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Preface

The 39th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2013) took place in Lübeck, Germany, June 19–21, 2013.

The WG conference has a long tradition. Since 1975, it has taken place 22
times in Germany, four times in The Netherlands, twice in Austria, the Czech
Republic, and France as well as once in Italy, Slovakia, Switzerland, Norway, the
UK, Greece, and in Israel.

The WG conference aims to connect theory and practice by demonstrating
how graph-theoretic concepts can be applied to various areas of computer science
and by extracting new graph-theoretic problems from applications. The goal is
to present new research results and to identify and explore directions of future
research.

There were 61 submissions. Each submission was carefully reviewed by at
least four members of the Program Committee. The committee accepted 34
papers to be presented at the workshop. The program also included three inspir-
ing invited talks: Ola Svensson (EPFL Lausanne, Switzerland) presented “New
Approaches for Approximating TSP,” Berthold Vöcking (RWTH Aachen, Ger-
many) discussed the problem “Online Independent Set for Graphs with Bounded
Inductive Independence,” and Feodor F. Dragan (Kent State University, USA)
gave a talk about “Tree-like Structures in Graphs: a Metric Point of View.”

We would like to thank the authors who submitted their papers, the speak-
ers, the members of the Program Committee, and the external reviewers. Special
thanks to the local Organizing Committee; without their performance the con-
ference could not have been such a success.

We are grateful to the Institute of Computer Science at the University of Ro-
stock, the Institute of Computer Science of the Christian-Albrechts-Universität
zu Kiel, and the Institute of Theoretical Computer Science at the University of
Lübeck.

August 2013 Andreas Brandstädt
Klaus Jansen

Rüdiger Reischuk
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Abstracts



Tree-Like Structures in Graphs:

A Metric Point of View�

Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH 44242, USA

dragan@cs.kent.edu

Abstract. Recent empirical and theoretical work has suggested that
many real-life complex networks and graphs arising in Internet applica-
tions, in biological and social sciences, in chemistry and physics have
tree-like structures from a metric point of view. A number of graph
parameters trying to capture this phenomenon and to measure these
tree-like structures were proposed; most notable ones being the tree-
stretch, tree-distortion, tree-length, tree-breadth, Gromov’s hyperbolicity
of a graph, and cluster-diameter and cluster-radius in a layering partition
of a graph. If such a parameter is bounded by a constant on graphs then
many optimization problems can be efficiently solved or approximated
for such graphs. We discuss these parameters and recently established re-
lationships between them for unweighted and undirected graphs; it turns
out that all these parameters are at most constant or logarithmic factors
apart from each other. We give inequalities describing their relationships
and discuss consequences for some optimization problems.

* Dedicated to Professor Andreas Brandstädt, on the occasion of his 65th birthday.



Overview of New Approaches

for Approximating TSP

Ola Svensson

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

ola.svensson@epfl.ch

Abstract. In this extended abstract, we survey some of the recent
results on approximating the traveling salesman problem on graphic
metrics.

We start by briefly explaining the algorithm of Oveis Gharan et al. [1]
that has strong similarities to Christofides’ famous 3/2-approximation
algorithm. We then explain the main ideas behind an alternative ap-
proach introduced by Mömke and the author [2]. The new ingredient
in our approach is that it allows for the removal of certain edges while
simultaneously yielding a connected, Eulerian graph, which in turn leads
to a decreased cost. We also overview the exciting developments for TSP
on graphic metrics that rapidly followed: an improved analysis of our
algorithm by Mucha [3] yielding an approximation guarantee of 1.44,
and the recent developments by Sebö and Vygen [3] who gave a 1.4-
approximation algorithm.

Finally, we point out some interesting open problems where our tech-
niques currently fall short of applying to more general metrics.



Online Independent Set for Graphs

with Bounded Inductive Independence

Berthold Vöcking

Department of Computer Science
RWTH Aachen University

voecking@cs.rwth-aachen.de

In this invited talk, we present techniques and restuls from a joint work with
Oliver Göbel, Martin Hoefer, Thomas Kesselheim, and Thomas Schleiden [1]. We
study online algorithms for maximum (weight) independent set on graph classes
with bounded inductive independence number like interval and disk graphs with
applications to, e.g., task scheduling and spectrum allocation. In the considered
online setting, it is assumed that nodes of an unknown graph arrive one by one
over time. An online algorithm has to decide whether an arriving node should be
included into the independent set. We explain that this natural and practically
relevant online problem cannot be studied in a meaningful way within a classical
competitive analysis as the competitive ratio on worst-case input sequences is
lower bounded by Ω(n). This devastating lower bound holds even for randomized
algorithms on unweighted interval graphs and, hence, for the most restricted
graph class under consideration.

As a worst-case analysis is pointless, we study online independent set in a
stochastic analysis. Instead of focussing on a particular stochastic input model,
we present a generic sampling approach that enables us to devise online al-
gorithms achieving performance guarantees for a variety of input models. In
particular, our analysis covers stochastic input models like the secretary model,
in which an adversarial graph is presented in random order, and the prophet-
inequality model, in which a randomly generated graph is presented in adversar-
ial order. Our sampling approach bridges thus between stochastic input models
of quite different nature. In addition, we show that the same performance guaran-
tees can be obtained for a period-based input model that is inspired by practical
admission control applications.

Using the graph sampling approach, we devise an online algorithm for the
unweighted independent set problem with competitive ratio O(ρ2) for graphs
with inductive independence number ρ. This way, we achieve competitive ratio
O(1) for independent set on interval and disk graphs. For weighted independent
set, we obtain a competitive ratio of O

(
ρ2 logn

)
where n denotes the number

of nodes. In addition, we show that this bound is almost best possible for interval
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and disk graphs. In particular, we prove a lower bound on the competitive ratio
for weighted independent set on interval graphs of order Ω

(
log n/ log2 logn

)
.

Reference

1. Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, Berthold
Vöcking. Online Independent Set Beyond the Worst-Case: Secretaries, Prophets,
and Periods. Technical Report. CoRR abs/1307.3192, 2013.
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Tree-Like Structures in Graphs:

A Metric Point of View�

Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH 44242, USA
dragan@cs.kent.edu

Abstract. Recent empirical and theoretical work has suggested that
many real-life complex networks and graphs arising in Internet applica-
tions, in biological and social sciences, in chemistry and physics have
tree-like structures from a metric point of view. A number of graph
parameters trying to capture this phenomenon and to measure these
tree-like structures were proposed; most notable ones being the tree-
stretch, tree-distortion, tree-length, tree-breadth, Gromov’s hyperbolicity
of a graph, and cluster-diameter and cluster-radius in a layering partition
of a graph. If such a parameter is bounded by a constant on graphs then
many optimization problems can be efficiently solved or approximated
for such graphs. We discuss these parameters and recently established re-
lationships between them for unweighted and undirected graphs; it turns
out that all these parameters are at most constant or logarithmic factors
apart from each other. We give inequalities describing their relationships
and discuss consequences for some optimization problems.

Recent empirical and theoretical work has suggested that many real-life complex
networks and graphs arising in Internet applications, in biological and social
sciences, in chemistry and physics have tree-like structures from a metric point
of view. A number of graph parameters trying to capture this phenomenon and
to measure these tree-like structures were proposed; most notable ones being the
tree-stretch and the tree-distortion of a graph, the tree-length and the tree-breadth
of a graph, the Gromov’s hyperbolicity of a graph, the cluster-diameter and the
cluster-radius in a layering partition of a graph.

The tree-stretch ts(G) of a graph G = (V,E) is the smallest number t such
that G admits a spanning tree T = (V, U) with dT (x, y) ≤ t · dG(x, y) for every
x, y ∈ V . The tree-distortion td(G) of a graph G = (V,E) is the smallest number
α such that G admits a (not necessarily spanning, possibly weighted and having
Steiter points) tree T = (V ∪ S,U) with dG(x, y) ≤ dT (x, y) ≤ α · dG(x, y)
for every x, y ∈ V . The tree-length tl(G) (resp., tree-breadth tb(G)) of a graph
G is the smallest number λ such that G admits a Robertson-Seymour’s tree-
decomposition with bags of diameter (resp., radius) at most λ in G. A graph G
is δ-hyperbolic if for any four vertices u, v, w, x, the two larger of the distance

� Dedicated to Professor Andreas Brandstädt, on the occasion of his 65th birthday.

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 F.F. Dragan

sums d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ.
The hyperbolicity hb(G) of a graph G is the smallest number δ such that G is
δ-hyperbolic.

A layering of a graph G = (V,E) with respect to a start vertex s is the
decomposition of V into the spheres Li = {u ∈ V : d(s, u) = i}, i = 0, 1, 2, . . . , r.
A layering partition LP (s) = {Li

1, . . . , L
i
pi

: i = 0, 1, 2, . . . , r} of G is a partition

of each Li into clusters Li
1, . . . , L

i
pi

such that two vertices u, v ∈ Li belong to

the same cluster Li
j if and only if they can be connected by a path outside the

ball Bi−1(s) of radius i − 1 centered at s. The cluster-diameter Δs(G) and the
cluster-radius Rs(G) in a layering partition LP (s) (with respect to s) of a graph
G are defined as follows: Rs(G) is the smallest number r such that for any cluster
C ∈ LP (s) there is a vertex v ∈ V with C ⊆ Br(v); Δs(G) := max{dG(x, y) :
x, y belong to the same cluster of LP (s)}.

Each of these graph parameters provides a measure of how close metrically
a given graph is to a tree. If such a parameter is bounded by a constant on a
graph G, then many optimization problems on G can be solved or approximated
efficiently. Note that for a tree T , ts(T ) = td(T ) = 1, tl(T ) = tb(T ) = length of
the longest edge in T , and hb(T ) = Rs(G) = Δs(G) = 0 (i.e., for trees, one has
the smallest possible values for those parameters).

In this talk, we discuss these parameters and recently established relationships
between them for unweighted and undirected graphs. It turns out that all these
parameters are at most constant or logarithmic factors apart from each other.
In particular, the following inequalities hold for any n-vertex unweighted and
undirected graph G = (V,E):

1) tb(G) ≤ tl(G) ≤ 2 · tb(G), Rs(G) ≤ Δs(G) ≤ 2 ·Rs(G) ([folklore]);
2) hb(G) ≤ tl(G) ≤ O(hb(G) · logn) and hb(G) ≤ Δs(G) ≤ O(hb(G) · logn)

([4,5]);
3) ts(G) ≥ td(G) ≥ 1

3Δs(G) and td(G) ≤ 2 ·Δs(G) + 2 for every s ∈ V ([6]);
4) Rs(G) ≤ max{3 · td(G) − 1, 2 · td(G) + 1} for every s ∈ V ([6]);
5) tl(G)− 1 ≤ Δs(G) ≤ 3 · tl(G), Rs(G) ≤ 2 · tl(G) for every s ∈ V ([7,8]);
6) tb(G)− 1 ≤ Rs(G) ≤ 3 · tb(G) ([10]);
7) tl(G) ≤ td(G) ≤ ts(G), tb(G) ≤ �ts(G)/2� ([10]);
8) ts(G) ≤ 2 · tb(G) · log2 n and ts(G) ≤ 2 · td(G) · log2 n ([10]).

Inequalities in 2) and 3) imply that the tree-distortion td(G) of a δ-hyperbolic
graph G is at most O(δ logn). However, a stronger additive version of this result
holds [4,5]: Every n-vertex δ-hyperbolic graph G = (V,E) admits an unweighted
tree T = (V, U) (without Steiner points), constructible in linear time, such that
dT (x, y)− 2 ≤ dG(x, y) ≤ dT (x, y) +O(δ logn) for any x, y ∈ V . Furthermore, it
is easy to show that any graph G admitting a tree T with dG(x, y) ≤ dT (x, y) ≤
dG(x, y) + r for any x, y ∈ V is r-hyperbolic. So, the hyperbolicity of a graph
G is in fact an indicator of an embedabily of G in a tree with an additive
distortion. It follows also from the inequalities listed that the tree-stretch ts(G)
of a δ-hyperbolic graph G is at most O(δ log2 n).

While hb(G), Rs(G), Δs(G) for a given graph G can be computed in poly-
nomial time (in at most O(n4) time for hb(G) and in at most O(nm) time
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for Rs(G) and Δs(G) (see [2,3])) for any n-vertex, m-edge graph G, checking
whether ts(G) is at most t and whether tl(G) is at most λ are NP-complete
problems in general unweighted graphs for every t > 3 [1] and every λ > 1 [12]
(similar NP-completeness results hold also for td(G) and tb(G)). The inequalities
listed show that Δs(G) gives a near 3-approximation of tl(G) and of td(G) and
an O(log n)-approximation of ts(G), while Rs(G) gives a near 3-approximation
of tb(G).

The above inequalities and results provide not only efficiently computable
bounds on those parameters but also serve as basis for constructing best ap-
proximation algorithms for the corresponding optimization problems which are
NP-hard in general. For example, using the relationship between tl(G) and Δs(G)
and the fact that a layering partition of a graph G can be constructed in linear
time (see [3]), in [8] a linear time algorithm is provided which construct for a
given graph G a Robertson-Seymour’s tree-decomposition with bags of diameter
at most 3 · tl(G) + 1. Using the relationship between td(G) and Δs(G), in [6] an
efficient 6-approximation algorithm was provided for the problem of minimum
distortion embedding of a graph to a tree. The previous approximation bound
was 27. Using the relationship between tb(G) and ts(G), in [10] an efficient
(log2 n)-approximation algorithm was provided for the problem of constructing
for a given graph G a tree t-spanner with minimum stretch t. Using the rela-
tionship between tb(G) and ts(G), [9] discusses also how to “turn”, with a slight
increase in the number of trees and in the stretch, a multiplicative tree spanner
into a small set of collective additive tree spanners (see [11] for the definition).

Acknowledgement. I would like to use this opportunity to thank all people
who contributed to this topic.
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Abstract. In this extended abstract, we survey some of the recent
results on approximating the traveling salesman problem on graphic
metrics.

We start by briefly explaining the algorithm of Oveis Gharan et al. [1]
that has strong similarities to Christofides’ famous 3/2-approximation
algorithm. We then explain the main ideas behind an alternative ap-
proach introduced by Mömke and the author [2]. The new ingredient
in our approach is that it allows for the removal of certain edges while
simultaneously yielding a connected, Eulerian graph, which in turn leads
to a decreased cost. We also overview the exciting developments for TSP
on graphic metrics that rapidly followed: an improved analysis of our
algorithm by Mucha [3] yielding an approximation guarantee of 1.44,
and the recent developments by Sebö and Vygen [3] who gave a 1.4-
approximation algorithm.

Finally, we point out some interesting open problems where our tech-
niques currently fall short of applying to more general metrics.

Keywords: approximation algorithms, graph theory, traveling salesman
problem.

1 The Traveling Salesman Problem and Christofides’
Algorithm

In the traveling salesman problem (TSP) we are given n cities with pairwise
distances and we wish to find the shortest possible tour that visits each city
exactly once. A natural and commonly made assumption is that the distances
obey the triangle inequality, i.e., the distance cij between cities i and j is no
longer than the sum of the distances between i and k and between k and j
(that is, cij ≤ cik + ckj). The assumption that the distances obey the triangle
inequality can be seen to be equivalent to allowing the tour to visit each city
at least once instead of exactly once, which in turn is equivalent to finding a
connected Eulerian graph of minimum total cost. Recall that an Eulerian graph
is a graph where each vertex has even degree. We can thus formulate TSP with
metric distances as follows:

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 5–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Metric-TSP

Given: A graph G = (V,E) with nonnegative edge costs {ce}e∈E .
Find: A connected Eulerian graph G = (V,E′) where E′ ⊆ E may contain

several copies of the same edge so as to minimize
∑

e∈E′ ce.

Note that with the above definition we can assume that the graph is complete
and that the costs satisfy the triangle inequality (as we can always replace an
edge by the shortest path between its endpoints).

The metric-TSP is one of the most fundamental NP-hard optimization prob-
lems. In spite of a vast amount of research several important questions remain
open. While the problem is known to be NP-hard to approximate with a ratio
better than 185/184 [4], the best upper bound is still the 1.5-approximation al-
gorithm obtained by Christofides [5] more than three decades ago. Recall that
an α-approximation algorithm is a polynomial time algorithm that is guaranteed
to find a solution of cost within a factor α of optimum.

We now describe Christofides’ beautiful algorithm before continuing to more
recent results. While it is deceptively simple, more sophisticated techniques have
not yet led to an improved approximation guarantee to date. Christofides’ algo-
rithm works in two steps. In the first step, we pick a minimum spanning tree
T = (V,ET ) of the graph; this ensures connectivity. In the second step, we find a
minimum cost matching M of the vertices of odd degree in T ; this ensures that
each vertex has even degree. Clearly E ∪M is a feasible solution. We proceed
by upper bounding its cost in terms of the optimal cost, denoted by OPT. As
removing an edge from the optimal tour gives a spanning tree of cost less than
OPT, we have

∑
e∈ET

ce ≤ OPT. We shall now finish the analysis by proving that∑
e∈M ce ≤ OPT/2. This follows from observing that the optimal tour induces

two perfect matchings (one dashed and one solid) of the odd degree vertices as
depicted below:

By using the triangle inequality, one of these matchings must have cost at most
OPT/2 and since M was picked to be a minimum matching we have

∑
e∈M ce ≤

OPT/2 as required.
In the following sections, we present recent developments that present poten-

tial approaches for improving upon the 1.5-approximation guarantee; these ap-
proaches are indeed known to perform better on an important special case called
graph-TSP. Finally, in Section 4, we point out some interesting open problems
where our techniques currently fall short of applying to more general metrics.
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2 Graph-TSP and Christofides Algorithm with Sampling

In a major achievement, Oveis Gharan et al. [1] presented an adaptation of
Christofides’ algorithm with performance guarantee strictly better than 1.5 for
the important special case of graph-TSP defined as follows:

Graph-TSP

Given: A graph G = (V,E) with unit edge costs.
Find: A connected Eulerian graph G = (V,E′) where E′ ⊆ E may contain

several copies of the same edge so as to minimize
∑

e∈E′ ce = |E′|.

Note that the above definition is equivalent to the metric-TSP except that all
edges have the same cost. One can see that this is equivalent to the metric-TSP
on shortest path metrics of unweighted graphs. In contrast to TSP on Euclidean
metrics and to TSP on planar graphs that admit PTASs (see [6,7] for Eucledian
metrics and [8,9] for planar graphs), graph-TSP seems to capture the difficulty of
the metric-TSP in the sense that, as stated in [9], it is APX-hard and the lower
bound 4/3 on the integrality gap of the standard linear programming relaxation
is established using a graph-TSP instance. In fact, there is a famous conjecture
stating that the standard relaxation approximates metric-TSP within a factor
4/3 (see e.g. [10]). We note that all of the results discussed in this extended
abstract also upper bounds the integrality gap of the relaxation for graph-TSP
and thus narrows the gap between the upper and lower bounds. To summarize,
the motivation for studying graph-TSP stems from the fact that it captures
many of the difficulties of metric-TSP but at the same time, it is easier to argue
about. The formulation is also more graph theoretic (no weights) and therefore
perhaps appeals more to researchers in graph theory.

Let us now return to the approach of Oveis Gharan et al. [1]. As aforemen-
tioned, their algorithm is inspired by Christofides’ algorithm. To motivate their
approach it is instructive to look at instances where Christofides’ algorithm fails
to achieve a better approximation guarantee than 1.5. Such a family of graphs
is depicted below:

Note that an optimal tour has length n (the number of vertices) by using the
edges along the “border”. However, if we in the first step of Christofides’ algo-
rithm pick the minimum spanning tree consisting of the solid edges then the
algorithm will return a tour of a cost that approaches 1.5n when the number of
vertices tend to infinity.

What went wrong and how can we fix this? By closer inspection, we can see
that the tour of high cost was returned because we picked a “bad” spanning tree
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in the first step. This leads to the natural idea that instead of always picking
a minimum spanning tree let us pick one at random. Specifically, Oveis Gha-
ran et al. [1] modify Christofides’ algorithm by changing the first step of the
algorithm: instead of picking a minimum spanning tree they use the standard
linear programming relaxation to sample a random spanning tree according to
the maximum entropy distribution. They then use several interesting properties
of this distribution (it belongs to a class of measures called strongly Rayleigh)
and the structure of near-min cuts. The very sophisticated analysis of the rather
simple algorithm shows that it is a 1.5 − ε-approximation algorithm for graph-
TSP, where ε > 0 is a small constant. The details of their method is beyond the
scope of this extended abstract and we refer the reader to their paper [1]. We
would also like to mention that a similar “sampling” idea was previously used to
get the current best O(log n/ log logn)-approximation algorithm for asymmetric
TSP [11]. In the next section, we will see an alternative method for approxi-
mating TSP that perhaps leads to slightly more complicated algorithms but in
return a simpler analysis with better guarantees for graph-TSP.

3 Finding a Tour by Deleting Edges

In Christofides’ algorithm (and in the modified version of the last section) we
first ensure connectivity by picking a spanning tree and then fix the parity of the
degrees by adding a perfect matching of the vertices of odd degree. We shall now
explain an alternative method that was introduced by Mömke and the author [2]
that is inspired by earlier works that related the cost of a 2-edge connected graph
to the length of a tour by Fredrickson and Ja’Ja’ [12] and Monma, Munson, and
Pulleyblank [13].

To explain the main ideas in a simple setting, we restrict our discussion to
cubic 2-edge connected graphs; that is, graphs where each vertex has degree 3
and at least 2-edges need to be removed in order to disconnect the graph. It is
well known that for such graphs there exists a distribution μ of perfect matchings
so that the probability that an edge e is in a randomly picked matching is exactly
1/3. Given this result, a natural way to obtain a connected Eulerian graph given
a cubic 2-edge connected graph G = (V,E) is as follows: pick a perfect matching
M according to μ and return E ∪M . An example of the algorithm is depicted
below where the picked perfect matching is depicted in bold and the resulting
Eulerian graph is on the right-hand-side:
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As we add a perfect matching to a cubic graph, each vertex in (V,E ∪M) will
have degree 4 so it is Eulerian and it is connected (as (V,E) is connected).
However, the cost of the tour will be |E|+ |M | = 3n/2 +n/2 = 2n, which might
only approximate the optimal tour within a factor of 2.

Once again we can ask ourselves what went wrong and how to improve the
algorithm. The key observation is that instead of adding a copy of every edge
in the matching we might remove some of them to obtain an Eulerian graph
of smaller cost. The simplest algorithm would simply return (V,E \M) where
each vertex has degree 2 so it is Eulerian but the problem is that it might
not be connected. To ensure connectivity, we introduce the idea of “removable
pairing” in [2] which specifies the edges that can be safely removed without
disconnecting the graph. Instead of giving the formal definition here, we give
the high level idea. Consider a cubic 2-edge connected graph G = (V,E). It is
well-known that the vertices of such a graph can be ordered v1, v2, . . . , vn such
that for i = 2, . . . , n − 1, vi has a neighbor vk to the left (i.e., k < i) and a
neighbor v� to the right (i.e., � > i)1. Now direct each edge to the incident
vertex that appears later in the ordering and let the set R ⊆ E of removable
edges be those edges that are directed to a vertex of indegree at least 2. See
the left-hand-side of the figure below for an example; the vertices are numbered
according to their ordering and the removable edges are dashed. The algorithm
now proceeds by picking a matching according to μ and then it outputs the
graph (V,E ∪ (M \R) \ (M ∩R)). An example of the execution is below where
the fat edges depict the picked matching:

1

2

3

5

4 6

Again one can see that each vertex has degree 2 or 4 so the graph is Eulerian.
Moreover, using that at most one edge incident to every vertex is taken in M
one can prove that the graph stays connected. Finally, the expected cost of
the tour is EM∈μ[|E| + M \ R − M ∩ R] = |E| + E[M \ R] − E[M ∩ R] =
4/3|E|−2/3|R| = 2n−2/3 · (n+1) = 4n/3−2/3 where we used that |R| = n+1
and PrM∈μ[e ∈M ] = 1/3 for every edge e.

In summary, we have used the idea that one can delete edges to correct parity
instead of just adding them. Very similar methods yield the tight result that any
subcubic (every vertex has degree at most 3) 2-edge connected graph has a tour
of length at most 4n/3 − 2/3 which settles a conjecture by Boyd et al. [14] in

1 This is called an st-numbering of a graph.
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the affirmative. Boyd et al. proved that any cubic 2-edge connected graph has a
tour of length 4n/3 improving upon a previous results by Gamarnik et al. [15].

For general graphs, our algorithm gets more involved and in the original paper
we solve a min-cost circulation problem to find a large set of removable edges.
This was first proved to give a 1.461-approximation algorithm for graph-TSP and
the analysis was later improved by Mucha [3] who showed that our algorithm
yields a 1.44-approximation algorithm. The current best 1.4-approximation algo-
rithm for graph-TSP by Sebö and Vygen [16] uses Ear decompositions together
with the concept of removable edges in a very clever way. To keep the discus-
sion brief we refer the reader to those papers and also to the recent survey by
Vygen [17].

4 Some Open Problems

A major open problem is to give a 4/3-approximation algorithm for metric-TSP.
Natural subgoals include that of giving a 1.5 − ε-approximation algorithm for
metric-TSP and that of giving a 4/3-approximation algorithm for graph-TSP.
Our algorithm in [2] may actually give a better approximation guarantee for
graph-TSP than 1.44. Indeed, for so-called half-integral solutions we show that
its approximation guarantee is 4/3 which is tight with respect to the standard
linear programming relaxation.

As a final note, let me point out a natural special case of metric-TSP where our
current techniques fall short. Given a cubic 3-edge connected graph G = (V,E)
with weights {wv}v∈V on the vertices, can you find a connected Eulerian graph
G = (V,E′) so that

∑
{u,v}∈E′

wu+wv

2 ≤ 4
3

∑
v∈V wv? If all the vertices have the

same weight this is simply graph-TSP but if they have different weights the prob-
lem becomes more complex: we are currently unable to give a better guarantee
than 1.5, which is simply implied by Christofides’ algorithm from 1976.
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Abstract We show that for every forest T the linear rank-width of T is
equal to the path-width of T , and we show that the linear clique-width
of T equals the path-width of T plus two, provided that T contains
a path of length three. It follows that both linear rank-width and lin-
ear clique-width of forests can be computed in linear time. Using our
characterization of linear rank-width of forests, we determine the set of
minimal excluded acyclic vertex-minors for the class of graphs of linear
rank-width at most k.

1 Introduction

Rank-width [29] is a graph parameter introduced by Oum and Seymour with the
goal of efficient approximation of the clique-width [9] of a graph. Linear rank-
width can be seen as the linearized variant of rank-width, similar to path-width,
which can be seen as the linearized variant of tree-width. While path-width is
a well-studied notion, much less is yet known about linear rank-width. Indeed,
any graph of k-bounded path-width has k-bounded linear rank-width, but con-
versely the difference is unbounded. For example, the class of all complete (bipar-
tite) graphs has linear rank-width at most 1, but unbounded path-width. Linear
clique-width, a linearized version of clique-width, was introduced independently
by several authors when studying the computational complexity of clique-width
(see for instance the works by Gurski et al. [11,13,14,15,16], and the paper [27]
by Lozin and Rautenbach). The computation of the linear clique-width of some
graph classes have been investigated by Heggernes et al. [17,18,19]. Linear rank-
width is equivalent to linear clique-width in the sense that any graph class has
bounded linear clique-width if and only if it has bounded linear rank-width.

Computing linear rank-width is NP-complete in general. In fact, it is proved
in [11] that computing linear clique-width is NP-complete and one can easily
reduce the computation of linear clique-width to the computation of linear rank-
width. Moreover, very little is known about efficient computation of linear rank-
width on restricted graph classes. The only known results are for special types
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of graphs, such as for complete (bipartite) graphs, and linear clique-width is
known to be polynomial time computable on thickend paths [19] and k-path
powers [17]. Even for the very natural class of forests efficient computability was
open. In contrast, many classes are known that allow efficient computation of
path-width [3,4,5,10,12,24,28,31].

In this paper, we provide the first non-trivial graph class on which linear
rank-width can be computed in polynomial (even linear) time. We prove

Theorem 1. Linear rank-width and linear clique-width of forests can be com-
puted in linear time.

We obtain Theorem 1 as a corollary of the following theorems.

Theorem 2. The linear rank-width of any forest equals its path-width.

Theorem 3. Let T be a tree. If T contains a path of length 3, then lcw(T ) =
pw(T ) + 2. Otherwise, lcw(T ) = pw(T ) + 1.

While it was known that the class of all trees has unbounded linear rank-
width (see [12] for a combinatorial proof) and unbounded path-width, Theorem 2
is somewhat surprising, because it actually equates the two structurally very
different parameters.

It is known that the linear clique-width of any graph is bounded by its path-
width plus 2 [11]. Since linear rank-width is bounded by linear clique-width, the
same bound carries over to linear rank-width. We show that the linear rank-
width of any graph is bounded by its path-width. This is not hard to prove, but
it seems it was not written down yet. For forests we show that the converse holds,
too. Our proof uses the characterization of path-width by the cops and invisible
robber game [23]. Given an ordering of the vertices of a forest T witnessing the
linear rank-width of T , we construct a winning strategy for the cops. Here it is
not sufficient for the cops to search the vertices according to the given ordering,
but a more involved strategy yields the result. Indeed, our proof method is
constructive in the sense that it shows how to transform the given ordering into
a winning strategy for the cops (and a path decomposition).

It is known that the (linear) rank-width does not increase when taking vertex-
minors, and, given k, the set of minimal excluded vertex-minors for the class of
graphs of rank-width at most k is known to be computable [20]. However, until
now, explicit sets of minimal excluded vertex-minors are only known for circle
graphs [7], distance-hereditary graphs [20], and for graphs of linear rank-width at
most one [1]. For graphs of linear rank-width at most k, some minimal excluded
vertex-minors were established in [22]. Using Theorem 2, we determine the set
of minimal excluded acyclic vertex-minors for linear rank-width k. It turns out
that they coincide with the minimal excluded minors for graphs of path-width
at most k that are acyclic [32].

Summary. Section 2 introduces the terminology and the notions of linear rank-
width, path-width and the cops and invisible robber game. In Section 3 we prove
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that linear rank-width and path-width coincide on forests (Theorem 2), and in
Section 4 we prove Theorem 3 characterizing the linear clique-width of forests.
In Section 5 we give the set of minimal excluded acyclic vertex-minors for the
class of graphs of linear rank-width k, and we conclude with Section 6.

2 Preliminaries

For a set A we denote the power set of A by 2A. We let A\B := {x ∈ A | x /∈ B}
denote the difference of two sets A and B. For a subset X of a ground set A let
X := A \ X . For two sets A and B let AΔB := (A \ B) ∪ (B \ A) denote the
symmetric difference of A and B. For an integer n > 0 we let [n] := {1, . . . , n}.

In this paper, graphs are finite, simple and undirected, unless stated otherwise.
Let G be a graph. We denote the vertex set of G by V (G) and the edge set by
E(G). We regard edges as two-element subsets of V (G). For a vertex v ∈ V (G)
we let NG(v) := {u ∈ V (G) | u 
= v, {v, u} ∈ E(G)} denote the set of neighbors
of v (in G). The degree of v (in G) is degG(v) := |NG(v)|. A partition of V (G)
into two sets X and Y with X ∪̇Y = V (G) is called a cut in G. We denote it
by (X,Y ). A tree is a connected, acyclic graph. A leaf of a tree is a vertex of
degree one. A path is a tree where every vertex has degree at most two. The
length of a path is the number of its edges. The distance between two vertices
u, v ∈ V (G) is the length of a shortest path from u to v. A rooted tree is a tree
with a distinguished vertex r, called the root. The height of a rooted tree is the
maximal length of a path from the root to a leaf (counted in terms of edges).
Let T be a rooted tree with root r. Let v ∈ V (T ). The tree T v is the subtree of
T induced by those vertices u ∈ V (T ) such that the path from r to u contains
v. For a rooted tree T it is sometimes convenient to orient the edges of T in the
direction away from the root, thus obtaining an oriented tree.

Path-Width. A path decomposition of a graph G is a pair (P,B), where P is
a path and B = (Bt)t∈V (P ) is a family of subsets Bt ⊆ V (G), satisfying

1. For every v ∈ V (G) there exists a t ∈ V (P ) such that v ∈ Bt.
2. For every e ∈ E(G) there exists a t ∈ V (P ) such that e ⊆ Bt.
3. For every v ∈ V (G) the set {t ∈ V (P ) | v ∈ Bt} is connected in P .

The width of a path decomposition (P,B) is defined as w(P,B) := max{|Bt| |
t ∈ V (P )} − 1. The path-width of G is defined as

pw(G) := min{w(P,B) | (P,B) is a path decomposition of G}.

Paths have path-width ≤ 1. Indeed, the graphs of path-width ≤ 1 are precisely
the disjoint unions of caterpillars, i.e. of the graphs that contain a path P such
that every vertex has distance at most one to some vertex of P . There is no
finite upper bound on the path-width of trees. Indeed, the rooted binary tree Th

of height h satisfies pw(Th) = �h/2� [30].
A path decomposition (P,B) of G is small if any two distinct vertices t, t′ ∈

V (P ) satisfy Bt 
⊆ Bt′ . The following lemma is not hard to prove.

Lemma 4. Any graph G has a small path decomposition of width pw(G). ��
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Linear Rank-Width. For sets R and C an (R,C)-matrix is a matrix where the
rows are indexed by elements in R and columns indexed by elements in C. (Since
we are only interested in the rank of matrices, it suffices to consider matrices up
to permutations of rows and columns.) For an (R,C)-matrix M , if X ⊆ R and
Y ⊆ C, we let M [X,Y ] be the submatrix of M where the rows and the columns
are indexed by X and Y respectively. If M is an (R,C)-matrix and when the
context is clear we will identify the row indexed by x ∈ R with x (similarly for
the column indexed by y ∈ C); hence we will say for instance that a subset X
of R is a basis for the rows of M if the rows indexed by X form a basis for the
rows of M and similarly for other linear algebra terminologies involving rows (or
columns).

Let AG be the adjacency (V (G), V (G))-matrix of G. For a graph G, let
v1, . . . , vn be a linear ordering of V (G). Every index i ∈ [n] induces a cut (Xi, Xi),
where Xi = {v1, . . . , vi}. The cutrank of the ordering v1, . . . , vn is defined as

cutrkG(v1, . . . , vn) := max{rk(AG[Xi, Xi]) | i ∈ [n]}.

The linear rank-width of G is defined as

lrw(G) := min{cutrkG(v1, . . . , vn) | v1, . . . , vn is a linear ordering of V (G)}.

Disjoint unions of caterpillars have linear rank-width ≤ 1. Ganian [12] gives
an alternative characterization of the graphs of linear rank-width ≤ 1 as thread
graphs. In addition, he proves that there is no finite upper bound on the linear
rank-width of trees.

The Cops and Invisible Robber Game. We now introduce the cops and
invisible robber game characterizing path-width. Let G be a graph and let k ≥ 0
be an integer. The cops and invisible robber game on G (with game parameter k)
is played by two players, the cop player and the robber player, on the graph G.
The cop player controls k cops and the robber player controls the robber. Both
the cops and the robber move on the vertices of G. Some of the cops move to at
most k vertices and the robber stands on a vertex r not occupied by the cops.
At all times, the robber is invisible to the cops. Initially, no cops occupy vertices
and the robber chooses a vertex to start playing. In each move, some of the cops
fly in helicopters to at most k new vertices. During the flight, the robber sees
which position the cops are approaching and before they land she quickly tries
to escape by running arbitrarily fast along paths of G to a vertex r′, not being
allowed to run through a vertex occupied by a cop. Hence, if X ⊆ V (G) is the
cops’ position, the robber stands on r ∈ V (G) \X , and after the flight, the cops
occupy the set Y ⊆ V (G), then the robber can run to any vertex r′ within the
connected component of G \ (X ∩ Y ) containing r. The cops win if they land a
cop via helicopter on the vertex occupied by the robber. The robber wins if she
can always elude capture. A play is a sequence of cop positions X0, X1, X2, . . .
with X0 := ∅ and |Xi| ≤ k for all i. At each step of a play, we can describe the
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set of cleared vertices as follows. At the position X0, the set of cleared vertices
is A0 := ∅. After the cops’ move to Xi (for i > 0), the set of cleared vertices is

Ai := (Ai−1 ∪Xi) \ {r ∈ V (G) | there is a path from V (G) \Ai−1

to r in G \ (Xi−1 ∩Xi)}.

Winning strategies are defined in the usual way. The invisible cop-width of G,
icw(G), is the minimum number of cops having a winning strategy on G.

A winning strategy for the cops is monotone, if for any play X1, X2, X3, . . .
played according to the strategy, the sets A0, Ai, A2, . . . form a non-decreasing se-
quence (with respect to ⊆). The monotone invisible cop-width of G, monicw(G),
is the minimum number of cops having a monotone winning strategy on G.

Theorem 5 ([2,26]). Any graph G satisfies pw(G)+1 = icw(G) = monicw(G).
��

3 Linear Rank-Width and Path-Width

In this section we prove that on forests, linear rank-width and path-width coin-
cide. Due to space constraints some proofs are omitted.

Lemma 6. Any graph G satisfies lrw(G) ≤ pw(G).

Definition 7. Let G be a graph and let (X,Y ) be a cut in G. A vertex x ∈ X
is a standard vertex (of the cut) if x has exactly one neighbor in Y .

Fact 8. Let T be a tree and let (X,Y ) be a cut in T .

1. Any two distinct rows of AT [X,Y ] have at most one common non-zero po-
sition.

2. Let B ⊆ X be a basis of the rows of M . A vertex x ∈ X \ B cannot be
generated by less than |NT (x) ∩ Y | elements of B.

Lemma 9 (Spanning dependent vertices). Let T be a tree and let (X,Y )
be a cut in T . Let B ⊆ X be a basis of the row space of AT [X,Y ]. For x ∈ X \B
with NT (x) ∩ Y 
= ∅ let B′ ⊆ B be the (unique) minimal subset of B spanning
x. We let T ′, called B-basic tree of x, be the bipartite subgraph of T with vertex
set V (T ′) = X ′ ∪̇Y ′, where X ′ := B′ ∪ {x} and Y ′ := NT (B′ ∪ {x}) ∩ Y , and
with edge set E(T ′) := {{u, v} ∈ E(T ) | u ∈ X ′, v ∈ Y ′}. Then

1. T ′ is a tree.
2. The leaves of T ′ are standard vertices in X.
3. The vertices in Y ′ have degree two in T ′.
4. Choose x to be the root of T ′ and orient the edges of T ′ away from the root.

Let b : B′ → Y ′ where for every z ∈ B′ we let b(z) be the predecessor of z in
T ′ oriented. Then b is a bijection, and hence |Y ′| = |B′|.
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x

y

z

Fig. 1. The tree T ′ in the proof of Lemma 9. Black vertices are in X ′, white vertices
in Y ′.

Lemma 10 (Clearing dependent vertices). Under the conditions of
Lemma 9, suppose that in the (k + 1)-cops and robber game on T the cops have
cleared all vertices in X \{x} and the game is in a position where at most k cops
are occupying vertices. Furthermore, assume that exactly |B′| cops are occupying
vertices of T ′, and in addition, for each vertex b ∈ B′, either b is occupied by
a cop, or NT (b) ∩ Y is occupied by cops. Then there is a sequence of moves of
|B′| + 1 cops, involving only the cops on vertices of T ′ plus one additional cop,
that ends in a position, where

1. the vertices in X ∪ V (T ′) \ {x} are cleared,
2. all vertices in NT (x) ∩ Y are occupied,
3. exactly |B′| cops occupy vertices of T ′, and
4. the set NT (B′) ∩ Y is occupied by cops.

Theorem 11. Any forest T satisfies pw(T ) ≤ lrw(T ).

Proof. We may assume that T is a tree. Let v1, . . . , vn be a linear ordering of
V (T ) witnessing k := lrw(T ). For i ∈ [n] let Xi := {v1, . . . , vi} and Yi :=
{vi+1, . . . , vn}, and let Mi be AT [Xi, Yi].

We describe a strategy for k + 1 cops in the invisible robber and cops game.
The strategy follows the linear ordering of V (T ). For each new vertex vi that
has to be cleared, we describe a transition – a finite sequence of cop moves to
make sure that vi is cleared. After the ith transition, the following invariants
hold.

1. Every vertex in Xi is cleared.
2. There is a basis Bi ⊆ Xi of the rows of Mi such that each b ∈ Bi satisfies:

b is occupied by a cop or NT (b) ∩ Yi is occupied by cops, and no
vertex in the set Xi \Bi is occupied by a cop.

3. The cops occupy exactly |Bi| vertices.
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The first ≤ k transitions simply consist in placing cops on the vertices v1, . . . , v�,
with � ≤ k, successively, where � is the greatest index i ≤ k such that the rank
of Mi is equal to i. Obviously, after each such transition the invariants hold.

Suppose we have completed the ith transition, and we want to make the
(i + 1)st transition. Moving from Mi to Mi+1, the following cases can occur.

(a) In Mi+1, the new vertex vi+1 is in the span of Bi.
(b) In Mi+1, the new vertex vi+1 is linearly independent of Bi.

Observe that Bi can span the rows of Mi+1, but may be linearly dependent
in Mi+1. If it is linearly dependent in Mi+1, then the size of a maximum linearly
independent subset of Bi is |Bi|−1, because deleting a column can only decrease
the rank by one.

Claim 1: If the size of a maximum linearly independent subset of Bi in Mi+1 is
|Bi| − 1, then there exists a vertex vN ∈ NT (vi+1)∩Bi such that Bi \ {vN} is a
maximum linearly independent subset of Bi in Mi+1.

Proof of the Claim: If Bi is linearly dependent in Mi+1 and linearly independent
in Mi, there exists a row of Mi corresponding to a vertex u ∈ Bi that is generated
by Bi \ {u} and that has a 1 at the column corresponding to vi+1, and hence
u ∈ NT (vi+1). �

We will complete the (i+1)st transition in such a way that the new basis Bi+1

of the row space of Mi+1 contains a basis of the rows of Mi+1 corresponding to
Bi, together with the vertex vi+1, if vi+1 is linearly independent of Bi in Mi+1.
For this, let vN ∈ NT (vi+1) ∩ Bi be as in Claim 1. If vi+1 is in the span of Bi,
we let Bi+1 := Bi \ vN . Otherwise, we let Bi+1 := (Bi \ vN)∪{vi+1}. Obviously,
Bi+1 is a basis of Mi+1.

For each v spanned by Bi+1 let Tv denote the Bi+1-basic tree of v. The
following follows from the fact that T is a tree and the vertex vN is adjacent to
vi+1.

Claim 2: let vN ∈ NT (vi+1) ∩Bi be as in Claim 1.

(i) The Bi+1-basic tree of vN does not contain vi+1.
(ii) V (Tvi+1) ∩ V (TvN ) = ∅ and there is no edge other than {vN , vi+1} between

a vertex of Tvi+1 and a vertex of TvN . �

We identify two cases, depending on whether a cop occupies vi+1.

Case 1. After the ith transition, vi+1 is not occupied by a cop.
Then by the inductive invariant (1), the set NT (vi+1) ∩Xi+1 = NT (vi+1) ∩Xi

is occupied by cops, and hence NT (vi+1) ∩ Xi ⊆ Bi by the inductive invariant
(2).

Case 1.1 Vertex vi+1 is in the span of Bi in Mi+1.
If vi+1 has no neighbors in Yi+1, then we use the (k + 1)st cop to step on vi+1

and remove the cop again. Otherwise, let T ′ be the Bi+1-basic tree of vi+1, and
let B′ ⊆ Bi+1 be the minimal subset of Bi+1 spanning vi+1. Since T has no
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cycles, V (T ′)∩
(
NT (vi+1)∩Xi+1

)
= ∅. Hence we can use Lemma 10 to move to

NT (vi+1) ∩ Yi+1 with at most |B′|+ 1 ≤ k + 1 cops, ending in a position where
at most k cops are on V (T ). Since NT (vi+1)∩Xi+1 is occupied by cops, we can
use the (k + 1)st cop to step on vi+1 and then lift the (k + 1)st cop up again,
thus clearing vi+1. We have then cleared Xi+1.

It remains to check conditions (2) and (3). By the inductive hypothesis invari-
ant, (2) is already satisfied, and if Bi is linearly independent in Mi+1, condition
(3) is also satisfied. So assume Bi is linearly dependent in Mi+1. If vN does not
have a neighbor in Yi+1 we can remove safely the cop from vN . Otherwise, if it
has a neighbor in Yi+1, we can use Lemma 10 to move to NT (vN ) ∩ Yi+1, and
we then lift up the cop from vN . By Claim 2, we can do it safely. In this way,
we end the transition with a position of |Bi+1| cops on V (T ). This follows from
Lemma 10(3) and Claim 2. Hence all three invariants are satisfied.

Case 1.2. Vertex vi+1 is not in the span of Bi in Mi+1.
If vN has no neighbors in Yi+1, we place the (k + 1)st cop on vi+1 (vi+1 is not
already occupied by a cop) and we then remove the cops from vN . After these
moves, at most k cops are occupying vertices.

Now, if vN has a neighbor in Yi+1, take the Bi+1-basic tree TvN of vN and use
Lemma 10 to move cops in V (TvN )\{vN} to NT (vN )∩Yi+1 . Claim 2 guarantees
the safety of these moves. After these moves, at most k cops are occupying
vertices. If vi+1 was occupied by a cop, then remove the cop that is still occupying
the vertex vN . If vi+1 was not occupied by a cop, then we place the (k+1)st cop
on vi+1 and remove the cop that occupy the vertex vN . After these moves, vi+1

is cleared and since we did not recontaminate Xi, Xi+1 is cleared. Moreover,
exactly |Bi+1| vertices of T are occupied by cops (Lemma 10(3) and Claim 2),
and since the other cops are not moved, invariant (2) is satisfied. The three
invariants are hence satisfied.

Case 2. After the ith transition, vi+1 is occupied by a cop.
By the inductive invariant (1), each vertex b ∈ NT (vi+1)∩Xi+1 = NT (vi+1)∩Xi

is cleared, hence either b is occupied by a cop, or NT (b) ∩ Yi+1 is occupied by
cops.

Case 2.1. Vertex vi+1 is in the span of Bi in Mi+1.
For every b ∈ {vN , vi+1} such that V (Tb) ∩ Yi+1 contains an unoccupied vertex,
we use Lemma 10 to move cops in V (Tb) \ {b} to V (Tb) ∩ Yi+1. This is pos-
sible, because the Bi+1-basic trees involved are pairwise disjoint and pairwise
connected via vi+1 only (Claim 2). After that, we remove the cops occupying
vertices in {vN , vi+1}. Since by induction, the cop moves are monotone, we can
conclude that the three inductive invariants are satisfied.

Case 2.2. Vertex vi+1 is not in the span of Bi in Mi+1.
If V (TvN )∩Yi+1 contains an unoccupied vertex, we use Lemma 10 to move cops
in V (TvN )\{vN} to V (TvN )∩Yi+1. After that, we remove the cop occupying the
vertex vN . Since by induction, the cop moves are monotone, we can conclude
that the three inductive invariants are satisfied. ��
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Note that the analogous statement of Theorem 11 fails for C3, the cycle of
length three. While lrw(C3) = 1, we have pw(C3) = 2.

Theorem 2 now follows from Lemma 6 and Theorem 11. Theorem 2 combined
with [10] gives the following as a corollary.

Theorem 12. There is a linear time algorithm that computes the linear rank-
width of any forest, and an ordering of its vertex set V witnessing its linear
rank-width can be computed in time O(|V | · log |V |).

Example 13. Let T be the graph shown in Figure 2. The ordering b, a, c, d, e
is a witness for lrw(T ) ≤ 1. The strategy for two cops according to the proof of
Theorem 11 is as follows: the first cop moves to b and then the second cop moves
to a and remains there. Now the first cop moves to c, d, e in this ordering.

b

a

c d e

Fig. 2. The tree of Example 13

Example 14. The tree T in Figure 3 satisfies lrw(T ) = 2. The given order-
ing (attached to the vertices) witnesses lrw(T ) ≤ 2. The strategy for three cops
according to Theorem 11 is {1}, {1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 5, 6}, {4, 6, 7},
{4, 8}, {8, 9}, {8, 9, 10}, {8, 10, 11}, {8, 10, 12}, {8, 12, 14}, {8, 13, 14}, {8, 14, 15},
{8, 16}, {8, 16, 17}, {8, 17, 18}, {8, 17, 19}, {8, 19, 20}, {19, 20, 21}, {21, 22}.
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Fig. 3. The tree of Example 14
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4 Linear Clique-Width

In this section we prove Theorem 3, characterizing the linear clique-width of
forests in terms of their path-width. It follows that the linear clique-width of
forests is linear time computable. In [11] it is proved that the linear clique-width
of a graph is at most its path-width plus 2. We prove that for forests containing
a path of length three, this upper bound is also a lower bound.

Let us recall the definition of linear clique-width [11,15,27]. Let k be a positive
integer. A k-labeled graph is a pair (G, γ) where G is a graph and γ : V (G) → [k]
is a mapping; we will also denote it by (V (G), E(G), γ). The k-labeled graph
consisting of a single vertex labeled by i ∈ [k] is denoted by (i, γi). The set LIN-
CWk of k-labeled graphs is defined inductively with the following operations.

1. For each i ∈ [k], (i, γi) is in LIN-CWk.
2. If i, j ∈ [k] and (G, γ) is in LIN-CWk, then (ρi→j(G), γ) is in LIN-CWk and

denotes the k-labeled graph (V (G), E(G), γ′) with

γ′(x) :=

{
γ(x) if γ(x) 
= i,

j otherwise.

3. If i, j ∈ [k], i 
= j, and (G, γ) is in LIN-CWk, then (ηi,j(G), γ) is in LIN-CWk

and denotes the k-labeled graph (V (G), E′, γ) with

E′ := E(G) ∪ {{x, y} | γ(x) = i and γ(y) = j} .

4. If i ∈ [k] and (G, γ) is in LIN-CWk, then (G ⊕ i, γ′) is in LIN-CWk and
denotes the graph (V (G) ∪ {z}, E(G), γ′) where z /∈ V (G) and

γ′(x) :=

{
γ(x) if x ∈ V (G),

i otherwise.

An expression built with the operations i, ρi→j , ηi,j and ⊕ according to the
definition of LIN-CWk is called a linear k-expression. The linear clique-width of
a graph G, denoted by lcw(G), is the minimum k such that G is isomorphic to
a graph in LIN-CWk (after forgetting the labels). It is worth noticing that if
H is an induced subgraph of G, then lcw(H) ≤ lcw(G). Moreover, any linear
k-expression t defining a graph G defines a linear ordering of V (G) witnessing
the ordering in which the vertices of G appears in t.

Lemma 15 ([8,11]). Any graph G satisfies lcw(G) ≤ pw(G) + 2. ��

The proofs of Lemmas 17 and 18 are omitted due to space constraints. For
the proof of Lemma 18 we use the following lemma, proved in [10, Theorem 3.1].

Lemma 16. Let T be a tree and let k ≥ 1 be an integer. Then pw(T ) ≤ k if
and only if for all v ∈ V (T ) at most two of the trees in T \ v have path-width k
and all others have path-width less than k. ��
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Lemma 17. Let T be a tree obtained from three trees T1, T2 and T3 by adding a
new vertex r adjacent to exactly one vertex in each of the three trees. If lcw(Ti) =
k for each i ∈ {1, 2, 3}, then lcw(T ) ≥ k + 1.

Lemma 18. Any forest T containing a path of length three satisfies lcw(T ) ≥
pw(T ) + 2.

Proof of Theorem 3. The first statement follows from Lemmas 15 and 18. For the
second statement, if T does not contain a path of length three, then it is a star.
Since stars with at least one edge have linear clique-width 2 and path-width 1,
we can conclude that lcw(T ) = pw(T ) + 1. ��

5 Minimal Excluded Acyclic Vertex-Minors

As an application, in this section we identify the minimal excluded acyclic vertex-
minors for linear rank-width k. For this result we use both Lemma 16 and the
fact that linear rank-width and path-width coincide on trees.

For a graph G and a vertex x of G, the local complementation at x of G consists
in replacing the subgraph induced on the neighbors of x by its complement. The
resulting graph is denoted by G∗x. If H can be obtained from G by a sequence of
local complementations, then G and H are called locally equivalent. A graph H
is called a vertex-minor of a graph G if H is isomorphic to a graph obtained from
G by applying a sequence of local complementations and deletions of vertices.
The graph H is a proper vertex-minor of G if H is a vertex-minor of G and
|V (H)| < |V (G)|. A graph G is a minimal excluded vertex-minor for the class
of graphs of linear rank-width k, if lrw(G) > k and lrw(H) ≤ k for all proper
vertex-minors H of G. It is known that for fixed k, the set of minimal excluded
vertex-minors for the class of graphs of linear rank-width at most k is finite [21].
For k = 1, the set of minimal excluded vertex-minors consists of three graphs [1].
For k ≥ 2, a double-exponential lower bound on the number of minimal excluded
vertex-minors is known [22] . See also [6,20] for more information on vertex-
minors.

We say that a graph G is a minimal excluded acyclic vertex-minor for the class
of graphs of linear rank-width k, if G is acyclic and every proper acyclic vertex-
minor of G has linear rank-width less than k. Note that a minimal excluded
acyclic vertex-minor may not be a minimal excluded vertex minor. For example,
let R3 be the the tree obtained from the star with three leaves by subdividing
each edge once (cf. Figure 4). Then R3 is a minimal excluded acyclic vertex-
minor for the class of graphs of linear rank-width at most 1, but it contains
the net graph (i. e. the graph obtained from a triangle by adding three pendant
vertices, one to each of the vertices of the triangle) shown in Figure 4 as a proper
vertex minor, which in turn is a minimal excluded vertex-minor for the class of
graphs of linear rank-width at most one [1].
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Fig. 4. The subdivided 3-star R3, and the net graph

We now determine the set of pairwise not locally equivalent minimal excluded
acyclic vertex-minors for linear rank-width k. Due to minimality, the minimal ex-
cluded (acyclic) vertex-minors for linear rank-width k are necessarily connected.
Let H1 := {R3}. For k ≥ 2, let Hk be the set of (pairwise non isomorphic) trees
obtained by taking a new vertex r and three trees in Hk−1, and by linking this
new vertex to one vertex in each of these three trees. Notice that two trees in
Hk have the same size.

Lemma 19. Let k ≥ 1 be an integer. Every tree of linear rank-width k + 1
contains a tree in Hk as a vertex-minor.

Theorem 20. For each k ≥ 1, the set Hk is the set of minimal excluded acyclic
vertex-minors for linear rank-width k.

Proof. One can prove by induction, by using Theorem 2 and Lemma 16, that
each tree in Hk has linear rank-width k + 1 and is minimal with respect to this
property. Moreover, by Lemma 19 any tree of linear rank-width k + 1 contains
as a vertex-minor a tree in Hk. So it is enough to prove that two trees in Hk

are not locally equivalent. Bouchet has proved in [6] that two trees are locally
equivalent if and only if they are isomorphic. Hence, since no two trees in Hk

are isomorphic, we are done. ��

6 Conclusion

We proved that linear rank-width and path-width coincide on forests, and we
determined the linear clique-width of forests in terms of their path-width. Our
proof method for the first result completely differs from our proof method for
the second result. We believe that the second method can be adapted in order
to obtain a shorter but non-constructive proof for the first result.

We obtained a linear time algorithm that computes the linear rank-width and
the linear clique-width of any forest. Natural questions are: Is there a linear
time algorithm that computes the linear rank-width (or linear clique-width) of
distance-hereditary graphs or of series-parallel graphs? And, more generally, is
there a polynomial time algorithm that computes the linear rank-width (or linear
clique-width) of graphs of bounded rank-width?
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We used the fact that linear rank-width and path-width coincide in forests
to determine the set of minimal excluded acyclic vertex-minors for linear rank-
width k. One can probably use the same technique to compute the set of
minimal excluded acyclic induced subgraphs for linear rank-width and linear
clique-width k. The complete set of minimal excluded vertex-minors for lin-
ear rank-width k is unknown and a next step could be to determine the set
of distance-hereditary excluded vertex-minors for linear rank-width k (we know
from [22] that the number is at least doubly exponential in k). In [20] it is
proved that the size of the excluded vertex-minors for rank-width k is bounded
by (6k+1 − 1)/5, and similar results exist for tree-width and path-width [25].
Can we get a similar result for linear rank-width?

Clique-width and linear clique-width are not monotone with respect to the
vertex-minor inclusion and are only known to be monotone with respect to the
induced subgraph inclusion. Characterizing linear clique-width with respect to
the induced subgraph inclusion seems to be a hard task and few results have been
obtained [13,19]. Can we at least characterize the linear clique-width of co-graphs
(which have clique-width at most 2) or in general of distance-hereditary graphs
(which have clique-width at most 3) in order to identify the set of distance-
hereditary excluded induced subgraphs for linear clique-width k?
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Abstract. We study threshold coloring of graphs where the vertex colors, repre-
sented by integers, describe any spanning subgraph of the given graph as follows.
Pairs of vertices with near colors imply the edge between them is present and
pairs of vertices with far colors imply the edge is absent. Not all planar graphs
are threshold-colorable, but several subclasses, such as trees, some planar grids,
and planar graphs with no short cycles can always be threshold-colored. Using
these results we obtain unit-cube contact representation of several subclasses of
planar graphs. We show the NP-completeness for two variants of the threshold
coloring problem and describe a polynomial-time algorithm for another.

1 Introduction

Graph coloring is among the fundamental problems in graph theory. Typical applica-
tions of the problem and its generalizations are in job scheduling, channel assignments
in wireless networks, register allocation in compiler optimization and many others [12].
In this paper we consider a new graph coloring problem in which we assign colors (in-
tegers) to the vertices of a graph G in order to define a spanning subgraph H of G. In
particular, we color the vertices of G so that for each edge of H , the two endpoints are
near, that is, their distance is within a given “threshold”, and for each edge of G \H ,
the endpoints are far, that is, their distance greater than the threshold; see Fig 1.

The motivation of the problem is twofold. First, such coloring can be used for the
Frequency Assignment Problem [8], which asks for assigning frequencies to transmit-
ters in radio networks so that only specified pairs of transmitters can communicate with
each other. Second, such coloring can be used in the context of the geometric problem
of unit-cube contact representation of planar graphs [3]. Suppose a planar graphG has a
unit-cube contact representation where one face of each cube is co-planar; see Fig. 1(a).
Assume that we can define a spanning subgraph H of G by our particular vertex color-
ing. We show that it is possible to compute a unit-cube contact representation of H by
lifting the cube for each vertex v by the amount equal to the color of v (where the size
or side-length of the cubes are roughly equal to the threshold); see Fig. 1(b).
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Fig. 1. (a) A planar graph G and its unit-cube contact representation where the bottom faces of
all cubes are co-planar, (b) a spanning subgraph H of G with a (4, 1)-threshold-coloring and its
unit-cube contact representation. Far edges are shown dashed, near edges are shown solid.

Problem Definition: An edge-labeling of graph G = (V,E) is a mapping � : E →
{N,F} assigning labels N or F to each edge and the pair {N,F} defines a partition
of the edges into near and far edges. Let r ≥ 1 and t ≥ 0 be two integers and let
[1 . . . r] denote a set of r consecutive integers. For a graph G = (V,E) and an edge-
labeling � : E → {N,F}, a (r, t)-threshold-coloring ofG with respect to � is a coloring
c : V → [1 . . . r] such that for each edge e = (u, v) ∈ E, e ∈ N if and only if
|c(u)− c(v)| ≤ t. We call r and t the range and the threshold. Note that the set of near
edges defines a spanning subgraph H = (V,N) of G, where H is a spanning subgraph
of graph G if it contains all vertices of G. H is a threshold subgraph of G if there exists
such a threshold-coloring.

A graph G is total-threshold-colorable if for every edge-labeling � of G there exists
an (r, t)-threshold-coloring of G with respect to � for some r ≥ 1, t ≥ 0 (for every
partition of edges of G into near and far edges, we can produce vertex colors so that
endpoints of near edges receive near colors, and endpoints of far edges receive colors
that are far apart). A graph G is (r, t)-total-threshold-colorable if it is total-threshold-
colorable for the range r and threshold t. We consider the following problem variants.

Total-Threshold-Coloring: Given a graph G, is G total-threshold-colorable, that is, is
every spanning subgraph of G a threshold subgraph of G?

Threshold-Coloring: Given a graph G and a spanning subgraph H , is H a threshold
subgraph of G for some integers r ≥ 1, t ≥ 0?

Exact-Threshold-Coloring: Define H to be an exact-threshold graph if H is a thresh-
old subgraph of the complete graph G for some r ≥ 1, t ≥ 0. Given a graph H , is H
an exact-threshold graph?

Fixed-Threshold-Coloring: Given a graph G, a spanning subgraph H , and integers
r ≥ 1, t ≥ 0, is H (r, t)-threshold-colorable?
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Table 1. Results on the Total-Threshold-Coloring problem. “No” entries in the last row follow
from the fact that graphs with vertices of high degrees cannot have unit-cube representation [3].

graph
classes

Cycle Tree Fan
Triangular
Grid

Square
Grid

Hexagonal
Grid

Square-
Triangle
Grid

Planar Graph
w/o Cycles
of size ≤ 9

threshold
coloring

r = 5,
t = 1

r = 2,
t = 0

r = 5,
t = 1

No Open r = 5,
t = 1

No r = 8,
t = 2

unit-cube
contact

Yes No No Open Yes Yes Open No

Related Work: Many graph theoretic problems deal with vertex coloring a graph and
numerous graph classes are defined based on such coloring; see [2] for a survey. To the
best of our knowledge, total-threshold-colorability defines a new class of graphs. Here
we mention two related classes: threshold and difference graphs. Threshold graphs are
ones for which there is a real number S and for every vertex v there is a real weight av
such that (v, w) is an edge if and only if av + aw ≥ S [10]. A graph is a difference
graph if there is a real number S and for every vertex v there is a real weight av such
that |av| < S and (v, w) is an edge if and only if |av − aw| ≥ S [9]. Note that for both
classes the threshold (real number S) defines edges between all pairs of vertices, while
in our setting the threshold only defines edges of a (not necessarily complete) graph G.

A threshold-coloring of a planar graph can be used to find a contact representa-
tion of the graph with cuboids (axis aligned boxes) in 3D. Thomassen [13] shows that
any planar graph has a proper contact representation by cuboids in 3D. In a contact
representation of a graph, the vertices are represented by cuboids (or other polygonal
shapes) and the edges are realized by a common boundary of the two corresponding
cuboids. A contact representation is proper if for each edge the corresponding common
boundary has non-zero area. Felsner and Francis [5] prove that any planar graph has a
(non-proper) contact representation by cubes. Bremner et al. [3] proves that the same
result does not hold when using only unit cubes.

Our Contributions: First we show some connections between threshold-coloring and
other graph problems. Specifically, we show that the threshold coloring and the fixed
threshold coloring problems are NP-complete by reductions from the proper interval
graph sandwich problem and standard vertex coloring, and the exact threshold coloring
problem can be solved in linear time via equivalence to proper interval graph recog-
nition. We then study the total threshold coloring problem for various planar graph
classes. Specifically, we show that trees, hexagonal grids, planar graphs without any
cycles of length ≤ 9 are total-threshold-colorable, while the triangular grid and the
square-triangle grid are not; these results are summarized in Table 1. Finally we show
how to use the threshold-coloring to compute unit-cube contact representations for sev-
eral subclasses of planar graphs; see the last column of Table 1.
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2 Threshold-Coloring and Other Graph Problems

We begin with connections to classical graph coloring problems.

Vertex Coloring Problem: Let G = (V,E) be a graph. We call G k-vertex-colorable if
there exists a coloring c : V → [1 . . . k] such that for any edge (u, v) ∈ E, c(u) 
= c(v),
that is, u and v have different colors. Given an input graph G and an integer k > 0, the
vertex coloring problem asks whether there exists a k-vertex-coloring of G. Lemma 1
immediately follows from the definition.

Lemma 1. Let G = (V,E) be a graph and let k be a positive integer. Define an edge-
labeling � : E → {N,F} that assigns each edge the label F , that is, for each edge
e ∈ E, �(e) = F . Then G has a k-vertex-coloring if and only if there exists a (k, 0)-
threshold-coloring of G with respect to �.

Proper Interval Representation Problem: An interval representation [2] for a graph
G = (V,E) is one where each vertex v ∈ V is represented by an interval I(v) of R
such that for any edge (u, v) ∈ E, the intervals I(u) and I(v) have a non-empty inter-
section. A proper interval graph [2] is one that has an interval representation such that
no interval properly contains another. Equivalently, a proper interval graph is one that
has an interval representation with unit intervals [11]. The problem of proper interval
representation for a graph G asks whether G has a proper interval representation.

Lemma 2. H is an exact-threshold graph if and only if it is a proper interval graph.

Proof. (sketch) If a graph H = (V,E) is an exact-threshold graph, there are integers
r ≥ 1, t ≥ 0 and a mapping c : V → [1 . . . r] such that for any pair u, v ∈ V ,
(u, v) ∈ E ⇔ |c(u) − c(v)| ≤ t ⇔ |c(u) − c(v)| < t + ε with 0 < ε < 1 since
c(u) and c(v) are integers. Then there is an interval representation of G that contains
for each vertex v ∈ V , a unit interval in the range [c(v)/(t + ε), c(v)/(t + ε) + 1].
Conversely, if H has a unit interval representation Γ , then scale Γ by an integer factor
t, so that each endpoint of each interval has integer coordinate. Then for each vertex v,
the coordinate of the left endpoint of the interval for v defines a color c(v) such that for
any pair u, v ∈ V , |c(u)− c(v)| ≤ t⇔ (u, v) ∈ E. ��

Graph Sandwich Problem: Given two graphs G1 = (V,E1) and G2 = (V,E2) on
the same vertex set V , where E2 ⊆ E1, and a property Π , does there exist a graph
H = (V,E) on the same vertex set such that E2 ⊆ E ⊆ E1 and H satisfies property
Π? Here E1 and E2 can be thought of as universal and mandatory sets of edges, with
E sandwiched between the two sets. We are interested in a particular property for the
graph sandwich problem: “proper interval representability”. A graph satisfies proper
interval representability if it admits a proper interval representation [7].

Lemma 3. Let G = (V,EG) and H = (V,EH) be two graphs on the same vertex set
V such that EH ⊆ EG. Then the threshold-coloring problem for G with respect to the
edge partition {EH , EG − EH} is equivalent to the graph sandwich problem for the
vertex set V , mandatory edge set EH , universal edge set EH ∪ (V × V − EG) and
proper interval representability property.
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Proof. (sketch) Define EU = EH ∪ (V × V − EG). Suppose there exists a graph
H∗ = (V,E∗) such that EH ⊆ E∗ ⊆ EU and H∗ has a proper interval representation.
Then by Lemma 2, there exist integers r ≥ 1 and t ≥ 0 and a coloring c : V → [1 . . . r]
such that for any pair u, v ∈ V , |c(u) − c(v)| ≤ t if and only if (u, v) ∈ E∗. Then for
any edge (u, v) ∈ EG, (u, v) ∈ EH ⇔ |c(u) − c(v)| ≤ t. Conversely, if there exists
integers r ≥ 1 and t ≥ 0 such that there is an (r, t)-threshold-coloring c′ of G with
respect to the edge partition {EH , EG − EH}, then define an edge set E∗ = {(u, v) ∈
V × V : |c′(u) − c′(v)| ≤ t}. Clearly the graph H∗ = (V,E∗) has an exact (r, t)-
threshold-coloring and hence by Lemma 2, H∗ has a proper interval representation.
Furthermore E∗ is sandwiched between EH and EU . ��

The following theorem follows from Lemmas 1, 2 and 3 since the vertex coloring and
the graph sandwich problems for proper interval representability are NP-complete [6]
and the proper interval recognition can be solved in linear time [4].

Theorem 1. The Threshold-Coloring and Fixed-Threshold-Coloring problems are
NP-complete, while the Exact-Threshold-Coloring problem can be solved in linear time.

3 Total-Threshold-Coloring of Graphs

In this section we address the Total-Threshold-Coloring problem: can every spanning
subgraph of a graph G be represented by appropriately coloring the vertices of G?

First note that not every graph (not even every planar graph) is total-threshold-
colorable. Suppose that G = K4, and we would like to represent a subgraph where
four of the edges remain and span a 4-cycle, while the other two edges are removed
(edge-partitioning {N,F}). Assume that there exists an (r, t)-threshold-coloring with
colors c1, c2, c3, c4 for vertices v1, v2, v3, v4 respectively. Without loss of generality as-
sume c4 is the highest color and (v1, v4) ∈ F , hence also (v2, v3) ∈ F . Also assume
c3 ≥ c2 and consequently c4− c2 ≥ c3− c2. The left side of the inequality should be at
most t, and the right side strictly greater than t, which cannot be accomplished by any
choice of the range and the threshold.

Paths, Cycles, Trees, Fans: For paths and trees there is a trivial coloring with threshold
t = 0 and two colors. Choose an arbitrary vertex as the root and color it 0. Color 1 all
vertices with an odd number of far edges on the shortest path to the root. Color 0 all
vertices with an even number of far edges to the root. Then all vertices connected by a

Fig. 2. Threshold-coloring of trees, cycles, and fans
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Fig. 3. Graphs which are not threshold-colorable

near edge of G get the same color, and vertices connected by a far edge get different
colors; see Fig. 2(a).

For cycles and fans there is a coloring scheme with threshold t = 1 and five colors.
A fan is obtained from a path P by adding a new vertex v connected to all vertices of
the path. We use colors {−2,−1, 0, 1, 2} to color a fan. The vertices of P are colored
by −1 and 1, and v is colored by 0. After this initial coloring some of the far edges
(u, v), u ∈ P might have |c(u)− c(v)| = 1. We fix it by changing the color of u from
1 to 2 or from −1 to −2; see Fig. 2(c). It is easy to see that the same algorithm can be
applied to color a cycle; see Fig. 2(b).

Triangular Grid: In a triangular grid all faces are triangles and internal vertices have
degree 6. It is easy to show that a triangular grid is not total-threshold-colorable. Con-
sider the graph with vertices v0, v1, v2, u0, u1, u2, where each vertex ui is adjacent to
vi+1 and vi+2 (mod 3); see Fig. 3(a). Let F = {(v0, v1), (v1, v2), (v2, v0)}, and let
N contain the remaining 6 edges. Assume that there exists a (r, t)-threshold-coloring c.
Without loss of generality, let c(v0) < c(v1) < c(v2). Now on one hand c(v2)−c(v0) >
2t and on the other c(v2) − c(v0) ≤ |c(v2) − c(u1)| + |c(u1) − c(v0)| ≤ 2t, which is
impossible. This also proves that outerplanar graphs are not total-threshold-colorable.

Hexagonal Grid: In a hexagonal grid all faces are 6-sided and internal vertices have
degree 3. We show that the grid is total-threshold-colorable with r = 5 and t = 1.

Lemma 4. Let P2 = {v0, v1, v2} be a path of length 2. Then for any edge-labeling
of P2 and a fixed color k ∈ {−2,−1, 1, 2}, there is a threshold-coloring c of P2 with
threshold t = 1, where c(v0) = 0, c(v2) = k and c(v1) ∈ {−2,−1, 1, 2}.

Proof. Depending on whether the edge (v0, v1) is near or far, choose c(v1) to be 1 or
2. If the label of (v1, v2) disagrees with the colors of v1 and v2 then change the sign of
c(v1). ��

Lemma 5. Any hexagonal grid is (5, 1)-total-threshold-colorable.

Proof. The coloring is done in two steps. In the first step we assign color 0 for a set of
independent vertices of G as shown in Fig. 4(a), where the colored vertices are white.
Note that no two white vertices have a shortest path of length less than 3.

In the second step we find a coloring of the remaining black vertices, using only
four colors {−2,−1, 1, 2}. Let w1 be a white vertex. We arbitrarily choose one of its
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(a) (b) (c)

Fig. 4. Total-threshold-coloring of the hexagonal grid. (a) White vertices get color 0, black ver-
tices get one of the colors −2,−1, 1, 2. (b) A color assignment to b1 can be extended to vertices
w2 and w3 based on the labels of the red dashed edges. (c) Assigning colors to the red vertices.

black neighbors b1, and assign a color for b1 based on the label of edge (w1, b1). Now
vertex b1 has two white vertices w2 and w3 within distance 2. Using Lemma 4 we can
(uniquely) extend the coloring of b1 to w2 (symmetrically, to w3) so that additional
black vertex b2 gets a color. Again, the coloring of b2 can be extended to its nearest
white neighbor. We continue such a propagation of colors, see Figs. 4(b) and 4(c) where
processed black vertices and edges are shown dashed red. One can see that the process
will color a row of hexagons with alternate upper and lower legs. To complete the
coloring of G we choose a white vertex in the next row of hexagons and initiate a similar
propagation process. For example, one can use vertices w and b shown in Fig. 4(c). ��

Square-Triangle Grid: We prove that the graph in Fig. 3(b) is not total-threshold-
colorable. Assume to the contrary that c is a (r, t)-threshold-coloring. Without loss of
generality let c(v0) < c(u0). Since (v1, u0) is a far edge and (v0, x), (u0, x) are near
we have c(v0) < c(x) < c(u0). Similar argument shows that c(v1) < c(v0) < c(x) <
c(u0) < c(u1). Then if x < y, we have c(v1) + t < c(x) and c(x) + t < c(y), which
implies c(v1) + 2t < c(y). This makes it impossible to find a color for v2 near to both
v1 and y. Similarly if x > y then it is impossible to color u2. Theorem 2 summarizes
the results in this section.

Theorem 2. Paths, cycles, trees, fans, and the hexagonal grid are total-threshold-color-
able. The triangular grid and the triangle-square grid are not total-threshold-colorable.

4 Planar Graphs without Short Cycles

In the counter-examples of total-threshold-colorability (e.g., K4 and the triangular grid)
we have short cycles, which can be used to force groups of vertices to be simultaneously
near and far. In this section we show that planar graphs without short cycles are always
total-threshold-colorable.

Theorem 3. Let G be a planar graph without cycles of length ≤ 9. Then G is (8, 2)-
total-threshold-colorable1.

1 Equivalently, the girth (that is, the shortest cycle) of G should be ≥ 10.
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The outline of our proof for Theorem 3 is as follows. We first find some small tree
structures T that are “reducible”, in the sense that for any edge-labeling of T and any
given fixed coloring of the leaves of T to the colors {0, 1, . . . , 7}, there is a (8, 2)-
threshold-coloring of T . For a contradiction assume that there is a planar graph with
girth≥ 10 having no (8, 2)-threshold-coloring. We consider the minimal such graph G,
and by a discharging argument prove that G contains at least one of these reducible tree
structures. This contradicts the minimality of G. We start with some technical claims.

Extending a Coloring: Let Pn be a path with vertices v0, . . . , vn. Given an edge-
labeling of Pn and the color c0 of v0 we call a color cn legal if there exists a (8, 2)-
threshold-coloring c of Pn, so that c(v0) = c0 and c(vn) = cn. Due to the space
constraints, the proofs of the following 3 claims are in [1].

Claim 1. Let P1 be a path of length 1. Then at least one of the colors 1 or 6 is legal
(irrespective of the edge label and the color c0).

Claim 2. Let P2 be a path of length 2. Then 3 is legal unless c0 = 3 and {N,F} =
{{e1}, {e2}}, that is, the edges e1 and e2 are labeled differently. Symmetrically, 4 is
legal unless c0 = 4 and {N,F} = {{e1}, {e2}}.

Claim 3. Let P3 be a path of length 3. Then 1, 3, 4, and 6 are all legal (irrespective of
the edge label and the color c0).

A star is a subdivision of the graph K1,n, and its center is the single vertex of de-
gree ≥ 3. Let T be a star. A prong of T is a path from a leaf to the center of T , and a
prong with k edges is called a k-prong, we say that it has length k.

Claim 4. Let T be a subdivision of K1,3 with prongs of length 1, 2, and 3, respectively.
Assume that the leaves of T are assigned colors, so that the leaf u on the 1-prong is
colored with either 1 or 6. Then we can extend this partial coloring to the whole T .

Proof. Let v be the center of T . Given c(u), we can choose c(v) ∈ {3, 4} so that the
labeling condition on the 1-prong is satisfied. If this choice cannot be extended to the
longer prongs, then the leaf of the 2-prong is also colored with either 3 or 4, see Claim 2.
But then the choice c(v) ∈ {1, 6} which satisfies the labeling condition on the 1-prong
can be extended to the remaining prongs. ��

Reducible Configurations: A configuration is a tree T , and is reducible if every as-
signment of colors to the leaves of T can be, for every possible edge-labeling of T ,
extended to a (8, 2)-threshold-coloring c of the whole T .

Claim 5. A path P4 of length 4 is a reducible configuration.

Proof. Let v be a neighbor of a leaf in P4. By Claim 1 and Claim 3 either c(v) = 1 or
c(v) = 6 extends to the remaining uncolored vertices. ��

Claim 5 implies that longer paths are reducible. Let us turn our attention to stars.

Claim 6. (A) Let T be a star with at most 1 prong of length 1 and the remaining prongs
have length 3. Then T is reducible.
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Fig. 5. Two additional types of reducible configurations, T1 and T2

(B) Let T be a star with at most 3 prongs of length 2 and the remaining prongs have
length 3. Then T is reducible.

Proof. In both cases let v denote the center of the star. In order to establish (A) let c(v)
be either 1 or 6, which is appropriate for the 1-prong (such a choice exists by Claim 1).
By Claim 3 the coloring c(v) can be extended to the remaining 3-prongs. For (B) we
may assume that neither 3 nor 4 can be extended to all three 2-prongs. By Claim 2
both colors 3 and 4 are used at leaves of the 2-prongs. Now, by Claim 1 at least one of
c(v) = 1 or c(v) = 6 extends to the third 2-prong, and hence also to the remaining 2-
and 3-prongs, by Claim 2 and Claim 3. ��

Claim 7. There exist two types T1 and T2 of reducible configurations shown in Fig. 4.

The proof of Claim 7 is analogous to the proof of Claim 6, see [1].

Discharging: A minimal counterexample is the smallest possible (in terms of order) pla-
nar graph G without cycles of length ≤ 9 which is not (8, 2)-total-threshold-colorable.
A minimal counterexample G does not contain reducible configurations. Further G is
connected and has no vertices of degree 1. As G is also not a cycle (such a cycle should
be of length ≥ 9 and should not contain a P4), and is therefore homeomorphic to a
(multi)graph of minimal degree≥ 3.

Let us fix its planar embedding determining its set of faces F (G). Let us define
initial charges: initial charge of a vertex v, γ0(v), is equal to 4 deg(v) − 10, and the
initial charge of a face f , γ0(f), is equal to deg(f)− 10. As all faces have length≥ 10,
every face is initially non-negatively charged, and we shall not alter the charges of faces.
A routine application of Euler formula shows that the total initial charge is −20.

The discharging procedure will run in two phases, by γi(v) we shall denote the
charge of vertex v after Phase i of discharging. Informally, Phase 1 shall see that ver-
tices of degree 2 do not have negative charges, and Phase 2 will leave only vertices of
degree 3 with a possible negative charge.

Let u, v be vertices of G. We say that u and v are 2-adjacent, if G contains a u− v-
path whose (possible) internal vertices all have degree 2. In Phase 1 we redistribute
charge according to the following rule:

Rule 1: every vertex v of degree ≥ 3 sends charge 1 to every vertex u of degree 2, for
which v and u are 2-adjacent.
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In Phase 2 we shall apply the following rule:

Rule 2: If u and v are adjacent with γ1(u) > 0, γ1(v) < 0 then u sends charge 1 to v.
As every vertex u of degree 2 (we also call them 2-vertices) is 2-adjacent to exactly

two vertices of bigger degree, we have γ1(u) = 0 in this case. For a vertex v of degree
≥ 3, the discharging in Phase 1 decreases the charge of v by the number of 2-vertices
which are 2-adjacent to v.

Let v be a vertex of degree≥ 3. A prong at v is a v− x-path whose other end-vertex
x is of degree≥ 3 and has internal vertices of degree 2.

Claim 8. Let v be a vertex of degree ≥ 3. Then the number of 2-vertices that are 2-
adjacent to v is at most 2 · deg(v)− 3.

Proof. By Claim 5 each prong at v contains at most two vertices of degree 2. If the
shortest prong at v has length 1, then Claim 6 implies that at least one other prong has
length≤ 2. If the shortest prong at v has length 2, then by Claim 6 we have at least four
prongs that are of length ≤ 2, and the result follows. ��

Now Claim 8 serves as the lower bound for vertex charges after Phase 1, and in turn
prepares us for the Phase 2 of discharging.

Claim 9. (A) Let v be a vertex of degree 3. If γ1(v) < 0, then γ1(v) = −1 and the
prongs at v have lengths 1, 2 and 3, respectively.

(B) Let v be a vertex of degree 3. If γ1(v) = 0, then the prongs at v have either lengths
1, 1, 3 or 1, 2, 2.

(C) Let v be a vertex of degree 3 with its prongs of length 1, 1, and 2. Then γ1(v) = 1.
(D) Let v be a vertex of degree 3 with all 3 prongs of length 1. Then γ1(v) = 2.
(E) If v is a vertex of degree ≥ 4, then γ2(v) ≥ 0, and also γ2(v) is not smaller than

the number of 1-prongs at v.

Proof. Let us first prove (E). Choose a vertex v with deg(v) ≥ 4. For every prong
of length 3, v sends 2 units of charge in Phase 1. For every shorter prong v sends at
most 1 unit of charge in either Phase 1 or Phase 2. The total charge sent out of v in
both of the phases is by Claim 6 and Claim 8 at most 2 deg(v) − 2. Hence γ2(v) ≥
(4 deg(v)− 10)− (2 deg(v)− 2) = 2 deg(v)− 8 ≥ 0. The other cases merely stratify
vertices of degree 3 according to the number of their 2-neighbors of degree 2. ��

Claim 9(E) states that every vertex v of degree≥ 4 satisfies γ2(v) ≥ 0. Similarly, if
a 3-vertex u is adjacent to a vertex v whose degree is at least 4, then also γ2(u)≥0. This
fact follows from either Claim 9(A) and (E) (in caseγ1(u) < 0), or from either Claim 9(C)
or (D) (if γ1(v) > 0) as in this case u cannot send excessive charge in Phase 2.

Claim 10. No vertex v has γ2(v) < 0 and γ1(v) < 0.

Proof. Let v be a vertex satisfying both γ2(v) < 0 and γ1(v) < 0. By Claim 9 deg(v) =
3 and v has prongs of length 1, 2, 3. Let u be the only neighbor of v of degree 
= 2. Since
v has received no charge from u in Phase 2 we have both deg(u) = 3 and γ1(u) ≤ 0.
By Claim 9 the prongs of u are of lengths 1, 2, 3 or 1, 1, 3 or 1, 2, 2. Hence G contains
one of configurations shown in Fig. 6(a). Now observe that these are reducible, as each
matches one of T1 or T2 types of reducible configurations Claim 7. ��
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(a) (b)

Fig. 6. (a) Negatively charged vertex v after both phases induces a reducible configuration.
(b) Negatively charged vertex v after Phase 2 with positive charge after Phase 1.

Claim 11. No vertex v has γ2(v) < 0 and γ1(v) ≥ 0.

Proof. If γ1(v) = 0, then also γ2(v) = 0, as Rule 2 does not reduce charge of a
discharged vertex. By Claim 9(E) vertices of degree ≥ 4 do not have negative charge
after Phase 2. Hence we may assume that v has degree 3, γ1(v) > 0, and γ2(v) < 0.
By Claim 9(C) and (D) every neighbor u of v satisfies either deg(u) = 2 or deg(u) = 3
and γ1(u) < 0. There are exactly two possible cases and they are shown in Fig. 6(b).
It is enough to see that there exists a color choice c(v) which can be extended in the
2-prong and/or stars centered at neighbors of v. Consider the option shown in the right.
By Claim 1 at least one of c(v) = 1 or c(v) = 6 extends to the top 2-prong, and this
choice also extends to the two copies of T , see Claim 4. In the left case both choices
c(v) = 1 and c(v) = 6 extend to the three copies of T , again by Claim 4. ��

Claim 10 and Claim 11 imply that no vertex has negative charge after Phase 2 of the
discharging procedure. As the total charge remains negative and the faces cannot have
negative charges, we have a contradiction, which completes the proof of Theorem 3.

5 Unit-Cube Contact Representations of Graphs

Lemma 6. If G has a unit-cube contact representation Γ so that one face of each cube
is co-planar in Γ , then any threshold subgraph ofG also has a unit-cube representation.

Proof. Let H = (V,EH) be a threshold subgraph of G = (V,EG) and let c : V →
[1 . . . r] be an (r, t)-threshold-coloring ofG with respect to the edge-partition {EH , EG−
EH}. We now compute a unit-cube contact representation of H from Γ using c.

Assume (after possible rotation and translation) that the bottom face for each cube in
Γ is co-planar with the plane z = 0; see Fig. 1(a). Also assume (after possible scaling)
that each cube in Γ has side length t + ε, where 0 < ε < 1. Then we can obtain a
unit-cube contact representation of H from Γ by lifting the cube for each vertex v by
an amount c(v) so that its bottom face is at z = c(v); see Fig. 1(b). Note that for any
edge (u, v) ∈ EH , the relative distance between the bottom faces of the cubes for u and
v is |c(u)−c(v)| ≤ t < (t+ε); thus the two cubes maintain contact. On the other hand,
for each pair of vertices u, v with (u, v) /∈ EH , one of the following two cases occurs:
(i) either (u, v) /∈ EG and their corresponding cubes remain non-adjacent as they were
in Γ ; or (ii) (u, v) ∈ (EG − EH) and the relative distance between the bottom faces of
the two cubes is |c(u)− c(v)| ≥ (t + 1) > (t + ε), making them non-adjacent. ��
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We can directly compute a unit-cube contact representation for subgraphs of the
square grid and the hexagonal grid, via geometric algorithms, instead of via threshold
coloring [1]. To summarize the result of this section:

Theorem 4. Any subgraph of the square and hexagonal grids has a unit-cube contact
representation.

6 Conclusion and Open Problems

We introduced threshold coloring and studied connections with other graph problems.
Many interesting open problems remain, such as characterization and recognition of
total-threshold-colorable graphs, and tightening the girth bounds.

Acknowledgments. We thank Torsten Ueckerdt, Carola Winzen and Michael Bekos for
discussions about different variants of the threshold-coloring problem.
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Abstract. A graph is upward planar if it can be drawn without edge
crossings such that all edges point upward. Upward planar graphs have
been studied on the plane, the standing and rolling cylinders. For all these
surfaces, the respective decision problem NP-hard in general. Efficient
testing algorithms exist if the graph contains a single source and a single
sink but only for the plane and standing cylinder.

Here we show that there is a linear-time algorithm to test whether a
strongly connected graph is upward planar on the rolling cylinder. For
our algorithm, we introduce dual and directed SPQR-trees as extensions
of SPQR-trees.

1 Introduction

A directed graph is upward planar (UP) if it has drawing without edge cross-
ings such that all edge curves monotonically increase in y-direction. Upward
planar graphs are of interesting in their own, but also arise in the context of the
Sugiyama framework [22], which is the common drawing method for directed
graphs. In the Sugiyama framework, the graphs are visualized as hierarchies,
where all edges point upward, and it works particularly well for acyclic graphs.
If the graph contains cycles, the Sugiyama algorithm is extended to recurrent
hierarchies [3], where rolling upward planar (RUP) graphs naturally arise in the
case of planarity.

The upward direction of the edges induces essential differences between planar
and upward planar graphs. For instance, for planar graphs all surfaces of genus
0 are equivalent, such as the plane, the sphere, and the standing and rolling
cylinders. The situation is different with upward planarity: There are directed
graphs that have no upward drawing in the plane but on the surface of the
standing cylinder on which edges may wind around the backside. In fact, there is
a strict hierarchy of graph classes upward planar in the plane, on the (truncated)
sphere [10,11,16,17] or on the standing cylinder [6,14,19,20,23], and the rolling
cylinder [1,6]. Moreover, there are several linear-time planarity test algorithms,
whereas upward planarity is NP-complete in general [12].

In [2], we provide an overview on different types of upward planarity and
investigate their relationships. There, we use the fundamental polygon represen-
tation: Let I = (−1, 1) be the open interval from −1 to 1. The fundamental
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Fig. 1. RUP compounds and the (directed) block cut tree

polygon of the plane is I × I, which is (the interior of) a square. By identifying
its left and right (top and bottom) sides, we get the standing (rolling) cylinder.
Fig. 1(a) top shows the fundamental polygon of the rolling cylinder, where the
arrows at the bottom and top indicate their identification. A graph is standing
upward planar (SUP) (rolling upward planar (RUP)) if it has a plane upward
drawing on the standing (rolling cylinder). In both cases, the edge curves may
wind around the cylinder and reappear at the identified sides of the fundamental
polygon. An example of a RUP graph is shown in Fig. 1(a) at the top. Note
that RUP graphs may contain cycles whereas SUP graphs are acyclic.

Acyclic dipoles are an important tool to study upward planar graphs on the
plane and on cylinders. An acyclic dipole has a single source s and a single sink t
and no cycles. A graph is SUP if and only if it can be augmented to an acyclic
dipole by adding edges such that planarity is preserved [14,17,19]. If additionally
the edge (s, t) can be added without destroying planarity, we obtain st-graphs,
which characterize UP [8,18]. In [1], we use acyclic dipoles to characterize RUP
graphs by means of their duals and investigate strongly connected graphs with
at least one edge, which we call compounds. A compound is RUP if and only if
its directed dual is an acyclic dipole (see bottom of Fig. 1(a)).

The SUP decision problem isNP-complete [16]. In contrast, an acyclic dipole
is SUP if and only if it is planar, which can be checked efficiently, and there
is an efficient algorithm for triconnected single-source graphs [10]. Hence, the
situations for SUP and UP are similar, as the latter is also efficiently solvable
for single-source graphs [5]. The situation for RUP is alike: The general decision
problem is NP-complete [7] and in this paper we present an efficient algorithm
for compounds that utilizes the dipole structure of the compound’s dual. We
divide the problem into two parts. First, we derive a characterization of RUP
compounds by means of their block-cut trees which also yields a decision al-
gorithm (Sect. 3). In the second part (Sect. 4), we tackle the blocks, i. e., the
biconnected components, by using SPQR-trees to decide if a block is RUP. We
conclude in Sect. 5.
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2 Preliminaries

We consider connected, planar, directed graphs G = (V,E) with vertices V and
edges E. A plane drawing of G maps the vertices to distinct points and the
edges to non-intersecting Jordan curves in the plane. A plane drawing induces
an embedding and, equivalently, a rotation system which is the cyclic counter-
clockwise ordering of the edges at every vertex. An embedding is RUP if it is
obtained from a RUP drawing. An embedding of G specifies faces and defines
the (directed) dual graph G∗ = (F,E∗) [4]. The vertices of G∗ are the faces as
defined in the embedding. To avoid confusion, we call the elements of V vertices
and the elements F faces. There is a one-to-one correspondence between the
edges of the primal G and the edges of its dual G∗. For each edge e in G, there
is an edge e∗ between faces f and f ′ in G∗ if and only if e separates f and f ′.
If e is directed, edge e∗ is oriented such that it points from the face left of e to
the face right of e, when traversing the edge curve of e in its direction. Fig. 1(a)
top shows a directed graph with its dual at the bottom. A face f is enclosed
by edges at its boundary and by vertices which are incident to f . Note that G∗

is always connected and G∗ is acyclic if G is strongly connected. Whenever a
dual graph G∗ is given, then the primal is assumed to be embedded accordingly.
Moreover, G∗ can be computed from G’s embedding in linear time.

In [1], we use directed duals to characterize RUP graphs.

Proposition 1 ([1]). An embedded compound is RUP if and only if its dual is
an acyclic dipole.

Hence, we can efficiently decide whether an embeddig is RUP by testing if its
dual is an acyclic dipole.

Corollary 1. There is a linear-time algorithm to test whether the embedding of
a compound is RUP.

The embedding of a triconnected graph is unique up to flipping, i. e., inversion
of all cyclic orderings in the rotation system.

Corollary 2. There is a linear-time algorithm to test if a triconnected com-
pound is RUP.

Hence, deciding whether a compound is RUP can be done efficiently if the
embedding is fixed. If no embedding is given, we use block-cut and SPQR-trees
to find a RUP embedding. For a connected graph G = (V,E), a block B is
a subgraph induced by a set of edges such that no biconnected subgraph of G
properly contains B. Two distinct blocks Bi = (Vi, Ei) and Bj = (Vj , Ej) may
share a cut vertex c ∈ Vi ∩Vj . The block-cut tree TB = (B, C, EB) is a tree, where
B = (B1, . . . , Bk) (k ≥ 1) are the blocks, C are the cut vertices and there is an
edge {Bi, c} ∈ EB if c is in block Bi. Observe that a connected graph is strongly
connected if and only if every block is strongly connected.

In the following, we call a directed path dipath and an undirected path simply
path, e. g., of the underlying undirected graph. A dipath (path) with coinciding
start and end is a cycle (circle). Any of these is called simple if it contains no
vertex/edge twice.
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3 Directed Block-Cut Trees of RUP-Compounds

First, we investigate the block-cut trees of RUP compounds and define the
directed block-cut tree which we us to find a RUP embedding of a compound. As
an example, consider the compound G in Fig. 1(b) consisting of blocks B1, . . . , B8

connected by cut vertices c1, . . . , c4, which are displayed by ⊕. A block Bi of a
compound is strongly connected. Hence, its dual B∗

i is an acyclic dipole with
source si and sink ti (see also Fig. 1(a)). Source si is a face enclosed by the
leftmost cycle Cl

i in the embedding of Bi and the vertices in Cl
i are incident to

si. Accordingly, ti corresponds to the rightmost cycle in Bi’s embedding. A block
contains at least one cycle that winds around the cylinder and, thus, divides it
into two halves. Hence, a cut vertex shared by two blocks must be incident to
the source or sink of the blocks’ duals. For instance in Fig. 1(b), cut vertex c1 is
located at the rightmost cycle of block B1 and at the leftmost cycle of B2.

Lemma 1. Let Bi and Bj be two blocks of a RUP-embedded compound sharing
cut vertex c. Then, c is either incident to both si and tj or to both sj and ti.

A RUP embedding of a block Bi is feasible if each of the block’s cut vertices
is incident to the source or sink in B∗

i . Note that a cut vertex can be incident
to both the source and the sink, e. g., c1 in Fig. 1(b). By Lemma 1, a necessary
condition for an embedding to be RUP is that each block’s embedding is feasible.

Below the fundamental polygon in Fig. 1(b), the block-cut tree TB of com-
pound G is displayed. TB has a linear structure in the following sense: The cut
vertices and all blocks which contain two cut vertices, i. e., B4, B5, and B7, form
a path called spine. All other blocks contain only one cut vertex and “group”
around the cut vertices on the spine. In fact, after removing all blocks with de-
gree one from the directed block-cut tree only the spine remains and, hence, the
block-cut tree of a RUP compound is a caterpillar [15], i. e., a tree where the
removal of all leaves yields a path:

Lemma 2. The block-cut tree of a RUP graph is a caterpillar.

From Lemma 2, we immediately obtain that a block contains at most two cut
vertices. We now define the directed block-cut tree, which describes the embedding
of a compound with respect to its blocks and cut vertices. For the definition, we
assume that each block is feasibly RUP-embedded and that the block-cut tree
is a caterpillar. We obtain a total order c1, . . . , cl on the set of cut vertices by
traversing the spine of the caterpillar in either direction. The directed block-cut

tree
−→TB = (B, C,−→EB) contains all vertices of the original block-cut tree (see the

bottom of Fig. 1(b)). Let Bi be a block which contains only cut vertex cj . If cj

is incident to the source of B∗
i , we add edge (Bi, cj) to

−→
EB and if cj is incident

to the sink, we get edge (cj , Bi). Let Bi be a block on the spine containing cut

vertices cj and cj+1. There is an edge (cj , Bi) ∈
−→
EB if cj is incident to the source

of B∗
i and (Bi, cj+1) ∈ −→EB if cj+1 is incident to the sink.

In the RUP embedding of B4, c1 is located at the leftmost cycle whereas c2
is located at its rightmost cycle (see Fig. 1(a)). Hence, block B4 has an incoming
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edge from c1 and an outgoing edge to c2. Note that
−→TB is technically not a tree

since it may contain antiparallel edge pairs whenever a cut vertex is incident
to the source and sink of a block’s dual. However, it still has a tree structure.
Observe that the in- and outdegree of a block is at most one. Moreover, all “in-
ner” cut vertices, i. e., c2 and c3, have the same in- and outdegree. Consider, for
instance, c3 in Fig. 1(b), which is attached to the right side of B5, to both sides
of B6, and to the left side of B7. Also, the indegree of c1 equals its outdegree
since B1 is closing off its left side. Similarly, all “inner” blocks have equal in- and
outdegree, i. e., blocks B2, . . . , B8. Hence, the directed block cut tree has an Eu-
lerian dipath B1, c1, B2, c1, B4, c1, B4, . . . , c4. This observation holds in general
and yields a characterization:

Lemma 3. A compound is RUP if and only if every block has a feasible RUP
embedding such that the directed block cut tree has an Eulerian dipath.

If the directed block-cut tree has an Eulerian dipath, then this dipath visits each
block exactly once and, hence, defines a total order on the blocks. The blocks
can then be attached in order to each other at their shared cut vertices to obtain
a RUP embedding for the whole compound.

Algorithm 1 returns a RUP embedding of a compound G or false if the
compound is not RUP. As planarity is a necessary condition for a graph
to be RUP, we assume that the compound is planar. The algorithm uses
the linear-time subroutine TestBiconnected, which is the topic of Sect. 4.
TestBiconnected(Bi, Vl, Vr) returns an embedding of block Bi such that all
vertices in Vl and Vr are incident to the source and sink of B∗

i , respectively; if no
such embedding exists, it returns false. First, Algorithm 1 checks whether G is
biconnected. If this is the case, it directly calls TestBiconnected. Otherwise, it
checks whether the block-cut tree TB is a caterpillar. The spine of the caterpillar
induces the total order c1, . . . , cl on the set of cut vertices. In the remainder of

the algorithm, the directed block-cut tree
−→TB is derived by testing the RUP

embeddability of each block. Simultaneously, it stores the start and the end of

the Eulerian dipath of
−→TB in εstart and εend, respectively, with initial values

εstart = c1 and εend = cl. If there is a block Bi containing c1 that has no embed-
ding such that c1 is incident to both the source and sink of B∗

i , Bi must have
an embedding such that c1 is incident to the sink of B∗

i (e. g., B1 in Fig. 1(b)).
Hence, Bi is the start of the Eulerian dipath and εstart is set to Bi. Note that
no second block with the same properties can exist if the graph is RUP since

otherwise
−→TB has no Eulerian dipath. Likewise, the end of the Eulerian dipath is

obtained. Finally, Algorithm 1 traverses the Eulerian dipath from εstart to εend,
which induces a total order on the set of blocks, and assembles a RUP embed-
ding of G. Note that TestBiconnected is called at most twice for each block
and that the block-cut tree can be calculated in time O(|V | + |E|) = O(|V |).
The embeddings of all blocks can be merged in O(|V |). Also, all other steps have
a running time linear in the size of either G or the block-cut tree. Hence, the
overall running time of Algorithm 1 is O(|V |).
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Algorithm 1. TestCompound

Input: Planar compound G = (V,E)
Output: RUP embedding of G or false if G is not RUP

1 if G is biconnected then return TestBiconnected (G, ∅, ∅)
2 TB = (B, C, EB) ← BlockCutTree (G)
3 if TB is no caterpillar then return false

4 Order cut vertices from c1 to cl according to the spine of TB

5
−→TB = (B, C,−→EB) with

−→
EB = ∅

6 εstart ← c1; εend ← cl
7 foreach Bi = (Vi, Ei) ∈ B do
8 if Bi contains exactly one cut vertex cj then
9 if TestBiconnected (Bi, {cj}, {cj}) �= false then

10
−→
EB ← −→

EB ∪ {(cj , Bi), (Bi, cj)}
11 else Bi must be either the beginning or the end of the Eulerian dipath
12 if cj = εstart ∧ TestBiconnected (Bi, ∅, {cj}) �= false then

13 εstart ← Bi;
−→
EB ← −→

EB ∪ {(Bi, cj)}
14 else if cj = εend ∧ TestBiconnected (Bi, {cj}, ∅) �= false then

15 εend ← Bi;
−→
EB ← −→

EB ∪ {(cj , Bi)}
16 else return false

17 else Bi contains two cut vertices cj , cj+1

18 if TestBiconnected (Bi, {cj}, {cj+1}) �= false then

19
−→
EB ← −→

EB ∪ {(cj , Bi), (Bj , cj+1)}
20 else return false

21 Construct RUP embedding E from the RUP embeddings of the blocks in order

of the Eulerian dipath in
−→TB from εstart to εend

22 return E

4 Testing Biconnected Graphs

In the following, we define directed SPQR-trees of the primal and dual of bi-
connected compounds to store all possible embeddings. The main idea of the
second phase of our algorithm is that if each nodes’ skeleton of the primal di-
rected SPQR-tree has an embedding whose dual is an acyclic dipole, then the
dual of the whole graph is an acyclic dipole and, hence, the primal graph is RUP.
For the RUP testing algorithm of biconnected graphs, we assume that the input
graph G = (V,E) contains no anti-parallel pairs of edges (u, v), (v, u) ∈ E, and
no self-loops (u, u) ∈ E. Note that both wrap around the cylinder in a RUP
embedding. All anti-parallel pairs of edges can be replaced by introducing a new
vertex w and substituting edge (u, v) by edges (u,w) and (w, v). All self-loops
are replaced alike. The so obtained graph is RUP if and only if the original
graph is RUP.

SPQR-trees were introduced by Di Battista and Tamassia [9] and provide a
description of how a graph is composed. Let Gu be an undirected biconnected
graph, e. g., the underlying undirected graph of G. In the definition we adopt
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here, the SPQR-tree T of Gu is unrooted. The nodes of T either represent
a series composition (S), a parallel composition (P), a single edge (Q), or a
triconnected component (R). Associated with each node μ of T is a graph that
is homeomorphic to a subgraph of Gu and called the skeleton skel(μ) of μ. In its
original definition, every edge e = {u, v} of a skeleton, except for one of a Q-node,
is a virtual edge, i. e., an edge that represents the subgraph of Gu which connects
u and v. This subgraph is also referred to as the expansion graph expg(e) of e.
For every virtual edge e in the skeleton of a node μ, there is another node ν that
refines the structure of expg(e). This link is represented by an edge between μ
and ν in T . Therefore, every leaf of T is a Q-node. For simplification, however,
we represent edges of the graph directly in the skeleton of an S- ,P-, or R-node,
so that we can neglect Q-nodes. If Gu is planar, its SPQR-tree stores all planar
embeddings of Gu. They can be obtained by two basic operations: swapping
two (virtual) edges in the skeleton of a P-node and flipping the triconnected
component represented by an R-node. The embedding of Gu can be obtained by
merging all skeletons at their associated virtual edges.

Let E be a planar embedding of Gu. Then, E implies an embedding of the
skeleton of each node of T . The dual skeleton skel(μ)∗ of a node μ is the dual
graph of skel(μ). The dual SPQR-tree T ∗ of Gu is a tree whose nodes’ skeletons
are the dual skeletons of T with types S∗, P ∗, and R∗, and T ∗ inherits the
topology of T . Note that the dual graph of the skeleton of a P-node yields a
circle of length at least 3, which corresponds to an S-node, and the dual of the
skeleton of an S-node is a P-node in turn. Also, the dual of a triconnected and
embedded graph is triconnected [21, Thm. 2.6.7] and, hence, the dual of an R-
node’s skeleton is triconnected as well. Consequently, for the node types of the
dual SPQR-tree holds S∗ = P , P ∗ = S, and R∗ = R. Moreover, merging all
skeletons of T ∗ at the associated virtual edges yields the dual graph G∗

u of Gu.

Lemma 4. The dual SPQR-tree of a graph Gu with embedding E is the SPQR-
tree of the dual graph G∗

u with S∗ = P , P ∗ = S, and R∗ = R.

In the next step, we extend SPQR-trees to directed graphs. Let G be a di-
rected, biconnected graph and T be the SPQR-tree of its underlying undirected
graph. For every skeleton skel(μ) of a node μ in T , we obtain the directed skele-

ton
−−→
skel(μ) by directing all non-virtual edges according to their direction in G.

See Figs. 2(b) and (c) for an example. In the following, we call an acyclic dipole
with source u and sink v a uv-graph. Each virtual edge e = {u, v} is treated as
follows: If its expansion graph expg(e) is either a uv-graph or a vu-graph, e is
represented as a directed edge (u, v) or (v, u), respectively. Otherwise, e remains
undirected and is mapped to a subset of the flags {�,��,��}, depending on
whether expg(e) contains a source (��) or a sink (��) other than u and v, or a

cycle (�). The directed SPQR-tree
−→T is obtained from T by replacing each skele-

ton by its directed counterpart. Likewise, we obtain the directed dual SPQR-tree−→T ∗ for a planar embedding E from T ∗, see Figs. 2(c) and (d).
Observe that with the flags, every skeleton in the directed SPQR-tree stores

information whether the graph contains cycles, sources, or sinks, and, to a certain
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Fig. 2. A compound with triconnected components and its dual together with their
SPQR-trees. Black lines are virtual edges. Dotted edges connect the nodes of the SPQR-
tree and indicate the associated virtual edges.

extent also how many. This implies transitivity for the flags �, ��, ��: Let μ
be a node containing a virtual edge e that is refined by node ν and let e′ be the
virtual edge in ν that is refined by μ. If any virtual edge e′′ 
= e′ in ν carries
flag X ∈ {�,��,��}, then e in μ also has flag X .

The planar embedding of a graph is uniquely defined by the planar embeddings
of the skeletons in its SPQR-tree and it can be obtained by merging the nodes at
the associated virtual edges. Note that the direction or the flags of a virtual edge
are insignificant for the merge operations since the vertices that are matched are
always those that represent the same vertex in the graph.

Corollary 3. The directed dual SPQR-tree of a graph G with embedding E is
the directed SPQR-tree of the dual graph G∗ of G.

From now on, we only consider the biconnected and embedded compound G
with acyclic dual G∗. Note that for a strongly connected graph, all virtual edges
in the skeletons of its directed SPQR-tree are either directed or carry flag �,
whereas for acyclic graphs, a virtual edge may only have one or both of the flags
�� and ��.

We introduce optional labels L and R for vertices of G and refine the flag �
on all virtual edges as follows: If the expansion graph of a virtual edge e with
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L R LR

Fig. 3. Auxiliary skeleton

flag � contains a vertex with label L, then e’s flag is refined to �L. Analogously,
if expg(e) contains a vertex with label R, then e’s flag is refined to �R. In case
that expg(e) contains vertices with both labels, e carries both flags. We say that
a directed SPQR-tree is labeled, if every �-flag has been refined. Observe that
this implies at least one vertex with label L or R in G. A directed SPQR-tree of
an acyclic graph is trivially labeled.

Consider graph G∗, which is acyclic, and contains at least one source and one
sink. Every source and every sink in G∗ is a face which is bounded by a cycle
in G. We assign the label L to every vertex that is incident to a source, and the
label R to every vertex that is incident to a sink. Note that a vertex may have
both labels.

Lemma 5. There is a labeled directed SPQR-tree for G such that exactly the
vertices incident to a source in G∗ are labeled L and those incident to a sink are
labeled R.

Lemma 5 enables us to obtain the directed dual SPQR-tree
−→T ∗ of G directly

from the directed SPQR-tree
−→T that is labeled according to its embedding. If a

virtual edge in the skeleton of a node in
−→T has flag �L or �R, we can assign to

its dual edge the flag �� or ��, respectively. The dual of a virtual edge with
flag �� or �� then is a virtual edge with flag �R or �L, respectively. Observe
that for directed graphs, the dual of a dual graph is the converse of the primal
graph, i. e., G with all edges reversed.

Let
−−→
skel(μ) be the skeleton of a node μ in a labeled directed SPQR-tree

−→T
of a graph G. The auxiliary skeleton aux(

−−→
skel(μ)) is derived from

−−→
skel(μ) by

substituting each undirected virtual edge {u, v} according to its flags by a proxy
as depicted in Fig. 3. For instance, the proxy of a virtual edge with flag �L is an
anti-parallel pair of edges, such that it induces a source in the dual graph, which
is in turn the proxy of a virtual edge with flag ��. If G has a planar embedding,
the new edges inherit the position of {u, v} in the rotation systems at u and v.
Observe that all constructions preserve planarity.

By Proposition 1, G is RUP if and only if its dual G∗ is an acyclic dipole.

Consider the directed SPQR-tree
−→T ∗ of G∗. Then, the skeleton of every node

represents the structure of G∗ either directly or via flags on its virtual edges.

Lemma 6. G∗ is an acyclic dipole if and only if every auxiliary skeleton of its
directed SPQR-tree is an acyclic dipole.
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Algorithm 2. TestBiconnected

Input: Planar biconnected compound G = (V,E), Vl, Vr ⊆ V
Output: RUP embedding of G such that all v ∈ Vl (Vr) are incident to the

source (sink) of G∗; or false if no such RUP embedding exists
1 T ← ComputeSPQRTree (G) and keep edge directions according to G

2 Obtain
−→T : Root the tree arbitrarily, direct all edges towards root, and let

μ1, . . . , μk be a topological sorting of T ’s nodes
3 foreach μ = μ1, . . . , μk do ignoring virtual edge associated with parent

4 if
−−→
skel(μ) contains virtual edge with flag � or a cycle then

5 Set flag � on virtual edge of parent associated with μ

6 else
−−→
skel (μ) is uv-graph

7 Direct virtual edge of parent associated with μ from u to v

8 Propagate completive information from root to children
9 if ∃ skeleton with > 2 �-flags then return false

10 foreach node μ and vertex v in
−−→
skel(μ) do if v ∈ Vl (v ∈ Vr) then

11 label v with L (R) in
−−→
skel(μ)

12
−−→
skel(μ) ← skeleton with maximum number of virtual edges with flag �

13 if
−−→
skel(μ) contains ≥ 1 virtual edges with flag � then

14 foreach f ∈ {�L,�R,�L &�R} do
15 Refine �-flag on one virtual edge to f
16 Refine �-flag on other virtual edge, if existent, to complement of f
17 Establish transitivity

18 if TestRUPLabeledSPQRTree (
−→T ) �= false then goto 22

19 return false

20 else no virtual edges with �-flag

21 if TestRUPLabeledSPQRTree (
−→T ) = false then return false

22 Build and return the RUP embedding of G by merging all skeletons

Algorithm 2 takes as input a planar, biconnected compound G = (V,E) with
two sets Vl, Vr ⊆ V . It returns a RUP embedding of G such that all vertices in
Vl (Vr) are incident to the source (sink) of G∗ or false if no such embedding
exists. First, the SPQR-tree of G is computed which can be done in linear time

[13]. From lines 1–8 the directed SPQR-tree
−→T is obtained, i. e., each virtual

edges is either directed or the � flag is set. Note that for each skeleton an
algorithm is executed whose running time is linear in the number of vertices
in the skeleton. Since the number of edges represented in the skeletons is in
O(|V |) [9], we obtain a running time linear in the size of G. By Lemma 6, the
dual of every skeleton must be an acyclic dipole. Hence, the primal skeleton
can contain at most one virtual edge with �L- and one with �R-flag and, thus,
at most two �-edges (cf. line 9). Next, in the skeletons, the representatives of
the vertices in Vl and Vr are labeled accordingly. In lines 13–22, the algorithm
tries all transitive refinements of the �-flag. Note that if there is a skeleton
with two cylic edges e1, e2, either e1 gets �L and e2 gets �R or vice versa.
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In a skeleton with one �-edge, the three refinements �L,�R, and �L &�R are
possible. If all �-edges in one skeleton have been refined, the refinements of
all other �-edges are determined uniquely by transitivity. Thus, the algorithm
has to test at most three different refinements altogether. The obtained labeled
SPQR-tree is passed to TestRUPLabeledSPQRTree. This routine verifies that
each skeleton has an embedding such that its dual is an acyclic dipole and the
vertices with labels L and R are incident to the source and sink, respectively.
TestRUPLabeledSPQRTree proceeds for every node μ as follows: If μ is of type
R, its auxiliary skeleton is obtained. A planarity test yields the (up to flipping)
unique embedding of the auxiliary skeleton. If one dual is an acyclic dipole, then
so is the other. If in one of them the vertices with label L (R) are incident to the
source (sink), this embedding is retained. Otherwise, the test aborts and returns
false. If μ is a P-node, we define the rotation system at any of the two vertices
in the skeleton as follows: Denote by e+1 , . . . , e

+
m and by e−1 , . . . , e

−
n all outgoing

and incoming edges of the vertex in arbitrary order. The rotation system is then
e+1 , . . . , e

+
m, e�L , e

−
1 , . . . , e

−
n , e�R . Observe that if the �-edge carries both flags,

then either m = 0 or n = 0. Because of planarity, this rotation system also
defines the rotation system at the other vertex. If one or both of the �-edges are
missing, they are skipped. In all cases, the dual is an acyclic dipole. Note that
whenever an anti-parallel pair of edges is adjacent in the rotation system, this
always results in either a source or sink in the dual, and the duals of the proxies of
e�L and e�R are a source and a sink, respectively. From the perspective a P-node
provides on the whole graph, the split pair can be incident to both the source and
sink of the dual. Hence, no further tests are needed. If μ is an S-node, its skeleton
has a unique embedding and, hence, also its auxiliary skeleton. The algorithm
computes the dual and verifies that the vertices with L and R are incident to the
source and sink, respectively. If all checks succeed, TestRUPBiconnected returns
a RUP embedding of G. For every skeleton, the test can be performed in time
linear in the size of the skeleton. Finally, we obtain:

Theorem 1. There is a linear-time algorithm to decide whether a strongly con-
nected graph is RUP.

5 Conclusion

We presented a linear time algorithm to check whether a strongly connected
graph is drawable upward planar on a rolling cylinder. We were also able to
extend the RUP-test to graphs without sources and sinks, i. e., graphs consisting
of multiple compounds. The proof is left as future work.
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1 Introduction

Preventing the theft of intellectual property has always been a highly sought
after goal. In particular, the criminal reproduction of software known as software
piracy has become a big concern in recent years. Watermarking/fingerprinting
an object is the act of embedding an identifier of authorship/ownership within
that object, so to discourage illegal copying.

Different approaches to software watermarking have been devised to date, still
none of them was ever proved to be sufficiently resilient, let alone immune, to the
numerous forms of program transformation attacks. Naturally, a lot of research
towards strengthening such methods has been endeavored. The pioneering graph-
based watermarking algorithm was formulated by Davidson and Myrhvold [10].
It inspired the publication, by Venkatesan, Vazirani and Sinha [14], of the first
watermarking algorithm where a positive integer—the key—was encoded as a
special digraph that could be disguised into the control flow graph (CFG) of a
program. Other graph-based watermarking schemes include [6, 8, 9, 13].

In this paper, we consider the ingenious graph-based watermarking scheme
introduced by Collberg, Kobourov, Carter and Thomborson [7], and afterwards
developed and improved upon by Chroni and Nikolopoulos [1].1 These latter au-
thors proposed a linear-time codec (an encoding/decoding procedure) to obtain
watermarks that are particular instances of the reducible permutation graphs in-
troduced in [7]. Chroni and Nikolopoulos’s watermarks possess important struc-
tural properties and are also meant to be embedded into the CFG of the software
to be protected.2 Though the mechanics of the proposed codec is well described
in [1], the class of graphs that constitute the generated watermarks has not been
fully characterized. Moreover, not much was known thus far about the resilience
of Chroni and Nikolopoulos’s graphs to malicious attacks, even though their
ability to withstand attacks in the form of a single edge modification has been
suggested without proofs. A thorough scrutiny of the structural properties of
the aforementioned graph class allowed us to give it a formal characterization,
as well as to introduce a linear-time decoding algorithm that retrieves the cor-
rect, untampered with encoded key even when k ≤ 2 edges of the watermark
are missing. Such algorithm allows for the determination of the exact resilience
level of such graphs against distortive attacks.

The paper is organized as follows. In Section 2, we recall the codec from [1],
formulating and proving a number of properties of the employed structures. In
Section 3, we characterize the class of canonical reducible permutation graphs.
In Section 4, we tackle the edge-removal attack model, proving that, for keys of
size n > 2, it is always possible to identify and recover from attacks that remove
k ≤ 2 edges. Finally, in Section 5, we formulate a linear-time algorithm that
reconstructs the original digraph, in case k ≤ 2 edges are missing, recovering

1 A series of papers on watermarking by the same authors include, but is not limited
to, [2–5].

2 It is not in the scope of this paper the discussion of techniques to embed the water-
mark graph into a CFG.



52 L.M.S. Bento et al.

the encoded key thereafter. As a corollary of the results hitherto presented, we
fully determine the resilience of the considered watermarking scheme. Section 6
concludes the paper with our final remarks and future directions. Throughout
the paper, many proofs were omitted due to space constraints, and shall be
included in a future extended version of the text.

2 The Watermark by Chroni and Nikolopoulos

We start by briefly recalling the watermarking codec described in [1].
Let ω be a positive integer key, with n the size of the binary representation

B of ω. Let also n0 and n1 be the number of 0’s and 1’s, respectively, in B,
and let f0 be the index3 of the leftmost 0 in B. The extended binary B∗ is
obtained by concatenating n digits 1, followed by the one’s complement4 of B
and by a single digit 0. We let n∗ = 2n + 1 denote the size of B∗, and we
define Z0 = (z0i ), i = 1, . . . , n1 + 1, as the ascending sequence of indexes of 0’s
in B∗, and Z1 = (z1i ), i = 1, . . . , n + n0, as the ascending sequence of indexes of
1’s in B∗.

Let S be a sequence. We denote by SR the sequence formed by the elements
of S in backward order. If S = (si), i = 1, . . . , t, is a sequence of size t, and there
is an integer k ≤ t such that the subsequence consisting of the elements of S
with indexes less than or equal to k is ascending, and the subsequence consisting
of the elements of S with indexes greater than or equal to k is descending, then
we say S is bitonic. If all t elements of a sequence S are distinct and belong to
{1, . . . , t}, then S is a permutation. If S is a permutation of size t, and, for all
1 ≤ i ≤ t, the equality i = ssi holds, then we say S is self-inverting. In this case,
the unordered pair (i, si) is called a 2-cycle of S, if i 
= si, and a 1-cycle of S, if
i = si. If S1, S2 are sequences, we denote by S1||S2 the sequence formed by the
elements of S1 followed by the elements of S2.

Back to Chroni and Nikolopoulos’s codec, the bitonic permutation
Pb = Z0||ZR

1 = (bi), i = 1, . . . , n∗, is obtained by appending to Z0 the elements
of Z1 in backward order, and, finally, the self-inverting permutation Ps is ob-
tained from Pb as follows: for i = 1, . . . , n∗, index bi in Ps is assigned to element
sbi = bn∗−i+1, and index bn∗−i+1 in Ps is assigned to element sbn∗−i+1

= bi. In
other words, the 2-cycles of Ps correspond to the n unordered pairs of distinct
elements of Pb that are equidistant from the extremes of Pb, namely the pairs
(p, q) = (bi, bn∗−i+1), for i = 1, . . . , n. Since the central index i = n + 1 of Pb

is the solution of equation n∗ − i + 1 = i, element bn+1—and no other—will
constitute a 1-cycle in Ps. We refer to such element of Ps as its fixed element,
and we let f denote it.

The watermark generated by the codec from [1] belongs to the class of re-
ducible permutation graphs first defined in [7]. It is a directed graph G whose
vertex set is {0, 1, . . . , 2n+ 2}, and whose edge set contains 4n+ 3 edges, to wit:

3 The index of the leftmost element in all sequences considered in the text is 1.
4 The one’s complement of a binary R is obtained by swapping all 0’s in R for 1’s and
vice-versa.
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a path edge (u, u−1) for u = 1, . . . , 2n+2, constituting a Hamiltonian path that
will be unique in G, and a tree edge from u to q(u), for u = 1, . . . , n∗, where
q(u) is defined as the vertex v > u with the greatest index in Ps to the left of u,
if such v exists, or 2n + 2 otherwise5. A graph so obtained is called a canonical
reducible permutation graph.

Let us glance at an example. For ω = 43, we have B = 101011, n = 6, n0 = 2,
n1 = 4, f0 = 2, B∗ = 1111110101000, n∗ = 13, Z0 = (7, 9, 11, 12, 13),
Z1 = (1, 2, 3, 4, 5, 6, 8, 10), Pb = (7, 9, 11, 12, 13, 10, 8, 6, 5, 4, 3, 2, 1),Ps = (7, 9, 11,
12, 13, 10, 1, 8, 2, 6, 3, 4, 5) and f = 8. The generated watermark G will have,
along with the path edges in Hamiltonian path 14 → 13 → · · · → 0,
also the tree edges (1, 10), (2, 8), (3, 6), (4, 6), (5, 6), (6, 8), (7, 14), (8, 10), (9, 14),
(10, 13), (11, 14), (12, 14) and (13, 14), as illustrated in Figure 1.

11 10 9 8 7 6 5 4 3 2 1 014 13 12

Fig. 1. Watermark for key ω = 43

Canonical reducible permutation graphs are certainly not the only graphs that
could be used to encode an integer, and they are certainly not the only graphs
that could be disguised into a software’s CFG. Yet they do have such properties,
hence they are an appropriate choice. Moreover, they present some structural,
encoding-related redundancy that grants them some resilience against attacks,
as we shall see. We now state a number of properties of these graphs.

Let G still be the canonical reducible permutation graph associated to a key
ω of size n, and Pb and Ps, respectively, the bitonic and the self-inverting per-
mutations dealt with during the construction of G.

Property 1. For 1 ≤ i ≤ n, element bn+i+1 in Pb is equal to n− i + 1, that is,
the n rightmost elements in Pb are 1, 2, . . . , n when read from right to left.

Property 2. The elements whose indexes are 1, 2, . . . , n in Ps are all greater
than n.

Property 3. The fixed element f satisfies f = n+ f0, unless the key ω is equal
to 2k − 1 for some integer k, whereupon f = n∗ = 2n + 1.

Property 4. In self-inverting permutation Ps, elements indexed 1, 2, . . . , f −
n − 1 are respectively equal to n + 1, n + 2, . . . , f − 1, and elements indexed
n + 1, n + 2, . . . , f − 1 are respectively equal to 1, 2, . . . , f − n− 1.

Property 5. The first element in Ps is s1 = n + 1, and the central element in
Ps is sn+1 = 1.

5 The rationale behind the name tree edge is the fact that such edges induce a spanning
tree of G \ {0}.
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Property 6. If f 
= n∗, then the index of element n∗ in Ps is equal to n1 + 1,
and vice-versa. If f = n∗, then the index of element n∗ in Ps is also n∗.

Property 7. The subsequence of Ps consisting of elements indexed 1, 2, . . . , n+1
is bitonic.

Property 8. For u 
= 2n + 1, (u, 2n + 2) is a tree edge of watermark G if, and
only if, u− n is the index of a digit 1 in the binary representation B of the key
ω represented by G.

Property 9. If (u, k) is a tree edge of watermark G, with k 
= 2n + 2, then
(i) element k precedes u in Ps; and (ii) if v is located somewhere between k and
u in Ps, then v < u.

3 Canonical Reducible Permutation Graphs

This section is devoted to the characterization of the class of canonical reducible
permutation graphs. After describing some terminology, we define the class using
purely graph-theoretical predicates, then we prove it corresponds exactly to the
set of all watermark instances possibly produced by Chroni and Nikolopoulos’s
encoding algorithm [1]. Finally, we characterize it in a way that suits the design
of a new, resilient, linear-time decoding algorithm.

Given a graph G, we let V (G) and E(G) denote, as usual, the vertex set and
edge set of G, respectively. Also, we let N+

G (v) and N−
G (v) respectively denote

the set of out-neighbors and in-neighbors of vertex v ∈ V (G). A reducible flow
graph [11, 12] is a directed graph G with source s ∈ V (G), such that, for each
cycle C of G, every path from s to C reaches C at a same vertex. It is well
known that a reducible flow graph has at most one Hamiltonian cycle.

Definition 10. A self-labeling reducible flow graph relative to n > 1 is a di-
rected graph G s.t.

(i) |V (G)| = 2n + 3;
(ii) G presents exactly one directed Hamiltonian path, hence there is a unique

labeling function σ : V (G) → {0, 1, . . . , 2n + 2} of the vertices of G such
that the order of the labels along the Hamiltonian path is precisely
2n + 2, 2n + 1, . . . , 0;

(iii) considering the labeling σ as in the previous item,N+
G (0) = ∅, N−

G (0) = {1},
N+

G (2n + 2)={2n + 1}, |N−
G (2n + 2)| ≥ 2, and, for all v ∈ V (G) \ {0, 2n+

2}, N+
G (v) = {v − 1, w}, for some w > v.

From now on, without loss of generality, we shall take σ for granted and assume
the vertex set of any self-labeling reducible flow graph G is the very set V (G) =
{0, 1, . . . , 2n + 2}, yielding the unique Hamiltonian path 2n + 2, 2n + 1, . . . , 0
in G.6

6 By doing so, we may simply compare two vertices, e.g. v > u (or v greater than u,
in full writing), whereas we would otherwise need to compare their images under σ,
e.g. σ(v) > σ(u).
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Let G be a self-labeling reducible flow graph and H its unique Hamiltonian
path. We define a tree T with vertex set V (T ) = V (G) \ {0}, and edge set E(T )
comprising all edges in E(G) \ E(H) deprived of their orientation. We call T
the representative tree of G, and we regard it as a rooted tree whose root is
2n + 2, and where the children of each v ∈ V (T ), denoted NT (v), are exactly
the in-neighbors of v in G \ E(H). In addition, we regard T as an ordered tree,
that is, for each v ∈ V (T ), the children of v are always considered according to
an ascending order of their labels. Finally, for v ∈ T , we denote by N∗

T (v) the
set of descendants of v in T . Figure 2 depicts two representative trees.

10

1 8

2 6

3 54

14

7 9 11 1312

6 7 9 11108

1 2 4 53

12(a)

(b) 

Fig. 2. Representative trees of the watermarks for keys (a) ω = 31 and (b) ω = 43

Observation 11. The representative tree T of a self-labeling reducible flow graph
G satisfies the max-heap property, that is, if vertex u is a child of vertex v in T ,
then v > u.

We convey the idea that a representative tree T satisfies the max-heap property
by saying that T is a descending, ordered, rooted tree.

Definition 12. A self-inverting permutation S of size 2n+1 is said to be canon-
ical if:

(i) there is exactly one 1-cycle in S;
(ii) each 2-cycle (si, sj) of S satisfies 1 ≤ i ≤ n, for si > sj;
(iii) s1, . . . , sn+1 is a bitonic subsequence of S starting at s1 = n+1 and ending

at sn+1 = 1.

Lemma 13. In any canonical self-inverting permutation of {1, . . . , 2n+ 1}, the
fixed element f satisfies f ∈ [n + 2, 2n + 1].

Let T be some representative tree, therefore a descending, ordered, rooted
tree. The preorder traversal P of T is a sequence of its vertices that is recursively
defined as follows. If T is empty, P is also empty. Otherwise, P starts at the root
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r of T , followed by the preorder traversal of the subtree whose root is the first
(i.e. smallest) child of r, followed by the preorder traversal of the subtree whose
root is the second smallest child of r, and so on. The last (rightmost) element of
P is referred to as the rightmost element of T as well.

Lemma 14. The preorder traversal of a representative tree T is unique. Con-
versely, a representative tree T is uniquely determined by its preorder traversal.

If we remove the first element of P , the remaining sequence is said to be the
root-free preorder traversal of T .

Definition 15. A canonical reducible permutation graph G is a self-labeling re-
ducible graph such that the root-free preorder traversal of the representative tree
of G is a canonical self-inverting permutation.

Theorem 16. A digraph G is a watermark instance produced by Chroni and
Nikolopoulos’s encoding algorithm [1] if, and only if, G is a canonical reducible
permutation graph.

Let T be the representative tree of some canonical reducible permutation
graph G, and P a canonical self-inverting permutation corresponding to the
root-free preorder traversal of T . We refer to the fixed element f of P also as
the fixed element (or vertex) of both G and T . Similarly, the 2-cyclic elements
of P correspond to cyclic elements (or vertices) of both G and T . The concepts
we describe next will be employed in the characterization of canonical reducible
permutation graphs.

A vertex v ∈ V (T ) \ {2n + 2} is considered large when n < v ≤ 2n + 1;
otherwise, v ≤ n and v is dubbed as small. Denote by X,Y , respectively, the
subsets of large and small vertices in T , so |X | = n + 1 and |Y | = n. By
Lemma 13, f ∈ X . We then define Xc = X \ {f} = {x1, . . . , xn} as the set of
large cyclic vertices in T .

We say that T is a type-1 tree—please see Figure 3(a)—when
(i) n + 1, n + 2, . . . , 2n + 1 are children of the root 2n + 2 in T ; and

(ii) 1, 2, . . . , n are children of 2n.

Elseways, we say that T is a type-2 tree relative to f— please see Figure 3(b)—
when

(i) n + 1 = x1 < x2 < . . . < x� = 2n + 1 are the children of 2n + 2, for some
� ∈ [2, n− 1];

(ii) xi > xi+1 and xi is the parent of xi+1, for all i ∈ [�, n− 1];
(iii) 1, 2, . . . , f − n− 1 are children of xn;
(iv) xi = n + i, for 1 ≤ i ≤ f − n− 1;
(v) f is a child of xq, for some q ∈ [�, n] satisfying xq+1 < f whenever q < n;

and
(vi) N∗

T (f) = {f −n, f −n+ 1, . . . , n} and yi ∈ N∗
T (f) has index xyi − f + 1 in

the preorder traversal of N∗
T [f ].
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Lemma 17. If yr is the rightmost vertex of a type-2 representative tree T rela-
tive to some f 
= 2n + 1, then yr = �.

The following theorem characterizes canonical reducible permutation graphs.

Theorem 18. A digraph G is a canonical reducible permutation graph if, and
only if, G is a self-labeling reducible graph and

(i) the fixed element of G is 2n + 1 and G has a type-1 representative tree; or
(ii) the fixed element of G belongs to [n + 2, 2n] and G has a type-2 represen-

tative tree.

4 Restoring a Damaged Watermark

In this section, we analyze the effects of a distortive attack against a canonical
reducible permutation graph G whereby two edges e1, e2 ∈ E(G) were removed.
Let G′ = G \ {e1, e2}.

4.1 Reconstructing the Hamiltonian Path

The algorithm given in pseudocode as Procedure 1 reconstructs the Hamiltonian
path H of G, in case e1 or e2 belonged to H , and classifies each missing edge as
either a path edge or a tree edge. The input is the damaged watermark graph G′.
If v ∈ V (G′), we denote by H(v) the subsequence of the Hamiltonian path of G
that ends at v and starts as far as possible in G′. Also, we denote by first(H(v))
the first vertex of the subsequence H(v).

The mechanics of Procedure 1 is that of sewing together the k′ ≤ 3 maximal
directed paths resulting from the deletion of k ≤ 2 edges from G. In short, each
such directed path is reassembled by placing vertices, one by one in backwards
fashion, starting at a vertex with out-degree 0 among those which have not yet
been placed. The proof that it is always possible to restore the Hamiltonian path

2n+2

x1 x2 ...

x +1

x  = 2n+1

xq

xn
f

1 2 ... f-n-1

...
...

( f )N*
T

2n +2

n+1 n+2 2n 2n+1...

(a)

(b)

1 2 ... n

Fig. 3. (a) A type-1 representative tree. (b) A type-2 representative tree.
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Procedure 1: Reconstructing the Hamiltonian path

V0 ← {v ∈ V (G′) s.t. |N+

G′ | = 0}; V1 ← {v ∈ V (G′) s.t. |N+

G′ | = 1}
if |V0| = 1 then

let v0 be the unique element in V0

if |H(v0)| = 2n + 3 then H ← H(v0), return H and edge types as in Figure 4(a)
else if ∃ v1 ∈ V1 such that |H(v0)| + |H(v1)| = 2n + 3 then

H ← H(v1)||H(v0), return H and edge types as in Figures 4(b,c)
else

let v1, v
′
1 ∈ V1 be such that

|H(v0)| + |H(v1)| + |H(v′
1)| = 2n + 3 and N+

G′ (first(H(v1)) ∩ H(v′
1) �= ∅

H ← H(v′
1)||H(v1)||H(v0), return H and edge types as in Figure 4(d)

else

let v0, v
′
0 be the elements in V0

if |H(v0)| + |H(v′
0)| = 2n + 3 then

let v0 be such that N+

G′(first(H(v0))) ∩ H(v′
0) �= ∅

H ← H(v′
0)||H(v0), return H and edge types as in Figures 4(e,f)

else

let v′
0 ∈ V0 and v1 ∈ V1 be such that v′

0 ∈ N+

G′(first(H(v1))

H ← H(v′
0)||H(v1)||H(v0), return H and edge types as in Figures 4(g,h)

this way relies on the characterization of representative trees and is not overly
complicated. It is, however, quite lengthy, since each possible case (see Figure 4)
resulting from such an attack must be tackled separately. It has therefore been
omitted.

As for the time complexity of the algorithm, note that, in general, 1 ≤ |V0| ≤ 2
and 1 ≤ |V1| ≤ 3. The latter follows from the definition of a self-labeling re-
ducible graph and from the fact that two edges were removed from G. Moreover,
each path H(vi) can be computed in O(|H(vi)|) time. Consequently, the entire
algorithm has complexity O(n).

4.2 Determining the Fixed Element

Suppose the watermark G has been attacked, which resulted in a damaged wa-
termark G′, where two unknown edges are missing. Now we shall recognize the
fixed element of the original watermark, given the damaged one. Getting to know
the fixed element of G will play a crucial role in retrieving the missing tree edges
and consequently restoring the original key w.

The two following theorems, whose proofs we omit, characterize the fixed
element f of G when f = 2n+1 and when f < 2n+1, respectively. Let T be the
representative tree of the original watermark G. We consider the case where the
two edges that have been removed belong to T . Denote by F the forest obtained
from T by the removal of two edges.
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Fig. 4. Possible scenarios for the Hamiltonian path of a damaged watermark G. Dashed
arrows indicate missing edges. Broken arrows (with a tilde in the middle) indicate paths
of arbitrary size d ≥ 0 (i.e., both ends may coincide). Squares, solid circles and hollow
circles represent vertices whose out-degrees in G′ are, respectively, 0, 1 and 2. The tree
edges of G′ are not being shown (unless those removed by the attacker, represented by
backward arrows).
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Fig. 5. (a–c) Conditions (i), (ii) and (iii) of Theorem 20, respectively

Theorem 19. Let F be a forest obtained from the representative tree T by re-
moving two edges, where n > 2. The fixed element of T is f = 2n + 1 if, and
only if,

(i) vertex 2n + 1 is a leaf of F ; and
(ii) the n small vertices of G′ are children of 2n in F , with the possible exception

of at most two of them, in which case they must be isolated vertices.

Theorem 20. Let F be a forest obtained from the representative tree T of wa-
termark G by removing two of its edges, and let x ≤ 2n be a large vertex of
T which is not a child of 2n + 2. Vertex x is the fixed element f of G if, and
only if,

(i) the large vertex x has a sibling z in F , and x > z; or
(ii) the subset of small vertices Y ′ ⊂ Y , Y ′ = {x − n, x − n + 1, . . . , n} can

be partitioned into at most two subsets Y ′
1 , Y

′
2 , such that ∅ 
= Y ′

1 = N+
F (x)

and Y ′
2 is the vertex set of one of the trees which form F ; or, whenever the

previous conditions do not hold,
(iii) the large vertex x is the rightmost vertex of one of the trees of F , while the

rightmost vertices of the remaining trees are all small vertices.

The above theorems lead to an algorithm that finds the fixed element of G in
linear time. The input is the forest F , obtained from the representative tree T of
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Procedure 2: Finding f �= 2n+ 1

1. If F contains a large vertex x having a sibling z
then let f ← max{x, z} and terminate the algorithm. Otherwise,

2. For each large vertex x of F satisfying NF (x) �= ∅ and each small y ∈ NF (x),
let Y ′ = {x− n, x− n+ 1, . . . , n}. If N∗

F (x) = Y ′ or N∗
F (x) ⊂ Y ′,

and Y ′ \N+
F (x) is the vertex set of one of the trees of F ,

then let f ← x and terminate the algorithm. Otherwise,
3. Find the preorder traversals of the three trees of F , and

then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F .

G by the removal of two edges. The algorithm is as follows: first, check whether
f = 2n+1. This is a direct task, applying Theorem 19: just verify if 2n+1 is a leaf
of F and whether all small vertices are children of 2n, except possibly two, which
must be isolated vertices. If both conditions are satisfied then set f = 2n + 1
and terminate the algorithm. Otherwise, proceed to determining f < 2n + 1 by
checking the conditions described in Theorem 20 (see also Figure 5).

4.3 Determining the Root’s Children

After having identified the fixed element of the watermark, we are almost in a
position to determine the tree edges that have been removed.

Observe that, when f = 2n + 1, the task is trivial, since, in this case, by
Theorem 18, there can be only one canonical reducible permutation graph G
relative to n. Such a graph is precisely the one with a type-1 representative tree T ,
which is unique for each n > 2 (cf. Property 3 of canonical reducible permutation
graphs, in Section 2). By definition, the root-free preorder traversal of a type-1
representative tree, when f = 2n + 1, is n + 1, n + 2, . . . , 2n, 1, 2, . . . , n, 2n + 1.

We therefore want to determine the children of 2n + 2 restricted to the case
where f < 2n + 1. Let G be a watermark, T its representative tree and F
the forest obtained from T by the removal of two edges. As usual, f stands
for the fixed element of T , X is the set of large vertices other than 2n + 2,
and Xc = X \ {f}. Finally, denote by A ⊆ Xc the subset of ascending large
cyclic vertices of T , which we shall refer to simply as the ascending vertices,
and denote by D the set D = Xc \ A of descending large cyclic vertices of T ,
or simply the descending vertices. Given the forest F and its fixed element f ,
Procedure 3 computes the set A, which, due to the representative tree properties
of T , corresponds precisely to the children of its root 2n + 2. The notation still
employs NF (v) and N∗

F (v) for the children and the descendants of vertex v in
F , respectively. We denote by F [Xc] the subgraph of F induced by the vertices
in Xc.

Theorem 21. Procedure 3 correctly computes the set of ascending vertices of T
in linear time.
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Procedure 3: Constructing the set of large ascending vertices

1. If F [Xc] ∪ {2n + 2} is connected then A ← NF (2n + 2)

and terminate the algorithm. Otherwise,

2. If F [Xc] ∪ {2n + 2} contains no isolated vertices then A ← NF (2n + 2) ∪ {2n + 1}
and terminate the algorithm. Otherwise,

3. If F [Xc] ∪ {2n + 2} contains two isolated vertices x, x′ then A ← NF (2n + 2) ∪ {x, x′}
and terminate the algorithm. Otherwise,

4. If F [Xc] ∪ {2n + 2} contains a unique isolated vertex x then

if |N∗
F (f)| = 2n − f + 1 then

let yr be the rightmost vertex of N∗
F (f)

if |NF (2n + 2)| < yr then A ← NF (2n + 2) ∪ {x, 2n + 1}
else A ← NF (2n + 2)

else A ← NF (2n + 2) ∪ {x}

Once we manage to recover the set A of children of the root 2n + 2 in T ,
the decoding algorithm proposed in the next section can be run, retrieving the
encoded key ω. This suffices to prove that the original, undamaged watermark
can be fully restored: a simple possibility is to run the (linear) encoding algorithm
from scratch, with ω as input. We have, however, an even simpler algorithm that
restores the watermark based on the reconstitution of its preorder traversal, but
we shall not present it in the present paper due to space constraints.

5 A New Decoding Algorithm

We can now formulate our new decoding algorithm. If the input watermark
presents k ≤ 2 missing edges, the algorithm is able to fix it, prior to running the
decoding step. The decoding step itself is absolutely straightforward, and relies
on the following theorem.7

Theorem 22. Let ω be a given key and G the watermark corresponding to ω.
Let A′ = x1, . . . , x�−1 be the ascending sequence of children of 2n+2, in the rep-
resentative tree T of G, that are different from 2n+1. Then ω =

∑
xi∈A′ 22n−xi .

As a consequence of the above theorem, whenever the input watermark has
not been tampered with, the proposed algorithm simply retrieves the encoded
key in a faster, less complicated fashion than the original decoding algorithm
from [1].8

Theorem 23. Algorithm 4 retrieves the correct key ω ≥ 4, encoded in a water-
mark with up to two missing edges, in linear time.

Corollary 24. Distortive attacks in the form of k edge modifications (inser-
tions/deletions) against canonical reducible permutation graphs G, with |V (G)| =
2n + 3, n > 2, can be detected in polynomial time, if k ≤ 5, and also recovered
from, if k ≤ 2. Such bounds are tight.

7 Though some reconstitution steps were written as if exactly two edges were missing,
the case where a single edge is missing is at least as easy, since removing an arbitrary
edge transforms the latter case into the former.

8 Note that, in this case, it is straightforward to determine the setA, asA = N−
G (2n+2).



62 L.M.S. Bento et al.

Algorithm 4: Obtaining the key from a possibly damaged watermark

1. Let k ← |E(G)| − (4n+ 3).
2. If k > 2, report the occurrence of k edge removals and halt.
3. If 0 < k ≤ 2, proceed to the reconstitution (Procedures 1–3).
4. Calculate and return the key ω as indicated by Theorem 22.

6 Final Considerations

After characterizing the class of canonical reducible permutation graphs, we for-
mulated a linear-time algorithm that restores a member of that class presenting
up to two missing edges. Our results therefore have proved that canonical re-
ducible permutation graphs are always able to detect and recover from malicious
attacks in the form of k ≤ 2 edge removals9 in linear time. Moreover, we have
shown that attacks in the form of k ≤ 5 edge modifications (insertions/deletions)
can be detected in polynomial time. Such level of resilience, we remark, is a very
important feature of the original watermarking scheme.

Future directions. A necessary condition for a watermark G1 to recover from the
removal of a subset of edges E′

1 ⊂ E(G1), with |E′
1| = k, is that G′

1 = G1 \ E′
1

is not isomorphic to some graph G′
2 obtained from watermark G2 
= G1 by the

removal of k edges. For k ≤ 2, we have shown this condition is always satisfied,
provided n > 2, and we have proved this is not always true for k ≥ 3. An
interesting open problem is therefore to characterize the set of keys Ω(k) whose
corresponding watermarks can always recover from the removal of k ≥ 3 edges.

Future research focusing on the development of watermarking schemes re-
silient to attacks of greater magnitude may consider extending the concept of
canonical reducible permutation graphs by allowing permutations with h-cycles,
with h > 2, as well as multiple fixed elements.
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Abstract. Normal graphs are defined in terms of cross-intersecting set
families: a graph is normal if it admits a clique cover Q and a stable set
cover S s.t. every clique in Q intersects every stable set in S .

Normal graphs can be considered as closure of perfect graphs by means
of co-normal products and graph entropy. Perfect graphs have been re-
cently characterized as those graphs without odd holes and odd antiholes
as induced subgraphs (Strong Perfect Graph Theorem, Chudnovsky et
al. 2006). Körner and de Simone observed that C5, C7, and C7 are mini-
mal not normal and conjectured, in analogy to the Strong Perfect Graph
Theorem, that every (C5, C7, C7)-free graph is normal (Normal Graph
Conjecture, Körner and de Simone 1999).

We conclude from a result of Prömel and Steger that the Normal
Graph Conjecture is asymptotically true and verify it for two classes of
sparse graphs, 1-trees and cacti. In addition, we provide algorithms to
recognize normal graphs within these two classes in linear time.

Keywords: Normal Graph Conjecture, 1-trees, cacti.

1 Introduction

Normal graphs come up in a natural way in an information theoretic context by
studying co-normal products [5] or graph entropies [3]. A graph G is normal if G
admits cross-intersecting clique and stable set covers, called a valid pair (Q,S):
a clique cover Q and a stable set cover S s.t. every clique in Q intersects every
stable set in S. Figure 1 presents three normal graphs and their valid pairs.

The class of normal graphs includes the well-studied perfect graphs, and the
interest in normal graphs is caused by the fact that they form, in different ways,
a weaker variant of perfect graphs. Berge [1] introduced perfect graphs as those
graphs G, where the clique number ω(G′) equals the chromatic number χ(G′)
for each induced subgraph G′ ⊆ G (ω(G) denotes the size of a maximum clique
in G, χ(G) the least number of stable sets covering all nodes of G).

� Research partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.
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Fig. 1. Three normal graphs and their valid pairs: bold edges indicate the clique covers,
labels the cross-intersecting stable set covers

Berge observed that chordless odd cycles C2k+1 with k ≥ 2, the odd holes,
and their complements, the odd antiholes C2k+1 with k ≥ 2, are graphs G with
ω(G) < χ(G), see Figure 2.

This motivated Berge’s Strong Perfect Graph Conjecture: a graph G is perfect
if and only if G is odd hole- and odd antihole-free. In a sequence of remarkable
results, Chudnovsky et al. [2] finally turned the above conjecture into the Strong
Perfect Graph Theorem.

C 
7

C 
75      C  = C5      

Fig. 2. Small odd holes and odd antiholes

Since normal graphs are a closure of perfect graphs in terms of graph entropy
[3,6,12] and taking co-normal products [4,5], Körner and de Simone [7] asked
for a similarity of the two classes in terms of forbidden subgraphs. Körner [4]
showed that an odd hole C2k+1 is normal if and only if k ≥ 4. By the invariance
of normality under taking complements, an odd antihole C2k+1 is also normal
if and only if k ≥ 4. C5, C7 and C7 are minimally not normal since all of their
proper induced subgraphs are perfect and, hence, normal. Körner and de Simone
conjectured that there are no other minimally not normal graphs:

Conjecture 1 (Normal Graph Conjecture [7]). All graphs without a C5, C7, and
C7 as induced subgraph are normal.

The Normal Graph Conjecture would imply a sufficient condition for normal-
ity which could be checked in polynomial time. However, the non-existence of
C5, C7, and C7 in a graph is not necessary to be normal (see the first two graphs
in Figure 1), and a characterization of normal graphs by forbidden subgraphs is
not possible (see [14]). So far, the Normal Graph Conjecture has been verified
for triangle-free graphs [7], webs [13] and line graphs [10].



66 A. Berry and A. Wagler

In order to treat the Strong Perfect Graph Conjecture from a probabilistic
point of view, Prömel and Steger [9] asked for the relation of perfect and odd
hole, odd antihole-free graphs with the same number of nodes. For that, they
proved that almost all C5-free graphs are perfect.

This verified the Strong Perfect Graph Conjecture asymptotically as every odd
hole, odd antihole-free graph is in particular C5-free. Since every (C5, C7, C7)-
free graph is C5-free, also almost all (C5, C7, C7)-free graphs are perfect and,
therefore, normal. Consequently, we obtain:

Corollary 1. The Normal Graph Conjecture is asymptotically true.

Moreover, it is known from [9] that a random graph is with high probability
perfect only if it is very sparse (i.e., if it has less edges than nodes) or, due to the
invariance of perfectness under taking complements, very dense. This motivates
our study of two classes of sparse graphs w.r.t. normality.

We start with a class of graphs having as many edges as nodes: A 1-tree is
a connected graph G = (V,E) with |V | = |E| (obtained from a tree by adding
one edge since trees are precisely the connected graphs with |V | − 1 = |E|).
Hence, G contains exactly one cycle C (due to this property, 1-trees are also
called unicyclic graphs). In other words, G can be obtained from the cycle C
and certain trees by a sequence of node-identifications.

In Section 3, we characterize the normal 1-trees with the help of two results: a
connected triangle-free graph is normal if and only if it has a so-called nice edge
cover [7] and the identification of two normal graphs in one node yields a normal
graph again. The latter is a consequence from results on clique identification and
normality in [14], see Section 2. We obtain that the only not normal 1-trees are
either equal to a C7 or contain a C5. This verifies the Normal Graph Conjecture
for the class of 1-trees (note: no C7 can occur in a 1-tree, so it suffices to show
that (C5, C7)-free 1-trees are normal) and leads to a linear time recognition
algorithm for normal 1-trees.

We further extend this result to the larger class of cacti in Section 4. A cactus
is a connected graph whose cycles are all edge-disjoint. Thus, a cactus G = (V,E)
with k cycles can be considered as a graph obtained from a tree by adding k
edges in a certain way (thus cacti admit |V | − 1 + k edges) or, alternatively, as
a graph obtained from k 1-trees by a sequence of node-identifications.

As the class of normal graphs is closed under node identification (see Sec-
tion 2), a cactus is normal if it can be obtained by identifying normal 1-trees in
nodes; this verifies the Normal Graph Conjecture for cacti, as in particular all
(C5, C7)-free cacti are normal.

As there also exist normal cacti containing a C5 or a C7, our further goal
is to recognize normal cacti. For that, we design a linear time algorithm that
decomposes a cactus into 1-trees, determines the normality status of each 1-tree,
and decides whether the recomposed graph is normal or not.

We close with some concluding remarks and discuss consequences and some
future lines of research.
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2 Clique Identification and Normal Graphs

A graph G arises by identification of two disjoint graphs G1 and G2 in a clique
if there are cliques Q1 ⊆ G1 and Q2 ⊆ G2 with |Q1| = |Q2| and a bijection
φ : Q1 → Q2 identifying every node v ∈ Q1 with φ(v) ∈ Q2, see Figure 3.

In this section, we discuss how normal graphs can be obtained by clique iden-
tification. The first two graphs in Figure 1 are examples of normal graphs, con-
structed by identifying a non-normal C5 and C7 with two edges and one edge,
respectively. Figure 3 shows another normal graph obtained by identifying two
non-normal graphs in an edge.

1 2

3
1

1

11 2

2 2

2

3

3

3

Fig. 3. Identifying two non-normal graphs in an edge: bold edges indicate the clique
cover, labels the cross-intersecting stable set cover of the resulting normal graph

However, the non-normal building blocks in these examples are not too far
from being normal which shows in particular that it obviously suffices if the
nodes in the common clique are covered in one of the two building blocks.

This suggests to relax the condition of normality for the building blocks as
follows. Let G be a graph such that G has a stable set cover S, G − Q′ has a
clique cover QQ′ , for some clique Q′, and S and QQ′ are cross-intersecting. We
call such a graph G nearly normal, (QQ′ ,S) a nearly valid pair of G, and Q′ an
unnormal clique of G.

Figure 4 shows examples of nearly normal graphs together with their nearly
valid pairs and unnormal cliques.
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Fig. 4. Nearly normal graphs: the gray-shaded nodes induce the unnormal cliques Q′,
bold edges indicate the clique covers QQ′ , labels the cross-intersecting stable set covers

It was shown in [14] that this weaker form of normality suffices for constructing
a normal graph by clique identification, provided the involved stable set covers
are suitable.
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Lemma 1. [14] Construct G by identifying two nearly normal graphs G1 and G2

in a clique Q∗ and let Q1, Q2 ⊆ Q∗ be disjoint unnormal cliques. The resulting
graph G is normal if there exist nearly valid pairs (QQi(Gi),S(Gi)) for i = 1, 2
satisfying at least one of the following conditions.

(1) S(Gi) contains a stable set S with S ∩Q∗ = ∅ for i = 1, 2;
(2) S(Gi) contains no stable set S with S ∩Q∗ = ∅ for i = 1, 2;
(3) S(G1) contains a stable set S with S ∩Q∗ = ∅ but S(G2) does not, and Q1

is non-empty (or vice versa).

Lemma 1 provides sufficient conditions to obtain a normal graph via clique
identification, but it is not yet clear whether these conditions are also necessary.
However, condition (1) of Lemma 1 is certainly satisfied if Q∗ is a non-maximal
clique in Gi for i = 1, 2: In order to cover a common neighbor v of all nodes in
Q∗, S(Gi) has to contain a stable set S with v ∈ S and, thus, S ∩Q∗ = ∅.

Corollary 2. The class of normal graphs is closed under identification in non-
maximal cliques.

In particular, this is the case if Q∗ consists in a single (but not isolated) node
only. Thus, the class of normal graphs is closed under node-identification.

As we have seen that we can construct normal graphs by identifying two
unnormal ones in a clique (as in Figure 3), a natural question is whether there
exist further ways to construct normal graphs by clique identification. The next
lemma from [14] gives an answer showing that the normality or near-normality
of the building blocks is required if the resulting graph is supposed to be normal.

Lemma 2. [14] Let G be a normal graph obtained by identifying two graphs G1

and G2 in a clique Q∗.

(1) If G admits a valid pair (Q,S) such that S contains no stable set avoiding
Q∗, then G1 and G2 are normal;

(2) If G admits a valid pair (Q,S) such that S contains a stable set avoiding
Q∗, then G1 and G2 are nearly normal with unnormal cliques Q∗

1 and Q∗
2

such that Q∗
i ⊆ Q∗ and Q∗

1 ∩Q∗
2 = ∅.

However, we cannot obtain normal graphs by identifying two non-normal
graphs in a node (as the unnormal cliques Q∗

1, Q
∗
2 ⊆ Q∗ cannot be disjoint if

|Q∗| = 1). We call a nearly normal graph almost normal if its unnormal clique
consists in one node only. Except the C5 (whose only possible unnormal clique
has size two), all the graphs in Figure 4 are examples of almost normal graphs.
We finally obtain the following result which is crucial for our purpose:

Theorem 1. Construct a graph G by identifying two graphs G1 and G2 in a
node q∗, G is normal if and only if at least one of the following conditions holds:

(1) G1 and G2 are normal;
(2) G1 is normal and G2 almost normal with unnormal node q∗, or vice versa.
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3 The Normal 1-Trees

In this section we characterize the normal 1-trees, verify the Normal Graph
Conjecture for such graphs, and provide a linear time recognition algorithm for
normal 1-trees.

Recall that a 1-tree G is a connected graph containing exactly one cycle C,
i.e., G can be obtained from the cycle C and certain trees by a sequence of node-
identifications. In order to characterize the normal 1-trees we use Theorem 1 and
the result that a connected triangle-free graph is normal if and only if it has a
so-called nice edge cover [7], as defined below.

Let G = (V,E) be a graph and F be a minimal edge cover of G, i.e., an
inclusion-wise minimal set F ⊆ E s.t. every node in V is the endnode of some
edge in F . Consider a (not necessarily chordless) odd cycle C in G and the
distribution of the edges of F alongside the cycle C. We say that a node v of
C is even w.r.t. F if v is the endnode of either none or two edges in F ∩ E(C).
Since C is an odd cycle, C has an odd number of even nodes. An edge cover of
a graph G is called nice if it is minimal and every odd cycle in G has at least
three even nodes.

For example, the bold edges of all three graphs in Figure 1 form nice edge
covers, whereas the graphs in Figure 4 do not admit any nice edge cover.

Körner and de Simone showed in [7] that the occurrence of nice edge covers is
sufficient for a graph to be normal. In particular, they characterized the triangle-
free normal graphs as follows:

Theorem 2. [7] A connected triangle-free graph is normal if and only if it has
a nice edge cover.

Let G1 +v G2 denote the graph obtained from G1 and G2 by identification in
the node v. For instance, the second graph in Figure 4 equals C5+vK2, obtained
from a C5 and a K2 by node identification; the third graph in Figure 4 equals
(C5 +v K2) +v′ K2, obtained from C5 +v K2 and K2 by identification in another
node of the C5.

We characterize the normal 1-trees with the help of Theorem 1 and Theorem 2
as follows.

Theorem 3. A 1-tree G is not normal if and only if one of the following con-
ditions holds.

(1) G = C5.
(2) G = C5 +v T where T is a tree.

(3) G = (C5 +v T ) +v′ T ′ where T, T ′ are trees and v, v′ are two non-consecutive
nodes of the C5.

(4) G = C7.

That the non-normal 1-trees are all not (C5, C7, C7)-free implies:

Corollary 3. The Normal Graph Conjecture is true for 1-trees.
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As there are obviously normal 1-trees admitting a cycle of length 5 or 7, we
next address the question of recognizing normal 1-trees.

To find the cycle in a 1-tree G = (V,E) as first step, we will use Algorithm
LexBFS [11]1. LexBFS is a specialized Breadth-First Search, which numbers the
nodes from n = |V | to 1; each node x obtains a label, denoted by lex(x), which
is the decreasing list of the neighbors of x with a higher number than that of x.
At each step, a node of lexicographically largest label is chosen to be numbered.

When the input graph has only one cycle, all the nodes obtain a label of size
1, except the node which ’closes’ a cycle, whose label is of size 2. To find the
corresponding cycle C, we can use the double label, which yields the next 2
nodes on C; we then go on to take the lowest numbered node between these two:
its label yields the next node on C, and so on, until we find a node already in C,
which will be the ’root’ of C in the tree induced by the LexBFS numbering. The
algorithm can stop as soon as more than 7 nodes of the cycle have been found,
as the graph is certain to be normal.

Algorithm 1 (Test for normality of a 1-tree)
Input: 1-tree G = (V,E);
Output: decision whether or not G is normal.

(1) Graph traversal.
Choose a root node r ∈ V .
Starting in r, apply LexBFS until a node x receives a double label lex(x) = {y, z}.

(2) Normality test.
Go from y and z 4 steps back towards r (passing from a node to its “father”):
IF no cycle of length 5 or 7 has been found, output “G is normal” and STOP.
ELSE test the conditions of Theorem 3 and decide normality accordingly.

Theorem 4. Given a 1-tree G = (V,E), Algorithm 1 decides in O(|V |) whether
or not G is normal.

4 The Normal Cacti

In this section we study cacti, i.e., graphs with edge-disjoint cycles. Since a cactus
G with k cycles can be considered as a graph obtained from a tree by adding
k edges, we can alternatively obtain G from k 1-trees by a sequence of node-
identifications. As we have characterizations of both normal graphs obtained
by node-identification (Theorem 1) and normal 1-trees (Theorem 3) from the
previous sections, it is natural to decompose a cactus G accordingly: we have to
choose a set of articulation points in G s.t. each building block contains exactly
one cycle. We denote the building block of cycle C by B(C).

1 Although a simple DFS with a ’father’ function could be used with the same time
complexity, LexBFS provides us an elegant way to directly determine the studied
cycle as well as its nodes.
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If all these blocks B(C) of G are normal, then G is clearly normal due to
Theorem 1. This holds particularly if none of the cycles C in G has length 5 or
7 by Theorem 3; hence we have:

Corollary 4. The Normal Graph Conjecture is true for cacti.

As there are obviously normal cacti admitting a cycle of length 5 or 7, our
further goal is to find a way to decide whether or not a cactus is normal.

For that, we introduce the block-tree of a cactus as follows. For a cactus
G = (V,E) with k cycles, we call a set A ⊆ V of articulation points valid if the
graph obtained from G by removing A has k components and the resulting build-
ing blocks B(C), i.e., the components together with the respective articulation
points, contain exactly one cycle C each.

Hence, using a valid set of articulation points decomposes a cactus in as many
1-trees as it has cycles. We obtain the block-tree T (G,A) = (A ∪ B, L) of G by
taking as nodes a valid set A of articulation points and the set B of the resulting
building blocks B(C) of G and joining two nodes of T (G,A) if and only if one
corresponds to an articulation point q ∈ A and the other one to a block B(C)
with q ∈ B(C).

By construction, T (G,A) is a tree as it is bipartite and has no cycle. We call
a leaf of T (G,A) an endblock of G and say that two blocks of G are adjacent if
they share an articulation point in A. Figure 5 shows a cactus G and a block-tree
T (G,A) (the black nodes of G are used as articulation points).

C’

C C"

q q’

B(C")

q’

B(C)

B(C’)

q

Fig. 5. A cactus and a block-tree

The main idea is to design an algorithm that, given a cactus G,

– finds A and constructs the block-tree T (G,A),
– decides the normality status of each block B(C),
– shrinks T (G,A) iteratively by deleting an endblock B(C) and deciding how

normal the remaining graph is.

We next explain in detail a procedure to construct A and the block-tree
T (G,A), how to decide the normality status of each block B(C), and of the
remaining graph after deleting an endblock.
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Constructing a block-tree. To construct a block tree, we will again use algorithm
LexBFS. As is the case for Algorithm 1, all the nodes obtain a label of size 1,
except the nodes which close a cycle C. Each time a new cycle is found, a new
block is started, and the block tree is updated accordingly (by inserting the block
and its root node as articulation point).

Algorithm 2 (Constructing a block-tree)
Input: a cactus G = (V,E);
Output: a block-tree T (G,A) = (A ∪ B, L).

(1) Choose a root r ∈ V .
(2) Apply LexBFS until a node x receives a double label lex(x) = {y, z};

Define the corresponding cycle C and its root rc;
Start a new block B(C) which contains C;
Update T (G,A) accordingly: add rc to A, B(C) to B, update L;

(3) Repeat (2) until all nodes are processed.

Theorem 5. Given a cactus G = (V,E), Algorithm 2 constructs a block-tree of
G in O(|V |).

Deciding the normality status of blocks. Since each block B(C) is a 1-tree by
construction, Theorem 3 characterizes whether it is normal or not. In view of
Theorem 1, we have to distinguish the different not normal blocks: it is important
to determine whether a not normal block B(C) is almost normal and to specify
its unnormal nodes.

We denote the set of possible unnormal nodes of an almost normal block B(C)
by U(C) and notice that all of them lie on C: Any valid minimal clique cover of
a cactus G uses edges and triangles only, maintaining the notion of even nodes
for odd cycles C with length ≥ 5. An unnormal node q of B(C) is not covered
by the clique cover Qq of a nearly valid pair (Qq,S) of B(C), but it has to be
covered by a clique outside B(C) to become an even node of C.

As an immediate consequence of Theorem 3, we obtain:

Proposition 1. A block B(C) with cycle C is

(1) not (almost) normal if B(C) = C5;
(2) almost normal with U(C) = C if B(C) = C7;
(3) almost normal with U(C) = N(v)∩C if C = C5 and B(C) = C5 +v T where

T is a tree;
(4) almost normal with U(C) = C\{v, v′} if C = C5 and B(C) = (C5+vT )+v′T ′

where T, T ′ are trees and v, v′ are two non-consecutive nodes of the C5;
(5) normal otherwise.

Shrinking a cactus by removing endblocks. To iteratively shrink (the block-tree
of) a cactus G by removing an endblock B(C), we use the following idea based
on Theorem 1: If B(C) does not satisfy any of the theorem’s conditions, then
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G is not normal. Otherwise, G is normal if and only if the graph is normal that
results from G by either removing B(C) or collapsing a normal endblock B(C)
into a K2 (i.e., into a smaller normal graph).

Consider a cactus G and a block-tree T (G,A). For an endblock B(C) of
T (G,A) and (one of) its adjacent block(s) B(C′) with common node q ∈ A, we
denote by G−B(C) (resp. G−B(C)+e) the graph obtained by removing B(C)
maintaining q (resp. by replacing B(C) by an edge e attached to q).

As an immediate consequence of Theorem 1 combined with Proposition 1, we
infer the normality of G after removing B(C):

Corollary 5. Let G be a cactus with block-tree T (G,A), B(C) an endblock and
B(C ′) an adjacent block with common node q ∈ A.

(1) If B(C) and B(C′) are normal, then G is normal if and only if G − B(C)
is normal.

(2) If B(C) is normal and B(C ′) not, then G is normal if and only if G−B(C)+e
is normal.

(3) If B(C) is almost normal and q ∈ U(C), then G is normal if and only if
G−B(C) is normal.

(4) If B(C) is almost normal and q 
∈ U(C) or if B(C) = C5, then G is not
normal.

The above corollary enables us to shrink a cactus starting from endblocks,
keeping normality of the input graph or deciding that G is not normal. Thereby,
the cases (1) and (3) allow us to simply remove B(C), (4) provides sufficient
conditions that G is not normal, and (2) allows us to maintain or change the
normality status of the remaining block B(C′) + e = K2 +q B(C′) as follows:

Lemma 3. Let G be a cactus with block-tree T (G,A), B(C) a normal endblock
and B(C′) an adjacent block with common node q ∈ A.

(1) If B(C′) is almost normal and q ∈ U(C′), then B(C′) + e is normal in
G−B(C) + e.

(2) If B(C′) is almost normal and q 
∈ U(C′), then B(C′) + e remains almost
normal with U(C′) in G−B(C) + e.

(3) If B(C′) = C5, then B(C′) + e is almost normal with U(C′) = N(q) ∩C′ in
G−B(C) + e.

For the algorithmic process, however, it suffices to shrink the block-tree of a
cactus by removing an endblock B(C) and, if necessary, updating the normality
status of B(C ′) according to Lemma 3.

Example 1. Reconsider the cactus G and its block-tree T (G,A) depicted in Fig-
ure 5. Initially, we have the following normality status for its blocks:

– B(C) is almost normal with q ∈ U(C) (Proposition 1(3)),
– B(C′) = C5 (Proposition 1(1)),
– B(C′′) is normal (Proposition 1(5)).
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Algorithm 3 (Test for normality of a cactus)
Input: a cactus G;
Output: decision whether or not G is normal.

(1) Constructing a block-tree.
Construct a set A and the block-tree T (G,A) = (A ∪ B, L) by Algorithm 2,
test the normality status of each block B(C) ∈ B by Proposition 1.

(2) Test for sufficient conditions.
IF all blocks of T (G,A) are normal THEN output “G is normal” and STOP.
IF all blocks of T (G,A) are not normal OR an endblock of T (G,A) satisfies Corol-
lary 5 (4) THEN output “G is not normal” and STOP.

(3) Shrinking T (G,A). Choose an endblock B(C) of T (G,A) and an adjacent block
B(C′) with common node q ∈ A.
• IF B(C) is normal and B(C′) is almost normal with q ∈ U(C′), THEN update

B(C′) as normal.
• IF B(C) is normal and B(C′) = C5, THEN update B(C′) as almost normal

with U(C′) = N(q) ∩ C′.
Now shrink T (G,A) as follows:
• remove B(C) from B and the edge B(C)q from L;
• IF now q has degree 1 THEN remove q from A.

Continue with step (1).

We next apply step (2) of Algorithm 3 and notice that none of the sufficient
conditions for G being (not) normal is satisfied. Hence, we proceed with step (3)
and select one of the two endblocks B(C) and B(C′′) of T (G,A).

If B(C) is selected, then B(C′) is its only adjacent block with common node
q ∈ A. None of the two conditions to update the normality status of B(C′) is
satisfied, so we only remove B(C) and q from T (G,A) in step (3). The subsequent
test for sufficient conditions in step (2) reveals that B(C′) = C5 is now an
endblock, hence the decision is “not normal” according to Corollary 5 (4).

On the other hand, if B(C′′) is selected, then B(C′) is its only adjacent block
with common node q′ ∈ A. The second condition is satisfied, hence B(C′) is
updated as almost normal with U(C′) = N(q′) ∩C′; B(C′′) and q′ are removed
from T (G,A). The test for sufficient conditions in step (2) reveals that now all
blocks are not normal, hence the decision is “not normal” due to Theorem 1.

In both cases, the algorithm finds the correct answer “not normal”.

Theorem 6. Given a cactus G = (V,E), Algorithm 3 decides in O(|V |) whether
or not G is normal.

5 Concluding Remarks

In this work, we verify the Normal Graph Conjecture asymptotically as well
as for two classes of sparse graphs, 1-trees and cacti. Since the class of normal
graphs is closed under complementation, we also conclude:

Corollary 6. The Normal Graph Conjecture is true for complements of 1-trees
or cacti.
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Moreover, we solve the problem of deciding whether such a graph is normal
even when it does contain a C5 or a C7.

It is well-known that a random graph Gn,m with n nodes and m = (1 − ε)n2
edges consists of many small 1-trees (of order log(n)) as components. Theorem 3
shows that most of such graphs are normal whereas only half of them are per-
fect. Thus, Theorem 3 indicates that there are many more normal than perfect
random graphs Gn,m with edge density m = (1−ε)n2 . In addition, we can expect
that there are many more normal than (C5, C7)-free sparse graphs.

Furthermore, it would be interesting to generalize our techniques and results
to larger graph classes. Canonical candidates are superclasses of cacti, e.g., chord-
less graphs (whose cycles are all chordless) or outerplanar graphs (who admit
an embedding into the plane such that no edges cross and all nodes lie on the
outer face). The question is to find suitable decompositions for such graphs into
blocks such that the normality status of both the blocks and the recomposed
graphs can be determined.
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Basel (2007)

14. Wagler, A.K.: Constructions for Normal Graphs and Some Consequences. Discrete
Applied Mathematics 156, 3329–3338 (2008)



On the Parameterized Complexity

of Computing Graph Bisections
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Abstract. The Bisection problem asks for a partition of the vertices
of a graph into two equally sized sets, while minimizing the cut size. This
is the number of edges connecting the two vertex sets. Bisection has
been thoroughly studied in the past. However, only few results have been
published that consider the parameterized complexity of this problem.

We show that Bisection is FPT w.r.t. the minimum cut size if there
is an optimum bisection that cuts into a given constant number of con-
nected components. Our algorithm applies to the more general Bal-

anced Biseparator problem where vertices need to be removed instead
of edges. We prove that this problem is W[1]-hard w.r.t. the minimum
cut size and the number of cut out components.

For Bisection we further show that no polynomial-size kernels exist
for the cut size parameter. In fact, we show this for all parameters that
are polynomial in the input size and that do not increase when taking
disjoint unions of graphs. We prove fixed-parameter tractability for the
distance to constant cliquewidth if we are given the deletion set. This im-
plies fixed-parameter algorithms for some well-studied parameters such
as cluster vertex deletion number and feedback vertex set.

1 Introduction

We consider the NP-hard Bisection problem for which the n vertices of a
graph G = (V,E) need to be partitioned into two sets A and B of size at
most �n/2� each ((A,B) is a bisection of G). At the same time the cut size
needs to be minimized. This is the number of edges connecting vertices in A
with vertices in B. Throughout this paper it will be convenient to consider the
decision problem corresponding to Bisection, which is defined as follows.
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Bisection

Input: A graph G and a positive integer k.
Question: Does G have a bisection with cut size at most k?

Bisection is of importance both in theory and practice, and has applications
in divide-and-conquer algorithms [26], computer vision [25], and route plan-
ning [12]. We study Bisection from the point of view of parameterized com-
plexity, and consider several parameters (Table 1) that naturally arise from the
known results for Bisection. That is, we consider a given parameter p of an
input instance and ask whether an algorithm with running time f(p) · nO(1) ex-
ists that optimally solves the problem. Here f(p) is a function that only depends
on p. If there is such an algorithm we say that the problem is fixed-parameter
tractable (or FPT for short) with respect to p.

Bisection has been thoroughly studied in the past. It is known that it is
NP-hard in general [20] and the minimum cut size can be approximated within
a factor of O(log n) [32]. Assuming the Unique Games Conjecture, no constant
factor approximations exist [23]. For special graph classes such as trees [27] and
solid grids [17] the optimum cut size can be computed in polynomial time. For
planar graphs it is still open whether Bisection is NP-hard, but it is known to
be FPT with respect to the cut size [8].

In this paper we show that for general graphs one can find an optimal bisection
in FPT-time with respect to the cut size if there is an optimal bisection that cuts
the graph into a given constant number of connected components. This result is
motivated by the fact that in practice the solutions are typically cut into very
few connected components [2]. Also for random regular graphs the sets A and B
of the optimum bisection are connected with high probability [9]. Our algorithm
is presented for the more general Balanced Biseparator problem, in which
vertices instead of edges need to be removed in order to bisect the graph. To
achieve our result, we generalize the treewidth reduction technique for separation
problems that has been recently introduced by Marx et al. [29]. By adapting it
to the global balancedness constraint, we address an open question by Marx
et al. [30] of whether this is possible. We furthermore observe that Balanced

Biseparator is W[1]-hard with respect to the cut size and the number of cut
out components. Hence, Balanced Biseparator is unlikely to be FPT even
when combining these parameters. This means that to obtain a fixed-parameter
algorithm it is unavoidable to impose some additional constraint. We chose our
condition on having a constant number of cut out connected components in the
optimum solution as a natural candidate, as argued above.

Whether Bisection is FPT with respect to the cut size alone, though, re-
mains open. However, we show that no polynomial-size problem kernels exist
for this parameter, unless coNP ⊆ NP/poly. Hence, it is unlikely that there is
a polynomial-time algorithm that computes an instance of size polynomial in
the cut size and equivalent to the original instance. We prove this by giving a
corresponding result for all parameters that are polynomial in the input size and
that do not increase when taking the disjoint union of graphs. This includes pa-
rameters such as treewidth, minimum cut size, cliquewidth, and more generally
bandwidth (see [5, Theorem 44]).
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Table 1. Overview of known and new parameterized results

Parameter Results for Bisection

cut size FPT for planar graphs [8]
FPT for constant cut out components (Theorem 2)
No poly-size kernel (Theorem 3)
W[1]-hard for Balanced Biseparator (deferred)

treewidth FPT [33, 34]
No poly-size kernel (Theorem 3)

cliquewidth XP (Lemma 3)
No poly-size kernel (Theorem 3)

bandwidth No poly-size kernel (Theorem 3)

feedback vertex set FPT (Corollary 1)

cluster vertex deletion number FPT (Corollary 1)

Some of these parameters have been considered for the Bisection problem
before. For instance, we already mentioned the cut size, and it was shown that the
problem is FPT with respect to treewidth [33, 34]. However, although treewidth
is probably the most widely used graph parameter for sparse graphs, it is not
suitable for dense graphs, although they can also have simple structure. For that
purpose, Courcelle and Olariu [11] introduced the parameter cliquewidth [14].
For this parameter we present an XP algorithm, i.e. an algorithm finding the
optimum solution in time nO(q) if a cliquewidth-q expression for the graph is
given. In fact we obtain an algorithm that shows that Bisection is FPT with
respect to the cliquewidth-q vertex deletion number :1 the number of vertices that
has to be deleted to obtain a graph of constant cliquewidth q. To the best of our
knowledge this parameter has not been considered in the past. The cliquewidth-
q deletion number is a generalization of several well-studied graph parameters
like vertex cover (q = 1) [10], cluster vertex deletion number and cograph vertex
deletion number (q = 2) [11], or feedback vertex set (q = 3) [24] and treewidth-t
vertex deletion set (q = 2t+1 + 1) [11, 18].

In this paper we use standard terminology of graph theory [13]. Due to space
constraints, many proofs are deferred to the full version of the paper.

2 An FPT Algorithm for Cut Size and Constant Number
of Cut Out Components

This section shows that Bisection is FPT with respect to the cut size if there is
an optimum bisection that cuts into at most some given constant number of con-
nected components. To this end, we show an FPT-algorithm for the more general
problem Balanced Biseparator; to formally define it, we need some termi-
nology. Let G be a graph and S ⊆ V (G). We call S an A-B-separator if there are
vertex sets A,B ⊆ V (G) such that S,A,B form a partition of V (G), and there
are no edges between A and B in G. Moreover, we call S balanced if ||A|−|B|| ≤ 1.

1 Precisely, we need the vertex deletion set to be given to obtain FPT for this parameter.
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We say that G has a balanced separator S if there are sets A,B such that S is
a balanced A-B-separator for G. We say that S is an s-t-separator for ver-
tices s, t if there are vertex sets A,B ⊆ V (G) such that S is an A-B-separator
and s ∈ A and t ∈ B. We say that an s-t-separator S is inclusion-wise minimal,
or just minimal, if there is no s-t-separator S′ � S. Finally, we say that S is
a c-component separator for G, if there are c connected components in G − S.
Balanced Biseparator is the following problem:

Balanced Biseparator

Input: A graph G and a positive integer k.
Question: Does G have a balanced separator of size at most k?

Using a reduction from the W[1]-hard problem Cutting � Vertices [28], one
can show that Balanced Biseparator is W[1]-hard with respect to k and the
number c of cut out components. Hence, an additional constraint like c being
constant is unavoidable to get an FPT-algorithm. Our algorithm for Balanced

Biseparator transfers also to Bisection:

Proposition 1. There is a polynomial-time many-one reduction from Bisec-

tion to Balanced Biseparator such that the desired separator size is at
most one larger than the desired cut size. Furthermore, each bisection with c
connected components for the Bisection instance yields a balanced separator
for the Balanced Biseparator instance whose removal leaves at most c + 2
connected components and vice-versa.

Proposition 1 implies that BalancedBiseparator is a more general problem
than Bisection. We now outline an FPT algorithm for Balanced Bisepara-

tor: we first observe that a balanced separator consists of minimal s-t-separators
between a collection of “terminal” vertices s, t. The terminal vertices are cho-
sen one from each of the connected components of the input graph without the
separator. Guessing the terminals, we can reduce Balanced Biseparator to
finding an “almost balanced” separator consisting of vertices contained in min-
imal separators. To find such a separator, we generalize the “treewidth reduc-
tion” technique introduced by Marx et al. [29, 30] to graphs with vertex weights.
We obtain an algorithm that constructs a weighted graph G′ that preserves all
inclusion-wise minimal vertex cuts of size at most k between some given termi-
nals, preserves the weight of the cut out parts, and has treewidth bounded by
some function g(k, c) where c is the number of terminals. Moreover the algorithm
runs in time f(k, c) ·nO(1). We then show that Balanced Biseparator is fixed-
parameter tractable with respect to treewidth when fixing the number of compo-
nents of the separated graph. The final algorithm guesses the terminals, reduces
the treewidth and then solves the bounded-treewidth problem.

The main ingredient in our FPT algorithm for Balanced Biseparator is a
generalization of the treewidth reduction technique of Marx et al. [30] to graphs
with vertex weights: we aim to construct a graph of bounded treewidth that
preserves all inclusion-wise minimal s-t-separators of a given size. To this end,
we define trimmers. Let G = (V,E) be a graph, k an integer and T ⊆ V . A tu-
ple (G∗, φ) of a graph G∗ = (V ∗, E∗) and a total, surjective, but not necessarily
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injective mapping φ : V → V ∗ is called a (k, T )-trimmer of G if the following
holds. (Here, we extend φ(V ) :=

⋃
v∈V φ(v) and φ−1(v) := {v′ | φ(v′) = v}.)

(i) Let S ⊆ V ∗. A set C ⊆ V ∗ is a connected component in G∗−S if and only
if φ−1(C) is a connected component in G−φ−1(S) (i. e., φ implies a one-to-
one mapping between the connected components of G∗−S and G−φ−1(S)).

(ii) If S is an inclusion-wise minimal s-t-separator for G with |S| ≤ k and s, t ∈
T , then φ(S) = S and φ(S) is an inclusion-wise minimal φ(s)-φ(t)-separator
for G∗.

We obtain the following.

Theorem 1. Let G = (V,E) be a graph. For every constant k ∈ N and constant-
size T ⊆ V , we can compute a (k, T )-trimmer (G∗, φ) for G in O(|V |+ |E|) time
such that the treewidth of G∗ is at most g(k, |T |) for some function g depending
only on k and |T |. Moreover, both φ and φ−1 are linear-time computable with
respect to their output length.

We can now state an algorithm for finding a c-component balanced separator of a
given size. To this end, we first note that Balanced Biseparator is FPT with
respect to treewidth and, thus, gathering the final ingredient for the algorithm.

Lemma 1. Let G be a graph with treewidth ω and integer vertex-weights λ.
Let Λ be the sum of all vertex weights and let c ≥ 2 be an integer. We can find in
ωO(ω) ·c2 ·Λ2 ·n time, for all integers 1 ≤ s ≤ Λ, a minimum weight c-component
A-B-separator S with λ(A) = s, or reveal that no such separator exists.

We now arrive at the main theorem of this section.

Theorem 2. Let G be a graph. Given non-negative integers c and k, in h(c, k) ·
nc+3 time we can find a c-component balanced separator for G of size at most k
if it exists. Here, h(c, k) is a function depending only on c and k.

Proof. The algorithm proceeds as follows. For each T ⊆ V (G) of size c we
compute a (k, T )-trimmer (G∗, φ) using Theorem 1. We create a vertex weight
function λ for G∗ by letting λ(v) = |φ−1(v)|. Then, for each s, |V (G)|/2−1−k ≤
s ≤ |V (G)|/2 + k, we compute a minimum-weight c-component A′-B′-separator
for G∗ with λ(A′) = s using Lemma 1. If among these separators there is an
A′-B′-separator S′ with |λ(A′)− λ(B′)| ≤ k− λ(S′) + 1, then we compute S :=
φ−1(S′), A := φ−1(A′), and B := φ−1(B′). Note that, by trimmer property (i),
S is a c-component A-B-separator for G. Moreover, since φ is a total mapping,
||A|−|B|| ≤ k−|S|+1. We move k−|S| vertices from A or B to S such that S is a
c-component balanced separator for G and we output S. Note that, unless |V (G)|
is bounded by a function of k and the problem is trivial, moving the vertices to S
without changing the number of components is always possible, because not ev-
ery vertex of a connected component can separate it into multiple ones and there
is always a component of size at least two. If no suitable separator is found, we
output that there is no c-component balanced separator of size at most k for G.
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Let S be a c-component balanced separator of size k for G and pick vertices
v1, . . . , vc, one from each connected component of G− S. Let us observe that the
above algorithm finds a c-component balanced separator of size at most k. Note
that S is a vi-vj-separator for each 1 ≤ i < j ≤ c. Hence, S contains inclusion-

wise minimal vi-vj-separators Si,j of size at most k. Let Ŝ =
⋃

1≤i<j≤c Si,j , call

a connected component in G − Ŝ odd if it does not contain any vi, and let S̃ be
the union of Ŝ and all odd components. Note that odd components are contained
in S. Hence, S̃ is a c-component Ã-B̃-separator for G with ||Ã| − |B̃|| ≤ k − |S̃|+
1 and |V (G)|/2 − 1 − k ≤ |Ã| ≤ |V (G)|/2 + k. By trimmer property (ii) we
have that φ(Ŝ) = Ŝ is contained in G∗. Thus, by trimmer property (i), φ implies
a one-to-one mapping of connected components C in G − Ŝ and their counter-
parts φ(C) in G∗ − Ŝ. In particular, there is such a mapping for all odd connected
components. Thus,φ(S̃) is a c-componentφ(Ã)-φ(B̃)-separator forG∗ and we have
λ(φ(S̃)) = |S̃|, λ(φ(Ã)) = |Ã|, and λ(φ(S̃)) = |S̃|. Hence, an A′-B′-separator S′

for G∗ with λ(S′) ≤ λ(φ(S̃)) and λ(A′) = λ(φ(Ã)) is enumerated by the algorithm
of Lemma 1. Applying the size bounds of Ã, B̃, S̃ we have ||λ(A′)| − |λ(B′)|| ≤
k−|λ(S′)|+1 and |V (G)|/2−1−k ≤ |λ(A′)| ≤ |V (G)|/2+k. Thus, the algorithm
described above finds a c-component balanced separator of size at most k for G.
The proof of the running time bound is deferred to a full version of the paper. ��

3 Incompressibility

Problem kernelization is a powerful preprocessing tool in attacking NP-hard prob-
lems [6, 21]. A reduction to a problem kernel is an algorithm that, given an in-
stance I with parameter p of a parameterized problem, in time polynomial in (|I|+
p) outputs an instance I ′ of the same problem and a parameter p′ such that

i) I is a yes-instance if and only if I ′ is a yes-instance,
ii) |I ′|+ p′ ≤ f(p), where f is a function only depending on p.

The function f is called the size of the problem kernel. It is desirable to find
problem kernels of size polynomial in the parameter p.

In this section, we show that Bisection has no polynomial-size kernel with re-
spect to any parameter that is polynomial in the input size and does not increase
when taking disjoint unions of graphs. Our result excludes polynomial-size prob-
lem kernels for the parameters treewidth, cut size of the bisection (the “standard
parameter”), cliquewidth, and more generally pathwidth (see [5, Theorem 44]).

Theorem 3. Unless coNP ⊆ NP/poly, Bisection does not have polynomial-
size kernels with respect to any parameter that is polynomial in the input size
and that does not increase when taking disjoint unions of graphs.

For Theorem 3, we first show that a version of Bisection with integer edge
weights does not have a polynomial-size kernel, and then show how to remove the
weights. To prove that Edge-Weighted Bisection does not have a polynomial-
size kernel, it is sufficient to show a cross composition (cf. Bodlaender et al. [7])
from the NP-hard [19] MaximumCut problem to Edge-Weighted Bisection.
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Maximum Cut

Input: A graph G = (V,E) and an integer k.
Question: Is there a partition ofV into setsA andB such that at least k edges

have one endpoint in A and one in B?

Lemma 2. There is a cross composition of MaximumCut to Edge-Weighted

Bisection with respect to any parameter that is polynomial in the input size and
does not increase when taking the disjoint union of graphs.

Showing the cross composition amounts to the following. We give a polynomial-
time algorithm that transforms input instances (G1, k1), . . . , (Gt, kt) of Maxi-

mum Cut into one instance (G∗, k∗) of Edge-Weighted Bisection such that
(G∗, k∗) is a yes-instance if and only if one of the Maximum Cut instances is
and such that k∗ is polynomial in the size of the largest input instance.

Construction 1. The construction resembles the reduction given for the NP-
hardness of Bisection by Garey et al. [20]. To easier present the construction,
without loss of generality we assume that

i) each of the Gi, 1 ≤ i ≤ t, has exactly n vertices and k1 = · · · = kt =: k
(cf. Bodlaender et al. [7]),

ii) 1 ≤ k ≤ n2: if k = 0, all instances are yes-instances, and if k > n2, all
instances are no-instances. Hence, if not 1 ≤ k ≤ n2, we can return a trivial
yes-instance or no-instance of Edge-Weighted Bisection,

iii) t is odd: otherwise, we can add a no-instance to the list of input instances
that consists of the edgeless graph on n vertices.

Since the output graph G∗ will consist of connected components, each having at
most 2n vertices, and since our parameter is polynomial in the input size and
does not increase when taking the disjoint union of graphs, we trivially obtain
that the output parameter is polynomial in n. We create G∗ as follows: for each
input graph Gi = (Vi, Ei), 1 ≤ i ≤ t, add to G∗ the vertices in Vi and a clique
V ′
i with |Vi| vertices and edges of weight W := n2 each. All vertices in V ′

i are
adjacent to all vertices in Vi in G∗ via an edge of weight W . Now, for each
pair v, w ∈ Vi, add an edge {v, w} to G∗ with weight W if {v, w} /∈ Ei and with
weight W − 1 if {v, w} ∈ Ei. We set k∗ := Wn2 − k.

We use Construction 1 to show Lemma 2 and subsequently Theorem 3.

4 FPT for the Cliquewidth-q Vertex Deletion Number

This section shows Bisection to be fixed-parameter tractable with respect to the
number of vertices that have to be removed from a graph to reduce its cliquewidth
to a constant q. Thus, we generalize many well-studied graph parameters like ver-
tex cover (q = 1) [10], cluster vertex deletion number and cograph vertex deletion
number (q = 2) [11], or feedback vertex set (q = 3) [24] and treewidth-t vertex
deletion set [18]. Our definition of cliquewidth is inspired by Hliněný et al. [22].

Let q be a positive integer. We call (G, λ) a q-labeled graph if G is a graph
and λ : V (G) → {1, 2, . . . , q} is a mapping. The number λ(v) is called label of a
vertex v. We introduce the following operations on labeled graphs:
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(1) For every i in {1, . . . , q}, we let •i denote the graph with only one vertex
that is labeled by i (a constant operation).

(2) For every pair of distinct i, j ∈ {1, 2, . . . , q}, we define a unary operator ηi,j
such that ηi,j(G, λ) = (G′, λ), where V (G′) = V (G), and E(G′) = E(G) ∪
{(v, w) | v, w ∈ V, λ(v) = i, λ(w) = j}. In other words, the operator adds all
edges between label-i vertices and label-j vertices.

(3) For every pair of distinct i, j ∈ {1, 2, . . . , q}, we let ρi→j be the unary op-
erator such that ρi→j(G, λ) = (G, λ′), where λ′(v) = j if λ(v) = i, and
λ′(v) = λ(v) otherwise. The operator only changes the labels of vertices
labeled i to j.

(4) Finally, ⊕ is a binary operation that makes the disjoint union, while keeping
the labels of the vertices unchanged. Note explicitly that the union is disjoint
in the sense that (G, λ)⊕ (G, λ) has twice the number of vertices of G.

A q-expression is a well-formed expression ϕ written with these symbols. The
q-labeled graph produced by performing these operations therefore has a vertex
for each occurrence of the constant symbol in ϕ; and this q-labeled graph (and
any q-labeled graph isomorphic to it) is called the value val(ϕ) of ϕ. If a q-
expression ϕ has value (G, λ), we say that ϕ is a q-expression of G. The clique-
width of a graph G, denoted by cwd(G), is the minimum q such that there is
a q-expression of G. We say that a join ηi,j is full if there is no edge between
vertices of label i and j in the labeled graph on which the join is applied.

Proposition 2. For any q-expression for an n-vertex graph there is an equiva-
lent one which is at most as long as ϕ, contains O(q2 ·n) symbols, and for which
every join is full.

In the following, we show how to compute an optimal bisection using the q-
expression of a given graph G. This will naturally also solve the decision problem
Bisection. Let D ⊆ V (G) and ϕ be a q-expression for G \ D, i.e. val(ϕ) =
(G\D,λ). Let A0, B0 be a partition of D. For now, we assume that there are no
edges between A0 and B0. Let ni(ϕ) for i ∈ {1, . . . , q} be the number of vertices of
G\D with label i. For every pair of vectors a = (a1, . . . , aq), b = (b1, . . . , bq) ∈ Nq

with ai + bi = ni(ϕ), let us denote by CutA0,B0(ϕ,a, b) the minimum number of
edges between different parts of a partition (A,B) of V (G) which satisfies the
following conditions: (i) A0 ⊆ A, B0 ⊆ B, (ii) the number of vertices in A \D
and B \ D of label i are ai and bi, respectively. In the following we use xi to
denote the i’th entry in a vector x.

Lemma 3. There is an algorithm that for given G, A0, B0 and ϕ in time O(n2q ·
q · |ϕ|) computes all the numbers CutA0,B0(ϕ,a, b).

Proof. We prove the lemma by induction on the length of the q-expression. By
Proposition 2 we can assume that every join in ϕ is full. If ϕ = •i, then we have
ni(ϕ) = 1 and nj(ϕ) = 0 for every j 
= i. Hence, in each pair of q-dimensional
vectors a, b there is either ai = 1 or bi = 1 and the other numbers are zero.
In this case, there is exactly one partition fulfilling the conditions (i) and (ii),
namely the one which puts the only vertex of G \D to set A or B as required.
It is easy to compute the number of edges between the parts in this partition.
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Now, suppose ϕ = ηi,j(ϕ
′). Since ϕ′ is shorter than ϕ, by the induction

hypothesis we can use an algorithm for ϕ′ to store all the results in a ta-
ble CutA0,B0(ϕ′,a, b). Note that val(ϕ′) differs from G\D only in that G\D has
an edge between every vertex of label i and every vertex of label j, while val(ϕ′)
has no such edges (as the join is full). Therefore, every partition (A,B) of G \D
fulfilling the conditions (i) and (ii), is also a partition for val(ϕ′) fulfilling these
conditions, but in G \D there are exactly ai · bj + aj · bi more edges between the
parts. Hence, we can output CutA0,B0(ϕ,a, b) = CutA0,B0(ϕ′,a, b)+ai·bj+aj ·bi.

Next, let us assume that ϕ = ρi→j(ϕ
′), and the table containing the values of

CutA0,B0(ϕ′,a′, b′) is already computed. Note that in G\D there are no vertices
of label i, so we have 0 = ni(ϕ) = ai = bi. On the other hand, some of the vertices
which have label j in G\D had label i in val(ϕ′). A minimal partition for G\D,
a, and b which satisfies the conditions (i) and (ii) is also a partition for val(ϕ′)
which satisfies the conditions (i) and (ii) for some a′, b′, but we don’t know the
distributions of aj to a′j and a′i and of bj to b′j and b′i. Therefore CutA0,B0(ϕ,a, b)
can be computed as min{CutA0,B0(ϕ′,a′, b′)} where the minimum is taken over
all pairs a′, b′ where a′t = at and b′t = bt for every t ∈ {1, . . . , q} \ {i, j}; aj =
a′j+a′i; bj = b′j+b′i and a′t+b′t = nt(ϕ

′) for t ∈ {i, j}. As every pair a′, b′ gives rise
to exactly one a, b, all the minima can be computed in one pass over all a′, b′.

Finally, let ϕ = ϕ1 ⊕ ϕ2 and let the values of CutA0,B0(ϕ1,a1, b1) and
CutA0,B0(ϕ2,a2, b2) be already computed and stored in a table. A minimal parti-
tion for G\D and a, b satisfying the conditions (i) and (ii) also induces partitions
for val(ϕ1) and val(ϕ2), which satisfy the conditions (i) and (ii) for some a1, b1

and a2, b2, but we don’t know the distributions of ai to a1i and a2i and of bi
to b1i and b2i . Moreover, there are no edges between val(ϕ1) and val(ϕ2). Thus
min{CutA0,B0(ϕ1,a1, b1) + CutA0,B0(ϕ2,a2, b2)} gives CutA0,B0(ϕ,a, b), where
the minimum is taken over all a1, b1 and a2, b2 where for every i ∈ {1, . . . , q},
ai = a1i + a2i , bi = b1i + b2i , and ali + bli = ni(ϕ

l) for l ∈ {1, 2}. As every pair of
pairs a1, b1 and a2, b2 gives rise to exactly one pair a, b, all the minima can be
computed in one pass over all combinations of a1, b1 and a2, b2.

Concerning the running time, we again argue by induction to show that
the overall time is O(n2q · q · |ϕ|). If ϕ = •i, then |ϕ| = 1 and the compu-
tation of CutA0,B0 for the only possible pair of q-dimensional vectors takes
O(m+n) ⊆ O(n2q · q) time. This constitutes the induction basis. Otherwise, for
any sub-expression ϕ′ of a given expression ϕ, the computation of the table for
ϕ′ takes O(n2q · q · |ϕ′|) time by the induction hypothesis. Observe that there
are O(nq) different pairs of q-dimensional vectors a, b with ai + bi = ni(ϕ). If
ϕ = ηi,j(ϕ

′), then the computation for each pair of vectors takes O(q) time.
For ϕ = ρi→j(ϕ

′), one pass through the table of ϕ′ is obviously accomplished in
O(nq) time, spending O(1) time per entry. Since in both cases |ϕ| = |ϕ′|+1, this
proves the time bound for ϕ for these expressions. Finally, if ϕ = ϕ1 ⊕ ϕ2 then
the tables for ϕ1 and ϕ2 can be computed in O(n2q · q · (|ϕ1|+ |ϕ2|)) time. Then
we cycle over the entries of both tables and for each combination we spend O(q)
time, so this can be accomplished in O(n2q · q) time. Since |ϕ| = |ϕ1|+ |ϕ2|+ 1,
also in this case the algorithm runs in O(n2q · q · |ϕ|) time. ��
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Theorem 4. For G a graph, D ⊆ V (G), and ϕ a q-expression for G\D there is
an O(2|D| · n2q+1q3) time algorithm which computes the optimal bisection of G.

Proof. It is enough to find the minimum of CutA0,B0(ϕ,a, b) over all parti-
tions A0, B0 and pairs of q-dimensional vectors a, b with |A0| +

∑q
i=1 ai equal

to |B0|+
∑q

i=1 bi. Since Lemma 3 only applies when there are no edges between
A0 and B0, we delete them and add the number of them to the sum. As the size
of ϕ is O(q2 · n) by Proposition 2, the running time follows from Lemma 3. ��

Given D, an f(q)-expression for G \ D can be computed in polynomial time
using a cliquewidth approximation [31]. Thus, Bisection is FPT with respect
to the size of any constant-cliquewidth vertex-deletion set that is obtainable in
FPT time.

Corollary 1. Bisection is fixed-parameter tractable with respect to the size of
a feedback vertex set, the size of a cluster vertex deletion set, and the size of a
treewidth-t vertex deletion set.

It is easy to generalize Theorem 4 to Balanced d-Partitioning, where one
searches for a partition into some constant d > 2 many equal-sized parts. The
running time achieved is O(d|D|+1 · n2(d−1)q+1q3). We note that such a run-
ning time bound is tight in the sense that there is no algorithm with running
time f(d, |D|)nO(1) for constant q unless FPT = W[1]: since the deletion of
a feedback vertex set leaves a forest, the resulting graph has clique-width at
most 3 [11]. Thus, if there was an algorithm with the above running time, then
Balanced Partitioning would be fixed-parameter tractable with respect to
the combined parameter size of a minimum feedback vertex set and number of
parts in the partition. However, we can show that this parameter combination
yields a W[1]-hard problem.

5 Conclusion

A natural generalization of the Bisection problem is to partition the graph
into d equally-sized sets, for some arbitrary d instead of only two. This prob-
lem is called Balanced Partitioning and is considerably harder than Bisec-

tion. For instance Balanced Partitioning is hard to approximate even on
trees [15]. Nonetheless it is of great importance in applications such as parallel
computing [3] and VLSI circuit design [4]. Due to the hardness results [15] it
was asked whether the problem is FPT for parameters resulting in algorithms
useful in practice. Many of the known results already rule out FPT algorithms
for some parameters such as treewidth or cluster vertex deletion number (Bal-

anced Partitioning is NP-hard for trees [16] and graphs formed by a disjoint
union of cliques [1]). We addressed this question and were able to show that the
problem is W[1]-hard for the combined parameter cut size, feedback vertex set,
treewidth, and number d of partitions.5 We can, however, show that Balanced

Partitioning is FPT with respect to the vertex cover number.2

2 These results are deferred to a full version.
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The main open problem remaining from this paper is the status of the pa-
rameterized complexity of Bisection with respect to the parameter cut size
alone. But also, for the Balanced Partitioning problem, the question posed
by Feldmann [15] of whether practical algorithms beyond the standard deter-
ministic worst-case scenario exist, remains unanswered.

Acknowledgments. We thank Bart M. P. Jansen, Stefan Kratsch, Rolf Nieder-
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[3] P. Arbenz, G. van Lenthe, U. Mennel, R. Müller, and M. Sala. Multi-level μ-finite

element analysis for human bone structures. In Proc. 8th PARA, volume 4699 of
LNCS, pages 240–250. Springer, 2007.

[4] Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci. 28(2), 300–343 (1984)

[5] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Science 209(1-2), 1–45 (1998)

[6] Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

[7] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp.
165–176. Dagstuhl (2011)

[8] Bui, T.N., Peck, A.: Partitioning planar graphs. SIAM J. Comput. 21(2), 203–215
(1992)

[9] Bui, T.N., Chaudhuri, S., Leighton, F.T., Sipser, M.: Graph bisection algorithms
with good average case behavior. Combinatorica 7(2), 171–191 (1987)

[10] Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736–3756 (2010)

[11] Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3), 77–114 (2000)

[12] Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011)

[13] Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173.
Springer (2010)

[14] Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
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Abstract. We investigate fixed-parameter aspects of the notion of spe-
cial treewidth, which was recently introduced by Courcelle [8,9]. In a
special tree decomposition, for each vertex v, the bags containing v form
a rooted path in decomposition tree. We resolve an open problem by
Courcelle, and show that an algorithm by Bodlaender and Kloks [7] can
be modified to obtain for each fixed k, a linear time algorithm that de-
cides if the special treewidth of a given graph is at most k, and if so,
finds a corresponding special tree decomposition. This establishes that
special treewidth is fixed-parameter tractable.

We obtain characterizations for the class of graphs of special treewidth
at most two. The first characterization consists of certain linear struc-
tures (termed mambas, or equivalently, biconnected partial two-paths)
arranged in a specific tree-like fashion, building upon characterizations
of biconnected graphs of treewidth two or of pathwidth two. We show
that the class of graphs of special treewidth at most two is closed under
taking of minors, and give explicitly the obstruction set for this class.
For k ≥ 3, the class of graphs of special treewidth at most k is not closed
under taking minors.

1 Introduction

In his recent work on model checking for properties in Monadic Second Order
Logic with edge set quantifications, Courcelle [8,9] introduced a variant of the
notion of treewidth, called special treewidth. A special tree decomposition is one
where for each vertex, the bags containing this vertex form a rooted path in the
tree. The special treewidth of a graph then is the minimum width over all special
tree decompositions of the graph. As path decompositions are a trivial example
of special tree decompositions, the notion of special treewidth can be seen as an
intermediate form between pathwidth and treewidth.

It is well known that the pathwidth of a graph G is always one smaller than
the minimum over all interval graphs H that contain G as a subgraph of the
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maximum clique size of H . Similarly, the treewidth of G is the minimum over
all chordal graphs H that contain G as subgraph of the maximum clique size of
H . A similar characterization for special treewidth also exists, now using rooted
path graphs [9], i.e., a graph has special treewidth at most k, if and only if it is
a subgraph of a rooted path graph with maximum clique size at most k + 1. A
graph G = (V,E) is a rooted (unrooted) path graph, if there is a rooted tree T ,
such that we can associate to each v ∈ V a path Pv between a node xv in T and
an ancestor of xv (another node in T ), such that two vertices v, w ∈ V , v 
= w,
are adjacent in G if and only if Pv and Pw have at least one vertex in common.

Courcelle posed as an open problem [9] whether deciding if a given graph has
special treewidth at most k is fixed-parameter tractable. In Section 3, we resolve
this problem: a modification of an algorithm by Bodlaender and Kloks [7] can
be used to obtain a linear time algorithm, but with a constant factor that is
exponential in O(k3).

We then take a closer look at the graphs with special treewidth at most two.
For these, we have two main results. First, in Section 4, we give a structural
characterization of the graphs with special treewidth two. We show that each
biconnected component of a graph of special treewidth two has pathwidth two
and then build upon a characterization of biconnected graphs of pathwidth two
by de Fluiter and Bodlaender [10,4]. Additional conditions define how the bi-
connected components can form connected components.

When taking minors, the special treewidth of a graph may increase; Courcelle
[9] showed that the classes of graphs with special treewidth k are not closed under
taking minors for all k ≥ 5; we improve upon the construction and show that
this holds for all k ≥ 3. Interestingly, the class of graphs with special treewidth
at most two is closed under taking of minors, as is not hard to observe from
our structural characterization. (The class of graphs with special treewidth at
most one is the class of the forests [8,9], and thus is also closed under taking
minors.) By the graph minor theorem of Robertson and Seymour [15] (see for
an introduction [11, Chapter 12]), each minor closed class of graphs has a finite
characterization in terms of the minor minimal elements of its complement,
called the obstruction set or Kuratowski set. For several minor closed graph
classes, the obstruction set is known, e.g., planar graphs ({K3,K5,5} [16]), graphs
embeddable in the projective plane [1], graphs of treewidth at most two ({K4},
see [11, Proposition 12.4.2]), graphs of treewidth at most three (a set of four
graphs [2]), graphs of pathwidth at most two (a set of 110 graphs [12]), and
outerplanar graphs ({K4,K2,3}). We add to these results the obstruction set
for the graphs of special treewidth at most two; in Section 5, we prove for an
explicitly given set of six graphs (shown in Figure 2) that it is the obstruction
set of graphs of special treewidth at most two. The set contains three graphs
that are not biconnected and three biconnected graphs, including K4.

2 Preliminaries

The notions of pathwidth and treewidth were first introduced by Robertson and
Seymour [13,14]. Courcelle [8,9] introduced the notion of special treewidth.
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Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi|i ∈
I}, T = (I, F )) with {Xi|i ∈ I} a family of subsets (bags) of V , and T a rooted
tree such that:

1.
⋃

i∈I Xi = V
2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For each v ∈ V , the set Iv = {i ∈ I|v ∈ Xi} induces a subtree of T .

A tree decomposition is a path decomposition if T is a path. A tree decomposition
is a special tree decomposition if for each vertex v ∈ V , the set Iv = {i ∈ I|v ∈
Xi} induces a rooted path in T .

The width of a tree decomposition ({Xi|i ∈ I}, T = (I, F )) is defined as
maxi∈I |Xi| − 1. The treewidth (pathwidth; special treewidth) of a graph G is
the minimum width of a tree decomposition (path decomposition; special tree
decomposition) of G.

We also denote a path decomposition by the series of its successive bags along
the path, i.e., as (X1, . . . , Xr).

Courcelle [9] showed that the special treewidth of a graph does not increase
when we contract a vertex of degree two with a neighbor. Another useful insight
from his work is that for each graph G, if we construct a graph G′ by adding a
universal vertex to G, then the special treewidth of G′ equals the pathwidth of
G′, which is exactly one larger than the pathwidth of G. From this, it directly
follows that deciding if the special treewidth of a graph is at most a given integer
k is NP-complete. In [9], we also find that the special treewidth of a graph
equals the special treewidth of its connected components, and is either equal
or one larger than the special treewidth of its biconnected components, where
both cases are possible. We will also use the fact that the special treewidth of
a graph is never smaller than its treewidth and never larger than its pathwidth;
this follows directly from the definitions.

We say that a graph H = (W,F ) is a minor of a graph G = (V,E), if a graph
isomorphic to H can be obtained from G by a series of the following operations:
deletion of a vertex, deletion of an edge, and contraction of an edge. We extend
the notion to pairs of a graph and a vertex. For pairs (G, v), (H,w), with G =
(V,E), H = (W,F ), v ∈ V , w ∈ W , we say that (H,w) is a minor of (G, v), if
we can obtain a pair (K, v), K = (W ′, F ′), such that there is an isomorphism f
from K to H with f(v) = w, by a series of the following operations: deletion of
a vertex other than v, deletion of an edge, and contraction of an edge, such that
whenever we contract an edge with v as endpoint, the resulting vertex is named
v. Intuitively, (H,w) is a minor of (G, v), if we can obtain H as minor from G
such that v is contracted to w.

3 Fixed-Parameter Tractability of Special Treewidth

Courcelle [9] posed as an open problem whether deciding if a given graph has
special treewidth at most k is fixed-parameter tractable. In this section, we show
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that this is indeed the case. An FPT algorithm for special treewidth directly
implies an FPT algorithm for pathwidth: to obtain the latter, run the former on
the graph obtained by adding a universal vertex. Thus, an algorithm for special
treewidth cannot be expected to be simpler than an algorithm for pathwidth.
Indeed, our FPT algorithm for special treewidth is mostly a variant on existing
FPT algorithms for treewidth and pathwidth from Bodlaender and Kloks [3,7].
The discussion in this section is not self-contained; at several points, we refer
for details to the paper by Bodlaender and Kloks [7]. A self-contained algorithm
description and proof would require the tedious and very lengthy repetition of
many technicalities.

The algorithm consists of two main steps. Let k be some given parameter,
and let G = (V,E) be the input graph.

1. Test if the treewidth of G is at most k, using the algorithm of Bodlaender [3].
If the treewidth of G is larger than k, then the special treewidth of G is also
larger than k, and we can return NO. Otherwise, the algorithm of [3] also
provides us with a tree decomposition of G of width at most k.

2. Now, use this tree decomposition to execute a dynamic programming algo-
rithm to test if the special treewidth of G is at most k. We use Lemma 1
with � = k.

Lemma 1. For each k, �, with � ≤ k, there is an algorithm that given a graph
G = (V,E) and a tree decomposition of G of width at most � uses time O(2O(k3) ·
n) and correctly decides if the special treewidth of G is at most k, and, if so,
outputs a special tree decomposition of G of width at most k.

Proof. The algorithm is a variant upon a similar algorithm for treewidth of Bod-
laender and Kloks [7, Sections 5 and 6]. The algorithm contains many technical
details, most identical to the details of the algorithm in [7, Sections 5 and 6].
Instead of repeating these here, we describe only the differences with the algo-
rithm in [7, Sections 5 and 6]. At the cost of not being self-contained, this avoids
the need to repeat a lengthy series of technicalities.

As in [7, Sections 5 and 6], first the tree decomposition of G is transformed
to a nice tree decomposition of width at most �. To each bag i, we associate the
graph Gi = G[Vi], with Vi the union of all bags Xj with j = i or j a descendant
of i. A partial special tree decomposition at i is a special tree decomposition for
Gi. Now, we define the restriction of a partial special tree decomposition in the
same way as in [7, Definition 5.5]. The definition of a trunk and filled trunk has
a subtle but important difference: while the algorithm of Bodlaender and Kloks
sees the trees as unrooted trees, we now work with rooted trees. When making
the trunk, we carry out the same procedure as described in [7, Definition 5.6],
but never remove the root of the tree.

As a consequence, we have that the trunk of a partial special tree decompo-
sition has at most 2k + 1 vertices. (Compare [7, Lemma 5.3]: the trunk now has
at most k + 2 vertices with one neighbor in T .)
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The tree model, trunk representation, typical list, characteristic, and full set
of characteristics are defined identically as in [7], except that we now assume
that the partial tree decompositions are partial special tree decompositions.

The computation of full sets is almost identical to the computation of full
sets for the treewidth algorithm in [7, Sections 5.2, 5.3, 5.4 and 5.5], with one
difference. After computing the full set as described for join and introduce
nodes i with corresponding bag Xi, we check for each characteristic in the so-far
computed full set, whether for each vertex v ∈ Xi the bags in the trunk that
contain v form a rooted path. If this is not the case, we delete this characteristic
of the full set.

Intuitively, we just run the algorithm for treewidth in [7], except that we
always include the root in the trunk, and at runtime, delete all characteristics
that violate the property for special tree decompositions for one of the vertices
of the bag that we currently look at. In this way, the running time is of the same
order as the running time of the algorithm in [7].

The proof that this is correct follows the same lines as the correctness proof
in [7]. For the decision variant, the last step just checks if the full set for the
root bag of the nice tree decomposition is nonempty. As each characteristic in
a full set always corresponds to a special tree decomposition, one can use the
algorithm from [7, Section 6] without changes to turn the decision algorithm into
an algorithm that also constructs corresponding special tree decompositions of
width at most k. ��

4 Characterizing Special Treewidth Two via Mambas

In this section, we give a structural characterization of graphs with special
treewidth two. A central role in this characterization is played by biconnected
graphs of pathwidth at most two, which we will call mambas. We will show that
biconnected graphs of special treewidth two have pathwidth two, and thus have
a linear structure. We then introduce the concept of mamba trees. Intuitively,
a mamba tree is built as a composition of separate mambas; a single mamba
is a mamba tree, and further mambas can be attached at “head vertices” (to
be defined later). In the following section, we continue the investigation of the
characterization using ‘paths of cycles’.

Lemma 2. Let G be a biconnected graph. G has special treewidth at most two,
if and only if G has pathwidth at most two.

Proof. If the pathwidth of G is at most two, then trivially, the special treewidth
of G is at most two, as each path decomposition is a special tree decomposition.

For the other direction, assume that the special treewidth of G is at most two.
Take a special tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G of width two
that is minimal in the following sense: there is no special tree decomposition of G
of width two with fewer bags, and whenever we remove a vertex from a bag from
the special tree decomposition, we no longer have a special tree decomposition
of G.
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Fig. 1. A mamba G and the cell completion Ḡ of G. Black vertices are head vertices;
white vertices cannot be a head vertex. See the discussion later in this section.

Suppose now that ({Xi|i ∈ I}, T = (I, F )) is not a path decomposition. Then
there is a bag Xj such that Xj has two child-bags, say Xa and Xb.

We consider a number of cases. As we reach a contradiction in each of the
cases, the result follows.

Case 1: Xj ∩Xa = ∅. G is not connected, contradiction.

Case 2: |Xj ∩ Xa| = 1. Let v ∈ Xj ∩ Xa and let W =
⋃
{Xk|k = a or Xk

is a descendant of Xa}. If |W | = 1, then W = {v}, and then the special tree
decomposition is not minimal, as we can delete a and all descendant bags. So,
assume |W | > 1. Take a vertex w ∈ W with w 
= v. If |Xb| = 1, then we obtain
a contradiction with minimality or with connectivity of G. So let x ∈ Xb with
x 
= v. All paths from x to w must use v. Thus v is a cut vertex and G is not
biconnected, contradiction.

Case 3: |Xj ∩Xa| ≥ 2. If |Xj ∩Xb| < 2, we reach a contradiction in the same
way as in Case 1 or Case 2. So, we may assume that |Xj ∩Xb| ≥ 2. Since T is a
special tree decomposition, we know that Xa ∩Xb = ∅ and thus |Xj | ≥ 4. Thus,
the width of ({Xi|i ∈ I}, T = (I, F )) is at least three, contradiction. Hence
({Xi|i ∈ I}, T = (I, F )) is a path decomposition of G of width at most two. ��

In the remainder of the paper, we use the term mamba for a biconnected
component of a graph of special treewidth at most two, i.e., a biconnected com-
ponent of a graph is a mamba, if and only if it has special treewidth at most
two, if and only if it has pathwidth at most two.

There are two different cases for mambas: the trivial case of biconnected
components that consist of a single edge, and the case of biconnected components
that have at least three vertices. In the latter case, the component contains a
cycle, and hence its treewidth, special treewidth, and pathwidth all equal two.

Connected graphs of special treewidth two are formed by attaching mambas
to each other in a specific way. We first need the notion of head vertices.

Definition 2. A head vertex of a mamba G = (V,E) is a vertex v ∈ V such
that there is a path decomposition (X1, . . . , Xm) of G of width at most two with
v ∈ X1.
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First, we give a recursive definition of a mamba tree; we will then (Theorem 1)
show that these precisely characterize the connected graphs of special treewidth
two, and then (Theorem 3) characterize which vertices in a mamba are head
vertices. Mamba trees characterize connected graphs of special treewidth two
(cf. Theorem 1; its proof is given in the full paper); a characterization in terms
of an obstruction set is in the next section.

Definition 3. The class of mamba trees is the class of graphs recursively de-
fined as follows.

– Each mamba is a mamba tree.
– For each mamba tree G and each mamba M , the graph obtained by identifying

a vertex in G with a head vertex in M , is a mamba tree.

Theorem 1. A graph G = (V,E) has special treewidth at most two, if and only
if G is a disjoint union of mamba trees.

The structure of biconnected graphs of pathwidth two was studied by de
Fluiter and Bodlaender [10,4]. We give this structure below; after that, the
structural characterization is finished by characterizing which vertices can be
head vertex (cf. Theorem 3).

Definition 4 ([10,4]). The cell completion Ḡ of a biconnected graph G =
(V,E) is the graph, obtained from G by adding an edge {v, w} for all pairs
of nonadjacent vertices v, w ∈ V such that G[V − {v, w}] has at least three
connected components.

Definition 5 ([10,4,6]). The class of trees of cycles is the class of graphs
recursively defined as follows.

– Each cycle is a tree of cycles.
– For each tree of cycles G and each cycle C, the graph obtained from G and C

by taking the disjoint union and then identifying an edge and its end vertices
in G with an edge and its end vertices in C, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge
in common.

Definition 6 ([10,4]). A path of cycles is a tree of cycles G such that each
chordless cycle of G has at most two edges which are contained in other chordless
cycles of G, and if an edge e ∈ E(G) is contained in m ≥ 3 chordless cycles of
G, then at least m− 2 of these cycles have no other edges in common with other
chordless cycles, and consist of three vertices each.

Theorem 2 ([10,4]). Let G be a biconnected graph with at least three vertices.
G has pathwidth two if and only if Ḡ is a path of cycles.

Thus, we have that each biconnected component of a graph of pathwidth two
is either a single edge or has a cell completion that is a path of cycles. A path
of cycles can be represented by a cycle path, which is defined next.



Fixed-Parameter Tractability and Characterizations 95

Definition 7 ([10,4]). Let G be a path of cycles, let C = (C1, . . . , Cp) be a
sequence of chordless cycles in G, such that each chordless cycle in G appears
exactly once in the sequence, and for 1 ≤ i ≤ p− 1, Ci shares exactly one edge
with Ci+1. Let E = (e1, . . . , ep−1) be the corresponding set of common edges.
The pair (C,E) is called a cycle path for G.

For easier discussion, we distinguish two different types of cycles on a cycle
path (C,E), C = (C1, . . . , Cp) and E = (e1, . . . , ep−1). A cycle Ci with three
vertices that has an edge that is contained in at least three cycles of the cycle
path and i 
∈ {1, p} is called a scale cycle; all other cycles are called body cycles.
Note that we always take C1 and Cp as body cycles. The body cycles form a
path: each body cycle except C1 and Cp is incident to exactly one body cycle
with a smaller index and exactly one body cycle with a larger index. Each of
the scale cycles shares an edge (in the cell completion) with two successive body
cycles (and possibly other scale cycles). Observe that when an edge e belongs to
the cell completion Ḡ but not to G, then there must be two body cycles and a
scale cycle that use e. The following theorem characterizes the head vertices for
mambas, that are not just a single edge; for the latter, both endpoints of this
edge are head vertices. The proof is given in the full paper.

Theorem 3. Let G = (V,E) be a mamba, and let v ∈ V . Suppose that G has
at least three vertices. The following statements are equivalent.

1. v is a head vertex.
2. There exists a cycle path (C,E), with C = (C1, . . . , Cp) for G, such that v

is a vertex on C1.
3. For each cycle path (C,E) with C = (C1, . . . , Cp) and E = (e1, . . . , ep−1), at

least one of the following cases holds:
(a) v is a vertex on C1.
(b) v is a vertex on Cp.
(c) There is an i with v on a cycle Ci; C1 and Ci are cycles of length three,

and e1 = e2 = · · · = ei−1, i.e., C2, . . . , Ci are scale cycles.
(d) There is an i with v on a cycle Ci; Cp and Ci are cycles of length three,

and ei = ei+1 = · · · = ep−1, i.e., Ci, . . . , Cp−1 are scale cycles.

Thus, a graph has special treewidth at most two, if and only if for each
connected component, we can arrange the biconnected components of it in a
tree like fashion, for each biconnected component its cell completion is a path
of cycles, and a biconnected component (not corresponding to the root of the
tree) has a head vertex (as characterized above) as cut vertex through which it
is connected to the parent biconnected component.

5 The Obstruction Set of Special Treewidth Two

The main result of this section is the following.

Theorem 4. The class of graphs with special treewidth at most two is closed
under taking of minors, and its obstruction set is {K4, S3, D3, G1, G2, G3}.
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G1 G2 G3

K4 S3

D3

Fig. 2. The six graphs of the obstruction set for graphs of special treewidth two: G1,
G2, G3, K4, S3 and D3

In Figure 2, the graphs in the obstruction set are displayed. The result is
complemented by the following proposition, which improves upon a result by
Courcelle [9], who showed it for k ≥ 5. The proof is given in the full paper.

Proposition 1. Let Gk be the graphs of special treewidth at most k. If k ≥ 3,
then Gk is not closed under taking minors.

The remainder of the section is devoted to the proof of Theorem 4; some case
analysis is omitted from this extended abstract and given in the full paper. From
our structural characterization of graphs of special treewidth at most two of the
previous sections, an easy case analysis shows that this characterization is minor
closed. From the characterization, it follows immediately that each of the graphs
in the set {K4, S3, D3, G1, G2, G3} has special treewidth at least three; a tedious
case analysis shows that each proper minor of the graphs has special treewidth
at most two. So {K4, S3, D3, G1, G2, G3} is a subset of the obstruction set of the
graphs of special treewidth at most two. Thus, Theorem 4 follows from the next
lemma.

Lemma 3. Let G be a graph that does not contain K4, S3, D3, G1, G2 or G3

as a minor. Then the special treewidth of G is at most two.

Proof. Suppose that the lemma does not hold. Let G be a minimal counterex-
ample; i.e., no minor of G is a counterexample. Clearly, no minor of G contains
one of the six graphs as a minor, so minimality is equivalent here to assuming
that all minors of G have special treewidth two.

As the special treewidth of a graph is the maximum of its connected com-
ponents, we clearly have that G is connected. As G does not contain K4 as a
minor, the treewidth of G is at most two.

Case 1: G is not biconnected We use the well known fact that the biconnected
components of a graph form a tree. Consider a leaf of the tree of biconnected
components, i.e., a biconnected component with vertex set W1 that contains
exactly one cut vertex, say v.
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vv

H1 H2

w

Fig. 3. Biconnected components of obstructions that are not biconnected

Claim. There is no special tree decomposition of G[W1] of width at most two
that contains v in its root bag.

Proof. Suppose there is such a special tree decomposition. G[V \W1 ∪ {v}] is
a minor of G so has special treewidth at most two. Take such a special tree
decomposition. Let jv be the bag with maximum depth that contains v. Take a
special tree decomposition of G[W1] of width at most two that contains v in its
root bag ir. Join these two special tree decompositions, making ir a child of jv.
This gives a special tree decomposition of G of width at most two. ��

Recall our extension of the notion of minor to pairs of a graph and a vertex.

Claim. (G[W1], v) has (H1, v) or (H2, v) as a minor, with H1 and H2 as in
Figure 3, with v the marked vertex.

The proof of this claim is given in the full paper. It is based on a case analysis,
using the characterization of head vertices of the previous section.

It follows that G contains G1, G2 or G3 as a minor: take two biconnected
components of G that are a leaf of the tree of biconnected components, say with
vertex sets Z1 and Z2, and with cut vertices v1 and v2. Do contractions and
deletions to (G[Z1], v1) and obtain (H1, v1) or (H2, v1): by the claim above, at
least one of these is possible. Similarly, obtain (H1, v2) or (H2, v2) as minor of
(G[Z2], v2). Now contract all other vertices and v1 and v2 to one vertex. If we
obtained H1 for both connected components, we have G1 as minor. If one of
the components gave H1 and the other gave H2 (in either order), then we have
G2 as minor. If both gave H2, then we obtained G3 as minor. In each case, we
reached a contradiction.

Case 2: G is biconnected As G has treewidth two and is biconnected, its cell
completion is a tree of cycles (see Bodlaender and Kloks [6] and the discussion in
the previous section). However, as we assumed it does not have special treewidth
two, the cell completion of G is not a path of cycles. Thus, the cell completion
of G, Ḡ, must have one of the following two properties.

– There is a chordless cycle that has at least three edges which are contained
in other chordless cycles of the graph.

– There is an edge e which is contained in m chordless cycles, m ≥ 3, such
that at most m−3 of these cycles have no other edges in common with other
chordless cycles and consist of three vertices.
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First, assume that the cell completion of G contains a chordless cycle C which
has three or more edges contained in other chordless cycles. Let e1, e2, and e3
be these edges. Consider e1. Either e1 ∈ E, or e1 is an edge that is added by
the cell completion of G. In the former case, there is a path in G between the
endpoints of e1 that is disjoint from C. In the latter case, there are two such
paths. We now can contract one of these paths to the edge e1; in both cases,
we contract the remaining path to two edges that form a triangle with e1. Note
that these paths are disjoint for e1, e2 and e3, as the cell completion of G is a
tree of cycles. If we apply the same steps to e2 and e3, and contract the other
edges on C, and remove the remainder of the graph, we obtain S3 as a minor.

Second, assume we have an edge e = {v, w} that is contained in m ≥ 3
chordless cycles, with at most m − 3 of these cycles having no other edges in
common with other chordless cycles and consisting of three vertices. I.e., there
are at least three cycles C1, C2, C3 that share e, that either have at least four
vertices, or have an edge in common with another chordless cycle.

Note that C1, C2 and C3 overlap only at e, and the trees of cycles attached
to (and including) C1, C2, and C3 are disjoint from each other.

Consider C1. We can find a path P1 from v to w with at least three edges
as follows. If C1 contains at least four vertices, we use the path obtained by
removing e from C1. Otherwise, C1 has an edge, say e1 = {x, y} with another
chordless cycle, say C4. Then, take the path from v to w by removing e from
C1, and replacing e1 by the path from x to y that is formed by C4 − e1.

In the same way, we can find paths P2, P3 from v to w with at least three
edges for C2 and C3 in the cell completion of G. These paths are disjoint, which,
again, follows from the fact that the cell completion of G is a tree of cycles.

Now, for each edge on these paths that is not an edge in G, i.e., was added
by making the cell completion, notice that there is a path between its endpoints
that is disjoint from P1, P2 and P3; replace the edge by this path. By repeating
this step, we obtain three disjoint paths between v and w, each with at least
three edges. Thus G contains D3 as a minor. Contradiction. ��

6 Conclusions

We end this paper with some final remarks and open problems. The fixed-
parameter algorithm is exponential in k3; pathwidth has an FPT algorithm
that is exponential in k2 (e.g., first run the algorithm from [5] to find a tree
decomposition of width O(k), and then the algorithm for pathwidth from [7]),
and thus we ask whether an algorithm for special treewidth with running time
O∗(2O(k2)) exists.

A variant of special treewidth, that was also suggested by Arie Koster, is
a notion we term spaghetti treewidth: a tree decomposition is a spaghetti tree
decomposition if for each vertex v, the bags that contain v form a path in the
tree. I.e., the difference with special treewidth is that we no longer demand that
the path induced by the bags is rooted. One can alternatively define the spaghetti
treewidth of a graph G as the minimum over all undirected path graphs H that
contain G as a subgraph of the maximum clique size of H .
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With arguments, similar to those in Section 3, one can argue that spaghetti
treewidth is fixed parameter tractable, with an algorithm that runs in O(2O(k3))
time. Again, adding a universal vertex to a graph gives a graph whose spaghetti
treewidth equals its pathwidth, proving that spaghetti treewidth is NP-complete.

Similar to Proposition 1, we have that for each k ≥ 3, the class of graphs
of spaghetti treewidth at most k is not closed under taking minors. Recently,
O-Joung Kwon and Seongmin Ok showed that the graphs of spaghetti treewidth
two are closed under minor taking, and that the obstruction set for the class of
graphs of spaghetti treewidth two equals {K4, D3}.1

References

1. Archdeacon, D.: A Kuratowski theorem for the projective plane. Journal of Graph
Theory 7, 325–334 (1983)

2. Arnborg, S., Proskurowski, A., Corneil, D.G.: Forbidden minors characterization
of partial 3-trees. Discrete Mathematics 80, 1–19 (1990)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

4. Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA phys-
ical mapping. Discrete Applied Mathematics 71, 55–77 (1996)

5. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A O(ckn) 5-approximation algorithm for treewidth. CoRR,
abs/1304.6321 (2013), Extended abstract to appear in FOCS 2013

6. Bodlaender, H.L., Kloks, T.: A simple linear time algorithm for triangulating three-
colored graphs. Journal of Algorithms 15, 160–172 (1993)

7. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. Journal of Algorithms 21, 358–402 (1996)

8. Courcelle, B.: Special tree-width and the verification of monadic second-order graph
properties. In: FSTTCS. LIPIcs, vol. 8, pp. 13–29. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2010)

9. Courcelle, B.: On the model-checking of monadic second-order formulas with edge
set quantifications. Discrete Applied Mathematics 160, 866–887 (2012)

10. de Fluiter, B.: Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht
University (1997)

11. Diestel, R.: Graph theory, 4th edn. Springer (2010)
12. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix

layout problem. Discrete Applied Mathematics 54, 169–213 (1994)
13. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of

Combinatorial Theory, Series B 35, 39–61 (1983)
14. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms 7, 309–322 (1986)
15. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal

of Combinatorial Theory, Series B 92, 325–357 (2004)
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Abstract. Given a set of points in the plane, we show that the θ-
graph with 5 cones is a geometric spanner with spanning ratio at most√

50 + 22
√
5 ≈ 9.960. This is the first constant upper bound on the

spanning ratio of this graph. The upper bound uses a constructive argu-
ment, giving a, possibly self-intersecting, path between any two vertices,

whose length is at most
√

50 + 22
√
5 times the Euclidean distance be-

tween the vertices. We also give a lower bound on the spanning ratio of
1
2
(11

√
5− 17) ≈ 3.798.

1 Introduction
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Fig. 1. (a) The cones around a
vertex u. (b) The construction
of the θ5-graph.

A t-spanner (t ≥ 1) of a weighted graph G is
a spanning subgraph H with the property that
for all pairs of vertices, the weight of the short-
est path between the vertices in H is at most t
times the weight of the shortest path in G. The
spanning ratio of H is the smallest t for which
it is a t-spanner. The graph G is referred to as
the underlying graph. In this paper, the underly-
ing graph is the complete graph on a finite set of
n points in the plane and the weight of an edge
is the Euclidean distance between its endpoints.
A spanner of such a graph is called a geometric
spanner. We focus on a specific class of geometric
spanners, called θ-graphs. For a more comprehen-
sive overview of geometric spanners, we refer the
reader to the book by Narasimhan and Smid [1].

Introduced independently by Clarkson [2] and
Keil [3], θ-graphs form an important class of ge-
ometric spanners. Given a set P of points in the
plane, we consider each point u ∈ P and partition
the plane into m cones (regions in the plane be-
tween two rays originating from the same point)
with apex u, each defined by two rays at consecu-
tive multiples of θ = 2π/m radians from the nega-
tive y-axis. We label the cones C0 through Cm−1,
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in clockwise order around u, starting from the top (see Figure 1a). If the apex is
not clear from the context, we use Cu

i to denote cone Ci with apex u. We refer
to the θ-graph with m cones as the θm-graph.

To build the θ-graph, we consider each vertex u and add an edge to the ‘closest’
vertex in each of its cones. However, instead of using the Euclidean distance, we
measure distance by projecting each vertex onto the bisector of that cone (see
Figure 1b). We use this definition of closest in the remainder of the paper. For
simplicity, we assume that no two points lie on a line parallel or perpendicular to
a cone boundary, guaranteeing that each vertex connects to at most one vertex
in each cone. Thus, the graph has at most m · n edges.

Ruppert and Seidel [4] showed that for m ≥ 7, the spanning ratio of these
graphs is at most 1/(1 − 2 sin(θ/2)), but until recently little was known about
θ-graphs with fewer cones. The only results so far are a matching upper and
lower bound of 2 on the spanning ratio of the θ6-graph by Bonichon et al. [5],
and negative results showing that there is no constant t for which the θ2- and
θ3-graphs are t-spanners (shown by El Molla [6] for Yao-graphs, but the proof
translates to θ-graphs). Very recently, the θ4-graph was shown to be a spanner
as well [7], leaving the θ5-graph as the only θ-graph for which it is not known
whether the graph is a spanner or not. We answer this question affirmatively.

Choosing a θm-graph with smallest possible value of m is important for many
practical applications where the cost of a network is mostly determined by the
number of edges. One such example is point-to-point wireless networks. These
networks use narrow directional wireless transceivers that can transmit over long
distances (up to 50km [8,9]). The cost of an edge in such a network is therefore
equal to the cost of the two transceivers that are used at each endpoint of that
edge. If the transceivers are distributed uniformly at random, the cost of building
a θ6-graph is approximately 29% higher than the cost of building a θ5-graph [10].

We present the first constant upper bound on the spanning ratio of the θ5-
graph, proving that it is a geometric spanner. Since the proof is constructive,
it gives us a path between any two vertices, u and w, with length at most√

50 + 22
√

5 ≈ 9.960 times |uw|. Surprisingly, this path can cross itself, a prop-
erty we observed for the shortest path as well. We also prove a lower bound on
the spanning ratio of 1

2 (11
√

5− 17) ≈ 3.798.

2 Connectivity

To introduce the structure of the spanning proof, we first show that the θ5-graph
is connected.

Given two vertices u and v, we define their canonical triangle Tuv to be the
triangle bounded by the cone of u that contains v and the line through v perpen-
dicular to the bisector of that cone. For example, the shaded region in Figure 1b
is the canonical triangle Tuv. Note that for any pair of vertices u and v, there
are two canonical triangles: Tuv and Tvu. We equate the size |Tuv| of a canonical
triangle to the length of one of the sides incident to the apex u. This gives us
the useful property that any line between u and a point inside the triangle has
length at most |Tuv|.
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Theorem 1. The θ5-graph is connected.

Proof. We prove that there is a path between any (ordered) pair of vertices in
the θ5-graph, using induction on the size of their canonical triangle. Formally,
given two vertices u and w, we perform induction on the rank of Tuw among
the canonical triangles of all pairs of vertices, when ordered by size. For ease of
description, we assume that w lies in the right half of Cu

0 . The other cases are
analogous.

If Tuw has rank 1, it is the smallest canonical triangle. Therefore there can be
no point closer to u in Cu

0 , so the θ5-graph must contain the edge (u,w). This
proves the base case.

If Tuw has a larger rank, our inductive hypothesis is that there exists a path
between any pair of vertices with a smaller canonical triangle. Let a and b be
the left and right corners of Tuw. Let m be the midpoint of ab and let x be the
intersection of ab and the bisector of ∠mub (see Figure 2a).

u

m xw

m′

α

u

m xa bw

(a) (b)

Fig. 2. (a) The canonical triangle Tuw. (b) If w lies between m and x, Twu is smaller
than Tuw.

If w lies to the left of x, consider the canonical triangle Twu. Let m′ be the
midpoint of the side of Twu opposite w and let α = ∠muw (see Figure 2b). We
can express the size of Twu as follows.

|Twu| =
|wm′|
cos π

5

=
cos∠uwm′ · |uw|

cos π
5

=
cos
(
π
5 − α

)
· |um|
cosα

cos π
5

=
cos
(
π
5 − α

)
cosα

· |Tuw|

Since w lies to the left of x, the angle α is less than π/10, which means that
cos(π5 −α)/ cosα is less than 1. Hence Twu is smaller than Tuw and by induction,
there is a path between w and u. Since the θ5-graph is undirected, we are done
in this case. The rest of the proof deals with the case where w lies on or to the
right of x.

If Twu is empty, there is an edge between u and w and we are done, so as-
sume that this is not the case. Then there is a vertex vw that is closest to w in
Cw

3 (the cone of w that contains u). This gives rise to four cases, depending on the
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location of vw (see Figure 3a). In each case, we will show that Tuvw is smaller
than Tuw and hence we can apply induction to obtain a path between u and vw.
Since vw is the closest vertex to w in C3, there is an edge between vw and w,
completing the path between u and w.

w

u

xa bw

(a) (b)

1

2

34

vw

u

y

w

(c)

u

vw

y

C0

C1

C2C3

C4

Fig. 3. (a) The four cases for vw . (b) Case 1: The situation that maximizes |Tuvw | when
vw lies in Cu

2 . (c) Case 4: The situation that maximizes |Tuvw | when vw lies in Cu
4 .

Case 1. vw lies in Cu
2 . In this case, the size of Tuvw is maximized when vw lies

in the bottom right corner of Twu and w lies on b. Let y be the rightmost corner
of Tuvw (see Figure 3b). Using the law of sines, we can express the size of Tuvw

as follows.

|Tuvw | = |uy| =
sin∠uvwy
sin∠uyvw

· |uvw| =
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw| < |Tuw|

Case 2. vw lies in Cu
1 . In this case, the size of Tuvw is maximized when w lies

on b and vw lies almost on w. By symmetry, this gives |Tuvw | = |Tuw|. However,
vw cannot lie precisely on w and must therefore lie a little closer to u, giving us
that |Tuvw | < |Tuw|.

Case 3. vw lies in Cu
0 . As in the previous case, the size of Tuvw is maximized

when vw lies almost on w, but since vw must lie closer to u, we have that
|Tuvw | < |Tuw|.

Case 4. vw lies in Cu
4 . In this case, the size of Tuvw is maximized when vw

lies in the left corner of Twu and w lies on x. Let y be the bottom corner of
Tuvw (see Figure 3c). Since x is the point where |Tuw| = |Twu|, and vwyuw
forms a parallelogram, |Tuvw | = |Tuw|. However, by general position, vw cannot
lie on the boundary of Twu, so it must lie a little closer to u, giving us that
|Tuvw | < |Tuw|. �
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3 Spanning Ratio

In this section, we prove an upper bound on the spanning ratio of the θ5-graph.

Lemma 1. Between any pair of vertices u and w of a θ5-graph, there is a path
of length at most c · |Tuw|, where c = 2

(
2 +

√
5
)
≈ 8.472.

Proof. We begin in a way similar to the proof of Theorem 1. Given an ordered
pair of vertices u and w, we perform induction on the size of their canonical
triangle. If |Tuw| is minimal, there must be a direct edge between them. Since
c > 1 and any edge inside Tuw with endpoint u has length at most |Tuw|, this
proves the base case. The rest of the proof deals with the inductive step, where
we assume that there exists a path with length at most c · |T | between every pair
of vertices whose canonical triangle T is smaller than Tuw. As in the proof of
Theorem 1, we assume that w lies in the right half of Cu

0 . If w lies to the left of
x, we have seen that Twu is smaller than Tuw. Therefore we can apply induction
to obtain a path of length at most c · |Twu| < c · |Tuw| between u and w. Hence
we need to concern ourselves only with the case where w lies on or to the right
of x.

If u is the vertex closest to w in Cw
3 or w is the closest vertex to u in Cu

0 ,
there is a direct edge between them and we are done by the same reasoning as
in the base case. Therefore assume that this is not the case and let vw be the
vertex closest to w in Cw

3 . We distinguish the same four cases for the location of
vw (see Figure 3a). We already showed that we can apply induction on Tuvw in
each case. This is a crucial part of the proof for the first three cases.

Most of the cases come down to finding a path between u and w of length
at most (g + h · c) · |Tuw|, for constants g and h with h < 1. The smallest
value of c for which this is bounded by c · |Tuw| is g/(1 − h). If this is at most
2
(
2 +

√
5
)
≈ 8.472, we are done.

Case 1. vw lies in Cu
2 . By induction, there exists a path between u and vw of

length at most c · |Tuvw |. Since vw is the closest vertex to w in Cw
3 , there is a

direct edge between them, giving a path between u and w of length at most
|wvw |+ c · |Tuvw |.

Given any initial position of vw in Cu
2 , we can increase |wvw| by moving w

to the right. Since this does not change |Tuvw |, the worst case occurs when w
lies on b. Then we can increase both |wvw | and |Tuvw | by moving vw into the
bottom corner of Twu. This gives rise to the same worst-case configuration as in
the proof of Theorem 1, depicted in Figure 3b. Building on the analysis there,
we can bound the worst-case length of the path as follows.

|wvw |+ c · |Tuvw | =
|Tuw|
cos π

5

+ c ·
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw|

This is at most c · |Tuw| for c ≥ 2
(
2 +

√
5
)
. Since we picked c = 2

(
2 +

√
5
)
, the

theorem holds in this case. Note that this is one of the cases that determines the
value of c.
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(a)

u

w

vw
u

w

vw

(b)

u

w b

(c)

vw

Fig. 4. (a) Case 2: Vertex vw lies on the boundary of Cu
1 after moving it down along

the side of Tuvw . (b) Case 3: Vertex vw lies on the boundary of Cu
0 after moving it left

along the side of Tuvw . (c) Case 4: Vertex vw lies in Cu
4 ∩ Cb

3 .

Case 2. vw lies in Cu
1 . By the same reasoning as in the previous case, we have a

path of length at most |wvw |+ c · |Tuvw | between u and w and we need to bound
this length by c · |Tuw|.

Given any initial position of vw in Cu
1 , we can increase |wvw| by moving w

to the right. Since this does not change |Tuvw |, the worst case occurs when w
lies on b. We can further increase |wvw | by moving vw down along the side of
Tuvw opposite u until it hits the boundary of Cu

1 or Cw
3 , whichever comes first

(see Figure 4a).
Now consider what happens when we move vw along these boundaries. If vw

lies on the boundary of Cu
1 and we move it away from u by Δ, |Tuvw | increases

by Δ. At the same time, |wvw | might decrease, but not by more than Δ. Since
c > 1, the total path length is maximized by moving vw as far from u as possible,
until it hits the boundary of Cw

3 . Once vw lies on the boundary of Cw
3 , we have

that |Tuvw | = |Tuw| − |wvw| ·
(
3−

√
5
)
/2. Since c > 2/

(
3−

√
5
)
≈ 2.618, this

gives |wvw |+ c · |Tuvw | = c · |Tuw| − (c ·
(
3−

√
5
)
/2− 1) · |wvw| < c · |Tuw|.

Case 3. vw lies in Cu
0 . Again, we have a path of length at most |wvw |+ c · |Tuvw |

between u and w and we need to bound this length by c · |Tuw|.
Given any initial position of vw in Cu

0 , moving vw to the left increases |wvw |
while leaving |Tuvw | unchanged. Therefore the path length is maximized when vw
lies on the boundary of either Cu

0 or Cw
3 , whichever it hits first (see Figure 4b).

Again, consider what happens when we move vw along these boundaries.
Similar to the previous case, if vw lies on the boundary of Cu

0 and we move it
away from u by Δ, |Tuvw | increases by Δ, while |wvw | might decrease by at most
Δ. Since c > 1, the total path length is maximized by moving vw as far from u as
possible, until it hits the boundary of Cw

3 . Once there, the situation is symmetric
to the previous case, with |Tuvw | = |Tuw| − |wvw | ·

(
3−

√
5
)
/2. Therefore the

theorem holds in this case as well.

Case 4. vw lies in Cu
4 . This is the hardest case. Similar to the previous two cases,

the size of Tuvw can be arbitrarily close to that of Tuw, but in this case |wvw |
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does not approach 0. This means that simply invoking the inductive hypothesis
on Tuvw does not work, so another strategy is required. We first look at a subcase
where we can apply induction directly, before considering four subcases for the
position of vu, the closest vertex to u in C0.

(a) (b) (c)

u

w vu

u

w

vu

u

w
4b

4c
4d

4e

Fig. 5. (a) Four different cases for the position of vu. (b) The worst-case configuration
with w in Cvu

4 . (c) A configuration with w in Cvu
0 , after moving vu onto the right side

of Cu
0 .

Case 4a. vw lies in Cu
4 ∩ Cb

3. This situation is illustrated in Figure 4c. Given
any initial position of vw, moving w to the right onto b increases the total path
length by increasing |wvw | while not affecting |Tuvw |. Here we use the fact that
vw already lies in Cb

3, otherwise we would not be able to move w onto b while
keeping vw in Cw

3 . Now the total path length is maximized by placing vw on the
left corner of Twu. Since this situation is symmetrical to the worst-case situation
in Case 1, the theorem holds by the same analysis.

Next, we distinguish four cases for the position of vu (the closest vertex to u in
C0), illustrated in Figure 5a. We can solve the first two by applying our inductive
hypothesis to Tvuw.

Case 4b. w lies in Cvu
4 . To apply our inductive hypothesis, we need to show that

|Tvuw| < |Tuw|. If that is the case, we obtain a path between vu and w of length
at most c · |Tvuw|. Since vu is the closest vertex to u, there is a direct edge from
u to vu, resulting in a path between u and w of length at most |uvu|+ c · |Tvuw|.

Given any intial positions for vu and w, moving w to the left increases |Tvuw|
while leaving |uvu| unchanged. Moving vu closer to b increases both. Therefore
the path length is maximal when w lies on x and vu lies on b (see Figure 5b).
We can express |Tvuw| as follows.

|Tvuw| =
sin 3π

5

sin 3π
10

· |wvu| =
sin 3π

5

sin 3π
10

·
sin π

10

sin 3π
5

· |Tuw| =
1

2

(
3−

√
5
)
· |Tuw|
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Since |uvu| = |Tuw|, the complete path has length at most c · |Tuw| for

c ≥ 1

1− 1
2

(
3−

√
5
) =

1

2

(
1 +

√
5
)
≈ 1.618.

Case 4c. w lies in Cvu
0 . Since vu lies in Cu

0 , it is clear that |Tvuw| < |Tuw|, which
allows us to apply our inductive hypothesis. This gives us a path between u
and w of length at most |uvu|+ c · |Tvuw|. For any initial location of vu, we can
increase the total path length by moving vu to the right until it hits the side of
Cu

0 (see Figure 5c), since |Tvuw| stays the same and |uvu| increases. Once there,
we have that |uvu|+ |Tvuw| = |Tuw|. Since c > 1, this immediately implies that
|uvu|+ c · |Tvuw| ≤ c · |Tuw|, proving the theorem for this case.

To solve the last two cases, we need to consider the positions of both vu and vw.

(a) (b) (c)

u uu

w

vu

vw

�

w

vu

vw

�

w

vu

vw

Fig. 6. (a) The regions where vu (light) and vw (dark) can lie. (b) The worst case when
vu lies on a given line �. (c) The worst case for a fixed position of w.

Case 4d. w lies in Cvu
1 and vu lies in Cw

3 . We would like to apply our inductive
hypothesis to Tvuvw , resulting in a path between vu and vw of length at most
c · |Tvuvw |. The edges (w, vw) and (u, vu) complete this to a path between u and
w, giving a total length of at most |uvu|+ c · |Tvuvw |+ |vww|.

First, note that vu cannot lie in Twvw , as this region is empty by definition.
This means that vw must lie in Cvu

4 . We first show that Tvuvw is always smaller
than Tuw, which means that we are allowed to use induction. Given any initial
position for vu, consider the line � through vu, perpendicular to the bisector of
C3 (see Figure 6a). Since vw cannot be further from w than vu, the size of Tvuvw

is maximized when vw lies on the intersection of � and the top boundary of Twu.
We can increase |Tvuvw | further by moving vu along � until it reaches the bisector
of Cw

3 (see Figure 6b). Since the top boundary of Twu and the bisector of Cw
3

approach each other as they get closer to w, the size of Tvuvw is maximized when
vu lies on the bottom boundary of Twu (ignoring for now that this would move vu
out of Tuw). Now it is clear that |Tvuvw | < |Tuvw |. Since we already established
that Tuvw is smaller than Tuw in the proof of Theorem 1, this holds for Tvuvw as
well and we can use induction.
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All that is left is to bound the total length of the path. Given any initial
position of vu, the path length is maximized when we place vw at the intersection
of � and the top boundary of Twu, as this maximizes both |Tvuvw | and |wvw |.
When we move vu away from vw along � by Δ, |uvu| decreases by at most Δ, while
|Tvuvw | increases by sin 3π

5 / sin 3π
10 ·Δ > Δ. Since c > 1, this increases the total

path length. Therefore the worst case again occurs when vu lies on the bisector
of Cw

3 , as depicted in Figure 6b. Moving vu down along the bisector of Twu by
Δ decreases |uvu| by at most Δ, while increasing |wvw | by 1/ sin 3π

10 ·Δ > Δ and
increasing |Tvuvw |. Therefore this increases the total path length and the worst
case occurs when vu lies on the left boundary of Tuw (see Figure 6c).

Finally, consider what happens when we move vu Δ towards u, while moving
w and vw such that the construction stays intact. This causes w to move to
the right. Since vu, w and the left corner of Tuw form an isosceles triangle with
apex vu, this also moves vu Δ further from w. We saw before that moving
vu away from w increases the size of Tvuvw . Finally, it also increases |wvw | by
1/ sin 3π

10 ·Δ > Δ. Thus, the increase in |wvw | cancels the decrease in |uvu| and
the total path length increases. Therefore the worst case occurs when vu lies
on u and vw lies in the corner of Twu, which is symmetric to the worst case of
Case 1. Thus the theorem holds by the same analysis.

Case 4e. vu lies in Cw
4 . We split this case into three final subcases, based on the

position of vu. These cases are illustrated in Figure 7a.

Case 4e-1. |Twvu | ≤ c−1
c · |Tuw|. If Twvu is small enough, we can apply our

inductive hypothesis to obtain a path between vu and w of length at most c ·
|Twvu |. Since there is a direct edge between u and vu, we obtain a path between
u and w with length at most |uvu|+ c · |Twvu |. Any edge from u to a point inside
Tuw has length at most |Tuw|, so we can bound the length of the path as follows.

|uvu|+c · |Twvu | ≤ |Tuw|+c · c− 1

c
· |Tuw| = |Tuw|+(c−1)· |Tuw| = c · |Tuw|

In the other two cases, we use induction on Tvwvu to obtain a path between vw
and vu of length at most c · |Tvwvu |. The edges (u, vu) and (w, vw) complete this
to a (self-intersecting) path between u and w. We can bound the length of these
edges by the size of the canonical triangle that contains them, as follows.

|uvu|+ |wvw | ≤ |Tuw|+ |Twu| ≤ |Tuw|+
1

cos π
5

· |Tuw| =
√

5 · |Tuw|

All that is left now is to bound the size of Tvwvu and express it in terms of Tuw.

Case 4e-2. vu lies in Cvw
0 . In this case, the size of Tvwvu is maximal when vu lies

on the top boundary of Tuw and vw lies at the lowest point in its possible region:
the left corner of Tbu (see Figure 7b). Now we can express |Tvwvu | as follows.

|Tvwvu | =
sin π

10

sin 7π
10

· |bvw| =
sin π

10

sin 7π
10

· 1

cos π
5

· |Tuw| = 2
(√

5− 2
)
· |Tuw|
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(a) (b) (c)

u

w

vw

2

3

u

vw

b bvu w

u

w

y

vw

vu
1

Fig. 7. (a) The three subcases for the position of vu. (b) The situation that maximizes
Tvwvu when vu lies in Cvw

0 . (c) The worst case when vu lies in Cvw
1 .

Since 2
(√

5− 2
)
< 1, we can use induction. The total path length is bounded

by c · |Tuw| for

c ≥
√

5

1− 2
(√

5− 2
) = 2 +

√
5 ≈ 4.236.

Case 4e-3. vu lies in Cvw
1 . Since |Twvu | > c−1

c · |Tuw|, Tvwvu is maximal when vw
lies on the left corner of Twu and vu lies on the top boundary of Tuw, such that
|Twvu | = c−1

c · |Tuw| (see Figure 7c). Let y be the intersection of Tvwvu and Twu.
Note that since vw lies on the corner of Twu, y is also the midpoint of the side
of Tvwvu opposite vw. We can express the size of Tvwvu as follows.

|Tvwvu | =
|vwy|
cos π

5

=
|wvw | − |wy|

cos π
5

=

|Tuw|
cos π

5

− cos π
10 · |wvu|

cos π
5

=

|Tuw|
cos π

5

− cos π
10 ·

sin 3π
10

sin 3π
5

· |Twvu |

cos π
5

=

|Tuw|
cos π

5

− cos π
10 ·

sin 3π
10

sin 3π
5

· c− 1

c
· |Tuw|

cos π
5

=

(
1

c
+ 5− 2

√
5

)
· |Tuw|

Thus we can use induction for c > 1/
(
2
√

5− 4
)
≈ 2.118 and the total path

length can be bounded by c · |Tuw| for

c ≥
√

5 + 1

2
√

5− 4
=

1

2

(
7 + 3

√
5
)
≈ 6.854.

�

Using this result, we can compute the exact spanning ratio.
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Theorem 2. The θ5-graph is a spanner with spanning ratio at most√
50 + 22

√
5 ≈ 9.960.

Proof. Given two vertices u and w, we know from Lemma 1 that there is
a path between them with length at most c · min (|Tuw|, |Twu|), where c =
2
(
2 +

√
5
)
≈ 8.472. This gives an upper bound on the spanning ratio of c ·

min (|Tuw|, |Twu|) /|uw|. We assume without loss of generality that w lies in the
right half of Cu

0 . Let α be the angle between the bisector of Cu
0 and the line uw

(see Figure 2b). Using some expressions derived in the proof of Theorem 1, we
can express the spanning ratio in terms of α.

c ·min

(
|Tuw|,

cos(π
5 −α)

cosα · |Tuw|
)

cos π
5

cosα · |Tuw|
=

c

cos π
5

·min
(
cosα, cos

(
π
5 − α

))
To get an upper bound on the spanning ratio, we need to maximize the minimum
of cosα and cos

(
π
5 − α

)
. Since for α ∈ [0, π/5], one is increasing and the other

is decreasing, this maximum occurs at α = π/10, where they are equal. Thus,
our upper bound becomes

c

cos π
5

· cos π
10 =

√
50 + 22

√
5 ≈ 9.960.

�
4 Lower Bound

u

w

v1

v2

v3

v4

Fig. 8. A path with a large spanning ratio

In this section, we derive a lower
bound on the spanning ratio of the θ5-
graph.

Theorem 3. The θ5-graph has span-
ning ratio at least 1

2 (11
√

5 − 17) ≈
3.798.

Proof. For the lower bound, we
present and analyze a path between
two vertices that has a large span-
ning ratio. The path has the following
structure (illustrated in Figure 8).

The path can be thought of as be-
ing directed from w to u. First, we
place w in the right corner of Tuw.
Then we add a vertex v1 in the bot-
tom corner of Twu. We repeat this two
more times, each time adding a new
vertex in the corner of Tviu furthest
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away from u. The final vertex v4 is placed on the top boundary of Cv3
1 , such that

u lies in Cv4
1 . Since we know all the angles involved, we can compute the length

of each edge, taking |uw| = 1 as baseline.

|wv1| =
1

cos π
5

|v1v2| = |v2v3| = 2 sin π
5 tan π

5

|v3v4| =
sin π

10

sin 3π
5

tan π
5 |v4u| =

sin 3π
10

sin 3π
5

tan π
5

Since we set |uw| = 1, the spanning ratio is simply |wv1| + |v1v2| + |v2v3| +
|v3v4| + |v4u| = 1

2 (11
√

5 − 17) ≈ 3.798. Note that the θ5-graph with just these
5 vertices would have a far smaller spanning ratio, as there would be a lot of
shortcut edges. However, a graph where this path is the shortest path between
two vertices can be found in Appendix A. �

5 Conclusions

We showed that there is a path between every pair of vertices in the θ5-graph,

with length at most
√

50 + 22
√

5 ≈ 9.960 times the straight-line distance be-
tween them. This is the first constant upper bound on the spanning ratio of the
θ5-graph, proving that it is a geometric spanner. We also presented a θ5-graph
with spanning ratio arbitrarily close to 1

2 (11
√

5− 17) ≈ 3.798, thereby giving a
lower bound on the spanning ratio. There is still a significant gap between these
bounds, which is caused by the upper bound proof mostly ignoring the main
obstacle to improving the lower bound: that every edge requires at least one
of its canonical triangles to be empty. Hence we believe that the true spanning
ratio is closer to the lower bound.

While our proof for the upper bound on the spanning ratio returns a spanning
path between the two vertices, it requires knowledge of the neighbours of both
the current vertex and the destination vertex. This means that the proof does not
lead to a local routing strategy that can be applied in, say, a wireless setting.
This raises the question whether it is possible to route competitively on this
graph, i.e. to discover a spanning path from one vertex to another by using only
information local to the current vertex at each step.
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A Lower Bound Construction

# Action Shortest path
1 Start with a vertex v1. -
2 Add v2 in Cu

0 , such that v2 is arbitrarily close to the top
right corner of Tv1v2 .

v1v2

3 Remove edge (v1, v2) by adding two vertices, v3 and v4,
arbitrarily close to the counter-clockwise corners of Tv1v2

and Tv2v1 .

v1v4v2

4 Remove edge (v1, v4) by adding two vertices, v5 and v6,
arbitrarily close to the clockwise corner of Tv1v4 and the
counter-clockwise corner of Tv4v1 .

v1v3v2

5 Remove edge (v2, v3) by adding two vertices, v7 and v8,
arbitrarily close to the clockwise corner of Tv2v3 and the
counter-clockwise corner of Tv3v2 .

v1v6v4v2

6 Remove edge (v1, v6) by adding two vertices, v9 and v10,
arbitrarily close to the clockwise corner of Tv1v6 and the
counter-clockwise corner of Tv6v1 .

v1v5v4v2

7 Remove edge (v4, v5) by adding two vertices, v11 and v12,
arbitrarily close to the counter-clockwise corner of Tv4v5

and the clockwise corner of Tv5v4 .

v1v5v6v4v2

8 Remove edge (v5, v6) by adding two vertices, v13 and v14,
arbitrarily close to the counter-clockwise corner of Tv5v6

and the clockwise corner of Tv6v5 .

v1v5v14v6v4v2

9 Remove edge (v5, v14) by adding two vertices, v15 and v16,
arbitrarily close to the counter-clockwise corner of Tv5v14

and the clockwise corner of Tv14v5 .

v1v5v13v6v4v2

10 Remove edge (v6, v13) by adding two vertices, v17 and v18,
arbitrarily close to the clockwise corner of Tv6v13 and the
counter-clockwise corner of Tv13v6 .

v1v3v8v2

11 Remove edge (v2, v8) by adding a vertex v19 in the union
of, and arbitrarily close to the intersection point of Tv2v8

and Tv8v2 .

v1v3v7v2

12 Remove edge (v3, v7) by adding two vertices, v20 and v21,
arbitrarily close to the counter-clockwise corner of Tv3v7

and the clockwise corner of Tv7v3 .

v1v5v12v2

13 Remove edge (v2, v12) by adding a vertex v22 arbitrarily
close to the counter-clockwise corner of Tv2v12 .

v1v10v6v4v2

14 Remove edge (v1, v10) by adding a vertex v23 in the union
of Tv1v10 and Tv10v1 , arbitrarily close to the top boundary
of Cv10

1 , and such that v1 lies in Cv23
1 , arbitrarily close to

the bottom boundary.

v1v5v12v4v2

(Continued on the next page.)
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# Action Shortest path
15 Remove edge (v4, v12) by adding two vertices, v24 and v25,

arbitrarily close to the counter-clockwise corner of Tv4v12

and the clockwise corner of Tv12v4 .

v1v5v13v14v6v4v2

16 Remove edge (v13, v14) by adding two vertices, v26 and v27,
arbitrarily close to the clockwise corner of Tv13v14 and the
counter-clockwise corner of Tv14v13 .

v1v9v18v6v4v2

17 Remove edge (v9, v18) by adding two vertices, v28 and v29,
arbitrarily close to the clockwise corner of Tv9v18 and the
counter-clockwise corner of Tv18v9 .

v1v5v16v11v4v2

18 Remove edge (v11, v16) by adding two vertices, v30 and v31,
arbitrarily close to the counter-clockwise corner of Tv11v16

and the clockwise corner of Tv16v11 .

v1v23v10v6v4v2

v1

v2v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13
v14

v15
v16

v17

v18

v19

v20

v21

v22v23

v24

v25

v26
v27

v28

v29

v30
v31

Fig. 9. A θ5-graph with a spanning ratio that matches the lower bound. The shortest
path between v1 and v2 is indicated in orange.
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1 Introduction

1.1 Background

Given a tree T and a set P of non-trivial simple paths in T , the Vertex Intersec-
tion Graph of Paths in a Tree (VPT) and the Edge Intersection Graph of Paths
in a Tree (EPT) of P are denoted by Vpt(P) and Ept(P), respectively. Both
graphs have P as vertex set. Vpt(P) (resp. Ept(P)) contains an edge between
two vertices if the corresponding two paths intersect in at least one vertex (resp.
edge). A graph G is VPT (resp. EPT) if there exist a tree T and a set P of non-
trivial simple paths in T such that G is isomorphic to Vpt(P) (resp. Ept(P)).
In this case we say that 〈T,P〉 is a VPT (resp. EPT) representation of G.

In this work we focus on edge intersections of paths, therefore whenever we are
concerned with intersection of paths we omit the word ”edge” and simply write
that two paths intersect. We define a new class of graphs, called the graphs of
edge intersecting and non-splitting paths of a tree (ENPT). Given a representa-
tion 〈T,P〉 as described above, the related ENPT graph, denoted by Enpt(P),
has a vertex v for each path Pv of P and two vertices u, v of Enpt(P) are adja-
cent if the paths Pu and Pv intersect and do not split (that is, their union is a
path). A graph G is an ENPT graph if there is a tree T and a set of paths P of
T such that G is isomorphic to Enpt(P). We study the properties of this class
ENPT.

We note that when T is a path Ept(P) = Enpt(P) is an Interval Graph.
Therefore the class ENPT includes all Interval Graphs. Our aim is to study the
structure of ENPT in order to classify them in the hierarchy of edge intersection
graphs of paths in a tree.

EPT and VPT graphs have applications in communication networks. Assume
that we model a communication network as a tree T and the message routes to
be delivered in this communication network as paths on T . Two paths conflict if
they both require to use the same link (vertex). This conflict model is equivalent
to an EPT (a VPT) graph. Suppose we try to find a schedule for the messages
such that no two messages sharing a link (vertex) are scheduled in the same
time interval. Then a vertex coloring of the EPT (VPT) graph corresponds
to a feasible schedule on this network. The motivation for the split condition
for the paths can be summarized as follows: In optical networks, a router is
an equipment responsible to route a message to a direction determined by its
wavelength. So that two messages, corresponding to two splitting paths, can be
correctly routed to different directions, they should be assigned two different
wavelengths (see [REF] for more information).

EPT and VPT graphs have been extensively studied in the literature. Al-
though VPT graphs can be characterized by a fixed number of forbidden sub-
graphs [13], it is shown that EPT graph recognition is NP-complete [11]. Edge
intersection and vertex intersection give rise to identical graph classes in the case
of paths in a line and in the case of subtrees of a tree. However, VPT graphs
and EPT graphs are incomparable in general; neither VPT nor EPT contains
the other. Main optimization and decision problems such as recognition [5], the
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maximum clique [6], the minimum vertex coloring [9] and the maximum stable
set problems [14] are polynomial-time solvable in VPT whereas recognition and
minimum vertex coloring problems remain NP-complete in EPT graphs [10].
In contrast, one can solve in polynomial time the maximum clique [11] and the
maximum stable set [15] problems in EPT graphs.

After these works on EPT and VPT graphs in the early 80’s, this topic
did not get focus until very recently. Current research on intersection graphs
is concentrated on the comparison of various intersection graphs of paths in a
tree and their relation to chordal and weakly chordal graphs [7,12]. Also, some
tolerance model is studied via k-edge intersection graphs where two vertices are
adjacent if their corresponding paths intersect on at least k edges [8]. Besides,
several recent papers consider the edge intersection graphs of paths on a grid
(e.g [1]).

1.2 Our Contribution

In this work we define the new family of ENPT graphs, and investigate its
basic properties. We first study possible ENPT representations of some basic
structures such as trees, cliques and holes. It should be noted that cliques play
a crucial role in showing the NP-hardness of EPT graph recognition [10]. On
the other hand, some forbidden subgraphs are determined in [11] using the fact
that chordless cycles have a unique EPT representation, called a pie. It turns
out that in ENPT graphs, representations of chordless cycles have a much more
complicated structure, yielding several possible representations. In fact, given a
chordless cycle C, several ENPT representations 〈T,P〉 such that Enpt(P) is
isomorphic to C but Ept(P) are non-isomorphic to each other are possible (see
Figure 2).

Consider the pair (G,C) where G is a graph and C is a Hamiltonian cycle
of G. We restrict our attention to the determination of a representation 〈T,P〉
such that Ept(P) = G and Enpt(P) = C. In this case we will say that 〈T,P〉
is a representation of (G,C).

In Section 2 we give definitions, preliminaries and we provide ENPT repre-
sentations of basic graphs such as trees, cliques and cycles. We also characterize
all the ENPT representations of cliques. In Section 3 we obtain basic results
regarding ENPT graphs, their relationship with EPT graphs and their repre-
sentation. We then define the contraction operation, which is basically replacing
two paths with their union provided that this union is a path. In Section 4 we
introduce three assumptions and we characterize the representations of ENPT

holes, i.e. representations 〈T,P〉 for pairs (G,C), where C is a Hamiltonian cycle
of G, such that Ept(P) = G and Enpt(P) = C, satisfying these assumptions.
In Section 5 we relax two out of these three assumptions, and extend the result
of Section 4. Most of the proofs are either sketched or omitted in this Extended
Abstract. The complete proofs appear in [2], except for Section 5 whose details
can be found in [3].
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2 Preliminaries and Basic Results

In this section we give definitions, present known related results, and develop
basic results. The section is organized as follows: Section 2.1 is devoted to ba-
sic definitions, in Section 2.2 we present known results on EPT graphs and in
Section 2.3 we present some basic ENPT graphs.

2.1 Definitions

General Notation: Given a graph G and a vertex v of G, we denote by
dG(v) the degree of v in G. A vertex is called a leaf (resp. intermediate vertex,
junction) if dG(v) = 1 (resp. = 2, ≥ 3). Whenever there is no ambiguity we omit
the subscript G and write d(v). Given a graph G, V̄ ⊆ V (G) and Ē ⊆ E(G)
we denote by G[V̄ ] and G[Ē] the subgraphs of G induced by V̄ and by Ē,

respectively. The union of two graphs G,G′ is the graph G ∪ G′ def
= (V (G) ∪

V (G′), E(G)∪E(G′)). The join G+G′ of two disjoint graphs G,G′ is the graph

G ∪ G′ together with all the edges joining V (G) and V (G′), i.e. G + G′ def
=

(V (G)∪V (G′), E(G)∪E(G′)∪ (V (G)×V (G′))). Given a (simple) graph G and
e ∈ E(G), we denote by G/e the (simple) graph obtained by contracting the
edge e = {p, q} of G, i.e. by coinciding the two endpoints of e to a single vertex
p.q and removing self loops and parallel edges. For any two vertices u, v of a tree
T we denote by pT (u, v) the unique path between u and v in T . We denote the
set of all positive integers at most k as [k].

Intersections and union of paths: Given two paths P, P ′ in a graph, P ‖ P ′

means that P and P ′ are non-intersecting, i.e. edge-disjoint. The split vertices
of P and P ′ is the set of junctions in their union P ∪ P ′ and is denoted by
split(P, P ′). Whenever P and P ′ intersect and split(P, P ′) = ∅ we say that P
and P ′ are non-splitting and denote this by P ∼ P ′. In this case P ∪ P ′ is a
path or a cycle. When P and P ′ intersect and split(P, P ′) 
= ∅ we say that they
are splitting and denote this by P � P ′. Clearly, for any two paths P and P ′

exactly one of the following holds: P ‖ P ′, P ∼ P ′, P � P ′. When the graph G
is a tree, the union P ∪ P ′ of two intersecting paths P, P ′ of G is a tree with at
most two junctions, i.e. |split(P, P ′)| ≤ 2 and P ∪P ′ is a path whenever P ∼ P ′.
The VPT, EPT and ENPT graphs: Let P be a set of paths in a tree T .
The graphs Vpt(P),Ept(P) and Enpt(P) are graphs such that V (Enpt(P)) =
V (Ept(P)) = V (Vpt(P)) = {p|Pp ∈ P)}. Given two distinct paths Pp, Pq ∈ P ,
{p, q} is an edge of Enpt(P) if Pp ∼ Pq, and {p, q} is an edge of Ept(P) (resp.
Vpt(P)) if Pp and Pq have a common edge (resp. vertex) in T . It follows that:

Remark 1. E(Enpt(P)) ⊆ E(Ept(P)) ⊆ E(Vpt(P)).

Two graphs G and G′ such that V (G) = V (G′) and E(G′) ⊆ E(G) are termed a
pair (of graphs) denoted as (G,G′). If Ept(P) = G (resp. Enpt(P) = G) we say
that 〈T,P〉 is an EPT (resp. ENPT) representation for G. If Ept(P) = G and
Enpt(P) = G′ we say that 〈T,P〉 is a representation for the pair (G,G′). Given a
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pair (G,G′) the sub-pair induced by V̄ ⊆ V (G) is the pair (G[V̄ ], G′[V̄ ]). Clearly,
any representation of a pair induces representations for its induced sub-pairs.

Throughout this work, in all figures, the edges of the tree T of a representation
〈T,P〉 are drawn as solid edges whereas the paths on the tree are shown by
dashed edges. Similarly, edges of Enpt(P) are drawn with solid or blue lines
whereas edges in E(Ept(P)) \ E(Enpt(P)) are dashed or red. We sometimes
refer to them as blue and red edges, respectively. For an edge e = {p, q} we use
split(e) as a shorthand for split(Pp, Pq). We note that e is a red edge if and only
if split(e) 
= ∅.
Cycles, Chords, Holes, Outerplanar graphs, Trees: Given a graph G and
a cycle C of it, a chord of C in G is an edge of E(G) \ E(C) connecting two
vertices of V (C). The length of a chord connecting the vertices i,j is the length
of a shortest path between i and j on C. C is a hole (chordless cycle) of G if G
does not contain any chord of C. This is equivalent to saying that the subgraph
G[V (C)] of G induced by the vertices of C is a cycle. For this reason a chordless
cycle is also called an induced cycle.

An outerplanar graph is a planar graph that can be embedded in the plane
such that all its vertices are on the unbounded face of the embedding. An out-
erplanar graph is Hamiltonian if and only if it is biconnected; in this case the
unbounded face forms the unique Hamiltonian cycle. The weak dual graph of a
planar graph G is the graph obtained from its dual graph by removing the vertex
corresponding to the unbounded face of G. The weak dual graph of an outerpla-
nar graph is a forest, and in particular the weak dual graph of a Hamiltonian
outerplanar graph is a tree [4].

2.2 Preliminaries on EPT Graphs

We now present definitions and results from [11]. A pie of a representation 〈T,P〉
of an EPT graph is an induced star K1,k of T with k leaves v0, v1, . . . , vk−1 ∈
V (T ), and k paths P0, P1, . . . Pk−1 ∈ P , such that for every 0 ≤ i ≤ k − 1 both
vi and v(i+1) mod k are vertices of Pi. We term the central vertex of the star

as the center of the pie. It is easy to see that the EPT graph of a pie with
k leaves is the hole Ck on k vertices. Moreover, this is the only possible EPT

representation of Ck when k ≥ 4:

Theorem 1. [11] If an EPT graph contains a hole with k ≥ 4 vertices, then
every representation of it contains a pie with k paths.

Let Pe
def
= {p ∈ P| e ∈ p} be the set of paths in P containing the edge

e. A star K1,3 is termed a claw. For a claw K of a tree T , P [K]
def
=

{p ∈ P| p uses two edges of K}. It is easy to see that both Ept(Pe) and
Ept(P [K]) are cliques. These cliques are termed edge clique and claw clique,
respectively. Moreover, these are the only possible representations of cliques.

Theorem 2. [11] Any maximal clique of an EPT graph with representation
〈T,P〉 corresponds to a subcollection Pe of paths for some edge e of T , or to a
subcollection P [K] of paths for some claw K of T .
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2.3 Some ENPT Graphs

In this section we show that trees, cycles and cliques are ENPT graphs, and
give a complete characterization of the ENPT representations of cliques:

Lemma 1. Every clique K of Enpt(P) corresponds to an edge clique of
Ept(P), such that the union of the paths representing K is a path.

A direct consequence of Lemma 1 is that the maximum clique problem in
ENPT graphs can be solved in polynomial time. As there are at most O(V (T )3)
maximal cliques in G, a maximum clique can be found using a clique enumeration
algorithm, e.g. [16].

Lemma 2. Every tree is an ENPT graph.

Let T be a tree with k leaves and π = (π0, . . . , πk−1) a cyclic permutation
of the leaves. The tour (T, π) is the following set of 2k paths: (T, π) contains
k long paths, each of which connecting two consecutive leaves πi, πi+1 mod k.
(T, π) contains k short paths, each of which connecting a leaf πi and its unique
neighbor in T (see Figure 1-c). Note that ENPT((T, π)) is a cycle.

P2

P3

P4

P5

P6

P7

P8

P9

P10

P1

P2

P3

P5

P6

P7

P8

P9

P10

P1'
P1''

c) d)

P0
P1

P2

P3P4

b)

P0 P1

P3
a)

P4P2

Fig. 1. a) A minimal representation of C4 b) A minimal representation of C5 c) A tour
representation of the even hole C10, d) A representation of the odd hole C11

A planar embedding of a tour is a planar embedding of the underlying tree such
that any two paths of the tour do not cross each other. A tour is planar if there
exists a planar embedding of it. The tour in Figure 1-c is a planar embedding
of a tour. Note that a tour (T, π) is planar if and only if π corresponds to the
order in which the leaves are encountered by some DFS traversal of T .

Lemma 3. Every cycle Ck is an ENPT graph.

Proof. C3 = K3 is an ENPT graph by Lemma 1. As for C4 and C5, possible
ENPT representations are shown in Figure 1-(a,b), respectively. Any even hole
C2k, (k ≥ 3) is an ENPT graph. Indeed, for any tree T with k leaves, and a cyclic
permutation π of its leaves, the tour (T, π) constitutes an ENPT representation
of C2k. Any odd hole C2k+1, (k ≥ 3) is an ENPT graph. Let T be a tree with
k leaves. Split any long path of some tour (T, π) into two intersecting sub-paths
such that no chord is created (if necessary subdivide an edge of the tree into two
edges) (see Figure 1-d). The set of 2k+ 1 paths obtained in this way constitutes
an ENPT representation for C2k+1. ��
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3 Representations of EPT, ENPT Pairs: Basic Properties

In this section we develop the basic tools towards our goal of characterizing
representations of EPT,ENPT pairs. We define an equivalence relation and a
partial order on representations. In this work, we focus on finding representations
that are minimal with respect to this partial order. We define the contraction
operation on pairs, and the union operation on representations. The contraction
operation is a restricted variant of graph contraction operation that operates on
both graphs of a pair. The union operation is the operation of replacing two
paths by their union whenever possible.

Equivalent and Minimal Representations: We say that the representations
〈T1,P1〉 and 〈T2,P2〉 are equivalent, and denote it by 〈T1,P1〉 � 〈T2,P2〉, if
their corresponding EPT and ENPT graphs are isomorphic under the same
isomorphism (in other words, if they constitute representations of the same pair
of graphs (G,G′)).

We write 〈T2,P2〉 � 〈T2,P2〉 if 〈T2,P2〉 can be obtained from 〈T1,P1〉 by suc-
cessive application of (one of) the following minifying operations: a) Contraction
of an edge e of T1 (and of all the paths in P1 using e), b) Removal of an initial
edge (tail) of a path in P1. 〈T,P〉 is a minimal representation if it is minimal in
the partial order � restricted to the representations representing the same pair.
Throughout the work we aim at characterizing minimal representations.

EPT Holes: The ENPT graph of a pie is an independent set. Therefore

Remark 2. A hole of size at least 4 of an EPT graph does not contain blue (i.e.
ENPT) edges.

Combining with Theorem 1, we obtain the following characterization of pairs
(Ck, G

′):

– k > 3. In this case Ck is represented by a pie. Therefore G′ is an independent
set. In other words, Ck consists of red edges. We term such a hole a red hole.

– k = 3 and Ck consists of red edges (G′ is an independent set). We term such
a hole a red triangle.

– k = 3 and Ck contains exactly one ENPT (blue) edge (G′ = P1 ∪ P2). We
term such a hole a BRR triangle, and its representation is an edge clique.

– k = 3 and Ck contains two ENPT (blue) edges (G′ = P3). We term such a
hole a BBR triangle, and its representation is an edge clique.

– k = 3 and Ck consists of blue edges (G′ = C3). We term such a hole a blue
triangle.

EPT Contraction: Let 〈T,P〉 be a representation and Pp, