hawk)σ′(Dove) + 0σ′(Dove)σ′(Hawk) −
1σ′(Hawk)2 = −2σ′(Dove)2 + 4σ′(Dove)− 1. The difference between the former
and the latter expression is 2σ′(Dove)2 − 2σ′(Dove) + 0.5 = 2(σ′(Dove)− 0.5)2.
The latter is clearly positive for all σ′ �= σ, implying that σ is an ESS.

Intuitively, the problem of computing an ESS appears significantly harder
than that of computing a Nash equilibrium, or even a Nash equilibrium with a
simple additional property such as those described earlier. In the latter type of
problem, while it may be difficult to find the solution, once found, it is straight-
forward to verify that it is in fact a Nash equilibrium (with the desired simple
property). This is not so for the notion of ESS: given a candidate strategy, it
does not appear straightforward to figure out whether there exists a strategy
that successfully invades it. However, appearances can be deceiving; perhaps
there is a not entirely obvious, but nevertheless fast and elegant way of checking
whether such an invading strategy exists. Even if not, it is not immediately clear
whether this makes the problem of finding an ESS genuinely harder. Computa-
tional complexity provides the natural toolkit for answering these questions.

The complexity of computing whether a game has an evolutionarily stable
strategy (for an overview, see Chapter 29 of the Algorithmic Game Theory
book [Suri, 2007]) was first studied by Etessami and Lochbihler [2008], who
proved that the problem is both NP-hard and coNP-hard, as well as that the
problem is contained in ΣP

2 (the class of decision problems that can be solved
in nondeterministic polynomial time when given access to an NP oracle). Nisan
[2006] subsequently2 proved the stronger hardness result that the problem is
coDP -hard. He also observed that it follows from his reduction that the prob-
lem of determining whether a given strategy is an ESS is coNP-hard (and
Etessami and Lochbihler [2008] then pointed out that this also follows from their
reduction). Etessami and Lochbihler [2008] also showed that the problem of de-
termining the existence of a regular ESS is NP-complete. As was pointed out in
both papers, all of this still leaves the main question of the exact complexity of
the general ESS problem open. In this paper, this is settled: the problem is in
fact ΣP

2 -complete.
The proof is structured as follows. Lemma 1 shows that the slightly more

general problem of determining whether an ESS exists whose support is restricted
to a subset of the strategies is ΣP

2 -hard. This is the main part of the proof.

2 An early version of Etessami and Lochbihler [2008] appeared in 2004.
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Then, Lemma 2 points out that if two pure strategies are exact duplicates,
neither of them can occur in the support of any ESS. By this, we can disallow
selected strategies from taking part in any ESS simply by duplicating them.
Combining this with the first result, we arrive at the main result, Theorem 1.

One may well complain that Lemma 2 is a bit of a cheat; perhaps we should
just consider duplicate strategies to be “the same” strategy and merge them
back into one. As the reader probably suspects, such a hasty and limited patch
will not avoid the hardness result. Even something a little more thorough, such
as iterated elimination of very weakly dominated strategies (in some order), will
not suffice: in Appendix A I show, with additional analysis and modifications,
that the result holds even in games where each pure strategy is the unique best
response to some mixed strategy.

2 Hardness with Restricted Support

Definition 2. In ESS-RESTRICTED-SUPPORT, we are given a symmetric
two-player normal-form game G with strategies S, and a subset T ⊆ S. We
are asked whether there exists an evolutionarily stable strategy of G that places
positive probability only on strategies in T (but not necessarily on all strategies
in T ).

Definition 3 (MINMAX-CLIQUE). We are given a graph G = (V,E), sets
I and J , a partition of V into subsets Vij for i ∈ I and j ∈ J , and a number k.
We are asked whether it is the case that for every function t : I → J , there is a
clique of size (at least) k in the subgraph induced on

⋃
i∈I Vi,t(i). (Without loss

of generality, we will require k > 1.)

Example. Figure 1 shows a tiny MINMAX-CLIQUE instance (let k = 2). The
answer to this instance is “no” because for t(1) = 2, t(2) = 1, the graph induced
on

⋃
i∈I Vi,t(i) = V12 ∪ V21 = {v12, v21} has no clique of size at least 2.

Recall that ΠP
2 = coΣP

2 .

