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Abstract. A graph G = (V,E) can be described by the characteristic
function of the edge set χE which maps a pair of binary encoded nodes
to 1 iff the nodes are adjacent. Using Ordered Binary Decision Diagrams
(OBDDs) to store χE can lead to a (hopefully) compact representation.
Given the OBDD as an input, symbolic/implicit OBDD-based graph
algorithms can solve optimization problems by mainly using functional
operations, e. g., quantification or binary synthesis. While the OBDD rep-
resentation size can not be small in general, it can be provable small for
special graph classes and then also lead to fast algorithms. In this paper,
we show that the OBDD size of unit interval graphs is O(|V |/ log |V |)
and the OBDD size of interval graphs is O(|V | log |V |) which both im-
prove a known result from Nunkesser and Woelfel (2009). Furthermore,
we can show that using our variable order and node labeling for interval
graphs the worst-case OBDD size is Ω(|V | log |V |). We use the structure
of the adjacency matrices to prove these bounds. This method may be of
independent interest and can be applied to other graph classes. We also
develop a maximum matching algorithm on unit interval graphs using
O(log |V |) operations and evaluate the algorithm empirically.

1 Introduction

The development of graph algorithms is a classic and intensively studied area
of computer science. But the requirements on graph algorithms have changed
by the emergence of massive graphs, e. g., the internet graph or social networks.
There are applications, e. g., dealing with a state transition graphs in circuit ver-
ification, where even polynomial running time may not be feasible or the input
does not fit into the main memory. In order to deal with such massive graphs,
implicit graph algorithms have been investigated, where the input is represented
by the characteristic function χE of the edge set and the nodes are encoded by bi-
nary numbers. Implicit representations can be significantly smaller than explicit
representations on structured graphs. χE can be represented by Ordered Binary
Decision Diagrams (OBDDs) introduced by Bryant [8] which are a commonly
used data structure for Boolean functions since they support many important
functional operations efficiently. A research area came up concerning the de-
sign and analysis of implicit (graph) algorithms on OBDD represented inputs
([12,13,16,25,26,27,30]). Implicit algorithms are successful in many practical ap-
plications, e. g., model checking [9], integer linear programming [18] and logic
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minimization [11]. One of the first implicit graph algorithm was the maximum
flow algorithm on 0-1-networks presented by Hachtel and Somenzi [16] which
was able to solve instances up to 1036 edges and 1027 nodes in reasonable time.

The number of functional operations of an implicit algorithm is an important
measure of difficulty [2]. Algorithms using a polylogarithmic number of opera-
tions were designed for instance for topological sorting [30], maximal matching
[6] and minimum spanning tree [3] where a matching M , i. e., a set of edges
without a common vertex, is called maximal if M is no proper subset of another
matching. The actual running time depends on the OBDD sizes which are used
for these operations which are hard to determine in general. So the practical
performance is often evaluated experimentally, e. g., for the maximum matching
problem in bipartite graphs [4] or for the maximum flow problem [16,25].

For a good running time of an implicit algorithm the size of the OBDD rep-
resenting the input graph should be small. Nunkesser and Woelfel [22] inves-
tigated the OBDD size of restricted graph classes such as interval graphs. An
interval graph is an intersection graph of intervals on the real line, i. e., two
intervals (nodes) are adjacent iff they have a nonempty intersection. If the in-
tervals have a length of 1, then the graph is called unit interval graph. (Unit)
Interval graphs were extensively studied and have many applications, e. g., in
genetics, archaeology, scheduling, and much more [15]. Nunkesser and Woelfel
[22] proved that general interval graphs with N nodes can be represented by

OBDDs of size O(N3/2 log3/4 N) while the OBDD size of unit interval graphs
is O(N/

√
logN). They also proved a lower bound of Ω(N) for general interval

graphs and Ω(N/ logN) for unit interval graphs which means that the worst-case
OBDD size of a graph from these classes is bounded below by these values.

As in [22], we use n = �logN� bits, i. e., the minimal number of bits, to encode
the nodes of a graph. Since the worst-case OBDD size is exponentially large in
the number of input bits, using χE in an implicit algorithm motivates to use a
minimal amount of input bits to avoid a large worst-case OBDD size. Aiming
for a good compression of χE , Meer and Rautenbach [19] investigated graphs
with bounded clique-width or tree-width and increases the number of bits used
for the node labeling to c · logN with constant c and were able to improve for
instance the OBDD size of cographs from O(N logN) [22] to O(N).

Our Contribution. In Section 3 we present a new method to show upper and
lower bounds of the size of an OBDD representing a graph. Using some known
structure of the adjacency matrix of interval graphs [21], we improve the bound
on general interval graphs to O(N logN) while using a more convenient way to
label the nodes than in [22]. Using a probabilistic argument, we prove a lower
bound of Ω(N logN) if we use the same labeling and variable order as for our
upper bound. We can also close the gap of the upper bound and the lower bound
in the case of unit interval graphs and show that the OBDD size is Θ(N/ logN).

In Section 4 we present a maximum matching algorithm for unit interval
graphs using only O(logN) functional operations. We were able to compute
the transitive closure of a unit interval graph using only O(logN) operations
instead of O(log2 N) operations, which are needed in general. To the best of the
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author’s knowledge, this is the first time that the labeling of nodes is used to
speed up an implicit algorithm for a large graph class as unit interval graphs
and to improve the number of functional operations. In order to implement
the algorithm efficiently, we have to extend a known result due to Woelfel [30]
to a different variable order for constructing OBDDs representing multivariate
threshold functions. In Section 5 we evaluate the implicit matching algorithm
experimentally and see that it is both very fast and space efficient.

A simple implicit representation of an interval graph is a list of N inter-
vals using Θ(logN) bits for each endpoint summing up to Θ(N logN) space.
Our results show that in the worst case the OBDD representation is almost
as good as the interval representation with the advantage that it is possible to
use o(N logN) space for some instances. Together with our implicit algorithm,
this shows that the representation of at least unit interval graphs with OBDDs
enables a good compression without loosing the usability in algorithms.

2 Preliminaries

Omitted proofs and a more detailed version of this paper can be found in [14].

OBDDs. We denote the set of Boolean functions f : {0, 1}n → {0, 1} by
Bn. Let (x0, . . . , xn−1) = x ∈ {0, 1}n be a binary number of length n and

|x| :=
∑n−1

i=0 xi · 2i the value of x. Further, let l ∈ N be a natural number
then we denote by [l]2 the corresponding binary number of l, i. e., |[l]2| = l.
Let G = (V,E) be a directed graph with node set V = {v0, . . . , vN−1} and
edge set E ⊆ V × V . Here, an undirected graph is interpreted as a directed
symmetric graph. Implicit algorithms are working on the characteristic function
χE ∈ B2n of E where n = �logN� is the number of bits needed to encode
a node of V and χE(x, y) = 1 if and only if (v|x|, v|y|) ∈ E. In order to deal
with Boolean functions, OBDDs were introduced by Bryant [8] to get a compact
representation, which supports a bunch of functional operations efficiently.

Definition 1 (Ordered Binary Decision Diagram (OBDD)).
Order. A variable order π on the input variables X = {x0, . . . , xn−1} of a

Boolean function f ∈ Bn is a permutation of the index set I = {0, . . . , n− 1}.
Representation. A π-OBDD is a directed, acyclic and rooted graph G with

two sinks labeled by the constants 0 and 1. Each inner node is labeled by an input
variable from X and has exactly two outgoing edges labeled by 0 and 1. Each edge
(xi, xj) has to respect the variable order π, i. e., π(i) < π(j).

Evaluation. An assignment a ∈ {0, 1}n of the variables defines a path from
the root to a sink by leaving each xi-node via the ai-edge. A π-OBDD Gf repre-
sents f iff for every a ∈ {0, 1}n the defined path ends in a sink with label f(a).

Complexity. The size of a π-OBDD G, denoted by |G|, is the number of
nodes in G. The π-OBDD size of a function f is the minimum size of a π-
OBDD representing f . The OBDD size of f is the minimum π-OBDD size over
all variable orders π. The width of G is the maximum number of nodes labeled
by the same input variable.
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In the following we describe some important operations on Boolean functions
which we will use in this paper (see, e. g., Section 3.3 in [29] for a detailed list).
Let f and g be Boolean functions in Bn on the variable set X = {x0, . . . , xn−1}
and Gf and Gg be OBDDs representing f and g which are also the inputs for
the operations. The negation f ∈ Bn of f can be computed in time O(1), i. e.,
given the OBDD Gf it is possible to compute the OBDD Gf in O(1) time. Let
i ∈ {0, . . . , n−1} be an index and a ci ∈ {0, 1}. The replacement by constant, i. e.,
the subfunction f|xi=ci can be computed in time O(|Gf |). Let ⊗ ∈ B2 be a binary
Boolean operation. The synthesis of f and g w.r.t. ⊗, i. e., the function h ∈ Bn

with h := f⊗g, can be computed in time O(|Gf |·|Gg |). Finally, the quantification
h := Qxi : f of f with quantifier Q ∈ {∃, ∀} is defined by ∃xi : f := f|xi=0∨f|xi=1

and ∀xi : f := f|xi=0 ∧ f|xi=1. The time needed to compute the quantification
is determined by the computation time of two replacements by constant and
one synthesis. In the rest of the paper quantifications over k Boolean variables
Qx1, . . . , xk : f are denoted by Qx : f , where x = (x1, . . . , xk).

In implicit graph algorithms, the following operation (see, e. g., [27]) is useful
to reverse the edges of a given graph.

Definition 2. Let k ∈ N, ρ be a permutation of {1, . . . , k} and f ∈ Bkn with
input vectors x(1), . . . , x(k) ∈ {0, 1}n. The argument reordering Rρ(f) ∈ Bkn

with respect to ρ is defined by Rρ(f)(x
(1), . . . , x(k)) := f(x(ρ(1)), . . . , x(ρ(k))).

This operation can be computed by just renaming the variables and repairing
the variable order using 3(k − 1)n functional operations (see [5]).

An important variable order is the interleaved variable order which is defined
on vectors of length n where the variables with the same significance are tested
one after another.

Definition 3. Let x(1), . . . , x(k) ∈ {0, 1}n be input vectors and π be a permu-

tation of {0, . . . , n − 1}. Then πk,n = (x
(1)
π(0), x

(2)
π(0), . . . , x

(k)
π(0), . . . , x

(1)
π(n−1), . . . ,

x
(k)
π(n−1)) is called k-interleaved variable order for x(1), . . . , x(k). If π = (n − 1,

. . . , 0) then we say that the variables are tested with decreasing significance.

An OBDD-based graph algorithm computes an output χO represented as an
OBDD given a characteristic function χE as an input by mainly using functional
operations. The running time depends on the actual size of the OBDDs used for
the operations during the computation which is difficult to bound in general.

However, if the input OBDD size representing a graph is large, any algorithm
using this OBDD is likely to have an inadequate running time. Beside the vari-
able order, the labeling of the nodes is another optimization parameter with huge
influence on the input size. For OBDDs representing state transitions in finite
state machines, Meinel and Theobald [20] showed that there can be an expo-
nential blowup of the OBDD size from a good labeling to a worst-case labeling.
Nevertheless, a small input OBDD size does not guarantee a good running time
since the sizes of the intermediate OBDDs do not have to be small. Indeed, an
exponential blowup from input to output size is possible [27,3].
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We denote by f|xπ(0)=aπ(0),...,xπ(i−1)=aπ(i−1)
the subfunction where xπ(j) is re-

placed by the constant aπ(j) for 0 ≤ j ≤ i−1. The function f depends essentially
on a variable xi iff f|xi=0 �= f|xi=1. A characterization of minimal π-OBDDs due
to Sieling and Wegener [28] can be often used to bound the OBDD size.

Theorem 1 ([28]). Let f ∈ Bn and for all i = 0, . . . , n− 1 let si be the number
of different subfunctions which result from replacing all variables xπ(j) with 0 ≤
j ≤ i− 1 by constants and which essentially depend on xπ(i). Then the minimal
π-OBDD representing f has si nodes labeled by xπ(i).

Basic Functions and Implicit Algorithms. The OBDD size of the equality
EQ(x, y) and greater than function GT (x, y) with EQ(x, y) = 1 ⇔ |x| = |y| and
GT (x, y) = 1 ⇔ |x| > |y| is linear in the number of input bits for an interleaved
variable order (see, e. g., [29]). For the sake of code readability, we use |x| = |y|
and |x| > |y| to denote EQ(x, y) and GT (x, y) in our algorithms. Furthermore,
by |x| > c (|x| = c) for some constant c we denote the function GT (x, y)|y=[c]2

(EQ(x, y)|y=[c]2). Every function R(x, y) ∈ B2n can be seen as a binary relation
R on the set {0, 1}n with xR y ⇔ R(x, y) = 1. The transitive closure of R(x, y)
can be computed implicitly by O(n2) functional operations using the so called
iterative squaring or path doubling technique (see, e. g., [14]).

Interval Graphs. Let I = {[ai, bi] | ai < bi and 0 ≤ i ≤ N − 1} be a set of N
intervals on the real line. The interval graph GI = (V,E) has one node for each
interval in I and two nodes v �= w are adjacent iff the corresponding intervals
intersect. If no interval is properly contained in another interval, GI is called
proper interval graph. If the length of every interval in I is equal to 1 then GI
is called unit interval graph. Notice that the set of all interval graphs does not
change if we restrict ourselves to sets I where all endpoints are different. The
definitions of proper and unit interval graphs are equivalent in the sense that
they generate the same class of interval graphs [23]. Hence, in the following we
only use the term of unit interval graphs. An undirected graph H is a (unit)
interval graph iff there is a set of (unit) intervals I such that H = GI . Due to
the one-to-one correspondence of the nodes of GI and the elements of I, we use
the notion of node and interval synonymously.

3 OBDD Size of Interval Graphs

We present a way to count the subfunctions of the characteristic function χE of
the edge set of a graph using the adjacency matrix of the graph which can give
us a more graph theoretic approach to subfunctions.

The rows (columns) of an adjacency matrix correspond to the x-variables (y-
variables) of χE(x, y). We can sort the rows of the adjacency matrix according to

a variable order π by connecting the i-th row to the input x with
∑n−1

l=0 xπ(n−l−1)·
2l = i, i. e., we let the l-th x-variable in π have significance 2n−l−1 to sort the
rows. This can be done analogously to sort the columns. Thus, the variable
order π defines a permutation of the rows and columns of the adjacency matrix
resulting in a new matrix which we call π-ordered adjacency matrix.
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Definition 4. Let G = (V,E) be a graph and π := π2,n be a 2-interleaved
variable order for the characteristic function f := χE. The π-ordered adjacency
matrix Aπ of G is defined as follows: aij = 1 iff f(x, y) = 1 with

∑n−1
l=0 xπ(n−l−1) ·

2l = i and
∑n−1

l=0 yπ(n−l−1) · 2l = j.

Notice that the π-ordered adjacency matrix is equal to the “normal” adjacency
matrix where the rows and columns are sorted by the node labels iff the variables
in π are tested with decreasing significance. The π-ordered adjacency matrix
gives us a visualization of the subfunctions in terms of blocks of the matrix.

Definition 5. Let n ∈ N and A be a 2n × 2n matrix. For 0 ≤ k ≤ n and
0 ≤ i, j ≤ 2k − 1 the block Bk

ij of A is defined by the quadratic submatrix of size

2n/2k × 2n/2k which is formed by the intersection of the rows i · 2n/2k, . . . , (i+
1) · 2n/2k − 1 and the columns j · 2n/2k, . . . , (j + 1) · 2n/2k − 1.

Let i be even. Then the block B
i/2
|a|,|b| represents the function table of the subfunc-

tion which results from replacing the first i/2 x-variables w.r.t π by a ∈ {0, 1}i/2
and the first i/2 y-variables by b ∈ {0, 1}i/2. Thus, counting the number of differ-

ent blocks B
i/2
|a|,|b| is equivalent to counting the number of different subfunctions.

Bollig and Wegener [7] use a similar approach to visualize subfunctions of a
storage access function by building a matrix whose columns and rows are sorted
according to the variable order and correspond to variables (not assignments
as in our π-ordered matrix). Notice that Aπ is not the communication matrix
which is often used to show lower bounds of the OBDD size.

Theorem 2. Let π := π2,n be the interleaved variable order with decreasing
significance and G = (V,E) be an interval graph with N := |V | nodes. The
π-OBDD size of χE can be bounded above by O(N logN).

Proof. Let f := χE , 1 ≤ k ≤ n and sk be the number of different subfunctions
f|α,β of f where α ∈ {0, 1}k is an assignment to the variables xn−1, . . . , xn−k

and β ∈ {0, 1}k is an assignment to the variables yn−1, . . . , yn−k, respectively.
It is enough to bound sk by above because replacing an additional variable by a
constant can at most double the number of subfunctions.

We label the nodes according to their position in the sorted sequence of in-
terval starting points. Recall that ai,j is one if and only if interval i intersects
interval j. Now, notice that if aj,i is zero for j > i then no interval j′ > j with a
larger starting point can cut interval i. Thus, for every column i ∈ {0, . . . , N−1},
the sequence (ai+1,i, . . . , aN−1,i) is zero or starts with a continuous sequence of
ones followed by only zeros (see also [21]).

Every subfunction f|α,β corresponds to a block Bk
|α|,|β|. Let β = 0k and |α| ≥

1, i. e., we consider the blocks Bk
|α|,0 of size 2n−k × 2n−k (see Fig. 1). As we

observed, every column of Aπ has (below the diagonal) at most one possible
changing position k such that ak,i = 1 and ak+1,i = 0. Looking at the sequence
(Bk

1,0, . . . , B
k
2k−1,0) of blocks, this fact implies that a block Bk

i,0 can only form a
new block, i. e., all previous blocks in the sequence are different to this block, if
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Fig. 1. Possible adjacency matrix with
8 nodes and framed subfunctions f|α,β

with β = 0k, |α| ≥ 1, and k = 2.
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Fig. 2. Random interval graph
where only R is generated randomly

there is a changing position in one column inside of Bk
i,0 or inside the block Bk

i−1,0

or between these two blocks. Therefore, every changing position can induce at
most two different blocks and we can bound the number of different blocks by
two times the number of possible changing positions which is at most the number
of columns of a block, i. e., 2 · 2n−k. Since the graph is symmetric and there are
2k blocks on the diagonal, we can bound the overall number of different blocks
by O(2n−k · 2k + 2k) = O(2n) and thus sk = O(2n). Summing this up over all
possible values of k, the π-OBDD size is at most O(2n · n) = O(N logN). ��
In [22] it is proved that the OBDD size of unit interval graphs is Ω(N/ logN) and
O(N/

√
logN) which we can improve by using the π-ordered adjacency matrix.

Theorem 3. Let π be the interleaved variable order with decreasing significance.
The π-OBDD size of χE for a unit interval graph G = (V,E) is O(N/ logN).

The difference between unit and general interval graphs is that in general interval
graphs there is no dependence between the columns of the π-ordered adjacency
matrix, which is important for our lower bound, while in unit interval graphs,
the row number of the last 1 entry in a column is increasing from left to right.

The upper bound proof suggests that the number of blocks Bk
i,j with a chang-

ing position roughly determines the number of xn−k−1-nodes of the OBDD.
However, explicitly constructing a worst-case interval graph with OBDD size of
Ω(N logN) is difficult because there are many dependencies between blocks for
different values of k, since a block Bk

i,j results from dividing some block Bk−1
i′,j′ .

In order to overcome these dependencies, we look at a random interval graphs
and compute the expected value of the number of different blocks for Ω(n) values
of k. We choose the length of the 1-sequence of column j for all 0 ≤ j ≤ N

2 − 1

uniformly at random from {N
2 − j, . . . , N − 1 − j} and for all N

2 ≤ j ≤ N − 1
we set the length to N − 1− j. Thus, the lengths of the 1-sequences within the
N
2 × N

2 lower left submatrix R are uniform at random in {1, . . . , N
2 } (see Fig. 2).

Lemma 1. Let G = (V,E) be a random interval graph generated by the above
process. The probability that a fixed block in R of size L1 × L2 with L1, L2 ≤
2n/2−1 has exactly one changing position is at least L2·(L1−1)

2n−1 · e−1.
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Theorem 4. The worst-case π-OBDD size of an interval graph is Ω(N logN)
where the nodes are labeled according to the interval starting points and π is an
interleaved variable order with decreasing significance.

Proof. Let G = (V,E) be a random interval graph generated by the above
process and f := χE . We know that each n/2+1 ≤ k ≤ (3/4)n induces a grid in
R consisting of 2k−1 · 2k−1 blocks Bk

i,j of size 2n−k × 2n−k. Using Lemma 1, the

expected number of blocks with exactly one changing position is at least 1
2e · 2k ·

2k · 2n−k·(2n−k−1)
2n = Ω(2n). Now, we have to ensure that these blocks correspond

to different subfunctions which are also essentially dependent on xn−k−1. The
subfunctions, where, additionally, xn−k−1 is replaced by 0 and 1, correspond to a
half of the blocks. Thus, a block is symmetric iff the corresponding subfunction
is not essentially dependent on xn−k−1. Due to the one changing position in
each block, this is not possible. Blocks Bk

i,j and Bk
i′,j with exactly one changing

position and i �= i′ clearly correspond to different subfunctions because they are
in the same block column. But blocks Bk

i,j and Bk
i′,j′ with j �= j′, i. e., from

different block columns, do not have to be different. By replacing some columns
of the blocks by constants, we ensure that this also holds. Consider the case
k = (3/4)n. For every 0 ≤ j ≤ 2k − 1 we fix the first k columns of Bk

i,j with

0 ≤ i ≤ 2k − 1 such that they represent the binary number [j]2. As a result, the
blocks Bk

i,j and Bk
i′,j′ with j �= j′ are always different. Since we looked at the

finest grid, this also holds for smaller values of k because every larger block is
equal to a union of small blocks. For k = (3/4)n the number of fixed columns is
(3/4)n and in each k → k−1 step this number is doubled, i. e., for n/2+1 ≤ k ≤
(3/4)n the number of “free” columns is 2n−k − 2(3/4)n−k · (3/4)n = Ω(2n−k) for
n large enough. Thus, the expected number of blocks with exactly one changing
position remains Ω(2n) for every n/2+ 1 ≤ k ≤ (3/4)n which means there is an
interval graph with π-OBDD size Ω(N logN) ��

4 Implicit Matching Algorithm on Unit Interval Graphs

In the following, the nodes of the unit interval graphs are labeled according to
the sorted sequence of starting points. At first, we have to look into so called
multivariate threshold functions.

Definition 6 (see, e. g., [30]). Let T ∈ Z and W ∈ N and w1, . . . , wk ∈
{−W, . . . ,W}. A Boolean function f : {0, 1}kn → {0, 1} with input vectors

x(1), . . . , x(k) ∈ {0, 1}n and f(x(1), . . . , x(k)) = 1 ⇔ ∑k
j=1 wj · |x(j)| ≥ T is called

k-variate threshold function. The set of k-variate threshold functions f ∈ Bkn

with weight parameter W is denoted by T
W
k,n.

Woelfel [30] investigated the OBDD size for the variable order where the variables
are tested with increasing significance, i. e., just the reverse of our variable order.
Hosaka et al. [17] showed that the difference of the OBDD sizes for this two orders
is at most n − 1. We can show that an OBDD using our variable order is not
only small but can also be constructed efficiently which is important in view of
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the implementation. The result also implies that we can compute a sequence of
O(1) binary synthesis of multivariate threshold functions efficiently using our
variable order if k and W are constants.

Theorem 5. Let f ∈ T
W
k,n and πk,n be the k-interleaved variable order where the

variables are tested with decreasing significance. Then we can construct a πk,n-
OBDD representing f with width O(kW ) and size O(k2Wn) in time O(k2Wn).

We use the arithmetic notation in our algorithm instead of the functional nota-
tion, e. g., we denote by |x|−|y| = 1 the conjunction of the multivariate threshold
functions f(x, y) = 1 ⇔ |x| − |y| ≥ 1 and g(x, y) = 1 ⇔ |y| − |x| ≥ −1.

Maximum Matching on Unit Interval Graphs. Let G = (V,E) be a unit
interval graph. Then we can make a simple observation (see [10]): W.l.o.g. G is
connected. Then we have {vi, vi+1} ∈ E for all i = 0, . . . , N − 2. Assume that
there is an i such that {vi, vi+1} �∈ E, then due to the connectivity there has
to be another interval with starting point left of vi and length greater than 1
(which is not possible) intersecting both intervals.

Algorithm 1 uses the characteristic function of the set of nodes which is here
equal to f(x) = 1 ⇔ |x| < N . The algorithm computes a directed subgraph
of G, which consists of the vertex disjoint paths visiting all nodes in the con-
nected components. Maximum matchings on arbitrary vertex disjoint paths can
be computed with O(log2 N) functional operations [6]. Here, we know that ev-
ery path consists of a consecutive sequence of nodes. We compute the set of
starting nodes of the paths and the connected components of the graph: Two
nodes x and y are connected iff every node z with |x| ≤ |z| < |y| has a successor
(v|z|, v|z|+1) ∈ E. This can be computed by O(logN) operations. Next, we can
compute the matching by adding every second edge of a path to the matching
beginning with the first edge. While computing this set of edges needs O(log2 N)
operations in general [6], here we can easily determine the set by comparing the
difference of two node labels due to the structure of the paths.

Algorithm 1. Implicit maximum matching algorithm for unit interval graphs

Input: Unit interval graph χE
Output: Matching χM

// Compute path graph
1: χ−→

E
(x, y) = χE(x, y) ∧ (|y| − |x| = 1)

// Compute set of starting nodes

2: F irst(z) = (|z| < N) ∧ ∀x : χ−→
E
(x, z)

// Compute set of reachable nodes
3: S(z) = ∃z′ : χ−→

E
(z, z′)

4: Reachable(x, y) = (|x| ≤ |y|) ∧ ∀z : (|x| ≤ |z| < |y|) ⇒ S(z)
5: Reachable(x, y) = Reachable(x, y) ∧ (|x| < N) ∧ (|y| < N)

// Compute matching
6: F (x) = ∃z, d : F irst(z) ∧ Reachable(z, x) ∧ (|x| − |z| = 2|d|)
7: M(x, y) = χ−→

E
(x, y) ∧ F (x)

8: χM (x, y) = M(x, y) ∨M(y, x)
9: return χM

Theorem 6. Algorithm 1 computes a maximummatching for unit interval graphs
using O(logN) functional operations.
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Fig. 3. Runtime and memory of the matching algorithms on random unit interval
graphs. Memory plot shows the ratio of S log S (space usage of the OBDD-based algo-
rithm) and number of nodes.

5 Experimental Evaluation

We evaluated the implicit maximum matching algorithm on unit interval graphs.
Unit interval graphs can be represented as balanced nonnegative strings over
{‘[’, ’]’} (see, [24]) and such strings are created randomly using the algorithm in
[1]. We generated 35 random graphs of size 2i for i = 10, . . . , 23. The nodes of
the graphs are encoded as in Section 3. We compare the OBDD-based algorithm
to the algorithm which gets the interval representation as an input, sort the
intervals according to their starting point and compute a maximum matching by
scanning this sorted sequence with the same idea used in the implicit algorithm.

Experimental Setup. We implemented the implicit algorithm with the BDD
framework CUDD 2.5.01 by F. Somenzi. The algorithms are implemented in
C++ and were compiled with Visual Studio 2012 in the default release config-
uration. All source files, scripts and random seeds are publicly available2. The
experiments were performed on a computer with a 2.6 GHz Intel Core i5 pro-
cessor and 4 GB main memory running Windows 7. The runtime is measured
by used processor time in seconds and the space usage of the implicit algorithm
is given by the maximum SBDD size which came up during the computation,
where a SBDD is a collection of OBDDs which can share nodes. Due to the small
variance of these values, we only show the mean in the diagrams.

Results. The implicit matching algorithm outperforms the explicit matching
algorithm on unit interval graphs (see Fig. 3). Even on graphs with more than
8 million nodes the implicit algorithm computes a maximum matching within
1 seconds. Storing a SBDD of size S needs O(S logS) bits. The memory dia-
gram shows that the asymptotic space usage of the implicit algorithm on these
instances is close to O(N). Recall that the unit interval representation needs
Θ(N logN) space since logN bits are needed to represent the starting points.

1 http://vlsi.colorado.edu/~fabio/CUDD/
2 http://ls2-www.cs.uni-dortmund.de/~gille/

http://vlsi.colorado.edu/~fabio/CUDD/
http://ls2-www.cs.uni-dortmund.de/~gille/
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I. e., the implicit algorithm needs less space and can compute a maximum match-
ing on larger instances than the explicit one. An interesting consequence of these
results is that the submodules of our maximum matching algorithm, namely
computing the connected components, a Hamiltonian path in every connected
component and a maximum matching on these paths, are also very fast and space
efficient which is surprising, since especially the computation of the transitive
closure is often a bottleneck in implicit algorithms.

Open Questions. Using the π-ordered adjacency matrix, we think that it is
possible to bound the OBDD size for other graph classes with a well structured
adjacency matrix, e. g., convex graphs where the nodes can be ordered such that
the neighborhood of every node consists of nodes which are consecutive in this
order. The gap between the upper and lower bound of the OBDD size of interval
graphs is O(logN). It is an interesting open question whether there is another
labeling and/or variable order such that the OBDD size is O(N) or the general
lower bound can be increased to Ω(N logN).

Even for a fixed variable order, the complexity of computing a node label-
ing for a given graph, such that the representing OBDD has minimal size, is
unknown. The π-ordered adjacency matrix seems to help to prove upper/lower
bounds on the OBDD size for a fixed labeling. Using this matrix to bound the
size of OBDDs for every labeling could be object of further research.

The investigation of implicit algorithms on special graph classes seems quite
promising and it would be interesting if the good performance can also be
achieved for other large graph classes.

Acknowledgements. I thank Beate Bollig, Melanie Schmidt and Chris
Schwiegelshohn for the valuable discussions and, together with the anonymous
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