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Abstract. We study the Price of Anarchy (PoA) of the competitive cascade game
following the framework proposed by Goyal and Kearns in [11]. Our main insight
is that a reduction to a Linear Threshold Model in a time-expanded graph estab-
lishes the submodularity of the social utility function. From this observation, we
deduce that the game is a valid utility game, which in turn implies an upper bound
of 2 on the (coarse) PoA. This cleaner understanding of the model yields a simpler
proof of a much more general result than that established by Goyal and Kearns:
for the N -player competitive cascade game, the (coarse) PoA is upper-bounded
by 2 under any graph structure. We also show that this bound is tight.
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1 Introduction

The processes and dynamics by which information and behaviors spread through social
networks have long interested scientists within many areas [18]. Understanding such
processes has the potential to shed light on human social structure, and to impact the
strategies used to promote behaviors or products. While the interest in the subject is
long-standing, the recent increased availability of social network and information diffu-
sion data (through sites such as Facebook and LinkedIn) has put into relief algorithmic
questions within the area, and led to widespread interest in the topic within the computer
science community.

One particular application that has been receiving interest in enterprises is to use
word-of-mouth effects as a tool for viral marketing. Motivated by the marketing goal,
mathematical formalizations of influence maximization have been proposed and exten-
sively studied by many researchers [9,14,17,23,24,8,7,16]. Influence maximization is
the problem of selecting a small set of seed nodes in a social network, such that their
overall influence on other nodes in the network — defined according to particular mod-
els of diffusion — is maximized.

When considering the word-of-mouth marketing application, it is natural to realize
that multiple companies, political movements, or other organizations may use diffusion
in a social network to promote their products simultaneously. For example, Samsung
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may try to promote their new Galaxy phone, while Apple tries to advertise their new
iPhone. Companies will necessarily end up in competition with each other, so it be-
comes essential to understand the outcome of competitive diffusion phenomena in the
network.

Motivated by the above scenarios, several models for competitive diffusion have
been proposed and studied [2,4,7,12,20,11,1,21]. Past work tends to follow one of two
assumptions about the timing of players’ moves. The first approach is to assume that all
but one of the competitors have already chosen their strategies, and to study the algorith-
mic problem of finding the best response [2,4,7,12,5,6]. The goal may be maximizing
one’s own influence [2,4,7] or minimizing the influence of the competitors [12,5]. The
other approach is to model the competition as a simultaneous game, in which all compa-
nies pick their strategies at the same time [1,11,20,21]. The final influence is determined
by the initial seed set of every company and the underlying diffusion process.

In this paper, we follow the second approach. In the game, the players are companies
(or other organizations) who try to promote their competing products in the social net-
work through word-of-mouth marketing. The players simultaneously allocate resources
to individuals in the social network in order to seed them as initial adopters of their
products. These resources could be free samples, time spent explaining the advantages
of the product, or monetary rewards. Based on the allocated resources, the nodes choose
which of the products to adopt initially. Subsequently, the diffusion of the adoption of
products proceeds according to the local adoption dynamics. The goal for each player
is to maximize the coverage of his1 own product.

The local adoption dynamics play a vital role in determining properties of the game.
In this paper, we follow the framework proposed recently by Goyal and Kearns [11].
Their model decomposes the local adoption decisions into two stages: switching and
selection. In the switching stage, the user decides whether to adopt any product or com-
pany at all. This decision is based on the set of neighbors who have already adopted one
of the products. If the user decides to adopt a product, in the following selection stage,
she decides which company’s product to adopt based on the fraction of neighbors who
have adopted the product from each company.

For example, assume that iPhone and Galaxy are the only two smartphones available.
In the switching stage, a user decides whether to adopt a smartphone or not, based
on the fraction of her neighbors who have already bought a smartphone. If she has
decided to adopt a smartphone, in the selection stage, she decides whether to choose an
iPhone or Galaxy based on the fraction of iPhone users and Galaxy users among her
friends. The two stages are modeled using a switching function fv(α1 + α2), which
gives the probability that the user adopts one of the products, and the selection function
gv(α1, α2), which determines the probability that the user chooses the product of a
specific company. Here α1 and α2 are the fractions of the user’s friends who have
already adopted the product from the two competitors. The details of the model are
presented in Section 2.

Under this framework, Goyal and Kearns have studied the Price of Anarchy (PoA)
of the two-player competitive cascade game. Informally, the PoA is a measure of the

1 Throughout the paper, to simplify the distinction of roles, we consistently use “she” to denote
individuals in the social network and “he” to denote the players, i.e., the companies.
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maximum potential inefficiency created by non-cooperative activity. (The precise defi-
nition of the PoA is given in Section 2.3.) Goyal and Kearns have shown that the PoA
under the switching-selection model with concave switching functions and linear selec-
tion functions is upper-bounded by 4.2

In this paper, we show that a stronger PoA bound for the Goyal-Kearns model fol-
lows from several well-understood and general phenomena. The key observation is that
by considering a time-expanded graph, the Goyal-Kearns model can be considered an
instance of a general threshold model. Then, the result of Mossel and Roch [17] guar-
antees that the social utility function is submodular, and a simple coupling argument es-
tablishes that players’ utility functions are competitive. With a submodular social utility
function, the game is a valid utility game. (This type of proof was used previously by
Bharathi et al. [2].) Finally, for valid utility games, the results of Vetta [22] and Blum et
al. and Roughgarden [3,19] establish a (coarse) Price of Anarchy of at most 2.