Known Theorem 1 ([Ko and Lin, 1995]). MINMAX-CLIQUE is ΠP
2 -

complete.

Lemma 1. ESS-RESTRICTED-SUPPORT is ΣP
2 -hard.

Proof: We reduce from the complement of MINMAX-CLIQUE. That is, we
show how to transform any instance of MINMAX-CLIQUE into a symmetric
two-player normal-form game with a distinguished subset T of its strategies, so
that this game has an ESS with support in T if and only if the answer to the
MINMAX-CLIQUE instance is “no.”
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j 1 j 2
J = {1,2}

j = 1 j = 2
I = {1,2}

v11 v12i = 1

V12={v12}V11={v11} 12 { 12}11 { 11}

v21 v22i = 2

V22={v22}V21={v21}

Fig. 1. An example MINMAX-CLIQUE instance (with k = 2), for which the answer
is “no.”

The Reduction. For every i ∈ I and every j ∈ J , create a strategy sij . For
every v ∈ V , create a strategy sv. Finally, create a single additional strategy s0.

– For all i ∈ I and j ∈ J , u(sij , sij) = 1.
– For all i ∈ I and j, j′ ∈ J with j �= j′, u(sij , sij′ ) = 0.
– For all i, i′ ∈ I with i �= i′ and j, j′ ∈ J , u(sij , si′j′) = 2.
– For all i ∈ I, j ∈ J , and v ∈ V , u(sij , sv) = 2− 1/|I|.
– For all i ∈ I and j ∈ J , u(sij , s0) = 2− 1/|I|.
– For all i ∈ I, j ∈ J , and v ∈ Vij , u(sv, sij) = 2− 1/|I|.
– For all i ∈ I, j, j′ ∈ J with j �= j′, and v ∈ Vij , u(sv, sij′ ) = 0.
– For all i, i′ ∈ I with i �= i′, j, j′ ∈ J , and v ∈ Vij , u(sv, si′j′ ) = 2− 1/|I|.
– For all v ∈ V , u(sv, sv) = 0.
– For all v, v′ ∈ V with v �= v′ where (v, v′) /∈ E, u(sv, sv′) = 0.
– For all v, v′ ∈ V with v �= v′ where (v, v′) ∈ E, u(sv, sv′) = (k/(k − 1))(2 −

1/|I|).
– For all v ∈ V , u(sv, s0) = 0.
– For all i ∈ I and j ∈ J , u(s0, sij) = 2− 1/|I|.
– For all v ∈ V , u(s0, sv) = 0.
– u(s0, s0) = 0.

We are asked whether there exists an ESS that places positive probability only
on strategies sij with i ∈ I and j ∈ J . That is, T = {sij : i ∈ I, j ∈ J}.
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Example. Consider again the MINMAX-CLIQUE instance from Figure 1. The
game to which the reduction maps this instance is:

s11 s12 s21 s22 sv11 sv12 sv21 sv22 s0
s11 1 0 2 2 3/2 3/2 3/2 3/2 3/2
s12 0 1 2 2 3/2 3/2 3/2 3/2 3/2
s21 2 2 1 0 3/2 3/2 3/2 3/2 3/2
s22 2 2 0 1 3/2 3/2 3/2 3/2 3/2
sv11 3/2 0 3/2 3/2 0 0 3 3 0
sv12 0 3/2 3/2 3/2 0 0 0 3 0
sv21 3/2 3/2 3/2 0 3 0 0 0 0
sv22 3/2 3/2 0 3/2 3 3 0 0 0
s0 3/2 3/2 3/2 3/2 0 0 0 0 0

It has an ESS σ with weight 1/2 on each of s12 and s21. In contrast, (for example)
σ′ with weight 1/2 on each of s11 and s21 is invaded by the strategy σ′′ with
weight 1/2 on each of sv11 and sv21 , because u(σ′′, σ′) = u(σ′, σ′) = 3/2 and
u(σ′′, σ′′) = u(σ′, σ′′) = 3/2.

Proof of Equivalence. Suppose there exists a function t : I → J such that
every clique in the subgraph induced on

⋃
i∈I Vi,t(i) has size strictly less than k.

We will show that the mixed strategy σ that places probability 1/|I| on si,t(i)
for each i ∈ I (and 0 everywhere else) is an ESS.

