
Sparse Square Roots�

Manfred Cochefert1, Jean-François Couturier1, Petr A. Golovach2,
Dieter Kratsch1, and Daniël Paulusma3

1 Laboratoire d’Informatique Théorique et Appliquée, Université de Lorraine,
57045 Metz Cedex 01, France

{manfred.cochefert,jean-francois.couturier,
dieter.kratsch}@univ-lorraine.fr

2 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no

3 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, UK

daniel.paulusma@durham.ac.uk

Abstract. We show that it can be decided in polynomial time whether a
graph of maximum degree 6 has a square root; if a square root exists, then
our algorithm finds one with minimum number of edges. We also show
that it is FPT to decide whether a connected n-vertex graph has a square
root with at most n−1+k edges when this problem is parameterized by
k. Finally, we give an exact exponential time algorithm for the problem
of finding a square root with maximum number of edges.

1 Introduction

Squares and square roots are classical concepts in graph theory. The square G2

of the graph G = (VG, EG) is the graph with vertex set VG such that any two
distinct vertices u, v ∈ VG are adjacent in G2 if and only if u and v are of dis-
tance at most 2 in G. A graph H is a square root of G if G = H2. Note that
there exist graphs with no square root and that there exist graphs with many
square roots. The characterization of those graphs that have a square root, or
equivalently of those graphs that are the square of a graph, has already been
studied in the 1960s. Mukhopadhyay [17] characterized squares of undirected
graphs in 1967, whereas Geller [8] did the same for directed graphs in 1968. Nei-
ther characterization yields a polynomial time algorithm for recognizing squares.
In fact, in 1994, Motwani and Sudan [16] showed that the problem of recognizing
whether a given graph has a square root is NP-complete. As we will discuss, this
fundamental result triggered a lot of research on the computational complexity
of recognizing squares of graphs and computing square roots under the presence
of additional structural assumptions. In particular, the following two recognition
questions have attracted attention; here G denotes some fixed graph class.

(1) How hard is it to recognize the graphs that are the square of a graph from G?
(2) How hard is is to recognize the graphs from G that have a square root?

� Supported by EPSRC (EP/G043434/1), ERC (267959) and ANR project AGAPE.

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 177–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 M. Cochefert et al.

Ross and Harary [18] characterized those graphs that are the square of a
tree. They proved that if a connected graph G has a tree square root, then
this root is unique up to isomorphism. Moreover, they gave an algorithm for
determining a tree that is a square root of any graph known to be the square
of some tree. Lin and Skiena [13] obtained a linear time algorithm for deciding
whether a graph is the square of a tree. They also proved that it can be decided
in linear time whether a planar graph has a square root, and their algorithm
finds such a square root if it exists. Lau and Corneil [10] gave a polynomial time
algorithm for recognizing graphs that are the square of a proper interval graph,
and they showed that the following three problems are NP-complete: recognizing
the graphs that are the square of a chordal graph, the graphs that are the square
of a split graph, and the chordal graphs that have a square root, respectively.
Lau [9] gave a polynomial time algorithm that recognizes the graphs that are the
square of a bipartite graph. Le and Tuy [11] obtained structural and algorithmic
results for squares of block graphs that generalize the aforementioned results for
squares of trees. In a later paper [12] they presented a quadratic time algorithm
for recognizing the graphs that are the square of a strongly chordal split graph.
Recently, Milanic and Schaudt [14] considered two other subclasses of chordal
graphs, namely trivially perfect graphs and threshold graphs, and they gave
linear time algorithms for recognizing the graphs from these two classes that
have a square root. Adamaszek and Adamaszek [1] proved that if a graph has a
square root of girth at least 6, then this square root is unique up to isomorphism.
Farzad, Lau, Le and Tuy [7] gave a polynomial time algorithm for recognizing
the graphs that have a square root of girth at least 6. They also showed that
this problem is NP-complete for square roots of girth 4. The latter result was
improved by Farzad and Karimi [6], who established the dichotomy by showing
that the problem of recognizing the graphs that have a square root of girth 5 is
NP-complete.

Our Results. In the first part of our paper (Section 3) we give a polynomial
time algorithm that recognizes the graphs of maximum degree 6 that have a
square root. If a square root exists, then our algorithm finds one with minimum
number of edges and thus solves the following optimization problem for graphs
of maximum degree 6.

Minimum Square Root

Input: a graph G and a positive integer s.
Question: does there exist a graph H with at most s edges such that G = H2?

