
Yiling Chen
Nicole Immorlica (Eds.)

 123

9th International Conference, WINE 2013
Cambridge, MA, USA, December 2013
Proceedings

Web and Internet
EconomicsLN

CS
 8

28
9

AR
Co

SS



Lecture Notes in Computer Science 8289
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



Yiling Chen Nicole Immorlica (Eds.)

Web and Internet
Economics
9th International Conference, WINE 2013
Cambridge, MA, USA, December 11-14, 2013
Proceedings

13



Volume Editors

Yiling Chen
Cambridge, MA, USA
E-mail: yiling@eecs.harvard.edu

Nicole Immorlica
Cambridge, MA, USA
E-mail: nicimm@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-45045-7 e-ISBN 978-3-642-45046-4
DOI 10.1007/978-3-642-45046-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952968

CR Subject Classification (1998): H.3, F.2, G.1, C.2, K.4.4, F.1, J.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers and extended abstracts for work presented at
WINE 2013: The 9th Conference on Web and Internet Economics held during
December 11–14, 2013, at Harvard University, Cambridge, Massachusetts, USA.

Over the past decade, researchers in theoretical computer science, artificial
intelligence, and microeconomics have joined forces to tackle problems involving
incentives and computation. These problems are of particular importance in
application areas like the Web and the Internet that involve large and diverse
populations. The Conference on Web and Internet Economics (WINE) is an
interdisciplinary forum for the exchange of ideas and results on incentives and
computation arising from these various fields.

WINE 2013 built on the success of the Workshop on Internet and Network
Economics, which had the same acronym, WINE. The workshop was held an-
nually from 2005 to 2012 and published archival proceedings. To accommodate
the growing research interests and emphasize its archival nature, WINE was
renamed a conference with the same acronym in 2013.

WINE 2013 received 150 submissions. All submissions were rigorously peer-
reviewed and evaluated on the basis of originality, soundness, significance, and
exposition. The committee decided to accept 36 papers. The program also in-
cluded four invited talks by Dirk Bergemann (Yale University), Joe Halpern
(Cornell University), Ehud Kalai (Microsoft Research and Northwestern Univer-
sity), and Eva Tardos (Cornell University). In addition, WINE 2013 featured
four tutorials on December 11: Price of Anarchy in Auctions, by Jason Hart-
line (Northwestern University), Online Behavioral Experiments, by Andrew Mao
(Harvard University) and Siddharth Suri (Microsoft Research), Budget Feasible
Mechanisms, by Nick Gravin (Microsoft Research) and Yaron Singer (Harvard
University), and Computational Social Choice, by Lirong Xia (Rensselaer Poly-
technic Institute).

We would like to thank Microsoft Research, Facebook, and Google Research
for their generous financial support to WINE 2013 and Harvard University for
hosting the event. We thank David Parkes, the general chair of the conference,
and Ann Marie King for their excellent local arrangements work and Andrew
Mao for his help with the conference website.

We also acknowledge the work of the Program Committee, Anna Kramer at
Springer for helping with the proceedings, and the EasyChair paper management
system.

October 2013 Yiling Chen
Nicole Immorlica
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Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane

Quantitative Comparative Statics for a Multimarket Paradox . . . . . . . . . . 230
Tobias Harks and Philipp von Falkenhausen

Price of Anarchy for the N -Player Competitive Cascade Game with
Submodular Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Xinran He and David Kempe

Designing Profit Shares in Matching and Coalition Formation Games . . . 249
Martin Hoefer and Lisa Wagner

Jealousy Graphs: Structure and Complexity of Decentralized Stable
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Moshe Hoffman, Daniel Moeller, and Ramamohan Paturi

Linear Regression as a Non-cooperative Game . . . . . . . . . . . . . . . . . . . . . . . 277
Stratis Ioannidis and Patrick Loiseau

Optimal Allocation for Chunked-Reward Advertising . . . . . . . . . . . . . . . . . 291
Weihao Kong, Jian Li, Tie-Yan Liu, and Tao Qin

Bicriteria Online Matching: Maximizing Weight and Cardinality . . . . . . . 305
Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam

Mitigating Covert Compromises: A Game-Theoretic Model of Targeted
and Non-Targeted Covert Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Aron Laszka, Benjamin Johnson, and Jens Grossklags

Characterization of Truthful Mechanisms for One-Dimensional Single
Facility Location Game with Payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Pinyan Lu and Lan Yu



Table of Contents XIII

Equilibrium in Combinatorial Public Projects . . . . . . . . . . . . . . . . . . . . . . . 347
Brendan Lucier, Yaron Singer, Vasilis Syrgkanis, and Éva Tardos
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The Asymmetric Matrix Partition Problem

Noga Alon1, Michal Feldman1, Iftah Gamzu2, and Moshe Tennenholtz3

1 Tel Aviv University and Microsoft Research
{nogaa,mfeldman}@tau.ac.il

2 Yahoo! Research
iftah.gamzu@yahoo.com

3 Microsoft Research and Technion-Israel Institute of Technology
moshet@microsoft.com

Abstract. An instance of the asymmetric matrix partition problem consists of a
matrix A ∈ Rn×m

+ and a probability distribution p over its columns. The goal is
to find a partition scheme that maximizes the resulting partition value. A partition
scheme S = {S1, . . . ,Sn} consists of a partition Si of [m] for each row i of the
matrix. The partition Si can be interpreted as a smoothing operator on row i,
which replaces the value of each entry in that row with the expected value in the
partition subset that contains it. Given a scheme S that induces a smoothed matrix
A′, the partition value is the expected maximum column entry of A′.

We establish that this problem is already APX-hard for the seemingly simple
setting in which A is binary and p is uniform. We then demonstrate that a con-
stant factor approximation can be achieved in most cases of interest. Later on,
we discuss the symmetric version of the problem, in which one must employ an
identical partition for all rows, and prove that it is essentially trivial. Our matrix
partition problem draws its interest from several applications like broad matching
in sponsored search advertising and information revelation in market settings. We
conclude by discussing the latter application in depth.

1 Introduction

An instance of the asymmetric matrix partition problem consists of a matrix A ∈ Rn×m
+

of non-negative values and a probability distribution p over its columns, namely, p ∈
[0, 1]m such that

∑m
j=1 pj = 1. The objective is to find a partition scheme S that max-

imizes the resulting partition value vS . A partition scheme S = {S1, . . . ,Sn} consists
of a partition Si of [m] = {1, . . . ,m} for each row i of the matrix, namely, Si is a col-
lection of pairwise disjoint subsets Si1, . . . , Siki ⊆ [m] such that Si1∪̇ · · · ∪̇Siki = [m].
Note that the partitions within a scheme may be different, and hence, it is referred to
as an asymmetric scheme. The partition Si can be interpreted as a smoothing operator
on row i, which replaces the value of each entry in that row with the expected value in
the partition subset that contains it. Formally, the smoothed value for each j ∈ Sik is
A′

ij =
∑

�∈Sik
p�Ai�/

∑
�∈Sik

p�. Given a partition scheme S that induces a smoothed
matrix A′, the resulting partition value is the expected maximum column entry, that is,
vS =

∑
j∈[m] pj · maxi∈[n] A

′
ij . The contribution of a column j to the partition value

is pj ·maxi∈[n] A
′
ij , and similarly, argmaxi∈[n]A

′
ij is referred to as the entry of column

j that contributes to the partition value.

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 N. Alon et al.

For the purpose of illustrating the above setting, let us focus on the simple scenario
in which the input instance consists of an n × n matrix such that all the entries in the
first column have a value of 1 and all remaining entries have a value of 0. Furthermore,
the probability distribution over the columns of this matrix is uniform. One partition
scheme that naturally comes to mind is the identity scheme, which results in a smoothed
matrix that is identical to the original matrix. This identity scheme sets all the partitions
to consist of singletons, namely, each Si = {{1}, . . . , {n}}. One can easily validate
that the resulting partition value in this case is 1/n. Another extreme partition scheme
is the one in which all partitions consist of one subset, that is, each Si = {[n]}. This
scheme gives rise to a smoothed matrix in which all the entries of each row have the
same value. In our case, all the entries of the resulting matrix are 1/n, and accordingly,
it is easy to validate that the partition value is again 1/n. Finally, one can demonstrate
that there is a partition scheme that exhibits a significant improvement over the above-
mentioned schemes. This scheme consists of the partitions Si = {{1, i}, [n] \ {1, i}},
namely, it joins together the 1-value of each row i �= 1 with the 0-value of column i in
that row, resulting in a smoothed value of 1/2 for both entries. One can verify that the
resulting partition value in this case is roughly 1/2. The above scenario is presented in
the figure below.

⎛
⎜⎜⎜⎝

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 · · · 0
1
2

1
2
· · · 0

...
...

. . .
...

1
2
0 · · · 1

2

⎞
⎟⎟⎟⎠

Fig. 1. Given the input matrix on the left with a uniform distribution over its columns, one can
utilize the partition scheme illustrated on the middle, and obtain the smoothed matrix on the right.
Note that the boxes in each row of the middle matrix represent entries that are joined together in
the same subset; the remaining entries of each row are clustered together in a different subset.

Application I: Personalized Broad Matching in Sponsored Search Advertising. The
asymmetric matrix partition problem draws its interest from several applications. One
such application relates to sponsored search advertising, namely, advertising on a web
search result page, where the ads are driven by the originating query. In the basic model,
there are advertisers, each of which has keywords relevant to her ad. Each advertiser also
associates some valuation with each of her keywords, indicating the gain she derives
when a user clicks on her ad. This valuation underlies a bid that the advertiser reports
to the search engine, expressing the maximum amount that she is willing to pay for
a click. When a user queries the search engine for some keyword, the engine runs an
auction among all the advertisers interested in that keyword. The advertiser that wins
this auction is allocated the ad slot, and she is required to pay some amount if the user
clicks on her ad. This amount is determined by her bid and the payment rule of the
engine.

Advertisers can realistically only identify a small set of keywords due to the effort in-
volved, and therefore, search engines recently introduced broad matching. This feature
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enables an advertiser to automatically target a broader range of queries that the search
engine deems relevant to match her ad, and not only the keywords specified by her.
Such relevant queries can be modifications of the specified keywords (like synonyms,
singular and plural forms, misspellings, reordering, etc.), or can even be a completely
different set of keywords, which are conceptually related to the specified keywords. This
feature clearly has potential to help advertisers reach wider audience, while spending
less time on building their keyword lists. On the other hand, a search engine can utilize
the flexibility in expanding the set of keywords specified by an advertiser to optimize its
revenue. Understanding the power of flexibility in broad matching seems an interesting
research goal.

We consider a stylized non-strategic version of broad matching. In the underlying
setting, there is a single ad slot, and a set of advertisers, each of which interested in one
keyword from a set of possible keywords {k1, . . . , km}, where keyword kj is queried
by users with probability pj . The search engine keeps a relevance distance measure be-
tween keywords, α(i, j), that has the following semantics: if an advertiser has valuation
v for her specified keyword ki, then her valuation for each keyword kj is v ·α(i, j). The
goal is to develop a personalized broad matching scheme that maximizes the expected
revenue of the search engine. Specifically, we are interested in a scheme that assigns
each advertiser a partition of keywords to disjoint subsets, such that all keywords in
each subset are automatically bid with the expected valuation in that subset whenever a
user queries a keyword from that subset. We assume that the search engine knows the
valuation that each advertiser has for her specified keyword, i.e., a non-strategic set-
ting in which there is no need to incentivize the advertisers, and a winning advertiser
pays her expected valuation. Consequently, given a query, the search engine selects the
advertiser that has the highest bid. One can validate that our asymmetric matrix par-
tition problem captures the problem of designing a personalized broad matching that
maximizes the expected revenue.

Application II: Signaling in Take-It-or-Leave-It Sales. Another application of the
asymmetric matrix partition problem relates to a question of information revelation in
market settings. In many sale scenarios, a seller has much more accurate information
about an item for sale than the buyers. As an example, consider a used-car dealer or an
Internet liquidation site, both of which receive or purchase items for sale. The seller in
these scenarios may have quite adequate information about the particular item for sale
(e.g., by checking it in detail), while the potential buyers may only have probabilistic
information about the item, relying, for example, on some publicly-available statistical
information. It seems of the essence to study how a seller can utilize her informational
superiority to optimize her revenue.

The above-mentioned scenario can be modeled by considering a take-it-or-leave-it
sale of a probabilistic item among multiple buyers. More precisely, a single item is
chosen randomly from a set of m possible items according to some known probability
distribution p, and the seller approaches a buyer with a monetary offer of delivering the
item for a specified payment. There are n buyers, each of which has her own valuation
for every item in the set. While the buyers only know the probability distribution over
the items, the seller knows the actual realization of the probabilistic item. In an attempt
to increase her revenue, the seller may partially reveal some information about the item
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to the buyers. The question that concerns us is how much information should the seller
reveal to every buyer in order to maximize her expected revenue.

The information revelation is materialized by means of a buyer-specific signaling
scheme. For each buyer, the seller partitions the set of items into pairwise disjoint sub-
sets, and reports this partition to the buyer. After the signaling scheme has been de-
clared, an item j is randomly chosen by nature, and the seller reveals to each buyer i,
the subset that contains j according to i’s partition. Upon being signaled, a buyer can
update her belief regarding the probability distribution p conditioned on the choice of
some item in her signaled subset. A key assumption in our model is that the buyers are
unaware of the environment, namely, each buyer knows her own valuation and parti-
tion, but is unaware of the existence of the other buyers and their associated valuations
and partitions. Hence, the conditional probability of every item j that is contained in
a signaled subset is the ratio between pj and the overall probability of items in that
subset, and 0 in case j is not in the signaled subset. It is clear that the maximal take-
it-or-leave-it offer that a buyer will accept is her expected valuation for the item under
the new probability distribution induced by the received signal. Consequently, upon the
realization of an item, the seller will choose to make such offer to a buyer that has the
highest expected valuation. One can validate that our asymmetric matrix partition prob-
lem captures the task of designing a buyer-specific signaling scheme that maximizes
the expected revenue.

Our Contribution. We begin by studying the asymmetric matrix partition problem
when the input matrix is binary, namely, A ∈ {0, 1}n×m. We prove that this seem-
ingly simple setting is already APX-hard when the probability distribution p is uni-
form. Specifically, we show a gap-preserving reduction that proves that the problem is
NP-hard to approximate to within a factor of 1.0001. We also establish that the binary
setting admits a constant factor approximation; thus, settling the complexity of this
setting to within constant factors. In particular, we demonstrate that there is a 1.775-
approximation algorithm when p is uniform, and there is a 13-approximation algorithm
when p is arbitrary. We further study several interesting special scenarios. For exam-
ple, we prove that when the number of rows n is fixed then the uniform distribution
case can be solved to optimality in polynomial-time, whereas the general distribution
case remains NP-hard even when n = 4. This result separates the uniform distribu-
tion setting from the general distribution setting. The specifics of these results are pre-
sented in Section 2. We then consider the problem in its utmost generality, that is, when
the input matrix A ∈ Rn×m

+ consists of arbitrary non-negative values. We present a
2-approximation algorithm for the case that p is uniform, and a logarithmic approxi-
mation when p is arbitrary under some practical assumptions. These results appear in
Section 3. Later on, in Section 4, we discuss the symmetric version of our problem in
which one must employ an identical partition for all rows. We demonstrate that this
problem is essentially trivial, and establish a tight bound on the advantage that asym-
metric schemes have over symmetric ones. Finally, we formally model the application
of signaling in take-it-or-leave-it sales with its connection to our problem, and discuss
some of our modeling decisions. These application details are provided in Section 5.
Due to space constraints, all proofs are omitted from this extended abstract and may be
found in the full version of the paper.
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2 The Binary Matrix Case

In this section, we study the problem when the input matrix is binary, namely, A ∈
{0, 1}n×m. We prove that this setting is APX-hard even when the probability distribu-
tion p is uniform. We also establish that this setting admits a constant factor approxima-
tion; thus, settling the complexity of this setting to within constant factors. We further
study several interesting special scenarios.

We begin by introducing a notation and terminology that will be used in the remain-
der of this section. Let C+ = {j ∈ [m] : ∃i such that Aij = 1} be the set of columns
that consist of at least one 1-value entry, and C0 = [m] \ C+ be the set of remaining
all-zero columns. Moreover, let r =

∑
j∈C+ pj be the total probability of the columns

in C+. Similarly, we denote the set of columns that have a 1-value entry in row i by
C+

i = {j ∈ [m] : Aij = 1}, and use ri =
∑

j∈C+
i
pj to denote their total proba-

bility. We say that a partition scheme S covers C+ if it covers each of the columns in
C+. A column j ∈ C+ is said to be covered by S if there is some row i such that
Aij = 1 and the partition scheme consists of a singleton subset of column j in row i,
namely, {j} ∈ Si. Note that a partition scheme that covers C+ can be easily computed
in polynomial-time. Finally, we say that a subset is mixed if it consists of both 1-value
and 0-value entries.

We now turn to identify several interesting structural properties of partition schemes
for the binary case. These properties will be utilized later when establishing our primary
technical results.

Lemma 1. Let S, T be two disjoint subsets of columns, and let S+ (resp., T+) and S0

(resp., T 0) be the respective 1-value entries and 0-value entries of S (resp., T ) in some
row i. Suppose that all the entries of S0 and T 0 contribute to the partition value when
the partition of row i consists of S and T . Then, the overall contribution of those entries
when the partition consists of a unified subset S ∪ T is at least as large.

Note that a useful corollary of the above lemma is that given some fixed covering
of C+, the optimal way to complete the partition scheme is to join together all the
remaining 1-value entries of each row in a single subset with some additional 0-value
entries. We can also utilize the above lemma and prove the following.

Lemma 2. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, there is an optimal solution that covers C+.

2.1 A Uniform Distribution

We study the binary matrix setting when the distribution over the columns is uni-
form, namely, each pj = 1/m. We establish that this seemingly simple setting is al-
ready APX-hard, that is, it is NP-hard to approximate to within some constant. On
the algorithmic side, we identify a simple algorithmic procedure that guarantees 2-
approximation, and then develop an algorithm that achieves a better approximation ra-
tio. We also prove that the case that the number of rows n is constant can be solved
to optimality in polynomial-time. We emphasize that for simplicity of presentation, we
neglect the uniform probability term 1/m from the partition value contribution terms in
the rest of this subsection.
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Theorem 1. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, it is NP-hard to attain an approximation ratio better than
1.0001.

Approximation Algorithms. We begin by presenting a simple 2-approximation algo-
rithm for the problem under consideration. Later on, we develop a different algorithm
that attains an improved approximation ratio. Our 2-approximation algorithm begins by
covering C+. This ensures that the contribution of the columns of C+ to the resulting
partition value is exactly r. Subsequently, the algorithm goes over the rows, one after
the other, and for each row that has � remaining 1-value entries (after the covering), it
creates a subset in that row that consists of these entries and � entries of distinct all-zero
columns. In case there are no more all-zero columns left to match to some row then this
step ends. Finally, all remaining entries of each row are clustered together.

For the purpose of analyzing this algorithm, notice that a straight-forward upper
bound on the partition value of the optimal scheme is OPT ≤ min{1,

∑n
i=1 ri}. Now,

consider the following two complementary cases: (case 1) if we matched every all-zero
column to some row, then the contribution of each column j is 1 if j ∈ C+, or at least
1/2 if j ∈ C0. Hence, the partition value is at least r + (1 − r)/2 ≥ 1/2 ≥ OPT/2;
(case 2) if we did not match all all-zero columns, then the partition value is at least
r + (

∑n
i=1 ri − r)/2 ≥

∑n
i=1 ri/2 ≥ OPT/2. This implies that the partition scheme

achieves 2-approximation.

A Greedy Completion Procedure. Before we turn to improve the above algorithm, we
study the following greedy procedure that given a fixed covering of C+ completes the
partition scheme by matching all-zero columns to partition subsets. The greedy proce-
dure begins by associating a subset Si to each row i. This subset is initialized with all
the columns corresponding to 1-value entries in row i that were not used in the covering
of C+. Then, it proceeds by going over the all-zero columns, one after the other, and
adding a column to the subset Si that maximizes the marginal contribution from the
all-zero columns. Specifically, the marginal contribution of some all-zero column that
is added to a subset that already consists of x and y columns corresponding to 0-value
entries and 1-value entries, respectively, is

Δ(x, y) = (x+ 1)
y

x+ y + 1
− x

y

x+ y
= y2

(
1

x+ y
− 1

x+ y + 1

)
.

Note that Δ(x, y) ≥ 0 for any non-negative x, y, and that Δ is monotonically non-
increasing in x for any fixed y, that is, Δ(x, y) ≥ Δ(x + 1, y). The following lemma
establishes that once C+ is covered in some way, the greedy procedure yields the opti-
mal contribution from the all-zero columns. Notice that this result implies, in conjunc-
tion with Lemma 2, that the computational hardness of the underlying setting of the
problem resides in finding the right way to cover C+.

Lemma 3. Given some fixed covering of C+, the greedy procedure yields the optimal
contribution from the all-zero columns.

The greedy procedure can be leveraged to construct a 1.775-approximation algo-
rithm for our problem. We emphasize that our main effort is to improve upon the previ-
ous 2-approximation algorithm, and we have not tried to optimize the constants in our
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analysis. Let r∗ = 0.127 and σ∗ = 2(1 − r∗)/3 = 0.582. The algorithm computes a
partition scheme according to the following cases, which depend on the values of r and∑n

i=1 ri in a given instance:

Case I: When r ≥ r∗. The algorithm first covers C+ in some arbitrary way. Then,
the algorithm goes over the rows, one after the other, and for each row that has � re-
maining 1-value entries after the covering, it creates a subset in that row that consists
of these entries and � entries of distinct all-zero columns. Note that in case there are
no more all-zero columns left to match to some row then this step ends. Finally, all the
remaining entries of each row are clustered together.

Case II: When r < r∗ and
∑n

i=1 ri ≤ σ∗. The algorithm forms a subset on top
of every 1-value entry. Specifically, given a 1-value entry (i, j), the algorithm forms a
subset in row i that consists of column j and some additional distinct all-zero columns.
Half of the 1-value entries are clustered together with two distinct two all-zero columns,
and the other half of the 1-value entries are clustered together with a single all-zero
column. Then, all the remaining entries of each row are clustered together.

Case III: When r < r∗ and
∑n

i=1 ri > σ∗. The algorithm executes the
previously-mentioned greedy procedure over the given instance (without covering C+

first). After this procedure ends, all the remaining entries of each row are clustered
together.

Theorem 2. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, our algorithm computes a partition scheme whose resulting
partition value is a 1.775-approximation for the optimal one.

An Optimal Solution for a Fixed Number of Rows. We prove that an optimal parti-
tion scheme can be computed in polynomial-time when the number of rows n is fixed.
We emphasize that this result separates the uniform distribution setting from the general
distribution setting since we establish that the latter setting is NP-hard in Theorem 4.

Theorem 3. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, an optimal partition scheme can be constructed in
polynomial-time when n is fixed.

2.2 A General Distribution

We next study the binary matrix setting when the distribution over the columns is arbi-
trary. We first demonstrate that this setting is NP-hard even when the number of rows
is fixed. This result separates this setting from the uniform distribution setting, which
admits a polynomial-time optimal solution when the number of rows is fixed. Later on,
we present a constant factor approximation algorithm for this setting.

Theorem 4. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is general, and a positive number α, it is NP-hard to determine if there
is a partition scheme whose resulting partition value is at least α, even when n = 4.
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An Approximation Algorithm. We develop a polynomial-time constant approxima-
tion algorithm for the problem under consideration. Specifically, we present three al-
gorithms whose performance depends on different parameters of the input instance and
the optimal solution. We then demonstrate that given any input instance, one of these
algorithms is guaranteed to compute a 13-approximation partition scheme. Hence, by
executing all three algorithms and selecting the scheme that attains the maximal result-
ing partition value, we achieve a 13-approximation solution.

Recall that C+ denotes the set of columns that consist of at least one 1-value entry,
C0 is the set of remaining all-zero columns, and C+

i marks the set of columns having
1 in row i. Furthermore, recall that r is the total probability of columns in C+, and ri
is the total probability of columns in C+

i . Note that the optimal partition value can be
trivially bounded by OPT ≤ r+OPT0, where OPT0 is the overall contribution of the
all-zero columns of C0 to the optimal partition value.

Algorithm 1. The first algorithm attains to the case in which the input instance has a
relatively large r, namely, r ≥ OPT0/12. In this case, a constant approximation can
be obtained by simply covering C+. That is, for every column j ∈ C+, the algorithm
arbitrarily selects some row i such that Aij = 1 and forms a singleton subset of entry j
in row i. Then, all the remaining entries of each row are clustered together. One can eas-
ily validate that the resulting scheme has a partition value which is a 13-approximation
to the optimal one. This follows since the resulting partition value is at least r, while
OPT ≤ r +OPT0 ≤ 13r.

In the remainder of the subsection, we focus on the case that r is relatively small,
namely, r < OPT0/12. Since r is small, we concentrate on designing partition schemes
that yield high contribution from the all-zero columns. We say that an all-zero column
j is large for a row i in case pj ≥ ri; otherwise, j is said to be small for i. We consider
two complementary cases and develop constant factor approximation algorithms for
both. The first case is when a large fraction of the contribution of all-zero columns to
the optimal partition value comes from such columns that are large for the rows that
realize their contribution.

Algorithm 2. The algorithm begins by constructing an undirected bipartite graph G =
(VR, VL, E) with a weight function w : E → R+ on its edges. Specifically, VR is a set
of n vertices that correspond to the rows, VL is a set of |C0| vertices that correspond
to the all-zero columns, and E = {(i, j) ∈ VR × VL : ri ≤ pj} is the edge set.
Moreover, the weight function sets w(i, j) = ri, for every (i, j) ∈ E. With these
definitions in mind, the algorithm finds a maximal weighted matching M with respect
to the constructed bipartite graph. Then, for each edge (i, j) ∈M , the algorithm forms
the subset C+

i ∪ {j} in row i. Subsequently, all the remaining entries of each row are
clustered together.

Lemma 4. Algorithm 2 computes a partition scheme that yields at least 1/2 of the
optimal contribution of all-zero columns that are large for the rows that realize their
contribution.

Lemma 4 implies that in case that at least 1/6 of the optimal contribution of all-zero
columns comes from such columns that are large for the rows that realize their contri-
bution then we obtain a 13-approximation solution. Formally, one can utilize Lemma 4
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to claim that the partition value of the computed scheme is at least OPT0/12. On the
other hand, OPT ≤ r + OPT0 ≤ 13/12 · OPT0, where the last inequality follows
from the assumption that r < OPT0/12. We now turn to consider the remaining case
in which at least 5/6 of the optimal contribution of all-zero columns comes from such
columns that are small for the rows that realize their contribution.

Algorithm 3. Similarly to the previous algorithm, this algorithm forms two subsets for
each row; one mixed subset and an additional subset that consists of the remaining row
entries. The mixed subset of row i consists of the columns in C+

i and some additional
all-zeros columns. To decide which all-zeros columns are added to each mixed subset,
the algorithm goes over the all-zero columns in an arbitrary order, and adds the column
j to the mixed subset of row i if (1) j is small for i and (2) the total probability of the
all-zero columns already added to this subset is no more than ri. We emphasize that
each column is added to at most one mixed subset, and a column is neglected only if
the algorithm cannot add it to any of the mixed subsets.

Lemma 5. Algorithm 3 computes a partition scheme that yields at least 1/10 of the
optimal contribution of all-zero columns that are small for the rows that realize their
contribution.

Lemma 5 implies that in case that at least 5/6 of the optimal contribution of all-
zero columns comes from such columns that are small for the rows that realize their
contribution then we also attain a 13-approximation solution. More precisely, one can
utilize Lemma 5 to claim that the partition value of the computed scheme is at least
OPT0/12, while OPT ≤ r +OPT0 ≤ 13/12 ·OPT0. Reviewing the algorithms and
the case analysis, we can conclude with the following theorem.

Theorem 5. Given an instance of the asymmetric matrix partition problem in which
A is binary and p is general, there is an algorithm that computes a partition scheme
whose resulting partition value is a 13-approximation for the optimal one.

3 The General Matrix Case

In this section, we study the problem in its utmost generality, i.e., when the input matrix
A ∈ Rn×m

+ consists of arbitrary non-negative values. We develop a constant factor
approximation algorithm for the case that the probability distribution p over the columns
is uniform, and a logarithmic approximation for the general case under some practical
assumptions.

3.1 A Uniform Distribution

We present an algorithm that computes a partition scheme whose resulting partition
value is a 2-approximation for the optimal one. Let M be the set of m largest entries
in the matrix A. Our algorithm first forms a singleton subset of every entry (i, j) ∈ M
that is maximal for the corresponding column. In case there are several maximal entries
for some column then one of them is selected arbitrarily. We say that column j was
covered if there was an entry (i, j) that was clustered as a singleton. Subsequently, for
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every entry (i, j) ∈ M that was not clustered in the first step, the algorithm forms
a subset in row i consisting of column j and a distinct column that was not covered.
Then, all the remaining entries of each row are clustered together.

Theorem 6. Given an instance of the asymmetric matrix partition problem in which A
is general and p is uniform, our algorithm computes a partition scheme whose resulting
partition value is a 2-approximation for the optimal one.

3.2 A General Distribution

We present an algorithm that achieves a logarithmic approximation under some prac-
tical assumptions. Specifically, the algorithm achieves O(logm)-approximation if the
column probabilities are at most polynomially small, namely, when each pj ≥ 1/mc

for some constant c.
Let Amax be the value of the largest entry of an input matrix A. Our algorithm begins

by manipulating the matrixA to construct the matrix B as follows: All the entries whose
value is smaller than Amax/m

c+2 are replaced by 0, and all the values of the remaining
entries are rounded down to the closest power of 2. For example, if 2−k ≤ Aij < 21−k

then Bij = 2−k. Notice that after this manipulation, the matrix B is populated with at
most K = O(logmc) = O(logm) types of positive values {v1, . . . , vK} in addition
to a 0-value. As a result, we can express the matrix B as a sum of K matrices where
the kth matrix consists of the values {0, vk}. That is, the kth matrix has a value of
vk in each entry that B has a value of vk, and 0 in all remaining entries. Each of the
K matrices, together with the probability distribution p, can be considered to be an
instance of our problem with a binary matrix and a general distribution. Hence, we can
apply the algorithm from Theorem 5 on each of these K instances to obtain K partition
schemes. Finally, the algorithm selects the partition scheme that obtains the maximal
partition value from the original instance.

Theorem 7. Given an instance of the asymmetric matrix partition problem in which A
and p are general such that each pj ≥ 1/mc for some constant c, our algorithm com-
putes a partition scheme whose resulting partition value is a O(logm)-approximation
for the optimal one.

4 Symmetric Partition Schemes

In this section, we discuss the symmetric version of our matrix partition problem, and
most notably, compare between the performance guarantees of symmetric and asym-
metric partition schemes. The symmetric matrix partition problem is identical to the
asymmetric matrix partition problem with the exception that the underlying partition
scheme must be symmetric. A symmetric partition scheme consists of a single partition
S of [m] that is used as the smoothing operator of all the rows. A variant of the symmet-
ric matrix partition problem has been studied in a series of works [7,3,4,14]; A more
detailed discussion is given in Section 5.

An easy argument shows that the symmetric matrix partition problem is essentially
trivial as the partition scheme that consists only of singletons always achieves the opti-
mal partition value. To establish this argument, suppose by way of contradiction that the
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partition scheme of singletons does not attain an optimal outcome. Consider the opti-
mal partition scheme S. This scheme must consist of a subset S ∈ S whose cardinality
is greater than 1. Notice that the contribution of all the columns in S to the resulting
partition value is realized in the same row i. The overall contribution of those columns
is exactly

∑
j∈S pjAij . Now, observe that if one replaces the instance of S in the opti-

mal partition scheme with the collection of singleton subsets of the columns in S, the
overall contribution of the columns in S may only improve to

∑
j∈S pj ·maxi∈[n] Aij ,

and the contribution of any other column in [m] \ S does not change. Applying this
argument repeatedly as long as S has subsets whose cardinality is greater than 1 results
in an optimal partition scheme that consists only of singletons; a contradiction.

In light of this state of affairs, we next focus on quantifying the advantage that asym-
metric partition schemes have over symmetric schemes. Given an instance of our matrix
partition problem, let OPTsym and OPTasym denote the optimal partition values that
can be achieved by symmetric and asymmetric partition schemes, respectively. Clearly,
OPTasym/OPTsym ≥ 1. However, we are also interested to establish a tight upper
bound on this ratio.

Lemma 6. Given a matrix partition instance in which A and p are general, the ratio
OPTasym/OPTsym ≤ m. Furthermore, there are instances for which the ratio can be
arbitrarily close to m.

5 An Application: Signaling in Take-It-or-Leave-It Sales

In this section, we formally model the application of signaling in take-it-or-leave-it
sales, and explain its connection to our asymmetric matrix partition problem. Later on,
we discuss the previous literature on signaling and some of our modeling decisions.

5.1 The Model

A probabilistic single-item sale is formally depicted by a valuations matrix A ∈ Rn×m
+ ,

and a probability distribution p over its columns. More precisely, there are n agents and
m distinct indivisible items. Each entry Aij of the matrix captures the valuation of the
row-agent i for the column-item j. We assume that each agent knows her valuation
vector but is unaware of the rest of the valuation matrix. A single item j is chosen by
nature according to the distribution p and then offered for sale. This one-time sale is
conducted via a personalized take-it-or-leave-it rule: The seller gives a take-it-or-leave-
it offer to some agent i. If the selected agent is interested, the chosen item is sold to her
for the suggested price.

A Signaling Scheme. Although the agents know the distribution p, they do not know
its actual realization, which is only observed by the seller. In an attempt to increase her
expected revenue, the seller may partially reveal the realization to the agents. This is
performed via the following asymmetric signaling scheme: For every agent i, the seller
partitions the items into a collection of pairwise disjoint subsets Si1∪̇ · · · ∪̇Siki = [m],
and reports this partition to agent i; we denote the partition of agent i by Si. Crucially,
the seller can use different partitions for different agents, i.e., a buyer-specific signaling
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scheme. We emphasize that the seller decides on a signaling scheme prior to nature’s
random choice of an item. When item j is randomly chosen, every agent i is signaled
with the subset Sik that contains j. The agent can then update her belief to the proba-
bility distribution p conditioned on the choice of some item in Sik. In other words, each
agent i knows that none of the items in [m] \ Sik was chosen, and can calculate the
conditional probability P(j : Sik) = pj/P(Sik), for every j ∈ Sik.

The Optimization Problem. Consider some probabilistic single-item sale 〈A, p〉 and a
signaling scheme S = (S1, . . . ,Sn). Clearly, the maximal take-it-or-leave-it offer that
agent i will accept under the signal Sik is given by Ep[Aij : Sik]. Therefore, given an
asymmetric signaling scheme S, when item j is randomly chosen, the seller will choose
to make a take-it-or-leave-it offer to agent i that maximizes Ep[Aij : Sik], where Sik

is the subset that contains j for agent i. In what follows, we denote by Si(j) the subset
Sik of agent i that contains j. Hence, the expected revenue of the seller is given by

∑
j∈[m]

pj ·max
i∈[n]

{ ∑
�∈Si(j)

P(� : Si(j))·Ai�

}
=

∑
j∈[m]

pj ·max
i∈[n]

{∑
�∈Si(j) p�Ai�∑

�∈Si(j) p�

}
. (1)

This raises the following combinatorial optimization problem: given a probabilistic
single-item sale 〈A, p〉, construct the asymmetric signaling scheme S that maximizes
the expected revenue.

We believe that the mapping of the above problem to the asymmetric matrix partition
problem is straightforward. Yet, we wish to emphasize that the expression that is maxi-
mized in Equation 1 is essentially the smoothed value A′

ij , which was defined when we
formalized the problem.

5.2 Related Work

The literature on signaling in economics is very broad. Our approach can be viewed
as related to the study of strategic information transmission, originated in the seminal
work of Crawford and Sobel [2]. More specifically, our approach deals with the idea
that a seller knows some information about the valuations of the buyers, via information
about the item, and may use strategic information transmission to exploit this knowl-
edge [11]. As in that work, our model depart from the classic literature of Milgrom and
Weber [12,13], who showed the superiority of full revelation of information. Informa-
tion revelation in online markets has been recently studied also in [9], where it is shown
that in an environment with multiple publishers, a publisher may prefer not to share
user information with the advertiser, due to information leakage, where the advertiser
may target the same user through a cheaper publisher. Our approach has some of the
flavor of the work on the value of information in conflicts [10]. One special distinction
of the current work is its focus on algorithmic issues.

This work is also closely related to the study of revenue maximization via signaling
in second-price auctions [7,3,4,14]. The are few fundamental differences between the
model considered by those papers and ours. First, rather than a take-it-or-leave-it sale,
the sale is conducted by means of a second-price auction; i.e., each agent places her bid
and the chosen item is sold to the bidder that placed the highest bid for the price of the
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second highest bid. Second, rather than a buyer-specific asymmetric signaling scheme,
the signaling is performed via a symmetric partition, where the auctioneer partitions the
items into pairwise disjoint clusters and reports this partition to all the bidders.

A point of interest in our approach is the assumption of unawareness. Classical eco-
nomic and game-theoretic approaches assume that buyers are aware of other buyers and
the take-it-or-leave-it offers they may be given. As a result, the (deduced) probabilis-
tic information that each buyer holds about the item may be affected by her awareness
to the cases when she is given an offer versus the cases other buyers are given an of-
fer. While this approach is natural, we believe it is interesting to consider the comple-
mentary attitude of competition-unaware buyers, who disregard the existence of other
buyers. This approach clearly gives much power to the seller. Indeed, the fact that
decision-makers may be unaware of aspects of a strategic situation, and in particular, of
actions and even existence of other players is a puzzle game theorists were concerned
with. Most efforts so far have been concentrated on trying to find general models that in-
corporate such reasoning. For an example of the modeling challenges encountered when
considering unaware agents, one may consult the work of Halpren and Rego [8] on ex-
tensive games with possibly unaware players, or the work by Feinberg [5] on games
with unawareness. Our approach is complementary, as it emphasizes the combinatorial
and algorithmic issues that arise in such settings.

5.3 Awareness vs. Unawareness

A natural question one may ask is what would be the ramifications when considering
a setting in which the agents are aware of one another, and more generally, when the
whole setting is common-knowledge. Interestingly, in what follows, we observe that
in the latter case, the seller maximizes her revenue by fully revealing all information,
essentially revealing the realization of the probabilistic item. This result is in the spirit
of the famous ’Linkage Principle’ of Milgrom and Weber [12,13].

In a competition-aware model, each agent is aware of the valuations of other agents
and the signaling scheme that the seller runs. As a result, any agent can calculate, for
each item, which agent will be given the take-it-or-leave-it offer and in which price.
Suppose some agent i is signaled a subset S. How would she evaluate her expected
value? Clearly, agent i should compute the expectation only over the items j ∈ S such
that she would be given the take-it-or-leave-it offer. For that reason, when analyzing
an asymmetric partition scheme in the competition-aware model, it can be assumed
without loss of generality that if some subset is a winning subset for some item then it
is a winning subset for all its items. One can also verify that this implies that there is
only one winning subset for each agent. Using these observations, we next show that in
the competition-aware model, an optimal signaling scheme obtains the same expected
revenue as a signaling scheme that is symmetric and partitions the items into singleton
subsets. Conceptually, this implies that the best interest of the seller is to fully reveal
which item arrived when the buyers are competition-aware.

Lemma 7. In the competition-aware model, the optimal asymmetric signaling scheme
obtains the same expected revenue as a signaling scheme that is symmetric and parti-
tions the items into singleton subsets.
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Abstract. In an ε-approximate Nash equilibrium, a player can gain at
most ε in expectation by unilateral deviation. An ε-well-supported ap-
proximate Nash equilibrium has the stronger requirement that every
pure strategy used with positive probability must have payoff within
ε of the best response payoff. Daskalakis, Mehta and Papadimitriou [8]
conjectured that every win-lose bimatrix game has a 2

3
-well-supported

Nash equilibrium that uses supports of cardinality at most three. Indeed,
they showed that such an equilibrium will exist subject to the correct-
ness of a graph-theoretic conjecture. Regardless of the correctness of this
conjecture, we show that the barrier of a 2

3
payoff guarantee cannot be

broken with constant size supports; we construct win-lose games that re-
quire supports of cardinality at least Ω( 3

√
log n) in any ε-well supported

equilibrium with ε < 2
3
. The key tool in showing the validity of the

construction is a proof of a bipartite digraph variant of the well-known
Caccetta-Häggkvist conjecture [4]. A probabilistic argument [13] shows
that there exist ε-well-supported equilibria with supports of cardinality
O( 1

ε2
· log n), for any ε > 0; thus, the polylogarithmic cardinality bound

presented cannot be greatly improved. We also show that for any δ > 0,
there exist win-lose games for which no pair of strategies with support
sizes at most two is a (1 − δ)-well-supported Nash equilibrium. In con-
trast, every bimatrix game with payoffs in [0, 1] has a 1

2
-approximate

Nash equilibrium where the supports of the players have cardinality at
most two [8].

1 Introduction

A Nash equilibrium of a bimatrix game is a pair of strategies in which the
supports of both players consist only of best responses. The apparent hardness
of computing an exact Nash equilibrium [6,5] even in a bimatrix game has led to

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 15–23, 2013.
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work on computing approximate Nash equilibria, and two notions of approximate
Nash equilibria have been developed. The first and more widely studied notion
is of an ε-approximate Nash equilibrium (ε-Nash). Here, no restriction is placed
upon the supports; any strategy can be in the supports provided each player
achieves an expected payoff that is within ε of a best response. Therefore, ε-
Nash equilibria have a practical drawback: a player might place probability on
a strategy that is arbitrarily far from being a best response. The second notion,
defined to rectify this problem, is called an ε-well supported approximate Nash
equilibrium (ε-WSNE). Here, the content of the supports are restricted, but less
stringently than in an exact Nash equilibrium. Specifically, both players can only
place positive probability on strategies that have payoff within ε of a pure best
response. Observe that the latter notion is a stronger equilibrium concept: every
ε-WSNE is an ε-Nash, but the converse is not true.

Approximate well-supported equilibria recently played an important role in
understanding the hardness of computing Nash equilibria. They are more useful
in these contexts than ε-Nash equilibria because their definition is more combina-
torial and more closely resembles the best response condition that characterizes
exact Nash equilibria. Indeed, approximate well-supported equilibria were intro-
duced in [12,6] in the context of PPAD reductions that show the hardness of
computing (approximate) Nash equilibria. They were subsequently used as the
notion of approximate equilibrium by Chen et al. [5] that showed the PPAD-
hardness of computing an exact Nash equilibrium even for bimatrix games.

Another active area of research is to investigate the best (smallest) ε that can
be guaranteed in polynomial time. For ε-Nash, the current best algorithm, due
to Tsaknakis and Spirakis [17], achieves a 0.3393-Nash equilibrium; see [8,7,3]
for other algorithms. For the important class of win-lose games – games with
payoffs in {0, 1} – [17] gives a 1

4 -Nash equilibrium. For ε-WSNE, the current
best result was given by Fearnley et al. [10] and finds a (23 − ζ)-WSNE, where
ζ = 0.00473. It builds on an approach of Kontogiannis and Spirakis [13], which
finds a 2

3 -WSNE in polynomial time using linear programming. The algorithm of
Kontogiannis and Spirakis produces a 1

2 -WSNE of win-lose games in polynomial
time, which is best-known (the modifications of Fearnley et al. do not lead to an
improved approximation guarantee for win-lose games).

It is known that this line of work cannot extend to a fully-polynomial-time
approximation scheme (FPTAS). More precisely, there does not exist an FPTAS
for computing approximate Nash equilibria unless PPAD is in P [5]. Recall, an
FPTAS requires a running time that is polynomial in both the size of the game
input and in 1

ε . A polynomial-time approximation scheme (PTAS), however,
need not run in time polynomial in 1

ε . It is not known whether there exists a
PTAS for computing an approximate Nash equilibrium and, arguably, this is the
biggest open question in equilibrium computation today. While the best-known
approximation guarantee for ε-Nash that is achievable in polynomial time is
much better than that for ε-WSNE, the two notions are polynomially related:
there is a PTAS for ε-WSNE if and only if there is a PTAS for ε-Nash [5,6].
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1.1 Our Results

The focus of this paper is on the combinatorial structure of equilibrium. Our
first result shows that well-supported Nash equilibria differ structurally from
approximate Nash equilibria in a significant way. It is known that there are 1

2 -
Nash equilibria with supports of cardinality at most two [12], and that this result
is tight [11]. In contrast, we show in Theorem 2 that for any δ > 0, there exist
win-lose games for which no pair of strategies with support sizes at most two is
a (1− δ)-well-supported Nash equilibrium.1

With supports of cardinality three, Daskalakis et al. conjectured, in the first
paper that studied algorithms for finding ε-WSNE [8], that 2

3 -WSNE are obtain-
able in every win-lose bimatrix game. Specifically, this would be a consequence
of the following graph-theoretic conjecture.

Conjecture 1 ([8]). Every digraph either has a cycle of length at most 3 or an
undominated set2 of 3 vertices.

The main result in this paper, Theorem 1, shows that one cannot do better
with constant size supports. We prove that there exist win-lose games that re-
quire supports of cardinality at least Ω( 3

√
logn) in any ε-WSNE with ε < 2

3 . We
prove this existence result probabilistically. The key tool in showing correctness
is a proof of a bipartite digraph variant of the well-known Caccetta-Häggkvist
conjecture [4]. A polylogarithmic cardinality bound, as presented here, is the best
we can hope for – a probabilistic argument [13] shows that there exist ε-WSNE
with supports of cardinality O( 1

ε2 · logn), for any ε > 0.3

2 A Lower Bound on the Support Size of Well Supported
Nash Equilibria

We begin by formally defining bimatrix win-lose games and well-supported Nash
equilibria. A bimatrix game is a 2-player game with m×n payoff matrices A and
B; we may assume that m ≤ n. The game is called win-lose if each matrix entry
is in {0, 1}.

A pair of mixed strategies {p,q} is a Nash equilibrium if every pure row
strategy in the support of p is a best response to q and every pure column
strategy in the support of q is a best response to p. A relaxation of this concept
is the following. A pair of mixed strategies {p,q} is an ε-well supported Nash
equilibrium if every pure strategy in the support of p (resp. q) is an ε-approximate
best response to q (resp. p). That is, for any row ri in the support of p we have

ei
TAq ≥ max

�
e�

TAq − ε

1 Random games have been shown to have exact equilibria with support size 2 with
high probability; see Bárány et al. [2].

2 A set S is undominated if there is no vertex v that has an arc to every vertex in S.
3 Althöfer [1] and Lipton at al. [15] proved similar results for ε-Nash equilibria.
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and, for any column cj in the support of q we have

pTBej ≥ max
�

pTBe� − ε .

In this section we prove our main result.

Theorem 1. For any ε < 2
3 , there exist win-lose games for which every ε-well-

supported Nash equilibrium has supports of cardinality Ω( 3
√
logn).

To prove this result, we first formulate our win-lose games graphically. This
can be done in a straight-forward manner. Simply observe that we may represent
a 2-player win-lose game by a directed bipartite graph G = (R∪C,E). There is
a vertex for each row and a vertex for each column. There is an arc (ri, cj) ∈ E
if and only if (B)ij = bij = 1; similarly there is an arc (cj , ri) ∈ E if and only if
(A)ij = aij = 1.

Consequently, we are searching for a graph whose corresponding game has no
high quality well-supported Nash equilibrium with small supports. We show the
existence of such a graph probabilistically.

The Construction.

Let T = (V,E) be a random tournament on N nodes. Now create from T an
auxiliary bipartite graph G(T ) = (R∪C,A) corresponding to a 2-player win-lose
game as follows. The auxiliary graph has a vertex-bipartition R∪C where there
is a vertex of R for each node of T and there is a vertex of C for each set of
k distinct nodes of T . (Observe that, for clarity we will refer to nodes in the
tournament T and vertices in the bipartite graph G.) There are two types of arc
in G(T ): those oriented from R to C and those oriented from C to R. For arcs
of the former type, each vertex X ∈ C will have in-degree exactly k. Specifically,
let X correspond to the k-tuple {v1, . . . , vk} where vi ∈ V (T ), for all 1 ≤ i ≤ k.
Then there are arcs (vi, X) in G for all 1 ≤ i ≤ k. Next consider the latter type
of arc in G. For each node u ∈ R there is an arc (X, u) in G if and only if u
dominates X = {v1, . . . , vk} in the tournament T , that is if (u, vi) are arcs in T
for all 1 ≤ i ≤ k. This completes the construction of the auxiliary graph (game)
G.

We say that a set of vertices W = {w1, . . . , wt} is covered if there exists a
vertex y such that (wj , y) ∈ A, for all 1 ≤ j ≤ t. Furthermore, a bipartite graph
is k-covered if every collection of k vertices that lie on the same side of the
bipartition is covered. Now with positive probability the auxiliary graph G(T )
is k-covered.

Lemma 1. For all sufficiently large n and k ≤ 3
√
logn, there exists a tourna-

ment T whose auxiliary bipartite graph G(T ) is k-covered.

Proof. Observe that the payoff matrices that correspond to G(T ) have m = N
rows and n =

(
N
k

)
columns. Furthermore, by construction, any set of k vertices

in R is covered. Thus, first we must verify that any set of k vertices in C is also
covered.
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So consider a collection X = {X1, . . . , Xk} of k vertices in C. Since each
Xi ∈ C corresponds to a k-tuple of nodes of T , we see that X corresponds to a
collection of at most k2 nodes in T . Thus, for any node u /∈ ∪iXi, we have that
u has an arc in T to every node in ∪iXi with probability at least 2−k2

. Thus
with probability at most (1− 1

2k2 )N−k2

the subset X of C not covered in G(T ).
Applying the union bound we have that there exists the desired tournament if(

n

k

)
·
(
1− 1

2k2

)N−k2

< 1 (1)

Now set k = log
1
3 n. Therefore log n

1
k = log

2
3 n = k2.

In addition, because n =
(
N
k

)
, we have that N ≥ k

e ·n
1
k . Hence, N − k2 > n

1
k .

(Note that, since N ≥ k this implies that G(T ) is defined.) Consequently,

(
n

k

)
·
(
1− 1

2k2

)N−k2

≤ nk ·
(
1− 1

2k2

)n
1
k

≤ nk · e−
1

2k
2 ·n

1
k

≤ nk · e−
1

ek
2·log 2

·n
1
k

Thus, taking logarithms, we see that Inequality (1) holds if

ek
2·log 2 · k · logn < n

1
k (2)

But n
1
k = ek

2

, so Inequality (2) clearly holds for large n. The result follows.

A property of the auxiliary graph G(T ) that will be very useful to us is that
it contains no cycles with less than six vertices.

Lemma 2. The auxiliary graph G(T ) contains no digons and no 4-cycles.

Proof. Suppose G(T ) contains a digon {w,X}. The arc (w,X) implies that X =
{x1, . . . , xk−1, w}. On the other-hand, the arc (X,w) implies that w dominates
X in T and, thus, w /∈ X .

Suppose G(T ) contains a 4-cycle {w,X, z, Y } where w and z are in R and
where X = {x1, . . . , xk−1, w} and Y = {y1, . . . , yk−1, z} are in C. Then z must
dominate X in T and w must dominate Y in T . But then we have a digon in
T as (w, z) and (z, w) must be arcs in T . This contradicts the fact that T is a
tournament.

Lemmas 1 and 2 are already sufficient to prove a major distinction between
approximate-Nash equilibria and well-supported Nash equilibria. Recall that
there always exist 1

2 -Nash equilibria with supports of cardinality at most two
[8]. In sharp contrast, for supports of cardinality at most two, no constant ap-
proximation guarantee can be obtained for ε-well-supported Nash equilibria.

Theorem 2. For any δ > 0, there exist win-lose games for which no pair of
strategy vectors with support sizes at most two is a (1 − δ)-well-supported Nash
equilibrium.
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Proof. Take the auxiliary win-lose game G(T ) from Lemma 1 for the case k = 2.
Now consider any pair of strategy vectors p1 and p2 with supports of cardinality
2 or less. Since G(T ) is 2-covered, the best responses to p1 and p2 both gen-
erate payoffs of exactly 1. Thus {p1,p2} can be a (1 − δ)-well-supported Nash
equilibrium only if each strategy in the support of p1 is a best response to at
least one of the pure strategies in the support of p2 and vice versa. Therefore,
in the subgraph H of G(T ) induced by the supports of p1 and p2, each vertex
has in-degree at least one. Thus, H contains a directed cycle. But G(T ) has no
digons or 4-cycles, by Lemma 2. Hence, we obtain a contradiction as H contains
at most four vertices.

In light of Lemma 2, we will be interested in the minimum in-degree required
to ensure that a bipartite graph contains a 4-cycle. The following theorem may
be of interest on its own right, as it resolves a variant of the well-known Caccetta-
Häggkvist conjecture [4] for bipartite digraphs. For Eulerian graphs, a related
but different result is due to Shen and Yuster [16].

Theorem 3. Let H = (L ∪ R,A) be a directed k × k bipartite graph. If H has
minimum in-degree λ · k then it contains a 4-cycle, whenever λ > 1

3 .

Proof. To begin, by removing arcs we may assume that every vertex has in-
degree exactly λ · k. Now take a vertex v with the maximum out-degree in H ,
where without loss of generality v ∈ L. Let A1 be the set of out-neighbours of
v, and set α1 · k = |A1|. Similarly, let Bt be the set of vertices with paths to v
that contain exactly t arcs, for t ∈ {1, 2}, and set set βt · k = |Bt|. Finally, let
C1 be the vertices in R that are not adjacent to v, namely C1 = L− (A1 ∪B1).
Set γ1 · k = |C1|.

These definitions are illustrated in Figure 1.

Fig. 1.
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Observe that we have the following constraints on α1, β1 and γ1. By assump-
tion, β1 = λ. Thus, we have γ1 = 1 − α1 − λ. Moreover, by the choice of v,
we have α1 ≥ λ, since the maximum out-degree must be at least the average
in-degree.

Note that if there is an arc from A1 to B2 then H contains a 4-cycle. So, let’s
examine the in-neighbours of B2. We knowB2 has exactly λ·k·|B2| incoming arcs.
We may assume all these arcs emanate from B1∪C1. On the other-hand, there are
exactly λ ·k · |B1| arcs from B2 to B1. Thus, there are at most |B1| · (|B2| − λ · k)
arcs from B1 to B2. So the number of arcs from C1 to B2 is at least

λ · k · |B2| − |B1| · (|B2| − λ · k) = λ · k · β2 · k − β1 · k · (β2 · k + λ · k)
= λ · k · β2 · k − λ · k · (β2 · k + λ · k)
= λ2 · k2

Since the maximum degree is α1 · k, the number of arcs emanating from C1 is
at most γ1 · α1 · k2. Thus γ1 · α1 · (1− α1 − λ) ≥ λ2. Rearranging we obtain the
quadratic inequality

α2
1 − α1(1 − λ) + λ2 ≤ 0

The discriminant of this quadratic is 1−2λ−3λ2. But 1−2λ−3λ2 = (1−3λ)(1+λ)
and this is non-negative if and only if λ ≤ 1

3 . This completes the proof.

We may now prove our main result: no approximation guarantee better than 2
3

can be achieved unless the well-supported equilibria has supports with
cardinality Ω( 3

√
logn).

Proof of Theorem 1. Take a tournament T whose auxiliary bipartite graph is
k-covered. By Lemma 1, such a tournament exists. Consider the win-lose game
corresponding to the auxiliary graph G(T ), and take strategy vectors p1 and p2

with supports of cardinality k or less. Without loss of generality, we may assume
that p1 and p2 are rational. Denote these supports as S1 ⊆ R and S2 ⊆ C, respec-
tively. As G(T ) is k-covered, there is a pure strategy c∗ ∈ C that covers S1 and a
pure strategy r∗ ∈ R that covers S2. Thus, in the win-lose game, c∗ ∈ C has an
expected payoff of 1 against p1 and r∗ ∈ R has an expected payoff of 1 against p2.

Suppose p1 and p2 form a ε-well-supported equilibrium for some ε < 2
3 . Then

it must be the case that each ri ∈ S1 has expected payoff at least 1−ε > 1
3 against

p2. Similarly, each cj ∈ S2 has expected payoff at least 1−ε > 1
3 against p1. But

this cannot happen. Consider the subgraph of G(T ) induced by S1 ∪ S2 where
each ri ∈ S1 has weight wi = p1(ri) and each cj ∈ S2 has weight wj = p2(cj). We
convert this into an unweighted graph H by making L ·wv copies of each vertex
v, for some large integer L. Now H is an L × L bipartite graph with minimum
in-degree (1− ε) · L > 1

3 · L. Thus, by Theorem 3, H contains a 4-cycle. This is
a contradiction, by Lemma 2. 
�

We remark that the 2
3 in Theorem 1 cannot be improved using this proof

technique. Specifically the minimum in-degree requirement of 1
3 · k in Theorem

3 is tight. To see this, take a directed 6-cycle C and replace each vertex in C by
1
3 · k copies. Thus each arc in C now corresponds to a complete k

3 ×
k
3 bipartite
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graph with all arc orientations in the same direction. The graph H created in
this fashion is bipartite with all in-degrees (and all out-degrees) equal to 1

3 · k.
Clearly the minimum length of a directed cycle in H is six.

3 Conclusion

An outstanding open problem is whether any constant approximation guarantee
better than 1 is achievable with constant cardinality supports. We have shown
that supports of cardinality two cannot achieve this; a positive resolution of
Conjecture 1 would suffice to show that supports of cardinality three can. How-
ever, Conjecture 1 seems a hard graph problem and it is certainly conceivable
that it is false.4 If so, that would lead to the intriguing possibility of a very
major structural difference between ε-Nash and ε-WSNE; namely, that for any
δ > 0, there exist win-lose games for which no pair of strategies with constant
cardinality supports is a (1− δ)-well-supported Nash equilibrium.

The existence of small support ε-WSNE clearly implies the existence of of
polynomial time approximation algorithms to find such equilibria. Obtaining
better approximation guarantees using more complex algorithms is also an in-
teresting question. As discussed, the best known polynomial-time approxima-
tion algorithm for well-supported equilibria in win-lose games finds a 1

2 -well
supported equilibrium [13] by solving a linear program (LP). For games with
payoffs in [0, 1] that algorithm finds a 2

3 -well-supported equilibrium. The algo-
rithm has been modified in [10] to achieve a slightly better approximation of
about 2

3 − ζ where ζ = 0.00473. That modification solves an almost identical
LP as [13] and then either transfers probability mass within the supports of a
solution to the LP or returns a small support strategy profile that uses at most
two pure strategies for each player. The results of this paper show that both
parts of that approach are needed, and any improvement to the approximation
guarantee must allow for super-constant support sizes.
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Abstract. In social choice settings with linear preferences, random dic-
tatorship is known to be the only social decision scheme satisfying strat-
egyproofness and ex post efficiency. When also allowing indifferences,
random serial dictatorship (RSD) is a well-known generalization of
random dictatorship that retains both properties. RSD has been par-
ticularly successful in the special domain of random assignment where
indifferences are unavoidable. While executing RSD is obviously feasible,
we show that computing the resulting probabilities is #P-complete and
thus intractable, both in the context of voting and assignment.

1 Introduction

Social choice theory studies how a group of agents can make collective decisions
based on the—possibly conflicting—preferences of its members. In the most gen-
eral setting, there is a set of abstract alternatives over which each agent enter-
tains preferences. A social decision scheme aggregates these preferences into a
probability distribution (or lottery) over the alternatives.

Perhaps the most well-known social decision scheme is random dictatorship,
in which one of the agents is uniformly chosen at random and then picks his
most preferred alternative. Gibbard [3] has shown that random dictatorship is
the only social decision scheme that is strategyproof and ex post efficient, i.e.,
it never puts positive probability on Pareto dominated alternatives. Note that
random dictatorship is only well-defined when there are no ties in the agents’
preferences. However, ties are unavoidable in many important domains of social
choice such as assignment, matching, and coalition formation since agents are
assumed to be indifferent among all outcomes in which their assignment, match,
or coalition is the same (e.g., [4]).

In the presence of ties, random dictatorship is typically extended to random
serial dictatorship (RSD), where dictators are invoked sequentially and ties be-
tween most-preferred alternatives are broken by subsequent dictators.1 RSD
retains the important properties of ex post efficiency and strategyproofness and
is well-established in the context of random assignment (see e.g., [2]).

1 RSD is referred to as random priority by Bogomolnaia and Moulin [2].
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In this paper, we focus on two important domains of social choice: (1) the vot-
ing setting, where alternatives are candidates and agents’ preferences are given by
rankings over candidates, and (2) the aforementioned assignment setting, where
each alternative corresponds to an assignment of houses to agents and agents’
preferences are given by rankings over houses. Whereas agents’ preferences over
alternatives are listed explicitly in the voting setting, this is not the case in the
assignment setting. However, preferences over houses can be easily extended to
preferences over assignments by assuming that each agent only cares about the
house assigned to himself and is indifferent between all assignments in which
he is assigned the same house. As a consequence, the assignment setting is a
special case of the voting setting. However, due to the different representations,
computational statements do not carry over from one setting to the other.

We examine the computational complexity of RSD and show that computing
the RSD lottery is #P-complete both in the voting setting and in the assign-
ment setting. Loosely speaking, #P is the counting equivalent of NP—the class
of decision problems whose solutions can be verified in polynomial time. #P-
completeness is commonly seen as strong evidence that a problem cannot be
solved in polynomial time. As mentioned above, neither of the two results im-
plies the other. We furthermore present a polynomial-time algorithm to compute
the support of the RSD lottery in the voting setting. This is not possible in the
assignment setting, because the support of the RSD lottery might be of exponen-
tial size. However, we can decide in polynomial time whether a given alternative
(i.e., an assignment) is contained in the support or not.

A preprint of the complete paper is available from http://dss.in.tum.de/

files/brandt-research/rsd.pdf. The paper has been accepted for publication
in Economics Letters [1].
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Abstract. We consider collaborative systems where users make contri-
butions across multiple available projects and are rewarded for their con-
tributions in individual projects according to a local sharing of the value
produced. This serves as a model of online social computing systems such
as online Q&A forums and of credit sharing in scientific co-authorship
settings. We show that the maximum feasible produced value can be
well approximated by simple local sharing rules where users are approx-
imately rewarded in proportion to their marginal contributions and that
this holds even under incomplete information about the player’s abili-
ties and effort constraints. For natural instances we show almost 95%
optimality at equilibrium. When players incur a cost for their effort, we
identify a threshold phenomenon: the efficiency is a constant fraction
of the optimal when the cost is strictly convex and decreases with the
number of players if the cost is linear.

1 Introduction

Many economic domains involve self-interested agents who participate in multi-
ple joint ventures by investing time, effort, money or other personal resources,
so as to produce some value that is then shared among the participants. Ex-
amples include traditional surplus sharing games [18, 6], co-authorship settings
where the wealth produced is in the form of credit in scientific projects, that is
implicitly split among the authors of a paper [14] and online services contexts
where users collaborate on various projects and are rewarded by means of public
reputation, achievement awards, badges or webpage attention (e.g. Q&A Forums
such as Yahoo! Answers, Quora, and StackOverflow [7–9, 5, 2, 13], open source
projects [19, 24, 27, 11, 28]).

We study the global efficiency of simple and prefixed rules for sharing the
value locally at each project, even in the presence of incomplete information on
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the player’s abilities and private resource constraints and even if players employ
learning strategies to decide how to play in the game.

The design of simple, local and predetermined mechanisms is suitable for
applications such as sharing attention in online Q&A forums or scientific co-
authorship scenarios, where cooperative solution concepts, that require ad-hoc
negotiations and global redistribution of value, are less appropriate.

Robustness to incomplete information is essential in online applications, where
players are unlikely to have full knowledge of the abilities of other players. In-
stead, participants have only distributional knowledge about their opponents.
Additionally, public signals, such as reputation ranks, achievement boards, and
history of accomplishments result in a significant asymmetry in the beliefs about
a player’s abilities. Therefore, efficiency guarantees should carry over, even if
player abilities are arbitrary asymmetrically distributed.

In our main result we show that if locally at each project each player is
awarded at least his marginal contribution to the value, then every equilibrium
is a 2-approximation to the optimal outcome. This holds even when players’
abilities and resource constraints are private information drawn from commonly
known distributions and even when players use no-regret learning strategies to
play the game. We portray several mechanisms that satisfy this property, such as
sharing proportionally to the quality of the submission. We also give a generaliza-
tion of our theorem, when players don’t have hard constraints on their resources,
but rather have soft constraints in the form of convex cost functions. Finally, we
give classes of instances where near optimality is achieved in equilibrium.

Our Results. We consider a model of collaboration where the system consists
of set of players and a set of projects. Each player has a budget of time which
he allocates across his projects. If a player invests some effort in some project,
this results in some submission of a certain quality, which is a player and project
specific increasing concave function of the effort, that depends on the player’s
abilities. Each project produces some value which is a monotone submodular
function of the qualities of the submissions of the different participants. This
common value produced by each project is then shared among the participants
of the project according to some pre-specified sharing rule, e.g. equal sharing, or
sharing proportionally to quality.

1. Marginal Contribution and Simple Sharing Rules. We show that
if each player is awarded at least his marginal contribution to the value of a
project, locally, then every Nash equilibrium achieves at least half of the op-
timal social welfare. This holds at coarse correlated equilibria of the complete
information game when player’s abilities and budget are common knowledge and
at Bayes-Nash equilibria when these parameters are drawn independently from
commonly known arbitrary distributions. Our result is based on showing that
the resulting game is universally (1, 1)-smooth game [21, 22, 25] and corresponds
to a generalization of Vetta’s [26] valid utility games to incomplete information
settings. We give examples of simple sharing rules that satisfy the above condi-
tion, such as proportional to the marginal contribution or based on the Shapley
value or proportional to the quality. We show that this bound is tight for very
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special cases of the class of games that we study and holds even for the best pure
Nash equilibrium of the complete information setting and even when the equilib-
rium is unique. We also analyze ranking-based sharing rules and show that they
can approximately satisfy the marginal contribution condition, leading only to
logarithmic in the number of players loss.

2. Near Optimality for Constant Elasticity. We show that for the case
when the value produced at each project is of the form v(x) = w·xα for α ∈ (0, 1),
where x is the sum of the submission qualities, then the simple proportional to
quality sharing rule achieves almost 95% of the optimal welfare at every pure
Nash equilibrium of the game, which always exists.

3. Soft Budget Constraints and a Threshold Phenomenon. When the
players have soft budget constraints in the form of some convex cost function of
their total effort, we characterize the inefficiency as a function of the convexity
of the cost functions, as captured by the standard measure of elasticity. We show
that if the elasticity is strictly greater than 1 (strictly convex), then the ineffi-
ciency both in terms of produced value and in terms of social welfare (including
player costs) is a constant independent of the number of players, that converges
to 2 as the elasticity goes to infinity (hard budget constraint case). This stands in
a stark contrast with the case when the cost functions are linear, where we show
that the worst-case efficiency can decrease linearly with the number of players.

Applications. In the context of social computing each project represents a
specific topic on a user-generated website such as Yahoo! Answers, Quora, and
StackOverflow. Each web user has a budget of time that he spends on such a
web service, which he chooses how to split among different topics/questions that
arise. The quality of the response of a player is dependent on his effort and on his
abilities which are most probably private information. The attention produced
is implicitly split among the responders of the topic in a non-uniform manner,
since the higher the slot that the response is placed in the feed, the higher the
attention it gets. Hence, the website designer has the power to implicitly choose
the attention-sharing mechanism locally at each topic, by strategically ordering
the responses according to their quality and potentially randomizing, with the
goal of maximizing the global attention on his web-service.

Another application of our work is in the context of sharing scientific credit in
paper co-authorship scenarios. One could think of players as researchers splitting
their time among different scientific projects. Given the efforts of the authors at
each project there is some scientific credit produced. Local sharing rules translate
to scientific credit-sharing rules among the authors of a paper, which is implicitly
accomplished through the order that authors appear in the paper. Different
ordering conventions in different communities correspond to different sharing
mechanisms, with the alphabetical ordering corresponding to equal sharing of
the credit while the contribution ordering is an instance of a sharing mechanism
where a larger credit is rewarded to those who contributed more.

Related Work. Our model has a natural application in the context of on-
line crowdsourcing mechanisms which were recently investigated by Ghosh and
Hummel [7, 8], Ghosh and McAfee [9], Chawla, Hartline and Sivan [4] and Jain,
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Chen, and Parkes [13]. All this prior work focuses on a single project. In con-
trast, we consider multiple projects across which a contributor can strategically
invest his effort. We also allow a more general class of project value functions.
Having multiple projects creates endogenous outside options that significantly
affect equilibrium outcomes. DiPalantino and Vojnović [5] studied a model of
crowdsourcing where users can choose exactly one project out of a set of mul-
tiple projects, each offering a fixed prize and using a “winner-take-all” sharing
rule. In contrast, we allow the value shared to be increasing in the invested efforts
and allow individual contributors to invest their efforts across multiple projects.

Splitting scientific credit among collaborators was recently studied by Klein-
berg and Oren [14], who again examined players choosing a single project. They
show how to globally change the project value functions so that optimality is
achieved at some equilibrium of the perturbed game.

There have been several works on the efficiency of equilibria of utility maxi-
mization games [26, 10, 16], also relating efficiency with the marginal contribution
property. However, this body of related work focused only on the complete infor-
mation setting. For general games, Roughgarden [21] gave a unified framework,
called smoothness, for capturing most efficiency bounds in games and showed that
bounds proven via the smoothness framework automatically extend to learning
outcomes. Recently, Roughgarden [22] and Syrgkanis [25] gave a variation of the
smoothness framework that also extends to incomplete information settings. Ad-
ditionally, Roughgarden and Schoppmann gave a version of the framework that
allows for tighter bounds when the strategy space of the players is some convex
set. In this work we utilize these frameworks to prove our results.

Our collaboration model is related to the contribution games of [1]. However,
in [1], it is assumed that all players get the same value from a project. This
corresponds to the special case of equal sharing rule in our model. Moreover, they
mainly focus on network games where each project is has only two participants.

Our model is also related to the bargaining literature [12, 15, 3]. The main
question in that literature is similar to what we ask here: how should a commonly
produced value be split among the participants. However, our approach is very
different than the bargaining literature as we focus on simple mechanisms that
use only local information of a project and not global properties of the game.

2 Collaboration Model

Our model of collaboration is defined with respect to a set N of n players and
a set M of m available projects. Each player i participates in a set of projects
Mi and has a budget of effort Bi, that he chooses how to distribute among
his projects. Thus the strategy of player i is specified by the amount of effort
xj
i ∈ R+ that he invests in project j ∈Mi.

Player Abilities. Each player i is characterized by his type ti, which is drawn
from some abstract type space Ti, and which determines his abilities on different
projects as well as his budget. When player i invests an effort of xj

i on project
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j this results in a submission of quality qji (x
j
i ; ti), which depends on his type,

and which we assume to be some continuously differentiable, increasing concave
function of his effort that is zero at zero.

For instance, the quality may be linear with respect to effort qji (x
j
i ) = aji · x

j
i ,

where aji is some project-specific ability factor for the player that is part of his

type. In the context of Q&A forums, the effort xj
i corresponds to the amount of

time spent by a participant to produce some answer at question j, the budget
corresponds to the amount of time that the user spends on the forum, the ability
factor aji corresponds to how knowledgeable he is on topic j and qji corresponds
to the quality of his response.

Project Value Functions. Each project j ∈ M is associated with a value func-
tion vj(q

j), that maps the vector of submitted qualities qj = (qji )i∈Nj into a
produced value (where Nj is the set of players that participate in the project).
This function, represents the profit or revenue that can be generated by utilizing
the submissions. In the context, of Q&A forums vj(q

j) could for instance corre-
spond to the webpage attention produced by a set of responses to a question.

We assume that this value is increasing in the quality of each submission and
satisfies the diminishing marginal returns property, i.e. the marginal contribution
of an extra quality decreases as the existing submission qualities increase. More
formally, we assume that the value is submodular with respect to the lattice
defined on R|Nj|: for any z ≥ y ∈ R|Nj| (coordinate-wise) and any w ∈ R|Nj|:

vj(w ∨ z)− vj(z) ≤ vj(w ∨ y)− vj(y), (1)

where ∨ denotes the coordinate-wise maximum of two vectors. For instance, the
value could be any concave function of the sum of the submitted qualities or it
could be the maximum submitted quality vj(q

j) = maxi∈Nj q
j
i .

Local Value Sharing. We assume that the produced value vj(q
j) is shared lo-

cally among all the participants of the project, based on some predefined redis-
tribution mechanism. The mechanism observes the submitted qualities qj and
decides a share uj

i (q
j) of the project value that is assigned to player i, such that∑

i∈Nj
uj
i (q

j) = vj(q
j). The utility of a player i is the sum of his shares across

his projects:
∑

j∈Mi
uj
i (q

j).
In the context of Q&A forums, the latter mechanism corresponds to a local

sharing rule of splitting the attention at each topic. Such a sharing rule can
be achieved by ordering the submissions according to some function of their
qualities and potentially randomizing to achieve the desired sharing portions.

From Effort to Quality Space. We start our analysis by observing that the
utility of a player is essentially determined only by the submitted qualities and
that there is a one-to-one correspondence between submitted quality and input
effort. Hence, we can think of the players as choosing target submission qualities
for each project rather than efforts. For a player to submit a quality of qji he

has to exert effort xj
i (q

j
i ; ti), which is the inverse of qji (·; ti) and hence is some
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increasing convex function, that depends on the player’s type. Then the strategy
space of a player is simply be the set:

Qi(ti) =

⎧⎨
⎩qi = (qji )j∈Mi :

∑
j∈Mi

xj
i (q

j
i ; ti) ≤ Bi(ti)

⎫⎬
⎭ (2)

From here on we work with the latter representation of the game and define
everything in quality space rather than the effort space. Hence, the utility of a
player under a submitted quality profile q, such that qi ∈ Qi(ti) is:

ui(q; ti) =
∑

j∈Mi
uj
i (q

j). (3)

and minus infinity if qi /∈ Qi(ti).

Social Welfare. We assume that the value produced is completely shared
among the participants of a project, and thus, the social welfare is equal to
the total value produced, assuming players choose feasible strategies for their
type:

SW t(q) =
∑

i∈N ui(q; ti) =
∑

j∈M vj(q
j) = V (q). (4)

We are interested in examining the social welfare achieved at the equilibria of the
resulting game when compared to the optimal social welfare. For a given type
profile t we denote with OPT(t) = maxq∈Q(t) SW

t(q) the maximum welfare.

Equilibria, Existence and Efficiency. We examine both the complete and
the incomplete information setting. In the complete information setting, the
type (e.g. abilities, budget) of all the players is fixed and common knowledge.
We analyze the efficiency of Nash equilibria and of outcomes that arise from no-
regret learning strategies of the players when the game is played repeatedly. A
Nash equilibrium is a strategy profile where no player can increase his utility by
unilaterally deviating. An outcome of a no-regret learning strategy in the limit
corresponds to a coarse correlated equilibrium of the game, which is a correlated
distribution over strategy profiles, such that no player wants to deviate to some
fixed strategy. We note that such outcomes always exist, since no-regret learn-
ing algorithms for playing games exist. When the sharing rule induces a game
where each players utility is concave with respect to his submitted quality and
continuous (e.g. Shapley value) then even a pure Nash equilibrium is guaranteed
to exist in our class of games, by the classic result of Rosen [20].

In the incomplete information setting the type ti of each player is private
and is drawn independently from some commonly known distribution Fi on
Ti. This defines an incomplete information game where players strategies are
mappings si(ti), from types to (possibly randomized) actions, which in our game
corresponds to feasible quality vectors. Under this assumption we quantify the
efficiency of Bayes-Nash equilibria of the resulting incomplete information game,
i.e. strategy profiles where players are maximizing their utility in expectation
over other player’s types:

Et−i [ui(s(t))] ≥ Et−i [ui(s
′
i, s−i(t−i)] (5)
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We note that a mixed Bayes-Nash equilibrium in the class of games that we
study always exists assuming that the type space is discretized and for a suffi-
ciently small discretization of the strategy space. Even if the strategy and type
space is not discretized, a pure Bayes-Nash equilibrium is also guaranteed to
exist in the case of soft budget constraints under minimal assumptions (i.e. type
space is a convex set and utility share of a player is concave with respect to
his submitted quality and is differentiable with bounded slope) as was recently
shown by Meirowitz [17].

We quantify the efficiency at equilibrium with respect to the ratio of the
optimal social welfare over the worst equilibrium welfare, which is denoted as
the Price of Anarchy. Equivalently, we quantify what fraction of the optimal
welfare is guaranteed at equilibrium.

3 Approximately Efficient Sharing Rules

In this section we analyze a generic class of sharing rules that satisfy the property
that locally each player is awarded at least his marginal contribution to the value:

uj
i (q

j) ≥ vj(q
j)− vj(qj−i) (6)

where qj−i is the vector of qualities where player i submits 0 and everyone else

submits qji .
Several natural and simple sharing rules satisfy the above property, such as

sharing proportional to the marginal contribution or according to the local Shap-
ley value.1 When the value is a concave function of the total quality submitted,

then sharing proportional to the quality: i.e. uj
i (q

j) =
qji∑

k∈Nj
qj
k

vj(q
j), satisfies

the marginal contribution property. When the value is the highest quality sub-
mission, then just awarding all the value to the highest submission (e.g. only
displaying the top response in a Q&A forum) satisfies the marginal contribution
property (see full version).

We show that any such sharing rule induces a game that achieves at least
a 1/2 approximation to the optimal social welfare, at any no-regret learning
outcome and at any Bayes-Nash equilibrium of the incomplete information set-
ting where players’ abilities and budgets are private and drawn from commonly
known distributions. Our analysis is based on the recently introduced smooth-
ness framework for games of incomplete information by Roughgarden [22] and
Syrgkanis [25], which we briefly survey.

Smoothness of Incomplete Information Games. Consider the following class of
incomplete information games: Each player i has a type ti drawn independently
from some distribution Fi on some type space Ti, which is common knowledge.

1 The Shapley value corresponds to the expected contribution of a player to the value
if we imagine drawing a random permutation and adding players sequentially, at-
tributing to each player his contribution at the time that he was added.
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For each type ti ∈ Ti each player has a set of available actions Ai(ti). A players
strategy is a function si : Ti → Ai that satisfies ∀ti ∈ Ti : si(ti) ∈ Ai(ti). A
player’s utility depends on his type and the action profile: ui : Ti ×A→ R.

Definition 1 (Roughgarden [22], Syrgkanis [25]). An incomplete informa-
tion game is universally (λ, μ)-smooth if ∀t ∈ ×iTi there exists a∗(t) ∈ ×iAi(t)
such that for all w ∈ ×iTi and a ∈ ×iAi(w):∑

i∈N ui(a
∗
i (t), a−i; ti) ≥ λOPT(t)− μ

∑
i∈N ui(a;wi) (7)

Theorem 1 (Roughgarden [21, 22], Syrgkanis [25]). If a game is univer-
sally (λ, μ)-smooth then every mixed Bayes-Nash equilibrium of the incomplete
information setting and every coarse correlated equilibrium of the complete in-
formation setting achieves expected social welfare at least λ

1+μ of the optimal.

It is easy to observe that our collaboration model, falls into the latter class of
incomplete information games, where the action of each player is his submitted
quality vector qi, and the set of feasible quality vectors depend on his private
type: Qi(ti) as defined in Equation (2). Last the utility of a player is only a
function of the actions of other players and not directly of their types, since it
depends only on the qualities that they submitted.

Theorem 2. The game induced by any sharing rule that satisfies the marginal
contribution property is universally (1, 1)-smooth.

Proof. Let t, w be two type profiles, and let q̃(t) ∈ Q(t) be the quality profile that
maximizes the social welfare under type profile t, i.e. q̃(t) = argmaxq∈Q(t) SW (q).
To simplify presentation we will denote q̃ = q̃(t), but remind that the vector de-
pends on the whole type profile. Consider any quality profile q ∈ Q(w). By the
fact that q̃i ∈ Qi(ti) is a valid strategy for player i under type profile ti, we have:∑

i∈N ui(q̃i, q−i; ti) =
∑

i∈N

∑
j∈Mi

uj
i (q̃

j
i , q

j
−i)

By the marginal contribution property of the sharing rule we have that:

∑
i∈N

ui(q̃i, q−i; ti) ≥
∑
i∈N

∑
j∈Mi

(
vj(q̃

j
i , q

j
−i)− vj(q

j
−i)

)
=

∑
j∈M

∑
i∈Nj

(
vj(q̃

j
i , q

j
−i)− vj(q

j
−i)

)

Following similar analysis as in Vetta [26] for the case of complete information
games, by the diminishing marginal returns property of the value functions:

vj(q̃
j
i , q

j
−i)− vj(q

j
−i) ≥ vj(q̃

j
≤i ∨ qj≤i, q

j
>i)− vj(q̃

j
<i ∨ qj<i, q

j
≥i)

Where it can be seen that the right hand side is the marginal contribution of an
extra quality q̃ji added to a larger vector than the vector on the left hand side.

Specifically, the left hand side is the marginal contribution of q̃ji to qj−i, while the

right hand side is the marginal contribution of q̃ji to the vector (qj<i + q̃j<i, q
j
≥i).

Summing this inequality for every player in Nj we get a telescoping sum:∑
i∈Nj

vj(q̃
j
i , q

j
−i)− vj(q

j
−i) ≥ vj(q̃

j ∨ qj)− vj(q
j) ≥ vj(q̃

j)− vj(q
j)
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Combining this with the initial inequality and using the fact that q ∈ Q(w), we
get the desired universal (1, 1)-smoothness property:∑

i∈N ui(q̃i, q−i; ti) ≥
∑

j∈M vj(q̃
j)−

∑
j∈M vj(q

j) = OPT(t)−
∑

i∈N ui(q;wi)


�

Corollary 1. Under a local sharing rule that satisfies the marginal contribution
property, every coarse correlated equilibrium of the complete information setting
and every mixed Bayes-Nash equilibrium of the incomplete information game
achieves at least 1/2 of the expected optimal social welfare.

We show that this theorem is tight for the class of games that we study and
more specifically, for the proportional sharing rule. The tightness holds even at
pure Nash equilibria of the complete information setting, even when all players
have the same ability and even when the equilibrium is unique. Intuitively what
causes inefficiency is that players prefer to congest a low value project with a
high rate of success (i.e. produces almost it’s maximal value for a very small
quality), e.g. an easy topic, rather than trying their own luck on a hard project
that would yield very high value but would require a lot of effort to produce it.

Example 1. Consider the following instance: there are n players and n projects.
Every player participates in every project. Each player has a budget of effort of
1 and the quality of his submission at a project is equal to his effort. Project
1 has value function v1(x) = 1 − e−αx, where x is the total submitted quality.
The rest of the n− 1 projects have value function κ(1− e−βx). We assume that
value is shared proportional to the quality. We show that if we let α → ∞,
κ = n−1

βn2 and β → 0, then the unique equilibrium is for all players to put their
whole budget on project 1. The optimal on the other hand is for players efforts
to be spread out among all the projects. A good approximation to the optimal
is for each player to pick a different project and devote his whole effort on it.
The ratio of the optimal social welfare and the Nash equilibrium welfare in the
limit of the above values will be 1 + (1− 1/n)2, which converges to 2 as the
number of players grows large. A detailed equilibrium analysis is given in the
full version. 
�

3.1 Ranking Rules and Approximate Marginal Contribution

An interesting, from both theoretical and practical standpoint, class of sharing
rules is that of ranking rules. In a ranking sharing scheme, the mechanism an-
nounces a set of fixed portions aj1 ≥ . . . ≥ ajn, such that

∑
t a

j
t = 1. After the

players submit their qualities, each player is ranked based on some order that
depends on the profile of qualities (e.g. in decreasing quality order or in decreas-
ing marginal contribution order). If a player was ranked at position t then he
gets a share of ajt ·vj(qj). Fixed reward rules capture several real world scenarios
where the only way of rewarding participants is ordering them in a determinis-
tic manner and the designer doesn’t have the freedom to award to the players
arbitrary fractions of the produced value.
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We show here that although such sharing rules are quite restrictive, they are
expressive enough to induce games that achieve only a logarithmic in the number
of players loss in efficiency. To prove this we show that by setting the fixed
portions inversely proportional to the position, then every player is guaranteed at
least an log(n)-fraction of his marginal contribution. It is then easy to generalize
our analysis in Theorem 2 to show that sharing rules that award each player a
k-fraction of his marginal contribution induce a universally (1/k, 1/k)-smooth
game and achieve at least 1/(k + 1) of the optimal welfare at equilibrium.

Lemma 1. By setting coefficients ajt proportional to 1
t , the game resulting from

the ranking sharing rule, where submissions are ranked with respect to the marginal
contribution order, achieves a Ω(1/log(n)) fraction of the optimal welfare at every
coarse correlated and at every Bayes-Nash equilibrium.

If the value is a function of the sum of the quality of submissions then a similar
guarantee is achieved if submissions are ordered in decreasing quality.

4 Almost Optimality for Uniformly Hard Projects

In this section we identify a subclass of value functions for which the social
welfare at equilibrium is a much better approximation to the optimal welfare,
achieving almost 95% of the optimal. We start our quest, by observing that the
crucial factor that led to the tight lower bound in the previous section, is that
different projects have a very different rate of success: the percentage increase
in the output for a percentage increase in the input was completely different for
different projects and at different qualities within a project. This discrepancy in
the output sensitivity was the main force driving the lower bound. In this section
we examine a broad class of functions that don’t allow for such discrepancies.

The standard economic measure that captures the sensitivity of the output of
a function with respect to a change in its input is that of elasticity.

Definition 2. The elasticity of a function f(x) is defined as: εf (x) =
∣∣∣ f ′(x)x

f(x)

∣∣∣ .
One can show formally that the above parameter of a function has a one-to-
one correspondence with the ratio of the percentage change in the output for
a percentage of change in the input. Intuitively, projects whose value has the
same and constant elasticity have the same and uniform difficulty, though not
necessarily the same importance. Based on this reasoning, we examine the setting
where all project value functions are functions of the total quality of submissions
and have constant elasticity α. It can be easily seen that such functions will
take the form vj(q

j) = wj · Qα
j , where Qj =

∑
i∈Nj

qji . The coefficient wj can
be project specific, and will correspond to the importance of a project. For such
value functions we prove that the proportional to the quality sharing mechanism
achieves social welfare at any pure Nash equilibrium of the complete information
setting that is almost optimal.

We point that our class of games always possess a pure Nash equilibrium,
since they are games defined on a convex strategy space, with continuous and
concave utilities and hence the existence is implied by Rosen [20].
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Theorem 3. Suppose that the project value functions are of the form vj(q
j) =

wj ·Qα
j , for 0 ≤ α ≤ 1 and wj > 0. Then, the proportional to the quality sharing

rule achieves social welfare at least 21−α

2−α ≥ 0.94 of the optimal social welfare at
every pure Nash equilibrium of the complete information game it defines. (see
full version)

Our analysis is based on the local smoothness framework of Roughgarden and
Schoppmann [23], which yields tighter bounds for games with continuous and
convex strategy spaces and where utilities are continuous and differentiable. It is
easy to see that the strategy spaces in our setting Qi(ti) as defined in equation
(2) are convex, by the convexity of the functions xj

i (·; ti).2 Additionally, it is easy
to check that the utilities of the players under the proportional sharing rule are
going to be continuous and differentiable at any point, except potentially at 0.

However, in the full version we show that in equilibrium no project receives 0
total quality with positive probability. We also show that this relaxed condition is
sufficient to apply the local smoothness framework to pure Nash equilibria. Alter-
natively, we can bypass this technicality by assuming there are exclusive players
who participate only at a specific project and always invest an ε amount of ef-
fort. Making the latter assumption, we can use the local smoothness framework
in its full generality and our conclusion in Theorem 3 carries over to correlated
equilibria of the game (outcomes of no-swap regret learning strategies).

5 Soft Budget Constraints

So far we analyzed the case where players have a hard constraint on their effort,
e.g. hard time constraint. In this section we relax this assumption and study
the case where instead each player incurs a cost that is a convex function of the
total effort he exerts, corresponding to a soft budget constraint on his effort. We
exhibit an interesting threshold phenomenon in the inefficiency of the setting: if
cost is linear in the total effort then the inefficiency can grow linearly with the
number of participants. However, when effort cost is strictly convex, then the
inefficiency can be at most a constant independent of the number of participants.

More formally, we will assume that each player has a cost function ci(x; ti)
that determines his cost when he exerts a total effort of x. This cost function is
also dependent on his private type ti. The total exerted effort can be expressed
with respect to the quality of submission as Xi(qi; ti) =

∑
j∈Mi

xj
i (q

j
i ; ti). Thus

a player’s utility as a function of the profile of chosen qualities is:

ui(q) =
∑

j∈Mi
uj
i (q

j)− ci (Xi(qi; ti); ti) . (8)

Unlike the previous section, the social welfare is not the value produced. Instead:

SW t(q) =
∑

i∈N ui(q; ti)=
∑

j∈M vj(q
j)−

∑
i∈N ci (Xi(qi; ti); ti) = V (q)−Ct(q).

2 If the effort required to produce two quality vectors qi, q̂i is at most Bi(ti), then the
effort required to produce any convex combination of them is also at most Bi(ti)
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We refer to V (q) as the production of an outcome q and to Ct(q) as the cost.
We first show that when a sharing rule that satisfies the marginal contribution
property is used, the production plus the social welfare at equilibrium is at least
the value of the optimal social welfare. We then use this result to give bounds on
the equilibrium efficiency parameterized by the convexity of the cost functions.

Lemma 2. Consider the game induced by any sharing rule that satisfies the
marginal contribution property and where players have soft budget constraints.
Then the expected social welfare plus the expected production at any coarse cor-
related equilibrium of the complete information setting and at any Bayes-Nash
equilibrium of the incomplete information setting, is at least the expected optimal
social welfare. (see full version)

We use the latter result to derive efficiency bounds for both production and
social welfare. We assume that the sharing rule used induces a utility share that
is a concave function of a players submission quality and such that a player’s
share at 0 quality is 0. More formally, we assume that: g(x) = uj

i (x, q
j
−i) is

concave, continuously differentiable and g(0) = 0. We call such sharing rules
concave sharing rules. It is easy to see that the proportional to quality sharing
rule is a concave sharing rule when the value is concave in the total quality. For
general value functions, the Shapley sharing rule is also a concave sharing rule.

We show efficiency bounds parameterized by the convexity of the cost func-
tions, using the elasticity of the cost function as the measure of convexity. An
increasing convex function that is zero at zero, has an elasticity of at least 1.
We will quantify the inefficiency in our game as a function of how far from 1 the
elasticity of the cost functions are (e.g. ci(x) = κ · x1+a has elasticity 1 + a).

Theorem 4. If a concave sharing rule is used and the elasticity of the cost
functions is at least 1 + μ then: i) the expected social welfare at any coarse
correlated equilibrium of the complete information setting and at any Bayes-
Nash equilibrium of the incomplete information setting is at least μ

1+2μ of the

optimal, ii) the total value produced in equilibrium is at least 1
2

μ
1+μ of the value

produced at the social welfare maximizing outcome. (see full version)

The proof of the theorem is based on analyzing the first order conditions that
an equilibrium strategy must satisfy. Combined with the elasticity of the cost
function we manage to relate the expected cost at equilibrium with the expected
production. Specifically, we show that at equilibrium and at the optimal strategy
profiles the expected production is at least (1+μ) times the expected cost, where
1+μ is the elasticity of the cost function. Combining, the above with our Lemma
2 we get the result. Thus the theorem uses both a local deviation analyses, via
the use of the first order equilibrium conditions and a global deviation analysis,
via the smoothness techniques used to prove Lemma 2.

From this theorem, we obtain that as long as μ > 0, the efficiency of any Nash
equilibrium, is a constant independent of the number of players. For instance,
if the cost is a quadratic function of the total effort then the social welfare at
equilibrium is a 3-approximation to the optimal and the produced value is a
4-approximation to the value produced at the welfare-maximizing outcome.
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The budget constraint case that we studied in previous sections can be seen
as a limit of a family of convex functions that converge to a limit function of
the form ci(xi) = 0 if xi < Bi, and ∞ otherwise. Such a limit function can
be thought of as a convex function with infinite elasticity. Taking the limit as
μ → ∞ in the latter theorem, gives that the social welfare at equilibrium is at
least half the optimal, which matches our analysis in the previous section.

A corner case is that of linear cost functions, where our Theorem gives no
meaningful upper bound. In fact as the following example shows, for linear cost
functions the inefficiency can grow linearly with the number of agents.

Example 2. Consider a single project with value v(Q) =
√
Q and assume that the

proportional to the quality sharing rule is used. Moreover, each player pays a cost
of 1 per unit of effort, i.e. ci(Xi) = Xi and where the quality is equal to the effort.
The global optimum is the solution to the unconstrained optimization problem:
maxQ∈R+

√
Q − Q, which leads to Q∗ = 1/4 and therefore SW (Q∗) = 1/4.

On the other hand, each player’s optimization problem is: maxqi∈R+ qi
1√
Q
− qi.

Symmetry and elementary calculus gives that at the unique Nash equilibrium,

the total effort is Q =
(

n−1/2
n

)2

, and the social welfare is 2n−1
4n2 = O(1/n). 
�

6 Conclusion and Future Work

We analyzed a general model of collaboration under uncertainty, capturing set-
tings such as online social computing and scientific co-authorship. We identified
simple value sharing rules that achieve good efficiency in a robust manner with
respect to informational assumptions.

Some questions remain open for future research. We showed that ranking
rules, which are highly popular [7, 8], achieve a logarithmic approximation, using
fixed-prizes independent of the distribution of qualities (prior-free) and of the
game instance. Can a constant approximation be achieved if we allow the fixed
prizes associated with each position to depend on the distribution of abilities
and on the instance of the game? Also, consider a two-stage model where in
the first stage players choose the projects to participate in and then play our
collaboration game in the second stage. Can any efficiency guarantee be given on
the welfare achieved at the subgame-perfect equilibria of this two-stage game?
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Abstract. We study the design of revenue maximizing mechanisms for sell-
ing nonexcludable public goods. In particular, we study revenue maximizing
mechanisms in Bayesian settings for facility location problems on graphs where
no agent can be excluded from using a facility that has been constructed. We
show that the optimization problem involved in implementing the revenue opti-
mal mechanism is hard to approximate within a factor of Ω(n2−ε) (assuming
P �= NP ) even in star graphs, and that even in expectation over the valua-
tion profiles, the problem is APX-hard. However, in a relevant special case we
construct polynomial time truthful mechanisms that approximate the optimal ex-
pected revenue within a constant factor. We also study the effect of partially mit-
igating nonexcludability by collecting tolls for using the facilities. We show that
such “posted-price” mechanisms obtain significantly higher revenue, and often
approach the optimal revenue obtainable with full excludability.

Keywords: Revenue maximization, nonexcludable goods, hardness of approxi-
mation, incentive compatibility.

1 Introduction

How should a seller maximize his revenue while selling nonexcludable services? As
a representative example, consider the following facility location problem: firms in an
industrial town want to connect their respective warehouses to their outlets with good
road links. But the seller (in this case the construction company that lays the roads)
cannot enforce exclusivity on the roads it lays: once a firm buys a connection between
its warehouse and outlet, the seller cannot exclude others from using those road links.
We study the following two questions in this work. Which potential sites should the
seller choose for laying roads to maximize his own revenue in such nonexcludable
settings? If the seller could enforce partial excludability by collecting tolls for roads,
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where only those firms that pay the toll for a road can use it, how much more revenue
can he earn?1

The Mechanism Design Problem. We model the problem with a graph where every
unordered pair of vertices denotes an agent and every edge denotes the possibility of a
road to be laid between two vertices. We assume that each agent/firm has a nonnegative
private value for getting her pair of vertices connected, drawn independently from a
known distribution. We aim for the design of the optimal mechanism which, given the
value reports of all the agents, selects a set of edges to build roads on and computes
payments to be made by agents so that the expected revenue is maximized (expecta-
tion over the distribution of private values) in equilibrium. We invoke Myerson’s [14]
characterization which states that the expected revenue of any mechanism in a Bayesian
Nash Equilibrium (BNE) is equal to the expected virtual surplus of the agents served,
i.e., the sum of virtual values2 of those agents whose warehouse and outlet are con-
nected in the solution3. This reduces the problem of computing the expected revenue
maximizing mechanism to a pointwise optimization problem: given a profile of values
of all agents, compute the set of edges to build roads on so that the sum of the virtual
values of the agents served is maximized.

The pointwise optimization problem to maximize virtual values is an interesting
graph theoretic problem, which to our knowledge has not been studied before. Given a
graph with a weight on every pair of vertices (the weights represent virtual values, and
thus, could be negative), design an algorithm that selects a subset of edges that max-
imizes the sum of the weights of every vertex pair whose endpoints are connected by
the edges selected. If the weights were all positive, clearly the optimal choice for the
seller would be to pick all the edges in the graph. However, weights could be negative.
In particular, while aiming to connect some subset of agents (i.e., vertex pairs), another
subset of agents with negative weights automatically get connected, and these negative
weighted pairs cannot be excluded due to nonexcludability. Deciding on the the set of
edges to select for maximizing the sum of weights of the vertex pairs whose endpoints
are connected is the nontrivial underlying graph theoretic problem.

The Rooted and Unrestricted Versions. We study two versions of the graph theoretic
problem described above. In the unrestricted version, every (unordered) pair of vertices
in the graph is an agent. In the rooted version (which is a special case of the unrestricted
version), a single vertex is designated as root, and only those unordered pairs having
root as one of their vertices are agents. This corresponds to the root being a central
location where all warehouses are located, and other nodes being outlet locations.

1 Note that collecting tolls only enforces partial excludability because every firm that pays the
toll is allowed to use the road, and cannot be excluded.

2 The virtual value of an agent is a function of her value and the distribution from which her value
is drawn; it can be negative. When the virtual value function is not monotone, Myerson [14]
applies a fix by considering the ironed virtual value function (see section 2 for more details),
and all our results go through with virtual values replaced by ironed virtual values.

3 Note that Myerson’s mechanism remains revenue optimal in all single-parameter settings re-
gardless of whether or not the good is excludable.
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Results for Unrestricted Version (Section 3). The natural place to start is to solve the
pointwise optimization problem in graphs presented above. Clearly, any α-approximate
monotone4 solution to the pointwise optimization problem implies an α-approximate
truthful mechanism to the problem of expected revenue maximization. However, we
show that except for very special cases, pointwise optimization is not possible unless
P = NP . In particular, we show that the pointwise problem is NP-hard to approximate
to within a factor Ω(n2−ε) even on star graphs. For the special case where the under-
lying graph is a path, we give a dynamic program to solve the pointwise optimization.
Thus, for paths, we get the expected optimal revenue with nonexcludability for any
product distribution over agents’ values.

Results for Rooted Version (Section 4). Our results for the rooted version are three-
fold.

1. First, we give a simple polynomial time algorithm for pointwise optimization in
trees—this contrasts with our result that for the unrestricted version the pointwise
problem is hard to approximate beyond a factor of Ω(n2−ε) even for star graphs.

2. Second, as our main result, we give a polynomial time algorithm for optimization in
expectation (over the distribution of values, and hence virtual values) for arbitrary
graphs, when the agents’ valuations are drawn i.i.d.

3. Third, we establish APX-hardness of optimization in expectation for arbitrary graphs,
when the valuations of all agents are independent but not necessarily identical.

Our main result, which is the second point above, is that we design an algorithm that
guarantees a constant factor approximation to the optimal virtual surplus in expectation.
To this end, we extensively use the key (yet simple) property that even though virtual
values can be negative, the expected virtual value of an agent is nonnegative. This sug-
gests the following high-level approach to the problem. Partition agents into a constant
number of sets. Pick a target set at random, and run an algorithm that is a constant factor
approximation for the agents of that set (ignoring other agents). The nonnegativity of
the expected virtual value implies that the contribution from nontargeted sets is nonneg-
ative. Since each set is targeted with constant probability, this implies a constant factor
approximation. We use this approach to solve the abstract edge-weighted version of the
problem (in which edges are agents who derive value from being connected to the root),
and then reducing the original problem to the edge-weighted version. In particular, we
present an algorithm that partitions the edges of any graph into two sets that, loosely
speaking, correspond to edges in well-connected parts of the graph and edges in sparse
cuts of the graph. We show that once we contract the edges in a set (that corresponds to
ignoring their value in the above high level approach), the remaining graph has a nice
structure that allows for constant approximations.

Partial Excludability via Pricing (Section 5). If the seller were allowed to set prices
on edges (i.e., collect tolls), can he get close to the optimal revenue when excludability

4 In single-parameter settings, a mechanism’s allocation is monotone if fixing the values of
other agents and agent i alone reporting a higher value results in agent i getting served with no
smaller probability. Monotone allocation is necessary and sufficient for truthfulness, i.e., they
alone lend themselves to truthful payments.
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is allowed? Typically the optimal revenue with full excludability is much higher than the
optimal revenue with nonexcludability, and it is worthwhile for a profit maximizing firm
to explore this option. In this problem the seller first has to decide which edges to pick to
lay roads on, and decide how to price roads to maximize revenue. We construct a pricing
scheme so that when the value distributions are i.i.d., the seller obtains (for the rooted
version) the optimal revenue possible when full excludability is allowed. Further, if the
distributions are independent but not identical, and satisfy a technical MHR condition5,
we show how to price edges to obtain a 1

log n fraction of the optimal revenue possible
when full excludability is allowed (again for the rooted version). An implication of
these results is that mitigating externalities via tolls is much more remunerative than
aiming for the optimal solution with nonexcludability.

Related Work. Approximating the expected version of a problem that is hard-to-
approximate in the worst case, via exploiting the fact that the expected virtual value
for any distribution is nonnegative is a relatively new idea. To our knowledge, it has
been used only in Haghpanah et al. [10]. Auctions with externality (a notion related
to nonexcludability where an agent’s utility doesn’t just depend on the services he re-
ceived but also on the outcomes for the other agents) have been studied in multiple
flavors before. Settings with positive externality include increased value for having a
telephone or a music player or a new technology if more of your neighbors have them
[15, 11]. A prime and well-studied example for a setting with negative externality is the
sale of contiguous ad slots to two competing businesses [1, 4, 8, 9, 12, 13]. Equilibria
which are surprising at first sight, like no allocation equilibria can result in large rev-
enue for the auctioneer in settings with negative externality [7]. Posted pricings have
often been a mechanism of choice for settings with externalities [3, 2, 5, 11]. The main
difference between these and the posted prices studied in our work (apart from the pres-
ence of nonexcludability in our settings) is that these works allow agent-specific prices,
whereas our setting is more constrained: we place prices on edges that are common for
all agents.

2 Model and Notation

Unrestricted Version. We consider a universe of n potential sites, located on the ver-
tices of a graph, G = (V,E), with m undirected edges. An undirected edge (i, j) ∈ E
means that a link/road connecting sites i and j is allowed (but need not necessarily be
constructed). An agent is an unordered pair of sites (i, j), interested in having some path
constructed between i and j. Thus, there could be up to

(
n
2

)
agents in a mechanism. An

instance I = (G,A, F ) of the problem consists of an undirected graph G, a set A of
agents (represented by a set of pairs of vertices), and a distribution Fi associated with
agent i (distributions are explained below). Sometimes we use i to denote a single site
and sometimes to denote an agent, who is actually a pair of vertices. The context will
make it clear whether i is a single site or a pair of sites.

5 Roughly speaking, this means that the tail of the distribution is no heavier than the exponen-
tial distribution. Many natural classes of distributions like the uniform, exponential, Gaussian
(Normal) distributions satisfy the MHR condition. See Section 2 for a formal definition.



44 M. Bateni et al.

Rooted Version. The rooted version is a special case of the setting described above. A
special vertex r is designated as the root. Only vertex pairs of the form (i, r) are agents,
i.e., the root r is one of the end points of the path desired for every agent.

An outcome o ∈ Ω = {0, 1}m is the set of edges constructed. Agent i has a valuation
function vi : Ω → R+ ∪ {0}, which maps outcomes to nonnegative real numbers. We
study mechanisms in the single-parameter setting where the function vi(·) takes only
two values: vi and zero. An agent i has a nonzero value vi if and only if the set of edges
selected contains a path between the two sites she represents, and in this case we say
that agent i was served. Let S denote the set of all feasible sets of agents, i.e., the set
of all sets of agents that can be simultaneously served. Note that this set system S, is
not downward closed: S ∈ S does not necessarily mean that S′ ∈ S for all S′ ⊂ S.
Clearly, the non-downward closedness stems from the inability to exclude agents from
using the roads.

We study mechanisms for this problem in a Bayesian setting, i.e., for every i, the
single parameter vi is assumed to be drawn independently from a publicly known dis-
tribution function Fi. Thus F = F1 × F2 × . . . Fn denotes the product distribution
from which the vector of types v is drawn. The mechanisms in this paper assume the
availability of any expectation defined with respect to F .

A direct revelation mechanism or an auction solicits sealed bids (b1, b2, . . . , bn) from
all the agents, and determines the outcome x = (x1, x2, . . . , xn) and payments p =
(p1, p2, . . . , pn). Each agent i is risk-neutral and has a linear utility ui(b) = vi ·xi(b)−
pi(b).

Let (x(·),p(·)) denote a mechanism. When agent i is bidding in the auction, she
knows only her own value vi. A mechanism (x(·),p(·)) is incentive compatible (IC)
if vixi(vi, v−i) − pi(vi, v−i) ≥ vixi(z, v−i) − pi(z, v−i) for all i, z. A necessary and
sufficient condition on x(·) for IC payments to exist is monotonicity: for all i, vi, vi′ ≥
vi, v−i, we have xi(vi, v−i) ≤ xi(vi

′, v−i). Since we focus on the class of IC mecha-
nisms, we have b = v.

Optimal Auctions. To solve for optimal auctions, Myerson [14] defined virtual val-
uations for agents as φi(vi) = vi − 1−Fi(vi)

fi(vi)
and proved that the expected payment

of an agent, Evi [pi(vi)], in any truthful mechanism, is equal to her expected virtual
value Evi [φi(vi)xi(vi)]

6. The distribution Fi is said to be regular if the virtual valu-
ation function is monotone. For regular distributions, maximizing virtual values point-
wise results in an incentive-compatible allocation rule and therefore the corresponding
revenue-optimal auction serves that feasible set of agents who maximize virtual value.
For irregular distributions, where maximizing virtual values may result in non-IC allo-
cation rules, Myerson applies a fix by describing a general ironing technique. The iron-
ing procedure converts any virtual valuation function φi(·) to an ironed virtual value
function φ̄i(·) such that maximizing φ̄i(·) pointwise results in an IC allocation rule.

Theorem 1. [14] The revenue optimal auction in single-parameter Bayesian settings
serves the set S of agents where S = argmaxS∈S

∑
i∈S φ̄i(vi). Further, for all values

vi for which φ̄i(vi) remains the same, agent i’s allocation remains the same.

6 In fact the equality holds even for a specific v−i, i.e., Evi [pi(v)] = Evi [φi(vi)xi(v)].
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As a corollary, when S contains all possible 2n sets, the revenue optimal auction puts
a price of φ̄−1

i (0) for agent i and makes a take-it-or-leave-it offer to each of them.

Monotone Hazard Rate. A class of distributions that always satisfy the regularity con-
dition described above are the ones which satisfy the monotone hazard rate condition.
A distribution with cdf F satisfies the MHR condition if f(x)

1−F (x) is nondecreasing in
x. The MHR condition holds for many natural classes of distributions like the uniform,
exponential and normal distributions.

Nonnegative Virtual Valuations. An important property of virtual valuations (and
ironed too) is that when the support of the distribution is nonnegative (which is true
in our case since values are nonnegative), the virtual valuation in expectation over an
agent’s distribution is always nonnegative. This property crucially helps us in providing
approximations in expectation, for problems which are very hard to approximate for
every single realization of values.

3 The Unrestricted Version

In this section, we obtain the following results for the unrestricted version of our
problem.

1. A simple polynomial time dynamic program that solves the pointwise problem op-
timally in paths. (see Appendix A.)

2. A hardness result showing that the pointwise problem is hard to approximate within
a factor ofΩ(n2−ε) for any ε > 0 (assumingP �= NP ) even in stars, i.e., we cannot
generalize the result on paths even to stars (proof in full version).

3. Given that pointwise approximation is ruled out for arbitrary graphs, the only pos-
sible approximation we can hope for is in expectation over values. We show the
APX-hardness of this problem in arbitrary graphs. The reduction resembles the one
given by Haghpanah et al. [10]. In fact, our hardness result holds even for the rooted
version, and hence the proof is presented in Section 4.3 along with other results for
the rooted version.

4 The Rooted Version for i.i.d. Agents

Given the hardness results in Section 3 even for undirected graphs, we consider an
important special case of our problem in this section: there is a designated root node in
an undirected graph, and each nonroot vertex is an agent. Agents values are i.i.d., and
an agent derives value only if there is a path constructed from his node to the root node.
As before, construction of an edge e can happen only if e ∈ G.

4.1 Pointwise Optimization in Trees

In contrast to the unrestricted version where we showed that the pointwise problem in
hard to approximate within a factor of Ω(n2−ε) (assuming P �= NP ) even in stars,
we show that for the rooted version, we can solve the pointwise problem in polynomial
time in trees. The proof is presented in the full version.
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4.2 Main Result: Optimization in Expectation in Arbitrary Graphs

Next we present a constant-factor approximation algorithm for optimizing the expected
revenue for the rooted, node-weighted version of the problem in arbitrary graphs (the
virtual value of an agent is the weight of the nonroot node of that agent). In Section 4.2
we explain how the problem can be solved on edge-weighted graphs, i.e., agents are
edges, and they get a value when they are connected to the root. This is later used in
Section 4.2 as a subroutine to tackle the vertex-weighted problem.

Edge-Connectivity for the Rooted Version. Given a connected undirected graph, we
show how to partition its edges into two parts such that contracting the former edge
set yields a 3-edge connected subgraph whereas contracting the latter edge set results
in a roulette subgraph—a special series-parallel graph to be defined below. We then
demonstrate that it is possible to solve the problem (approximately) on each of the two
subgraphs, and finally argue that this suffices to obtain a constant-factor approximation
for the general rooted edge-weighted case.

Let us define some notations first. For a set S of edges in a graphG, subgraphG/S is
obtained from G after contracting all edges S one at a time, where contracting an edge
simply refers to removing the edge and identifying its endpoint vertices. We recursively
define the class of roulette graphs as follows. A simple cycle is a roulette, and so is a
cycle each of whose vertices is replaced by a roulette (with one or two vertices of the
inner roulette taking the place of an original vertex of the cycle). Finally, any graph
whose 2-edge connected components are roulettes is itself a roulette.

Now we can present the main structural lemma that reduces our general problem into
two tractable subproblems.

Lemma 1. There exists a polynomial-time algorithm that, given a graph G(V,E), par-
titions the edge set E into two sets S1 and S2 such that graphs G1 = G/S1 and
G2 = G/S2 are respectively 3-edge connected and roulette.

Proof. Let S1 be the set of all edges in G that belong to a cut of size at most 2. We
note that all cuts of size at most 2 can be found in polynomial time, e.g., using a naı̈ve
brute-force search. Since G1 is obtained by a series of edge contractions, every cut in
G1 represents a cut in G as well. Therefore, since all edges of S1 are contracted in G1,
no cut of size at most 2 is present in G1, hence G1 is 3-edge connected.

On the other hand, every edge in G2 belongs to a cut of size at most 2 in G, hence
in G2. The bridges in G2 do not hurt the roulette structure if the 2-edge connected sub-
graphs of G2 are roulettes. Thus we assume that the graph G2 is 2-edge connected. We
claim that if each of {e1, e2} and {e1, e3} is a cut in G2, then so is {e2, e3}. Therefore,
the edges of G2 form an equivalence class. To see this equivalence relation, it suffices
to focus on the following alternative definition of edge cuts of size 2. In a 2-edge con-
nected graph, two edges e and e′ form a cut of size 2 if and only if the set of cycles
in the graph that contain e is the same as the set of cycles in the graph that contain e′.
Based on this new definition, the two sets of cycles containing e2 and e3 respectively
are both equal to the set of cycles containing e1, and therefore they are equal to each
other as well which means that e2 and e3 form a cut of size 2.
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Therefore, the graph looks like a cycle of this equivalence class (the equivalence
class of e1) where some vertices are replaced by another structure; the same argument
applies to each of these smaller structures, giving rise to the inductive definition of
roulette graphs. We should note that two edges from two of these smaller structures
do not belong to the same equivalence class (they cannot form a cut of size 2), and
therefore each of the other equivalence classes belong to one smaller structure and is not
split between different structures. Thus we can inductively claim each smaller structure
is a roulette graph. 
�

The following decomposition lemma serves as the starting point for our
3-approximation algorithm of the 3-edge connected graph G1.

Lemma 2. There exists a polynomial-time algorithm that finds 3 spanning trees T1, T2,
and T3 in a 3-edge connected graph G such that every edge of G is missing in at least
one of these spanning trees.

Proof. We replace each edge of G by two parallel edges to get the 6-edge connected
graph G2 with the same vertex set. Catlin et al. [6] show, among other things, that
any 2k-edge connected graph has k edge-disjoint spanning trees, while Roskind and
Tarjan [16] show how to find k edge-disjoint spanning trees in a graph (if they exist)
in quadratic time. Therefore, we can find 3 edge-disjoint spanning trees T1, T2, and T3

in G2. Edge-disjointness guarantees that each edge of G can belong to at most two of
these spanning trees. 
�

On the other hand, the problem can be solved optimally for roulette graphs. The
intuition behind the algorithm is that roulettes can be shown to have treewidth of at most
two, hence, as are many similar problems on bounded-treewidth graphs, our problem
can be solved via the dynamic-programming method.

Lemma 3. There exists a polynomial-time algorithm that finds the optimal solution for
roulette graphs.

Proof. Let us say we have a cycle decomposition of our roulette graph, which describes
the recursive structure of its 2-edge connected components. Each cycle representing one
equivalence class is called an essential cycle of the graph. Instead of solving the rooted
problem, we consider a slightly more general problem where up to two vertices s, t on
an essential cycle are specified, and these vertices should both appear in the connected
subgraph of the output. At the beginning we are going to have only one vertex s = t
which is the root vertex.

Let us ignore the bridges at this point and assume the graph is 2-edge connected.
Focus on the essential cycle, and imagine that all the recursive structures are contracted
for now. In the resulting graph, the optimal solution looks like a path or it is the entire
cycle. There are polynomially many cases to consider, and we will output the best so-
lution among them. In each case we have a subproblem for each contracted piece if we
decide that the optimal solution passes through or ends at the contracted vertex. Since
the base cases of the induction (i.e., vertices or cycles) are easily solvable, we can ar-
gue inductively that our sligthly more general problem can be solved using a dynamic
program.
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For each bridge connected to the essential cycle, we compute the best solution for
the rooted problem on the other side of the bridge (whose root is the endpoint of the
bridge) and add that to the main solution if its weight plus the weight of the bridge turns
out positive. 
�

We conclude this section by putting together the above ideas to obtain a
4-approximation algorithm for the rooted edge-weighted problem.

Lemma 4. There exists a polynomial-time monotone algorithm that achieves an ap-
proximation factor of 4 for any graph G.

Proof. If the graph is not connected, we can focus on the connected component that
contains the root and disregard the rest of the connected components. Using Lemma 1,
we partition the edges of G into two parts S1 and S2. We also use Lemma 2 to find three
spanning trees T1, T2, and T3 in graph G1.

We consider four candidate solutions. One solution is the union of S1 and the edges
in tree T1. Since T1 is a spanning tree in G1 = G/S1, the union of T1 and S1 is a
connected spanning subgraph of G. Serving this connected spanning subgraph allows
us to choose any subset of the remaining edges to serve. Among the remaining edges
(edges not in S1 ∪ T1), we serve those with positive realized virtual values. In a similar
fashion we construct two other candidate solutions based on T2 and T3. The fourth and
last candidate solution is to contract set S2 of edges, and solve the problem optimally in
the roulette graphG2 using Lemma 3. The optimal solution we find in G2 is a connected
subgraph of G2, however, it might not be a connected subgraph of G that includes the
root. Nonetheless, it is always possible to serve a subset of edges S′

2 ⊆ S2 to make the
whole solution not only a connected subgraph of G but also one that includes the root
vertex as well. Our fourth candidate solution consists of the edges in S′

2 and the optimal
soluion for G2.

We now show that for every instance (i.e., a graph with a designated root and a distri-
bution) one of these candidate solutions that guarantees a 4-approximate solution. Thus
picking one at random will guarantee a 4-approximation. For 1 ≤ i ≤ 3, if we stick to
solution i all the time, our gain from edges in S1 and Ti is nonnegative (i.e., the sum
of their expected virtual values), and in addition we get all edges with positive virtual
value outside S1 ∪Ti. Since each edge of S2 is missing in at least one S1 ∪ Ti, the total
value we get from the first three solutions is at least the projection of optimal solution
on set S2 of edges. On the other hand in the fourth solution, our expected revenue from
edges added from S2 is nonnegative (once again since the expectation of the virtual
values are positive), and our expected revenue from S1 is at least the amount that the
optimal solution gains from them. Therefore, these four solutions together achieve no
less than the optimal revenue. Thus, one candidate solution has expected revenue at
least a quarter of the optimum.

The algorithm is monotone because firstly it decides which of the four candidate
solutions to use independent of the realized values. Further each candidate solution is
monotone. The first three solutions are monotone because the edge selection criteria
(for the edges they consider) is just non-negative virtual value. The fourth solution is
monotone because it is an optimal algorithm for the edges it focuses on. 
�



Revenue Maximization with Nonexcludable Goods 49

Vertex-Connectivity for the Rooted Version. In this section we provide a constant-
factor monotone approximation algorithm for the vertex-connectivity problem using the
algorithm for the edge-connectivity version of the problem described above. Let V2 be
the set of degree-2 vertices in graph G. Similar to the edge-connectivity approach, we
describe two algorithms (one using a reduction to the edge-connectivity problem) that
achieve constant-factor approximations to the problems where the values of V \V2 and
V2 are replaced by zero, respectively. Again, since the expected value of each vertex is
nonnegative, this implies a constant approximation for the vertex-connectivity problem.

First consider the instance in which the values of vertices in V \ V2 are replaced by
zero. Notice that this results in an instance in which any vertex with nonzero value has
degree 2. Construct another instance in which each vertex of degree 2 is replaced by
an edge with the same value. We can solve this instance using our edge-connectivity
algorithm.

Next consider the instance in which the values of vertices in V2 are replaced by zero.
We convert the instance to one without any degree-2 vertices via replacing all paths
consisting only of degree-2 vertices by an edge. The following lemma shows that this
graph has a spanning tree where at least 1

7 of its vertices are leaves. The algorithm uses
the internal nodes (i.e., nonleaves) of this tree to connect the leaves that are positive,
to the root. This gives a 7-approximation to the problem because the vertex values are
drawn i.i.d.

Putting these two algorithms together, we obtain a constant-factor approximation
algorithm for the vertex-connectivity rooted revenue maximization in expectation. In
particular, a balancing argument puts a bound of 11 on its approximation ratio.

Monotonicity of the resulting algorithm follows from the monotonicity of the algo-
rithms used for the two subcases. When we use the algorithm for the edge-connected
version, the monotonicity of the edge-connected version implies the same here. For the
other case, note that a leaf is picked whenever its virtual value is positive thus resulting
in a monotone allocation.

Lemma 5. Given a graph with no degree-2 vertices, a spanning tree can be constructed
in polynomial-time where at least 1

7 of the vertices are leaves.

Proof. Start from an arbitrary spanning tree T of G. Let T2 be the set of vertices of
degree 2 in T , and let T̂2 ⊆ T2 be those vertices in T2 both whose neighbors, too, are
in T2. Modify T as long as any of the following two rules apply.

1. If there exists a vertex v ∈ T̂2 that has an edge in G to an internal vertex u of T ,
update T by adding the edge (v, u) to T , and removing the edge incident to v in the
unique cycle formed after adding (v, u). Since both neighbors of v in T had degree
2, this process generates a new leaf without removing any of the old leaves.

2. If two vertices v, u ∈ T̂2 have edges in G to the same leaf l of T , add edges from v
and u to that leaf, and remove two edges from T as follows. The addition of edge
(u, l) to T produces a cycle that passes through exactly one of the two neighbors
of u; call it u′. Note that u′ has degree 2 in T by definition of T̂2; let u, u′′ be its
neighbors. Remove the edge (u′, u′′) from T , removing the cycle u and maintaining
the connectivity of T . We carry out a similar operation, mutatis mutandis, for v. The
result will be a tree T on the same set of vertices with one more leaf (increasing the
degree of l but turning two other internal vertices into leaves).
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The process terminates in a linear number of iterations since the number of leaves
increases in each step. We end up with a tree T for which neither of the rules applies.
Let T1 and T≥3, respectively, denote subsets of vertices of degrees one and at least three
in T . We argue below that |T1| is at least a constant fraction of |T2|+|T≥3|. As no vertex
of G has degree two, any vertex in T̂2 is bound to have degree at least three in G, hence
an edge not in T . This edge cannot be to an internal vertex of T because Rule (1) no
longer applies to T . Rule (2), on the other hand, implies that these leaves are distinct
for different vertices of T̂2. Therefore, we have

|T1| ≥ |T̂2|. (1)

As trees have average degree less than two, we know

|T1| > |T≥3|. (2)

To bound |T2| − |T̂2|, if this quantity is not zero, orient T from an arbitrary vertex
in T2 \ T̂2 towards the leaves. Assign each vertex v ∈ T2 \ T̂2 to its closest descendant
in the oriented tree that is in T1 ∪ T≥3. Such an assignment is always possible since no
vertex in the former group is a leaf of the (oriented) tree. Each vertex in the latter group
is assigned to at most twice, otherwise there should be a path of vertices of degree two
with more than two vertices in T2 \ T̂2—a contradiction. As a result, we get

|T2| − |T̂2| ≤ 2(|T1|+ |T≥3|) ≤ 4|T1|, (3)

where the last inequality is due to (2).
Summing up (1), (2) and (3) with |T1| ≥ |T1|, we obtain 7|T1| ≥ |T1|+ |T2|+ |T≥3|

as desired. 
�

4.3 APX-Hardness of Optimization in Expectation in Arbitrary Graphs

In this section we prove the APX-hardness of the rooted version in arbitrary graphs
when the valuations of agents are independent but not necessarily identical.

Definition 1. The prize-collecting set cover problem (PCSCP) consists of a collection
of sets S1, S2, . . . , Sn over a universe U . For a collection C of sets, let QC = ∪i∈CSi.
The goal is to find a collection C∗ that maximizes α|QC∗ | + n − |C∗| for some given
α > 0.

We first show that there is an approximation preserving reduction from PCSCP to
our problem, and then invoke the result from [10] that establishes the APX-hardness of
PCSCP, and that its approximation ratio is at least 530

529 = 1.002.

Lemma 6. There is an approximation preserving reduction from PCSCP to our
problem

See Appendix B for a proof.
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5 Posted-Pricing Results

As mentioned in the introduction, one goal of this work to compare two kinds of
mechanisms: a) natural mechanisms for nonexcludable public goods, such as a direct
revelation mechanism, that have to deal with nonexcludabilities and b) posted price
mechanisms which mitigate nonexcludability to a certain extent by ensuring that only
those who pay for an edge can use that edge. We show that for the rooted version with
i.i.d. agents, a posted price mechanism obtains the optimal revenue possible when full
excludability is allowed — i.e., even partially mitigating nonexcludability via tolls gets
us the benefit of full excludability. When the agents values are independent but not nec-
essarily identical, we design a pricing scheme that obtains a O( 1

log n ) fraction of the
optimal revenue possible when full excludability is allowed. The details of the prices
set, and the proof, are presented in the full version of the paper.
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A The Unrestricted Version

A.1 Pointwise Optimization in Paths

In this section, we show that in paths, a polynomial-time dynamic program is all that
is necessary to implement the pointwise optimization involved in implementing Myer-
son’s mechanism.

Consider a path with vertices 1 to n. For 1 ≤ i ≤ j ≤ n, let S(i, j) be the sum of
virtual values of the set of all agents (i.e., vertex pairs) whose both endpoints are in the
interval [i, j]. We set S(i, i) = 0 for all i—assuming that there is no trivial agent whose
vertex pairs are the same. Define OPT (i) to be optimal solution when we are restricted
to choose only among edges connecting vertices 1 through i. The unrestricted optimal
solution OPT is therefore OPT (n). We set OPT (0) = 0. The following recursive
formula can be used in the dynamic program to solve for OPT .

∀i ≤ n,OPT (i) = max
0≤k<i

OPT (k) + S(k + 1, i).

In the above recursion, k+1 is the leftmost vertex that is connected to i. All vertices
k + 1, . . . , i are connected, and S(k + 1, i) is by definition their contribution to the
objective. Since the edge connecting k to k + 1 is not included, the set of edges chosen
among the first k vertices must be equal to OPT (k).

B The Rooted Version

B.1 Proof of Approximation Preserving Reduction from PCSCP

Proof of Lemma 6. Given an instance of the PCSCP, where the sets are denoted
S1, S2, . . . Sn and the elements are denoted e1, e2, . . . em, we construct an instance of
our problem as follows.

Vertices. We start with a root vertex r. For every element ei, we construct one vertex
with the same name ei. For every set Si, we construct one vertex denoted by Si as well.

Edges. For each i, set vertex Si is connected by an edge to root r and all ej ∈ Si.

Agents. The agents (r, Si) are called set-agents, and (r, ei) are called element-agents.
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Distribution. The value distribution of element agents is deterministicα. For set agents,
the value is drawn from the distribution Bernoulli(L− 1, 1/L)—i.e., the value is equal
to L−1 with probability 1/L, and zero otherwise—where L� mnα. Thus, the virtual
value for these agents is −1 w.p. 1− 1/L and L− 1 w.p. 1/L.

The optimal revenue in our problem, as L→∞, can be analyzed in two cases.

1. If at least one set-agent has positive virtual valuation (which happens w.p. approx-
imately n/L → 0), the solution chooses all the edges incident on those set agents
(with positive virtual valuation) to obtain expected revenuen. The expected revenue
from the remaining agents (set-agents with negative virtual valuation, and element-
agents) is at most αmn/L� 1. Therefore, the optimal solution has contribution n
from this event as L→∞, and this solution is trivial to compute.

2. If no set has positive virtual valuation (which happens w.p. 1 − n/L → 1), the
value of the solution is precisely α|QC∗ | − |C∗|. This is because once a set-agent
is chosen, clearly all the edge-agents that is contained by this set must be chosen
since they all have deterministic positive virtual value α. We should also note that
you can obtain the α virtual value of an element agents only if you connect it to
root using one of the set agents it belongs to, and for each set you pick you have
−1 virtual value in this case.

Therefore the value of the optimal solution is α|QC∗ |+ n− C∗. 
�
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Abstract. We investigate the issues of existence and efficiency of looka-
head equilibria in congestion games. Lookahead equilibria, whose study
has been initiated by Mirrokni et al. [10], correspond to the natural ex-
tension of pure Nash equilibria in which the players, when making use of
global information in order to predict subsequent reactions of the other
ones, have computationally limited capabilities.

1 Introduction

The definition of the process of interaction among self-interested entities is de-
pendent on the context, and in particular on the set of information available
to the players. When they have very little knowledge about each others’ costs
and strategies, one of the most natural and studied dynamics are sequential
best-responses, where players play sequentially and each player selects a strategy
which is a best-response to the current strategy of the others. In such dynam-
ics, the assumption is that each player has no memory about the past and no
knowledge about the available strategies and costs of other players and, thus,
myopically responds to the current state, without making any prediction about
the consequences of the subsequent responses of the remaining players. One of
the basic objective of study of game theory is the concept of equilibrium. An
equilibrium can be viewed as a steady state of a dynamics, where no agent has
an incentive to unilaterally deviate from. The steady state of a best-response
dynamics is known as pure Nash equilibrium. It is well known that best-response
dynamics do not always lead to a pure Nash equilibrium and that the class of
congestion games [13] is a large class of games guaranteeing convergence under
best-responses.

In our work, we focus on the settings in which each player has full knowledge of
the strategies and costs of the other players, so that, based on such a knowledge,
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she can make predictions about the others’ reactions to her move. We also assume
that each player is an entity with limited computational abilities, thus she has
the ability of making predictions only on the consequences of a fixed constant
number of subsequent consecutive moves. In particular, we study the k-lookahead
dynamics in which the players sequentially perform k-lookahead best-responses.
When k = 1, the k-lookahead best-response coincides with the best-response.
In general, for k > 1, the current moving player p evaluates all the possible
outcomes resulting from k − 1 subsequent moves, by taking into account all the
possible orders in which players move and all of their possible strategies. We say
that player p has a long-sightedness of k and she makes a prediction by assuming
that any player moving j < k steps after her has a long-sightedness of k − j.
Thus, player p can compute her best move by backward induction starting from
the players having long-sightedness of 1, and proceeding backward up to k. When
predicting the strategy chosen by any player q having long sightedness k − j,
it is necessary to make some assumption on which is the next moving player.
We take into account two different models: the worst-case and the average-case
ones. In the worst-case model, player p assumes that the next move after q is
performed by a player providing player q the worst possible cost in the final
outcome. In the average-case model, player p assumes that the next move after q
is taken by a player selected uniformly at random. For each of these models, we
finally distinguish between the cases of consecutive and non-consecutive moves,
depending on whether player p assumes that the next move after q may be
performed by q itself or not.

In our work, we investigate the existence of k-lookahead equilibria and the
price of anarchy of 2-lookahead equilibria in congestion games with linear laten-
cies [13]. Congestion games model the settings in which a set of players compete
for the usage of a set of common resources. We choose congestion games as rep-
resentative of a large set of well studied games for which the existence of pure
Nash equilibria is always guaranteed.

Results. In Section 3, we discuss our results on the existence of equilibria. We
initially focus our attention to the existence of k-lookahead equilibria in strategic
games. We are able to show that, in the worst-case model with consecutive moves,
for a strategic game, any pure Nash equilibrium is also a k-lookahead equilib-
rium. This result implicitly shows that the k-lookahead best-responses do not
guarantee better performance at equilibrium compared to those achieved by the
simple best-responses. In the remainder of Section 3, we focus on the existence
of 2-lookahead equilibria in singleton congestion games. We show that in the
worst-case model without consecutive moves, any symmetric singleton game al-
ways admits 2-lookahead equilibria. For the average-casemodel, instead, we show
that symmetric singleton congestion games do not always admit a 2-lookahead
equilibrium regardless of whether consecutive moves are allowed or not.

In Section 4, we present the bounds on the price of anarchy for the 2-lookahead
equilibria of linear congestion games, both in the worst-case and in the average-
case model. We first show that, in the worst-case model, for any linear congestion
game, the price of anarchy is at most 8. For the average-case model, we obtain
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smaller bounds. In particular, we show that, for any linear congestion game

with n players, the price of anarchy is at most 4 + min
{
2, 5

4n−7

}
. This result

significantly improves the previous upper bound of (1 +
√
5)2 ≈ 10.47 given in

[10]. All the bounds mentioned hold either with or without consecutive moves.
We also show that, when restricting to singleton strategies, the price of anarchy
drops to at most 4 in the worst-case model with or without consecutive moves.

Related Works. The lookahead search was formally proposed by Shannon [14],
as a practical heuristic for machines to tackle difficult problems and play games.
It is not surprising that Shannon applied the method to chess. More recently,
the lookahead search has also been presented by Peral in his book [12] as the
most important heuristic used by game-playing programs. Mirrokni et al. [10]
initiated the theoretical examination of the consequences of the decision making
determined by the use of lookahead search. The authors formally quantify the
deterioration of the outcome when players use lookahead search, by bounding
the price of anarchy for several games among which are congestion games.

Our work is also related to many papers on congestion games. Congestion
games have been introduced by Rosenthal [13] and have been proved to be the
only class of games admitting an exact potential function by Monderer and Shap-
ley [11]. There is a long series of works investigating the price of anarchy with re-
spect to the pure Nash equilibria (e.g., [1,3,4,7]), and studying the best-response
and approximate improvement dynamics (e.g., [2,5,6,8,9]) for congestion games.

2 Model and Preliminaries

A congestion game G = (N,E, (Σi)i∈N , (fe)e∈E , (ci)i∈N ) is a non-cooperative
strategic game defined by a set E of resources and a set N = {1, . . . , n} of
players sharing resources in E.

Any strategy si ∈ Σi of player i is a non-empty subset of resources, i.e.
∅ �= Σi ⊆ 2E. Given a strategy profile S = (s1, . . . , sn) and a resource e, the
number of players using e in S, called the congestion on e, is denoted by ne(S) =
|{i ∈ N : e ∈ si}|. A delay function fe : N �→ R+ associates to resource e a delay
depending on the number of players currently using e, so that the cost of player
i for the pure strategy si is given by the sum of the delays associated with
resources in si, i.e. ci(S) =

∑
e∈si

fe(ne(S)). We refer to singleton congestion
games as the games in which all of the players’ strategies consist of only a single
resource.

In this paper we will focus on linear congestion games, that is having linear
delay functions with nonnegative coefficients. More precisely, for every resource
e ∈ E, fe(x) = αex+ βe with αe, βe ≥ 0.

Given the strategy profile S = (s1, . . . , sn), the social cost C(S) of S
is defined as the sum of all the players’ costs, i.e. C(S) =

∑
i∈N ci(S) =∑

e∈E

(
αene(S)

2 + βene(S)
)
. An optimal strategy profile S∗ = (s∗1, . . . , s

∗
n) is

one with minimum social cost.



On Lookahead Equilibria in Congestion Games 57

Before introducing the notions of k-lookahead best-response and k-lookahead
equilibrium, we briefly define their classical correspondent notions of best-
response and Nash equilibrium.

Each player acts selfishly and aims at choosing the strategy lowering her
cost. Given a strategy profile S and a strategy s′i ∈ Σi, denote with S ⊕i s

′
i =

(s1, . . . , si−1, s
′
i, si+1, . . . , sn) the strategy profile obtained from S if player i

changes her strategy from si to s′i. A best-response of player i in S is a strategy
sbi ∈ Σi yielding the minimum possible cost, given the strategic choices of the
other players, i.e. ci(S ⊕i s

b
i) ≤ ci(S ⊕i s

′
i) for any other strategy s′i ∈ Σi.

A (pure) Nash equilibrium is a strategy profile in which every player plays a
best-response. Given a strategic game G, we denote as NE(G) the set of its pure
Nash equilibria.

We assume that each player, in order to determine her k-lookahead best-
response, exploits k-lookahead search, i.e., she predicts k−1 consecutive possible
re-actions to her move, and selects the best choice according to such a prediction,
as shown in the following. More formally, when performing a move starting
from a given strategy profile S, player i considers a directed tree game T =
(V odd

T ∪ V even
T , Aodd

T ∪Aeven
T ) of depth 2k − 1 in which odd levels (with the root

belonging to level 1) contain player nodes belonging to V odd
T and even levels

contain selection nodes belonging to V even
T . Arcs outgoing from nodes in V odd

T
(V even

T , respectively) belong to Aodd
T (Aeven

T , respectively). Each node v ∈ V odd
T is

associated to a player p(v) performing an action, with the root being associated
to player i, and each arc a outgoing from node v is associated to her strategy
st(a) ∈ Σp(v); there is an outgoing arc for each strategy of player p(v). Each
selection node v ∈ V even

T is associated to a strategy profile Sv that is obtained
in the following way: Initially, Sv is set equal to S. Now, consider the path
connecting the root of T to v; starting from the root, for every arc (u, u′) of
such a path belonging to Aodd

T , Sv is updated to Sv⊕p(u) st((u, u
′)). In this paper

we consider two different settings, depending on whether consecutive moves by
a same player are allowed or not in the search tree. In the setting allowing
consecutive moves by the same player, each selection node has n outgoing arcs,
one for each player; in the setting in which they are not allowed, each selection
node has n − 1 outgoing arcs (in this case, the arc (u, u′) with p(u) = p(u′) is
missing).

We assume that, in the k-lookahead search of player i, a player corresponding
to a node of level 2j − 1 in T (for j = 1, . . . , k), has a long-sightedness equal to
k+1− j (player i performs a k-lookahead search, the player moving after her a
(k − 1)-lookahead search and so on).

A k-lookahead best-response can be computed by backward induction on the
levels of tree T . First of all, it can be computed under two different models:

– The worst case model, in which each player assumes that the subsequent
move is performed by a player providing her the worst possible cost in the
final leaf of tree T .

– The average case model, in which the player moving at each step is assumed
to be selected uniformly at random.
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Notice that for both models we can consider the two settings in which consecutive
moves are or are not allowed.

The basis of the induction is the selection of an arc (marked as red) for each
node of the last level of T (being the odd level 2k−1): for each node v of this last
level, the base case reduces to the selection of a 1-lookahead best-response for
player p(v) (i.e., a classical best-response to strategy profile Sv); ties are resolved
such that player i’s cost in the final strategy profile is maximized.

For each j ≥ 1, given that some outgoing arcs for levels j+2, . . . , 2k− 1 have
been marked as red, we now show how to mark as red an outgoing arc for each
node of level j (being an odd level) and, only in the worst case model, how to
mark as red one arc of level j + 1 (being an even level). In fact, in the average
case model, all arcs of level j+1 are always marked as red. Given any node v of
the odd levels in {j + 2, . . . , 2k− 1}, let Lf(v) be the (maximal) set of leaves of
T such that there exists a path of red arcs going from v to a node in Lf(v). Note
that for any node v, |Lf(v)| = 1 under the worst case model. Under the worst
case model, a

(
k − j−1

2

)
-lookahead best-response for player p(v) (with v being

a node of level j) is performed by marking as red an arc (v, v′) outgoing from
v such that the value cp(v)(Su), with u ∈ Lf(v) (notice that, under the worst
case model, |Lf(v)| = 1), is minimized taking into account that the worst case
(for player p(v)) arc outgoing from v′ is also marked as red; ties are resolved
such that player i’s cost in the final strategy profile is maximized. Under the
averagemodel, a

(
k − j−1

2

)
-lookahead best-response for player p(v) (with v being

a node of level j) is performed by marking as red an arc (v, v′) outgoing from v
such that the average among values cp(v)(Su) over all u ∈ Lf(v) is minimized;
again, ties are resolved such that player i’s cost in the final strategy profile is
maximized.

Suppose that, in a k-lookahead best-response dynamics, player j moves after
player i. It is worth noticing that the move performed by j may not be the move
anticipated by player i in her own analysis (at the corresponding node of level 3
of T ), because in such an analysis of player i, player j was performing a (k− 1)-
lookahead search, while when moving after player i in the “actual” evolution of
the game, she is performing a k-lookahead search.

A k-lookahead equilibrium, under the worst or average case model and with
or without consecutive moves allowed, is a strategy profile in which every player
plays a k-lookahead best-response (under the same setting). Notice that a 1-
lookahead best-response corresponds to the classical best-response, and a 1-
lookahead equilibrium to a Nash equilibrium.

The k-lookahead price of anarchy of a game G, under the worst or average case
model and with or without consecutive moves allowed, is the worst case ratio be-
tween the social cost of a k-lookahead Nash equilibrium (under the same setting)

and that of an optimal strategy profile, that is, PoA(G) = maxS∈LEk(G)
C(S)
C(S∗) ,

where LEk(G) denotes the set of k-lookahead Nash equilibria of G.
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3 Existence of Lookahead Equilibria

We show that, in the worst-case model with consecutive moves, the set of pure
Nash equilibria of G is contained in the set of k-lookahead equilibria of G for any
value of k. This result has a double implication when considering the worst-case
model with consecutive moves: from one hand, it shows existence of lookahead
equilibria in each game admitting pure Nash equilibria and, from the other hand,
it tells us that the price of anarchy can only worsen when moving from the
classical definition of myopic rationality to the one based on lookahead search.

Theorem 1. For any strategic game G and for any index k ≥ 2, it holds
NE(G) ⊆ LEk(G) in the worst-case model with consecutive moves.

Proof. First of all, note that, if G does not possess pure Nash equilibria, then, by
definition, ∅ = NE(G) ⊆ LEk(G) for any index k ≥ 2 and we are done. Hence, for
the remaining on the proof, assume that NE(G) �= ∅. The proof is by induction
on k ≥ 1. Note that, the basic case of k = 1 holds by definition since the set
of 1-lookahead equilibria coincides with that of pure Nash equilibria. Hence, we
only need to show the inductive step.

For any index k ≥ 2 assume, for the sake of induction, that NE(G) ⊆ LE j(G)
for each index j such that 1 ≤ j ≤ k − 1. Consider a pure Nash equilibrium
S ∈ NE(G) and a player i. If i does not change her strategy, then, since S is a
(k−1)-lookahead Nash equilibrium for G, no player possesses a (k−1)-lookahead
improving deviation in S and so, the resulting state of i’s search tree is S, where
i pays ci(S). If i changes her strategy to s′i, let S

′ = S⊕is
′
i be the resulting state.

It holds ci(S
′) ≥ ci(S) since S is a pure Nash equilibrium for G. Note that, if

the adversary always selects i for the successive k−1 moves, the game can never
reach a state in which i pays less that ci(S) (if such a deviation existed, it would
contradict the fact that S is a pure Nash equilibrium for G). It follows that, after
player i’s deviation, the adversary can always select a sequence of player so as
to generate a final state S′′ such that ci(S

′′) ≥ ci(S). Hence, i does not possess
any k-lookahead improving deviation from S and the claim is proved. 
�

For the worst-case model without consecutive moves, we show existence of
2-lookahead Nash equilibria in symmetric singleton congestion games, that is,
singleton games in which all players share the same set of strategies.

Theorem 2. Any symmetric singleton congestion game always admits 2-
lookahead Nash equilibria in the worst-case model without consecutive moves.

Proof. Fix a symmetric singleton game G and consider the following two cases.
Case 1. G admits a pure Nash equilibrium S such that there exists two

resources with a congestion of at least 2. Consider a player i, using a resource
e, whose cost is ci(S). Since S is a pure Nash equilibrium for G, if i migrates to
another resource e′, she gets a cost of at least ci(S). If the adversary selects a
player j currently using a resource different than e′, the current cost of player i
cannot decrease. Since player j always exists under our hypothesis, S has to be
a 2-lookahead Nash equilibrium.
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Case 2. G admits a pure Nash equilibrium S such that there exists three re-
sources with a congestion of at least 1. With a similar argument as in the previous
case, it is possible to show that S has to be a 2-lookahead Nash equilibrium.

If both Cases 1 and 2 do not occur, then, there exists a pure Nash equilibrium
S of G in which there are two resources e and e′ with ne(S) = 1 and ne′(S) =
n−1, fe(2) > fe′(n−1) and fe′′(1) > fe′(n−1) for each e′′ ∈ E\{e, e′}. Note also
that, since S is a pure Nash equilibrium, fe(1) ≤ fe′′(1) for each e′′ ∈ E \{e, e′}.

Consider the strategy profile S′ such that ne′(S
′) = n. We claim that either

S or S′ is a 2-lookahead Nash equilibrium.
If S′ is a pure Nash equilibrium for G, then it is also a 2-lookahead Nash

equilibrium. Hence, we can assume that fe(1) < fe′(n). Consider any player:
If she does not change her strategy, then, no matter which is the other player
selected by the adversary, she ends up paying fe′(n − 1). If she changes her
strategy, then, no matter which is the other player selected by the adversary, she
ends up paying at least fe(1). Thus, S

′ is a 2-lookahead Nash equilibrium when
fe′(n− 1) ≤ fe(1).

On the other hand, since S is a pure Nash equilibrium, player i using resource
e in S, ends up paying fe(1) when not changing her strategy, while any player j
using resource e′ in S ends up paying fe′(n− 1) when not changing her strategy.
If player i changes her strategy, no matter which is the other player selected by
the adversary, she ends up paying at least min{fe(1), fe′(n− 1)}. If any player j
changes her strategy, she ends up paying at least min{fe(2), fe′′(1)}. Thus, S is
a 2-lookahead Nash equilibrium when fe′(n− 1) ≥ fe(1) and this concludes the
proof. 
�

For the average-case model, we show that there exists a very simple game G
with 4 symmetric players and 3 singleton strategies admitting no 2-lookahead
Nash equilibria independently of whether consecutive moves are allowed or not.

Theorem 3. In both variants of the average-case model, no 2-lookahead Nash
equilibria are guaranteed to exist even in symmetric singleton games.

4 Bounds on the Price of Anarchy

In this section, we give upper bounds on the price of anarchy of 2-lookahead Nash
equilibria of linear congestion games both in the worst-case model and in the
average-case model either with or without consecutive moves. To this aim, we
use the primal-dual method introduced in [4]. Denoted with K = (k1, . . . , kn)
and O = (o1, . . . , on) the worst 2-lookahead Nash equilibrium and the social
optimum, respectively, this method aims at formulating the problem of maxi-

mizing the ratio C(K)
C(O) via linear programming. The two strategy profiles K and

O play the role of fixed constants, while, for each e ∈ E, the values αe and βe

defining the delay functions are variables that must be suitably chosen so as to
satisfy two constraints: the first, assures that K is a 2-lookahead Nash equilib-
rium, while the second normalizes to 1 the value of the social optimum C(O).
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The objective function aims at maximizing the social value C(K) which, being

the social optimum normalized to 1, is equivalent to maximizing the ratio C(K)
C(O) .

Let us denote with LP (K,O) such a linear program. By the Weak Duality The-
orem, each feasible solution to the dual program of LP (K,O) provides an upper
bound on the optimal solution of LP (K,O). Hence, by providing a feasible dual

solution, we obtain an upper bound on the ratio C(K)
C(O) . Anyway, if the provided

dual solution is independent on the particular choice of K and O, we obtain an

upper bound on the ratio C(K)
C(O) for any possible pair of profiles K and O, which

means that we obtain an upper bound on the price of anarchy of 2-lookahead
Nash equilibria.

For the sake of brevity, throughout this section, for each e ∈ E, we set Ke :=
ne(K) and Oe := ne(O). Moreover, note that a simplificative argument widely
exploited in the literature of linear congestion games states that we do not lose in
generality by assuming βe = 0 for each e ∈ E (as long as we are not interested in
singleton strategies). Finally, we denote by c′i(S, t) the cost that player i foresees
in her search tree when selecting, in state S, strategy t.

4.1 Worst-Case Model

For the worst-case model without consecutive moves, for any player i ∈ N ,
strategy profile K and strategy t ∈ Σi, it holds c′i(K, ki) ≥

∑
e∈ki

(αeKe) −∑
e∈ki:Ke≥2 αe and c′i(K, t) ≤

∑
e∈t (αe(Ke + 2)). In fact, with 2-lookahead best-

responses, when selecting strategy ki, player i has to suffer, for every used re-
source e for which Ke ≥ 2, a congestion at least equal to Ke − 1, where the
decrease of one unit is due to the possibility that the player performing the next
move could leave resource e; moreover, when selecting any strategy t, player i
can suffer for every used resource e, a congestion at most equal to Ke+2, where
the increase of 2 units is due to the fact that player i is selecting e and also the
player moving after her could select e.

For the case with consecutive moves, the same inequalities apply as well, since
the fact that the adversary can also select again player i can only increase the cost
c′i(K, ki), whereas the value

∑
e∈t (αe(Ke + 2)) is already the maximum possible

one that can be suffered by a migrating player in any model of 2-lookahead
rationality.

Hence, since K is a 2-lookahead Nash equilibrium, for each player i ∈ N , it
holds ∑

e∈ki

(αeKe)−
∑

e∈ki:Ke≥2

αe ≤
∑
e∈oi

(αe(Ke + 2)) . (1)

Such an inequality was already exploited in [10] in order to study the price of
anarchy in the average-case model without consecutive moves. Anyway, as we
will see later, in this case a more significant inequality can be derived. When
embedded into the primal-dual technique, inequality (1) gives life to the following
primal formulation LP (K,O).
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maximize
∑
e∈E

(
αeK

2
e

)
subject to∑
e∈ki

(αeKe)−
∑

e∈ki:Ke≥2

αe −
∑
e∈oi

(αe(Ke + 2)) ≤ 0, ∀i ∈ N

∑
e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ

subject to∑
i:e∈ki

(xi(Ke − 1))−
∑
i:e∈oi

(xi(Ke + 2)) + γO2
e ≥ K2

e , ∀e ∈ E : Ke ≥ 2

∑
i:e∈ki

(xiKe)−
∑
i:e∈oi

(xi(Ke + 2)) + γO2
e ≥ K2

e , ∀e ∈ E : Ke < 2

xi ≥ 0, ∀i ∈ N

Theorem 4. For any linear congestion game G, it holds PoA(G) ≤ 8 in the
worst-case model.

Proof. We show the claim by proving that the dual solution such that xi = 2
for each i ∈ N and γ = 8 is feasible.

The first dual constraint becomes f1(Ke, Oe) ≥ 0 with f1(Ke, Oe) := K2
e −

2Ke(Oe + 1) + 4Oe(2Oe − 1). It holds f1(Ke, 0) = K2
e − 2Ke which implies

f1(Ke, 0) ≥ 0 for any Ke ≥ 2. For Oe ≥ 1, note that the discriminant of the
equation f1(Ke, Oe) = 0, when solved for Ke, is 1 + 6Oe − 7O2

e which is always
non-positive when Oe ≥ 1. This implies that f1(Ke, Oe) ≥ 0 for each pair of real
numbers (Ke, Oe) with Oe ≥ 1. Hence, it follows that the first dual constraint is
always verified for any pair of non-negative integers (Ke, Oe) with Ke ≥ 2.

The second dual constraint becomes f2(Ke, Oe) ≥ 0 with f2(Ke, Oe) := K2
e −

2KeOe+4Oe(2Oe−1). Note that the discriminant of the equation f2(Ke, Oe) = 0,
when solved for Ke, is 4Oe − 7O2

e which is always non-positive when Oe ≥ 0.
This implies that the second dual constraint is always verified for any pair of
non-negative reals (Ke, Oe). 
�

4.2 Average-Case Model

For the average-case model without consecutive moves, for any player i ∈ N ,
strategy profile K and strategy t ∈ Σi, it holds c′i(K, ki) ≥

∑
e∈ki

(αeKe) −∑
e∈ki:Ke≥2

αe(Ke−1)
n−1 and c′i(K, t) ≤

∑
e∈t

(
αe

(
Ke + 2− Ke−1

n−1

))
.
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In fact, with 2-lookahead best-responses, when selecting strategy ki, player i
has to suffer, for every used resource e for which Ke ≥ 2, a congestion at least
equal to Ke− 1, where the decrease of one unit is due to the event, having prob-
ability at most Ke−1

n−1 , that the player performing the next move leave resource
e (because such a player has to belong to the set of players selecting e in K);
moreover, when selecting any strategy t, player i can suffer for every used re-
source e, a congestion at most equal to Ke+2, where the increase of one unit is
due to the fact that player i is selecting e and the increase of another unit is due
to the event, having probability at most 1 − Ke−1

n−1 , that also the player moving
after i selects e (because such a player has not to belong to the set of players
selecting e in K).

Hence, since K is a 2-lookahead Nash equilibrium, for each player i ∈ N , it
holds∑

e∈ki

(αeKe)−
∑

e∈ki:Ke≥2

αe(Ke − 1)

n− 1
≤

∑
e∈oi

(
αe

(
Ke + 2− Ke − 1

n− 1

))
. (2)

When embedded into the primal-dual technique, inequality (2) gives life to the
following primal formulation LP (K,O).

maximize
∑
e∈E

(
αeK

2
e

)
subject to∑
e∈ki

(αeKe)−
∑

e∈ki:Ke≥2

αe(Ke − 1)

n− 1

−
∑
e∈oi

(
αe

(
Ke + 2− Ke − 1

n− 1

))
≤ 0, ∀i ∈ N∑

e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ

subject to∑
i:e∈ki

(
xi

(
Ke −

Ke − 1

n− 1

))

−
∑
i:e∈oi

(
xi

(
Ke + 2− Ke − 1

n− 1

))
+ γO2

e ≥ K2
e , ∀e ∈ E : Ke ≥ 2

∑
i:e∈ki

(xiKe)−
∑
i:e∈oi

(
xi

(
Ke + 2− Ke − 1

n− 1

))
+ γO2

e ≥ K2
e , ∀e ∈ E : Ke < 2

xi ≥ 0, ∀i ∈ N
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The following result significantly improves the previous upper bound of (1 +√
5)2 ≈ 10.47 given in [10].

Theorem 5. For any linear congestion game G, it holds PoA(G) ≤ 6 if n = 2
and PoA(G) ≤ 4 + 5

4n−7 if n ≥ 3 in the average-case model without consecutive
moves.

Proof. For n = 2, we show that the dual solution such that xi = 2 for each
i ∈ N and γ = 6 is feasible. The first dual constraint, since n = 2 implies
Ke = 2, becomes Oe(Oe − 1) ≥ 0 which is always satisfied for any integer value
Oe. The second constraint becomes K2

e + 6Oe(Oe − 1) ≥ 0 which is always
satisfied for any integer value Oe when Ke ∈ {0, 1}.

For n ≥ 3, we show the claim by proving that the dual solution such that

xi =
5(n−1)
4n−7 for each i ∈ N and γ = 4 + 5

4n−7 is feasible.

The first dual constraint becomes f1(Ke, Oe) ≥ 0 with f1(Ke, Oe) := K2
e (n−

3) − 5Ke(nOe − 2Oe − 1) + Oe(16nOe − 10n− 23Oe + 5). It holds f1(Ke, 0) =
K2

e (n − 3) + 5Ke which implies f1(Ke, 0) ≥ 0 for any Ke ≥ 2 and f1(Ke, 1) =
(K2

e −5Ke)(n−3)+6n−18 which implies f1(Ke, 1) ≥ 0 for any integer Ke. The
discriminant of the equation f1(Ke, Oe) = 0, when solved for Ke, is n

2Oe(40 −
39Oe)+2nOe(92Oe−95)−176O2

e+160Oe+25. Note that−176O2
e+160Oe+25 ≤ 0

when Oe ≥ 2 and n2Oe(40 − 39Oe) + 2nOe(92Oe − 95) ≤ 0 when Oe ≥ 2 and
n ≥ 5. For n = 4, the discriminant becomes −64O2

e +40Oe− 25 which is always
non-positive when Oe ≥ 2. Finally, for n = 3, the dual constraint becomes
(Ke − 5Oe)(1 − Oe) ≥ 0 which is always verified since Oe ≥ 2 and Ke ≤ n = 3.
Hence, it follows that the first dual constraint is always verified for any pair of
non-negative integers (Ke, Oe) with Ke ≥ 2.

The second dual constraint becomes f2(Ke, Oe) ≥ 0 with f2(Ke, Oe) :=
K2

e (n+2)−5Ke(nOe−2Oe)+Oe(16nOe−10n−23Oe+5). It holds f2(0, Oe) =
Oe(16nOe − 10n− 23Oe +5) which is always non-negative for any integer value
Oe when n ≥ 3 and f2(1, Oe) = n(16O2

e − 15Oe + 1) − 23O2
e + 15Oe + 2 which

is always non-negative for any integer value Oe when n ≥ 3. Hence, it follows
that the second dual constraint is always verified for any pair of non-negative
integers (Ke, Oe). 
�

For the average-case model with consecutive moves, for any player i ∈ N ,
strategy profile K, strategy t ∈ Σi and best-response t∗ for player i in K, it
holds

c′i(K, ki) ≥
1

n
ci(K ⊕i t

∗) +
n− 1

n

⎛
⎝∑

e∈ki

(αeKe)−
∑

e∈ki:Ke≥2

αe(Ke − 1)

n− 1

⎞
⎠

and

c′i(K, t) ≤ 1

n
ci(K ⊕i t

∗) +
n− 1

n

∑
e∈t

(
αe

(
Ke + 2− Ke − 1

n− 1

))
.

In fact, if consecutive moves are allowed, with probability 1
n a 2-lookahead

best-response of player i coincides with a classical best-response, and with prob-
ability n−1

n the same arguments exploited for the case without repetitions apply.
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Hence, the same inequality characterizing the case without repetition occurs
also in this case and we can claim the following theorem.

Theorem 6. For any linear congestion game G, it holds PoA(G) ≤ 6 if n = 2
and PoA(G) ≤ 4 + 5

4n−7 if n ≥ 3 in the average-case model with consecutive
moves.

4.3 Singleton Strategies

In this subsection, we show that better results can be achieved for the worst-case
model when restricting to singleton linear congestion games.

For the worst-case model without consecutive moves, for any player
i ∈ N , strategy profile K and strategy t ∈ Σi, it holds c′i(K, ki) ≥∑

e∈ki
(αeKe + βe) unless all the players share the same resource in K and

c′i(K, t) ≤
∑

e∈t (αe(Ke + 2) + βe).
In fact, with 2-lookahead best-responses, when selecting strategy ki consisting

of resource e, in the worst-case model the adversary can always select a player
not selecting e for the next move (unless all the players share the same resource
in K); moreover, when selecting any strategy t consisting of resource e′, player
i can suffer a congestion at most equal to Ke′ + 2, where the increase of 2 units
is due to the fact that player i is selecting e′ and also the player moving after
her could select e′.

For the case with consecutive moves, the same inequalities apply as well, since
the fact that the adversary can also select again player i can only increase the cost
c′i(K, ki), whereas the value

∑
e∈t (αe(Ke + 2) + βe) is already the maximum

possible one that can be suffered by a migrating player in any model of 2-
lookahead rationality.

Hence, since K is a 2-lookahead Nash equilibrium, for each player i ∈ N , it
holds ∑

e∈ki

(αeKe + βe) ≤
∑
e∈oi

(αe(Ke + 2) + βe) (3)

unless all the players share the same resource in K.
When embedded into the primal-dual technique, inequality (3) allows to for-

mulate the problem similarly to the case of general strategies, and the following
theorem holds.

Theorem 7. For any singleton linear congestion game G, it holds PoA(G) ≤ 4
in the worst-case model.

For the average-case model, no improved bounds, with respect to the ones
holding for the case of general strategies, seem possible using our analysis tech-
nique. However, the fact that, for singleton strategies, the upper bound on the
price of anarchy in the worst-case model is smaller than the one holding for the
average-case model might appear counterintuitive and even contradictory. To
this aim, in the following example, we show that this is not the case, since there
are games with singleton strategies in which the performance of 2-lookahead
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Nash equilibria in the worst-case model are better than the one achieved in the
average-case model.

Example 1. Let G be the symmetric singleton game in which there are three
players and two resources, namely e1 and e2, such that fe1(x) =

4
3x and fe2(x) =

x.
Let S be the strategy profile in which two players choose e1 and one player

chooses e2 and consider the average-case model. In the variant with consecutive
moves, the expected cost of any player i choosing e1 is 1

3

(
2 + 4

3 + 8
3

)
= 2. If

player i switches to resource e2, her expected cost is 2. Moreover, the expected
cost of the player choosing e2 is 1

3 (1 + 2 + 2) = 5
3 . If she switches to resource

e1, her expected cost is 1
3

(
2 + 8

3 + 8
3

)
= 22

9 . In the variant without consecutive

moves, the expected cost of any player i playing e1 is 1
2

(
4
3 + 8

3

)
= 2. If player i

switches to resource e2, her expected cost is 2. Moreover, the expected cost of the
player choosing e2 is 1

2 (2 + 2) = 2. If she switches to resource e1, her expected
cost is 1

3

(
8
3 + 8

3

)
= 8

3 . Thus, in both variants of the average-case model, S is a
2-lookahead Nash equilibrium for G.

Consider now the worst-case model.
First of all, we show that S is not a 2-lookahead Nash equilibrium for G in

both variants of the model. In fact, in both variants, the cost of any player i
choosing e1 is 8

3 . If she switches to resource e2, her cost is 2. Thus, in both
variants, S is not a 2-lookahead Nash equilibrium for G.

Now, let S′ be the strategy profile in which one player chooses e1 and two
players choose e2. In both variants, the cost of the player choosing e1 is 4

3 . If she
switches to resource e2, her cost is 2. Moreover, in both variants, the cost of any
player i choosing e2 is 2. If she switches to resource e1, her cost is 8

3 . Thus, in
both variants, S′ is a 2-lookahead Nash equilibrium for G.

Finally, it is not difficult to see that any profile in which all three players
choose the same resource cannot be a 2-lookahead Nash equilibrium for G, again
in both variants.

Hence, since S′ is the only 2-lookahead Nash equilibrium for G in the worst-
case model, S is a 2-lookahead Nash equilibrium for G in the average-case model,
and C(S) > C(S′), we can conclude that the price of anarchy of G in the average-
case model is higher than the one of the worst-case model regardless of whether
consecutive moves are allowed or not.
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Abstract. The proliferation of Internet technology has created numer-
ous new markets as social coordination mechanisms, including those
where human decision makers and computer algorithms interact. Because
humans and computers differ in their capabilities to emit and process
complex market signals, there is a need to understand the determinants
of the provision of market information. We tackle the general research
question from the perspective of new electronic credit markets. On on-
line social lending platforms, loan applications typically contain detailed
personal information of prospective borrowers next to hard facts, such as
credit scores. We investigate whether a change of the market mechanism
in the form of the introduction of an automated trading agent shifts the
dynamics of information revelation from a high-effort norm to a low-
effort information equilibrium. We test our hypothesis with a natural
experiment on Smava.de and find strong support for our proposition.

1 Introduction

Credit markets are envisioned to serve as efficient social coordination mecha-
nisms between lenders and borrowers [1]. The idea of online social lending (also
known as peer-to-peer lending) is to provide a marketplace for unsecured per-
sonal loans. An electronic platform lists borrowers’ loan applications so that
individual lenders can review this information and decide in which projects they
want to invest. Each lender contributes a small fraction of the financed amount.
This distributes the credit risk in loan-specific pools of lenders. As compensation
for taking risk, lenders receive interest payments, whereas platforms charge fixed
(risk-free) fees [2,3,4].

Traditional institutional lending relies on a number of information sources in-
cluding hard facts such as requested amount, interest rate, credit rating informa-
tion and past repayment performance as well as soft facts that consider the wider
context of a potential transaction. In online social lending, soft facts find typically
consideration in the form of credit profiles that may include an essay description
of the project complemented with a picture and other personal information. The
careful evaluation of the profile may enable lenders to differentiate between bor-
rowers and to eventually reduce the risk of loan defaults. Additional information
typically allows for, but not necessarily leads to more efficient contracts [5].
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Due to the novelty of online social lending, previous research has focused on
the negotiation phase rather than long-term consequences. For example, Böhme
and Pötzsch report that references to outside options in the traditional banking
sector, even if unverified, are rewarded with better financing conditions. However,
statements targeted at arousing pity are penalized [2]. The credit profile helps
to reduce the information asymmetry between borrowers and lenders. While
requesters of funds might conceal information that would make them appear less
desirable [6], they will also pro-actively signal to lenders their credit-worthiness
[7]. In summary, in credit markets, information is more important compared to
many other financial markets that price more standardized goods [8].

However, the wealth of informally provided information and the growth in
popularity of social lending also pose challenges to the efficiency of these mar-
ketplaces. In particular, lenders must find ways to overcome the information
overload originating from the abundance of loan applications. One option is the
creation of reputation schemes to favor well-established and reliable borrowers. A
different approach is the consideration of alternative market designs and changes
in trading rules [9].

In July 2009, Smava.de, a popular German social lending platform, changed
its market mechanism by introducing immediate loans. Instead of waiting for
a posted loan application to be funded, a borrower may consult an automated
agent that is suggesting an interest rate high enough so that the loan can be
financed instantaneously by lenders who pre-committed offers, resulting in a
form of order book. In this paper, we investigate whether the introduction of
this automated trading agent shifts the dynamics of information revelation from
a high-effort information norm to a low-effort equilibrium. We scrutinize our
hypothesis in the form of a natural experiment on Smava.de and find strong
support for our proposition.

As to the organization of this paper, Section 2 reviews theoretical approaches
to the research question, which also include our analysis of the strategic options
of market providers, lenders, and borrowers. Section 3 describes our empirical
strategy to study the research question with a natural experiment observed on
Smava.de. The results, presented in Section 4, support our theory both descrip-
tively and, more specifically, by regression analyses of disaggregated data. We
offer concluding remarks and present trajectories for future work in Section 5.

2 Incentives of Market Providers and Participants

We are not aware of research on the impact of agents on human-populated online
social lending markets, and related work for financial markets is surprisingly
sparse. Lin and Kraus survey research on the question whether software agents
can successfully negotiate with humans on a variety of commodity markets [10],
and Duffy reviews research on markets populated with automated traders in
comparison to similar work in experimental economics [11]. In the context of
financial markets, software agents are expected to improve market efficiency
because they follow predefined rules and do not make mistakes with respect to
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their algorithms. In addition, software agents can process more data in a given
time span and interact faster with the market via APIs than human traders are
able to utilize any user interface [12,13].

We focus the following theoretical discussion on the incentive structure in
online social lending considering the different stakeholders: market providers,
lenders, and borrowers.

2.1 Rationale of the Market Provider

Online social lending markets are two-sided with significant positive cross-side
network effects, i.e., lenders prefer to have a larger group of borrowers to choose
from, and vice versa. The intermediary is interested in the overall growth of the
platform to reap first-mover advantages to, amongst other factors, erect barriers
to entry. To enhance long-term viability, the platform can support matching
that will lead to low loan default rates by excluding, for example, untenable
risks. Other concerns include the transfer of credit risk to non-banks as well as
adherence to financial regulations (e.g., the Dodd–Frank Wall Street Reform and
Consumer Protection Act in the United States [14]).

The market provider’s profit is derived from closing and late fees and potential
future opportunities that may result from the growth of the platform. As a
financial intermediary, it is critically important for the market provider to foster
an image of professionalism and reliability [15]. One important implication of
such an evaluation is the trend towards uniformity. In finance, “a preference
for uniformity is consistent with a preference for strong uncertainty avoidance
leading to a concern for law and order and rigid codes of behaviour, a need
for written rules and regulations, [and] a respect for conformity” [16]. Such
consistency is primarily driven by the evaluation of borrower profiles and can be
guided through the default format of these profiles.

The intermediary can further influence the appeal of the platform via mar-
ket design [9]. A banking report argues that automatic bidding and secondary
markets (i.e., the trading of existing loan notes) “inject new professionalism,”
but also shift attention from humans to artificial agents [17]. As a result, the
comprehensiveness of borrower profiles decreases in importance for negotiations
that are mediated by automatic agents.

2.2 Rationale of the Market Participants

Lenders. Non-bank lenders may understand online social lending as a viable
alternative for portfolio diversification, for example, to complement low-risk/low-
return certificates of deposit, and stock market portfolios that promise higher
expected returns, but come with a significant degree of uncertainty in the short
term. The inherent trade-off for online social lenders is the expectation of a
relatively high rate of return weighted against the default risk associated with a
particular group of borrowers.

However, due to its novelty, we cannot expect a high degree of domain-specific
financial literacy within the lender population and, therefore, sufficient expertise



Trading Agent Kills Market Information 71

to independently avoid borrowers with default risks [18]. The potentially unjusti-
fied reliance on soft information in borrowers’ profiles might further exacerbate
the asymmetric selection problem. In contrast, lenders may derive immaterial
benefits from investing in real individuals’ aspirations and plans, and learning
about them in their self-descriptions.

The crisis in mortgage lending and institutional finance has reopened the
discussion about effective protection of non-professional market participants
[19]. Further, while online social lending acts as an instrument to escape credit
scarcity, borrowers who are not served by traditional banking may also pose
additional risks. Taken together, lenders will benefit from marketplace designs
that limit overlending as well as contribute to the selection of appropriate credit
terms for manageable risks [20].

The existence of an automatic lending agent addresses some of these problems.
It limits the search costs that arise from the need to investigate a large amount of
soft information and sharpens the focus on verified information. The interaction
with the recommendation features of the agent also reduces the likelihood of
significant misquoting of interest rates.

Borrowers. Borrowers’ prime objective is to gain access to financing at reason-
able conditions and without other unattractive contractual obligations. Further,
the unbureaucratic and innovative nature of online social lending might appeal
to individuals with unsuccessful interactions with the traditional banking sector.

Borrowers aim for a favorable evaluation of their loan applications through
a number of factors. Borrowers publish a desired amount and purpose, they
provide verifiable information about themselves including the credit grade. In
addition, a customizable profile allows them to personalize their funding appeal.

The accessibility of personal profiles to every potential lender might, how-
ever, be perceived as a privacy risk by borrowers [2]. For example, details about
personal finances or unfortunate circumstances could, when used outside of the
platform context, cause ridicule by acquaintances or colleagues. The typical in-
teractions with institutional banks and credit bureaus are not immune to privacy
concerns [21], however, the open and social nature of online social lending am-
plifies these worries.

Further, borrowers might also attempt to conceal relevant information [6].
For example, on Smava.de over 30% of all loans are awarded to small business
owners or self-employed professionals. It follows that personal credit ratings may
not accurately reflect inherent business-related risks [17].

The availability of an artificial agent allows borrowers to choose between au-
tomated matching and the human-driven process. The former contributes to
an amelioration of privacy concerns, but a weakening of success prospects for
individuals with low credit ratings.

2.3 Information Revelation as a Coordination Problem

Borrowers are not only affected by lenders’ behavior, and vice versa, but also by
the actions of others within their group. For example, past studies have presented
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evidence for herding behavior with respect to bidding on Prosper.com, a US-
based online social lending platform [22,23]. Similarly, the presentation of the
personal profile is subject to mimicry. Borrowers copy information from their
peers’ profiles. Interestingly, they do not seem to copy from successful recent
applications more often than from pending or unsuccessful applications [24].

The presence of an automatic agent introduces an unprecedented speed into
the process of social lending, as well as an increased focus on verified informa-
tion. The reliance on the agent may trigger a desire to decrease the provisioning
of comprehensive personal profiles to reduce signaling costs. Further, recent be-
havioral research suggests that the mere exposure to indicators of instant grati-
fication (e.g., fast food symbols) may contribute to a shift of preferences towards
economic impatience [25]. It follows that even borrowers who are not directly
utilizing the artificial agent may change their behaviors.

The resulting net impact on signaling is far from obvious. In the early years,
online social lending platforms have emphasized the social aspect of lending. For
example, Smava.de advertised its services with the slogan “loans from human
to human.” This has contributed to a norm of comprehensive textual signaling
in the form of long personal profiles with the expectation to adhere as a matter
of proper conduct [26].

At the same time, our discussion shows that restricted information focused
on verifiable facts is unlikely to be inferior from an economic perspective, in
particular, considering humans’ innate bounded ability of information gathering
and processing [27,28].

Considering the information revelation of borrowers as a coordination prob-
lem is helpful to understand the dynamics of their behavior on Smava.de. We
argue that different jointly chosen degrees of soft information revelation can be
equilibria, and it depends on exogenous coordinating factors which outcome is
reached [29]. For example, the user interface design for personal profiles as well
as Smava.de’s framing as a human-to-human lending platform jointly served
as a focal point for a high degree of information revelation. In contrast, the
introduction of the artificial agent is a strong driver for brevity.

More specifically, we can describe the coordination between borrowers where
lenders react as follows. When lenders make their funding decisions, they cannot
know the true value of soft information (compared to hard verifiable informa-
tion). Hence, they estimate it by observing the usage of soft information in the
marketplace (i.e., the average of all soft information revealed). If the majority of
borrowers reveal no information then lenders would reckon that such soft infor-
mation is of no value. In contrast, a market in which borrowers heavily utilize
soft information would suggest to lenders that such information has value.

From this basic premise at least two potential outcomes may result. At the
one extreme, if none of the borrowers reveals any soft information, then it follows
that none of the borrowers could improve his position by revealing soft infor-
mation as the cost of revelation is positive and the value of revelation is zero.
In contrast, if all borrowers reveal soft information, then any borrower would
harm his position by not including soft information. While on the one hand, the
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borrower could reduce his cost by omitting soft information, the loss of apparent
creditworthiness (from the perspective of lenders) outweighs this benefit. In that
sense, soft information is productive.

The introduction of the trading agent has the potential to change the focal
point since those borrowers who use loan matching by the trading agent know
that adding soft information does not influence the lending decision. Lenders,
however, have no direct means to tell loans matched with a trading agent and
conventional loans apart. Hence, their estimated value of soft information is im-
pacted by the mixture of the two regimes. As the share of automatically matched
loans exceeds a certain threshold, the market will tip towards low information
revelation.

The distribution of individually heterogeneous costs for information revelation
and lenders’ belief structure influence the strength of the described processes
and the threshold of the tipping point which motivates an empirical analysis. We
hypothesize that the amount of soft information provided on Smava.de decreases
after the introduction of the trading agent independent of whether the trading
agents has been used by an individual borrower.

3 Empirical Strategy

3.1 Institutional Background

Smava.de, established in February 2007, is the largest online social lending
platform in Germany handling a total of e 77 million allocated to about 9000
loans (as of July 2013). Unlike Prosper.com, the dominant platform in the US,
Smava.de does not use an auction mechanism. Instead, borrowers post loan
applications including amount, interest rate, and maturity along with verified
demographic information (age, occupation, state of residence) and a credit grade
between A (best, nominal default risk < 1.3%) and H (worst, default risk 17%).
These applications serve as take-it-or-leave-it offers for lenders, who decide if
and how much (in units of e 250) they want to contribute to financing each
pending loan. Loan applications are settled when they are fully funded or after
two weeks. Borrowers have the option to revise the interest rate upwards if the
loan does not receive funding as quickly as desired. They may also complement
their loan application by unverified information, such as textual descriptions,
motivation statements, or custom pictures. We use this voluntary provision of
information as indicator for revelation behavior.

Figure 1 depicts a typical profile on the platform. In this example, a potential
male borrower applies for an amount equivalent to $7000 to finance education
expenses to become a certified optician.

Smava.de introduced and gradually extended automatic trading agents to
assist their lenders. A more substantial change was the introduction of an auto-
matic loan placement agent in July 2009. This agent assists borrowers in finding
the currently relevant interest rate such that a loan application would imme-
diately be approved by the lenders’ trading agents. In other words, the new
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amount (e 5250)

interest rate (9% p. a.)

custom picture

textual description

nick name
age, city

credit grade (verified)

debt burden

Fig. 1. Example credit profile of a male applicant to finance certifications to become
a professional optician. (Contents obfuscated by the authors for borrower privacy.)

agent reinterprets the parameterization of the lenders’ trading agents—all con-
trolled by the platform—as an order book, and replaces the take-it-or-leave-it
mechanism by a matching mechanism.1

Since July 15th, 2009 both mechanisms coexist. This forms a unique natural
experiment to study not only the influence of trading agents on information
revelation in the part of the market served by the agents, but also on the rest of
the loans which continue to use the old mechanism.

3.2 Data

Our study uses public information only. We downloaded all N = 931 loan ap-
plications listed on Smava.de between April and October 2009. This sample has
been split into contrast groups consisting of 380 loan applications before and 551
applications after the intervention. We remove the month of July to exclude all
loan applications that overlap the intervention date (see Figure 2).

Our independent variable is the presence of the trading agent for borrow-
ers. We measure our dependent variable, information revelation, by two proxies.
First, we follow Herzenstein et al. [4] and measure the length of all unverified de-
scriptions of a loan application and the attached borrower profile in characters.
Within each contrast group, this variable can be reasonably approximated with
a Gaussian distribution after taking logs (see Figure 3). The second indicator of
information revelation is inspired by Pope and Syndor [30]. We take the binary
fact whether or not borrowers illustrate their loan applications by uploading
custom pictures which replace the default icon defined by Smava.de.

We do not try to measure the semantics of the description or the picture,
i. e., whether they contain any relevant information or valence. As even in the
“before” condition, only one quarter of loan applications is illustrated with a

1 The basic process is similar to Priceline.com counteroffers.



Trading Agent Kills Market Information 75

before after

t
| | | | | | | |

intervention: 15 July 2009
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maximum bidding period: two weeks

Fig. 2. Design of the natural experiment analysis

L
en

g
th

o
f
d
es
cr
ip
ti
o
n
(c
h
a
rs
)

before after (old) after (immediate)

1

10

100

1000

10000

Fig. 3. Length of description: Violin plots of smoothed empirical distribution (left)
and log normal fit (right) for contrast groups compared in this study (Gaussian kernel,
bandwidth 0.5, N = 931)

custom picture, it is fair to assume that borrowers will only upload carefully
selected pictures which they believe help their cases. Likewise, writing longer
descriptions is associated with opportunity costs and privacy loss.

Moreover, we collected a number of control variables which might interact with
the hypothesized relationship. Most importantly, we try to identify whether a
loan has been granted using the old or new mechanism in the “after” condi-
tion. This information is not directly visible on the platform and has been in-
ferred from the succession of bid times, which are available at a resolution of
one minute. Agent-matched (“immediate”) loans are characterized by complete
funding whereby no two bids differ by more than one minute. All other loans
are classified as take-it-or-leave-it (“old”). In addition, we collected the amount,
interest rate, credit grade, and the assignment to one of 19 credit categories2 for
every loan application in the sample.

2 The categories on Smava.de are: debt restructuring; liquidity; home, gardening &
do-it-yourself; cars & motorbikes; events; education & training; family & education;
antiques & art; collection & rarity; electronics; health & lifestyle; sports & leisure;
travel; pets & animals; volunteering; commercial; business investment; business ex-
tension; miscellaneous.
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Table 1. Activities on the Smava.de marketplace before (Apr–Jun ’09) and after (Aug–
Oct ’09) the introduction of the automatic loan placement agent

Before After

all old1)

Volume
Number of loans 380 551 378
Financed amount (e millions) 2.9 4.7 3.5

Credit conditions
Avg. interest rate (% p. a.) 10.2 8.7 8.5

Commercial bank rate2) 5.1 5.1 —

Credit quality
Investment grade (A–C in %) 43.7 46.6 43.4

Signaling
Median length of description 456 271 332
Provision of custom picture (%) 25.5 11.3 15.3

1) loans using the old take-it-or-leave-it mechanism
2) central bank statistics of market interest rates

4 Results

4.1 Descriptive Analysis

Table 1 shows aggregated statistics broken down by the contrast groups before
and after the intervention. The “after” condition is further refined by a separate
column for loans using the old take-it-or-leave-it mechanism. One can observe
three major effects to be discussed in the following.

The number of loans grew by 45%. At first sight, it looks like immediate loans
tap into a new segment, as the number of loans using the old mechanism is almost
constant. The average loan amount grewby 12%with a tendency for larger loans to
use the oldmechanismwhile smaller loans arematched through the trading agents.
The observed development is in line with our analysis of the market provider’s
strategy (Sect. 2.1). But the evidence is relativelyweak because the general growth
path of the platform impedes a direct causal attribution to the intervention.

The average interest rate dropped by 1.5%-pts with immediate loans being
marginally more expensive than take-it-or-leave-it loans. The latter discrepancy
can be explained by time preferences. This development is remarkable because
we can rule out third factors such as general trends in consumer credit interest
rates. The official statistics of comparable loans to consumers of traditional banks
report stable and significantly lower interest rates. The level shift is due to higher
quality requirements in the banking sector compared to Smava.de. The drop in
interest rates after the intervention cannot be explained by a significant change
in average credit quality, either. The fact that immediate loans exhibit slightly
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higher credit quality may in fact be due to inverse causality: high-quality (i. e.,
low risk) borrowers have an outside option in the banking sector, which becomes
comparably less attractive if the interest rates on Smava.de decline.

Note that we must not interpret this result as support for the hypothesis that
trading agents improve market efficiency. Unless we observe actual default rates,
it is too early to tell if the borrower-friendly low risk premium is in fact closer
to the equilibrium price of risk on Smava.de [31].

Both indicators of information revelation, length of description and provision
of custom picture, show a substantial decline after the intervention. Interestingly,
this is not limited to the immediate loans (where the effect is most pronounced
because the agents do not evaluate unverified information). So the presence and
visibility of agent-matched deals appears to spill over and change the information
revelation conventions on the entire marketplace.

Superficially, these numbers already tell a story. But the evidence for this
interpretation from Table 1 alone is weak. Market expansion, borrower-friendly
conditions, and other effects might interact with each other and lead to spurious
results in the aggregated numbers. For example, an alternative explanation could
be that lower interest rates have attracted better risks with more self-explanatory
credit projects. To gain more robust insights, we conduct a disaggregated analysis
on individual loans for the phenomenon of disappearing information.

4.2 Regression Analysis

To isolate the effect of the introduction of a trading agent on information revela-
tion from other shifts in the market conditions, a series of multivariate regression
models has been estimated. First, we explain the length of description (�) with
the following equation,

log2 �i =β1Ai + β2Ri + β3Ti + β4Ii + cC(i,·) + gG(i,·) + εi, (1)

where Ai is the log amount, and Ri is the interest rate in percent p. a. of loan
i. Ti is a dummy variable taking value 1 if the loan has been listed after the
introduction of the trading agent, 0 otherwise. Ii takes value 1 if the loan is
an “immediate loan”, i. e., it has been financed by using the trading agent.
Matrices C and G contain a series of dummy variables as fixed effects for 19
credit categories and 8 credit grades, respectively. Equation (1) is estimated
using ordinary least squares, i. e.,

(β̂1, β̂2, β̂3, β̂4, ĉ, ĝ) = arg min
(β1,...,g)

N∑
i=1

ε2i . (2)

Table 2 reports the estimated coefficients for a stepwise inclusion of the Ti and
Ii terms along with statistical significance tests of the null hypothesis β = 0.

M1 is the default model over both periods together. It identifies a highly signif-
icant positive correlation between the length of description and the amount (both
in logs): borrowers who ask for more money are willing to explain their project
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Table 2. Results of regression analyses: Effect of presence and use of trading agent on
information revelation while controlling for credit volume, conditions, and quality

Length of description (log2 �)

Terms M1 M2 M3

Amount [log] 0.24 *** 0.35 *** 0.30 ***

Interest rate [%-pts] −0.07 * −0.21 *** −0.16 ***

Trading agent present −1.14 *** −0.91 ***

Trading agent used −0.49 **

Category fixed effects yes yes yes

Credit grade fixed effects yes yes yes

Adjusted R2 [%] 3.7 13.2 14.0

Sig. levels: *p < 0.05, **p < 0.01, ***p < 0.001; N = 931

better. We also find a significant negative correlation between interest rate and
length of description suggesting that borrowers who are less verbose are penal-
ized ceteris paribus with (slightly) worse credit conditions. All predictors in M1
explain less than 4% of the variance of the dependent variable. This is because the
hidden heterogeneity—the regime change—is not reflected in this specification.

Models M2 and M3 include a term for the presence of the trading agent,
which adds another 10%-pts of explained variance. The coefficient is negative—
indicating disappearing information—and highly significant. This supports our
above hypothesis with strong evidence on the micro-level and after controlling
for third variables. The effect of the intervention can be further decomposed on
the individual loan level to isolate contributions from the mere presence of a
trading agent and the fact that the trading agent was actually used to settle a
particular loan. This is realized in M3. Interestingly, the platform-wide effect is
responsible for the lion’s share in the decline of signaling whereas the actual use
of the trading agent is of subordinate importance. We interpret this as support
for a switch in the equilibrium situation stimulated by the option to use the new
mechanism.

Regression diagnosis via inspection of the residual distribution and fixed ef-
fects coefficients revealed nothing surprising or worrying. For example, categories
with positive significant fixed effects include events, volunteering, and busi-
ness extensions; arguably the least self-explanatory ventures. Post-hoc ANOVA
checks between M1 and M2, as well as M2 and M3, respectively, indicate highly
significant differences in explained variance.

A remaining doubt is that detailed information might have disappeared due
to a gradual shift in the conventions on Smava.de, which would be confounded
with our natural experiment. To test this, we re-estimated M3 including a
linear time trend as additional term. The coefficient (−0.001, p = 0.44) indi-
cated no prevalence of a persistent time trend between April and October 2009.
This strengthens the evidence that the observed differences before and after the
introduction of the trading agent were indeed caused by this intervention.
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Table 3. Effect of trading agent on provision of custom picture

Log odds ratio of custom picture

Terms Model 4 Model 5 Model 6

Amount [log] 0.1 0.3 * 0.2
Interest rate [%-pts] −0.1 −0.3 *** −0.2 *

Trading agent present −1.5 *** −1.1 ***

Trading agent used −1.7 **

Category fixed effects yes yes yes

Credit grade fixed effects yes yes yes

Pseudo-R2 [%] 8.8 16.8 18.8

Sig. levels: *p < 0.05, **p < 0.01, ***p < 0.001; N = 931

A second indicator of information revelation is the provision of a custom
picture. This is a binary indicator, and we use logistic regression analysis to
regress the predictors of Equation (1) on the log odds ratio for the provision of
a custom picture. The resulting coefficients, as reported in Table 3, have to be
transformed to the probability domain to interpret their absolute magnitudes.
Nevertheless, it is straightforward to interpret their sign and relative size.

Provision of a custom picture is a cruder indicator. Hence, the terms for
amount and interest rate are barely significant, yet estimated with plausible
signs. Again, after controlling for third variables, the intervention has a strongly
significant negative effect on the willingness to provide custom pictures. Note
that model M6 attributes a larger contribution to the actual use of the trading
agent than to its mere presence.

4.3 Limitations

Natural experiments with a single intervention date suffer from the difficulty
to exclude unobserved third variables as causes. Therefore, they do not permit
causal inference in a strict sense. Although, we controlled for observable factors
and linear time trends, there may be non-linear dynamics of growth or overlap-
ping interventions we are not aware of.

We intentionally avoided conjectures about efficiency or welfare aspects of in-
formation revelation regimes. Reliable empirical statements on market efficiency
and long-term costs or benefits of signaling in this marketplace depend on the
availability of actual default rates. These cannot be observed before the 3–5 year
maturity of the outstanding loans has been reached.

5 Concluding Remarks

To the best of our knowledge, this work is the first attempt to study the effect
of automatic trading on information revelation behavior in marketplaces where
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humans and computers interact. We have theorized how voluntary disclosure of
unverified information forms a coordination problem with at least two equilibria
for high, and respectively low information regimes. A natural experiment in
the context of online social lending, an information-rich market, enables us to
test our hypothesis empirically and study the effects of the introduction of an
optional trading agent on information revelation. The latter was measured by two
quantitative indicators. While controlling for third variables, both were found to
be negatively affected by the introduction of the trading agent.

Generally speaking, our results illustrate how changes in the market mecha-
nism, even if limited to parts of the market, may reset focal points and cause
spillovers to rebalance the equilibria in the initially unaffected segments of the
market. If this logic is transferred to other markets, or more generally to coordi-
nation games (e.g., real-name policies in virtual communities), then utmost care
should be taken when introducing automated agents. Even if the automation is
optional and affects only part of the market or community, an avalanche effect
might follow and its precise consequences are difficult to predict in advance.

We believe that this opens an interesting and relevant direction with many
research questions. Obvious next steps include the differentiation of signals on a
semantic level [2], or the interpretation of the temporary shut-down of the US
social lending platform Prosper.com as a natural experiment [32].
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Abstract. Daily deals platforms such as Amazon Local, Google Offers,
GroupOn, and LivingSocial have provided a new channel for merchants
to directly market to consumers. In order to maximize consumer acqui-
sition and retention, these platforms would like to offer deals that give
good value to users. Currently, selecting such deals is done manually;
however, the large number of submarkets and localities necessitates an
automatic approach to selecting good deals and determining merchant
payments.

We approach this challenge as a market design problem. We postu-
late that merchants already have a good idea of the attractiveness of
their deal to consumers as well as the amount they are willing to pay
to offer their deal. The goal is to design an auction that maximizes a
combination of the revenue of the auctioneer (platform), welfare of the
bidders (merchants), and the positive externality on a third party (the
consumer), despite the asymmetry of information about this consumer
benefit. We design auctions that truthfully elicit this information from
the merchants and maximize the social welfare objective, and we char-
acterize the consumer welfare functions for which this objective is truth-
fully implementable. We generalize this characterization to a very broad
mechanism-design setting and give examples of other applications.

1 Introduction

Daily deals websites such as Amazon Local, Google Offers, GroupOn, and Liv-
ingSocial have provided a new channel of direct marketing for merchants. In
contrast to standard models of advertising such as television ads and web search
results, the daily deals setting provides two new challenges to platforms.

First, in models of advertising such as web search, the advertisement is shown
on the side of the main content; in contrast, daily deals websites offer consumers
web pages or emails that contain only advertisements (i.e., coupons). Therefore,
for the long-term success of a platform, the decision of which coupons to show to
the user must depend heavily on the benefit these coupons provide to consumers.

Second, the merchant often has significantly more information than the ad-
vertising platform about this consumer benefit. This benefit depends on many
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things: how much discount the coupon is offering, how the undiscounted price
compares with the price of similar goods at the competitors, the price elastic-
ity of demand for the good, the fine prints of the coupon, and so on. These
parameters are known to the merchants, who routinely use such information to
optimize their pricing and their inventory, but not to the platform provider who
cannot be expected to be familiar with all markets and would need to invest
significant resources to learn these parameters. Furthermore, unlike standard
advertising models where an ad is displayed over a time period to a number of
users and its value to the user (often measured using proxies like click-through
rate or conversion rate) can be estimated over time, the structure of the daily
deals market does not permit much experimentation: A number of deals must
be selected at the beginning of each day to be sent to the subscribers all at once,
and the performance of previous coupons, if any, by the same advertiser is not
a good predictor of the performance of the current coupon, as changing any of
the terms of the coupons can significantly affect its value.

These challenges pose a novel market design problem: How can we select
deals with good benefit to the consumer in the presence of strongly asymmetric
information about this benefit? This is precisely our goal in this paper. We pos-
tulate that merchants hold, as private information, two parameters: A valuation
equalling the overall utility the merchant gains from being selected (as in a stan-
dard auction); and a quality that represents the attractiveness of their deal to a
user. The task is to design an auction mechanism that incentivizes the merchants
to reveal their private information about both their valuation and quality, then
picks deals that maximize a combination of platform, merchant, and consumer
values. We show that, if consumer welfare is a convex function of quality, then we
can design a truthful auction that maximizes total social welfare; furthermore,
we show that the convexity condition is necessary. We give negative results for
another natural goal, achieving a constant-fraction welfare objective subject to
a quality threshold guarantee. The main idea behind our positive results is to
design a mechanism where bidders’ total payment is contingent (in a carefully
chosen way) upon whether the consumer purchases the coupon. Not surprisingly,
the theory of proper scoring rules comes in handy here.

We then extend these results to characterize incentive-compatible mechanisms
for social welfare maximization in a very general auction setting, where the type
of each bidder has both a valuation and a quality component. Quality is modeled
as a distribution over possible states of the world; a consumer welfare function
maps these distributions to the welfare of some non-bidding party. We design
truthful welfare-maximizing mechanisms for this setting and characterize imple-
mentable consumer welfare functions with a convexity condition that captures
expected welfare and, intuitively, risk-averse preferences. We give a number of
example applications demonstrating that our framework can be applied in a
broad range of mechanism design settings, from network design to principal
agent problems.
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The rest of this paper is organized as follows: In the next section, we formally
define the setting and the problem. In Section 3, we give a mechanism for maxi-
mizing social welfare when consumer welfare is a convex function the quality. In
Section 4, we show that no truthful mechanism even approximates the objective
of maximizing the winner’s value subject to a minimum quality; we also show
that the convexity assumption in Section 3 is necessary. Finally, in Section 5, we
extend our mechanisms and characterization to a much more general setting.

Related work. To the best of our knowledge, our work is the first to address
mechanism design in a market for daily deals. There has been unrelated work
on other aspects of daily deals (e.g. impact on reputation) [1,2,3]. A related,
but different line of work deals with mechanism design for pay-per-click (PPC)
advertising. In that setting, as in ours, each ad has a value and a quality (repre-
senting click-through rate for PPC ads and the probability of purchasing the deal
in our setting). The objective is often to maximize the combined utility of the
advertisers and the auctioneer [4,5], but variants where the utility of the user is
also taken into account have also been studied [6]. The crucial difference is that
in PPC advertising, the auctioneer holds the quality parameter, whereas in our
setting, this parameter is only known to the merchant and truthful extraction
of the parameter is an important part of the problem. Other work on auctions
with a quality component [7,8] assume that a quality level may be assigned by
the mechanism to the bidder (who always complies), in contrast to our setting
where quality is fixed and private information.

We make use of proper scoring rules, an overview of which appears in [9]; to
our knowledge, proper scoring rules have been used in auctions only to incentivize
agents to guess others’ valuations [10]. Our general setting is related to an exten-
sion of proper scoring rules, decision rules and decision markets [11,12]. There, a
mechanism designer elicits agents’ predictions of an event conditional on which
choice she makes. She then selects an outcome, observes the event, and pays the
agents according to the accuracy of their predictions. Unlike our setting, agents
are assumed not to have preferences over the designer’s choice, except in [13],
which (unlike us) assumes that the mechanism has partial knowledge of these
preferences and does not attempt to elicit preferences. Our general model may
be interpreted as a fully general extension to the decision-rule setting in which
we introduce the novel challenge of truthfully eliciting these preferences and
incorporate them into the objective. However, we focus on deterministic mech-
anisms, while randomized mechanisms have been shown to have nice properties
in a decision-rule setting [14].

Another related line of work examines when a proper scoring rule might incen-
tivize an agent to take undesirable actions in order to improve his prediction’s
accuracy. When the mechanism designer has preferences over different states,
scoring rules that incentivize beneficial actions are termed principal-aligned scor-
ing rules [15]. A major difference is that the mechanism designer in the principal-
aligned setting, unlike in ours, does not select between outcomes of any mecha-
nism, but merely observes a state of the world and makes payments.
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2 The Model

In this section, we formulate the problem in its simplest form: when an auctioneer
has to select just one of the interested merchants to display her coupon to a single
consumer.1 In Section 5, our model and results will be generalized to a much
broader setting.

There are m bidders, each with a single coupon. We also refer to the bidders
as merchants and to coupons as deals. An auctioneer selects at most one of these
coupons to display. For each bidder i, there is a probability pi ∈ [0, 1] that if i’s
coupon is displayed to a consumer, it will be purchased by the consumer. We
refer to pi as the quality of coupon i. Furthermore, for each bidder i, there is
a value vi ∈ R that represents the expected value that i gets if her coupon is
chosen to be displayed to the advertiser. Both vi and pi are private information
of the bidder i, and are unknown to the auctioneer.2 We refer to (vi, pi) as bidder
i’s type. We assume that the bidders are expected utility maximizers and their
utility is quasilinear in payment.

Note that vi is i’s total expected valuation for being selected; in particular, it
is not a value-per-purchase (as in e.g. search advertisement). Rather, vi is the
maximum amount i would be willing to pay to be selected (before observing the
consumer’s purchasing decision). Also, we allow vi and pi to be related in an
arbitrary manner. If, for instance, i derives value ai from displaying the coupon
plus an additional ci if the consumer purchases the coupon, then i would compute
vi = ai + pici and submit her true type (vi, pi). For our results, we do not need
to assume any particular model of how vi is computed or of how it relates to pi.

An auction mechanism functions as follows. It asks each bidder i to reveal her
private type (vi, pi). Let (v̂i, p̂i) denote the type reported by bidder i. Based on
these reports, the mechanism chooses one bidder i∗ as the winner of the auction,
i.e., the merchant whose deal is shown. Then, a consumer arrives; with probabil-
ity pi∗ , she decides to purchase the deal. Let ω ∈ {0, 1} denote the consumer’s
decision (where 1 is a purchase). The mechanism observes the consumer’s de-
cision and then charges the bidders according to a payment rule, which may
depend on ω.

We require the mechanism to be truthful, which means that it is, first, incen-
tive compatible: for every merchant i and every set of types reported by the other
merchants, i’s expected utility is maximized if she reports her true type (vi, pi);
and second, interim individually rational: each merchant receives a non-negative
utility in expectation (over the randomization involved in the consumer’s pur-
chasing decision) if she reports her true type.

The goal of the auctioneer is to increase some combination of the welfare of all
the parties involved. If we ignore the consumer, this can be modeled by the sum
of the utilities of the merchants and the auctioneer, which, by quasi-linearity of

1 Our mechanisms for this model can be immediately extended to the case of many
consumers by scaling.

2 In Section 5.3, we will briefly discuss extensions in which both parties have quality
information.
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the utilities, is precisely vi∗ . To capture the welfare of the user, we suppose that
a reasonable proxy is the quality pi∗ of the selected deal. We study two natural
ways to combine the merchant/auctioneer welfare vi∗ with the consumer welfare
pi∗ . One is to maximize vi∗ subject to the deal quality pi∗ meeting a minimum
threshold α. Another is to model the consumer’s welfare as a function g(pi∗) of
quality and seek to maximize total welfare vi∗ +g(pi∗). In the latter case, when g
is a convex function, we construct in the next section a truthful mechanism that
maximizes this social welfare function (and we show in Section 4 that, when g is
not convex, there is no such mechanism). For the former case, in Section 4, we
prove that it is not possible to achieve the objective, even approximately.

3 A Truthful Mechanism via Proper Scoring Rules

In this section, we show that for every convex function g, there is an incentive-
compatible mechanism that maximizes the social welfare function vi∗ + g(pi∗).
A convex consumer welfare g function may be natural in many settings. Most
importantly, it includes the natural special case of a linear function; and it also
intuitively models risk aversion, because (by definition of convexity) the average
welfare of taking a guaranteed outcome, which is pg(1) + (1 − p)g(0), is larger
than the welfare g(p) of facing a lottery over those outcomes.3,4

We will make use of binary scoring rules, which are defined as follows.

Definition 1. A binary scoring rule S : [0, 1] × {0, 1} �→ R is a function that
assigns a real number S(p̂, ω) to each probability report p̂ ∈ [0, 1] and state
ω ∈ {0, 1}. The expected value of S(p̂, ω), when ω is drawn from a Bernoulli
distribution with probability p, is denoted by S(p̂; p). A scoring rule S is (strictly)
proper if, for every p, S(p̂; p) is (uniquely) maximized at p̂ = p.

Traditionally, proper binary scoring rules are used to truthfully extract the
probability of an observable binary event from an agent who knows this probabil-
ity: It is enough to pay the agent S(p̂, ω) when the agent reports the probability
p̂ and the state turns out to be ω. In our setting, obtaining truthful reports is not
so straightforward: A bidder’s report affects whether or not they win the auction
as well as any scoring rule payment. However, the following theorem shows that,
when the consumer welfare function g is convex, then a careful use of proper
binary scoring rules yields an incentive-compatible auction mechanism.

3 To see this, suppose 100 consumers arrive, and the welfare of each is the convex
function g(p) = p2. If 50 consumers see a deal with p = 0 and 50 see a deal with
p = 1, the total welfare is 50(0) + 50(1) = 50. If all 100 see a deal with p = 0.5, the
total welfare is 100

(
0.52

)
= 25. Under this welfare function, the “sure bet” of 50

purchases is preferable to the lottery of 100 coin flips.
4 Note that risk aversion is often associated with concave functions. These are unre-
lated as they do not map probability distributions to welfare; they are functions
u : R → R that map wealth to welfare. Concavity represents risk aversion in
that setting because the welfare of a guaranteed payoff x, which is u(x), is larger
than the welfare of facing a draw from a distribution with probability x, which is
xu(1) + (1− x)u(0).
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Theorem 1. Let g : R → R be a convex function. Then there is a truthful
auction that picks the bidder i∗ that maximizes vi∗ + g(pi∗) as the winner.

The proof of this theorem relies on the following lemma about proper binary
scoring rules, which is well known and fully proven, for example, in [9].

Lemma 1. Let g : [0, 1] → R be a (strictly) convex function. Then there is a
(strictly) proper binary scoring rule Sg such that for every p, Sg(p; p) = g(p).

The proof of Lemma 1 proceeds by checking the claims (omitted here) after
constructing Sg. To do so, letting g′(p) be a subgradient of g at point p (that
is, the slope of any tangent line to g at p, e.g. equalling the derivative if g
is differentiable at p), we take Sg(p, 1) = g(p) + (1 − p)g′(p) and Sg(p, 0) =
g(p)− pg′(p).

Proof (Theorem 1). Let h be the following “adjusted value” function: h(v̂, p̂) =
v̂ + g(p̂). For convenience, rename the bidders so that bidder 1 has the highest
adjusted value, bidder 2 the next highest, and so on. The mechanism determin-
istically gives the slot to bidder 1 = i∗. All bidders except bidder 1 pay zero.
Bidder 1 pays h(v̂2, p̂2) − Sg(p̂1, ω), where Sg is a proper binary scoring rule
satisfying Sg(p; p) = g(p) and ω is 1 if the customer purchases the coupon and 0
otherwise. The existence of this binary scoring rule is guaranteed by Lemma 1.

We now show that the auction is truthful. If i bids truthfully and does not
win, i’s utility is zero. If i bids truthfully and wins, i’s expected utility is

vi − h(v̂2, p̂2) + Sg(pi; pi)

= h(vi, pi)− h(v̂2, p̂2).

This expected utility is always at least 0 because i is selected as winner only if
h(vi, pi) ≥ h(v2, p2). This shows that the auction is interim individually rational.

Now suppose that i reports (v̂i, p̂i). If i does not win the auction with this
report, then i’s utility is zero, but a truthful report always gives at least zero. So
we need only consider the case where i wins the auction with this report. Then,
i’s expected utility is

vi − h(v̂2, p̂2) + Sg(p̂i; pi)

≤ vi − h(v̂2, p̂2) + Sg(pi; pi)

= h(vi, pi)− h(v̂2, p̂2).

using the properness of Sg and the definition of h(vi, pi). There are two cases.
First, if h(vi, pi) < h(v̂2, p̂2), then U(v̂i, p̂i) < 0. But, if i had reported truthfully,
i would have gotten a utility of zero (having not have been selected as the winner).
Second, if h(vi, pi) ≥ h(v̂2, p̂2), then U(v̂i, p̂i) ≤ h(vi, pi)−h(v̂2, p̂2). But, if i had
reported truthfully, i would have gotten an expected utility of h(vi, pi)−h(v̂2, p̂2).
This shows incentive compatibility.

4 Impossibility Results

An alternative way to combine consumer welfare with the advertiser/auctioneer
welfare is to ask for an outcome that maximizes the advertiser/auctioneer
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welfare subject to the winner’s quality parameter meeting a minimum threshold.
It is not hard to show that achieving such “discontinuous” objective functions is
impossible.5 A more reasonable goal is to obtain an incentive-compatible mech-
anism with the following property: for two given thresholds α and β with α < β,
the mechanism always selects a winner i∗ with quality pi∗ at least α, and with
a value vi∗ that is at least v∗ := maxi:pi≥β{vi} (or an approximation of v∗).

One approach to solving this problem is to use the result of the previous
section (Theorem 1) with an appropriate choice of the function g. Indeed, if
we assume the values are from a bounded range [0, Vmax) and use the auction
mechanism from Theorem 1 with a function g defined as follows,

g(p) =

{
0 if p < α
p−α
β−α .Vmax if p ≥ α

then if there is at least one bidder with quality parameter at least β, then the
mechanism is guaranteed to pick a winner with quality at least α. This is easy
to see: the adjusted bid of the bidder with quality at least β is at least Vmax,
while the adjusted bid of any bidder with quality less than α is less than Vmax. In
terms of the value, however, this mechanism cannot provide any multiplicative
approximation guarantee, as it can select a bidder with quality 1 and value 0
over a bidder with quality β and any value less than 1−α

β−αVmax.
Unfortunately, as we show in Theorem 2, this is unavoidable: unless β = 1

(that is, unless welfare is compared only against bidders of “perfect” quality),
there is no deterministic, truthful mechanism that can guarantee a bounded
multiplicative approximation guarantee in the above setting.

Theorem 2. For a given 0 ≤ α < β ≤ 1 and λ ≥ 1, suppose that a deterministic
truthful mechanism satisfies that, if there is some bidder i with pi ≥ β:

1. The winner has pi∗ > α;
2. The winner has value vi∗ ≥ v∗/λ, where v∗ := maxi:pi≥β{vi}.

Then β = 1. This holds even if valuations are upper-bounded by a constant Vmax.

Due to space constraints, the proof is deferred to the full version of the paper [16].
The main idea is as follows. Fix all bids except i’s and suppose v∗ is the highest
bid of any other agent whose quality exceeds α. First, suppose i has quality below
α: i must not want to win (so expected payment must be at least Vmax). Second,
suppose i has perfect quality: i must not want to win if vi is below v∗/λ (so
expected payment must be at least v∗/λ). Third, suppose vi ≥ λv∗ and pi ≥ β:
i must want to win (so expected payment must be less than λvj). Combining
these inequalities and finding that i’s expected payment is convex in pi (taking
into account i’s optimal misreport if necessary!), we get that

λv∗ ≥ Vmax

(
1− β

1− α

)
+

v∗

λ

(
β − α

1− α

)
,

5 Intuitively, the reason is that it is impossible to distinguish between a coin whose
probability of heads is α and one whose probability is α−ε, when ε can be arbitrarily
small, by the result of a single flip.
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which will hold for all v∗ only if β = 1; otherwise, it fails for v∗ � Vmax. We
can extend the techniques used in the above proof to show that the convexity
assumption in Theorem 1 is indeed necessary. The proof is deferred to the full
version of the paper [16].

Theorem 3. Assume g : R→ R is a function for which there exists a determin-
istic truthful auction that always picks the bidder i∗ that maximizes vi∗ + g(pi∗)
as the winner. Then g is a convex function.

5 A General Framework

Daily deals websites generally offer many deals simultaneously, and to many con-
sumers. A more realistic model of this scenario must take into account complex
valuation functions as well as general quality reports. Merchants’ valuations may
depend on which slot (top versus bottom, large versus small) or even subset of
slots they win; they may also change depending on which competitors are placed
in the other slots. Meanwhile, merchants might like to report quality in different
units than purchase probability, such as (for example) total number of coupon
sales in a day, coupon sales relative to those of competitors, or so on.

In this section, we develop a general model that can cover these cases and
considerably more. As in a standard multidimensional auction, bidders have a
valuation for each outcome of the mechanism (for instance, each assignment
of slots to bidders). For quality reports, our key insight is that they may be
modeled by a belief or prediction over possible states of the world, where each
state has some verifiable quality. This naturally models many scenarios where the
designer would like to make a social choice (such as allocating goods) based not
only on the valuations of the agents involved, but also on the likely externality
on some non-bidding party; however, this externality can be best estimated by
the bidders. We model this externality by a function, which we call the consumer
welfare function, that maps probability distributions to a welfare value. A natural
consumer welfare function is the expected value of a distribution.

When this consumer welfare satisfies a convexity condition, we construct truth-
ful mechanisms for welfare maximization in this general setting; we also prove
matching negative results. This allows us to characterize implementable welfare
functions in terms of component-wise convexity, which includes the special case
of expected value and can also capture intuitively risk-averse preferences.

We start with a definition of the model in Section 5.1, and then give a truthful
mechanism as well as a matching necessary condition for implementability in
this model in Section 5.2. In Section 5.3 we give a number of applications and
extensions of our general framework.

5.1 Model

We now define the general model, using the multi-slot daily deals problem as a
running example to illustrate the definition.
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There are m bidders (also called merchants) indexed 1 through m, and a finite
set O of possible outcomes of the mechanism. Each bidder has as private informa-
tion a valuation function vi : O → R that assigns a value vi(o) to each outcome
o. For instance, each outcome o could correspond to an assignment of merchants
to the available slots, and vi(o) is i’s expected value for this assignment, taking
into account the slot(s) assigned to i as well as the coupons in the other slots.

For each o ∈ O and each bidder i, there is a finite set of observable disjoint
states of interestΩi,o representing different events that could occurwhen themech-
anism’s choice is o. For example, if merchant i is awarded a slot under outcome
o, then Ωi,o could be the possible total numbers of sales of i’s coupon when the
assignment is o, e.g. Ωi,o = {fewer than 1000, 1000 to 5000, more than 5000}.

Given an outcome o chosen by the mechanism, nature will select at random one
of the states ω in Ωi,o for each bidder i.6 In the running example, some number
of consumers choose to purchase i’s coupon, so perhaps ω = “1000 to 5000”.

We let ΔΩi,o denote the probability simplex over the set Ωi,o, i.e., ΔΩi,o =
{p ∈ [0, 1]Ωi,o :

∑
ω∈Ωi,o

pω = 1}. Each bidder i holds as private information a

set of beliefs (or predictions) pi : O → ΔΩi,o . For each outcome o, pi(o) ∈ ΔΩi,o

is a probability distribution over states ω ∈ Ωi,o. Thus, under outcome o where
i is assigned a slot, pi(o) would give the probability that i sells fewer than 1000
coupons, that i sells between 1000 and 5000 coupons, and that i sells more than
5000 coupons. We denote the vector of predictions (p1(o), . . . , pm(o)) at outcome
o by p(o) ∈ ×m

i=1 ΔΩi,o .
The goal of the mechanism designer is to pick an outcome that maximizes a

notion of welfare. The combined welfare of the bidders and the auctioneer can
be represented by

∑m
i=1 vi(o). If this was the goal, then the problem could have

been solved by ignoring the pi(o)’s and using the well-known Vickrey-Clarke-
Groves mechanism [17,18,19]. In our setting, however, there is another compo-
nent in the welfare function, which for continuity with the daily deals setting we
call the consumer welfare. This component, which depends on the probabilities
pi(o), represents the welfare of a non-bidding party that the auctioneer wants
to keep happy (which could even be the auctioneer herself!). The consumer wel-
fare when the mechanism chooses outcome o is given by an arbitrary function
go : ×m

i=1 ΔΩi,o → R which depends on the bidders’ predictions p(o). The goal
of the mechanism designer is then to pick an outcome o that maximizes(

m∑
i=1

vi(o)

)
+ go(p(o)).

For example, in the multi-slot problem, consumer welfare at the outcome o
could be defined as the sum of the expected number of clicks of the deals that
are allocated a slot in o.

6 These choices do not have to be independent across bidders; indeed, all bidders could
be predicting the same event, in which case Ωi,o = Ωi′,o for all i, i′ and nature selects
the same state for each i.
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A mechanism in this model elicits bids (v̂i, p̂i) from each bidder i and picks
an outcome o based on these bids. Then, for each i, the mechanism observes the
state ωi picked by nature from Ωi,o and charges i an amount that can depend
on the bids as well as the realized state ωi. This mechanism is truthful (incentive
compatible and individually rational) if, for each bidder i, and for any set of
reports of other bidders (v̂−i, p̂−i), bidder i can maximize her utility by bidding
her true type (vi, pi), and this utility is non-negative.

5.2 Characterization of Truthful Mechanisms

We begin by defining the convexity property we will use in our characterization.

Definition 2. A function f : ΔΩ �→ R is convex if and only if for each x, y ∈
ΔΩ and each α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

We call a function go : ×m
i=1 ΔΩi,o �→ R component-wise convex if for each i

and for each vector p−i(o) ∈ ×j:j 	=i ΔΩj,o of predictions of bidders other than i,
go(pi(o),p−i(o)) is a convex function of pi(o).

Component-wise convexity includes the important special case of expected
value, and can also capture an intuitive notion of risk aversion with respect to
each bidder’s prediction, as it requires that the value of taking a draw from
some distribution gives lower utility than the expected value of that draw (see
footnotes 3 and 4). It also includes functions such as g(p1, p2) = p1p2 that are
component-wise convex, but not convex.

We now state our results for the general model:

Theorem 4. There is a deterministic truthful mechanism that selects an out-
come o maximizing

∑m
i=1 vi(o)+go(p(o)) if and only if, for each o, the consumer

welfare function go is component-wise convex.

As in the simple model, our mechanism uses proper scoring rules, defined for
the general setting below. We also need a generalization of Lemma 1.

Definition 3. A scoring rule S : ΔΩ × Ω → R is a function that assigns a
real number S(p, ω) to each probability report p ∈ ΔΩ and state ω ∈ Ω. The
expected value of S(p̂, ω) when ω is drawn according to the distribution p ∈ ΔΩ

is denoted by S(p̂; p). A scoring rule S is (strictly) proper if, for every p, S(p̂; p)
is (uniquely) maximized at p̂ = p.

Lemma 2 ([9,20]). For every convex function g : ΔΩ → R there is a proper
scoring rule Sg such that for every p, Sg(p; p) = g(p).

The full proof of Theorem 4 is given in the full version of the paper [16]; here,
we define the mechanism and sketch the main idea behind showing truthfulness.
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The proof that component-wise convexity is necessary uses similar ideas to that
of Theorem 3.

To define the mechanism, note that, because each go is component-wise convex,
we can use Lemma 2 to construct, for each outcome o, bidder i, and set of
fixed reports p−i of other bidders, a proper scoring rule So,i,p−i(o)(pi(o), ω). This
scoring rule takes pi(o), which is i’s prediction conditional on choice o, along with
the state ω ∈ Ωi,o observed by the mechanism. The expected value for a truthful
report is go(pi,p−i).

Let W o =
∑m

i=1 vi(o)+go(p(o)). The mechanism chooses the outcome o∗ with
maximum value W o∗ . Let W−i be the value of the choice of the mechanism (that
is, what W o∗ would be) if i had not participated; then bidder i’s payment when
outcome o is selected and the state ω ∈ Ωi,o is realized is

W−i −
∑
i′ 	=i

vi′(o
∗)− So∗,i,p−i(o∗)(pi(o

∗), ω).

The proof of truthfulness follows by showing that bidder i’s expected utility for
reporting truthfully is W o∗ −W−i, whereas i’s expected utility for a misreport
that results in the mechanism choosing o′ is at most W o′ −W−i by properness
of the scoring rule, and W o′ ≤W o∗ by construction of the mechanism.

5.3 Applications

In this section, we present a few sample applications and extensions of our general
framework. This demonstrates that the results of Section 5.2 can be used to
characterize achievable objective functions and design truthful mechanisms in a
very diverse range of settings.

Daily Deals with Both Merchant and Platform Information. In some
cases, it might be reasonable in a daily deals setting to suppose that the plat-
form, as well as the merchant, has some relevant private information about deal
quality. For example, perhaps the merchant has specific information about his
particular deal, while the auctioneer has specific information about typical con-
sumers under particular circumstances (days of the week, localities, and so on).
Many such extensions are quite straightforward; intuitively, this is because we
solve the difficult problem: incentivizing merchants to truthfully reveal quality
information.

To illustrate, consider a simple model where merchant i gets utility ai from
displaying a deal to a consumer and an additional ci if the user purchases it. For
every assignment of slots o containing the merchant’s deal, its quality (probabil-
ity of purchase) is a function fo,i of two pieces of private information: xi, held by
the merchant, and yi, held by the platform. Each merchant is asked to submit
(ai, ci, xi). The platform computes, for each slot assignment o, pi(o) = fo,i(xi, yi),
then sets vi(o) = ai + pi(o)ci for all o that include i’s coupon (vi(o) = 0 other-
wise). Then, the platform runs the auction defined in Theorem 4, setting i’s bid
equal to (vi, pi). By Theorem 4, bidder i maximizes expected utility when vi is
her true valuation for winning and pi is her true deal quality; therefore, she can
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maximize expected utility by truthfully submitting (ai, ci, xi), as this allows the
mechanism to correctly compute vi and pi.

Reliable Network Design. Consider a graph G, where each edge is owned by
a different agent. The auctioneer wants to buy a path from a source node s to
a destination node t. Each edge has a cost for being used in the path, and also
a probability of failure. Both of these parameters are private values of the edge.
The goal of the mechanism designer is to buy a path from s to t that minimizes
the total cost of the edges plus the cost of failure, which is a fixed constant times
the probability that at least one of the edges on the path fails.

It is easy to see that the above problem fits in our general framework: each
bidder’s value is the negative of the cost of the edge; each “outcome” is a path
from s to t; for each edge i on a path, the corresponding “states” are fail and
succeed; the consumer welfare function go for an outcome o is the negative of
the failure cost of that path. For each edge, fixing all other reports, go is a
linear function of failure probability. Therefore, go is component-wise convex,
and Theorem 4 gives a truthful mechanism for this problem.

We can also model a scenario where each edge has a probabilistic delay in-
stead of a failure probability. When edge i is included in the path, the possible
states Ωi,o correspond to the possible delays experienced on that edge. A natu-
ral objective function is to minimize the total cost of the path from s to t plus
its expected delay, which is a linear function of probability distributions. We
can also implement costs that are concave functions of the delay on each edge
(as welfare, the negative of cost, is then convex). These model risk aversion, as,
intuitively, the cost of a delay drawn from a distribution is higher than the cost
of the expected delay of that distribution. (Note that our results imply that a
concave objective function is not implementable!)

The exact same argument shows that other network design problems fit in
our framework. For example, the goal can be to pick a k-flow from s to t, or a
spanning tree in the graph. The “failure” function can also be more complicated,
although we need to make sure the convexity condition is satisfied.

Principal-Agent Models with Probabilistic Signals. Another application
of our mechanism is in a principal-agent setting, where a principal would like
to incentivize agents to exert an optimal level of effort, but can only observe
a probabilistic signal of this effort. Suppose the principal wishes to hire a set
of agents to complete a project; the principal only observes whether each agent
succeeds or fails at his task, but the probability of each’s success is influenced
by the amount of effort he puts in. More precisely, let ci(e) denote the cost of
exerting effort e for agent i and pi(e) denote the probability of the agent’s success
if this agent is hired and exerts effort e. The welfare generated by the project
is modeled by a component-wise convex function of the agents’ probabilities of
success (for instance, a constant times the probability that all agents succeed).

At the first glance, it might seem that this problem does not fit within our
framework, since each agent can affect its success probability by exerting more or
less effort. However, suppose we define an outcome of the mechanism as selecting
both a set of agents and an assignment of effort levels to these agents. Each
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agent submits as his type the cost ci(e) and probability of success pi(e) for each
possible effort level e. Theorem 4 then gives a welfare-maximizing mechanism
that truthfully elicits the ci(e) and pi(e) values from each agent and selects the
agents to hire, the effort levels they should exert, and the payment each receives
conditional on whether his component of the project succeeds. Agents maximize
expected utility by declaring their true types and exerting the amount of effort
they are asked to.7

6 Conclusion

Markets for daily deals present a challenging new mechanism-design setting, in
which a mechanism designer (the platform) wishes to pick an outcome (merchant
and coupon to display) that not only gives good bidder/auctioneer welfare, but
also good welfare for a third party (the consumer); however, this likely consumer
welfare is private information of the bidders.

Despite the asymmetry of information, we show that, when the consumer wel-
fare function is a convex function of bidders’ quality, we can design truthful mecha-
nisms for social welfare maximization in this setting. We give a matching negative
result showing that no truthful, deterministic mechanism exists when consumer
welfare is not convex. Another natural objective, approximating welfare subject
to meeting a quality threshold, also cannot be achieved in this setting.

Extending the daily deals setting to a more general domain yields a rich set-
ting with many potential applications. We model this setting as an extension to
traditional mechanism design: Now, agents have both preferences over outcomes
and probabilistic beliefs conditional on those outcomes. The goal is to maximize
social welfare including the welfare of a non-bidding party, modeled by a con-
sumer welfare function taking probability distributions over states of the world
to welfare.

A truthful mechanism must incentivize bidders to reveal their true preferences
and beliefs, even when these revealed beliefs influence the designer to pick a less
favorable outcome for the bidders. We demonstrate that this is possible if and
only if the consumer welfare function is component-wise convex, and when it is,
we explicitly design mechanisms to achieve the welfare objective. Component-
wise convexity includes expected-welfare maximization and intuitively can cap-
ture risk averse preferences. Finally, we demonstrate the generality of our results
with a number of example extensions and applications.
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1 Introduction

Game theory provides ways of formally representing strategic interactions be-
tween multiple players, as well as a variety of solution concepts for the result-
ing games. The best-known solution concept is that of Nash equilibrium [Nash,
1950], where each player plays a best response to all the other players’ strategies.
The computational complexity of, given a game in strategic form, computing a
(any) Nash equilibrium, remained open for a long time and was accorded signifi-
cant importance [Papadimitriou, 2001]. An elegant algorithm for the two-player
case, the Lemke-Howson algorithm [Lemke and Howson, 1964], was proved to
require exponential time on some game families [Savani and von Stengel, 2006].
Finally, in a breakthrough series of papers, the problem was established to be
PPAD-complete, even in the two-player case [Daskalakis et al., 2009; Chen et al.,
2009].1

Not all Nash equilibria are created equal; for example, one can Pareto-
dominate another. Moreover, generally, the set of Nash equilibria does not satisfy
interchangeability. That is, if player 1 plays her strategy from one Nash equi-
librium, and player 2 plays his strategy from another Nash equilibrium, the
result is not guaranteed to be a Nash equilibrium. This leads to the dreaded
equilibrium selection problem: if one plays a game for the first time, how is

1 Depending on the precise formulation, the problem can actually be FIXP-complete
for more than 2 players [Etessami and Yannakakis, 2010].

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 96–108, 2013.
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one to know according to which equilibrium to play? This problem is ar-
guably exacerbated by the fact that determining whether equilibria with par-
ticular properties, such as placing probability on a particular pure strategy or
having at least a certain level of social welfare, exist is NP-complete in two-
player games (and associated optimization problems are inapproximable un-
less P=NP) [Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008]. In any
case, equilibria are often seen as a state to which play could reasonably con-
verge, rather than an outcome that can necessarily be arrived at immediately
by deduction. Many other solution concepts have been studied from a compu-
tational perspective, including refinements of Nash equilibrium [Hansen et al.,
2010; Sørensen, 2012], coarsenings of Nash equilibrium (such as correlated equi-
librium [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2013]
and equilibria of repeated games [Littman and Stone, 2005; Borgs et al., 2010;
Kontogiannis and Spirakis, 2008; Andersen and Conitzer, 2013]), and incompa-
rable concepts such as Stackelberg equilibrium [Conitzer and Sandholm, 2006;
von Stengel and Zamir, 2010; Conitzer and Korzhyk, 2011].

In this paper, we consider the concept of evolutionarily stable strategies, a
solution concept for symmetric games with two players. s will denote a pure
strategy and σ a mixed strategy, where σ(s) denotes the probability that mixed
strategy σ places on pure strategy s. u(s, s′) is the utility that a player playing
s obtains when playing against a player playing s′, and

u(σ, σ′) =
∑
s,s′

σ(s)σ′(s′)u(s, s′)

is the natural extension to mixed strategies.

Definition 1 (Price and Smith [1973]). Given a symmetric two-player game,
a mixed strategy σ is said to be an evolutionarily stable strategy (ESS) if both
of the following properties hold.

1. (Symmetric Nash equilibrium property) For any mixed strategy σ′, we have
u(σ, σ) ≥ u(σ′, σ).

2. For any mixed strategy σ′ (σ′ �= σ) for which u(σ, σ) = u(σ′, σ), we have
u(σ, σ′) > u(σ′, σ′).

The intuition behind this definition is that a population of players playing σ
cannot be successfully “invaded” by a small population of players playing some
σ′ �= σ, because they will perform strictly worse than the players playing σ and
therefore they will shrink as a fraction of the population. They perform strictly
worse either because (1) u(σ, σ) > u(σ′, σ), and because σ has dominant pres-
ence in the population this outweighs performance against σ′; or because (2)
u(σ, σ) = u(σ′, σ) so the second-order effect of performance against σ′ becomes
significant, but in fact σ′ performs worse against itself than σ performs against
it, that is, u(σ, σ′) > u(σ′, σ′).
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Example (Hawk-Dove game [Price and Smith, 1973]). Consider the fol-
lowing symmetric two-player game:

Dove Hawk
Dove 1,1 0,2
Hawk 2,0 -1,-1

The unique symmetric Nash equilibrium σ of this game is 50% Dove, 50% Hawk.
For any σ′, we have u(σ, σ) = u(σ′, σ) = 1/2. That is, everything is a best re-
ponse to σ. We also have u(σ, σ′) = 1.5σ′(Dove) − 0.5σ′(Hawk) = 2σ′(Dove) −
0.5, and u(σ′, σ′) = 1σ′(Dove)2 + 2σ′(Hawk)σ′(Dove) + 0σ′(Dove)σ′(Hawk) −
1σ′(Hawk)2 = −2σ′(Dove)2 + 4σ′(Dove)− 1. The difference between the former
and the latter expression is 2σ′(Dove)2 − 2σ′(Dove) + 0.5 = 2(σ′(Dove)− 0.5)2.
The latter is clearly positive for all σ′ �= σ, implying that σ is an ESS.

Intuitively, the problem of computing an ESS appears significantly harder
than that of computing a Nash equilibrium, or even a Nash equilibrium with a
simple additional property such as those described earlier. In the latter type of
problem, while it may be difficult to find the solution, once found, it is straight-
forward to verify that it is in fact a Nash equilibrium (with the desired simple
property). This is not so for the notion of ESS: given a candidate strategy, it
does not appear straightforward to figure out whether there exists a strategy
that successfully invades it. However, appearances can be deceiving; perhaps
there is a not entirely obvious, but nevertheless fast and elegant way of checking
whether such an invading strategy exists. Even if not, it is not immediately clear
whether this makes the problem of finding an ESS genuinely harder. Computa-
tional complexity provides the natural toolkit for answering these questions.

The complexity of computing whether a game has an evolutionarily stable
strategy (for an overview, see Chapter 29 of the Algorithmic Game Theory
book [Suri, 2007]) was first studied by Etessami and Lochbihler [2008], who
proved that the problem is both NP-hard and coNP-hard, as well as that the
problem is contained in ΣP

2 (the class of decision problems that can be solved
in nondeterministic polynomial time when given access to an NP oracle). Nisan
[2006] subsequently2 proved the stronger hardness result that the problem is
coDP -hard. He also observed that it follows from his reduction that the prob-
lem of determining whether a given strategy is an ESS is coNP-hard (and
Etessami and Lochbihler [2008] then pointed out that this also follows from their
reduction). Etessami and Lochbihler [2008] also showed that the problem of de-
termining the existence of a regular ESS is NP-complete. As was pointed out in
both papers, all of this still leaves the main question of the exact complexity of
the general ESS problem open. In this paper, this is settled: the problem is in
fact ΣP

2 -complete.
The proof is structured as follows. Lemma 1 shows that the slightly more

general problem of determining whether an ESS exists whose support is restricted
to a subset of the strategies is ΣP

2 -hard. This is the main part of the proof.

2 An early version of Etessami and Lochbihler [2008] appeared in 2004.
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Then, Lemma 2 points out that if two pure strategies are exact duplicates,
neither of them can occur in the support of any ESS. By this, we can disallow
selected strategies from taking part in any ESS simply by duplicating them.
Combining this with the first result, we arrive at the main result, Theorem 1.

One may well complain that Lemma 2 is a bit of a cheat; perhaps we should
just consider duplicate strategies to be “the same” strategy and merge them
back into one. As the reader probably suspects, such a hasty and limited patch
will not avoid the hardness result. Even something a little more thorough, such
as iterated elimination of very weakly dominated strategies (in some order), will
not suffice: in Appendix A I show, with additional analysis and modifications,
that the result holds even in games where each pure strategy is the unique best
response to some mixed strategy.

2 Hardness with Restricted Support

Definition 2. In ESS-RESTRICTED-SUPPORT, we are given a symmetric
two-player normal-form game G with strategies S, and a subset T ⊆ S. We
are asked whether there exists an evolutionarily stable strategy of G that places
positive probability only on strategies in T (but not necessarily on all strategies
in T ).

Definition 3 (MINMAX-CLIQUE). We are given a graph G = (V,E), sets
I and J , a partition of V into subsets Vij for i ∈ I and j ∈ J , and a number k.
We are asked whether it is the case that for every function t : I → J , there is a
clique of size (at least) k in the subgraph induced on

⋃
i∈I Vi,t(i). (Without loss

of generality, we will require k > 1.)

Example. Figure 1 shows a tiny MINMAX-CLIQUE instance (let k = 2). The
answer to this instance is “no” because for t(1) = 2, t(2) = 1, the graph induced
on

⋃
i∈I Vi,t(i) = V12 ∪ V21 = {v12, v21} has no clique of size at least 2.

Recall that ΠP
2 = coΣP

2 .

Known Theorem 1 ([Ko and Lin, 1995]). MINMAX-CLIQUE is ΠP
2 -

complete.

Lemma 1. ESS-RESTRICTED-SUPPORT is ΣP
2 -hard.

Proof: We reduce from the complement of MINMAX-CLIQUE. That is, we
show how to transform any instance of MINMAX-CLIQUE into a symmetric
two-player normal-form game with a distinguished subset T of its strategies, so
that this game has an ESS with support in T if and only if the answer to the
MINMAX-CLIQUE instance is “no.”



100 V. Conitzer

j 1 j 2
J = {1,2}

j = 1 j = 2
I = {1,2}

v11 v12i = 1

V12={v12}V11={v11} 12 { 12}11 { 11}

v21 v22i = 2

V22={v22}V21={v21}

Fig. 1. An example MINMAX-CLIQUE instance (with k = 2), for which the answer
is “no.”

The Reduction. For every i ∈ I and every j ∈ J , create a strategy sij . For
every v ∈ V , create a strategy sv. Finally, create a single additional strategy s0.

– For all i ∈ I and j ∈ J , u(sij , sij) = 1.
– For all i ∈ I and j, j′ ∈ J with j �= j′, u(sij , sij′ ) = 0.
– For all i, i′ ∈ I with i �= i′ and j, j′ ∈ J , u(sij , si′j′) = 2.
– For all i ∈ I, j ∈ J , and v ∈ V , u(sij , sv) = 2− 1/|I|.
– For all i ∈ I and j ∈ J , u(sij , s0) = 2− 1/|I|.
– For all i ∈ I, j ∈ J , and v ∈ Vij , u(sv, sij) = 2− 1/|I|.
– For all i ∈ I, j, j′ ∈ J with j �= j′, and v ∈ Vij , u(sv, sij′ ) = 0.
– For all i, i′ ∈ I with i �= i′, j, j′ ∈ J , and v ∈ Vij , u(sv, si′j′ ) = 2− 1/|I|.
– For all v ∈ V , u(sv, sv) = 0.
– For all v, v′ ∈ V with v �= v′ where (v, v′) /∈ E, u(sv, sv′) = 0.
– For all v, v′ ∈ V with v �= v′ where (v, v′) ∈ E, u(sv, sv′) = (k/(k − 1))(2 −

1/|I|).
– For all v ∈ V , u(sv, s0) = 0.
– For all i ∈ I and j ∈ J , u(s0, sij) = 2− 1/|I|.
– For all v ∈ V , u(s0, sv) = 0.
– u(s0, s0) = 0.

We are asked whether there exists an ESS that places positive probability only
on strategies sij with i ∈ I and j ∈ J . That is, T = {sij : i ∈ I, j ∈ J}.
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Example. Consider again the MINMAX-CLIQUE instance from Figure 1. The
game to which the reduction maps this instance is:

s11 s12 s21 s22 sv11 sv12 sv21 sv22 s0
s11 1 0 2 2 3/2 3/2 3/2 3/2 3/2
s12 0 1 2 2 3/2 3/2 3/2 3/2 3/2
s21 2 2 1 0 3/2 3/2 3/2 3/2 3/2
s22 2 2 0 1 3/2 3/2 3/2 3/2 3/2
sv11 3/2 0 3/2 3/2 0 0 3 3 0
sv12 0 3/2 3/2 3/2 0 0 0 3 0
sv21 3/2 3/2 3/2 0 3 0 0 0 0
sv22 3/2 3/2 0 3/2 3 3 0 0 0
s0 3/2 3/2 3/2 3/2 0 0 0 0 0

It has an ESS σ with weight 1/2 on each of s12 and s21. In contrast, (for example)
σ′ with weight 1/2 on each of s11 and s21 is invaded by the strategy σ′′ with
weight 1/2 on each of sv11 and sv21 , because u(σ′′, σ′) = u(σ′, σ′) = 3/2 and
u(σ′′, σ′′) = u(σ′, σ′′) = 3/2.

Proof of Equivalence. Suppose there exists a function t : I → J such that
every clique in the subgraph induced on

⋃
i∈I Vi,t(i) has size strictly less than k.

We will show that the mixed strategy σ that places probability 1/|I| on si,t(i)
for each i ∈ I (and 0 everywhere else) is an ESS.

First, we show that σ is a best response against itself. For any sij in the
support of σ, we have u(sij , σ) = (1/|I|) · 1 + (1 − 1/|I|) · 2 = 2 − 1/|I|, and
hence we also have u(σ, σ) = 2− 1/|I|. For sij not in the support of σ, we have
u(sij , σ) = (1/|I|) · 0 + (1 − 1/|I|) · 2 = 2 − 2/|I| < 2 − 1/|I|. For all i ∈ I,
for all v ∈ Vi,t(i), we have u(sv, σ) = (1/|I|) · (2 − 1/|I|) + (1 − 1/|I|) · (2 −
1/|I|) = 2 − 1/|I|. For all i ∈ I, j ∈ J with j �= t(i), and v ∈ Vij , we have
u(sv, σ) = (1/|I|) · 0+ (1− 1/|I|) · (2− 1/|I|) = (1− 1/|I|)(2− 1/|I|) < 2− 1/|I|.
Finally, u(s0, σ) = 2− 1/|I|. So σ is a best response to itself.

It follows that if there were a strategy σ′ �= σ that could successfully invade
σ, then σ′ must put probability only on best responses to σ. Based on the
calculations in the previous paragraph, these best responses are s0, and, for any
i, si,t(i) and, for all v ∈ Vi,t(i), sv. The expected utility of σ against any of these is
2−1/|I| (in particular, for any i, we have u(σ, si,t(i)) = (1/|I|)·1+(1−1/|I|)·2 =
2− 1/|I|). Hence, u(σ, σ′) = 2− 1/|I|, and to successfully invade, σ′ must attain
u(σ′, σ′) ≥ 2− 1/|I|.

We can write σ′ = p0s0+p1σ
′
1+p2σ

′
2, where p0+p1+p2 = 1, σ′

1 only puts pos-
itive probability on the si,t(i) strategies, and σ′

2 only puts positive probability on
the sv strategies with v ∈ Vi,t(i). The strategy that results from conditioning σ′

on σ′
1 not being played may be written as (p0/(p0+p2))s0+(p2/(p0+p2))σ

′
2, and

thus we may write u(σ′, σ′) = p21u(σ
′
1, σ

′
1) + p1(p0 + p2)u(σ

′
1, (p0/(p0 + p2))s0 +

(p2/(p0 + p2))σ
′
2) + (p0 + p2)p1u((p0/(p0 + p2))s0 +(p2/(p0 + p2))σ

′
2, σ

′
1) + (p0 +

p2)
2u((p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2).

Now, if we shift probability mass from s0 to σ′
2, i.e., we decrease p0 and increase
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p2 by the same amount, this will not affect any of the coefficients in the previous
expression; it will not affect any of u(σ′

1, σ
′
1), u(σ

′
1, (p0/(p0 + p2))s0 + (p2/(p0 +

p2))σ
′
2) (because u(sij , v) = u(sij , s0) = 2 − 1/|I|), and u((p0/(p0 + p2))s0 +

(p2/(p0 + p2))σ
′
2, σ

′
1) (because u(s0, sij) = u(sv, sij) = 2 − 1/|I| when v ∈ Vij

or v ∈ Vi′j′ with i′ �= i); and it will not decrease u((p0/(p0 + p2))s0 + (p2/(p0 +
p2))σ

′
2, (p0/(p0 + p2))s0 + (p2/(p0 + p2))σ

′
2) (because for any v ∈ V , u(s0, s0) =

u(s0, sv) = u(sv, s0) = 0). Therefore, we may assume without loss of generality
that p0 = 0, and hence σ′ = p1σ

′
1 + p2σ

′
2.

It follows that we can write u(σ′, σ′) = p21u(σ
′
1, σ

′
1) + p1p2u(σ

′
1, σ

′
2)+

p2p1u(σ
′
2, σ

′
1)+p22u(σ

′
2, σ

′
2). We first note that u(σ′

1, σ
′
1) can be at most 2−1/|I|.

Specifically, u(σ′
1, σ

′
1) = (

∑
i σ

′
1(si,t(i))

2) · 1 + (1 −
∑

i σ
′
1(si,t(i))

2) · 2, and this
expression is uniquely maximized by setting each σ′

1(si,t(i)) to 1/|I|. u(σ′
1, σ

′
2)

is easily seen to also be 2 − 1/|I|, and u(σ′
2, σ

′
1) is easily seen to be at most

2 − 1/|I| (in fact, it is exactly that). Thus, to obtain u(σ′, σ′) ≥ 2 − 1/|I|, we
must have either p1 = 1 or u(σ′

2, σ
′
2) ≥ 2 − 1/|I|. However, in the former case,

we would require u(σ′
1, σ

′
1) = 2 − 1/|I|, which can only be attained by setting

each σ′
1(si,t(i)) to 1/|I|—but this would result in σ′ = σ. Thus, we can conclude

u(σ′
2, σ

′
2) ≥ 2 − 1/|I|. But then σ′

2 would also successfully invade σ. Hence, we
can assume without loss of generality that σ′ = σ′

2, i.e., p0 = p1 = 0 and p2 = 1.
That is, we can assume that σ′ only places positive probability on strategies

sv with v ∈
⋃

i∈I Vi,t(i). For any v, v′ ∈ V , we have u(sv, sv′) = u(sv′ , sv).
Specifically, u(sv, sv′) = u(sv′ , sv) = (k/(k− 1))(2− 1/|I|) if v �= v′ and (v, v′) ∈
E, and u(sv, sv′) = u(sv′ , sv) = 0 otherwise. Now, suppose that σ′(sv) > 0
and σ′(sv′) > 0 for v �= v′ with (v, v′) /∈ E. We can write σ′ = p0σ

′′ + p1sv +
p2sv′ , where p0, p1 = σ′(sv), and p2 = σ′(sv′) sum to 1. We have u(σ′, σ′) =
p20u(σ

′′, σ′′) + 2p0p1u(σ
′′, sv) + 2p0p2u(σ

′′, sv′) (because u(sv, sv) = u(sv′ , sv′) =
u(sv, sv′) = 0). Suppose, without loss of generality, that u(σ′′, sv) ≥ u(σ′′, sv′).
Then, if we shift all the mass from sv′ to sv (so that the mass on the latter
becomes p1 + p2), this can only increase u(σ′, σ′), and it reduces the size of
the support of σ′ by 1. By repeated application, we can assume without loss of
generality that the support of σ′ corresponds to a clique of the induced subgraph
on

⋃
i∈I Vi,t(i). We know this clique has size c where c < k. u(σ′, σ′) is maximized

if σ′ randomizes uniformly over its support, in which case u(σ′, σ′) = ((c −
1)/c)(k/(k − 1))(2 − 1/|I|) < ((k − 1)/k)(k/(k − 1))(2− 1/|I|) = 2− 1/|I|. But
this contradicts that σ′ would successfully invade σ. It follows that σ is indeed
an ESS.

Conversely, suppose that there exists an ESS σ that places positive probabil-
ity only on strategies sij with i ∈ I and j ∈ J . We must have u(σ, σ) ≥ 2−1/|I|,
because otherwise s0 would be a better response to σ. First suppose that for
every i ∈ I, there is at most one j ∈ J such that σ places positive probability on
sij (we will shortly show that this must be the case). Let t(i) denote the j ∈ J
such that σ(sij) > 0 (if there is no such j for some i, then choose an arbitrary j
to equal t(i)). Then, u(σ, σ) is uniquely maximized by setting σ(si,t(i)) = 1/|I|
for all i ∈ I, resulting in u(σ, σ) = (1/|I|) · 1 + (1− 1/|I|) · 2 = 2− 1/|I|. Hence,
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this is the only way to ensure that u(σ, σ) ≥ 2−1/|I|, under the assumption that
for every i ∈ I, there is at most one j ∈ J such that σ places positive probability
on sij .

Now, let us consider the case where there exists an i ∈ I such that there
exist j, j′ ∈ J with j �= j′, σ(sij) > 0, and σ(sij′ ) > 0, to show that such
a strategy cannot obtain a utility of 2 − 1/|I| or more against itself. We can
write σ = p0σ

′ + p1sij + p2sij′ , where σ′ places probability zero on sij and
sij′ . We observe that u(σ′, sij) = u(sij , σ

′) and u(σ′, sij′ ) = u(sij′ , σ
′), because

when the game is restricted to these strategies, each player always gets the
same payoff as the other player. Moreover, u(σ′, sij) = u(σ′, sij′ ), because σ′

does not place positive probability on either sij or sij′ . Hence, we have that
u(σ, σ) = p20u(σ

′, σ′) + 2p0(p1 + p2)u(σ
′, sij) + p21 + p22. But then, if we shift all

the mass from sij′ to sij (so that the mass on the latter becomes p1+p2) to obtain
strategy σ′′, it follows that u(σ′′, σ′′) > u(σ, σ). By repeated application, we can
find a strategy σ′′′ such that u(σ′′′, σ′′′) > u(σ, σ) and for every i ∈ I, there is
at most one j ∈ J such that σ′′′ places positive probability on sij . Because we
showed previously that the latter type of strategy can obtain expected utility
at most 2 − 1/|I| against itself, it follows that it is in fact the only type of
strategy (among those that randomize only over the sij strategies) that can
obtain expected utility 2− 1/|I| against itself. Hence, we can conclude that the
ESS σ must have, for each i ∈ I, exactly one j ∈ J (to which we will refer as
t(i)) such that σ(si,t(i)) = 1/|I|, and that σ places probability 0 on every other
strategy.

Finally, suppose, for the sake of contradiction, that there exists a clique of
size k in the induced subgraph on

⋃
i∈I Vi,t(i). Consider the strategy σ′ that

places probability 1/k on each of the corresponding strategies sv. We have that
u(σ, σ) = u(σ, σ′) = u(σ′, σ) = 2− 1/|I|. Moreover, u(σ′, σ′) = (1/k) · 0 + ((k −
1)/k) · (k/(k − 1))(2 − 1/|I|) = 2− 1/|I|. It follows that σ′ successfully invades
σ—but this contradicts σ being an ESS. It follows, then, that t is such that every
clique in the induced graph on

⋃
i∈I Vi,t(i) has size strictly less than k.

3 Hardness without Restricted Support

Lemma 2 (No duplicates in ESS). Suppose that strategies s1 and s2 (s1 �=
s2) are duplicates, i.e., for all s, u(s1, s) = u(s2, s).

3 Then no ESS places positive
probability on s1 or s2.

Proof: For the sake of contradiction, suppose σ is an ESS that places positive
probability on s1 or s2 (or both). Then, let σ′ �= σ be identical to σ with
the exception that σ′(s1) �= σ(s1) and σ′(s2) �= σ(s2) (but it must be that
σ′(s1) + σ′(s2) = σ(s1) + σ(s2)). That is, σ′ redistributes some mass between
s1 and s2. Then, σ cannot repel σ′, because u(σ, σ) = u(σ′, σ) and u(σ, σ′) =
u(σ′, σ′).

3 It is fine to require u(s, s1) = u(s, s2) as well, and we will do so in the proof of
Theorem 1, but it is not necessary for this lemma to hold.
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Definition 4. In ESS, we are given a symmetric two-player normal-form game
G. We are asked whether there exists an evolutionarily stable strategy of G.

Theorem 1. ESS is ΣP
2 -complete.

Proof: Etessami and Lochbihler [2008] proved membership in ΣP
2 . We prove

hardness by reduction from ESS-RESTRICTED-SUPPORT, which is hard by
Lemma 1. Given the game G with strategies S and subset of strategies T ⊆ S
that can receive positive probability, construct a modified gameG′ by duplicating
all the strategies in S \ T . (At this point, for duplicate strategies s1 and s2, we
require u(s, s1) = u(s, s2) as well as u(s1, s) = u(s2, s).) If G has an ESS σ that
places positive probability only on strategies in T , this will still be an ESS in G′,
because any strategy that uses the new duplicate strategies will still be repelled,
just as its equivalent strategy that does not use the new duplicates was repelled
in the original game. (Here, it should be noted that the equivalent strategy in the
original game cannot turn out to be σ, because σ does not put any probability
on a strategy that is duplicated.) On the other hand, if G′ has an ESS, then
by Lemma 2, this ESS can place positive probability only on strategies in T .
This ESS will still be an ESS in G (all of whose strategies also exist in G′), and
naturally it will still place positive probability only on strategies in T .

A Hardness without Duplication

In this appendix, it is shown that with some additional analysis and modifica-
tions, the result holds even in games where each pure strategy is the unique best
response to some mixed strategy. That is, the hardness is not simply an artifact
of the introduction of duplicate or otherwise redundant strategies.

Definition 5. In the MINMAX-CLIQUE problem, say vertex v dominates ver-
tex v′ if they are in the same partition element Vij , there is no edge between
them, and the set of neighbors of v is a superset (not necessarily strict) of the
set of neighbors of v′.

Lemma 3. Removing a dominated vertex does not change the answer to a
MINMAX-CLIQUE instance.

Proof: In any clique in which dominated vertex v′ participates (and therefore
its dominator v does not), v can participate in its stead.

Modified Lemma 1. ESS-RESTRICTED-SUPPORT is ΣP
2 -hard, even if ev-

ery pure strategy is the unique best response to some mixed strategy.

Proof: We use the same reduction as in the proof of Lemma 1. We restrict
our attention to instances of the MINMAX-CLIQUE problem where |I| ≥ 2,
|J | ≥ 2, there are no dominated vertices, and every vertex is part of at least
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one edge. Clearly, the problem remains ΠP
2 -complete when restricting attention

to these instances. For the games resulting from these restricted instances, we
show that every pure strategy is the unique best response to some mixed strategy.
Specifically:

– sij is the unique best response to the strategy that distributes 1 − ε mass
uniformly over the si′j′ with i′ �= i, and ε mass uniformly over the sij′ with
j′ �= j. (This is because only pure strategies sij′ will get a utility of 2 against
the part with mass 1 − ε, and among these only sij will get a utility of 1
against the part with mass ε.)

– sv (with v ∈ Vij) is the unique best response to the strategy that places
(1/|I|)(1− ε) probability on sij and (1/(|I||J |))(1 − ε) probability on every
si′j′ with i′ �= i, and that distributes the remaining ε mass uniformly over
the vertex strategies corresponding to neighbors of v. (This is because sv
obtains an expected utility of 2− 1/|I| against the part with mass 1− ε, and
an expected utility of (k/(k − 1))(2 − 1/|I|) against the part with mass ε;
strategies sv′ with v′ /∈ Vij obtain utility strictly less than 2− 1/|I| against
the part with mass 1 − ε; and strategies si′′j′′ , s0, and sv′ with v′ ∈ Vij

obtain utility at most 2 − 1/|I| against the part with mass 1 − ε, and an
expected utility of strictly less than (k/(k − 1))(2 − 1/|I|) against the part
with mass ε. (In the case of sv′ with v′ ∈ Vij , this is because by assumption,
v′ does not dominate v, so either v has a neighbor that v′ does not have,
which gets positive probability and against which sv′ gets a utility of 0; or,
there is an edge between v and v′, so that sv′ gets positive probability and
sv′ gets utility 0 against itself.))

– s0 is the unique best response to the strategy that randomizes uniformly
over all the sij . (This is because it obtains utility 2 − 1/|I| against that
strategy, and all the other pure strategies obtain utility strictly less against
that strategy, due to getting utility 0 against at least one pure strategy in
its support.)

The following lemma is a generalization of Lemma 2.

Modified Lemma 2. Suppose that subset S′ ⊆ S satisfies:

– for all s ∈ S\S′ and s′, s′′ ∈ S′, we have u(s′, s) = u(s′′, s) (that is, strategies
in S′ are interchangeable when they face a strategy outside S′);4 and

– the restricted game where players must choose from S′ has no ESS.

Then no ESS of the full game places positive probability on any strategy in S′.

Proof: Consider a strategy σ that places positive probability on S′. We can
write σ = p1σ1 + p2σ2, where p1 + p2 = 1, σ1 places positive probability only
on S \ S′, and σ2 places positive probability only on S′. Because no ESS exists

4 Again, it is fine to require u(s, s′) = u(s, s′′) as well, and we will do so in the proof
of Modified Theorem 1, but it is not necessary for the lemma to hold.
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in the game restricted to S′, there must be a strategy σ′
2 (with σ′

2 �= σ2) whose
support is contained in S′ that successfully invades σ2, so either (1) u(σ′

2, σ2) >
u(σ2, σ2) or (2) u(σ′

2, σ2) = u(σ2, σ2) and u(σ′
2, σ

′
2) ≥ u(σ2, σ

′
2). Now consider

the strategy σ′ = p1σ1 + p2σ
′
2; we will show that it successfully invades σ. This

is because u(σ′, σ) = p21u(σ1, σ1)+ p1p2u(σ1, σ2)+ p2p1u(σ
′
2, σ1)+ p22u(σ

′
2, σ2) =

p21u(σ1, σ1) + p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ
′
2, σ2) ≥ p21u(σ1, σ1)+

p1p2u(σ1, σ2) + p2p1u(σ2, σ1) + p22u(σ2, σ2) = u(σ, σ), where the second equality
follows from the property assumed in the lemma. If case (1) above holds, then
the inequality is strict and σ is not a best response against itself. If case (2)
holds, then we have equality; moreover, u(σ′, σ′) = p21u(σ1, σ1)+p1p2u(σ1, σ

′
2)+

p2p1u(σ
′
2, σ1) + p22u(σ

′
2, σ

′
2) = p21u(σ1, σ1) + p1p2u(σ1, σ

′
2) + p2p1u(σ2, σ1)+

p22u(σ
′
2, σ

′
2) ≥ p21u(σ1, σ1)+p1p2u(σ1, σ

′
2)+p2p1u(σ2, σ1)+p22u(σ2, σ

′
2) = u(σ, σ′),

where the second equality follows from the property assumed in the lemma. So
in this case too, σ′ successfully invades σ.

Modified Theorem 1. ESS is ΣP
2 -complete, even if every pure strategy is the

unique best response to some mixed strategy.

Proof: Again, Etessami and Lochbihler [2008] proved membership in ΣP
2 . For

hardness, we use a similar proof strategy as in Theorem 1, again reducing from
ESS-RESTRICTED-SUPPORT, which is hard even if every pure strategy is the
unique best response to some mixed strategy, by Modified Lemma 1. Given the
game G with strategies S and subset of strategies T ⊆ S that can receive positive
probability, construct a modified game G′ by replacing each pure strategy s ∈
S \ T by three new pure strategies, s1, s2, s3. For each s′ /∈ {s1, s2, s3}, we will
have u(si, s′) = u(s, s′) (the utility of the original s) and u(s′, si) = u(s′, s) for
all i ∈ {1, 2, 3}; for all i, j ∈ {1, 2, 3}, we will have u(si, sj) = u(s, s) + ρ(i, j),
where ρ gives the payoffs of rock-paper-scissors (with −1 for a loss, 0 for a tie,
and 1 for a win).

If G has an ESS that places positive probabilities only on strategies in T , this
will still be an ESS in G′ because any strategy σ′ that uses new strategies si will
still be repelled, just as the corresponding strategy σ′′ that put the mass on the
corresponding original strategies s (i.e., σ′′(s) = σ′(s1) + σ′(s2) + σ′(s3)) was
repelled in the original game. (Unlike in the proof of the original Theorem 1,
here it is perhaps not immediately obvious that u(σ′′, σ′′) = u(σ′, σ′), because
the right-hand side involves additional terms involving ρ. But ρ is a symmetric
zero-sum game, and any strategy results in an expected utility of 0 against itself
in such a game.) On the other hand, if G′ has an ESS, then by Modified Lemma 2
(letting S′ = {s1, s2, s3} and using the fact that rock-paper-scissors has no ESS),
this ESS can place positive probability only on strategies in T . This ESS will
still be an ESS in G (for any potentially invading strategy in G there would be
an equivalent such strategy in G′, for example replacing s by s1 as needed), and
naturally it will still place positive probability only on strategies in T .

Finally it remains to be shown that in G′ each pure strategy is the unique
best response to some mixed strategy, using the fact that this is the case for
G. For a pure strategy in T , we can simply use the same mixed strategy as we
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use for that pure strategy in G, replacing mass placed on each s /∈ T in G with
a uniform mixture over s1, s2, s3 where needed. (By using a uniform mixture,
we guarantee that each si obtains the same expected utility against the mixed
strategy as the corresponding s strategy in G.) For a pure strategy si /∈ T , we
cannot simply use the same mixed strategy as we use for the corresponding s in
G (with the same uniform mixture trick), because s1, s2, s3 would all be equally
good responses. But because these three would be the only best responses, we
can mix in a sufficiently small amount of si+1 (mod 3) (where i beats i+1 (mod 3)
in ρ) to make si the unique best response.
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Abstract. We consider the proportional allocation mechanism first
studied by Kelly (1997) in the context of congestion control algorithms
for communication networks. A single infinitely divisible resource is to be
allocated efficiently to competing players whose individual utility func-
tions are unknown to the resource manager. If players anticipate the ef-
fect of their bids on the price of the resource and their utility functions are
concave, strictly increasing and continuously differentiable, Johari and
Tsitsiklis (2004) proved that the price of anarchy is 4/3. The question
was raised whether there is a relationship between this result and that
of Roughgarden and Tardos (2002), who had earlier shown exactly the
same bound for nonatomic selfish routing with affine-linear congestion
functions. We establish such a relationship and show, in particular, that
the efficiency loss can be characterized by precisely the same geometric
quantity. We also present a new variational inequality characterization
of Nash equilibria in this setting, which enables us to extend the price-
of-anarchy analysis to important classes of utility functions that are not
necessarily concave.

1 Introduction

In a pioneering paper1, Roughgarden and Tardos [9] established that the loss
of efficiency caused by selfish behavior in a multicommodity-flow network with
affine-linear latency functions is at most 33%, if compared to the cost of a system-
optimal solution. Shortly thereafter, in another widely cited paper, Johari and
Tsitsiklis [5] observed virtually the same price of anarchy in a completely different
context, in which a finite number of bidders with concave, strictly increasing
and continuously differentiable utility functions compete for a single divisible
resource, which is allocated in proportion to the bids, as suggested by Kelly [6].

1 http://www.acm.org/press-room/news-releases/2012/goedel-prize-2012

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.acm.org/press-room/news-releases/2012/goedel-prize-2012


110 J.R. Correa, A.S. Schulz, and N.E. Stier-Moses

From the get-go, the question arose whether the sameness of the two bounds
was just a coincidence.2 For instance, Johari and Tsitsiklis [5, Page 418] write:

However, it remains an open question whether a relationship can be drawn

between the two games; in particular, we note that while [our main theorem]

holds even if the utility functions are nonlinear, Roughgarden and Tardos have

shown that the price of anarchy in traffic routing may be arbitrarily high if

link latency functions are nonlinear.

In this paper, we offer an explanation as to why the upper bound on the price
of anarchy is the same in both situations. We show that the Johari-Tsitsiklis
bound follows from the same geometric quantity that describes the price of
anarchy in the selfish-routing game that was analyzed by Roughgarden and
Tardos and, for more general latency functions, by Roughgarden [8]. In earlier
work [1], the authors of this paper had shown that the price of anarchy in the
latter setting is bounded by 1/(1 − β(U)), where U is the class of (latency)
functions considered and

β(U) = sup
u∈U

sup
0≤x≤y≤1

x
(
u(y)− u(x)

)
yu(y)

,

as long as the functions in U are nonnegative, nondecreasing and continuous.3

For a specific function u and specific values x ≤ y, it is easy to see that the
numerator in the expression above is equal to the area of the shaded rectangle
in Figure 1, while the denominator corresponds to the area of the big rectangle.
In particular, it follows immediately from elementary geometric arguments that
this ratio never exceeds 1/4 for affine-linear functions, leading to a bound of 4/3
on the price of anarchy. In fact, it was already noted in [1] that this remains true
for more general classes of functions, including concave functions.

We show that the price of anarchy of the proportional allocation mechanism
of Kelly [6] is bounded by 1/(1− β(U)) as well. Here, we assume that all u ∈ U
are concave, strictly increasing and continuously differentiable, as did Johari and
Tsitsiklis [5].4 In particular, we get the same bound of 4/3. In addition, our proof
is considerably simpler than Johari and Tsitsiklis’ original proof, and it follows

2 Koutsoupias and Papadimitriou [7] introduced the price of anarchy as the worst-
case ratio of the cost of an equilibrium to that of an optimum. In particular, in
the minimization context of Roughgarden and Tardos, the price of anarchy is 4/3.
Johari and Tsitsiklis considered a maximization problem and established a worst-
case efficiency loss of 25%. For reasons of consistency, we assume that the price of
anarchy in a maximization setting is defined as the worst-case ratio of the value of
an optimum to that of an equilibrium. In particular, for us, the price of anarchy is
always greater than or equal to one.

3 As noted in [1], 1/(1 − β(U)) is equal to the price-of-anarchy value α(U) presented
in [8], but the use of β(U) allows for the inclusion of more general functions and the
geometric interpretation first pointed out in [2].

4 This assumption ensures the existence and uniqueness of a Nash equilibrium, as long
as there are at least two players; see [4,5] for details.
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x y0

u(y)

u(x) u(·)

Fig. 1. The geometric interpretation of β(U) as the supremum of the shaded area over
the area of the big rectangle defined by the origin and the point (y, u(y))

the same steps as our earlier proof for the price of anarchy in selfish routing: The
key inequality is delivered by a variational inequality derived from the optimality
conditions of a concave program. Roughgarden [4, Proof of Theorem 21.4] used
the same idea for the proportional allocation mechanism, but relied on a different
concave program, which does not lend itself to the same quantity 1/(1 − β(U))
that arises in the context of selfish routing. Moreover, both the original proof
by Johari and Tsitsiklis and Roughgarden’s proof make explicit use of the con-
cavity of the utility functions, whereas ours does not, allowing us to extend the
analysis of the proportional allocation mechanism to situations in which utility
functions are not necessarily concave. For this, we present a characterization of
equilibria by a new variational inequality, which holds true as long as the second
derivative of the utility functions does not become too positive. This condition
encompasses certain convex functions, allowing us to capture some aspects of
economies of scale. Corresponding functions include specific polynomials, expo-
nential functions and queueing delay functions, which all give rise to a constant
price of anarchy.

2 The Proportional Allocation Mechanism

Johari and Tsitsiklis [5] consider the following model. There is a single divisible
resource shared by a set N of players.5 Each player i ∈ N has a concave, strictly
increasing and continuously differentiable utility function Ui : [0, 1] → R+, so
that her utility from receiving a fraction xi of the resource equals Ui(xi).

6 In a
utilitarian setting, the resource would ideally be allocated so as to maximize the
total utility:

max
x∈Δ

∑
i∈N

Ui(xi),

5 To exclude pathological cases, we assume throughout the paper that |N | ≥ 2.
6 For convenience, it is assumed that utility is measured in monetary units.
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where Δ := {x ∈ RN
+ :

∑
i∈N xi ≤ 1}. However, in order to implement this solu-

tion, the resource manager would need to have knowledge of all utility functions,
which is often not realistic. Alternatively, one could use Kelly’s proportional al-
location mechanism [6], where each player i ∈ N bids a nonnegative amount vi,
which is going to be her payment, and obtains a fraction of the resource equal
to xi = vi/

∑
j∈N vj . In particular, player i’s payoff is equal to

Ui(xi)− vi = Ui

(
vi∑

j∈N

vj

)
− vi,

and we assume that her payoff is zero if all players bid zero. Player i wants to
maximize this expression, and an equilibrium is a vector of bids such that each
player bids optimally, given the bids of the other players. Hajek and Gopalakr-
ishnan [3] proved that there exists a unique equilibrium. Moreover, it is not hard
to see (e.g., [5, Proof of Theorem 2]) that a vector v ∈ RN is an equilibrium if
and only if, for all i ∈ N ,

(1 − xNE
i )U ′

i(x
NE
i ) = V if vi > 0, and U ′

i(0) ≤ V if vi = 0. (1)

Here, V =
∑

j∈N vj and xNE
i = vi/V .

3 A New Proof for the Price of Anarchy

We now introduce a new concave program and show that the equilibrium allo-
cation xNE is an optimal solution. Consider

max
x∈Δ

∑
i∈N

(1− xNE
i )Ui(xi), (2)

where xNE
i is fixed in the objective function. The optimality conditions are:

(1− xNE
i )U ′

i(xi) = λ+ μi for all i ∈ N,∑
i∈N xi ≤ 1,
μixi = 0 for all i ∈ N,
μi ≤ 0 for all i ∈ N,
xi ≥ 0 for all i ∈ N,
λ ≥ 0.

By taking λ = V and μi = U ′
i(0)−V when xNE

i = 0, it follows that xNE satisfies
the Karush-Kuhn-Tucker conditions and, thus, is a maximum of (2).

Using the optimality of xNE for (2), the monotonicity of the utility functions
and the definition of β(U), we are ready to prove the desired bound on the price
of anarchy of the proportional allocation mechanism by Kelly. Here, x∗ ∈ Δ is
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an arbitrary feasible vector, and the result follows when x∗ is taken to be the
socially optimal assignment:∑

i∈N

Ui(x
NE
i ) ≥

∑
i∈N

(
xNE
i Ui(x

NE
i ) + (1 − xNE

i )Ui(x
∗
i )
)

≥
∑
i∈N

Ui(x
∗
i )−

∑
i∈N :x∗

i >xNE
i

xNE
i

(
Ui(x

∗
i )− Ui(x

NE
i )

)
≥

∑
i∈N

Ui(x
∗
i )−

∑
i∈N :x∗

i >xNE
i

β(U)x∗
iUi(x

∗
i )

≥
(
1− β(U)

)∑
i∈N

Ui(x
∗
i ).

We have given a new proof of the upper bound in the following theorem and,
at the same time, established a connection to the quantity β(U), which plays a
similar role in the price of anarchy of selfish routing, as discussed in the intro-
duction.

Theorem 1 (Johari and Tsitsiklis 2004). The price of anarchy for the pro-
portional allocation mechanism is 4/3 when utility functions are strictly increas-
ing, continuously differentiable and concave.

4 A Variational Inequality for the Nonconcave Case

In the derivation of the price of anarchy for the proportional allocation mech-
anism in Section 3 we made use of a new variational inequality obtained easily
from the optimality conditions of the concave program (2):∑

i∈N

(1 − xNE
i )

(
Ui(x

NE
i )− Ui(xi)

)
≥ 0 for all x ∈ Δ. (3)

We will now derive another variational inequality that continues to characterize
equilibria even if the players’ utility functions are not concave anymore. This al-
lows us to extend the price-of-anarchy analysis to settings that include economies
of scale and other situations in which players’ utilities may not be concave.

Johari and Tsitsiklis [5] characterized equilibria as optimal solutions to the
following nonlinear program:

max
x∈Δ

∑
i∈N

(
(1− xi)Ui(xi) +

∫ xi

0

Ui(z)dz
)
. (4)

The partial derivative of the objective function in direction xi is (1− xi)U
′
i(xi),

giving exactly the equilibrium conditions shown in (1). The first-order optimal-
ity conditions of Problem (4) can be written as a variational inequality: An
equilibrium allocation xNE is characterized by∑

i∈N

(1− xNE
i )U ′

i(x
NE
i )(xNE

i − xi) ≥ 0 for all x ∈ Δ. (5)
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This is exactly the variational inequality used by Roughgarden [4, Proof of The-
orem 21.4] in his proof of the price-of-anarchy result of Johari and Tsitsiklis [5].
In their setting, concavity and monotonicity of the utility functions Ui guarantee
that the objective function in (4) is concave, making sure that the optimality
conditions of the nonlinear program characterize globally optimal solutions. We
will exploit the fact that concavity of this objective can still be guaranteed by
less stringent assumptions on Ui. For convenience, we now assume that each Ui

is twice-differentiable (and we continue to assume that it is strictly increasing).
Then, for the objective function of (4) to be concave over the feasible region Δ,
it suffices if, for all i ∈ N ,

U ′′
i (x)

U ′
i(x)

≤ 1

1− x
for 0 ≤ x < 1. (6)

If this is the case, an equilibrium continues to exist, it is unique, and it is still
characterized by the first-order optimality conditions of (4). Notice that (6) is
indeed a relaxation of concavity, because for strictly increasing, concave func-
tions, the left-hand side is not positive. In fact, Condition (6) is satisfied by
certain convex functions, such as some polynomials, or exponential functions, or
wait functions of queueing networks, such as (c− x)−1 for c ≥ 2.

Assuming (6), the following nonlinear program is concave and has exactly the
same first-order optimality conditions as (4), as one can easily check by taking
the derivative of the objective function:

max
x∈Δ

∑
i∈N

(
Ui(xi)−

∫ Ui(xi)

Ui(0)

U−1
i (z)dz

)
.

Here, U−1
i is the inverse function of Ui. In turn, after a change of variables,

yi = Ui(xi), this problem is equivalent to

max
y:yi≥Ui(0),

∑
i U

−1
i (yi)≤1

∑
i∈N

(
yi −

∫ yi

0

U−1
i (z)dz

)
. (7)

The optimal solution yNE of (7) is equal to the vector
(
Ui(x

NE
i )

)
i∈N

, because

xNE is the unique solution to (4), and all the nonlinear programs above are equiv-
alent. If all utility functions are concave, yNE satisfies the first-order optimality
conditions ∑

i∈N

(
U−1
i (yNE

i )− 1
)
(yi − yNE

i ) ≥ 0

for all vectors y that are feasible for the constraints of (7). Undoing the change
of variables, this variational inequality is equivalent to (3), and we have provided
an alternative way of deriving variational inequality (3). In case of nonconcave
utility functions that satisfy (6), we can use the following variational inequality
to characterize equilibria, which follows directly from (7):

∑
i∈N

(yNE
i − yi)−

(∑
i∈N

∫ yNE
i

yi

U−1
i (z)dz

)
≥ 0 (8)



The Price of Anarchy of the Proportional Allocation Mechanism Revisited 115

for all vectors y that are feasible for the constraints of (7). We will use this
variational inequality in the next section to derive price-of-anarchy bounds for
non-concave utility functions satisfying (6).

5 The Price of Anarchy in the Nonconcave Case

From now on, we will work with the relaxed concavity assumption (6), which
suffices for the variational inequality (8) to hold. We will compute the price
of anarchy in this more general setting. For this, we introduce a new constant
“beta” that depends again just on the class of utility functions considered:

β̂(U) := sup
u∈U

sup
u(0)≤y≤u(1)

∫ y

u(0) u
−1(z)dz

y
.

With this definition and variational inequality (8) in place, we bound the price
of anarchy of the proportional allocation mechanism using an approach similar
to that in Section 3, only that we have one less inequality in the derivation:7

∑
i∈N

Ui(x
NE
i ) ≥

∑
i∈N

Ui(x
∗
i )−

∑
i∈N :x∗

i>xNE
i

∫ Ui(x
∗
i )

Ui(xNE
i )

U−1
i (z)dz

≥
(
1− β̂(U)

)∑
i∈N

Ui(x
∗
i ).

Theorem 2. The price of anarchy for the proportional allocation mechanism is
at most 1/(1− β̂(U)), when all utility functions belong to a family U of strictly
increasing and twice differentiable functions that satisfy (6).

It remains to compute the actual value of β̂ for concrete families U of this
kind, which is the content of the next section.

6 Computing β̂

For the calculation of β̂, we will parameterize the family of nonnegative, strictly
increasing, twice differentiable utility functions that satisfy (6) as follows: For
c ≥ 1, we let Uc be the set of all such functions Ui for which(

1− x

c

)
U ′′
i (x) ≤ U ′

i(x) for 0 ≤ x ≤ 1.

7 This happens because, compared to the definition of β, the product in the denomi-
nator is replaced by a single value. Interestingly, had we defined β̂ with y u−1(y) in
the denominator, its geometric interpretation would have been that we are seeking
an upper bound on the ratio of the area defined by the integral in the numerator to
the area of the rectangle defined by the origin and the point (u−1(y), y), which is
easily seen to be at most 1/2 for concave functions (see Figure 2). While this would
suffice to replicate the “easy [...] bound” of Johari and Tsistsiklis [5, Page 415], β̂ as
defined here has the potential to lead to stronger results.
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u-1(y)0

y

u(0)

u(⋅)

Fig. 2. The geometric meaning of the numerator in the definition of β̂(U)

It is straightforward to see that U1 is equal to the set of all functions that
satisfy (6), while U∞ contains the functions that satisfy

U ′′
i (x) ≤ U ′

i(x) for 0 ≤ x ≤ 1. (9)

We begin with the computation of β̂(U∞), which amounts to computing

sup
u:u(0)≥0,u′≥0,u′′≤u′

sup
u(0)≤y≤u(1)

∫ y

u(0) u
−1(z)dz

y
.

Note that for any fixed function u the supremum over y is attained at y = u(1)
since the derivative of the argument equals

u−1(y)y −
∫ y

u(0)
u−1(z)dz

y2
,

which is greater than zero as u−1 is strictly increasing. Therefore we have that

β̂(U∞) = sup
u:u(0)≥0,u′≥0,u′′≤u′

∫ u(1)

u(0) u−1(z)dz

u(1)
.

Note that we may assume u(0) = 0; otherwise subtracting u(0) from a given
function will maintain feasibility and only increase the supremum. Also, we may
assume u(1) = 1 since, when dividing a function u by this quantity, the areas
that represent the denominator and the numerator will shrink by the same factor,
and, of course, feasibility will not be affected. We conclude that:

β̂(U∞) = sup
u:u(0)=0,u(1)=1,u′≥0,u′′≤u′

∫ 1

0

u−1(z)dz.

Therefore, solving the differential equation u′′(z) = u′(z) with the initial values
u(0) = 0 and u(1) = 1 provides a feasible solution to our problem, given by
u(z) = (ez − 1)/(e− 1). We now prove that this is optimal.
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To maximize the area in the supremum we need to find a function u with the
required properties that is as small as possible for any given 0 < z < 1. However,
in principle this function may not exist, as for different values of z we may have
different functions being the smallest, so we define the function g : [0, 1] → R+

by
g(z) := inf

u:u(0)=0,u(1)=1,u′≥0,u′′≤u′
u(z).

Clearly β̂(U∞) ≤
∫ 1

0
g−1(z)dz, so it remains to compute g to provide a match-

ing upper bound. Note that we may interpret u(·) as a cumulative distribution
function (cdf). Calling its pdf h, we have that

g(z) = inf
h density s.t. h′≤h

∫ z

0

h(t)dt.

We complete the argument by proving that g(z) = (ez − 1)/(e − 1). To get a
contradiction, suppose that g(z) < (ez − 1)/(e − 1) and let us consider f(z) :=
ez/(e− 1). Then, there exists a density h, such that h′ ≤ h, satisfying that∫ z

0

h(t)dt <
ez − 1

e − 1
= f(z)− f(0) =

∫ z

0

f(t)dt.

Thus, there exists a point z1 < z for which h(z1) < f(z1), and, as both h and f

are density functions,
∫ 1

0 h(t)dt =
∫ 1

0 f(t)dt, so that we may consider z2 as the
smallest point larger than z1 for which h(z2) = f(z2). Thus h is smaller than f
in the interval [z1, z2), and they are equal at z2. Since in this interval h grows
more than f , it is immediate that there exists a point x ∈ [z1, z2) for which
h′(x) > f ′(x). But on the other hand f(x) = f ′(x) and h(x) ≥ h′(x), implying
that h(x) > f(x). A contradiction follows.

We conclude that g(z) = (ez − 1)/(e− 1) and thus

β̂(U∞) = 1−
∫ 1

0

ez − 1

e− 1
dz =

1

e − 1
≈ 0.581977,

yielding an upper bound of 2.392213 on the price of anarchy.
We now use a similar approach to compute β̂(Uc). Note first that the solution

to the differential equation (1 − z/c)u′′(z) = u′(z) with initial values u(0) = 0
and u(1) = 1, for an arbitrary c > 1, is given by

ū(z) =
(c− z)1−c − c1−c

(c− 1)1−c − c1−c
.

Therefore β̂(Uc) ≥
∫ 1

0
ū−1(z)dz. We now prove that this is actually an equality.

Again we consider the function g : [0, 1]→ R+ defined by

g(z) := inf
u:u(0)=0,u(1)=1,u′≥0,(1−z/c)u′′≤u′

u(z),

which allows us to interpret u as a cdf. Calling its pdf h, we have that

g(z) = inf
h density s.t. (1−z/c)h′≤h

∫ z

0

h(t)dt.
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To get a contradiction, suppose that g(z) < ū(z) and let us consider the density
function

f(z) := ū′(z) =
(c− 1)(c− z)−c

(c− 1)1−c − c1−c
.

Then, there exists a density h, such that (1− z/c)h′ ≤ h, satisfying that

∫ z

0

h(t)dt < ū(z) =

∫ z

0

f(t)dt.

Thus, there exists a point z1 < z for which h(z1) < f(z1), and, as both h and

f are density functions,
∫ 1

0 h(t)dt =
∫ 1

0 f(t)dt. We may therefore consider z2 as
the smallest point larger than z1 for which h(z2) = f(z2). Thus, h is smaller
than f in the interval [z1, z2), and they are equal at z2. Since in this interval
h grows more than f , it is immediate that there exists a point x ∈ [z1, z2) for
which h′(x) > f ′(x). On the other hand, f(x) = f ′(x)(1 − x/c) and h(x) ≥
h′(x)(1 − x/c), implying that h(x) > f(x). A contradiction follows.

We conclude that g(z) = ū(z) and thus

β̂(Uc) = 1−
∫ 1

0

ū(z)dz,

leading to an upper bound on the price of anarchy of

(
1− c+

c− 1

c− 2
· (c− 1)2−c − c2−c

(c− 1)1−c − c1−c

)−1

.

The concrete numerical value as a function of c can be seen in Table 1 and
Figure 3.

1

2
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8

16

32

1 2 4 8

P
O
A

c

Fig. 3. The new bound on the price of anarchy as a function of c ≥ 1 (log-log scale)
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Table 1. The new bound on the price of anarchy as a function of c ≥ 1.

c POA

1 ∞
1.000000001 20.72326624
1.00000001 18.42068566
1.0000001 16.11813311
1.000001 13.81578405
1.00001 11.51480886
1.0001 9.222259832
1.001 6.974091719
1.01 4.907853238
1.1 3.345367672
1.5 2.732050808
2 2.587079623
5 2.449115044

10 2.418357995
20 2.404781333
50 2.397126363

100 2.394650571

7 Concluding Remarks

We have added a link between the price-of-anarchy analysis of the nonatomic
selfish routing game with concave latency functions and that of the proportional
allocation mechanism with concave utility functions. In both cases, the price of
anarchy is governed by the same geometric quantity. We have also presented
two new variational inequalities characterizing equilibria in the proportional al-
location mechanism; one for the case of concave utility functions, and one that
works for certain classes of nonconcave utility functions. This allowed us to give
the first price-of-anarchy analysis of the proportional allocation mechanism with
nonconcave utility functions. Even though we worked under the assumption that,
for any x ∈ (0, 1), the ratio between the second and the first derivative of each
utility function is at most 1/(1 − x), a closer look at this game reveals that it
would actually suffice if that ratio were at most 2/(1−x), which is something to
be exploited in the future. We also leave as an open problem to determine tight
bounds for the price of anarchy for the nonconcave classes of utility functions
considered here. Finally, it is also worth mentioning that the concave problem (7)
does not require the differentiability of the Ui’s. One can actually prove that the
optimal solutions to this problem always coincide with equilibria (a standard
application of subdifferentials). Then variational inequality (3), which can be
derived from (7), leads to the same price of anarchy in the concave, but not
necessarily differentiable case.
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Abstract. Classical models of private value auctions assume that bid-
ders know their own private value for the item being auctioned. We ex-
plore games where players have a private value, but can only learn this
value through experimentation, a scenario that is typical in AdAuctions.
We consider this question in a repeated game context, where early par-
ticipation in the auction can help the bidders learn their own value. We
consider what is a good bidding strategy for a player in this game, and
show that with low enough competition new bidders will enter and ex-
periment, but with a bit higher level of competition, initial credit offered
by the platform can encourage experimentation, and hence ultimately
can increase revenue.

Keywords: auction, learning, revenue.

1 Introduction

In on-line advertisement systems, such as sponsored search auction systems,
advertisers are repeatedly involved in auctions to acquire advertisement spaces.
Standard models of auctions assume that bidders have a private value vi for the
item under auction, which they know. Alternately, models consider a common
(or affiliated) value model, where bidders get signals about the common value of
an item, such as the classical paper of Milgrom and Weber [6], or the recent work
of Abraham et al [1] and Kempe at al [7] motivated by AdAuctions. However, in
the context of AdAuctions bidders are not often well-informed about the value
of the item they are bidding on (such as an ad spot), and common or affiliated
value is just one of the reasons for this. In this paper we will focus on private
value auctions, where bidders are not fully informed about their own value. In
the context of a single shot auction, such a not fully informed bidder will use her
expected value for the item in her bid. However, AdAuctions are best modeled
as a repeated game, repeatedly selling identical items (such as ads displayed
related to one keyword in search), as advertisers typically have large budgets
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compared to the magnitude of their bids. In a repeated auction, winning early
runs can be helpful not only for the inherent value of the item won, but also as a
means of learning about the value, and hence allowing better bidding behavior
in future runs. We explore possible bidding strategies, trading off the instant
value of winning with the value of learning, which was also considered by Iyer
et al [2] and Gummadi et al [4] using the notion of mean-field equilibria.

The main result of this paper is understanding the effect of offering credit to
such participants on the revenue of the auctioneer. Work of Bulow and Klemperer
[3] shows that recruiting additional bidders in auctions is better than setting the
optimal reserve price. One practical strategy for recruiting additional bidders
is to offer special ”deals” for new bidders, such as free or discounted bidding
for an initial time period. In this paper we develop a simple model to study
the value of early credit in such repeated auctions. We’ll show that it can be in
the platform’s direct financial interest to allow bidders, who may not be fully
informed about their own value, free experimentation. With low competition in
the current auction, a new bidder will want to enter and experiment, and credit
isn’t needed to entice them. With extremely high competition, the dominant
effect of credit to new entrants is the loss of revenue (from auctions when credit
was used). We show that there is a middle range of competition levels, where
the initial revenue loss of such credit is compensated for by recruiting bidders
who learn, through such experimentation, of the high value of participation. We
show that in addition to just continued participation beyond the initial credit,
such bidders will also learn faster their best bidding strategy, and hence start
bidding aggressively earlier, further enhancing revenue.

We will consider auction with bidders who are not fully aware of their own
value in the context of AdAuctions. Standard models of AdAuctions assume that
the advertiser has a private value vi for each click (that she knows), and there
is a known probability γi, possibly depending on the advertiser i, of getting a
click when the ad is displayed. This then would result in a value of viγi for
the impression. In the standard pay-per-click auction Advertisers then bid their
maximum willingness to pay for a click, and the platform needs to learn the
click-through-rate γi to be able to rank advertisers for their declared value of an
impression. However, most of the value for a click is coming from conversions, i.e.,
events when the viewer not only clicked to look at the advertiser’s web page, but
also purchased something, or subscribed etc. In this paper, we will assume that
advertisers have a known value wi for conversion, but they need to learn what
is the probability qi that a click will lead to a conversion. Alternate variants
of AdAuctions suggest charging advertisers by impression, that is every time
the ad is displayed, or only charging by conversion, that is, only when the click
resulted in a desired purchase by the viewer. From this perspective, the standard
pay-per-click auction has many advantages, as clicks are easy to monitor both
by the platform and by the advertiser. However, the pay-per-click auction leaves
both the advertiser and the platform with an uncertainty. The platform needs
to learn the click-through rate γi for each advertiser to be able to estimate the
claimed value of the impression γibi for a bidder with bid (claimed value) of bi.
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The advertiser is faced with a similar estimation problem in trying to find her
own expected value vi = wiqi for a click. Lahaie and McAfee [5] explore the effect
on the platform of not knowing the click-through-rates γi, and suggest a ranking
rule of ads that trades off the immediate value of displaying ads against the
added value of learning of the click-through rates γi. Iyer at al [2] and Gummadi
et al [4] consider the optimal bidding strategy of such bidders. In this paper, we
initiate a similar study of understanding how the bidder’s uncertainty about her
own value effects the platform.

We analyze the problem faced by a single advertiser competing in a series
of second-price auctions. Analogous to the work of [2] and Gummadi et al [4]
we focus on a decisions by a single new bidder, and will assume that the other
bidders are in steady state, the highest bids of the opponents are independent
and identically distributed over different auctions. To simplify the presentation,
we will assume that the click-through-rates γi are known, and we will further
assume that γi the equal to 1 for all bidders throughout most of the paper,
but with known click-through-rates γi our results extend to the general case. We
model the value of the advertiser in two steps, we assume that each advertiser has
a value wi for a conversion, which is known both to her and to the platform, and
there is a probability qi that a click will lead to a conversion. It is this probability
that is typically not known to an advertiser who is new to on-line advertising.
We will assume that qi is drawn from a known probability distribution. We
assume that every time the ad of advertiser i is clicked on, the click results in a
conversion of value wi with probability qi, and different clicks are independent.
Under this assumption, a click will not only result in expected value vi = wiqi
for the advertiser, but will also help her in gaining information about the value
qi, and as a result, help to get a better estimate of her value vi = wiqi.

Our Results: The main results of this paper are to characterize the optimal bid-
ding strategy for an advertiser, and show that credit offered to new participants
have the potential to improve the auctioneer’s revenue depending on the level of
competition. In particular, we propose a simple model to study this phenomena,
and find the optimal strategy of bidders, (note that rational bidders need to
bid more aggressively than suggested by the expected value E(vi) = wiE(qi),
as winning early auctions helps improve the bidders’ estimate their own value).
Further, we’ll show that depending on the level of current competition, it can be
in the platform’s financial interest to allow new bidders free experimentation, as
free experimentation leads to faster learning, which helps not only the bidders,
but also the auctioneer.

2 Preliminaries

The Auction Model: Our action model is a simplified model of repeated auc-
tions for advertisement space, similar to the model used by Iyer et al [2]. In
each time step a single item (ad slot) is sold on a second price auction. Each
item is identical. We assume that the auction already has steady participation
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from a number of well established bidders and we focus on a new entrant into
the auction. We assume that the bids of the established bidders are identically
distributed, and this distribution is not effected by the new entrant. The new
bidder’s bid is denoted by b, the highest opponent’s bid by b′, and the second
highest opponents’ bid by b′′. The resulting revenue is b′ if the bidder in focus
won the auction and max(b, b′′) is she did not win.

We start in Section 3 by analyzing the full information version of the auction
with b′ and b′′ known and fixed. For the full information case, we assume that
a bidder who knows that he won’t win, simply won’t participate in the auction.
This assumption reflects our focus aiming to understand to what extent credit
recruits valuable new bidders. In more realistic scenarios bidders are not usually
this well informed, and may not know to withdraw from the auction. In Section
4 we consider the Bayesian version, assuming only the distribution of the highest
and second highest bids is known, and is identical across time steps. With the
Bayesian uncertainty, new bidders may want to stay in with a low bid, even if
they rarely win.

Conversion Rate and Bidder’s Value: We focus on a single bidder, and
hence will drop the index i in what follows. The AdAuctions requires the bidder
to enter a bid b (claimed value) for a click. The advertiser has a value w for
a conversion and has a probability q that a click results in a conversion. For
simplicity of presentation, without loss of generality, we assume throughout most
of the paper that winning the auction is guaranteed to result a click (γ = 1 using
the notation from the introduction). A click will then result in a conversion with
probability q, and the bidder has value v = wq for each conversion.

We model uncertainty about the value by focusing on the uncertainty about
the conversion rate q. We assume that w is known both to the bidder as well as to
the auctioneer. To simplify notation, we will assume, without loss of generality,
that the new entrant’s value for conversion is w = 1. The bidder does not know
her conversion rate q, which is drawn at random uniformly from [0, 1]. With each
click she wins, she learns more about q, using Bayesian rule, described below. The
utility of the bidder in each round is computed by taking the difference between
the value gained and amount spent to win the auction. The utility gained in a
single round is defined below:

U =

⎧⎪⎨
⎪⎩
0− b′ if the bidder wins the auction but does not convert

1− b′ if the bidder wins the auction and converts

0 if the bidder doesn’t win the auction .

(1)

Hence if the value of the conversion rate is q, then the expected utility given that
the bidder wins the auction is q(1− b′) + (1− q)(0 − b′) = q − b′.

Note that we assume that advertisers have no budget constraint, and their goal
is simply to maximize the total expected utility over time, using the exponential
discounting as described above.

Temporal Discounting: We’ll use a model with infinite time horizon and tem-
poral exponential discounting on both the utility gained by the bidder and the
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revenue gained by the auctioneer with the factor d(≥ 0), i.e utility gained by the
bidder due to a conversion at time t is (1 − b′) × e−td. Therefore, if the bidder
gains a utility of U in every round starting from the kth round, her total expected

utility at the beginning would be Ue−kd+Ue−(k+1)d+Ue−(k+2)d+· · · = Ue−kd

1− e−d
.

We use the same temporal exponential discounting for the revenue of the auc-
tioneer.

Modeling Credit: The main goal of this paper is to understand the effect on
the auctioneer’s revenue of credit given to the bidder for initial experimentation.
We will model credit as a single free bid, and assume that with the credit the
bidder can bid high enough to win the auction.

The Learning Model: The bidder in focus has a single parameter q, the con-
version rate, which she needs to learn. Winning a round of the auction, doesn’t
only result in added utility for the winner, but also helps her learn the value of
the conversion rate q.

– At every stage of the repeated auction process, the bidder’s knowledge about
the value q is a distribution from which the value of q is chosen.

– We assume that the bidder starts with a uniform distribution for q ∈ [0, 1]
initially. Given a prior distribution in a round, the posterior is computed
using a Bayesian rule as follows: If the density function of the prior is f , it
is unchanged if the bidder doesn’t win, as no new information is available. If
the bidder wins, the posterior is either fw, if he converts, and fl if he doesn’t
convert, where fw and fl are:

fw(q) =
qf(q)∫ 1

0
qf(q) dq

=
qf(q)

E[q]
. (2)

fl(q) =
(1− q)f(q)∫ 1

0
(1− q)f(q) dq

=
(1− q)f(q)

1− E[q]
. (3)

– If the bidder in focus does not participate or does not win the auction in the
current round, her posterior is the same as her prior. She does not gain any
knowledge in this round and must wait for the next round to do so.

We will focus on a model where bidders only use a single time step to improve
their estimate of the conversion rate q, as this single time step learning already
demonstrates the important features of this model.

Note that initially we have E(q) = 1/2 as q is drawn uniformly at random
from [0, 1]. Using the above formulas, we get that after winning a single click,
the expectation is 2/3 if the click results in a conversion, and 1/3 if it does not.

3 Full Information Model

We first consider the full information model, when b′ and b′′ are fixed. Without
a learning opportunity, the new bidder has to evaluate her expected value in
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participating the auction. When the value for a conversion is w = 1, and the
expected value of the conversion rate q is 1/2, expected value of a click is wE(q) =
1/2. So in a second price auction, the dominant strategy for the new bidder is
to bid her expected value b = 1/2, and win if and only if b′ < 1/2.

Lemma 1. If a new bidder with value w and unknown conversion rate, has to
bid a single value b that will be used through the auction, then bidding wE(q) is
dominant strategy.

We can summarize this, as the new bidder will participate if and only if
b′ < 1/2, and drop out when b′ < 1/2.

With a learning opportunity, a bidder has more strategy options. Although
the bidder has a choice of bidding any value between 0 and 1, since the value of
b′ is known, the only choice the bidder makes in each round is whether to win the
auction (by bidding above b′) or not take part in the auction at all. Also, since
she is allowed to learn only in the first round, from the second round onwards
the choice she needs to make is whether to continue or quit and once this choice
is made it never changes in future rounds. The options are summarized by the
following strategies:

1. Never participate in the auction and withdraw permanently from the first
round itself.

2. Win the first round, i.e t = 0 and then do the following:
(a) If conversion occurs in the first round continue winning the auction for-

ever.
(b) If conversion does not occur in the first round withdraw from the auction

permanently.
3. Always participate and win in the auction by bidding a value above b′ in all

rounds.

If b′ is very low, the cost of winning is low, and hence even after a click with
no conversion, the expected value of winning exceeds the cost. Recall that the
expected value of q conditioned on the first click not resulting in a conversion is
1/3, so if b′ < 1/3, the bidder’s dominant strategy is the first one. Its not hard
to see that when b′ > 2/3, then never participating in the auction is dominant
strategy for the bidder, but we’ll see that when b′ is close to 2/3 the expected
revenue cannot make up for the cost of winning. As b′ goes higher the bidder’s
best strategy changes from the first, the second, and then to the last. To decide
what is the best strategy, we need to evaluate the expected value for each option.

Lemma 2. The expected utility gained by the bidder with each strategy is given
below:

– Option 1: has utility 0.
– Option 2: has utility

−b′ + 1

2

(
1 +

(
2

3
− b′

)
e−d

1− e−d

)
. (4)

– Option 3: has utility
(
1
2 − b′

)
1

1−e−d .
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Proof. In the case when we never participate the utility gained is clearly 0.
When the optimal strategy is unconditional participation, the expected value

of the utility in any given round is E[q]−b′. Since the distribution of q is uniform,
E[q] = 1

2 and hence the total utility is computed along with time discounting to

be equal to (12 − b′)(1 + e−d + e−2d + · · · ) =
(12 − b′)

1− e−d
.

When the optimal strategy is to experiment for a round, the bidder initially
has E[q] = 1

2 and hence believes she will get a conversion in the first round with
a probability of 1

2 , and so has value 1
2 in expectation. Given a conversion, the

expectation goes up to 2
3 and hence from the second round onwards she believes

that she will win with a probability of 2
3 in expectation. There is always a

payment of b′ to be made in the first round which is the cost of experimentation.

Hence the expected utility turns out to be equal to −b′ + 1
2 + 1

2 (
2
3 − b′) e−d

1−e−d .

Given the utilities resulting from each strategy option, we can now decide
what the best strategy is for the bidder, depending on the value of b′. We denote
the point (value of b′) where the second strategy begins to dominate the first by
β and the point where the third strategy takes over the second by α.

Corollary 1. The value of α and β are given by:

α =
3− e−d

3(2− e−d)
, (5)

β =
1

3
. (6)

Remark: Note that the value of α is above 1
2 , so with the opportunity to

withdraw after a round, bidders experiment, even with higher values of b′. On
the other hand, α is always less than 2

3 , the expected value of q after a positive
outcome of the experiment. So in the first round, the bidder is trading off the
cost of the experiment b′ which could be above the expected value of the outcome
in this round, against the future value of learning that q may be more likely high.

Next, we will explore how credit given in the form of a single free-start affects
the strategies, and outcomes. With a free start, there is no cost and a possible
benefit in participating in the first round, so the strategies available to the bidder
are:

1. Always participate and win in the auction by bidding a value above b′.
2. Win the first round, i.e t = 0 and do the following:

(a) If conversion occurs in the first round continue winning the auction for-
ever.

(b) If conversion does not occur in the first round withdraw from the auction
permanently.

3. Win the first round and withdraw permanently thereafter no matter what
happens in the first round.
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As before, depending on the value of b′ the best strategy changes from the
first (when b′ is low), to the second and third options as b′ gets higher. For the
version with credit, we denote the point (value of b′) where the second strategy
begins to dominate the first by β′ and the point where the third strategy takes
over the second by α′.

Lemma 3. The expected utility in the fixed b′ case when credit in the form of a
single free-start is given is:

E[U(b′)] =

⎧⎪⎪⎨
⎪⎪⎩

1
2 if b′ ≥ α′

1
2

(
1 + (23 − b′) e−d

1−e−d

)
if α′ ≥ b′ ≥ β(

1
2 − b′

)
1

1−e−d + b′ if b′ < β′ ,

(7)

where the values of α′ and β are the following:

α′ =
2

3
, (8)

β′ =
1

3
. (9)

Proof. Since the bidder no longer has to pay a cost of b′ in the first round, there
is no cost to the first round of participation. After the first round, the expected
value of the bidder is either 1

3 or 2
3 depending on the outcome of the first round,

so by Lemma 1, she will continue in either case if b′ ≤ β′ = 1
3 and continue only

on positive outcome if 1
3 ≤ b′ ≤ α′ = 2

3 , and otherwise withdraw in either case.

Remark: Notice that β′ = β, as after the first round of experiments, the decision
to continue participating is no longer affected by the cost of the first round (which
is now sunk cost). On the other hand, α′ > α. With costly experimentation, the
cost of the experiment is traded off against the potential gain. There is a range
of α′ > b′ > α, where the new bidder will remain in the auction with probability
1
2 (if the first win results in a conversion), but with costly experimentation she
would have never tried.

Now considering revenue, Corollary 1 and Lemma 3 shows that giving credit
when b′ ≤ α′ or if b′ > α, will only cost the auctioneer one round of income, with-
out effecting the probability of recruiting a new bidder. If competition isn’t too
high, a new bidder will join, or at least experiment, even without credit. With
b′ ≤ β = β′ the new bidder will remain in the auction in any case, with β <
b′ ≤ α, he will experiment, even on his own cost, and remain in the auction with
probability 1

2 (if he converts in the first round). If competition is already very
high, even free initial experimentation cannot recruit a new bidder, if b′ ≥ α′,
the new bidder will withdraw after a round, even if he wins. But if α < b′ < α′,
free credit changes the behavior of the new bidder. To see whether this change
is positive for the auctioneer’s revenue, we need to trade off the lost revenue
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from the free round, with the possible gain of an extra bidder. The region where
credit can increase revenue is shown on Figure 1.

Theorem 1. In the full information model with fixed b′, and single-shot learn-
ing, the auctioneer has a possibility of recruiting an additional bidder via giving

credit in the form of a single free-start when 2
3 ≥ b′ ≥ 3−e−d

3(2−e−d)
. This free credit

will increase revenue in expectation if b′ > (2ed − 1)b′′.

Proof. Giving credit for the first round results in a loss of revenue of b′′ for
the first round, but a possible gain if the new entrant participates in future
auctions, while she would not have participated without the credit. The range in

which credit possibly effects future participation is 2
3 ≥ b′ ≥ 3−e−d

3(2−e−d)
. The loss

of revenue is b′′. With probability 1
2 the credit will lead to no conversion, and

hence not lead to future participation, but with probability 1
2 , credit will lead

to conversion, and hence the new entrant remains in the auction. This will raise

the revenue in each round from b′′ to b′, resulting in a total of (b′ − b′′) e−d

1−e−d

increase in revenue. Therefore credit is beneficial when b′′ < 1
2 (b

′ − b′′) e−d

1−e−d ,

which is (2e−d − 1)b′′ < b′, as claimed.

We have so far assumed that the CTR γ equals 1 for all bidders. However,
this assumption is not crucial for our finding. If the CTR’s of different bidders
are known, but not all equal to 1, let b′γ′ be the highest product of the bid and
CRT of bidders already in the auction, while let bγ be the product of bid and

CRT of the new bidder. The bidder wins if bγ ≥ b′γ′, and pays p′ = b′γ′

γ for each
click. If free credit is offered for one display of the ad, the tradeoff in utility and
revenue is analogous to that of Corollary 1 and Lemma 3 with b′ replaced by the
price p′, and scaled with the probability γ that the click will happen (and hence
the cost and utility and learning materialized). Similarly, if free credit is offered
for the first click, again assuming that the CTRs are known, the cost and benefit
is 1/γ times those with just one free display, and the same conclusion holds.

Corollary 2. In the full information model with fixed b′, and single-shot learn-
ing, the auctioneer has a possibility of recruiting an additional bidder via giving
credit in the form of a single free display or single free click of the ad when
2
3 ≥ γp′ ≥ 3−e−d

3(2−e−d) . This free credit will increase revenue in expectation if

γp′ > (2ed − 1)b′′.

Remark: To simplify the presentation, we focused on a single round of learning.
However, similar conclusion also holds for multiple rounds of learning. The region
where revenue increase can take place is no longer a single contiguous region but
a number of non-contiguous regions. This is showed in Figure 2, where the green
regions are those where an increase in revenue is possible.



130 N. Dikkala and É. Tardos

Fig. 1. Region of revenue increase possibility. (single shot learning model with fixed
b′).

Fig. 2. Regions of revenue increase possibility. (2-shot learning model with fixed b′).

4 Bayesian Model

In this section we consider a model where the maximum bid b′ comes from a
known distribution. We assume that each time step is independent, and bids
come from the same distribution. Analogous to Lemma 1 if the entering bidder
has no opportunity to learn and has to provide a bid b used throughout the
auctions, then her dominant strategy is to bid her expected value b = wE(q) = 1

2
even against variable opponents.

Similarly, if credit is offered for the first bid, she should bid high enough to win
the first auction (for free). If this results in conversion, the resulting conditional
expectation for q is 2

3 , so her dominant strategy is to bid 2
3 in all further auctions;

while if the first win doesn’t result in a conversion then her dominant strategy
is to bid 1

3 in all further auctions.

Lemma 4. With no further opportunity to learn, it is dominant strategy for the
bidder to bid his expected value for a click. So with no learning opportunity, it is
dominant strategy to bid 1

2 . With credit given in the first round, it is dominant
strategy for the bidder to bid high enough to win the first round, and then bid
2/3 or 1/3 depending whether the first win resulted in a conversion.
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It is more challenging to evaluate what the best strategy is without credit.
We understand the model with a single learning step to mean that after the
first time period that the bidder wins, she has the chance to withdraw from
further rounds. Under this model, the best bid in initial rounds may be some
value b between 0 and 1 (the smallest and largest possible value for the bidder
depending on the value of the conversion probability q). A smaller value of b will
take longer to result in a win, while a higher value of b results in higher b′ in
expectation. So the cost of experimentation is now traded off against delay, and
hence lost value due in the initial rounds. After this first win, the bidder has a
dominant strategy of bidding 2

3 or 1
3 depending on whether conversion occurred

at the first win.
Next we claim that the optimal strategy for the bidder would be to bid a

constant value till the first win, that depends on the distributions b′ and q.

Lemma 5. The optimal strategy for the bidder given the distribution of b′ and
the distribution of q is to bid a constant bid b, the value of which depends on the
distributions b′ and q.

Proof. The expected utility of a bid is a function of the bid b and the distributions
b′ and q only. Hence, given distributions b′ and q, there will exist a value of b
for which the expected utility is maximum, and this is the optimal bid until he
gets new information about the distribution of q, by winning an auction and
experiencing if this win translated into a conversion.

Therefore, for the repeated auction scenario the strategy space of the bidder
looks as follows:

– Make a bid b > 1
2 in initial rounds till she wins an auction.

– Make a bid bw = 2
3 (≥ b) after winning a first auction if we convert in the

first round.
– Make a bid bl =

1
3 (≤ b) after winning a first auction if we do not convert in

the first round.

We’ll use F to denote the cumulative distribution function of the random
variable b′, the maximum bid without the new bidder, so F (b) is the probability
that b′ < b for a given value b. The expected utility is dependent on the bid b
made in the initial rounds, and the bids bw = 3/2 and bl = 1/3 which would be
made after winning a round depending on whether conversion occurred. Let E[U ]
denote the expected utility made and E[U |w] and E[U |l] denote the expected
utilities gained given a conversion in the first round and no conversion in the
first round respectively. The expression for the expected utility E[U ] is:

E[U ] = F (b)

[
−E[b′|b′ ≤ b] +

1

2

(
1 + e−dE[U |w]

)
+

1

2

(
e−dE[U |l]

)]
+ [1− F (b)] e−dE[U ].

The second term [1−F (b)]e−dE[U ] is the utility we would gain if we did not
win the auction in the first round by continuing to try from the second round.
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The expressions for E[U |w] and E[U |l] are given below using the fact that
each step yields the same expected utility:

E[U |w] =
F (2/3)(23 − E[b′|b′ ≤ 2/3])

1− e−d
. (10)

E[U |l] =
F (1/3)(13 − E[b′|b′ ≤ 1/3])

1− e−d
. (11)

While solving explicitly for the optimal bid b is less easy, this more complex
scenario results in qualitatively the same conclusion as we have seen in the pre-
vious section: initial credit can improve revenue by making the entering bidder
more aggressive initially and hence helping her find out her own value (or con-
version rate). Not being as aggressive without the credit now manifests itself
by using a lower bid value b and hence taking longer before learning about her
conversion rate.

Recall that with credit for one round of auction, the bidder can bid high
enough to win the first round, and hence the expression for the expected utility
becomes:

E[U ] =
1

2
(1 + e−dE[U |w]) + 1

2
(e−dE[U |l]). (12)

Theorem 2. Depending on the distribution of the highest and second highest
bids b′ and b′′, allowing a round of free experimentation for a new bidder, can
increase profit for the auctioneer.

Proof. We will show that the condition for profit in a variable b′ case is e−d(1−
F (b))

(
λ(2/3)+λ(1/3)

2

)
> λ(b), where

1. λ(b) = F (b)E[b′|b′ ≤ b] + (1 − F (b))E[max(b, b′′)|b′ > b]
2. b is the optimal bid of the bidder in the initial rounds.

To see this let Rnc denote the revenue of the auctioneer in the case when credit
is not given, and Rc denote the revenue of the auctioneer in the case when credit
is given (in the form of a free-start). The expressions for the two revenues are:

Rnc = F (b)[E[b′|b′ ≤ b] +
e−d

2(1− e−d)
[F (2/3)E[b′|b′ ≤ 2/3] +

+F (1/3)E[b′|b′ ≤ 1/3] + (1− F (2/3))max(2/3, b′′) +

+(1− F (1/2))max(1/3, b′′)]] + (1− F (b))[max(b, 2/3) + e−dRnc].

Rc = 1[0 +
e−d

2(1− e−d)
[F (2/3)E[b′|b′ ≤ 2/3] +

+F (1/3)E[b′|b′ ≤ 1/3] + (1− F (2/3))max(bw, b
′′)

(1− F (1/3))max(1/3, b′′)].

=> Rnc =
F (b)(E[b′|b′ ≤ b] +Rc) + (1− F (b))max(b, b′′)

1− e−d + e−dF (b)
.



Can Credit Increase Revenue? 133

The condition for profit would be Rc > Rnc. To simplify the evaluation of the
above condition we define

λ(b) = F (b)E[b′|b′ ≤ b] + (1− F (b))b. (13)

Now the condition for profit in terms of λ(.) is

e−d(1− F (b))

(
λ(bw) + λ(bl)

2

)
> λ(b). (14)

The function λ can be viewed as the expected revenue gained by the auctioneer
in one round of the auction as a function of the bidder’s utility maximizing
bid given her knowledge at that time. From the above inequality the following
remarks can be made:

1. If b the optimal bid in the first round is 1, i.e the bidder always participates
in the auction irrespective of the outcome, a profit cannot be made.

2. The effect of the discounting parameter d is two-fold, it hampers the pos-
sibility of a profit by reducing the value of future revenue gained by the
auctioneer but it also can have an increasing effect on the value of b.

5 Conclusion

We have shown that credit to encourage experimentation by a new entrant can
increase revenue in repeated auctions. To simplify the presentation, we assumed
that the unknown conversion rate q that the bidder is learning while experi-
menting is drawn from the uniform distribution, and that learning takes place
by only a single experimentation. While these assumptions simplify the presen-
tation, neither is crucial for the conclusion of the paper.
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Abstract. We consider a strategic game, where players submit jobs to
a machine that executes all jobs in a way that minimizes energy while
respecting the jobs’ deadlines. The energy consumption is then charged
to the players in some way. Each player wants to minimize the sum of that
charge and of their job’s deadline multiplied by a priority weight. Two
charging schemes are studied, the proportional cost share which does not
always admit pure Nash equilibria, and the marginal cost share, which
does always admit pure Nash equilibria, at the price of overcharging by
a constant factor.

1 Introduction

In many computing systems, minimizing energy consumption and maximizing
quality of service are opposed goals. This is also the case for the speed scaling
scheduling model considered in this paper. It has been introduced in [9], and
triggered a lot of work on offline and online algorithms; see [1] for an overview.

The online and offline optimization problem for minimizing flow time while
respecting a maximum energy consumption has been studied for the single ma-
chine setting in [14,2,5,8] and for the parallel machines setting in [3]. For the
variant where an aggregation of energy and flow time is considered, polynomial
approximation algorithms have been presented in [7,4,11].

In this paper we propose to study this problem from a different perspective,
namely as a strategic game. In society many ecological problems are either ad-
dressed in a centralized manner, like forcing citizens to sort household waste,
or in a decentralized manner, like tax incentives to enforce ecological behavior.
This paper proposes incentives for a scheduling game, in form of an energy cost
charging scheme.

Consider a scheduling problem for a single processor, that can run at variable
speed, such as the modern microprocessors Intel SpeedStep, AMD PowerNow!
or IBM EnergyScale. Higher speed means that jobs finish earlier at the price
of a higher energy consumption. Each job has some workload, representing a
number of instructions to execute, and a release time before which it cannot be
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scheduled. Every user submits a single job to a common processor, declaring the
jobs parameters, together with a deadline, that the player chooses freely.

The processor will schedule the submitted jobs preemptively, so that all release
times and deadlines are respected and the overall energy usage is minimized.
The energy consumed by the schedule needs to be charged to the users. The
individual goal of each user is to minimize the sum of the energy cost share
and of the requested deadline weighted by the user’s priority, which represents a
quality of service coefficient. This individual priority weight implies a conversion
factor that allows of aggregation of deadline and energy.

In a companion paper [15] we study this game from the point of view of
the game regulator, and compare different ways to organize the game which
would lead to truthfulness. In this paper we focus on a particular game setting,
described in the next section.

2 The Model

Formally, we consider a non-cooperative game with n players and a regulator.
The regulator manages the machine where the jobs are executed. Each player
has a job i with a workload wi, a release time ri and a priority pi, representing a
quality of service coefficient. The player submits its job together with a deadline
di > ri to the regulator. Workloads, release times and deadlines are public
information known to all players, while quality of service coefficients can be
private.

The regulator implements some cost sharing mechanism, which is known to
all users. This mechanism defines a cost share function bi specifying how much
player i is charged. The penalty of player i is the sum of two values: his energy
cost share bi(w, r, d) defined by the mechanism, where w = (w1, . . . , wn), r =
(r1, . . . , rn) and d = (d1, . . . , dn), and his waiting cost, which can be either pidi
or pi(di − ri); we use the former waiting cost throughout the article but all our
results apply to both. The sum of all player’s penalties, i.e., energy cost shares
and waiting costs will be called the utilitarian social cost.

The regulator computes a minimum energy schedule for a single machine
in the speed scaling model, which stipulates that at any point in time t the
processor can run at arbitrary speed s(t) ≥ 0; for a time interval I, the workload
executed in I is

∫
t∈I

s(t)dt, while the energy consumed is
∫
t∈I

s(t)αdt for some
fixed physical constant α ∈ [2, 3] characteristic for a device [6]. The sum of the
energy used by this optimum schedule and of all the players’ waiting costs will
be called the effective social cost.

The minimum energy schedule can be computed in time O(n2 logn) [10] and
has (among others) the following properties [16]. The jobs in the schedule are
executed by preemptive earliest deadline first order (EDF), and the speed s(t)
at which they are processed is piecewise linear. Preemptive EDF means that
at every time point among all jobs which are already released and not yet
completed, the job with the smallest deadline is executed, using job indices to
break ties.
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The cost sharing mechanism defines the game completely. Ideally, we would
like the game and the mechanism to have the following properties.

Existence of Pure Nash Equilibria. This means that there is a strategy pro-
file vector d such that no player can unilaterally deviate from their strategy
di while strictly decreasing their penalty.

Budget Balance. The mechanism is c-budged balanced, when the sum of the
cost shares is no smaller than the total energy consumption and no larger
than c times the energy consumption.

In the sequel we introduce and study two different cost sharing mechanisms,
namely Proportional Cost Sharing where every player pays exactly the
cost generated during the execution of his job, and Marginal Cost Sharing

where every player pays the increase of energy cost generated by adding this
player to the game.

3 Proportional Cost Sharing

The proportional cost sharing is the simplest budget balanced cost sharing
scheme one can think of. Every player i is charged exactly the energy consumed
during the execution of his job. Unfortunately this mechanism does not behave
well as we show in Theorem 1.

Fact 1. In a single player game, the player’s penalty is minimized by the deadline

r1 + w1(α− 1)1/αp
−1/α
1 .

Proof. If player 1 chooses deadline d1 = r1+x then the schedule is active between
time r1 and r1 + x at speed w1/x. Therefore his penalty is

p1(r1 + x) + x1−αwα
1 .

Deriving this expression in x, and using the fact that the penalty is concave in
t for any x > 0 and α > 0, we have that the optimal x for the player will set to
zero the derivative. This implies the claimed deadline. 
�

If there are at least two players however, the game does not have nice prop-
erties as we show now.

Theorem 1. The Proportional Cost Sharing does not always admit a
pure Nash equilibrium.

The proof consists of a very simple example: there are 2 identical players with
identical jobs, say w1 = w2 = 1, r1 = r2 = 0 and p1 = p2 = 1. First we determine
the best response of player 1 as a function of player 2, then we conclude that
there is no pure Nash equilibrium.
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Table 1. The local minimum in the range of f corresponding to fi is a function of α
and d2, which we denote by d

(i)
1 . The value at such local minimum is again a function

of α and d2, which we denote by gi(d2). These are only potential minima: they exist if
and only if the condition given in the last column is satisfied.

argument value applicable range

d
(1)
1 = (α− 1)1/α g1(d2) = α(α− 1)1/α−1 d2 ≥ 2(α− 1)1/α

d
(2)
1 = d2

2
g2(d2) = d2/2 + (d2/2)

1−α d2 ≤ 2(α− 1)1/α

d
(3)
1 = 2

(
α−1
2

)1/α
g3(d2) = α

(
α−1
2

)1/α−1 (
α−1
2

)1/α ≤ d2 ≤ 2
(
α−1
2

)1/α
d
(4)
1 = d2 + (α− 1)1/α g4(d2) = d2 + α (α− 1)1/α−1 d2 ≤ (α− 1)1/α−1

Lemma 1. Given the second player’s choice d2, the penalty of the first player
as a function of his choice d1 is given by

f(d1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(d1) = d1 + d1−α

1 if d1 ≤ d2

2

f2(d1) = d1 + (d2

2 )1−α if d2

2 ≤ d1 ≤ d2

f3(d1) = d1 + (d1

2 )1−α if d2 ≤ d1 ≤ 2d2

f4(d1) = d1 + (d1 − d2)
1−α if d1 ≥ 2d2

(1)

The local minima of f(d1) are summarized in Table 1, and the penalties corre-
sponding to player 1 picking these minima are illustrated in Figure 1.
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d‡2 2(α− 1)1/αd†2
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g3

g4

g1

Fig. 1. First player’s penalty (in bold) when choosing his best response as a function
of second player’s strategy d2, here for α = 3

Proof. Formula (1) follows by a straightforward case inspection. Then, to find
all the local minima of f , we first look at the behavior of each of fi, finding their
local minima in their respective intervals, and afterwards we inspect the border
points of these intervals.
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Range of f1: The derivative of f1 is

f ′
1(d1) = 1− (α− 1)d−α

1 ,

whose derivative in turn is positive for α > 1. Therefore, f1 has a local

minimum at d
(1)
1 as specified. Since we require that this local minimum is

within the range where f coincides with f1, the necessary and sufficient

condition is d
(1)
1 ≤ d2

2 .
Range of f2: f2 is an increasing function, and therefore it attains a minimum

value only at the lower end of its range, d
(3)
1 . However, if d

(2)
1 is to be a local

minimum of f , there can be no local minimum of f in the range of f1
(immediately to the left), so the applicable range of d

(2)
1 is the complement

of that of d
(1)
1 .

Range of f3: The derivative of f3 is

f ′
3(d1) = 1− α− 1

2
(d1/2)

−α , (2)

whose derivative in turn is positive for α > 1. Hence, f3 has a local minimum

at d
(3)
1 as specified. The existence of this local minimum requires d2 ≤ d

(3)
1 ≤

2d2, which is equivalent to
d
(3)
1

2 ≤ d2 ≤ d
(3)
1 .

Range of f4: The derivative of f4 is

f ′
4(d1) = 1− (α− 1)(d1 − d2)

−α , (3)

whose derivative in turn is positive for α > 1. Hence, f4 has a local minimum

at d
(4)
1 as specified. The existence of this local minimum requires d

(4)
1 ≥ 2d2.

Now let us consider the border points of the ranges of each fi. Since f2 is
strictly increasing, the border point of the ranges of f2 and f3 is not a local

minimum of f . This leaves only the border point d
(2)
1 = 2d2 of the ranges of f3

and f4 to consider. Clearly, d
(2)
1 is a local minimum of f if and only if f ′

3(d
(2)
1 ) ≤ 0

and f ′
4(d

(2)
1 ) ≥ 0. However, by (2), f ′

3(d
(2)
1 ) = 2 − (α − 1)d−α

2 , and by (3),

f ′
4(d

(2)
1 ) = 2 − 2(α − 1)d−α

2 < f ′
3(d

(2)
1 ), so d

(2)
1 is not a local minimum of f

either. 
�
Note that the range of g1 is disjoint with the ranges of g3 and g4, and with

the exception of the shared border value 2(α− 1)1/α, also with the range of g2.
However, the ranges of g2, g3 and g4 are not disjoint. Therefore, we now focus on
their shared range, and determine which of the functions gives rise to the true
local minimum (the proof is omitted due to space constraints).

Lemma 2. The function g3(d2) is constant, the function g4(d2) is an increasing

linear function, and the function g2(d2) is decreasing for d2 < d
(3)
1 . Moreover,

there exist two unique values

d†2 = α(α − 1)1/α−1(21−1/α − 1) such that g4(d
†
2) = g3(d

†
2) , (4)

d‡2 ∈
(
d†2, d

(3)
1

)
such that g2(d

‡
2) = g3(d

‡
2) . (5)
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With Lemma 1 and Lemma 2, whose statements are summarized in Table 1
and Figure 1, we can finally determine what is the best response of the first
player as a function of d2.

Lemma 3. The best response for player 1 as function of d2 is

d
(4)
1 = d2 + (α− 1)1/α if 0 < d2 ≤ d†2 ,

d
(3)
1 = 2

(
α− 1

2

)1/α

if d†2 < d2 ≤ d‡2 ,

d
(2)
1 =

d2
2

if d‡2 < d2 ≤ 2(α− 1)1/α ,

d
(1)
1 = (α− 1)1/α if 2(α− 1)1/α < d2 .

Proof. The proof consists in determining which of the applicable local minima
of f is the global minimum for each range of d2. Again, the cases are depicted
in Figure 1.

case (i) 0 < d2 ≤ d†2: In this case, we claim that the best response of player 1
is

d
(4)
1 = d2 + (α− 1)1/α .

First we prove that

d†2 ∈
((

α− 1

2

)1/α

, (α− 1)1/α−1

)
.

The upper bound hold since

α(α− 1)1/α−1(21−1/α − 1) < (α− 1)1/α−1

α(21−1/α − 1) < 1,

holds for α ≥ 2.
The lower bound holds since,

α(α − 1)1/α−1(21−1/α − 1) >

(
α− 1

2

)1/α

α

α− 1
(21−1/α − 1) > 2−1/α

α

α− 1
(2− 21/α) > 1

holds for α ≥ 2.
In fact, both inequalities are true even for α > 1, but as we require α ≥ 2

due to Lemma 2, we settle for simpler proofs.
These bounds imply that in case (i) player 1 chooses the minimum among

the 3 local minima d
(2)
1 , d

(3)
1 , and d

(4)
1 , where the middle one is only an option

for
(
α−1
2

)1/α ≤ d2 ≤ d†2. It follows from Lemma 2 that the last option always
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Fig. 2. Best response of player 1 as function of d2, and best response of player 2 as
function of d1. Here for α = 3.

dominates: by (5), for every
(
α−1
2

)1/α ≤ d2 < d‡2, we have g3(d2) < g2(d2),

and by (4), for every
(
α−1
2

)1/α ≤ d2 ≤ d†2, we have g4(d2) < g3(d2). This
concludes the analysis for case (i).

case (ii) d†2 < d2 ≤ d‡2: In this case, we claim that the best response of player
1 is

d
(3)
1 = 2

(
α− 1

2

)1/α

.

First we observe that by Lemma 2 (5),

d‡2 < d
(4)
1 ,

which rules out d
(1)
1 as a choice for player 1, leaving only d

(2)
1 , d

(3)
1 , and d

(4)
1 .

Again, Lemma 2 implies that d
(4)
1 dominates other choices: by (5), we have

g3(d2) < g2(d2) for all
(
α−1
2

)1/α ≤ d2 < d‡2, and by (4), we have g3(d2) <

g4(d2) for all d2 > d†2.
Note that for α = 2, the range of this case is empty.

case (iii) d‡2 < d2 ≤ 2(α− 1)1/α: For this range, only d
(2)
1 and d

(3)
1 are viable

choices for player 1, and Lemma 2 (5) implies that d
(2)
1 dominates. Therefore

first player’s best response is

d
(2)
1 =

d2
2

.

case (iv) 2(α− 1)1/α < d2: For this range, the only viable choice for player 1
is

d
(1)
1 = (α− 1)1/α ,

which is therefore his best response.
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This concludes the proof of the lemma. 
�
By the symmetry of the players, the second player’s best response is in fact

an identical function of d1 as the one stated in Lemma 3. By straightforward
inspection it follows that there is no fix point (d1, d2) to this game, which implies
the following theorem, see figure 2 for illustration.

4 Marginal Cost Sharing

In this section we propose a different cost sharing scheme, that improves on the
previous one in the sense that it admits pure Nash equilibria, however for the
price of overcharging by at most a constant factor.

Before we give the formal definition we need to introduce some notations. Let
OPT(d) be the energy minimizing schedule for the given instance, and OPT(d−i)
be the energy minimizing schedule for the instance where job i is removed. We
denote by E(S) the energy cost of schedule S.

In the marginal cost sharing scheme, player i pays the penalty function

pidi + E(OPT(d))− E(OPT(d−i)).

This scheme defines an exact potential game by construction [12]. Formally, let
n be the number of players, D = {d|∀j : dj > rj} be the set of action profiles
(deadlines) over the action sets Di of each player.

Let us denote the effective social cost corresponding to a strategy profile d by
Φ(d). Then

Φ(d) =

n∑
i=1

pidi + E(OPT(d)).

Clearly, if a player i changes its strategy di and his penalty decreases by
some amount Δ, then the effective social cost decreases by the same amount Δ,
because E(OPT(d−i)) remains unchanged.

4.1 Existence of Equilibria

While the best response function is not continuous in the strategy profile, pre-
cluding the use of Brouwer’s fixed-point theorem, existence of pure Nash equi-
libria can nevertheless be easily established.

To this end, note that the global minimum of the effective social cost, if it
exists, is a pure Nash equilibrium. Its existence follows from (1) compactness of
a non-empty sub-space of strategies with bounded social cost and (2) continuity
of Φ.

For (2), note that
∑

i pidi is clearly continuous in d, and hence Φ(d) is con-
tinuous if E(OPT(d)) is. The continuity of the latter is clear once considers all
possible relations of the deadlines chosen by the players.

For (1), let d′ be any (feasible) strategy profile such that di > ri for each
player i. The subspace of strategy profiles d such that Φ(d) ≤ Φ(d′) is clearly
closed, and bounded due to the pidi terms. Thus it is a compact subspace that
contains the global minimum of Φ.
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4.2 Convergence Can Take Forever

In this game the strategy set is infinite. Moreover, the convergence time can be
infinite as we demonstrate below in Theorem 2. Notice that this also proves that
in general there are no dominant strategies in this game.

Theorem 2. For the game with the marginal cost sharing mechanism, the con-
vergence time to reach a pure Nash equilibrium can be unbounded.

Proof. The proof is by exhibiting again the same small example, with 2 players,
release times 0, unit weights, unit penalty factors, and α > 2.

For this game there are two pure Nash equilibria, the first one is

d1 =

(
α− 1

2

)1/α

, d2 = d1 + (α− 1)1/α,

while the second one is symmetric for players 1 and 2.
In the reminder of the proof, we assume that player 1 chooses a deadline which

is close to the pure Nash equilibrium above. By analyzing the best responses of
the players, we conclude that after a best response of player 2, and then of player
1 again, he chooses a deadline which is even closer to the pure Nash equilibrium
above but different from it, leading to an infinite convergence sequence of best
responses. The proofs of the following two lemmas are omitted.

Now suppose d1 = δ
(
α−1
2

)1/α
for some 1 < δ < 21/α. What is the best

response for player 2?

Lemma 4. Given the first player’s choice d1, the penalty of the second player
as a function of his choice d2 is given by

h(d2, d1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h1(d2, d1) = d2 + d1−α

2 + (d1 − d2)
1−α − d1−α

1 if d2 ≤ d1

2

h2(d2, d1) = d2 + (2α − 1)d1−α
1 if d1

2 ≤ d2 ≤ d1

h3(d2, d1) = d2 + 2αd1−α
2 − d1−α

1 if d1 ≤ d2 ≤ 2d1

h4(d2, d1) = d2 + (d2 − d1)
1−α if d2 ≥ 2d1,

and the best response for player 2 as function of d1 is

d1 + (α− 1)1/α = (α − 1)1/α(1 + 2−1/αδ) (6)

From now on we assume that player 2 chooses d2 = d1 + (α − 1)1/α = (α −
1)1/α(1 + 2−1/αδ). What is the best response for player 1?

Lemma 5. Given the second player’s choice d2, the penalty of the first player as
a function of his choice d1 is given by h(d1, d2) and the best response for player
1 is

d1 = δ′
(
α− 1

2

)1/α

,

for some δ′ ∈ (1, δ).

This concludes the proof of Theorem 2. 
�
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4.3 Bounding Total Charge

In this section we bound the total cost share for the Marginal Cost Sharing

Scheme, by showing that it is at least E(OPT(d)) and at most α times this
value. In fact we show a stronger claim for individual cost shares.

Theorem 3. For every player i, its marginal costshare is at least its propor-
tional costshare and at most α times the proportional costshare.

Proof. Fix a player i, and denote by S−i the schedule obtained from OPT(d)
when all executions of i are replaced by idle times. Clearly we have the following
inequalities.

E(OPT(d−i)) ≤ E(S−i) ≤ E(OPT(d))

Then the marginal cost share of player i can be lower bounded by

E(OPT(d)) − E(OPT(d−i)) ≥ E(OPT(d))− E(S−i).

According to [16] the schedule OPT can be obtained by the following iterative
procedure. Let S be the support of a partial schedule. For every interval [t, t′)
we define its domain It,t′ := [t, t′)\S, the set of included jobs Jt,t′ := {j :
[rj , dj) ⊆ [t, t′)}, and the density σt,t′ :=

∑
j∈Jt,t′

wj/|It,t′ |. The procedure starts
with S = ∅, and while not all jobs are scheduled, selects an interval [t, t′) with
maximal density, and schedules all jobs from Jt,t′ in earliest deadline order in
It,t′ at speed σt,t′ adding It,t′ to S.

For the upper bound, let t1 < t2 < . . . < t� be the sequence of all release
times and deadlines for some � ≤ 2n. Clearly both schedules S run at uniform
speed in every interval [tk−1, tk). For every 1 ≤ k ≤ n let sk be the speed of S
in [tk−1, tk), and s′k the speed of S′ in the same interval.

From the algorithm above it follows that every job is scheduled at constant
speed, so let sa be the speed at which job i is scheduled in OPT(d). It also
follows that if sk > sa, then s′k = sk, and if sk ≤ sa, then s′k ≤ sk.

We establish the following upper bound.

E(OPT(d)) − E(OPT(d−i)) =
�∑

k=1

sαk (tk − tk−1)− s′αk (tk − tk−1)

=
∑

(tk − tk−1)(s
α
k − (sk − (sk − s′k))

α)

=
∑

(tk − tk−1)s
α
k

(
1−

(
1− sk − s′k

sk

)α)

≤
∑

(tk − tk−1)s
α
k

(
1−

(
1− α

sk − s′k
sk

))
=
∑

(tk − tk−1)αs
α−1
k (sk − s′k)

≤ αsα−1
a

∑
(tk − tk−1)(sk − s′k)

= αsα−1
a wi

= α(E(OPT(d))− E(S−i)).
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The first inequality uses the generalized Bernoulli inequality, and the last one
the fact that for all k with sk �= s′k we have sk ≤ sa.

The theorem follows from the fact that sα−1
a wi is precisely the proportional

cost share of job i in OPT(d). 
�

A tight example is given by n jobs, each with workload 1/n, release time 0
and deadline 1. Clearly the optimal energy consumption is 1 for this instance.
The marginal cost share for each player is 1 − (1 − 1/n)α. Finally we observe
that the total marginal cost share tends to α, i.e.

lim
n→+∞

n− n(1− 1/n)α = α.

5 A Note on Cross-Monotonicity

We conclude this paper by a short note on cross-monotonicity. This is a property
of cost sharing games, stating that whenever new players enter the game, the cost
share of any fixed player does not increase. This property is useful for stability
in the game, and is the key to the Moulin carving algorithm [13], which selects
a set of players to be served for specific games.

In the game that we consider, the minimum energy of an optimal schedule for
a set S of jobs contrasts with many studied games, where serving more players
becomes more cost effective, because the used equipment is better used.

Consider a very simple example of two identical players, submitting their
respective jobs with the same deadline 1. Suppose the workload of each job is
w, then the minimum energy necessary to schedule one job is wα, while the cost
to serve both jobs is (2w)α, meaning that the cost share increase whenever a
second player enters the game. Therefore the marginal cost sharing scheme is
not cross-monotonic.
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Abstract. The focus of classic mechanism design has been on truthful
direct-revelation mechanisms. In the context of combinatorial auctions
the truthful direct-revelation mechanism that maximizes social welfare is
the VCG mechanism. For many valuation spaces computing the alloca-
tion and payments of the VCGmechanism, however, is a computationally
hard problem. We thus study the performance of the VCG mechanism
when bidders are forced to choose bids from a subspace of the valuation
space for which the VCG outcome can be computed efficiently. We prove
improved upper bounds on the welfare loss for restrictions to additive
bids and upper and lower bounds for restrictions to non-additive bids.
These bounds show that the welfare loss increases in expressiveness. All
our bounds apply to equilibrium concepts that can be computed in poly-
nomial time as well as to learning outcomes.

1 Introduction

An important field at the intersection of economics and computer science is the
field of mechanism design. The goal of mechanism design is to devise mechanisms
consisting of an outcome rule and a payment rule that implement desirable out-
comes in strategic equilibrium. A fundamental result in mechanism design theory,
the so-called revelation principle, asserts that any equilibrium outcome of any
mechanism can be obtained as a truthful equilibrium of a direct-revelation mech-
anism. However, the revelation principle says nothing about the computational
complexity of such a truthful direct-revelation mechanism.

In the context of combinatorial auctions the truthful direct-revelation mech-
anism that maximizes welfare is the Vickrey-Clarke-Groves (VCG) mechanism
[29,4,10]. Unfortunately, for many valuation spaces computing the VCG alloca-
tion and payments is a computationally hard problem. This is, for example, the
case for subadditive, fractionally subadditive, and submodular valuations [16].
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We thus study the performance of the VCG mechanism in settings in which the
bidders are forced to use bids from a subspace of the valuation space for which
the allocation and payments can be computed efficiently. This is obviously the
case for additive bids, where the VCG-based mechanism can be interpreted as
a separate second-price auction for each item. But it is also the case for the
syntactically defined bidding space OXS, which stands for ORs of XORs of sin-
gletons, and the semantically defined bidding space GS, which stands for gross
substitutes. For OXS bids polynomial-time algorithms for finding a maximum
weight matching in a bipartite graph such as the algorithms of [28] and [8] can
be used. For GS bids there is a fully polynomial-time approximation scheme due
to [15] and polynomial-time algorithms based on linear programming [30] and
convolutions of M#-concave functions [21,20,22].

One consequence of restrictions of this kind, that we refer to as valuation
compressions, is that there is typically no longer a truthful dominant-strategy
equilibrium that maximizes welfare. We therefore analyze the Price of Anarchy,
i.e., the ratio between the optimal welfare and the worst possible welfare at
equilibrium. We focus on equilibrium concepts such as correlated equilibria and
coarse correlated equilibria, which can be computed in polynomial time [24,13],
and naturally emerge from learning processes in which the bidders minimize
external or internal regret [7,11,17,2].

Our Contribution. We start our analysis by showing that for restrictions from
subadditive valuations to additive bids deciding whether a pure Nash equilibrium
exists is NP-hard. This shows the necessity to study other bidding functions or
other equilibrium concepts.

We then define a smoothness notion for mechanisms that we refer to as relaxed
smoothness. This smoothness notion is weaker in some aspects and stronger in
another aspect than the weak smoothness notion of [27]. It is weaker in that
it allows an agent’s deviating bid to depend on the distribution of the bids of
the other agents. It is stronger in that it disallows the agent’s deviating bid to
depend on his own bid. The former gives us more power to choose the deviating
bid, and thus has the potential to lead to better bounds. The latter is needed to
ensure that the bounds on the welfare loss extend to coarse correlated equilibria
and minimization of external regret.

We use relaxed smoothness to prove an upper bound of 4 on the Price of Anar-
chy with respect to correlated and coarse correlated equilibria. Similarly, we show
that the average welfare obtained by minimization of internal and external regret
converges to 1/4-th of the optimal welfare. The proofs of these bounds are based on
an argument similar to the one in [6]. Our bounds improve the previously known
bounds for these solution concepts by a logarithmic factor. We also use relaxed
smoothness to prove bounds for restrictions to non-additive bids. For subaddi-
tive valuations the bounds areO(log(m)) resp.Ω(1/ log(m)), wherem denotes the
number of items. For fractionally subadditive valuations the bounds are 2 resp. 1/2.
The proofs require novel techniques as non-additive bids lead to non-additive prices
for which most of the techniques developed in prior work fail. The bounds extend
the corresponding bounds of [3,1] from additive to non-additive bids.
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Table 1. Summary of our results (bold) and the related work (regular) for coarse
correlated equilibria and minimization of external regret through repeated play. The
range indicates upper and lower bounds on the Price of Anarchy.

valuations
less general subadditive

bids
additive [2,2] [2,4]

more general [2, 2] [2.4,O(log(m))]

Finally, we prove lower bounds on the Price of Anarchy. By showing that VCG-
based mechanisms satisfy the outcome closure property of [19] we show that the
Price of Anarchy with respect to pure Nash equilibria weakly increases with
expressiveness. We thus extend the lower bound of 2 from [3] from additive to
non-additive bids. This shows that our upper bounds for fractionally subadditive
valuations are tight. We prove a lower bound of 2.4 on the Price of Anarchy
with respect to pure Nash equilibria that applies to restrictions from subadditive
valuations to OXS bids. Together with the upper bound of 2 of [1] for restrictions
from subadditive valuations to additive bids this shows that the welfare loss can
strictly increase with expressiveness.

Our analysis leaves a number of interesting open questions, both regarding
the computation of equilibria and regarding improved upper and lower bounds.
Interesting questions regarding the computation of equilibria include whether
or not mixed Nash equilibria can be computed efficiently for restrictions from
subadditive to additive bids or whether pure Nash equilibria can be computed ef-
ficiently for restrictions from fractionally subadditive valuations to additive bids.
A particularly interesting open problem regarding improved bounds is whether
the welfare loss for computable equilibrium concepts and learning outcomes can
be shown to be strictly larger for restrictions to non-additive, say OXS, bids
than for restrictions to additive bids. This would show that additive bids are not
only sufficient for the best possible bound but also necessary.

Related Work. The Price of Anarchy of restrictions to additive bids is analyzed
in [3,1,6] for second-price auctions and in [12,6] for first price auctions. The
case where all items are identical, but additional items contribute less to the
valuation and agents are forced to place additive bids is analyzed in [18,14].
Smooth games are defined and analyzed in [25,26]. The smoothness concept is
extended to mechanisms in [27].

Organization. We describe our model in Section 2. We give the hardness result
in Section 3, and define relaxed smoothness in Section 4. The upper and lower
bounds can be found in Sections 5 to 8. All proofs omitted from this extended
abstract are given in the full version of the paper.

2 Preliminaries

Combinatorial Auctions. In a combinatorial auction there is a set N of n agents
and a set M of m items. Each agent i ∈ N employs preferences over bundles
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of items, represented by a valuation function vi : 2
M → R≥0. We use Vi for the

class of valuation functions of agent i, and V =
∏

i∈N Vi for the class of joint
valuations. We write v = (vi, v−i) ∈ V , where vi denotes agent i’s valuation
and v−i denotes the valuations of all agents other than i. We assume that the
valuation functions are normalized and monotone, i.e., vi(∅) = 0 and vi(S) ≤
vi(T ) for all S ⊆ T .

A mechanism M = (f, p) is defined by an allocation rule f : B → P(M) and a
payment rule p : B → Rn

≥0, where B is the class of bidding functions and P(M)
denotes the set of allocations consisting of all possible partitions X of the set of
items M into n sets X1, . . . , Xn. As with valuations we write bi for agent i’s bid,
and b−i for the bids by the agents other than i. We define the social welfare of an
allocation X as the sum SW(X) =

∑
i∈N vi(Xi) of the agents’ valuations and use

OPT(v) to denote the maximal achievable social welfare. We say that an alloca-
tion rule f is efficient if for all bids b it chooses the allocation f(b) that maximizes
the sum of the agent’s bids, i.e.,

∑
i∈N bi(fi(b)) = maxX∈P(M)

∑
i∈N bi(Xi). We

assume quasi-linear preferences, i.e., agent i’s utility under mechanism M given
valuations v and bids b is ui(b, vi) = vi(fi(b))− pi(b).

We focus on the Vickrey-Clarke-Groves (VCG) mechanism [29,4,10]. Define
b−i(S) = maxX∈P(S)

∑
j 	=i bj(Xj) for all S ⊆ M . The VCG mechanisms starts

from an efficient allocation rule f and computes the payment of each agent i
as pi(b) = b−i(M) − b−i(M \ fi(b)). As the payment pi(b) only depends on the
bundle fi(b) allocated to agent i and the bids b−i of the agents other than i, we
also use pi(fi(b), b−i) to denote agent i’s payment.

If the bids are additive then the VCG prices are additive, i.e., for every agent
i and every bundle S ⊆ M we have pi(S, b−i) =

∑
j∈S maxk 	=i bk(j). Further-

more, the set of items that an agent wins in the VCG mechanism are the items
for which he has the highest bid, i.e., agent i wins item j against bids b−i if bi(j) ≥
maxk 	=i bk(j) = pi(j) (ignoring ties). Many of the complications in this paper come
from the fact that these two observations do not apply to non-additive bids.

Valuation Compressions. Our main object of study in this paper are valuation
compressions, i.e., restrictions of the class of bidding functions B to a strict sub-
class of the class of valuation functions V .1 Specifically, we consider valuations
and bids from the following hierarchy due to [16],

OS ⊂ OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF ,

where OS stands for additive, GS for gross substitutes, SM for submodular, and
CF for subadditive.

The classes OXS and XOS are syntactically defined. Define OR (∨) as
(u ∨ w)(S) = maxT⊆S(u(T ) + w(S \ T )) and XOR (⊗) as (u ⊗ w)(S) =
max(u(S), w(S)). Define XS as the class of valuations that assign the same value
to all bundles that contain a specific item and zero otherwise. Then OXS is the
class of valuations that can be described as ORs of XORs of XS valuations and

1 This definition is consistent with the notion of simplification in [19,5].
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XOS is the class of valuations that can be described by XORs of ORs of XS
valuations.

Another important class is the class β-XOS, where β ≥ 1, of β-fractionally
subadditive valuations. A valuation vi is β-fractionally subadditive if for every
subset of items T there exists an additive valuation ai such that (a)

∑
j∈T ai(j) ≥

vi(T )/β and (b)
∑

j∈S ai(j) ≤ vi(S) for all S ⊆ T . It can be shown that the
special case β = 1 corresponds to the class XOS, and that the class CF is
contained in O(log(m))-XOS (see, e.g., Theorem 5.2 in [1]). Functions in XOS
are called fractionally subadditive.

Solution Concepts. We use game-theoretic reasoning to analyze how agents inter-
act with the mechanism, a desirable criterion being stability according to some
solution concept. In the complete information model the agents are assumed
to know each others’ valuations, and in the incomplete information model the
agents’ only know from which distribution the valuations of the other agents are
drawn. In the remainder we focus on complete information. The definitions and
our results for incomplete information are given in the full version of the paper.

The static solution concepts that we consider in the complete information
setting are:

DSE ⊂ PNE ⊂MNE ⊂ CE ⊂ CCE ,

where DSE stands for dominant strategy equilibrium, PNE for pure Nash equi-
librium, MNE for mixed Nash equilibrium, CE for correlated equilibrium, and
CCE for coarse correlated equilibrium.

In our analysis we only need the definitions of pure Nash and coarse cor-
related equilibria. Bids b ∈ B constitute a pure Nash equilibrium (PNE) for
valuations v ∈ V if for every agent i ∈ N and every bid b′i ∈ Bi, ui(bi, b−i, vi) ≥
ui(b

′
i, b−i, vi). A distribution B over bids b ∈ B is a coarse correlated equilibrium

(CCE) for valuations v ∈ V if for every agent i ∈ N and every pure deviation
b′i ∈ Bi, Eb∼B[ui(bi, b−i, vi)] ≥ Eb∼B[ui(b

′
i, b−i, vi)].

The dynamic solution concept that we consider in this setting is regret mini-
mization. A sequence of bids b1, . . . , bT incurs vanishing average external regret
if for all agents i,

∑T
t=1 ui(b

t
i, b

t
−i, vi) ≥ maxb′i

∑T
t=1 ui(b

′
i, b

t
−i, vi) − o(T ) holds,

where o(·) denotes the little-oh notation. The empirical distribution of bids in
a sequence of bids that incurs vanishing external regret converges to a coarse
correlated equilibrium (see, e.g., Chapter 4 of [23]).

Price of Anarchy. We quantify the welfare loss from valuation compressions by
means of the Price of Anarchy (PoA).

The PoA with respect to PNE for valuations v ∈ V is defined as the worst
ratio between the optimal social welfare OPT(v) and the welfare SW(b) of a
PNE b ∈ B,

PoA(v) = max
b: PNE

OPT(v)

SW(b)
.

Similarly, the PoA with respect to MNE, CE, and CCE for valuations v ∈ V
is the worst ratio between the optimal social welfare SW(b) and the expected
welfare Eb∼B[SW(b)] of a MNE, CE, or CCE B,
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PoA(v) = max
B: MNE, CE or CCE

OPT(v)

Eb∼B[SW(b)]
.

We require that the bids bi for a given valuation vi are conservative, i.e.,
bi(S) ≤ vi(S) for all bundles S ⊆ M . Similar assumptions are made and eco-
nomically justified in the related work [3,1,6].

3 Hardness Result for PNE with Additive Bids

Our first result is that deciding whether there exists a pure Nash equilibrium
for restrictions from subadditive valuations to additive bids is NP-hard. The
proof of this result is by reduction from 3-Partition [9] and uses an example
with no pure Nash equilibrium from [1]. The same decision problem is simple
for V ⊆ XOS because pure Nash equilibria are guaranteed to exist [3].

Theorem 1. Suppose that V = CF, B = OS, that the VCG mechanism is used,
and that agents bid conservatively. Then it is NP-hard to decide whether there
exists a PNE.

4 Smoothness Notion and Extension Results

Next we define a smoothness notion for mechanisms. It is weaker in some aspects
and stronger in another aspect than the weak smoothness notion in [27]. It is
weaker because it allows agent i’s deviating bid ai to depend on the marginal
distribution B−i of the bids b−i of the agents other than i. This gives us more
power in choosing the deviating bid, which might lead to better bounds. It is
stronger because it does not allow agent i’s deviating bid ai to depend on his
own bid bi. This allows us to prove bounds that extend to coarse correlated
equilibria and not just correlated equilibria.

Definition 1. A mechanism is relaxed (λ, μ1, μ2)-smooth for λ, μ1, μ2 ≥ 0 if for
every valuation profile v ∈ V , every distribution over bids B, and every agent i
there exists a bid ai(v,B−i) such that∑
i∈N

E
B−i

[ui((ai, b−i), vi)]≥λOPT(v)−μ1

∑
i∈N

E
B
[pi(Xi(b), b−i)]−μ2

∑
i∈N

E
B
[bi(Xi(b))].

Theorem 2. If a mechanism is relaxed (λ, μ1, μ2)-smooth, then the Price of
Anarchy under conservative bidding with respect to coarse correlated equilibria
is at most (max{μ1, 1}+ μ2)/λ.

Proof. Fix valuations v. Consider a coarse correlated equilibrium B. For each b
from the support of B denote the allocation for b by X(b) = (X1(b), . . . , Xn(b)).
Let a = (a1, . . . , an) be defined as in Definition 1. Then,

E
b∼B

[SW(b)] =
∑
i∈N

E
b∼B

[ui(b, vi)] +
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]
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≥
∑
i∈N

E
b−i∼B−i

[ui((ai, b−i), vi)] +
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]

≥ λ OPT(v) − (μ1 − 1)
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]− μ2

∑
i∈N

E
b∼B

[bi(Xi(b))],

where the first equality uses the definition of ui(b, vi) as the difference between
vi(Xi(b)) and pi(Xi(b), b−i), the first inequality uses the fact that B is a coarse
correlated equilibrium, and the second inequality holds because a = (a1, . . . , an)
is defined as in Definition 1.

Since the bids are conservative this can be rearranged to give

(1 + μ2) E
b∼B

[SW(b)] ≥ λ OPT(v)− (μ1 − 1)
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)].

For μ1 ≤ 1 the second term on the right hand side is lower bounded by
zero and the result follows by rearranging terms. For μ1 > 1 we use that

Eb∼B[pi(Xi(b), b−i)] ≤ Eb∼B[vi(Xi(b))] to lower bound the second term on the
right hand side and the result follows by rearranging terms. 
�

Theorem 3. If a mechanism is relaxed (λ, μ1, μ2)-smooth and (b1, . . . , bT ) is a
sequence of conservative bids with vanishing external regret, then

1

T

T∑
t=1

SW(bt) ≥ λ

max{μ1, 1}+ μ2
·OPT(v)− o(1).

Proof. Fix valuations v. Consider a sequence of bids b1, . . . , bT with vanishing av-
erage external regret. For each bt in the sequence of bids denote the corresponding
allocation by X(bt) = (X1(b

t), . . . , Xn(b
t)). Let δti(ai) = ui(ai, b

t
−i, vi)−ui(b

t, vi)

and let Δ(a) = 1
T

∑T
t=1

∑n
i=1 δ

t
i(ai). Let a = (a1, . . . , an) be defined as in Defi-

nition 1, where B is the empirical distribution of bids. Then,

1

T

T∑
t=1

SW(bt) =
1

T

T∑
t=1

n∑
i=1

ui(b
t
i, b

t
−i, vi) +

1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)

=
1

T

T∑
t=1

n∑
i=1

ui(ai, b
t
−i, vi) +

1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)−Δ(a)

≥ λ OPT(v)− (μ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t, bt−i))

− μ2
1

T

T∑
t=1

n∑
i=1

bi(Xi(b
t))−Δ(a),

where the first equality uses the definition of ui(b
t
i, b

t
−i, vi) as the difference

between vi(Xi(b
t)) and pi(Xi(b

t), bt−i), the second equality uses the definition of
Δ(a), and the third inequality holds because a = (a1, . . . , an) is defined as in
Definition 1.
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Since the bids are conservative this can be rearranged to give

(1 + μ2)
1

T

T∑
t=1

SW(bt) ≥ λ OPT(v) − (μ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)−Δ(a).

For μ1 ≤ 1 the second term on the right hand side is lower bounded by zero
and the result follows by rearranging terms provided that Δ(a) = o(1). For

μ1 > 1 we use that 1
T

∑T
t=1

∑n
i=1 pi(Xi(b

t), bt−i) ≤ 1
T

∑T
t=1

∑n
i=1 vi(Xi(b

t)) to
lower bound the second term on the right hand side and the result follows by
rearranging terms provided that Δ(a) = o(1).

The term Δ(a) is bounded by o(1) because the sequence of bids b1, . . . , bT

incurs vanishing average external regret and, thus,

Δ(a) ≤ 1

T

n∑
i=1

[
max
b′i

T∑
t=1

ui(b
′
i, b

t
−i, vi)−

T∑
t=1

ui(b
t, vi)

]
≤ 1

T

n∑
i=1

o(T ). 
�

5 Upper Bounds for CCE and Minimization of External
Regret for Additive Bids

We conclude our analysis of restrictions to additive bids by showing how the
argument of [6] can be adopted to show that for restrictions from V = CF to
B = OS the VCG mechanism is relaxed (1/2, 0, 1)-smooth. Using Theorem 2
we obtain an upper bound of 4 on the Price of Anarchy with respect to coarse
correlated equilibria. Using Theorem 3 we conclude that the average social wel-
fare for sequences of bids with vanishing external regret converges to at least
1/4 of the optimal social welfare. We thus improve the best known bounds by a
logarithmic factor.

Proposition 1. Suppose that V = CF and that B = OS. Then the VCG mech-
anism is relaxed (1/2, 0, 1)-smooth under conservative bidding.

To prove this result we need two auxiliary lemmata.

Lemma 1. Suppose that V = CF, that B = OS, and that the VCG mechanism
is used. Then for every agent i, every bundle Qi, and every distribution B−i on
the bids b−i of the agents other than i there exists a conservative bid ai such that

E
b−i∼B−i

[ui((ai, b−i), vi)] ≥
1

2
· vi(Qi)− E

b−i∼B−i

[pi(Qi, b−i)] .

Proof. Consider bids b−i of the agents −i. The bids b−i induce a price pi(j) =
maxk 	=i bk(j) for each item j. Let T be a maximal subset of items from Qi such
that vi(T ) ≤ pi(T ). Define the truncated prices qi as follows:

qi(j) =

{
pi(j) for j ∈ Qi \ T , and
0 otherwise.
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The distribution B−i on the bids b−i induces a distribution Ci on the prices
pi as well as a distribution Di on the truncated prices qi.

We would like to allow agent i to draw his bid bi from the distribution Di

on the truncated prices qi. For this we need that (1) the truncated prices are
additive and that (2) the truncated prices are conservative. The first condition
is satisfied because additive bids lead to additive prices. To see that the second
condition is satisfied assume by contradiction that for some set S ⊆ Qi \ T ,
qi(S) > vi(S). As pi(S) = qi(S) it follows that

vi(S ∪ T ) ≤ vi(S) + vi(T ) ≤ pi(S) + pi(T ) = pi(S ∪ T ),

which contradicts our definition of T as a maximal subset ofQi for which vi(T ) ≤
pi(T ).

Consider an arbitrary bid bi from the support of Di. Let Xi(bi, pi) be the set of
items won with bid bi against prices pi. Let Yi(bi, qi) be the subset of items from
Qi won with bid bi against the truncated prices qi. As pi(j) = qi(j) for j ∈ Qi\T
and pi(j) ≥ qi(j) for j ∈ T we have Yi(bi, qi) ⊆ Xi(bi, pi)∪T . Thus, using the fact
that vi is subadditive, vi(Yi(bi, qi)) ≤ vi(Xi(bi, pi)) + vi(T ). By the definition of
the prices pi and the truncated prices qi we have pi(Qi)−qi(Qi) = pi(T ) ≥ vi(T ).
By combining these inequalities we obtain

vi(Xi(bi, pi)) + pi(Qi) ≥ vi(Yi(bi, qi)) + qi(Qi).

Taking expectations over the prices pi ∼ Ci and the truncated prices qi ∼ Di

gives

E
pi∼Ci

[vi(Xi(bi, pi)) + pi(Qi)] ≥ E
qi∼Di

[vi(Yi(bi, qi)) + qi(Qi)].

Next we take expectations over bi ∼ Di on both sides of the inequality. Then
we bring the pi(Qi) term to the right and the qi(Qi) term to the left. Finally, we
exploit that the expectation over qi ∼ Di of qi(Qi) is the same as the expectation
over bi ∼ Di of bi(Qi) to obtain

E
bi∼Di

[ E
pi∼Ci

[vi(Xi(bi, pi))]]− E
bi∼Di

[bi(Qi)]

≥ E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi))]]− E
pi∼Ci

[pi(Qi)] (1)

Now, using the fact that bi and qi are drawn from the same distribution Di, we
can lower bound the first term on the right-hand side of the preceding inequality
by

E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi)]] =
1

2
· E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi)) + vi(Yi(qi, bi))]]

≥ 1

2
· vi(Qi), (2)

where the inequality in the last step comes from the fact that the subset Yi(bi, qi)
of Qi won with bid bi against prices qi and the subset Yi(qi, bi) of Qi won with
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bid qi against prices bi form a partition of Qi and, thus, because vi is subadditive,
it must be that vi(Yi(bi, qi)) + vi(Yi(qi, bi)) ≥ vi(Qi).

Note that agent i’s utility for bid bi against bids b−i is given by his valuation
for the set of items Xi(bi, pi) minus the price pi(Xi(bi, pi)). Note further that
the price pi(Xi(bi, pi)) that he faces is at most his bid bi(Xi(bi, pi)). Finally note
that his bid bi(Xi(bi, pi)) is at most bi(Qi) because bi is drawn from Di. Together
with inequality (1) and inequality (2) this shows that

E
bi∼Di

[ E
b−i∼B−i

[ui((bi, b−i), vi)]] ≥ E
bi∼Di

[ E
pi∼Ci

[vi(Xi(bi, pi))− bi(Qi)]]

≥ 1

2
· vi(Qi)− E

pi∼Ci

[pi(Qi)].

Since this inequality is satisfied in expectation if bid bi is drawn from distri-
bution Di there must be a bid ai from the support of Di that satisfies it. 
�

Lemma 2. Suppose that V = CF, that B = OS, and that the VCG mechanism
is used. Then for every partition Q1, . . . , Qn of the items and all bids b,∑

i∈N

pi(Qi, b−i) ≤
∑
i∈N

bi(Xi(b)).

Proof. For every agent i and each item j ∈ Qi we have pi(j, b−i) = maxk 	=i bk(j)
≤ maxk bk(j). Hence an upper bound on the sum

∑
i∈N pi(Qi, b−i) is given

by
∑

i∈N maxk bk(j). The VCG mechanisms selects allocation X1(b), . . . , Xn(b)
such that

∑
i∈N bi(Xi(b)) is maximized. The claim follows. 
�

Proof of Proposition 1. The claim follows by applying Lemma 1 to every agent i
and the corresponding optimal bundle Oi, summing over all agents i, and using
Lemma 2 to bound Eb−i∼B−i [

∑
i∈N pi(Oi, b−i)] by Eb∼B[

∑
i∈N bi(Xi(b))]. 
�

An important observation is that the proof of the previous proposition requires
that the class of price functions, which is induced by the class of bidding functions
via the formula for the VCG payments, is contained in B. While this is the case
for additive bids that lead to additive (or “per item”) prices this is not the
case for more expressive bids. In fact, as we will see in the next section, even
if the bids are from OXS, the least general class from the hierarchy of [16] that
strictly contains the class of additive bids, then the class of price functions that
is induced by B is no longer contained in B. This shows that the techniques that
led to the results in this section cannot be applied to the more expressive bids
that we study next.

6 A Lower Bound for PNE with Non-additive Bids

We start our analysis of non-additive bids with the following separation result:
While for restrictions from subadditive valuations to additive bids the bound
is 2 for pure Nash equilibria [1], we show that for restrictions from subadditive
valuations to OXS bids the corresponding bound is at least 2.4. This shows that
more expressiveness can lead to strictly worse bounds.
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Theorem 4. Suppose that V = CF, that OXS ⊆ B ⊆ XOS, and that the VCG
mechanism is used. Then for every δ > 0 there exist valuations v such that the
PoA with respect to PNE under conservative bidding is at least 2.4− δ.

7 Upper Bounds for CCE and Minimization of External
Regret for Non-additive Bids

Our next group of results concerns upper bounds for the PoA for restrictions
to non-additive bids. For β-fractionally subadditive valuations we show that the
VCG mechanism is relaxed (1/β, 1, 1)-smooth. By Theorem 2 this implies that
the Price of Anarchy with respect to coarse correlated equilibria is at most 2β.
By Theorem 3 this implies that the average social welfare obtained in sequences
of repeated play with vanishing external regret converges to 1/(2β) of the opti-
mal social welfare. For subadditive valuations, which are O(log(m))-fractionally
subadditive, we thus obtain bounds of O(log(m)) resp. Ω(1/ log(m)). For frac-
tionally subadditive valuations, which are 1-fractionally subadditive, we thus
obtain bounds of 2 resp. 1/2. We thus extend the results of [3,1] from additive
to non-additive bids.

Proposition 2. Suppose that V ⊆ β-XOS and that OS ⊆ B ⊆ XOS, then the
VCG mechanism is relaxed (1/β, 1, 1)-smooth under conservative bidding.

We will prove that the VCG mechanism satisfies the definition of relaxed
smoothness point-wise. For this we need two auxiliary lemmata.

Lemma 3. Suppose that V ⊆ β-XOS, that OS ⊆ B ⊆ XOS, and that the VCG
mechanism is used. Then for all valuations v ∈ V , every agent i, and every
bundle of items Qi ⊆M there exists a conservative bid ai ∈ Bi such that for all

conservative bids b−i ∈ B−i, ui(ai, b−i, vi) ≥ vi(Qi)
β − pi(Qi, b−i).

Proof. Fix valuations v, agent i, and bundle Qi. As vi ∈ β-XOS there exists
a conservative, additive bid ai ∈ OS such that

∑
j∈Xi

ai(j) ≤ vi(Xi) for all

Xi ⊆ Qi, and
∑

j∈Qi
ai(j) ≥ vi(Qi)

β . Consider conservative bids b−i. Suppose

that for bids (ai, b−i) agent i wins items Xi and agents −i win items M \Xi.
As VCG selects outcome that maximizes the sum of the bids,

ai(Xi) + b−i(M \Xi) ≥ ai(Qi) + b−i(M \Qi).

We have chosen ai such that ai(Xi) ≤ vi(Xi) and ai(Qi) ≥ vi(Qi)/β. Thus,

vi(Xi) + b−i(M \Xi) ≥ ai(Xi) + b−i(M \Xi)

≥ ai(Qi) + b−i(M \Qi) ≥
vi(Qi)

β
+ b−i(M \Qi).

Subtracting b−i(M) from both sides gives

vi(Xi)− pi(Xi, b−i) ≥
vi(Qi)

β
− pi(Qi, b−i).
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As ui((ai, b−i), vi) = vi(Xi) − pi(Xi, b−i) this shows that ui((ai, b−i), vi) ≥
vi(Qi)/β − pi(Qi, b−i) as claimed. 
�

Lemma 4. Suppose that OS ⊆ B ⊆ XOS and that the VCG mechanism is used.
For every allocation Q1, . . . , Qn and all conservative bids b ∈ B and correspond-
ing allocation X1, . . . , Xn,

∑n
i=1[pi(Qi, b−i)− pi(Xi, b−i)] ≤

∑n
i=1 bi(Xi).

Proof. We have pi(Qi, b−i) = b−i(M)− b−i(M \Qi) and pi(Xi, b−i) = b−i(M)−
b−i(M \Xi) because the VCG mechanism is used. Thus,

n∑
i=1

[pi(Qi, b−i)− pi(Xi, b−i)] =
n∑

i=1

[b−i(M \Xi)− b−i(M \Qi)]. (3)

We have b−i(M \Xi) =
∑

k 	=i bk(Xk) and b−i(M \Qi) ≥
∑

k 	=i bk(Xk∩(M \Qi))
because (Xk ∩ (M \Qi))i	=k is a feasible allocation of the items M \Qi among
the agents −i. Thus,

n∑
i=1

[b−i(M \Xi)− b−i(M \Qi)] ≤
n∑

i=1

[
∑
k 	=i

bk(Xk)−
∑
k 	=i

bk(Xk ∩ (M \Qi))]

≤
n∑

i=1

[
n∑

k=1

bk(Xk)−
n∑

k=1

bk(Xk ∩ (M \Qi))]

=

n∑
i=1

n∑
k=1

bk(Xk)−
n∑

i=1

n∑
k=1

bk(Xk ∩ (M \Qi)).

(4)

The second inequality holds due to the monotonicity of the bids. Since XOS =
1-XOS for every agent k, bid bk ∈ XOS, and set Xk there exists a bid ak,Xk

∈ OS
such that bk(Xk) = ak,Xk

(Xk) =
∑

j∈Xk
ak,Xk

(j) and bk(Xk ∩ (M \ Qi)) ≥
ak,Xk

(Xk ∩ (M \ Qi)) =
∑

j∈Xk∩(M\Qi)
ak,Xk

(j) for all i. As Q1, . . . , Qn is a
partition of M every item is contained in exactly one of the sets Q1, . . . , Qn

and hence in n − 1 of the sets M \ Q1, . . . ,M \ Qn. By the same argument for
every agent k and set Xk every item j ∈ Xk is contained in exactly n− 1 of the
sets Xk ∩ (M \ Q1), . . . , Xk ∩ (M \ Qn). Thus, for every fixed k we have that∑n

i=1 bk(Xk ∩ (M \ Qi)) ≥ (n − 1) ·
∑

j∈Xk
ak,Xk

(j) = (n − 1) · ak,Xk
(Xk) =

(n− 1) · bk(Xk). It follows that

n∑
i=1

n∑
k=1

bk(Xk)−
n∑

i=1

n∑
k=1

bk(Xk ∩ (M \Qi))

≤ n ·
n∑

k=1

bk(Xk)− (n− 1) ·
n∑

k=1

bk(Xk) =

n∑
i=1

bk(Xk). (5)

The claim follows by combining inequalities (3), (4), and (5). 
�
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Proof of Proposition 2. Applying Lemma 3 to the optimal bundles O1, . . . , On

and summing over all agents i,∑
i∈N

ui(ai, b−i, v) ≥
1

β
OPT(v) −

∑
i∈N

pi(Oi, b−i).

Applying Lemma 4 we obtain∑
i∈N

ui(ai, b−i, v) ≥
1

β
OPT(v)−

∑
i∈N

pi(Xi(b), b−i)−
∑
i∈N

bi(Xi(b)). 
�

8 More Lower Bounds for PNE with Non-additive Bids

We conclude by proving matching lower bounds for the VCG mechanism and
restrictions from fractionally subadditive valuations to non-additive bids. We
prove this result by showing that the VCG mechanism satisfies the outcome
closure property of [19], which implies that when going from more general bids
to less general bids no new pure Nash equilibria are introduced. Hence the lower
bound of 2 for pure Nash equilibria and additive bids of [3] translates into a
lower bound of 2 for pure Nash equilibria and non-additive bids.

Theorem 5. Suppose that OXS ⊆ V ⊆ CF, that OS ⊆ B ⊆ XOS, and that the
VCG mechanism is used. Then the PoA with respect to PNE under conservative
bidding is at least 2.

It should be noted that the previous result applies even if valuation and bidding
space coincide, and the VCGmechanism has an efficient, dominant-strategy equi-
librium. This is because the VCG mechanism also admits other, non-efficient
equilibria (and the Price of Anarchy metric does not restrict to dominant-
strategy equilibria if they exist).
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Abstract. We study the efficiency of sequential first-price item auc-
tions at (subgame perfect) equilibrium. This auction format has recently
attracted much attention, with previous work establishing positive re-
sults for unit-demand valuations and negative results for submodular
valuations. This leaves a large gap in our understanding between these
valuation classes. In this work we resolve this gap on the negative side.
In particular, we show that even in the very restricted case in which each
bidder has either an additive valuation or a unit-demand valuation, there
exist instances in which the inefficiency at equilibrium grows linearly with
the minimum of the number of items and the number of bidders. More-
over, these inefficient equilibria persist even under iterated elimination of
weakly dominated strategies. Our main result implies linear inefficiency
for many natural settings, including auctions with gross substitute valu-
ations, capacitated valuations, budget-additive valuations, and additive
valuations with hard budget constraints on the payments. For capaci-
tated valuations, our results imply a lower bound that equals the max-
imum capacity of any bidder, which is tight following the upper-bound
technique established by Paes Leme et al. [20].

1 Introduction

Consider the following natural auction setting. An auction house has a number
of items that will go up for auction on a particular day. To orchestrate this, the
auction house publishes a list of the items to be sold and the order in which
they will be auctioned off. The items are then sold one at a time in the given
order. A group of bidders attends this session of auctions, with each bidder being
allowed to participate in any or all of the single-item auctions that will be run
throughout the day. Since the auctions are run one at a time, in sequence, this
format is referred to as a sequential auction.

This way of auctioning multiple items is prevalent in practice, due to its
relative simplicity and transparency. This model is also related to electronic
markets, such as eBay, due to the asynchronous nature of the multiple single-
item auctions that are executed on the platform. A natural question, then, is how
well such a sequential auction performs in practice. While the auction of a single
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item is relatively simple, equilibria of the larger game may be significantly more
complex. For instance, a bidder who views two of the items as substitutes might
prefer to win whichever sells at the lower price, and hence when bidding on the
first item he must look ahead to the anticipated outcome of the second auction.
What’s more, the sequential nature of the mechanism implies that the outcome
of one auction can influence the behavior of bidders in subsequent auctions. This
gives rise to complex reasoning about the value of individual outcomes, with the
potential to undermine the efficiency of the overall auction.

In this work we study the efficiency of sequential single-item first-price auc-
tions, where items are sold sequentially using some predefined order and each
item is sold by means of a first-price auction. We study the efficiency of outcomes
at subgame perfect equilibrium, which is the natural solution concept for a dy-
namic, sequential game. Theoretical properties of these sequential auctions have
been long studied in the economics literature starting from the seminal work of
Weber [23]. However, most of the prior literature has focused on very restricted
settings, such as unit-demand valuations, identical items, and symmetrically
distributed player valuations. The few exceptions that have attempted to study
equilibria when bidders have more complex valuations tend to have other restric-
tions, such as a very limited number of players or items [12,10,3,2]. Much of the
difficulty in studying these auctions under complex environments and/or valua-
tions stems from the inherent complexity of the equilibrium structure, which (as
alluded to above) can involve complex reasoning about future auction outcomes.

Paes Leme et al. [20] and Syrgkanis and Tardos [21] circumvented this diffi-
culty by performing an indirect analysis on efficiency using the price of anarchy
framework. They showed that when bidders have unit-demand valuations (UD),
items are heterogeneous, and bidders’ valuations are arbitrarily asymmetrically
distributed, then the social welfare at every equilibrium is a constant fraction of
the optimal welfare. Syrgkanis and Tardos [22] extended this result to no-regret
learning outcomes and to settings with budget constraints. On the negative side,
Paes Leme et al. [20] showed that this result does not extend to submodular
valuations (SM): there exists an instance where the unique “natural” subgame
perfect equilibrium has inefficiency that scales linearly with the number of items.

The above results leave a large gap between the positive regime (unit-demand
bidders) and the negative (submodular bidders). Many natural and heavily-
studied classes of valuations fall in the range between UD and SM valuations.
Among them are the following, arranged roughly from most to least general:

– Gross-substitutes valuations (GS): Whenever the cost of one item increases,
this cannot reduce the demand for another item whose price did not increase.

– k-capacitated valuations (k-CAP): Each player i has a capacity ki ≤ k and
a value for each item; the value for a set of items is then the value of the ki
highest-valued items in the set.

– Budget-additive valuations (BA): The value of a player i is additive up to a
player-specific budget Bi and then remains constant.

The class of GS valuations is motivated by the fact that it is (in a certain sense)
the largest class of valuations for which a Walrasian equilibrium is guaranteed
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to exist [13], and a Walrasian equilibrium, if exists, is always efficient (see, e.g.,
[6]). It is known that every k-capacitated valuation satisfies gross substitutes [9].
Moreover, every gross substitutes valuation is submodular [16], and it is easy
to see that unit-demand valuations are precisely 1-capacitated valuations. We
therefore have UD ⊂ k-CAP ⊂ GS ⊂ SM. The set of budget-additive valuations
is incomparable to UD, k-CAP, and GS, but it is known that BA ⊂ SM.

We ask: for which of the above classes does the sequential first-price auction
obtain a constant fraction of the optimal social welfare at equilibrium? In this
work we show that the answer to the above question is none of them.

Specifically, we show that for the case of gross substitutes valuations and for
budget additive valuations, the inefficiency of equilibrium can grow linearly with
the number of items and the number of players. Thus, even for settings in which
a Walrasian equilibrium is guaranteed to exist, an auction that handles items
sequentially cannot find an approximately optimal outcome at equilibrium. For
the case of k-capacitated valuations, we show that the inefficiency can be as high
as k. This bound of k is tight, following the upper bound established by [20].

To prove these lower bounds we consider a different, conceptually more re-
strictive, class of valuations: the union of unit-demand and additive valuations.
We construct an instance in which every bidder has either a unit-demand valu-
ation or an additive valuation, then show that the unique “natural” equilibrium
for this instance has extremely poor social efficiency. We then adapt this con-
struction to provide a lower bound for the valuation classes described above.

We also extend our lower bound to apply to one other setting: additive valua-
tions when players have hard budget-constraints on their payments. This setting
falls outside the quasi-linear regime, but is very relevant in the sequential auc-
tion setting: for instance, each bidder may arrive at an auction session with
only a certain fixed amount of money to spend. Note that this is different from
the BA valuation class, since it does not restrict the value of a player for a set
of items, but rather limits the total payment that a player can make. For this
setting, it is known that maximizing welfare is not an achievable goal in most
auction settings, as a participant with low budget is necessarily ineffective at
maximizing the value of the item(s) she obtains. Instead, the natural notion
of social efficiency is the “effective welfare,” in which the contribution of each
participant to the welfare is capped by her budget [22]. We show that, even
comparing against the benchmark of effective welfare, our negative result also
applies to this setting: for additive valuations with hard budget constraints, the
inefficiency can grow linearly with the number of items or players. This is in stark
contrast to the setting of simultaneous first-price auctions, where it is known that
a constant fraction of the optimal effective social welfare occurs at equilibrium
for bidders with hard budget constraints, even when valuations are fraction-
ally subadditive [22] (where this class falls between submodular and subadditive
valuations).

Sequential auctions with additive bidders and hard budget constraints have
been studied in only very limited settings in the economics literature and have
recently begun to attract the attention of the computer science community [15].
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The negative results described above rely heavily on the fact that items can be
sold in an arbitrary order. This leads naturally to the following design question:
does there always exists an order on the items that results in better outcomes
at a subgame perfect equilibrium? We conjecture that a concrete class of item
orders (that we propose) always contains a good order that leads to the VCG
outcome at equilibrium, for the class of single-valued unit-demand valuations.
We leave the resolution of this conjecture as an open problem.

1.1 Related Work

Sequential auctions have been long studied in the economics literature. Weber
[23] and Milgrom and Weber [18] analyzed first- and second-price sequential auc-
tions with identical items and unit-demand bidders in an incomplete-information
setting and showed that the unique symmetric equilibrium is efficient and the
prices have an upward drift. The behavior of prices in sequential studies was
subsequently studied in [1,17]. Boutilier el al. [7] studies first-price auctions in
a setting with uncertainty, and devised a dynamic-programming algorithm for
finding the optimal strategies (assuming stationary distribution of others’ bids).

The setting of multi-unit demand has also been studied under the complete-
information model. Several papers studied the two-bidder case, where there is
a unique subgame perfect equilibrium that survives the iterated elimination of
weakly dominated strategies (IEWDS) [12,10]. Bae et al. [3,2] studied the case of
sequential second-price auctions of identical items with two bidders with concave
valuations and showed that the unique outcome that survives IEWDS achieves
a social welfare at least 1 − e−1 of the optimum. Here we consider more than
two bidders and heterogeneous items.

Recently, Paes Leme et al. [20] analyzed sequential first- and second-price auc-
tions for heterogeneous items and multi-unit demand valuations in the complete-
information setting. For sequential first-price auctions they showed that when
bidders are unit-demand, every subgame perfect equilibrium achieves at least
1/2 of the optimal welfare, while for submodular bidders the inefficiency can
grow with the number of items, even with a constant number of bidders. The
positive results were later extended to the incomplete-information setting in [21]
and to no-regret outcomes and budget-constrained bidders in [22]. In this work
we close the gap between positive and negative results and show that inefficiency
can grow linearly with the minimum of the number of items and bidders even
when bidders are either additive or unit-demand.

This work can be seen as part of the recent interest line of research on simple
auctions. The closest literature to our work is that of simultaneous item-bidding
auctions [5,8,4,14,11,22], which is the simultaneous counterpart of sequential
auctions. In contrast to sequential auctions, in simultaneous item auctions con-
stant efficiency guarantees have been established for general complement-free
valuations, even under incomplete-information settings or outcomes that emerge
from learning behavior. We refer to [19] for a recent survey on the efficiency of
simultaneous and sequential item-auctions.
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2 Model and Preliminaries

We consider settings with n bidders and m items, where every bidder i ∈ [n] has
a valuation function vi : 2

[m] → R+, associating a non-negative real value with
every subset of items. We denote the set of bidders by [n] and the set of items
by [m]. The valuation function is assumed to be monotone (i.e., vi(T ) ≤ vi(S)
for every T ⊆ S). An allocation is a vector x = (x1, . . . , xn), where xi denotes
the set of items allocated to bidder i, and such that xi ∩ xj = ∅ for every i �= j.

Sequential item auctions. The auction proceeds in steps, where a single item is
sold in every step using a first-price auction. In every step t = 1, . . . ,m, every
bidder i offers a bid bi(t), and the item is allocated to the agent with the highest
bid for a payment that equals his bid. Each bid in each step can be a function
of the history of the game, which is assumed to be visible to all bidders. More
formally, a strategy of bidder i is a function that, for every step t, associates a
bid as a function of the sequence of the bidding profiles in all periods 1, . . . , t−1.
The utility of an agent is defined, as standard, to be his value for the items he
won minus the total payment he made throughout the auction (i.e., quasi-linear
utility). We will also assume that the bid space is discretized in small negligible
δ-increments, and for ease of presentation we will use b+ to denote the bid b+ δ.

This setting is captured by the framework of extensive-form games (see, e.g.,
[20]), where the natural solution concept is that of a subgame-perfect equilibrium
(SPE). In an SPE, the bidding strategy profiles of the players constitute a Nash
equilibrium in every subgame. That is, at every step t and for every possible
partial bidding profile b(1), b(2), . . . , b(t − 1) up to (but not including) step t,
the strategy profile in the subgame that begins in step t constitutes a Nash
equilibrium in the induced (i.e., remaining) game.

Elimination of Weakly Dominated Strategies. We wish to further restrict our
attention to “natural” equilibria, that exclude (for example) dominated over-
bidding strategies. We therefore consider a natural and well-studied refinement
of the set of subgame perfect equilibria: those that survive iterated elimina-
tion of weakly dominated strategies (IEWDS). A strategy s is weakly domi-
nated by a strategy s′ if, for every profile of other players’ strategies s−i, we
have ui(s, s−i) ≤ ui(s

′, s−i), and moreover there exists some s−i such that
ui(s, s−i) < ui(s

′, s−i). Roughly speaking, under IEWDS, each player removes
from her strategy space the set of all weakly dominated strategies. This removal
may cause new strategies to become weakly dominated for a player, which are
then removed from her strategy space, and so on until no weakly dominated
strategies remain. A formal definition appears in the full version of the paper.

Price of anarchy. The price of anarchy (PoA) measures the inefficiency that
can arise in strategic settings. The PoA for subgame perfect equilibria is defined
as the worst (i.e., largest) possible ratio between the welfare obtained in the
optimal allocation and the welfare obtained in any subgame perfect equilibrium
of the game. We note that all of our lower bounds on the price of anarchy will
involve “natural” equilibria that survive IEWDS.
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3 A Simple Example

To develop some intuition regarding the strategic considerations that might take
place in sequential auctions, we give a simple example in which one bidder has
value for many items (i.e., wholesale buyer) and another bidder has value for
only one item (i.e., retail buyer).

In particular, consider a sequence of two auctions for two identical items
and two buyers, A and B. Buyer A is a “wholesale” buyer, having an additive
valuation with a value of 9 for each of the two items. Buyer B is a “retail” buyer,
who wants only one item (unit-demand) and has a value of 5 for either of the
two. The items are sold sequentially using a first-price auction for each item.

Consider the situation from the perspective of the additive buyer A. Thinking
strategically and farsightedly, he reasons that if he wins the first auction, then
in the second auction he will have to compete with buyer B and will therefore
have to pay 5 dollars to win the second item. If, however, he lets buyer B win
the first item, then buyer B will have no value for the second item and hence the
only undominated strategy for buyer B will be to bid 0 in the second auction,
and hence buyer A will win the second item for free. What must buyer A pay in
order to win the first item? Buyer B knows that if the first item goes to buyer
A, then buyer B will certainly lose the second item as well; therefore buyer B
is willing to pay up to 5 for the first item. Therefore, in order to win the first
item, buyer A will have to bid at least 5 in the first auction.

Thus bidder A needs to choose between the following options: he can win
both auctions for a price of 5 each, or let bidder B win the first auction and win
only the second, but pay nothing. The first option gives bidder A a utility of 8
(= 2 · (9 − 5)) while the second option gives him a utility of 9 (= 1 · (9 − 0)).
Consequently, bidder A will choose to forego the first item in order to improve
his situation in the second one. Interestingly, this equilibrium outcome is socially
suboptimal, since the efficient outcome is for bidder A to win both items.

One can modify this example by taking bidder A’s value to be 10− ε for each
item. In this case the unique subgame perfect equilibrium that survives elimi-
nation of dominated strategies is a 4/3 approximation to the optimal welfare,
even though the items are identical (and therefore the inefficiency is irrespective
of item ordering). In the next section we demonstrate that with heterogeneous
items, the social welfare of sequential item auctions at subgame perfect equilib-
rium can be as low as an O(m) fraction of the optimal social welfare.

4 Lower Bound for Additive and Unit-demand Valuations

We now present our main result by providing an instance of a sequential first
price auction with unit-demand and additive bidders, where the social welfare
at a subgame-perfect equilibrium that survives IEWDS1 achieves social welfare

1 The equilibrium that we describe is, in some sense, the unique natural equilibrium: if
we were to ask players to submit bids sequentially within each auction, rather than
simultaneously, then there would be a unique equilibrium (solvable by backward
induction), which is the equilibrium that we describe.
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that is only an O(min{n,m})-fraction of the optimal welfare. Therefore, our
example shows that inefficiency can arise at equilibrium in a robust manner.

Theorem 1. The price of anarchy of the sequential first-price item auctions
with additive and unit-demand bidders is Ω(min{n,m}). Moreover, this result
persists even if we consider only equilibria that survive IEWDS.

Informal Description. Before we delve into the details of the proof of Theorem
1, we give a high-level idea of the type of strategic manipulations that lead to
inefficiency and compare to the corresponding simultaneous auction.

Consider an auction instance where two additive bidders have identical values
for most of the items for sale, but their valuations differ only on the last few items
that are sold. Specifically, assume that there are two items Z1 and Z2, auctioned
last, such that only player 1 has value for Z1 and only player 2 has value for Z2.
We will refer to these items as the non-competitive items and to all other items
as the competitive items. The additive bidders know that it is hopeless to try
to achieve any positive utility from the competitive items on which they have
identical interests. The only utility they can ever derive is from the last, non-
competitive items on which they don’t compete with each other. If these were
the only two players in the auction, then we would obtain the optimal outcome:
the two bidders would simply compete on each of the competitive items, with
one of them acquiring each competitive item at zero utility.2

We now imagine adding unit-demand bidders to the auction in order to per-
turb the optimality. Specifically, suppose there is a unit-demand bidder that has
value for the two non-competitive items, with the value for item Zi being slightly
less than player i’s value for Zi, i ∈ {1, 2}. This endangers the additive bidders’
hopes of getting non-negligible utility, since competition from the unit-demand
player may drive up the prices of Z1 and Z2. The only hope that the additive
bidders have is that the unit-demand bidder will have his demand satisfied prior
to these final two auctions, in which case the unit-demand bidder would not
bother to bid on them. Hence, the two additive bidders would do anything in
their power to guide the auction to such an outcome, even if that means sac-
rificing all the competitive items! This is exactly the effect that we achieve in
our construction. Specifically, we create an instance where this competing unit-
demand bidder has his demand satisfied prior to the auctions for Z1 and Z2 if
and only if a very specific outcome occurs: the additive bidders don’t bid at all
on all the competitive items, but rather other small-valued bidders acquire the
competitive items instead. These small-valued bidders contribute almost nothing
to the welfare, and therefore all of the welfare from the competitive items is lost.

It is useful to compare this example with what would happen if the auc-
tions were run simultaneously, rather than sequentially. This uncovers the crucial
property of sequential auctions that leads to inefficiency: the ability to respond
to deviations. If all auctions happened simultaneously, then the behavior of the
additive bidders that we described above could not possibly be an equilibrium:

2 In fact, optimality is always achieved when all bidders are additive, in general.
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one additive bidder, knowing that his additive competitor bids 0 on all the com-
petitive items, would simply deviate to outbid him on the competitive items and
get a huge utility. However, because the items are sold sequentially, this devia-
tion cannot be undertaken without consequence: the moment one of the additive
bidders deviates to bidding on the competitive items, in all subsequent auctions
the competitor will respond by bidding on subsequent competitive items, leading
to zero utility for the remainder of the auctions. Moreover, this response need
not be punitive, but is rather the only rational response once the auction has left
the equilibrium path (since the additive bidders know that there is no way to
obtain positive utility in subsequent auctions). Thus, in a sequential auction, an
additive player can only extract utility from at most one competitive item, which
is not sufficient to counterbalance the resulting utility-loss due to the increased
competition on the last non-competitive item.

The Lower Bound. We now proceed with a formal proof of Theorem 1. Con-
sider an instance with 2 additive players, k + 1 unit-demand players and k + 3
items. Denote with {a, b} the two additive players and with {p0, p1, . . . , pk} the
k + 1 unit-demand players. Also denote the items with {I1, . . . , Ik, Y, Z1, Z2}.
The valuations of the additive players are represented by the following table of
vij , where ε > 0 is an arbitrarily small constant:

Ik . . . I1 Y Z1 Z2

a 1 + ε . . . 1 + ε 0 10 0
b 1 . . . 1 0 0 10

In addition, the unit-demand valuations for the remaining k + 1 players are
given by the table of vij that follows (an empty entry corresponds to a 0 valua-
tion), though now a valuation of a player when getting a set S is maxj∈S vij :

Ik Ik−1 Ik−2 . . . I2 I1 Y Z1 Z2

p0 . . . 10− ε 10− ε 10− ε
p1 . . . δ1 10
p2 . . . δ2 δ2
. . .
pk−1 δk−1 δk−1 . . .
pk δk δk . . .

The constants δ1, . . . , δk are chosen to satisfy the following condition:

δk > δk−1 > . . . > δ2 > δ1 > ε (1)

Note that, by taking ε to be arbitrarily small, we can take each δi to be arbitrarily
small as well.

In the optimal allocation, player a gets all the items I1, . . . , Ik and Z1, player
b gets Z2 and player p1 gets Y . The resulting social welfare is k(1 + ε) + 30. We
assume that the auctions take place in the order depicted in the valuation tables:
{Ik, . . . , I1, Y, Z1, Z2}. We will show that there is a subgame perfect equilibrium
for this auction instance such that the unit-demand players win all the items
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I1, . . . , Ik. Specifically, player pi wins item Ii, player a wins Z1, player b wins Z2,
and player p0 wins Y , resulting in a social welfare of 30− ε+

∑k
i=1 δi. Taking δ

sufficiently small, this welfare is at most 31. This will establish that the price of

anarchy for this instance is at least k(1+ε)+30
31 = O(k), establishing Theorem 1.

Furthermore, we will show that this subgame perfect equilibrium is natural, in
the sense that it survives iterated deletion of weakly dominated strategies.

The intuition is the following: after the first k auctions have been sold, player
p0 has to decide if he will target (and win) item Y , or if he will instead target
items Z1 and/or Z2. If he targets item Y , he competes with player p1 and
afterwards lets players a and b win items Z1, Z2 for free. This decision of player
p0 depends on whether player p1 has won item I1, which in turn depends on the
outcomes of the first k−1 auctions. In particular, player p1 can win item I1 only
if player p2 has won item I2. In turn, p2 can win I2 only if p3 has won item I3
and so on. Hence, it will turn out that in order for p0 to want to target item Y ,
it must be that each item Ii is sold to bidder pi. Thus, if either player a or b
acquires any of the items I1, . . . , Ik, they will be guaranteed to obtain low utility
on items Z1 and Z2. This will lead them to bidding truthfully on all subsequent
Ii auctions, leading to a severe drop in utility gained from future auctions.

In the remainder of this section, we provide a more formal analysis of the
equilibrium in this auction instance. We begin by examining what happens in
the last three auctions of Y, Z1 and Z2, conditional on the outcomes of the first
k auctions. We first examine the outcome of auctions Y, Z1, Z2 conditional on
the outcome of auction I1:

Case 1: p1 has won I1. Player p1 has marginal value of 10 − δ1 for item Y .
Hence, he is willing to bid at most 10 − δ1 on item Y . Player p0 knows that if
he loses Y then in the subgame perfect equilibrium in that subgame he will bid
10 − ε on Z1 and Z2 and lose. Thus he expects no utility from the future if he
loses Y . Thus he is willing to pay at most 10− ε for item Y . Since by assumption
(1) δ1 > ε, player p0 will win Y at a price of 10−δ1. Then players a, b will win Z1

and Z2 for free. Thus the utilities in this case from this subgame are: u(a) = 10,
u(b) = 10, u(p0) = δ1 − ε, u(p1) = 0.

Case 2: p1 has lost I1. Player p1 has marginal value of 10 for item Y . Hence,
he is willing to bid at most 10 on item Y . Player p0 performs the exact same
thinking as in the previous case and thereby is willing to bid at most 10 − ε
for item Y . Thus in this case p1 will win item Y at a price of 10 − ε. Then, as
predicted, p0 will bid 10 − ε on Z1 and Z2 and lose. Thus the utilities of the
players in this case are: u(a) = ε, u(b) = ε, u(p0) = 0, u(p1) = ε.

Now we focus on the auction of item I1. As was explained in Paes Leme
et al. [20] this auction will be an auction with externalities where each player
has a different utility for each different winner outcome. These utilities can
be concisely expressed in a table of vij ’s where vij is the value of player i
when player j wins. The only players that potentially have any incentive to
bid on item I1 are a, b, p0, p1, p2. The following table summarizes their values
for each possible winner outcome of auction I1 as was calculated in the previous
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case-analysis (we point that in the diagonal we also add the actual value that a
player acquires from item I1 to his future utility conditional on winning I1) .

[vij ] =

a b p0 p1 p2
a 1 + 2ε ε ε 10 ε
b ε 1 + ε ε 10 ε
p0 0 0 0 δ1 − ε 0
p1 ε ε ε δ1 ε
p2 0 0 0 0 δ2 · 1hasn’t won I2

For example, player a obtains utility 10 if player p1 wins item I1. We see from
the table that, at this auction, everyone except p2 achieves their maximum value
when p1 wins the auction. Player p2 has value for winning the auction only if
he hasn’t won I2. In addition, since δ2 > δ1, if p2 hasn’t won I2 then he can
definitely outbid p1 on I1 and therefore p1 has no chance of winning the auction
of I1. As we now show, this implies that there is a unique equilibrium of the
auction conditioning on whether or not p2 has won I2:

Case 1: If p2 has won I2 then he has no value for I1. There exists an equilibrium
in undominated strategies where all players a, b, p0, p2 will bid 0, while p1 bids
0+. In fact this is in some sense the most natural equilibrium since it yields the
highest utility for a and b. In this case the utility of the players from auctions I1
and onward will be: u(a) = 10, u(b) = 10, u(p0) = δ1 − ε, u(p1) = δ1, u(p2) = 0.

Case 2: If p2 has lost I2, then he has value of δ2 > δ1 for I1. Hence, p1 has no
chance of winning item I1. Thus, the unique equilibrium that survives elimination
of weakly dominated strategies in this case is for player a to bid 1+, for player
b to bid 1, for player p0 to bid 0, for player p1 to bid δ1 − ε and for player p2
to bid δ2. In this case the utility of the players from auctions I1 and on will be:
u(a) = 2ε, u(b) = ε, u(p0) = 0, u(p1) = ε, u(p2) = 0.

Using similar reasoning we deduce that player pi can win Ii only if pi−1 has
won Ii−1. If at any point some pi does not win Ii then players a and b know
that from that point onward no pj can win auction Ij , and therefore they will
get only utility ε from Z1, Z2. Thus there will be no reason for players a and
b to allow unit-demand players to continue to win items, and thus the only
equilibrium strategies from that point on will be for a to bid 1+ on each of Ii
and b to bid 1. This will lead to player a to get utility O(ε) from each auction
for items Ii−1, . . . , I2, and player b to get no utility from these auctions. Thus,
at any point in the auction, it is an equilibrium for players a and b to allow the
unit demand player pi to win auction Ii. This completes the proof of Theorem 1

Finally, as discussed throughout our analysis, the equilibrium described above
survives IEWDS. The reason is that, for every item k and bidder i, the proposed
equilibrium strategy for bidder i does not require that he bids more than his
value for item k less his utility in the continuation game subject to not winning
item k. As discussed in Paes Leme et al. [20], this property guarantees that no
player is playing a weakly dominated strategy.
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5 Extensions of the Lower Bound

We now provide extensions of our lower bound in Theorem 1, to show that linear
inefficiency can occur under several important valuation classes.

Gross Substitutes and Capacitated. Since the classes GS and m-CAP include
all additive and unit-demand valuations over m items, Theorem 1 immediately
implies a linear price of anarchy for these classes. This also implies that, for any
� ≤ m, the price of anarchy for �-capacitated valuations is at least linear in �
(e.g., by adding extra items of no value).

Budget-Additive. A valuation is budget additive if it can be written in the form

v(S) = max
{
B,

∑
j∈S vj

}
. As it turns out, in the example in the previous

section all valuations are budget additive. The additive players can be thought
of as having infinite budget. Each of the unit-demand players pi for i ∈ [2, k] can
be thought as budget-additive with a budget of δi and value δi for items Ii and
Ii+1 and 0 for everything else. Player p1 has budget of 10 and additive value of
δ1 for I1, 10 for Y and 0 for everything else. Player p0 has budget 10 − ε and
additive value of 10− ε for each of Y, Z1, Z2 and 0 for everything else. Therefore
the analysis in the previous section holds even for budget-additive valuations.

Additive valuations with budget constraints on payments. The same analysis
applies when each player i has an additive valuation and a hard budget constraint
Bi on his payment. Formally, if a player i receives a set S and pays a total price
of p, then his utility ui(S, p) is vi(S)− p if p ≤ Bi, or −∞ otherwise.

We adapt Theorem 1 to the setting of budget constraints in a manner similar
to budget-additive valuations. We set the budgets of the players as in the budget-
additive case, interpreted as payment budgets rather than a cap on valuations.

There is an additional subtlety in the analysis, since it doesn’t only matter
whether a player won an item, but also at what price. As a result, the equilibrium
in our example will change slightly. The additive bidders, in addition to letting
bidder pi win Ii, will also have to make him pay enough so that he has no
remaining budget with which to win the subsequent item Ii+1. That is, the bids
of the additive bidders on items Ii will be higher, in order to better exhaust the
budgets of bidders pi. The reason for this strategic budget exhaustion is that,
if a player pi has enough budget to purchase item Ii+1, the effect is similar to
falling off the equilibrium path in the original example. The additive bidders are
therefore incentivized to bid high enough to exhaust the budgets of the other
players, and hence this is the only bidding behavior that survives IEWDS.

A more formal analysis of this setting appears in the full version of the paper.
We conclude that the price of anarchy in this instance is Ω(k).

6 The Impact of Item Ordering

Our lower bound establishes that if items are sold sequentially, then arbitrarily
inefficient outcomes can result at equilibrium even when all agents have gross
substitutes valuations. The constructions depend on the items being sold in an
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arbitrary order. A natural question arises: does there always exist an order over
the items such that the resulting outcome is efficient, or approximately efficient?

In this section we discuss this problem in the context of unit-demand bidders.
Recall that, for unit-demand bidders, selling items in an arbitrary order always
results in an outcome that achieves at least half of the optimal social welfare.
Additionally, it is known by [20] that if any order is allowed, then the unique
subgame-perfect equilibrium that survives IEWDS can be inefficient, achieving
only a 3/2-approximation. This lower bound of 3/2 holds even for the special
case of single-valued unit-demand bidders, where each player has a single value
vi for getting one item from some interest set Si. We conjecture that, for the case
of single-valued unit-demand bidders, if the auctioneer can choose the order in
which the objects are sold, then it is possible to recover the optimal welfare at all
natural equilibria. Indeed, we make a stronger conjecture: there exists an order
in which the VCG outcome (allocation and payments) occurs at equilibrium.

Conjecture 1. For every instance of single-valued unit-demand bidders, there
exists an order over the items such that the corresponding sequential auction
admits a subgame perfect equilibrium that survives IEWDS and that replicates
the VCG outcome.

Observe that such a result cannot hold for both additive and unit-demand bid-
ders as is portrayed by our simple example in Section 3, where all items are
identical and hence, under any ordering, the unique subgame-perfect equilibrium
that survivies IEWDS is inefficient. Our conjecture also stems from the fact that
for the case of single-valued unit-demand bidders the optimization problem is
a matroid optimization problem. It is known by [20] that a form of sequential
cut auction for matroids always leads to a VCG outcome. The difference is that
sequential item-auctions do not correspond to auctions across cuts of the ma-
troid. However, it is feasible that under some ordering the same behavior as in
a sequential cut auction will be implemented.

As progress toward this conjecture, we will present a class of item orderings,
the augmenting path orderings, which we believe always contains an ordering
that satisfies Conjecture 1. In the full version we show that the 3/2 lower bound
of [20] breaks if we only allow augmenting path orderings. We leave open the
question of whether one of these orderings always yields a VCG outcome.

6.1 A Class of Orderings

Consider a profile of single-valued unit-demand valuations. Let x denote the
VCG allocation (i.e., xi is the item allocated to bidder i). We also write x(−i) to
denote the VCG allocation when bidder i is excluded. For each i, the allocations
x and x(−i) define a directed bipartite graph between players and objects, where

there is an edge from item j to player k if x
(−i)
k = j but xk �= j, and there is

an edge from player k to item j if x
(−i)
k �= j but xk = j. It is known that, for

each player i, this graph is always a directed path from player i to some other
player k; this is the augmenting path for player i and player k is the price setter
of player i, i.e. the VCG price of player i is vk. With no loss of generality we
assume that every player has a price setter k.
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Given a welfare-optimal matching π, that matches each player i to an item
π(i), consider the following forest construction. For each price setter k, in de-
creasing value order, we will construct a tree as follows. Consider all the items
that are in the interest set of k, Sk, that are not yet in the forest. Add each such
item to the tree as a child of player k. Next, from each such item j, consider its
optimally matched player π−1(j) and add this player to the tree as a child of
j. For each player i that was added, consider all items that are in the interest
set of i, Si, that are not yet in the forest, and add each of these items to the
tree as a child of i. We continue this process, which is essentially a breadth-first
traversal of the set of items, until there is no new item to be added.

The above process creates a forest that contains a node for each item, for
each player that is allocated an item in the optimal allocation, and for each
price setter. Additionally, each player belongs to the tree rooted at his price
setter and his unique path in the tree to the price setter is an augmenting path
in the initial bipartite graph. The reasoning is as follows: each tree contains all
possible alternating paths ending at the price-setter, except alternating paths
that contain items and players who have been included in the tree of a price
setter with larger value. Since a player’s price setter is the largest unallocated
player with which he is connected, through an alternating path, the claim follows.

We will refer to the above forest as the augmenting path graph G. Given an
augmenting path graph G, a post-order item traversal of G is a depth-first, post-
order traversal of the nodes of G, restricted to the nodes corresponding to items
and rooted at price setters. Note that this is an ordering over the items in the
auction. We also assume that trees are traversed in decreasing order of price-
setters. Also note that this order is not necessarily unique, as it does not specify
the order in which the children of a given node should be traversed.

Definition 2. The set of augmenting path orderings of the items is the set of
orderings corresponding to post-order item traversals of G.

Our (refined) conjecture is that, for every instance of single-valued unit-demand
bidders, there exists an augmenting path ordering such that the corresponding se-
quential auction admits a subgame perfect equilibrium that replicates the VCG
outcome. As an example, in the full version of the paper we show that this conjec-
ture holds for the 3/2 lower bound example from [20]. We also show in the full ver-
sion that it is not true that all augmenting path orderings lead to efficient outcomes
at equilibrium: there are examples in which multiple augmenting path orderings
exist, and some orderings lead to inefficient outcomes at equilibrium.

References

1. Ashenfelter, O.: How auctions work for wine and art. The Journal of Economic
Perspectives 3(3), 23–36 (1989)

2. Bae, J., Beigman, E., Berry, R., Honig, M.L., Vohra, R.: Sequential Bandwidth
and Power Auctions for Distributed Spectrum Sharing. IEEE Journal on Selected
Areas in Communications 26(7), 1193–1203 (2008)



Limits of Efficiency in Sequential Auctions 173

3. Bae, J., Beigman, E., Berry, R., Honig, M.L., Vohra, R.: On the efficiency of se-
quential auctions for spectrum sharing. In: 2009 International Conference on Game
Theory for Networks, pp. 199–205 (May 2009)

4. Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions
with item bidding. In: SODA (2011)

5. Bikhchandani, S.: Auctions of heterogeneous objects. Games and Economic Be-
havior 26(2), 193–220 (1999)

6. Blumrosen, L., Nisan, N.: Combinatorial Auctions. Camb. Univ. Press (2007)
7. Boutilier, C., Goldszmidt, M., Sabata, B.: Sequential Auctions for the Allocation of

Resources with Complementarities. In: IJCAI 1999: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, pp. 527–534 (1999)
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Abstract. Competition for clients among service providers is a classi-
cal situation discussed in the economics literature. While better service
attracts more clients, in some cases clients may prefer to keep using a
low quality service if their friends are also using the same service—a phe-
nomenon largely encouraged by the Internet and online social networks.
This is evident, for example, in competition between cloud storage ser-
vice providers such as DropBox, Microsoft SkyDrive and Google Drive. In
such settings, the utility of a client depends on both the proposed service
level and the number of friends or colleagues using the same service.

We study how the welfare of the clients is affected by competition in
the presence of social connections. Quite expectantly, competition among
two firms can significantly increase the clients’ social welfare in compari-
son with the monopoly case. However, we show that a further increase in
competition triggered by the entry of additional firms may be hazardous
for the society (i.e., to the clients), which stands in contrast to the typ-
ical situation in competition. Indeed, we show via equilibrium analysis
that the social benefit of additional firms beyond the duopoly is limited,
whereas the potential loss from such an addition is unbounded.

1 Introduction

Competition between firms has received much attention in the economics liter-
ature [4,16,5], and recently also in the computer science literature [13,1,12,17].
In standard models of competition, firms compete over clients (or workers), by
offering a certain level of service or payoff. The utility of the firm is derived
from the set of clients that select it, and can be based either purely on their
number, or on a more sophisticated combinatorial function. The utility of the
clients on those models is assumed to be affected only by the service they receive
and by their preferences over firms. In particular, it is assumed that clients are
indifferent to the decisions of other clients.
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This kind of competition leads to models where the introduction of additional
firms always improves the total welfare of the clients, and the introduction of
additional clients always improves the total welfare of the firms [10,16,5]. How-
ever, this kind of competition is an oversimplification of reality. In many real
world scenarios, the decisions of clients have significant positive or negative ef-
fect on the utility of other clients, an effect known as network externalities (see
the related work section). For example, people may prefer a restaurant that has
fewer clients (e.g., when they wish to maintain privacy), or alternatively choose
one that is highly attended (e.g., if they enjoy the crowd). In quite many cases,
such preference may be based on social connections, as people prefer to spend
time with their friends and benefit from their presence.

The above is particularly relevant for long-term selection of online services
such as cloud storage services, social networks, cellular providers and, to some
extent, e-mail providers, where the benefit one generates from a service highly
depends on its adoption by colleagues and friends. For example, calls within a
single cellular network may have fewer interruptions. Similarly, sharing files is
easier between users who use the same cloud storage service provider.

A motivating example. As a concrete example, consider two competing cloud
services, Grand-docs (G) offering 3GB of storage and Medium-drive (M) offering
5GB. Suppose a client of G called Alice considers moving to M. Alice wants to
be able to share a workspace with her colleague Bob, which is another user of
G. Alice values the convenience of sharing a platform with each single colleague
as equivalent to 1GB of storage. Thus, Bob alone would not prevent her from
switching to M. However if Alice has, say, five colleagues using G, and only one
who uses M, then she will (perhaps reluctantly) keep using G. Eve, on the other
hand, is a freelance who uses cloud services for storage only. Thus, she prefers
M regardless of the actions of other clients.

In this workwe consider amodel where clients’ utilities depend both on the price
or quality of the offered service and on the number and identity of their friends
who have chosen the same firm. Our model is a two-phase game. In the first phase
firms commit to a particular level of service which can be measured, for example,
by bandwidth, storage capacity or accessible content of interest.1 In the second
phase, each client independently selects a firm. Each firm gains a fixed value for
every client it recruits, fromwhich it subtracts the cost of the service. The utility of
a client is composed of the service level offeredby her chosenfirm, and an additional
utility the client gains for every friend selecting the same firm.

A monopoly of a single firm guarantees that all social links are used, but gives
the firm no incentive to provide a decent service level. Given a set of service
providers, with fixed offers, and assuming positive externalities, the society can
still utilize all social connections, if all clients subscribe to a single provider
(say, the one offering the best service). However, there may be idiosyncratic
preferences over firms (see Remark 1), in which case such a partition would not
be optimal. Further, even if clients do not discriminate among providers, there

1 We consider services that are given for free, such as e-mail and some cloud services,
but where service level varies.
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may be many other partitions of clients that are also stable. Since some social
connections are not exploited, these outcomes are less efficient, and we focus on
the worst case partitions that are still stable.

Social connections may give rise to interesting dynamics in the market. For
example, a new firm will have to provide a significantly higher level of service
than an incumbent competitor, and even then it will only be able to attract
clients who have low value for social connections. However, after this initial
small wave, other clients may also move as now they might already have friends
using the new service. A third and forth wave may occur, until every client
achieves balance between her desired service level and social connections. While
clients act myopically (as they may be unaware of the global structure of the
network), firms try to predict the eventual partition of clients that will follow a
given change in the service level. We, therefore, introduce an equilibrium concept
that takes this behavior into consideration.

Our goal is to study the effect of competition on the social welfare of the
clients, which is defined as the sum of their utilities, derived from both service
and social connections. To that aim, we define the clients’ value of competi-
tion of a given game as the ratio between the clients’ social welfare under the
worst equilibrium, and their social welfare under the monopoly outcome. We
ask whether the value of competition increases or decreases with respect to the
number of firms in the market. In particular, we are interested in how many
firms should a market have to (approximately) maximize the social welfare.

Our contribution. On the conceptual side, our two-phase model of competition
and the corresponding solution concept allows for a focused study of the interac-
tion between the network structure, number of firms and clients’ welfare, while
isolating them from other factors which are kept simple.

Our first result is that while a monopoly may be infinitely worse for the clients
than any equilibrium under two firms or more, further increasing the number of
firms in the market is not always beneficial for the clients. Surprisingly, the entry
of additional firms beyond two cannot increase the value of competition by more
than a constant factor. In contrast, the value of competition can decrease linearly
with the number of firms, i.e., by an unbounded factor. This demonstrates that
in markets where social connections play an important role too much competition
may produce an adverse result.

We further study bounds on the value of competition under the special case
of a complete social graph. In particular, we show that the value of competi-
tion may still decrease with the number of firms, but only when the number
of clients is sufficiently large. A complete social graph is interesting because,
in some sense, it represents the opposite case of models ignoring social effects.
Finally, while the value of competition refers to the clients’ welfare, one can also
define a complementary concept with regard to the firms’ revenue. We present
a preliminary result in this direction.

Most proofs are omitted, and are available in the full version of the paper.2

2 http://tinyurl.com/k9n36ha.

http://tinyurl.com/k9n36ha
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2 The Model

We consider a two-phase game with two types of players: firms and clients. The
clients are the nodes of a graph that represents the social network. In the first
phase, each firm declares a payoff or service level (e.g., how much storage is
allocated for clients joining it). In the second phase, the clients join firms. The
objective of the firms is to get as many clients as possible, while supplying the
least amount of service. The objective of the clients is to share a firm with as
many of their neighbors as possible, while getting a high service level.

More formally, consider an undirected graph G = 〈N,Γ 〉 whose nodes are the
n clients. The edges of G have positive weights wj,j′ , reflecting the benefit to
clients cj , cj′ ∈ N from sharing a firm with each other (see Remark 2 about
asymmetric networks). We denote by Γ (cj) ⊆ N the set of neighbors of cj , i.e.,
all clients cj′ for which wj,j′ > 0. In addition, each client cj ∈ N is associated
with a constant aj , which is the value cj gets from each unit of good (e.g., 1 Mb
of disk space) it receives from the host firm. We denote by a ∈ Rn

+ the vector of
clients’ parameters, and assume that the information on a is implicitly contained
in N (and thus in G). In other words, whenever we have a set N of clients, or a
graph G, we also have a vector a associated with them.

In addition, the set F consists of m firms f1, f2, . . . , fm. Each firm fi ∈ F
is associated with an integer constant ri, representing the revenue of fi from
each client joining it. We similarly denote all firms’ parameters by r ∈ Rm

+

(where information on r is implicitly contained in F ). An instance of our game
is, therefore, represented by a pair I = 〈G,F 〉. We write Im = 〈G,m, r〉 when F
consists of m identical firms with ri = r.

The strategies available to each firm are committing to a certain service level
(payoff) xi. An outcome of the game (also called configuration) can be written
as E = 〈x, P 〉, where x is a payoff vector, and P = (C1, . . . , Cm) is a partition
of the clients to firms. We denote by f(c, P ) ∈ F the firm selected by client c,
i.e., f(c, P ) = fi for all c ∈ Ci. Given an outcome E = 〈x, P 〉 in game 〈G,F 〉,
the utilities of the agents are as follows.

– The utility of each firm fi ∈ F is given by vi(E) = (ri − xi) · |Ci|.
– The utility of each client cj ∈ Ci is given by uj(E) = aj ·xi+

∑
j′∈Ci\{cj} wj,j′ .

For any particular outcome E in game 〈G,F 〉, we denote by SW (G,F,E) (or
SW (I, E)) the social welfare of the clients, i.e., SW (G,F,E) =

∑
cj∈N uj(E).

In the rest of this paper, we sometimes omit the parameters I, G, F and E when
they are clear from the context. The rest of this section is devoted for defining
and explaining the solution concept we use.

Remark 1 [Preferences over firms]. In some models of competition each client
is assumed to have preferences over the different firms, reflecting differences be-
tween the products not captured by the other parameters of the model [16,17,18].
To simplify the exposition, we do not explicitly consider preferences in the paper.
However, most of our results (except in Section 5.1, where the complete graph
is studied) hold even if we add preferences. See full version for details.
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2.1 Client Dynamics

Suppose firms commit to some given service levels, (x1, . . . , xm). Clients can
now choose which firms to join. Since the utility of each client is affected by
the decision of her friends, there might not be dominant strategies. However,
given any current partition of clients P = (C1, . . . , Cm), every client cj has
a straight-forward best response, which is to join the firm fi maximizing aj ·
xi +

∑
j′∈Ci\{cj} wj,j′ . It is easy to see that a pure Nash equilibrium (PNE) for

the clients exists (e.g., when all clients join the firm offering the best service),
however, there may be more than one such equilibrium.

Proposition 1. If the strategies of the firms are fixed (i.e., firms are not play-
ers), and the clients switch strategies according to a best response dynamics, then
the client strategies converge into a PNE.

Remark 2 [Symmetry]. The proof of Proposition 1 is due to the fact that the
clients’ game admits a potential function. We note that there are other cases
where Proposition 1 holds even without symmetry. For example, if cj attributes
the same positive value for every neighbor sharing a firm (say, some constant
wj). Interestingly, both symmetry and equal weight to neighbors turn out to be
sufficient conditions for the existence of pure equilibrium in other models based
on social connections [7,22]. We emphasize that all of our results in the rest of
this paper hold even without the symmetry assumption, as long as the clients
are guaranteed to converge to an equilibrium.

2.2 The Two-Phase Game and Equilibria Concepts

Knowing that for any profile of payoffs the clients must converge, we can define
a game in extensive form. Our game proceeds in two phases as follows.

– In the first phase, each firm fi declares a non-negative integer xi, which is the
payoff (or service level) fi gives to each client joining it. Note that firms are
not allowed to discriminate between clients. We denote the vector of firms’
strategies by x ∈ Nm.

– In the second phase, each client cj chooses a firm. Then, the clients follow a
best response dynamics until they converge to a Nash equilibrium, i.e., to a
partition P .

Consider an outcome E = (x, P ) obtained from this two-phase game. Clearly,
the clients have no incentive to deviate in E, however, the firms might deviate.
Once a firm deviates, the clients can reach a new equilibrium, in which case
we get a new outcome E′. Given a firm fi, a strategy x′

i and two outcomes
E,E′ which are PNEs for the clients, we say that a outcome E′ is the projected
outcome obtained from E via the deviation x′

i of firm fi if:

– x′
i > xi, i.e., firm fi offers a higher service level.

– There is a sequence of best-responses by clients starting from the state
((x′

i, x−i), P ) that converges to E′.
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The projected outcome is clearly unique if there are two firms, as clients will
only join the deviating firm, until no more clients want to join. When there are
three firms or more, the clients’ best response dynamics might be able to reach
multiple Nash equilibria. In such cases, the projected outcome is determined
by one of these equilibria arbitrarily. Thus in what follows, we treat the pro-
jected outcome E′ as unique given E, i and x′

i. Using the above definition of the
projected outcomes, we are now ready to define our solution concept.

Definition 1. An outcome E = (x, P ) is a commitment equilibrium (CME)
if: (a) E is a PNE for the clients; and (b) For any firm fi and any x′

i > xi,
vi(E

′) ≤ vi(E), where E′ is the projected outcome from E and x′
i.

In other words, the last condition states that no firm is better off increasing
its payment, assuming that following this deviation the game will reach the
projected outcome associated with this deviation. The following section gives
some theoretical and practical justifications for the definition of CME.

3 Properties of Commitment Equilibria

Suppose that firms announce some payoff vector x, which results in a config-
uration E = (x, P ). Moreover, suppose firm fi deviates by announcing payoff
x′
i �= xi upon seeing the outcome E. In the unfolding of events, some clients

may join fi or desert it. This in turn may cause other clients to switch firms and
so on. By Proposition 1, the clients will eventually reach a stable configuration
E′ = ((x′

i, x−i), P
′). The deviation is profitable for fi if vi(E

′) > vi(E).
Note that in theory, a firm may either gain by increasing its service level,

thereby triggering a cascade of new clients joining it; or by decreasing payoff
and thus reducing expenses However, deviations of the latter type are largely
impractical in most situations. Often, the service level offered by the firm is
considered by the clients as a commitment. This is why CME considers only
deviations to a higher level of service. Decreasing the level of service is not
considered an option.

Other justifications for the restrictions imposed by CMEs are given in the full
version of the paper. The next two properties show that CMEs exist, and that
they are closely related to other solution concepts.

Observation 2. For every game instance, best response dynamics (of the firms)
must converge into a CME.

Proposition 3. Given a commitment equilibrium E of the extensive form game,
there exists a pure sub-game perfect equilibrium in which the utilities of all clients
and firms are equal to their utilities in E.

The last proposition allows us to think of CMEs as an equilibrium selection
criterion, which favors sub-game perfect equilibria that are attained via a natural
iterative process: if a firm deviates, the resulting configuration of the clients can
be achieved from the original one by a sequence of best responses.
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4 Benefits of Competition

In this section we discuss the possible benefit to the clients from competition
between firms. To do that, we first define a way to measure the effect of compe-
tition on the social welfare of the clients. Given a network G, For every instance
I we denote the social welfare in the worst CME by SW ∗(I). Under a monopoly,
all clients select the single firm, and in the worst case get no service. We define
the monopoly welfare MW (G) = SW ∗(G, 1, 0). Note that for I = 〈G,F 〉, MW
only depends on G.

The clients’ value of competition of the instance I = 〈G,F 〉 is now defined as
the ratio CV C(I) = SW ∗(I)/MW (G). Thus, values of CV C(I) greater than 1
indicate that the society (of clients) gains from the competition between firms,
whereas lower values lower mean that the competition hurts the clients.

For reference, we also define OPT (I) as the maximal social welfare of any
outcome of I. It clearly holds that OPT (I) ≤

∑
j,j′∈N wj,j′ +maxfi∈F ri ·

∑
j aj ,

and when there are no preferences over firms, then this is an equality: in the
best outcome all clients share the same firm, which provides maximal service.

There are several reasons for focusing on the worst equilibrium. First, firms
may use non-binding agreements to settle on outcomes that are good for them
and bad for the clients. Second, this is a worst case assumption allowing us to
put a lower bound on the welfare in any other case. And finally, the best CME
coincides with the optimal outcome described above, which is trivial.

In this section we focus on the network structure, and hence assume (unless
explicitly mentioned otherwise), that aj = a for all cj ∈ N and ri = r for all
fi ∈ F . These simplifying assumptions will be relaxed in Section 5.

The clients’ value of competition measures how much the clients gain from
competition. It is natural to predict that competition will improve the outcome
for the clients. Indeed, a duopoly (two firms) typically yields significantly higher
welfare than a monopoly (although not always, see Prop. 8). The following propo-
sition shows that the clients value of competition can be infinite. Informally, it
implies that a second firm can significantly improve the total utility of the clients.

Proposition 4. There is a game instance I where CV C(I) =∞.

Proof. Consider a game instance with two firms f1 and f2 having r > 0, and one
client with a = 1. In every CME of this game, there must be a firm giving payoff
of xi ≥ r − 1. Hence, SW ∗(I) ≥ r − 1. On the other hand, if there was a single
firm, the utility the client would have been 0, as the firm would have paid 0 and
the client has no neighbors. Thus CV C(I) ≥ (r − 1)/0 =∞. 
�

In contrast to the potentially significant improvement in the social welfare
produced by a second firm, the next theorem shows that additional firms can
only have a limited positive effect on the clients. We prove this strong negative
result by showing that a duopoly already extracts a constant fraction of the
optimal social welfare (which in itself is a positive statement on duopolies).

Theorem 5. Let Im = 〈G,m, r〉 be an arbitrary game instance (with aj = a for
all cj ∈ N and ri = r for all fi ∈ F ). Let B be any CME outcome in Im for
m ≥ 2. Then, SW (Im, B) ≤ β · SW ∗(I2) for some constant β < 7.
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Proof sketch. Denote by A the worst CME of I2, and let x1 and x2 denote the
payoff levels of firms f1 and f2 in A, respectively. Also, denote by C1, C2 ⊆ N
the sets of clients of outcome A corresponding to firms f1 and f2, respectively,
and let n1 = |C1|, n2 = |C2|. We assume, w.l.o.g., n1 ≥ n2. For every client
cj ∈ Ci, we denote γj =

∑
cj′∈Ci

wj,j′ , and δj =
∑

cj′∈N\Ci
wj,j′ . We also use

the average values γ∗
i = 1

ni

∑
cj∈Ci

γj and δ∗i = 1
ni

∑
cj∈Ci

δj .

Observe that for every CME E: SW (Im, E) ≤ OPT (Im) = OPT (I2), and
in particular this inequality holds for E = B. Therefore to prove a constant
bound, it is sufficient to bound the price of anarchy3 with 2 firms, i.e., to show
that OPT (I2) ≤ O(SW (I2, A)). Let uj(A), uj(OPT ) be the utility of client j
under the configurations A and OPT (in instance I2). For j ∈ Ci, it holds that
uj(A) = axi + γj , whereas uj(OPT ) = r + γj + δj .

The minimal increase in x−i that can convince client cj ∈ Ci to switch firms
is εj = (γj/a+xi)− (δj/a+x−i +1) ≥ 0. Assume that clients in Ci are ordered
by non-decreasing εj . By comparing firm’s utility with and without the increase,
we can show that fi cannot gain by attracting clients c1, . . . , cj :

(r − x−i) · n−i ≥ (r − (x−i + εj))(n−i + j) . (1)

By rearranging, we now get: r ≤ εj

(
1 + n−i

j

)
+ x−i.

For any non-decreasing vector z = (z1, . . . , zm) of non-negative numbers, de-
note its average by z∗ = 1

m

∑
j≤m zj . Let τ ∈ (0, 1) be some fraction, and let

ατ = max
z≥0

{z�τm�/z
∗}, Θτ = ατ (1 + 1/τ) .

For example, if τ = 1/2 (i.e., z�τni� is the median of z), then Θτ = 6.

Let ε∗i = 1
ni

∑
cj∈Ci

εj . In what follows, we will take an arbitrary fraction τ ,
and prove our bound as a function of Θτ . We assume n1, n2 are sufficiently large
so as to ignore rounding (i.e., that �τni� ∼= τni).

Applying the inequality above for j = τni gives us

r ≤
(
1 +

n−i

τni

)
ετni + x−i ≤

(
1 +

n−i

τni

)
ατ (γ

∗
i /a− δ∗i /a+ xi + 1). (2)

In particular, for the larger firm f1:

r ≤
(
1 +

1

τ

)
ατ (γ

∗
1/a− δ∗1/a+ x1 + 1) = Θτ (γ

∗
1/a− δ∗1/a+ x1 + 1) , and

∑
j∈C1

uj(OPT ) ≤
∑

cj∈C1

(ar + δj + γj) = n1(ar + δ∗1 + γ∗
1 )

≤ n1(Θτ (γ
∗
1 + ax1 + a) + γ∗

1 ) ≤ (Θτ+1)
∑
j∈C1

(γj + ax1 + a) ∼= (Θτ+1)
∑
j∈C1

uj(A) .

3 The price of anarchy of a game is the ratio between the optimal social welfare
achievable by any configuration, and the worst social welfare of any Nash equilibrium.
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This means that at least the clients of the larger firm f1 cannot gain on average
more than a factor of Θτ + 1, plus some additive term O(na) that does not
depend on the welfare. Moreover, this term goes to zero when we use smaller
minimal units of storage a. As for the smaller firm f2 we consider two cases.

The first case is γ∗
2/a− δ∗2/a+ x2 ≥ γ∗

1/a− δ∗1/a+ x1. In this case, for i = 2

r ≤ Θτ (γ
∗
1/a− δ∗1/a+ x1 + 1) ≤ Θτ (γ

∗
2/a− δ∗2/a+ x2 + 1) ,

and therefore, the same arguments used above can also be used to bound∑
j∈C2

uj(OPT ). This concludes the first case, as

OPT (I2) ≤ (Θτ +1)
∑
j∈C1

uj(A)+(Θτ +1)
∑
j∈C2

uj(A)+O(na) ∼= (Θτ+1)·SW (A).

We now consider the second case, where γ∗
2/a− δ∗2/a+x2 < γ∗

1/a− δ∗1/a+x1.
Denote γ∗∗

i = γ∗
i + axi. Using this notation, the above inequality becomes:

γ∗∗
2 − δ∗2 < γ∗∗

1 − δ∗1 . Observe that:

SW (A) =
∑
j∈C1

uj(A) +
∑
j∈C2

uj(A) = n1γ
∗∗
1 + n2γ

∗∗
2 , (3)

and therefore:

OPT (I2) =
∑
j∈C1

uj(OPT ) +
∑
j∈C2

uj(OPT ) = n1(ar + γ∗
1 + δ∗1) + n2(ar + γ∗

2 + δ∗2)

≤ n1(ατ (γ
∗∗
1 −δ∗1+a)(1+

n2

τn1
) + γ∗

1 + δ∗1) + n2(ατ (γ
∗∗
2 − δ∗2 + a)(1+

n1

τn2
) + γ∗

2 + δ∗2)

∼= (ατ + 1)SW (A) + ατ/τ(n2(γ
∗∗
1 − δ∗1) + n1(γ

∗∗
2 − δ∗2)) , (By Eq. (3))

where the first inequality holds by applying Equation (2) once with i = 1, and
once with i = 2. Finally, since w ≥ x, y ≥ z implies wz + xy ≤ wy + xz,

OPT (I2) � (ατ+1)SW (A) +
ατ

τ
(n1γ

∗∗
1 +n2γ

∗∗
2 ) = (Θτ + 1)SW (A) ,

where w = (γ∗∗
1 − δ∗1); x = (γ∗∗

2 − δ∗2); y = n1; z = n2.
This completes the proof of the inequality SW (Im, B) ≤ (Θτ +1)SW (I2, A)+

O(na). Since by selecting the median τ = 1/2 we get Θτ = 6, the ratio is at most
7 (plus some additive term that diminishes with the resolution). 
�

By optimizing the value of τ in the proof of Theorem 5, it can be shown that
β = Θτ ≤ 6.828 (for sufficiently large n). A possible extension of the theorem,
which we leave open for future research, is how the ratio changes as a function of
the vector r in the presence of heterogeneous firms (i.e., when not all the entries
in r are identical). We conjecture that if the ri values are close to one another,
then the benefit of having more competing firms will still be limited.

The next theorem complements the upper bound with a lower bound of 2. It
remains as an open question to close the gap between these two constants.

Proposition 6. For any m > 2, there exists an instance Im = 〈G,m, r〉 s.t.
SW ∗(Im) ≥ (2 − o(1))SW ∗(I2).



Competition in the Presence of Social Networks 183

Notice that the proof of Theorem 5 in particular shows that the price of
anarchy (for clients) is upper bounded by 6.828. Any better bound on the clients’
value of competition that uses a similar proof technique must also translate into
an upper bound on the price of anarchy. The following proposition shows that
the price of anarchy is at least 4.26 in the worst case. Thus, matching the lower
bound introduced by Proposition 6 will probably require different techniques.

Proposition 7. There exists an instance I2 = 〈G, 2, r〉, s.t. OPT (I2) ≥ (1 +
1

1−ln 2 )SW
∗(I2) ∼= 4.26SW ∗(I2).

5 The Cost of Competition

In this section we are interested in the question: “how low can the client value of
competition be?”. We start with a negative example, showing that the welfare of
clients can linearly degrade with the number of firms, i.e., that without further
restrictions the cost of excessive competition is essentially unbounded.

While our construction uses a particular structure, we later show in Prop. 11
that a milder linear degradation may also occur under the complete graph.

Proposition 8. For every m ≥ 2, ε > 0, there exists a game instance Im with
CV C(Im) ≤ 1/m + ε.

Our next results show that Proposition 8 demonstrates the worst possible
case. If the number of firms m is bounded then so is the value of competition.
Interestingly, the proof of Theorem 9 provides a lower bound on the welfare not
just in a CME, but in fact in any outcome where clients are stable (regardless of
firms’ strategies). The same is true for Theorem 10. In Theorem 9, the number
of firms can also be replaced with the maximum degree.

Theorem 9. For every game instance I = 〈G,F 〉 with m firms, SW ∗(I) ≥
MW (G)/m. That is, CV C(I) ≥ 1/m.

Proof. If there is only a single firm, all clients join it and get zero payoff. Hence,
the monopoly welfare is MW (G) =

∑n
j=1

∑
j′ 	=j wj,j′ . Let us now focus on an

arbitrary CME E of I. Consider a client cj which joins firm fi under E. Clearly,
for every other firm fi′ it must hold that:

aj · xi +
∑

j′∈Ci\{cj}
wj,j′ ≥ aj · xi′ +

∑
j′∈Ci′\{cj}

wj,j′ . (4)

Observe that this inequality trivially holds also when i = i′. Hence, we can sum
the inequalities for every 1 ≤ i′ ≤ m, and get:

m ·
⎡
⎣aj · xi +

∑
j′∈Ci\{cj}

wj,j′

⎤
⎦ ≥

m∑
i′=1

⎡
⎣aj · xi′ +

∑
j′∈Ci′\{cj}

wj,j′

⎤
⎦ (5)

=
∑
j′ �=j

wj,j′ +
m∑

i′=1

aj · xi′ ≥
∑
j′ �=j

wj,j′ .
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Rearranging, we get that the utility of cj is at least
∑

j′ 	=j wj,j′/m. Hence, the

total utility of all clients is at least: 1
m ·

∑n
j=1

∑
j′ 	=j wj,j′ =

1
m ·MW (G). 
�

5.1 The Complete Graph

The above results use examples of dense graphs to show that the clients’ value of
competition tend to be low. It thus makes sense to consider the complete graph,
with equal edge weights (if different edge weights were allowed, non-complete
graphs could be simulated by giving some edges very low weights, making them
insignificant). For ease of notation, let us assume that all edge weights are 1. We
note that the case of a complete graph models the situation where clients only
care about the number of other clients sharing their firm, as in [15].

The main result of this section states that with complete graphs over a small set
of clients, the loss due to competition (even with many firms) cannot be too high.

Theorem 10. For any game instance I = 〈G,F 〉 where G is a complete graph,
it holds that CV C(I) = Ω(n−1/3).

Moreover, the above bound is tight up to low order terms:

Proposition 11. There is a family of instances (Im)m≥1, each with a complete
social graph over n(m) clients (where n(m) is a bounded function of m), for
which CV C(Im) = O(n−1/3).

The instances constructed in the proof of the last proposition have the addi-
tional property that CV C(In) = O(1/m). Hence, the proof also shows that the
bound given by Theorem 9 is tight (up to lower order terms) even if we restrict
ourselves to complete graphs (but allow ri to vary, and allow n = Ω(m3)).

6 Firms’ Revenue

While the main bulk of this paper is devoted to study the effect of increased
competition on the welfare of clients, it is also important to understand how
social connections change the revenue of the competing firms. In this section we
provide a preliminary result in this direction. Given a game instance I, we define
the firms’ revenue as the sum of firms’ utilities in the best CME of this game
instance (best for the firms), i.e., FR(I) = max{

∑
fi∈F vi(E) | E is CME of I}.

The choice of the best CME in the definition of FR(I) is justified by the ob-
servation that there always exists a CME with 0 utility for the firms (the one
where xi = ri for every firm fi).

The example constructed in Proposition 6 can be analyzed to show that the
addition of a third firm decreases the total revenue by half. The next theorem
shows that similar examples exist for any value of m.

Theorem 12. For any m > 1, there exists an instance Im = 〈G,m, r〉 for
which the total firms’ revenue strictly decreases with the addition on an extra
firm. Formally, Im+1 = 〈G,m+ 1, r〉 obeys FR(Im+1) ≤ m−1

m−2+lnm · FR(Im).
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The fact that increased competition can lead to lower revenue may sound trivial.
However it should be noted that the marginal value of each client to a firm
is fixed. Hence, without the network structure the number of firms does not
affect the total revenue at all. It is the presence of social connections that makes
competition potentially harmful for the firms. We leave for future research finding
the maximal loss in revenue that may result by adding a firm. Another interesting
question that we leave open is whether the firms’ total revenue can also increase
when a new firm is introduced into the game.

7 Discussion

We introduced a natural network-based model of competition with positive ex-
ternalities between clients, and analyzed the effect of the number of firms on the
welfare of clients.

7.1 Related Work

Katz and Shapiro [15] coined the term “network externalities” to denote situ-
ations where the decision of clients effect their neighbors in the network. They
described a market where consumers’ utility is partly derived from the size of
the network they select, i.e., the number of other clients selecting the same firm.
Subsequently, Banerji and Dutta [3] studied an extension of the model that does
take into account the structure of the network, by describing the interaction
among groups of clients in the limited case of two firms.

Both of these papers, as well as our work, can be classified under the “macro
approach” of Economides, which seeks to understand the effect of positive ex-
ternalities on consumption patterns, rather than to explain their source [11].

The utility structure of the clients in our model is similar to the one in [15],
but the clients are sensitive to the identity of their peers, rather than to their
number only (as in [3]). Moreover, we assume a simple myopic behavior by
clients whereas in the Katz and Shapiro model clients predict the expected size
of the firms and act accordingly. Thus our equilibrium concepts are substantially
different.

Beyond the technical differences between the models, our paper brings a novel
perspective. In particular, the main focus of Banerji and Dutta is on the structure
of the outcome partition in the case of two firms. Whereas we study the effect of
the number of firms on the the clients’ social welfare under network externalities.
Similarly to Economides but due to different considerations, we arrive at the
conclusion that excessive competition may compromise clients’ welfare.

In particular, compatibility and standardization play a major role in some
models of network externalities as in [15,11]. In our model the level of compat-
ibility among competing services is assumed to be fixed (at least in short time
scales). The strategic decisions of firms are therefore simplified to setting the
price/service level, as in traditional Bertrand competition [4].

Other aspects of network externalities that have been studied focused on
factors such as price discrimination [14], or particular diffusion dynamics [13].
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A two-phase framework has been suggested as a model for competition in other
domains, where firms first commit to strategies, and clients follow by playing
a game induced by firms’ actions. Examples of such games are available in the
domain of group buying, where each vendor commits to a discount schedule based
on quantity [8,9,18]. While the utility structure of both vendors and buyers in
the group buying domain is substantially different, our work demonstrates how
such a two-phase framework can be applied for modeling the effect of network
externalities.

7.2 Conclusions

We showed that excessive competition can fragment the network and eliminate
most of the clients’ utility. On the other hand, two competing firms already
guarantee at least a constant fraction of the clients’ maximal welfare, and thus,
the positive effect of adding more competitors is bounded, whereas the poten-
tial damage is much more significant. These results complement the findings
by Economides and others on the potential damage in excessive competition,
and provide some formal justification to statements that unregulated competi-
tion can be inefficient or even hazardous for society. For example, the necessity
of regulation against competition has been discussed in domains such as labor
markets, banking, and others [20,6,19]. A recent formal treatment of auctions
with partial information reveals a similar effect to the one we found, showing
that the entry of additional auctioneers incurs a loss on the bidders’ welfare [21].

A loss of welfare is quite expected when there are negative externalities for
firms’ actions, such as pollution or waste of resources [2]. We emphasize, however,
that the potential negative effect of competition in our model is not due to the
typical race-to-the-bottom scenario, but rather due to (positive) externalities
between the clients or workers themselves.

Future Work. In order to focus on the effect of network externalities, we simpli-
fied some factors that are necessary for a better understanding of real markets.
Possible future work will consider non-linear utilities for the firms (reflecting,
e.g., decreasing marginal production costs that are typical to economies of scale),
partial information of the network, and far-sighted strategies used by the clients.

This work outlined bounds on the value of competition assuming either ar-
bitrary or complete networks. Networks in the real world tend to have certain
characteristics and structure, that can possibly be exploited to get better bounds
on the effect of competition under real world externalities.

Finally, we introduced only a preliminary result on the firms’ revenue. Much
more work is needed in order to gain an understanding of this quantity. For
example, we showed that there is a class of instances where the introduction
of a new firm decreases the firms’ total revenue by at least a given factor. We
conjecture that the converse does not hold, i.e., that the introduction of addi-
tional firms can never increase the total revenue. This conjecture, if true, implies
that both firms and clients are prone to the effects of excessive competition, and
further emphasizes the importance of regulation.
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7. Biló, V., Celi, A., Flammini, M., Gallotti, V.: Social context congestion games.
Theoretical Computer Science (to appear)

8. Chen, J., Chen, X., Song, X.: Comparison of the group-buying auction and the
fixed pricing mechanism. Decision Support Systems 43(2), 445–459 (2007)

9. Chen, J., Kauffman, R.J., Liu, Y., Song, X.: Segmenting uncertain demand in
group-buying auctions. Electronic Commerce Research and Applications 9(2), 126–
147 (2010)

10. Deneckere, R., Davidson, C.: Incentives to form coalitions with bertrand competi-
tion. The RAND Journal of Economics 16(4), 473–486 (1985)

11. Economides, N.: The economics of networks. International Journal of Industrial
Organization 14(6), 673–699 (1996)

12. Immorlica, N., Kalai, A.T., Lucier, B., Moitra, A., Postlewaite, A., Tennenholtz,
M.: Dueling algorithms. In: Proc. of 43rd STOC, pp. 215–224 (2011)
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Abstract. Braess’s paradox states that removing a part of a network may im-
prove the players’ latency at equilibrium. In this work, we study the approxima-
bility of the best subnetwork problem for the class of random Gn,p instances
proven prone to Braess’s paradox by (Roughgarden and Valiant, RSA 2010) and
(Chung and Young, WINE 2010). Our main contribution is a polynomial-time
approximation-preserving reduction of the best subnetwork problem for such in-
stances to the corresponding problem in a simplified network where all neighbors
of s and t are directly connected by 0 latency edges. Building on this, we obtain
an approximation scheme that for any constant ε > 0 and with high probabil-
ity, computes a subnetwork and an ε-Nash flow with maximum latency at most
(1+ε)L∗+ε, where L∗ is the equilibrium latency of the best subnetwork. Our ap-
proximation scheme runs in polynomial time if the random network has average
degree O(poly(lnn)) and the traffic rate is O(poly(ln lnn)), and in quasipoly-
nomial time for average degrees up to o(n) and traffic rates of O(poly(lnn)).

1 Introduction

An instance of a (non-atomic) selfish routing game consists of a network with a source s
and a sink t, and a traffic rate r divided among an infinite number of players. Every edge
has a non-decreasing function that determines the edge’s latency caused by its traffic.
Each player routes a negligible amount of traffic through an s − t path. Observing the
traffic caused by others, every player selects an s−t path that minimizes the sum of edge
latencies. Thus, the players reach a Nash equilibrium (a.k.a., a Wardrop equilibrium),
where all players use paths of equal minimum latency. Under some general assumptions
on the latency functions, a Nash equilibrium flow (or simply a Nash flow) exists and the
common players’ latency in a Nash flow is essentially unique (see e.g., [14]).

Previous Work. It is well known that a Nash flow may not optimize the network per-
formance, usually measured by the total latency incurred by all players. Thus, in the
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Fig. 1. (a) The optimal total latency is 3/2, achieved by routing half of the flow on each of the
paths (s, v, t) and (s, w, t). In the (unique) Nash flow, all traffic goes through the path (s, v, w, t)
and has a latency of 2. (b) If we remove the edge (v, w), the Nash flow coincides with the optimal
flow. Hence the network (b) is the best subnetwork of network (a).

last decade, there has been a significant interest in quantifying and understanding the
performance degradation due to the players’ selfish behavior, and in mitigating (or even
eliminating) it using several approaches, such as introducing economic disincentives
(tolls) for the use of congested edges, or exploiting the presence of centrally coordi-
nated players (Stackelberg routing), see e.g., [14] and the references therein.

A simple way to improve the network performance at equilibrium is to exploit Braess’s
paradox [3], namely the fact that removing some edges may improve the latency of the
Nash flow1 (see e.g., Fig. 1 for an example). Thus, given an instance of selfish routing,
one naturally seeks for the best subnetwork, i.e. the subnetwork minimizing the common
players’ latency at equilibrium. Compared against Stackelberg routing and tolls, edge
removal is simpler and more appealing to both the network administrator and the players
(see e.g., [6] for a discussion).

Unfortunately, Roughgarden [15] proved that it is NP-hard not only to find the best
subnetwork, but also to compute any meaningful approximation to its equilibrium la-
tency. Specifically, he proved that even for linear latencies, it is NP-hard to approximate
the equilibrium latency of the best subnetwork within a factor of 4/3−ε, for any ε > 0,
i.e., within any factor less than the worst-case Price of Anarchy for linear latencies. On
the positive side, applying Althöfer’s Sparsification Lemma [1], Fotakis, Kaporis, and
Spirakis [6] presented an algorithm that approximates the equilibrium latency of the
best subnetwork within an additive term of ε, for any constant ε > 0, in time that is
subexponential if the total number of s − t paths is polynomial, all paths are of poly-
logarithmic length, and the traffic rate is constant.

Interestingly, Braess’s paradox can be dramatically more severe in networks with
multiple sources and sinks. More specifically, Lin et al. [8] proved that for networks
with a single source-sink pair and general latency functions, the removal of at most k
edges cannot improve the equilibrium latency by a factor greater than k + 1. On the
other hand, Lin et al. [8] presented a network with two source-sink pairs where the
removal of a single edge improves the equilibrium latency by a factor of 2Ω(n). As for

1 Due to space constraints, we have restricted the discussion of related work to the most relevant
results on the existence and the elimination of Braess’s paradox. There has been a large body
of work on quantifying and mitigating the consequences of Braess’s paradox on selfish traffic,
especially in the areas of Transportation Science and Computer Networks. The interested reader
may see e.g., [15,12] for more references.
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the impact of the network topology, Milchtaich [11] proved that Braess’s paradox does
not occur in series-parallel networks, which is precisely the class of networks that do
not contain the network in Fig. 1.a as a topological minor.

Recent work actually indicates that the appearance of Braess’s paradox is not an
artifact of optimization theory, and that edge removal can offer a tangible improve-
ment on the performance of real-world networks (see e.g., [7,13,14,16]). In this direc-
tion, Valiant and Roughgarden [17] initiated the study of Braess’s paradox in natural
classes of random networks, and proved that the paradox occurs with high probabil-
ity in dense random Gn,p networks, with p = ω(n−1/2), if each edge e has a linear
latency �e(x) = aex+ be, with ae, be drawn independently from some reasonable dis-
tribution. The subsequent work of Chung and Young [4] extended the result of [17] to
sparse random networks, where p = Ω(lnn/n), i.e., just greater than the connectiv-
ity threshold of Gn,p, assuming that the network has a large number of edges e with
small additive latency terms be. In fact, Chung and Young demonstrated that the crucial
property for Braess’s paradox to emerge is that the subnetwork consisting of the edges
with small additive terms is a good expander (see also [5]). Nevertheless, the proof of
[4,17] is merely existential; it provides no clue on how one can actually find (or even
approximate) the best subnetwork and its equilibrium latency.

Motivation and Contribution. The motivating question for this work is whether in
some interesting settings, where the paradox occurs, we can efficiently compute a set
of edges whose removal significantly improves the equilibrium latency. From a more
technical viewpoint, our work is motivated by the results of [4,17] about the prevalence
of the paradox in random networks, and by the knowledge that in random instances
some hard (in general) problems can actually be tractable.

Departing from [4,17], we adopt a purely algorithmic approach. We focus on the
class of so-called good selfish routing instances, namely instances with the properties
used by [4,17] to demonstrate the occurrence of Braess’s paradox in random networks
with high probability. In fact, one can easily verify that the random instances of [4,17]
are good with high probability. Rather surprisingly, we prove that, in many interesting
cases, we can efficiently approximate the best subnetwork and its equilibrium latency.
What may be even more surprising is that our approximation algorithm is based on the
expansion property of good instances, namely the very same property used by [4,17] to
establish the prevalence of the paradox in good instances! To the best of our knowledge,
our results are the first of theoretical nature which indicate that Braess’s paradox can be
efficiently eliminated in a large class of interesting instances.

Technically, we present essentially an approximation scheme. Given a good instance
and any constant ε > 0, we compute a flow g that is an ε-Nash flow for the subnetwork
consisting of the edges used by it, and has a latency of L(g) ≤ (1 + ε)L∗ + ε, where
L∗ is the equilibrium latency of the best subnetwork (Theorem 1). In fact, g has these
properties with high probability. Our approximation scheme runs in polynomial time
for the most interesting case that the network is relatively sparse and the traffic rate r
is O(poly(ln lnn)), where n is the number of vertices. Specifically, the running time
is polynomial if the good network has average degree O(poly(lnn)), i.e., if pn =
O(poly(lnn)), for random Gn,p networks, and quasipolynomial for average degrees
up to o(n). As for the traffic rate, we emphasize that most work on selfish routing
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and selfish network design problems assumes that r = 1, or at least that r does not
increase with the network’s size (see e.g., [14] and the references therein). So, we can
approximate, in polynomial-time, the best subnetwork for a large class of instances that,
with high probability, include exponentially many s− t paths and s− t paths of length
Θ(n). For such instances, a direct application of [6, Theorem 3] gives an exponential-
time algorithm.

The main idea behind our approximation scheme, and our main technical contribu-
tion, is a polynomial-time approximation-preserving reduction of the best subnetwork
problem for a good network G to a corresponding best subnetwork problem for a 0-
latency simplified network G0, which is a layered network obtained from G if we keep
only s, t and their immediate neighbors, and connect all neighbors of s and t by direct
edges of 0 latency. We first show that the equilibrium latency of the best subnetwork
does not increase when we consider the 0-latency simplified network G0 (Lemma 1).
Although this may sound reasonable, we highlight that decreasing edge latencies to 0
may trigger Braess’s paradox (e.g., starting from the network in Fig. 1.a with l′3(x) = 1,
and decreasing it to l3(x) = 0 is just another way of triggering the paradox). Next, we
employ Althöfer’s Sparsification Lemma [1] (see also [9,10] and [6, Theorem 3]) and
approximate the best subnetwork problem for the 0-latency simplified network.

The final (and crucial) step of our approximation preserving reduction is to start with
the flow-solution to the best subnetwork problem for the 0-latency simplified network,
and extend it to a flow-solution to the best subnetwork problem for the original (good)
instance. To this end, we show how to “simulate” 0-latency edges by low latency paths
in the original good network. Intuitively, this works because due to the expansion prop-
erties and the random latencies of the good network G, the intermediate subnetwork of
G, connecting the neighbors of s to the neighbors of t, essentially behaves as a com-
plete bipartite network with 0-latency edges. This is also the key step in the approach
of [4,17], showing that Braess’s paradox occurs in good networks with high probability
(see [4, Section 2] for a detailed discussion). Hence, one could say that to some ex-
tent, the reason that Braess’s paradox exists in good networks is the very same reason
that the paradox can be efficiently resolved. Though conceptually simple, the full con-
struction is technically involved and requires dealing with the amount of flow through
the edges incident to s and t and their latencies. Our construction employs a careful
grouping-and-matching argument, which works for good networks with high probabil-
ity, see Lemmas 4 and 5.

We highlight that the reduction itself runs in polynomial time. The time consuming
step is the application of [6, Theorem 3] to the 0-latency simplified network. Since
such networks have only polynomially many (and very short) s − t paths, they escape
the hardness result of [15]. The approximability of the best subnetwork for 0-latency
simplified networks is an intriguing open problem arising from our work.

Our result shows that a problem, that is NP-hard to approximate, can be very closely
approximated in random (and random-like) networks. This resembles e.g., the problem
of finding a Hamiltonian path in Erdös-Rényi graphs, where again, existence and con-
struction both work just above the connectivity threshold, see e.g., [2]. However, not all
hard problems are easy when one assumes random inputs (e.g., consider factoring or
the hidden clique problem, for both of which no such results are known in full depth).
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2 Model and Preliminaries

Notation. For an event E in a sample space, P[E] denotes the probability of E hap-
pening. We say that an event E occurs with high probability, if P[E] ≥ 1 − n−α, for
some constant α ≥ 1, where n usually denotes the number of vertices of the network G
to which E refers. We implicitly use the union bound to account for the occurrence of
more than one low probability events.

Instances. A selfish routing instance is a tuple G = (G(V,E), (�e)e∈E , r), where
G(V,E) is an undirected network with a source s and a sink t, �e : R≥0 → R≥0 is
a non-decreasing latency function associated with each edge e, and r > 0 is the traffic
rate. We let P (or PG, whenever the network G is not clear from the context) denote
the (non-empty) set of simple s− t paths in G. For brevity, we usually omit the latency
functions, and refer to a selfish routing instance as (G, r).

We only consider linear latencies �e(x) = aex+ be, with ae, be ≥ 0. We restrict our
attention to instances where the coefficients ae and be are randomly selected from a pair
of distributionsA and B. Following [4,17], we say thatA and B are reasonable if:

– A has bounded range [Amin, Amax] and B has bounded range [0, Bmax], where
Amin > 0 and Amax, Bmax are constants, i.e., they do not depend on r and |V |.

– There is a closed interval IA of positive length, such that for every non-trivial subin-
terval I ′ ⊆ IA, Pa∼A[a ∈ I ′] > 0.

– There is a closed interval IB , 0 ∈ IB , of positive length, such that for every non-
trivial subinterval I ′ ⊆ IB , Pb∼B[b ∈ I ′] > 0. Moreover, for any constant η > 0,
there exists a constant δη > 0, such that Pb∼B[b ≤ η] ≥ δη .

Subnetworks. Given a selfish routing instance (G(V,E), r), any subgraph H(V ′, E′),
V ′ ⊆ V , E′ ⊆ E, s, t ∈ V ′, obtained from G by edge and vertex removal, is a subnet-
work of G. H has the same source s and sink t as G, and the edges of H have the same
latencies as in G. Every instance (H(V ′, E′), r), where H(V ′, E′) is a subnetwork of
G(V,E), is a subinstance of (G(V,E), r).

Flows. Given an instance (G, r), a (feasible) flow f is a non-negative vector indexed by
P such that

∑
q∈P fq = r. For a flow f , let fe =

∑
q:e∈q fq be the amount of flow that

f routes on edge e. Two flows f and g are different if there is an edge e with fe �= ge.
An edge e is used by flow f if fe > 0, and a path q is used by f if mine∈q{fe} > 0.
We often write fq > 0 to denote that a path q is used by f . Given a flow f , the latency
of each edge e is �e(fe), the latency of each path q is �q(f) =

∑
e∈q �e(fe), and the

latency of f is L(f) = maxq:fq>0 �q(f). We sometimes write LG(f) when the network
G is not clear from the context. For an instance (G(V,E), r) and a flow f , we let
Ef = {e ∈ E : fe > 0} be the set of edges used by f , and Gf (V,Ef ) be the
corresponding subnetwork of G.

Nash Flow. A flow f is a Nash (equilibrium) flow, if it routes all traffic on minimum
latency paths. Formally, f is a Nash flow if for every path q with fq > 0, and every path
q′, �q(f) ≤ �q′(f). Therefore, in a Nash flow f , all players incur a common latency
L(f) = minq �q(f) = maxq:fq>0 �q(f) on their paths. A Nash flow f on a network
G(V,E) is a Nash flow on any subnetwork G′(V ′, E′) of G with Ef ⊆ E′.
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Every instance (G, r) admits at least one Nash flow, and the players’ latency is the
same for all Nash flows (see e.g., [14]). Hence, we let L(G, r) be the players’ latency in
some Nash flow of (G, r), and refer to it as the equilibrium latency of (G, r). For linear
latency functions, a Nash flow can be computed efficiently, in strongly polynomial time,
while for strictly increasing latencies, the Nash flow is essentially unique (see e.g., [14]).

ε-Nash flow. The definition of a Nash flow can be naturally generalized to that of an
“almost Nash” flow. Formally, for some ε > 0, a flow f is an ε-Nash flow if for every
path q with fq > 0, and every path q′, �q(f) ≤ �q′(f) + ε.

Best Subnetwork. Braess’s paradox shows that there may be a subinstance (H, r) of
an instance (G, r) with L(H, r) < L(G, r) (see e.g., Fig. 1). The best subnetwork H∗

of (G, r) is a subnetwork of G with the minimum equilibrium latency, i.e., H∗ has
L(H∗, r) ≤ L(H, r) for any subnetwork H of G. In this work, we study the approx-
imability of the Best Subnetwork Equilibrium Latency problem, or BestSubEL in short.
In BestSubEL, we are given an instance (G, r), and seek for the best subnetwork H∗

of (G, r) and its equilibrium latency L(H∗, r).

Good Networks. We restrict our attention to undirected s − t networks G(V,E). We
let n ≡ |V | and m ≡ |E|. For any vertex v, we let Γ (v) = {u ∈ V : {u, v} ∈ E}
denote the set of v’s neighbors in G. Similarly, for any non-empty S ⊆ V , we let
Γ (S) =

⋃
v∈S Γ (v) denote the set of neighbors of the vertices in S, and let G[S] denote

the subnetwork of G induced by S. For convenience, we let Vs ≡ Γ (s), Es ≡ {{s, u} :
u ∈ Vs}, Vt ≡ Γ (t), Et ≡ {{v, t} : v ∈ Vt}, and Vm ≡ V \ ({s, t}∪Vs∪Vt). We also
let ns = |Vs|, nt = |Vt|, n+ = max{ns, nt}, n− = min{ns, nt}, and nm = |Vm|. We
sometimes write V (G), n(G), Vs(G), ns(G), . . ., if G is not clear from the context.

It is convenient to think that the network G has a layered structure consisting of s,
the set of s’s neighbors Vs, an “intermediate” subnetwork connecting the neighbors of
s to the neighbors of t, the set of t’s neighbors Vt, and t. Then, any s − t path starts
at s, visits some u ∈ Vs, proceeds either directly or through some vertices of Vm to
some v ∈ Vt, and finally reaches t. Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the
intermediate subnetwork of G. Depending on the structure of Gm, we say that:

– G is a random Gn,p network if (i) ns and nt follow the binomial distribution with
parameters n and p, and (ii) if any edge {u, v}, with u ∈ Vm∪Vs and v ∈ Vm∪Vt,
exists independently with probability p. Namely, the intermediate network Gm is
an Erdös-Rényi random graph with n − 2 vertices and edge probability p, except
for the fact that there are no edges in G[Vs] and in G[Vt].

– G is internally bipartite if the intermediate network Gm is a bipartite graph with
independent sets Vs and Vt. G is internally complete bipartite if every neighbor of
s is directly connected by an edge to every neighbor of t.

– G is 0-latency simplified if it is internally complete bipartite and every edge e con-
necting a neighbor of s to a neighbor of t has latency function �e(x) = 0.

The 0-latency simplification G0 of a given network G is a 0-latency simplified net-
work obtained from G by replacing G[Vm] with a set of 0-latency edges directly con-
necting every neighbor of s to every neighbor of t. Moreover, we say that a 0-latency
simplified network G is balanced, if |ns − nt| ≤ 2n− .
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Algorithm 1. Approximation Scheme for BestSubEL in Good Networks
Input: Good network G(V,E), rate r > 0, approximation guarantee ε > 0
Output: Subnetwork H of G and ε-Nash flow g in H with L(g) ≤ (1 + ε)L(H∗, r) + ε

1 if L(G, r) < ε, return G and a Nash flow of (G, r) ;
2 create the 0-latency simplification G0 of G ;
3 if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow of (G0, r) ;
4 else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 2 applied with error ε/6 ;
5 let H be the subnetwork and let g be the ε-Nash flow of Lemma 5 starting from H0 and f ;
6 return the subnetwork H and the ε-Nash flow g ;

We say that a network G(V,E) is (n, p, k)-good, for some integer n ≤ |V |, some
probability p ∈ (0, 1), with pn = o(n), and some constant k ≥ 1, if G satisfies that:

1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V , |Γ (v)| ≤ 3np/2.
2. G is an expander graph, namely, for any set S ⊆ V , |Γ (S)| ≥ min{np|S|, n}/2.
3. The edges of G have random reasonable latency functions distributed according to
A× B, and for any constant η > 0, Pb∼B[b ≤ η/ lnn] = ω(1/np).

4. If k > 1, we can compute in polynomial time a partitioning of Vm into k sets
V 1
m, . . . , V k

m, each of cardinality |Vm|/k, such that all the induced subnetworks
G[{s, t} ∪ Vs ∪ V i

m ∪ Vt] are (n/k, p, 1)-good, with a possible violation of the
maximum degree bound by s and t.

If G is a random Gn,p network, with n sufficiently large and p ≥ ck lnn/n, for some
large enough constant c > 1, then G is an (n, p, k)-good network with high probability
(see e.g., [2]), provided that the latency functions satisfy condition (3) above. As for
condition (4), a random partitioning of Vm into k sets of cardinality |Vm|/k satisfies
(4) with high probability. Similarly, the random instances considered in [4] are good
with high probability. Also note that the 0-latency simplification of a good network is
balanced, due to (1) and (2).

3 The Approximation Scheme and Outline of the Analysis

In this section, we describe the main steps of the approximation scheme (see also Al-
gorithm 1), and give an outline of its analysis. We let ε > 0 be the approximation
guarantee, and assume that L(G, r) ≥ ε. Otherwise, any Nash flow of (G, r) suffices.

Algorithm 1 is based on an approximation-preserving reduction of BestSubEL for a
good network G to BestSubEL for the 0-latency simplification G0 of G. The first step
of our approximation-preserving reduction is to show that the equilibrium latency of the
best subnetwork does not increase when we consider the 0-latency simplification G0 of
a network G instead of G itself. Since decreasing the edge latencies (e.g., decreasing
l′3(x) = 1 to l3(x) = 0 in Fig. 1.a) may trigger Braess’s paradox, we need Lemma 1,
in Section 4, and its careful proof to make sure that zeroing out the latency of the
intermediate subnetwork does not cause an abrupt increase in the equilibrium latency.

Next, we focus on the 0-latency simplification G0 of G (step 2 in Alg. 1). We show
that if the traffic rate is large enough, i.e., if r = Ω(n+/ε), the paradox has a marginal
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influence on the equilibrium latency. Thus, any Nash flow of (G0, r) is a (1 + ε)-
approximation of BestSubEL (see Lemma 2 and step 4). If r = O(n+/ε), we use
[6, Theorem 3] and obtain an ε/6-approximation of BestSubEL for (G0, r) (see Theo-
rem 2 and step 4).

We now have a subnetwork H0 and an ε/6-Nash flow f that comprise a good ap-
proximate solution to BestSubEL for the simplified instance (G0, r). The next step of
our approximation-preserving reduction is to extend f to an approximate solution to
BestSubEL for the original instance (G, r). The intuition is that due to the expansion
and the reasonable latencies of G, any collection of 0-latency edges of H0 used by f to
route flow from Vs to Vt can be “simulated” by an appropriate collection of low-latency
paths of the intermediate subnetwork Gm of G. In fact, this observation was the key
step in the approach of [4,17] showing that Braess’s paradox occurs in good networks
with high probability. We first prove this claim for a small part of H0 consisting only
of neighbors of s and neighbors of t with approximately the same latency under f (see
Lemma 4, the proof draws on ideas from [4, Lemma 5]). Then, using a careful latency-
based grouping of the neighbors of s and of the neighbors of t in H0, we extend this
claim to the entire H0 (see Lemma 5). Thus, we obtain a subnetwork H of G and an
ε-Nash flow g in H such that L(g) ≤ (1 + ε)L(H∗, r) + ε (step 5).

We summarize our main result. The proof follows by combining Lemma 1, Theo-
rem 2, and Lemma 5 in the way indicated by Algorithm 1 and the discussion above.

Theorem 1. Let G(V,E) be an (n, p, k)-good network, where k ≥ 1 is a large enough
constant, let r > 0 be any traffic rate, and let H∗ be the best subnetwork of (G, r).

Then, for any ε > 0, Algorithm 1 computes in time n
O(r2A2

max ln(n+)/ε2)
+ poly(|V |), a

flow g and a subnetwork H of G such that with high probability, wrt. the random choice
of the latency functions, g is an ε-Nash flow of (H, r) and has L(g) ≤ (1+ε)L(H∗)+ε.

By the definition of reasonable latencies, Amax is a constant. Also, by Lemma 2, r
affects the running time only if r = O(n+/ε). In fact, previous work on selfish network
design assumes that r = O(1), see e.g., [14]. Thus, if r = O(1) (or more generally, if
r = O(poly(ln lnn))) and pn = O(poly(lnn)), in which case n+ = O(poly(lnn)),
Theorem 1 gives a randomized polynomial-time approximation scheme forBestSubEL
in good networks. Moreover, the running time is quasipolynomial for traffic rates up to
O(poly(lnn)) and average degrees up to o(n), i.e., for the entire range of p in [4,17].
The next sections are devoted to the proofs of Lemmas 1 and 5, and of Theorem 2.

4 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not increase
when we consider the 0-latency simplification G0 of a network G instead of G itself.
We highlight that the following lemma holds not only for good networks, but also for
any network with linear latencies and with the layered structure described in Section 2.

Lemma 1. Let G be any network, let r > 0 be any traffic rate, and let H be the best
subnetwork of (G, r). Then, there is a subnetwork H ′ of the 0-latency simplification of
H (and thus, a subnetwork of G0) with L(H ′, r) ≤ L(H, r).
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Proof sketch. We assume that all the edges of H are used by the equilibrium flow f of
(H, r) (otherwise, we can remove all unused edges from H). The proof is constructive,
and at the conceptual level, proceeds in two steps. For the first step, given the equilib-
rium flow f of the best subnetwork H of G, we construct a simplification H1 of H that
is internally bipartite and has constant latency edges connecting Γ (s) to Γ (t). H1 also
admits f as an equilibrium flow, and thus L(H1, r) = L(H, r). We can also show how
to further simplify H1 so that its intermediate bipartite subnetwork becomes acyclic.

The second part of the proof is to show that we can either remove some of the inter-
mediate edges of H1 or zero their latencies, and obtain a subnetworkH ′ of the 0-latency
simplification of H with L(H ′, r) ≤ L(H, r). To this end, we describe a procedure
where in each step, we either remove some intermediate edge of H1 or zero its latency,
without increasing the latency of the equilibrium flow.

Let us focus on an edge ekl = {uk, vl} connecting a neighbor uk of s to a neighbor vl
of t. By the first part of the proof, the latency function of ekl is a constant bkl > 0. Next,
we attempt to set the latency of ekl to b′kl = 0. We have also to change the equilibrium
flow f to a new flow f ′ that is an equilibrium flow of latency at most L in the modified
network with b′kl = 0. We should be careful when changing f to f ′, since increasing
the flow through {s, uk} and {vl, t} affects the latency of all s− t paths going through
uk and vl and may destroy the equilibrium property (or even increase the equilibrium
latency). In what follows, we let rq be the amount of flow moving from an s − t path
q = (s, ui, vj , t) to the path qkl = (s, uk, vl, t) when we change f to f ′. We note that
rq may be negative, in which case, |rq| units of flow actually move from qkl to q. Thus,
rq’s define a rerouting of f to a new flow f ′, with f ′

q = fq − rq , for any s − t path q
other than qkl, and f ′

kl = fkl +
∑

q rq .
We next show how to compute rq’s so that f ′ is an equilibrium flow of cost at most

L in the modified network (where we attempt to set b′kl = 0). We let P = PH1 \ {qkl}
denote the set of all s− t paths in H1 other than qkl. We let F be the |P| × |P| matrix,
indexed by the paths q ∈ P , where F [q1, q2] =

∑
e∈q1∩q2

ae −
∑

e∈q1∩qkl
ae, and let

r be the vector of rq’s. Then, the q-th component of Fr is equal to �q(f) − �q(f
′). In

the following, we consider two cases depending on whether F is singular or not.
If matrix F is non-singular, the linear system Fr = ε1 has a unique solution rε, for

any ε > 0. Moreover, due to linearity, for any α ≥ 0, the unique solution of the system
Fr = α ε1 is α rε. Therefore, for an appropriately small ε > 0, the linear system
Qε = {Fr = ε1, fq−rq ≥ 0 ∀q ∈ P , fkl+

∑
q rq ≥ 0, �qkl

(f ′) ≤ L+bkl−ε} admits
a unique solution r. We keep increasing ε until one of the inequalities of Qε becomes
tight. If it first becomes rq = fq for some path q = (s, ui, vj , t) ∈ P , we remove the
edge {ui, vj} from H1 and adjust the constant latency of ekl so that �qkl

(f ′) = L − ε.
Then, the flow f ′ is an equilibrium flow of cost L− ε for the resulting network, which
has one edge less than the original network H1. If

∑
q rq < 0 and it first becomes∑

q rq = −fkl, we remove the edge ekl from H1. Then, f ′ is an equilibrium flow
of cost L − ε for the resulting network, which again has one edge less than H1. If∑

q rq > 0 and it first becomes �qkl
(f ′) = L + bkl − ε, we set the constant latency

of the edge ekl to b′kl = 0. In this case, f ′ is an equilibrium flow of cost L − ε for
the resulting network that has one edge of 0 latency more than the initial network H1.
Moreover, we can show that if qkl is disjoint from the paths q ∈ P , the fact that the
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intermediate network H1 is acyclic implies that the matrix F is positive definite, and
thus non-singular. Therefore, if qkl is disjoint from the paths in P ,the procedure above
leads to a decrease in the equilibrium latency, and eventually to setting b′kl = 0.

If F is singular, we can compute rq’s so that f ′ is an equilibrium flow of cost L in
a modified network that includes one edge less than the original network H1. If F is
singular, the homogeneous linear system Fr = 0 admits a nontrivial solution r �= 0.
Moreover, due to linearity, for any α ∈ R, α r is also a solution to Fr = 0. Therefore,
the linear system Q0 = {Fr = 0, fq − rq ≥ 0 ∀q ∈ P , fkl +

∑
q rq ≥ 0} admits a

solution r �= 0 that makes at least one of the inequalities tight. We recall that the q-th
component of Fr is equal to �q(f) − �q(f

′). Therefore, for the flow f ′ obtained from
the particular solution r of Q0, the latency of any path q ∈ P is equal to L. If r is such
that rq = fq for some path q = (s, ui, vj , t) ∈ P , we remove the edge {ui, vj} from
H1 and adjust the constant latency of ekl so that �qkl

(f ′) = L. Then, the flow f ′ is an
equilibrium flow of cost L for the resulting network, which has one edge less than the
original network H1. If r is such that

∑
q rq = −fkl, we remove the edge ekl from H1.

Then, f ′ is an equilibrium flow of cost L for the resulting network, which again has one
edge less than H1.

Each time we apply the procedure above either we decrease the number of edges of
the intermediate network by one or we increase the number of 0-latency edges of the
intermediate network by one, without increasing the latency of the equilibrium flow. So,
by repeatedly applying these steps, we end up with a subnetwork H ′ of the 0-latency
simplification of H with L(H ′, r) ≤ L(H, r). 
�

5 Approximating the Best Subnetwork of Simplified Networks

We proceed to show how to approximate the BestSubEL problem in a balanced 0-
latency simplified network G0 with reasonable latencies. We may always regard G0 as
the 0-latency simplification of a good networkG. We first state two useful lemmas about
the maximum traffic rate r up to which BestSubEL remains interesting, and about the
maximum amount of flow routed on any edge / path in the best subnetwork.

Lemma 2. Let G0 be any 0-latency simplified network, let r > 0, and let H∗
0 be the best

subnetwork of (G0, r). For any ε > 0, if r > Bmaxn+

Aminε
, thenL(G0, r) ≤ (1+ε)L(H∗

0 , r).

Proof. We assume that r > Bmaxn+

Aminε
, let f be a Nash flow of (G0, r), and consider how

f allocates r units of flow to the edges of Es ≡ Es(G0) and to the edges Et ≡ Et(G0).
For simplicity, we let L ≡ L(G0, r) denote the equilibrium latency of G0, and let
As =

∑
e∈Es

1/ae and At =
∑

e∈Et
1/ae.

Since G0 is a 0-latency simplified network and f is a Nash flow of (G0, r), there
are L1, L2 > 0, with L1 + L2 = L, such that all used edges incident to s (resp. to t)
have latency L1 (resp. L2) in the Nash flow f . Since r > Bmaxn+

Amin
, L1, L2 > Bmax

and all edges in Es ∪ Et are used by f . Moreover, by an averaging argument, we have
that there is an edge e ∈ Es with aefe ≤ r/As, and that there is an edge e ∈ Et with
aefe ≤ r/At. Therefore, L1 ≤ (r/As) + Bmax and L2 ≤ (r/At) + Bmax, and thus,
L ≤ r

As
+ r

At
+ 2Bmax.
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On the other hand, if we ignore the additive terms be of the latency functions, the
optimal average latency of the players is r/As + r/At, which implies that L(H∗

0 , r) ≥
r/As + r/At. Therefore, L ≤ L(H∗

0 , r) + 2Bmax. Moreover, since r > Bmaxn+

Aminε
,

As ≤ ns/Amin, and At ≤ nt/Amin, we have that:

L(H∗
0 , r) ≥

r

As
+

r

At
≥ Bmaxns

Aminε

Amin

ns
+

Bmaxnt

Aminε

Amin

nt
≥ 2Bmax/ε

Therefore, 2Bmax ≤ εL(H∗
0 , r), and L ≤ (1 + ε)L(H∗

0 , r). 
�

Lemma 3. Let G0 be a balanced 0-latency simplified network with reasonable laten-
cies, let r > 0, and let f be a Nash flow of the best subnetwork of (G0, r). For any ε > 0,
if Pb∼B[b ≤ ε/4] ≥ δ, for some constant δ > 0, there exists a constant ρ = 24AmaxBmax

δεA2
min

such that with probability at least 1− e−δn−/8, fe ≤ ρ, for all edges e.

Approximating the Best Subnetwork of Simplified Networks. We proceed to derive
an approximation scheme for the best subnetwork of any simplified instance (G0, r).

Theorem 2. Let G0 be a balanced 0-latency simplified network with reasonable laten-
cies, let r > 0, and let H∗

0 be the best subnetwork of (G0, r). Then, for any ε > 0,

we can compute, in time n
O(A2

maxr
2 ln(n+)/ε2)

+ , a flow f and a subnetwork H0 consist-
ing of the edges used by f , such that (i) f is an ε-Nash flow of (H0, r), (ii) L(f) ≤
L(H∗

0 , r) + ε/2, and (iii) there exists a constant ρ > 0, such that fe ≤ ρ+ ε, for all e.

Theorem 2 is a corollary of [6, Theorem 3], since in our case the number of different
s − t paths is at most n2

+ and each path consists of 3 edges. So, in [6, Theorem 3],
we have d1 = 2, d2 = 0, α = Amax, and the error is ε/r. Moreover, we know that
any Nash flow g of (H∗

0 , r) routes ge ≤ ρ units of flow on any edge e, and that in the
exhaustive search step, in the proof of [6, Theorem 3], one of the acceptable flows f has
|ge−fe| ≤ ε, for all edges e (see also [6, Lemma 3]). Thus, there is an acceptable flow f
with fe ≤ ρ+ε, for all edges e. In fact, if among all acceptable flows enumerated in the
proof of [6, Theorem 3], we keep the acceptable flow f that minimizes the maximum
amount flow routed on any edge, we have that fe ≤ ρ+ ε, for all edges e.

6 Extending the Solution to the Good Network

Given a good instance (G, r), we create the 0-latency simplification G0 of G, and using
Theorem 2, we compute a subnetwork H0 and an ε/6-Nash flow f that comprise an
approximate solution to BestSubEL for (G0, r). Next, we show how to extend f to an
approximate solution to BestSubEL for the original instance (G, r). The intuition is
that the 0-latency edges of H0 used by f to route flow from Vs to Vt can be “simulated”
by low-latency paths of Gm. We first formalize this intuition for the subnetwork of G
induced by the neighbors of s with (almost) the same latency Bs and the neighbors of
t with (almost) the same latency Bt, for some Bs, Bt with Bs + Bt ≈ L(f). We may
think of the networks G and H0 in the lemma below as some small parts of the original
network G and of the actual subnetwork H0 of G0. Thus, we obtain the following
lemma, which serves as a building block in the proof of Lemma 5.
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Lemma 4. We assume that G(V,E) is an (n, p, 1)-good network, with a possible vio-
lation of the maximum degree bound by s and t, but with |Vs|, |Vt| ≤ 3knp/2, for some
constant k > 0. Also the latencies of the edges in Es ∪ Et are not random, but there
exist constants Bs, Bt ≥ 0, such that for all e ∈ Es, �e(x) = Bs, and for all e ∈ Et,
�e(x) = Bt. We let r > 0 be any traffic rate, let H0 be any subnetwork of the 0-latency
simplification G0 of G, and let f be any flow of (H0, r). We assume that there exists
a constant ρ′ > 0, such that for all e ∈ E(H0), 0 < fe ≤ ρ′. Then, for any ε1 > 0,
with high probability, wrt. the random choice of the latency functions of G, we can com-
pute in poly(|V |) time a subnetwork G′ of G, with Es(G

′) = Es(H0) and Et(G
′) =

Et(H0), and a flow g of (G′, r) such that (i) ge = fe for all e ∈ Es(G
′) ∪ Et(G

′), (ii)
g is a 7ε1-Nash flow in G′, and (iii) LG′(g) ≤ Bs +Bt + 7ε1.

Proof sketch. For convenience and wlog., we assume that Es(G) = Es(H0) and that
Et(G) = Et(H0), so that we simply write Vs, Vt, Es, and Et from now on. For each
e ∈ Es ∪ Et, we let ge = fe. So, the flow g satisfies (i), by construction.

We compute the extension of g through Gm as an “almost” Nash flow in a modified
version of G, where each edge e ∈ Es ∪ Et has a capacity ge = fe and a constant
latency �e(x) = Bs, if e ∈ Es, and �e(x) = Bt, if e ∈ Et. All other edges e of G have
an infinite capacity and a (randomly chosen) reasonable latency function �e(x).

We let g be the flow of rate r that respects the capacities of the edges in Es ∪Et, and
minimizes Pot(g) =

∑
e∈E

∫ ge
0 �e(x)dx. Such a flow g can be computed in strongly

polynomial time (see e.g., [18]). The subnetwork G′ of G is simply Gg , namely, the
subnetwork that includes only the edges used by g. It could have been that g is not a
Nash flow of (G, r), due to the capacity constraints on the edges of Es ∪ Et. However,
since g is a minimizer of Pot(g), for any u ∈ Vs and v ∈ Vt, and any pair of s− t paths
q, q′ going through u and v, if gq > 0, then �q(g) ≤ �q′(g). Thus, g can be regarded as
a Nash flow for any pair u ∈ Vs and v ∈ Vt connected by g-used paths.

To conclude the proof, we adjust the proof of [4, Lemma 5], and show that for any
s− t path q used by g, �q(g) ≤ Bs+Bt+7ε1. To prove this, we let q = (s, u, . . . , v, t)
be the s − t path used by g that maximizes �q(g). We show the existence of a path
q′ = (s, u, . . . , v, t) in G of latency �q′(g) ≤ Bs + Bt + 7ε1. Therefore, since g is a
minimizer of Pot(g), the latency of the maximum latency g-used path q, and thus the
latency of any other g-used s − t path, is at most Bs + Bt + 7ε1, i.e., g satisfies (iii).
Moreover, since for any s− t path q, �q(g) ≥ Bs+Bt, g is an 7ε1-Nash flow in G′. 
�
Grouping the Neighbors of s and t. Let us now consider the entire network G and
the entire subnetwork H0 of G0. Lemma 4 can be applied only to subsets of edges in
Es(H0) and in Et(H0) that have (almost) the same latency under f . Since H0 does not
need to be internally complete bipartite, there may be neighbors of s (resp. t) connected
to disjoint subsets of Vt (resp. of Vs) in H0, and thus have quite different latency. Hence,
to apply Lemma 4, we partition the neighbors of s and the neighbors of t into classes
V i
s and V j

t according to their latency. For convenience, we let ε2 = ε/6, i.e., f is an ε2-
Nash flow, and L ≡ LH0(f). By Theorem 2, applied with error ε2 = ε/6, there exists a
ρ such that for all e ∈ E(H0), 0 < fe ≤ ρ+ε2. Therefore,L ≤ 2Amax(ρ+ε2)+2Bmax

is bounded by a constant.
We partition the interval [0, L] into κ = �L/ε2� subintervals, where the i-th subinter-

val is Ii = (iε2, (i+1)ε2], i = 0, . . . , κ−1. We partition the vertices of Vs (resp. of Vt)
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that receive positive flow by f into κ classes V i
s (resp. V i

t ), i = 0, . . . , κ− 1. Precisely,
a vertex x ∈ Vs (resp. x ∈ Vt), connected to s (resp. to t) by the edge ex = {s, x}
(resp. ex = {x, t}), is in the class V i

s (resp. in the class V i
t ), if �ex(fex) ∈ Ii. If a

vertex x ∈ Vs (resp. x ∈ Vt) does not receive any flow from f , x is removed from G
and does not belong to any class. Hence, from now on, we assume that all neighbors
of s and t receive positive flow from f , and that V 0

s , . . . V
κ−1
s (resp. V 0

t , . . . , V
κ−1
t ) is

a partitioning of Vs (resp. Vt). In exactly the same way, we partition the edges of Es

(resp. of Et) used by f into k classes Ei
s (resp. Ei

t), i = 0, . . . , κ− 1.
To find out which parts of H0 will be connected through the intermediate subnetwork

of G, using the construction of Lemma 4, we further classify the vertices of V i
s and

V j
t based on the neighbors of t and on the neighbors of s, respectively, to which they

are connected by f -used edges in the subnetwork H0. In particular, a vertex u ∈ V i
s

belongs to the classes V (i,j)
s , for all j, 0 ≤ j ≤ κ− 1, such that there is a vertex v ∈ V j

t

with f{u,v} > 0. Similarly, a vertex v ∈ V j
t belongs to the classes V

(i,j)
t , for all i,

0 ≤ i ≤ κ − 1, such that there is a vertex u ∈ V i
s with f{u,v} > 0. A vertex u ∈ V i

s

(resp. v ∈ V j
t ) may belong to many different classes V (i,j)

s (resp. to V
(i,j)
t ), and that the

class V (i,j)
s is non-empty iff the class V (i,j)

t is non-empty. We let k ≤ κ2 be the number
of pairs (i, j) for which V

(i,j)
s and V

(i,j)
t are non-empty. We note that k is a constant,

i.e., does not depend on |V | and r. We let E(i,j)
s be the set of edges connecting s to the

vertices in V
(i,j)
s and E

(i,j)
t be the set of edges connecting t to the vertices in V

(i,j)
t .

Building the Intermediate Subnetworks of G. The last step is to replace the 0-latency
simplified parts connecting the vertices of each pair of classes V (i,j)

s and V
(i,j)
t in H0

with a subnetwork of Gm. We partition, as in condition (4) in the definition of good
networks, the set Vm of intermediate vertices of G into k subsets, each of cardinality
|Vm|/k, and associate a different such subset V (i,j)

m with any pair of non-empty classes
V

(i,j)
s and V

(i,j)
t . For each pair (i, j) for which the classes V

(i,j)
s and V

(i,j)
t are non-

empty, we consider the induced subnetwork G(i,j) ≡ G[{s, t}∪V (i,j)
s ∪V (i,j)

m ∪V (i,j)
t ],

which is an (n/k, p, 1)-good network, since G is an (n, p, k)-good network. Therefore,

we can apply Lemma 4 to G(i,j), with H
(i,j)
0 ≡ H0[{s, t} ∪ V

(i,j)
s ∪ V

(i,j)
t ] in the

role of H0, the restriction f (i,j) of f to H
(i,j)
0 in the role of the flow f , and ρ′ =

ρ+ ε2. Moreover, we let B(i,j)
s = max

e∈E
(i,j)
s

�e(fe) and B
(i,j)
t = max

e∈E
(i,j)
t

�e(fe)

correspond to Bs and Bt, and introduce constant latencies �′e(x) = B
(i,j)
s for all e ∈

E
(i,j)
s and �′e(x) = B

(i,j)
t for all e ∈ E

(i,j)
t , as required by Lemma 4. Thus, we obtain,

with high probability, a subnetwork H(i,j) of G(i,j) and a flow g(i,j) that routes as much
flow as f (i,j) on all edges of E(i,j)

s ∪ E
(i,j)
t , and satisfies the conclusion of Lemma 4,

if we keep in H(i,j) the constant latencies �′e(x) for all e ∈ E
(i,j)
s ∪E

(i,j)
t .

The final outcome is the union of the subnetworks H(i,j), denoted H (H has the
latency functions of the original instance G), and the union of the flows g(i,j), denoted
g, where the union is taken over all k pairs (i, j) for which the classes V (i,j)

s and V
(i,j)
t

are non-empty. By construction, all edges of H are used by g. Using the properties of
the construction above, we can show that if ε1 = ε/42 and ε2 = ε/6, the flow g is an
ε-Nash flow of (H, r), and satisfies LH(g) ≤ LH0(f) + ε/2. Thus, we obtain:
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Lemma 5. Let any ε > 0, let k = �12(Amax(ρ+ ε) +Bmax)/ε�2, let G(V,E) be an
(n, p, k)-good network, let r > 0, let H0 be any subnetwork of the 0-latency simplifica-
tion of G, and let f be an (ε/6)-Nash flow of (H0, r) for which there exists a constant
ρ′ > 0, such that for all e ∈ E(H0), 0 < fe ≤ ρ′. Then, with high probability, wrt.
the random choice of the latency functions of G, we can compute in poly(|V |) time a
subnetwork H of G and an ε-Nash flow g of (H, r) with LH(g) ≤ LH0(f) + ε/2.
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Abstract. We investigate the reasons that make symmetric partial verification
essentially useless in virtually all domains. Departing from previous work, we
consider any possible (finite or infinite) domain and general symmetric verifica-
tion. We identify a natural property, namely that the correspondence graph of a
symmetric verification M is strongly connected by finite paths along which the
preferences are consistent with the preferences at the endpoints, and prove that
this property is sufficient for the equivalence of truthfulness and M -truthfulness.
In fact, defining appropriate versions of this property, we obtain this result for
deterministic and randomized mechanisms with and without money. Moreover,
we show that a slightly relaxed version of this property is also necessary for the
equivalence of truthfulness and M -truthfulness. Our conditions provide a generic
and convenient way of checking whether truthful implementation can take advan-
tage of any symmetric verification scheme in any domain. Since the simplest case
of symmetric verification is local verification, our results imply, as a special case,
the equivalence of local truthfulness and global truthfulness in the setting without
money. To complete the picture, we consider asymmetric verification, and prove
that a social choice function is M -truthfully implementable by some asymmetric
verification M if and only if f does not admit a cycle of profitable deviations.

1 Introduction

In mechanism design, a principal seeks to implement a social choice function that maps
the private preferences of some strategic agents to a set of possible outcomes. Exploit-
ing their power over the outcome, the agents may lie about their preferences if they find
it profitable. Trying to incentivize truthfulness, the principal may offer payments to (or
collect payments from) the agents or find ways of partially verifying their statements,
thus restricting the false statements available to them. A social choice function is truth-
fully implementable (or implementable, in short) if there is a payment scheme under
which truthtelling becomes a dominant strategy of the agents. Since many social choice
functions are not implementable, a central research direction in mechanism design is

� This research was supported by the project AlgoNow, co-financed by the European Union
(European Social Fund - ESF) and Greek national funds, through the Operational Program
“Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: THALES, investing in knowledge society through the European
Social Fund.

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 202–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Truthfulness Flooded Domains and the Power of Verification 203

to identify sufficient and necessary conditions under which large classes of functions
are truthfully implementable. In this direction, we seek a deeper understanding of the
power of partial verification in mechanism design, as far as truthful implementation is
concerned, a question going back to the work of Green and Laffont [9].

The Model. For the purposes of this work, it is without loss of generality to consider
mechanism design with a single agent, also known as the principal-agent setting (see
e.g., [2,3] for an explanation). In this setting, the principal wants to implement a social
choice function f : D → O, where O is the set of possible outcomes and D is the
domain of agent’s preferences. Formally, D consists of the agent’s types, where each
type x : O → R gives the utility of the agent for each outcome. The agent’s type is
private information. So, based on the agent’s declared type x, the principal computes the
outcome o = f(x). A function f is (truthfully) implementable if for each type x, with
o = f(x), and any other type y, with o′ = f(y), x(o) ≥ x(o′). Then, declaring her real
type x is a dominant strategy of the agent. Otherwise, the agent may misreport a type y
that results in a utility of x(o′) > x(o) under her true type x. This undesirable situation
is usually corrected with a payment scheme p : O → R, that compensates the agent for
telling the truth. Then, a function f is (truthfully) implementable with payments p (or,
in general, implementable with money) if for each type x, with o = f(x), and any other
type y, with o′ = f(y), x(o) + p(o) ≥ x(o′) + p(o′).

Gui, Müller, and Vohra [10] cast this setting in terms of a (possibly infinite) directed
graph G on vertex set D. For each ordered pair of types x and y, G has a directed edge
(x, y). Given the social choice function f , we obtain an edge-weighted version of G,
denoted Gf , where the weight of each edge (x, y) is x(o) − x(o′), with o = f(x) and
o′ = f(y). This corresponds to the gain of the agent if instead of misreporting y, she
reports her true type x. Then, a social choice function f is truthfully implementable if
and only if Gf does not contain any negative edges. Moreover, Rochet’s theorem [14]
implies that a function f is truthfully implementable with money if and only if Gf does
not contain any directed negative cycles (see also [17]).

There are many classical impossibility results stating that natural social choice func-
tions (or large classes of them) are not implementable, even with the use of money (see
e.g., [12]). Virtually all such proofs seem to crucially exploit that the agent can declare
any type in the domain. Hence, Nisan and Ronen [13] suggested that the class of im-
plementable functions could be enriched if we assume partial verification [9], which
restricts the types that the agent can misreport. Formally, we assume a correspondence
function (or simply, a verification ) M : D → 2D such that if the agent’s true type is x,
she can only misreport a type in M(x) ⊆ D. As before, we can cast M as a (possibly
infinite) directed correspondence graph GM on D. For each ordered pair of types x
and y, GM has a directed edge (x, y) if y ∈ M(x). Given the social choice function
f , we obtain the edge-weighted version GM,f of GM by letting the edge weights be as
in Gf . A social choice function f is M -truthfully implementable (resp. with money) if
and only if GM,f does not contain any negative edges (resp. directed negative cycles).

Previous Work. Every function f can be implemented by an appropriately strong ver-
ification scheme combined with payments (see also Section 5). So, the problem now
is to come up with a meaningful verification M , which is either inherent in or natu-
rally enforceable for some interesting domains and allows for a few non-implementable
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functions to be M -truthfully implementable. To this end, previous work has considered
two kinds of verification, namely symmetric and asymmetric verification.

Symmetric verification naturally applies to convex domains (e.g., Combinatorial
Auctions) and to domains with an inherent notion of distance (e.g., Facility Location,
Voting). The idea is that every type x can only declare some type y not far from x. A
typical example is M ε verification where each type x can declare any type y in a ball of
radius ε around x. Another typical example is M swap verification, naturally applicable
to Voting and to ordinal preference domains. In M swap verification, each type x is as a
linear order on O and can declare any type y obtained from x by swapping two adjacent
outcomes. Rather surprisingly, previous work provides strong evidence that symmetric
verification does not give any benefit to the principal, as far as truthful implementation
is concerned. In particular, the strong and elegant result of Archer and Kleinberg [2]
and its extension by Berger, Müller, and Naeemi [5] imply that M ε verification does
not help in convex domains. Formally, the results of [2,5,6] imply that for any convex
domain, truthfulness with money is equivalent with M ε-truthfulness with money. Simi-
larly, Caragiannis, Elkind, Szegedy, and Yu [6] proved that M swap verification does not
help in the domain of Voting.

As far as implementation without money is concerned, the research on the power of
symmetric verification is closely related to the research about sufficient and necessary
conditions under which weaker properties are equivalent to global truthfulness. Even
though the motivation for studying weaker properties may be more general (see e.g.,
[15,2,7,16]), in the absence of money, local truthfulness is essentially a special case
of symmetric verification. In this research agenda, Sato [16] considered M swap veri-
fication (under the name of adjacent manipulation truthfulness) for ordinal preference
domains, and proved that if GMswap is strongly connected by paths satisfying the no-
restoration property, then truthful implementation and M swap-truthful implementation
are equivalent. He also proved that the universal domain, that includes all linear orders
on O, and single-peaked domains have the no-restoration property, and thus, for these
domains, truthful implementation is equivalent to M swap-truthful implementation. In-
dependently, Carroll [7] obtained similar results for convex domains, for the universal
domain, and for single-peaked and single-crossing domains, which also extend to ran-
domized mechanisms. Carroll also gave a necessary condition for the equivalence of
local and global truthfulness in a specific domain with cardinal preferences.

On the other hand, asymmetric verification is “one-sided”. Given a social choice
function f , a typical example of asymmetric verification is when the agent can only
lie either by overstating or by understating her utility. E.g., for Scheduling on related
machines, the machine can only lie by overstating its speed [4], for Combinatorial Auc-
tions, the agent can only underbid on her preferred sets [11], and for Facility Location,
the agent can only understate her distance to the nearest facility [8]. The use of asym-
metric verification has led to strong positive results about the truthful implementation
of natural social choice functions in several important domains (see e.g., [4,11,8] and
the references there in). The intuition is that the mechanism discourages one direction
of lying, while the other direction of lying is forbidden by the verification.

Motivation and Contribution. Our work is motivated by the general observation,
stated explicitly in [6], that even very strict symmetric verification schemes do not
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help in truthful implementation, while strong positive results are possible with simple
asymmetric verification. So, we seek a deeper understanding of the reasons that make
symmetric verification essentially useless in virtually all domains, and some formal
justification behind the success of asymmetric verification.

Departing from previous work, we consider any possible (finite or infinite) domain
D and very general classes of partial verification. To formalize the notions of symmetric
and asymmetric verification, we say that a verification M is symmetric if the presence
of a directed edge (x, y) in GM implies the presence of the reverse edge (y, x), and
asymmetric if GM is an acyclic tournament.

Our main result is a general and unified explanation about the weakness of sym-
metric verification. In Section 3, we identify a natural property, namely that the corre-
spondence graph GM is strongly connected by finite paths along which the preferences
are consistent with the preferences at the endpoints. In fact, we define three versions
of this property depending on whether we consider implementation by deterministic
truthful mechanisms (strict order-preserving property), by deterministic mechanisms
that use payments (strict difference-preserving property), and by randomized truthful-
in-expectation mechanisms (difference-convex property). Despite the slightly different
definitions, the essence of the property is the same, but stronger versions of it are re-
quired as the mechanisms become more powerful. We show that for any (finite or in-
finite) domain D and any symmetric verification M that satisfies the corresponding
version of the property, deterministic / randomized truthful implementation (resp. with
money) is equivalent to deterministic / randomized M -truthful implementation (resp.
with money). In all cases, the proof is simple and elegant, and only exploits an ele-
mentary combinatorial argument on the paths of GM . With this general sufficient con-
dition for the equivalence of truthfulness and M -truthfulness, we simplify, unify, and
strengthen several known results about symmetric verification and local truthfulness
without money. E.g., we obtain, as simple corollaries, the equivalence of truthful and
M ε-truthful implementation for any convex domain (even with money) and for Facility
Location, and the equivalence of truthfulness and M swap-truthfulness for Voting.

In Section 4, we identify necessary conditions for the equivalence of truthfulness
and M -truthfulness, for any symmetric verification M . These are relaxed versions of
the sufficient conditions, and require that the correspondence graph GM is strongly
connected by finite preference preserving paths. Otherwise, we show how to find a sep-
arator of GM , which in turn, leads to the definition of a function that is M -truthfully
implementable, but not implementable. We also observe that the necessary condition is
violated by the domain of 2-Facility Location. To conclude the discussion about sym-
metric verification, we close the small gap between the sufficient and necessary prop-
erties, and present the first known condition that is both sufficient and necessary for the
equivalence of truthful and M -truthful implementation. Overall, our conditions provide
a generic and convenient way of checking whether truthful implementation can take
advantage of any symmetric verification scheme in any domain.

Finally, in Section 5, we consider asymmetric verification, and prove that a social
choice function f is M -truthfully implementable by some asymmetric verification M
if and only if the subgraph of Gf consisting of negative edges is acyclic (Theorem 8).
This result provides strong formal evidence about the power of asymmetric verification,
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since, as we discuss in Section 5, any reasonable social choice function f should not
have a cycle in Gf that entirely consists of negative edges. Moreover, we prove that
given any function f truthfully implementable by payments p, an asymmetric verifica-
tion that truthfully implements f can be directly obtained by p (Proposition 1).

Comparison to Previous Work. The strict order-reserving property, which we employ
as a sufficient condition for deterministic truthful implementation without money, is
similar to the no-restoration property of [16]. However, the results of [16] are restricted
to finite domains with ordinal preferences and to M swap verification. Our results are
far more general, since we manage, in Theorem 1, to extend the equivalence of truthful
and M -truthful implementation, under the strict order-preserving property, to any (even
infinite) domain and to any symmetric verification. Moreover, our necessary property
generalizes and unifies the necessary conditions of both [7,16].

We also note that our results in case of deterministic implementation with money are
not directly comparable to the strong and elegant results about local truthfulness with
money in convex domains (see e.g., [2,1]). For instance, if we restrict Theorem 3 to con-
vex domains and compare it to [2, Theorem 3.8], our result is significantly weaker, since
it starts from a much stronger hypothesis (see also the discussion in Section 3.2). On
the other hand, Theorem 3 is more general, in the sense that it applies to any symmetric
strict difference-preserving verification and to arbitrary (even non-convex) domains.

2 Notation and Preliminaries

The basic model and most of the notation are introduced in Section 1. Next, we discuss
some conventions, give some definitions, and state some useful facts.

Ordinal Preferences. We always assume that each type x is a function from O to R.
However, in case of deterministic mechanisms without money, when the preferences
are ordinal, we only care about the relative order of the outcomes in each type.

Truthful Implementation. A social choice function f : D → O is M -truthfully imple-
mentable if for every type x and any y ∈ M(x), x(f(x)) ≥ x(f(y)). A social choice
function f is M -truthfully implementable with money if there is a payment scheme
p : O → R such that for every type x and any y ∈ M(x), x(f(x)) + p(f(x)) ≥
x(f(y)) + p(f(y)). If there is no verification, i.e., if for all types x, M(x) = D, we
say that f is truthfully implementable and truthfully implementable with money, respec-
tively. We say that truthfulness (resp. with money) is equivalent to M -truthfulness (resp.
with money) if for every function f , f is truthfully implementable (resp. with money)
iff it is M -truthfully implementable (resp. with money). In what follows, we use the
terms mechanism and social choice function interchangeably.

Randomized Mechanisms. A randomized mechanism f : D → Δ(O) maps each
type x to a probability distribution over O. A randomized mechanism is (resp. M -
)universally truthful if it is a probability distribution over deterministic (resp. M -)truth-
ful mechanisms (even with money). For truthfulness-in-expectation, we assume, for
simplicity, that O is finite, and let fo(x) be the probability of the outcome o if the agent
reports x. Then, a randomized mechanism f is (resp. M -)truthful-in-expectation if for
every type x and any y ∈ D (resp. y ∈ M(x)),

∑
o∈O fo(x)x(o) ≥

∑
o∈O fo(y)x(o).
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A randomized mechanism f is (resp. M -)truthful-in-expectation with money if there
are payments p : O → R such that for every x ∈ D and any y ∈ D (resp. y ∈ M(x)),∑

o∈O fo(x)(x(o) + p(o)) ≥
∑

o∈O fo(y)(x(o) + p(o)).

Correspondence Graph. A verification M can be represented by the directed corre-
spondence graph GM = (D, {(x, y) : y ∈ M(x)}). Given a social choice function f ,
we let the edge-weighted graph

GM,f = (D, {(x, y) : y ∈M(x)}, w) , where w(x, y) = x(f(x)) − x(f(y))

A k-cycle (resp. k-path) in GM is a directed cycle (resp. path) consisting of k edges.
We say that an edge (x, y) of GM,f is negative if w(x, y) < 0. We say that a cycle in
GM,f is negative if the total weight of its edges is negative. We let G−

M,f denote the
subgraph of GM,f that consists of all its negative edges. If there is no verification, we
refer to GD,f , G−

D,f as Gf , G−
f . Also, given a graph G, we let V (G) be its vertex set

and E(G) be its edge set.
A social choice function f is M -truthfully implementable iff GM,f does not contain

any negative edges. Furthermore, Rochet [14] proved that a social choice function f is
M -truthfully implementable with money if and only if the correspondence graph GM,f

does not have any finite negative cycles.

Symmetric and Asymmetric Verification. We say that a verification M is symmetric
if GM is symmetric, i.e., for each directed edge (x, y) ∈ E(GM ), (y, x) ∈ E(GM ). We
say that a verification M is asymmetric if GM is an acyclic tournament.

Weak Monotonicity and Cycle Monotonicity. A social choice function f satisfies M -
weak-monotonicity if for every x ∈ D and any y ∈ M(x), x(f(x)) + y(f(y)) ≥
x(f(y)) + y(f(x)). Equivalently, f is M -weakly-monotone iff GM,f does not contain
any negative 2-cycles. A function f satisfies M -cycle-monotonicity if for all k ≥ 1, and
all x1, . . . , xk ∈ D, such that xi+1 ∈ M(xi),

∑k
i=1 xi(f(xi)) ≥

∑k
i=1 xi−1(f(xi)),

where the subscripts are modulo k. Equivalently, f is M -cyclic-monotone iff GM,f

does not contain any finite negative cycles. If there is no verification, we simply say
that f is weakly-monotone and cyclic-monotone, respectively.

Convex Domains. A domain D is convex if for every x, y ∈ D and any λ ∈ [0, 1], the
function z : O→ R, with z(a) = λx(a) + (1− λ)y(a), for each a ∈ O, is also in D.

Strategic Voting. We have k candidates and select one of them based on the preferences
of n agents. Hence, O = {o1, . . . , ok} is the set of candidates, V = {v1, . . . , vn} is the
set of voters, and the type of each voter is a linear order over O.

k-Facility Location. In k-Facility Location, we place k ≥ 1 facilities on the real
line based on the preferences of n agents. The type of each agent i is determined by
xi ∈ R, and the set of outcomes is O = Rk. The utility of agent i from an outcome
(y1, . . . , yk) ∈ O is −minj |xi − yj|. If k = 1, we simply refer to Facility Location.

M ε and M swap Verification. In case of a convex domain or Facility Location, given an
ε > 0, we let M ε(x) = {y ∈ D : ||x− y|| ≤ ε}, for all x, where || · || is the l2 distance
in RO for convex domains and |x − y| for Facility Location. If we have a domain D
where the agent’s types are linear orders on O, for any type x ∈ D, M swap(x) is the set
of all linear orders on O obtained from x by swapping two adjacent outcomes in x.
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3 Sufficient Conditions for Truthful Implementation

Without any assumptions on the domain, symmetric verification is not sufficient for the
equivalence of truthfulness and M -truthfulness. Next, we assume that the correspon-
dence graph GM is symmetric and strongly connected by finite paths along which the
preferences are consistent with the preferences at the endpoints. We prove that this suf-
fices for the equivalence of truthfulness and M -truthfulness, even for infinite domains.

3.1 Deterministic Mechanisms

We start with a sufficient condition for a symmetric verification M (and its correspon-
dence graph) under which any deterministic M -truthful mechanism is also truthful.

Definition 1 (Order-Preserving Path). Given a verification M , an x−y path p in GM

is order-preserving if for all outcomes a, b ∈ O, with x(a) > x(b) and y(a) ≥ y(b), and
for any intermediate type w in p, w(a) > w(b). A x − y path p in GM is strict order-
preserving if for every type w in p, the subpath of p from x to w is order-preserving.

Intuitively, if the endpoints x and y of an order-preserving path p agree that outcome
a is preferable to outcome b, any intermediate type w in p should also agree on this.
Following Definition 1, we say that a verification M is symmetric (resp. strict ) order-
preserving if M is symmetric and for any types x, y ∈ D, there is a finite (resp. strict)
order-preserving x− y path in the correspondence graph GM . Next, we show that:

Theorem 1. Let M be a symmetric strict order-preserving verification. Then, truthful-
ness is equivalent to M -truthfulness.

Proof. If a social function is truthfully implementable, it is also M -truthfully imple-
mentable. For the converse, we use induction on the length of the strict order-preserving
paths in GM . Technically, for sake of contradiction, we assume that there is a function
f that is M -truthfully implementable, but not implementable. Therefore, all edges in
GM,f are non-negative, but there is a negative edge (x, z) ∈ E(Gf ).

Since M is symmetric strict order-preserving, there is a finite strict order-preserving
x− z path p in GM,f . In particular, we let p = (x = v0, v1, v2, . . . , vk = z), and let i,
2 ≤ i ≤ k, be the smallest index such that the edge (x, vi) ∈ E(Gf ) is negative. For
convenience, we let y = vi and w = vi−1. We note that by the definition of i, the edge
(x,w) ∈ E(Gf ) is non-negative, and also since f is M -truthfully implementable, the
edges (w, y), (y, w) ∈ E(GM,f ) are non-negative (see also Fig. 1.i).

For convenience, we let a = f(x), b = f(w), c = f(y) denote the outcome of f
at x, y, and w, respectively. Since the edge (x, y) is negative, a �= c. Moreover, by the
definition of i (and of y), b �= c. By the discussion above, we have that x(c) > x(a) ≥
x(b) and y(c) ≥ y(b). Therefore, since the x − z path is strict order-preserving, and
thus its x− y subpath is order-preserving, we obtain that w(c) > w(b), a contradiction
to the hypothesis that the edge (w, y) ∈ E(GM,f ) is non-negative. Therefore there is
no negative edge in Gf , which implies that f is truthfully implementable. 
�

If D is finite, we can show that for a symmetric verification, the strict order-preserv-
ing property is equivalent to the order-preserving property. Thus, we obtain that:
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x | a
y | c

w | b z | dL

(ii)

x | a

w | b y | c

Fig. 1. (i) The part of Gf considered in the proof of Theorem 1. (ii) The part of Gf considered in
the proof of Theorem 3. The label of each node consists of the type and the outcome of f .

Theorem 2. Let M be a symmetric order-preserving verification in a finite domain D.
Then, truthfulness is equivalent to M -truthfulness.

Applications. Theorems 1 and 2 provide a generic and convenient way of checking
whether truthful implementation can take any advantage of symmetric verification.
E.g., one can verify that for any convex domain D, M ε verification is strict order-
preserving, and that for Strategic Voting, M swap verification is order-preserving. Thus,
we obtain alternative (and very simple) proofs of [6, Theorems 3.1 and 3.3]. Moreover,
our corollary about M swap verification implies the main result of [16]. Similarly, we
can show that for the Facility Location domain, which is non-convex, M ε verification
is strict order-preserving. Thus, for Facility Location, a mechanism is truthful iff it is
M ε-truthful.

3.2 Deterministic Mechanisms with Money

Next, we extend the notion of order-preserving paths to mechanisms with money. Since
utilities are not ordinal anymore, we use the notion of difference-preserving paths,
which takes into account the difference between the utility of different outcomes. For-
mally, given a verification M , an x− y path p in GM is difference-preserving if for any
intermediate type w in p and for all outcomes a, b ∈ O, if x(a)− x(b) �= y(a)− y(b),

– w(a)−w(b) ∈ (min{x(a)− x(b), y(a)− y(b)},max{x(a)− x(b), y(a)− y(b)})
– w(a) − w(b) = x(a) − x(b), if x(a) − x(b) = y(a)− y(b).

As for order-preserving paths, if both endpoints x and y of a difference-preserving
path p prefer a to b, any type w in p should also prefer a to b. Moreover, the strength
of w’s reference for a, i.e., w(a) − w(b), should lie between the strength of x’s and
of y’s preference for a. In fact, the difference-preserving property is a stronger version
of the increasing difference property in [5, Definition 5]. Similarly, an x − y path p in
GM is strict difference-preserving if for every type w in p, the subpath of p from x to w
is also difference-preserving. A verification M is symmetric (resp. strict ) difference-
preserving if M is symmetric and for any x, y ∈ D, there is a finite (resp. strict)
difference-preserving x− y path in GM .

We proceed to show that the symmetric strict difference-preserving property is suf-
ficient for the equivalence of M -truthfulness with money and truthfulness with money.
The proof is based on the equivalence of cycle monotonicity and truthful implementa-
tion with money. As a first step, we employ a proof similar to that of Theorem 1, and
show that under the symmetric strict difference-preserving property, for any function f ,
GM,f does not have any negative 2-cycles iff Gf does not have any negative 2-cycles.
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Lemma 1. Let M be a symmetric strict difference-preserving verification. Then for any
social choice function f , f is M -weakly monotone if and only if f is weakly-monotone.

Using Lemma 1, we next show that under the symmetric strict difference-preserving
property, M -cycle monotonicity is equivalent to cycle monotonicity.

Theorem 3. Let M be a symmetric strict difference-preserving verification. Then for
any social choice function f , f is M -truthfully implementable with money if and only
if f is truthfully implementable with money.

Proof. If f is truthfully implementable with money, it is also M -truthfully imple-
mentable with money. For the converse, we show that if GM,f does not have any neg-
ative cycles, then Gf does not have any negative cycles as well. In what follows, we
assume that Gf does not have any negative 2-cycles, since otherwise, by Lemma 1, f
is not M -weakly monotone, and thus, not truthfully implementable with money.

For sake of contradiction, we assume that Gf includes some negative cycle with
more than 2 (and a finite number of) edges. In particular, we let C = (x, y, z, . . . , x)
be any such cycle. The existence of such a cycle C is guaranteed by Rochet’s theorem.
Moreover, C contains at least one edge (x, y) ∈ E(Gf ) \ E(GM,f ), because C is not
present in GM,f . Since M is a symmetric strict difference-preserving verification, there
is a finite strict difference-preserving x − y path p = (v0 = x, v1, . . . , vk = y). For
convenience, we let w = vk−1 be the last node before y in p, let a = f(x), b = f(w),
c = f(y), and d = f(z) be the outcome of f at x, w, y, and z, respectively, and let L
be the total length of the z − x path used by C (see also Fig. 1.ii).

Since the cycle C is negative, x(a)−x(c)+y(c)−y(d)+L < 0. Moreover, since Gf

does not contain any negative 2-cycles, x(c)− x(b) ≤ y(c)− y(b). Otherwise, since w
belongs to a difference-preservingx−y path, we would have that y(c)−y(b) < w(c)−
w(b), which implies that the 2-cycle (w, y, w) is negative. Hence, since w belongs to a
difference-preserving x− y path, x(c)− x(b) ≤ w(c)− w(b). Therefore,

x(a)− x(b) +w(b)−w(c) + y(c)− y(d) +L ≤ x(a)− x(c) + y(c)− y(d) +L < 0

So, we have that the cycle C1 = (x,w = vk−1, y, . . . , z) is also negative.
Since p is strict difference-preserving, the path p′ = (x = v0, v1, . . . , vk−1 = w)

is also difference-preserving. Therefore, using the same argument, we can prove that
the cycle C2 = (x, vk−2, vk−1, y, . . . , z) is also negative. Repeating the same process
k − 1 times, we obtain that the cycle Ck−1 = (x = v0, v1, . . . , vk−1, y, . . . , z) is also
negative. However, all the edges (vi, vi+1), i = 0, . . . , k − 1, of the strict difference-
preserving x− y path p belong to GM . Hence, the edge (x, y) ∈ E(Gf ) \E(GM,f ) in
C is replaced by k edges of E(GM,f ) in Ck−1. Therefore, the negative cycle Ck−1 has
one edge not in E(GM,f ) less than the original negative cycle C. Repeating the same
process for every edge of C not in E(GM,f ), we obtain a negative cycle C′ with all
edges in E(GM,f ). This is a contradiction, since it implies that f is not M -truthfully
implementable with money. 
�

Since M ε verification is symmetric and strict difference-preserving for any convex
domain, Theorem 3 implies that for convex domains, M ε-truthful implementation with
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money is equivalent to truthful implementation with money. This result is also a corol-
lary of [2, Theorem 3.8], but here we obtain it through a completely different approach.
In particular, Archer and Kleinberg [2] proved that if there is no “local” negative cycle
C in Gf , where “local” means that C can fit in a small area of the convex domain D,
then Gf does not contain any negative cycles, and thus, f is truthfully implementable
with money. On the other hand, we prove here that if Gf does not contain any negative
cycles consisting of “local” edges, then Gf does not contain any negative cycles. So,
in our case, the hypothesis is much stronger, since it excludes the existence of negative
cycles that consist of “local” edges, but may cover an arbitrarily large area of the con-
vex domain D. In this sense, if we restrict Theorem 3 to convex domains, our result is
different in nature and weaker than [2, Theorem 3.8]. Nevertheless, Theorem 3 is quite
more general, in the sense that it applies to any symmetric strict difference-preserving
verification and to arbitrary (even non-convex) domains.

3.3 Randomized Truthful-in-Expectation Mechanisms

A general condition is sufficient and/or necessary for the equivalence between universal
truthfulness and M -universal truthfulness in randomized mechanisms, iff it is sufficient
and/or necessary for the equivalence between truthfulness and M -truthfulness in deter-
ministic mechanisms. Hence, all the results of Sections 3.1, 3.2, and 4 directly apply to
randomized universally-truthful mechanisms (also with money).

A similar, but more interesting, correspondence holds for the case of randomized
truthful-in-expectation mechanisms. For simplicity, we assume here that the set of out-
comes O = {o1, . . . , om} is finite. With each type x : O �→ R, we associate a new type
X : Δ(O) �→ R, such that for each probability distribution q over outcomes, the utility
X(q) is the expected utility of x wrt. q. Formally, X(q) =

∑m
i=1 qix(oi). We let D′ be

the set of these new types. By definition, there is an one-to-one correspondence between
types in D and types in D′. Hence, a social choice function f : D → Δ(O) corresponds
to a (deterministic) social choice function f ′ : D′ → Δ(O). Moreover, (resp. given a
verification M ) f is (resp. M -)truthful-in-expectation iff f ′ is (resp. M -)truthful.

As before, we seek a general condition under which truthfulness-in-expectation is
equivalent to M -truthfulness-in-expectation. For each type X ∈ D′, corresponding
to type x ∈ D, we define M ′(X) = {Y ∈ D′ : y ∈ M(x)}. Now, the results of
Sections 3.1, 3.2, and 4 directly apply to the new domain D′ with verification M ′. We
note that if M is symmetric, then M ′ is symmetric as well. Hence, for a result that
directly applies to the original verification M and domain D, we need a property of the
paths in GM that guarantees that the corresponding paths in GM ′ are order-preserving.

An x−y path p in GM is difference-convex if for any typew in p, there is a λ ∈ (0, 1),
such that for all a, b ∈ O, w(a) − w(b) = λ(x(a) − x(b)) + (1 − λ)(y(a) − y(b)) .
Similarly, an x− y path p in GM is strict difference-convex if for every type w in p, the
subpath of p from x to w is also difference-convex.A verificationM is called symmetric
(resp. strict ) difference-convex if M is symmetric and for any x, y ∈ D, there is a
finite (resp. strict) difference-convexx−y path in GM . For truthfulness-in-expectation,
we quantify the utility of each type x for each outcome. Hence, the difference-convex
property is a stronger version of the difference-preserving property, which in turn, is a
stronger version of the order-preserving property.
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Lemma 2. If an x− y path p in GM is (resp. strict) difference-convex, then the corre-
sponding X − Y path p′ in GM ′ is (resp. strict) difference-preserving, and thus, (resp.
strict) order-preserving.

Although the difference-convex property seems quite strong, a slight deviation from
it results in paths in GM ′ that are not difference-preserving. In this sense, the difference-
convex property and Lemma 2 are tight.

By the discussion above, Lemma 2, Theorem 1, and Theorem 3 imply that:

Theorem 4. Let M be a symmetric strict difference-convex verification. Then, truthful-
ness-in-expectation (resp. with money) is equivalent to M -truthfulness-in-expectation
(resp. with money).

4 Necessary Conditions for Truthful Implementation

Next, we study relaxed versions of the sufficient conditions in Section 3, and show that
they are necessary conditions for the equivalence of truthfulness and M -truthfulness.

Deterministic Mechanisms. Given an outcome a ∈ O, we say that an x − y path p
in GM is a-preserving if for all outcomes b ∈ O, with x(a) > x(b) and y(a) ≥ y(b),
and for any intermediate type w in p, w(a) > w(b). Namely, if the endpoints x and y
of p agree that a is preferable to b, any intermediate type w in p should also prefer a
to b. A verification M is called symmetric outcome-preserving if M is symmetric and
for all types x, y ∈ D and all outcomes a ∈ O, there is a finite a-preserving x − y
path p in GM . Though quite close to each other, the order-preserving property implies
the outcome-preserving property, but not vice versa. Specifically, an a-preserving path
p may not be order-preserving, because the relative preference order of some outcomes,
other than a, may change in the intermediate nodes of p.

Theorem 5. Let M be a symmetric verification that is not outcome-preserving. Then,
there exists a function g which is M -truthfully implementable, but not implementable.

Proof. Since M is not outcome-preserving, there exists a pair of types x, y ∈ D and
an outcome a ∈ O, such that any finite x − y path in GM violates the a-preserving
property. Thus, all x−y paths in GM consist of at least 2 edges (a single edge is trivially
order-preserving). Then, we construct a certificate that M is not outcome-preserving,
which is a separator of x and y in GM , and based on this, we define a function g that is
M -truthfully implementable, but not truthfully implementable.

For every finite x− y path p in GM , we let tp denote the first intermediate type in p
and op denote an outcome, such that x(a) > x(op) ∧ y(a) ≥ y(op) ∧ tp(op) ≥ tp(a).
Namely, for every finite x−y path p, tp and op provide a certificate that p violates the a-
preserving property. We let Oxy = {op ∈ O : p is a finite x− y path} be the set of out-
comes in these certificates, and let Cxy = {z ∈ D \ {y} : ∃b ∈ Oxy with z(b) ≥ z(a)}
be a set of types that can be used as certificates along with the outcomes in Oxy . For
convenience, we simply use C instead of Cxy . The crucial observation is that for every
finite x− y path p in GM , tp ∈ C, and thus, C is a separator of x and y in GM .
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Let A be the set of types in the connected component1 that contains x, obtained from
GM after we remove C, and let B = D \ (A ∪ C). Since y �∈ C, by definition, and for
every finite x− y path p, tp ∈ C, y is in B. We consider the following function:

g(z) =

{
argmaxb∈Oxy{z(b)} z ∈ A ∪ C
a z ∈ B

By the definition ofC, every type inA∪B prefers a to any outcome in Oxy . However,
by the definition of A and B, no type z ∈ A has a neighbor in B, since otherwise, we
could find a finite path from x to Gy

M . Therefore, for any z ∈ A, all z’s neighbors GM

are in A ∪ C, and thus g(z) is z’s best outcome in its GM neighborhood. Similarly,
every type z ∈ C prefers any type in Oxy to a, and every type z ∈ B prefers a to any
outcome in Oxy , by the definition of C. Hence, g is M -truthfully implementable. On
the other hand, g is not truthfully implementable, because x prefers a to any outcome
in Oxy , and thus has an incentive to misreport y, if we do not have any verification. 
�

Theorem 5 provides a convenient way of checking whether truthful implementation
cannot take any advantage of symmetric verification. E.g., we can show that for the
domain of 2-Facility Location, M ε verification is not outcome-preserving, and thus,
there are such social choice functions that become truthful with M ε verification.

Deterministic Mechanisms with Money. We obtain here a necessary condition for the
equivalence of weak and M -weak monotonicity. Given a verification M and a, b ∈ O,
an x− y path p in GM , with x(a)− x(b) �= y(a)− y(b), is difference (a, b)-preserving
if for any type w in p, w(a) − w(b) ∈ (min{x(a) − x(b), y(a) − y(b)},max{x(a) −
x(b), y(a)−y(b)}). A verification M is symmetric difference outcome-preserving if M
is symmetric and for any types x, y ∈ D and all outcomes a, b ∈ O, there is a finite
difference (a, b)-preserving x − y path p in GM . As before, the difference-preserving
property implies the difference outcome-preserving property, but not vice versa. By a
proof similar to that of Theorem 5, we can show that:

Theorem 6. Let M be a symmetric verification which is not difference outcome-pre-
serving. Then, there is a social choice function g which is M -weakly monotone, but not
weakly monotone.

Sufficient and Necessary Condition. Closing the small gap between the order-preserv-
ing and outcome-preserving properties, we present a condition that is both sufficient and
necessary for the equivalence of truthful and M -truthful implementation. Given a so-
cial choice function f , a x − y path p = (x = v0, v1, . . . , vk, vk+1 = y) in GM is
f -preserving if for any type vi, 1 ≤ i ≤ k + 1 in p, and for all outcomes a ∈ O, with
x(f(vi)) > x(a) and vi(f(vi)) ≥ vi(a), vi−1(f(vi)) > vi−1(a). A verification M
is symmetric function-preserving if M is symmetric and for any M -truthfully imple-
mentable function f and all types x, y ∈ D, there is a finite f -preserving x − y path in
GM . Using the techniques in the proofs of Theorems 1 and 5, we can show that:

Theorem 7. Let M be a symmetric verification. Then, truthful implementation is equiv-
alent to M -truthful implementation if and only if M is function-preserving.

1 If D is finite, we use the standard graph-theoretic definition of connected components. If D is
infinite, A includes x and all types w ∈ D reachable from x through a finite path.
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5 On the Power of Asymmetric Verification

Intuitively, one should expect that asymmetric verification is powerful due to require-
ment that the correspondence graph should be acyclic. In fact, if we consider any asym-
metric verification M , since GM does not have any negative cycles, Rochet’s theorem
implies that any social choice function f is M -truthfully implementable with money.
We next show a natural characterization of the social choice functions that can be M -
truthfully implemented (without money), for some asymmetric verification M .

Theorem 8. Let f be any social choice function. There is an asymmetric verification
M such that f is M -truthfully implementable iff G−

f is a directed acyclic graph.

Proof. Let M be an asymmetric verification that truthfully implements f . Hence, GM

is an acyclic tournament and GM,f does not contain any any edges of G−
f . Therefore, if

we arrange the vertices of Gf on the line according to the (unique) topological ordering
of GM,f , all edges ofGf not included in GM,f are directed from right to left. Therefore,
the edges of G−

f cannot form a cycle. For the converse, let f be a social choice function

with an acyclic G−
f . We consider a topological ordering of G−

f and remove any edge

of Gf directed from left to right. This removes all edges of G−
f and leaves an acyclic

subgraph G′
f , since all its edges are directed from right to left. Moreover, for every pair

of types x, y, we remove one of the edges (x, y) and (y, x). Hence, G′
f is an acyclic

tournament without any negative edges. Therefore, f is M -truthfully implementable
for the asymmetric verification M corresponding to G′

f . 
�

Reasonable social choice functions should have an acyclic G−
f . This is true for all

functions maximizing the social welfare and all functions truthfully implementable with
money. Although one may construct examples of functions f whereG−

f contains cycles,
such functions (and such cycles) are hardly natural. For instance, a 2-cycle (x, y, x) in
G−

f indicates that type x prefers outcome f(y) to f(x), while type y prefers outcome
f(x) to f(y). But then, one may change f to f ′, with f ′(x) = f(y), f ′(y) = f(x),
and f ′(z) = f(z) for any other type z. Thus, one eliminates the cycle (x, y, x) and the
social welfare is strictly greater using f ′ allocation.

We can extend the construction in the proof of Theorem 8 to a universal asym-
metric verification, which can truthfully implement any social choice function with
acyclic G−

f . Applying this, we can show that in the Facility Location domain, the func-
tion Fmax(x) = (minx + maxx)/2, that minimizes the maximum distance of the
agents to the facility, can be truthfully implemented with verification Mmax(xi) = {y :
|y − Fmax(x−i)| ≤ |xi − Fmax(x−i)|}. Similarly, we can show that in the domain of
Strategic Voting, Plurality can be truthfully implemented by an asymmetric verification
where the voters are not allowed to misreport a higher preference for the winner of
the election. Moreover, we can show that Borda Count can be truthfully implemented
by an asymmetric verification where the voters are not allowed to misreport either a
higher preference for the winner of the election or a lower preference for some of the
remaining candidates.

Asymmetric Verification and Payments. The absence of negative cycles in Gf implies
the absence of cycles in G−

f . Thus, Theorem 8, combined with Rochet’s theorem, shows
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that for any function f truthfully implementable with money, there is an asymmetric
verification M that truthfully implements f . Extending the proof of Theorem 8, can
can show that such an asymmetric verification M can be directly obtained from any
payment scheme that implements f .

Proposition 1. Let f be a social choice function truthfully implementable by payments
p : D �→ R. Then, removing all edges (x, y) ∈ E(Gf ) with p(f(x)) > p(f(y)) results
in an asymmetric verification M that truthfully implements f (without money).
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Abstract. We study a problem that generalizes the fair allocation of
indivisible goods. The input is a matroid and a set of agents. Each agent
has his own utility for every element of the matroid. Our goal is to build
a base of the matroid and provide worst case guarantees on the additive
utilities of the agents. These utilities are private, an assumption that is
commonly made for the fair division of divisible resources, Since the use
of an algorithm is not appropriate in this context, we resort to protocols,
like in cake cutting problems. Our contribution is a protocol where the
agents can interact and build a base of the matroid. If there are up to 8
agents, we show how everyone can ensure that his worst case utility for
the resulting base is the same as those given by Markakis and Psomas
[18] for the fair allocation of indivisible goods, based on the guarantees
of Demko and Hill [8].

1 Introduction

We study a problem defined on a matroid M and a set N of n agents. The
agents have non-negative and additive utilities for the subsets of elements of
M. The aim is to find a single base B of M and provide some guarantees on
the agents’ utility for B. Our problem is a generalization of the allocation of
indivisible goods. Dealing with matroids – a classical structure in combinatorial
optimization – allows to cover applications whose feasibility constraints are more
complex. Let us give a concrete example.

Example 1. A department of computer science is composed of n teams which
attend a common seminar. The seminar consists of m fixed dates and one has to
select m speakers out of a pool of candidates. The candidates have preliminarily
given their availabilities for the m dates. Each team has its own interest for
the candidates but the order by which the talks are given does not matter. A
solution is a subset of speakers, under the constraint that a feasible assignment
(one available speaker per date) exists. The head of the department, who is in
charge of the program of the seminar, needs to find a feasible solution. To be
fair, he also has to take the interest of all teams into account.
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JCJC-0066-01.

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 216–229, 2013.
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Matroids are defined in Section 3 and the matroid structure of Example 1 is
clarified in Section 4. Beforehand, let us situate our work. The allocation of scarce
resources (e.g. water, bandwidth, grants) is a recurrent problem. A challenge is
to propose methods which lead to fair and efficient solutions. The distinction
between divisible and indivisible goods is typically made. Another important
information is about agents’ utilities: are they publicly known or private?

Though a large body of literature is devoted to the case of divisible goods
[23,6,7,19,25,20], the computer science community is paying more attention to
the allocation of indivisible resources [16,3,9,2,14,1,18,5,13], especially when there
is no monetary compensation. In case of public utilities, an algorithm can de-
termine the allocation. In case of private utilities, the agents may take part of
the determination of the final solution via a protocol. Our work is related to the
indivisible goods. Let us review its connections with previous results.

In [8], Demko and Hill consider the problem of allocating indivisible goods
with additive utilities. They show the existence of an allocation with an explicit
guarantee on the utility of the poorest agent. This guarantee is Vn(α) where n
is the number of agents and α is defined as the largest utility for a single good,
over the whole set of agents in a normalized instance. Vn is a nonincreasing
function of α. Markakis and Psomas revisit the work of Demko and Hill with
a constructive approach [18]. They propose a polynomial time algorithm called
Allocate. It outputs an allocation such that agent i’s utility is at least Vn(αi)
where αi is agent i’s maximum utility for a single good. Since Vn is nonincreasing
and α ≥ αi, it follows that Vn(αi) ≥ Vn(α).

The allocation of indivisible goods can be extended to the determination of a
single base of a matroid. This is done in [10] where a new guarantee Wn(αi) is
provided for every agent i such that αi is agent i’s maximum utility for an ele-
ment of the matroid in a normalized instance. Wn is a non-monotonic function
satisfying Wn(x) ≥ Vn(x) for all x and n. This guarantee is obtained via a poly-
nomial time algorithm called Threshold which is an extension of Allocate.

Both Allocate and Threshold work with publicly known utilities. In this
article, we study private utilities in the generalized context of matroids. So, we
borrow ideas from cake cutting problems. We propose a deterministic protocol
for finding a base of a matroid such that every agent’s utility is at least Vn(αi).
In this context, αi is agent i’s largest utility for a single element of the ma-
troid. Up to our knowledge, there is no previous work on protocols for matroids.
Moreover, protocols for indivisible goods under private utilities are not numer-
ous (see chapter 2 of [7] for Knaster’s procedure of sealed bids and Lucas’ method
of markers). The result that is closest to our work is a randomized protocol for
two agents inspired by the famous Divide-and-Choose procedure [3].

The paper is organized as follows. Related works are presented in Section 2. A
formal presentation of our model is given in Section 3. Section 4 contains some
general properties on matroids. Our first contribution consists of two protocols
for 2 and 3 agents presented in Sections 5 and 6, respectively. They introduce a
general protocol given in Section 7 which works for up to 8 agents. We conclude
this article with a discussion. Due to space limitations, some proofs are omitted.
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2 Related Work

The problem of fairly allocating a given set of goods to a given setN = {1, . . . , n}
of agents has received a lot of attention in economic theory (social science in par-
ticular) and, more recently, in theoretical computer science. The problem admits
numerous variants and one can list some of them by answering to the following
questions. Are the goods divisible or indivisible? Are the agents’ utilities (for
portions or subsets of the goods) public or private? Which notion of fairness is
cast? The last question is itself a vast topic of research [7,19,25].

The representation and the manipulation of agents’ utility functions for every
possible portion of the goods can be a barrier. To avoid this, the community has
mainly concentrated on additive utilities.

Let us introduce some notations for the rest of this section: S denotes the
entire set of goods, Si refers to the share of an agent i ∈ N , (Si)i∈N is an alloca-
tion (profile of disjoint shares) and ui(Si) is agent i’s (non-negative) utility for
Si. We also assume that ui(S) is normalized to 1, and ui(S

′
i) ≤ ui(Si) whenever

Si contains S
′
i.

The allocation of divisible resources, under private utilities of the agents, is
commonly known as the cake cutting problem. Divide-and-Choose (a.k.a Cut-
and-Choose), a long known protocol, achieves envy-freeness for the case of two
agents. Envy-freeness is reached once ui(Si) ≥ ui(Sj) for every pair of agents
i, j. Proportionality is less demanding than envy-freeness since it requires that
ui(Si) ≥ ui(S)/n = 1/n. Historically, proportional protocols for n ≥ 3 agents
exist since the 1940’s [23]. However, the first envy-free protocol for any number
of agents dates back to 1995 [6].

The interest for the problem when S consists of m ≥ n indivisible items,
and no monetary compensation is possible, is more recent. Let us first briefly
review the case of public and additive utilities. By additive it is meant that
ui(Si) =

∑
j∈Si

ui(j) where ui(j) is a convenient abbreviation of ui({j}). Thus,
an agent’s utility for any bundle of items can be derived from his utilities for
the single items. In this context, one can mention the contribution of Lipton
et al., [16]. Since no envy-free allocation is guaranteed to exist in the indivis-
ible setting (proportional allocations are also not guaranteed), they seek for
minimum-envy allocations. Unfortunately, for any constant c, there can be no
2m

c

-approximation algorithm unless P=NP. However, the problem is tractable
for the minimization of the envy-ratio maxi,i′∈N×N{1, ui(Si)/ui(Si′)}.

An important body of research deals with the design of polynomial approx-
imation algorithms for the maximization of the poorest agent’s utility. This
optimization challenge is known as the Max-Min allocation or the Santa Claus
problem [3,9,2,14,1,24].

Bezáková and Dani give a 1/(m− n+ 1)-approximation algorithm and show
that no ρ-approximation algorithm with ρ > 0.5 is likely to exist [3]. Golovin [9]
provides an algorithm whose solution guarantees a utility of OPT/k to at least
�(1 − 1/k)n� agents, for any given k ∈ Z+, where OPT is the optimal value of
the problem. A Ω(1/

√
n)-approximation is also given for a subcase called “Big

goods/Small goods”: small goods have utility in {0, 1} and big goods have utility
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in {0, x} for some x > 1. Bansal and Sviridenko [2] study a restricted case in
which ui({j}) ∈ {0, pj} and provide an algorithm with an approximation fac-
tor of Ω(log log logn/ log logn). Khot and Ponnuswami [14] and Asadpour and
Saberi [1] provide approximation algorithms for the general Santa Claus problem
with ratios (2n − 1)−1 and Ω

(
1/

(√
n log3 n

))
, respectively. If the agents have

homogeneous utilities for the items then Woeginger’s polynomial-time approxi-
mation scheme can be used [24].

Though focused on the utility of the poorest agent, the approach of Demko
and Hill [8] differs from the Santa Claus problem. The goal is to give an absolute
value tn ∈ [0, 1] such that an allocation (Si)i∈N satisfying ∀i ∈ N, ui(Si) ≥ tn
exists in any case. An immediate answer would be tn = 0 if one thinks of the
case of two agents both having a utility of 1 for an item i� and a null utility
for any other item i �= i�: there must be one of these agents who does not
receive i� and thus tn = 0. Besides n, Demko and Hill’s approach comprises
a parameter α in its input, that is the maximum utility an agent can have
for a single item (the instance is normalized, so ui(S) = 1 for every agent i).
We have α = maxi,j∈N×S ui(j) in general and α = 1 in the previous example
with two single-minded agents. Demko and Hill give a nonincreasing function
Vn : [0, 1]→ [0, 1/n] (see Definition 1) and prove that tn ≥ Vn(α).

Definition 1. [12,18] Given any integer n ≥ 2, let Vn : [0, 1] → [0, n−1] be the
unique nonincreasing function satisfying Vn(x) = 1/n for x = 0, whereas for

x ∈
(
0, 1

n−1

]
: Vn(x) =

{
1− p(n− 1)x, x ∈ I(n, p)

p
(p+1)n−1 , x ∈ NI(n, p)

for some integer p ≥ 1,

where I(n, p) =
[

p+1
p((p+1)n−1) ,

1
pn−1

]
, NI(n, p) =

(
1

(p+1)n−1 ,
p+1

p((p+1)n−1)

)
and

Vn(x) = 0 for x ∈
(

1
n−1 , 1

]
. We add to the definition V1(x) = 1 for all x ∈ [0, 1].

x

Vn(x)

11
2

1
3

1
2

1
3

1
5

2
5

1
5

2
3

0

n = 2
n = 3

Fig. 1. Vn for n = 2 and n = 3

It is noteworthy that, within the class of nonincreasing functions, Vn is shown
to be the best lower bound for tn [8]. Thus, tn is equal to Vn in I(n, p) for every
integer p ≥ 1, i.e. within every interval where Vn is decreasing.
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Since only n and α are retained, Demko and Hill’s approach is partially
oblivious of the instance and tn may be much lower than the optimal value
of the Santa Claus problem. This explains the apparent paradox of having a
0.5-inapproximability result for the Santa Claus problem and the possibility to
build, in polynomial time, an allocation (Si)i∈N satisfying ui(Si) ≥ Vn(α) for
all i ∈ N . Indeed, Markakis and Psomas [18] have recently proposed a polyno-
mial algorithm, called allocate, which returns a solution (Si)i∈N satisfying
∀i ∈ N, ui(Si) ≥ Vn(αi). Here, αi is agent i’s maximum utility for a single item
(in a normalized instance) and so α = maxi∈N αi. Since Vn is nonincreasing,
Vn(αi) ≥ Vn(α) for all i ∈ N . In other words, allocate guarantees Vn(α) for
everyone and possibly more if not the poorest.

Very recently, a non-monotone function Wn satisfying Wn(x) ≥ Vn(x) for all
x ∈ [0, 1] and mini∈N Wn(αi) ≤ tn has been proposed [10]. The new function Wn

applies on a matroid problem which generalizes the problem of allocating indi-
visible goods. A guarantee of Wn(αi) is obtained via a deterministic algorithm
called threshold which is an extension of allocate.

allocate and threshold deal with public utilities because their input com-
prises the agents’ utilities. The problem of allocating m indivisible items under
private and additive utilities has been investigated by Bezáková and Dani for two
agents [3]. They revisit Divide-and-Choose and propose a randomized version in
which the utility of the poorest agent is at least 1/2 in expectation. In fact,
Bezáková and Dani resort to randomization because, as previously mentioned,
the worst case utility of an agent is 0 if α is put aside (Vn(x) = 0 when x ≥ 1

n−1 ).
The problem of extending the protocol to a larger number of agents is posed by
Bezáková and Dani as a future work. Up to our knowledge, existing protocols are
not directly comparable to our work. Knaster’s procedure of sealed bids makes
monetary compensations. Lucas’ method of markers relies on a strong linearity
assumption saying that every player can equally divide the items in contiguous
bundles if they are placed on a line.

3 The Model

This article deals with matroids which are well known structures in combinatorial
optimization [15]. A matroid M = (X, F) is a finite set of elements X and a
collection F of subsets of X satisfying the following properties:

(i) ∅ ∈ F ,
(ii) if F2 ⊆ F1 and F1 ∈ F then F2 ∈ F ,
(iii) for every F1, F2 ∈ F where |F1| < |F2|, ∃ e ∈ F2\F1 such that F1∪{e} ∈ F .

Every element of F that is inclusion-wise maximal is called a base. Moreover,
without loss of generality, we assume that ∀e ∈ X , {e} ∈ F . More details on
matroids are given in Section 4.

The input of our problem is a matroid M = (X, F) and a set of agents
N = {1, ..., n}. The output is a single base B of F that is shared by the agents.
Each agent i ∈ N has a non-negative utility ui(e) for every element e ∈ X .
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The utility functions of the agents are additive, i.e. ui(X
′) =

∑
e∈X′ ui(e) for

all X ′ ⊆ X and i ∈ N . These utility functions are also private, so the resulting
base is not constructed directly. Instead, B is built by the agents via a protocol.

The resulting base B can be decomposed in n disjoint subsets B1, . . . , Bn such
that for all i ∈ N , Bi is the contribution of agent i. A worst case analysis being
conducted, we can suppose that the utility of any agent for B is reduced to his
utility for his contribution. Indeed ui(B) = ui(Bi) + ui(B \Bi) ≥ ui(Bi).

Besides its correctness, the protocol should be fair, i.e. offering a guarantee
on the utility of every agent. Following the approach of Demko and Hill [8] and
Markakis and Psomas [18], the guarantee of agent i depends on αi, which is
defined as agent i’s maximum utility for a single element.

Let OPTi(M) be the value of a base that maximizes ui for i ∈ N . We as-
sume, without loss of generality, that after a possible rescaling, the instance
is normalized so that OPTi(M) = 1 for all i ∈ N . Thus, αi is defined as

αi = max
e∈X

ui(e)
OPTi(M) = max

e∈X
ui(e) for every agent i ∈ N .

Our contribution is a deterministic protocol for up to 8 agents. We prove that
the agents can enjoy the guarantee given in [18], that is Vn(αi), ∀i ∈ N . We also
elaborate a strategy that agents can adopt if they want to meet the aforemen-
tioned guarantees. These strategies are based on polynomial time algorithms.

4 Matroid Properties

In a matroidM = (X, F), the elements of F and 2X \F are called independent
sets and dependent sets, respectively. The bases of a matroid are its inclusion-wise
maximal independent sets. All bases of a matroid M have the same cardinality
r(M), defined as the rank of M. The set of bases of M is denoted by B.

Matroid theory has significantly contributed to the understanding of some
important combinatorial structures. The forests of a multigraph is a typical ex-
ample of a matroid, called the graphic matroid. The bases are the spanning trees
if the graph is connected. Another example is the partition matroid where the
set of elements X is partitioned into k disjoint sets X1, . . . , Xk for some integer
k ≥ 1. Given non-negative integers bi (i = 1, ..., k), the sets F ⊆ X satisfying
|F ∩Xi| ≤ bi form a matroid. Notably, allocating a set ofm indivisible items to n
agents can be seen as a partition matroid. Build m sets Xi = {i1, i2, . . . , in} and
let bi = 1 for i ∈ [m]. Taking ik means allocating item i to agent k. We also cite
the uniform matroid which is formed by all subsets of length at most k elements
for some integer k ≥ 1. The uniform matroid can model some multi-winner
election problems [21,17,22]. Last example is the transversal matroid defined by
m (not necessarily disjoint) sets X1, . . . , Xm, subsets of a ground set X and
F = {T ∈ 2X : T is a partial transversal of X} where a partial transversal is a
set T ⊆ X such that an injective map Φ : T → [m] satisfying t ∈ XΦ(t) exists.
Example 1 given in Introduction can be modeled as a transversal matroid such
that X is the set of candidates and Xi is the set of available candidates during
date i for all i = 1, ...,m.

Since we work on a general matroid, our results apply to all these problems.
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In the presence of a non-negative weight function w : X → IR+, we use the
convenient shorthand notation w(X ′) =

∑
x∈X′ w(x) for all X ′ ⊆ X . A weighted

matroid is a matroid where each element e has a weight w(e) ≥ 0 and we denote
it by M = (X,F , w).

Given a weighted matroid M = (X,F , w), a classical optimization problem
consists in computing a base B ∈ B that maximizes w(B). This problem is solved
by the famous polynomial time Greedy algorithm described for example in [15].
The maximum weight of a base and the subset of bases which are maximal for
w are denoted by OPTw(M) and B∗

w, respectively. We assume, without loss
of generality, that after a possible rescaling, the instance is normalized so that
OPTw(M) = 1.

The time complexity of matroid algorithms depends on the difficulty of testing
if a set F ∈ F . We always assume that this test is made in O(1) time.

Given a matroid M = (X, F) and a subset X ′ ⊂ X , if X ′ ∈ F then the
contraction ofM by X ′, denoted byM/X ′, is the structure (X \X ′, F ′) where
F ′ = {F ⊆ X \X ′ : F ∪X ′ ∈ F}. It is well known that M/X ′ is a matroid.

Every matroid satisfies the multiple exchange property [11]: Let A and B be
bases of a matroid M, and let {A1, . . . , An} be a partition of A. Then there
exists a partition {B1, . . . , Bn} of B such that A\Ai ∪ Bi, 1 ≤ i ≤ n are all
bases of M. This result is existential but the construction of {B1, . . . , Bn} can
be done in polynomial time [4].

Let us give some general lemmas that are used later.

Lemma 1. Let M = (X,F , w) be a weighted matroid. Given a maximum weight
base A∗ ∈ B∗

w and a partition {A1, . . . , An} of another base A, there exists a
partition {A∗

1, . . . , A
∗
n} of A∗ satisfying min

i∈[n]
w(A∗

i ) ≥ min
i∈[n]

w(Ai).

Lemma 2. Let A be a base of a weighted matroid M = (X,F , w) partitioned
into {A1, . . . , An} such that n ≥ 1. There exists a permutation σ of {1, . . . , n}
such that for all i = 1, . . . , n, OPTw

(
M/

(
∪j≤iAσ(j)

))
≥ n−i

n OPTw(M). More-
over, the permutation σ can be built in O(n2|X | ln |X |) time.

Lemma 3. Let S be an independent set of a weighted matroid M = (X,F , w)
such that OPTw(M) ≥ ρ0 and OPTw(M/S) < ρ1 ≤ ρ0. Then for every base T
of M/S, OPTw(M/T ) ≥ ρ0 − ρ1.

Lemma 4. Given two integers n, k such that n ≥ 2 and n > k ≥ 1, and a real
x ∈ I(n, p) ∪NI(n, p) where p ≥ 1 is an integer, we have that

1. k
nVk

(
n
kx

)
≥ Vn(x),

2. k
nVk

(
n
kx

)
≥ k+1

n Vk+1(
n

k+1x).

5 A Protocol for Two Agents

Divide-and-Choose (a.k.a. Cut-and-Choose) is a well known envy-free protocol
for two agents on a divisible resource. One agent divides the resource into what
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Protocol 1. Divide-and-Choose

Data: M = (X, F), Agents 1 and 2.
1 Agent 1 computes a base A ∈ B and a partition {A1, A2} of A.
2 Agent 2 chooses one part Ai ∈ {A1, A2} and gives it to Agent 1. Then, Agent 2

completes Ai by adding his own part B3−i such that Ai ∪ B3−i is a base of M.

he believes are equal halves, and the other agent chooses the half he prefers. We
propose in Protocol 1 a similar protocol which deals with matroids.

Agent 1 is called the divider and let us see how he can guarantee to himself a
utility of V2(α1) with the use of polynomial algorithms. Agent 1 computes a base
A that he partitions in two parts A1 and A2 and his contribution is one of them.
Thus, his utility is at least min{u1(A1), u1(A2)}. Let A� be a base that maximizes
u1, obtained by applying Greedy [15]. We have u1(A

�) = 1 by the normaliza-
tion hypothesis. Using Lemma 1 with n = 2 and w = u1, there exists a partition
{A�

1, A
�
2} of A� such that min{u1(A

�
1), u1(A

�
2)} ≥ min{u1(A1), u1(A2)} for every

bases A. So, the divider never loses by partitioning A� in {A�
1, A

�
2}. Once A� is

computed, one can use Allocate [18] on the following input: the elements of A�

and two fictitious agents, both having u1 as utility function for the items. The re-
sult is a bi-partition ofA� into {A�

1, A
�
2} such that min{u1(A

�
1), u1(A

�
2)} ≥ V2(α1)

because Agent 1’s largest utility for an element of A� is α1. Since Allocate

and Greedy are polynomial, the divider can guarantee to himself a utility of
V2(α1) in polynomial time.

Agent 2 is called the chooser and he has in hand the partition {A1, A2} com-
municated by the divider. Let us see how he can guarantee to himself a utility
of 1

2 ≥ V2(α2) with the use of polynomial algorithms. Let B� be a base that
maximizes u2. By the multiple exchange property, there exists a partition of B�

into B�
1 and B�

2 such that A1∪B�
2 and A2∪B�

1 are two bases ofM. We have that
u2(B

�) = u2(B
�
1 ) + u2(B

�
2 ) = 1 by the normalization hypothesis. Use Greedy

to complete A1 and A2 into the bases A1∪B2 and A2∪B1 ofM, respectively. B2

and B�
2 are both bases ofM/A1 but B2 is optimal for the matroidM/A1. We get

that u2(B2) ≥ u2(B
�
2 ) and also u2(B1) ≥ u2(B

�
1 ) with similar arguments. Thus,

max{u2(B1), u2(B2)} ≥ max{u2(B
�
1 ), u2(B

�
2 )} ≥ 1

2 (u2(B
�
1) + u2(B

�
2)) =

1
2 .

Proposition 1. Using Protocol 1, Agents 1 and 2 can guarantee to themselves
V2(α1) and 1

2 = 1
2V1(2α2) ≥ V2(α2), respectively.

6 A Protocol for Three Agents

When there is a third agent, the protocol described in Protocol 2 is more in-
volved: the chooser should ask the third agent before realizing any action.

Again, Agent 1 is called the divider and he can guarantee to himself a
utility of V3(α1) with polynomial algorithms. At Step 1 of the protocol, it
suffices to build a base A that maximizes u1 with Greedy and cut it in 3
parts with Allocate. Three disjoint sets {A1, A2, A3} are obtained, such that
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Protocol 2. Divide-Ask-and-Choose

Data: M = (X, F), Agents 1, 2 and 3.
1 Agent 1 computes a base A that he partitions into {A1, A2, A3}.
2 Agent 2 chooses Ai for some i ∈ {1, 2, 3} and proposes to Agent 3 to give this

part to Agent 1.
3 Agent 3 agrees: Ai is the contribution of Agent 1. Apply Divide-and-Choose

on M/Ai such that Agent 2 is the divider and Agent 3 the chooser.
4 Agent 3 refuses: Apply Divide-and-Choose on M/Ai such that Agent 1 is the

divider and Agent 2 the chooser. Let F be the contribution of Agents 1 and 2.
Agent 3 completes F by adding his own part.

min{u1(A1), u1(A2), u1(A3)} ≥ V3(α1) and A1∪A2∪A3 is a base ofM. At Step
4 of Protocol 2, Agent 1 is the divider on the contracted matroidM/Ai and he
can submit {A1, A2, A3}\{Ai}. By construction, Agent 1’s utility is still V3(α1).

Let us focus on Agent 2. At Step 2 of the protocol, we suppose that Agent
2 chooses i ∈ {1, 2, 3} such that OPT2 (M/Ai) ≥ 2

3OPT2(M) = 2
3 . Using

Lemma 2, i exists and can be obtained in polynomial time. At Step 3 of the
protocol, Agent 2 has to apply Divide-and-Choose on M/Ai as a divider.
The revised parameter in this contracted matroid is denoted by α̃2 and α̃2 ≤
α2/OPT2 (M/Ai) ≤ 3α2/2 by hypothesis. Agent 2 can compute a base B of
M/Ai satisfying u2(B) = OPT2 (M/Ai) with Greedy. He can use Allo-

cate in order to partition B into {B1, B2} such that min{u2(B1), u2(B2)} ≥
V2(α̃2)OPT2 (M/Ai) ≥ 2

3V2(α̃2). Since either B1 or B2 belongs to the final
base, Agent 2’s utility is at least 2

3V2(α̃2). Using the facts that V2 is non-
increasing, α̃2 ≤ 3α2/2 and item 1 of Lemma 4 with n = 3 and k = 2,
we get that 2

3V2(α̃2) ≥ 2
3V2

(
3
2α2

)
≥ V3(α2); so, Agent 2’s utility is at least

2
3V2

(
3
2α2

)
≥ V3(α2). At the fourth step of the protocol, Agent 2 has to ap-

ply Divide-and-Choose (Protocol 1) on M/Ai as a chooser. We know from
the analysis of divide-and-choose that the chooser’s utility is at least the
utility of a maximum base, divided by 2. Hence, Agent 2’s utility is at least
1
2OPT2 (M/Ai) ≥ 1

2
2
3 = 1

3 by hypothesis. In all, Agent 2 can guarantee to
himself a utility of min

{
2
3V2

(
3
2α2

)
, 1
3

}
= 2

3V2

(
3
2α2

)
by item 2 of Lemma 4.

For Agent 3, suppose that he agrees to give Ai to Agent 1 if and only if
OPT3 (M/Ai) ≥ 2

3 (we explain why in Assumption 1). At Step 3 of the pro-
tocol, Agent 3 applies Divide-and-Choose on M/Ai as a chooser. Again, the
chooser’s utility is at least the utility of a maximum base, divided by 2. So in this
case, the utility of Agent 3 is at least 1

2OPT3 (M/Ai) ≥ 1
2
2
3 = 1

3 = 1
3V1(3α3) by

hypothesis. Note that 1
3V1(3α3) ≥ V3(α3) by item 1 of Lemma 4. At Step 4 of

the protocol, Agent 3 disagreed to give Ai to Agent 1, so OPT3 (M/Ai) <
2
3 by

hypothesis. Agent 3 has to complete F , a base of M/Ai communicated by the
other agents, with F3 such that F ∪F3 is a base ofM. F ∪Ai is a base ofM and
using Lemma 3, we know that OPT3 (M/F ) ≥ OPT3 (M) − OPT3 (M/Ai) ≥
1− 2

3 = 1
3 . Thus, the completion of F with Greedy leads to a set F3 valued at

least 1
3 by Agent 3.
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Proposition 2. Using Protocol 2, Agents 1, 2 and 3 can guarantee to themselves
V3(α1),

2
3V2

(
3
2α2

)
≥ V3(α2) and 1

3 = 1
3V1(3α3) ≥ V3(α3), respectively.

7 A Protocol for n ≤ 8 Agents

We present a protocol for n ≤ 8 agents in Protocol 3, which is a generalization of
Protocols 1 and 2. The high level idea is the following: A first agent, called the
divider and denoted by i1, finds a base and partitions it into n parts. A second
agent, called the pivot and denoted by i2, determines an ordering (permutation)
σ of the n parts. Next, the protocol is to find a k ∈ [n] such that the k first parts
σ(1), ..., σ(k) or the n − k last parts σ(k + 1), ..., σ(n) are shared by k or n− k
agents, respectively. This gives a partial solution which is completed into a base.
A recursive call of the protocol arranges a sharing of the complement by n − k
or k agents, respectively.

We note that if we make a recursive call on a subset of agents S ⊆ N such that
the previous divider i1 is in S, then there is no need to choose a different agent
as the divider. We can also keep the shares A1, . . . , An that i1 has previously
built. Moreover, making a recursive call on the protocol for one agent (Steps 4
and 26 of Protocol 3) is similar to use Algorithm 4 (Divide) which describes the
task of the divider because this unique agent has just to find a base of a matroid
which is directly given by Divide.

Let us give an example on the application of Protocol 3. Consider a matroid
M = (X,F), a set of agents N = {1, ..., 8} such that i1 = 1 is the divider and
i2 = 2 is the pivot or the agent who builds σ (see Level 1 on Figure 2). Suppose
that at Step 6, we find N0 = N , N1 = {3, 4, 5, 6}, N2 = {3, 7}, N3 = {3, 4} and
N4 = {5, 6, 7, 8}. We stop at N4 because |Nk| < n − k − 2 for k = 1, 2, 3 and
|N4| ≥ n−4−2 = 2, so k0 = 4. We move on Step 12 since |N4| = 4 > n−4−1 = 3
and we conclude that J1 = {2, 7, 5, 6}. Then, in Step 14, the agents of J1 have
to apply Protocol 3 to share the matroid M/(∪j≤4Aσ(j)) where agent 2 is the
divider and they obtain BJ1 (see Level 2 on Figure 2). We do not impose that
Agent 2 is the divider, we just need to choose an agent from J1. Now, we move
on Step 18 because N3 � N4. We get p = 2 and we move on Step 24 because
|N2\N4| �= |N3\N4|. Then, i3 = 3 and the part of Agent 3 is a base Bi3 of the
matroidM/(∪j≤k0−1Aσ(j) ∪BJ1) as given in Step 26 (see Level 3). Aσ(3) is the
part of Agent 1 and the agents of N\(J1 ∪ {i1, i3}) = {4, 8} have to share the
matroid M/(BJ1 ∪Bi3 ∪ Aσ(3)) (see Level 4).

We first prove that Protocol 3 is well defined, i.e. a return instruction is
reached in any case and the algorithm terminates.

Lemma 5. If n = |N | ≤ 8 then Protocol 3 is well defined.

7.1 The Divider’s Point of View

We assume that Agent i1 ∈ N is the divider and let us see how he can guarantee
a utility of Vn(αi1 ) to himself.
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Protocol 3. Protocol
Data: a matroid M = (X, F), a set N = {1, . . . , n} of n ≥ 1 agents, a divider

i1 ∈ N who is (if possible) the same as in the previous call, n parts
{A1, · · · , An} partitioned by the divider i1.

Result: a base of M.
1 if n = 1 then assign part A1 to agent i1 and return A1.
2 pick any i2∈N \{i1} (the pivot), then i2 renames the n parts {A1, ..., An} (he

produces a permutation σ of N) such that ∀k ∈ {1, . . . , n−2}, agent i2 agrees to
share the matroid M/(∪j≤kAσ(j)) with n−k−1 other agents.

3 if n = 2 then
4 assign part Aσ(1) to agent i1 and return Aσ(1)∪Divide(M/Aσ(1), i2, 1).
5 else
6 N0←N and for k=1, . . . , n−2, let Nk⊆N \{i1, i2} be the set of agents who

agree to share the matroid M/(∪j≤kAσ(j)) with n−k−1 other agents.
7 k0 ← min{k ≥ 1 : |Nk| ≥ n− k − 2}.
8 if |Nk0 | ≤ n− k0 − 1 then
9 if |Nk0 | = n− k0 − 2 then J0 ← Nk0 ∪ {i1, i2} else J0 ← Nk0 ∪ {i2}.

10 BJ0 ← Protocol(M/(∪j≤k0Aσ(j)), J0, i1 if i1 ∈ J0 and i2 otherwise,
{Aσ(j), k0 + 1 ≤ j ≤ n} if i1 ∈ J0 and Divide(M/(∪j≤k0Aσ(j)), i2,
n− k0) otherwise).

11 return BJ0∪ Protocol(M/BJ0 , N \ J0, i1 if i1 ∈ N\J0 and any
i′1 ∈ N\J0 otherwise, {Aσ(j), j ≤ k0} if i1 ∈ N \ J0 and
Divide(M/BJ0 , i

′
1, k0) otherwise).

12 else
13 Choose a set J1 of n− k0 agents as follows: J1 = {i2} at the beginning,

next add new agents from Nk0 ∩Nk0−1, next add new agents from
Nk0 ∩Nk0−2, and so on until Nk0 ∩N0.

14 BJ1 ← Protocol(M/(∪j≤k0Aσ(j)), J1, i2, Divide(M/(∪j≤k0Aσ(j)),
i2, n− k0)).

15 if Nk0−1 ⊆ Nk0 then
16 assign part Aσ(k0) to agent i1.
17 return BJ1 ∪ Aσ(k0)∪ Protocol(M/(BJ1 ∪ Aσ(k0)), N \(J1∪{i1}),

i′1∈N \(J1∪{i1}), Divide(M/(BJ1∪Aσ(k0)), i
′
1, |N \(J1∪{i1})|)).

18 else
19 p ← |Nk0−1 \Nk0 |.
20 if |Nk0−p \Nk0 | = |Nk0−1 \Nk0 | then
21 J2 ← Nk0−p \Nk0 .
22 BJ2 ← Protocol(M/(∪j≤k0−pAσ(j) ∪BJ1), J2, any i′1 ∈ J2,

Divide(M/(∪j≤k0−pAσ(j) ∪BJ1), i
′
1, |J2|)).

23 return BJ1 ∪BJ2∪ Protocol(M/(BJ1 ∪ BJ2),
N \ (J1 ∪ J2), i1, {Aσ(j), j ≤ k0 − p)}).

24 else
25 let i3 ∈ Nk0−1 and if possible i3 ∈ Nk0−2.
26 Bi3 ← Divide(M/(∪j≤k0−1Aσ(j) ∪BJ1), i3, 1).
27 assign part Aσ(k0−1) to agent i1.
28 return BJ1∪Bi3∪Aσ(k0−1)∪ Protocol(M/(BJ1∪Bi3∪Aσ(k0−1)),

N \ (J1 ∪ {i3, i1}), any i′1 ∈ N \ (J1 ∪ {i3, i1}),
Divide(M/(BJ1 ∪Bi3 ∪Aσ(k0−1)), i

′
1, |N \ (J1 ∪ {i3, i1})|)).
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Level 1 Aσ(1) ... Aσ(k0−p) ... Aσ(k0)
... Aσ(n)

Level 2 Aσ(1) ... Aσ(4−p) ... Aσ(4) BJ1

Level 3 Aσ(1) ... Aσ(4−2) Aσ(4−1) Bi3 BJ1

Level 4 B\(BJ1 ∪Bi3 ∪Aσ(3)) Aσ(3) Bi3 BJ1

Fig. 2. Example of an execution of Protocol 3

The divider is asked to produce a base A and a partition of it into n parts
A1, . . . , An. The protocol is such that the contribution of i1 is one of these parts.
Therefore, it is in his interest to maximize mini∈N ui1(Ai). Lemma 1 states
that Agent i1 may choose a base A∗ maximum for ui1 because there exists a
partition A∗

1, . . . , A
∗
n of A∗ satisfying mini∈N ui1(A

∗
i ) ≥ mini∈N ui1(Ai). The

base A∗ can be constructed in polynomial time with Greedy and we know that
ui1(A

∗) = 1 by the normalization assumption. Let β be agent i1’s maximum
utility for an element of A∗, i.e. β = maxe∈A∗ ui1(e). By construction of A∗,
β = αi1 since an element of maximum weight is always taken at first byGreedy.
Using Allocate, one can find a partition of A∗ satisfying mini∈N ui1(A

∗
i ) ≥

Vn(αi1 )ui1(A
∗) = Vn(αi1 ).

Proposition 3. Using Protocol 3, Agent i1 (the divider) can guarantee to him-
self Vn(αi1) in polynomial time.

To summarize, the way the divider can initially guarantee to himself Vn(αi1)
is described in Algorithm 4.

Algorithm 4. Divide

Data: A weighted matroid M = (X, F , ui), Agent i ∈ N , an integer n ≥ 1.
1 Agent i computes an optimal base A of the matroid M by applying Greedy.
2 Normalize the weights of A i.e. ui(e) ← ui(e)/ui(A) for all e ∈ A.
3 Agent i partitions A into n parts {A1, ..., An} by applying Allocate such that

the elements are those of A and there are n fictitious agents, all of them have
the same utility ui.

4 return {A1, ..., An}

7.2 The Non-dividers’ Points of View for n ≥ 3 Agents

In the protocol, each non-divider i ∈ N\{i1} is asked if he agrees to share M
contracted on some parts given by the divider. To show how a non-divider can
obtain a certain guarantee on his utility, we make the following assumption.

Assumption 1. Given S ⊂ N , Agent i agrees to share a base of M/(∪j∈SAσ(j))

with n− |S| − 1 other agents if OPTi

(
M/(∪j∈SAσ(j))

)
≥ n−|S|

n OPTi(M).
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Observation 1. If Agent i disagrees then he must agree to share a base of
M/(∪j∈N\SAσ(j)) with |S| − 1 other agents. Indeed, one can use Lemma 3 to

show that OPTi

(
M/(∪j∈N\SAσ(j))

)
≥ |S|

n OPTi(M).

The protocol is such that n−k agents shareM in which k parts of the divider
are contracted. A justification of Assumption 1 is that every non-divider makes
a rough estimation of his utility for the resulting base. This rough estimation
is to ensure a utility of 1/n in case of an even cut of the best base (from the
non-divider’s viewpoint) of the contracted matroid.

After finding the appropriate set J of agents for sharingM/(∪j∈SAσ(j)), next
lemma shows that every agent of J satisfies Assumption 1 in Protocol 3.

Lemma 6. If n ≤ 8 then at each recursive call of Protocol 3, a set J of agents

and an independent set BJ ∈ F such that OPTj(M/BJ) ≥ |J|
n OPTj(M) for all

j ∈ J \ {i1} are found.

We suppose that B = {B1, . . . , Bn} is the final base returned by Protocol 3
where Bi is the contribution of agent i ∈ N . When n ≤ 8, Protocol 3 gives a
guarantee at least as good as the guarantee of Allocate [18] but Protocol 3
works with matroids (a generalization of the allocation of indivisible goods) and
it copes with private utilities (as opposed, Allocate deals with public utilities).

Theorem 1. If n ≤ 8, then Protocol 3 applied to M = (X, F), N = {1, . . . , n},
a divider i1 ∈ N and {A1, ..., An} = Divide(M, i1, n), returns a base B =
{B1, ..., Bn} such that ∀i ∈ N, ui(Bi) ≥ Vn(αi).

8 Discussion

The protocol presented in this paper is valid for n ≤ 8 agents. We managed to
produce a protocol for n = 9 and n = 10 agents but the number of cases to check
has grown rapidly and we were unable to write a concise version of the protocol
and its analysis. However, we conjecture that a protocol exists for any number
of agents n.

We note that we work with Hill’s function Vn whereas a slightly better guar-
antee, through a new function Wn, was recently proposed, especially as Wn is
valid for matroids [10]. This is due to the non-monotonicity of Wn and we need
a monotonicity argument in the proof of Theorem 1.
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1 Introduction

Comparative statics is a well established research field where one analyzes how
changes in parameters of a strategic game affect the resulting equilibria. Exam-
ples of such parameter changes include tax/subsidy changes or production cost
shifts in oligopoly models.

While classic comparative statics is mainly concerned with qualitative ap-
proaches (e.g., deciding whether a marginal parameter change improves or hurts
equilibrium profits or welfare), our approach is to capture the maximum possible
effect that the change of a parameter – shift of the inverse demand function in
our case – can have. This worst-case approach exhibits both

1. significance: are changes in a given parameter worth considering?
2. robustness: how sensitive is the game to changes of a parameter?

Significance is a crucial motivation of both the analysis of an effect and discus-
sion of whether it can be put to use (à la ‘should a new tax be introduced?’).
Robustness on the other hand is important when there is uncertainty about the
values of parameters and when parameters change over time. To address these
issues, we propose a quantitative approach.

We apply our quantitative approach to the multimarket oligopoly model in-
troduced by Bulow, Geanakoplos and Klemperer [1]. They investigated how
”changes in one market have ramifications in a second market” and discovered
that a positive price shock in a firm’s monopoly market can have a negative
effect on the firm’s profit by influencing competitors’ strategies in a different
market, cf. Section VII in [1]. Motivated by a counterintuitive example with two
firms where a positive price shock reduced the monopolist’s profit by 0.76%,
they introduced the classification of markets in terms of strategic substitutes
and strategic complements.1 Our paper is about rigorously quantifying profit
effects induced by price shocks in multimarket Cournot oligopolies.

� This research was supported by the Deutsche Forschungsgemeinschaft within the
research training group ‘Methods for Discrete Structures’ (GRK 1408).

1 In a market with strategic substitutes, more aggressive play by a firm leads to less
aggressive play of the competitors on that market; with strategic complements, more
aggressive play results in more aggressive play of the competitors.

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 230–231, 2013.
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2 Our Results

We exactly quantify the worst-case profit reduction for the case of two markets
with affine price functions and firms with convex cost technologies. We show
that the worst case loss of the monopoly firm is at most 25% no matter how
many firms compete on the second market. In particular we show for the setting
of the example in [1] involving only one additional firm on the second market
that the worst case loss in profit is bounded by 6.25%.

We prove this result by first establishing some basic characteristics of equilib-
ria before and after a price shock, e.g. uniqueness of equilibria and monotonicity
of quantities. Given these characteristics, we subsequently obtain a set of worst
case instances by iteratively restricting the cost and price functions. In par-
ticular, we show that the monopolist’s profit loss is maximized by two factors:
competitors behave most aggressively when they have linear cost functions (lead-
ing to maximal strategic substitution), while in contrast for the monopolist a
non-linear cost function simulating hard production capacities is worst case. As
a byproduct of our analysis, we exactly quantify the magnitude of strategic sub-
stitution for any market model where competitors have linear cost functions and
prices are affine.

A question dual to the above question is: How much can a firm gain from a
negative price shock in its monopoly market? Our results imply that this gain
is at most 33%.

We complement our bounds by concrete examples of markets where these
bounds are attained.

Example Application. Profit gains from negative price shocks can occur in inter-
national trade, as noted by Bulow et al. [1, Sec. VI (C)]. Consider two markets
located in separate countries with convex cost technologies, one of which is a
monopoly market for firm a. A tax change in the country of the monopolist can
be considered a price shock. A government may decide to increase domestic taxes
in order to increase firm a’s profitability in the foreign market. Our results imply
that this positive effect can be significant as it may increase the profitability by
up to 33% of current profits.

A full version of this paper is available at http://arxiv.org/abs/1307.5617.
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Abstract. We study the Price of Anarchy (PoA) of the competitive cascade game
following the framework proposed by Goyal and Kearns in [11]. Our main insight
is that a reduction to a Linear Threshold Model in a time-expanded graph estab-
lishes the submodularity of the social utility function. From this observation, we
deduce that the game is a valid utility game, which in turn implies an upper bound
of 2 on the (coarse) PoA. This cleaner understanding of the model yields a simpler
proof of a much more general result than that established by Goyal and Kearns:
for the N -player competitive cascade game, the (coarse) PoA is upper-bounded
by 2 under any graph structure. We also show that this bound is tight.

Keywords: Competitive cascade game, Price of Anarchy, Submodularity, Valid
utility game, Influence maximization.

1 Introduction

The processes and dynamics by which information and behaviors spread through social
networks have long interested scientists within many areas [18]. Understanding such
processes has the potential to shed light on human social structure, and to impact the
strategies used to promote behaviors or products. While the interest in the subject is
long-standing, the recent increased availability of social network and information diffu-
sion data (through sites such as Facebook and LinkedIn) has put into relief algorithmic
questions within the area, and led to widespread interest in the topic within the computer
science community.

One particular application that has been receiving interest in enterprises is to use
word-of-mouth effects as a tool for viral marketing. Motivated by the marketing goal,
mathematical formalizations of influence maximization have been proposed and exten-
sively studied by many researchers [9,14,17,23,24,8,7,16]. Influence maximization is
the problem of selecting a small set of seed nodes in a social network, such that their
overall influence on other nodes in the network — defined according to particular mod-
els of diffusion — is maximized.

When considering the word-of-mouth marketing application, it is natural to realize
that multiple companies, political movements, or other organizations may use diffusion
in a social network to promote their products simultaneously. For example, Samsung

� Supported in part by NSF Grant 0545855.
�� Supported in part by NSF Grant 0545855, an ONR Young Investigator Award, and a Sloan

Rseearch Fellowship.
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may try to promote their new Galaxy phone, while Apple tries to advertise their new
iPhone. Companies will necessarily end up in competition with each other, so it be-
comes essential to understand the outcome of competitive diffusion phenomena in the
network.

Motivated by the above scenarios, several models for competitive diffusion have
been proposed and studied [2,4,7,12,20,11,1,21]. Past work tends to follow one of two
assumptions about the timing of players’ moves. The first approach is to assume that all
but one of the competitors have already chosen their strategies, and to study the algorith-
mic problem of finding the best response [2,4,7,12,5,6]. The goal may be maximizing
one’s own influence [2,4,7] or minimizing the influence of the competitors [12,5]. The
other approach is to model the competition as a simultaneous game, in which all compa-
nies pick their strategies at the same time [1,11,20,21]. The final influence is determined
by the initial seed set of every company and the underlying diffusion process.

In this paper, we follow the second approach. In the game, the players are companies
(or other organizations) who try to promote their competing products in the social net-
work through word-of-mouth marketing. The players simultaneously allocate resources
to individuals in the social network in order to seed them as initial adopters of their
products. These resources could be free samples, time spent explaining the advantages
of the product, or monetary rewards. Based on the allocated resources, the nodes choose
which of the products to adopt initially. Subsequently, the diffusion of the adoption of
products proceeds according to the local adoption dynamics. The goal for each player
is to maximize the coverage of his1 own product.

The local adoption dynamics play a vital role in determining properties of the game.
In this paper, we follow the framework proposed recently by Goyal and Kearns [11].
Their model decomposes the local adoption decisions into two stages: switching and
selection. In the switching stage, the user decides whether to adopt any product or com-
pany at all. This decision is based on the set of neighbors who have already adopted one
of the products. If the user decides to adopt a product, in the following selection stage,
she decides which company’s product to adopt based on the fraction of neighbors who
have adopted the product from each company.

For example, assume that iPhone and Galaxy are the only two smartphones available.
In the switching stage, a user decides whether to adopt a smartphone or not, based
on the fraction of her neighbors who have already bought a smartphone. If she has
decided to adopt a smartphone, in the selection stage, she decides whether to choose an
iPhone or Galaxy based on the fraction of iPhone users and Galaxy users among her
friends. The two stages are modeled using a switching function fv(α1 + α2), which
gives the probability that the user adopts one of the products, and the selection function
gv(α1, α2), which determines the probability that the user chooses the product of a
specific company. Here α1 and α2 are the fractions of the user’s friends who have
already adopted the product from the two competitors. The details of the model are
presented in Section 2.

Under this framework, Goyal and Kearns have studied the Price of Anarchy (PoA)
of the two-player competitive cascade game. Informally, the PoA is a measure of the

1 Throughout the paper, to simplify the distinction of roles, we consistently use “she” to denote
individuals in the social network and “he” to denote the players, i.e., the companies.
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maximum potential inefficiency created by non-cooperative activity. (The precise defi-
nition of the PoA is given in Section 2.3.) Goyal and Kearns have shown that the PoA
under the switching-selection model with concave switching functions and linear selec-
tion functions is upper-bounded by 4.2

In this paper, we show that a stronger PoA bound for the Goyal-Kearns model fol-
lows from several well-understood and general phenomena. The key observation is that
by considering a time-expanded graph, the Goyal-Kearns model can be considered an
instance of a general threshold model. Then, the result of Mossel and Roch [17] guar-
antees that the social utility function is submodular, and a simple coupling argument es-
tablishes that players’ utility functions are competitive. With a submodular social utility
function, the game is a valid utility game. (This type of proof was used previously by
Bharathi et al. [2].) Finally, for valid utility games, the results of Vetta [22] and Blum et
al. and Roughgarden [3,19] establish a (coarse) Price of Anarchy of at most 2.

Thanks to the above understanding, we obtain a much more general result with a
much simpler proof. We show that the PoA is upper-bounded by 2 for the competitive
cascade game with an arbitrary number of players and any graph structure with submod-
ular activation functions fv(·). We formally state this result in Theorem 1. Moreover,
by utilizing the result of Roughgarden in [19], we show that our bound not only holds
for the PoA under pure or mixed Nash equilibria but also for the coarse PoA. We also
show that the proposed PoA bound is tight.

Theorem 1. The coarse PoA is upper-bounded by 2 under the switching-selection model
with concave switching functions and linear selection functions.3

Our result on the PoA bound holds under a generalized version of the framework
used in [11]. First, and most importantly, our model allows for an arbitrary number of
players. Second, we allow multiple players to target the same individual and allow each
player to put multiple units of budget on the same individual.4 This generalization en-
larges the strategy space from sets to multisets and somewhat complicates the analysis
of our model. Third, we associate each individual in the network with a weight measur-
ing the importance of the node. Fourth, we generalize the adoption functions defined
on the fraction of already adopting neighbors to arbitrary set functions defined on the
individuals who have previously adopted the product.

1.1 Related Work

Our work is mainly motivated by [11], lying at the intersection of influence analysis
in social networks and traditional game theory research. The model in [11] and the
differences compared to our work are discussed in detail above and in Section 2.

2 In fact, they proved that the PoA upper bound holds in a more general model, which we will
discuss in Section 2.

3 Similar to the result by Goyal and Kearns, our PoA upper bound extends to a more general
model. We define this more general model in Section 2, and state and prove the more general
result in Section 3.

4 The model proposed by Goyal and Kearns [11] allows for multiple units of budget on the same
individual, but the proof does not explicitly cover this extension.
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Submodularity has been a recurring topic in the study of diffusion phenomena
[17,14,12,2,4,5]. [14,17] have shown that influence coverage is submodular under local
dynamics with submodularity. The submodularity of global influence coverage can be
utilized to design efficient algorithm for either maximizing the influence [14] or min-
imizing the influence of the competitors [12]. Submodularity has also been applied in
the analysis of a competitive influence game by Bharathi et al. [2]. Bharathi et al. use
a similar approach as we do in this paper; they also bound the PoA bound by showing
that the game is a valid utility game. However, they analyze the competitive cascade
game under a simpler diffusion model. Under their model, a node adopts the product
from the neighbor who first succeeds in activating her; a continuous timing component
ensures that this node is unique with probability 1.

In the proof for the PoA bound of the competitive cascade game, we are drawing
heavily on previous research on the PoA for valid utility games [22,19,3]. Vetta first
showed that for a valid utility game, the PoA for pure Nash equilibria is upper-bounded
by 2 in [22]. Blum et al. and Roughgarden later generalized Vetta’s result to the coarse
PoA in [19,3].

Several other game-theoretic approaches have been considered for competitive diffu-
sion in social networks [21,1,20,10,6]. [20] mainly focuses on the efficient computation
of the Nash strategy instead of the theoretical bound of the PoA. [6] focuses on study-
ing the algorithmic problem of finding the best response. Though [1,21,10] studied the
competitive cascade game from a game-theoretic perspective, they mainly focused on
the existence of pure Nash equilibria. [1] mainly focuses on the existence of pure Nash
equilibria under a deterministic threshold model. [10] also tries to characterize the struc-
ture of the pure Nash equilibria in the game. The PoA is studied in [21]; however, they
studied the PoA bound of pure Nash equilibria and used a deterministic diffusion model
instead of the stochastic dynamics we use in our work. In their model, the PoA is un-
bounded as in the Goyal-Kearns model with non-concave switching functions. As noted
by [4,5], small differences in the diffusion model can lead to dramatically different be-
haviors of the model.

2 Models and Preliminaries

In this section, we define basic notation, present the different models of diffusion and
the N -player game, and include other definitions of concepts used in our proof. In the
game, the players allocate resources to the nodes in the graph G = (V,E) to win
them as initial adopters of their products. Then, the adoption of products propagates
according to the local dynamics, described in detail in Section 2.1. The formal definition
of the game is presented in Section 2.3.

Throughout, we use the following conventions for notation. Players are typically
denoted by i, j, k, while nodes are u, v, w. For sets, functions, etc., the identity of a
player is applied as a superscript, while that of a node (and time step) is applied as a
subscript. Vectors are written in boldface, including vectors of sets; in particular, we
frequently write S = (S1, . . . , SN ) for the vector of sets of nodes belonging to the
different players.
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2.1 General Adoption Model

The general adoption model is a generalization of the switching-selection model de-
scribed in Section 1. Each node in G is in one of the N + 1 states {0, 1, . . . , N}. A
node v in state i > 0 means that individual v has adopted the product of player i, while
state 0 means that she has not adopted the product of any player. In this case, we also
say that v is inactive. Conversely, we say that node v is activated if she is in one of the
states i > 0. Initially, all nodes are inactive. The diffusion of the adoption of products is
a process described by nodes’ state changes. We assume that the process is progressive,
meaning that a node can change her state at most once, from 0 to some i > 0, and must
remain in that state subsequently.

The diffusion process works in two stages. We call the first stage Seeding and the
second stage Diffusion. In the first stage, the initial seeds of all players are decided
based on the budgets that each player allocates to the nodes. The initial seeds are used
as starting points for the diffusion stage. In the second stage, the adoption propagates
according to certain local dynamics based on the nodes who have previously adopted
the products.

Seeding stage: The strategy M i of player i is a multiset of nodes. We define αi
v as

the number of times that v appears in player i’s multiset. For each node v ∈ V , if∑N
i=1 α

i
v = 0, the initial state of node v is 0; otherwise, the initial state of node v is

one of {1, 2, . . . , N} with probabilities (α
1
v

Zv
, . . . ,

αN
v

Zv
), where Zv =

∑N
i=1 α

i
v is simply

the normalizing constant. The decisions for different nodes are independent. Thus, if no
player selects a node, the node remains inactive. Otherwise, the players win the node as
an initial adopter with probability proportional to the number of times they select the
node.

Diffusion stage: The important part of diffusion is the local dynamics deciding when
a node gets influenced, i.e., changes her state from 0 to i. Let Si be the set of nodes in
state i. A node v who is still in state 0 changes into state 1, . . . , N, 0 according to the
probabilities

(h1
v(S), . . . , h

N
v (S), 1−

N∑
i=1

hi
v(S)).

We call hi
v(S

1, . . . , SN ) the adoption function of node v for product i. It gives the
probability that a still inactive node v adopts product i given that Sj is the current set
of nodes in state j. The adoption functions must satisfy the following two conditions:

0 ≤ hi
v(S) ≤ 1, ∀v ∈ V, i = 1, . . . , N∑N

i=1 h
i
v(S) ≤ 1, ∀v ∈ V.

We call Hv(S) =
∑N

i=1 h
i
v(S) the activation probability; it gives the probability that

v adopts any product and changes from state 0 to any state i > 0.
Equipped with the local dynamics of adoption, we still need to define in what order

nodes’ states are updated. In the general adoption model, we assume that an update
schedule is given in advance to determine the order of updates. The update schedule
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is a finite sequence Q of nodes 〈v1, . . . , v�〉, of length �. A node could occur multiple
times in the sequence.

Nodes’ states are updated according to the order prescribed by the sequence. Let
Si
t be the set of nodes in state i after the first t updates; Si

0 is the seed set of player
i resulting from the seeding stage. In each round t, the state of node vt is updated
according to the local dynamics of adoption and previously activated nodes, namely
St−1 = (S1

t−1, . . . , S
N
t−1). If node vt is already in state i > 0, she remains in state i.

Otherwise, she changes into state 1, . . . , N, 0 according to the probabilities

(h1
v(St−1), . . . , h

N
v (St−1), 1−

N∑
i=1

hi
v(St−1)).

The states of all other nodes remain the same. The updates in different rounds are in-
dependent. The diffusion stage ends after the � update steps. The prescribed update
sequence makes this model different from the previously studied Independent Cascade
and Threshold Models. We discuss the difference and some implications in more detail
after defining the Threshold Model in Section 2.4.

2.2 Useful Properties

We next identify three important properties that make the model more tractable analyti-
cally: (1) additivity of the activation probability Hv, (2) competitiveness of the adoption
function hv and (3) submodularity of the activation function fv.

Definition 1. The total activation probability Hv(S) =
∑N

i=1 hv(S) is additive if and

only if Hv can be written as Hv(S) = fv(
⋃N

i=1 S
i) for some monotone set function

defined on V . We call fv(S) the activation function for v when Hv is additive.

Additivity implies that the probability for a node to adopt the product and change
from inactive to active only depends on the set of already activated nodes and not on
which specific products they have adopted. For example, the probability that one adopts
a smartphone only depends on who has already adopted one, independent of who is
using iPhone and who is using Galaxy.

To simplify notation, we define S−i =
⋃

k 	=i S
k, and S−i = (Sk)k 	=i.

Definition 2. The adoption function hi
v(S) for player i is competitive if and only

hi
v(S) ≥ hi

v(Ŝ) whenever Ŝi ⊆ Si and S−i ⊆ Ŝ−i.

Competitiveness means that the adoption function for player i is monotone increas-
ing in the set of nodes that have adopted product i and monotone decreasing in the set
of nodes that have adopted some competitor’s products.5

5 This assumption is reasonable when the reputation of the product is already well-established.
However, when a new product comes out, the presence of competitors may help popularize
the product, by increasing its overall exposure or perceived importance or relevance. These
effects could lead to more purchases even for one particular company i. This subtle distinction
is discussed more in Section 2.4.
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Definition 3. The activation function fv is submodular if and only if for any two set
S ⊆ T ⊆ V and any node u ∈ V ,

fv(S ∪ {u})− fv(S) ≥ fv(T ∪ {u})− fv(T ).

Submodularity of activation functions implies that the overall activation probability
has diminishing returns. It intuitively means that the first friend to buy and recommend
a smartphone has more influence than a friend who recommends it after many others.

Goyal and Kearns have shown in [11] that the switching-selection model with con-
cave switching functions and linear selection functions is a special case of the gen-
eral adoption model with competitive adoption functions and additive activation prob-
abilities. In addition, due to the concavity of the switching function fv, the activation
functions in the general adoption model are also submodular. Therefore, we have the
following lemma:

Lemma 1. Every instance of the switching-selection model with concave switching
functions and linear selection functions is an instance of the general adoption model
satisfying all three of the above properties.

Lemma 1 allows us to prove our PoA bound only for the general adoption model; it
then implies Theorem 1.

2.3 The Game

The competitive cascade game is an N -player game on a given graph G = (V,E). The
structure of the graph as well as all adoption functions are known to all the players.
Each player i is a company. The strategy for each player i is a multiset M i of nodes;
we use M = (M1, . . . ,MN) to denote the strategy vector for all players and αi

v for
the number of times that node v appears in M i.

Players’ strategies are constrained by their budgets Bi, in that they must satisfy
|M i| ≤ Bi. We further allow node-specific constraints requiring that αi

v ≤ Ki
v for

given node-specific budgets Ki
v ≤ Bi. These may constrain players from investing a

lot of resources into particularly hard-to-reach nodes; however, the node-specific con-
straints mostly serve to simplify notation in some later proofs. We say that a strategy
M i is feasible if all of the above conditions are satisfied.

All players simultaneously allocate their budgets to the nodes ofG. Given the choices
that the players make, the payoffs are determined by the general adoption model as the
coverage of the player’s product among the individuals in G. Each node v in the graph
is associated with a weight ωv ≥ 0, measuring the importance of the node. The payoff
function of player i is σi(M) = E[

∑
v∈Si

�
ωv], the expected sum of weights from nodes

having adopted i’s product after all � update steps.
The social utility γ(S0) =

∑
i σ

i(M) is the sum of weights from nodes adopt-
ing any of the products.6 Notice that when the activation probabilities Hv are additive

6 This definition implicitly assumes that the product carries a value for those who adopt it; thus,
society is better off when more people adopt at least one product.
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(Definition 1), γ(·) only depends on S0 =
⋃N

i=1 S
i
0, the set of nodes activated after the

seeding stage (but not on which company they chose).
To simplify notation, we define (M−k, M̃k) = (M1, . . . ,Mk−1, M̃k,Mk+1,

. . . ,MN), and in particular (M−k, ∅k) = (M1, . . . ,Mk−1, ∅,Mk+1, . . . ,MN).
We say that a strategy profile M is a pure Nash equilibrium if no player has an

incentive to change his strategy. Namely, for any player i,

σi(M) ≥ σi(M−i, M̃ i) for all feasible M̃ i.

Let OPT be a strategy profile maximizing the social utility function, and EQpure the
set of all pure Nash equilibria. The price of anarchy of pure Nash equilibria is defined
as follows:

Pure Price of Anarchy = max
M∈EQpure

γ(OPT)

γ(M)
.

However, the competitive cascade game could have no pure Nash equilibrium [21].
Thus, we extend our analysis to more general equilibrium concepts. A coarse (corre-
lated) equilibrium of a game is a joint probability distribution P with the following
property [19]: if M is a random variable with distribution P, then for each player i,
and all feasible M̂ i:

EM∼P[σ
i(M)] ≥ EM−i∼P−i [σi(M−i, M̂ i)].

Similar to the PoA for pure Nash equilibria, the coarse price of anarchy is defined as

Coarse Price of Anarchy = max
P∈EQcoarse

γ(OPT)

EM∼Pγ(M)
,

where EQcoarse is the set of all coarse equilibria.

2.4 The Threshold Model

Our analysis will be based on a careful reduction of the general adoption model to
the general threshold model defined in [14,15]. In the general threshold model (with
N = 1), every node v in the network has an associated activation function f̂v(·). At the
beginning of the process, each node draws a threshold θv independently and uniformly
from [0, 1]. Starting from an initially active set S0, a node becomes active at time t

(i.e., is a member of St) if and only if f̂v(St−1) ≥ θv . The process ends when for one
round, no new node has become active (which is guaranteed to happen in at most |V |
steps). If t is the time when this happens, the influence of the initial set S0 is defined as
σω(S0) = E[

∑
v∈St

ωv]. In a beautiful piece of work, Mossel and Roch established the
following theorem about the function σω :

Theorem 2 (Mossel-Roch [17]). If fv is monotone and submodular for every node v
in the graph, then σω is monotone and submodular under the general threshold model.

Given the apparent similarity between the general adoption model and the general
threshold model (say, for N = 1), it is illuminating to consider the ways in which
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the models differ, and the implications for the competitive cascade game. In the general
adoption model, a sequence of nodes to update is given, and nodes only consider chang-
ing their state when they appear in the sequence. By contrast, in the general threshold
model, nodes consider changing their state in each round.

So at first, it appears as though a sequence repeating |V | times a permutation of all
|V | nodes would allow a reduction from the threshold model to the adoption model.
However, note that in the adoption model, each node makes an independent random
choice whether to change her state in each round, whereas in the threshold model, the
random choices are coupled via the threshold θv , which stays constant throughout the
process. In particular, if fv(S0) > 0, then a node appearing often enough in the update
sequence will eventually be activated with probability converging to 1, whereas this
need not be the case in the general threshold model.

The increase in activation probability caused by multiple occurrences in the update
sequence has powerful implications for the competitive game. It allows us to establish
rather straightforwardly the competitiveness (Definition 2) of each player’s objective
function, and the submodularity (Definition 3) of the social utility. By contrast, Borodin
et al. [4] show that both properties fail to hold for most natural definitions of competitive
threshold games. At the heart of the counter-examples in [4] lies the following kind of
dynamic: At time 1, a node u recommends to v the use of a Galaxy phone, but fails
to convince v. At time 2, another node w recommends to v the use of an iPhone. If v
decides to adopt a smartphone at time 2, most natural versions of a threshold model (as
well as under the general adoption model) allow for an adoption of a Galaxy phone as
well. This “extra chance” results in synergistic effects between competitors, and thus
breaks competitiveness. Under the model of [11], this problem is side-stepped. v will
only consider adopting a smartphone in step 2 when she appears in the sequence at time
2; in that case, adoption of a Galaxy phone in step 2 will be considered independently of
whether w has adopted an iPhone. This observation fleshes out the discussion alluded
to in Footnote 5.

2.5 Valid Utility Games

A valid utility game [22] is defined on a ground set V with social utility function γ
defined on subsets of V . The strategies of the game are sets Si

0 ⊆ V (it is possible that
not all sets are allowed as strategies for some or all players), and the payoff functions
are σi for each player i. The social utility is defined on the union of all players’ sets,
γ(
⋃N

i=1 S
i
0). The definition requires that three conditions hold: (1) The social utility

function γ(·) is submodular; (2) For each player i, σi(S0) ≥ γ(S0) − γ(S−i
0 , ∅i); (3)∑N

i=1 σ
i(S0) ≤ γ(S0).

3 Upper Bound on the Coarse Price of Anarchy

In this section, we present our main result: the upper bound on the coarse PoA with sub-
modular activation functions. We prove the upper bound on the PoA by showing that
the competitive cascade game is a valid utility game. We note, however, that the strat-
egy space of our competitive cascade game consists of multisets, whereas the standard
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definition of utility games has only sets as strategies. In order to deal with this subtle
technical issue, we use the following lemma, whose proof is given in the appendix.

Lemma 2. Let G = (G, {hi
v}, {Ki

v}, {Bi}, {ωv}, Q) be an arbitrary instance of the
competitive cascade game. Then, there exists an instance Ĝ = (Ĝ, {ĥi

v}, {K̂i
v̂}, {B̂i},

{ω̂v}, Q̂) with the same set of players, and the following properties:

1.
∑N

i=1 K̂
i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and

with at most one resource.)
2. For every player i, there are mappings μi, μ̂i mapping i’s strategies in G to his

strategies in Ĝ and vice versa, respectively, satisfying the following property: If for
all i, either μi(M i) = M̂ i or μ̂i(M̂ i) = M i, then for all i, σi(M) = σ̂i(M̂ ).

In particular, Lemma 2 implies that the social utility is also preserved between the
two games, and strategies M i are best responses to M j , j �= i if and only if the M̂ i

are best response to M̂ j , j �= i. (Otherwise, a player could improve his payoff in the
other game by switching to μi(M i) or μ̂i(M̂ i).) In this sense, Lemma 2 establishes
that for every competitive cascade game instance, there is an “equivalent” instance in
which each node can be targeted by at most one player, and with at most one resource.
Therefore, we will henceforth assume without loss of generality that the strategy space
for each player consists only of sets.

In fitting the competitive cascade game into the valid utility game framework, the
ground set of the game is V , and the payoff function of player i is σi(S)=E[

∑
v∈Si

�
ωv]:

the sum of weights from the nodes v ∈ V in state i at the end of the updating sequence.
Because of additivity, the social utility function depends only on S0. That is, the fol-
lowing is well-defined: γ(S0) = γ(S0) =

∑
i σ

i(S0). Therefore, the third condition
of a valid utility game (sum boundedness) is satisfied trivially. Below, we will prove the
following two lemmas:

Lemma 3. Assume that for every node v, the total activation probability Hv(S) is ad-
ditive, and the activation function fv(S) is submodular. Then, the social utility function
γ(S0) is submodular and monotone.

Lemma 4. If for every node v and ever player k, Hv(·) is additive and hk
v(·) is com-

petitive, then for each player i, we have σi(S0) ≥ γ(S0)− γ(S−i
0 , ∅i).

Lemmas 3 and 4 together establish that the competitive cascade game is a valid utility
game. Example 1.4 in [19] shows that the coarse PoA of valid utility games is at most 2
(Vetta [22] establishes the same for the PoA), proving the following main result of our
paper:

Theorem 3. Assume that the following conditions hold:

1. For every node v, the total activation probability Hv(S) is additive.
2. For every node v, the activation function fv(S) is submodular.
3. For every player i and node v in the graph, the adoption function hi

v(S) is
competitive.

Then, the upper bound on the PoA (and coarse PoA) is 2 in the competitive cascade
game.
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By Lemma 1, the switching-selection model with concave switching functions and
linear selection functions is a special case of the general adoption model with com-
petitive adoption functions, additive activation probabilities and submodular activation
functions. Therefore, Theorem 1 follows naturally as a corollary of Theorem 3.

Proof of Lemma 3. We build an instance of the general threshold model whose influ-
ence coverage functionσω(S0) is exactly the same as γ(S0). The idea is that for additive
functions, the social utility does not depend on which node chooses which company, so
the game is reduced to the case of just a single influence. The update sequence can be
emulated with a time-expanded layered graph.

The time-expanded graph G� is defined as follows.7 For each node v of the original
graph, we have � + 1 nodes v̂0, v̂1, . . . , v̂� in G�. We use Lt = {v̂t | v ∈ V } to denote
the set of nodes in layer t. The activation functions are defined as follows:

1. In layer 0, f̂v̂0 ≡ 0 for every node v ∈ V .
2. In layer t, 1 ≤ t ≤ �, consider a node v with switching function fv. If v is the tth

element of the updating sequence (v = vt), we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S

fv({u | ût−1 ∈ S}) otherwise;

otherwise we set

f̂v̂t(S) =

{
1 if v̂t−1 ∈ S

0 otherwise.

Finally, the total influence is defined as σω(S0) = E[
∑

v̂�∈Ŝ ωv], where Ŝ is the
set of nodes activated in the threshold model once no more activations occur. In the
instance, each layer Lt emulates one update in the original update sequence of the
general adoption model.

For each node v̂t in the layered graph, fv̂t(S) is submodular and additive. The sub-
modularity and monotonicity for the 0-1 activation functions are trivially satisfied. For
the nodes in the update sequence, submodularity holds because we assumed the fv(S)
to be submodular, and monotonicity follows because the Hv(S) are additive.

Next, we show that γ(S0) = σω(S0), by using a straightforward coupling between
the general threshold model and the general adoption model. According to the construc-
tion of G�, the state changes for all nodes except v̂t (where vt is the tth element of the
updating sequence) are deterministic. Therefore, we only need to draw the thresholds
Θ = 〈θ1, θ2, . . . , θ�〉 for the � nodes in the update sequence: they are drawn indepen-
dently and uniformly from [0, 1]. In the general adoption model, when updating the tth

node vt in the sequence, if node vt is still inactive, she becomes active if and only if
fv(St−1) ≥ θt. If the node is already activated, she remains activated in the same state.
By induction on t, v ∈ St if and only if v̂t ∈ Ŝ ∩ Lt. Thus, the outcomes of the two

7 All activation information is encoded in the activation functions. Therefore, there is no need
to explicitly specify the edges of G�.
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processes are the same pointwise over threshold vectors Θ: γ(S0|Θ) = σω(S0|Θ). In
particular, their expectations are thus the same.

Finally, Theorem 2 establishes the monotonicity and submodularity of σω(S0), and
thus also γ(S0).

Proof of Lemma 4. We begin by showing that under the assumptions of the lemma,
σi(S0) ≤ σi(S−k

0 , ∅k) for all players k, i, k �= i. To do so, we exhibit a simple coupling
of the general adoption processes for the two initial states S0 and (S−k

0 , ∅k), essentially
identical to one used in the proof of Lemma 1 in [11]. Notice that the activation func-
tions are additive; therefore, we can combine all states k �= i into one state, which we
denote by −i.

The activation process is defined by the way in which nodes decide whether to update
their state, and if so, to which new state. An equivalent way of describing the choice is
as follows: for each step t of the update sequence, we draw an independent uniformly
random number zt ∈ [0, 1]. In step t, assuming that node vt is still in state 0, she changes
her state to:

– state i if zt ∈ [0, hi
vt(St−1)).

– state −i if zt ∈ [hi
vt(St−1), fvt(

⋃N
j=1 S

j
t−1)).

– state 0 otherwise.

To couple the two random processes with starting conditions (S−k
0 , ∅k) and S0, we

simply choose the same values zt for both. Let Xj
t denote the set of nodes in state j, j ∈

{i,−i, 0} after t updates with starting condition (S−k
0 , ∅k). Y j

t is defined analogously,
with starting condition S0.

Conditioned on any choice of (z1, . . . , z�), a simple induction proof using compet-
itiveness of the hi

v and monotonicity of the fv shows that for each time t, X i
t ⊇ Y i

t ,
X0

t ⊇ Y 0
t , and thus also X−i

t ⊆ Y −i
t . Therefore, at the end of the update sequence, the

desired inequality holds pointwise over (z1, . . . , z�), and in particular in expectation,
as claimed. Finally, having established that σi(S0) ≤ σi(S−k

0 , ∅k), we use it in the
following calculations:

γ(S0)− γ(S−i
0 , ∅i) =

∑
k

(σk(S0)− σk(S−i
0 , ∅i))

= σi(S0) +
∑
k 	=i

(σk(S0)− σk(S−i
0 , ∅i))

≤ σi(S0).

4 Tightness of the PoA Upper Bound

We give an instance of the competitive cascade game in the (more restrictive) switching-
selection model to show that our upper bound of 2 for the PoA in Theorem 3 is tight.

Let N be the number of players. The graph consists of a star with one center and
N leaves, as well as N isolated nodes. Each player has only one unit of budget, and
the update sequence is any permutation of the nodes in the star graph. The switching
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functions are the constant 1 for all nodes in the graph, which implies that if a node
has any neighbor who has adopted the product, the node also adopts the product. The
selection functions are simply the fraction of neighbors who have adopted the product
previously. Under this instance, the unique Nash equilibrium has every player allocating
his unit of budget to the center node of the star graph. By placing the budget at the center
node, the expected payoff for each player is N+1

N , while placing it on any other node
at most leads to a payoff of 1. However, the strategy that optimizes the social utility
is to place one unit of budget at the center node of the star graph while placing all
others at the isolated nodes. Thus, the PoA (and also Price of Stability) is 2N

N+1 . As N
goes to infinity, the lower bound on the PoA tends to 2. Therefore, we have proved the
following proposition:

Proposition 1. The upper bound of 2 on the PoA (and thus also coarse PoA) is tight for
the competitive cascade game even for the simpler switching-selection model.

5 Conclusion and Future Work

We have studied the efficiency of resource allocation at equilibria of the competitive
cascade game in terms of the Price of Anarchy (PoA). We have shown that an improved
bound compared to [11] follows from several well-understood and general phenomena.
This cleaner approach has led to a simpler proof of a more general result: for the N -
player competitive cascade game, the coarse PoA is upper-bounded by 2 under any
graph structure. We have also shown that this bound is tight.

It is open whether the same (or a slightly weaker) bound can be guaranteed without
the assumption of submodularity of the activation functions (but assuming competi-
tiveness and additivity). The techniques from [11] can be generalized to give an upper
bound of 2N in this case, but do not directly yield any better bounds.

At a more fundamental level, it would be desirable to broaden the models considered
for competitive cascades. Most positive results on either algorithmic questions or the
PoA — the present one included — rely on submodularity properties of the particular
modeling choices. (That such properties are also at the heart of the model of Goyal and
Kearns is our main insight here.) It would be desirable to find models for which positive
results — algorithmic or game-theoretic — can be obtained without requiring submod-
ularity. Furthermore, most work on cascade models so far has assumed that nodes only
adopt a single product. In many cases, products may be partly in competition, but not
fully so. One of the few papers to consider a model with partial compatibility between
products is [13]; an exploration of the game-theoretic implications of such a model
would be of interest.
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A Proof of Lemma 2

We restate Lemma 2 for convenience.

Lemma 2 . Let G = (G, {hi
v}, {Ki

v}, {Bi}, {ωv}, Q) be an arbitrary instance of the
competitive cascade game. Then, there exists an instance Ĝ = (Ĝ, {ĥi

v}, {K̂i
v̂}, {B̂i},

{ω̂v}, Q̂) with the same set of players, and the following properties:

1.
∑N

i=1 K̂
i
v̂ ≤ 1 for all v ∈ V̂ . (At most one player is allowed to target a node, and

with at most one resource.)
2. For every player i, there are mappings μi, μ̂i mapping i’s strategies in G to his

strategies in Ĝ and vice versa, respectively, satisfying the following property: If for
all i, either μi(M i) = M̂ i or μ̂i(M̂ i) = M i, then for all i, σi(M) = σ̂i(M̂ ).

Proof. Given G, we construct Ĝ as a game on a graph with three layers.

Nodes: The first layer contains, for each node v ∈ V and player i, a set of Ki
v new

nodes V i
v = {v1, . . . , vKi

v
}. The second layer of Ĝ contains, for each node v ∈ V ,

one node v′ connected to all nodes in V i
v . The third layer is a copy of the original

graph G.
Node Budgets: For player i and any node v ∈ G, we set K̂i

v̂ = 1 for all nodes v̂ ∈ V i
v ,

and K̂i
v̂ = 0 for all other nodes (including all nodes in layers 2 and 3). In other

words, player i may only target nodes that are in V i
v for some v ∈ G.

Budgets: We set B̂i = Bi, for all players i.
Weights: We set ω̂v ≡ 0 for all nodes in the first layer. If a node v appears (at least

once) in Q, then we set ω̂v = ωv in the third layer and ω̂v′ = 0 in the second layer.
If v does not appear in Q, then we set ω̂v = 0 in the third layer and ω̂v′ = ωv in the
second layer. Thus, players are interested in influencing nodes in the second or third
layer, depending on whether the node can be influenced via the update sequence,
or must be influenced by direct targeting.

Adoption Functions: Different adoption functions are used for the nodes in different
layers:
1. In layer 1, ĥi

v̂(·) ≡ 0 for any player i and node v̂.
2. In layer 2, for a player i and node v,

ĥi
v′(S) =

{
0 if

⋃N
k=1(S

k ∩ V k
v ) = ∅

|Si∩V i
v |∑

k |Sk∩V k
v | otherwise.



Price of Anarchy for the N -Player Competitive Cascade Game 247

3. To simplify notation, we define Ai = {v ∈ V |v ∈ Si or v′ ∈ Si}. Then in
layer 3, for player i and node v,

ĥi
v(S) =

⎧⎪⎨
⎪⎩
0 if v′ ∈ Sj for some j �= i

1 if v′ ∈ Si

hi
v(A

1, . . . , AN ) otherwise.

Notice that the game Ĝ satisfies competitiveness, additivity and submodularity
whenever the game G satisfies all these three properties.

Update Sequence: The update sequence is Q̂ = 〈v′1, v′2, . . . , v′|V |, v1, . . . , v�〉, where
Q = 〈v1, . . . , v�〉 is the update sequence of the original instance and v′1, v

′
2, . . . , v

′
|V |

are all the nodes in the second layer, in some arbitrary order. The first |V | updates
in Ĝ emulate the seeding stage in G, and the remaining � updates emulate the update
sequence Q.

Payoffs and Social Utility: The players’ payoff functions σ̂i(M) and the social utility
γ̂(M) are defined as usual in terms of the other modeling parameters.

The mappings μi are defined as follows. Let M i be i’s strategy in G, characterized
by the budgets αi

v that i puts on nodes v. For each node v ∈ V , we choose an arbitrary
(but fixed) set M̂ i

v of αi
v nodes in V i

v . Player i’s strategy is M̂ i = μ̂i(M i) =
⋃

v M̂
i
v.

Conversely, we define μ̂i as follows: For any strategy profile M̂ of Ĝ, and for each
node v ∈ V , we set αi

v = |M̂ i ∩ V i
v |. μ̂i(M̂ i) is the strategy in which player i puts αi

v

resources on node v, for all v.
The first claim of the lemma holds by definition. For the second claim, consider

two strategy profiles M and M̂ , such that for all players i, either M̂ i = μi(M i) or
M i = μ̂i(M̂ i). We show that σ̂i(M̂) = σi(M) for each player i. To do so, we exhibit
a coupling of the random choices between the two games G and Ĝ. The coupling is quite
similar to the one used in the proof of Lemma 4.

For the seeding stage of G, an equivalent way of describing the choice is as follows:
for each node v ∈ V , we draw an independent uniformly random number zv ∈ [0, 1].
The state of node v is

– 0 if Zv =
∑N

i=1 α
i
v = 0,

– i > 0 if zv ∈
(∑i−1

j=1 αj
v

Zv
,
∑i

j=1 αj
v

Zv

]
.

Similarly, for the updates in the diffusion stage for both G and Ĝ, an equivalent way
of describing the update in step t is the following. Draw an independent uniformly
random number zt ∈ [0, 1]. If node vt is in a state i > 0, she retains her current state.
Otherwise, she changes her state to

– i > 0 if zt ∈ [
∑i−1

j=1 h
j
vt(St−1),

∑i
j=1 h

j
vt(St−1)),

– 0 otherwise.

To couple the two random processes, we simply choose the same values zv = ẑtv′
and zt = ẑt+|V |, where tv′ is the order of node v′ in the update sequence Q̂.
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Since the strategy M̂ consists of sets instead of multisets, the seeding stage of Ĝ is
deterministic. In Ĝ, a node v is initially in state i > 0 if and only if player i selects
her as a seed. Let Ŝi

0 be the set of activated nodes after the seeding stage with strategy
profile M̂ . We have |Ŝi

0 ∩ V i
v | = αi

v, for all players i and nodes v.
Conditioned on any fixed choice of the zv (and thus ẑ1, . . . , ẑ|V |), we have S0 =

Ŝ|V |, where S0 is the vector of sets of nodes in state i after the seeding stage with

strategy profile M , and Ŝ|V | is the vector of sets of nodes in layer 2 of Ĝ in state i after
the first |V | update steps with strategy profile M .

Finally, a simple induction proof over the � steps of the update sequence Q shows
that for each time t, we have the following property: (1) if v appears in Q at least once
before time step t, then v ∈ Si

t if and only if v ∈ Ŝi
t+|V |. (2) if v does not appear in Q

before time step t, then v ∈ Si
t if and only if v′ ∈ Ŝi

t+|V |. Applying this result after all

� steps, we obtain that each node v appearing in Q has v ∈ Si
� if and only if v ∈ Ŝi

�+|V |,

and each node v not appearing in Q has v ∈ Si
� if and only if v′ ∈ Ŝi

�+|V |. Notice that

the corresponding nodes v or v′ in Ĝ are exactly the ones inheriting the weight of node
v in G, implying that the payoff of each player i is the same pointwise in G and Ĝ. Thus,
each player’s expected payoff is also the same in the two games, completing the proof.
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Abstract. Matching and coalition formation are fundamental problems
in a variety of scenarios where agents join efforts to perform tasks, such
as, e.g., in scientific publishing. To allocate credit or profit stemming from
a joint project, different communities use different crediting schemes in
practice. A natural and widely used approach to profit distribution is
equal sharing, where every member receives the same credit for a joint
work. This scheme captures a natural egalitarian fairness condition when
each member of a coalition is critical for success. Unfortunately, when
coalitions are formed by rational agents, equal sharing can lead to high
inefficiency of the resulting stable states.

In this paper, we study the impact of changing profit sharing schemes
in order to obtain good stable states in matching and coalition formation
games. We generalize equal sharing to sharing schemes where for each
coalition each player is guaranteed to receive at least an α-share. This
way the coalition formation can stabilize on more efficient outcomes. In
particular, we show a direct trade-off between efficiency and equal treat-
ment. If k denotes the size of the largest possible coalition, we prove an
asymptotically tight bound of k2α on prices of anarchy and stability. This
result extends to polynomial-time algorithms to compute good sharing
schemes. Further, we show improved results for a novel class of match-
ing problems that covers many well-studied cases, including two-sided
matching and instances with integrality gap 1.

1 Introduction

Matching problems are central to a variety of research at the intersection of
computer science and economics. The standard model of matching with prefer-
ences is stable matching, in which a set of agents strives to group into pairs,
and each agent has an ordinal preference list over all possible partners. In this
case, a matching is stable if it has no blocking pair, i.e., no pair of players could
both improve by pairing up and dropping their current partners. Applications
of this model include, e.g., matching in job markets, hospitals, colleges, social
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networks, or distributed systems [2, 8, 15, 17, 18]. Numerous extensions of this
standard model have been treated in the past [15, 22].

While the basic stable matching model uses ordinal preferences, many ap-
plications allow cardinal preferences to express incentives in terms of profit or
reward. Perhaps the most prominent case of cardinal preferences studied in the
literature are correlated preferences, in which each matched pair generates a
profit that is shared equally among the involved agents. This model has favor-
able properties, e.g., existence of a stable matching is guaranteed by a potential
function argument, and convergence time of improvement dynamics is polyno-
mial [1]. These conditions extend even to hedonic coalition formation games,
when instead of matching pairs the agents construct a partition into coalitions
of k > 2 players. However, these properties come at a cost – the total reward of
every stable coalition structure can be up to k times smaller than in optimum.

For agents working on a joint project, equal sharing implements a natural egal-
itarian fairness condition. For example, in mathematics and theoretical computer
science it is common practice to list authors in alphabetical order, which gives
equal credit to every author involved in a paper. This is justified by the argument
that a ranking of ideas that led to the results in a paper is often impossible. On
the other hand, in many other sciences the author sequence gives different credit
to the different authors involved in the project. In some cases, these approaches
are overruled by the community which gives most credit for a paper to its most
prominent author (or to authors that are PhD students). Naturally, such differ-
ent profit sharing schemes generate different incentives for the agents to form
coalitions. In this paper, we study the impact of profit distribution on fairness
and efficiency in the resulting coalition formation games. It is known that com-
pletely arbitrary sharing can lead to non-existence of stable states or arbitrarily
high price of anarchy [3]. Similar to recent work [20], our focus is to design good
profit or credit distribution schemes such that the stable states implement good
outcomes. In this direction, it is not difficult to observe that using arbitrarily
low profit shares we can stabilize every optimal partition. However, such sharing
schemes are clearly undesirable when we want to maintain egalitarian fairness
conditions. In our analysis, we provide asymptotically tight bounds on the in-
herent tension between efficiency and equal treatment. Further, we give efficient
algorithms to compute good sharing schemes and show complementing hardness
results. Before we state our results, we start with a formal description of the
model.

1.1 Stable Matchings and Coalition Structures

We assume that there is a simple, undirected graph G = (V,E), where V is the
set of agents and E the set of possible projects or edges. In the matching case, we
assume each edge is a pair e = {u, v} ∈ E and yields some profit w(e) > 0 that
is to be shared among u and v. Our goal is to design a profit distribution scheme
d with du(e), dv(e) ∈ [0, 1] and du(e) + dv(e) = 1 for all e ∈ E. This implies that
u gets individual profit du(e)w(e) when being matched in e. The profits yield
an instance of stable matching with cardinal preferences. The stable matchings
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M ⊂ E are matchings that allow no blocking pair – no pair {u, v} ∈ E \M
of agents that can both strictly increase their individual profit by destroying
their incident edge in M (if any) and creating {u, v}. The social welfare of a
matching M is w(M) =

∑
e∈M w(e). We denote by M∗ a (possibly non-stable)

optimum matching that maximizes social welfare. The price of anarchy/stability
(denoted PoA/PoS) is the ratio of w(M∗)/w(M), where M is the worst/best
stable matching, respectively. While the set of stable matchings depends on d,
the social welfare of a particular matching is independent of d, and so is the set
of optimum matchings.

We generalize this scenario to hedonic coalition formation with arbitrary coali-
tion size in a straightforward way. Instead of edges e we are given a set of possible
hyperedges or coalitions C ⊆ 2V . Each S ∈ C fulfills |S| ≥ 2 and yields profit
w(S) > 0. The distribution scheme has du(S) ∈ [0, 1] and

∑
u∈S du(S) = 1.

Then d again specifies the fraction of w(S) allocated to u ∈ S when coalition S
forms. A coalition structure S ⊆ C is a collection of sets from C that is mutually
disjoint. S is core-stable if there is no blocking coalition – no S ∈ C \ S of agents
that each and all strictly improve their individual profit by destroying their inci-
dent coalition in S (if any) and creating S. Observe that the usual definition of
core-stability involves all possible coalitions S ⊆ 2V . We can easily allow this by
assuming that w({v}) = 0 for all v ∈ V and w(S) = −1 for all S ∈ 2V \ C with
|S| > 1. Definitions of social welfare and prices of anarchy and stability extend
in the obvious way. An instance is called inclusion monotone if for S, S′ ∈ C and
S′ ⊂ S, we have w(S)/|S| ≥ w(S′)/|S′|. We denote by k = maxS∈C |S|. Stable
matchings are exactly core-stable coalition structures when |S| = 2 for all S ∈ C.
By definition, every such instance is inclusion monotone.

Our aim is to design d in order to obtain good core-stable coalition structures.
To characterize the tension between stability and equal treatment, a distribution
scheme is termed α-bounded if du(S) ≥ α for all S ∈ C and all u ∈ S. If d is
α-bounded, the resulting instance of hedonic coalition formation is termed α-
egalitarian.

Throughout the paper, we assume a profit of 0 for singleton coalitions, which is
in some sense without loss of generality. Suppose we have {v} ∈ C with w({v}) >
0 for a node v ∈ V . Such a player will participate in a coalition only if he receives
profit at least w({v}). Thus, we can reduce the profit of every coalition S ∈ C
with v ∈ S by this amount. By executing this step for every player and every
coalition, we obtain an instance with the desired properties. Coalitions that
arrive at zero profit in this way can be disregarded, as they can be assumed to
be neither part of any equilibrium nor in the optimum solution. Applying our
algorithms to the remaining instance, we strive to equally distribute the surplus
that the coalition generates over individually required profits. This objective is
closely related to Nash bargaining solutions [21]. Note that in the remaining
instance with all w({v}) = 0, we get larger prices of anarchy and stability. As
our bounds apply to all instances of this sort, they continue to hold accordingly
for all instances with arbitrary positive w({v}).
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1.2 Results and Overview

In Section 2 we characterize the effect of α-boundedness on the resulting prices
of anarchy and stability. We provide asymptotically tight bounds on prices of
anarchy and stability depending on α. Given an optimum coalition structure S∗,
we show how to design a distribution scheme d that guarantees (1) existence of a
core-stable coalition structure and (2) a price of stability of max{1, k2α}, for any
α ∈ [0, 1/k]. This result shows, in particular, that for every α ≤ 1/k2, we can
construct α-bounded schemes with an optimal core-stable coalition structure.
This is asymptotically tight – using α-bounded schemes we cannot achieve a price
of stability of less than (k2−k)α, i.e., the price of stability for α-bounded schemes
is in Θ(k2)α. Conversely, this bound translates into a bound on α ≤ δ/(k2 − k)
to guarantee price of stability at most δ. For inclusion monotone instances, we
can also provide the same upper bound of max{1, k2α} on the price of anarchy,
i.e., in such instances and α ≤ 1/k2, every core-stable structure is optimal.
In contrast, there exist instances that are not inclusion monotone, in which α-
bounded schemes cannot guarantee a price of anarchy of 1, even for arbitrarily
small α > 0.

While computing S∗ is NP-hard, we can also combine our algorithms with
efficient approximation algorithms for the set packing problem of optimizing so-
cial welfare. If S∗ is an arbitrary ρ-approximation to the optimum solution, our
algorithms can be used to construct in polynomial time an α-bounded distribu-
tion scheme that guarantees price of stability of ρ ·max{1, k2α}. The same result
can be achieved for the price of anarchy in inclusion monotone instances.

In addition, we study a problem inspired by computing core imputations in
coalitional games. For a given coalition structure with profits we aim to de-
termine a distribution scheme with largest α that stabilizes a given optimum
solution S∗. This problem is shown NP-hard whenever we have coalitions of size
k ≥ 3. The problem remains hard for k = 2 if instead of a solution, we have a
given bound W , and the goal is to maximize α such that at least one solution
of social welfare at least W is stable.

In Section 3 we study stable matching games. As the general results from the
previous section carry over, we concentrate on a subclass of instances that we
term acyclic alternating. This includes many standard cases such as bipartite
matching or instances for which the standard matching LP is integral. In this
case, we can show that even 1/3-bounded distribution schemes yield a PoS of 1.
In addition, given an instance and any solution M , an α-bounded distribution
scheme stabilizing M with maximal α can be found efficiently.

1.3 Related Work

We study profit distribution in cardinal stable matching and more general games.
Stable matching has been extensively studied [22] and the literature on the
problem is too vast to survey here. Directly related to our work are [4, 5] which
address the price of anarchy in stable matching and related models. Very recently,
we have studied the price of anarchy under different edge-based profit sharing
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schemes [3]. In contrast, this paper concentrates on designing profit shares to
guarantee good stable matchings.

Profit sharing in more general coalition formation games has been studied
recently [6] in a related model, where coalitions are represented by resources.
Agents can join and leave a resource/coalition unilaterally. The authors focus
on submodular profit functions and three particular sharing schemes. For the
resulting games, they derive results on existence of pure Nash equilibrium, price
of anarchy, and convergence of improvement dynamics. In contrast to this model,
we do not restrict the number of coalitions that can be formed simultaneously
and assume coalitional deviations and core-stability.

In cooperative game theory, profit sharing has been a major focus over the last
decades. For example, core stability in the classic transferable-utility cooperative
matching game assumes that the total profit of a global maximum matching is
distributed to all agents such that every subset S of agents receives in sum at least
the value of a maximum weight matching for S. Computing such imputations is
closely related to LP duality [13]. Computing different solution concepts in this
game has also been of interest [7, 12, 19]. In contrast, we assume utility transfer
only within coalitions and evaluate the quality of a scheme based on the price
of anarchy for coalitional stability concepts in the resulting coalition formation
game. Additionally, we focus on trade-offs between efficiency and equality.

Computing stability concepts in hedonic coalition formation games is a recent
line of research in computational social choice [10, 16]. Many stability concepts
are NP- or PLS-hard to compute. This holds even in the case of additive-separable
coalition profits, which can be interpreted by an underlying graph structure
with weighted edges, and the profit of a coalition is measured by the total edge
weights covered by the coalition [14, 23]. In addition, some price of anarchy
results recently appeared in [9]. While our main focus are structures inspired by
matching problems, designing profit shares in the additive-separable case can be
formulated in our model, and it represents an interesting avenue for future work.

Designing good cost sharing schemes to minimize prices of anarchy and stabil-
ity [11,24] in resulting strategic games is a topic of recent interest in algorithmic
game theory.

2 Coalition Formation

We start by analyzing the relation between α-boundedness and the PoS/PoA.
At first we will see that we can give non-trivial upper bounds on the PoS and
PoA subject to α. In addition, given an optimum solution we can compute a
distribution scheme that obtains these bounds.

Theorem 1. For any α ∈
[
0, 1

k

]
, there is a distribution scheme d(α) that is

α-bounded and results in a PoS of at most max{1, k2α}. If further the in-
stance is inclusion monotone, the distribution scheme ensures a PoA of at most
max{1, k2α}. Given any social optimum S∗, we can compute the distribution
scheme in polynomial time.
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Algorithm 1. Ensuring PoS

Data: Instance (N, C, w), social optimum S∗, bound α
1 set i = 0, C0 = C and S = ∅;
2 while Ci �= ∅ do
3 choose S with w(S) = max{w(S) | S ∈ Ci};
4 set i = i+ 1;
5 if S ∈ S∗ then
6 set S∗

i = S;
7 else if S /∈ S∗ and αw(S) < 1

k
w(S′) for some S′ ∈ S∗ then

8 choose S′ ∈ S∗ with αw(S) < 1
k
w(S′);

9 set S∗
i = S′;

10 else
11 set S∗

i = S;
12 set Ci = Ci−1 \ {S∗

i } and S = S ∪ {S∗
i };

13 foreach u ∈ S∗
i do

14 set du(S
∗
i ) =

1
|S∗

i
| ;

15 foreach S′ ∈ Ci with S′ ∩ S∗
i �= ∅ do

16 choose u ∈ S′ ∩ S∗
i and set du(S

′) = α;
17 foreach u′ ∈ S′ \ {u} do
18 set du′(S′) = 1−α

|S′| ;

19 set Ci = Ci \ {S′};

Proof. We provide algorithms that compute the suitable distribution schemes.
For the PoS see Algorithm 1 and for the PoA see Algorithm 2. The idea of both
algorithms to always consider the worthiest remaining coalition S and use it to
decide which coalition S∗

i to stabilize next. If S is part of the optimal coalition
structure S∗ we make it S∗

i . Otherwise, if S is overlapping with some worthy
enough coalition S′ of S∗, we pick S′ as S∗

i . Thus in both cases we stabilize an
edge of the optimal coalition structure. If the coalition S is not in S∗ but too
worthy to be outbid by a 1

k -share of some overlapping coalition of S∗, we set
S = S∗

i instead. As that only happens when the value difference is quite big and
the number of affected optimal coalitions per occurrence is limited, this way we
get a good bound on how much we loose against the optimum. In S we keep
track of the stable solution. To ensure that S∗

i is stable, w(S∗
i ) is shared equally

and all overlapping coalitions such that the players joint with S∗
i only receive an

α-share.
We start with proving that in both cases S is core-stable. Obviously S is a

coalition structure. The crucial point for the algorithms to work is as follows.
All coalitions S′ distributed in round i are of value at most w(S) for the initially
chosen S of round i. Hence, for every S′ of round i at least one of the players
they share with S∗

i wants to stay at S∗
i as by choice of S∗

i
1

|S∗
i |
w(S∗

i ) ≥ 1
kw(S

∗
i ) >

αw(S′). Furthermore, in Algorithm 2 for all coalitions S′ of round i the players
they share with S∗

i actually prefer S∗
i for the same reason. Then obviously S is

stable as for every S+ ∈ C \ S we have S+ ∈ Ci−1 \ Ci for some i. Hence there is
some agent in S+ ∩S∗

i (namely u of Line 16 in Algorithm 1 respectively Line 17
in Algorithm 2) which refuses to deviate from S∗

i to S+.
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Algorithm 2. Ensuring PoA

Data: Instance (N, C, w), C inclusion monotone, social optimum S∗, bound α
1 set i = 0, C0 = C and S = ∅;
2 while Ci �= ∅ do
3 choose S with w(S) = max{w(S) | S ∈ Ci};
4 set i = i+ 1;
5 if S ∈ S∗ then
6 set S∗

i = S;
7 else if S /∈ S∗ and αw(S) < 1

k
w(S′) for some S′ ∈ S∗ then

8 choose S′ ∈ S∗ with αw(S) < 1
k
w(S′);

9 set S∗
i = S′;

10 else
11 set S∗

i = S;
12 set i = i+ 1, Ci = Ci−1 \ {S∗

i } and S = S ∪ {S∗
i };

13 foreach u ∈ S∗
i do

14 set du(S
∗
i ) =

1
|S∗

i
| ;

15 foreach S′ ∈ Ci with S′ ∩ S∗
i �= ∅ do

16 foreach u ∈ S′ do
17 if u ∈ S∗

i then
18 set du(S

′) = α;

19 else

20 set du(S
′) = 1−α|S∗

i ∩S′|
|S′\S∗

i | ;

21 set Ci = Ci \ {S′};

For Algorithm 2 we show that further there is no other core-stable state under
d(α). To see this assume some other coalition structure S ′ and consider some
coalition S+ of S \ S ′ with i minimal such that S+ ∈ Ci−1 \ Ci. Now S+ = S∗

i

and all coalitions of S ′ which intersect with S+ where distributed in the same
round i – as otherwise there would have been a coalition of an earlier round in
S \ S ′. Thus all involved players want to deviate to S∗

i because they are either
unmatched or get worse profit from their coalition in S ′ than from S∗

i .
Hence, we can use S to give an upper bound on the PoS respectively the PoA.

We compare S to the optimal outcome S∗ we used for the algorithm. For each
coalition in S ∩ S∗ both structures give the same value. Next we assign each
coalition S ∈ S∗ \ S to the coalition S∗

i for i such that S ∈ Ci−1 \ Ci. Now each
S∗
i has at most k coalitions S assigned to it as the size of S∗

i limits the number
of mutually disjoint coalitions intersecting with S∗

i . Further, by the choice of S∗
i

each of the Ss fulfills αw(S) < 1
kw(S

∗
i ). That is, S looses at most k2αw(S∗

i )
compared to S∗ for every coalition S∗

i in S \ S∗. This gives us a PoS and a PoA
at most k2α. 
�

The previous proof can be applied directly even if S∗ is not an optimum solution.
Optimality of S∗ only served to establish a relation to the optimum value for
social welfare. Hence, if we run Algorithms 1 and 2 on a ρ-approximate solution
S, we obtain core-stable states for which social welfare is at most k2α worse than
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w(S). This allows to obtain α-bounded distribution schemes with bounded PoS
and PoA in polynomial time.

Corollary 1. Given any coalition structure S that is a ρ-approximation to the
optimum, Algorithm 1 computes an α-bounded distribution scheme such that the
PoS is at most ρ ·max{1, k2α}. The same result holds for Algorithm 2 and PoA
in inclusion monotone instances.

Proposition 1. There exist instances with n agents and C not inclusion mono-
tone, in which the PoA is at least 2− 4

n+2 for every distribution scheme.

Note that for the extreme of equal sharing of the biggest coalitions α = 1
k ,

we get an upper bound of k for the PoS and the PoA while for α = 1
k2 we reach

PoS = PoA = 1. In particular for every α ≤ 1
k2 we can always assure optimality

of core-stable coalition structures.
Conversely, for all k and α = 1

k we can show tightness through the example
N = {1, . . . , k2} with w({1, . . . , k}) = 1 + ε, w({i + jk | j = 0 . . . k − 1}) = 1,
i = 1 . . . k and w(S) = 0 for every other coalition S. For ε → 0 this leads to a
PoS of k.

Furthermore there are instances of α-egalitarian games where PoS ∈ Θ(k2)α.

Proposition 2. For every k > 2, there is an instance in which every α-bounded
distribution scheme yields a PoS of at least max{1, (k2 − k)α}.

Remark. In reverse, there are instances where for PoS at most δ the required
α lies between δ

k2−k and δ
k2 . Our algorithms compute a distribution scheme for

α = δ
k2 .

We next consider deciding if a given α is small enough to allow for a distribu-
tion scheme with a core-stable coalition structure that obtains guaranteed total
profit. Equivalently, we consider finding the smallest α such that an α-bounded
distribution scheme yields a stable structure with a certain social welfare.

Theorem 2. It is NP-hard to decide whether for a given α > 0 and a given
value W > 0 there is an α-bounded distribution scheme that admits a core-stable
coalition structure S such that

∑
S∈S w(S) ≥ W . This holds even for instances

with k = 2.

Corollary 2. Given α > 0, it is NP-hard to decide the largest reachable social
welfare value by a core-stable solution under a α-bounded distribution scheme.

Corollary 3. Given W > 0, it is NP-hard to decide the value of the largest α
such that some α-bounded distribution scheme can stabilize at least one coalition
structure of value at least W .

Intuitively, finding the largest α gets easier when the coalition structure to be
stabilized is some social optimum given in advance. Sadly, for k > 2 we again
show NP-hardness of this problem. Conversely for k = 2 we will in Section 3
below provide an algorithm implementing this task in polynomial time under
mild additional constrains.
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Theorem 3. Let k ≥ 3. Given an optimal coalition structure S∗, it is NP-hard
to decide whether for a given α there is an α-bounded distribution scheme such
that S∗ becomes core-stable. This even holds for instances with all coalitions of
size exactly k.

3 Stable Matchings and Acyclic Alternating Paths

At first we note that if some matching M is not inclusion maximal, that is, can
be enlarged to a bigger matching by adding some edge, it cannot be stabilized
for any α > 0. In contrast, for α = 0 it is easy to see that every coalition
structure can be stabilized. Inclusion maximality can easily be tested, so we will
only deal with inclusion maximal matchings from now on. The matching case
is a subclass of coalition formation with k = 2. Hence, some properties from
Section 2 translate directly:

• The PoS and the PoA are bounded by 4α, and we can compute a suitable
distribution scheme in polynomial time. In particular, for α = 1

4 we can
ensure a PoS and a PoA of 1, while for α = 1

2 the PoS can go up to 2.
• For a given α and a given value W , it is NP-hard to decide whether there
is an α-bounded distribution scheme that admits a stable matching M with∑

e∈M w(e) ≥W .
• For a given α, it is NP-hard to decide the value of the best matching which
can be stabilized by some α-bounded distribution scheme.

• For a given W , it is NP-hard to decide the value of the largest α such that
some α-bounded distribution scheme can stabilize at least one matching of
value at least W .

However, the lower bounds on the PoS in terms of α given in Proposition 2
do not extend, as they only hold for k > 2. However, the simple example of 4
players, a path e1 = {1, 2}, e2 = {2, 3}, e3 = {3, 4} and profits w(e1) = w(e2) = 1
and w(e2) =

1−α+ε
α for some small enough ε > 0 already gives a lower bound of

2α
1−α which coincides with the upper bound of 2 at the extreme point of α = 1

2 .
Obviously e1 and e3 both can offer 1 − α to the vertices of the inner edge, but

need α 1−α+ε
α = 1− α+ ε > 1− α. This leads to a PoS of 2α

1−α+ε

ε→0−→ 2α
1−α .

For the remainder of this section, we will show improved results by restrict-
ing our attention to a subclass of matching instances, which we term acyclic
alternating. For defining this subclass we make the following observations.

Suppose we want to stabilize some matching M . Consider an edge e �∈ M
which has a common endpoint v with some e′ ∈ M such that w(e) ≤ w(e′).
Such edge never is a blocking pair for M if we assign only αw(e) of e to v, as
at least αw(e′) ≥ αw(e) is offered to v by e′. Hence, for all following analyses
we will assume that the distribution schemes assign αw(e) of e to v for all edges
e ∈ E \M with w(e) ≤ w(e′) for some adjacent e′ ∈M with e∩e′ = {v} and not
handle them explicitly anymore. Instead, we only focus on the edges e ∈ E \M
for which all adjacent e′ ∈M have w(e′) < w(e). We call such edges dominating
and their adjacent matching edges dominated. We denote the subgraph of G
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consisting of the dominating and dominated edges by Gd(M) and the set of
these edges by Ed(M). If every path in Gd(M) which alternates between M and
E \M is acyclic, we call Gd(M) acyclic alternating. We note that for optimal M ,
Gd(M) cannot contain any even cycles alternating between M and E \M as this
would contradict the optimality of M . An acyclic alternating Gd(M) resulting
from some optimal matching M allows us to show improved bounds.

Let us first note that the restriction to graphs with Gd(M) acyclic alternating
for some or even every optimal matching M is not a drastic cutback, as it covers
interesting subclasses of well-studied matching problems.

Proposition 3. Let LP(G,w) the LP-relaxation for the problem of finding a
maximum weight matching in a graph G with edge weights w and M∗ be a max-
imum weight matching. Then we have

{(G,w) | G bipartite}
�{(G,w) | LP(G,w) has integrality gap 1}
�{(G,w) | ∀M∗ : Gd(M

∗) is acyclic alternating}
�{(G,w) | ∃M∗ : Gd(M

∗) is acyclic alternating}.

Now we will see that the acyclic alternating property can actually help improving
the lower bound on α needed for a PoS of 1:

Theorem 4. For any optimal matching M∗ such that Gd(M
∗) is acyclic alter-

nating, there is an α-bounded distribution scheme that stabilizes M∗ with α = 1
3 ,

and this bound is tight. Given such an M∗, the distribution scheme can be com-
puted in polynomial time.

Note that this bound gives a real improvement compared to graphs without
acyclic alternating structure:

Proposition 4. There are matching games where a PoS of 1 requires α = 1 −√
1
2 ≈ 0.2929 < 1

3 .

In Section 2 we observed NP-hardness of deciding whether a given α suffices
to stabilize some optimal matching. Using the acyclic alternating property, we
can optimize α to stabilize arbitrary matchings. Hence, this property helps not
only in stabilizing optimal but arbitrary matchings.

Theorem 5. Given a matching M such that Gd(M) is acyclic alternating and
some α ∈

[
0, 12

]
, we can decide in polynomial time if there is an α-bounded

distribution scheme stabilizing M .

Proof. We have already seen how to find a distribution scheme for α ≤ 1
3 in

Theorem 4. Here we will treat the slightly more general approach as shown in
Algorithm 3. We first describe the intuitive idea behind the algorithm. The main
idea of the algorithm for Gd(M) is using that in every round there is an edge
for which the profit of one agent is already determined by the algorithm. In
particular, for e ∈ M there are only edges e′ �∈ M on one side that we have to
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Algorithm 3. Computing a Distribution Scheme for M

Data: Instance (G,w), matching M , bound α
1 set S = E;
2 foreach e ∈ E \M do
3 if ∃e′ ∈ M : e ∩ e′ = {u} and w(e) ≤ w(e′) then
4 share e such that αw(e) is offered to u;
5 set S = S \ {e};
6 foreach e = {u, v} ∈ M do
7 set su = αw(e), sv = αw(e) and reste = (1− 2α)w(e);
8 while S �= ∅ do
9 if ∃e = {u, v} ∈ M : u /∈ e′∀e′ ∈ S \ {e} then

10 set sv = sv + reste and reste = 0;
11 share e such that su is offered to u and sv is offered to v;
12 set S = S \ {e};
13 foreach e′ ∈ S with e′ ∩ e = {v} do
14 if sv ≥ αw(e′) then
15 share e′ such that αw(e′) is offered to v;
16 set S = S \ {e′};
17 if ∃e = {u, v} ∈ E \M : u /∈ e′∀e′ ∈ S ∩M then
18 if ∃e′ ∈ S ∩M : v ∈ e′ and sv + reste′ ≥ αw(e) then
19 if sv < αw(e) then
20 set sv = αw(e) and reste′ = reste′ − (αw(e)− sv);
21 share e such that αw(e) is offered to v;
22 set S = S \ {e};
23 else
24 return ’M cannot be stabilized with lower bound α’;

make non-blocking and for e ∈ Ed(M) \M there is only one e′ ∈M left on one
side which can be used to make e non-blocking. This property is due to the fact
that no alternating path in Gd(M) contains a cycle. Deciding the distribution
for e ∈ Ed(M) \M is easy. We give the smallest possible value αw(e) to the
side where an edge e′ ∈ M is supposed to ensure non-blocking status of e. In
contrast, for matching edges e ∈ M we have to be more careful. We start by
giving each side only the minimal portion of αw(e) and keep the rest as buffer.
Now every time we encounter an e′ ∈ Ed(M) \M which can only be stabilized
by e, we raise the share on that side just as much as needed using up some of
the buffer. If such e′ are left only on one side, we can push all the remaining
buffer to that side and check whether (some of) the e′ become non-blocking by
this assignment.

More formally consider the execution of Algorithm 3. At first we show that
we will not get stuck in the while-loop, that is, in every execution of the loop at
least one edge is removed from S (or we find out that M cannot be stabilized and
stop). Assume conversely that although S �= ∅, there neither is a matching edge
with no adjacent edges at one side nor a non matching edge with no adjacent
matching edge at one side. Then S contains a cycle which alternates between
matching and non matching edges in contradiction to the properties of Gd(M).
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Next we will see that, if the algorithm does not terminate early, the final
output is an α-bounded distribution scheme which stabilizes M . Every edge e of
E \M is shared (αw(e), (1 − α)w(e)) and every edge e = {u, v} in M is shared
according to (su, sv) which is a valid distribution as throughout the algorithm
su+sv+reste = w(e), where the buffer reste = 0 in the end. Obviously we never
exceed nor undercut the value of an edge. Further, su and sv start at αw(e) and
increase monotonically. Thus, our distribution respects the lower bound of α.
We claim that every e ∈ Ed(M)\M that is dropped from S is already stabilized
by an offer according to the current value su of some incident agent u. Then,
with S empty in the end and all matching edges shared according to the su-
values (that increase over the run of the algorithm) M is indeed stable. If e has
been removed at Line 5, the agent (denoted u) to which αw(e) is offered will
get at least as much from its incident matching edge e′. If e has been removed
at Line 16, it is stabilized by the matching edge which is removed along with
it. Further, each edge removed at Line 22 is stabilized as well, as the sv-value is
adjusted to be large enough if it has not been before. Hence M is stable under
the given distribution.

Now assume that the algorithm terminates early declaring that M cannot
be stabilized. Obviously, at the point where this decision is made, the currently
examined edge e ∈ Ed(M) \M cannot be made non-blocking anymore, because
either the incident matching edges where fully shared and removed already with-
out the share being large enough to make e non-blocking and delete it from S
(Line 16) or the current offer combined with the remaining buffer of the inci-
dent matching edge is smaller than αw(e). Thus, we have to show that we did
not offer a bigger share than needed to the other side earlier. In the beginning
each sv is set to αw(e) where e is the matching edge containing v, so nothing
is wasted. Now there are only two points where sv is enlarged. If sv is changed
in Line 10, we already know there are only edges on the side of v which re-
main to be stabilized, as we have seen above that every dropped edge is already
stabilized. Thus by giving the rest of the buffer to v we waste nothing for the
other side. The other time sv is changed is at Line 20 where it is enlarged to
meet the minimal possible offer of the currently examined non matching edge
e = {u, v}. Now e has been picked because there is no matching edge left on one
side of it, that is, either u is not matched in M , then e has to be stabilized at v
and thus it is necessary to rise sv, or the matching edge of u is already deleted
from S. But when deleting a matching edge we always ensure to delete all non
matching edges which get stabilized by the matching edge as well. Hence, again
it is necessary to stabilize e at v, and the algorithm only terminates early, if it
is not possible to stabilize M while respecting the α-bound. Together with the
fact that the algorithm provides an α-bounded distribution scheme under which
M is stable, if it terminates with S = ∅, this proves the theorem. 
�

Proposition 5. Suppose we are given a matching M and an α-bounded dis-
tribution scheme with maximal α stabilizing M . There are at most |E|3 many
relevant values for such a maximal α, which can be computed in polynomial time.
This holds even if Gd(M) is not acyclic alternating.
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Proof. Consider some edge e = {u, v} ∈ M and let Le = {e′|u ∈ e′ ∈ E \
M,w(e′) > w(e)} ∪ {ea} and Re = {e′|v ∈ e′ ∈ E \M,w(e′) > w(e)} ∪ {ea}
where we assume ea to be some auxiliary edge of value w(ea) = w(e). Now let
e1 ∈ Le be the edge of highest value in Le which has to be put to non-blocking
status by e and, similarly, e2 ∈ Re be the edge of highest value in Re which has
to be put to non-blocking status by e. If on some side there are no edges which
have to be handled, we choose ea to ensure an offer of α. Now the largest α which
allows e putting both e1 and e2 (and all smaller edges on the respective sides)
to non-blocking fulfills exactly w(e) = αw(e1) + αw(e2). As |M |, |Le| and |Re|
are all of size at most |E|, the number of different such α-values arising from M
is limited by |E|3. We claim that the maximum α for an α-bounded distribution
scheme stabilizing M must be among these candidate values. Assume conversely
the optimal α∗ does not fulfill the equation w(e) = α∗w(e1) + α∗w(e2) for any
e ∈ M , e1 ∈ Le, e2 ∈ Re. Now consider some α∗-bounded distribution scheme
d which stabilizes M . For each e ∈ M let e∗1 be the worthiest edge of Le which
is non-blocking and e∗2 the worthiest edge of Re which is non-blocking because
of e under d. We know that α∗w(e∗1) + α∗w(e∗2) � w(e) for every e ∈ M . Let
α+ = min{α | αw(e∗1)+αw(e∗2) = w(e) for some e ∈M}. Then α+ > α∗ and we
can stabilize M with an α+-bounded distribution scheme in the following way.
We share each edge e′ in E \M such that α+ is offered to (one of) the matching
edge which ensures non-blocking status for e′ in d, and we share each e ∈ M
such that du(e)w(e) ≥ α+w(e∗1) and dv(e)w(e) ≥ α+w(e∗2) for its respective e∗1
and e∗2. This contradicts maximality of α∗ and completes the proof. 
�

Corollary 4. Given a matching M such that Gd(M) is acyclic alternating, we
can in polynomial time find the maximal bound α for which M can be stabilized.

Observe that for general matching games, the relevant α-values can be bounded
and computed in the same way, even if Gd(M) is not acyclic alternating. How-
ever, in general it is not clear how to use this information to construct an optimal
distribution scheme, as it remains to decide which matching edges have to sta-
bilize which non-matching edges within cycles.

The characterization for the number of candidate values for optimal α can be
directly generalized to larger coalitions using the same arguments. However, we
have already seen in Theorem 3 that even the knowledge of the optimal value
for α does not help in finding a stabilizing distribution scheme efficiently.
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Abstract. The stable matching problem has many applications to real
world markets and efficient centralized algorithms are known. However,
little is known about the decentralized case. Several natural randomized
algorithmic models for this setting have been proposed but they have
worst case exponential time in expectation. We present a novel structure
associated with a stable matching on a matching market. Using this
structure, we are able to provide a finer analysis of the complexity of a
subclass of decentralized matching markets.

Keywords: decentralized stable matching, market algorithms.

1 Introduction

The stable matching problem and its variants have been widely studied due to
real world market applications, such as assigning residents to hospitals, women
to sororities, and students to public schools [1–3]. In a seminal paper, Gale and
Shapley first proposed an algorithm to find a stable matching in the basic two-
sided (bipartite) version [4]. Others have subsequently investigated the structure
of the set of stable matchings [1]. However, most prior work involves centralized
algorithms to find stable matchings where the entire set of preferences is known
to some central authority. In some cases the algorithms are not totally central-
ized, but the participants are subject to strict protocols where only one side
of the market can make proposals. Nevertheless, many applications of stable
matchings have no central authority or enforcement of protocols, such as college
admissions and the computer scientist job market. Therefore we investigate this
problem in a decentralized setting, where members of both sides of the market
can make proposals.

One major open question in decentralized stable matching concerns whether
natural and efficient algorithms exist. To this end, Yariv argues that natural
processes will find a stable matching and provides experimental support [5].
Roth and Vande Vate propose a class of randomized algorithms to model the
decentralized setting and show that algorithms in this class converge to a stable
matching with probability one [6]. At each step these algorithms match two
participants who form a blocking pair (who prefer to be matched with each other
over its partner) of the current matching. However, they present no expected time
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complexity. Ackerman et al. investigate one particular algorithm in this class,
the better response algorithm (or random better response dynamics). In each
step of this algorithm, one blocking pair is chosen uniformly at random. For this
algorithm, they show worst case instances that take exponential time to reach a
stable matching in expectation [7].

Since the better response algorithm is natural but takes exponential time in
the worst case, can we find a natural subclass of matching markets which do
not require exponential time? Ackermann et al. show that the better response
algorithm only requires polynomial time for one class of problem instances, those
with correlated preferences [7]. However, correlated preferences require that a
participant obtains the same benefit from a partnership as its partner. This
significantly limits the preference structures allowed in the matching market.
Therefore, we investigate other structural properties of stable matching markets
which facilitate faster convergence.

In this paper we make progress toward answering the previous question by
expanding the subclass of markets with polynomial time convergence guaran-
tees. For this purpose we associate a directed graph, called the jealousy graph,
with each stable matching. It turns out that this structure is a key factor in de-
termining the convergence time of the better response algorithm. The jealousy
graph is a directed graph where a vertex v corresponds to a pair in the stable
matching and an edge (u, v) is present if one member of the pair v prefers a
member of the pair u to its partner in the stable matching. The strongly con-
nected component graph of this jealousy graph provides a decomposition for that
stable matching. Our intent is to formalize a notion of structure using jealousy
graphs and the corresponding decompositions. In particular, we find that the
strongly connected components of this graph give insight into the complexity of
that market. Gusfield and Irving provide a structural property of stable match-
ings which describes the set of stable matchings and the relation between them,
whereas our structures relate to individual stable matchings and the distributed
process by which these stable matchings are achieved [1].

With a decomposition, we associate a size and depth. Our main result, Theo-
rem 24, states that for a matching market of size n with a decomposition of size
c and depth d, the convergence time is O(cO(cd)nO(c+d)). Therefore, for constant
size and depth decompositions, we demonstrate that the better response algo-
rithm requires only polynomial time in expectation to converge for an expanded
class of matching markets. This indicates that the jealousy graph and decom-
position structures partially answer the convergence questions of the decentral-
ized stable matching problem. As an application of our work, we demonstrate
how Theorem 24 provides theoretical justification for the simulated results of
Boudreau [8]. We also conjecture that these structures will provide a means of
predicting which stable matchings are likely to be achieved when there are mul-
tiple stable matchings, a question that others in the literature have investigated
[5, 9, 10].

In the remainder of this section we formalize our model and present the ba-
sic concepts. In section 2, we present some useful structural properties of the
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jealousy graph and decomposition. In section 3, we have our convergence re-
sult. Section 4 contains the application of our work to [8], and section 5 is our
conclusion.

1.1 Basic Stable Matching Concepts

We start with the basic definitions of matching markets and stable matchings.
Those familiar with the matching literature will notice that we restrict prefer-
ences to be complete and strict.

Definition 1. (S, P ) is a matching market if S = M
⋃
W for some disjoint sets

M,W , |M | = |W | and P = {!s}s∈S where, for s ∈M , !s is a total order over
W , and for s ∈W , !s is a total order over M .

We say a matching market has size n if |M | = |W | = n.

Definition 2. A matching on the set S is a function μ : S → S such that
∀s ∈ S, μ(μ(s)) = s, s ∈M ⇒ μ(s) ∈W

⋃
{s} and s ∈W ⇒ μ(s) ∈M

⋃
{s}.

We say that a participant s ∈ S is unmatched by a matching μ if μ(s) = s.
We also assume that all participants prefer to be matched to anyone than to be
unmatched. Observe that μ can be thought of as a collection of pairs (m,w) if
we allow self loops (s, s) for unmatched participants.

Definition 3. A matching on the set S is a perfect matching if μ(s) �= s for all
s ∈ S.

Given a matching, if there were a man and a woman who each preferred the
other to their partner, this causes the matching to be unstable. Therefore any
stable matching must have no such pairs. We call such a pair a blocking pair,
defined formally here:

Definition 4. Let (S, P ) be a matching market and μ be any matching on S.
A blocking pair for μ in (S, P ) is a pair (m,w) such that m ∈ M , w ∈ W ,
μ(m) �= w, w !m μ(m), and m !w μ(w).

Definition 5. Let (S, P ) be a matching market. A matching μ on S is a stable
matching for (S, P ) if it has no blocking pairs in (S, P ).

The following three concepts will be useful since we will deal with subsets of
the matching market.

Definition 6. A balanced subset of a matching market (S, P ), S = M
⋃
W , is

a subset S′ ⊆ S such that |S′⋂M | = |S′⋂W |.

Definition 7. A matching μ is locally perfect on a balanced subset S′ ⊆ S if
μ(S′) ⊆ (S′) and μ �S′ is a perfect matching on S′.

Definition 8. Let μ be a stable matching on a matching market (S, P ). A
matching μ′ is μ-stable on a balanced subset S′ ⊆ S if μ′ �S′= μ �S′ .
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1.2 Better Response Algorithm

The class of algorithms introduced by Roth and Vande Vate [6] involve randomly
choosing a blocking pair of the current matching and creating a new matching
by matching the participants in the blocking pair with each other. This resolves
the chosen blocking pair.

Definition 9. A blocking pair (x, y) in a matching μ is resolved by forming a
new matching μ′ where μ′(x) = y, μ′(μ(x)) = μ(x) if μ(x) �= x, μ′(μ(y)) = μ(y)
if μ(y) �= y, and μ′(s) = μ(s) for s /∈ {x, y, μ(x), μ(y)}.

This process is repeated until a stable matching is reached. The better response
algorithm defined in [7], is the algorithm in this class where the blocking pair
is chosen uniformly at random from all blocking pairs of the current matching.
Note that this algorithm results in a sequence of matchings. A valid sequence
of matchings is any sequence where each matching is formed by resolving one
blocking pair in the previous matching.

We focus on the better response algorithm since the uniform distribution on
blocking pairs facilitates our analysis and we believe it provides insight into the
more general class of algorithms. This algorithm also serves as a model of a
distributed stable matching market.

1.3 Jealousy Graph and Related Definitions

In order to analyze matching markets, we represent the preference structure as
a directed graph. While we lose some of the preference information, we retain
critical relationships relative to the stable partners. In section 3 we will provide
bounds on convergence based on this simpler structure.

Definition 10. The jealousy graph of a stable matching μ on a matching market
(S, P ) is defined as the graph Jμ = (V,E) where, for each pair {x, μ(x)}, x ∈
S, there is a vertex v{x,μ(x)} ∈ V and E = {(u{x,y}, v{x′,y′})|u{x,y}, v{x′,y′} ∈
V, and either x !y′ x′ or y !x′ y′}.

The jealousy graph can provide insight into the complexity of stabilization. For
example, suppose the jealousy graph for a stable matching μ is one large clique.
Even when all but one pair of the participants are matched with their partner in
μ, there are still many blocking pairs. Therefore, the better response algorithm
would be unlikely to choose the blocking pair that would result in a stable
matching. This greatly hinders convergence to the stable matching.

On the other hand, suppose the jealousy graph for μ is a DAG. Then there
is at least one vertex with no incoming edges. This means each partner in the
corresponding pair is the other’s first preference. Consequently, this will remain
a blocking pair until it is resolved, so we would expect such a pair to be resolved
in O(n2) time under the better response dynamics. Moreover, once resolved, the
match will remain unbroken since neither partner will ever be involved in any
blocking pairs. Ignoring this pair will result in at least one other source vertex
of the graph. Inductively, these pairs will be resolved in O(n2) expected time.
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This results in an expected convergence time of O(n3) for the matching market.
It should be noted that the class of correlated markets, for which Ackermann et
al. prove the better response algorithm requires only polynomial time, falls into
this special case.

When it is a DAG, the jealousy graph provides an order in which the pairs
will likely be resolved to reach μ, namely, a topological sorted order. However, a
matching market might not fall into this extreme case as there could be cycles
in the jealousy graph. Therefore, we define a decomposition which is a DAG
obtained from the jealousy graph.

Definition 11. Let Jμ be the jealousy graph of a stable matching μ for a match-
ing market (S, P ). A μ-decomposition, ρμ is a graph of components of Jμ such
that if u, v are in the same strongly connected component of Jμ then they are in
the same component in ρμ and if edge (A,B) is in ρμ then there is a path from
a vertex in A to a vertex in B in Jμ.

We call the strongly connected components of Jμ stable components. Observe
that ρμ is a directed acyclic graph. Therefore it induces a partial order on the
stable components. Sometimes it will be simpler to refer to the decomposition
as ρμ = (Π,#) where Π is a partition of S into sets corresponding to the stable
components of ρμ and # is the induced partial order on those components. As
a slight abuse of notation, we will use the term stable component to refer to
both the connected component in the decomposition and the set of participants
corresponding to this component.

In dealing with partial orders we will use the concept of a downset. A downset
of a partially ordered setΠ with partial order# is any set such that forA,B ∈ Π ,
if A is in the set and B # A, then B is in the set. The downset of an element
A ∈ Π is Down(A) = {B|B # A}. When the elements of Π are sets themselves,
as in the case of decompositions, we will denote union of sets in Down(A) as
D(A) =

⋃
B∈Down(A)B.

For our complexity results we need the following two notions:

Definition 12. The depth of a stable component A of a μ-decomposition, ρμ, is
the length of the longest path in ρμ from any source vertex to vA. The depth of
ρμ is defined as maxA∈ρμ depth(A).

We will say that a stable component A is on level j if depth(A) = j. Minimal
stable components are on level 0. Intuitively, we would expect components on
lower levels to converge to the stable matching sooner than those on higher
levels.

Definition 13. The size of a μ-decomposition, ρμ, is defined as maxA∈ρμ size(A).

Intuitively, components with smaller sizes can have less internal thrashing so
they will converge to the stable matching more quickly than larger components.
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2 Structural Results

2.1 Any Digraph Can Be a Jealousy Graph

These structural notions would not be very enlightening if all matching markets
had the similar jealousy graphs and decompositions. However, the following re-
sult shows that any directed graph is the jealousy graph associated with a stable
matching for some matching market. The proof can be found in the full paper.

Theorem 14. Given any directed graph G with n vertices, there is a set S =
{mi, wi|i = 1, 2, . . . , n} and preferences P = {!mi,!wi |1 ≤ i ≤ n} such that
(S, P ) is a matching market with a stable matching μ where μ(mi) = wi and
Jμ = G.

2.2 Properties of Decompositions

In this section we prove several structural properties of the jealousy graphs and
decompositions essential to our main convergence result. The proofs are in the
full paper. The first property says that if there is a path from one vertex to
another in the jealousy graph, then the first vertex must be in the downset of
any component containing the second vertex.

Lemma 15. Given a matching market (S, P ) with a stable matching μ, let Jμ
be the jealousy graph associated with μ. Let v{m,w} and v{m′,w′} be vertices in
Jμ. Suppose v{m′,w′} ∈ A for a stable component A of a μ-decomposition ρμ =
(Π,#). If there is a path from v{m,w} to v{m′,w′}, then m,w ∈ D(A).

Using this lemma, we prove that no member of a stable component can prefer
anyone outside of the downset of that component to his stable partner.

Lemma 16. Given a matching market (S, P ) with a stable matching μ, let ρμ =
(Π,#) be a μ-decomposition. For A ∈ Π, a ∈ A, s ∈ S −D(A), μ(a) !a s.

A further property is that if there are two stable matchings with distinct
decompositions, the intersection of the downsets of stable components must be
mapped to itself in both stable matchings.

Lemma 17. Given a matching market (S, P ) with stable matchings μ, μ′, let ρμ
and ρμ′ be respective decompositions. Let A be D(X) for some stable component
X of ρμ and B be DY for some stable component Y of ρμ′ . Then μ(A

⋂
B) =

μ′(A
⋂

B) = A
⋂
B.

Our final result shows that forming a stable matching on the downset of a
stable component cannot increase the size or depth of the decomposition of
another stable matching.

Lemma 18. Given a matching market (S, P ) with stable matchings μ, μ′, let ρμ
and ρμ′ be respective decompositions. Suppose the size of ρμ is c and the depth
is d. Let A be a stable component of ρμ′ . Then there is a stable matching μ′′

such that μ′′ �Dμ′(A)= μ′ �Dμ′ (A) and μ′′ �S−Dμ′(A)= μ �S−Dμ′(A). There is also

a μ′′-decomposition on S −Dμ′(A) of size at most c and depth at most d.
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3 Convergence

In this section we prove our convergence result. The proof uses two main ideas.
First, in the following sequence of lemmas, we show that a stable component
will converge to a locally perfect matching in time that is only polynomially
dependent on the size of the entire market. Then the proof of Theorem 24 uses
this to bound the time it takes for all components of the decomposition to reach
a stable matching.

For this section we will assume (S, P ) is a matching market of size n, μ is a
stable matching on S, and (Π,#) be a μ-decomposition.

The following lemma says that if a matching is not locally perfect on a stable
component of a μ-decomposition, then there is a blocking pair which is in μ
between two members of that component.

Lemma 19. Let A ∈ Π and X = D(A) − A. Let μ′ be the current matching.
If μ′ has no matches between members of X and members of A and μ′ is not
locally perfect on A, then there is a blocking pair (x,y) for μ′ such that x, y ∈ A
and μ(x) = y.

Proof. Since μ′ is not a locally perfect matching on A there must be some x0 ∈ A
such that μ′(x0) = x0 or μ′(x0) ∈ S −X −A. Let y0 = μ(x0). Now since μ is a
stable matching, y0 !x0 μ′(x0). If x0 !y0 μ′(y0) then (x0, y0) is a blocking pair
of μ′ and μ(x0) = y0.

Otherwise μ′(y0) !y0 x0, so μ′(y0) ∈ D(A). In fact, μ′ ∈ A since μ′ has no
matches between members of A and X . Let x1 = μ′(y0) and y1 = μ(x1). Since
μ is a stable matching, y1 !x1 y0 or else (x1, y0) would form a blocking pair for
μ. Now if x1 !y1 μ′(y1), (x1, y1) is a blocking pair of μ′ and μ(x1) = y1 so we
have our result. Otherwise we repeat in the same manner to form a sequence of
pairs {(xi, yi)} such that xi, yi ∈ A, μ(xi) = yi, μ

′(yi) = xi+1, yi !xi μ
′(xi), and

xi+1 !yi xi for all i. But this cannot cycle since no participant is repeated. This
is because at each step we add a new pair xi, yi where μ(xi) = yi and either
μ′(x0) = x0 or μ′(x0) /∈ A, so x0 cannot be repeated. Furthermore, it cannot go
forever since A is finite. Therefore the sequence must terminate at some index k
and (xk, yk) is a blocking pair for μ′.

Next we place a lower bound on the probability that we make some progress
toward the μ-stable matching when a stable component of the decomposition is
not in a locally perfect matching.

Lemma 20. Let A ∈ Π be a stable component of size at most c and X =
D(A)−A. Let μ′ be any matching on S that is not a locally perfect matching on
A. Then starting from μ′, if no matches are formed between a member of A and
a member of X, the probability that the first blocking pair resolved between two
members of A is a pair in μ is at least 1

c2 .

Proof. Lemma 19 shows there will be one blocking pair which is in μ until the
matching becomes locally perfect on A. In order for the matching to become
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locally perfect on A, a blocking pair must be resolved between two members of
A. Therefore since there will be at most c2 blocking pairs involving two members
of A and at least one of them is in μ, there is a 1

c2 probability that the first
blocking pair resolved between members of A is in μ.

Using this lemma, we bound the probability that a component of the decom-
position will make some progress toward the μ-stable matching each time the
matching is not locally perfect on it.

Lemma 21. Let A ∈ Π be a stable component of size at most c and X =
D(A)−A. Let μ0 be any matching on S such that μ0 �A contains m of the pairs
in μ where 0 ≤ m < c. Let μ0, μ1, . . . , μt be any valid sequence of matchings
under the better response dynamics starting from μ0 such that

1. μt is locally perfect on A
2. μi is not locally perfect on A for some i, 0 ≤ i < t
3. μk does not have any matches between a member of A and a member of X

for some k, 0 ≤ k ≤ t

Then the probability that ∃j, 0 < j ≤ t, μj �A contains at least m+1 of the pairs
in μ is at least 1

c4 .

Proof. Assume μ0, μ1, . . . , μt is such a sequence, and i is the first index such that
μi is not locally perfect. Without loss of generality assume k = t is the first index
k > i such that μk is locally perfect on A. This assumption is valid because, if
there is at least a probability p of some event occurring in a subsequence, then
there is clearly at least a probability p of that event occurring in the entire
sequence.

There are two cases: either μ0 is locally perfect on A or not.
case i : Assume μ0 is not locally perfect, so i = 0. Then in order to reach

μt there must be at least one match formed between two members of A. Let
j > 0 be the first index in the sequence such that μj was formed by resolving a
blocking pair between two members of A. Since no one in A prefers anyone in
S−D(A) to his partner in μ, μj−1 �A has m pairs in μ. By lemma 20 there is at
least 1

c2 probability that the first blocking pair resolved between two members
of A is in μ. This will result in μj �A having m+ 1 pairs in μ.

case ii : If μ0 is locally perfect, so i > 0. There are two ways to transition
from μi−1 to μi. One is for a blocking pair of μi−1 between a member of A and
a member of S −X − A to be resolved. Since this cannot involve a member of
A who is with his partner in μ according to μ′, μi �A has m pairs that are in
μ. Therefore this case reduces to the first case where the initial matching is not
perfect.

The other way to transition from μi−1 to μi is for a blocking pair between two
members of A to be resolved, leaving two unmatched members of A, say x, y.
The blocking pair cannot involve two pairs of μ or else it would be a blocking
pair for μ. If it involves no pairs of μ then again this case reduces to the first
case.
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In the last case, μi �A has m − 1 pairs that are in μ. We cannot reach μt

without resolving a blocking pair between two members of A. Let l > i be the
first index after i in the sequence such that μl was formed by resolving a blocking
pair between two members of A. Then μl−1 �A must have m−1 pairs that are in
μ. By lemma 20 there is at least 1

c2 probability that μl �A has m pairs that are
in μ. If this occurs, the blocking pair resolved to transition to μl cannot involve
both x and y because they are not partners in μ. Thus, at least one of x or y is
still not matched to someone in A. Therefore, μl is not a locally perfect matching
on A. Then by the first case, we have at least 1

c2 probability that for some j,
l < j ≤ t, μj �A has m+ 1 pairs that are in μ. This gives us a total probability
of at least 1

c4 that μj �A has m+ 1 pairs that are in μ for some j, 0 < j ≤ t.

We now bound the expected number of times each stable component will have
to become not locally perfect before it becomes μ-stable. The proof can be found
in the full paper.

Lemma 22. Let A ∈ Π be a stable component of size at most c and X =
D(A) − A. Let μ′ be any matching on S. Then starting from μ′, if no matches
are formed between a member of A and a member of X, the expected number of
distinct times the matching needs to transition from a locally perfect matching
on A to a matching that is not locally perfect on A before it reaches a μ-stable
matching on A is at most c4(c+1).

The final lemma we need shows that when the matching is not locally perfect
on a stable component of the decomposition, it will reach a perfect matching
in time that depends only linearly in n in expectation, provided there is no
interference from members of lower stable components.

Lemma 23. Let A ∈ Π be a stable component of size at most c and X =
D(A)−A. Let μ′ be any matching on S which is not locally perfect on A. Then
starting from μ′, if no matches are formed between a member of A and a member
of X, the expected time reach a matching which is locally perfect on A is at most
cn2c.

Proof. Lemma 19 implies that for any given matching, either the matching is
locally perfect on A or there is a blocking pair between two members of A which
is a pair in μ. Since the size of A is at most c, there are at most c such pairs.
Therefore if all of them are resolved in c consecutive steps, the resulting matching
will be locally perfect on A. Alternatively if after fewer than c steps of resolving
blocking pairs that are in μ we reach a matching with no such blocking pairs,
then the matching must already be locally perfect on A. For any given matching
there are at most n2 total blocking pairs so the probability of resolving a blocking
pair between two members of A that is a pair in μ is at least 1

n2 . But then the
probability of resolving up to c of them and reaching a locally perfect matching
in c or fewer steps is at least 1

n2c .
Therefore, in expectation we will have to repeat the process of making c steps

at most n2c times before reaching a locally perfect matching on A. This leads to
at most cn2c steps in expectation.



272 M. Hoffman, D. Moeller, and R. Paturi

Finally we will show that the expected convergence time for the better re-
sponse dynamics is linear in the total number of participants but possibly ex-
ponential in the size of the largest stable component and depth of the decom-
position. The special case where the size of the decomposition is 1 includes the
correlated preferences of Ackermann et al.

Theorem 24 (Convergence). Suppose μ is a stable matching. Suppose the
depth of (Π,#) is d and the size of the largest stable component of Π is no more
than c. Then the expected time to converge to a stable matching is O(cO(cd)nO(c+d)).
If c = 1, then the expected time is O(n3).

Proof. Suppose μ′ is another stable matching. First, suppose that for any stable
component A′ of a μ′-decomposition, a μ′-stable matching is never reached on
Dμ′(A′).

Consider the μ-decomposition graph for (Π,#). Recall that a stable compo-
nent A is on level j if depth(A) = j. For convenience, let level d+1 be an empty
dummy level at the top. Since the depth is d, there are exactly d + 1 levels.
We proceed by bounding the expected time for one level to reach a μ stable
matching, and then recurse on the higher levels.

Let T (l) denote the expected time for the participants in stable components
on levels l and above to reach a stable matching without resolving blocking
pairs involving any members of stable components on lower levels. Let nl be the
number of stable components on level l. Note that since there are at most n stable
components of D, n1+ . . .+nd ≤ n. We will show that T (0) = O(cO(cd)nO(c+d)).

First observe that T (d+ 1) = 0 since there are no stable components at level
d+ 1.

Now consider T (l) for l < d+ 1.
When one of the nl stable components A on level l is not in a locally perfect

matching. Then by Lemma 23, we know it will take cn2c steps in expectation
to reach a locally perfect matching on A. Also, by lemma 21 we know it has at
least 1

c2 probability of reaching a matching whose restriction to A has a greater
number of pairs that are in μ than the current matching, before it reaches a
locally perfect matching.

On the other hand, when all nl stable components are in locally perfect match-
ings, then there are two cases:

If there is a blocking pair between two members of stable components on level
l it will remain there until the matching becomes not locally perfect on at least
one stable component on level l. Since there are at most n2 blocking pairs, it
will take at most n2 steps in expectation for the matching to become not locally
perfect on at least one stable component on level l.

If there are no such blocking pairs, it might be required for the higher levels to
reach a stable matching before exposing a blocking pair involving a participant
on level l. If no matches are formed involving any members of components on
level l or lower, the expected time for the remaining stable components to reach
a stable matching is given by T (l + 1). Once the higher levels have reached a
stable matching, the only blocking pairs not involving members of levels below l
are between a member of a stable component on level l and a member of a stable
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component on a higher level. Unless all stable components on level l and above
are in a stable matching, at least one such blocking pair must exist. Therefore
it will only take 1 more step to reach a matching which is not locally perfect on
one stable component on level l.

Consequently, it will take at most n2 +T (l+1)+ 1 steps to reach a matching
that is not locally perfect on one stable component on level l. Again, by Lemma
23, we know it will take cn2c steps in expectation to reach a locally perfect
matching on A. By Lemma 22, we know in expectation, for each stable com-
ponent on level l, it will take at most c4(c+1) transitions from a locally perfect
matching to a matching which is not locally perfect on that stable component it
reaches a μ-stable matching. This means that in expectation it will take at most
nlc

4(c+1) of these transitions total before all stable components on level l reach
a μ-stable matching.

Therefore, in the worst case, it will take (n2+T (l+1)+1) steps to transition
from a locally perfect matching to a matching that is not locally perfect on one
of the stable components on level l. Then it will take at most cn2c steps to reach
a matching which is locally perfect on that stable component. Furthermore, this
process needs to be repeated no more than nlc

4(c+1) times in expectation in
order for all stable components on level l to reach a μ-stable matching.

Once all stable components on level l have reached a μ-stable matching, all
that remains is for the higher levels to reach a stable matching, which takes
T (l+ 1) time in expectation.

This yields the following formula:

T (l) ≤ nlc
4(c+1)(cn2c+n2+T (l+1)+1)+T (l+1) ≤ 2nlc

4(c+1)(cn2c+T (l+1))

Solving this recursion for T (0), we obtain

T (0) ≤ 2n0c
4(c+1)(cn2c + T (1))

T (0) ≤ (cn2c)
d+1∑
i=1

(2c4(c+1))i
i−1∏
j=0

nj

so since ni + 1 ≤ O(n) for all i, T (0) = O(cO(cd)nO(c+d)).
This is the expected time to reach the stable matching μ. Now suppose for

some stable component A′ of a μ′-decomposition for some other stable matching
μ′, a μ′-stable matching is reached on Dμ′(A′). By Lemma 18, this will not
increase the size or depth of the remaining decomposition. Therefore, if this
happens before μ is reached, it will only decrease the convergence time.

Finally, as a special case assume c = 1. In this case a locally perfect matching
on a stable component is a μ-stable matching. By lemma 23 it will take at most
n2 steps for a stable component on level l to reach a μ-stable matching. Since
there are nl components on level l, T (l) ≤ nln

2 + T (l + 1) ≤
∑d−l

i=1 nin
2 so

T (0) =≤
∑d

i=1 nin
2 = n3.
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4 Correlated and Intercorrelated Preferences

We have shown bounds on convergence time but this is only relevant if there
is variation in the jealousy graph structures of real markets. While randomly
generated preferences tend to have decompositions that are close to the trivial
decomposition, which is the entire set, real-world markets tend to have some
structure. Here we show that two classes of preferences found in real world
markets, correlated and intercorrelated preferences, exhibit decompositions with
small size components. Partially correlated preferences are often used by model-
ers [8, 11] and are natural in many matching markets (e.g. mate selection) where
preferences are based on a mixture of universally desirable features (e.g. intel-
ligence) and idiosyncratic tastes (e.g. shared hobbies). Note that the correlated
preferences discussed here differ from the correlated preferences of Ackemann
et al. Intercorrelation exists when the preferences of the men relate to the pref-
erences of the women. See [12] for examples of markets with intercorrelation.
Boudreau showed that more correlation and intercorrelation lead to faster con-
vergence of the better response algorithm [8]. We provide similar plots in Figures
1(b) and 1(d). Theorem 24 provides theoretical justification for these simulated
results.

As described in [11, 13], correlated preferences are generated using scores of
the form:

Smw = ηmw + UIw

where Smw is the score man m gives woman w composed of his individual score
ηmw and a correlation factor U ∈ [0,∞) multiplied by the consensus score of
w, Iw. ηmw and Iw are chosen uniformly at random from [0, 1]. The men then
rank the women in order from lowest score to highest. Women’s preferences are
generated analogously. For various values of U we generate 100 preferences with
correlation factor U . For each set of preferences we find the decomposition with
smallest size and report the average of these sizes. We also compute the average
minimal depth in the same manner. The results are shown in figure 1(a). At
U = 0, the average size is close to n and the depth is close to 1. As U goes to
∞, the average size approaches 1 and the depth approaches n. These are the
parameters of perfectly correlated preferences. This shows that as the amount of
correlation varies, so do the size and depth of the decompositions. Figure 1(b)
shows the log of the average convergence time over 100 trials for each of the 100
correlated preferences generated.

As in [12], intercorrelated preferences can be generated using scores of the
form:

Smiwj = ηmiwj + V ∗ |i− j|n

where Smiwj is the score man mi gives woman wj . As with correlated pref-
erences, ηmiwj is his individual score. Here V is the intercorrelation factor and
|i− j|n = min(|i− j|, n− |i− j|)/(n2 ) represents the “distance” man mi is from
woman wj . 1(c) and 1(d) are generated in the same manner as 1(a) and 1(b),
respectively. These plots show that as preferences become more intercorrelated,
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Fig. 1. Jealousy Graphs vs. Correlation and Intercorrelation. (a) The jealousy graph
parameters change as preferences become more correlated. (b) Convergence time de-
creases as preferences become more correlated. (c) The jealousy graph parameters
change as preferences become more intercorrelated. (d) Convergence time decreases as
preferences become more intercorrelated.

the size and depth of the decompositions decrease. As Theorem 24 explains, this
decreases the convergence time of the better response algorithm as intercorrela-
tion increases.

5 Conclusion

We have introduced a new way of viewing stable matching problems in terms of
their jealousy graphs and μ-decompositions. We demonstrate that these concepts
are useful in analyzing the convergence time of the better response algorithm
and guarantee polynomial convergence on a subclass of matching markets. Fur-
thermore, these theoretical results apply to a broad range of markets since they
provide a notion of structure which extends beyond the well-studied notions of
correlation and intercorrelation.

One open question involves the exponential dependency on the depth of the
decomposition. While we know that the exponential dependency on size cannot
be removed, it remains an open question whether we can improve this bound in
terms of the depth. Another open problem concerns which matching is most likely
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to be reached. Since our result provides a method of classifying the expected con-
vergence time of the better response algorithms in terms of the decompositions
of the stable matchings, we conjecture that matchings with decompositions that
have small size and depth are more likely to be reached than ones with large size
and depth.
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Abstract. Linear regression amounts to estimating a linear model that
maps features (e.g., age or gender) to corresponding data (e.g., the an-
swer to a survey or the outcome of a medical exam). It is a ubiquitous
tool in experimental sciences. We study a setting in which features are
public but the data is private information. While the estimation of the
linear model may be useful to participating individuals, (if, e.g., it leads
to the discovery of a treatment to a disease), individuals may be reluctant
to disclose their data due to privacy concerns. In this paper, we propose
a generic game-theoretic model to express this trade-off. Users add noise
to their data before releasing it. In particular, they choose the variance
of this noise to minimize a cost comprising two components: (a) a pri-
vacy cost, representing the loss of privacy incurred by the release; and
(b) an estimation cost, representing the inaccuracy in the linear model
estimate. We study the Nash equilibria of this game, establishing the
existence of a unique non-trivial equilibrium. We determine its efficiency
for several classes of privacy and estimation costs, using the concept of
the price of stability. Finally, we prove that, for a specific estimation cost,
the generalized least-square estimator is optimal among all linear unbi-
ased estimators in our non-cooperative setting: this result extends the
famous Aitken/Gauss-Markov theorem in statistics, establishing that its
conclusion persists even in the presence of strategic individuals.

Keywords: Linear regression, Gauss-Markov theorem, Aitken theorem,
privacy, potential game, price of stability.

1 Introduction

The statistical analysis of personal data is a cornerstone of several experimental
sciences, such as medicine and sociology. Studies in these areas typically rely on
experiments, drug trials, or surveys involving human subjects. Data collection
has also become recently a commonplace—yet controversial—aspect of the In-
ternet economy: companies such as Google, Amazon and Netflix maintain and
mine large databases of behavioral information (such as, e.g., search queries or
past purchases) to profile their users and personalize their services. In turn, this
has raised privacy concerns from consumer advocacy groups, regulatory bodies,
as well as the general public.
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The desire for privacy incentivizes individuals to lie about their private
information–or, in the extreme, altogether refrain from any disclosure. For exam-
ple, an individual may be reluctant to participate in a medical study collecting
biometric information, concerned that it may be used in the future to increase
her insurance premiums. Similarly, an online user may not wish to disclose her
ratings to movies if this information is used to infer, e.g., her political affiliation.
On the other hand, a successful data analysis may also provide a utility to the
individuals from which the data is collected. This is evident in medical stud-
ies: an experiment may lead to the discovery of a treatment for a disease, from
which an experiment subject may clearly benefit. In the cases of commercial
data mining, users may benefit both from overall service improvements, as well
as from personalization. If such benefits outweigh privacy considerations, users
may consent to the collection and analysis of their data, e.g., by participating in
a clinical trial, completing a survey, or using an online service.

In this paper, we approach the above issues through a non-cooperative game,
focusing on a statistical analysis task called linear regression. We consider the
following formal setting. A set of individuals i ∈ {1, . . . , n} participate in an
experiment, in which they are about to disclose to a data analyst a private
variable yi ∈ R–e.g., the answer to a survey or the outcome of a medical test.
Each individual i is associated with a feature vector xi ∈ Rd, capturing public
information such as, e.g., age, gender, etc. The analyst wishes to perform linear
regression over the data, i.e., compute a vector β ∈ Rd such that:

yi ≈ βTxi, for all i ∈ {1, . . . , n}.

However, individuals do not reveal their true private variables to the analyst
in the clear: instead, before reporting these values, they first add noise. In our
examples above, such noise addition aims to protect against, e.g., future use
of the individual’s biometric data by an insurance company, or inference of her
political affiliation from her movie ratings. The higher the variance of the noise an
individual adds, the better the privacy that she attains, as her true private value
is obscured. On the other hand, high noise variance may also hurt the accuracy
of the analyst’s estimate of β, the linear model computed in aggregate across
multiple individuals. As such, the individuals need to strike a balance between
the privacy cost they incur through disclosure and the utility they accrue from
accurate model prediction.

Our contributions can be summarized as follows.

(i) We model interactions between individuals as a non-cooperative game, in
which each individual selects the variance level of the noise to add to her pri-
vate variable strategically. An individual’s decision minimizes a cost func-
tion comprising two components: (a) a privacy cost, that is an increasing
function of the added noise variance, and (b) an estimation cost, that de-
creases as the accuracy of the analyst’s estimation of β increases. Formally,
the estimation cost increases with the covariance matrix of the estimate of
β, when this estimate is computed through a least-squares minimization.
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(ii) We characterize the Nash equilibria of the above game. In particular, we
show that the above setting forms a potential game. Moreover, under ap-
propriate assumptions on the privacy and estimation costs, there exists a
unique pure Nash equilibrium at which individual costs are bounded.

(iii) Armed with this result, we determine the game’s efficiency, providing bounds
for the price of stability for several cases of privacy and estimation costs.

(iv) Finally, we turn our attention to the analyst’s estimation algorithm. We
show that, among the class of unbiased, linear estimators, generalized least
squares is the estimator that yields the most accurate estimate, at equi-
librium. In a formal sense, this extends the Aitken theorem in statistics,
which states that generalized least squares estimation yields minimal vari-
ance among linear unbiased estimators. Our result implies that this opti-
mality persists even if individuals strategically choose the variance of their
data.

The remainder of this paper is organized as follows. We present related work
in Section 2. Section 3 contains a review of linear regression and the definition
of our non-cooperative game. We characterize Nash equilibria in Section 4 and
discuss their efficiency in Section 5. Our Aitken-type theorem is in Section 6, and
our conclusions in Section 7. Due to space constraints, long proofs are relegated
to our technical report [1].

2 Related Work

Perturbing a dataset before submitting it as input to a data mining algorithm
has a long history in privacy-preserving data-mining (see, e.g., [2, 3]). Indepen-
dent of an algorithm, early research focused on perturbing a dataset prior to
its public release [4,5]. Perturbations tailored to specific data mining tasks have
also been studied in the context of reconstructing the original distribution of
the underlying data [6], building decision trees [6], clustering [7], and association
rule mining [8]. We are not aware of any study of such perturbation techniques
in a non-cooperative setting, where individuals add noise strategically.

The above setting differs from the more recent framework of ε-differential
privacy [9, 10], which has also been studied from the prespective of mechanism
design [11–13]. In differential privacy, noise is added to the output of a com-
putation, which is subsequently publicly released. Differential privacy offers a
strong guarantee: changing an individual’s input alters the distribution of the
perturbed output at most by an exp ε ≈ 1 + ε factor. The analyst performing
the computation is a priori trusted; as such, individuals submit unadulterated
inputs. In contrast, the classic privacy-preserving data-mining setting we study
here assumes an untrusted analyst, which motivates input perturbation.

In experimental design [14, 15], an analyst observes the public features of a
set of experiment subjects, and determines which experiments to conduct with
the objective of learning a linear model. The quality of an estimated model is
quantified through a scalarization of its variance [16]. Though many such scalar-
izations exist, we focus here on non-negative scalarizations, to ensure meaningful
notions of efficiency (as determined by the price of stability, c.f. Section 5).
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Several papers study problems of statistical inference from the perspective of
mechanism design. Horel et al. [17] study a version of the experimental design
problem in which subjects report their private values truthfully, but may lie
about the costs they require for their participation. Closer to our setting, Dekel
et al. [18] consider a broad class of regression problems in which participants
may misreport their private values, and determine loss functions under which
empirical risk minimization is group strategy-proof–the special case of linear
regression is also treated, albeit in a more restricted setting, in [19]. Our work
differs in considering noise addition as a non-cooperative game, and studying
the efficiency of its Nash equilibria, rather than mechanism design issues.

Our model has analogies to models used in public good provision problems
(see, e.g., [20] and references therein). Indeed, the estimate variance reduction
can be seen as a public good in that, when an individual contributes her data,
all other individuals in the game benefit. Moreover, the perturbation technique
used in our proof of Theorem 6 is similar to techniques used in public good
models introduced in the context of traffic congestion [21, 22].

3 Model Description

In this section, we give a detailed description of our linear regression game and
the players involved. Before discussing strategic considerations, we give a brief
technical review of linear models, as well as key properties of least squares esti-
mators; all related results presented here are classic (see, e.g., [23]).

Notational conventions. We use boldface type (e.g., x, y, β) to denote vectors
(all vectors are column vectors), and capital letters (e.g., A, B, V ) to denote ma-
trices. As usual, we denote by Sd

+, S
d
++ ⊂ Rd×d the sets of (symmetric) positive

semidefinite (PSD) and positive definite matrices of size d× d, respectively. For
two positive semidefinite matrices A,B ∈ Sd

+, we write that A % B if A−B ∈ Sd
+;

recall that % defines a partial order over Sd
+. We say that F : Sd

+ → R is
non-decreasing in the positive semidefinite order if F (A) ≥ F (A′) for any two
A,A′ ∈ Sd

+ such that A % A′. Moreover, we say that a matrix-valued function
F : Rn → Sd

+ is matrix convex if αF (λ) + (1 − α)F (λ′) % F (αλ + (1 − α)λ′)
for all α ∈ [0, 1] and λ,λ′ ∈ Rn. Given a square matrix A = [aij ]1≤i,j≤d ∈ Rd×d,
we denote by trace(A) its trace (i.e., the sum of its diagonal elements), and by
‖A‖F its Frobenious norm (i.e., the �2-norm of its d2 elements).

3.1 Linear Models

Consider a set of n individuals, denoted by N ≡ {1, · · · , n}. Each individual
i ∈ N is associated with a vector xi ∈ Rd, the feature vector, which is public; for
example, this vector may correspond to publicly available demographic informa-
tion about the individual, such as age, gender, etc. Each i ∈ N is also associated
with a private variable yi ∈ R; for example, this may express the likelihood that
this individual contracts a disease, the concentration of a substance in her blood
or an answer that she gives to a survey.
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Throughout our analysis, we assume that the individual’s private variable yi
is a linear function of her public features xi. In particular, there exists a vector
β ∈ Rd, the model, such that the private variables are given by

yi = βTxi + εi, for all i ∈ N, (1)

where the “inherent noise” variables {εi}i∈N are i.i.d. zero-mean random variables
in R with finite variance σ2. We stress that we make no further assumptions on
the noise; in particular, we do not assume it is Gaussian.

An analyst wishes to observe the yi’s and infer the model β ∈ Rd. This type of
inference is ubiquitous in experimental sciences, and has a variety of applications.
For example, the magnitude of β’s coordinates captures the effect that features
(e.g., age or weight) have on yi (e.g., the propensity to get a disease), while the
sign of a coordinate captures positive or negative correlation. Knowing β can
also aid in prediction: an estimate of private variable y ∈ R of a new individual
with features x ∈ Rd is given by the inner product βTx.

We note that the linear relationship between yi and xi expressed in (1) is
in fact quite general. For example, the case where yi = f(x) + εi, where f is a
polynomial function of degree 2, reduces to a linear model by considering the
transformed feature space whose features comprise the monomials xikxik′ , for
1 ≤ k, k′ ≤ d. More generally, the same principle can be applied to reduce to (1)
any function class spanned by a finite set of basis functions over Rd [23].

3.2 Generalized Least Squares Estimation

We consider a setup in which the individuals intentionally perturb or distort
their private variable by adding excess noise. In particular, each i ∈ N computes
ỹi = yi + zi where zi is a zero-mean random variable with variance σ2

i ; we
assume that {zi}i∈N are independent, and are also independent of the inherent
noise variables {εi}i∈N . Subsequently, each individual reveals to the analyst (a)
the perturbed variable ỹi and (b) the variance σ2

i . As a result, the aggregate
variance of the reported value is σ2 + σ2

i .
In turn, having access to the perturbed variables ỹi, i ∈ N , and the corre-

sponding variances, the analyst estimates β through generalized least squares
(GLS) estimation. For i ∈ N , let λi ≡ 1

σ2+σ2
i

be the inverse of the aggregate
variance. Denote by λ = [λi]i∈N the vector of inverses and by Λ = diag(λ) the
diagonal matrix whose diagonal is given by vector λ. Then, the generalized least
squares estimator is given by:

β̂GLS = argmin
β∈Rd

(∑
i∈N

λi(ỹi − βTxi)
2

)
= (XTΛX)−1XTΛ ỹ (2)

where ỹ = [ỹi]i∈N is the n-dimensional vector of perturbed variables, and X =
[xT

i ]i∈N ∈ Rn×d the n × d matrix whose rows comprise the transposed feature
vectors. Throughout our analysis, we assume that n ≥ d and that X has rank d.
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Note that ỹ ∈ Rn is a random variable and as such, by (2), so is β̂GLS. It can
be shown that E(β̂GLS) = β (i.e., β̂GLS is unbiased), and

V (λ) ≡ Cov(β̂GLS) = E
[
(β̂GLS − β)T (β̂GLS − β)

]
= (XTΛX)−1.

The covariance V captures the uncertainty of the estimation of β. The matrix

A(λ) ≡ XTΛX =
∑

i∈N λixix
T
i

is known as the precision matrix. It is positive semidefinite, i.e., A(λ) ∈ Sd
+,

but it may not be invertible: this is the case when rank(XTΛ) < d, i.e., the
vectors xi, i ∈ N , for which λi > 0, do not span Rd. Put differently, if the set of
individuals providing useful information does not include d linearly independent
vectors, there exists a direction x ∈ Rd that is a “blind spot” to the analyst:
the analyst has no way of predicting the value βTx. In this degenerate case the
number of solutions to the least squares estimation problem (2) is infinite, and
the covariance is not well-defined (it is infinite in all such directions x). Note
however that, since X has rank d (and hence XTX is invertible), the set of λ for
which the precision matrix is invertible is non-empty. In particular, it contains
(0, 1/σ2]n since A(λ) ∈ Sd

++ if λi > 0 for all i ∈ N .

3.3 User Costs and a Non-cooperative Game

The perturbations zi are motivated by privacy concerns: an individual may be
reluctant to grant unfettered access to her private variable or release it in the
clear. On the other hand, it may be to the individual’s advantage that the analyst
learns the model β. In our running medical example, learning that, e.g., a disease
is correlated to an individual’s weight or her cholesterol level may lead to a cure,
which in turn may be beneficial to the individual.

We model the above considerations through cost functions. Recall that the
action of each individual i ∈ N amounts to choosing the noise level of the
perturbation, captured by the variance σ2

i ∈ [0,∞]. For notational convenience,
we use the equivalent representation λi = 1/(σ2+σ2

i ) ∈ [0, 1/σ2] for the action of
an individual. Note that λi = 0 (or, equivalently, infinite variance σi) corresponds
to no participation: in terms of estimation through (2), it is as if this perturbed
value is not reported.

Each individual i ∈ N chooses her action λi ∈ [0, 1/σ2] to minimize her cost

Ji(λi, λ−i) = ci(λi) + f(λ), (3)

where we use the standard notation λ−i to denote the collection of actions of all
players but i. The cost function Ji : Rn

+ → R+ of player i ∈ N comprises two
non-negative components. We refer to the first component ci : R+ → R+ as the
privacy cost : it is the cost that the individual incurs on account of the privacy
violation sustained by revealing the perturbed variable. The second component
is the estimation cost, and we assume that it takes the form f(λ) = F (V (λ)),
if A(λ) ∈ Sd

++, and f(λ) = ∞ otherwise. The mapping F : Sd
++ → R+ is
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known as a scalarization [16]. It maps the covariance matrix V (λ) to a scalar
value F (V (λ)), and captures how well the analyst can estimate the model β.
The estimation cost f : Rn

+ → R̄+ = R+ ∪ {∞} is the so-called extended-value
extension of F (V (λ)): it equals F (V (λ)) in its domain, and +∞ outside its
domain. Throughout our analysis, we make the following two assumptions:
Assumption 1. The privacy costs ci : R+ → R+, i ∈ N , are twice continuously
differentiable, non-negative, non-decreasing and strictly convex.

Assumption 2. The scalarization F : Sd
++ → R+ is twice continuously differ-

entiable, non-negative, non-constant, non-decreasing in the positive semidefinite
order, and convex.

The monotonicity and convexity assumptions in Assumptions 1 and 2 are
standard and natural. Increasing λi (i.e., decreasing the noise added by the indi-
vidual) leads to a higher privacy cost. In contrast, increasing λi can only decrease
the estimation cost: this is because decreasing the noise of an individual also de-
creases the variance in the positive semidefinite sense (as the matrix inverse is a
PSD-decreasing function). Note that it is possible to relax Assumptions 1 and 2
(in particular, amend the twice-continuous differentiability assumption) without
affecting most of our results, at the expense of an increased technical complexity
in our proofs. We therefore focus on the above two assumptions for the sake of
simplicity.

As a consequence of Assumption 2, the extended-value extension f is convex.
The convexity of F (V (·)) follows from the fact that it is the composition of the
non-decreasing convex function F (·) with the matrix convex function V (·); the
latter is convex because the matrix inverse is matrix convex. Moreover, f is twice
continuously differentiable on its effective domain {λ ∈ Rn

+ : A(λ) ∈ Sd
++}.

Scalarizations of positive semidefinite matrices and, in particular, of the covari-
ance matrix V (λ), are abundant in statistical inference literature in the context of
experimental design [14–16]. We give two examples we use in our analysis below:

F1(V ) = trace(V ), F2(V ) = ‖V ‖2F . (4)

Both scalarizations satisfy Assumption 2.
We denote by Γ = 〈N, [0, 1/σ2]n, (Ji)i∈N 〉 the game with set of players N =

{1, · · · , n}, where each each player i ∈ N chooses her action λi in her action set
[0, 1/σ2] to minimize her cost Ji : [0, 1/σ2]n → R+, given by (3). We refer to
a λ ∈ [0, 1/σ2]n as a strategy profile of the game Γ . We analyze the game as a
complete information game, i.e., we assume that the set of players, the action
sets and utilities are known by all players.

4 Nash Equilibria

We begin our analysis by characterizing the Nash equilibria of the game Γ .
Observe first that Γ is a potential game [24]. Indeed, define the function Φ :
[0, 1/σ2]n → R̄ such that

Φ(λ) = f(λ) +
∑
i∈N

ci(λi), (λ ∈ [0, 1/σ2]n). (5)
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Then for every i ∈ N and for every λ−i ∈ [0, 1/σ2]n−1, we have

Ji(λi, λ−i)− Ji(λ
′
i, λ−i) = Φ(λi, λ−i)− Φ(λ′

i, λ−i), ∀λi, λ
′
i ∈ [0, 1/σ2]. (6)

Therefore, Γ is a potential game with potential function Φ.
In the game Γ , each player chooses her contribution λi to minimize her cost.

A Nash equilibrium (in pure strategy) is a strategy profile λ∗ satisfying

λ∗
i ∈ argmin

λi

Ji(λi, λ
∗
−i), for all i ∈ N.

From (6), we see that (as for any potential game) the set of Nash equilibria
coincides with the set of local minima of function Φ.

First note that there may exist Nash equilibria λ∗ for which f(λ∗) = ∞.
For instance, if d ≥ 2, λ∗ = 0 is a Nash equilibrium. Indeed, in that case, no
individual has an incentive to deviate since a single λi > 0 still yields a non-
invertible precision matrix A(λ). In fact, any profile λ for which A(λ) is non-
invertible, and remains so under unilateral deviations, constitutes an equilibrium.

We call such Nash equilibria (at which the estimation cost is infinite) trivial.
Existence of trivial equilibria can be avoided in practice using slight model ad-
justments. For instance, one can impose a finite upper bound on the variance σi

of an individual i (or, equivalently, a positive lower bound on λi). Alternatively,
the existence of d non-strategic individuals whose feature vectors span Rd is also
sufficient to enforce a finite covariance at all λ across strategic individuals.

In the remainder, we focus on the more interesting non-trivial equilibria. Using
the potential game structure of Γ , we derive the following result.

Theorem 1. There exists a unique non-trivial equilibrium of the game Γ .

Proof. Recall that the set of Nash equilibria coincides with the set of local min-
ima of function Φ. To conclude the proof, we show that there exists a unique
local minimum λ of Φ in the effective domain of f .

First note that, by Assumption 1, the privacy cost ci(·) is finite on [0, 1/σ2]
since it is continuous on a compact set. Therefore, Φ(·) is finite iif f(·) is finite
i.e., domΦ ≡ {λ : Φ(λ) < ∞} = dom f , where dom is the effective domain.
Recall that since X has rank d, (0, 1/σ2]n ⊂ domΦ, and domΦ is non-empty.

By Assumptions 1 and 2, function Φ is strictly convex on its effective do-
main. Therefore it has at most one local minimum in domΦ. Since domΦ is
not compact, we still need to show that the minimum is achieved. By As-
sumption 1, the privacy cost derivatives are bounded and increasing. Let M =
maxi∈N c′(1/σ2) < ∞ be the largest possible privacy cost derivative across all
users and all λi’s. On the other hand, the partial derivatives of the estimation
cost can be written as

∂f

∂λi
(λ) = − trace

(
∂F

∂V
· (XTΛX)−1xix

T
i (X

TΛX)−1

)

= −xT
i (X

TΛX)−1 · ∂F
∂V

· (XTΛX)−1xi,
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where
∂F

∂V
=

( ∂F
∂V11

· · ·
...

. . .

)
.

Hence, since F is non-constant, there exists an i ∈ N for which ∂f
∂λi

(λ) is un-
bounded. Therefore, it is possible to define Ē ≡ {λ ∈ [0, 1/σ2]n : f(λ) > K}
with K large enough so that maxi∈N

∣∣ ∂f
∂λi

(λ)
∣∣ > M for all λ ∈ Ē . Let E be the

complement of Ē in [0, 1/σ2]n. Let λ ∈ Ē . Since maxi∈N

∣∣ ∂f
∂λi

(λ)
∣∣ > M , there

exists λ′ ∈ E such that Φ(λ′) < Φ(λ). Therefore, there exists a point in E for
which Φ is smaller than anywhere outside E . Finally, by Assumption 2, E is com-
pact. We deduce that Φ has a unique minimum on domΦ which concludes the
proof. 
�

The potential game structure of Γ has another interesting implication: if in-
dividuals start from an initial strategy profile λ such that f(λ) < ∞, the so
called best-response dynamics converge towards the unique non-trivial equilib-
rium (see, e.g., [25]). This implies that the non-trivial equilibrium is the only
equilibrium reached when, e.g., all users start with non-infinite noise variance.

5 Price of Stability

Having established the uniqueness of a non-trivial equilibrium in our game, we
turn our attention to issues of efficiency. We define the social cost function
C : Rn → R+ as the sum of all individual costs, and say that a strategy profile
λopt is socially optimal if it minimizes the social cost, i.e.,

C(λ) =
∑
i∈N

ci(λi) + nf(λ), and λopt ∈ argmin
λ∈[0,1/σ2]n

C(λ).

Let opt = C(λopt) be the minimal social cost. We define the price of stabil-
ity (price of anarchy) as the ratio of the social cost of the best (worst) Nash
equilibrium in Γ to opt, i.e.,

PoS = min
λ∈NE

C(λ)

opt
, and PoA = max

λ∈NE

C(λ)

opt
,

where NE ⊂ [0, 1/σ2]n is the set of Nash equilibria of Γ .
Clearly, in the presence of trivial equilibria, the price of anarchy is infinity. We

thus turn our attention to determining the price of stability. Note however that
since the non-trivial equilibrium is unique (Theorem 1), the price of stability
and the price of anarchy coincide under slight model adjustments discussed in
Section 4 that avoid existence of the trivial equilibria.

The fact that our game admits a potential function has the following imme-
diate consequence (see, e.g., [25, 26]):

Theorem 2. Under Assumptions 1 and 2, PoS ≤ n.
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Proof. Under Assumptions 1 and 2, the unique non-trivial equilibrium λ∗ min-
imizes the potential function Φ(λ) =

∑
i∈N ci(λi) + f(λ). Then, for λopt a min-

imizer of the social cost:

Φ(λ∗) ≤ Φ(λopt) =
∑
i∈N

ci(λ
opt
i ) + f(λopt) ≤

∑
i∈N

ci(λ
opt
i ) + nf(λopt) = opt

by the positivity of f . On the other hand, C(λ∗) ≤ nΦ(λ∗), by the positivity of
ci, and the theorem follows. 
�

Improved bounds can be obtained for specific estimation and privacy cost
functions. In what follows, we focus on the two inference cost functions given
by (4). We make use of the following lemma, whose proof is in our technical
report [1]:

Lemma 1. If A(λ) ∈ Sd
++, then for any i ∈ N ,

∂ trace
(
A−1(λ)

)
∂λi

= −xT
i A

−2(λ)xi, and
∂‖A−1(λ)‖2F

∂λi
= −2xT

i A
−3(λ)xi.

We begin by providing a bound on the price of stability when privacy costs are
monomial functions, proved in our technical report [1]. The following theorem
characterizes the PoS in these cases, improving on the linear bound of Theorem 2:

Theorem 3. Assume that the cost functions are given by ci(λ) = ciλ
k, where

ci > 0 and k ≥ 1. If the estimation cost is given by the extended-value extension
of F1(V ) = trace(V ), then PoS ≤ n

1
k+1 . If the estimation cost is given by the

extended-value extension of F2(V ) = ‖V ‖2F , then PoS ≤ n
2

k+2 .

The proof of Theorem 3 relies on characterizing explicitly the socially optimal
profile under relaxed constraints, and showing it equals the Nash equilibrium
λ∗ multiplied by a scalar. Moreover, the theorem states that, among monomial
privacy costs, the largest PoS is n

1
2 for F = F1, and n

2
3 for F = F2. Both are

attained at linear privacy costs; in fact, the above “worst-case” bounds can be
generalized to a class of functions beyond monomials.

Theorem 4. Assume that for every i ∈ N the privacy cost functions ci : R+ →
R+ satisfy Assumption 1. If the estimation cost is the extended-value extension
of F1(V ) = trace(V ), and the derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
2λ) (7)

then PoS ≤ n
1
2 . Similarly, if the estimation cost is the extended-value extension

of F2(V ) = ‖V ‖2F , and the derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
3λ) (8)

then PoS ≤ n
2
3 .



Linear Regression as a Non-cooperative Game 287

Theorem 4, proved in our technical report [1], applies to privacy cost functions
that have the “strong” convexity properties (7) and (8). Roughly speaking, such
functions grow no slower than cubic and fourth-power monomials, respectively.
In contrast to Theorem 3 , in the case of Theorem 4, we cannot characterize the
social optimum precisely; as a result, the proof relies on Brouwer’s fixed point
theorem to relate λopt to the non-trivial Nash equilibrium λ∗.

We note that a similar worst-case efficiency of linear functions among convex
cost families has also been observed in the context of other games, including
routing [27] and resource allocation games [28]. As such, Theorems 3 and 4
indicate that this behavior emerges in our linear regression game as well.

6 An Aitken-Type Theorem for Nash Equilibria

Until this point, we have assumed that the analyst uses the generalized least-
square estimator (2) to estimate model β. In the non-strategic case, where
λ (and, equivalently, the added noise variance) is fixed, the generalized least-
square estimator is known to satisfy a strong optimality property: the so-called
Aitken/Gauss-Markov theorem, which we briefly review below, states that it is
the best linear unbiased estimator, a property commonly refered to as BLUE.
In this section, we give an extension of this theorem, in the strategic case where
λ∗ is not a priori fixed, but is the equilibrium reached by users, itself depending
on the estimator used by the analyst.

For all technical results in this section, we restrict ourselves to the case where
F (V ) = F1(V ) = trace(V ).

6.1 Linear Unbiased Estimators and the Aitken Theorem

A linear estimator β̂L of the model β is a linear map of the perturbed variables ỹ;
i.e., it is an estimator that can be written as β̂L = Lỹ for some matrix L ∈ Rd×n.
A linear estimator is called unbiased if E[Lỹ] = β (the expectation taken over
the inherent and added noise variables). Recall by (2) that the generalized least-
square estimator β̂GLS is an unbiased linear estimator with L = (XTΛX)−1XTΛ

and covariance Cov(β̂GLS) = (XTΛX)−1.
Any linear estimator β̂L = Lỹ can be written without loss of generality as

L = (XTΛX)−1XTΛ+DT (9)

where D = (L − (XTΛX)−1XTΛ)T ∈ Rn×d. It is easy to verify that β̂L is
unbiased if and only if DTX = 0; in turn, using this result, the covariance of
any linear unbiased estimator can be shown to be

Cov(β̂L) = (XTΛX)−1 +DTΛ−1D % Cov(β̂GLS).

In other words, the covariance of the generalized least-square estimator is
minimal in the positive-semidefinite order among the covariances of all linear
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unbiased estimators. This optimality result is known as the Aitken theorem [29].
Applied specifically to homoschedastic noise (i.e., when all noise variances are
identical), it is known as the Gauss-Markov theorem [23], which establishes the
optimality of the ordinary least squares estimator. Both theorems provide a
strong argument in favor of using least squares to estimate β, in the presence of
fixed noise variance.

6.2 Extension to a Non-cooperative Game

Suppose now that the data analyst uses a linear unbiased estimator β̂L of the
form (9), with a given matrix D ∈ Rn×d, which may depend on X . As before, we
can define a game Γ in which each individual i chooses her λi to minimize her
cost; this time, however, the estimation cost depends on the variance of β̂L. A
natural question to ask is the following: it is possible that, despite the fact that
the analyst is using an estimator that is “inferior” to β̂GLS in the BLUE sense,
an equilibrium reached under β̂L is better than the equilibrium reached under
β̂GLS? If so, despite the Aitken theorem, the data analyst would clearly have an
incentive to use β̂L instead.

In this section, we answer this question in the negative, in effect extending
Aitken’s theorem to the case of strategic individuals. Formally, we consider the
game Γ = 〈N, [0, 1/σ2]n, (Ji)i∈N 〉 defined as in Section 3.3, except that the
estimation cost is the extended-value extension of F1(V (λ)) with

V (λ) ≡ (XTΛX)−1 +DTΛ−1D, (Λ = diagλ). (10)

Γ is still a potential game with potential function given by (5). Moreover, As-
sumption 2 still holds since V (·) given by (10) is a matrix convex function, and
the extended-value extension f(·) is still convex.

Since the proof of Theorem 1 relied on the convexity of the potential, a
straightforward adaptation of the proof gives the following result.
Theorem 5. For any matrix D ∈ Rn×d, there exists a unique non-trivial equi-
librium of the game Γ under the corresponding linear unbiased estimator (9).
As for the case of GLS, this result follows from the uniqueness of a minimizer of
the potential function attained in the effective domain.

We are now ready to state our extension of Aitken Theorem, proved in our
technical report [1].
Theorem 6. The generalized least-square estimator gives an optimal covariance
among linear unbiased estimators, in the strategic case, in the order given by the
scalarization F1 used in the estimation cost. That is, for any linear unbiased
estimator β̂L, we have

f(λ∗
L) ≥ f(λ∗

GLS),

where λ∗
L and λ∗

GLS are the non-trivial equilibria for the linear unbiased estimator
and for the generalized least-square estimator respectively.

Theorem 6 therefore establishes the optimality of β̂GLS amongst linear unbi-
ased estimators w.r.t. the scalarization F1, in the presense of strategic individu-
als. The proof uses perturbative techniques similar to the ones used in [22].
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7 Concluding Remarks

This paper studies linear regression in the presence of cost-minimizing individu-
als, modeling noise addition as a non-cooperative game. We establish existence of
a unique non-trivial Nash equilibrium, and study its efficiency for several differ-
ent classes of privacy and estimation cost functions. We also show an extension
of the Aitken/Gauss-Markov theorem to this non-cooperative setup.

The efficiency result in Theorem 3 gives specific bounds on the price of sta-
bility for monomial privacy costs. These bounds are sub-linear. However, the
efficiency result in Theorem 4 indicates that a sub-linear price of stability can
be attained for a much wider class of privacy cost functions. Nevertheless, The-
orem 3 includes functions not covered by Theorem 4, which leaves open the
question of extending the bounds of Theorem 4, potentially to all privacy costs
satisfying Assumption 1. Moreover, both of these theorems, as well as Theo-
rem 6, are shown for specific scalarizations of the estimator variance. Going
beyond these scalarizations is also an interesting open problem.

Our Aitken/Gauss-Markov-type theorem is weaker than these two classical
results in two ways. First, the optimality of the generalized least squares esti-
mator is shown w.r.t. the partial order imposed by the scalarization F1, rather
than the positive semidefinite order. It would be interesting to strenghthen this
result not only in this direction, but also in the case of the order imposed by
other scalarizations used as estimation costs. Second, Theorem 6 applies to linear
estimators whose difference from GLS does not depend on the actions λ. In the
presence of arbitrary dependence on λ, the non-trivial equilibrium need not be
unique (or even exist). Understanding when this occurs, and proving optimality
results in this context, also remains open.

Finally, our model assumes that the variance added by each individual is
known to the analyst. Amending this assumption brings issues of truthfulness
into consideration: in particular, an important open question is whether there
exists an estimator (viewed as a mechanism) that induces truthful noise reporting
among individuals, at least in equilibrium. Again, an Aitken-type theorem seems
instrumental in establishing such a result.
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Abstract. Chunked-reward advertising is commonly used in the in-
dustry, such as the guaranteed delivery in display advertising and the
daily-deal services (e.g., Groupon) in online shopping. In chunked-reward
advertising, the publisher promises to deliver at least a certain volume
(a.k.a. tipping point or lower bound) of user traffic to an advertiser ac-
cording to their mutual contract. At the same time, the advertiser may
specify a maximum volume (upper bound) of traffic that he/she would
like to pay for according to his/her budget constraint. The objective
of the publisher is to design an appropriate mechanism to allocate the
user traffic so as to maximize the overall revenue obtained from all such
advertisers. In this paper, we perform a formal study on this problem,
which we call Chunked-reward Allocation Problem (CAP). In particular,
we formulate CAP as a knapsack-like problem with variable-sized items
and majorization constraints. Our main results regarding CAP are as fol-
lows. (1) We first show that for a special case of CAP, in which the lower
bound equals the upper bound for each contract, there is a simple dy-
namic programming-based algorithm that can find an optimal allocation
in pseudo-polynomial time. (2) The general case of CAP is much more
difficult than the special case. To solve the problem, we first discover
several structural properties of the optimal allocation, and then design a
two-layer dynamic programming-based algorithm that can find an opti-
mal allocation in pseudo-polynomial time by leveraging these properties.
(3) We convert the two-layer dynamic programming based algorithm to
a fully polynomial time approximation scheme (FPTAS). Besides these
results, we also investigate some natural generalizations of CAP, and
propose effective algorithms to solve them.

1 Introduction

We study the traffic allocation problem for what we call “chunked-reward ad-
vertising”. In chunked-reward advertising, an advertiser requests (and pays for)
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a chunk of advertising opportunities (e.g., user traffic, clicks, or transactions)
from a publisher (or ad platform) instead of pursuing each individual advertis-
ing opportunity separately (which we call pay-per-opportunity advertising for
ease of comparison). More precisely, when an advertiser i submits a request to
the publisher, he/she specifies a tuple (li, ui, pi, bi), where li is the lower bound of
advertising opportunities he/she wants to obtain, ui is the upper bound (which
exists mainly due to the budget constraint of the advertiser), pi is the per-
opportunity price he/she is willing to pay, and bi is a bias term that represents
the base payment when the lower bound is achieved. If the number xi of oppor-
tunities allocated to the advertiser is smaller than li, he/she does not need to
pay anything because the lower bound is not met; if xi > ui, the advertiser only
needs to pay for the ui opportunities and the over allocation is free to him/her.
Mathematically, the revenue that the publisher extracts from advertiser i with
xi opportunities can be written as below:

r(xi; pi, li, ui, bi) =

⎧⎨
⎩

0, if xi < li,
pixi + bi, if li ≤ xi ≤ ui,
piui + bi, if ui < xi.

(1)

1.1 Examples of Chunked-Reward Advertising

Many problems in real applications can be formulated as chunked-reward adver-
tising. Below we give two examples: daily-deal services in online shopping and
guaranteed delivery in display advertising.

Daily-Deal Services. In daily-deal services, the publisher (or service provider,
e.g., Groupon.com) shows (multiple) selected deals, with significant discount,
to Web users every day. The following information of each deal is available for
allocating user traffics to these deals.

– The discounted price wi of the deal. This is the real price with which Web
users purchase the deal.

– The tipping point Li describes the minimum number of purchases that users
are required to make in order for the discount of the deal to be invoked;
otherwise, the deal fails and no one can get the deal and the discount.

– The purchase limit Ui denotes the maximum number of users that can pur-
chase this deal. The purchase limit is constrained by the service capability
of the advertiser/merchant. For example, a restaurant may be able to serve
at most 200 customers during the lunch time.

– The revenue share ratio si represents the percentage of revenue that the
publisher can get from each transaction of the item in the deal. That is, for
each purchase of the deal, wisi goes to the publisher and wi(1− si) goes to
the merchant/advertiser. Note that the publisher can get the revenue from
a deal i only if the deal is on (i.e., at least Li purchases are achieved).

– Conversion probability λi denotes the likelihood that the i-th deal will be
purchased by a web user given that he/she has noticed the deal.
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It is straightforward to represent the daily-deal service in the language of
chunked-reward advertising, by setting li = Li/λi, ui = Ui/λi, pi = wisiλi, and
bi = 0, where xi is the number of effective impressions1 allocated to ad i.

Guaranteed Delivery. Guaranteed delivery is a major form of display ad-
vertising: an advertiser makes a contract with the publisher (or ad platform)
to describe his/her campaign goal that the publisher should guarantee. If the
publisher can help achieve the campaign goal, it can extract a revenue higher
than unguaranteed advertisements. However, if the publisher failed in doing so,
a penalization will be imposed.

Specifically, in the contract, the advertiser will specify:

– The number of impressions (denoted by Ui) that he/she wants to achieve;
– The price Pi that he/she is willing to pay for each impression
– The penalty price Qi that he/she would like to impose on the publisher for

each undelivered impression.

If the publisher can successfully deliver Ui impressions for advertiser i, its
revenue collected from the advertising is PiUi; on the other hand, if only xi < Ui

impressions are delivered, the publisher will be penalized for the undelivered
impressions and can only extract a revenue of max{0, PiUi −Qi(Ui − xi)}.

Again, it is easy to express guaranteed delivery in the language of chunked-
reward advertising, by setting li =

Qi−Pi

Qi
Ui, ui = Ui, pi = Qi, and bi = (Pi −

Qi)ui, where xi is the number of effective impressions allocated to ad i.

1.2 Chunked-Reward Allocation Problem

A central problem in chunked-reward advertising is how to efficiently allocate
the user traffics to the advertisements (deals) so as to maximize the revenue
of the publisher (ad platform). For ease of reference, we call such a problem
the Chunked Allocation Problem (CAP), which is formulated in details in this
subsection.

Suppose that a publisher has M candidate ads to show for a given period of
time (e.g., the coming week) and N Web users that will visit its website during
the time period. The publisher showsK ads atK slots to eachWeb user. Without
loss of generality, we assume that the i-th slot is better (in terms of attracting
the attention of a Web user) than the j-th slot if i < j, and use γk to denote
the discount factor carried by each slot. Similar to the position bias of click
probability in search advertising [4,1], we have that 1 ≥ γ1 > γ2 > ... > γK ≥ 0.

If an ad is shown at slot k to x visitors, we say that the ad has xγk effective
impressions. We use Nk to denote the number of effective impressions of slot
k: Nk = Nγk. Therefore, N1 > N2 > · · · > NK . For simplicity and without
much loss of accuracy, we assume that Nk is an integer. We can regard Nk as
the expected number of visitors who have paid attention to the k-th slot. With

1 Effective impressions means the real impressions adjusted by the slot discount factor,
as shown in the following subsection.
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the concept of effective impression, pi denotes the (expected) revenue that the
publisher can get from one effective impression of the i-th ad if the ad is tipped
on.

When allocating user traffics to ads, one needs to consider quite a few con-
straints, which makes CAP a difficult task:

1. Multiple ads will be displayed, one at each slot, for one visitor; one ad can-
not be shown at more than one slots for one visitor. This seemingly simple
constraints combined with the fact that different slot positions have different
discount factors will become challenging to deal with.

2. Each ad has both a lower bound and an upper bound. On one hand, to
make money from an ad, the publisher must ensure the ad achieves the
lower bound. On the other hand, to maximize revenue, the publisher needs
to ensure the traffic allocated to an ad will not go beyond its upper bound.
These two opposite forces make the allocation non-trivial.

In the next subsection, we will use formal language to characterize these con-
straints, and give a mathematical description of the CAP problem.

1.3 Problem Formulation

We use an integer vector x to denote an allocation, where the i-th element xi

denotes the number of effective impressions allocated to the i-th ad. For any
vector x = {x1,x2, . . . ,xn}, let x[1] ≥ x[2] ≥ . . .x[n] denotes the components
of x in nonincreasing order (ties are broken in an arbitrary but fixed manner).
Since there are multiple candidate ads and multiple slots, we need to ensure
the feasibility of an allocation. As mentioned before, an allocation x is feasible
if it satisfies that (i) no more than one ad is assigned to a slot for any visitor,
and (ii) no ad is assigned to more than one slot for any visitor. Actually these
constraints are essentially the same in preemptive scheduling of independent
tasks on uniform machines. Consider M jobs with processing requirement xi(i =
1, . . . ,M) to be processed on K parallel uniform machines with different speeds
Nj(j = 1, . . . ,K). Execution of job i on machine j requires xi/Nj time units. x
is a feasible allocation if and only if the minimum makespan of the preemptive
scheduling problem is smaller or equal to 1. According to [2], the sufficient and
necessary conditions for processing all jobs in the interval [0,1] are∑M

j=1 x[j]∑K
j=1 Nj

≤ 1, (2)

and ∑i
j=1 x[j]∑i
j=1 Nj

≤ 1 , for all i ≤ K. (3)

Thus, a vector x is a feasible allocation for CAP if it satisfies the inequalities in
Eqn. (2) and (3).
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Based on the above notations, finding an optimal allocation means solving
the following optimization problem.

max
x

M∑
i=1

r(xi; pi, li, ui, bi)

s.t. li ≤ xi ≤ ui or xi = 0, for i = 1, 2, ...M

x is a feasible allocation.

Note that x is a vector of integers, and we do not explicitly add it as a
constraint when the context is clear. The first set of constraints says the number
of effective impressions allocated to ad i should be between the lower bound li
and upper bound ui.

The feasibility conditions in Eqn. (2) and (3) can be exactly described by the
majorization constraints.

Definition 1. Majorization constraints
The vector x is majorized2 by vector y (denoted as x # y) if the sum of the
largest i entries in x is no larger than the sum of the largest i entries in y for
all i, i.e.,

i∑
j=1

x[j] ≤
i∑

j=1

y[j]. (4)

In the above definition, x and y should contain the same number of elements. In
Eqn. (2) and (3), N has less elements than x; one can simply add M −K zeros
into N (i.e., N[i] = 0, ∀K < i ≤M).

Now we are ready to abstract CAP as an combinatorial optimization problem
as the following.

Definition 2. Problem formulation for CAP
There are M class of items, C1, . . . ,CM . Each class Ci is associated with a lower
bound li ∈ Z+, an upper bound ui ∈ Z+, and a bias term bi. Each item of Ci has
a profit pi. We are also given a vector N = {N1, N2, . . . , NK}, called the target

vector, where N1 > N2 > · · · > NK . We use |N| to denote
∑K

i=1 Nj. Our goal is
to choose xi items from class Ci for each i ∈ [M ] such that the following three
properties hold:

1. Either xi = 0 (we do not choose any item of class Ci at all) or li ≤ xi ≤
ui (the number of items of class Ci must satisfy both the lower and upper
bounds);

2. The vector x = {xi}i is majorized by the target vector N (i.e., x # N);
3. The total profit of chosen items (adjusted by the class bias term) is maxi-

mized.

2 In fact, the most rigorous term used here should be “sub-majorize” in mathematics
and theoretical computer science literature (see e.g., [11,6]). Without causing any
confusion, we omit the prefix for simplicity.



296 W. Kong et al.

1.4 Relation to Scheduling and Knapsack Problems

CAP bears some similarity with the classic parallel machine scheduling problems
[12]. The K slots can be viewed as K parallel machines with different speeds
(commonly termed as the uniformly related machines, see, e.g., [3,7]). The M ads
can be viewed as M jobs. One major difference between CAP and the scheduling
problems lies in the objective functions. Most scheduling problems target to
minimize some functions related to time given the constraint of finishing all the
jobs, such as makespan minimization and total completion time minimization.
In contrast, our objective is to maximize the revenue generated from the finished
jobs (deals in our problem) given the constraint of limited time.

CAP is similar to the classic knapsack problem in which we want to maximize
the total profit of the items that can be packed in a knapsack with a known
capacity. Our FPTAS borrows the technique from [8] for the knapsack problem.
Our work is also related to the interval scheduling problem [10,5] in which the
goal is to schedule a subset of interval such that the total profit is maximized.
CAP differs from these two problems in that the intervals/items (we can think
each ad as an interval) have variable sizes.

1.5 Our Results

Our major results for CAP can be summarized as follows. Because of the space
limitation, the last three items are included in the longer version of this work
[9].

1. (Section 2) As a warmup, we start with a special case of the CAP problem:
the lower bound of each class of items equals the upper bound. In this case,
we can order the classes by decreasing lower bounds and the order enables
us to design a nature dynamic programming-based algorithm which can find
an optimal allocation in pseudo-polynomial running time.

2. (Section 3) We then consider the general case of the CAP problem where
the lower bound can be smaller than the upper bound. The general case is
considerably more difficult than the simple case in that there is no natural
order to process the classes. Hence, it is not clear how to extend the previous
dynamic program to the general case. To handle this difficulty, we discover
several useful structural properties of the optimal allocation. In particular,
we can show that the optimal allocation can be decomposed into multiple
blocks, each of them has at most one fractional class (the number of allocated
items for the class is less than the upper bound and larger than the lower
bound). Moreover, in a block, we can determine for each class except the
fractional class, whether the allocated number should be the upper bound
or the lower bound. Hence, within each block, we can reduce the problem to
the simpler case where the lower bound of every item equals the upper bound
(with slight modifications). We still need a higher level dynamic program to
assemble the blocks and need to show that no two different blocks use items
from the same class. Our two level dynamic programming-based algorithm
can find an optimal allocation in pseudo-polynomial time.
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3. (Section 4 of [9]) Using the technique developed in [8], combined with some
careful modifications, we can further convert the pseudo-polynomial time dy-
namic program to a fully polynomial time approximation scheme (FPTAS).
We say there is an FPTAS for the problem, if for any fixed constant ε > 0, we
can find a solution with profit at least (1−ε)OPT in poly(M,K, log |N|, 1/ε)
time (See e.g., [13]).

4. (Section 5 of [9]) We consider the generalization from the strict decreasing
target vector (i.e., N1 > N2 > · · · > NK) to the non-increasing target vector
(i.e., N1 ≥ N2 ≥ . . . ≥ NK), and briefly describe a pseudo-polynomial
time dynamic programming-based algorithm for this setting based on the
algorithm in Section 3.

5. (Section 6 of [9]) For theoretical completeness, we consider for a general-
ization of CAP where the target vector N = {N1, . . . , NK} may be non-
monotone. We provide a 1

2 − ε factor approximation algorithm for any con-
stant ε > 0. In this algorithm, we use somewhat different techniques to
handle the majorization constraints, which may be useful in other variants
of CAP.

2 Warmup: A Special Case

In this section, we investigate a special case of CAP, in which li = ui for every
class. In other words, we either select a fixed number (xi = li) of items from
class Ci, or nothing from the class. We present an algorithm that can find the
optimal allocation in poly(M,K, |N|) time based on dynamic programming.

For simplicity, we assume that the M classes are indexed by the descending
order of li in this section. That is, we have l1 ≥ l2 ≥ l3 ≥ · · · ≥ lM .

Let G(i, j, k) denote the maximal profit by selecting at most i items from
extactly k of the first j classes, which can be expressed by the following integer
optimization problem.

G(i, j, k) = max
x

j∑
t=1

r(xt; pt, lt, ut, bt)

subject to xt = lt or xt = 0, for 1 ≤ t ≤ j (5)
r∑

t=1

x[t] ≤
r∑

t=1

Nt, for r = 1, 2, ...,min {j,K} (6)

j∑
t=1

x[t] ≤ i (7)

x[k] > 0, x[k+1] = 0 (8)

In the above formulation, x = {x1,x2, ...,xj} is a j dimensional allocation vector.
x[t] is the t-th largest element of vector x. Eqn. (6) restates the majorization
constraints. Eqn. (7) ensures that at most i items are selected and Eqn. (8)
indicates that exactly k classes of items are selected. Further, we use Z(i, j, k)



298 W. Kong et al.

to denote the optimal allocation vector of the above problem (a j-dimensional
vector).

It is easy to see that the optimal profit of the special case is max1≤k≤K G(|N|,
M, k). In the following, we present an algorithm to compute the values ofG(i, j, k)
for all i, j, k.

The Dynamic Program : Initially, we have the base cases that G(i, j, k) = 0
if i, j, k all equal zero. For each 1 ≤ i ≤ |N|, 1 ≤ j ≤M, 1 ≤ k ≤ j, the recursion
of the dynamic program for G(i, j, k) is as follows.

G(i, j, k) =

max

⎧⎨
⎩

G(i, j − 1, k), if j > 0 (A)
G(i− 1, j, k), if i > 0 (B)
G(i− lj , j − 1, k − 1) + ljpj + bj , if Z(i− lj , j − 1, k − 1) ∪ lj is feasible (C)

(9)

Note that for the case (C) of the above recursion, we need to check whether
adding the j-th class in the optimal allocation vector Z(i − lj, j − 1, k − 1) is
feasible, i.e., satisfying the majorization constraints in Eqn. (6). The allocation
vector Z(i, j, k) can be easily determined from the recursion as follows.

• If the maximum is achieved at case (A), we have Z(i, j, k)t = Z(i, j −
1, k)t, ∀1 ≤ t ≤ j − 1, and Z(i, j, k)j = 0.

• If the maximum is achieved at case (B), we have Z(i, j, k)t = Z(i− 1, j, k)t,
∀1 ≤ t ≤ j.

• If the maximum is achieved at case (C), we have Z(i, j, k)t = Z(i − lj , j −
1, k − 1)t, ∀1 ≤ t ≤ j − 1, and Z(i, j, k)j = lj .

According to Eqn. (9), all G(i, j, k) (and thus Z(i, j, k)) can be computed in the
time3 of O(M2|N|).

At the end of this section, we remark that the correctness of the dynamic
program crucially relies on the fact that ui = li for all Ci and we can process
the classes in descending order of their lis. However, in the general case where
ui �= li, we do not have such a natural order to process the classes and the
current dynamic program does not work any more.

3 Algorithm for the General CAP

In this section, we consider the general case of CAP (li ≤ ui) and present an
algorithm that can find the optimal allocation in poly(M,K, |N|) time based
on dynamic programming. Even though the recursion of our dynamic program
appears to be fairly simple, its correctness relies on several nontrivial structural
properties of the optimal allocation of CAP. We first present these properties in

3 One can further decrease the complexity of computing all the G(i, j, k)’s to
O(M |N|min(M,K)) by using another recursion equation. We use the recursion
equation as shown in Eqn. (9) considering its simplicity for presentation and un-
derstanding.
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Section 3.1. Then we show the dynamic program in Section 3.2 and prove its
correctness. Finally we discuss several extensions of CAP, for which the detailed
algorithms are described in Appendix because of space limitations.

3.1 The Structure of the Optimal Solution

Before describing the structure of the optimal solution, we first define some
notations.

For simplicity of description, we assume all pis are distinct
4 and the M classes

are indexed in the descending order of pi. That is, we have that p1 > p2 >
· · · > pM . Note that the order of classes in this section is different from that in
Section 2.

For any allocation vector x, xi indicates the number of items selected from class
i, and x[i] indicates the i-th largest element in vector x. For ease of notions, when
we say “class x[i]”, we actually refer to the class corresponding to x[i]. In a similar
spirit, we slightly abuse the notation p[i] to denote the per-item profit of the class
x[i]. For example, p[1] is the per-item profit of the class for which we allocate the
most number of items in x (rather than the largest profit). Note that if x[i] =
x[i+1], then we put the class with the larger per-item profit before the one with the
smaller per-item profit. In other words, if x[i] = x[i+1], then we have p[i] > p[i+1].

In an allocation x, we call class Ci (or xi) addable (w.r.t. x) if xi < ui.
Similarly, class Ci (or xi) is deductible (w.r.t. x) if xi > li. A class Ci is fractional
if it is both addable and deductible (i.e., li < xi < ui).

Let x� be the optimal allocation vector. We start with a simple yet very useful
lemma.

Lemma 1. If a deductible class Ci and an addable class Cj satisfy x�
i > x�

j in
the optimal solution x�, we must have pi > pj (otherwise, we can get a better
solution by setting x�

i = x�
i − 1 and x�

j = x�
j + 1).

The proof of lemma is quite straightforward.
The following definition plays an essential role in this section.

Definition 3. (Breaking Points and Tight Segments) Let the set of breaking
points for the optimal allocation x� be

P = {t |
t∑

i=1

x�
[i] =

t∑
i=1

Ni} = {t1 < t2 < . . . < t|P |}.

To simplify the notations for the boundary cases, we let t0 = 0 and t|P |+1 = K.
We can partition x� into |P | + 1 tight segments, S1, . . . , S|P |+1, where Si =
{x�

[ti−1+1],x
�
[ti−1+2], . . . ,x

�
[ti]
}. We call S|P |+1 the tail segment, and S1, . . . , S|P |

non-tail tight segments. 
�
We have the following useful property about the number of items for each

class in a non-tail tight segment.

4 This is without loss of generality. If pi = pj for some i �= j, we can break tie by
adding an infinitesimal value to pi, which would not affect the optimality of our
algorithm in any way.
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Lemma 2. Given a non-tail tight segment Sk = {x�
[tk−1+1],x

�
[tk−1+2], . . . ,x

�
[tk]
}

which spans Ntk−1+1, . . . , Ntk . For each class Ci that appears in Sk we must have
Ntk−1+1 ≥ x�

i ≥ Ntk .

Proof. From the definition
∑tk

i=1 x
�
[i] =

∑tk
i=1 Ni and majorization constraint∑tk−1

i=1 x�
[i] ≤

∑tk−1
i=1 Ni we know that x�

[tk]
≥ Ntk . As x

�
[tk]

is the smallest in Sk,

we proved x�
i ≥ Ntk . Similarly form

∑tk−1

i=1 x�
[i] =

∑tk−1

i=1 Ni and
∑tk−1+1

i=1 x�
[i] ≤∑tk−1+1

i=1 Ni we know that Ntk−1+1 ≥ x�
[tk−1+1]. As x

�
[tk−1+1] is the biggest in Sk,

we proved Ntk−1+1 ≥ x�
i . 
�

Note that as we manually set t|B|+1 = K, the tail segment actually may not be
tight. But we still have Ntk−1+1 ≥ x�

i .
Let us observe some simple facts about a tight segment Sk. First, there is at

most one fractional class. Otherwise, we can get a better allocation by select-
ing one more item from the most profitable fractional class and removing one
item from the least profitable fractional class. Second, in segment Sk, if Ci is
deductible and Cj is addable, we must have pi > pj (or equivalently i < j) .
Suppose Cα(Sk) is the per-item least profitable deductible class in Sk and Cβ(Sk)

is the per-item most profitable addable class in Sk. From the above discussion,
we know α(Sk) ≤ β(Sk). If α(Sk) = β(Sk), then α(Sk) is the only fractional class
in Sk. If there is no deductible class in Sk, we let α(Sk) = 1. Similarly, if there
is no addable class in Sk, we let β(Sk) = M . Let us summarize the properties of
tight segments in the lemma below.

Lemma 3. Consider a particular tight segment Sk of the optimal allocation x�.
The following properties hold.

1. There is at most one fractional class.
2. For each class Ci that appears in Sk with i < β(Sk), we must have x�

i = ui.
3. For each class Ci that appears in Sk with i > α(Sk), we must have x�

i = li.

Now, we perform the following greedy procedure to produce a coarser par-
tition of x� into disjoint blocks, B1, B2, . . . , Bh, where each block is the union
of several consecutive tight segments. The purpose of this procedure here is
to endow one more nice property to the blocks. We overload the definition of
α(Bi) (β(Bi) resp.) to denote the index of the per-item least (most resp.) prof-
itable deductible (addable resp.) class in Bi. We start with B1 = {S1}. So,
α(B1) = α(S1) and β(B1) = β(S1). Next we consider S2. If [α(B1), β(B1)] inter-
sects with [α(S2), β(S2)], we let B1 ← B1 ∪ S2. Otherwise, we are done with B1

and start to create B2 by letting B2 = S2. Generally, in the i-th step, suppose we
are in the process of creating block Bj and proceed to Si. If [α(Bj), β(Bj)] inter-
sects with [α(Si), β(Si)], we let Bj ← Bj ∪Si. Note that the new [α(Bj), β(Bj)]
is the intersection of old [α(Bj), β(Bj)] and [α(Si), β(Si)]. Otherwise, we finish
creating Bj and let the initial value of Bj+1 be Si.

We list the useful properties in the following critical lemma. We can see that
Property (2) is new (compared with Lemma 3).
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Lemma 4. Suppose B1, . . . , Bh are the blocks created according to the above
procedure from the optimal allocation x�, and α(Bi) and β(Bi) are defined as
above. The following properties hold.

1. Each block has at most one fractional class.
2. α(B1) ≤ β(B1) < α(B2) ≤ β(B2) < . . . < α(Bh) ≤ β(Bh).
3. For each class Ci that appears in any block Bk with i < β(Bk), we must have

x�
i = ui.

4. For each class Ci that appears in any block Bk with i > α(Bk), we must have
x�
i = li.

Because of the space limitation, we omit the proof, which can be found in [9].

3.2 The Dynamic Program

Our algorithm for CAP has two levels, both based on dynamic programming. In
the lower level, we attempt to find the optimal allocation for each block. Then in
the higher level, we assemble multiple blocks together to form a global optimal
solution. Lastly, we prove the optimal allocations for these individual blocks do
not use one class of items multiple times, thus can be assembled together.

The Lower Level Dynamic Program: Let us first describe the lower level
dynamic program. Denote F (i, j, k), ∀1 ≤ i ≤ j ≤ K, 1 ≤ k ≤M as the maximal
profit generating from the blockB which spansNi, Ni+1, . . . , Nj and α(B) ≤ k ≤
β(B). Note here the block B is not one of the blocks created from the optimal
allocation x�, but we still require that it satisfies the properties described in
Lemma 4. More formally, F (i, j, k) can be written as an integer program in the
following form:

F (i, j, k) = max

M∑
t=1

r(xt; pt, lt, ut, bt)

subject to xt = ut or xt = 0, for t < k (10)

xt = lt or xt = 0, for t > k (11)

lt ≤ xt ≤ ut or xt = 0, for t = k (12)

r∑
t=1

x[t] ≤
i+r−1∑
t=i

Nt, for r = 1, 2, ...j − i (13)

j−i+1∑
t=1

x[t] =

j∑
t=i

Nt (14)

x[j−i+2] = 0. (15)

Constraints (10) and (11) correspond to Properties (3) and (4) in Lemma 4. The
constraint (12) says Ck may be the only fractional constraint. The constraints
(13) are the majorization constraints. Constraints (14) and (15) say B spans
Ni, . . . , Nj with exactly j − i + 1 class of items. If j = K (i.e., it is the last
block), we do not have the last two constraints since we may not have to fill all
slots, or with fixed number of classes.
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To compute the value of F (i, j, k), we can leverage the dynamic program
developed in Section 2. The catch is that for any xk ∈ [lk, uk], according to
Eqn. (10) and (11), xi can only take 0 or a non-zero value (either ui or li). This
is the same as making ui = li. Therefore, for a given xk ∈ [lk, uk], the optimal
profit F (i, j, k), denoted as Fxk

(i, j, k), can be solved by the dynamic program
in Section 2.5 Finally, we have

F (i, j, k) = max
xk=0,lk,lk+1,lk+2,··· ,uk

Fxk
(i, j, k).

The Higher Level Dynamic Program: We use D(j, k) to denote the optimal
allocation of the following subproblem: if j < K, we have to fill up exactly
N1, N2, . . . , Nj (i.e.,

∑
i xi =

∑j
i=1 Nj) and α(B) ≤ k where B is the last block

of the allocation; if j = K, we only require
∑

i xi ≤
∑j

i=1 Nj. Note that we
still have the majorization constraints and want to maximize the profit. The
recursion for computing D(j, k) is as follows:

D(j, k) = max
{
max
i<j

{D(i, k − 1) + F (i + 1, j, k)}, D(j, k − 1)
}
. (16)

We return D(K,M) as the final optimal revenue of CAP.
As we can see from the recursion (16), the final value D(K,M) is a sum

of several F values, say F (1, t1, k1), F (t1 + 1, t2, k2), F (t2 + 1, t3, k3), . . ., where
t1 < t2 < t3 < . . . and k1 < k2 < k3 < . . .. Each such F value corresponds
to an optimal allocation of a block. Now, we answer the most critical question
concerning the correctness of the dynamic program: whether the optimal allo-
cations of the corresponding blocks together form a global feasible allocation?
More specifically, the question is whether one class can appear in two different
blocks? We answer this question negatively in the next lemma.

Lemma 5. Consider the optimal allocations x1 and x2 corresponding to
F (i1, j1, k1) and F (i2, j2, k2) respectively, where i1 ≤ j1 < i2 ≤ j2 and k1 < k2.
For any class Ci, it is impossible that both x1

i �= 0 and x2
i �= 0 are true.

Proof. We distinguish a few cases. We will use Lemma 2 on blocks in the follow-
ing proof.

1. i ≤ k1. Suppose by contradiction that x1
i �= 0 and x2

i �= 0. We always have
x1
i ≤ ui. Since i ≤ k1 < k2, again by Lemma 4, we have also x2

i = ui.
Moreover, from Lemma 2 we know that x1

i ≥ Nj1 > Ni2 ≥ x2
i . This renders

a contradiction.
2. i ≥ k2. Suppose by contradiction that x1

i �= 0 and x2
i �= 0. By Lemma 4, we

know x1
i = li and x2

i ≥ li. We also have that x1
i > Ni2 ≥ x2

i due to Lemma 2,
which gives a contradiction again.

3. k1 < i < k2. Suppose by contradiction that x1
i �= 0 and x2

i �= 0. By Lemma 4,
we know x1

i = li and x2
i = ui. We also have the contradiction by x1

i > x2
i .

We have exhausted all cases and hence the proof is complete. 
�
5 The only extra constraint is (14), which is not hard to ensure at all since the dynamic
program in Section 2 also keeps track of the number of slots used so far.
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Theorem 1. The dynamic program (16) computes the optimal revenue for CAP
in time poly(M,K, |N|).

Proof. By Lemma 4, the optimal allocation x� can be decomposed into several
blocks B1, B2, . . . , Bh for some h. Suppose Bk spans Nik−1+1, . . . , Nik . Since the
dynamic program computes the optimal value, we have F (ik−1 +1, ik, α(Bk)) ≥∑

i∈Bk
r(x�

i ; pi, li, ui, bi). Moreover, the higher level dynamic program guarantees
that

D(K,M) ≥
∑
k

F (ik−1 + 1, ik, α(Bk)) ≥
∑
k

∑
i∈Bk

r(x�
i ; pi, li, ui, bi) = OPT .

By Lemma 5, our dynamic program returns a feasible allocation. So, it holds
that D(K,M) ≤ OPT . Hence, we have shown that D(K,M) = OPT . 
�

3.3 Extensions

We make some further investigations on three extensions for the CAP problem.
Due to the space limitation, we only give some high level description in this
subsection, and the details are given in the longer version [9] of this paper.

First, note the optimal algorithm developed in Section 3.2 runs in pseudo-
polynomial time of |N|. If |N| is very large, one may need some more efficient
algorithm. In Section 4 of [9], we present a full polynomial time approximation
scheme (FPTAS) for CAP, which can find a solution with profit at least (1 −
ε)OPT in time polynomial in the input size (i.e., O(M +K × log |N|)) and 1/ε
for any fixed constant ε > 0.

We further consider the general case where N1 ≥ N2 ≥ . . . ≥ NK and some
inequalities hold with equality. Our previous algorithm does not work here since
the proof of Lemma 5 relies on strict inequalities. In the general case, the lemma
does not hold and we can not guarantee that no class is used in more than one
blocks. We refine the algorithm proposed in Section 3.2 and present a new DP
algorithm for this general setting in Section 5 of [9].

Third, in Section 6 of [9], we provide a 1
2 − ε factor approximation algorithm

for a generalization of CAP where the target vector N = {N1, . . . , NK} may
not be monotone (N1 ≥ N2 ≥ . . . ≥ NK may not hold). We still require that∑r

t=1 x[t] ≤
∑r

t=1 Nt for all r. Although we are not aware of an application
scenario that would require the full generality, the techniques developed here,
which are quite different from those in Section 3.2, may be useful in handling
other variants of CAP or problems with similar constraints. So we provide this
approximation algorithm for theoretical completeness.

4 Conclusions

We have formulated and studied the traffic allocation problem for chunked-
reward advertising, and designed a dynamic programming based algorithm,
which can find an optimal allocation in pseudo-polynomial time. An FPTAS
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has also been derived based on the proposed algorithms, and two generalized
settings have been further studied.

There are many research issues related to the CAP problem which need further
investigations. (1) We have studied the offline allocation problem and assumed
that the traffic N of a publisher is known in advance and all the ads are available
before allocation. It is interesting to study the online allocation problem when
the traffic is not known in advance and both website visitors and ads arrive online
one by one. (2) We have assumed that the position discount γi of each slot. It
is worthwhile to investigate how to maximize revenue with unknown position
discount through online exploration. (3) We have not considered the strategic
behaviors of advertisers. It is of great interest to study the allocation problem
in the setting of auctions and analyze its equilibrium properties.

Acknowledgement. Jian Li was supported in part by the National Basic Re-
search Programof China Grant 2011CBA00300, 2011CBA00301and the National
Natural Science Foundation of China Grant 61202009, 61033001, 61061130540,
61073174.
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Abstract. Inspired by online ad allocation problems, many results have
been developed for online matching problems. Most of the previous work
deals with a single objective, but, in practice, there is a need to optimize
multiple objectives. Here, as an illustrative example motivated by display
ads allocation, we study a bi-objective online matching problem.

In particular, we consider a set of fixed nodes (ads) with capacity
constraints, and a set of online items (pageviews) arriving one by one.
Upon arrival of an online item i, a set of eligible fixed neighbors (ads) for
the item is revealed, together with a weight wia for eligible neighbor a.
The problem is to assign each item to an eligible neighbor online, while
respecting the capacity constraints; the goal is to maximize both the total
weight of the matching and the cardinality. In this paper, we present both
approximation algorithms and hardness results for this problem.

An (α, β)-approximation for this problem is a matching with weight
at least α fraction of the maximum weighted matching, and cardinal-
ity at least β fraction of maximum cardinality matching. We present
a parametrized approximation algorithm that allows a smooth tradeoff
curve between the two objectives: when the capacities of fixed nodes are
large, we give a p(1 − 1/e1/p), (1 − p)(1 − 1/e1/1−p)-approximation for
any 0 ≤ p ≤ 1, and prove a ‘hardness curve’ combining several inapprox-
imability results. These upper and lower bounds are always close (with
a maximum gap of 9%), and exactly coincide at the point (0.43, 0.43).
For small capacities, we present a smooth parametrized approximation
curve for the problem between (0, 1− 1/e) and (1/2, 0) passing through
a (1/3, 0.3698)-approximation.

1 Introduction

In the past decade, there has been much progress in designing better algorithms
for online matching problems. This line of research has been inspired by inter-
esting combinatorial techniques that are applicable in this setting, and by online
ad allocation problems. For example, the display advertising problem has been
modeled as maximizing the weight of an online matching instance [11,10,8,2,19].
While weight is indeed important, this model ignores the fact that cardinality of
the matching is also crucial in the display ad application. This example illustrates

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 305–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the fact that in many real applications of online allocation, one needs to opti-
mize multiple objective functions, though most of the previous work in this area
deals with only a single objective function. On the other hand, there is a large
body of work exploring offline multi-objective optimization in the approxima-
tion algorithms literature. In this paper, we focus on simultaneously maximizing
online two objectives which have been studied extensively in matching problems:
cardinality and weight. Besides being a natural mathematical problem, this is
motivated by online display advertising applications.

Applications in Display Advertising. In online display advertising, adver-
tisers typically purchase bundles of millions of display ad impressions from web
publishers. Display ad serving systems that assign ads to pages on behalf of
publishers must satisfy the contracts with advertisers, respecting targeting cri-
teria and delivery goals. Modulo this, publishers try to allocate ads intelligently
to maximize overall quality (measured, for example, by clicks), and therefore
a desirable property of an ad serving system is to maximize this quality while
satisfying the contracts to deliver the purchased number n(a) impressions to
advertiser a. This has been modeled in the literature (e.g., [11,1,24,8,2,19]) as
an online allocation problem, where quality is represented by edge weights, and
contracts are enforced by overall delivery goals: While trying to maximize the
weight of the allocation, the ad serving systems should deliver n(a) impressions
to advertiser a. However, online algorithms with adversarial input cannot guar-
antee the delivery of n(a) impressions, and hence the goals n(a) were previously
modeled as upper bounds. But maximizing the cardinality subject to these up-
per bounds is identical to delivering as close to the targets as possible. This
motivates our model of the display ad problem as simultaneously maximizing
weight and cardinality.

Problem Formulation. More specifically, we study the following bicriteria
online matching problem: consider a set of bins (also referred to as fixed nodes,
or ads) A with capacity constraints n(a) > 0, and a set of online items (referred
to as online nodes, or impressions or pageviews) I arriving one by one. Upon
arrival of an online item i, a set Si of eligible bins (fixed node neighbors) for
the item is revealed, together with a weight wia for eligible bin a ∈ Si. The
problem is to assign each item i to an eligible bin in Si or discard it online, while
respecting the capacity constraints, so bin a gets at most n(a) online items. The
goal is to maximize both the cardinality of the allocation (i.e. the total number
of assigned items) and the sum of the weights of the allocated online items.

It was shown in [11] that achieving any positive approximation guarantee for
the total weight of the allocation requires the free disposal assumption, i.e. that
there is no penalty for assigning more online nodes to a bin than its capacity,
though these extra nodes do not count towards the objective. In the advertising
application, this means that in the presence of a contract for n(a) impressions,
advertisers are only pleased by – or at least indifferent to – getting more than n(a)
impressions. More specifically, if a set Ia of online items are assigned to each bin
a, and Ia(k) denotes the set of k online nodes with maximum weight in Ia, the
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goal is to simultaneously maximize cardinality which is
∑

a∈Amin(|Ia|, n(a)),
and total weight which is

∑
a∈A

∑
i∈Ia(n(a)) wia.

Throughout this paper, we use Wopt to denote the maximum weight match-
ing, and overload this notation to also refer to the weight of this matching.
Similarly, we use Copt to denote both the maximum cardinality matching and
its cardinality. Note that Copt and Wopt may be distinct matchings. We aim to
find (α, β)-approximations for the bicriteria online matching problem: These are
matchings with weight at least αWopt and cardinality at least βCopt. Our ap-
proach is to study parametrized approximation algorithms that allow a smooth
tradeoff curve between the two objectives, and prove both approximation and
hardness results in this framework. As an offline problem, the above bicrite-
ria problem can be solved optimally in polynomial time, i.e., one can check if
there exists an assignment of cardinality c and weight w respecting capacity
constraints. (One can verify this by observing that the integer linear program-
ming formulation for the offline problem is totally unimodular, and therefore the
problem can be solved by solving the corresponding LP relaxation.) However in
the online competitive setting, even maximizing one of these two objectives does
not admit better than a 1 − 1/e approximation [18]. A naive greedy algorithm
gives a 1

2 -approximation for maximizing a single objective, either for cardinality
or for total weight under the free disposal assumption.

Results and Techniques. The seminal result of Karp, Vazirani and Vazi-
rani [18] gives a simple randomized (1 − 1/e)-competitive algorithm for maxi-
mizing cardinality. For the weight objective, no algorithm better than the greedy
1/2-approximation is known, but for the case of large capacities, a 1 − 1/e-
approximation has been developed [11] following the primal-dual analysis frame-
work of Buchbinder et al. [5,21]. Using these results, one can easily get a (p2 , (1−
p)(1 − 1

e ))-approximation for the bicriteria online matching problem with small
capacities, and a

(
p(1− 1

e ), (1− p)(1− 1
e )
)
-approximation for large capacities.

These factors are achieved by applying the online algorithm for weight,WeightAlg,
and the online algorithm for cardinality, CardinalityAlg, as subroutines as fol-
lows: When an online item arrives, pass it to WeightAlg with probability p, and
CardinalityAlgwith probability 1−p. As for a hardness result, it is easy to show that
an approximation factor better than (α, 1 − α) is not achievable for any α > 0.
There is a large gap between the above approximation factors and hardness re-
sults. For example, the naive algorithm gives a (0.4, 0.23)-approximation, but the
hardness result does not preclude a (0.4, 0.6)-approximation. In this paper, we
tighten the gap between these lower and upper bounds, and present new tradeoff
curves for both algorithms and hardness results. Our lower and upper bound re-
sults are summarized in Figure 1. For the case of large capacities, these upper and
lower bound curves are always close (with a maximum vertical gap of 9%), and
exactly coincide at the point (0.43, 0.43).

We first describe our hardness results. In fact, we prove three separate inap-
proximability results which can be combined to yield a ‘hardness curve’ for the
problem. The first result gives better upper bounds for large values of β; this
is based on structural properties of matchings, proving some invariants for any
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online algorithm on a family of instances, and writing a factor-revealing mathe-
matical program (see Section 2.1). The second main result is an improved upper
bound for large values of α, and is based on a new family of instances for which
achieving a large value for α implies very small values of β (see Section 2.2).
Finally, we show that for any achievable (α, β), we have α + β ≤ 1 − 1

e2 (see
Theorem 3).

α

β

0.355
1−1/e2

2

1/2 1 − 1/e

0.30

1−1/e2

2

0.509

1 − 1/e

Our Algorithm
for Small Degrees

Our Algorithm
for Large Degrees

The Red Upper Bound Curve
using Factor Revealing LP

The Black Upper

Bound Line
α + β = 1 − 1/e2

Upper Bound

Curve with
different values
of γ and p

Fig. 1. New curves for upper and lower bounds

These hardness results
show the limit of what can be
achieved in this model. We
next turn to algorithms, to
see how close we can come to
these limits. The key to our
new algorithmic results lies
in the fact that though each
subroutine WeightAlg and
CardinalityAlg only receives a
fraction of the online items,
it can use the entire set of
bins. This may result in
both subroutines filling up a
bin, but if WeightAlg places t
items in a bin, we can discard
t of the items placed there
by CardinalityAlg and still
get at least the cardinality
obtained by CardinalityAlg
and the weight obtained by
WeightAlg. Each subroutine therefore has access to the entire bin capacity,
which is more than it ‘needs’ for those items passed to it. Thus, its competitive
ratio can be made better than 1 − 1/e. For large capacities, we prove the
following theorem by extending the primal-dual analysis of Buchbinder et al.
and Feldman et al. [11,21,5].

Theorem 1. For all 0 < p < 1, there is an algorithm for the
bicriteria online matching problem with competitive ratios tending to(
p(1− 1

e1/p
), (1− p)(1 − 1

e1/(1−p) )
)

as mina{n(a)} tends to infinity.

For small capacities, our result is more technical and is based on studying
structural properties of matchings, proving invariants for our online algorithm
over any instance, and solving a factor-revealing LP that combines these new
invariants and previously known combinatorial techniques by Karp, Vazirani,
Vazirani, and Birnbaum and Mathieu [18,4]. Factor revealing LPs have been
used in the context of online allocation problems [21,20]. In our setting, we need
to prove new variants and introduce new inequalities to take into account and
analyze the tradeoff between the two objective functions. This result can also be
parametrized by p, the fraction of items sent to WeightAlg, but we do not have
a closed form expression. Hence, we state the result for p = 1/2.
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Theorem 2. For all 0 ≤ p ≤ 1, the approximation guarantee of our algorithm
for the bicriteria online matching problem is lower bounded by the green curve
of Figure 1. In particular, for p = 1/2, we have the point (1/3, 0.3698).

Related Work. Our work is related to online ad allocation problems, including
the Display Ads Allocation (DA) problem [11,10,1,24], and the AdWords (AW)
problem [21,7]. In both of these problems, the publisher must assign online im-
pressions to an inventory of ads, optimizing efficiency or revenue of the allocation
while respecting pre-specified contracts. The Display Ad (DA) problem is the
online matching problem described above only considering the weight objective
[11,2,19]. In the AdWords (AW) problem, the publisher allocates impressions
resulting from search queries. Advertiser a has a budget B(a) on the total spend
instead of a bound n(a) on the number of impressions. Assigning impression i to
advertiser a consumes wia units of a’s budget instead of 1 of the n(a) slots, as
in the DA problem. For both of these problems, 1− 1

e -approximation algorithms
have been designed under the assumption of large capacities [21,5,11]. None of
the above papers for the adversarial model study multiple objectives at the same
time.

Besides the adversarial model studied in this paper, online ad allocations
have been studied extensively in various stochastic models. In particular, the
problem has been studied in the random order model, where impressions arrive
in a random order [7,10,1,24,17,20,23]; and the iid model in which impressions
arrive iid according to a known (or unknown) distribution [12,22,16,8,9]. In such
stochastic settings, primal and dual techniques have been applied to getting
improved approximation algorithms. These techniques are based on computing
offline optimal primal or dual solutions of an expected instance, and using this
solution online [12,7]. It is not hard to generalize these techniques to the bicritera
online matching problem. In this extended abstract, we focus on the adversarial
model, and leave discussions of extensions of such techniques for the stochastic
bicriteria problem to the full version of the paper. Note that in order to deal
with traffic spikes, adversarial competitive analysis is important from a practical
perspective, as discussed in [23].

Most previous work on online problems with multiple objectives has been
in the domain of routing and scheduling, and with different models. Typically,
goals are to maximize throughput and fairness; see the work of Goel et al. [15,14],
Buchbinder and Naor [6], and Wang et al. [25]. In this literature, different objec-
tives often come from applying different functions on the same set of inputs, such
as processing times or bandwidth allocations. In a model more similar to ours,
Bilò et al. [3] consider scheduling where each job has two different and unrelated
requirements, processing time and memory; the goal is to minimize makespan
while also minimizing maximum memory requirements on each machine. In an-
other problem with distinct metrics, Flammini and Nicosia [13] consider the
k-server problem with a distance metric and time metric defined on the set of
service locations. However, unlike our algorithms, theirs do not compete simul-
taneously against the best solution for each objective; instead, they compete
against offline solutions that must simultaneously do well on both objectives.
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Further, the competitive ratio depends on the relative values of the two objec-
tives. Such results are of limited use in advertising applications, for instance,
where click-through rates per impression may vary by several orders of magni-
tude.

2 Hardness Instances

In this section for any 0 ≤ α ≤ 1−1/e, we prove upper bounds on β such that the
bicriteria online matching problem admits an (α, β)-approximation. Note that it
is not possible to achieve α-approximation guarantee for the total weight of the
allocation for any α > 1−1/e. We have two types of techniques to achieve upper
bounds: a) Factor-Revealing Linear Programs, b) Super Exponential Weights
Instances, which are discussed in Subsections 2.1, and 2.2 respectively. Factor
revealing LP hardness instances give us the red upper bound curve in Figure
1. The orange upper bound curve in Figure 1 is proved by Super Exponential
Weights Instances presented in Subsection 2.2, and the black upper bound line
in Figure 1 is proved in Theorem 3.

2.1 Better Upper Bounds via Factor-Revealing Linear Programs

We construct an instance, and a linear program LPα,β based on the instance
where α and β are two parameters in the linear program. We prove that if there
exists an (α, β)-approximation for the bicriteria online matching problem, we
can find a feasible solution for LPα,β based on the algorithm’s allocation to the
generated instance. Finally we find out for which pairs (α, β) the linear program
LPα,β is infeasible. These pairs (α, β) are upper bounds for the bicriteria online
matching problem.

For any two integers C, l, and some large weight W � 4l2, we construct the
instance as follows. We have l phases, and each phase consists of l sets of C
identical items, i.e. l2C items in total. For any 1 ≤ t, i ≤ l, we define Ot,i to be
the set i in phase t that has C identical items. In each phase, we observe the
sets of items in increasing order of i. There are two types of bins: a) l weight
bins b1, b2, · · · , bl which are shared between different phases, b) l2 cardinality
bins {b′t,i}1≤t,i≤l. For each phase 1 ≤ t ≤ l, we have l separate bins {b′t,i}1≤i≤l.
The capacity of all bins is C. We pick two permutations πt, σt ∈ Sn uniformly at
random at the beginning of each phase t to construct edges. We note that these
permutations are private knowledge, and they are not revealed to the algorithm.
For any 1 ≤ i ≤ j ≤ l, we put an edge between every item in set Ot,i and bin
b′t,σt(j)

with weight 1 where σt(j) is the jth number in permutation σt. We also

put an edge between every item in set Ot,i and bin bπt(j) (for each j ≥ i) with
weight W t.

Suppose there exists an (α, β)-approximation algorithm Aα,β for the bicriteria
online matching problem. For any 1 ≤ t, i ≤ l, let xt,i be the expected number of
items in set Ot,i that algorithm Aα,β assigns to weight bins {bπt(j)}lj=i. Similarly
we define yt,i to be the expected number of items in set Ot,i that algorithm Aα,β
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assigns to cardinality bins {b′t,σt(j)
}lj=i. We know that when set Ot,i arrives,

although the algorithm can distinguish between weight and cardinality bins, it
sees no difference between the weight bins {bπt(j)}lj=i, and no difference between

the cardinality bins {b′t,σt(j)
}lj=i. By uniform selection of π and σ, we ensure that

in expectation the xt,i items are allocated equally to weight bins {bπt(j)}lj=i,

and the yt,i items are allocated equally to cardinality bins {b′t,σt(j)
}lj=i. In other

words, for 1 ≤ i ≤ j ≤ l, in expectation xt,i/(l− i+ 1) and yt,i/(l− i+ 1) items
of set Ot,i is allocated to bins bπt(j) and b′t,σt(j)

, respectively. It is worth noting

that similar ideas have been used in previous papers on online matching [18,4].
Since weights of all edges to cardinality bins are 1, we can assume that the

items assigned to cardinality bins are kept until the end of the algorithm, and
they will not be thrown away. We can similarly say that the weights of all items
for weight bins is the same in a single phase, so we can assume that an item
that has been assigned to some weight bin in a phase will not be thrown away
at least until the end of the phase. However, the algorithm might use the free
disposal assumption for weight bins in different phases. We have the following
capacity constraints on bins bπt(j) and b′t,σt(j)

:

∀1 ≤ t, j ≤ l:
∑j

i=1 xt,i/(l − i+ 1) ≤ C &
∑j

i=1 yt,i/(l − i+ 1) ≤ C. (1)

At any stage of phase t, the total weight assigned by the algorithm cannot be
less than α times the optimal weight allocation up to that stage, or we would
not have weight αWopt if the input stopped at this point. After set Ot,i arrives,
the maximum weight allocation achieves at least total weight CiW t which is
achieved by assigning items in set Ot,i′ to weight bin bπt(i′) for each 1 ≤ i′ ≤ i.
On the other hand, the expected weight in allocation of algorithm Aα,β is at

most C(tl+W t−1l) +W t
∑i

i′=1 xt,i′ ≤W t(C/
√
W +

∑i
i′=1 xt,i′). Therefore we

have the following inequality for any 1 ≤ t, i ≤ l:

i∑
i′=1

xt,i′/C ≥ αi− 1/
√
W. (2)

We show in Lemma 1 that the linear program LPα,β is feasible if there exists

an algorithm Aα,β by defining pi =
∑l

t=1 xt,i/lC, and qi =
∑l

t=1 yt,i/lC. Now
for any α, we can find the maximum β for which the LPα,β has some feasible
solution for large values of l and W . These factor-revealing linear programs yield
the red upper bound curve in Figure 1.

LPα,β

C1:
∑i

i′=1 pi′ ≥ αi− 1/
√
W ∀1 ≤ i ≤ l

C2:
∑l

i=1 qi ≥ lβ − 1
C3: pi + qi ≤ 1 ∀1 ≤ i ≤ l

C4:
∑j

i=1 pi/(l − i+ 1) ≤ 1 ∀1 ≤ j ≤ l

C5:
∑j

i=1 qi/(l − i+ 1) ≤ 1 ∀1 ≤ j ≤ l
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Lemma 1. If there exists an (α, β)-approximation algorithm for the bicriteria
online matching problem, there exists a feasible solution for LPα,β as well.

In addition to computational bounds for infeasibility of certain (α, β) pairs,
we can theoretically prove in Theorem 3 that for any (α, β) with α+β > 1−1/e2,
the LPα,β is infeasible so there exists no (α, β) approximation for the problem.
We note that Theorem 3 is a simple generalization of the 1−1/e hardness result
for the classic online matching problem [18,4].

Theorem 3. For any small ε > 0, and α + β ≥ 1 − 1/e2 + ε, there exists no
(α, β)-approximation algorithm for the bicriteria matching problem.

Proof. We just need to show that LPα,β is infeasible. Given a solution of LPα,β ,
we find a feasible solution for LP ′

ε defined below by setting ri = pi + qi for any
1 ≤ i ≤ l.

LP ′
ε

∑l
i=1 ri ≥ (1− 1/e2 + ε/2)l

ri ≤ 1 ∀1 ≤ i ≤ l∑j
i=1 ri/(l − i+ 1) ≤ 2 ∀1 ≤ j ≤ l

The first inequality in LP ′
ε is implied by summing up the constraint C1 for

i = l, and constraint C2 in LPα,β, and also using the fact that α+β ≥ (1−1/e2+
ε/2)+ ε/2. We note that the ε/2 difference between the α+β and 1− 1/e2+ ε/2
takes care of −1/

√
W and −1 in the right hand sides of constraints C1 and C2 for

large enough values of l and W . Now we prove that LP ′
ε is infeasible for any ε > 0

and large enough l. Suppose there exists a feasible solution r1, r2, · · · , rn. For
any pair 1 ≤ i < j ≤ n, if we have ri < 1 and rj > 0, we update the values of ri
and rj to r

new
i = ri+min{1−ri, rj}, and rnewj = rj−min{1−ri, rj}. Since we are

moving the same amount from rj to ri (for some i < j), all constraints still hold.
If we do this operation iteratively until there is no pair ri and rj with the above
properties, we reach a solution {r′i}li=1 of this form: 1, 1, · · · , 1, x, 0, 0, · · · , 0 for
some 0 ≤ x ≤ 1. Let t be the maximum index for which r′t is 1. Using the
third inequality for j = l, we have that

∑t
i=1 1/(l − i + 1) ≤ 2 which means

that ln (l/(l− t+ 1)) ≤ 2. So t is not greater than l(1− 1/e2), and consequently∑l
i=1 r

′
i ≤ t+ 1 ≤ (1− 1/e2)l+ 1 < (1− 1/e2 + ε/2)l. This contradiction proves

that LP ′
ε is infeasible which completes the proof of theorem.

2.2 Hardness Results for Large Values of Weight Approximation
Factor

The factor-revealing linear program LPα,β gives almost tight bounds for small
values of α. In particular, the gap between the the upper and lower bounds for the
cardinality approximation ratio β is less than 0.025 for α ≤ (1−1/e2)/2. But for
large values of α (α > (1−1/e2)/2), this approach does not give anything better
than the α+β ≤ 1− 1/e2 bound proved in Theorem 3 . This leaves a maximum
gap of 1/e − 1/e2 ≈ 0.23 between the upper and lower bounds at α = 1 − 1/e.
In order to close the gap at α = 1− 1/e, we present a different analysis based on
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a new set of instances, and reduce the maximum gap between lower and upper
bounds from 0.23 to less than 0.09 for all values of α ≥ (1− 1/e2)/2.

The main idea is to construct a hardness instance Iγ for any 1/e ≤ γ < 1,
and prove that for any 0 ≤ p ≤ 1 − γ, the pair (1 − 1/e − f(p), p/(1 − γ)) is
an upper bound on (α, β) where f(p) is p

e(γ+p) . In other words, there exists no

(α, β)-approximation algorithm for this problem with both α > 1 − 1/e − f(p)
and β > p/(1−γ). By enumerating different pairs of γ and p, we find the orange
upper bound curve in Figure 1.

For any γ ≥ 1/e, we construct instance Iγ as follows: The instance is identical
to the hardness instance in Subsection 2.1, but we change some of the edge
weights. To keep the description short, we only describe the edges with modified
weights here. Let r be (0.5 log1/γ l). In each phase 1 ≤ t ≤ l, we partition

the l sets of items {Ot,i}li=1 into r groups. The first l(1 − γ) sets are in the
first group. From the remaining γl sets, we put the first (1 − γ) fraction in the
second group and so on. Formally, we put set Ot,i in group 1 ≤ z < r for any
i ∈ [l − lγz−1 + 1, l − lγz]. Group r of phase t contains the last lγr−1 sets of
items in phase t. The weight of all edges from sets of items in group z in phase
t is W (t−1)r+z for any 1 ≤ z ≤ r and 1 ≤ t ≤ l.

Given an (α, β)-approximation algorithm Aα,β , we similarly define xt,i and
yt,i to be the expected number of items from set Ot,i assigned to weight and
cardinality bins by algorithm Aα,β respectively. We show in the following lemma
that in order to have a high α, the algorithm should allocate a large fraction of
sets of items in each group to the weight bins.

Lemma 2. For any phase 1 ≤ t ≤ l, and group 1 ≤ z < r, if the expected
number of items assigned to cardinality bins in group z of phase t is at least
plCγz−1 (which is p times the number of all items in groups z, z + 1, · · · , r of
phase t), the weight approximation ratio cannot be greater than 1 − 1/e − f(p)
where f(p) is p

e(γ+p) .

We conclude this part with the main result of this subsection:

Theorem 4. For any small ε > 0, 1/e ≤ γ < 1, and 0 ≤ p ≤ 1 − γ, any algo-
rithm for bicriteria online matching problem with weight approximation guaran-
tee, α, at least 1− 1/e− f(p) cannot have cardinality approximation guarantee,
β, greater than p/(1− γ) + ε.

Proof. Using Lemma 2, for any group 1 ≤ z < r in any phase 1 ≤ t ≤ l, we
know that at most p fraction of items are assigned to cardinality bins, because
1−1/e−f(p) is a strictly increasing function in p. Since in each phase the number
of items is decreasing with a factor of γ in consecutive groups, the total fraction
of items assigned to cardinality bins is at most p+ pγ + pγ2 + · · ·+ pγr−2 plus
the fraction of items assigned to cardinality in the last group r of phase t. Even
if the algorithm assigns all of group r to cardinality, it does not achieve more
than fraction γr−1 from these items in each phase. Since the optimal cardinality
algorithm can match all items, the cardinality approximation guarantee is at
most p(1 + γ + γ2 + · · · + γr−2) + γr−1. For large enough l (and consequently
large enough r), this sum is not more than p/(1− γ) + ε.
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One way to compute the best values for p and γ corresponding to the best
upper bound curve is to solve complex equations explicitly. Instead, we compute
these values numerically by trying different values of p and γ which, in turn,
yield the orange upper bound curve in Figure 1.

3 Algorithm for Large Capacities

We now turn to algorithms, to see how close one can come to matching the upper
bounds of the previous section. In this section, we assume that the capacity n(a)
of each bin a ∈ A is “large”, and give an algorithm with the guarantees in
Theorem 1 as mina∈A n(a)→∞.

Recall that our algorithm Alg uses two subroutines WeightAlg and
CardinalityAlg, each of which, if given an online item, suggests a bin to place
it in. Each item i is independently passed to WeightAlg with probability p and
CardinalityAlg with the remaining probability 1−p. First note that CardinalityAlg
and WeightAlg are independent and unaware of each other; each of them thinks
that the only items which exist are those passed to it. This allows us to analyze
the two subroutines separately.

We now describe how Alg uses the subroutines. If WeightAlg suggests match-
ing item i to a bin a, we match i to a. If a already has n(a) items assigned
to it in total, we remove any item assigned by CardinalityAlg arbitrarily; if all
n(a) were assigned by WeightAlg, we remove the item of lowest value for a. If
CardinalityAlg suggests matching item i to a′, we make this match unless a′ has
already had at least n(a′) total items assigned to it by both subroutines. In
other words, the assignments of CardinalityAlg might be thrown away by some
assignments of WeightAlg; however, the total number of items in a bin is always
at least the the number assigned by CardinalityAlg. Items assigned by WeightAlg
are never thrown away due to CardinalityAlg; they may only be replaced by later
assignments of WeightAlg. Thus, we have proved the following proposition.

Proposition 1. The weight and cardinality of the allocation of Alg are respec-
tively at least as large as the weight of the allocation of WeightAlg and the car-
dinality of the allocation of CardinalityAlg.

Note that the above proposition does not hold for any two arbitrary weight
functions, and this is where we need one of the objectives to be cardinality. We
now describe WeightAlg and CardinalityAlg, and prove Theorem 1. WeightAlg is
essentially the exponentially-weighted primal-dual algorithm from [11], which
was shown to achieve a 1 − 1

e approximation for the weighted online matching
problem with large degrees. For completeness, we present the primal and dual
LP relaxations for weighted matching below, and then describe the algorithm. In
the primal LP, for each item i and bin a, variable xia denotes whether impression
i is one of the n(a) most valuable items for bin a.
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Primal

max
∑

i,a wiaxia∑
a xia ≤ 1 (∀ i)∑
i xia ≤ n(a) (∀ a)

xia ≥ 0 (∀ i, a)

Dual

min
∑

a n(a)βa +
∑

i zi
βa + zi ≥ wia (∀i, a)
βa, zi ≥ 0 (∀i, a)

Following the techniques of Buchbinder et al. [5], the algorithm of [11] simul-
taneously maintains a feasible solution to the primal LP, and provides a feasible
solution to the dual LP after all online nodes arrive. Each dual variable βa is
initialized to 0. When item i arrives online:

– Assign i to the bin a′ = argmaxa{wia−βa}. (If this quantity is negative for
all a, discard i.)

– Set xia′ = 1. If a′ previously had n(a′) items assigned to it, set xi′a′ = 0 for
the least valuable item i′ previously assigned to a′.

– In the dual solution, set zi = wia′ − βa′ and update dual variable βa′ as
described below.

Definition 1 (Exponential Weighting). Let w1, w2, . . . wn(a) be the weights
of the n(a) items currently assigned to bin a, sorted in non-increasing order, and
padded with 0s if necessary.

Set βa = 1

p·n(a)·((1+1/p·n(a))n(a)−1)

∑n(a)
j=1 wj

(
1 + 1

p·n(a)

)j−1

.

Lemma 3. If WeightAlg is the primal-dual algorithm, with dual variables βa

updated according to the exponential weighting rule defined above, the competitive
ratio of WeightAlg regarding the weight objective is at least p ·

(
1− 1

k

)
where

k =
(
1 + 1

p·d

)d

, and d = mina{n(a)}. Note that limd→∞ k = e1/p.

We provide some brief intuition here. If all items are passed to WeightAlg, it
was proved in [11] that the algorithm has competitive ratio tending to 1 − 1/e
as d = mina{n(a)} tends to ∞; this is the statement of Lemma 3 when p = 1.
Now, suppose each item is passed to WeightAlg with probability p. The expected
value of the optimum matching induced by those items passed to WeightAlg is
at least p ·Wopt, and this is nearly true (up to o(1) terms) even if we reduce
the capacity of each bin a to p · n(a). This follows since Wopt assigns at most
n(a) items to bin a, and as we are unlikely to sample more than p ·n(a) of these
items for the reduced instance, we do not lose much by reducing capacities. But
note that WeightAlg can use the entire capacity n(a), while there is a solution
of value close to pWopt even with capacities p · n(a). This extra capacity allows
an improved competitive ratio of 1− 1

e1/p
, proving the lemma.

Algorithm CardinalityAlg is identical to WeightAlg, except that it assumes all
items have weight 1 for each bin. Since items are assigned to CardinalityAlg with
probability 1 − p, Lemma 3 implies the following corollary. This concludes the
proof of Theorem 1.
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Corollary 1. The total cardinality of the allocation of CardinalityAlg is at least

(1 − p) ·
(
1− 1

k

)
, where k =

(
1 + 1

(1−p)·d

)d

, and d = mina{n(a)}. Note that

limd→∞ k = e1/(1−p).

4 Algorithm for Small Capacities

We now consider algorithms for the case when the capacities of bins are not large.
Without loss of generality, we assume that the capacity of each bin is one, because
we can think about a bin with capacity c as c identical bins with capacity one.
So we have a set A of bins each with capacity one, and a set of items I arriving
online. As before, we use two subroutines WeightAlg and CardinalityAlg, but the
algorithms are slightly different from those in the previous section. Each item
i ∈ I is independently passed to WeightAlg with probability p and CardinalityAlg
with the remaining probability 1− p.

In WeightAlg, we match item i (that has been passed to WeightAlg) to
the bin that maximizes its marginal value. Formally we match i to bin a =
argmaxa∈A(wi,a − wi′,a) where i′ is the last item assigned to a before item i.

In CardinalityAlg, we run the RANKING algorithm presented in [18]. So
CardinalityAlg chooses a permutation π uniformly at random on the set of bins
A, assigns an item i (that has been passed to it) to the bin a that is available,
has the minimum rank in π, and there is also an edge between i and a.

4.1 p/(p + 1) Lower Bound on the Weight Approximation Ratio

Let n = |I| be the number of items. We denote the ith arrived item by i. Let
ai be the bin that i is matched to in Wopt for any 1 ≤ i ≤ n. One can assume
that all unmatched items in the optimum weight allocation are matched with
zero-weight edges to an imaginary bin. So Wopt is equal to

∑n
i=1 wi,ai . Let S be

the set of items that have been passed to WeightAlg. If WeightAlg matches item i
to bin aj for some j > i, we call this a forwarding allocation (edge) because item
j (the match of aj in Wopt) has not arrived yet. We call it a selected forwarding
edge if j ∈ S. We define the marginal value of assigning item i to bin a to be
wia minus the value of any item previously assigned to a.

Lemma 4. The weight of the allocation of WeightAlg is at least (p/(p+1))Wopt.

Proof. Each forwarding edge will be a selected forwarding edge with probability
p because Pr[j ∈ S] is p for any j ∈ I. Let F be the total weight of forwarding
edges of WeightAlg, where by weight of a forwarding edge, we mean its marginal
value (not the actual weight of the edge). Similarly, we define Fs to be the sum
of marginal values of selected forwarding edges. We have the simple equality
that the expected value of F , E(F ), is E(Fs)/p. We define W ′ and Ws to be the
total marginal values of allocation of WeightAlg, and the sum

∑
i∈S wi,ai . We

know that E(Ws) is pWopt because Pr[i ∈ S] is p. We prove that W ′ is at least
Ws − Fs.
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For every item i that has been selected to be matched by WeightAlg, we get
at least marginal value wi,ai minus the sum of all marginal values of items that
have been assigned to bin a by WeightAlg up to now. If we sum up all these
lower bounds on our gains for all selected items, we get Ws(=

∑
i∈S wi,ai) minus

the sum of all marginal values of items that has been assigned to ai before item
i arrives for all i ∈ S. The latter part is exactly the definition of Fs. Therefore
W ′ is at least Ws − Fs. We also know that W ′ ≥ F . Using E[F ] ≥ E[Fs]/p,
we have that E(W ′) is at least E(Ws) − pE(W ′), and this yields the p/(p+ 1)
approximation factor.

Corollary 2. The weight and cardinality approximation guarantees of Alg are
at least p/(p+ 1) and (1− p)/(1− p+ 1) respectively.

4.2 Factor Revealing Linear Program for CardinalityAlg

Due to limited space, we just mention that we get the lower bounds on the
cardinality competitive ratio in the green curve of Figure 1 using the following
LP. This LP gives a valid lower bound for any integer k for p = 1/2. A few simple
adjustments generalize this factor revealing LP to the general case of arbitrary
0 < p < 1.

Minimize: β
∀1 < i ≤ k: si ≥ si−1 & sfi ≥ sfi−1 & sbi ≥ sbi−1

∀1 ≤ i ≤ k: ti ≥ ti−1 & ti ≥ sfi & si = sfi + sbi
β ≥ sk + tk & β ≥ 1/2− sfk

∀1 < i ≤ k: si − si−1 ≥ 1/2k − (si + ti)/k
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Abstract. Attackers of computing resources increasingly aim to keep
security compromises hidden from defenders in order to extract more
value over a longer period of time. These covert attacks come in mul-
tiple varieties, which can be categorized into two main types: targeted
and non-targeted attacks. Targeted attacks include, for example, cyber-
espionage, while non-targeted attacks include botnet recruitment.

We are concerned with the subclass of these attacks for which de-
tection is too costly or technically infeasible given the capabilities of a
typical organization. As a result, defenders have to mitigate potential
damages under a regime of incomplete information. A primary mitiga-
tion strategy is to reset potentially compromised resources to a known
safe state, for example, by reinstalling computer systems, and changing
passwords or cryptographic private keys.

In a game-theoretic framework, we study the economically optimal
mitigation strategies in the presence of targeted and non-targeted covert
attacks. Our work has practical implications for the definition of security
policies, in particular, for password and key renewal schedules.

Keywords: Game Theory, Computer Security, Covert Compromise, Tar-
geted Attacks, Non-Targeted Attacks.

1 Introduction

Most organizations devote significant resources to prevent security compromises
which may harm their financial bottomline or adversely affect their reputation.
Security measures typically include technologies to detect known attack vectors.
However, recent studies of anti-malware and anti-virus tools have demonstrated
their ineffectiveness against novel attack approaches and even incrementally mod-
ified known malware.

At the same time, attackers prey upon opportunities to keep successful secu-
rity compromises covert. The goal is to benefit from defenders’ lack of awareness
by exploiting resources, and extracting credentials and company secrets for as
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long as possible. In contrast to non-covert attacks and compromises that focus
on short-term benefits, these long-lasting and (for typical organizations) unde-
tectable attacks pose specific challenges to system adminstrators and creators of
security policies. Discoveries of such attacks by sophisticated security companies
provide evidence for damage caused over many months or years.

CDorked, a highly advanced and stealthy backdoor, was discovered in April
2013 [5]. The malware uses compromised webservers to infect visitors with com-
mon system configurations. To stay covert, the malware uses a number of differ-
ent techniques, for example, not delivering malicious content if the visitor’s IP
address is in a customized blacklist. The operation has been active since at least
December 2012, and has infected more than 400 webservers, including 50 from
Alexa’s top 100,000 most popular websites.

Another example is Gauss, a complex, nation-state sponsored cyber-espionage
toolkit, which is closely related to the notorious Stuxnet [1,10]. Gauss was de-
signed to steal sensitive financial data from targets primarily located in the
Middle East, and was active for at least 10 months before it was discovered.

Such recently-revealed attack vectors as well as the suspected number of
unknown attacks highlight the importance of developing mitigation strategies
to minimize the resulting expected losses. Potentially effective mitigation ap-
proaches include resetting of passwords, changing cryptographic private keys,
reinstalling servers, or reinstantiating virtual servers. These approaches are of-
ten effective at resetting the resource to a known safe state, but they reveal little
about past compromises. For example, if a server is reinstalled, knowledge of if
and when a compromise occured may be lost. Likewise, resetting a password
does not reveal any information about the confidentiality of previous passwords.

Covert (and non-covert) attacks can be distinguished in another dimension by
the extent to which the attack is targeted (or customized) for a particular orga-
nization [4,7]. Approaches related to cyber-espionage are important examples of
targeted attacks, and require a high effort level customized to a specific target
[14]. A typical example of a non-targeted covert attack is the recruitment of a
computer into a botnet via drive-by-download. Such attacks are relatively low
effort, and do not require a specific target. Further, they can often be scaled to
affect many users for marginal additional cost [7]. See Table 1 for a comparison
between targeted and non-targeted attacks.

Table 1. Comparison of Targeted and Non-Targeted Attacks

Targeted Non-Targeted

Number of attackers low high
Number of targets low high
Effort required for each attack high low
Success probability of each attack high low

The targeted nature of an attack also matters to the defender, because tar-
geted and non-targeted attacks do different types of damage. For example, a
targeting attacker might use a compromised computer system to access an or-
ganization’s secret e-mails, which may potentially cause enormous economic
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damage; while a non-targeting attacker might use the same compromised ma-
chine to send out spam, causing different types of damage.

The presence of both targeted and non-targeted covert attacks presents an
interesting dilemma for a medium-profile target to choose a mitigation strategy
against covert attacks. Strategies which are optimal against non-targeted attacks
may not be the best choice against targeted attacks. At the same time, mitigation
strategies against targeted attacks may not be economically cost-effective against
only non-targeting attackers.

To address this dichotomy, we present a game in which a defender must vie
for a contested resource that is subject to both targeted attacks from a strategic
attacker, and non-targeted covert attacks from a large set of non-strategic attack-
ers. We identify Nash equilibria in the simultaneous game, and subgame perfect
equilibria in the sequential game with defender leading. The optimal mitigation
strategies for the defender against these combined attacks lend insights to policy
makers regarding renewal requirements for passwords and cryptographic keys.

The rest of the paper is organized as follows. In Section 2, we review related
work. We define our game-theoretic model in Section 3, and we give analyti-
cal results for this model in Section 4. In Section 5, we present numerical and
graphical observations; we conclude in Section 6.

2 Related Work

2.1 Security Economics and Games of Timing

Research studies on the economics of security decision-making primarily investi-
gate the optimal or bounded rational choice between different canonical options
to secure a resource (i.e., protection, mitigation, risk-transfer), or the determi-
nation of the optimal level of investment in one of these security dimensions.
In our own work, we have frequently contributed to the exploration of these
research objectives (see, for example, [6,9,8]). Further, these studies have been
thoroughly summarized in a recent review effort [11].

Another critical decision dimension for successfully securing resources is the
consideration of when to act to successfully thwart attacks. Scholars have studied
such time-related aspects of tactical security choices since the cold war era by
primarily focusing on zero-sum games called games of timing [2]. The theoretical
contributions on some subclasses of these games have been surveyed by [17].

2.2 FlipIt: Modeling Targeted Attacks

Closely related to our study is the FlipItmodel which identifies optimal timing-
related security choices under targeted attacks [19]. In FlipIt, two players com-
pete for a resource that generates a payoff to the current owner. Players can
make costly moves (i.e., “flips”) to take ownership of the resource, however,
they have to make moves under incomplete information about the current state
of possession.
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In the original FlipIt paper, equilibria and dominant strategies for simple
cases of interaction are studied [19]. Other groups of researchers have worked on
extensions [16,12]. For example, Laszka et al. extended the FlipIt game to the
case with multiple resources. In addition, the usefulness of the FlipIt game has
been investigated for various application scenarios [3,19]. We detail the difference
of our model to FlipIt in Section 3.3. The current study generalizes our previous
work which was restricted to exponential distributions for the attack time [13].

FlipIt has been studied in experiments in which human participants were
matched with computerized opponents [15]. This work has also been extended
to consider different interface feedback modalities [18]. The results complement
the theoretical work by providing evidence for the difficulty to identify optimal
choices when timing is the critical decision dimension.

3 Model Definition

We model the covert compromise scenario as a randomized, one-shot, non-zero-
sum game. For a list of symbols used in our model, see Table 2. The player
who is the rightful owner of the resource is called the defender, while the other
players are called attackers. The game starts at time t = 0 with the resource
being uncompromised, and it is played indefinitely as t → ∞. We assume that
time is continuous.

Table 2. List of Symbols

CD move cost for the defender
CA move cost for the targeting attacker
BA benefit received per unit of time for the targeting attacker
BN benefit received per unit of time for the non-targeting attackers
FA cumulative distribution function of the attack time for the targeting attacker
λN rate of the non-targeted attacks’ arrival

We let D, A, and N denote the defender, the targeting attacker, and the non-
targeting attackers, respectively. At any time instance, player imaymake a move,
which costs her Ci. (Note that, for attackers, we will use the words attack and
move synonymously). When the defender makes a move, the resource becomes
uncompromised immediately for every attacker. When the targeting attacker
makes a move, she starts her attack, which takes some random amount of time.
If the defender makes a move while an attack is in progress, the attack fails. We
assume that the time required by a targeted attack follows the same distribution
every time. Its cumulative distribution function is denoted by FA, and is subject
to FAi(0) = 0. In practice, this distribution can be based on industry-wide
beliefs, statistics of previous attacks, etc.

The attackers’ moves are stealthy; i.e., the defender does not know when
the resource became compromised or if it is compromised at all. On the other
hand, the defender’s moves are non-stealthy. In other words, the attackers learn
immediately when the defender has made a move.
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The cost rate for player i up to time t, denoted by ci(t), is the number of
moves per unit of time made by player i up to time t, multiplied by the cost per
move Ci.

For attacker i ∈ {A,N}, the benefit rate bi(t) up to time t is the fraction
of time up to t that the resource has been compromised by i, multiplied by
Bi. Note that if multiple attackers have compromised the resource, they all
receive benefits until the defender’s next move. For the defender D, the benefit
rate bD(t) up to time t is −

∑
i∈{A,N} bi(t). The relation between defender and

attacker benefits implies that the game would be zero-sum if we only considered
the players’ benefits. Because our players’ payoffs also consider move costs, our
game is not zero-sum. Player i’s payoff is defined as

lim inf
t→∞

bi(t)− ci(t) . (1)

It is important to note that the asymptotic benefit rate lim inft→∞ bi(t) of
attacker i is equal to the probability that i has the resource compromised at
a random time instance, multiplied by Bi. For a discussion on computing the
payoffs for the key strategy profiles in this paper, see the extended version of
this paper available on the authors’ websites.

3.1 Types of Strategies for the Defender and the Targeting Attacker

Not Moving. A player can choose to never move. While this might seem
counter-intuitive, it is actually a best-response if the expected benefit from mak-
ing a move is always less than the cost of moving.

Adaptive Strategies for theTargetingAttacker. LetT (n)={T0, T1, . . . , Tn}
denote the move times of the defender up to her nth move (or in the case of T0 =
0, the start of the game). The attacker uses an adaptive strategy if she waits for
W (T (n)) time until making a move after the defender’s nth move (or after the
start of the game), whereW is a non-deterministic function. If the defender makes
her n+1stmove before the chosen wait time is up, the attacker chooses a new wait
timeW (T (n+1)), which also considers the new information that is the defender’s
n + 1st move time. This class is a simple representation of all the rational strate-
gies available to an attacker, since W can depend on all the information that the
attacker has, and we do not have any constraints on W .

Renewal Strategies. Player i uses a renewal strategy if the time intervals be-
tween consecutive moves are identically distributed independent random vari-
ables, whose distribution is given by the cumulative function FRi . Renewal
strategies are well-motivated by the fact that the defender is playing blindly;
thus, she has the same information available after each move. So it makes sense
to use a strategy which always chooses the time until her next flip according to
the same distribution.

Periodic Strategies. Player i uses a periodic strategy if the time intervals
between consecutive moves are identical. This period is denoted by δi. Periodic
strategies are a special case of renewal strategies.
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3.2 Non-Targeted Attacks

Suppose that there are N non-targeting attackers. In practice, N is very large,
but the expected number of attacks in any time interval is finite. Hence, as N
goes to infinity, the probability that a given non-targeting attacker targets the
defender approaches zero. Since non-targeting attackers operate independently
of each other, the number of successful attacks in any time interval depends
solely on the length of the interval. Thus, the arrival of successful non-targeted
attacks follows a Poisson process.

Furthermore, since the economic decisions of the non-targeting attackers de-
pend on a very large pool of possible targets, the effect of the defender’s be-
haviour on the non-targeting attackers’ strategies is negligible. Thus, the non-
targeting attackers’ strategies (that is, the arrival rate of the Poisson process)
can be considered exogenously given. We let λN denote the expected number of
arrivals that occur per unit of time; and we model all the non-targeting attackers
together as a single attacker whose benefit per unit of time is BN .

3.3 Comparison to FlipIt

Even though our game-theoretic model resembles FlipIt in many ways, it differs
in three key assumptions. First, we assume that the defender’s moves are non-
stealthy. The motivation for this is that, when the attacker receives benefits from
continuously exploiting the compromised resource, she should know whether
she has the resource compromised or not. For example, if the attacker uses the
compromised password of an account to regularly spy on its e-mails, she will learn
of a password reset immediately when she tries to access the account. Second,
we assume that the targeting attacker’s moves are not instantaneous, but take
some time. The motivation for this is that an attack requires some effort to be
carried out in practice. Furthermore, the time required for a successful attack
may vary, which we model using a random variable for the attack time. Third,
we assume that the defender faces multiple attackers, not only a single one.

Moreover, to the authors’ best knowledge, papers published on FlipIt so far
give analytical results only on a very restricted set of strategies. In contrast, we
completely describe our game’s equilibria and give optimal defender strategies
based on very mild assumptions, which effectively do not limit the power of
players (see the introduction of Section 4).

4 Analytical Results

In this section, we provide analytical results based on our model. We start with
a discussion of the players’ strategies.

Recall that the defender has to play blindly, which means that she has the
same information available after each one of her moves. Consequently, it makes
sense for her to choose the time until her next flip according to the same dis-
tribution each time. In other words, a rational defender can restrict herself to
using only renewal strategies.
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Now, if the defender uses a renewal strategy, the time of her next move de-
pends only on the time elapsed since her last move Tn, and the times of her
previous moves (including Tn) are irrelevant to the future of the game. There-
fore, it is reasonable to assume that the attacker’s response strategy to a renewal
strategy also does not depend on T0, T1, . . . , Tn. For the remainder of the paper,
when the defender plays a renewal strategy, the attacker uses a fixed probability
distribution – given by the density function fW – over her wait times for when
to begin her attack. Note that it is clear that there always exists a best-response
strategy of this form for the attacker against a renewal strategy.

Since the attacker always waits an amount of time that is chosen according
to a fixed probability distribution after the defender’s each move, the amount of
time until the resource would be successfully compromised after the defender’s
move also follows a fixed probability distribution. Let S be the random variable
measuring the time after the defender has moved until the attacker’s attack
would finish. The probability density function fS of S can be computed as

fS(s) =

∫ s

w=0

fW (w)

∫ (s−w)

a=0

fA(a) da dw . (2)

Finally, we let FS denote the cumulative distribution function of S.

4.1 Best Responses

Defender’s Best Response. We begin our analysis with finding the defender’s
best-response strategy.

Lemma 1. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeting attacker uses an adaptive strategy with
a fixed wait time distribution FW . Then,
– not moving is the only best response if CD = D(l) has no solution for l > 0,

where

D(l) = BA

(
lFS(l)−

∫ l

s=0

FS(s) ds

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
; (3)

– the periodic strategy whose period is the unique solution to CD = D(l) is the
only best response otherwise.

The proof is available in the paper’s extended version on the authors’ websites.
Even though we cannot express the solution of CD = D(l) in closed form, it

can be easily found using numerical methods, as the right hand side is continuous
and increasing.1 Note that all the equations presented in the subsequent lemmas
and theorems of this paper can also be solved by applying numerical methods.

Lemma 2. Suppose that the non-targeted attacks arrive according to a Poisson
process with rate λN , and the targeting attacker never attacks. Then,

1 We show in the proof of the lemma that the right hand side is increasing in l.
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– not moving is the only best response if CD = DN (l) has no solution for l > 0,
where

DN (l) = BN

(
−le−λN l +

1− e−λN l

λN

)
; (4)

– the periodic strategy whose period is the unique solution to CD = DN (l) is
the only best response otherwise.

Proof. Follows readily from the proof of Lemma 1 with the terms belonging to
the targeting attacker omitted everywhere. 
�

Observe that D(0) = DN (0) < 0 and D(l) ≥ DN (l). Consequently, CD =
D(l) has a solution whenever CD = DN (l) has one. Furthermore, if both have
solutions, the solution of CD = D(l) is less than or equal to the solution of
CD = DN (l). In other words, the defender is more likely to keep moving if there
is a threat of targeted attacks, and she will move at least as frequently as she
would if there was no targeting attacker.

Attacker’s Best Response. We continue our analysis with finding the at-
tacker’s best-response strategy.

Lemma 3. Against a defender who uses a periodic strategy with period δD,
– never attacking is the only best response if CA > A(δD), where

A(δ) = BA

∫ δ

a=0

FA(a)da ; (5)

– attacking immediately after the defender has moved is the only best response
if CA < A(δD);

– both not attacking and attacking immediately are best responses otherwise.

The proof is available in the paper’s extended version on the authors’ websites.
The lemma shows that the targeting attacker should either attack immediately

or not attack at all, but she should never wait to attack. For the never attack
strategy, we already have the defender’s best response from Lemma 2. For the
attacking immediately strategy, the defender can determine the optimal period
of her strategy solely based on the distribution of A, which is an exogenous
parameter of the game. More formally, the defender’s best response is not to
move if CD = DA(l) has no solution, and it is a periodic strategy whose period
is the unique solution to CD = DA(l) otherwise, where

DA(l) = BA

(
lFA(l)−

∫ l

a=0

FA(a) da

)
+BN

(
−le−λN l +

1− e−λN l

λN

)
. (6)

This follows readily from Lemma 1 by substituting FS for FA.
2

2 Recall that S was defined as the sum of the waiting time W , which is always zero
in this case, and the attack time A.
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4.2 Nash Equilibria

Based on the previous lemmas, we can describe all the equilibria of the game (if
there are any) as follows.

Theorem 1. Suppose that the defender uses a renewal strategy, the targeting
attacker uses an adaptive strategy, and the non-targeted attacks arrive according
to a Poisson process. Then, the game’s equilibria can be described as follows.
1. If CD = DA(l) does not have a solution for l, then there is a unique equilib-

rium in which the defender does not move and in which the targeting attacker
moves once at the beginning of the game.

2. If CD = DA(l) does have a solution δD for l:
(a) If CA ≤ A(δD), then there is a unique equilibrium in which the defender

plays a periodic strategy with period δD, and the targeting attacker moves
immediately after each of the defender’s moves.

(b) If CA > A(δD),
i. if CD = DN (l) has a solution δ′D for l, and CA ≥ A(δ′D), then there

is a unique equilibrium in which the defender plays a periodic strategy
with period δD, and the targeting attacker never moves;

ii. otherwise, there is no equilibrium.

The proof is available in the paper’s extended version on the authors’ websites.
For an illustration of the hierarchy of the theorem’s criteria, see Figure 1. Finally,
recall that a discussion on the payoffs can also be found in the extended version.

CD = DA(l) does not
have a solution:

equilibrium
(attacker at advantage)

CD = DA(l) has a solution δD

CA ≤ A(δD):
equilibrium

(no player at advantage)

CA > A(δD)

CD = DN (l) has a solution δ′D
and CA ≥ A(δ′D):

equilibrium
(defender at advantage)

otherwise:
no equilibrium

(defender at advantage)

Fig. 1. Illustration for the hierarchy of criteria in Theorem 1

In the first case, the attacker is at an overwhelming advantage, as the relative
cost of defending the resource is prohibitively high. Consequently, the defender
simply “gives up,” as any effort to protect the resource is not profitable, and the
attacker will eventually have the resource compromised indefinitely (see Figure
2 for an illustration). In the second case, no player is at an overwhelming advan-
tage. Both players are actively moving, and the resource gets compromised and
uncompromised from time to time. In the third and fourth cases, the defender
is at an overwhelming advantage. However, this does not necessarily lead to an
equilibrium. If the defender moves with a sufficiently high rate, she makes mov-
ing unprofitable for the targeting attacker. But if the targeting attacker decides
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t
0

Pr

1

0

(a) Case 1.

t
0 δ 2δ

Pr

1

0

(b) Case 2. (a)

t
0

Pr

1

0

(c) Case 2. (b) i.

Fig. 2. The probability that the targeting attacker has compromised the resource (ver-
tical axis) as a function of time (horizontal axis) in various equilibria (see Theorem 1
for each case). Note that these are just examples, the actual shapes of the functions
depend on FA.

not to move, then the defender switches to a lower move rate, which is optimal
against only non-targeted attacks. However, once the defender switches to the
lower move rate, it might again be profitable for the targeting attacker to move,
which would in turn trigger the defender to switch back to the higher move rate.

4.3 Sequential Game: Deterrence by Committing to a Strategy

So far, we have modeled the mitigation of covert compromises as a simultaneous
game. This is realistic for scenarios where neither the defender nor the targeting
attacker can learn the opponent’s strategy choice in advance. However, in practice,
the defender can easily let the targeting attacker know her strategy by publicly
announcing it. Even though one of the key elements of security is confidentiality,
the defender can actually gain from revealing her strategy – as we will show in
Section 5 – since this allows her to deter the targeting attacker from moving.

In this section, we model the conflict as a sequential game, where the de-
fender chooses her strategy before the targeting attacker does. We assume that
the defender announces her strategy (e.g., publicly commits herself to a cer-
tain cryptographic-key update policy) and the targeting attacker chooses her
best response based on this knowledge. Furthermore, in this section, we restrict
the defender’s strategy set to periodic strategies and not moving. The following
theorem describes the defender’s subgame perfect equilibrium strategies.

Theorem 2. Let δ1 be the solution of CD = DA(δ) (if any), δ2 be the maximal
period δ for which CA = A(δ), and δ3 be the solution of CD = DN (δ) (if any).
In a subgame perfect equilibrium, the defender’s strategy is one of the following:
– not moving,
– periodic strategies with periods {δ1, δ2, δ3}.

The proof is available in the paper’s extended version on the authors’ websites.
Based on the above theorem, one can easily find all subgame perfect equilibria

by iterating over the above strategies and, for each strategy, computing the
targeting attacker’s best response using Lemma 3, and finally comparing the
defender’s payoffs to find her equilibrium strategy (or strategies). Note that, for
each case of Theorem 1, the set of possible equilibrium strategies in Theorem 2
could be restricted further. For example, in Case 2. (b) i., the only subgame
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perfect equilibrium is the defender moving periodically with δ′D and the targeting
attacker never moving. We defer the remaining cases to future work.

5 Numerical Illustrations

In this section, we present numerical results on our game. For the illustrations,
we instantiate our model with the exponential distribution as the distribution
of the attack time. For rate parameter λA, the cumulative distribution function
of the exponential distribution is FA(a) = 1 − e−λAa. For the remainder of this
section, unless indicated otherwise, the parameters of the game are CD = CA =
BA = λA = λN = 1 and BN = 0.1. Finally, we refer to the simultaneous-game
Nash equilibria simply as equilibria, and we refer to the defender’s subgame
perfect equilibrium strategies as optimal strategies (because they maximize the
defender’s payoff given that the targeting attacker will play her best response).

First, in Figure 3, we study the effects of varying the value of the resource,
that is, the unit benefit BA received by the targeting attacker. Figure 3a shows
the equilibrium payoffs as functions of BA (the defender’s period for the same

BA

0.2 30.9
−3

1.5

0

(a) The defender’s and the targeting at-
tacker’s payoffs (solid and dashed lines, re-
spectively) in equilibria as functions of BA

BA

0.2 3
−3

1.5

0

(b) The defender’s and the targeting at-
tacker’s payoffs for the defender’s optimal
strategy as functions of BA

BA

0.2 30.9
0

8

(c) The defender’s equilibrium period as a
function of BA

BA

0.2 3
0

8

(d) The defender’s optimal period as a
function of BA

Fig. 3. The effects of varying the unit benefit BA of the targeting attacker
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setup is shown by Figure 3c). The defender’s payoff is strictly decreasing, which
is not surprising: the more valuable the resource is, the higher the cost of security
is. The targeting attacker’s payoff, on the other hand, starts growing linearly,
but then suffers a sharp drop, and finally converges to a finite positive value.

For lower values (BA < 0.9), the defender does not protect the resource, as it
is not valuable enough. Accordingly, Figure 3c shows no period for this range,
and the targeting attacker’s payoff is the value of the resource BA. However, once
the value reaches about 0.9, the defender starts protecting the resource. Hence,
the targeting attacker’s payoff drops as she no longer always has the resource.
For higher values, the defender balances between losses and costs, which means
that the time the resource is compromised decreases as its value increases.

Figure 3b shows the payoffs for the defender’s optimal strategy as functions
of BA (the optimal period is shown by Figure 3d). The figure shows that the
defender’s strategy for this range of BA is always to deter the targeting attacker
(hence, the targeting attacker’s payoff is zero). To achieve this, the defender is
using a strictly shorter period than her equilibrium period. Interestingly, the
defender’s payoff is much higher compared to her equilibrium payoff.

CD

0.2 2.30.6 1.09

−1.1

0

1

(a) The defender’s and the targeting at-
tacker’s payoffs (solid and dashed lines, re-
spectively) in equilibria as functions of CD

CD

0.2 2.31.93

−1.1

0

1

(b) The defender’s and the targeting at-
tacker’s payoffs for the defender’s optimal
strategy as functions of CD

CD

0.2 2.30.6 1.09
0

8

(c) The defender’s equilibrium period as a
function of CD

CD

0.2 2.31.93
0

8

(d) The defender’s optimal period as a
function of CD

Fig. 4. The effects of varying the defender’s move cost CD
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In Figure 4, we study the effects of varying the defender’s move cost CD.
Figure 4a shows the equilibrium payoffs as functions of CD (the defender’s period
for the same setup is shown by Figure 4c). The figure shows that the defender’s
payoff is decreasing, while the targeting attacker’s payoff is increasing, which is
unsurprising: the more costly it is to defend, the greater the attacker’s advantage.

For lower costs (CD < 0.6), the defender is at an overwhelming advantage,
but there is no equilibrium (Case 2. (b) ii. of Theorem 1). For costs between 0.6
and 1.09, no player is at an overwhelming advantage; hence, both players move
from time to time. For higher costs, the targeting attacker is at an overwhelming
advantage. In this case, the defender never moves, while the attacker moves once.
Hence, their payoffs are BA +BN = −1.1 and BA = 1, respectively.

Figure 4b shows the payoffs for the defender’s optimal strategy as a function of
CD (the optimal period is shown by Figure 4d). The defender’s optimal strategy
for move costs lower than 1.93 is to deter the targeting attacker. Hence, the
targeting attacker’s payoff is zero. The defender’s payoff decreases linearly as
the cost of deterrence increases. Again, we see that the defender’s payoff is much
higher than her equilibrium payoff. However, for higher move costs, she must
give up defending the resource, as in her equilibrium strategy for this range.

6 Conclusions

In this paper, we studied the mitigation of both targeted and non-targeted covert
attacks. As our main result, we found that periodic mitigation is the most effec-
tive strategy against both types of attacks and their combinations. Considering
the simplicity of this strategy, our result can be surprising, but it also serves as a
theoretical justification for the prevalent periodic password and cryptographic-
key renewal practices. Moreover, this result contradicts the lesson learned from
the FlipIt model [19], which suggests that a defender facing an adaptive at-
tacker should use an unpredictable, randomized strategy.

Further, a defender is more willing to commit resources to defensive moves
when being threatened by non-targeted and targeted attacks at the same time.
This stands in contrast to the result that a high level of either threat type can
force the defender to abandon defensive activities altogether.

Finally, we observed that there is an important difference between the de-
fender’s simultaneous and sequential (i.e., optimal) equilibrium strategies, both
in the lengths of the periods and the resulting payoffs. Thus, a defender should
not try to keep her strategy secret, but rather publicly commit to it.
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Abstract. In a one-dimensional single facility location game, each player
resides at a point on a straight line (his location); the task is to decide
the location of a single public facility on the line. Each player derives
a nonnegative cost, which is a monotonically increasing function of the
distance between the location of the facility and himself, so he may mis-
report his location to minimize his cost. It is desirable to design an
incentive compatible allocation mechanism, in which no player has an
incentive to misreport.

Offering/Charging payments to players is a usual tool for a mecha-
nism to adjust incentives. Our game setting without payment is equiv-
alent to the voting setting where voters have single-peaked preferences.
A complete parametric characterization of incentive compatible alloca-
tion mechanisms in this setting was given by [17], while the problem for
games with payments is left open. We give a characterization for the case
of linear and strictly convex cost functions by showing the sufficiency
of weak-monotonicity, which, more importantly, implies an interesting
monotone triangular structure on every single-player subfunction.

1 Introduction

People live in communities, where public facilities need to be built to serve the
residents. The location of a public facility is one of the most important decisions
to make since the convenience of accessing a facility is mainly affected by the
distance to the facility. Although the social goal is to provide convenient service
to the whole community, tradeoffs have to be made as people reside at different
locations. Hence the well-known public facility location problem has been a long-
lasting attraction to researchers.

Conventionally, the convenience of accessing a facility is quantified by the
negation of a cost, indicating the effort needed to reach the facility. The cost
can be calculated through a cost function C on the distance d to the facility,
which grows with the distance. For different people or circumstances, the growth
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rate may vary; the cost function may be linear, convex, concave, or a combina-
tion of the three. A linear cost function C(d) = αd is the simplest case, which
has a stable growth rate α. A convex cost function has higher growth rate for
longer distances (such as the taxi fare), which captures the nature that people
become exhausted after long distances. In contrast, a concave cost function has
lower growth rate for longer distances (such as the subway fare). This represents
situations where people become adapted after long distances.

In algorithm design, people solve optimization problems, such as to minimize
the total/maximum cost of the people served in the community. There are also
interesting variations in the number of facilities, the cost function, and the loca-
tion space (discrete or continuous). In our paper, we consider one of the simplest
variations: one-dimensional single facility location, where the location space is
the one-dimensional real line R and only a single facility needs to be built. All
three types of cost functions are investigated.

However, optimization is not the focus of our paper: We investigate the game-
theoretic setting where each resident is modeled as a player in the facility location
game intending to maximize his utility, i.e., his overall benefit. Each player i’s
true location ri is his private information, and the location of the facility is
chosen based on the reported locations from all players x = (x1, . . . , xn). Hence
a player may have an incentive to misreport his location to make the facility
closer to him. Naturally, to achieve good public service, we would like a solution
where no player has an incentive to misreport. This property is called incentive
compatibility, or simply truthfulness, which is the main solution concept of the
field of mechanism design [21,20].

Offering/Charging payments to players is a usual tool in mechanism design to
adjust incentives. Our work allows solutions with payments. Thus, an allocation
mechanism, i.e., a solution to our facility location game, is composed of an
allocation function and a payment function vector. The allocation function f
takes the reported locations of all players x as input and outputs a location y of
the public facility; The payment function vector p contains a payment function
pi as its ith component for each player i. Function pi takes the same input as
f , and assigns a (positive or negative) payment to player i. The setting without
payments restricts p ≡ 0.

Under a mechanism (f,p), the utility ui of player i is his payment under
reported locations pi(x) minus his cost under true location C(|f(x) − ri|). The
mechanism is public knowledge, and a truthful mechanism ensures truth-telling
in the following sense: No matter what other players may report, for each player,
given the mechanism and other players’ reports, reporting his true location al-
ways maximizes his utility.

The goal of our work is to characterize the set of truthful allocation functions,
i.e., allocation functions f for which there exists a payment function vector p
such that (f,p) is truthful. Characterization of truthful functions is meaning-
ful in mechanism design, since it allows mechanism designers to focus on the
function and not to worry about payments, whose existence is already guaran-
teed by the characterization. Furthermore, in most applications, there are other
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desirable properties the allocation function should also satisfy, such as fairness
or efficiency. A good characterization provides a useful description of the set of
truthful functions for a designer to start with to work further on the other prop-
erties, or to prove the impossibility to satisfy other properties simultaneously. A
great number of results in mechanism design follow this path [3,10,22].

For the game setting without payment, a complete parametric characteriza-
tion of truthful allocation mechanisms was given by Moulin [17]. (One unnec-
essary assumption in the proof is dropped by Barberà and Jackson [5], and
Sprumont [26].) Observe that, without payment, a player’s utility is simply the
negation of his cost, and the definition of truthfulness is only concerned with
the comparison of the cost of two locations. Moreover, the cost is single-peaked:
it reaches its minimum 0 at the player’s true location and increases monoton-
ically on both sides; the formula of the cost function becomes irrelevant. In
fact, this setting is essentially equivalent to the voting setting where voters have
single-peaked preferences. Moulin considered the voting setting, and hence his
characterization, a parametric representation of truthful allocations is called a
generalized median voter scheme. It is an extension of the function that selects
the median voter’s preference peak, which, interpreted into our setting, is the
median location out of the locations of all players.

The characterization for games with payments is left open, which is what we
studied in this paper. This question is interesting in its own right: In real life,
some facility builders are willing to provide payments. For example, when a com-
pany chooses the location of its office, employees living far away from the office
are subsidized. On the other hand, the generalized median voter scheme is very
restricted, and does not satisfy certain other desirable properties, such as fairness
or cost minimization. For example, the average function of all agents’ locations
minimizes the sum of squares of agents’ cost, which is a widely used objective
function in operational research to balance the social welfare and fairness. This
nice function is not truthfully implementable without payment. However, by our
characterization, it can be made truthful with payment, so designers may want
to consider investing some money to realize this allocation function.

1.1 Our Contributions

It turns out that the set of truthful allocation functions with payments is a
much wider class than the generalized median voter scheme. We show that
weak monotonicity, an easily proven necessary condition for truthfulness [20],
is also sufficient in this setting for linear and strictly convex cost functions.
There has been a series of works on characterization of truthfulness for vari-
ous settings [23,19,3,15,24,27,18,16,11,16,14,9,7,1,4,2], and most of them involve
weak monotonicity, or some other kind of monotonicity properties. It turns out
that the characterization results are closely related to the domain of the problem
setting, i.e., the set of all possible valuation functions on the set of outcomes. In
our setting, the domain of player i is {−C(|y − ri|) : ri ∈ R}, where each ele-
ment −C(|y − ri|) is a single-peaked function mapping each location of facility
y ∈ R to the valuation (convenience) player i derives when his true location is ri.
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Evidently, the domain of our setting is restricted, so Roberts’ Theorem that ev-
ery truthful function in an unrestricted domain is an affine maximizer [23] does
not apply. Furthermore, our domain is not a special case of the convex domain
or single-parameter domain for which the sufficiency of weak monotonicity is
proved [19,3,24]. Clearly, our domain is not convex, and an easy way to see this
is that the average of two valuation functions no longer has peak of value 0. On
the other hand, though the domain of each player i is associated with a single
parameter ri, the single-peaked function does not conform to the function in the
definition of single-parameter domain. It is interesting that none of the previous
characterization results covers our setting although it is very simple and realis-
tic. In particular, most of the previous result involves some kind of convexity:
either the valuation is convex or the type space is convex. The fact that there are
infinite (uncountable) many alternatives also makes the result interesting since
most of previous results assume a finite set of alternatives.

On the other hand, from the mechanism design point of view, weak mono-
tonicity, as a condition on any two locations, is not directly applicable; it is
more desirable to derive its equivalent properties that describe global features of
the allocation function (usually on every single player subfunction), from which
truthful payments can also be described. The characterization of the single-
parameter domain in [19,3] is successful in this aspect: Various mechanisms for
specific settings with different objectives are derived based on this characteri-
zation [19,3,12,10,25,6]. For our problem, we also succeed in providing a char-
acterization of this kind. In fact, the sufficiency of weak monotonicity is shown
indirectly through the correctness of this characterization.

More specifically, our characterization results are presented in three steps: In
Section 3, we derive some properties from weak-monotonicity on every single
player subfunction:1 For strictly convex cost functions, the allocation function
is simply monotonically non-decreasing in the usual sense; Linear cost functions
imply a weaker condition, which we call partially monotonically non-decreasing.
As shown in Section 4, this condition implies a monotone triangular partition,
which graphically divides the allocation function into pieces each within a trian-
gle, and the set of triangles obeys some “monotone” property. For strictly convex
cost functions, this part is evident as the allocation function is monotone. Finally
we provide a payment function with respect to a monotone triangular partition
and prove truthfulness in Section 5 for linear and strictly convex cost functions
respectively.

In summary, here are our main characterization results for one-dimensional
single facility location game with payments (which also apply to the setting
where the location space is a closed interval):

Theorem 1. For linear and strictly convex cost functions, an allocation func-
tion is truthful if and only if it satisfies weak-monotonicity.

1 A single player subfunction on player i is the allocation function restricted to some
fixed reported locations of players other than i. See Section 2 for a formal definition.
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Theorem 2. For linear cost functions, an allocation function is truthful if and
only if each of its single player subfunctions is partially monotonically non-
decreasing.

Theorem 3. For strictly convex cost functions, an allocation function is truth-
ful if and only if each of its single player subfunctions is monotonically non-
decreasing.

Although Theorem 1 has its own theoretical significance (there are domains
for which weak monotonicity is not sufficient [15]), Theorems 2 and 3 are more
informative: they provide a global monotone structure on every single player
subfunction, which is more intuitive and easier to verify for practical mechanism
design. Strictly convex cost functions enforce a simple monotone structure; the
linear cost function case is more intriguing: here monotonicity is required in a
hidden (partial) way, captured in our notion of monotone triangular partition.

Consider a single player subfunction f . Since the distance to the facility |f(x)−
x| switches sign at f(x) = x, the sign of f(x) − x (thus the line y = x) is
important. Our monotone triangular partition is a partition of the real line
into intervals such that, for each interval I, all f(x) are within the closure Ĩ
of the interval and on the same side of line y = x. Hence f is monotonically
non-decreasing between different intervals (i.e., f on a right interval is never
below f on a left interval), but need not be monotone within an interval I.
Graphically, each interval I corresponds to one of the two triangles generated
by dividing I × Ĩ with line y = x. The sign of the interval, i.e., the uniform sign
of f(x) − x, corresponds to which side of y = x the triangle resides. Therefore,
f is contained in these monotone triangles, and we call this nice interesting
structure a monotone triangular partition. For intervals where f(x) ≡ x, we
allow the corresponding triangle to degenerate into the line segment on y = x
intersecting I × Ĩ.

x

y=f(x)
y=x

Fig. 1. A monotone triangular partition when C is linear

Unsurprisingly, the payment function in Section 5 is closely related to the
triangular partition. Since truthfulness is unaffected by shifting the payment
function by any arbitrary constant, we pick an arbitrary reference point and set
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its payment 0. Then to find out the payment for any point x, imagine taking a
walk from the reference point towards the allocated facility location f(x) and
counting throughout the way. For cost function C(d) = d, we simply count the
distance we have walked, but with a sign according to the sign of the interval
we are walking at (We take negation of it if f(x) is to the left of the reference
point). Hence in the formula, the payment is a directed summation of lengths
of intervals corresponding to a monotone triangular partition. For linear cost
functions with slope α �= 1 or strictly convex cost functions, we need to adjust
the quantity (not as easy as distance here) counted into the payment, but the
idea is the same.

2 Preliminaries and Notation

Now we formally define a one-dimensional single facility location game. Suppose
there are n players and player i’s location is represented by a real number xi ∈ R.
Given a location vector x = (x1, . . . , xn) of n players, an allocation mechanism
chooses a location y = f(x) ∈ R for the single facility and assigns payments
p(x) = (p1(x), . . . , pn(x)) to players where player i gets payment pi(x). The
setting without payments restricts p(x) ≡ 0.

LetC(d) denote the cost functionof all players,which is a smoothmonotonically-
increasing function on nonnegative distances, and can always be normalized to
satisfy C(0) = 0. Let r = (r1, . . . , rn) be the true location vector of the n play-
ers, in which ri is player i’s private information. Then the utility of player i is
ui(x) = −C(|f(x)− ri|) + pi(x).

In the game-theoretic model, each player intends to maximize his utility. An
allocation mechanism (f,p) is incentive compatible, or truthful, if for each player
i, reporting his true location ri always maximizes his utility. Formally, it requires
that, for each player i, for each fixed reported locations of players other than
i, written as x−i = (x1, . . . , xi−1, xi+1, . . . , xn), and for any ri and xi, we have
ui((ri,x−i)) ≥ ui((xi,x−i)). We call an allocation function f truthful if there
exists a payment function vector p such that (f,p) is truthful. Our goal is to
characterize the set of truthful allocation functions.

For a player i, each fixed reported locations of other players x−i induces
a subfunction of the allocation function f on player i’s location: f i

x−i
(xi) =

f((xi,x−i)), which can be viewed as an allocation function for a game of a
single player i. Thus the notion of truthfulness also applies to such single player
subfunctions of f . The following easily proved fact is used extensively in the
literature:

Proposition 4. The allocation function f is truthful if and only if every single
player subfunction of f is truthful.

By Proposition 4, it is meaningful to characterize the set of truthful allocation
functions of one player: now an allocation function f : R→ R maps a location x
to location y of the facility. We want to know for which f there exists payment
function p : R→ R such that (f, p) is truthful.
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Weak monotonicity is a well-known necessary condition for a truthful function.
In our setting, it translates to the following: for any x, x′ ∈ R, C(|f(x) − x|) −
C(|f(x)−x′|) ≤ C(|f(x′)−x|)−C(|f(x′)−x′|). We obtain a nice characterization
by showing weak monotonicity is also sufficient and providing more illustrative
conditions equivalent to weak monotonicity on the allocation function f .

It turns out that the shape of the cost function C plays an important role. In
our work, we investigate linear, strictly convex and strictly concave cost func-
tions. C(d) = αd where α > 0 is a linear cost function; C is strictly convex if
for any two points d1 �= d2 and t ∈ (0, 1), it holds that C(td1 + (1 − t)d2) <
tC(d1) + (1− t)C(d2). Symmetrically C is strictly concave if for any two points
d1 �= d2 and t ∈ (0, 1), it holds that C(td1 + (1− t)d2) > tC(d1) + (1− t)C(d2).

3 Implication of Weak-Monotonicity

In this section, for linear and strictly convex cost functions respectively, derive
from weak monotonicity an equivalent condition on every single player subfunc-
tion.

3.1 Convex Cost Functions

Lemma 5. If the cost function is strictly convex, a single player allocation
function f satisfies weak monotonicity if and only if it is monotonically non-
decreasing, i.e., f(x1) ≤ f(x2) for any x1 < x2.

Proof. We use the following property of strictly convex functions:

Proposition 6. If function C is strictly convex, C(d1)+C(d4) > C(d2)+C(d3)
holds for any d1 < d2 ≤ d3 < d4 satisfying d1 + d4 = d2 + d3.

Now given a strictly convex cost function C, for any x1 < x2, we claim that
function Δ(z) = C(|z−x1|)−C(|z−x2|) is a monotonically increasing function:
For any z1 < z2 ≤ x1, set d1 = x1−z2, d4 = x2−z1, d2 = min(x1−z1, x2−z2) and
d3 = max(x1−z1, x2−z2). We can easily check d1 < d2 ≤ d3 < d4 and d1+d4 =
d2+d3. By Proposition 6, C(x1−z2)+C(x2−z1) > C(x1−z1)+C(x2−z2). We
rearrange the terms and change the distances to the form of absolute values to
get C(|z1−x1|)−C(|z1−x2|) < C(|z2−x1|)−C(|z2−x2|), i.e., Δ(z1) < Δ(z2).

The case x2 ≤ z1 < z2 is symmetric. For x1 ≤ z1 < z2 ≤ x2, we have
C(|z1 − x1|) = C(z1 − x1) < C(z2 − x1) = C(|z2 − x1|) and C(|z1 − x2|) =
C(x2 − z1) > C(x2 − z2) = C(|z2 − x1|). Taking the difference of the two
inequalities gives C(|z1 − x1|)− C(|z1 − x2|) < C(|z2 − x1|)−C(|z2 − x2|), i.e.,
Δ(z1) < Δ(z2).

The monotonicity of the entire function Δ can be easily derived by its mono-
tonicity on the three closed intervals z ≤ x1, x1 ≤ z ≤ x2, z ≥ x2 derived above.
The condition of weak monotonicity can be rewritten as Δ(f(x1)) ≤ Δ(f(x2)),
which holds if and only if f(x1) ≤ f(x2) since function Δ is strictly monotoni-
cally increasing.
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3.2 Linear Cost Functions

Lemma 7. If the cost function is linear, a single player allocation function f
satisfies weak monotonicity if and only if for any x1 < x2, f(x1) > x1 implies
f(x2) ≥ min(x2, f(x1)).

This property is weaker than being monotonically non-decreasing, which we call
partially monotonically non-decreasing.

Proof. If the cost function C(d) = αd (α > 0), for any x1 < x2, function
Δ(z) = C(|z− x1|)−C(|z− x2|) is a continuous non-decreasing piecewise linear
function: For z ≤ x1,Δ(z) is a negative constant α(x1−x2), whereas it constantly
equals its negation α(x2 −x1) for z ≥ x2. Between z = x1 and z = x2 is a linear
piece of slope 2α > 0.

The condition of weak monotonicity can be rewritten asΔ(f(x1)) ≤ Δ(f(x2)).
This always holds for f(x1) ≤ x1 sinceΔ(f(x1)) reaches the minimum. If f(x1) >
x1, there are two cases: for f(x1) < x2, f(x1) belongs to the linearly increasing
piece, so Δ(f(x1)) ≤ Δ(f(x2)) if and only if f(x1) ≤ f(x2); otherwise, f(x1) ≥
x2, Δ(f(x1)) reaches the maximum, thus Δ(f(x2)) is also the maximum, i.e.,
f(x2) ≥ x2. The summary of the two cases is exactly f(x2) ≥ min(x2, f(x1)).

4 Monotone Triangular Partition

In this section, we show that weak monotonicity implies a monotone triangular
partition. We start with the following key separation theorem:

Theorem 8. If f is partially monotonically non-decreasing, then for any x1 <
x2 satisfying (f(x1) − x1)(f(x2) − x2) < 0, there exists x∗ ∈ [x1, x2] such that
f(x) ≤ x∗ for x < x∗ and f(x) ≥ x∗ for x > x∗. In particular, f(x∗) = x∗ for
the case f(x1) > x1 and f(x2) < x2.

Proof. (f(x1)−x1)(f(x2)−x2) < 0 implies that f(x1)−x1 and f(x2)−x2 have
different signs. There are two cases:

If f(x1) < x1 and f(x2) > x2, we take x∗ = inf{x : f(x) > x, x ≥ x1}, where
the infimum exists since the set is non-empty (contains x2) and bounded below
by x1. Clearly x∗ ∈ [x1, x2].

First, we show f(x) ≤ x∗ for x < x∗ in this case. This is immediate for x ≥ x1

by the definition of x∗. For x < x1, suppose f(x) > x∗ for contradiction. Then
since f is partially monotonically non-decreasing, x < x1 and f(x) > x implies
f(x1) ≥ min(x1, f(x)) ≥ min(x1, x

∗) = x1, contradicting that f(x1) < x1.
Next, for x > x∗, we want to show f(x) ≥ x∗. By the definition of x∗, there

exists x′ ∈ [x∗, x) satisfying f(x′) > x′. Now we apply the partial monotonicity
condition again with x′ < x: f(x′) > x′ implies f(x) ≥ min(x, f(x′)) > x∗.

Interestingly, the second case f(x1) > x1 and f(x2) < x2 is not symmetric.
Here we take x∗ = inf{f(x) : f(x) < x, x ≥ x1}. Again the set is non-empty since
it contains f(x2). It is bounded below by x1 since we can apply the partial mono-
tonicity condition with x1 < x, f(x1) > x1 and get f(x) ≥ min(x, f(x1)) > x1.
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Hence x∗ is also well-defined in this case. Moreover, the above argument plus
f(x2) < x2 guarantees x∗ ∈ [x1, x2]. For this case, we need to show a slightly
stronger statement: f(x) ≤ x∗ for x ≤ x∗ and f(x) ≥ x∗ for x ≥ x∗, which at
x = x∗ implies f(x∗) = x∗.

First we prove f(x) ≤ x∗ for x ≤ x∗. For contradiction, suppose f(x) > x∗.
By the definition of x∗, there exists x′(≥ x1) such that x∗ ≤ f(x′) < f(x)
and f(x′) < x′: This immediately implies f(x′) < min(x′, f(x)); On the other
hand, x ≤ x∗ ≤ f(x′) < x′ and f(x) > x∗ ≥ x allows us to apply the partial
monotonicity condition and get f(x′) ≥ min(x′, f(x)), which is a contradiction.

Now f(x) ≥ x∗ for x ≥ x∗. For those x satisfying f(x) ≥ x, x ≥ x∗ imme-
diately gives f(x) ≥ x∗; otherwise, f(x) < x, then the definition of x∗ implies
that f(x) is at least the infimum x∗.

Theorem 8 enables us to repeatedly partition the real line into intervals: as
long as there exist two points x1 < x2 within the same interval I whose signs
of f(x) − x are different, we disect the interval at x∗. Point x∗ belongs to the
left subinterval I1 if f(x∗) < x∗, to the right subinterval I2 if f(x∗) > x∗, and
to either one of the two if f(x∗) = x∗ (Note that I1 and I2 are both nonempty
but may only contain a single point). This disection at the same time disects
the allocation function by line y = x∗: for x in I1 and all intervals left to I1,
f(x) ≤ x∗, the allocation function does not exceed this line; symmetrically for
x in I2 and all intervals right to I2, f(x) ≥ x∗, the allocation function never
goes below the line. Graphically, f appears within the region x ≤ x∗, y ≤ x∗ and
x ≥ x∗, y ≥ x∗.

Eventually, we get a partition P = {I} of R satisfying the following:

– Within each interval I, the sign of f(x) − x is uniformly δI ∈ {−1, 1}, i.e.,
δI(f(x)− x) ≥ 0 for all x ∈ I.

– For each interval I, f(x) ∈ Ĩ for all x ∈ I, where Ĩ is the closure of I.
– Between different intervals I1 and I2, if I1 is to the left of I2, f(x1) ≤ f(x2)

for any x1 ∈ I1, x2 ∈ I2.

The second property is immediate from the disecting argument in the description
of our partition process; and the last property immediately follows from the
second.

Graphically, the partition P defines a triangular structure: each interval I ∈ P
corresponds to a triangle TI : TI = {(x, y) : x ∈ I, y ∈ Ĩ , y ≤ x} for δI =
−1 and TI = {(x, y) : x ∈ I, y ∈ Ĩ , y ≥ x} for δI = 1. And the allocation
function f only appears within the set of triangles. Moreover, the triangular
structure is “monotonic” in the sense that “a triangle to the right is always
above”. Therefore, we call such a partition P a monotone triangular partition.

Combining Theorem 8 with Lemma 7 in Subsection 3.2, we derive that weak
monotonicity guarantees the existence of such a partition for linear cost functions.
For convex cost functions, Lemma 5 says that weak monotonicity implies that the
allocation function f is monotonically non-decreasing, which is stronger than the
condition of partially monotonically non-decreasing required in Theorem 8. Thus
a monotone triangular partition exists for convex cost functions as well. This can
also be derived directly from the monotonicity of the allocation function.
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5 Incentive Compatible Payments

In this section, for any allocation function f that admits a monotone triangular
partition, we would like to provide a payment function p such that (f, p) is
truthful. We have an explicit formula of p for partitions where any finite range
[a, b] only intersects finitely many intervals, i.e., P can be written as {Ii : b� ≤
i ≤ br}, where the Ii’s are ordered from left to right (possibly b� = −∞, or
br = +∞, or both). For general f that does not admit a partition of this form,
the same idea works; yet it involves infinite summations and makes our argument
notationally much more complicated. Handling such technical details is not the
focus of our paper here.

Now given a monotone triangular partition P = {Ii : b� ≤ i ≤ br}, let
{ai : b� ≤ i ≤ br + 1} be the set of boundary points, where ai ≤ ai+1 and the
left/right endpoint of Ii is ai/ai+1. P may contain only finitely many intervals,
including the very special case |P| = 1 where b� = br; otherwise, there is an
infinite sequence of intervals to the left end of the real line (b� = −∞), or to
the right end (br = +∞), or both. If b� is finite, ab� = −∞; If br is finite,
abr+1 = +∞. Other than these two, all ai’s are finite.

A monotone triangular partition P = {Ii : b� ≤ i ≤ br} of R satisfies the
following three properties:

– Each interval Ii is associated with δi ∈ {−1, 0, 1}, which denotes the uniform
sign of f(x) − x. We have δi(f(x) − x) ≥ 0 for all x ∈ Ii, and in particular,
δi = 0 requires f(x) ≡ x for all x ∈ Ii.

– For each i, f(x) ∈ Ĩi for all x ∈ Ii, where Ĩi is the closure of Ii.
– For any i < j and x ∈ Ii, x

′ ∈ Ij , we have f(x) ≤ f(x′).

Here we allow δi = 0 for an interval Ii where f(x) ≡ x, while for such an
interval, the other two choices −1 and 1 are also allowed. Graphically δi = 0
indicates that the corresponding triangle of Ii shrinks to the line segment {(x, y) :
x ∈ Ii, y = x}. This extra freedom does not add any difficulty to our proofs, but
as shown in Subsection 5.2, now our payment function includes the no-payment
case, i.e., for an allocation function that is truthful without payments, there is
a monotone triangular partition with associated δ’s under which our payment
function is exactly p(x) ≡ 0.

For linear and strictly convex cost functions respectively, we present a formula
of the payment function p and show its incentive compatibility based on the
above properties. This, combined with Section 4, and the necessity of weak
monotonicity, completes the proof of Theorem 1-3. Due to the space limit, we
defer the convex cost function part to the full paper.

5.1 Linear Cost Functions

Given a monotone triangular partition P = {Ii : b� ≤ i ≤ br}, we define a
function q : R → R on the location y ∈ R of the public facility as follows:
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q(y) = δ0y if |P| = 1; otherwise, choose a reference boundary point ab0 , where
b� < b0 ≤ br.

q(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δk(y − ak) +

k−1∑
i=b0

δi(ai+1 − ai), y ∈ Ik, b0 ≤ k ≤ br

−δk(ak+1 − y)−
b0−1∑
i=k+1

δi(ai+1 − ai), y ∈ Ik, b� ≤ k < b0

Our definition of q only involves ai with bl + 1 ≤ i ≤ br, which are all finite,
thus function q is well-defined. Moreover, observe that for any finite boundary
point ak, the value of q(ak) is the same no matter whether ak belongs to interval
Ik−1 or Ik. Hence the above formula holds for any y ∈ Ĩk as well.

In particular, the value of q at the reference boundary point ab0 is set to 0.
Each interval Ii, or part of an interval, contributes to the payment if and only
if it is between ab0 and y. The contribution equals its sign δi times the length
of the interval if it is to the right of ab0 , and its negation if it is to the left of
ab0 . Under this summarization, the difference of the function value of any two
points y and y′ is irrelevant to the choice of the reference point ab0 . The following
lemma can be easily proven:

Lemma 9. Suppose y ∈ Ĩk and y′ ∈ Ĩk′ . For k < k′,

q(y′)− q(y) = δk′(y′ − ak′) +
k′−1∑
i=k+1

δi(ai+1 − ai) + δk(ak+1 − y);

For k = k′, q(y′)− q(y) = δk(y
′ − y).

Theorem 10. Let f be an allocation function that admits a monotone trian-
gular partition P = {Ii : b� ≤ i ≤ br}, and C(d) = αd (α > 0) is the cost
function. Then mechanism (f, p) is truthful where the payment function is de-
fined as p(x) = αq(f(x)).

Proof. To prove (f, p) is truthful, we need to show that for any true location x
and x′ �= x,

−C(|f(x) − x|) + p(x) = u(x) ≥ u(x′) = −C(|f(x′)− x|) + p(x′),

i.e., reporting true location x always maximizes the player’s utility. Substituting
C(d) = αd, p(x) = αq(f(x)) and f(x) = y, f(x′) = y′, the inequality simplifies
to

q(y)− |y − x| ≥ q(y′)− |y′ − x|.

Now we verify this inequality in three cases as follows. Throughout our proof,
we repeatedly use the simple fact that, for x ∈ Ik and y = f(x), |y−x| = δk(y−x).
This is immediate from the first property of the partition.
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Case 1: x and x′ are in the same interval Ik.
In this case, y, y′ ∈ Ĩk from the second property of the partition. By Lemma
9, we have q(y′)−q(y) = δk(y

′−y). We substitute this and |y−x| = δk(y−x)
and the inequality simplifies to |y′−x| ≥ δk(y

′− y)+ δk(y−x) = δk(y
′−x),

which always holds given δk ∈ {−1, 0, 1}.
Case 2 : x ∈ Ik, x

′ ∈ Ik′ and k < k′.
In this case, y ∈ Ĩk and y′ ∈ Ĩk′ . Applying Lemma 9 gives

q(y′)− q(y) = δk′(y′ − ak′) +

k′−1∑
i=k+1

δi(ai+1 − ai) + δk(ak+1 − y).

On the other hand, |y′ − x| = y′ − x = (y′ − ak′) +
∑k′−1

i=k+1(ai+1 − ai) +
(ak+1 − x).
Putting all equalities together, we get

q(y′)− q(y)− |y′ − x|+ |y − x| = (δk′ − 1)(y′ − ak′) +
k′−1∑
i=k+1

(δi − 1)(ai+1 − ai)

+δk(ak+1 − y)− (ak+1 − x) + δk(y − x)

≤ δk(ak+1 − y)− (ak+1 − x) + δk(y − x)

= (δk − 1)(ak+1 − x) ≤ 0,

given δk, δk′ ∈ {−1, 0, 1}. Rearranging the terms gives exactly the inequality
we want to prove.

Case 3 : x ∈ Ik, x
′ ∈ Ik′ and k > k′. This case is symmetric to Case 2.

5.2 Generality and Non-uniqueness of Our Payment

As mentioned before, by allowing degenerated triangles (allowing δI = 0 for
interval I where f(x) ≡ x) in our monotone triangular partition, we make our
payment formula include the all-zero payment function for truthful allocation
functions in the no payment setting.

For games without payment, every single player subfunction behaves as fol-
lows: as player’s location x grows, the facility location y = f(x) either remains
the same, or jumps to a symmetric (higher point) with respect to x, or continues
to equal x. Formally, for any single player subfunction of a truthful allocation
function, there exists a monotone triangular partition satisfying the following
properties:

– For any I with δI = 0, f(x) ≡ x. This is always required by a monotone
triangular partition. We state it here for completeness.

– For any I with δI = 1, f(x) always equals to the right endpoint of I.
– For any I with δI = −1, f(x) always equals to the left endpoint of I.
– For any I1 adjacent to I2 and to the left of I2, δI1 = −1 implies δI2 = 1 and

the lengths of the two intervals are equal.
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It can be verified that our payment function p in Subsection 5.1 based on the
above monotone triangular partition is constant, thus can be made all-zero by a
constant shift.

On the other hand, for an interval I where f(x) ≡ x, we can still set δI = −1
or 1, or even divide it into more intervals and set different δ’s. This freedom
results in different monotone triangular partitions, which, plugged into our pay-
ment formula, results in payment functions that differ more than a constant
shift. Therefore, the payment function for a truthful allocation function may
not be unique. In contrast, the classic unique-payment theorem [20] states that
the payment function is unique for a truthful mechanism when the domain is
connected; and the domain of our setting is connected. The inconsistency comes
from the fact that our outcome set (the set of possible facility locations) is un-
countable, while the theorem assumes the outcome set to be finite. This is called
the revenue equivalence in economics literature [13,8].

6 Conclusion and Open Questions

In this paper, we characterize the set of truthful allocation functions for one-
dimensional single facility location game with payments: we show the sufficiency
of weak monotonicity, and its equivalent global monotone structure on every sin-
gle player subfunction for linear and strictly convex cost functions respectively.

When investigating concave cost functions, we observe certain anti-monotone
feature implied by weak monotonicity, which makes this case greatly different
from the cases we have solved. We would love to see characterization results of
this case: it is not known yet whether weak monotonicity is sufficient or not. We
note here that, when the cost function is concave, the global utility function is
still not convex (it is convex in both sides of its true location but not if we view
it globally).

Another direction is to consider the game for more facilities, say, two facilities.
In this case, the valuation domain for each agent is more complicated. Even the
characterization for truthful mechanisms without payment is still open.
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Abstract. We study simple item bidding mechanisms for the combina-
torial public project problem and explore their efficiency guarantees in
various well-known solution concepts. We first study sequential mecha-
nisms where each agent, in sequence, reports her bid for every item in a
predefined order on the agents determined by the mechanism. We show
that if agents’ valuations are unit-demand any subgame perfect equilib-
rium of a sequential mechanism achieves the optimal social welfare. For
the simultaneous bidding equivalent of the above auction we show that
for any class of bidder valuations, all Strong Nash Equilibria achieve at
least a O(log n) factor of the optimal social welfare. For Pure Nash Equi-
libria we show that the worst-case loss in efficiency is proportional to the
number of agents. For public projects in which only one item is selected
we show constructively that there always exists a Pure Nash Equilib-
rium that guarantees at least 1

2
(1 − 1

n
) of the optimum. We also show

efficiency bounds for Correlated Equilibria and Bayes-Nash Equilibria,
via the recent smooth mechanism framework [26].

1 Introduction

In recent years considerable attention has been devoted to the design and anal-
ysis of “simple” mechanisms: algorithms for strategic environments that yield
provable guarantees yet are simple enough to run in practice. This trend is mo-
tivated by the realization that mechanisms which are implemented in practice
and encourage participation cannot be arbitrarily complex. Since simplicity often
comes at the price of lowered economic efficiency, the goal in analyzing simple
mechanisms is to quantify this loss in comparison to some theoretical optimum.

Simple mechanisms have been explored thus far primarily in auction domains.
Some examples include posted price mechanisms that approximate revenue-
optimal auctions [5], and simultaneous single item auctions that have good social
efficiency relative to the fully efficient combinatorial auctions [6,1,13,10].
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In contrast to auctions where agents compete for allocated resources, public
projects require agents to coordinate on resources that are collectively allocated.
This is captured in the combinatorial public projects model introduced in [21],
where there are multiple resources (items), each agent has a combinatorial val-
uation function on subsets of the items, and the goal is to select some fixed
number of items that maximizes the sum of the agents’ valuations. This prob-
lem provides the first evidence of the computational hardness of truthful im-
plementation: for agents with nondecreasing submodular valuations, there are
constant-factor approximation algorithms when agents’ valuations are known,
but there is no computationally efficient truthful mechanism that can obtain a
reasonable approximation under standard complexity-theoretic assumptions [21].

As a canonically hard mechanism design problem, there has been an ongoing
investigation of mechanisms for combinatorial public projects under various valu-
ation classes and solution concepts [3,12,8,14,7]. When considering simple mech-
anisms, the item-bidding with first-prices mechanism, which is the analogue of
those used in combinatorial auctions [6,1,13], is arguably the simplest non-trivial
mechanism for combinatorial public projects: the mechanism asks each agent,
simultaneously, to report her valuation separately for each item, then chooses
the k items whose sum of reported valuations is maximal and charges agents
first prices, i.e. each agent pays her reported valuation for every item selected
by the mechanism. Despite its appealing simplicity, it turns out that achieving
desirable efficiency guarantees at equilibrium is not trivial in this mechanism.
In evidence, consider an instance with n agents and 3 items A,B,C, in which a
single item is to be selected and agents valuations are as those summarized in
the following n× 3 matrix:

[vij ] =

⎡
⎢⎢⎢⎣
n− 1 1 0

...
...

...
n− 1 1 0
0 0 n− 1

⎤
⎥⎥⎥⎦

In this instance all the agents except agent n have a valuation viA = n− 1 for
A, viB = 1 for item B, and viC = 0 for item C, and agent n has a valuation of 0
for items A and B and a valuation of n− 1 for project C. Obviously the optimal
outcome is for A to be chosen leading to a social welfare of (n − 1)2. However,
there exists a Nash Equilibrium where project B is selected: if all agents except
agent n bid 1 for B and 0 for A and agent n bids truthfully, then in this profile
the bids on B total to (n−1) (assuming tie-breaking is chosen in favor of B) and
B is selected. To see that this an equilibrium, note that for any agent except n
the only two ways to alter the allocation is either by only reducing the current
bid for B to 0 and letting C be selected, or reducing the bid for B to 0 and
increasing his bid on A to n−1. For both deviations the utility (valuation minus
payment) would be 0, which is exactly what the agent is currently getting.

The above example shows that even when agents have very simple valuation
functions (unit-demand), the price of anarchy – the ratio between the optimal
solution and that achievable in equilibrium – can be as bad as linear in the
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number of agents in the system. It may therefore seem like simple mechanisms
for combinatorial public projects are of little interest to anyone interested in rea-
sonable efficiency guarantees. However, a more careful observation at the above
example leaves some hope. The major difficulty in designing simple and effi-
cient mechanisms for combinatorial public projects is the inability of the bidders
to coordinate on the right equilibrium. Thus, to achieve worst case efficiency
guarantees, either the mechanism should allow for agents to signal among each
other, or the solution concept should allow for such signaling. Alternatively, an
optimistic designer could be interested in best-case guarantees by studying the
existence of good equilibria (Price of Stability), rather than that any equilibrium
will be good, since the designer himself could somehow signal which equilibrium
should be chosen. In this work we address all these three different routes. We
study both sequential and simultaneous bidding mechanisms. In sequential bid-
ding, the mechanism determines some order in which agents place their bids,
while in the simultaneous case all agents bid simultaneously.

1.1 Main Results

To understand outcome quality in our item bidding mechanisms, we consider a
number of standard solution concepts.

Sequential Item-Bidding Mechanism. We start by analyzing a sequential version
of the item-bidding first-price mechanism, where the agents are asked sequen-
tially (in an arbitrary order) to report their willingness-to-pay separately for
each item. We focus on the subgame-perfect equilibria of this extensive form
game, which is the most well-established concept for sequential games. We show
that when bidders have unit-demand valuations (i.e. their valuation when a
set S of items is chosen is their maximum valued item in the set) then every
subgame-perfect equilibrium achieves optimal social welfare. We reiterate that in
the simultaneous mechanism the inefficiency can grow linearly with the number
of players even for unit-demand valuations, as illustrated in the example given
above, rendering the design of good mechanisms for such valuations a non-trivial
task. The intuition behind our result is that the sequentiality of the moves allows
the agents to signal their preferences and to coordinate on a specific equilibrium
by pre-committing on their declared valuations.

Strong-Nash Equilibria of the Simultaneous Item-Bidding Mechanism. Subse-
quently we analyze the quality of Strong Nash Equilibria (equilibria that are
stable under coalitional deviations) of the simultaneous item-bidding mechanism,
where all agents are asked to simultaneously submit their willingness-to-pay sep-
arately for each item. Our simple mechanism for the public project problem can
be thought of as a coordination game, where agents need to coordinate on their
best set of items. In this context the Strong Nash Equilibrium is a very natural
solution concept. We show that the loss in efficiency (the strong price of anarchy)
is no more than O(log n). Essentially, Strong Nash Equilibria alleviate the coor-
dination problem inherent in public project auctions by allowing the agents to
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coallitionally deviate if they found themselves stuck at a bad equilibrium where
no agent unilaterally could affect the set of chosen items.

Nash Equilibria of the Simultaneous Item-Bidding Mechanism. Next we consider
the quality of Pure Nash Equilibria of the simultaneous auction, and show that
the worst-case loss in efficiency is proportional to n, the number of agents1. Our
upper bound requires no assumption on bidders’ valuations. Note that while the
n bound on the price of anarchy seems weak, it is better than any determinis-
tic truthful mechanisms: [21] shows that computationally efficient deterministic
dominant strategy mechanisms cannot do better than

√
m (where m is the num-

ber of resources). For the special case of unit-demand agents (whose valuation
for a set of items is the value of the best item selected) we give an improved
bound of n/k, where k is the number of items that need to be chosen.

The high inefficiency of the worst pure nash equilibrium is due to the fact
that certain bad equilibria survive due to the lack of good unilateral deviations.
However, such equilibria tend to be unreasonable and unnatural. Thus it is
interesting to study the existence of good equilibria of the auction. For the case
when one item is to be chosen we show constructively that the best Pure Nash
Equilibrium is guaranteed to obtain at least a 1

2 (1 −
1
n ) fraction of the optimal

welfare.

Learning Behavior and Incomplete Information. The equilibrium analysis so
far assumed that agents will reach a stable solution of the bidding game, i.e., an
equilibrium. We also explore the quality of solution achieved in a repeated version
of the simultaneous game under the weaker assumption that all agents employ
no-regret learning strategies. If all agents use no-regret learning strategies [2],
than the resulting outcome distribution is a coarse correlated equilibrium of the
game. We show that the loss in efficiency of any coarse correlated equilibrium is
no more than 2 · n · k for arbitrary valuations, 2e

e−1n for fractionally subadditive
valuations and e

e−1n/k for unit-demand valuations. The latter bounds are given
via the smooth-mechanism framework [26] and thereby also carry over to the set
of Bayes-Nash equilibria of the incomplete information setting, where valuations
are private and drawn from commonly known distributions.

1.2 Related Work

There is a long recent literature on combinatorial public projects that mainly
tries to find truthful mechanisms with good efficiency guarantees [21,24,3,8].
Specifically, as mentioned above, in [21] it is shown that under standard as-
sumptions, no tractable truthful mechanism can achieve an approximation factor
better than

√
m for agents with nondecreasing submodular valuations.

There has been a long line of research on quantifying inefficiency of equilibria
starting from [15] who introduced the notion of the price of anarchy. Several

1 We also show that this bound is essentially tight, by giving a lower bound of n− 1
on the price of anarchy.
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recent papers have studied the efficiency of simple mechanisms. A series of pa-
pers, Christodoulou, Kovacs and Schapira [6], Bhawalkar and Roughgarden [1]
Hassidim, Kaplan, Mansour, Nisan [13], and Feldman et al. [10], studied the
inefficiency of Bayes-Nash equilibria of non-truthful combinatorial auctions that
are based on running simultaneous separate single-item auctions. Lucier and
Borodin studied Bayes-Nash Equilibria of non-truthful auctions based on greedy
allocation algorithms [16]. Paes Leme and Tardos [20], Lucier and Paes Leme
[17] and Caragiannis et al. [4] studied the ineffficiency of Bayes-Nash equilibria
of the generalized second price auction. Roughgarden [22] showed that many
price of anarchy bounds carry over to imply bounds also for learning outcomes.
Roughgarden [23] and Syrgkanis [25] showed that such bounds also extend to
bound the inefficiency of games of incomplete information. Recently, in [26] we
give a more specialized framework for the case of non-truthful mechanisms in
settings with quasi-linear preferences, showing how to capture several of the pre-
vious results. In this work we show that our upper bounds for coarse correlated
and Bayes-Nash equilibria of the simultaneous auction fall into the framework
of [26].

The quality of subgame-perfect equilibria of sequential versions of simultane-
ous games, was introduced in [19] and has been applied to cost-sharing games,
cut and consensus games, load balancing games. Our result on the sequential
item-bidding mechanism is of similar flavor to this line of work and gives an-
other interesting application of the latter approach.

2 Model and Notation

In combinatorial public projects there is a set of m items and n agents. Each
agent i ∈ [n] has a valuation function vi : 2

[m] → R≥0 for each set of chosen items.
Given some fixed parameter k, the goal of the designer is to select a set S of size k
that maximizes the total valuation of the agents V (S) =

∑
i vi(S). Since agents’

valuations are considered private information, the mechanism enforces payments
to help achieve good equilibria. For a profile of agents’ bids b, when the selected
subset by the mechanism is S and the payments profile is p = (p1, p2, . . . , pn),
the utility of an agent i denoted ui(b) is vi(S)− pi.

Valuation Classes. In some cases we state results over arbitrary valuation
classes, and in others our results are stated for valuation classes that have par-
ticular combinatorial structure. A valuation v is additive if v(S) =

∑
j∈S v({j})

for all S ⊆ [m]. A valuation v is (nondecreasing) submodular if it has a decreas-
ing marginal utilities property: v(S)− v(S ∪{j}) ≥ v(T )− v(T ∪{j}) for S ⊆ T
and all j ∈ [m]. A valuation v is unit-demand if v(S) = maxj∈S v({j}). It is easy
to see that every unit-demand valuation is submodular.2

2 In our case, when agents have submodular valuations, the algorithmic problem be-
comes that of maximizing a submodular function under a cardinality constraint for
which there is a computationally efficient greedy algorithm that is well-known to be
within a factor of 1 − 1/e of the optimum (assuming that agents comply with the
protocol and reveal their true valuations) [18].
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A generalization of submodular valuations which we will use in this work is
that of fractionally subadditive (or XOS ) valuations (see [9]): a valuation v is
fractionally subadditive if and only if there exist a set of additive valuations
(v�)�∈L such that v(S) = max�∈L v�(S).

The First-Price Item-Bidding Mechanism. We consider the following sim-
ple item-bidding mechanism. Each agent i ∈ [n] submits a bid bij for each item
j ∈ [m]. For an item j ∈ [m] let Bj =

∑
i bij be the total bid placed on j.

The mechanism chooses the k items with the highest total bids. For profile b
let S(b) be the chosen set. Each agent is charged her bids for the chosen items:
pi =

∑
j∈S(b) bij . We consider two variants: in the simultaneous mechanism, all

agents submit their bids simultaneously. In the sequential mechanism, the agents
submit their bids sequentially in some order, with each agent seeing the bids of
those who came before. We define solution concepts for both mechanisms.

Solution Concepts for Simultaneous Games. We now define the main solution
concepts that we will use in the context of the simultaneous move mechanism. A
Pure Nash Equilibrium (PNE) is a set of bids (bij)i∈[n],j∈[m] such that, for each
agent i, there is no bid vector b′i such that

ui(b
′
i, b−i) > ui(b). (1)

If we allow the agents to make coalitional deviations then the appropriate equi-
librium concept is Strong Nash Equilibrium (SNE). A set of bids (bij)i∈[n],j∈[m]

constitutes a SNE if, for each set of agents S ⊆ [n], there is no bid vector
b′S = (b′i)i∈S such that

∀i ∈ S : ui(b
′
S , b−S) > ui(b). (2)

A relaxed notion of equilibrium corresponds to no-regret learning outcomes
(due to space limitations see [2] for a survey). It is known that such learning
outcomes correspond to Coarse Correlated Equilibria of a game. A (possibly
correlated) distribution on bids b ∼ D is a Coarse Correlated Equilibrium if, for
every agent i and for every bid b′i,

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i, b−i)] (3)

that is, no agent i can improve his expected utility by unilaterally deviating.
All of the above equilibrium notions implicitly assume a full-information

model, where agent valuations are commonly known. In the alternative model
of incomplete information, the valuation profile v is drawn from distribution F ,
where this distribution is common knowledge. In the Item-Bidding Mechanism
under incomplete information, each agent’s strategy is a function bi(vi) that out-
puts an agent’s bids given her realized valuation. A Bayes-Nash Equilibrium of
this game is a profile of strategies b(v) = (bi(vi))i∈N such that

∀i ∈ N, ∀vi : Ev−i|vi [ui(bi(vi), b−i(v−i))] ≥ Ev−i|vi [ui(b
′
i(vi), b−i(v−i)]
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The Sequential Item-Bidding Mechanism. In the sequential item-bidding
mechanism, the agents are ordered under some arbitrary but commonly-known
predefined sequence. Each agent is asked sequentially, in this order, to report a
bid bij for each item j ∈ [m]. After all the agents have reported their bids, the
mechanism chooses the set of k items with the highest total bid Bj =

∑
i bij and

charges each agent her bid on each selected item. In this sequential game the
strategy of each agent is not simply a set of bids bij for each item j ∈ [m] but
rather it is a contingency of plans describing how the agent will bid conditioned
on the history of play up to her turn. If we denote with hi the history of play (i.e.
reported bids) up to agent i then the strategy of an agent is a set of functions
bij(hi) that maps each history to a bid vector.

Subgame-Perfect Equilibrium. A natural solution concept for sequential
games is Subgame-Perfect Equilibrium, a refinement of the Nash Equilibrium.
A profile of strategies is a subgame-perfect equilibrium if it constitutes an equi-
librium on any subgame induced for any possible history of play. Note that this
definition restricts the behavior of agents outside the equilibrium path, ruling
out non-viable threats (for detailed discussion of subgame-perfection see [11]).

Measure of Efficiency. For each equilibrium notion above, we can measure
worst-case efficiency by way of the price of anarchy. For a given equilibrium
concept, the corresponding price of anarchy is the ratio between the minimum
expected welfare of any equilibrium (with expectation over randomness in the
strategies and/or realizations of bidders’ valuations) and the expected optimal
social welfare (over randomness in the bidders’ valuations).

3 Sequential Item-Bidding Mechanism

We begin by considering outcomes of the sequential item-bidding mechanism at
subgame-perfect equilibrium. We will focus on the case that agents have unit-
demand valuations, where we find that the price of anarchy is 1. That is, the
agents always select an optimal outcome. Note that this is in contrast to the
example discussed in the introduction which shows that the price of anarchy (of
Nash equilibrium) for the simultaneous item-bidding mechanism can be as large
as n− 1.

Theorem 1. For unit-demand valuations and any k ≥ 1, the unique subgame
perfect equilibrium of the sequential item-bidding mechanism selects a welfare-
optimal outcome. Moreover, at this equilibrium each agent bids on a single item.

Proof. For any value profile V , let OPT (V ) = argmaxS : |S|=k{
∑

i vi(S)}, break-
ing ties arbitrarily. Throughout the proof we will think of a bid vector bi as
an additive valuation function bi, so that (in particular) OPT (b) is the out-
come selected by the mechanism when agents submit bids b. We will also write
V (S) =

∑
i vi(S) for the social welfare of an outcome S under valuations V .
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Let b be an arbitrary bid profile, and for each i consider the valuation profile
b(i) = (b1, b2, . . . , bi, vi+1, . . . , vn). Note b(0) = V and b(n) = b. For each i ≥ 1,
consider the subgame that occurs just before agent i is about to bid, after agents
1 through i − 1 bid according to b. We will show by backward induction that
the unique equilibrium of this subgame selects outcome OPT (b(i−1)), and each
agent bids on at most one item in this equilibrium. Taking i = 1 will then prove
our theorem, since then OPT (b(0)) = OPT (V ) is the outcome of the mechanism.

The base case i = n + 1 is trivial, since by definition the mechanism selects
outcome OPT (b) = OPT (b(n)). For i ≤ n, we know by induction that, for any

bid bi made by agent i, the mechanism returnsOPT (bi,b
(i)
−i). We must show that,

for the utility-maximizing bid bi for agent i, OPT (bi,b
(i)
−i) = OPT (b(i−1)).

One potential strategy for agent i is to bid nothing (i.e., the zero bid 0),

obtaining utility vi(OPT (0,b
(i−1)
−i )). Since vi is unit-demand, the only way to

obtain higher utility is to choose some j with vi(j) > vi(OPT (0,b
(i−1)
−i )) and bid

some (minimal) bi so that j ∈ OPT (bi,b
(i)
−i). Note that this bi will place a positive

bid only on item j; let xj be the minimal value such that j ∈ OPT (bi,b
(i)
−i) when

bi(j) = xj . If agent i makes this minimal bid for j, he obtains utility vi(j)− xj .
We have argued that agent i maximizes utility by bidding on at most one

item, so (by induction) each agent’s bid at equilibrium is unit-demand.
Recalling the definition of xj , let Sj * j be the set selected by the mechanism

when i bids xj on j. Since all valuations in b
(i−1)
−i are unit demand, we have

xj = b
(i−1)
−i

(
OPT

(
0,b

(i−1)
−i

))
− b

(i−1)
−i (Sj). (4)

We now consider two cases. First, suppose imaximizes utility by bidding noth-

ing, so bi = 0. Then OPT (b(i)) = OPT (0,b
(i−1)
−i ). We will show OPT (b(i−1)) =

OPT (0,b
(i−1)
−i ), by showing that each set Sj achieves lower social welfare than

OPT (0,b
(i−1)
−i ) under profile b(i−1). (This suffices because, as argued above,

OPT (b(i−1)) must be either OPT (0,b
(i−1)
−i ) or Sj for some item j, since vi

is unit-demand). Pick any j �∈ OPT (0,b
(i−1)
−i ). Since bi is utility-maximal,

vi(OPT (0,b
(i−1)
−i )) ≥ vi(j) − xj . Substituting (4) and rearranging, we get that

b(i−1)(OPT (0,b
(i−1)
−i )) ≥ vi(j)+b

(i−1)
−i (Sj) = b(i−1)(Sj) and hence we conclude

b(i−1)(OPT (0,b
(i−1)
−i )) ≥ b(i−1)(Sj) as required.

Next suppose that imaximizes his utility by choosing bi to be a bid of xj on item

j. We will show that OPT (b(i−1)) = Sj , by showing that neither OPT (0,b
(i−1)
−i )

nor Sj′ for j
′ �= j can achieve higher welfare under valuation profile b(i−1). Since i

maximized utility by bidding on j, we have vi(OPT (0,b
(i−1)
−i )) ≤ vi(j) − xj and

vi(j) − xj ≥ vi(j
′) − xj′ for all j

′ �= j. Rearranging these inequalities implies

b(i−1)(OPT (0,b
(i−1)
−i )) ≤ b(i−1)(Sj) and b(i−1)(Sj′ ) ≤ b(i−1)(Sj) for all j

′ �= j,

and hence OPT (b(i−1)) = Sj as required.
In either case, we have that the equilibrium at this subgame selects outcome

OPT (b(i−1)). The theorem now follows by induction.
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4 Strong Nash Equilibrium of the Simultaneous
Item-Bidding Mechanism

In this section we give efficiency bounds for strong Nash equilibria of the simul-
taneous item-bidding mechanism. A state of a game is a strong Nash equilibrium
(SNE) if there is no coalition of agents that can each individually benefit by de-
viating as a group. Despite being a strong requirement, SNE is a natural solution
concept in public projects as allocations of resources are collectively shared by
agents.

Theorem 2. Any Strong Nash Equilibrium of the first-price item bidding mech-
anism has efficiency at least log(n) of the optimal.

Proof. Let Bi(A) be the sum of bids of agent i for set A. Let S be the set that
is selected at a strong nash equilibrium and OPT be the optimal set.

First we show that at any Strong Nash Equilibrium all the chosen projects
receive the same Bj , i.e. ∀j ∈ S : Bj = p. Suppose that some chosen project
has Bj > p. Then a agent i who is bidding positively on this project could just
decrease his bid by some ε. The selected set would remain unchanged and agent
i would be paying ε less than before. Hence, his utility would increase.

Now, suppose that all the agents deviate to bidding some small ε only on the
optimal set OPT . The definition of a strong Nash equilibrium states that there
exists an agent that doesn’t prefer the utility at the deviation. W.l.o.g. rearrange
the agents such that it is agent 1; then v1(S)−B1(S) ≥ v1(OPT ). Now suppose
that the agents {2, . . . , n} deviate to bidding each p

n−1 on each item in OPT .
By definition of SNE there exists an agent (w.l.o.g., agent 2) that doesn’t prefer
this deviation; that is, v2(S) − B2(S) ≥ v2(OPT ) − kp

n−1 . By similar reasoning
we can reorder the agents such that, for each i,

vi(S)−Bi(S) ≥ vi(OPT )− kp

n− i + 1
(5)

Summing all the above inequalities we get:

V (S)−
∑
i

Bi(S) ≥ V (OPT )− kp

n∑
i=1

1

n− i+ 1
=⇒

V (S)− kp ≥ V (OPT )− kp log(n)

Since kp < V (S) we get that V (S) ≥ 1
log(n)V (OPT ).

The above result gives a reasonable bound on the efficiency loss in such equi-
libria. Regarding existence of equilibrium, the non-existence for unit-demand
agents when choosing two items and of PNE in Section 5 applies here as well,
since SNE is a stronger solution concept.
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5 Pure Nash Equilibria of the Simultaneous Item-Bidding
Mechanism

We now examine the efficiency and existence of Pure Nash Equilibria for the
simultaneous item-bidding mechanism. For brevity we defer some proofs to the
appendix. In [21] the

√
m lower bound on truthful mechanisms applies to two

agents with submodular valuations, and thus grows with the number of resources
in the problem. In contrast, we show here that for the item bidding mechanism
the loss in efficiency at any Pure Nash Equilibrium (whenever it exists) and for
any type of bidder valuations is at most proportional to the number of agents.

Theorem 3. Any PNE of the item bidding mechanism has PoA ≤ n.

Proof. As in the proof of Theorem 2 it is easy to see that at any Pure Nash
Equilibrium all the chosen items receive the same Bj , i.e. ∀j ∈ S : Bj = p.

Let b be a Nash Equilibrium and S the chosen set. Let OPT be the optimal
set of items for the true valuations of the agents. Each agent i could change the
chosen set to OPT by bidding p+ ε on every item j ∈ OPT . Since we are at a
Nash Equilibrium this deviation wouldn’t be profitable:

vi(S)−
∑
j∈S

bij ≥ vi(OPT )− kp

Summing over all agents and using the fact that
∑

i∈[n]

∑
j∈S bij = k · p we get:

V (S)− k · p ≥ V (OPT )− n · k · p

Due to individual rationality no agent is paying above his total value. Hence,
k · p ≤ V (S). Thus: nV (S) ≥ V (OPT ).

As shown in the Introduction, even when k = 1 the PoA of unit-demand
agents can be as bad as n − 1, implying that our PoA upper bound is nearly
tight. Note that when k = 1 unit-demand and additive valuations coincide.
Hence, our example proves that the PoA bound is tight even for additive agents.

Theorem 4. For unit-demand agents the PoA of the item bidding mechanism
can be at least n− 1, even when choosing a single item (k = 1).

Price of Stability. We now investigate existence of good pure Nash equilibria.

Theorem 5. There always exists a pure Nash equilibrium of the item bidding
mechanism when k = 1 and arbitrary number of agents. Moreover, it achieves
at least 1

2 (1 −
1
n ) of the optimal social welfare.

Proof. For a set of agents S and an item j let: Vj(S) =
∑

i∈S vij . Moreover,

let aSj,j′ = Vj(S)− Vj′(S). Let a
S∗
A,B = maxS⊂N maxj∈M maxj′∈M−j a

S
j,j′ , that is

among all possible quantities aSj,j′ , a
S∗
A,B is the maximum one. Observe that in

the above maximum we take maximum only among sets that are strict subsets
of N . In other words S∗ ⊂ N and N − S∗ �= ∅. The reason is that we need at
least one agent to price set the “winners”. We claim that the following outcome
is an equilibrium:
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– ∀i ∈ S∗ : bi(A) = viA − viB and ∀j �= A : bi(j) = 0

– ∀i /∈ S∗ : bi(B) = viB − viA +
aS∗
A,B−aN−S∗

B,A

n and ∀j �= B : bi(j) = 0

We denote with p =
∑

i∈S∗ bi(A). Notice that by the definition of the equilibrium

p =
∑

i∈S∗ bi(A) = VA(S
∗) − VB(S

∗) = aS
∗

A,B. Moreover, p =
∑

i/∈S∗ bi(B) =

VB(N − S∗)− vA(N − S∗) + aS∗
A,B − aN−S∗

B,A = aS
∗

A,B.
We first focus on a agent i ∈ S∗. We take cases on his possible deviations and

show that none is profitable:

– Drop bid on A and let B win: To show this is not profitable we need to show
that viA− bi(A) ≥ viB ⇔ viA− viB ≥ bi(A). From the equilibrium definition
this is satisfied with equality.

– Drop bid on A and bid p on an item j �= A,B to make it win: We need to
show that viA − bi(A) ≥ vij − p ⇔ viA − viA + viB ≥ vij − aS

∗
A,B ⇔ aS

∗
A,B ≥

vij − viB = a
{i}
j,B. Which holds by the maximality of aS

∗
A,B.

Now we focus on a agent i /∈ S∗.

– Slightly increase his bid on B to make B win: We need to show that viA ≥
viB − bi(B)⇔ bi(B) ≥ viB − viA. By the maximality of aS

∗
A,B, we have that

aS
∗

A,B ≥ aN−S∗
B,A . Hence, the inequality holds by the definition of equilibrium.

– Drop bid on B and bid p on item j �= A,B to make it win: We need to show

that viA ≥ vij − p ⇔ viA ≥ vij − aS
∗

A,B ⇔ aS
∗

A,B ≥ vij − viA = a
{i}
j,A, which

holds by the maximality of aS
∗

A,B.

In fact, above we gave a specific equilibrium where the price setting agents
split equally the excess aS

∗
A,B − aN−S∗

B,A , one can easily see that any splitting of
that excess among the price setting agents is an equilibrium.

Efficiency. For the equilibrium constructed above we know that:

∀j �= j′, S′ ⊂ N : VA(S
∗)− VB(S

∗) ≥ Vj(S
′)− Vj′ (S

′)

Let j∗ be the optimal item. Consider the above property for j = j∗, j′ = A, and
S′ = N − {argmini∈N vij∗}. The condition gives us:

VA(S
∗)− VB(S

∗) ≥ Vj∗(S
′)− VA(S

′)

By the definition of S′ we know that Vj∗(S
′) ≥ (1 − 1

n )Vj∗(N). In addition
VA(S

∗) ≤ VA(N) and VA(S
′) ≤ VA(N). Combining all the above together we

get:

2VA(N) ≥ VA(S
∗) + VA(S

′)− VB(S
∗) ≥ Vj∗(S

′) ≥
(
1− 1

n

)
Vj∗(N)

From this point onwards, due to lack of space we defer all proofs to the full
version of the paper. For the case of two agents we can show existence of an
optimal equilibrium.

Theorem 6. For k = 1, n = 2 there exists an optimal equilibrium.
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Existence and Complexity. In contrast to case where one project is chosen,
we show that even when k = 2 there may not exist a PNE when agents valuations
are additive.

Theorem 7. For additive agents and k = 2 there may not be a PNE.

Regarding complexity, the computational hardness can be shown by reducing
the problem of finding a Pure Nash Equilibrium to that of the well-studied
problem of finding maximal coverage of a universe of elements.

Theorem 8. It is NP-hard to compute a Pure Nash Equilibrium of the item
bidding mechanism even for two agents with coverage valuations.

6 Smoothness of the Item-Bidding Mechanism

In this section we study the efficiency achieved at learning outcomes and also
when players have incomplete information about the valuations of the rest of the
players. We defer proofs to the appendix. We give efficiency bounds by utilizing
the recently proposed Smooth Mechanism framework [26]. For completeness, we
present the basic definition of smoothness and the theorem that we will utilize.

Definition 1 (Syrgkanis, Tardos [26]). A mechanism is (λ, μ)-smooth if for
any valuation profile v, there exist strategies b′i(bi, v), such that for any strategies
b−i of the rest of the players:∑

i

ui(b
′
i(bi, v), b−i) ≥ λOPT (v)− μ

∑
i

Pi(b) (6)

where OPT (v) is the optimal social welfare for valuation profile v, and Pi(b) is
the payment of player i under bid profile b.

Theorem 9 (Syrgkanis, Tardos [26]). If a mechanism (λ, μ)-smooth then the
efficiency at any correlated equilibrium of the complete information game and at
any Bayes-Nash equilibrium of the incomplete information game where vi’s are
drawn from commonly known independent distributions Fi, is at least λ

max{μ,1} .

If the deviations b′i(bi, v) in Definition 1 are independent of bi then the latter
holds also at coarse-correlated equilibria.

We show that for any class of bidder valuations and for any k the Item-
Bidding Mechanism is a (12 , n · k)-smooth mechanism, thereby implying a Price
of Anarchy of at most 2nk for the aforementioned solution concepts.

Theorem 10. For agents with arbitrary monotone valuations the Item-Bidding
Mechanism is

(
1
2 , n · k

)
-smooth.

When the bidders are fractionally subadditive, we show that the Item-Bidding
Mechanism is

(
1
2

(
1− 1

e

)
, n
)
-smooth, implying a Price of Anarchy of at most

2e
e−1n, independent of the number k of projects to be chosen.
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Theorem 11. For agents with fractionally subadditive monotone valuations the
Item-Bidding Mechanism is

(
1
2

(
1− 1

e

)
, n
)
-smooth.

When players are unit-demand we are able to show that the Item-Bidding
Mechanism actually satisfies the semi-smoothness property of Lucier et al. [17]
which is essentially the special case of Definition 1 where the deviating bids
depend only on a players own valuation. Such a stronger property allows for the
efficiency guarantee of theorem 9 to carry over to incomplete information settings
where the bidder distributions are correlated. We show that the mechanism is
(1 − e−1, n

k ) semi-smooth for the case of unit-demand bidders implying a Price
of Anarchy bound of at most e

e−1
n
k , which decreases as the number of chosen

project increases (i.e. more players are satisfied by building more projects).

Theorem 12. When bidder valuations are unit-demand then the Item-Bidding
Mechanism is (1− e−1, n

k ) semi-smooth.

7 Discussion

The work presented in this paper is a first step towards the broader under-
standing of equilibria induced in combinatorial public projects. More generally,
we explore the tools for mechanism design under solution concepts other than
dominant strategy truthfulness.

While our bounds for pure Nash equilibria are nearly tight, better efficiency
bounds may perhaps be achieved for the other solution concepts we explored
in this work. It may be possible that sublogarithmic bounds can be shown for
Strong Nash Equilibria, or that constant factor bounds may be achieveable by
subgame perfect equilibria beyond the case of unit-demand bidders.

The simple mechanism for public projects we analyzed here is the item bidding
mechanism with first prices. This is arguably the simplest non-trivial mechanism
in this setting, and can be extended in multiple ways; similar allocation rules
with second prices, or including constraints on the allocation rule, may lead to
substantially different results than the ones presented here. In particular, we
believe there is a simple mechanism where agents can reach an efficient equilib-
rium through natural dynamics for public projects, even in settings where no
reasonable Maximal-In-Range mechanisms exist.
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The exchange market model, proposed by Leon Walras (1874), has been studied
extensively since more than a century due to its immense practical relevance
[8,14]. The two implicit assumptions in this model are that agents behave truth-
fully, and are unaware of the total supply of goods in the market. In this paper
we study exchange markets, with each of these assumptions dropped separately,
and establish a surprising connection between their solutions.

The strategic behavior of agents is well known; many different types of market
games have been formulated and analyzed for its Nash equilibria [1,2,5,6,7,13].
Generalizing the Fisher market1 game of [1], we define the exchange market
game, as where agents are the players and strategies are the utility functions that
they may pose. We derive a complete characterization of the symmetric Nash
equilibria (SNE) of this game, for the case when utility functions are linear.

Using the characterization of SNE we obtain: (i) the payoffs at SNE are al-
ways Pareto-optimal, and (ii) every competitive equilibrium allocation can be
achieved at a SNE. Apart from these, we also obtain structural properties for
the SNE set, like (iii) connectedness, and (iv) the necessary and sufficient condi-
tions for uniqueness. These properties are important in equilibrium theory, both
competitive and Nash, and a lot of work has been done to characterize such
instances [2,7,9,10,11,12,13].

The other assumption that agents are unaware of the total supply of goods
in the market, may not hold in many rural and informal markets where supplies
are visible. Given that agents know the supply of all the goods, it is rational
for them to take the supplies into consideration while calculating their demand
bundles. This will change the demand dynamics, and as a consequence the set
of competitive equilibria. Such a setting has been analyzed for auction markets
[3,4], however to the best of our knowledge no such work for exchange markets
is known.

We make significant progress towards understanding the effects of supply-
aware agents in exchange markets. We show that the set of competitive equilibria

� A full version of this paper is available at http://www.cse.iitb.ac.in/~sohoni/

supplyaware.pdf
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1 Fisher market is a special case of exchange market model.
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(CE) of such a market is equivalent to the set of SNE of the corresponding
exchange market game. Through this equivalence, we obtain both the welfare
theorems, and connectedness and uniqueness conditions of CE for the supply-
aware markets with linear utilities.

Finally, for markets with arbitrary concave utilities, we derive sufficiency con-
ditions for a strategy to be a symmetric Nash equilibrium, while restricting
strategies of the agents to linear functions in the game. Using these conditions
we obtain the first two properties, namely, Pareto-optimality and achieving CE
allocations at SNEs, for this general setting. Further, we extend the connec-
tion between CE and SNE to markets with concave utility functions, and as a
consequence obtain both the welfare theorems for the supply-aware markets in
general.

We note that even though supply-awareness may be thought of as exchange
markets with concave utility functions, where no more utility is obtained after
the available supply of goods, the welfare theorems do not follow directly as they
require non-satiated utility functions [15].
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Abstract. We consider a nonatomic congestion game on a connected
graph, with several classes of players. Each player wants to go from its
origin vertex to its destination vertex at the minimum cost and all players
of a given class share the same characteristics: cost functions on each arc,
and origin-destination pair. Under some mild conditions, it is known that
a Nash equilibrium exists, but the computation of an equilibrium in the
multiclass case is an open problem for general functions. We consider the
specific case where the cost functions are affine and propose an extension
of Lemke’s algorithm able to solve this problem. At the same time, it
provides a constructive proof of the existence of an equilibrium in this
case.

Keywords: affine cost functions, congestion externalities, constructive
proof, Lemke algorithm, nonatomic games, transportation network.

1 Introduction

Context. Being able to predict the impact of a new infrastructure on the traffic
in a transportation network is an old but still important objective for transport
planners. In 1952, Wardrop [28] noted that after some while the traffic arranges
itself to form an equilibrium and formalized principles characterizing this equi-
librium. With the terminology of game theory, the equilibrium is a Nash equi-
librium for a congestion game with nonatomic players. In 1956, Beckmann [4]
translated these principles as a mathematical program which turned out to be
convex, opening the door to the tools from convex optimization. The currently
most commonly used algorithm for such convex programs is probably the Frank-
Wolfe algorithm [15], because of its simplicity and its efficiency, but many other
algorithms with excellent behaviors have been proposed, designed, and experi-
mented.

One of the main assumptions used by Beckmann to derive his program is the
fact that all users are equally impacted by congestion. With the transportation
terminology, it means that there is only one class. In order to improve the pre-
diction of traffic patterns, researchers started in the 70s to study the multiclass
situation where each class has its own way of being impacted by the conges-
tion. Each class models a distinct mode of transportation, such as cars, trucks,

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 363–376, 2013.
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or motorbikes. Dafermos [8,9] and Smith [27] are probably the first who proposed
a mathematical formulation of the equilibrium problem in the multiclass case.
However, even if this problem has been the topic of many research works, an
efficient algorithm for solving it remains to be designed, except in some special
cases [13,16,20,22]. In particular, there is no general algorithm in the literature
for solving the problem when the cost of each arc is in an affine dependence with
the flow on it.

Our main purpose is to propose such an algorithm.

Model. We are given a directed graph D = (V,A) modeling the transportation
network. A route is an s-t path ofD and is called an s-t route. The set of all routes
(resp. s-t routes) is denoted by R (resp. R(s,t)). The population of players is
modeled as a bounded real interval I endowed with the Lebesgue measure λ, the
population measure. The set I is partitioned into a finite number of measurable
subsets (Ik)k∈K – the classes – modeling the players with same characteristics:
they share a same collection of cost functions (cka : R+ → R+)a∈A, a same origin
sk, and a same destination tk. A player in Ik is said to be of class k. The set of
vertices (resp. arcs) reachable from sk is denoted V k (resp. Ak).

A strategy profile is a measurable mapping σ : I →R such that σ(i) ∈ R(sk,tk)

for all k ∈ K and all i ∈ Ik. For each arc a ∈ A, the measure xk
a of the set of all

class k players i such that a is in σ(i) is the class k flow on a in σ:

xk
a = λ{i ∈ Ik : a ∈ σ(i)} .

The total flow on a is xa =
∑

k∈K xk
a. The cost of arc a for a class k player is

then cka(xa). For a class k player, the cost of a route r is defined as the sum of
the costs of the arcs contained in r. Each player wants to select a minimum-cost
route.

A strategy profile is a (pure) Nash equilibrium if each route is only chosen by
players for whom it is a minimum-cost route. In other words, a strategy profile
σ is a Nash equilibrium if for each class k ∈ K and each player i ∈ Ik we have∑

a∈σ(i)

cka(xa) = min
r∈R

(sk,tk)

∑
a∈r

cka(xa) . (1)

This game enters in the category of nonatomic congestion games with player-
specific cost functions, see Milchtaich [21]. The problem of finding a Nash equi-
librium for such a game is called the Multiclass Network Equilibrium Problem.

Contribution. Our results concern the case when the cost functions are affine
and stricly increasing: for all k ∈ K and a ∈ Ak, there exist αk

a > 0 and βk
a ≥ 0

such that cka(x) = αk
ax + βk

a for all x ∈ R+. In this case, the Multiclass Net-
work Equilibrium Problem can be written as a linear complementarity problem.
In 1965, Lemke [19] designed a pivoting algorithm for solving a linear comple-
mentarity problem under a quite general form. This algorithm has been adapted
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and extended several times – see for instance [1,3,5,7,12,25] – to be able to deal
with linear complementarity problems that do not directly fit in the required
framework of the original Lemke algorithm.

We show that there exists a pivoting Lemke-like algorithm solving the Multi-
class Network Equilibrium Problem when the costs are affine. To our knowledge,
it is the first algorithm solving this problem. We prove its efficiency through com-
putational experiments. Moreover, the algorithm provides the first constructive
proof of the existence of an equilibrium for this problem. The initial proof of the
existence from Schmeidler [26] uses a non-constructive approach with the help
of a general fixed point theorem.

On our track, we extend slightly the notion of basis used in linear program-
ming and linear complementarity programming to deal directly with unsigned
variables. Even if it is natural, we are not aware of previous use of such an
approach. An unsigned variable can be replaced by two variables – one for the
nonnegative part and one for the nonpositive part. Such an operation consider-
ably increases the size of the matrices, while, in our approach, we are able to
deal directly with the unsigned variables.

Related Works. We already gave some references of works related to ours with
respect to the linear complementarity. The work by Schiro et al. [25] is one of
them and deals actually with a problem more general than ours. They propose
a pivotal algorithm to solve it. However, our problem is not covered by their
termination results (the condition of their Proposition 5 is not satisfied by our
problem). Another close work is the one by Eaves [12], which allows additional
affine constraints on the variables, but the constraints we need – flow constraints
– do not enter in this framework. Note also the work by De Schutter and De
Moor [11], devoted to the “Extended Linear Complementarity Problem” which
contains our problem. They propose a method that exhaustively enumerates all
solutions and all extreme rays, without giving a priori guarantee for the existence
of a solution.

Papers dealing with algorithms for solving the Multiclass Network Equilib-
rium Problems propose in general a Gauss-Seidel type diagonalization method,
which consists in sequentially fixing the flows for all classes but one and solv-
ing the resulting single-class problem by methods of convex programming, see
[13,14,16,20] for instance. For this method, a condition ensuring the convergence
to an equilibrium is not always stated, and, when there is one, it requires that
“the interaction between the various users classes be relatively weak compared
to the main effects (the latter translates a requirement that a complicated ma-
trix norm be less than unity)” [20]. Such a condition does clearly not cover the
case with affine cost functions. Another approach is proposed by Marcotte and
Wynter [22]. For cost functions satisfying the “nested monotonicity” condition
– a notion developed by Cohen and Chaplais [6] – they design a descent method
for which they are able to prove the convergence to a solution of the problem.
However, we were not able to find any paper with an algorithm solving the
problem when the costs are polynomial functions, or even affine functions.
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Structure of the Paper. In Section 2, we explain how to write the Multiclass
Network Equilibrium Problem as a linear complementarity problem. We get
the formulation (AMNEP (e)) on which the remaining of the paper focuses.
Section 3 presents the notions that underly the Lemke-like algorithm. All these
notions, likes basis, secondary ray, pivot, and so on, are classical in the context
of the Lemke algorithm. They require however to be redefined in order to be able
to deal with the features of (AMNEP (e)). The algorithm is then described in
Section 4. We also explain why it provides a constructive proof of the existence of
an equilibrium. Section 5 is devoted to the experiments and shows the efficiency
of the proposed approach.

Due to page limitations, all proofs are omitted. The interested reader may
find them in the full version of the paper available on

http://cermics.enpc.fr/∼pradeath/Research.html.

2 Formulation as a Linear Complementarity Problem

In this section, we formulate the Multiclass Network Equilibrium Problem as a
complementarity problem which turns out to be linear when the cost functions
are affine.

From now on, we assume that the cost functions are increasing. In the single-
class case, i.e. |K| = 1, the equilibrium flows are optimal solutions of a convex
optimization problem, see Beckmann [4]. If the flows xk′

for k′ �= k are fixed, find-
ing the equilibrium flows for the class k is again a single-class problem which can
be formulated as a convex optimization problem. With the help of the Karush-
Kuhn-Tucker conditions, we get that the equilibrium flows (xk

a) coincide with
the solutions of a system of the following form, where b = (bkv) is a given vector
with

∑
v∈V k bkv = 0 for all k.∑

a∈δ+(v)

xk
a =

∑
a∈δ−(v)

xk
a + bkv k ∈ K, v ∈ V k

ckuv(xuv) + πk
u − πk

v − μk
uv = 0 k ∈ K, (u, v) ∈ Ak

xk
aμ

k
a = 0 k ∈ K, a ∈ Ak

xk
a ≥ 0, μk

a ≥ 0, πk
v ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

(MNEPgen)

Actually in our model, we should have moreover bkv = 0 for v /∈ {sk, tk}, and
the inequalities bksk > 0 and bktk < 0, but we relax this condition to deal with
a slightly more general problem. Moreover, in this more general form, we can
easily require the problem to be non-degenerate, see Section 3.2.

Finding solutions for such systems is a complementarity problem, the word
“complementarity” coming from the condition xk

aμ
k
a = 0 for all (a, k) such that

a ∈ Ak.
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We have thus the following proposition.

Proposition 1. (xk)k∈K is an equilibrium flow if and only if there exist μk ∈
RAk

+ and πk ∈ RV k

for all k such that (xk,μk,πk)k∈K is a solution of the
complementarity problem (MNEPgen).

When the cost functions are affine cka(x) = αk
ax + βk

a , solving the Multiclass
Network Equilibrium Problem amounts thus to solve the following linear com-
plementarity problem

∑
a∈δ+(v)

xk
a =

∑
a∈δ−(v)

xk
a + bkv k ∈ K, v ∈ V k

αk
uv

∑
k′∈K

xk′
uv + πk

u − πk
v − μk

uv = −βk
uv k ∈ K, (u, v) ∈ Ak

xk
aμ

k
a = 0 k ∈ K, a ∈ Ak

xk
a ≥ 0, μk

a ≥ 0, πk
v ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

(MNEP )

Similarly as for the Lemke algorithm, we rewrite the problem as an opti-
mization problem. It will be convenient for the exposure of the algorithm, see
Section 3. This problem is called the Augmented Multiclass Network Equilib-
rium Problem. It uses a vector e = (eka) defined for all k ∈ K and a ∈ Ak.
Problem (AMNEP (e)) is

min ω

s.t.
∑

a∈δ+(v)

xk
a =

∑
a∈δ−(v)

xk
a + bkv k ∈ K, v ∈ V k

αk
uv

∑
k′∈K

xk′
uv + πk

u − πk
v − μk

uv + ekuvω = −βk
uv k ∈ K, (u, v) ∈ Ak

xk
aμ

k
a = 0 k ∈ K, a ∈ Ak

xk
a ≥ 0, μk

a ≥ 0, ω ≥ 0, πk
v ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

(AMNEP (e))

Some choices of e allow to find easily feasible solutions to problem (AMNEP (e)).
In Section 3, e will be chosen in such a way. A key remark is that solving
(MNEP ) amounts to find an optimal solution for (AMNEP (e)) with ω = 0.

Without loss of generality, we impose that πk
sk = 0 for all k ∈ K and it holds

throughout the paper. It allows to rewrite problem (AMNEP (e)) under the
form
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min ω

s.t. M
e

⎛
⎝x

μ
ω

⎞
⎠+

(
0

MT

)
π =

(
b
−β

)
x · μ = 0

x ≥ 0, μ ≥ 0, ω ≥ 0, π ∈ R
∑

k V k\{sk},

where M
e
and C are defined as follows. (The matrix M

e
is denoted with a

superscript e in order to emphasize its dependency on e).
We define M = diag((Mk)k∈K) where Mk is the incidence matrix of the

directed graph (V k, Ak) from which the sk-row has been removed:

Mk
v,a =

⎧⎨
⎩

1 if a ∈ δ+(v),
−1 if a ∈ δ−(v),
0 otherwise .

We also define Ck = diag((αk
a)a∈Ak) for k ∈ K, and then C the real matrix

C = ((Ck, · · · , Ck)︸ ︷︷ ︸
|K| times

k∈K). Then let

M
e
=

(
M 0 0
C −I e

)
.

For k ∈ K, the matrix Mk has |V k| − 1 rows and |Ak| columns, while Ck is
a square matrix with |Ak| rows and columns. Then the whole matrix M

e
has∑

k∈K(|Ak|+ |V k| − 1) rows and 2
(∑

k∈K |Ak|
)
+ 1 columns.

3 Bases, Pivots, and Rays

3.1 Bases

We define X and M to be two disjoint copies of {(a, k) : k ∈ K, a ∈ Ak}. We
denote by φx(a, k) (resp. φμ(a, k)) the element of X (resp.M) corresponding to
(a, k). The set X models the set of all possible indices for the ‘x’ variables and
M the set of all possible indices for the ‘μ’ variables for problem (AMNEP (e)).
We consider moreover a dummy element o as the index for the ‘ω’ variable.

We define a basis for problem (AMNEP (e)) to be a subset B of the set X ∪
M ∪ {o} such that the square matrix of size

∑
k∈K

(
|Ak|+ |V k| − 1

)
defined by (

M
e

B
0

MT

)
is nonsingular. Note that this definition is not standard. In general, a basis is

defined in this way but without the submatrix

(
0

MT

)
corresponding to the

‘π’ columns. We use this definition in order to be able to deal directly with the
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unsigned variables ‘π’. We will see that this approach is natural (and could be
used for linear programming as well). However, we are not aware of a previous
use of such an approach.

As a consequence of this definition, since MT has
∑

k∈K(|V k| − 1) columns,

a basis is always of cardinality
∑

k∈K |Ak|.
The following additional notation is useful: given a subset Z ⊆ X ∪M∪{o},

we denote by Zx the set (φx)−1 (Z ∩ X ) and by Zμ the set (φμ)−1 (Z ∩M). In
other words, (a, k) is in Zx if and only if φx(a, k) is in Z, and similarly for Zμ.

3.2 Basic Solutions and Non-degeneracy

Let B a basis. If it contains o, the unique solution (x̄, μ̄, ω̄, π̄) of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
M

e

B
0

MT

)⎛
⎜⎜⎝

xBx

μBμ

ω
π

⎞
⎟⎟⎠ =

(
b
−β

)

xk
a = 0 for all (a, k) /∈ Bx

μk
a = 0 for all (a, k) /∈ Bμ .

(2)

is called the basic solution associated to B.
If B does not contain o, we define similarly its associated basic solution. It is

the unique solution (x̄, μ̄, ω̄, π̄) of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
M

e

B
0

MT

)⎛
⎝xBx

μBμ

π

⎞
⎠ =

(
b
−β

)
xk
a = 0 for all (a, k) /∈ Bx

μk
a = 0 for all (a, k) /∈ Bμ

ω = 0 .

(3)

A basis is said to be feasible if the associated basic solution is such that x̄, μ̄, ω̄ ≥ 0.

The problem (AMNEP (e)) is said to satisfy the non-degeneracy assumption
if, for any feasible basis B, the associated basic solution (x̄, μ̄, ω̄, π̄) is such that(

(a, k) ∈ Bx ⇒ x̄k
a > 0

)
and

(
(a, k) ∈ Bμ ⇒ μ̄k

a > 0
)
.

Note that if we had defined the vector b to be 0 on all vertices v /∈ {sk, tk},
the problem would not in general satisfy the non-degeneracy assumption. An
example of a basis for which the condition fails to be satisfied is the basis Bini

defined in Section 3.5. Remark 1 in that section details the example.

3.3 Pivots and Polytope

The following lemmas are key results that will eventually lead to the Lemke-like
algorithm. They are classical for the usual definition of bases. Since we have
extended the definition, we have to prove that they still hold.
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Lemma 1. Let B be a feasible basis for problem (AMNEP (e)) and assume
non-degeneracy. Let i be an index in X ∪M ∪ {o} \ B. Then there is at most
one feasible basis B′ �= B in the set B ∪ {i}.

The operation consisting in computing B′ given B and the entering index i
is called the pivot operation.

If we are able to determine an index in X ∪M ∪ {o} \ B for any basis B,
Lemma 1 leads to a “pivoting” algorithm. At each step, we have a current basis
Bcurr, we determine the entering index i, and we compute the new basis in
Bcurr ∪ {i}, if it exists, which becomes the new current basis Bcurr; and so on.
Next lemma allows to characterize situations where there is no new basis, i.e.
situations for which the algorithm gets stuck.

The feasible solutions of (AMNEP (e)) belong to the polytope

P(e) =

⎧⎨
⎩(x,μ, ω,π) : M

e

⎛
⎝x

μ
ω

⎞
⎠+

(
0

MT

)
π =

(
b
−β

)
,

x ≥ 0, μ ≥ 0, π ≥ 0, ω ∈ R+

}
.

Lemma 2. Let B be a feasible basis for problem (AMNEP (e)) and assume
non-degeneracy. Let i be an index in X ∪M ∪ {o} \ B. If there is no feasible
basis B′ �= B in the set B ∪ {i}, then the polytope P(e) contains an infinite ray
originating at the basic solution associated to B.

3.4 Complementarity and Twin Indices

A basis B is said to be complementary if for every (a, k) with a ∈ Ak, we have
(a, k) /∈ Bx or (a, k) /∈ Bμ: for each (a, k), one of the components xk

a or μk
a is not

activated in the basic solution. In case of non-degeneracy, it coincides with the
condition x · μ = 0. An important point to be noted for a complementary basis
B is that if o ∈ B, then there is (a0, k0) with a0 ∈ Ak0 such that

– (a0, k0) /∈ Bx and (a0, k0) /∈ Bμ, and
– for all (a, k) �= (a0, k0) with a ∈ Ak, exactly one of the relations (a, k) ∈ Bx

and (a, k) ∈ Bμ is satisfied.

This is a direct consequence of the fact that there are exactly
∑

k∈K |Ak| elements
in a basis and that each (a, k) is not present in at least one of Bx and Bμ. In
case of non-degeneracy, this point amounts to say that xk

a = 0 or μk
a = 0 for all

(a, k) with a ∈ Ak and that there is exactly one such pair, denoted (a0, k0), such
that both are equal to 0.

We say that φx(a0, k0) and φμ(a0, k0) for such (a0, k0) are the twin indices.

3.5 Initial Feasible Basis

A good choice of e gives an easily computable initial feasible complementary
basis to problem (AMNEP (e)).
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An s-arborescence in a directed graph is a spanning tree rooted at s that
has a directed path from s to any vertex of the graph. We arbitrarily define a
collection T = (T k)k∈K where T k ⊆ Ak is an sk-arborescence of (V k, Ak). Then
the vector e = (eka)k∈K is chosen with the help of T by

eka =

{
1 if a /∈ T k

0 otherwise .
(4)

Lemma 3. Let the set of indices Y ⊆ X ∪M∪ {o} be defined by

Y = {φx(a, k) : a ∈ T k, k ∈ K} ∪ {φμ(a, k) : a ∈ Ak \ T k, k ∈ K} ∪ {o} .

Then, one of the following situations occurs:

• Y \ {o} is a complementary feasible basis providing an optimal solution of
problem (AMNEP (e)) with ω = 0.

• There exists (a0, k0) such that Bini = Y \ {φμ(a0, k0)} is a feasible comple-
mentary basis for problem (AMNEP (e)).

We emphasize that Bini depends on the chosen collection T of arborescences.
Note that the basis Bini is polynomially computable.

Remark 1. As already announced in Section 3.2, if we had defined the vector
b to be 0 on all vertices v /∈ {sk, tk}, the problem would not satisfy the non-
degeneracy assumption as soon as there is k ∈ K such that T k has a vertex of
degree 3 (which happens when (V k, Ak) has no Hamiltonian path). In this case,
the basis Bini shows that the problem is degenerate. Since the unique solution
xk
Tk of Mk

Tkx
k
Tk = bk consists in sending the whole demand on the unique route

in T k from sk to tk, we have for all arcs a ∈ T k not belonging to this route
xk
a = 0 while (a, k) ∈ Bini,x.

3.6 No Secondary Ray

Let (x̄ini, μ̄ini, ω̄ini, π̄ini) be the feasible basic solution associated to the initial
basis Bini, computed according to Lemma 3 and with e given by Equation (4).
The following inifinite ray

ρini =
{
(x̄ini, μ̄ini, ω̄ini, π̄ini) + t(0, e, 1,0) : t ≥ 0

}
,

has all its points in P(e). This ray with direction (0, e, 1,0) is called the primary
ray. In the terminology of the Lemke algorithm, another infinite ray originating
at a solution associated to a feasible complementary basis is called a secondary
ray. Recall that we defined πk

sk = 0 for all k ∈ K in Section 2 (otherwise we
would have a trivial secondary ray). System (AMNEP (e)) has no secondary
ray for the chosen e.

Lemma 4. Let e be defined by Equation (4). Under the non-degeneracy assump-
tion, there is no secondary ray in P(e).
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3.7 A Lemke-Like Algorithm

Assuming non-degeneracy, the combination of Lemma 1 and the point explicited
in Section 3.4 give raise to a Lemke-like algorithm. Two feasible complementary
bases B and B′ are said to be neighbors if B′ can be obtained from B by a pivot
operation using one of the twin indices as an entering index, see Section 3.4.
Note that this is a symmetrical notion: B can then also be obtained from B′

by a similar pivot operation. The abstract graph whose vertices are the feasible
complementary bases and whose edges connect neighbor bases is thus a collection
of paths and cycles. According to Lemma 3, we can find in polynomial time an
initial feasible complementary basis for (AMNEP (e)) with the chosen vector e.
This initial basis has exactly one neighbor according to Lemma 2 since there is
a primary ray and no secondary ray (Lemma 4).

Algorithm 1 explains how to follow the path starting at this initial feasible
complementary basis. Function EnteringIndex(B, i′) is defined for a feasible
complementary basis B and an index i′ /∈ B being a twin index of B and
computes the other twin index i �= i′. Function LeavingIndex(B, i) is defined
for a feasible complementary basis B and an index i /∈ B and computes the
unique index j �= i such that B ∪{i} \ {j} is a feasible complementary basis (see
Lemma 1).

Since there is no secondary ray (Lemma 4), a pivot operation is possible be-
cause of Lemma 2 as long as there are twin indices. By finiteness, a component in
the abstract graph having an endpoint necessarily has another endpoint. It im-
plies that the algorithm reaches at some moment a basis B without twin indices.
Such a basis is such that o /∈ B (Section 3.4), which implies that we have a solu-
tion of problem (AMNEP (e)) with ω = 0, i.e. a solution of problem (MNEP ),
and thus a solution of our initial problem.

input : The matrix M
e
, the matrix M , the vectors b and β, an initial feasible

complementary basis Bini

output: A feasible basis Bend with o /∈ Bend.

φμ(a0, k0) ← twin index in M;

i ← EnteringIndex(Bini, φμ(a0, k0));

j ← LeavingIndex(Bini, i);

Bcurr ← Bini ∪ {i} \ {j};
while There are twin indices do

i ← EnteringIndex(Bcurr, j);
j ← LeavingIndex(Bcurr, i);
Bcurr ← Bcurr ∪ {i} \ {j};

end

Bend ← Bcurr;

return Bend;

Algorithm 1. Lemke-like algorithm
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4 Algorithm and Main Result

We are now in a position to describe the full algorithm under the non-degeneracy
assumption.

1. For each k ∈ K, compute a collection T = (T k) where T k ⊆ Ak is an
sk-arborescence of (V k, Ak).

2. Define e as in Equation (4) (which depends on T ).
3. Define Y = {φx(a, k) : a ∈ T k, k ∈ K}∪{φμ(a, k) : a ∈ Ak\T k, k ∈ K}∪{o}.
4. If Y \ {o} is a complementary feasible basis providing an optimal solution

of problem (AMNEP (e)) with ω = 0, then we have a solution of prob-
lem (MNEP ), see Lemma 3.

5. Otherwise, let Bini be defined as in Lemma 3 and apply Algorithm 1, which
returns a basis Bend.

6. Compute the basic solution associated to Bend.

All the elements proved in Section 3 lead finally to the following result.

Theorem 1. Under the non-degeneracy assumption, this algorithm solves prob-
lem (MNEP ), i.e. the Multiclass Network Equilibrium Problem with affine
costs.

This result provides actually a constructive proof of the existence of an equi-
librium for the Multiclass Network Equilibrium Problem when the cost are affine
and strictly increasing, even if the non-degeneracy assumption is not satisfied.
If we compute b = (bkv) strictly according to the model, we have

bkv =

⎧⎨
⎩

λ(Ik) if v = sk

−λ(Ik) if v = tk

0 otherwise .
(5)

In this case, the non-degeneracy assumption is not satisfied as it has been noted
at the end of Section 3.5 (Remark 1). Anyway, we can slightly perturb b and
−β in such a way that any feasible complementary basis of the perturbated
problem is still a feasible complementary basis for the original problem. Such a
perturbation exists by standard arguments, see [7]. Theorem 1 ensures then the
termination of the algorithm on a feasible complementary basis B whose basic
solution is such that ω = 0. It provides thus a solution for the original problem.

It shows also that the problem of finding such an equilibrium belongs to the
PPAD complexity class. The PPAD class – defined by Papadimitriou [24] in 1994
– is the complexity class of functional problems for which we know the existence
of the object to be found because of a (oriented) path-following argument. There
are PPAD-complete problems, i.e. PPAD problems as hard as any problem in
the PPAD class, see [18] for examples of such problems. A natural question
would be whether the Multiclass Network Equilibrium Problem with affine costs
is PPAD-complete. We do not know the answer. Another natural question is
whether the problem belongs to other complexity classes often met in the context
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of congestion games, such as the PLS class [17] or the CLS class [10]. However,
these latter classes require the existence of some potential functions which is not
likely to be the case for our problem.

Another consequence of Theorem 1 is that if the demands λ(Ik) and the
cost parameters αk

a, β
k
a are rational numbers, then there exists an equilibrium

inducing rational flows on each arc and for each class k. It is reminiscent of a
similar result for two players matrix games: if the matrices involve only rational
entries, there is an equilibrium involving only rational numbers [23].

5 Computational Experiments

5.1 Instances

The experiments are made on n × n grid graphs (Manhattan instances). For
each pair of adjacent vertices u and v, both arcs (u, v) and (v, u) are present.
We built several instances on these graphs with various sizes n, various numbers
of classes, and various cost parameters αk

a, β
k
a . The cost parameters were chosen

uniformly at random such that for all a and all k

αk
a ∈ [1, 10] and βk

a ∈ [0, 100] .

5.2 Results

The algorithm has been coded in C++ and tested on a PC IntelR© Core
TM

i5-
2520M clocked at 2.5 GHz, with 4 GB RAM. The experiments are currently in
progress. However, some preliminary computational results are given in Table 1.
Each row of the table contains average figures obtained on five instances on
the same graph and with the same number classes, but with various origins,
destinations, and costs parameters.

The columns “Classes”, “Vertices”, and “Arcs” contain respectively the num-
ber of classes, the number of vertices, and the number of arcs. The column
“Pivots” contains the number of pivots performed by the algorithm. They are
done during Step 5 in the description of the algorithm in Section 4 (application of
Algorithm 1). The column “Algorithm 1” provides the time needed for the whole
execution of this pivoting step. The preparation of this pivoting step requires a
first matrix inversion, and the final computation of the solution requires such an
inversion as well. The times needed to perform these inversions are given in the
column “Inversion”. The total time needed by the complete algorithm to solve
the problem is the sum of the “Algorithm 1” time and twice the “Inversion”
time, the other steps of the algorithm taking a negligible time.

It seems that the number of pivots remains always reasonable. Even if the
time needed to solve large instances is sometimes important with respect to the
size of the graph, the essential computation time is spent on the two matrix
inversions. The program has not been optimized. Since there are several efficient
techniques known for inverting matrices, the results can be considered as very
positive.
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Table 1. Performances of the complete algorithm for various instance sizes

Classes Grid Vertices Arcs Pivots Algorithm 1 Inversion
(seconds) (seconds)

2 2 × 2 4 8 2 <0.01 <0.01
4 × 4 16 48 21 0.01 0.03
6 × 6 36 120 54 0.08 0.5
8 × 8 64 224 129 0.9 4.0

3 2 × 2 4 8 4 <0.01 <0.01
4 × 4 16 48 33 0.03 0.1
6 × 6 36 120 97 0.4 1.9
8 × 8 64 224 183 2.6 12

4 2 × 2 4 8 3 <0.01 <0.01
4 × 4 16 48 41 0.06 0.3
6 × 6 36 120 126 0.9 4.7
8 × 8 64 224 249 5.4 25

10 2 × 2 4 8 11 <0.01 0.02
4 × 4 16 48 107 0.7 4.1
6 × 6 36 120 322 15 70
8 × 8 64 224 638 87 385

50 2 × 2 4 8 56 0.3 2.6
4 × 4 16 48 636 105 511

References

1. Adler, I., Verma, S.: The Linear Complementarity Problem, Lemke Algorithm,
Perturbation, and the Complexity Class PPAD, Technical Report (2011)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs (1993)

3. Asmuth, R., Eaves, B.C., Peterson, E.L.: Computing Economic Equilibria on Affine
Networks with Lemke’s Algorithm. Math. Oper. Res. 4, 209–214 (1979)

4. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in Economics of Trans-
portation. Yale University Press, New Haven (1956)

5. Cao, M., Ferris, M.C.: A pivotal method for affine variational inequalities. Math.
Oper. Res. 21, 44–64 (1996)

6. Cohen, G., Chaplais, F.: Nested monotonicity for variational inequalities over prod-
uct of spaces and convergence of iterative algorithms. J. Optim. Theory Appl. 59,
369–390 (1988)

7. Cottle, R.W., Pang, J.S., Stone, R.E.: The linear complementarity problem. Aca-
demic Press, New York (1992)

8. Dafermos, S.: The Traffic Assignment Problem for Multiclass-User Transportation
Networks. Transportation Sci. 6, 73–87 (1972)

9. Dafermos, S.: Traffic equilibrium and variational inequalities. Transportation
Sci. 14, 42–54 (1980)

10. Daskalakis, C., Papadimitriou, C.: Continuous Local Search. In: 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco (2011)

11. De Schutter, B., De Moor, B.: The Extended Linear Complementarity Problem.
Tech. Report (1995)



376 F. Meunier and T. Pradeau

12. Eaves, B.C.: Polymatrix games with joint constraints. SIAM J. Appl. Math. 24,
418–423 (1973)

13. Florian, M.: A traffic equilibrium model of travel by car and public transit modes.
Transportation Sci. 11, 166–179 (1977)

14. Florian, M., Spiess, H.: The convergence of diagonalisation algorithms for asym-
metric network equilibrium problems. Transportation Res. Part B 16, 477–483
(1982)

15. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research
Logistics Quarterly 3, 95–110 (1956)

16. Harker, P.T.: Accelerating the convergence of the diagonalization and projection
algorithms for finite-dimensional variational inequalities. Math. Programming 41,
29–59 (1988)

17. Johnson, D.S., Papadimitriou, C., Talwar, K.: How easy is Local Search? Journal
of Computer and System Sciences 37, 79–100 (1988)

18. Kintali, S., Poplawski, L.J., Rajaraman, R., Sundaram, R., Teng, S.-H.: Reducibil-
ity among fractional stability problems. In: 50th IEEE Symposium on Foundations
of Computer Science (FOCS), Atlanta (2009)

19. Lemke, C.E.: Bimatrix equilibrium points and equilibrium programming. Manage-
ment Science 11, 681–689 (1965)

20. Mahmassani, H.S., Mouskos, K.C.: Some numerical results on the diagonalization
algorithm for network assignment with asymmetric interactions between cars and
trucks. Transportation Res. Part B 22, 275–290 (1988)

21. Milchtaich, I.: Congestion games with player-specific payoff functions. Games
Econom. Behavior 13, 111–124 (1996)

22. Marcotte, P., Wynter, L.: A new look at the multiclass network equilibrium prob-
lem. Transportation Sci. 38, 282–292 (2004)

23. Nash, J.F.: Non-Cooperative games. Annals of Mathematics 54, 286–295 (1951)
24. Papadimitriou, C.: On the complexity of the parity argument and other inefficient

proofs of existence. Journal of Computer and System Sciences 48, 498–532 (1994)
25. Schiro, D.A., Pang, J.-S., Shanbhag, U.V.: On the solution of affine generalized

Nash equilibrium problems with shared constraints by Lemke’s method. Math.
Program. (2012)

26. Schmeidler, D.: Equilibrium points on nonatomic games. J. Statist. Phys. 7, 295–
300 (1970)

27. Smith, M.J.: The existence, uniqueness, and stability of traffic equilibria. Trans-
portation Res. Part B. 15, 443–451 (1979)

28. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil
Engineers 2, 325–378 (1952)



Near-Optimal and Robust Mechanism Design

for Covering Problems with Correlated Players�

Hadi Minooei�� and Chaitanya Swamy��

Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1
{hminooei,cswamy}@math.uwaterloo.ca

Abstract. We consider the problem of designing incentive-compatible,
ex-post individually rational (IR) mechanisms for covering problems in
the Bayesian setting, where players’ types are drawn from an underly-
ing distribution and may be correlated, and the goal is to minimize the
expected total payment made by the mechanism. We formulate a notion
of incentive compatibility (IC) that we call robust Bayesian IC (robust
BIC) that is substantially more robust than BIC, and develop black-box
reductions from robust-BIC mechanism design to algorithm design. For
single-dimensional settings, this black-box reduction applies even when
we only have an LP-relative approximation algorithm for the algorithmic
problem. Thus, we obtain near-optimal mechanisms for various cover-
ing settings including single-dimensional covering problems, multi-item
procurement auctions, and multidimensional facility location.

1 Introduction

We consider the problem of designing incentive-compatible, ex-post individu-
ally rational (IR) mechanisms for covering problems (also called procurement
auctions) in the Bayesian setting, where players’ types are drawn from an un-
derlying distribution and may be correlated, and the goal is to minimize the
expected total payment made by the mechanism. Consider the simplest such set-
ting of a single-item procurement auction, where a buyer wants to buy an item
from any one of n sellers. Each seller incurs a private cost, which we refer to as
his type, for supplying the item and the sellers must therefore be incentivized
via a suitable payment scheme. Myerson’s seminal result [16] solves this problem
(and other single-dimensional problems) when players’ private types are inde-
pendent. However, no such result (or characterization) is known when players’
types are correlated. This is the question that motivates our work.

Whereas the analogous revenue-maximization problem for packing domains,
such as combinatorial auctions (CAs), has been extensively studied in the algo-
rithmic mechanism design (AMD) literature, both in the case of independent and
correlated (even interdependent) player-types (see, e.g., [3,4,2,1,5,9,8,17,2,19]
and the references therein), surprisingly, there are almost no results on the
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payment-minimization problem in the AMD literature (see however [4]). The
economics literature does contain various general results that apply to both cov-
ering and packing problems. However much of this work focuses on characterizing
special cases; see, e.g., [12]. An exception is the work of Crémer and McLean [6,7],
which shows that under certain conditions, one can devise a Bayesian-incentive-
compatible (BIC) mechanism whose expected total payment exactly equal to
the expected cost incurred by the players, albeit one where players may incur
negative utility under certain type-profile realizations.

Our contributions. We initiate a study of payment-minimization (PayM) prob-
lems from the AMD perspective of designing computationally efficient, near-
optimal mechanisms. We develop black-box reductions from mechanism design to
algorithm design whose application yields a variety of optimal and near-optimal
mechanisms. As we elaborate below, covering problems turn out to behave quite
differently in certain respects from packing problems, which necessitates new
approaches (and solution concepts).

Formally, we consider the setting of correlated players in the explicit model,
that is, where we have an explicitly-specified arbitrary discrete joint distribution
of players’ types. The most common solution concept in Bayesian settings is
Bayesian incentive compatibility (BIC) and interim individual rationality (in-
terim IR), wherein at the interim stage when a player knows his type but is
oblivious of the random choice of other players’ types, truthful participation
in the mechanism by all players forms a Bayes-Nash equilibrium. Two serious
drawbacks of this solution concept (which are exploited strikingly and elegantly
in [6,7]) are that: (i) a player may regret his decision of participating and/or
truthtelling ex post, that is, after observing the realization of other players’ types;
and (ii) it is overly-reliant on having precise knowledge of the true underlying
distribution making this a rather non-robust concept: if the true distribution dif-
fers, possibly even slightly, from the mechanism designer and/or players’ beliefs
or information about it, then the mechanism could lose its IC and IR properties.

We formulate a notion of incentive compatibility (IC) that we call robust
Bayesian IC (robust BIC) that on the one hand is substantially more robust
than BIC, and on the other is flexible enough that it allows one to obtain various
polytime near-optimal mechanisms satisfying this notion. A robust-(BIC, IR)
mechanism (see Section 2) ensures that truthful participation in the mechanism
is in the best interest of every player (i.e. a “no-regret” choice) even at the
ex-post stage when the other players’ (randomly-chosen) types are revealed to
him. Thus, a robust-(BIC, IR) mechanism is significantly more robust than a
(BIC, interim-IR) mechanism since it retains its IC and IR properties for a
wide variety of distributions, including those having the same support as the
actual distribution. In other words, in keeping with Wilson’s doctrine of detail-
free mechanisms, the mechanism functions robustly even under fairly limited
information about the type-distribution.

We show that for a variety of settings, one can reduce the robust-(BIC, IR)
payment-minimization (PayM) mechanism-design problem to the algorithmic
cost-minimization (CM) problem of finding an outcome that minimizes the
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total cost incurred. Moreover, this black-box reduction applies to: (a) single-
dimensional settings even when we only have an LP-relative approximation al-
gorithm for the PCM problem (that is required to work only with nonnega-
tive costs) (Theorem 9); and (b) multidimensional problems with additive types
(Corollary 6). We emphasize that our definition of additive types (see Section 2)
should not be confused with, and is more general than, additive valuations in
combinatorial auctions (CAs). (For example, in a CA with m items, valuation
functions of the form v(S) =

∑
T⊆S aT for all S ⊆ [m] form an additive type: if

v, v′ ∈ V , then v + v′ defined by (v + v′)(S) = v(S) + v′(S) also has the above
form. But v is not an additive valuation as there need not exist item values vj
for j ∈ [m] such that one can express v(S) =

∑
j∈S vj .)

Our reduction yields near-optimal robust-(BIC-in-expectation, IR) mecha-
nisms for a variety of covering settings such as (a) various single-dimensional
covering problems including single-item procurement auctions (Table 1); (b)
multi-item procurement auctions (Theorem 10); and (c) multidimensional facil-
ity location (Theorem 12). (Robust BIC-in-expectation means that the robust-
BIC guarantee holds for the expected utility of a player, where the expectation is
over the random coin tosses of the mechanism.) Our techniques can be adapted
to yield truthful-in-expectation mechanisms with the same guarantees for single-
dimensional problems with a constant number of players. These are the first
results for the PayM mechanism-design problem with correlated players under a
notion stronger than (BIC, interim IR). To our knowledge, our results are new
even for the simplest covering setting of single-item procurement auctions.

On a side note, we note that we can leverage our ideas to also expand upon
the results in [8] for revenue-maximization with correlated players and make
significant progress on a research direction proposed in [8]. In the full version,
we show that any “integrality-gap verifying” ρ-approximation algorithm for the
SWM problem (as defined in [11]) can be used to obtain a truthful-in-expectation
mechanism whose revenue is at least a ρ-fraction of the optimum revenue.

Our techniques. The starting point for our construction is the observation that
the problem of designing an optimal robust-(BIC, IR)-in-expectation mechanism
can be encoded via an LP (P). This was also observed by [8] in the context
of the revenue-maximization problem for CAs, but the covering nature of the
problem renders various techniques utilized successfully in the context of packing
problems inapplicable, and therefore from here on our techniques diverge.

We show that an optimal solution to (P) can be computed given an optimal
algorithm A for the CM problem since A can be used to obtain a separation
oracle for the dual LP. Next, we prove that a feasible solution to (P) yields a
robust-(BIC-in-expectation, IR) mechanism with no larger objective value.

For single-dimensional problems, we show that even LP-relative ρ-
approximation algorithms for the CM problem can be utilized, as follows. We
move to a relaxation of (P), where we replace the set of allocations with the
feasible region of the CM-LP. This can be solved efficiently, since the separation
oracle for the dual can be obtained by optimizing over the feasible region of CM-
LP, which can be done efficiently! But now we need to work harder to “round”
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an optimal solution (x, p) to the relaxation of (P) and obtain a robust-(BIC-
in-expectation, IR) mechanism. Here, we exploit the Lavi-Swamy [11] convex-
decomposition procedure, using which we can show (roughly speaking) that we
can decompose ρx into a convex combination of allocations. This allows us to
obtain a robust-(BIC-in-expectation, IR) mechanism while blowing up the pay-
ment by a ρ-factor.

In comparison with [8], which is the work most closely-related to ours, our
reduction from robust-BIC mechanism design to the algorithmic CM problem is
stronger than the reduction in [8] in two ways. First, for single-dimensional set-
tings, it applies even with LP-relative approximation algorithms, and the approx-
imation algorithm is required to work only for “proper inputs” with nonnegative
costs. (Note that whereas for packing problems, allowing negative-value inputs
can be benign, this can change the character of a covering problem considerably;
in particular, the standard notion of approximation becomes meaningless since
the optimum could be negative.) In contrast, Dobzinski et al. [8] require an exact
algorithm for the analogous social-welfare-maximization (SWM) problem. Sec-
ond, our reduction also applies to multidimensional settings with additive types
(see Section 2), albeit we now require an exact algorithm for the CM problem.

Differences with respect to packing problems. Note that [8] obtain (DSIC-in-
expectation, IR)-mechanisms, which is a subtly stronger notion than the robust-
(BIC-in-expectation, IR) solution concept that our mechanisms satisfy. This dif-
ference arises due to the different nature of covering and packing problems. [8]
also first obtain a robust-(BIC, IR)-in-expectation mechanism. The key differ-
ence is that for combinatorial auctions, one can show that any robust-(BIC,
IR)-in-expectation mechanism—in particular, the one obtained from the opti-
mal LP solution—can be converted into a (DSIC-in-expectation, IR) mechanism
without any loss in expected revenue. Intuitively, this works because one can
focus on a single player by allocating no items to the other players. Clearly,
one cannot mimic this for covering problems: dropping players may render the
problem infeasible, and it is not clear how to extend an LP-solution to a (DSIC-
in-expectation, IR) mechanism for covering problems. We suspect that there is a
gap between the optimal expected total payments of robust-(BIC-in-expectation,
IR) and (DSIC, IR) mechanisms; we leave this as an open problem. Due to this
complication, we sacrifice a modicum of the IC, IR properties in favor of ob-
taining polytime near-optimal mechanisms and settle for the weaker, but still
quite robust notion of robust (BIC-in-expectation, IR). We consider this to be a
reasonable starting point for exploring mechanism-design solutions for covering
problems, which leads to various interesting research directions.

A more-stunning aspect where covering and packing problems diverge can
be seen when one considers the idea of a k-lookahead auction [18,8]. This was
used by [8] to convert their results in the explicit model to the oracle model
introduced by [18]. This however fails spectacularly in the covering setting. One
can show that even for single-item procurement auctions, dropping even a single
player can lead to an arbitrarily large payment compared to the optimum.
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Other related work. In the economics literature, the classical results of Crémer
and McLean [6,7] and McAfee and Reny [14], also apply to covering problems,
and show that one can devise a (BIC, interim IR) mechanism with correlated
players whose expected total payment is at most the expected total cost incurred
provided the underlying type-distribution satisfies a certain full-rank assump-
tion. These mechanisms may however cause a player to have negative utility
under certain realizations of the random type profile.

The AMD literature has concentrated mostly on the independent-players set-
ting [3,4,2,1,5,9]. There has been some, mostly recent, work that also considers
correlated players [18,8,17,2,19]; as noted earlier, all of this work pertains to the
revenue-maximization setting. Ronen [18] considers the single-item auction set-
ting in the oracle model, where one sample from the distribution conditioned on
some players’ values. He proposes the (1-) lookahead auction and shows that it
achieves a 1

2 -approximation. [17] shows that the optimal (DSIC, IR) mechanism
for the single-item auction can be computed efficiently with at most 2 players,
and is NP-hard otherwise. Cai et al. [2] give a characterization of the opti-
mal auction under certain settings. [19] considers interdependent types, which
generalizes the correlated type-distribution setting, and develop an analog of
Myerson’s theory for certain such settings.

Various reductions from revenue-maximization to SWM are given in [3,4,2].
These reductions also apply to covering problems and the PayM objective, but
they are incomparable to our results. These works focus on the (BIC, interim-IR)
solution concept, which is a rather weak/liberal notion for correlated distribu-
tions. Most (but not all) of these consider independent players and additive
valuations, and often require that the SWM-algorithm also work with negative
values, which is a benign requirement for downwards-closed environments such
as CAs but is quite problematic for covering problems when only has an ap-
proximation algorithm. [2] considers correlated players and obtains mechanisms
having running time polynomial in the maximum support-size of the marginal
distribution of a player, which could be substantially smaller than the support-
size of the entire distribution. This savings can be traced to the use of the (BIC,
interim-IR) notion which allows [2] to work with a compact description of the
mechanism. It is unclear if these ideas are applicable when one considers robust-
(BIC, IR) mechanisms. A very interesting open question is whether one can
design robust-(BIC-in-expectation, IR) mechanisms having running time poly-
nomial in the support-sizes of the marginal player distributions (as in [2,8]).

2 Preliminaries

Covering mechanism-design problems. We adopt the formulation in [15] to de-
scribe general covering mechanism-design problems. There arem items that need
to be covered, and n players who provide covering objects. Let [k] denote the set
{1, . . . , k}. Each player i provides a set Ti of covering objects. All this informa-
tion is public knowledge. Player i has a private cost or type vector ci = {ci,v}v∈Ti ,
where ci,v ≥ 0 is the cost he incurs for providing object v ∈ Ti; for T ⊆ Ti, we
use ci(T ) to denote

∑
v∈T ci,v. A feasible solution or allocation selects a subset
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Ti ⊆ Ti for each agent i, denoting that i provides the objects in Ti, such that
∪iTi covers all the items. Given this solution, each agent i incurs the private cost
ci(Ti), and the mechanism designer incurs a publicly known cost pub(

⋃
i Ti) ≥ 0,

which may be used to encode any feasibility constraints in the covering problem.
Let Ci denote the set of all possible types of agent i, and C =

∏n
i=1 Ci.

Let Ω := {(T1, . . . , Tn) : pub(
⋃

i Ti) < ∞} be the (finite) set of all possi-
ble feasible allocations. For a tuple x = (x1, . . . , xn), we use x−i to denote
(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, let C−i =

∏
j 	=i Cj . For an allocation

ω = (T1, . . . , Tn), we sometimes use ωi to denote Ti, ci(ω) to denote ci(ωi) =
ci(Ti), and pub(ω) to denote pub(

⋃
i Ti). We make the mild assumption that

pub(ω′) ≤ pub(ω) if ωi ⊆ ω′
i for all i; so in particular, if ω is feasible, then

adding covering objects to the ωis preserves feasibility.
A (direct revelation) mechanism M = (A, p1, . . . , pn) for a covering problem

consists of an allocation algorithm A : C �→ Ω and a payment function pi : C �→
R for each agent i. Each agent i reports a cost function ci (that might be different
from his true cost function). The mechanism computes the allocation A(c) =
(T1, . . . , Tn) = ω ∈ Ω, and pays pi(c) to each agent i. The utility ui(ci, c−i; ci)
that player i derives when he reports ci and the others report c−i is pi(c)−ci(ωi)
where ci is his true cost function, and each agent i aims to maximize his own
utility. We refer to maxi |Ti| as the dimension of a covering problem. Thus, for
a single-dimensional problem, each player i’s cost can be specified as ci(ω) =
ciαi,ω , where ci ∈ R+ is his private type and αi,ω = 1 if ωi �= ∅ and 0 otherwise.

The above setup yields a multidimensional covering mechanism-design prob-
lem with additive types, where additivity is the property that if ci, c

′
i ∈ Ci, then

the type ci+c′i defined by (ci+c′i)(ω) = ci(ω)+c′i(ω) for all ω ∈ Ω, is also in Ci.
It is possible to define more general multidimensional settings, but additive type
spaces is a reasonable starting point to explore the multidimensional covering
mechanism-design setting. (As noted earlier, there has been almost no work on
designing polytime, near-optimal mechanisms for covering problems.)

The Bayesian setting. We consider Bayesian settings where there is an under-
lying publicly-known discrete and possibly correlated joint type-distribution on
C from which the players’ types are drawn. We consider the so-called explicit
model, where the players’ type distribution is explicitly specified. We use D ⊆ C
to denote the support of the type distribution, and PrD(c) to denote the proba-
bility of realization of c ∈ C. Also, we define Di := {ci ∈ Ci : ∃c−i s.t. (ci, c−i) ∈
D}, and D−i to be {c−i : ∃ci s.t. (ci, c−i) ∈ D}.

Solution concepts. A mechanism sets up a game between players, and the solu-
tion concept dictates certain desirable properties that this game should satisfy,
so that one can reason about the outcome when rational players’ are presented
with a mechanism satisfying the solution concept. The two chief properties that
one seeks to capture relate to incentive compatibility (IC), which (roughly speak-
ing) means that every agent’s best interest is to reveal his type truthfully, and
individual rationality (IR), which is the notion that no agent is harmed by par-
ticipating in the mechanism. Differences and subtleties arise in Bayesian settings
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depending on the stage at which we impose these properties and how robust we
would like these properties to be with respect to the underlying type distribution.

Definition 1. A mechanism M =
(
A, {pi}

)
is Bayesian incentive compati-

ble (BIC) and interim IR if for every player i and every ci, ci ∈ Ci, we have
Ec−i [ui(ci, c−i; ci)|ci] ≥ Ec−i [ui(ci, c−i; ci)|ci] (BIC) and Ec−i [ui(ci, c−i; ci)|ci] ≥
0 (interim IR), where Ec−i [.|ci] denotes the expectation over the other players’
types conditioned on i’s type being ci.

As mentioned earlier, the (BIC, interim-IR) solution concept may yet lead to
ex-post “regret”, and is quite non-robust in the sense that the mechanism’s IC
and IR properties rely on having detailed knowledge of the distribution; thus, in
order to be confident that a BIC mechanism achieves its intended functionality,
one must be confident about the “correctness” of the underlying distribution,
and learning this information might entail significant cost. To remedy these
weaknesses, we propose and investigate the following stronger IC and IR notions.

Definition 2. A mechanism M =
(
A, {pi}

)
is robust BIC and robust IR, if for

every player i, every ci, ci ∈ Ci, and every c−i ∈ D−i, we have ui(ci, c−i; ci) ≥
ui(ci, c−i; ci) (robust BIC) and ui(ci, c−i; ci) ≥ 0 (robust IR).

Robust (BIC, IR) ensures that participating truthfully in the mechanism is
in the best interest of every player even at the ex-post stage when he knows
the realized types of all players. To ensure that robust BIC and robust IR are
compatible, we focus on monopoly-free settings: for every player i, there is some
ω ∈ Ω with ωi = ∅. Notice that robust (BIC, IR) is subtly weaker than the
notion of (dominant-strategy IC (DSIC), IR), wherein the IC and IR conditions
of Definition 2 must hold for all c−i ∈ C−i, ensuring that truthtelling and par-
ticipation are no-regret choices for a player even if the other players’ reports are
outside the support of the underlying type-distribution. We focus on robust BIC
because it forms a suitable middle-ground between BIC and DSIC: it inherits
the desirable robustness properties of DSIC, making it much more robust than
BIC (and closer to a worst-case notion), and yet is flexible enough that one can
devise polytime mechanisms satisfying this solution concept.

The above definitions are stated for a deterministic mechanism, but they
have analogous extensions to a randomized mechanism M ; the only change is
that each ui(.) and pi(.) term is now replaced by the expected utility EM [ui(.)]
and expected price EM [pi(.)] over the random coin tosses of M . We denote
the analogous solution concept for a randomized mechanism by appending “in
expectation” to the solution concept, e.g., a (BIC, interim IR)-in-expectation
mechanism denotes a randomized mechanism whose expected utility satisfies
the BIC and interim-IR requirements stated in Definition 1.

A robust-(BIC, IR)-in-expectation mechanism M =
(
A, {pi}

)
can be easily

modified so that the IR condition holds with probability 1 (with respect to M ’s
coin tosses) while the expected payment to a player (again over M ’s coin tosses)
is unchanged: on input c, if A(c) = ω ∈ Ω with probability q, the new mechanism

returns, with probability q, the allocation ω, and payment ci(ω) · EM [pi(c)]
EM [ci(ω)] to
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each player i (where we take 0/0 to be 0, so if ci(ω) = 0, the payment to i is
0). Thus, we obtain a mechanism whose expected utility satisfies the robust-BIC
condition, and IR holds with probability 1 for all ci ∈ Ci, c−i ∈ D−i, A similar
transformation can be applied to a (DSIC, IR)-in-expectation mechanism.

Optimization problems. Our main consideration is to minimize the expected to-
tal payment of the mechanism. It is natural to also incorporate the mechanism-
designer’s cost into the objective. Define the disutility of a mechanism M =(
f, {pi}

)
under input v to be

∑
i pi(v)+κ·pub

(
f(v)

)
, where κ ≥ 0 is a scaling fac-

tor. Our objective is to devise a polynomial-time robust (BIC (in-expectation),
IR)-mechanism with minimum expected disutility. Since most problems we con-
sider have pub(ω) = 0 for all feasible allocations, in which case disutility equals
the total payment, abusing terminology slightly, we refer to the above mechanism-
design problem as the payment-minimization (PayM) problem. (An exception
is metric uncapacitated facility location (UFL), where players provide facilities
and the underlying metric is public knowledge; here, pub(ω) is the total client-
assignment cost of the solution ω.) We always use O∗ to denote the expected
disutility of an optimal mechanism for the PayM problem under consideration.

We define the cost minimization (CM) problem to be the algorithmic problem
of finding ω ∈ Ω that minimizes the total cost

∑
i ci(ω) + pub(ω) incurred.

The following technical lemma will prove quite useful since it allows us to
restrict the domain to a bounded set, which is essential to achieve IR with finite
prices. (For example, in the single-dimensional setting, the payment is equal to
the integral to ∞ of a certain quantity; a bounded domain ensures that this is
well defined.) Note that such complications do not arise for packing problems.
Let 1Ti be the |Ti|-dimensional all 1s vector. Let I denote the input size.

Lemma 3. We can efficiently compute an estimate mi > maxci∈Di,v∈Ti ci,v
with logmi = poly(I) for all i such that there is an optimal robust-(BIC-in-
expectation, IR) mechanism M∗ =

(
A∗, {p∗i }

)
where A∗(mi1Ti , c−i) = ∅ with

probability 1 (over the random choices of M∗) for all i and all c−i ∈ D−i.

It is easy to obtain the stated estimates if we consider only deterministic
mechanisms, but it turns out to be tricky to obtain this when one allows ran-
domized mechanisms due to the artifact that a randomized mechanism may
choose arbitrarily high-cost solutions as long as they are chosen with small
enough probability. In the sequel, we set Di := Di ∪ {mi1Ti} for all i ∈ [n],
and D :=

⋃
i(Di ×D−i). Note that |D| = O(n|D|2).

3 LP-Relaxations for the Payment-Minimization Problem

The starting point for our results is the LP (P) that essentially encodes the
payment-minimization problem. Throughout, we use i to index players, c to
index type-profiles in D, and ω to index Ω. We use variables xc,ω to denote the
probability of choosing ω, and pi,c to denote the expected payment to player
i, for input c. For c ∈ D, let Ω(c) = Ω if c ∈

⋃
i(Di × D−i), and otherwise if
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c = (mi1Ti , c−i), let Ω(c) = {ω ∈ Ω : ωi = ∅} (which is non-empty since we are
in a monopoly-free setting).

min
∑
c∈D

PrD(c)
(∑

i

pi,c + κ
∑
ω

xc,ωpub(ω)
)

(P)

s.t.
∑
ω

xc,ω = 1 ∀c ∈ D (1)

pi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥

pi,(c′i,c−i) −
∑
ω

ci(ω)x(c′i,c−i),ω ∀i, ci, c′i ∈ Di, c−i ∈ D−i (2)

pi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥ 0 ∀i, ci ∈ Di, c−i ∈ D−i (3)

p, x ≥ 0, xc,ω = 0 ∀c, ω /∈ Ω(c). (4)

(1) encodes that an allocation is chosen for every c ∈ D, and (2) and (3) encode
the robust BIC and robust IR conditions respectively. Lemma 3 ensures that
(P) correctly encodes PayM, so that OPT := OPTP is a lower bound on the
expected disutility of an optimal mechanism.

Our results are obtained by computing an optimal solution to (P), or a fur-
ther relaxation of it, and translating this to a near-optimal robust (BIC-in-
expectation, IR) mechanism. Both steps come with their own challenges. Except
in very simple settings (such as single-item procurement auctions), |Ω| is typ-
ically exponential in the input size, and therefore it is not clear how to solve
(P) efficiently. We therefore consider the dual LP (D), which has variables γc,
yi,(ci,c−i),c′i and βi,(ci,c−i) corresponding to (1), (2) and (3) respectively.

max
∑
c

γc (D)

s.t.
∑

i:c∈Di×D−i

( ∑
c′i∈Di

(
ci(ω)yi,(ci,c−i),c′i − c′i(ω)yi,(c′i,c−i),ci

)
+ ci(ω)βi,c

)
+ κ · PrD(c)pub(ω) ≥ γc ∀c ∈ D, ω ∈ Ω(c) (5)∑

c′i∈Di

(
yi,(ci,c−i),c′i − yi,(c′i,c−i),ci

)
+ βi,ci,c−i ≤ PrD(c) ∀i, ci ∈ Di, c−i ∈ D−i

y, β ≥ 0.

With additive types, the separation problem for constraints (5) amounts to de-
termining if the optimal value of the CM problem defined by a certain input
with possibly negative costs, is at least γc. Hence, an optimal algorithm for the
CM problem can be used to solve (D), and hence, (P) efficiently.

Theorem 4. With additive types, one can efficiently solve (P) given an optimal
algorithm for the CM problem.

Complementing Theorem 4, we argue that a feasible solution (x, p) to (P) can
be “rounded” to a robust-(BIC-in-expectation, IR) mechanism having expected
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disutility at most the value of (x, p) (Theorem 5). Combining this with Theorem 4
yields the corollary that an optimal algorithm for the CM problem can be used
to obtain an optimal mechanism for the PayM problem (Corollary 6).

Theorem 5. We can extend a feasible solution (x, p) to (P) to a robust-
(BIC-in-expectation, IR) mechanism with expected disutility

∑
c PrD(c)

(∑
i pi,c+

κ
∑

ω xc,ωpub(ω)
)
.

Proof. Let Ω′ = {ω : xc,ω > 0 for some c ∈ D}. We use xc to denote the
vector {xc,ω}ω∈Ω′ . Consider a player i, c−i ∈ D−i, and ci, c

′
i ∈ Di. Note that (2)

implies that if x(ci,c−i) = x(c′i,c−i), then pi,(ci,c−i) = pi,(c′i,c−i). For c−i ∈ D−i,

define R(i, c−i) =
{
x(ci,c−i) : (ci, c−i) ∈ D

}
, and for y = x(ci,c−i) ∈ R(i, c−i)

define pi,y to be pi,(ci,c−i) (which is well defined by the above argument).

We now define the randomized mechanism M =
(
A, {qi}

)
, where A(c) and

qi(c) denote respectively the probability distribution over allocations and the
expected payment to player i, on input c. We sometimes view A(c) equivalently
as the random variable specifying the allocation chosen for input c. Fix an allo-
cation ω0 ∈ Ω. Consider an input c. If c ∈ D, we set A(c) = x(c), and qi(c) = pi,c
for all i. So consider c /∈ D. If there is no i such that c−i ∈ D−i, we simply set
A(c) = ω0, qi(c) = ci(ω0) for all i; such a c does not figure in the robust (BIC,
IR) conditions. Otherwise there is a unique i such that c−i ∈ D−i, ci ∈ Ci \ Di.
Set A(c) = argmaxy∈R(i,c−i)

(
pi,y −

∑
ω∈Ω′ ci(ω)yω

)
and qj(c) = pj,A(c) for all

players j. Note that (ci, c−i) figures in (2) only for player i. Crucially, note that
since y = x(mi,c−i) ∈ R(i, c−i) and

∑
ω∈Ω ci(ω)yω = 0 by definition, we always

have qi(c)− EA[ci(A(c))] ≥ 0. Thus, by definition, and by (2), we have ensured
that M is robust (BIC, IR)-in-expectation and its expected disutility is exactly
the value of (x, p). This can be modified so that IR holds with probability 1. 
�
Corollary 6. Given an optimal algorithm for the CM problem, we can obtain
an optimal robust-(BIC-in-expectation, IR) mechanism for the PayM problem in
multidimensional settings with additive types.

The CM problem is however often NP-hard (e.g., for vertex cover), and we
would like to be able to exploit approximation algorithms for the CM problem to
obtain near-optimal mechanisms. The usual approach is use an approximation
algorithm to “approximately” separate over constraints (5). However, this does
not work since the CM problem that one needs to solve in the separation prob-
lem involves negative costs, which renders the usual notion of approximation
meaningless. Instead, if the CM problem admits a certain type of LP-relaxation
(C-P), then we argue that one can solve a relaxation of (P) where the allocation-
set is the set of extreme points of (C-P) (Theorem 7). For single-dimensional
problems (Section 4), we leverage this to obtain strong and far-reaching results.
We show that a ρ-approximation algorithm relative to (C-P) can be used to
“round” the optimal solution to this relaxation to a robust-(BIC-in-expectation,
IR)-mechanism losing a ρ-factor in the disutility (Theorem 9). Thus, we obtain
near-optimal mechanisms for a variety of single-dimensional problems.

Suppose that the CM problem admits an LP-relaxation of the following form,
where c = {ci,v}i∈[n],v∈Ti

is the input type-profile.



Near-Optimal and Robust Mechanism Design for Covering Problems 387

min cTx+ dT z s.t. Ax+Bz ≥ b, x, z ≥ 0. (C-P)

Intuitively x encodes the allocation chosen, and dT z encodes pub(.). For x ≥ 0,
define z(x) := argmin{dT z : (x, z) is feasible to (C-P)}; if there is no z such
that (x, z) is feasible to (C-P), set z(x) := ⊥. Define ΩLP := {x : z(x) �=
⊥, xi,v ≤ 1 ∀i, v ∈ Ti}. We require that: (a) a {0, 1}-vector x is in ΩLP iff it
is the characteristic vector of an allocation ω ∈ Ω, and in this case, we have
dT z(x) = pub(ω); (b) A ≥ 0; (c) for any input c ≥ 0 to the covering problem,
(C-P) is not unbounded, and if it has an optimal solution, it has one where
x ∈ ΩLP; (d) for any c, we can efficiently find an optimal solution to (C-P) or
detect that it is unbounded or infeasible.

We extend the type ci of each player i and pub to assign values also to points
in ΩLP: define ci(x) =

∑
v∈Ti

ci,vxi,v and pub(x) = dT z(x) for x ∈ ΩLP. Let Ωext

denote the finite set of extreme points of ΩLP. Condition (a) ensures that Ωext

contains the characteristic vectors of all feasible allocations. Let (P’) denote
the relaxation of (P), where we replace the set of feasible allocations Ω with
Ωext (so ω indexes Ωext now), and for c ∈ D with ci = mi1(Ti), we now define
Ω(c) := {ω ∈ Ωext : ωi,v = 0 ∀v ∈ Ti}. Since one can optimize efficiently over
ΩLP, and hence Ωext, even for negative type-profiles, we have the following.

Theorem 7. We can efficiently compute an optimal solution to (P’).

4 Single-Dimensional Problems

Corollary 6 immediately yields results for certain single-dimensional problems
(see Table 1), most notably, single-item procurement auctions. We now substan-
tially expand the scope of PayM problems for which one can obtain near-optimal
mechanisms by showing how to leverage “LP-relative” approximation algorithms
for the CM problem. Suppose that the CM problem can be encoded as (C-P).
An LP-relative ρ-approximation algorithm for the CM problem is a polytime al-
gorithm that for any input c ≥ 0 to the covering problem, returns a {0, 1}-vector
x ∈ ΩLP such that cTx + dT z(x) ≤ ρOPTC-P. Using the convex-decomposition
procedure in [11] (see Section 5.1 of [11]), one can show the following.

Lemma 8. Let x ∈ ΩLP. Given an LP-relative ρ-approximation algorithm for
the CM problem, one can efficiently obtain (λ(1), x(1)), . . . , (λ(k), x(k)), where∑

� λ
(�) = 1, λ ≥ 0, and x(�) is a {0, 1}-vector in ΩLP for all �, such that∑

� λ
(�)x

(�)
i,v = min(ρxi,v, 1) for all i, v ∈ Ti, and

∑
� λ

(�)dT z(x(�)) ≤ ρdT z(x).

Theorem 9. Given an LP-relative ρ-approximation algorithm for the CM prob-
lem, one can obtain a polytime ρ-approximation robust-(BIC-in-expectation, IR)
mechanism for the PayM problem.

Proof. We solve (P’) to obtain an optimal solution (x, p). Since |Ti| = 1 for all i,
it will be convenient to view ω ∈ ΩLP as a vector {ωi}i∈[n], where wi ≡ ωi,v for

the single covering object v ∈ Ti. Fix c ∈ D. Define yc =
∑

ω∈Ωext
xc,ωω (which

can be efficiently computed). Then,
∑

ω∈Ωext
ci(ω)xc,ω = ciyc,i and dT z(y) ≤
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∑
ω∈Ωext

pub(ω)xc,ω . By Lemma 8,we can efficiently find a point ỹc=
∑

ω∈Ω x̃c,ωω,
where x̃c ≥ 0,

∑
w∈Ω x̃c,ω = 1, in the convex hull of the {0, 1}-vectors inΩLP such

that ỹc,i = min(ρyc,i, 1) for all i, and
∑

w∈Ω x̃c,ωpub(ω) ≤ ρdT z(y).
We now argue that one can obtain payments {qi,c} such that (x̃, q) is feasible

to (P) and qi,c ≤ ρpi,c for all i, c ∈ D. Thus, the value of (x̃, q) is at most ρ times
the value of (x, p). Applying Theorem 5 to (x̃, q) yields the desired result.

Fix i and c−i ∈ D−i. Constraints (4) and (2) and ensure that y(mi,c−i),i = 0,

and y(ci,c−i),i ≥ y(c′i,c−i),i for all ci, c
′
i ∈ Di s.t. ci < c′i. Hence, ỹ(mi,c−i)mi =

0, ỹ(ci,c−i),i ≥ ỹ(c′i,c−i),i for ci, c
′
i ∈ Di, ci > c′i. Define qi,(mi,c−i) = 0. Let 0 ≤ c1i <

c2i < . . . < cki

i be the values in Di. For ci = c�i , define qi,(ci,c−i) = ciỹ(ci,c−i),i +∑ki

t=�+1(cit−cit−1)ỹ(cit ,c−i),i. Since
∑

ω∈Ω ci(ω)x̃(ci,c−i),ω = ciỹ(ci,c−i),i, (3) holds.

By construction, for consecutive values ci = c�i , c′i = c�+1
i , we have qi,(ci,c−i) −

qi,(c′i,c−i) = ci
(
ỹ(ci,c−i),i−ỹ(c′i,c−i),i

)
≤ ρ·ci

(
y(ci,c−i),i−y(c′i,c−i),i

)
≤ ρ

(
pi,(ci,c−i)−

pi,(c′i,c−i)

)
. Since qi,(mi,c−i) = 0 ≤ ρpi,(mi,c−i), this implies that qi,(ci,c−i) ≤

ρpi,(ci,c−i). Finally, it is easy to verify that for any ci, c
′
i ∈ Di, we have qi,(ci,c−i)−

qi,(c′i,c−i) ≥ ci
(
ỹ(ci,c−i),i − ỹ(c′i,c−i),i

)
, so (x̃, q) satisfies (2). 
�

Corollary 6 and Theorem 9 yield polytime near-optimal mechanisms for a
host of single-dimensional PayM problems, as summarized by Table 1. Even for
single-item procurement auctions, these are the first results for PayM problems
with correlated players satisfying a notion stronger than (BIC, interim IR).

Table 1. Results for some representative single-dimensional PayM problems

Problem Approximation Due to

Single-item procurement auction: buy one item provided
by n players

1 Corollary 6

Metric UFL: players are facilities, output should be a UFL
solution

1.488 using [13] Theorem 9

Vertex cover: players are nodes, output should be a vertex
cover

2 Theorem 9

Set cover: players are sets, output should be a set cover O(log n) Theorem 9

Steiner forest: players are edges, output should be a Steiner
forest

2 Theorem 9

Multiway cut (a), Multicut (b): players are edges, output
should be a multiway cut in (a), or a multicut in (b)

2 for (a)
O(log n) for (b)

Theorem 9

5 Multidimensional Problems

We obtain results for multidimensional PayM problems via two distinct ap-
proaches. One is by directly applying Corollary 6 (e.g., Theorem 10). The other
approach is based on again moving to an LP-relaxation of the CM problem and
utilizing Theorem 7 in conjunction with a stronger LP-rounding approach. This
yields results for multidimensional (metric) UFL and its variants (Theorem 12).

Multi-item procurement auctions. Here, we have n sellers and k (heterogeneous)
items. Each seller i has a supply vector si ∈ Zk

+ denoting his supply for thevarious
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items, and the buyer has a demand vector d ∈ Zk
+ specifying his demand for the

various items. This is public knowledge. Each seller i has a private cost-vector
ci ∈ Rk

+, where ci,� is the cost he incurs for supplying one unit of item �. A
feasible solution is an allocation specifying how many units of each item each
seller supplies to the buyer such that for each item �, each seller i provides at
most si,� units of � and the buyer obtains d� total units of �. The corresponding
CM problem is a min-cost flow problem (in a bipartite graph), which can be
efficiently solved optimally, thus we obtain a polytime optimal mechanism.

Theorem 10. There is a polytime optimal robust-(BIC-in-expectation, IR)
mechanism for multi-unit procurement auctions.

Multidimensional budgeted (metric) uncapacitated facility location (UFL). Here,
we have a set E of clients that need to be serviced by facilities, and a set F of
locations where facilities may be opened. Each player i may provide facilities at
the locations in Ti ⊆ F . We may assume that the Tis are disjoint. For each facility
� ∈ Ti that is opened, i incurs a private opening cost f� ≡ fi,�, and assigning
client j to an open facility � incurs a publicly-known assignment cost d�j , where
the d�js form a metric. We are also given a public assignment-cost budget B.
The goal in Budget-UFL is to open a subset F ⊆ F of facilities and assign each
client j to an open facility σ(j) ∈ F so as to minimize

∑
�∈F f� +

∑
j∈E dσ(j)j

subject to
∑

j∈E dσ(j)j ≤ B; UFL is the special case where B =∞. We can define
pub(T ) to be the total assignment cost if this is at most B, and ∞ otherwise.

Let O∗ denote the expected disutility of an optimal mechanism for Budget-
UFL. We obtain a mechanism with expected disutility at most 2O∗ that always
returns a solution with expected assignment cost at most 2B. Consider the
following LP-relaxation for Budget-UFL.

min
∑
�∈F

f�x� +
∑

j∈E,�∈F
d�jz�j s.t. (BFL-P)

∑
j∈E,�∈F

d�jz�j ≤ B,
∑
�∈F

z�j ≥ 1 ∀j ∈ E , 0 ≤ z�j ≤ x� ∀� ∈ F , j ∈ E . (6)

Let (FL-P) denote (BFL-P) with B = ∞, and OPTFL-P denote its optimal
value. We say that an algorithmA is a Lagrangian multiplier preserving (LMP) ρ-
approximation algorithm for UFL if for every instance, it returns a solution (F, σ)
such that ρ

∑
�∈F f�+

∑
j∈E dσ(j)j ≤ ρ ·OPTFL-P. In [15], it is shown that given

such an algorithmA, one can take any solution (x, z) to (FL-P) and obtain a con-
vex combination of UFL solutions (λ(1);F (1), σ(1)), . . . , (λ(k);F (k), σ(k)), so λ ≥
0,

∑
r λ

(r)=1, such that
∑

r:�∈F (r) λ(r) = x� for all � and
∑

r λ
(r)

(∑
j dσ(r)(j)j

)
≤

ρ
∑

j,� d�jz�j. An LMP 2-approximation algorithm for UFL is known [10].

Lemma 11. Given an LMP ρ-approximation algorithm for UFL, one can design
a polytime robust-(BIC-in-expectation, IR) mechanism for Budget-UFL whose
expected disutility is at most ρO∗ while violating the budget by at most a ρ-factor.

Theorem 12. There is a polytime robust-(BIC-in-expectation, IR) mechanism
for Budget-UFL with expected disutility at most 2O∗, which always returns a
solution with expected assignment cost at most 2B.
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6 Extension: DSIC Mechanisms

We can strengthen our results from Section 4 to obtain (near-) optimal DSIC
mechanisms for single-dimensional problems in time exponential in n. The key
change is in the LP (P) (or (P’)), where we now enforce (1)—(4) for all type
profiles in

∏
iDi. The rounding procedure and arguments in Theorem 9 proceed

essentially identically to yield a near-optimal solution to this LP. But we can
now argue that in single-dimensional settings, a feasible solution to the LP can
be rounded to a (DSIC-in-expectation, IR) mechanism without increasing the
expected disutility. Thus, we obtain the same guarantees as in Table 1, but under
the stronger solution concept of DSIC-in-expectation and IR.
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Abstract. We introduce a new class of games, called social contribution
games (SCGs), where each player’s individual cost is equal to the cost
he induces on society because of his presence. Our results reveal that
SCGs constitute useful abstractions of altruistic games when it comes
to the analysis of the robust price of anarchy. We first show that SCGs
are altruism-independently smooth, i.e., the robust price of anarchy of
these games remains the same under arbitrary altruistic extensions. We
then devise a general reduction technique that enables us to reduce the
problem of establishing smoothness for an altruistic extension of a base
game to a corresponding SCG. Our reduction applies whenever the base
game relates to a canonical SCG by satisfying a simple social contribu-
tion boundedness property. As it turns out, several well-known games
satisfy this property and are thus amenable to our reduction technique.
Examples include min-sum scheduling games, congestion games, second-
price auctions and valid utility games. Using our technique, we derive
mostly tight bounds on the robust price of anarchy of their altruistic
extensions. For the majority of the mentioned game classes, the results
extend to the more differentiated friendship setting. As we show, our
reduction technique covers this model if the base game satisfies three
additional natural properties.

1 Introduction

The study of the inefficiency of equilibria in strategic games has been one of main
research streams in algorithmic game theory in the last decade and contributed
to the explanation of several phenomena observed in real life. More recently,
researchers have also started to incorporate more complex social relationships
among the players in such studies, accounting for the fact that players cannot
always be regarded as isolated entities that merely act on their own behalf (see
also [12]). In particular, the extent by which other-regarding preferences such as
altruism and spite impact the inefficiency of equilibria has been studied inten-
sively; see, e.g., [1, 4–7, 11, 15, 14, 16].

In this context, some counterintuitive results have been shown that are still
not well-understood. For example, in a series of papers [4, 5, 7] it was observed
that for congestion games the inefficiency of equilibria gets worse as players

Y. Chen and N. Immorlica (Eds.): WINE 2013, LNCS 8289, pp. 391–404, 2013.
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become more altruistic, therefore suggesting that altruistic behavior can actually
be harmful for society. On the other hand, valid utility games turn out to be
unaffected by altruism as their inefficiency remains unaltered under altruistic
behavior [7]. These discrepancies triggered our interest in the research conducted
in this paper. The basic question that we are asking here is: What is it that
impacts the inefficiency of equilibria of games with altruistic players?

To this aim, we consider two different models that have previously been stud-
ied in the literature: the altruism model [7] and the friendship model [1]. In both
models, one starts from a strategic game (called the base game) specifying the
direct cost of each player and then extends this game by defining the perceived
cost of each player as a function of his neighbors’ direct costs. In the altruism
model, player i’s perceived cost is a convex combination of his direct cost and
the overall social cost. In the more general friendship model, player i’s perceived
cost is a linear combination of his direct cost and his friends’ costs.

In order to quantify the inefficiency of equilibria in our games we resort to
the concept of the price of anarchy (PoA) [18], which is defined as the worst-
case relative gap between the cost of a Nash equilibrium and a social optimum
(over all instances of the game). By now, a standard approach to prove upper
bounds on the PoA is through the use of the smoothness framework introduced
by Roughgarden [19]. Basically, this framework allows us to derive bounds on
the robust price of anarchy by showing that the underlying game satisfies a
certain (λ, μ)-smoothness property for some parameters λ and μ. The robust
PoA holds for various solution concepts, ranging from pure Nash equilibria to
coarse correlated equilibria (see, e.g., Young [24]).

The original smoothness framework [19] has been extended to both the altru-
ism and the friendship model in [7] and [1], respectively. Applying these adapted
smoothness frameworks to bound the robust PoA is often technically involved
because of the altruistic terms that need to be taken into account additionally
(see also the analyses in [1, 7]).

Instead, we take a different approach here. As we will show, there is a nat-
ural class of games, which we term social contribution games (SCGs), that is
intimately connected with our altruism and friendship games. We establish a
general reduction technique that enables us to reduce the problem of establish-
ing smoothness for our altruism or friendship game to the problem of proving
smoothness for a corresponding SCG. The latter is usually much simpler than
proving smoothness for the altruism or friendship game directly. This also opens
up the possibility to derive better bounds on the robust PoA of these games
through the usage of our new reduction technique.

Our Contributions. Our main contributions are as follows:

– We introduce a new class of games, which we term social contribution games
(SCGs), where each player’s individual cost is defined as the cost he incurs
on society because of his presence. Said differently, player i’s cost is equal
to the difference in social cost if player i is present/absent in the game.
We show that SCGs are altruism-independently smooth, i.e., if the SCG is
(λ, μ)-smooth then every altruistic extension is (λ, μ)-smooth as well.
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Table 1. Robust PoA bounds derived in this paper for the friendship model

Robust PoA Remarks
Games our results previous best

R||∑j wjCj = 4� ≤ 23.31§ [1] RPoA = 4 (selfish players) [10]

P ||∑j Cj ≤ 2 RPoA = 3
2
− 1

2m
(selfish players)

linear congestion games = 17
3

≤ 7 [1] 5 ≤ PoA ≤ 17
3

(special case) [2]
p-poly. congestion games ≤ (1 + p)γ(p)† PoA = γ(p)† (selfish players) [8]
second-price auctions = 2 RPoA = 2 (selfish players) [22]
valid utility games = 2‡ = 2‡ [7] RPoA = 2 (selfish players) [19]
� holds only if a certain weight condition is satisfied
§ for the special case R||∑j Cj only

† γ(p) = pp(1−o(1))

‡ for the altruism model only

– We derive a general reduction technique to bound the robust PoA of both
altruism and friendship games. Basically, the reduction can be applied when-
ever the underlying base game is social contribution bounded, meaning that
the direct cost of each player is bounded by his respective cost in the corre-
sponding SCG (for the friendship model a slightly stronger condition needs
to hold). It is worth mentioning that this reduction preserves the (λ, μ)-
smoothness parameters, i.e., the altruism or friendship game inherits the
(λ, μ)-smoothness parameters of the SCG.

– We generalize smoothness for friendship extensions to weight-bounded social
cost functions. In previous papers, the used techniques usually required sum-
boundedness, which is a stronger condition [1]. Applying this definition to
scheduling games with weighted sum as social cost, we derive a nice char-
acterization of those scheduling games whose robust PoA does not grow for
friendship extensions.

– We show that social contribution boundedness is satisfied by several well-
known games, like min-sum scheduling games, congestion games, second-
price auctions and valid utility games. Using our reduction technique, we
then derive upper bounds on the robust PoA of their friendship/altruism
extensions. In most cases we prove matching lower bounds. The results are
summarized in Table 1.

Even though we focus on the complete information setting in this paper,
our results extend to the incomplete information setting in which players are
uncertain about the friendship levels of the other players. More details will be
given in the full version of the paper.

Related Work. Several articles propose models of altruism and spite [2, 4–7,
11, 14–16]. Among these articles, the inefficiency of equilibria in the presence
of altruism and spite was studied for various games in [2, 4–7, 11]. After its
introduction in [19], the smoothness framework has been extended to incomplete
information settings [20, 22] and altruism/spite settings [1, 7].
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The robust PoA for minsum scheduling (not taking altruism or friendship
into account) was studied in various papers. In [17] the authors show that it
does not exceed 2 for Q||

∑
j Cj (here we improve this bound to 3

2 −
1

2m for the
special case P ||

∑
j Cj). A robust PoA of 4 for R||

∑
j wjCj has been proven in

[9]. Our work on linear congestion games generalizes a result in [2]. They show
that the pure price of anarchy does not exceed 17/3 in a restricted friendship
setting (αij ∈ {0, 1}).

As indicated above, most related to our work are the articles [1, 7]. We signif-
icantly improve the bounds on the robust price of anarchy for congestion games
and unrelated machine scheduling games in [1] and at the same time simplify
the analysis by using our reduction technique.

2 Preliminaries

Let G = (N, {Σi}i∈N , {Ci}i∈N ) be a cost-minimization game, where N = [n]
is the set of players, Σi is player i’s strategy space, Σ =

∏
i∈N Σi is the set

of strategy profiles, and Ci : Σ → R denotes the cost player i must pay for a
given strategy profile. We assume that each player seeks to minimize his cost. A
social cost function C : Σ → R assigns a social cost to each strategy profile. We
usually require C to be sum-bounded, i.e., C(s) ≤

∑
i∈N Ci(s) for all s ∈ Σ.

We denote payoff-maximization games as G = (N, {Σi}i∈N , {Πi}i∈N ) with
social welfare Π : Σ → R. In this case, each player i tries to maximize his
utility (or payoff) Πi. Again, we usually assume that Π is sum-bounded, i.e.
Π(s) ≥

∑
i∈N Πi(s) for all s ∈ Σ.

Subsequently, we state most of the definitions and theorems only for cost-
minimization games. The payoff-maximization case works similarly by reversing
all inequalities. So, unless stated otherwise, G denotes a cost-minimization game
with social cost function C.

Definition 1. A coarse equilibrium is a probability distribution σ over Σ such
that the following holds: If s is a random variable with distribution σ, then for all
players i and all strategies s∗i ∈ Σi, Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s

∗
i , s−i)], where

σ−i is the projection of σ on Σ−i =
∏

j 	=i Σj . A mixed Nash equilibrium is a
coarse equilibrium σ that is the product of independent probability distributions
σi on Σi. A (pure) Nash equilibrium (NE) is a strategy profile s ∈ Σ such that
for all s∗ ∈ Σ, Ci(s) ≤ Ci(s

∗
i , s−i), where s−i = s|Σ−i .

The coarse (resp. correlated, mixed, pure) price of anarchy (PoA) is defined
as sups C(s)/C(s∗), where s∗ minimizes C and s runs over the coarse (resp. cor-
related, mixed, pure) Nash equilibria of G.1 The coarse (resp. correlated, mixed,
pure) PoA of a class G of games is defined as the supremum of the respective
PoA values of games in G.

Note that pure Nash equilibria constitute a subset of mixed Nash equilibria
which constitute a subset of coarse equilibria. This implies that the respective
prices of anarchy are non-decreasing (in this order).

1 Similarly, we define the respective types of PoA for a payoff-maximization game as
supΠ(s∗)/Π(s), where s and s∗ are as above.
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Due to lack of space, several proofs were omitted from this extended abstract
and will be given in the full version of the paper.

2.1 The Altruism Model

Definition 2 ([7]). Let α ∈ [0, 1]N . The α-altruistic extension of G is defined
as the cost-minimization game Gα = (N, {Σi}i∈N , {Cα

i }i∈N), where for any
i ∈ N the perceived cost is the convex combination Cα

i = (1− αi)Ci + αiC. We
call G the base game. The social cost function of Gα is again C, i.e., the cost
of the base game.

The higher the ‘altruism level’ αi, the more i cares about the society in
general.

Definition 3. Let G have sum-bounded social cost and let α ∈ [0, 1]N . Define
C−i := C − Ci. Gα is (λ, μ)-smooth if there exists an optimal strategy s∗ such
that for any strategy s ∈ Σ,∑

i∈N

(
Ci(s

∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s))

)
≤ λC(s∗) + μC(s),

The robust PoA of Gα is defined as inf{ λ
1−μ |Gα is (λ, μ)-smooth, μ < 1}.

Theorem 1 ([7]). Let Gα be an α-altruistic extension of G. Then the coarse
(and thus the correlated, mixed and pure) PoA of Gα is bounded from above by
the robust PoA of Gα.

2.2 The Friendship Model

Definition 4 ([1]). Let α ∈ [0, 1]N×N such that αii = 1 for all i ∈ N . The α-
friendship extension of G is defined as Gα = (N, {Σi}i∈N , {Cα

i }i∈N ), where for
any i ∈ N the perceived cost is defined as Cα

i =
∑

j αijCj . Like in the altruism
model, we consider C, the social cost function of the base game, as the social
cost for Gα.

For players i and j, αij can be interpreted as the level of affection i feels
towards j. Note that if C =

∑
j Cj , then the altruism model is a special case of

the friendship model because in this case, Cα
i = Ci+

∑
j 	=i αiCj (for α ∈ [0, 1]N).

Next we adapt the smoothness definition in [1] for the friendship model to the
weighted player case.

Definition 5. Let Gα be friendship extension of a cost-minimization game with
a weight-bounded social cost function, i.e., C ≤

∑
iwiCi for some w ∈ RN

+ . Gα

is (λ, μ)-smooth if there exists a (possibly randomized) strategy profile s̄ such
that for all strategy profiles s and all optima s∗,
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∑
i∈N

wi

(
Ci(s̄i, s−i) +

∑
j 	=i

αij(Cj(s̄i, s−i)− Cj(s))
)
≤ λC(s∗) + μC(s).

We define the robust PoA of Gα as inf{ λ
1−μ |Gα is (λ, μ)-smooth, μ < 1}.

Theorem 2. Let Gα be a friendship extension of a cost-minimization game with
weight-bounded social cost function C. If Gα is (λ, μ)-smooth with μ < 1, then
the coarse PoA of Gα is at most λ

1−μ .

In both models, we can replace the deterministic factor α by a stochastic
variable that is distributed with respect to some probability distribution over
[0, 1]N (in the altruism model) or [0, 1]N×N (in the friendship model). Thus, we
can incorporate incomplete information into our model, reflecting the fact that
often players are uncertain about other players’ feelings. The bounds on the PoA
continue to hold in this case. We defer the details to the full version of the paper.

3 Social Contribution Games

Definition 6. We call G a (cost-minimization) social contribution game (SCG)
if for all players i there exists a default strategy ∅i such that for all s ∈ Σ,
Ci(s) = C(s)− C(∅i, s−i).

The strategy ∅i is often interpreted as ‘refusing to participate in the game’.
In that sense, i pays exactly the social cost he causes by choosing to play; in
the payoff-maximization case, he gets exactly what he contributes to the social
welfare. So social contribution games are ‘fair’ in some sense.

Basic utility games [23] satisfy the definition of an SCG (see also Section 7). In
particular, the competitive facility location game (which is a basic utility game
by [23]) is an SCG.

We now show that social contribution games satisfy the following invariance
property with respect to their α-altruistic extensions.

Lemma 1. Any social contribution game is altruism-independently smooth,
i.e., for all α = (αi)i∈N and corresponding altruistic extensions Gα of G, the
robust price of anarchy in G and Gα is the same.

Proof. For all players i, C−i(s) = C(s)−Ci(s) is independent of si since C(s)−
Ci(s) = C(∅i, s−i). Thus for all strategy profiles s, s∗, and all α ∈ RN ,∑

i

(
Ci(s

∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s))

)
=

∑
i

Ci(s
∗
i , s−i).

It follows that for all (λ, μ) ∈ R2, Gα is (λ, μ)-smooth iff G is. 
�

The notions of α-altruistic extensions and α-independent smoothness can be
easily extended to α ∈ RN . The above lemma continues to hold in this case. So
even if a player wants to hurt society, the robust PoA stays the same for SCGs.
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3.1 Social Contribution Bounded Games

Definition 7. Assume C is sum-bounded. We call G social contribution bounded
(SC-bounded) if for all players i there exists a default strategy ∅i such that for all s ∈
Σ, Ci(s) ≤ C(s)−C(∅i, s−i). In this case, we define the corresponding social con-
tribution game Ḡ = (N, {Σi}i∈N , {C̄i}i∈N ) by setting C̄i(s) = C(s)− C(∅i, s−i).

As before, we think of ∅i as the option that i does not participate.2

The following theorem shows that if we want to get a bound on the PoA of
α-altruistic extensions of an SC-bounded game, we might as well consider the
corresponding SCG regardless of α.

Theorem 3. Let G be SC-bounded and suppose that the robust PoA of the cor-
responding SCG Ḡ is ξ. Then for all altruistic extensions Gα of G, the robust
PoA is at most ξ.

In order to be able to derive our results for the friendship extensions, we need
a slightly stronger definition.

Definition 8. A cost minimization game G with weight-bounded social cost is
strongly SC-bounded if for all s ∈ Σ and every player i:

1. Ci(∅i, s−i) = 0 (if i does not participate, he pays nothing)
2. ∀j �= i : Cj(∅i, s−i) ≤ Cj(s) (other players’ costs can only increase if i

participates)
3. wi

∑
j(Cj(s) − Cj(∅i, s−i)) ≤ C(s) − C(∅i, s−i) (the weighted impact of i’s

participation on the players’ costs is bounded by his impact on the social cost)

If all weights are 1, then assumption (3) easily follows from
3b. C(s) =

∑
j Cj(s) (social cost is sum of individual costs).

Theorem 4. Let G be strongly SC-bounded. Suppose the robust PoA of Ḡ is ξ.
Then for all friendship extensions Gα, the robust PoA is at most ξ.

Proof. We have for every player i,

wi

(
Ci(s̄i, s−i) +

∑
j 	=i

αij(Cj(s̄i, s−i)− Cj(s))
)

(2)

≤ wi

(
Ci(s̄i, s−i) +

∑
j 	=i

αij(Cj(s̄i, s−i)− Cj(∅i, s−i))
)

2 Note that ∅i need not actually be an element of Σi. In many games (such as schedul-
ing or congestion games) it is not an option to not participate. So, formally we should
require that there exists a function C :

∏
i(Σi ∪ {∅i}) → R such that C|Σ = C and

Ci(s) ≤ C(s)− C(∅i, s−i) for all i and s. However, there is a natural way to extend
C (and Ci) on

∏
i(Σi ∪ {∅i}), as we will see later. For notational convenience, we

write C instead of C.
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(2)

≤ wi

(
Ci(s̄i, s−i) +

∑
j 	=i

(Cj(s̄i, s−i)− Cj(∅i, s−i))
)

(1)
= wi

∑
j

(Cj(s̄i, s−i)− Cj(∅i, s−i))
(3)

≤ C(s̄i, s−i)− C(∅i, s−i) = C̄i(s̄i, s−i).

Summing over all i, it follows that if Ḡ is (λ, μ)-smooth3, then so is Gα. 
�
If all weights are 1, then SC-boundedness follows from strong SC-bounded-

ness. To see this, consider the case where α = 0 and carry out the proof of
Theorem 4 for s instead of (s̄i, s−i).

4 Minsum Machine Scheduling

A scheduling game G = (m,n, (pij)i∈M,j∈N , (wj)j∈N ) consists of a set of jobs
(players) [n] = {1, . . . , n} and a set of machines [m] = {1, . . . ,m}. For each
machine i and job j, pij ∈ R+ denotes the processing time of j on i. Furthermore,
wj is the weight of job j. The strategy space Σi of a job j is simply the set of
machines. By ∅i = ∅ we mean the strategy where i uses no machine.

Let x be a strategy profile. For a machine i, we denote by Xi the set of jobs
that are scheduled on i. Furthermore, xj denotes the machine j is assigned to.
Following the notation by Cole et al. [9], we define ρij = pij/wj . We assume that
the jobs on a machine are scheduled in increasing order of ρij , which is known as
Smith’s rule [21]; if two jobs on a machine have the same time-to-weight ratio,
we use a tie-breaking rule. The cost Cj of job j which it seeks to minimize is
simply its completion time. In the following, we assume for simplicity that the ρij
are pairwise distinct (but the results continue to hold without this assumption).
Then we can write Cj(x) =

∑
k∈Xi:ρik≤ρij

pik. The social cost C we consider is

the weighted sum of the players’ completion times, i.e., C =
∑

j wjCj .
In the following, we use the three-field notation by Graham et al [13]. In this

notation, the problem we described is denoted by R||
∑

j wjCj . If all weights are
1, we write

∑
j Cj instead of

∑
j wjCj . Furthermore, if there are speeds si for

each machine i and fixed processing times pj for each job such that pij = pj/si,
we write Q instead of R. Finally, if we have in addition identical speeds si = 1
for all machines i, the problem is denoted by P .

4.1 R||∑j wjCj

Lemma 2 ([9]). For all strategy profiles x and x∗,∑
i∈[m]

∑
j∈X∗

i

wjpij +
∑
i∈[m]

∑
j∈X∗

i

∑
k∈Xi

wjwk min{ρij , ρik} ≤ 2C(x∗) +
1

2
C(x),

where X∗
i is defined similarly to Xi as X∗

i = {j ∈ J | x∗
j = i}.

3 in the sense that there exist s̄ ∈ Σ and an optimal s∗ ∈ Σ such that for all s ∈ Σ it
holds that

∑
i Ci(s̄i, s−i) ≤ λC(s) + μC(s∗), generalizing Roughgarden’s definition

of smoothness [19].
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Proof. The claim is shown in the proof of [9, Theorem 3.2]. 
�
Theorem 5. Let G be an instance of R||

∑
j wjCj that satisfies the following

condition for all jobs j, k and all machines i: ρij ≤ ρik implies wj ≤ wk (i.e.,
if k gets scheduled after j on i, then it is because of its processing time, not its
weight). Then the robust PoA of all friendship extensions Gα of G is at most 4.

For jobs j and k, αjk has an influence on j’s strategy in an equilibrium only
if there is a machine i such that k gets scheduled after j on i because j cannot
influence k’s costs otherwise. Hence the weight condition tells us that the only
jobs that could potentially have an influence on j are in fact the jobs that are at
least equally important as j. Hence j cannot ‘misplace his affections’ and care
too much about unimportant jobs.

Proof. First we show that G is strongly SC-bounded. Clearly, (1) and (2) are
satisfied. For (3), note that for all jobs j, strategy profiles x, and i = xj ,

wj

∑
k

(Ck(x) − Ck(∅, x−i)) = wj

(
Cj(x) +

∑
k∈Xi: ρik>ρij

pij

)
≤ wjCj(x) +

∑
k∈Xi: ρik>ρij

wkpij = C̄j(x),

where the inequality follows from the condition on the weights. We calculate

C̄j(x
∗
j , x−j) = wjCj(x

∗
j , x−j) +

∑
k∈Xi: ρik>ρij

wkpij

= wjpij +
∑

k∈Xi: ρik<ρij

wkwjρik +
∑

k∈Xi: ρik>ρij

wkwjρij

≤ wjpij +
∑
k∈Xi

wjwk min{ρij , ρik}.

Summing over all machines i and j ∈ X∗
i , this is the same expression as in

Lemma 2. Hence
∑

j C̄j(x
∗
j , x−j) ≤ 2C(x∗) + 1

2C(x) and Ḡ is (2, 1
2 )-smooth. It

follows by Theorem 4 that the robust PoA in Gα is at most 4. 
�
This bound is tight and the weight condition is necessary. In fact, if we drop

it, the pure PoA is unbounded even for P ||
∑

j wjCj instances with unit-size
jobs. We defer these results to the full version.

4.2 P ||∑j Cj

Fix an ordering of the jobs such that pj > pj′ implies j > j′. We use the same
notation as in [17]: For a schedule x, a job j and a machine i, let hx

i (j) = |{j′ >
j |xj′ = xj}|. This is the number of jobs that are scheduled after j on i. Using this
notation, we can write C̄j(x) = Cj(x)+hx

xj
(j) ·pj for instances with unit speeds.

Throughout this section, let x̄ denote the randomized schedule that assigns each
job to each machine with probability 1

m .
The following theorem will be helpful to establish an upper bound on the

robust PoA for the friendship model and might be of independent interest.
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Theorem 6. For any schedule x and any optimal x∗,
∑

j Cj(x̄j , x−j) ≤ C(x∗)+

(12−
1
2m )

∑
j pj. In particular, the robust price of anarchy of P ||

∑
j Cj is at most

3
2 −

1
2m . This bound is tight.

Theorem 7. Let G be an instance of P ||
∑

j Cj. Then the robust PoA for any
friendship extension Gα is at most 2.

Proof. Let x be arbitrary. Then by linearity of expectation,

E
[∑

j

C̄j(x̄j , x−j)
]
=
∑
j

E[Cj(x̄j , x−j)] +
∑
j

E[hx
x̄j
(j)] · pj.

We know that

E[hx
x̄j
(j)] =

1

m

∑
i

hx
i (j) =

1

m
|{j′ ∈ J | j′ > j}| = E[hx̄

xj
(j)].

Hence the second term evaluates as∑
j

E[hx
x̄j
(j)] · pj =

∑
j

E[hx̄
xj
(j)] · pj =

∑
j

E[Cj(x̄j , xj)]−
∑
j

pj .

We know by Theorem 6 that
∑

j E[Cj(x̄j , x−j)] ≤ C(x∗)+(12−
1
2m )

∑
j pj . Hence∑

j

E[C̄j(x̄j , x−j)] = 2
∑
j

E[Cj(x̄j , x−j)]−
∑
j

pj ≤ 2C(x∗)− 1

m

∑
j

pj ≤ 2C(x∗),

for any schedule x∗. Hence the robust PoA for the friendship extension is at
most 2. 
�

5 Congestion Games

An atomic congestion game G = (N,E, {Σi}i∈N , (de)e∈E) is given by a set E
of resources together with delay functions de : N→ R+ indicating the delay on
e for a given number of players using e. Each player’s strategy set consists of
subsets of E; Σi ⊆ P(E) for all i. For s ∈ Σ, let xe(s) = |{i ∈ N | e ∈ si}|. The
cost of each player i under s is given by Ci(s) =

∑
e∈si

de(xe(s)). If all delay
functions are linear, we say that G is linear. Further, if all delay functions are
polynomials of maximum degree p with non-negative coefficients, we say that G
is p-polynomial. The social cost C is simply the sum over all individual cost. By
∅i = ∅ we mean the strategy where player i uses no machine.

It is known that we can without loss of generality assume that all latency
functions are of the form le(x) = x. This was first mentioned in [8]; for a proof
see [7]. The following lemma is shown in the proof of [8, Theorem 1].

Lemma 3 ([8]). Let G be a linear congestion game and s, s∗ ∈ Σ. Then∑
iCi(s

∗
i , s−i) ≤

∑
e xe(s

∗)(xe(s) + 1).
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Lemma 4 ([2]). For any pair α, β ∈ N, it holds that 2
5α

2 + 17
5 β2 ≥ β(2α+ 1).

Bilò et al. show in their paper [2] that the pure PoA lies between 5 and 17/3
for a restricted friendship setting, where αij ∈ {0, 1} for all i, j. We generalize
their result to the robust PoA for arbitrary αij ∈ [0, 1] and show tightness.

Theorem 8. Let G be a linear congestion game. Then the robust PoA of all
friendship extensions Gα is bounded by 17

3 ≈ 5.67. This bound is tight.

Proof. We have

C̄i(s) = Ci(s) +
∑
e∈si

|{j �= i | e ∈ sj}| = Ci(s) +
∑
e∈si

xe(∅, s−i) ≥ Ci(s),

so G is SC-bounded. Also G is strongly SC-bounded: If i does not use any
resource, he experiences no cost; the other’s costs can only increase if another
player enters; and finally, C =

∑
j Cj .

Let s, s∗ ∈ Σ. We abbreviate xe(s) and xe(s
∗) by xe and x∗

e , respectively. The
calculation of the robust PoA for Ḡ yields∑

i

C̄i(s
∗
i , s−i) =

∑
i

Ci(s
∗
i , s−i) +

∑
i

∑
e∈s∗i

xe(∅, s−i).

The first term is at most
∑

e x
∗
e(xe+1) by Lemma 3. The second term is bounded

by
∑

i

∑
e∈s∗i

xe(s) =
∑

e∈E xex
∗
e . Hence we get in total by Lemma 4

∑
e

x∗
e(2xe + 1) ≤

∑
e

(
17

5
(x∗

e)
2 +

2

5
x2
e

)
=

17

5
C(s∗) +

2

5
C(s).

It follows that the robust PoA of Ḡ is at most 17
5 /(1− 2

5 ) =
17
3 .

We show now that the bound of 17
3 is asymptotically tight. Let n ≥ 0. Consider

an instance with n+3 blocks of players B0, . . . , Bn+2 consisting of three players
each: Bk = {ak, bk, ck}. We construct a NE s and an optimal strategy profile
s∗ as follows. For all resources e, we set le(x) = x. For 0 ≤ k ≤ n, the pattern
of strategies repeats (see Figure 1). Here player i = ak has two strategies si =
{3k, 3k+1, 3k+2} and s∗i = {3k+6}. Player i = bk has two strategies si = {3k+
2, 3k+3} and s∗i = {3k+7}. Player i = ck has two strategies si = {3k+3, 3k+4}
and s∗i = {3k + 8}.

The strategies si of players in the final blocks Bn+1 and Bn+2 are defined as
above. However, we need to change the definition of s∗i because otherwise, s is
not a Nash equilibrium. So for each i ∈ Bn+1 ∪ Bn+2, we insert sets of new,
previously unused resources s∗i such that Ci(si) = |s∗i |.

We define αij = 1 for the following pairs of players: (ak, bk+1), (ak, ck+1),
(ak, ak+2) as well as (bk, ck+1), (bk, ak+2) and (ck, ak+2), (ck, bk+2), where 0 ≤
k ≤ n. All other αij are zero. Hence αij = 1 iff s∗i intersects sj . Note that if
si ∩ sj �= ∅, then αij = 0.

Now, we claim that s is a NE. In fact, for all 0 ≤ k ≤ n and i = ak, C
α(s) =

C(s)+
∑

j 	=i αijCj(s) = 7+5+5+7 = 24, which equals Cα
i (s

∗, s−i) = 4+6+6+8.
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Bk−1

Bk

Bk+1

Bk+2

ak

bk
ck

Fig. 1. The strategy profiles s (grey) and s∗ (white). Columns correspond to resources

A similar calculation shows Ci(s) = Ci(si, s−i) for i = bk, ck. Observe that
for k = n + 1, n + 2, and i ∈ Bk, C

α
i (s) = C(s) = |s∗i | = C(s∗i , s−i) by our

construction of s∗i . Hence s is indeed a NE.
For k = 1, . . . , n, block Bk has the same cost: C(Bk) :=

∑
i∈Bk

Ci(s) = 17
and C∗(Bk) :=

∑
i∈Bk

Ci(s
∗) = 3. Let X = C(B0) + C(Bn+1) + C(Bn+2) and

X∗ = C∗(B0) + C∗(Bn+1) + C∗(Bn+2) and observe that these are constants
independent of n. It follows that

C(s)

C(s∗)
=

17n+X

3n+X∗ =
17 + o(n)

3 + o(n)
. 
�

We obtain the following result for friendship extensions of p-polynomial con-
gestion games. Note that the pure PoA of the base game is γ(p) := pp(1−o(1)) [8].
That is, altruism increases the PoA by at most a factor of (1 + p) in this case.

Theorem 9. Let G be a p-polynomial congestion game. Then the robust PoA
of all friendship extensions Gα is bounded by (1 + p) · pp(1−o(1)).

6 Second-Price Auctions

A single-item auction G consists of an allocation rule a : Σ → N which deter-
mines which bidder gets the item and a pricing rule p : Σ → RN indicating how
much each player should pay. Each bidder i is assumed to have a certain valua-
tion vi ∈ R+ for the item. For a given bidding profile b ∈ RN

+ , the social welfare
is Π(b) = va(b). Player i’s utility is given by Πi(b) = vi − pi(b) if he gets the
object and −pi(b) otherwise. In a second-price auction, the highest bidder gets
the item and pays the second highest bid, while everybody else pays nothing.

We do not allow overbidding, i.e., for all bidders i, bi ≤ vi. This is a standard
assumption because overbidding is a dominated strategy. We denote by β(b, i)
the name of the player who places the i-th highest bid in b. We write β(i)
instead of β(b, i) if the bidding profile is clear from the context. ∅i = 0 denotes
the strategy where bidder i bids nothing.
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Note that here the friendship model is not a generalization of the altruism
model because Π �=

∑
iΠi. We summarize our results in the following theorem.

Theorem 10. Let G be a second-price auction. Then the robust PoA of all
altruism extensions Gα is at most 2. Further, the coarse PoA of the class of
friendship extensions of G is exactly 2.

7 Valid Utility Games

A valid utility game [23] is defined as a payoff-maximization game G =
(N,E, {Σi}i∈N , {Π}i∈N , V ), where E is a ground set of resources, Σi ⊆ P(E)
and V is a submodular and non-negative function on E. The social welfare Π is
given by Π(s) = V (

⋃
i∈N si) and is assumed to be sum-bounded. Furthermore,

we require G to satisfy Πi(s) ≥ Π(s)−Π(∅, s−i) for all s ∈ Σ. If G additionally
satisfies the last inequation with equality, it is called basic utility game [23]. For
all players i, set ∅i = ∅.

Theorem 11 ([19]). The robust PoA of valid utility games with non-decreasing4

set function V is bounded by 2.

An example for valid utility games with non-decreasing set functions are com-
petitive facility location games without fixed costs [23].

The following theorem has already been proven in [7] and tightness of this
bound has been shown in [3] for the base game. We now use our framework to
provide a shorter proof that illustrates why the robust PoA does not increase
for altruistic extensions: The corresponding SCG falls into the same category of
games.

Theorem 12. Let G be a valid utility game with non-decreasing V . Then the
robust price of anarchy of every altruistic extension Gα of G is bounded by 2.

Proof. It follows directly from the definition that G is SC-bounded. It is easy to
verify that the corresponding SCG Ḡ = (N,E, {Σi}i∈N , {Π̄}i∈N , V ) is again a
valid utility game:

∑
i Π̄i(s) ≤

∑
i Πi(s) ≤ Π(s) and Π̄i(s) = Π(s)−Π(∅, s−i).

So the robust PoA of Ḡ is at most 2. Our claim follows by Theorem 3. 
�
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Welfare-Improving Cascades

and the Effect of Noisy Reviews

Nick Arnosti� and Daniel Russo��
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Abstract. We study a setting in which firms produce items whose qual-
ity is ex-ante unobservable, but learned by customers over time. Firms
take customer learning into account when making production decisions.
We focus on the effect that the review process has on product qual-
ity. Specifically, we compare equilibrium quality levels in the setting de-
scribed above to the quality that would be produced if customers could
observe item quality directly. We find that in many cases, customers are
better off when relying on reviews, i.e. better off in the world where they
have less information. The idea behind our result is that the risk of losing
future profits due to bad initial reviews may drive firms to produce an
exceptional product. This intuitive insight contrasts sharply with much
of the previous academic literature on the subject.

1 Introduction

It is often impossible to directly determine the quality of an item before buy-
ing it. When this is the case, potential customers try to learn from the expe-
riences of others. Increasingly, they rely on online reviews to help with their
decisions. These reviews can significantly influence a firm’s profitability: a Har-
vard Business School study [11] recently concluded that each additional star on
Yelp generates (on average) a 5-9% increase in revenue for small businesses. Not
only does firm success depend on reviews, but evidence is mounting that busi-
ness owners are aware of this, and take it into account when making decisions.
Some businesses respond directly to customers who leave negative reviews, and
try to make amends. Others change their business practices: one Chicago book-
store “totally revamped our customer service approach” due to reviews left on
Yelp [17].

This paper studies a setting in which customers learn from reviews left by
others, and firms make choices with this fact in mind. There are many interesting
questions that one could ask about such a market. We focus on the quality of
items produced. Intuition suggests that reviews are an imperfect substitute for
directly observing item quality. Formalizing this idea, the literature on this topic
almost universally reaches the conclusion that product quality is highest when
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customers can observe it. We illustrate that when item quality is endogenously
chosen by firms, and firms take customer learning into account, the opposite
might be true.

In our model, firms begin by making an irreversible decision about the quality
of items that they will produce. Customers cannot observe this decision, but
whenever a customer patronizes the firm they leave behind a review. Each review
provides a noisy signal of the firms’ item quality, which future customers use to
draw inferences. Even high quality firms are at risk of losing business due to a
bad review. To guard against this possibility, firms may produce a product that
is better than customers would demand if they could directly observe its quality.

We clarify this intuition through two stylized models. In each model, firms are
distinguished by their cost structures: some firms can provide high quality items
more cheaply than others. We first consider a one-shot model, in which customer
decisions are based on a single review. We then extend this to an infinite horizon
model in which firms are visited by a sequence of customers. Customers only
purchase from firms with a sufficiently favorable review history, and the only
way that a firm can signal its quality is through customer reviews. This can lead
to a cascade-like phenomenon: if early customers leave bad reviews, later ones
may choose not to purchase. When this occurs, customers stop learning about
the firm, and so the firm may go out of business even if they are producing high
quality goods. The threat of this cascade gives firms an incentive to set higher
initial quality levels.

The remainder of the paper is organized as follows. Section 2 places our work in
the context of related academic literature. We introduce and discuss our general
framework in Section 3. From there, we describe and analyze a single-period
model in Section 4 before considering the infinite-horizon case in Section 5. We
close with a summary of our results and a discussion of possibilities for future
work.

2 Literature Review

The topic of signaling and reputation in markets has a rich history in economics.
In a groundbreaking paper, Spence [16] introduces a simple model of job market
signaling. In his model, intrinsically high quality workers put in effort in school
in order to signal their ability to potential employers and, by doing so, differen-
tiate themselves from low quality workers for whom sending positive signals is
more costly. The firms in our model could be naturally re-interpreted as workers
attempting to maintain a good reputation, and the customers as potential em-
ployers deciding whether to hire the worker. Seen in this light, our work differs
from Spence’s in at least two ways. The first is that we model the observa-
tion of individual performance as a noisy process. The second is that the effort
employees exert in order to signal their quality directly benefits their employers.

In our model a potentially long-lived firm interacts with a series of short-
lived customers. Thus, though we speak of a firm’s “reputation,” our setting
differs substantially from the large literature that studies the role of reputation
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in long run strategic relationships (see for example Rubinstein [13], Fudenberg
and Maskin [7], Fudenberg et al. [8]).

One distinctive component of our model is that firms receive a review only if
a customer purchases their product. Because of this, a firm could be unable to
repair its reputation after receiving several negative reviews, since it must attract
customers in order to signal its quality. In this way, our work relates to the study
of social herding and information cascades, as presented in the seminal work of
Banerjee [2] and Bikhchandani et al. [4]. The main idea in these papers is that
when customers have imperfect information and make decisions sequentially, it
may be rational for them to ignore their private information and instead mimic
the actions of those who went before them. This can induce a “cascade” in which
each later customer takes the same action, even if it is in fact a poor one. The
rather pessimistic message from these papers is that the outcome that results
from a sequence of individually rational decisions may be arbitrarily worse than
what results from a socially optimal decision rule.

There are effectively two types of information cascade: those in which cus-
tomers repeatedly patronize a firm that is producing items of disappointingly
low quality, and those in which customers abandon a firm producing high quality
items. In our model, the former cannot happen, but the latter is a possibility.
Rather than lament this inefficiency, we take a much cheerier perspective. In
particular, our results indicate that the threat of such a cascade may cause firms
to set higher quality levels than they otherwise would. Viewed in this light, when
the underlying state of the world (i.e. product quality in our model) is not ex-
ogenously determined but rather strategically selected, the possibility of herd
behavior may actually enhance consumer welfare.

Even closer to our work is a set of papers that deal specifically with models
in which customers must decide whether to purchase items whose quality they
cannot observe. Examples include Smallwood and Conlisk [15], Shapiro [14],
Rogerson [12], Allen [1], Wolinsky [18], Cooper and Ross [6], Hörner [9], Bar-
Isaac [3], Bose et al. [5], Ifrach et al. [10]. These models differ on a number of
dimensions, such as the information possessed by firms and customers, whether
customers behave strategically, and the role of item price.

Both Wolinsky [18] and Allen [1] construct equilibria where price signals qual-
ity perfectly to consumers. While these may help us understand some markets,
they preclude the study of learning effects. At the other end of the spectrum,
Cooper and Ross [6], Hörner [9] and Bar-Isaac [3] construct equilibria where
posted prices depend only on information already available to consumers, i.e.
the history of product reviews. Although prices affect firm incentives in these
models, customers do not use them for inference.

These examples highlight the difficulty of building models where price plays an
interesting role in the customer learning process. If firms are informed, consumers
are rational, and firms can set prices, equilibrium prices are typically either fully
revealing or do not reveal any new information to customers. To see why this
is true, consider pure strategy equilibria when there are only two firm types. If
prices set by the two types of firms depend on information that is not available
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to customers, then so long as the prices are not equal, customers can use them
to infer firm type. Because we wish to focus on learning in reputation games,
we choose not to incorporate price directly into our model. In this sense, our
work applies to markets in which prices do not notably differentiate products
and customers must look elsewhere in order to infer product quality.

Bar-Isaac [3] and Bose et al. [5] avoid the problem of firm prices revealing
quality by studying models in which firms have no more information than con-
sumers do. Alternatively, Smallwood and Conlisk [15] and Ifrach et al. [10] do
not model customers as strategic. Instead, they exogenously specify consumer
behavior, and then study the market trajectory that results from various firm
choices. Ifrach et al. [10] argue that assuming rationality “introduces a formidable
analytical and computational onus on each agent that may be hard to justify as
a model of actual choice behavior.” While this is no doubt true in many cases,
a strength of this paper is that customer best response dynamics in our model
turn out to be quite simple to describe.

Another critical feature of our model is that, like Rogerson [12] and Shapiro
[14], we study a scenario where firms choose product quality at the beginning
of the game, and it remains fixed throughout. This model is appropriate for in-
dustries in which product quality is derived from high-cost training or long-term
investment in capital. Other industries would be more appropriately modeled
by allowing firms to choose their quality level dynamically. There are a number
of interesting questions in this case, which we discuss briefly towards the end of
the paper.

Although the papers discussed above differ in many respects, they agree on at
least one point, expressed succinctly by Smallwood and Conlisk [15]: “consumers
pay considerably for being ill-informed.” Wolinsky [18] finds that as the signal to
customers becomes more informative, equilibrium prices drop. In Rogerson [12],
a more informative signal results in more high quality goods in the market. Allen
[1] finds that making quality unobservable may not change equilibrium behavior,
but if it does, it either results in a lower quantity being offered at a higher price
than before, or collapses the market entirely. Cooper and Ross [6] observe that
when some customers cannot determine product quality, the price offered is the
same as under full information, but the average quality in the market is lower.

Shapiro [14] reports that any “self-fulfilling quality level” must lie below the
quality of goods produced in the complete information case, and that as in-
formation about the firm’s quality spreads more rapidly (i.e. approaching full
information), the self-fulfilling quality level rises. Though there are many differ-
ences between Shapiro’s model and the one we consider here, the most important
is that in his model, reputation evolves deterministically, gradually shifting from
the customer’s initial expectations to the true underlying quality. Stochasticity
is the key to our result that firms may produce higher quality goods when quality
cannot be directly monitored: even firms producing items that exceed customer
expectations have reason to fear a bad review.
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3 Model Introduction

3.1 Game Rules

We consider the following general framework. Each firm has a type T , which can
be either high, H , or low, L. Customers cannot observe a firm’s type, but it is
common knowledge that each firm is high-type with probability α ∈ (0, 1) and
low-type with probability 1−α. At the beginning of the game, each firm chooses
Q, which represents the quality of the items that it will produce throughout the
game. We assume that Q takes values in the range [q, q] ⊆ [0, 1]. If a firm of
type T chooses Q = q, they incur a one-time cost CT (q). We assume that cost
functions are strictly increasing, and that high-type firms have strictly lower
marginal costs of quality than low-type firms, i.e. 0 < C

′
H(q) < C

′
L(q).

After firms have chosen their quality, a signal S is drawn for each firm. Then,
potential customers arrive sequentially and decide whether or not to purchase
from the firm. If a customer buys from a firm with quality level q, he gets a
reward of q and the firm gets a reward of 1. Otherwise, the customer gets a
reward of r ∈ (0, 1], which we refer to as the customer’s “reserve value” or
“outside option.” We assume that customers know their reserve values, and it is
common knowledge that these values are drawn independently and identically
from a distribution with cdf F .

If the customer patronizes the firm, they leave a review of their experience,
which can be either positive or negative. The probability of a positive review
is equal to the quality of the item purchased, and the review is independent
from all other randomness in the system. We assume that these reviews have
been summarized into the sufficient statistic X = (n−, n+), where n−, n+ are
the number of negative and positive reviews left so far, respectively.

In this paper, we consider three information structures:

– Full observability: Customers see a signal S = Q which completely reveals
the firm’s quality level. No additional inference can be drawn from X .

– Partial observability: Customers see the initial signal S and the reviews X .
– No observability: Customers do not see S or X when making their decision.

3.2 Equilibrium Concept

We focus on symmetric pure strategy Bayesian equilibria of this game. These
are characterized by a firm strategy σ and a customer strategy ψ. The firm
strategy maps type T to the quality level Q selected. Because there are only two
firm types, σ is fully characterized by the values qH := σ(H) and qL := σ(L).
Customer strategies map the observed elements of the triple (r, S,X) to an action
A ∈ {0, 1} where A = 1 represents a decision to purchase the item. We assume
that firms and customers are risk-neutral and that customers are short-lived.
Furthermore, we restrict our attention to equilibria in which the following holds:

Assumption 1. Whenever a customer is indifferent about whether to patronize
the firm, he does so. Whenever a firm is indifferent among a set of quality levels,
it chooses Q to be the highest quality in this set.
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We make this assumption to simplify the notation and analysis; without it, firm
best response sets may be empty. In what follows, we sometimes refer to the set
of “equilibria” of a game. When doing so, we mean “symmetric pure strategy
Bayesian equilibria in which Assumption 1 holds.”

We define Eσ[·] (respectively, Eψ[·]) be the expectation of its argument when
all firms play strategy σ (customers play strategy ψ). Analogously, define
Pσ(A) (Pψ(A)) to be the probability of A if all firms play strategy σ (all cus-
tomers play strategy ψ). We let G be the set of games described above.

3.3 Model Analysis

The majority of this paper considers separating equilibria (i.e. equilibria in which
qH �= qL) in partial information games. To set the stage for the discussion in
sections 4 and 5, we establish here two results that hold for both the one-shot
model and the infinite horizon model. The first states that high-type firms always
choose a quality level that is at least as high as the one chosen by low-type
firms. The second proposition addresses equilibria of “full observability” and
“no observability” games (which are used as benchmarks in the remainder of the
paper), as well as pooling equilibria of games with partial observability.

Proposition 1. For any game G ∈ G, if σ = (qL, qH) is an equilibrium strategy,
then qH ≥ qL.

This holds because if a low-type firm were weakly better off from playing qL >
qH , then the assumption C′

H(q) < C′
L(q) implies that a high-type firm strictly

prefers qL to qH .

Proposition 2. Let G ∈ G.
(i) If quality is unobservable, the only equilibrium is (σ, ψ) where σ satisfies
qH = qL = q and ψ(S,X) = 1{r ≤ q}.
(ii) If quality is fully observable, in equilibrium each customer purchases the item
if and only if the observed signal exceeds their outside option (r ≤ S). Therefore,
firms either choose Q = q or Q = r.
(iii) If quality is partially observable, the pair (σ, ψ) described in part (i) is always
an equilibrium. Furthermore, if q < 1, this is the unique pooling equilibrium.

Claim (i) follows because when quality is unobservable, consumer choices are
independent from the quality set by the firm. Therefore, for any fixed customer
strategy, firms prefer to minimize costs by stetting the lowest quality level q. The
best response for customers in this case is to purchase if and only if r ≤ q. The
second part of the proposition follows from the fact that if q < r and the firm
produces at a level in the interval (q, r), it receives no customers. Similarly, there
is no benefit to producing above r. Finally, (iii) follows since, when qH = qL,
customers know the quality of the item they’re considering. Because we have
specified that indifferent customers purchase the item, this means that customer
decisions don’t depend on the observed review. Thus, there is no incentive for
firms to choose any quality level higher than q.
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4 One-Period Model

4.1 Description of Equilibria

We now discuss a simple model in which at most a single customer patronizes
each firm. For now, we focus on the case where costs are linear, with CT (q) = cT q,
and where product quality is partially observable. This means that the customer
sees S before making a decision, and that S = 1 with probability Q and S = 0
otherwise.

Some may ask where the first review S comes from. Although there are pos-
sible explanations (for example, it may be written by a professional reviewer
whose job it is to try the products of new firms), this is not an essential feature
of our model. Indeed, all of the intuition and techniques used below would apply
to a model in which two customers consider the firm in sequence. In that model
the first customer may choose not to buy from the firm, but if he does make a
purchase, he leaves a review that the second customer sees. Our choice to make
the first review “automatic” serves only to clarify the exposition.

We search for equilibria by fixing customer behavior ψ, computing the firm’s
best response, and then checking to see if this induces the specified behavior ψ.
Note that ψ specifies for each r, what a customer with reserve r will do upon
seeing a positive review, and what they will do upon seeing a negative review.
We define p+(ψ) to be the probability that a customer playing ψ buys from the
firm if S = 1 (i.e. the expectation of ψ(r, S = 1) over possible reserves r), and
p−(ψ) the corresponding probability when observing S = 0. Then the firm’s best
response to ψ is to select

qT ∈ argmax
q
{qp+(ψ) + (1− q) p−(ψ)− cT q} , T ∈ {L,H}

Note that the objective above is linear in q, so we have a simple characterization
of firm best responses. If p+(ψ) − p−(ψ) − cT < 0, choosing Q = q is uniquely
optimal. Otherwise, q is in the firm’s best response set. It follows that the only
separating equilibria satisfying Assumption 1 have qL = q, qH = q.

For any firm strategy σ, the optimal customer response is to purchase if and
only if the expected quality of the item given the observed signal exceeds the
value of their outside option, i.e. Eσ[Q|S = s] ≥ r. In particular, if σ satisfies
qL = q, qH = q, then

Eσ[Q|S=1]=
αq2 + (1 − α)q2

αq + (1 − α)q
and Eσ[Q|S = 0] =

α(1 − q)q + (1− α)(1 − q)q

α(1 − q) + (1− α)(1 − q)
.

The leads to the following:

Proposition 3. If G ∈ G is a one-period game with linear costs, the only pos-
sible firm strategy in a separating equilibrium of G is qH = q and qL = q.
This outcome is supported in equilibrium if and only if cH ≤ c0 < cL, where

c0 = F
(

αq2+(1−α)q2

αq+(1−α)q

)
− F

(
α(1−q)q+(1−α)(1−q)q

α(1−q)+(1−α)(1−q)

)
is a constant that depends on

model primitives.
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Most of this proposition has already been established above. To complete the
proof, note that if ψ is the customer best response to (qL, qH) = (q, q) satisfying
Assumption 1, then

p+(ψ) = F

(
αq2 + (1− α)q2

αq + (1− α)q

)
, p−(ψ) = F

(
α(1 − q)q + (1− α)(1 − q)q

α(1− q) + (1− α)(1 − q)

)
.

Note that when cL and cH are both higher or both lower than c0, no sepa-
rating equilibrium exists in this model. When both firm types have high costs,
attracting new customers costs more than the benefit it provides. When both
firm types have low costs, all firms would like to play q. If q < 1, however, this
cannot be an equilibrium, as discussed in Proposition 2. The problem is that in
this case, customers do not get any information from the signal S; firm costs do
not sufficiently differentiate firms of opposite types.

Intuitively, the farther apart cH and cL are, the “more likely” a separating
equilibrium is to occur. We formalize this by noting the following consequence
of Proposition 3.

Remark 1. If [c1H , c1L] ⊆ [c2H , c2L] and (α, q, q, F ) are such that a separating equi-

librium exists in the partial-information game when firm costs are c1H and c1L,
then the same (α, q, q, F ) also admit a separating equilibrium when firm costs

are c2H and c2L.

4.2 Welfare Comparison

Here we compare producer and consumer surplus under the different information
settings. The producer surplus is taken to be the equilibrium expected profit of
the average firm, while consumer surplus is the equilibrium expected utility of
an average consumer. We consider the case where customers have a common
reserve r, so that F is a point mass. We will later discuss how the results and
intuition extend to other suitably restricted distributions F . We summarize our
findings as follows:

Proposition 4. If all customers share a common outside option r ∈ R:
(i) Both producer and consumer surplus are minimized when quality is completely
unobservable.
(ii) High type firms always prefer fully observable quality, while low-type firms
may prefer that quality is only partially observable.
(iii) Consumer surplus under partial observability is always at least as large as in
the full information model. In any separating equilibrium, consumers are strictly
better than in full information except in the case where the value of the outside

option r is exactly
αq2+(1−α)q2

αq+(1−α)q .

(iv) There are equilibria of games with partially observable quality in which both
consumer and producer surplus exceed their levels in the equilibrium of a corre-
sponding game with fully observable quality.
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Claim (i) follows from Proposition 2 (i), which revealed that the unique
equilibrium in the completely unobservable case is when qL = qH = q. To see
why (ii) is true, note first that since qL ≥ qH in equilibrium by by Proposition
1, it must be that Eσ [Q|S = 0] ≤ Eσ [Q|S = 1] ≤ qH . That is, customers al-
ways expect to receive a lower quality good than what is truly being offered by
the high-type firms. It follows by monotonicity of F that high-type firms earn no
more than F (qH)−CH(qH) in this equilibrium. Furthermore, F (qH)−CH(qH) ≤
maxq {F (q)− CH(q)}, the amount that high-type firms earn in full information.

Now, consider claim (iii). In the full information setting, no firm will ever
produce a quality level q > r, since by instead producing a quality strictly
between r and q, it could reduce costs while still ensuring business. Therefore,
customers earn exactly r in any equilibrium of the full information game.

In the partial information game, customers can still earn a certain payoff of r,
and therefore expect to earn at least r in any equilibrium. In particular, given a
fixed firm strategy σ, a customer with outside option r who responds optimally to
σ earns Pσ(S = 1)max (Eσ[Q|S = 1], r) + Pσ(S = 0)max (Eσ[Q|S = 0], r) ≥ r.
Moreover, this surplus strictly exceeds r as long as Eσ[Q|S = 1] > r.

As discussed in Proposition 3, the only possible separating equilibrium satisfies

qH = q, qL = q. When firms play this strategy, Eσ[Q|S = 1] =
αq2+(1−α)q2

αq+(1−α)q ,

which must be at least r in order for σ to be supported in equilibrium. Thus,
unless this exactly equals r, customers are strictly better off than in the full
information game.

Finally, note that although high-type firms prefer full information, low-type
firms may prefer the partial information game. This is because a “lucky” signal
may cause customers to mistakenly purchase from them. When q is large and cH
is sufficiently small, high-type firms are barely worse off in the partial information
game, implying that firms are better off on average. For a specific numerical
example take r = 0.5, q = 0.3, q = 0.8, α = 0.5, cL = 6, cH = 0.3.

4.3 Discussion

To simplify the analysis we have focused on the case where firms have linear
costs, and in the welfare analysis, on the case where consumers share a common
outside option. The intuition and results extend beyond these restrictive cases,
however.

When quality is fully observable, a firm’s marginal benefit from increasing
quality comes through the corresponding increase in F (q). For many distribu-
tions, this benefit diminishes quickly beyond some threshold, giving firms little
incentive to produce above that level. When quality is partially observable, the
benefit to increasing Q comes from the rise in the probability of receiving a
positive review (and the associated jump in the probability of attracting a cus-
tomer). For many cost structures, and many choices of F , the differing incentives
under these two information structures can lead to equilibria in which high-type
firms set higher quality levels in the partial information game. We give one such
example below.
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Example 1. Suppose that customer reserve values are uniformly distributed on
[1/4, 3/4], and that (q, q) = (1/4, 1). Suppose that firm costs are linear in quality
with cL > 2 and cH < 4/3. Then the full information equilibrium is qL =
1/4, qH = 3/4, whereas by Proposition 3, the game with partial observability
has an equilibrium in which qL = 1/4, qH = 1.

5 Infinite Horizon Model

We now consider a model in which an infinite sequence of homogeneous con-
sumers visit each firm and firms seek to maximize expected discounted profit,
with discount factor δ < 1. We let Xt denote the review history seen by the tth

customer to consider a firm. Furthermore, we take the signal S to be uninfor-
mative, so customer inference is based only on Xt. We look for an equilibrium
by fixing the firm strategy σ = (qL, qH), determining the optimal customer re-
sponse, and then verifying that given the induced customer behavior, no firm
has an incentive to deviate from σ.

5.1 Customer Best Response

Fix a choice of σ satisfying qH > qL. The best response of a customer with reserve
r is to purchase if and only if they expect that Q is at least r, given history X .
Define the rejection set Rσ(r) to be the set of review histories (n−, n+) such
that when firms play strategy σ, the optimal decision of a customer with reserve
r is not to purchase. In other words,

Rσ(r) = {(n−, n+) ∈ N2 : Eσ[Q|X = (n−, n+)] < r}.
Then the best customer response to σ is defined by ψ(r, S,X) = 1(X �∈ Rσ(r)).
It turns out that we can precisely describe these rejection sets. Note that

Eσ[Q|X ] = Pσ(T = H |X)qH + Pσ(T = L|X)qL.

Since Pσ(T = L|X) = 1 − Pσ(T = H |X), rearranging terms gives us that
X �∈ Rσ(r) if and only if Pσ(T = H |X) ≥ r−qL

qH−qL
. More algebra reveals that this

is equivalent to the condition

Pσ(T = H |X)

Pσ(T = L|X)
≥ r − qL

qH − r
.

Fortunately, the ratio of conditional probabilities on the left has a nice form. By
Bayes’ theorem,

Pσ(T = H |X)

Pσ(T = L|X)
=

P (T = H)

P (T = L)

Pσ(X |T = H)

Pσ(X |T = L)
=

α

1− α

(
qH
qL

)n+
(
1− qH
1− qL

)n−

.

Taking logarithms, we see that a consumer purchases if and only if

n+ log

(
qH
qL

)
− n− log

(
1− qL
1− qH

)
≥ log

(
1− α

α

r − qL
qH − r

)
. (1)

Thus, the optimal customer strategy takes the following appealingly simple
form. Each firm starts with a “reputation score” (the left side of (1)) of zero.
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Every positive review improves the firm’s reputation by a fixed constant, while
negative reviews decrease its reputation by a different constant. Customers map
their reserve to a reputation cut-off (the right side of (1)) and purchase precisely
when the firm’s score is at least their cutoff. Note that the different coefficients
on n+ and n− reflect the fact that positive and negative reviews may contain
different amounts of information. If, for example, most customers have positive
experiences (qH > qL > 1/2), someone reading reviews may (rationally) be said
to learn more from a new negative review than a new positive one.

Put slightly differently, the firm reputation score follows a random walk. Every
time the firm gets a customer, its score increases by log(qH/qL) with probability
Q and decreases by log((1− qL)/(1− qH)) with probability 1−Q. The rejection
region Rσ(r) is the set of points lying below a line whose slope depends only on
σ. We now point out two particularly simple instances of this decision rule.

Remark 2.
(i) If, before reading reviews, a consumer is indifferent about whether to purchase
the product (i.e. r = α qH + (1− α)qL), the optimal decision rule is to go if and
only if n+

n−+n+
≥ β, where β is defined to be

log((1− qL)/(1− qH))

log(qH/qL) + log((1− qL)/(1− qH))
.

(ii) If qH + qL = 1 and r ∈ (qL, qH), the optimal customer strategy is to go if
and only if n+ − n− ≥ d(r), where

d(r) = log

(
α

1− α

r − qL
qH − r

)
/ log

(
qH
qL

)
.

Both of these are established via basic algebraic manipulation of (1). Note that
part (i) says that an initially indifferent customer should purchase whenever the
“average review” is at least β. The decision rule in part (ii), meanwhile, compares
the number of positive and negative reviews in absolute terms.

5.2 Firm Revenue Calculation

Because the reserve r is identical across customers, as soon as a firm is rejected
by a customer, we know that it will be rejected by each subsequent customer.
Let τ be the first period in which Xτ ∈ Rσ(r), i.e. the period at which the
firm has effectively gone out of business. If this never occurs, define τ = ∞.
The following proposition addresses a case in which it is possible to derive a
closed-form expression for the firm’s expected discounted profit.

Proposition 5. Suppose that all customers go unless there are at least m ∈ N+

more negative reviews than positive ones. The firm’s expected discounted profit
when choosing Q = q is given by

1− E[δτ |Q = q]

1− δ
− CT (q), T ∈ {L,H}, (2)
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where

E[ δτ |Q = q] =

(
1−

√
1− 4q(1− q)δ2

2δq

)m

. (3)

The expression (2) arises because the firm’s discounted revenue is given by
1 + δ + · · ·+ δτ−1 = 1−δτ

1−δ . A proof of (3) appears in the Appendix.
The expression in (3) is strictly decreasing in q, suggesting that expected

discounted revenue is continuously increasing in q on the entire interval [q, q].
This occurs because customers only purchase from, and therefore only review,
firms with sufficiently high reputation scores. As a result, even firms choosing
quality levels above the customer threshold must fear that several poor reviews
will leave them unable to signal their quality. This gives firms an incentive to
set quality levels exceeding r, just as they had in the one-period model.

The following example illustrates that decision rules of the form assumed by
Proposition 5 can be supported in equilibrium.

Example 2. When α ∈ (1/2, 3/5), CT (q) = cT /(1−q), cH = 8
9−

28
9
√
19
≈ 0.175, cL=

9
2−

18√
19
≈ 0.371, δ=1/2, r = 1/2, there is an equilibrium in which qH = 0.6, qL =

0.4, and customers purchase if and only if there are at least as many positive
reviews as negative ones.

To verify this, note that given customer behavior, (2) and (3) imply that the
firm best response σ is given by qH = 0.6, qL = 0.4. When firms choose these
values, by Remark 2 (ii), customer behavior is optimal.

5.3 Welfare Analysis

Here, we discuss two welfare properties of equilibria in this infinite-horizon
model. Proposition 6 says that customers who arrive later are better off. In
Proposition 7 we show that customers are weakly better off in the partial infor-
mation game than when quality is visible, and that some customers are strictly
better of so long as high-type firms play above q.

Proposition 6. For any σ, if customers play a best response to σ, the expected
surplus of the tth customer to consider the firm is non-decreasing in t. Further-
more, the tth customer is strictly better off than the first if the probability that
the tth customer buys lies in (0, 1).

Proof. Let ψ be a best response to σ. The payout to a customer of type r who sees
history X and plays ψ is max(Eσ[Q|X ], r). Regardless of customer strategies,
the sequence {Eσ[Q|Xt]}t≥1 is a martingale. Because max is a convex function,
Jensen’s inequality implies that a customer of type r is weakly better off arriving
in period t than in any earlier period. Averaging over r proves the first part of
the proposition. Additionally, for any fixed r, if 0 < Pψ(r ≤ Eσ[Q|Xt]) < 1, then
Jensen’s inequality is strict, i.e.

Eψ[max(Eσ[Q|Xt], r)] > max(Eψ [Eσ[Q|Xt]], r) = max(Eσ[Q], r).

Note that the left side represents the expected profits of customer t, and the
right side equals the expected profit of the first customer.
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Proposition 7. In an infinite-horizon model where customers have identical
reserves r ∈ (q, q), the equilibrium expected surplus of the tth customer in the
incomplete information game is at least as great as the equilibrium surplus of a
customer in the full-information game for all t. Furthermore, unless the partial
information equilibrium satisfies qH = qL ∈ {q, 1}, this inequality is strict for
sufficiently large t.

Proof. As with Proposition 4, in the full information game firms have no incen-
tive to set a quality above r, so all customers receive r and thus they are at least
as well off in the partial information game. Since, by Proposition 2 (iii) the only
possible pooling equilibria occur at q and 1, we must have qH > qL. If this is a
best response, it must be that the first customer buys, which in turn implies that
Eσ[Q] = αqH + (1 − α)qL ≥ r. In any separating equilibrium, customers must
use reviews to make decisions, i.e. there must exist review histories X that occur
with positive probability such that Eσ[Q|X ] < r. Thus, for sufficiently large t,
the probability that the tth customer buys lies strictly between zero and one.
By Proposition 6, this customer is strictly better off in the partial information
game than in the game of full information.

6 Conclusion

Here we have presented a simple model of reputation and product quality in mar-
kets where consumers publicly share reviews of their experience. We emphasize
a setting in which customers’ experiences are intrinsically random, but are pos-
itively correlated with the quality of the product. We arrive at the insight that
a noisy review process of this form may yield equilibria in which firms produce
higher quality goods than they would if quality were directly observable. This
occurs because even high quality firms are at risk of losing future customers due
to bad initial reviews. The effect is compounded by a cascade-like phenomenon:
when customers are unlikely to patronize the firm, it can be difficult or even
impossible for firms to improve their reputation. Above, we illustrate these ideas
through stylized models. Due to the tractability of our models, we consider this
paper a promising foundation for future work.

Perhaps the most natural extension of our work is to consider models in
which each firm’s quality level is allowed to vary over time. Models of this form
can pose significant technical challenges, as strategies and the corresponding
inferential procedures become much more complicated. Successful analysis of a
model incorporating these elements could shed light on the question of how a
firm’s long run quality level depends on its review history.

Another interesting avenue for future work would be to consider a model in
which firms are competing more directly with one another. In our work, firm
decisions only indirectly affect other firms, by changing customer inferences. An
alternative model might allow customers search, at some cost, for a firm with
better reviews. Such a model has a similar flavor to the one we study, except
that customer reserves are not exogenously specified, but rather determined
endogenously by competition.
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A Computing Expected Firm Revenue

In this section, we prove Proposition 3, i.e. that when customers all choose to
buy from the firm unless n− − n+ ≥ m ∈ N, and τ is defined as in Section 5,

E[δτ ] =

(
1−

√
1− 4q(1− q)δ2

2qδ

)m

for δ ∈ (0, 1). (4)

We start by noting that the firm’s reputation score can be re-normalized to be a
simple random walk starting at 0, where τ is the first time that the walk reaches
−m (or ∞, if it never does). The firm chooses Q, i.e. the probability that the
walk moves up.

Let Xi ∈ {−1,+1} be i.i.d. and take the value +1 with probability q, Yn =∑n
i=1 Xi, and τ = min{n : Yn = −m}. Define φ(θ) = E[eθX1 ] = qeθ+(1−q)e−θ,

and let ψ(θ) = logφ(θ). It follows that for any θ, eθYn−nψ(θ) is a martingale.
Then for all n,

E[eθYτ∧n−(τ∧n)ψ(θ)] = 1. (5)

Let θ0 = min{θ : φ(θ) = 1}. We can compute directly that if q ≤ 1/2, θ0 = 0,
and if q > 1/2 θ0 = log(1−q

q ) < 0. We will let n→∞ in Equation (5) and show
that for θ < θ0,

emθ = E[φ(θ)−τ ]. (6)

Once this has been established, we use the fact that φ(θ) = qeθ + (1 − q)e−θ

is decreasing on (−∞, θ0) and onto (1,∞). In particular, given δ ∈ (0, 1) we
can find a unique θ ∈ (−∞, θ0) such that 1/δ = φ(θ), i.e. qe2θ − eθ/δ + (1 −
q) = 0. Apply the quadratic formula to solve explicitly for θ; it is defined by

eθ =
1−
√

1−4q(1−q)δ2

2qδ . Substituting 1/δ for φ(θ) in (6), this implies that E[δτ ] =(
1−
√

1−4q(1−q)δ2

2qδ

)m

, as claimed.

We now justify (6). Note that for θ < θ0, ψ(θ) > 0, so e−(τ∧n)ψ(θ) ≤ 1. Addi-
tionally, Sτ∧n ≥ −m. Combining these shows that 0 ≤ eθYτ∧n−(τ∧n)ψ(θ) ≤ e−mθ.
By the dominated convergence theorem, we may exchange limit and expectation
to obtain

E[ lim
n→∞

eθYτ∧n−(τ∧n)ψ(θ)] = 1. (7)

http://www.jstor.org/stable/1882010
http://www.inc.com/magazine/20090601/how-businesses-can-respond-to-criticism-on-yelp.html
http://www.inc.com/magazine/20090601/how-businesses-can-respond-to-criticism-on-yelp.html
http://www.jstor.org/stable/2297767
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If q ≤ 1/2, τ <∞ almost surely, and thus the left side of (7) is e−mθE[φ(θ)−τ ],
which can be rearranged to yield (6).

If instead q > 1/2, P (τ =∞) > 0 so

E[ lim
n→∞

eθYτ∧n−(τ∧n)ψ(θ)] = E[ lim
n→∞

eθYn−nψ(θ); τ =∞] + E[eθYτ−τψ(θ); τ <∞].

On the event {τ =∞}, however, Yn < 0. Since θ < 0, we have that eθYn−nψ(θ) ≤
e−θmφ(θ)−n. Note that since φ(θ) > 1 for θ < θ0, e

−θmφ(θ)−n → 0 as n → ∞.
It follows that the left side of (7) equals e−mθE[φ(θ)−τ ; τ < ∞], which in turn
equals e−mθE[φ(θ)−τ ], completing the proof that (6) holds whenever θ < θ0.
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Abstract. Consider the problem of allocating n objects to n agents
who have strict ordinal preferences over the objects. We study the Ran-
dom Priority (RP) mechanism, in which an ordering over the agents is
selected uniformly at random; the first agent is then allocated his most-
preferred object, the second agent is allocated his most-preferred object
among the remaining ones, and so on. The output of this mechanism is a
bi-stochastic allocation matrix, in which entry (i, a) indicates the proba-
bility that agent i obtains object a (whenever objects are indivisible), or
the fraction of object a allocated to agent i (when objects are divisible).
Our main result is that the allocation matrix associated with the RP
mechanism is hard to compute, in a sense that can be made precise us-
ing the theory of computational complexity. An important consequence
is that an efficient algorithm to compute the allocation matrix exactly
is unlikely. In addition, we examine two decision problems associated
with the RP allocation: deciding whether an agent gets an object with
probability 1, and deciding whether an agent gets an object with pos-
itive probability. We provide a polynomial-time algorithm to solve the
former and show that the latter is hard to decide. This hardness result
has two strong implications. First, it is not possible to design an efficient
algorithm to get a good (multiplicative) approximation to the RP alloca-
tion matrix (under suitable complexity-theoretic assumptions). Second,
for an assignment problem with inadmissible objects, it is hard to de-
cide whether or not a given subset of objects is matched in some Pareto
efficient matching.
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Abstract. The classic result of Bulow and Klemperer [1] says that in a single-
item auction recruiting one more bidder and running the Vickrey auction achieves
a higher revenue than the optimal auction’s revenue on the original set of bidders,
when values are drawn i.i.d. from a regular distribution. We give a version of
Bulow and Klemperer’s result in settings where bidders’ values are drawn from
non-i.i.d. irregular distributions. We do this by modeling irregular distributions as
some convex combination of regular distributions. The regular distributions that
constitute the irregular distribution correspond to different population groups in
the bidder population. Drawing a bidder from this collection of population groups
is equivalent to drawing from some convex combination of these regular distribu-
tions. We show that recruiting one extra bidder from each underlying population
group and running the Vickrey auction gives at least half of the optimal auction’s
revenue on the original set of bidders.

Keywords: Bulow-Klemperer, irregular distributions, prior-independent, Vick-
rey auction.

1 Introduction

Simplicity and detail-freeness are two much sought-after themes in auction design. The
celebrated classic result of Bulow and Klemperer [1] says that in a standard single-item
auction with n bidders, when the valuations of bidders are drawn i.i.d from a distribution
that satisfies a regularity condition, running a Vickrey auction (second-price auction)
with one extra bidder drawn from the same distribution yields at least as much revenue
as the optimal auction for the original n bidders. The Vickrey auction is both simple
and detail-free since it doesn’t require any knowledge of bidder distributions. Given this
success story for i.i.d. regular distributions, we ask in this paper, what is the analogous
result when we go beyond i.i.d regular settings? Our main result is a version of Bulow
and Klemperer’s result to non-i.i.d irregular settings. Our work gives the first positive
results in designing simple mechanisms for irregular distributions, by parameterizing
irregular distributions, i.e., quantifying the amount of irregularity in a distribution. Our
parameterization is motivated by real world market structures and in turn indicates that
most realistic markets will not be highly irregular with respect to this metric. Our results
enable the first positive approximation bounds on the revenue of the second-price auction
with an anonymous reserve in both i.i.d. and non-i.i.d. irregular settings.

Before explaining our results, we briefly describe our setting. We consider a single-
item auction setting with bidders having quasi-linear utilities. That is the utility of a
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bidder is his value for the item if he wins, less the price he is charged by the auc-
tion. We study auctions in the Bayesian setting, i.e. the valuations of bidders are drawn
from known distributions1. We make the standard assumption that bidder valuations are
drawn from independent distributions.

Irregular distributions are common. The technical regularity condition in Bulow and
Klemperer’s result is quite restrictive, and indeed irregular distributions are quite com-
mon in markets. For instance, any distribution with more than a single mode violates
the regularity condition. The most prevalent reason for a bidder’s valuation distribu-
tion failing to satisfy the regularity condition is that a bidder in an auction is randomly
drawn from a heterogeneous population. The population typically is composed of sev-
eral groups, and each group has its characteristic preferences. For instance the pop-
ulation might consist of students and seniors, with each group typically having very
different preferences from the other. While the distribution of preferences within any
one group might be relatively well-aligned and the value distribution might have a sin-
gle mode and satisfy the regularity condition, the distribution of a bidder drawn from
the general population, which is a mixture of such groups, is some convex combination
of these individual distributions. Such a convex combination violates regularity even in
the simplest cases.

For a variety of reasons, including legal reasons and absence of good data, a seller
might be unable to discriminate between the buyers from different population groups
and thus has to deal with the market as if each buyer was arriving from an irregular
distribution. However, to the least, most sellers do know that their market consists of
distinct segments with their characteristic preferences.

Measure of Irregularity. The above description suggests that a concrete measure of ir-
regularity of a distribution is the number of regular distributions required to describe it.
We believe that such a measure could be of interest in both designing mechanisms and
developing good provable revenue guarantees for irregular distributions in many set-
tings. It is a rigorous measure of irregularity for any distribution since any distribution
can be well-approximated almost everywhere by a sufficient number of regular ones and
if we allow the number of regular distributions to grow to infinity then any distribution
can be exactly described2 Irregular distributions that typically arise in practice are com-
binations of a small number of regular distributions and this number can be considered
almost a constant with respect to the market size. In fact there exist evidence in recent
[8, 6] and classical [12] microeconomic literature that irregularity of the value distribu-
tion predominantly arises due to market segmentation in a small number of parts (e.g.
loyal customers vs. bargain-hunters [8], luxury vs. low income buyers [6] etc). Only
highly pathological distributions require a large number of regular distributions to be
described — such a setting in a market implies that the population is heavily segmented
and each segment has significantly different preferences from the rest.

1 One of the goals of this work is to design detail-free mechanisms, i.e., minimize the depen-
dence on knowledge of distributions. Thus most of our results make little or no use of knowl-
edge of distributions. We state our dependence precisely while stating our results.

2 This follows from the fact that a uniform distribution over an interval is a regular distribution
and every distribution can be approximated in the limit using just uniform distributions.
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Motivated by this, we consider the following setting: the market/population consists
of k underlying population groups, and the valuation distribution of each group satisfies
the regularity condition. Each bidder is drawn according to some probability distribu-
tion over these groups. That is bidder i arrives from group t with probability pi,t. Thus
if Ft is the cumulative distribution function (cdf) of group t, the cdf of bidder i is
Fi =

∑
t pi,tFt. For example, consider a market for a product that consists of two dif-

ferent population groups, say students and seniors. Now suppose that two bidders come
from two cities with different student to senior ratios. This would lead to the proba-
bility pi,t’s to be different for different i’s. This places us in a non-i.i.d. irregular set-
ting. All our results also extend to the case where these probabilities pi,t are arbitrarily
correlated.

Example 1 (An illustrative example). Consider an eBay seller of an ipad. One could
think of the market as segmented mainly in two groups of buyers: young and elder au-
dience. These two market segments have completely different value distributions. Sup-
pose for instance, that the value distribution of young people is distributed as a normal
distribution N(μy, σ) while the elder’s is distributed as a normal distribution N(μe, σ)
with μy > μe. In addition, suppose that the eBay buyer population is composed of
a fraction py young people and pe < py of elders. Thus the eBay seller is facing an
irregular valuation distribution that is a mixture of two Gaussian distribution with mix-
ture probabilities py and pe (see Figure 1). Even more generally, this mixture could be
dependent on the city of the buyer and hence be different for different buyers.

ΜyΜe
v

f �v�

1�F�Μy� 1�F�Μe� 1
q

Fig. 1. Left figure depicts pdf of the bimodal distribution of valuations of Example 1, while the
right figure depicts the revenue (dashed) R(q) = q · F−1(1 − q) where q is the probability of
sale, and the marginal revenue curve dR(q)

dq
for this distribution

The eBay seller has two ways of increasing the revenue that he receives: a) increas-
ing the market competition by bringing extra bidders through advertising (possibly even
targeted advertising), and b) setting appropriately his reserve price in the second price
auction that he runs. Observe that he has no means of price discriminating. Even running
Myerson’s auction which is non-discriminatory for i.i.d. settings leads to randomiza-
tion. In particular, randomization leads to the undesirable feature of sometimes serving
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an agent with smaller value. This raises the main questions that we address in this paper:
how should he run his advertising campaign? How many people more (either through
targeted or non-targeted advertising) should he bring to the auction to get a good ap-
proximation to the optimal revenue? What approximation of the optimal revenue is he
guaranteed by running a Vickrey auction with a single anonymous reserve?

Giving a sneak preview of our main results, our paper gives positive results to all
the above questions: 1) bringing just one extra young bidder in the auction (targeted
advertising) and running a Vickrey auction with no reserve would yield revenue at least
1/2 of the optimal revenue (Theorem 2), 2) bringing 2 extra bidders drawn from the
distribution of the combined population (non-targeted advertising) would yield at least
1
2

(
1− 1

e

)
of the optimal revenue (Theorem 4), 3) running a Vickrey auction among the

original n bidders with an anonymous reserve price can yield an 8-approximation of the
optimal revenue (Theorem 5).

Our Results

First result (Section 3): Targeted Advertising for non-i.i.d. irregular settings. We show
that by recruiting an extra bidder from each underlying group and running the Vickrey
auction, we get a revenue that is at least half of the optimal auction’s revenue in the orig-
inal setting. While the optimal auction is manifestly impractical in a non-i.i.d. irregular
setting due to its complicated rules, delicate dependence on knowledge of distribution
and its discriminatory nature3, the Vickrey auction with extra bidders is simple and
detail-free: it makes no use of the distributions of bidders. The auctioneer must just be
able to identify that his market is composed of different groups and must conduct a tar-
geted advertising campaign to recruit one extra bidder from each group. This result can
be interpreted as follows: while advertising was the solution proposed by Bulow and
Klemperer [1] for i.i.d. regular distributions, targeted advertising is the right approach
for non-i.i.d. irregular distributions.

Tightness. While we do not know if the the factor 2 approximation we get is tight,
Hartline and Roughgarden [7] show that even in a non-i.i.d. regular setting with just
two bidders it is impossible to get better than a 4/3-approximation by duplicating the
bidders, i.e., recruiting n more bidders distributed identically to the original n bidders.
This lower bound clearly carries over to our setting also: there are instances where
recruiting only one bidder from each different population group cannot give anything
better than a 4/3-approximation.

Second result (Main result, Section 4): Just one extra bidder for hazard rate dominant
distributions. If the k underlying distributions are such that one of them stochastically
dominates, hazard-rate wise, the rest, then we show that recruiting just one extra bid-
der from the hazard rate dominant distribution and running the Vickrey auction gets at

3 The optimal auction in a non-i.i.d. setting will award the item to the bidder with the highest
virtual value and this is not necessarily the bidder with the highest value. In addition, typically
a different reserve price will be set to different bidders. This kind of discrimination is often
illegal or impractical. Also, the exact form of the irregular distribution will determine which
region’s of bidder valuations will need to be ”ironed”, i.e. treated equally.
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least half of the optimal revenue for the original setting. A distribution F hazard rate
dominates a distribution G iff for every x in the intersection of the support of the two
distributions the hazard rate hF (x)(=

f(x)
1−F (x) , where f(·) and F (·) are the pdf and

cdf respectively) is at most hG(x)(=
g(x)

1−G(x) , where g(·) and G(·) are the pdf and cdf
respectively). We denote such a domination by F %hr G.

Further, hazard rate dominance requirement is not uncommon: for instance, if all the
k underlying distributions were from the same family of distributions like the uniform,
exponential, Gaussian or even power law, then one of them is guaranteed to hazard rate
dominate the rest. Though several common distributions satisfy this hazard rate domi-
nance property, it has never been previously exploited in the context of approximately
optimal auctions.

Third result (Section 5): Non-targeted advertising for i.i.d. irregular distributions. When
the bidders are identically distributed, i.e., the probability pi,t of distribution t getting
picked for bidder i is the same for all i (say pt), we show that if each pt ≥ δ, then bring-

ing Θ
(

log(k)
δ

)
extra bidders drawn from the original distribution (and not from one of

the k underlying distributions) yields a constant approximation to the optimal revenue.
Further in the special case where one of the underlying regular distributions hazard rate
dominates the rest and its mixture probability is δ then Θ

(
1
δ

)
bidders drawn from the

original distribution are enough to yield a constant approximation. This shows that when
each of the underlying population groups is sufficiently thick, then recruiting a few extra
bidders from the original distribution is all that is necessary.

Remark 1. For the latter result it is not necessary that the decomposition of the irregular
distribution that we use should resemble the actual underlying population groups. Even
if the market is highly fragmented with several population groups, as long as there
is mathematically some way to decompose the irregular distribution into the convex
combination of a few regular distributions our third result still holds.

Fourth result (Section 6): Vickrey with a Single (Anonymous) Reserve. Suppose we are
unable to recruit extra bidders. What is the next simplest non-discriminatory auction we
could hope for? The Vickrey auction with a single reserve price. We show that when
the non-i.i.d irregular distributions all arise as different convex combinations of the k
underlying regular distributions, there exists a reserve such that the Vickrey auction
with this single reserve obtains a 4k approximation to the optimal revenue. Though
the factor of approximation is not small, it is the first non-trivial approximation known
for non-i.i.d irregular distributions via Vickrey with anonymous reserve. In addition, as
we already explained, in typical market applications we expect the number of different
population groups k to be some small constant.

What is the best one can hope for a non-i.i.d irregular setting? Chawla, Hartline and
Kleinberg [2] show that for general non-i.i.d irregular distributions it is impossible to
get a o(log n) approximation using Vickrey auction with a single reserve price, and it
is unknown if this lower bound is tight, i.e., we do not yet know of a Θ(log n) approx-
imation. However the o(logn) impossibility exists only for arbitrary non-i.i.d irregular
settings and doesn’t apply when you assume some natural structure on the irregularity
of the distributions, which is what we do.
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To put our results in context: Single reserve price Vickrey auctions were also ana-
lyzed by Hartline and Roughgarden [7] for non-i.i.d regular settings, that showed that
there exists a single reserve price that obtains a 4-approximation. Chawla et al. [3]
show that when bidders are drawn from non-i.i.d irregular distributions, a Vickrey auc-
tion with a distribution-specific reserve price obtains a 2-approximation. Thus if there
are k different distributions, k different reserve prices are used in this result. This means
that if we insist on placing a single (anonymous) reserve price, this result guarantees
a O(1/k) approximation. In particular, when all distributions are different, i.e. k = n,
this boils down to a O(1/n) approximation.

In contrast, our result shows that even when all the distributions are different, as long
as every irregular distribution can be described as some convex combination of k reg-
ular distributions, Vickrey with a single reserve price gives a factor 4k approximation.
Further the factor does not grow with the number of players n.

Remark 2. We also show that if the bidders are distributed with identical mixtures and
the mixture probability is at least δ then Vickrey auction with a single reserve achieves a

Θ
(
1 + log(k)

nδ

)
approximation. If one of the regular distribution hazard rate dominates

the rest and has mixture probability δ, then Vickrey with a single reserve achieves a
Θ
(
1 + 1

nδ

)
approximation.

Observe that if all k regular distributions in the mixture have equal probability of
arriving, then our results shows that a Vickrey auction with a single reserve achieves

at least a Θ
(
1 + k log(k)

n

)
of the optimal revenue. This approximation ratio becomes

better as the number of bidders increases, as long as the number of underlying regular
distributions remains fixed. If the number of underlying distributions increases linearly
with the number of bidders, then the result implies a Θ(log(n)) approximation, match-
ing the lower bound of [3].

Related Work. Studying the trade-off between simple and optimal auctions has been
a topic of interest for long in auction design. The most famous result is the already
discussed result of Bulow and Klemperer [1] for single-item auctions in i.i.d regu-
lar settings. Hartline and Roughgarden [7] generalize [1]’s result for settings beyond
single-item auctions: they consider auctions where the set of buyers who can be simul-
taneously served form the independent set of a matroid; further they also relax the i.i.d
constraint and deal with non-i.i.d settings. Dhangwatnotai, Roughgarden and Yan [5]
study revenue approximations via VCG mechanisms with multiple reserve prices, where
the reserve prices are obtained by using the valuations of bidders as a sample from the
distributions. Their results apply for matroidal settings when the distributions are reg-
ular, and for general downward closed settings when the distributions satisfy the more
restrictive monotone hazard rate condition. As previously discussed, Chawla et al. [3]
show that for i.i.d irregular distributions, Vickrey auction with a single reserve price
gives a 2-approximation to the optimal revenue and for non-i.i.d distributions Vickrey
auction with a distribution-specific reserve price guarantees a 2-approximation; Chawla
et al. [2] show that it is impossible to achieve a o(logn) approximation via Vickrey auc-
tion with a single reserve price for non-i.i.d irregular distributions. Single-item Vickrey
auctions with bidder specific monopoly reserve prices were also studied in Neeman [11]
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and Ronen [13]. Approximate revenue maximization via VCG mechanisms with supply
limitations were studied in Devanur et al. [4] and Roughgarden et al. [14].

2 Preliminaries

Basic model. We study single item auctions among n bidders. Bidder i has a value vi
for a good, and the valuation profile for all the n players together is denoted by v =
(v1, v2, . . . , vn). In a sealed bid auction each player submits a bid, and the bid profile
is denoted by b = (b1, b2, . . . , bn). An auction is a pair of functions (x,p), where x
maps a bid vector to outcomes {0, 1}n, and p maps a bid vector to Rn

+, i.e., a non-
negative payment for each player. The players have quasi-linear utility functions, i.e.,
their utilities have a separable and linear dependence on money, given by ui(vi,v−i) =
vixi(v)− pi(v). An auction is said to be dominant strategy truthful if submitting a bid
equal to your value yields no smaller utility than any other bid in every situation, i.e.,
for all v−i, vixi(v) − pi(v) ≥ vixi(bi,v−i) − pi(bi,v−i). Since we focus on truthful
auctions in this paper b = v from now on.

Distributions. We study auctions in a Bayesian setting, i.e., the valuations of bidders are
drawn from a distribution. In particular, we assume that valuation of bidder i is drawn
from distribution Fi, which is independent from but not necessarily identical to Fj for
j �= i. For ease of presentation, we assume that these distributions are continuous,
i.e., they have density function fi. We assume that the support of these distributions are
intervals on the non-negative real line, with non-zero density everywhere in the interval.

Regularity and irregularity. The hazard rate function of a distribution is defined as
h(x) = f(x)

1−F (x) . A distribution is said to have a Monotone Hazard Rate(MHR) if h(x)
is monotonically non-decreasing. A weaker requirement on distributions is called reg-
ularity: the function φ(x) = x − 1

h(x) is monotonically non-decreasing. We do not
assume either of these technical conditions for our distributions. Instead we assume
that the market of bidders consists of k groups and each group has a regular distribution
Gi over valuations. Each bidder is drawn according to some (potentially different) con-
vex combination of these k regular distributions, i.e., Fi(x) =

∑k
t=1 pi,tGt(x). Such a

distribution Fi(·) in most cases significantly violates the regularity condition.
In fact, mathematically, any irregular distribution can be approximated by a con-

vex combination of sufficiently many regular distributions and as we take the number
of regular distributions to infinity then it can be described exactly. Thus the number
of regular distributions needed to describe an irregular distribution is a valid measure of
irregularity that is well-defined for any distribution.

Revenue Objective. The objective in this paper to design auctions to maximize expected
revenue, i.e., the expectation of the sum of the payments of all agents. Formally, the ob-
jective is to maximize Ev[

∑
i pi(v)]. Myerson [10] characterized the expected revenue

from any auction as its expected virtual surplus, i.e. the expected sum of virtual values of
the agents who receive the item, where the virtual value of an agent is φ(v) = v− 1

h(v) .
Formally, for all bidders i, Ev[pi(v)] = Ev[φi(vi)xi(v)]. The equality holds even if we
condition on a fixed v−i, i.e., Evi [pi(vi,v−i)] = Evi [φ(vi)xi(vi,v−i)].



Vickrey Auctions for Irregular Distributions 429

3 Targeted Advertising and the Non-i.i.d. Irregular Setting

In this section we give our version of Bulow and Klemperer’s result [1] for non-i.i.d
irregular distributions.

Theorem 1. Consider an auction among n non-i.i.d irregular bidders where each bid-
der’s distribution Fi is some mixture of k regular distributions {G1, . . . , Gk} (the set of
regular distributions is the same for all bidders but the mixture probabilities could be
different). The revenue of the optimal auction in this setting is at most twice the revenue
of a Vickrey auction with k extra bidders, where each bidder is drawn from a distinct
distribution from {G1, . . . , Gk}.
Proof. Bidder i’s distribution Fi(x) =

∑k
t=1 pi,tGt(x) can be thought of as being

drawn based on the following process: first a biased k-valued coin is flipped that de-
cides from which distribution Gt player i’s value will come from (according to the
probabilities pi,t), and then a sample from Gt is drawn. Likewise, the entire valuation
profile can be thought of as being drawn in a similar way: first n independent, and pos-
sibly non-identically biased, k-valued coin tosses, decide the regular distribution from
each bidder’s value is going to be drawn from. Subsequently a sample is drawn from
each distribution.

Let the random variable qi be the index of the regular distribution that bidder i’s
value is going to be drawn, i.e., qi is the result of the coin toss for bidder i. Let q
denote the index profile of all players. Let p(q) =

∏n
i=1 pi,qi be the probability that the

index profile q results after the n coin tosses. Let G(q) = ×iGqi be the joint product
distribution of players’ values conditioned on the profile being q.

Let Mq be the optimal mechanism when bidders’ distribution profile is q. LetRq
M be

the expected revenue of mechanism Mq. Let Rq
M (v) denote the revenue of the mech-

anism when bidders have value v. The revenue of the optimal mechanism M which
cannot learn and exploit the actual distribution profile q is upper bounded by the rev-
enue of the optimal mechanism that can first learn q. Therefore we have,

RM ≤
∑

q∈[1..k]n

p(q)Ev∼G(q)[R
q
M (v)] (1)

Now, Ev∼G(q)[R
q
M (v)] corresponds to the optimal expected revenue when bidder

i’s distribution is the regular distribution Gqi . Let k(q) denote the number of distinct
regular distributions contained in the profile q. Note that k(q) ≤ k for all q. Thus the
above expectation corresponds to the revenue of a single-item auction where players
can be categorized in k(q) groups and bidders within each group t are distributed i.i.d.
according to a regular distribution Gt. Theorem 6.3 of [14] applies to such a setting
and shows that the optimal revenue for each of these non-i.i.d regular settings will be
at most twice the revenue of Vickrey auction with one extra bidder for each distinct
distribution in the profile q. Hence,

RM ≤
∑

q∈[1..k]n

p(q)Ev∼G(q)[R
q
M (v)] ≤ 2

∑
q∈[1..k]n

p(q)Ev∼G(q)[RSPn+k(q)
(v)] (2)

≤ 2
∑

q∈[1..k]n

p(q)Ev∼G(q)[RSPn+k
(v)] (3)
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Since, the Vickrey auction with k extra bidders doesn’t depend on the index profile q
the RHS of (3) corresponds to the expected revenue of SPn+k when bidders come from
the initial i.i.d irregular distributions. 
�

The above proof actually proves an even stronger claim: the revenue from running
the Vickrey auction with k extra bidders is at least half approximate even if the auction-
eer could distinguish bidders by learning the bidder distribution profile q and run the
corresponding optimal auction Rq

M .
Lower bound. A corner case of our theorem is when each bidder comes from a dif-

ferent regular distribution. From Hartline and Roughgarden [7] we know that a lower
bound of 4/3 exists for such a case. In other words there exists two regular distributions
such that if the initial bidders came each from a different distribution among these,
then adding two extra bidders from those distributions will not give the optimal rev-
enue but rather a 4/3 approximation to it. The same lower bound proves that if bidders
came from the same mixture of these two regular distributions (i.e. are i.i.d), then the
expected revenue of the auction that first distinguishes from which regular distribution
each bidder comes from and then applies the optimal auction, yields higher revenue
than adding two extra bidders from the two distributions and running a Vickrey auction.

4 Just one Extra Bidder for Hazard Rate Dominant Distributions

In this section we examine the setting where among the k underlying regular distribu-
tions there exists one distribution that stochastically dominates the rest in the sense of
hazard rate dominance. Hazard rate dominance is a standard dominance concept used
while establishing revenue guarantees for auctions (see for example [9]) and states the
following: A distribution F hazard rate dominates a distribution G iff for every x in the
intersection of the support of the two distributions: hF (x) ≤ hG(x). We denote such a
domination by F %hr G.

In such a setting it is natural to ask whether adding just a single player from the
dominant distribution is enough to produce good revenue guarantees. We actually show
that adding only one extra person coming from the dominant distribution achieves ex-
actly the same worst-case guarantee as adding k extra bidders one from each underlying
distribution.

Theorem 2. Consider an auction among n non-i.i.d irregular bidders where each bid-
der’s distribution Fi is some mixture of k regular distributions {G1, . . . , Gk} such that
G1 %hr Gt for all t. The revenue of the optimal auction in this setting is at most twice
the revenue of a Vickrey auction with one extra bidder drawn from G1.

The proof is based on a new lemma for the regular distribution setting: bidders are
drawn from a family of k regular distributions such that one of them hazard-rate domi-
nates the rest. This lemma can be extended to prove Theorem 2 in a manner identical to
how Theorem 6.3 of Roughgarden et al. [14] was extended to prove Theorem 1 in our
paper. We don’t repeat that extension here, and instead just prove the lemma. The lemma
uses the notion of commensurate auctions defined by Hartline and Roughgarden [7].



Vickrey Auctions for Irregular Distributions 431

Lemma 1. Consider a non-i.i.d. regular setting where each player’s value comes from
some set of distributions {F1, . . . , Fk} such that F1 %hr Ft for all t. The optimal
revenue of this setting is at most twice the revenue of Vickrey auction with one extra
bidder drawn from F1.

Proof. Let v denote the valuation profile of the initial n bidders and let v∗ the valuation
of the extra bidder from the dominant distribution. Let R(v, v∗) and S(v, v∗) denote the
winners of the optimal auction (M ) and of the second price auction with the extra bidder
(SPn+1) respectively. We will show that the two auctions are commensurate (see [7])
which is sufficient for proving the lemma. Establishing commensurateness boils down
to showing that:

Ev,v∗ [φS(v,v∗)(vS(v,v∗))|S(v, v∗) �=R(v, v∗)] ≥ 0 (4)

Ev,v∗ [φR(v,v∗)(vR(v,v∗))|S(v, v∗) �=R(v, v∗)] ≤ Ev,v∗ [pS(v,v∗)|S(v, v∗) �= R(v, v∗)]
(5)

where pS is the price paid by the winner of the second price auction. The proof of
equation (5) is easy and very closely follows the proof in [7] above.

We now prove equation (4). Since F1 %hr Ft we have that for all x in the intersection
of the support of F1 and Ft: h1(x) ≤ ht(x), which in turn implies that φ1(x) ≤ φt(x),
since φt(x) = x − 1

ht(x)
. By the definition of winner in Vickrey auction we have

∀i : vS(v,v∗) ≥ vi. In particular, vS(v,v∗) ≥ v∗. If v∗ is in the support of FS(v,v∗), then
the latter, by regularity of distributions, implies that φS(v,v∗)(vS(v,v∗)) ≥ φS(v,v∗)(v

∗).
Now F1 %hr Ft implies that φS(v,v∗)(v

∗) ≥ φ1(v
∗) (since by definition v∗ must also

be in the support of F1). If v∗ is not in the support of FS(v,v∗), then since v∗ < vS(v,v∗)
and all the supports are intervals, it must be that v∗ is below the lower bound L of the
support of FS(v,v∗). Wlog we can assume that the support of F1 intersects the support
of every other distribution. Hence, since v∗ is below L and the support of F1 is an
interval, L will also be in the support of F1. Thus L is in the intersection of the two
supports. By regularity of FS(v,v∗), F1 and by the hazard rate dominance assumption,
we have φS(v,v∗)(vS(v,v∗)) ≥ φS(v,v∗)(L) ≥ φ1(L) ≥ φ1(v

∗). Thus in any case
φS(v,v∗)(vS(v,v∗)) ≥ φ1(v

∗). Hence, we immediately get that:

Ev,v∗ [φS(v,v∗)(vS(v,v∗))|S(v, v∗) �= R(v, v∗)] ≥ Ev,v∗ [φ1(v
∗)|S(v, v∗) �= R(v, v∗)]

Conditioned on v the latter expectation becomes:

Ev∗ [φ1(v
∗)|S(v, v∗) �= R(v, v∗),v]

But conditioned on v, R(v, v∗) is some fixed bidder i. Hence, the latter expectation is
equivalent to: Ev∗ [φ1(v

∗)|S(v, v∗) �= i] for some i. We claim that for all i the latter
expectation must be positive. Conditioned on v, the event S(v, v∗) �= i happens only if
v∗ is sufficiently high, i.e., there is a threshold θ(v) such that S(v, v∗) �= i happens only
if v∗ ≥ θ(v) (if i was the maximum valued bidder in the profile v then θ(v) = vi, else
θ(v) = 0.) By regularity of distributions, v∗ ≥ θ(v) translates to φ1(v

∗) ≥ φ1(θ). So
we now have to show that: Ev∗ [φ1(v

∗)|φ1(v
∗) ≥ φ1(θ)] ≥ 0. Since the unconditional

expectation of virtual value is already non-negative, the expectation conditioned on a
lower bound on virtual values is clearly non-negative. 
�
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Examples and Applications. There are many situations where a hazard-rate dominant
distribution aactually exists in the market. We provide some examples below.

Uniform, Exponential, Power-law distributions. Suppose the k underlying distribu-
tions were all uniform distributions of the formU [ai, bi]. The hazard rate hi(x) =

1
bi−x .

Clearly, the distribution with a larger bi hazard-rate dominates the distribution with
a smaller bi. If the k underlying distributions were all exponential distributions, i.e.,
Gi(x) = 1 − e−λix, then the hazard rate hi(x) = λi. Thus the distribution with the
smallest λi hazard rate dominates the rest. If the k underlying distributions were all
power-law distributions, namely, Gi(x) = 1 − 1

xαi
, then the hazard rate hi(x) = αi

x .
Thus the distribution with the smallest αi hazard-rate dominates the rest.

A general condition. If all the k underlying regular distributions were such that for
any pair i, j they satisfy 1 − Gi(x) = (1 − Gj(x))

θij , then it is easy to verify that
there always exists one distribution that hazard-rate dominates the rest of the distribu-
tions. For instance, the family of exponential distributions, and the family of power-law
distributions are special cases of this general condition.

5 Non-targeted Advertising and the i.i.d. Irregular Setting

In this section we consider the setting where all the bidders are drawn from the same
distribution F . We assume that F can be written as a convex combination of k regular
distributions F1, . . . , Fk, i.e. F =

∑k
t=1 ptFt and such that the mixture probability pt

for every distribution is at least some constant δ: ∀t ∈ [1, . . . , k] : pt ≥ δ. A natural
question to ask in an i.i.d. setting is how many extra bidders should be recruited from
the original distribution to achieve a constant fraction of the optimal revenue (i.e., by
running a non-targeted advertising campaign)?

In this section answer the above question as a function of the number of underlying
distributions k and the minimum mixture probability δ. We remark that our results in
this section don’t require the decomposition of F into the Ft’s resemble the distribu-
tion of the underlying population groups. Even if the number of underlying population
groups is very large, as long as there is some mathematical way of decomposing F
into k regular distributions with a minimum mixture probability of δ, our results go
through. Hence, one can optimize our result for each F by finding the decomposition
that minimizes our approximation ratio.

Theorem 3. Consider an auction among n i.i.d. irregular bidders where the bidders’
distributionF can be decomposed into a mixture ofk regular distributions {G1, . . . , Gk}
with minimum mixture probability δ. The revenue of the optimal auction in this setting

is at most 2k+1
k the revenue of a Vickrey auction with Θ

(
log(k)

δ

)
extra bidders drawn

from distribution F .

Proof. Suppose that we bring n∗ extra bidders in the auction. Even if the decomposition
of the distribution F doesn’t correspond to an actual market decomposition, we can
always think of the value of each of the bidders drawn as follows: first we draw a
number t from 1 to k according to the mixture probabilities pt and then we draw a
value from distribution Gt.
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Let E be the event that all numbers 1 to k are represented by the n∗ random numbers
drawn to produce the value of the n∗ extra bidders. The problem is a generalization of
the coupon collector problem where there are k coupons and each coupon arrives with
probability pt ≥ δ. The relevant question is, what is the probability that all the coupons
are collected after n∗ coupon draws? The probability that a coupon t is not collected
after n∗ draws is: (1 − pt)

n∗ ≤ (1 − δ)n
∗ ≤ e−n∗δ. Hence, by the union bound, the

probability that some coupon is not collected after n∗ draws is at most ke−n∗δ. Thus
the probability of event E is at least 1− ke−n∗δ . Thus if n∗ = log(k)+log(k+1)

δ then the
probability of E is at least 1− 1

k+1 .
Conditional on event E happening we know that the revenue of the auction is the

revenue of the initial auction with at least one player extra drawn from each of the
underlying k regular distributions. Thus we can apply our main theorem 1 to get that
the expected revenue conditional on E is at least 1

2 of the optimal revenue with only the
initial n bidders. Thus:

RSPn+n∗ ≥
(
1− 1

k + 1

)
Ev,ṽ∼Fn+n∗ [RSPn+n∗ (v, ṽ)|E ] ≥

(
1− 1

k + 1

)
1

2
RM


�
Theorem 4. Consider an auction among n i.i.d. irregular bidders where the bidders’
distributionF can be decomposed into a mixture ofk regular distributions {G1, . . . , Gk}
such that G1 hazard rate dominates Gt for all t > 1. The revenue of the optimal auction
in this setting is at most 2 e

e−1 the revenue of a Vickrey auction with 1
p1

extra bidders
drawn from distribution F .

Proof. Similar to theorem 3 conditional on the even that an extra player is drawn from
the hazard rate distribution, we can apply Lemma 1 to get that this conditional expected
revenue is at least half the optimal revenue with the initial set of players. If we bring
n∗ extra players then the probability of the above event happening is 1− (1− p1)

n∗ ≥
1− e−n∗p1 . Setting n∗ = 1

p1
we get the theorem. 
�

Prior-Independent Mechanisms. The two theorems above imply prior-independent
mechanisms for the i.i.d. irregular setting based on a reasoning similar to the one used
by [5] in converting Bulow-Klemperer results to prior-independent mechanims in the
i.i.d. regular setting. Specifically, instead of bringing k extra i.i.d. bidders we could
use the maximum value of a random subset of k existing bidders as a reserve on the
remaining n − k bidders. The theorems above then imply that this prior-independent
mechanism yields a constant approximation with respect to the optimal mechanism
among the n − k bidders. Further, since the bidders are all i.i.d., and the k bidders
were chosen before their valuation are drawn, the expected optimal revenue among the
n − k bidders is at least 1 − k

n of the optimal revenue among the n bidders. Thus as
long as the number of bidders k required by Theorems 3 and 4 is smaller than n, this
approach yields a prior-independent mechanism with a meaningful revenue approx-
imation guarantee. Hence, Theorem 3 implies that if nδ ≥ c log(k) (i.e. the expected
number of players from each population is at least c log(k)) the random sampling mech-
anism described above is 2k+1

k
c

c−1 approximate. Similarly, Theorem 4 implies that it
is 2 e

e−1
c

c−1 -approximate, if n · p1 ≥ c, i.e. the expected number of players from the
hazard-rate dominant distribution at least c.



434 B. Sivan and V. Syrgkanis

6 Vickrey with Single Reserve for Irregular Settings

In this section we prove revenue guarantees for Vickrey auction with a single reserve in
the general irregular setting.

Theorem 5. Consider an auction among n non-i.i.d irregular bidders where each bid-
der’s distribution Fi is some mixture of k regular distribution {G1, . . . , Gk} (the set of
regular distributions is the same for all bidders but the mixture probabilities could be
different). The revenue of the optimal auction in the above setting is at most 4k times
the revenue of a second price auction with a single reserve price which corresponds to
the monopoly reserve price of one of the k distributions Gi.

Proof. We use the same notation as in Section 3. In particular, we let q denote the index
profile of distributions for all players and p(q) =

∏n
i=1 pi,qi be the probability that an

index profile arises. Let G(q) = ×iGqi be the product distribution that corresponds to
how players values are distributed conditional on the coin tosses having value q.

Let Mq be the optimal mechanism when bidders’ distribution profile is q. Let Rq
M

be the expected revenue of mechanism Mq. By equation (2) in Section 3 we have,

RM ≤
∑

q∈[1..k]n

p(q)Ev∼G(q)[R
q
M (v)] ≤ 2

∑
q∈[1..k]n

p(q)Ev∼G(q)[RSPn+k(q)
(v)] (6)

Consider the auction SPn+k(q). If instead of adding the k(q) extra bidders, we place
a random reserve drawn from the distribution of the maximum value among the k(q)
extra bidders, and ran the Vickrey auction. Call the later SPn(R(q)). If the winner
of the auction SPn+k(q) is one among the original n bidders, clearly SPn+k(q) and
SPn(R(q)) will have the same expected revenue. Further, the expected revenue of
SPn+k(q) conditioned on the winner being one among the original n bidders is no
smaller than the expected revenue of SPn+k(q) conditioned on the winner being one
among the newly added k(q) bidders. Also, the probability that the winner comes from
the newly added k(q) bidders is at most 1/2. Thus SPn(R(q)) ≥ 1

2SPn+k(q). Combin-
ing this with Equation (6), we have

RM ≤ 2
∑

q∈[1..k]n

p(q)Ev∼G(q)[RSPn+k(q)
(v)] ≤ 4

∑
q∈[1..k]n

p(q)Ev∼G(q)[RSPn(R(q))(v)]

=

k∑
t=1

4
∑

q∈[1..k]n

p(q)Ev∼G(q)[RSPn(R(q),t)(v)] (7)

≤ 4k
∑

q∈[1..k]n

p(q)Ev∼G(q)[RSPn(R(q),t∗)(v)] (8)

In equation (7), the revenue RSPn(R(q))(v) is written as
∑k

t=1 RSPn(R(q),t)(v), i.e.,
as the sum of contributions from each population group. Given this split, there exists a
polulation group t∗ that gets at least 1

k fraction of all groups together, and thus at least 1
4k

fraction of the optimal mechanism, which is what is expressed through inequality (8).
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Now the auction SPn(R(q)) from the perspective of the group t∗ is just the Vick-
rey auction run for group t∗ alone with a single random reserve of max{R(q), Maxi-
mum value from groups other than t∗}. However within the group t∗ since we are in
a i.i.d regular setting it is optimal to run Vickrey auction for the group t∗ alone with
the monopoly reserve price of that group. That is if we replace the single reserve of
max{R(q), Maximum value from groups other than t∗} with the optimal (monopoly)
reserve price for t∗, Vickrey auction for group t∗ with such a reserve gives no lesser rev-
enue, and this holds for every q! Finally, when we add in the agents from other groups,
single-item Vickrey auction’s revenue for the entire population with monopoly reserve
price of group t∗ is no smaller than the revenue of single-item Vickrey auction for group
t∗ alone with the monopoly reserve price of group t∗. Chaining the last two statements
proves the theorem. 
�
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Abstract. I construct a class of strategy-proof and Pareto efficient mech-
anisms of cake cutting in the context of offline interval scheduling. Mo-
tivating applications include the circulation of the single copy of a book
owned by a public library among all self-interested and rational poten-
tial players with piecewise uniform value densities over continuous time
intervals. This class of mechanisms accommodate both anonymous and
non-anonymous configurations and can serve as a flexible platform to im-
plement allocations of heterogeneous goods according to distributional
objectives such as arbitrary guaranteed shares of reported demand.

The cake-cutting literature has recently made significant progress to-
ward a better understanding of strategy-proofness. Two-person incentive
compatible cake-cutting problems were studied by Maya and Nisan in [1],
while Mossel and Tamuz in [2] and Chen et al. in [3] proposed solutions
to such problems with any arbitrary number of players, with the for-
mer focusing on stochastic mechanisms. A more recent paper [4] by Aziz
and Ye discussed various cake-cutting algorithms for piecewise constant
and piecewise uniform value densities and examined the compatibility
of Pareto efficiency, strategy-proofness, and fairness. Procaccia [5] con-
tains a great introduction to the cake-cutting literature including the
issue of strategy-proofness. A wonderful review of classical cake-cutting
algorithms focusing on fairness issues can be found in Procaccia [6].

This paper proposes a class of mechanisms generalizing the strategy-
proof, Pareto efficient, and envy-free mechanism developed in [3] by tem-
porarily compromising on fairness. Representing the mechanism design
problem as a constrained optimization problem, I manage to characterize
all feasible cuts of the cake with a collection of linear constraints regard-
ing the maximum total payoffs of any subset of players by slightly gen-
eralizing the network-flow proof in [3]. More importantly, I demonstrate
that strategy-proofness can be obtained from the additivity and concav-
ity of the social planner’s (in this case, the library’s) utility in terms
of the payoffs of the players (the readers). The essential result in con-
structing strategy-proofness is a non-inferiority condition that roughly
states the following: when a player increases her demand to a superset
of her original demand, a specific group—depending on the identity of
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the player changing her report—of players will all be allocated (weakly)
larger pieces1.

Partially relaxing the fairness requirement suggests some interesting
and potentially positive extensions of the current literature. In the context
of scheduling, maintaining piecewise uniform valuations, the allocation of
a certain resource (the book, in this case) at an early instant should not
depend on the report of players who arrive at a later time, suggesting a
type of dynamic consistency as a necessity in the design of online cake-
cutting mechanisms2. Such dynamic consistencies may be incompatible
with fairness3 . In addition, under piecewise constant valuations, the in-
compatibility of strategy-proofness and even weaker notions of fairness
than envy-freeness, such as equal-treatment-of-equals, has beenwidely doc-
umented in both computer science (see [4]) and economics (see Zhou [9])
literature. Earlier works including [10] by Bogomolnaia and Moulin fo-
cus on maintaining fairness by mildly yielding on strategy-proofness. The
mechanisms developed in this paper provide an adaptable potential plat-
form upon which strategy-proof and Pareto efficient mechanisms, while
unable to achieve envy-freeness, can be developed to perform better on
fairness than simple mechanisms such as random serial dictatorship.
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