First, we show that σ is a best response against itself. For any sij in the
support of σ, we have u(sij , σ) = (1/|I|) · 1 + (1 − 1/|I|) · 2 = 2 − 1/|I|, and
hence we also have u(σ, σ) = 2− 1/|I|. For sij not in the support of σ, we have
u(sij , σ) = (1/|I|) · 0 + (1 − 1/|I|) · 2 = 2 − 2/|I| < 2 − 1/|I|. For all i ∈ I,
for all v ∈ Vi,t(i), we have u(sv, σ) = (1/|I|) · (2 − 1/|I|) + (1 − 1/|I|) · (2 −
1/|I|) = 2 − 1/|I|. For all i ∈ I, j ∈ J with j �= t(i), and v ∈ Vij , we have
u(sv, σ) = (1/|I|) · 0+ (1− 1/|I|) · (2− 1/|I|) = (1− 1/|I|)(2− 1/|I|) < 2− 1/|I|.
Finally, u(s0, σ) = 2− 1/|I|. So σ is a best response to itself.

It follows that if there were a strategy σ′ �= σ that could successfully invade
σ, then σ′ must put probability only on best responses to σ. Based on the
calculations in the previous paragraph, these best responses are s0, and, for any
i, si,t(i) and, for all v ∈ Vi,t(i), sv. The expected utility of σ against any of these is
2−1/|I| (in particular, for any i, we have u(σ, si,t(i)) = (1/|I|)·1+(1−1/|I|)·2 =
2− 1/|I|). Hence, u(σ, σ′) = 2− 1/|I|, and to successfully invade, σ′ must attain
u(σ′, σ′) ≥ 2− 1/|I|.

We can write σ′ = p0s0+p1σ
′
1+p2σ

′
2, where p0+p1+p2 = 1, σ′

1 only puts pos-
itive probability on the si,t(i) strategies, and σ′

2 only puts positive probability on
the sv strategies with v ∈ Vi,t(i). The strategy that results from conditioning σ′

on σ′
1 not being played may be written as (p0/(p0+p2))s0+(p2/(p0+p2))σ

′
2, and

thus we may write u(σ′, σ′) = p21u(σ
′
1, σ

′
1) + p1(p0 + p2)u(σ

′
1, (p0/(p0 + p2))s0 +

(p2/(p0 + p2))σ
′
2) + (p0 + p2)p1u((p0/(p0 + p2))s0 +(p2/(p0 + p2))σ

′
2, σ

′
1) + (p0 +

p2)
2u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2).

Now, if we shift probability mass from s0 to σ′
2, i.e., we decrease p0 and increase
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p2 by the same amount, this will not affect any of the coefficients in the previous
expression; it will not affect any of u(σ′

1, σ
′
1), u(σ

′
1, (p0/(p0 + p2))s0 + (p2/(p0 +

p2))σ
′
2) (because u(sij , v) = u(sij , s0) = 2 − 1/|I|), and u((p0/(p0 + p2))s0 +

(p2/(p0 + p2))σ
′
2, σ

′
1) (because u(s0, sij) = u(sv, sij) = 2 − 1/|I| when v ∈ Vij

or v ∈ Vi′j′ with i′ �= i); and it will not decrease u((p0/(p0 + p2))s0 + (p2/(p0 +
p2))σ

′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2) (because for any v ∈ V , u(s0, s0) =

u(s0, sv) = u(sv, s0) = 0). Therefore, we may assume without loss of generality
that p0 = 0, and hence σ′ = p1σ

′
1 + p2σ

′
2.

It follows that we can write u(σ′, σ′) = p21u(σ
′
1, σ

′
1) + p1p2u(σ

′
1, σ

′
2)+

p2p1u(σ
′
2, σ

′
1)+p22u(σ

′
2, σ

′
2). We first note that u(σ′

1, σ
′
1) can be at most 2−1/|I|.