It can be shown that graphs of maximum degree at most 5 that have a square
root have bounded pathwidth, which leads to a linear-time recognition algorithm
of such graphs. However, this is not the case for graphs of maximum degree at
most 6: consider the square of a wall with subdivided edges. Our approach is to
preprocess a given graph G of maximum degree at most 6 in order to obtain a
graph of bounded pathwidth.

In the second part of our paper (Section 4) we take a parameterized road to
square roots; up to our knowledge, this has not been done so far. A problem with
input size n and a parameter k is said to be fixed parameter tractable (or FPT)

Sparse Square Roots 179

if it can be solved in time f(k) · nO(1) for some function f that only depends
on k. Because any square root of a connected n-vertex graph G is a connected
spanning subgraph of G, every square root of G has at least n − 1 edges. This
means that s ≥ n − 1 for any yes-instance (G, s) of Minimum Square Root.
As such, a natural choice for the parameter would be k = s − (n − 1). This
leads to the following problem that we call the Tree +k Edges Square Root

problem: given a graph G and an integer k, has G a square root with at most
n− 1 + k edges? We show that this problem is FPT when parameterized by k.

In the third part of our paper (Section 5) we consider the Maximum Square

Root problem, which is the problem of finding a square root with maximum
number of edges. We present an exact exponential time algorithm for Maximum

Square Root. In Section 5 we also observe that it is FPT to decide whether a
square root can be obtained by at most k edge deletions.

2 Preliminaries and Structural Lemmas

We only consider finite undirected graphs without loops and multiple edges.
We refer to the textbook by Diestel [4] for any undefined graph terminology.
Let G be a graph. We denote the vertex set of G by VG and the edge set by
EG. The subgraph of G induced by a subset U ⊆ VG is denoted by G[U]. The
graph G − U is the graph obtained from G by removing all vertices in U . If
U = {u}, we also write G − u. A set S is a separator in a connected graph G
if G − S is disconnected. For two disjoint subsets of vertices X,Y in G, a set
of vertices S is an (X,Y)-separator, if G − S has no path connecting a vertex
of X with a vertex of Y. An (X,Y)-separator S is minimal, if no proper subset
of S is an (X,Y)-separator. The distance distG(u, v) between a pair of vertices
u and v of G is the number of edges of a shortest path between them. The
open neighborhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG},
and its closed neighborhood is defined as NG[u] = NG(u) ∪ {u}. Two vertices
u, v are said to be true twins if NG[u] = NG[v], and u, v are false twins if
NG(u) = NG(v). A vertex u is simplicial, if NG(u) is a clique. The degree of
a vertex u ∈ VG is denoted dG(u) = |NG(u)|. The maximum degree of G is
Δ(G) = max{dG(v)|v ∈ VG}. A vertex of degree one is said to be a pendant
vertex.

A tree decomposition of a graph G is a pair (X,T) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold: i)

⋃
i∈VT

Xi = VG, ii) for each edge xy ∈ EG,
x, y ∈ Xi for some i ∈ VT , and iii) for each x ∈ VG the set {i | x ∈ Xi} induces
a connected subtree of T . The width of a tree decomposition ({Xi | i ∈ VT }, T)
is maxi∈VT {|Xi| − 1}. The treewidth tw(G) of a graph G is the minimum width
over all tree decompositions of G. If T restricted to be a path, then we say that
(X,T) is a path decomposition of a graph G. The pathwidth pw(G) of G is the
minimum width over all path decompositions of G.

In the remainder of this section we give some structural results about sparse
square roots. We start with the following observation that we will frequently use.

180 M. Cochefert et al.

Observation 1. Let H be a square root of a connected graph G.

i) If u is a pendant vertex of H, then u is a simplicial vertex of G.
ii) If u, v are pendant vertices of H adjacent to the same vertex, then u, v are

true twins in G.
iii) If u, v are pendant vertices of H adjacent to different vertices, then u and v

are not adjacent in G unless H = K2.

We now state a number of lemmas, the proofs of which have been omitted due
to space restrictions, although we note that the proof of Lemma 1 is straightfor-
ward. Moreover, Lemmas 1 and 2 can also be found implicitly in the paper of
Ross and Harary [18]. Because Ross and Harary [18] consider tree square roots,
whereas we are concerned with finding general square roots, we cannot apply
their results directly, and as such we give explicit statements of these lemmas.