Thanks to the above understanding, we obtain a much more general result with a
much simpler proof. We show that the PoA is upper-bounded by 2 for the competitive
cascade game with an arbitrary number of players and any graph structure with submod-
ular activation functions fv(·). We formally state this result in Theorem 1. Moreover,
by utilizing the result of Roughgarden in [19], we show that our bound not only holds
for the PoA under pure or mixed Nash equilibria but also for the coarse PoA. We also
show that the proposed PoA bound is tight.

Theorem 1. The coarse PoA is upper-bounded by 2 under the switching-selection model
with concave switching functions and linear selection functions.3

Our result on the PoA bound holds under a generalized version of the framework
used in [11]. First, and most importantly, our model allows for an arbitrary number of
players. Second, we allow multiple players to target the same individual and allow each
player to put multiple units of budget on the same individual.4 This generalization en-
larges the strategy space from sets to multisets and somewhat complicates the analysis
of our model. Third, we associate each individual in the network with a weight measur-
ing the importance of the node. Fourth, we generalize the adoption functions defined
on the fraction of already adopting neighbors to arbitrary set functions defined on the
individuals who have previously adopted the product.

1.1 Related Work

Our work is mainly motivated by [11], lying at the intersection of influence analysis
in social networks and traditional game theory research. The model in [11] and the
differences compared to our work are discussed in detail above and in Section 2.

2 In fact, they proved that the PoA upper bound holds in a more general model, which we will
discuss in Section 2.

3 Similar to the result by Goyal and Kearns, our PoA upper bound extends to a more general
model. We define this more general model in Section 2, and state and prove the more general
result in Section 3.

4 The model proposed by Goyal and Kearns [11] allows for multiple units of budget on the same
individual, but the proof does not explicitly cover this extension.



Price of Anarchy for the N -Player Competitive Cascade Game 235

Submodularity has been a recurring topic in the study of diffusion phenomena
[17,14,12,2,4,5]. [14,17] have shown that influence coverage is submodular under local
dynamics with submodularity. The submodularity of global influence coverage can be
utilized to design efficient algorithm for either maximizing the influence [14] or min-
imizing the influence of the competitors [12]. Submodularity has also been applied in
the analysis of a competitive influence game by Bharathi et al. [2]. Bharathi et al. use
a similar approach as we do in this paper; they also bound the PoA bound by showing
that the game is a valid utility game. However, they analyze the competitive cascade
game under a simpler diffusion model. Under their model, a node adopts the product
from the neighbor who first succeeds in activating her; a continuous timing component
ensures that this node is unique with probability 1.

In the proof for the PoA bound of the competitive cascade game, we are drawing
heavily on previous research on the PoA for valid utility games [22,19,3]. Vetta first
showed that for a valid utility game, the PoA for pure Nash equilibria is upper-bounded
by 2 in [22]. Blum et al. and Roughgarden later generalized Vetta’s result to the coarse
PoA in [19,3].

Several other game-theoretic approaches have been considered for competitive diffu-
sion in social networks [21,1,20,10,6]. [20] mainly focuses on the efficient computation
of the Nash strategy instead of the theoretical bound of the PoA. [6] focuses on study-
ing the algorithmic problem of finding the best response. Though [1,21,10] studied the
competitive cascade game from a game-theoretic perspective, they mainly focused on
the existence of pure Nash equilibria. [1] mainly focuses on the existence of pure Nash
equilibria under a deterministic threshold model. [10] also tries to characterize the struc-
ture of the pure Nash equilibria in the game. The PoA is studied in [21]; however, they
studied the PoA bound of pure Nash equilibria and used a deterministic diffusion model
instead of the stochastic dynamics we use in our work. In their model, the PoA is un-
bounded as in the Goyal-Kearns model with non-concave switching functions. As noted
by [4,5], small differences in the diffusion model can lead to dramatically different be-
haviors of the model.

2 Models and Preliminaries

In this section, we define basic notation, present the different models of diffusion and
the N -player game, and include other definitions of concepts used in our proof. In the
game, the players allocate resources to the nodes in the graph G = (V,E) to win
them as initial adopters of their products. Then, the adoption of products propagates
according to the local dynamics, described in detail in Section 2.1. The formal definition
of the game is presented in Section 2.3.

Throughout, we use the following conventions for notation. Players are typically
denoted by i, j, k, while nodes are u, v, w. For sets, functions, etc., the identity of a
player is applied as a superscript, while that of a node (and time step) is applied as a
subscript. Vectors are written in boldface, including vectors of sets; in particular, we
frequently write S = (S1, . . . , SN ) for the vector of sets of nodes belonging to the
different players.
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2.1 General Adoption Model

The general adoption model is a generalization of the switching-selection model de-
scribed in Section 1. Each node in G is in one of the N + 1 states {0, 1, . . . , N}. A
node v in state i > 0 means that individual v has adopted the product of player i, while
state 0 means that she has not adopted the product of any player. In this case, we also
say that v is inactive. Conversely, we say that node v is activated if she is in one of the
states i > 0. Initially, all nodes are inactive. The diffusion of the adoption of products is
a process described by nodes’ state changes. We assume that the process is progressive,
meaning that a node can change her state at most once, from 0 to some i > 0, and must
remain in that state subsequently.