Specifically, u(σ′
1, σ

′
1) = (

∑
i σ

′
1(si,t(i))

2) · 1 + (1 − ∑
i σ

′
1(si,t(i))

2) · 2, and this
expression is uniquely maximized by setting each σ′

1(si,t(i)) to 1/|I|. u(σ′
1, σ

′
2)

is easily seen to also be 2 − 1/|I|, and u(σ′
2, σ

′
1) is easily seen to be at most

2 − 1/|I| (in fact, it is exactly that). Thus, to obtain u(σ′, σ′) ≥ 2 − 1/|I|, we
must have either p1 = 1 or u(σ′

2, σ
′
2) ≥ 2 − 1/|I|. However, in the former case,

we would require u(σ′
1, σ

′
1) = 2 − 1/|I|, which can only be attained by setting

each σ′
1(si,t(i)) to 1/|I|—but this would result in σ′ = σ. Thus, we can conclude

u(σ′
2, σ

′
2) ≥ 2 − 1/|I|. But then σ′

2 would also successfully invade σ. Hence, we
can assume without loss of generality that σ′ = σ′

2, i.e., p0 = p1 = 0 and p2 = 1.
That is, we can assume that σ′ only places positive probability on strategies

sv with v ∈ ⋃
i∈I Vi,t(i). For any v, v′ ∈ V , we have u(sv, sv′) = u(sv′ , sv).

Specifically, u(sv, sv′) = u(sv′ , sv) = (k/(k− 1))(2− 1/|I|) if v �= v′ and (v, v′) ∈
E, and u(sv, sv′) = u(sv′ , sv) = 0 otherwise. Now, suppose that σ′(sv) > 0
and σ′(sv′) > 0 for v �= v′ with (v, v′) /∈ E. We can write σ′ = p0σ

′′ + p1sv +
p2sv′ , where p0, p1 = σ′(sv), and p2 = σ′(sv′) sum to 1. We have u(σ′, σ′) =
p20u(σ

′′, σ′′) + 2p0p1u(σ
′′, sv) + 2p0p2u(σ

′′, sv′) (because u(sv, sv) = u(sv′ , sv′) =
u(sv, sv′) = 0). Suppose, without loss of generality, that u(σ′′, sv) ≥ u(σ′′, sv′).
Then, if we shift all the mass from sv′ to sv (so that the mass on the latter
becomes p1 + p2), this can only increase u(σ′, σ′), and it reduces the size of
the support of σ′ by 1. By repeated application, we can assume without loss of
generality that the support of σ′ corresponds to a clique of the induced subgraph
on

⋃
i∈I Vi,t(i). We know this clique has size c where c < k. u(σ′, σ′) is maximized

if σ′ randomizes uniformly over its support, in which case u(σ′, σ′) = ((c −
1)/c)(k/(k − 1))(2 − 1/|I|) < ((k − 1)/k)(k/(k − 1))(2− 1/|I|) = 2− 1/|I|. But
this contradicts that σ′ would successfully invade σ. It follows that σ is indeed
an ESS.

Conversely, suppose that there exists an ESS σ that places positive probabil-
ity only on strategies sij with i ∈ I and j ∈ J . We must have u(σ, σ) ≥ 2−1/|I|,
because otherwise s0 would be a better response to σ. First suppose that for
every i ∈ I, there is at most one j ∈ J such that σ places positive probability on
sij (we will shortly show that this must be the case). Let t(i) denote the j ∈ J
such that σ(sij) > 0 (if there is no such j for some i, then choose an arbitrary j
to equal t(i)). Then, u(σ, σ) is uniquely maximized by setting σ(si,t(i)) = 1/|I|
for all i ∈ I, resulting in u(σ, σ) = (1/|I|) · 1 + (1− 1/|I|) · 2 = 2− 1/|I|. Hence,
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this is the only way to ensure that u(σ, σ) ≥ 2−1/|I|, under the assumption that
for every i ∈ I, there is at most one j ∈ J such that σ places positive probability
on sij .

Now, let us consider the case where there exists an i ∈ I such that there
exist j, j′ ∈ J with j �= j′, σ(sij) > 0, and σ(sij′ ) > 0, to show that such
a strategy cannot obtain a utility of 2 − 1/|I| or more against itself. We can
write σ = p0σ

′ + p1sij + p2sij′ , where σ′ places probability zero on sij and
sij′ . We observe that u(σ′, sij) = u(sij , σ

′) and u(σ′, sij′ ) = u(sij′ , σ
′), because

when the game is restricted to these strategies, each player always gets the
same payoff as the other player. Moreover, u(σ′, sij) = u(σ′, sij′ ), because σ′

does not place positive probability on either sij or sij′ . Hence, we have that
u(σ, σ) = p20u(σ

′, σ′) + 2p0(p1 + p2)u(σ
′, sij) + p21 + p22. But then, if we shift all

the mass from sij′ to sij (so that the mass on the latter becomes p1+p2) to obtain
strategy σ′′, it follows that u(σ′′, σ′′) > u(σ, σ). By repeated application, we can
find a strategy σ′′′ such that u(σ′′′, σ′′′) > u(σ, σ) and for every i ∈ I, there is
at most one j ∈ J such that σ′′′ places positive probability on sij . Because we
showed previously that the latter type of strategy can obtain expected utility
at most 2 − 1/|I| against itself, it follows that it is in fact the only type of
strategy (among those that randomize only over the sij strategies) that can
obtain expected utility 2− 1/|I| against itself. Hence, we can conclude that the
ESS σ must have, for each i ∈ I, exactly one j ∈ J (to which we will refer as
t(i)) such that σ(si,t(i)) = 1/|I|, and that σ places probability 0 on every other
strategy.

Finally, suppose, for the sake of contradiction, that there exists a clique of
size k in the induced subgraph on

⋃
i∈I Vi,t(i). Consider the strategy σ′ that

places probability 1/k on each of the corresponding strategies sv. We have that
u(σ, σ) = u(σ, σ′) = u(σ′, σ) = 2− 1/|I|. Moreover, u(σ′, σ′) = (1/k) · 0 + ((k −
1)/k) · (k/(k − 1))(2 − 1/|I|) = 2− 1/|I|. It follows that σ′ successfully invades
σ—but this contradicts σ being an ESS. It follows, then, that t is such that every
clique in the induced graph on

⋃
i∈I Vi,t(i) has size strictly less than k.

3 Hardness without Restricted Support

Lemma 2 (No duplicates in ESS). Suppose that strategies s1 and s2 (s1 �=
s2) are duplicates, i.e., for all s, u(s1, s) = u(s2, s).

3 Then no ESS places positive
probability on s1 or s2.

Proof: For the sake of contradiction, suppose σ is an ESS that places positive
probability on s1 or s2 (or both). Then, let σ′ �= σ be identical to σ with
the exception that σ′(s1) �= σ(s1) and σ′(s2) �= σ(s2) (but it must be that
σ′(s1) + σ′(s2) = σ(s1) + σ(s2)). That is, σ′ redistributes some mass between
s1 and s2. Then, σ cannot repel σ′, because u(σ, σ) = u(σ′, σ) and u(σ, σ′) =
u(σ′, σ′).

3 It is fine to require u(s, s1) = u(s, s2) as well, and we will do so in the proof of
Theorem 1, but it is not necessary for this lemma to hold.
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Definition 4. In ESS, we are given a symmetric two-player normal-form game
G. We are asked whether there exists an evolutionarily stable strategy of G.

Theorem 1. ESS is ΣP
2 -complete.

Proof: Etessami and Lochbihler [2008] proved membership in ΣP
2 . We prove

hardness by reduction from ESS-RESTRICTED-SUPPORT, which is hard by
Lemma 1. Given the game G with strategies S and subset of strategies T ⊆ S
that can receive positive probability, construct a modified gameG′ by duplicating
all the strategies in S \ T . (At this point, for duplicate strategies s1 and s2, we
require u(s, s1) = u(s, s2) as well as u(s1, s) = u(s2, s).) If G has an ESS σ that
places positive probability only on strategies in T , this will still be an ESS in G′,
because any strategy that uses the new duplicate strategies will still be repelled,
just as its equivalent strategy that does not use the new duplicates was repelled
in the original game. (Here, it should be noted that the equivalent strategy in the
original game cannot turn out to be σ, because σ does not put any probability
on a strategy that is duplicated.) On the other hand, if G′ has an ESS, then
by Lemma 2, this ESS can place positive probability only on strategies in T .
This ESS will still be an ESS in G (all of whose strategies also exist in G′), and
naturally it will still place positive probability only on strategies in T .

A Hardness without Duplication

In this appendix, it is shown that with some additional analysis and modifica-
tions, the result holds even in games where each pure strategy is the unique best
response to some mixed strategy. That is, the hardness is not simply an artifact
of the introduction of duplicate or otherwise redundant strategies.

Definition 5. In the MINMAX-CLIQUE problem, say vertex v dominates ver-
tex v′ if they are in the same partition element Vij , there is no edge between
them, and the set of neighbors of v is a superset (not necessarily strict) of the
set of neighbors of v′.

Lemma 3. Removing a dominated vertex does not change the answer to a
MINMAX-CLIQUE instance.

Proof: In any clique in which dominated vertex v′ participates (and therefore
its dominator v does not), v can participate in its stead.

Modified Lemma 1. ESS-RESTRICTED-SUPPORT is ΣP
2 -hard, even if ev-

ery pure strategy is the unique best response to some mixed strategy.

Proof: We use the same reduction as in the proof of Lemma 1. We restrict
our attention to instances of the MINMAX-CLIQUE problem where |I| ≥ 2,
|J | ≥ 2, there are no dominated vertices, and every vertex is part of at least
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one edge. Clearly, the problem remains ΠP
2 -complete when restricting attention

to these instances. For the games resulting from these restricted instances, we
show that every pure strategy is the unique best response to some mixed strategy.
Specifically:

– sij is the unique best response to the strategy that distributes 1 − ε mass
uniformly over the si′j′ with i′ �= i, and ε mass uniformly over the sij′ with
j′ �= j. (This is because only pure strategies sij′ will get a utility of 2 against
the part with mass 1 − ε, and among these only sij will get a utility of 1
against the part with mass ε.)

– sv (with v ∈ Vij) is the unique best response to the strategy that places
(1/|I|)(1− ε) probability on sij and (1/(|I||J |))(1 − ε) probability on every
si′j′ with i′ �= i, and that distributes the remaining ε mass uniformly over
the vertex strategies corresponding to neighbors of v. (This is because sv
obtains an expected utility of 2− 1/|I| against the part with mass 1− ε, and
an expected utility of (k/(k − 1))(2 − 1/|I|) against the part with mass ε;
strategies sv′ with v′ /∈ Vij obtain utility strictly less than 2− 1/|I| against
the part with mass 1 − ε; and strategies si′′j′′ , s0, and sv′ with v′ ∈ Vij

obtain utility at most 2 − 1/|I| against the part with mass 1 − ε, and an
expected utility of strictly less than (k/(k − 1))(2 − 1/|I|) against the part
with mass ε. (In the case of sv′ with v′ ∈ Vij , this is because by assumption,
v′ does not dominate v, so either v has a neighbor that v′ does not have,
which gets positive probability and against which sv′ gets a utility of 0; or,
there is an edge between v and v′, so that sv′ gets positive probability and
sv′ gets utility 0 against itself.))

– s0 is the unique best response to the strategy that randomizes uniformly
over all the sij . (This is because it obtains utility 2 − 1/|I| against that
strategy, and all the other pure strategies obtain utility strictly less against
that strategy, due to getting utility 0 against at least one pure strategy in
its support.)

The following lemma is a generalization of Lemma 2.

Modified Lemma 2. Suppose that subset S′ ⊆ S satisfies:

– for all s ∈ S\S′ and s′, s′′ ∈ S′, we have u(s′, s) = u(s′′, s) (that is, strategies
in S′ are interchangeable when they face a strategy outside S′);4 and

– the restricted game where players must choose from S′ has no ESS.

Then no ESS of the full game places positive probability on any strategy in S′.

Proof: Consider a strategy σ that places positive probability on S′. We can
write σ = p1σ1 + p2σ2, where p1 + p2 = 1, σ1 places positive probability only
on S \ S′, and σ2 places positive probability only on S′. Because no ESS exists

4 Again, it is fine to require u(s, s′) = u(s, s′′) as well, and we will do so in the proof
of Modified Theorem 1, but it is not necessary for the lemma to hold.
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in the game restricted to S′, there must be a strategy σ′
2 (with σ′

2 �= σ2) whose
support is contained in S′ that successfully invades σ2, so either (1) u(σ′

2, σ2) >
u(σ2, σ2) or (2) u(σ′

2, σ2) = u(σ2, σ2) and u(σ′
2, σ

′
2) ≥ u(σ2, σ

′
2). Now consider

the strategy σ′ = p1σ1 + p2σ
′
2; we will show that it successfully invades σ. This

is because u(σ′, σ) = p21u(σ1, σ1)+ p1p2u(σ1, σ2)+ p2p1u(σ
′
2, σ1)+ p22u(σ

′
2, σ2) =

p21u(σ1, σ1) + p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ
′
2, σ2) ≥ p21u(σ1, σ1)+

p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ2, σ2) = u(σ, σ), where the second equality
follows from the property assumed in the lemma. If case (1) above holds, then
the inequality is strict and σ is not a best response against itself. If case (2)
holds, then we have equality; moreover, u(σ′, σ′) = p21u(σ1, σ1)+p1p2u(σ1, σ

′
2)+

p2p1u(σ
′
2, σ1) + p22u(σ

′
2, σ

′
2) = p21u(σ1, σ1) + p1p2u(σ1, σ

′
2) + p2p1u(σ2, σ1)+

p22u(σ
′
2, σ

′
2) ≥ p21u(σ1, σ1)+p1p2u(σ1, σ

′
2)+p2p1u(σ2, σ1)+p22u(σ2, σ

′
2) = u(σ, σ′),

where the second equality follows from the property assumed in the lemma. So
in this case too, σ′ successfully invades σ.

Modified Theorem 1. ESS is ΣP
2 -complete, even if every pure strategy is the

unique best response to some mixed strategy.

Proof: Again, Etessami and Lochbihler [2008] proved membership in ΣP
2 . For

hardness, we use a similar proof strategy as in Theorem 1, again reducing from
ESS-RESTRICTED-SUPPORT, which is hard even if every pure strategy is the
unique best response to some mixed strategy, by Modified Lemma 1. Given the
game G with strategies S and subset of strategies T ⊆ S that can receive positive
probability, construct a modified game G′ by replacing each pure strategy s ∈
S \ T by three new pure strategies, s1, s2, s3. For each s′ /∈ {s1, s2, s3}, we will
have u(si, s′) = u(s, s′) (the utility of the original s) and u(s′, si) = u(s′, s) for
all i ∈ {1, 2, 3}; for all i, j ∈ {1, 2, 3}, we will have u(si, sj) = u(s, s) + ρ(i, j),
where ρ gives the payoffs of rock-paper-scissors (with −1 for a loss, 0 for a tie,
and 1 for a win).

If G has an ESS that places positive probabilities only on strategies in T , this
will still be an ESS in G′ because any strategy σ′ that uses new strategies si will
still be repelled, just as the corresponding strategy σ′′ that put the mass on the
corresponding original strategies s (i.e., σ′′(s) = σ′(s1) + σ′(s2) + σ′(s3)) was
repelled in the original game. (Unlike in the proof of the original Theorem 1,
here it is perhaps not immediately obvious that u(σ′′, σ′′) = u(σ′, σ′), because
the right-hand side involves additional terms involving ρ. But ρ is a symmetric
zero-sum game, and any strategy results in an expected utility of 0 against itself
in such a game.) On the other hand, if G′ has an ESS, then by Modified Lemma 2
(letting S′ = {s1, s2, s3} and using the fact that rock-paper-scissors has no ESS),
this ESS can place positive probability only on strategies in T . This ESS will
still be an ESS in G (for any potentially invading strategy in G there would be
an equivalent such strategy in G′, for example replacing s by s1 as needed), and
naturally it will still place positive probability only on strategies in T .

Finally it remains to be shown that in G′ each pure strategy is the unique
best response to some mixed strategy, using the fact that this is the case for
G. For a pure strategy in T , we can simply use the same mixed strategy as we
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use for that pure strategy in G, replacing mass placed on each s /∈ T in G with
a uniform mixture over s1, s2, s3 where needed. (By using a uniform mixture,
we guarantee that each si obtains the same expected utility against the mixed
strategy as the corresponding s strategy in G.) For a pure strategy si /∈ T , we
cannot simply use the same mixed strategy as we use for the corresponding s in
G (with the same uniform mixture trick), because s1, s2, s3 would all be equally
good responses. But because these three would be the only best responses, we
can mix in a sufficiently small amount of si+1 (mod 3) (where i beats i+1 (mod 3)
in ρ) to make si the unique best response.
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