Lemma 1. Let H be a square root of G. Let {u1, . . . , ur} ⊆ VH for some r ≥ 3
induce a star in H with central vertex u1. Let u3, . . . , ur be pendant and {u2} be
a ({u1, u3, . . . , ur}, VH \{u1, . . . , ur})-separator. Then {u1, . . . , ur} is a clique of
G, and {u1, u2} is a minimal ({u3, . . . , ur}, VG \ {u1, . . . , ur})-separator of G.

Lemma 2. Let {u1, . . . , ur}, r ≥ 3, be a clique in a connected graph G such
that {u1, u2} is a minimal ({u3, . . . , ur}, VG \ {u1, . . . , ur})-separator. Let also
{x1, . . . , xp} = NG(u1) \ {u1, . . . , ur} and {y1, . . . , yq} = NG(u2) \ {u1, . . . , ur}.
Let G be a graph having a square root.

i) For any square root H of G, the following holds: u1u2 ∈ EH and, either
u3u1, .., uru1 ∈ EH , u3u2, . . . , uru2 /∈ EH , u1x1, . . . , u1xp /∈ EH , and {u2}
is a minimal ({u1, u3, . . . , ur}, VH \ {u1, . . . , ur})-separator in H or, sym-
metrically, u3u1, . . . , uru1 /∈ EH , u3u2, . . . , uru2 ∈ EH , u2y1, . . . , u2yq /∈ EH

and {u1} is a minimal ({u2, .., ur}, VH \ {u1, .., ur})-separator in H.
ii) If u1, u2 are true twins in G, then either u1x1, . . . , u1xp ∈ EH or

u2y1, . . . , u2yq ∈ EH , G is the union of two complete graphs with vertex sets
{u1, . . . , ur} and {u1, u2, x1, . . . , xp}, and G has two isomorphic square roots
with edge sets {u1u2, . . . , u1ur} ∪{u2x1, . . . , u2xp} and {u2u1, u2u3, . . . , u2ur}
∪{u1x1, . . . , u1xp} respectively.

iii) If NG[u2] \ NG[u1] �= ∅, then u2u1, . . . , uru1 ∈ EH , u3u2, . . . , uru2 /∈ EH ,
u1x1, . . . , u1xp /∈ EH , and G has a square root such that {u1, . . . , ur} in-
duces the star with central vertex u1 such that u3, . . . , ur are pendant in H;
moreover, this square root can be obtained from any square root of G by the
deletion of the edges uiuj for i, j ∈ {2, . . . , r}, i �= j.

Lemma 3. Let H be a square root of G. Suppose that H contains the graph
F shown in Fig. 1 as a subgraph, r ≥ 3, u4, . . . , ur are pendant vertices of
H, dH(u2) = r − 1, u1u2u3 is an induced path in H that is not included in
any cycle of length at most 6, p, q ≥ 1, {x1, . . . , xp} = NH(u1) \ {u2} and
{y1, . . . , yq} = NH(u3)\{u2}. Then {u1, . . . , ur} is a clique in G such that either
r = 3 or {u1, u2, u3} is a minimal ({u4, . . . , ur}, VG \ {u1, . . . , ur}) separator in
G and the following holds:

Sparse Square Roots 181

yq

u1 u2 u3

u4 ur

x1

xp

y1

Fig. 1. The graph F

i) {x1, . . . , xp} = NG(u1)∩NG(u2) \ {u3, . . . , ur} and {y1, . . . , yq} = NG(u2)∩
NG(u3) \ {u1, u4, . . . , ur};

ii) dG(u2) = p+ q + r − 1;
iii) NG(u1) ∩NG(u3) = {u2, u4, u5, . . . , ur};
iv) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈ {1, . . . , p}

and j ∈ {1, . . . , q}.
Lemma 4. Let {u1, . . . , ur}, r ≥ 3, be a clique in a connected graph G such
that either r = 3 or {u1, u2, u3} is a minimal ({u4, . . . , ur}, VG \ {u1, . . . , ur})-
separator. Assume also that

i) {x1, . . . , xp} = NG(u1) ∩ NG(u2) \ {u3, . . . , ur} �= ∅ and {y1, . . . , yq} =
NG(u2) ∩NG(u3) \ {u1, u4, . . . , ur} �= ∅;

ii) dG(u2) = p+ q + r − 1;
iii) NG(u1) ∩NG(u3) = {u2, u4, . . . , ur};
iv) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈ {1, . . . , p}

and j ∈ {1, . . . , q}.
Then for any square root H of G (if there is one), the graph F shown in Fig. 1
is a subgraph of H such that dH(u2) = r− 1, {x1, . . . , xp} = NH(u1) \ {u2} and
{y1, . . . , yq} = NH(u3) \ {u2}. Moreover, if H is a square root of G, then the
graph obtained from H by deleting the edges uiuj for i, j ∈ {4, . . . , r}, i �= j, is
a square root of G, where u4, . . . , ur are pendant vertices in H.