The diffusion process works in two stages. We call the first stage Seeding and the
second stage Diffusion. In the first stage, the initial seeds of all players are decided
based on the budgets that each player allocates to the nodes. The initial seeds are used
as starting points for the diffusion stage. In the second stage, the adoption propagates
according to certain local dynamics based on the nodes who have previously adopted
the products.

Seeding stage: The strategy M i of player i is a multiset of nodes. We define αi
v as

the number of times that v appears in player i’s multiset. For each node v ∈ V , if∑N
i=1 α

i
v = 0, the initial state of node v is 0; otherwise, the initial state of node v is

one of {1, 2, . . . , N} with probabilities (α
1
v

Zv
, . . . ,

αN
v

Zv
), where Zv =

∑N
i=1 α

i
v is simply

the normalizing constant. The decisions for different nodes are independent. Thus, if no
player selects a node, the node remains inactive. Otherwise, the players win the node as
an initial adopter with probability proportional to the number of times they select the
node.

Diffusion stage: The important part of diffusion is the local dynamics deciding when
a node gets influenced, i.e., changes her state from 0 to i. Let Si be the set of nodes in
state i. A node v who is still in state 0 changes into state 1, . . . , N, 0 according to the
probabilities

(h1
v(S), . . . , h

N
v (S), 1−

N∑

i=1

hi
v(S)).

We call hi
v(S

1, . . . , SN ) the adoption function of node v for product i. It gives the
probability that a still inactive node v adopts product i given that Sj is the current set
of nodes in state j. The adoption functions must satisfy the following two conditions:

0 ≤ hi
v(S) ≤ 1, ∀v ∈ V, i = 1, . . . , N

∑N
i=1 h

i
v(S) ≤ 1, ∀v ∈ V.

We call Hv(S) =
∑N

i=1 h
i
v(S) the activation probability; it gives the probability that

v adopts any product and changes from state 0 to any state i > 0.
Equipped with the local dynamics of adoption, we still need to define in what order

nodes’ states are updated. In the general adoption model, we assume that an update
schedule is given in advance to determine the order of updates. The update schedule
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is a finite sequence Q of nodes 〈v1, . . . , v�〉, of length �. A node could occur multiple
times in the sequence.

Nodes’ states are updated according to the order prescribed by the sequence. Let
Si
t be the set of nodes in state i after the first t updates; Si

0 is the seed set of player
i resulting from the seeding stage. In each round t, the state of node vt is updated
according to the local dynamics of adoption and previously activated nodes, namely
St−1 = (S1

t−1, . . . , S
N
t−1). If node vt is already in state i > 0, she remains in state i.

Otherwise, she changes into state 1, . . . , N, 0 according to the probabilities

(h1
v(St−1), . . . , h

N
v (St−1), 1−

N∑

i=1

hi
v(St−1)).

The states of all other nodes remain the same. The updates in different rounds are in-
dependent. The diffusion stage ends after the � update steps. The prescribed update
sequence makes this model different from the previously studied Independent Cascade
and Threshold Models. We discuss the difference and some implications in more detail
after defining the Threshold Model in Section 2.4.

2.2 Useful Properties

We next identify three important properties that make the model more tractable analyti-
cally: (1) additivity of the activation probability Hv, (2) competitiveness of the adoption
function hv and (3) submodularity of the activation function fv.

Definition 1. The total activation probability Hv(S) =
∑N

i=1 hv(S) is additive if and

only if Hv can be written as Hv(S) = fv(
⋃N

i=1 S
i) for some monotone set function

defined on V . We call fv(S) the activation function for v when Hv is additive.

Additivity implies that the probability for a node to adopt the product and change
from inactive to active only depends on the set of already activated nodes and not on
which specific products they have adopted. For example, the probability that one adopts
a smartphone only depends on who has already adopted one, independent of who is
using iPhone and who is using Galaxy.

To simplify notation, we define S−i =
⋃

k �=i S
k, and S−i = (Sk)k �=i.

Definition 2. The adoption function hi
v(S) for player i is competitive if and only

hi
v(S) ≥ hi

v(Ŝ) whenever Ŝi ⊆ Si and S−i ⊆ Ŝ−i.

Competitiveness means that the adoption function for player i is monotone increas-
ing in the set of nodes that have adopted product i and monotone decreasing in the set
of nodes that have adopted some competitor’s products.5

5 This assumption is reasonable when the reputation of the product is already well-established.
However, when a new product comes out, the presence of competitors may help popularize
the product, by increasing its overall exposure or perceived importance or relevance. These
effects could lead to more purchases even for one particular company i. This subtle distinction
is discussed more in Section 2.4.
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Definition 3. The activation function fv is submodular if and only if for any two set
S ⊆ T ⊆ V and any node u ∈ V ,

fv(S ∪ {u})− fv(S) ≥ fv(T ∪ {u})− fv(T ).

Submodularity of activation functions implies that the overall activation probability
has diminishing returns. It intuitively means that the first friend to buy and recommend
a smartphone has more influence than a friend who recommends it after many others.

Goyal and Kearns have shown in [11] that the switching-selection model with con-
cave switching functions and linear selection functions is a special case of the gen-
eral adoption model with competitive adoption functions and additive activation prob-
abilities. In addition, due to the concavity of the switching function fv, the activation
functions in the general adoption model are also submodular. Therefore, we have the
following lemma:

Lemma 1. Every instance of the switching-selection model with concave switching
functions and linear selection functions is an instance of the general adoption model
satisfying all three of the above properties.

Lemma 1 allows us to prove our PoA bound only for the general adoption model; it
then implies Theorem 1.

2.3 The Game

The competitive cascade game is an N -player game on a given graph G = (V,E). The
structure of the graph as well as all adoption functions are known to all the players.
Each player i is a company. The strategy for each player i is a multiset M i of nodes;
we use M = (M1, . . . ,MN) to denote the strategy vector for all players and αi

v for
the number of times that node v appears in M i.

Players’ strategies are constrained by their budgets Bi, in that they must satisfy
|M i| ≤ Bi. We further allow node-specific constraints requiring that αi

v ≤ Ki
v for

given node-specific budgets Ki
v ≤ Bi. These may constrain players from investing a

lot of resources into particularly hard-to-reach nodes; however, the node-specific con-
straints mostly serve to simplify notation in some later proofs. We say that a strategy
M i is feasible if all of the above conditions are satisfied.

All players simultaneously allocate their budgets to the nodes ofG. Given the choices
that the players make, the payoffs are determined by the general adoption model as the
coverage of the player’s product among the individuals in G. Each node v in the graph
is associated with a weight ωv ≥ 0, measuring the importance of the node. The payoff
function of player i is σi(M) = E[

∑
v∈Si

�
ωv], the expected sum of weights from nodes

having adopted i’s product after all � update steps.
The social utility γ(S0) =

∑
i σ

i(M) is the sum of weights from nodes adopt-
ing any of the products.6 Notice that when the activation probabilities Hv are additive

6 This definition implicitly assumes that the product carries a value for those who adopt it; thus,
society is better off when more people adopt at least one product.
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(Definition 1), γ(·) only depends on S0 =
⋃N

i=1 S
i
0, the set of nodes activated after the

seeding stage (but not on which company they chose).
To simplify notation, we define (M−k, M̃k) = (M1, . . . ,Mk−1, M̃k,Mk+1,

. . . ,MN), and in particular (M−k, ∅k) = (M1, . . . ,Mk−1, ∅,Mk+1, . . . ,MN).
We say that a strategy profile M is a pure Nash equilibrium if no player has an

incentive to change his strategy. Namely, for any player i,

σi(M) ≥ σi(M−i, M̃ i) for all feasible M̃ i.

Let OPT be a strategy profile maximizing the social utility function, and EQpure the
set of all pure Nash equilibria. The price of anarchy of pure Nash equilibria is defined
as follows:

Pure Price of Anarchy = max
M∈EQpure

γ(OPT)

γ(M)
.

However, the competitive cascade game could have no pure Nash equilibrium [21].
Thus, we extend our analysis to more general equilibrium concepts. A coarse (corre-
lated) equilibrium of a game is a joint probability distribution P with the following
property [19]: if M is a random variable with distribution P, then for each player i,
and all feasible M̂ i:

EM∼P[σ
i(M)] ≥ EM−i∼P−i [σi(M−i, M̂ i)].

Similar to the PoA for pure Nash equilibria, the coarse price of anarchy is defined as

Coarse Price of Anarchy = max
P∈EQcoarse

γ(OPT)

EM∼Pγ(M)
,

where EQcoarse is the set of all coarse equilibria.

2.4 The Threshold Model

Our analysis will be based on a careful reduction of the general adoption model to
the general threshold model defined in [14,15]. In the general threshold model (with
N = 1), every node v in the network has an associated activation function f̂v(·). At the
beginning of the process, each node draws a threshold θv independently and uniformly
from [0, 1]. Starting from an initially active set S0, a node becomes active at time t

(i.e., is a member of St) if and only if f̂v(St−1) ≥ θv . The process ends when for one
round, no new node has become active (which is guaranteed to happen in at most |V |
steps). If t is the time when this happens, the influence of the initial set S0 is defined as
σω(S0) = E[

∑
v∈St

ωv]. In a beautiful piece of work, Mossel and Roch established the
following theorem about the function σω :

Theorem 2 (Mossel-Roch [17]). If fv is monotone and submodular for every node v
in the graph, then σω is monotone and submodular under the general threshold model.

Given the apparent similarity between the general adoption model and the general
threshold model (say, for N = 1), it is illuminating to consider the ways in which
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the models differ, and the implications for the competitive cascade game. In the general
adoption model, a sequence of nodes to update is given, and nodes only consider chang-
ing their state when they appear in the sequence. By contrast, in the general threshold
model, nodes consider changing their state in each round.

So at first, it appears as though a sequence repeating |V | times a permutation of all
|V | nodes would allow a reduction from the threshold model to the adoption model.
However, note that in the adoption model, each node makes an independent random
choice whether to change her state in each round, whereas in the threshold model, the
random choices are coupled via the threshold θv , which stays constant throughout the
process. In particular, if fv(S0) > 0, then a node appearing often enough in the update
sequence will eventually be activated with probability converging to 1, whereas this
need not be the case in the general threshold model.

The increase in activation probability caused by multiple occurrences in the update
sequence has powerful implications for the competitive game. It allows us to establish
rather straightforwardly the competitiveness (Definition 2) of each player’s objective
function, and the submodularity (Definition 3) of the social utility. By contrast, Borodin
et al. [4] show that both properties fail to hold for most natural definitions of competitive
threshold games. At the heart of the counter-examples in [4] lies the following kind of
dynamic: At time 1, a node u recommends to v the use of a Galaxy phone, but fails
to convince v. At time 2, another node w recommends to v the use of an iPhone. If v
decides to adopt a smartphone at time 2, most natural versions of a threshold model (as
well as under the general adoption model) allow for an adoption of a Galaxy phone as
well. This “extra chance” results in synergistic effects between competitors, and thus
breaks competitiveness. Under the model of [11], this problem is side-stepped. v will
only consider adopting a smartphone in step 2 when she appears in the sequence at time
2; in that case, adoption of a Galaxy phone in step 2 will be considered independently of
whether w has adopted an iPhone. This observation fleshes out the discussion alluded
to in Footnote 5.

2.5 Valid Utility Games

A valid utility game [22] is defined on a ground set V with social utility function γ
defined on subsets of V . The strategies of the game are sets Si

0 ⊆ V (it is possible that
not all sets are allowed as strategies for some or all players), and the payoff functions
are σi for each player i. The social utility is defined on the union of all players’ sets,
γ(
⋃N

i=1 S
i
0). The definition requires that three conditions hold: (1) The social utility

function γ(·) is submodular; (2) For each player i, σi(S0) ≥ γ(S0) − γ(S−i
0 , ∅i); (3)

∑N
i=1 σ

i(S0) ≤ γ(S0).

3 Upper Bound on the Coarse Price of Anarchy

In this section, we present our main result: the upper bound on the coarse PoA with sub-
modular activation functions. We prove the upper bound on the PoA by showing that
the competitive cascade game is a valid utility game. We note, however, that the strat-
egy space of our competitive cascade game consists of multisets, whereas the standard
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definition of utility games has only sets as strategies. In order to deal with this subtle
technical issue, we use the following lemma, whose proof is given in the appendix.

Lemma 2. Let G = (G, {hi
v}, {Ki

v}, {Bi}, {ωv}, Q) be an arbitrary instance of the
competitive cascade game. Then, there exists an instance Ĝ = (Ĝ, {ĥi

v}, {K̂i
v̂}, {B̂i},

{ω̂v}, Q̂) with the same set of players, and the following properties:

1.
∑N

i=1 K̂
i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and

with at most one resource.)
2. For every player i, there are mappings μi, μ̂i mapping i’s strategies in G to his

strategies in Ĝ and vice versa, respectively, satisfying the following property: If for
all i, either μi(M i) = M̂ i or μ̂i(M̂ i) = M i, then for all i, σi(M) = σ̂i(M̂ ).

In particular, Lemma 2 implies that the social utility is also preserved between the
two games, and strategies M i are best responses to M j , j �= i if and only if the M̂ i

are best response to M̂ j , j �= i. (Otherwise, a player could improve his payoff in the
other game by switching to μi(M i) or μ̂i(M̂ i).) In this sense, Lemma 2 establishes
that for every competitive cascade game instance, there is an “equivalent” instance in
which each node can be targeted by at most one player, and with at most one resource.
Therefore, we will henceforth assume without loss of generality that the strategy space
for each player consists only of sets.

In fitting the competitive cascade game into the valid utility game framework, the
ground set of the game is V , and the payoff function of player i is σi(S)=E[

∑
v∈Si

�
ωv]:

the sum of weights from the nodes v ∈ V in state i at the end of the updating sequence.
Because of additivity, the social utility function depends only on S0. That is, the fol-
lowing is well-defined: γ(S0) = γ(S0) =

∑
i σ

i(S0). Therefore, the third condition
of a valid utility game (sum boundedness) is satisfied trivially. Below, we will prove the
following two lemmas:

Lemma 3. Assume that for every node v, the total activation probability Hv(S) is ad-
ditive, and the activation function fv(S) is submodular. Then, the social utility function
γ(S0) is submodular and monotone.

Lemma 4. If for every node v and ever player k, Hv(·) is additive and hk
v(·) is com-

petitive, then for each player i, we have σi(S0) ≥ γ(S0)− γ(S−i
0 , ∅i).

Lemmas 3 and 4 together establish that the competitive cascade game is a valid utility
game. Example 1.4 in [19] shows that the coarse PoA of valid utility games is at most 2
(Vetta [22] establishes the same for the PoA), proving the following main result of our
paper:

Theorem 3. Assume that the following conditions hold:

1. For every node v, the total activation probability Hv(S) is additive.
2. For every node v, the activation function fv(S) is submodular.
3. For every player i and node v in the graph, the adoption function hi

v(S) is
competitive.

Then, the upper bound on the PoA (and coarse PoA) is 2 in the competitive cascade
game.
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By Lemma 1, the switching-selection model with concave switching functions and
linear selection functions is a special case of the general adoption model with com-
petitive adoption functions, additive activation probabilities and submodular activation
functions. Therefore, Theorem 1 follows naturally as a corollary of Theorem 3.

Proof of Lemma 3. We build an instance of the general threshold model whose influ-
ence coverage functionσω(S0) is exactly the same as γ(S0). The idea is that for additive
functions, the social utility does not depend on which node chooses which company, so
the game is reduced to the case of just a single influence. The update sequence can be
emulated with a time-expanded layered graph.

The time-expanded graph G� is defined as follows.7 For each node v of the original
graph, we have � + 1 nodes v̂0, v̂1, . . . , v̂� in G�. We use Lt = {v̂t | v ∈ V } to denote
the set of nodes in layer t. The activation functions are defined as follows:

1. In layer 0, f̂v̂0 ≡ 0 for every node v ∈ V .
2. In layer t, 1 ≤ t ≤ �, consider a node v with switching function fv. If v is the tth

element of the updating sequence (v = vt), we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S

fv({u | ût−1 ∈ S}) otherwise;

otherwise we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S

0 otherwise.

Finally, the total influence is defined as σω(S0) = E[
∑

v̂�∈Ŝ ωv], where Ŝ is the
set of nodes activated in the threshold model once no more activations occur. In the
instance, each layer Lt emulates one update in the original update sequence of the
general adoption model.

For each node v̂t in the layered graph, fv̂t(S) is submodular and additive. The sub-
modularity and monotonicity for the 0-1 activation functions are trivially satisfied. For
the nodes in the update sequence, submodularity holds because we assumed the fv(S)
to be submodular, and monotonicity follows because the Hv(S) are additive.

Next, we show that γ(S0) = σω(S0), by using a straightforward coupling between
the general threshold model and the general adoption model. According to the construc-
tion of G�, the state changes for all nodes except v̂t (where vt is the tth element of the
updating sequence) are deterministic. Therefore, we only need to draw the thresholds
Θ = 〈θ1, θ2, . . . , θ�〉 for the � nodes in the update sequence: they are drawn indepen-
dently and uniformly from [0, 1]. In the general adoption model, when updating the tth

node vt in the sequence, if node vt is still inactive, she becomes active if and only if
fv(St−1) ≥ θt. If the node is already activated, she remains activated in the same state.
By induction on t, v ∈ St if and only if v̂t ∈ Ŝ ∩ Lt. Thus, the outcomes of the two

7 All activation information is encoded in the activation functions. Therefore, there is no need
to explicitly specify the edges of G�.
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processes are the same pointwise over threshold vectors Θ: γ(S0|Θ) = σω(S0|Θ). In
particular, their expectations are thus the same.

Finally, Theorem 2 establishes the monotonicity and submodularity of σω(S0), and
thus also γ(S0).

Proof of Lemma 4. We begin by showing that under the assumptions of the lemma,
σi(S0) ≤ σi(S−k

0 , ∅k) for all players k, i, k �= i. To do so, we exhibit a simple coupling
of the general adoption processes for the two initial states S0 and (S−k

0 , ∅k), essentially
identical to one used in the proof of Lemma 1 in [11]. Notice that the activation func-
tions are additive; therefore, we can combine all states k �= i into one state, which we
denote by −i.

The activation process is defined by the way in which nodes decide whether to update
their state, and if so, to which new state. An equivalent way of describing the choice is
as follows: for each step t of the update sequence, we draw an independent uniformly
random number zt ∈ [0, 1]. In step t, assuming that node vt is still in state 0, she changes
her state to:

– state i if zt ∈ [0, hi
vt(St−1)).

– state −i if zt ∈ [hi
vt(St−1), fvt(

⋃N
j=1 S

j
t−1)).

– state 0 otherwise.

To couple the two random processes with starting conditions (S−k
0 , ∅k) and S0, we

simply choose the same values zt for both. Let Xj
t denote the set of nodes in state j, j ∈

{i,−i, 0} after t updates with starting condition (S−k
0 , ∅k). Y j

t is defined analogously,
with starting condition S0.

Conditioned on any choice of (z1, . . . , z�), a simple induction proof using compet-
itiveness of the hi

v and monotonicity of the fv shows that for each time t, X i
t ⊇ Y i

t ,
X0

t ⊇ Y 0
t , and thus also X−i

t ⊆ Y −i
t . Therefore, at the end of the update sequence, the

desired inequality holds pointwise over (z1, . . . , z�), and in particular in expectation,
as claimed. Finally, having established that σi(S0) ≤ σi(S−k

0 , ∅k), we use it in the
following calculations:

γ(S0)− γ(S−i
0 , ∅i) =

∑

k

(σk(S0)− σk(S−i
0 , ∅i))

= σi(S0) +
∑

k �=i

(σk(S0)− σk(S−i
0 , ∅i))

≤ σi(S0).

4 Tightness of the PoA Upper Bound

We give an instance of the competitive cascade game in the (more restrictive) switching-
selection model to show that our upper bound of 2 for the PoA in Theorem 3 is tight.

Let N be the number of players. The graph consists of a star with one center and
N leaves, as well as N isolated nodes. Each player has only one unit of budget, and
the update sequence is any permutation of the nodes in the star graph. The switching
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functions are the constant 1 for all nodes in the graph, which implies that if a node
has any neighbor who has adopted the product, the node also adopts the product. The
selection functions are simply the fraction of neighbors who have adopted the product
previously. Under this instance, the unique Nash equilibrium has every player allocating
his unit of budget to the center node of the star graph. By placing the budget at the center
node, the expected payoff for each player is N+1

N , while placing it on any other node
at most leads to a payoff of 1. However, the strategy that optimizes the social utility
is to place one unit of budget at the center node of the star graph while placing all
others at the isolated nodes. Thus, the PoA (and also Price of Stability) is 2N

N+1 . As N
goes to infinity, the lower bound on the PoA tends to 2. Therefore, we have proved the
following proposition:

Proposition 1. The upper bound of 2 on the PoA (and thus also coarse PoA) is tight for
the competitive cascade game even for the simpler switching-selection model.

5 Conclusion and Future Work

We have studied the efficiency of resource allocation at equilibria of the competitive
cascade game in terms of the Price of Anarchy (PoA). We have shown that an improved
bound compared to [11] follows from several well-understood and general phenomena.
This cleaner approach has led to a simpler proof of a more general result: for the N -
player competitive cascade game, the coarse PoA is upper-bounded by 2 under any
graph structure. We have also shown that this bound is tight.

It is open whether the same (or a slightly weaker) bound can be guaranteed without
the assumption of submodularity of the activation functions (but assuming competi-
tiveness and additivity). The techniques from [11] can be generalized to give an upper
bound of 2N in this case, but do not directly yield any better bounds.

At a more fundamental level, it would be desirable to broaden the models considered
for competitive cascades. Most positive results on either algorithmic questions or the
PoA — the present one included — rely on submodularity properties of the particular
modeling choices. (That such properties are also at the heart of the model of Goyal and
Kearns is our main insight here.) It would be desirable to find models for which positive
results — algorithmic or game-theoretic — can be obtained without requiring submod-
ularity. Furthermore, most work on cascade models so far has assumed that nodes only
adopt a single product. In many cases, products may be partly in competition, but not
fully so. One of the few papers to consider a model with partial compatibility between
products is [13]; an exploration of the game-theoretic implications of such a model
would be of interest.
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15. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social
networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

16. Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213,
pp. 259–271. Springer, Heidelberg (2006)

17. Mossel, E., Roch, S.: Submodularity of influence in social networks: From local to global.
SIAM J. Comput. 39(6), 2176–2188 (2010)

18. Rogers, E.: Diffusion of innovations, 5th edn. Free Press (2003)
19. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proc. 40th ACM Symp. on

Theory of Computing, pp. 513–522 (2009)
20. Tsai, J., Nguyen, T.H., Tambe, M.: Security games for controlling contagion. In: Proc. 27th

AAAI Conf. on Artificial Intelligence (2012)
21. Tzoumas, V., Amanatidis, C., Markakis, E.: A game-theoretic analysis of a competitive dif-

fusion process over social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695,
pp. 1–14. Springer, Heidelberg (2012)

22. Vetta, A.: Nash equlibria in competitive societies with applications to facility location, traffic
routing and auctions. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, pp.
416–425 (2002)



246 X. He and D. Kempe

23. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade
model in large-scale social networks. Data Mining and Knowledge Discovery Journal 25(3),
545–576 (2012)

24. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k
influential nodes in mobile social networks. In: Proc. 16th Intl. Conf. on Knowledge Discov-
ery and Data Mining, pp. 1039–1048 (2010)

A Proof of Lemma 2

We restate Lemma 2 for convenience.

Lemma 2 . Let G = (G, {hi
v}, {Ki

v}, {Bi}, {ωv}, Q) be an arbitrary instance of the
competitive cascade game. Then, there exists an instance Ĝ = (Ĝ, {ĥi

v}, {K̂i
v̂}, {B̂i},

{ω̂v}, Q̂) with the same set of players, and the following properties:

1.
∑N

i=1 K̂
i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and

with at most one resource.)
2. For every player i, there are mappings μi, μ̂i mapping i’s strategies in G to his

strategies in Ĝ and vice versa, respectively, satisfying the following property: If for
all i, either μi(M i) = M̂ i or μ̂i(M̂ i) = M i, then for all i, σi(M) = σ̂i(M̂ ).

Proof. Given G, we construct Ĝ as a game on a graph with three layers.

Nodes: The first layer contains, for each node v ∈ V and player i, a set of Ki
v new

nodes V i
v = {v1, . . . , vKi

v
}. The second layer of Ĝ contains, for each node v ∈ V ,

one node v′ connected to all nodes in V i
v . The third layer is a copy of the original

graph G.
Node Budgets: For player i and any node v ∈ G, we set K̂i

v̂ = 1 for all nodes v̂ ∈ V i
v ,

and K̂i
v̂ = 0 for all other nodes (including all nodes in layers 2 and 3). In other

words, player i may only target nodes that are in V i
v for some v ∈ G.

Budgets: We set B̂i = Bi, for all players i.
Weights: We set ω̂v ≡ 0 for all nodes in the first layer. If a node v appears (at least

once) in Q, then we set ω̂v = ωv in the third layer and ω̂v′ = 0 in the second layer.
If v does not appear in Q, then we set ω̂v = 0 in the third layer and ω̂v′ = ωv in the
second layer. Thus, players are interested in influencing nodes in the second or third
layer, depending on whether the node can be influenced via the update sequence,
or must be influenced by direct targeting.

Adoption Functions: Different adoption functions are used for the nodes in different
layers:
1. In layer 1, ĥi

v̂(·) ≡ 0 for any player i and node v̂.
2. In layer 2, for a player i and node v,

ĥi
v′(S) =

{
0 if

⋃N
k=1(S

k ∩ V k
v ) = ∅

|Si∩V i
v |∑

k |Sk∩V k
v | otherwise.
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3. To simplify notation, we define Ai = {v ∈ V |v ∈ Si or v′ ∈ Si}. Then in
layer 3, for player i and node v,

ĥi
v(S) =

⎧
⎪⎨

⎪⎩

0 if v′ ∈ Sj for some j �= i

1 if v′ ∈ Si

hi
v(A

1, . . . , AN ) otherwise.

Notice that the game Ĝ satisfies competitiveness, additivity and submodularity
whenever the game G satisfies all these three properties.

Update Sequence: The update sequence is Q̂ = 〈v′1, v′2, . . . , v′|V |, v1, . . . , v�〉, where
Q = 〈v1, . . . , v�〉 is the update sequence of the original instance and v′1, v

′
2, . . . , v

′
|V |

are all the nodes in the second layer, in some arbitrary order. The first |V | updates
in Ĝ emulate the seeding stage in G, and the remaining � updates emulate the update
sequence Q.

Payoffs and Social Utility: The players’ payoff functions σ̂i(M) and the social utility
γ̂(M) are defined as usual in terms of the other modeling parameters.

The mappings μi are defined as follows. Let M i be i’s strategy in G, characterized
by the budgets αi

v that i puts on nodes v. For each node v ∈ V , we choose an arbitrary
(but fixed) set M̂ i

v of αi
v nodes in V i

v . Player i’s strategy is M̂ i = μ̂i(M i) =
⋃

v M̂
i
v.

Conversely, we define μ̂i as follows: For any strategy profile M̂ of Ĝ, and for each
node v ∈ V , we set αi

v = |M̂ i ∩ V i
v |. μ̂i(M̂ i) is the strategy in which player i puts αi

v

resources on node v, for all v.
The first claim of the lemma holds by definition. For the second claim, consider

two strategy profiles M and M̂ , such that for all players i, either M̂ i = μi(M i) or
M i = μ̂i(M̂ i). We show that σ̂i(M̂) = σi(M) for each player i. To do so, we exhibit
a coupling of the random choices between the two games G and Ĝ. The coupling is quite
similar to the one used in the proof of Lemma 4.

For the seeding stage of G, an equivalent way of describing the choice is as follows:
for each node v ∈ V , we draw an independent uniformly random number zv ∈ [0, 1].
The state of node v is

– 0 if Zv =
∑N

i=1 α
i
v = 0,

– i > 0 if zv ∈
(∑i−1

j=1 αj
v

Zv
,
∑i

j=1 αj
v

Zv

]

.

Similarly, for the updates in the diffusion stage for both G and Ĝ, an equivalent way
of describing the update in step t is the following. Draw an independent uniformly
random number zt ∈ [0, 1]. If node vt is in a state i > 0, she retains her current state.
Otherwise, she changes her state to

– i > 0 if zt ∈ [
∑i−1

j=1 h
j
vt(St−1),

∑i
j=1 h

j
vt(St−1)),

– 0 otherwise.

To couple the two random processes, we simply choose the same values zv = ẑtv′
and zt = ẑt+|V |, where tv′ is the order of node v′ in the update sequence Q̂.
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Since the strategy M̂ consists of sets instead of multisets, the seeding stage of Ĝ is
deterministic. In Ĝ, a node v is initially in state i > 0 if and only if player i selects
her as a seed. Let Ŝi

0 be the set of activated nodes after the seeding stage with strategy
profile M̂ . We have |Ŝi

0 ∩ V i
v | = αi

v, for all players i and nodes v.
Conditioned on any fixed choice of the zv (and thus ẑ1, . . . , ẑ|V |), we have S0 =

Ŝ|V |, where S0 is the vector of sets of nodes in state i after the seeding stage with

strategy profile M , and Ŝ|V | is the vector of sets of nodes in layer 2 of Ĝ in state i after
the first |V | update steps with strategy profile M .

Finally, a simple induction proof over the � steps of the update sequence Q shows
that for each time t, we have the following property: (1) if v appears in Q at least once
before time step t, then v ∈ Si

t if and only if v ∈ Ŝi
t+|V |. (2) if v does not appear in Q

before time step t, then v ∈ Si
t if and only if v′ ∈ Ŝi

t+|V |. Applying this result after all

� steps, we obtain that each node v appearing in Q has v ∈ Si
� if and only if v ∈ Ŝi

�+|V |,

and each node v not appearing in Q has v ∈ Si
� if and only if v′ ∈ Ŝi

�+|V |. Notice that

the corresponding nodes v or v′ in Ĝ are exactly the ones inheriting the weight of node
v in G, implying that the payoff of each player i is the same pointwise in G and Ĝ. Thus,
each player’s expected payoff is also the same in the two games, completing the proof.
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