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Abstract. Weaddress the parameterized complexity ofMaxColorable

Induced Subgraph on perfect graphs. The problem asks for a maximum
sized q-colorable induced subgraph of an input graph G. Yannakakis and
Gavril [ IPL 1987 ] showed that this problem is NP-complete even on split
graphs if q is part of input, but gave a nO(q) algorithm on chordal graphs.
We first observe that the problem is W[2]-hard parameterized by q, even
on split graphs. However, when parameterized by �, the number of vertices
in the solution, we give two fixed-parameter tractable algorithms.

– The first algorithm runs in time 5.44�(n+#α(G))O(1) where #α(G)
is the number of maximal independent sets of the input graph.

– The second algorithm runs in time q�+o(�)nO(1)Tα where Tα is the
time required to find a maximum independent set in any induced
subgraph of G.

The first algorithm is efficient when the input graph contains only
polynomially many maximal independent sets; for example split graphs
and co-chordal graphs. The running time of the second algorithm is
FPT in � alone (whenever Tα is a polynomial in n), since q ≤ � for all
non-trivial situations. Finally, we show that (under standard complexity-
theoretic assumptions) the problem does not admit a polynomial kernel
on split and perfect graphs in the following sense:

(a) On split graphs, we do not expect a polynomial kernel if q is a part
of the input.

(b) On perfect graphs, we do not expect a polynomial kernel even for
fixed values of q ≥ 2.

1 Introduction

A fundamental class of graph optimization problems involve finding a maximum
induced subgraph satisfying specific properties, such as being edgeless (maxi-
mum independent set) [4,5,6,19], acyclic [9], bipartite [4,5], regular [12] or q-
colorable [1,20] (equivalent to finding a maximum independent set when q = 1,
and a maximum induced bipartite subgraph when q = 2). Several of these prob-
lems are NP-hard on general undirected graphs. Therefore, studies of these prob-
lems have involved algorithmic paradigms designed to cope with NP-hardness,
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like approximation and parameterization [4,5,9,6,19,20]. The focus of this paper
is the Max q-Colorable Induced Subgraph problem, with a special focus
on co-chordal graphs and perfect graphs. Our results are of a parameterized
flavor, involving both FPT algorithms and lower bounds for polynomial kernels.

Before we can describe our results, we establish some basic notions. A graph
G = (V,E) is called q-colorable if there is a coloring function f : V → [q] such
that f(u) �= f(v) for any (u, v) ∈ E. Equivalently, a graph is q-colorable if its
vertex set can be partitioned into q independent sets. The Max q-Colorable

Induced Subgraph asks for a maximum induced subgraph that is q-colorable,
and the decision version, p-mcis, may be stated as follows:

p-Max Colorable Induced Subgraph (p-mcis) Parameter: �
Input: An undirected graph G = (V,E) and positive integers q and �.
Question: Does there exist Z ⊆ V , |Z| ≥ �, such that G[Z] is q-colorable?

We will sometimes be concerned with the problem above for fixed values of q,
and to distinguish this from the case when q is a part of the input, we use p-q-
mcis to refer to the version where q is fixed. The problem is clearly NP-complete
on general graphs as for q = 1 this corresponds to Independent Set problem.
Yannakakis and Gavril [20] showed that this problem is NP-complete even on
split graphs (which is a proper subset of perfect graphs, chordal graphs and
co-chordal graphs, see Section 2 for definitions). However, they showed that p-q-
mcis is solvable in time nO(q) on chordal graphs. A natural question, therefore,
is whether the problem admits an algorithm with running time f(q) · nO(1) on
chordal graphs, or even on split graphs. This question was our main motivation
for looking at p-mcis on special graph classes like co-chordal and perfect graphs.

Our study of p-mcis involves determining the parameterized complexity of
the problem. The goal of parameterized complexity is to find ways of solving
NP-hard problems more efficiently than brute force: here the aim is to restrict
the combinatorial explosion to a parameter that is hopefully much smaller than
the input size. Formally, a parametrization of a problem is assigning an integer
k to each input instance and we say that a parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm that solves the problem in
time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary com-
putable function depending on the parameter k only. Just as NP-hardness is
used as evidence that a problem probably is not polynomial time solvable, there
exists a hierarchy of complexity classes above FPT, and showing that a parame-
terized problem is hard for one of these classes gives evidence that the problem is
unlikely to be fixed-parameter tractable. The principal analogue of the classical
intractability class NP is W[1]. A convenient source of W[1]-hardness reductions
is provided by the result that Independent Set parameterized by solution
size is complete for W[1]. Other highlights of the theory include that Dominat-

ing Set, by contrast, is complete for W[2]. For more background, the reader
is referred to the monographs [8]. A parameterized problem is said to admit
a polynomial kernel if every instance (I, k) can be reduced in polynomial time
to an equivalent instance with both size and parameter value bounded by a
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polynomial in k. The study of kernelization is a major research frontier of pa-
rameterized complexity and many important recent advances in the area are on
kernelization. The recent development of a framework for ruling out polynomial
kernels under certain complexity-theoretic assumptions [3,7,10] has added a new
dimension to the field and strengthened its connections to classical complexity.
For overviews of kernelization we refer to surveys [2,11] and to the corresponding
chapters in books on parameterized complexity [8,18].

Our results and related work. Most of the “induced subgraph problems” are
known to be W-hard parameterized by the solution size on general graphs by a
generic result of Khot and Raman [14]. In particular this also implies that p-
mcis is W[1]-hard parameterized by the solution size on general graphs. Observe
that Independent Set is essentially p-mcis with q = 1. There has been also
some study of parameterized complexity of Independent Set on special graph
classes [6,19]. Yannakakis and Gavril [20] showed that p-mcis is NP-complete on
split graphs and Addario-Berry et al. [1] showed that the problem is NP-complete
on perfect graphs for every fixed q ≥ 2. We observe in passing that the known
NP-completeness reduction given in [20] implies that p-mcis when parameterized
by q alone is W[2]-hard even on split graphs. Our main contributions in this
paper are two randomized FPT algorithms for p-mcis and a complementary
lower bound, which establishes the non-existence of a polynomial kernel under
standard complexity-theoretic assumptions.

Our first algorithm runs in time (2e)�(n + #α(G))O(1) where #α(G) is the
number of maximal independent sets of the input graph and the second algorithm
runs in time q� ·Tα ·nO(1), where Tα is the time required to compute the largest
independent set in any subgraph of the given graph. Observe that since q ≤ � for
all non-trivial situations, we have that the second algorithm is FPT in � alone,
provided Tα is a polynomial in n. The first algorithm is efficient when the input
graph contains only polynomially many maximal independent sets; for example
on split graphs and co-chordal graphs. The second algorithm is efficient for a
larger class of graphs, because it only relies on an efficient procedure for finding
a maximum independent set (although this comes at the cost of the running
time depending on q in the base of the exponent). In particular, the second
algorithm runs in time q�nO(1) on the class of perfect graphs. We also describe
de-randomization procedures. While the derandomization technique for the first
algorithm is standard, to derandomize the second algorithm we need a notion
which generalizes the idea of “universal sets”, introduced by Naor et al. [16]. We
believe that our construction, though simple, could be of independent interest.
Further, we show that unless co-NP ⊆ NP/poly, the problem does not admit
polynomial kernel even on split graphs. Also, on perfect graphs, we show that
the problem does not admit a polynomial kernel even for fixed q ≥ 2, unless
co-NP ⊆ NP/poly.

2 Preliminaries and Definitions

For a finite set V , a pair G = (V,E) such that E ⊆ V 2 is a graph on V . The
elements of V are called vertices, while pairs of vertices (u, v) such that (u, v) ∈ E
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are called edges. We also use V (G) and E(G) to denote the vertex set and the
edge set of G, respectively. In the following, let G = (V,E) and G′ = (V ′, E′) be
graphs, and let U ⊆ V be some subset of vertices of G. Let G′ be a subgraph of
G. If E′ contains all the edges {u, v} ∈ E with u, v ∈ V ′, then G′ is an induced
subgraph of G, induced by V ′, denoted by G[V ′]. For any U ⊆ V , we denote
G[V \ U ] by G \ U . For v ∈ V , NG(v) = {u | (u, v) ∈ E}. The complement of
a graph G = (V,E), denoted by Ḡ, is the graph with vertex set V and edge set
V ×V \ (E∪{(v, v) | v ∈ V }). A set X ⊆ V is called a clique (resp., independent
set) if every pair of vertices in X is adjacent (resp., non-adjacent) in G. X is
called a maximal clique (resp., independent set), if no proper super set of X is
clique (resp., independent set). We denote the size of the maximum clique in
graph G by w(G). A graph G is q-colorable if we can partition the vertex set in
to q independent sets. The chromatic number χ(G) of a graph G is the minimum
q such that G is q-colorable.

A graph G is called perfect, if ∀ U ⊆ V (G), w(G[U ]) = χ(G[U ]). A graph
G = (V,E) is called chordal if every simple cycle of with more than three vertices
has an edge connecting two nonconsecutive vertices on the cycle. A graph is co-
chordal if its complement is a chordal graph. All chordal graphs and co-chordal
graphs are perfect graphs. A split graph is a graph whose vertex set can be
partitioned into two subsets I and Q such that I is an independent set and Q
is a clique. Split graphs are closed under complementation. We denote the set
{1, 2, . . . , n} by [n] and all possible subsets of size k of [n] by

(
[n]
k

)
.

Definition 2.1. Let G = (V,E) and Hx = (Vx, Ex) for x ∈ V be graphs. We
define the graph G′ = Embed(G; (Hx)x∈V ) as the graph obtained from G by
replacing each vertex x with the graph Hx . Formally, V (G′) = {ux|x ∈ V, u ∈
Vx} and E(G′) = {(ux, vx)|(u, v) ∈ Ex} ∪ {(ux, vy)|(x, y) ∈ E, u ∈ Vx, v ∈ Vy}.
We say that the graph Embed(G; (Hx)x∈V ) is obtained by embedding (Hx)x∈V

into G. We say that a graph class Π is closed under embedding if whenever
G ∈ Π and Hx ∈ Π, ∀x ∈ V (G), then the graph Embed(G; (Hx)x∈V (G))
belongs to Π . It is known that perfect graphs are closed under embedding [15].
Let G = (V,E) be a graph and E′ ⊆ E. We define the graph Δ(G;E′) as adding
vertices xe and edges (xe, u), (xe, v) for all (u, v) = e ∈ E′.

Lemma 2.1 (�). If G = (V,E) is a perfect graph and E′ ⊆ E, then Δ(G;E′)
is also a perfect graph.

Due to space constraints, some proofs have been deferred to a full version of the
paper. Results whose proofs are omitted are marked with a �.

3 Generalized Universal Sets

In this section we generalize a derandomization tool, universal sets given by Naor
et al. [16].
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Definition 3.1. An (n, k, q)-universal set is a set of vectors V ⊆ [q]n such that

for any index set S ∈ (
[n]
k

)
, the projection of V on S contains all possible qk

configurations.

Theorem 3.1 (�). An (n, k, q)-universal set of cardinality qkkO(log k) log2 n can
be constructed deterministically in time O(qkkO(log k)n log2 n).

Definition 3.2 ([16]). Let H be a family of functions from [n] to [l]. H is an

(n, k, l)-family of perfect hash functions if for all S ∈ (
[n]
k

)
, there is an h ∈ H

which is one-to-one on S.

Theorem 3.2 ([16]). There is a deterministic algorithm with running time
O(ekkO(log k)n logn) that constructs an (n, k, k)-family of perfect hash functions
F such that |F| = ekkO(log k) logn.

4 FPT Algorithms

In this section we design two randomized algorithms for p-mcis. The first algo-
rithm requires a subroutine that enumerates all maximal independent sets in the
input graph and this algorithm is useful only when the input graph has poly-
nomially many maximal independent sets. We can derandomize this algorithm
using a (n, �, �)-family of perfect hash functions.

The second algorithm requires a subroutine which computes the maximum
independent set of any induced subgraph of the input graph. Thus, this algorithm
is FPT on all graph classes for which Independent Set is either polynomial
time solvable or FPT parameterized by the solution size. We derandomize this
algorithm using the (n, �, q)-universal sets described in the previous section.

Notice that the second algorithm is less demanding than the first: we only
need to find the largest independent set, rather than enumerating all maximal
ones. Thus the second algorithm solves the problem for a larger class of graphs
than the first, however, as we will see, the running time is compromised in that a
dependence on q creeps into the base of the exponent. In particular, this is why
the second algorithm does not render the first obsolete. The first can be thought
of as a more efficient algorithm when the class of graphs was restricted further.

Algorithm based on enumerating Maximal Indepenent Sets. Let #α(G) denote
the number of maximal independent sets of G, and T#α(G) denote the time
taken to enumerate the maximal independent sets of a graph G. In this section
we give a randomized algorithm with one sided error for p-mcis that uses all the
maximal independent sets in the graph, runs in time T#α(G) + 2�(n+#α)O(1),
and gives the correct answer with probability at least e−�. The error is one-sided:
if the input instance is No instance, then the algorithm will output No always.
Thus, in any graph class where the maximal independent sets can be enumerated
in polynomial time, we can solve p-mcis with constant success probability in
O((2e)�nO(1)) time.
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Algorithm 1. An Algorithm for p-mcis based on enumerating MIS.

Input: A graph G = (V,E) and positive integers �, q
Output: Yes, if there exists S ⊆ V , |S| = � and G[S] is q-colorable, No otherwise.

1. Enumerate all maximal independent sets in G. Let M = {m1,m2, . . . ,mt} be the
set of all maximal independent sets.

2. Construct a split graph G′ = (V �M,E′ = {(v,mi)| mi ∈ M, v ∈ V ∩mi}), where
G′[M ] is a clique.

3. Color each vertex in V with a color from an �-sized set of colors uniformly at
random.

4. Merge all vertices in each color class into a single vertex. Formally, replace each
color class Ci by a single vertex ci, and let N(ci) = {u | ∃v ∈ Ci, (u, v) ∈ E′}. Let
the graph after contraction be G∗ = (C �M,E∗).

5. If there exists a partition of C into q sets C1, C2, . . . , Cq such that for all i, Ci has a
common neighbor in M , then output Yes, otherwise output No. (This is based on
a Steiner Tree computation with C as terminals, see the proof for a description.)

Lemma 4.1. Algorithm 1 runs in time O(2�nO(1)) on graphs where the maximal
independent sets can be enumerated in polynomial time. Further, if (G, �, q) is a
Yes instance of p-mcis, then Algorithm 1 will output Yes with probability at
least e−l, otherwise Algorithm 1 will output No with probability 1.

Proof. We first argue the running time bound. Since we assume that maximal
independent sets are enumerable in polynomial time, Steps 1—4 are clearly poly-
nomial time. To find the partition in Step 5, we run a Steiner Tree algorithm on
the instance with C given as the set of terminals. We claim that a partition of
the desired kind exists if and only if there exists a Steiner Tree using at most q
additional vertices to connect the terminal set C. First, if the set C can be con-
nected with at most q additional vertices {s1, . . . , sq} from M , then notice that
the non-terminal vertices in the Steiner Tree constitute a dominating set for C
(indeed, any non-dominated vertex ci is necessarily disconnected from C \ {ci}).
Therefore, {N(si)\

⋃
1≤j<i N(sj) | 1 ≤ i ≤ q} gives the desired partition. On the

other hand, suppose we have a partition of C into q sets C1, C2, . . . , Cq such that
for all i, Ci has a common neighbor si in M . Note that the set S := {s1, . . . , sq}
is a Steiner Tree for C: given x ∈ Ci and y ∈ Cj , the path (x, si), (si, sj), (sj , y)
(where si = sj if i = j) lies in C ∪ S. Since finding the optimal Steiner Tree on
an instance with k terminals can be done in O(2knO(1)) time [17], we have that
the last step of the algorithm runs in time O(2�nO(1)).

We now show the correctness of the algorithm whenever the output is posi-
tive. Suppose Algorithm 1 outputs Yes. Then there exist q vertices in M that
dominates all vertices in C which implies at least one vertex in each color class
that is dominated by one or more of these q vertices. In particular, there ex-
ists a subset T ⊆ V with � vertices and a subset S ⊆ M with q vertices, such
that S dominates T . We argue that G[T ] is the desired q-colorable subgraph.
Let T := {v1, v2, . . . , v�}. For each vi, let c(vi) be the smallest j for which vi
is dominated by mj . Notice that c defines a partition of T into q sets. For all
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Algorithm 2. An Algorithm for p-mcis based on finding maximum IS.

Input: A graph G = (V,E) and a positive integers �, q
Output: Yes, if there exists S ⊆ V , |S| = l and G[S] is q-colorable, No otherwise.

– Color the graph uniformly at random with q colors. Let Ci be the color classes for
1 ≤ i ≤ q.

– Find the maximum independent sets Hi for each Ci.
– If |⋃1≤i≤q Hi| ≥ �, say Yes, otherwise say No.

1 ≤ j ≤ q, it is clear that c−1(j) is a subset of some maximal independent set,
and hence the proposed partition is a proper coloring. Therefore, (G, �, q) is a
Yes instance of p-mcis.

We now argue the probability that the algorithm finds a solution given that
the input is a Yes instance. Let (G, �, q) be a Yes instance of p-mcis, and let
T ⊆ V with |T | = �, be a solution. When we randomly color the vertices, each
vertex in T will get different colors with probability �!

��
≥ e−�. If T gets different

colors then there exists q sets in M which dominate C because there exists a
maximal independent set that contains each color class in G[T ] (since G[T ] is q-
colorable). Hence Algorithm 1 will output Yes with probability at least e−l. 
�

We can boost the success probability to a constant by executing Algorithm 1

e� times, in which case the success probability will be at least (1 − e−�)e
� ≥

1
e . It is easy to see that we can derandomize the algorithm using a (n, �, �)-
family of perfect hash functions (see Theorem 3.2) to obtain a deterministic
algorithm with running time (2e)��O(log �)nO(1) for p-mcis on graph classes for
which maximal independent sets can be enumerated in polynomial time. Since
the number of maximal cliques in chordal graphs with n vertices is bounded by
n and all maximal cliques in chordal graphs can be enumerated in polynomial
in n time, the number of independent sets in co-chordal graphs are bounded by
linear in n and they can be enumerated in polynomial in n time as well. We
therefore have the following corollary:

Corollary 4.1. p-mcis can be solved in time (2e)� · �O(log �)nO(1) on co-chordal
graphs and split graphs.

Algorithm based on finding a Maximum Independent Set. In Algorithm 2, we
describe a randomized polynomial time algorithm which succeeds with proba-
bility q−� on graph classes where Maximum Independent Set can be solved
in polynomial time.

Lemma 4.2 (�). If (G, �, q) is a Yes instance of p-mcis, then Algorithm 2
will output Yes with probability q−�, otherwise Algorithm 2 will output No with
probability 1. The algorithm runs in time Tα ·nO(1), where Tα is the time required
to find a maximum independent set up to size l in any induced subgraph of G.

Corollary 4.2. The problem of finding a �-sized q-colorable subgraph on perfect
graphs can be solved in time q��O(log �)nO(1).
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5 Kernelization Lower Bounds

In this section we show that Max Induced Bipartite Subgraph (i.e, q=2 in
p-mcis) on perfect graphs and p-mcis on split graphs do not admit polynomial
kernels unless co-NP ⊆ NP/poly.

Lower bound Machinery We begin by stating some of the known techniques
developed for showing some problems do not admit polynomial kernels under
standard complexity theoretic assumptions.

Definition 5.1 (Composition [3]). A composition algorithm (also called OR-
composition algorithm) for a parameterized problem Π ⊆ Σ∗×N is an algorithm
that receives as input a sequence ((x1, k), ..., (xt, k)), with (xi, k) ∈ Σ∗ × N for
each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N

with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial
in k. A parameterized problem is compositional (or OR-compositional) if there
is a composition algorithm for it.

We define the notion of the unparameterized version of a parameterized prob-
lem Π . The mapping of parameterized problems to unparameterized problems
is done by mapping (x, k) to the string x#1k , where # ∈ Σ denotes the blank
letter and 1 is an arbitrary letter in Σ. In this way, the unparameterized version
of a parameterized problem Π is the language Π̃ = {x#1k|(x, k) ∈ Π}. The
following theorem yields the desired connection between the two notions.

Theorem 5.1 ([3,10]). Let Π be a compositional parameterized problem whose
unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then co-NP ⊆ NP/poly.

5.1 Max Induced Bipartite Subgraph on Perfect and Split Graphs

The Max Induced Bipartite Subgraph problem is formally given as follows:

Max Induced Bipartite Subgraph (p-mibs) Parameter: k
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Does there exist S ⊆ V such that |S| = k and G[S] is bipartite?

Here, we show that unless co-NP ⊆ NP/poly, p-mibs does not have a polyno-
mial kernel when restricted to perfect graphs. We note that we are dealing here
with the case of finding a maximum induced bipartite subgraph in the interest of
exposition; a more general result that shows the hardness of finding a maximum
induced q-colorable subgraph for any fixed q ≥ 2 on the class of perfect graphs
is described in the full version of this work.

Our result here is established by demonstrating an OR-composition. Let
(G0, k), (G1, k), . . . , (Gt−1, k) be t instances of p-mibs, where every Gi is a per-
fect graph. Notice that we may assume that t ≤ 2k log k+k. This is because, by
Corollary 4.2, we may solve p-mibs in time 2k log k+k (note that q = 2) on per-
fect graphs. Therefore, if t > 2k log k+k, then we may solve every instance in time
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wij

yij

zij

aij

bij cij

dij

Fig. 1. Identity gadget Hij

t · 2k log k+k < t2, and return a trivial Yes or No instance as the output of the
composition, depending on whether there was at least one Yes instance or not,
respectively.

Thus, we assume that t ≤ 2k log k+k, and therefore, log t ≤ kO(1). For conve-
nience, we assume that t is a power of two (so that log t is an integral value).
This can be done by padding the set of instances with trivial No instances,
and at most doubling the number of instances. We construct a composed in-
stance (G, k∗) as follows. To begin with, let G be the disjoint union of all Gi,
0 ≤ i ≤ t− 1. For all i �= j add all possible edges between Gi and Gj .

Now add 2k log t identity gadgets, named Hij for 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t.
The gadget Hij consists of eight vertices {xij , yij , wij , zij , aij , bij , cij , dij}, where
the vertices {xij , yij , wij , zij} form a clique, and the vertex aij is adjacent to xij

and wij ; bij is adjacent to xij and zij ; cij is adjacent to wij and yij and dij is
adjacent to yij and zij (see Fig 1). For all 0 ≤ l ≤ t−1, if the jth bit of the log t-bit
binary representation of l is 0, then add edges from all vertices in Gl to xij and
yij . Otherwise add edges from all vertices in Gl to wij and zij . This completes
the description of the composed graph; we let k∗ = k + 12k log t ≤ k + 12k(k +
k log k) = O(k2 log k). Having shown that k∗ is polynomially dependent on k,
for simplicity, in the remaining discussion we continue refer to k∗ in terms of t.
We first show that this is indeed a valid OR-composition, and then demonstrate
that G, as described, is a perfect graph.

Lemma 5.1. The instance (G, k + 12k log t) is a Yes instance of p-mibs if,
and only if, (Gl, k) is a Yes instance of p-mibs for some 0 ≤ l ≤ (t− 1).

Proof. (⇒) Assume (G, k + 12k log t) is a Yes instance of p-mibs and let S ⊆
V (G) be a solution. We first claim that S will not contain vertices from more
than two input instances. Indeed, suppose not. Then for i1 �= i2 �= i3, let vi1 ∈
S ∩ V (Gi1 ), vi2 ∈ S ∩ V (Gi3 ) and vi3 ∈ S ∩ V (Gi3 ). Note that vi1 , vi2 , vi3 will
induce a triangle and contradict the fact that G[S] is bipartite. We now assume
that S contains vertices from two input graphs Gp and Gq. If one of them has at
least k vertices in S, then we are done. Otherwise, |S∩V (Gp)|+|S∩V (Gq)| < 2k.
Hence,
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2k∑

i=1

log t∑

j=1

|S ∩ V (Hij)| > k + 12k log t− 2k ≥ 12k log t− k

Therefore, by an averaging argument, there exists an i′ such that
∑log t

j=1 |S ∩
V (Hi′j)| ≥ 6 log t. Since vertices xij , yij , wij , zij fromHij form a complete graph,
S can contain at most 2 vertices from {xij , yij , wij , zij}. So |S ∩ V (Hij)| ≤ 6
and if |S ∩ V (Hij)| = 6 then either S ∩ V (Hij) = {aij , bij , cij , dij , xij , yij} or
S ∩ V (Hij) = {aij , bij , cij , dij , wij , zij}. We know that to meet the budget, it
must be the case that ∀j, |S ∩ V (Hi′j)| = 6.

Since p �= q there exists a j′ such that j′th bit of binary representation of
p and q are different (say 0 and 1, respectively). Hence, all the vertices from
Gp are connected to xi′j′ , yi′j′ and all the vertices from Gq are connected to
wi′j′ , zi′j′ . Hence there exists a triangle in G[S ∩ (V (Gp) ∪ V (Gq) ∪ V (Hi′j′))].
This contradicts the fact that G[S] is bipartite, showing that the case |S ∩
V (Gp)|+ |S ∩ V (Gq)| < 2k is infeasible. The remaining case is when S contains
vertices from at most one input graph (say Gp). Since |S ∩ V (Hij)| ≤ 6, S will
contain at least k vertices from V (Gp). Hence S ∩V (Gp) is a solution of (Gp, k).
(⇐) Let (Gp, k) be a Yes instance of p-mibs, and let S ⊆ V (Gp) be the solution.
Let b1b2 . . . blog t be the binary representation of p. Now consider the vertex set

T := {xij , yi,j | 1 ≤ i ≤ 2k ∧ bj = 1} ∪ {wij , zi,j | 1 ≤ i ≤ 2k ∧ bj = 0}
∪{aij , bij , cij , dij |1 ≤ i ≤ 2k ∧ 1 ≤ j ≤ log t}. (1)

It is easy to see that T involves exactly six vertices from each of the 2k log t
gadgets, and the vertices are chosen such that G[T ] induces a bipartite graph.
Further, the vertices are chosen to ensure that there are no edges between vertices
in S and vertices in T , and therefore, it is clear that G[S∪T ] induces a bipartite
subgraph of G of the desired size. Hence (G, k + 12k log t) is a Yes instance of
p-mibs. 
�
Lemma 5.2. The graph G constructed as the output of the OR-composition is
a perfect graph.

Proof. We begin by describing an auxiliary graphG′, and show thatG′ is perfect.
This graph is designed to be a graph from which G can be obtained by a series
of operations that preserve perfectness, and this will lead us to establishing
that G is perfect. The graph G′ contains a clique on t vertices, Kt. We let
V (Kt) := {v0, v1, . . . vt−1}. G′ also contains 2k log t small graphs, each of which
consist of two vertices with an edge between them (i.e, each small graph is an
edge). Let {nij, pij} for all 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t be the vertices of small
graphs. For all 0 ≤ l ≤ t− 1, if the jth bit of the log t-bit binary representation
of l is 0, then add edges from vl to nij for all i. Otherwise add edges from vl to
pij for all i.

We claim that G′ is perfect. Let H be an induced subgraph of G′. If |V (H)∩
V (Kt)| ≤ 1, then H is a forest and so in this case ω(H) = χ(H). Else, r =
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|V (H) ∩ V (Kt)| ≥ 2. Since the neighborhoods of nij and pij do not intersect,
and there are no edges between small graphs in G′, at most one vertex from
the entire set of small graphs can be part of the largest clique in H containing
V (H)∩V (Kt) (note that there exists a largest clique that contains all the vertices
in V (H)∩V (Kt)). So ω(H) ≤ r+1. Let us denote by H∗ the subgraphH [V (H)∩
{nij , pij | 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t}].

If ω(H) = r + 1, then we define the following coloring. Color all r vertices in
V (H) ∩ V (Kt) with colors 1, 2, . . . , r. For all x ∈ V (H∗) such that x is adjacent
to all vertices in V (H) ∩ V (Kt), we give a color r + 1 (note that these vertices
are independent by construction). If an x ∈ V (H∗) is not adjacent to all vertices
in V (H) ∩ V (Kt), then we can color it with a color that is already used on one
of its non adjacent vertices in V (H) ∩ V (Kt). If ω(H) = r, then there is no
vertex in V (H∗) which is adjacent to V (H) ∩ V (Kt). So we can color vertices
in V (H) ∩ V (Kt) with r colors and for a vertex x ∈ V (H∗) we can color x
with a color same as (one of) its non adjacent vertex in V (H) ∩ V (Kt).Hence
ω(H) = χ(H).

Let be G∗ be a graph obtained by embedding Gi on vi ∈ V (G′) for all 0 ≤
i ≤ t − 1 and embedding an edge on each vertex in {nij , pij | 1 ≤ i ≤ 2k, 1 ≤
j ≤ log t}. It can be observed that G∗ is isomorphic to

G \
⋃

1≤i≤2k,1≤j≤log t

{aij , bij , cij , dij}.

It follows that G∗ is perfect. Finally, observe that the graph G is Δ(G∗;E′) for
a suitable choice of E′ ⊆ E(G∗), and it follows that G is perfect. 
�

Lemmas 5.1,5.2 and Theorem 5.1, give us the following result.

Theorem 5.2. p-Max Induced Bipartite Subgraph on perfect graphs does
not admit a polynomial kernel unless co-NP ⊆ NP/poly.

We finally show that p-mcis does not admit a polynomial kernel on split
graphs unless co-NP ⊆ NP/poly by showing a “parameter-preserving reduc-
tion” from Small Universe Set Cover.

Theorem 5.3 (�). p-mcis on split graphs does not admit a polynomial kernel
unless co-NP ⊆ NP/poly.

6 Conclusion

In this paper we studied the parameterized complexity of p-mcis on perfect
graphs and showed that the problem is FPT when parameterized by the solution
size. We also studied its kernelization complexity and showed that the problem
does not admit polynomial kernel under certain complexity theory assumptions.
An interesting direction of research that this paper opens up is the study of pa-
rameterized complexity of Induced Subgraph Isomorphism on special graph
classes. As a first step it would be interesting to study the parameterized com-
plexity of Induced Tree Isomorphism parameterized by the size of the tree
on perfect graphs.
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