Lemma 5. Let u, v be true twins in a connected graph G with at least three
vertices. Let also G′ be the graph obtained from G by the deletion of v. If H ′

is a square root of G′, then the graph H obtained from H ′ by adding v with
NH(v) = NH′(u) (i.e, by adding a false twin of u) is a square root of G. If H is
a square root of G such that u, v are false twins in H, then the graph H ′ obtained
by the deletion of v is a square root of G′.

3 Square Roots for Graphs of Bounded Degree

In this section we show that theMinimum Square Root problem is polynomial-
time solvable for graphs of maximum degree at most 6. We start with some
additional terminology and lemmas, the proofs of which have been omitted.

Let G be a connected graph, and let u ∈ VG. We let L0(u), . . . , Ls(u)(u)
denote the levels in the breadth-first search (BFS) from u, that is, Li(u) = {v ∈
VG | distG(u, v) = i} for i = 1, . . . , s(u), where s(u) is the number of levels in
the decomposition. Hence Li = ∅ if i > s(u).

182 M. Cochefert et al.

Lemma 6. For a connected graph G and u ∈ VG,

pw(G2) ≤ max{|Li(u) ∪ Li+1(u) ∪ Li+2(u)||0 ≤ i ≤ s(u)} − 1.

We define the following auxiliary problem.

Minimum Square Root with Labels

Input: a graph G, positive integer s and sets of edges R,B ⊆ EG.
Question: does there exist a graph H with at most s edges such that G = H2,

R ⊆ EH and B ∩ EH = ∅?

We will use the following lemma.

Lemma 7. The Minimum Square Root with Labels problem can be solved
in time O(f(t)n) for n-vertex graphs of treewidth at most t.

Using Lemma 6 we show that if a square root of G has no induced paths with
internal vertices of degree 2 that are parts of short cycles, then G has bounded
pathwidth.

Lemma 8. Let H be a square root of a graph G with Δ(G) ≤ 6 such that H
has no induced path xyz with dH(y) = 2, dH(x) ≥ 2 and dH(z) ≥ 2 that is not
included in any cycle of length at most 6 in H. Then pw(G) ≤ 71.

The following example shows that we cannot obtain an analog of Lemma 8
for graphs of maximum degree at most 7. Let H ′ be a cubic graph. We construct
a graph H as follows. For each vertex u ∈ VH′ with NH′ (u) = {v1, v2, v3}, u is
replaced by three pairwise adjacent vertices u1, u2, u3, and the edges uv1, uv2, uv3
are replaced by u1v1, u2v2, u3v3. We observe that H is cubic and that Δ(H2) =
7. However, not only pw(H2) but also tw(H2) is not bounded, because the
treewidth of H ′ can be arbitrary.

We can now prove the main theorem of this section.

Theorem 1. Minimum Square Root can be solved in time O(n5) for n-vertex
graphs of maximum degree at most 6.

Proof. The proof is constructive. Our algorithm has two stages. At the first stage
we exclude induced paths from square roots with internal vertices of degree two
that are not included in short cycles in roots.

Let G be a graph of maximum degree at most 6. We use two sets of edges
R and B, and we are trying to find square roots that contain edges of R but
that do not contain any edge of B, that is, we are solving Minimum Square

Root with Labels. Initially, R = ∅ and B = ∅. We recursively apply the
following rule. Here, we say that a sequence u1, . . . , u� is maximal if it cannot
be extended by adding new vertices in the beginning or in the end in such a way
that conditions i)–v) of step 1 are fulfilled for the modified sequence.

Sparse Square Roots 183

Path reduction rule.

1. Find a maximal sequence of vertices u1, . . . , u�, � ≥ 3 such that
i) ui, ui+1, ui+2 are pairwise adjacent for i ∈ {1, . . . , �− 2},
ii) the sets {x1, . . . , xp} = NG(u1)∩NG(u2)\{u1, u2, u3} and {y1, . . . , yq} =

NG(u�−1) ∩NG(u�) \ {u�−2, u�−1, u�} are not empty,
iii) dG(u2) = p + q + 2 if � = 3, and dG(u2) = p + 3, dG(u�−1) = q + 3,

dG(ui) = 4 for i ∈ {3, �− 2} if � ≥ 4,
iv) NG(ui) ∩NG(ui+2) = {ui+1} for i ∈ {1, . . . , �− 2}, and
v) if � ≤ 4, then x1u�, . . . , xpu� /∈ EG, y1u1, . . . , yqu1 /∈ EG, and if � = 3,

then xiyj /∈ EG for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.
2. Set R′ = {u1u2, u2u3, . . . , u�−1u�}∪ {x1u1, . . . , xpu1}∪ {y1u�, . . . , yqu�} and

B′ = {x1u2, . . . , xpu2}∪{y1u2, . . . , yqu2}∪{uiui+2|1 ≤ i ≤ �−2}∪{zu1|z ∈
NG(u1) \ {u2, u3, x1, . . . , xp}} ∪ {zu�|z ∈ NG(u�) \ {u�−2, u�−1, y1, . . . , yq}}.

3. If R ∩B′ �= ∅ or R′ ∩B �= ∅, then stop and return no.
4. Delete vertices u2, u4 . . . , u� from G, and also delete the edge u1u3 if � = 3.

Set R = (R ∪R′) ∩ EG and B = (B ∪B′) ∩ EG. Set s = s− �+ 1.

To show that the path reduction rule is safe, consider an instance (G,R,B, s)
of Minimum Square Root with Labels and assume that u1, . . . , u� is a
sequence of vertices that satisfies i)–v) of step 1. By Lemma 4, for any square
root H of G (if it exists), R′ ⊆ EH and B′ ∩ EH = ∅ for the sets R′ and B′

constructed at step 2. Hence, if R ∩ B′ �= ∅ or R′ ∩ B �= ∅, then we have a no-
answer. Assume that we did not stop at step 3, and denote by (Ĝ, R̂, B̂, ŝ) the
instance of Minimum Square Root with Labels obtained at step 4. Let H
be a solution for (G,R,B, s). Because R′ ⊆ EH and B′ ∩ EH = ∅ by Lemma 4,
it is straightforward to check that the graph Ĥ obtained from H by the deletion
of u2, . . . , u�−1 is a solution for (Ĝ, R̂, B̂, ŝ). From another side, if Ĥ is a solution
for (Ĝ, R̂, B̂, ŝ), then H obtained by joining u1 and u� by a path of length �− 1
is a solution for (G,R,B, s).

We apply the path reduction rule recursively and as long as possible. As-
sume that we did not stop and returned no. To simplify notation, assume that
(G,R,B, s) is the obtained instance of Minimum Square Root with Labels.
Because we cannot apply the path reduction rule, by Lemma 3, we conclude that
for any square root H of G, H has no induced path u1u2u3 with dH(u2) = 2,
dH(u1) ≥ 2 and dH(u3) ≥ 2 that is not included in any cycle of length at most
6 in H , as otherwise we could apply the rule for the maximal sequence that
includes u1, u2, u3. By Lemma 8, pw(G) ≤ 71 if G has a square root. Using
Bodlaender’s algorithm [3], we check whether pw(G) ≤ 71. If pw(G) > 71, then
we conclude that we have a no-answer. Otherwise, we solve Minimum Square

Root with Labels using Lemma 7.

To conclude the proof, it remains to evaluate the complexity. Each application
of the path reduction rule can be done in time O(n3m) where m is the number
of edges. We can check all triples u1, u2, u3 of pairwise adjacent vertices in time
O(n3). Then we can construct the sets NG(u1)∩NG(u2)\{u1, u2, u3}, NG(u1)∩
NG(u2) \ {u1, u2, u3} and check conditions i)–v) in time O(m). Observe that we

184 M. Cochefert et al.

possibly can extend the sequence u1, . . . , ui for i ≥ 3 only if NG(ui−1)∩NG(ui)\
{ui−2, ui−1, ui} contains exactly one element. Hence, the total time needed to
obtain a maximal sequence if u1, u2, u3 are given is O(m). Also the checking
whether we have a no-answer at step 3 and construction of the new instance can
be done in linear time. As the rule is applied at most n times, we conclude that
the total time for this step is O(n5). It remains to observe that the Bodlaender’s
algorithm [3] runs in linear time, and Square Root with Labeled Edges is
also can be solved in linear time for graphs of bounded treewidth.
�

We observe that by the same approach we can solve other variants of square
root problems for graphs of maximum degree at most 6. We can find, for example,
a square root of maximum size. Also we can count all square roots.

4 The Tree +k Edges Square Root Problem

In this section we prove the following theorem.

Theorem 2. The Tree +k Edges Square Root problem can be solved in
time 2O(k4) +O(n4m) time on graphs with n vertices and m edges.

Proof. Due the space restrictions, we only sketch the proof here.
We need the following auxiliary problem:

Tree +k Edges Square Root with Labels

Input: an n-vertex graph G, a non-negative integer k and two subsets of edges
R,B ⊆ EG.

Parameter: k.
Question: does there exist a graph H with at most n+ k − 1 edges such that

G = H2, R ⊆ EH and B ∩ EH = ∅?
In order to prove the theorem, we reduce Tree +k Edges Square Root to
Tree +k Edges Square Root with Labels where the size of the graph in
the obtained instance is bounded by a function of k. Then we solve Tree +k
Edges Square Root with Labels by a brute force algorithm.

Let G be a connected graph with n vertices and m edges, and let k be a
positive integer. First, we check whether G has a tree square root using the
algorithm by Lin and Skiena [13], and if we find one, then we stop and return
a yes-answer. From now on we assume that any square root of G (if there is
one) has cycles. Clearly, connected graphs that have square roots have no cut
vertices. Hence, we also check whether G is 2-connected, and stop and return no

otherwise. We introduce two sets of edges R and B. Initially R = B = ∅.
As in the algorithm of Lin and Skiena [13], we “trim” pendant edges in po-

tential roots. Since the root we are looking for is not a tree, our trimming rule
is more sophisticated and based on Lemmas 1 and 2.

Trimming Rule

1. Find a pair S = {u1, u2} of two adjacent vertices such that one component
of G−S has a set of vertices {u3, . . . , ur} such that {u1, . . . , ur} is a clique.

Sparse Square Roots 185

2. If either NG[u1] = NG[u2] or NG[u1] \NG[u2] �= ∅ and NG[u2] \NG[u1] �= ∅,
then stop and return no.

3. If NG[u1] \NG[u2] �= ∅, then rename u1 by u2 and u2 by u1.
4. Set R′ = {u1u2, . . . , u1ur} and B′ = {uiuj|2 ≤ i < j ≤ r} ∪ {u1x|x ∈

NG(u1) \ {u2, . . . , ur}}.
5. If R ∩ B′ �= ∅ or R′ ∩ B �= ∅, then stop and return no. Otherwise, set

R = R ∪ R′, B = B ∪ B′, delete u3, . . . , ur from G and delete the edges
incident to these vertices from R and B.

We apply this rule recursively until we either stop and return no or else
obtain an instance of Tree +k Edges Square Root Labels such that we
cannot apply the rule anymore. Suppose that we did not return no. To simplify
notations, assume that (G,R,B) is the obtained instance. We need the set R
constructed up to now. Let R0 = R. We now apply the following rule, which is
based on Lemmas 3 and 4.

Path Reduction Rule

1. Find a triple S = {u1, u2, u3} of pairwise adjacent vertices such that

i) either NG(u1) ∩NG(u2) ∩NG(u3) = ∅ or NG(u1) ∩NG(u2) ∩NG(u3) =
{u3, . . . , ur} is a clique of G and S is a ({u4, . . . , ur}, VG \ {u1, . . . , ur})-
separator,

ii) {x1, . . . , xp} = NG(u1)∩NG(u2)\{u1, . . . , ur} and {y1, .., yq} = NG(u3)∩
NG(u2) \ {u1, . . . , ur} are not empty,

iii) dG(u2) = p+ q + r − 1,
iv) NG(u1) ∩NG(u3) = {u2, u4, . . . , ur}, and
v) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈

{1, . . . , p} and j ∈ {1, . . . , q}.
2. SetR′ = {u2u1, u2u3, . . . , u2ur} and B′ = {x1u2, . . . , xpu2}∪{y1u2, .., yqu2}∪

{u1u3, . . . , u1ur} ∪ {u3u4, . . . , u3ur}.
3. If R ∩B′ �= ∅ or R′ ∩B �= ∅, then stop and return no.
4. Delete the vertices u2, u4 . . . , ur from G and delete all edges incident to these

vertices from R and B. If u1u3 ∈ B, then delete u1u3 from B. Include u1u3

in R. Modify G by adding edges x1u3, . . . , xpu3 and y1u1, . . . , yqu1 in G. Put
these edges in B.

We apply the rule recursively and as long as possible. Suppose that we did not
stop and return no. As before, assume that (G,R,B) is the obtained instance.
Recall that R0 is the set of vertices placed in R by the trimming rule. Let
R1 = R0 ∩R and R2 = R \R1. Now we are ready to describe the final reduction
rule based on Observation 1 and Lemma 5.

Simplicial Vertex Reduction Rule

1. Find the set S of all simplicial vertices v of G such that v is not incident to
the edges of R2 and if v is incident to an edge of R1, then all other edges
incident to v are in B.

2. If |VG \ S| > 15k − 14, then stop and return no.

186 M. Cochefert et al.

3. Construct the partition S1, . . . , St of S such that any two vertices in each
Si are true twins, and vertices from Si and Sj are not adjacent if i �= j. Let
X1, . . . , Xt be the sets of vertices incident to the edges of R1 in S1, . . . , St

respectively.
4. If t > 15k − 14, then stop and return no.
5. If for some i ∈ {1, . . . , t}, all the edges of R1 incident to the vertices of Xi

have no common end-point, then stop and return no.
6. For each i ∈ {1, . . . , t}, if |Xi| > 1, then delete arbitrary |Xi| − 1 vertices of

Xi from G and Si, and delete the edges of R,B incident to these vertices.
7. For each i ∈ {1, . . . , t}, if |Si| > 15k−13, then delete arbitrary |Si|−15k+13

vertices of Si \Xi from G.

For these rules, we prove that if we stop while executing them, then the
problem has no solution. If (Ĝ, R̂, B̂) is the instance obtained by one application
of the rules, then Ĝ is connected,Tree +k Edges Square Root with Labels

has a yes-answer for (Ĝ, R̂, B̂) if and only if Tree +k Edges Square Root

with Labels has a yes-answer for (G,R,B), and Ĝ has at most (15k−14)(15k−
12) vertices.

To complete the proof of Theorem 2, it remains to solve the obtained reduced
instance (Ĝ, R̂, B̂) and evaluate running time. As the obtained graph has at
most (15k − 14)(15k − 12) vertices, it has at most (15k − 14)(15k − 12)((15k −
14)(15k − 12)− 1)/2 edges. Therefore, we can solve Tree +k Edges Square

Root with Labels for the obtained instance in time 2O(k4) by brute force
checking all edge subsets of size at most |VĤ | + k − 1. Now we observe that
the trimming and path reduction rules are applied at most n times to construct
(Ĝ, R̂, B̂). Each application of the trimming rule can be done in time O(n2m) and
each application of the path reduction rule takes O(n3m). Finally, the simplicial
vertex reduction rule can be done in O(nm). Hence, the total running time is

2O(k4) +O(n4m).
�
Note we reduced Tree +k Edges Square Root to Tree +k Edges

Square Root with Labels, i.e., we did not obtain a polynomial kernel.
In fact, a polynomial kernel for Tree +k Edges Square Root can be ob-
tained by similar reduction rules, but the obtained graph would have more than
(15k − 14)(15k − 12) vertices.

5 Conclusions

We proved that Tree +k Edges Square Root is FPT when parameterized by
k. We also showed that Minimum Square Root can be solved in polynomial
time for graphs of maximum degree at most 6. It would be interesting to know
whether this degree restriction is tight. Is it possible to solve the problem in
polynomial time for graphs of maximum degree at most Δ for some fixed Δ ≥ 7?
Is there a fixed Δ such that Minimum Square Root is NP-complete for graphs
of maximum degree at most Δ? This question is open even if we ask about the
existence of any (not necessarily minimum) square root. Another interesting

Sparse Square Roots 187

direction of research is to consider square roots of bounded degree. It is trivial
to check whether a graph has a square root of maximum degree at most two.
Can the existence of a subcubic square root be tested in polynomial time?

Is it possible to construct an exact algorithm for Minimum Square Root

that is better than the trivial exact algorithm for this problem? It can be noted
that if we consider Maximum Square Root (i.e. we ask about a square root
of maximum size), then such an algorithm exists. This algorithm is based on the
simple observation that to construct a square root H from a given graph G, for
every pair of adjacent edges not belonging to a triangle we have to delete at least
one of these edges. Since the structure of the paths in G is crucial, the following
auxiliary graph P(G) with vertex set EG is useful: for any distinct edges e1 = xy
and e2 = yz with a common end-point such that xz /∈ EG, e1e2 is an edge of
P(G). Clearly, for a given graph G, P(G) is a subgraph of the line graph of G.
This leads to the following lemma, the proof of which has been omitted.

Lemma 9. Let H be a spanning subgraph of G. Then H is a square root of the
graph G if and only if EH is an independent set of P(G) and for all adjacent
vertices u, v in G, u and v are at distance at most 2 in H.

By using Lemma 9 we obtain an exact exponential time algorithm for Max-

imum Square Root.

Theorem 3. Maximum Square Root can be solved by an exact exponential
time algorithm of running time O∗(3m/3), where m denotes the number of edges
of the input graph.

Proof. Let G be a graph. We compute the graph P(G), enumerate all maximal
independent sets I of P(G), and verify for each I ⊆ E whether G is the square
of the graph HI = (VG, I). Out of those graphs HI that are square roots of
G, return the one with maximum number edges; if no such graph HI has been
found, then G has no square roots. Correctness follows from Lemma 9. The
graph P(G) can be computed in time O(m2). All the maximal independent sets
of the m-vertex graph P(G) can be enumerated in time O∗(3m/3) using the
polynomial delay algorithm of Tsukiyama et al. [19], since P(G) has at most
3m/3 maximal independent sets [15]. Finally, for each maximal independent set
I, we can check in time O(nm) whether (HI)

2 = G. Hence the overall running
time of our algorithm is O∗(3m/3).
�

Lemma 9 also implies that it can be decided in time O∗(2k) whether a square
root of a graph G can be obtained by deleting at most k edges. It is sufficient
to check whether P(G) has a vertex cover C of size at most k such that H =
(VG, EG \C) is a square root of G. All vertex covers of size at most k of a graph
can be enumerated by adapting the standard O∗(2k) branching algorithm for
the vertex cover problem (see e.g. [5]).

Aingworth, Motwani and Harary [2] proved that if H is a square root of a
connected n-vertex graph G �= Kn, then |EG \EH | ≥ n−2. Trivially, a complete
graph is its own square root. Hence, we conclude the paper with the following

188 M. Cochefert et al.

question: is it FPT to decide whether a connected n-vertex graph G �= Kn has
a square root with at least |EG| − |VG| − k + 2 edges when parameterized by k?
In particular, can it be decided in polynomial time whether a connected graph
G has a square root with exactly |EG| − |VG|+ 2 edges?

References

1. Adamaszek, A., Adamaszek, M.: Uniqueness of graph square roots of girth six.
Electr. J. Comb. 18(1) (2011)

2. Aingworth, D., Motwani, R., Harary, F.: The difference between a graph and its
square. Util. Math. 54, 223–228 (1998)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Diestel, R.: Graph theory, 4th edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2010)

5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

6. Farzad, B., Karimi, M.: Square-root finding problem in graphs, a complete di-
chotomy theorem. CoRR abs/1210.7684 (2012)

7. Farzad, B., Lau, L.C., Le, V.B., Tuy, N.N.: Complexity of finding graph roots with
girth conditions. Algorithmica 62(1-2), 38–53 (2012)

8. Geller, D.P.: The square root of a digraph. J. Combinatorial Theory 5, 320–321
(1968)

9. Lau, L.C.: Bipartite roots of graphs. ACM Transactions on Algorithms 2(2),
178–208 (2006)

10. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal
graph. SIAM J. Discrete Math. 18(1), 83–102 (2004)

11. Le, V.B., Tuy, N.N.: The square of a block graph. Discrete Mathematics 310(4),
734–741 (2010)

12. Le, V.B., Tuy, N.N.: A good characterization of squares of strongly chordal split
graphs. Inf. Process. Lett. 111(3), 120–123 (2011)

13. Lin, Y.L., Skiena, S.: Algorithms for square roots of graphs. SIAM J. Discrete
Math. 8(1), 99–118 (1995)

14. Milanic, M., Schaudt, O.: Computing square roots of trivially perfect and threshold
graphs. Discrete Applied Mathematics (in press)

15. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
16. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Applied

Mathematics 54(1), 81–88 (1994)
17. Mukhopadhyay, A.: The square root of a graph. J. Combinatorial Theory 2, 290–

295 (1967)
18. Ross, I.C., Harary, F.: The square of a tree. Bell System Tech. J. 39, 641–647 (1960)
19. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating

all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

	Sparse Square Roots
	1 Introduction
	2 Preliminaries and Structural Lemmas
	3 Square Roots for Graphs of Bounded Degree
	4 TheTree+
	Edges Square Root Problem
	5 Conclusions
	References

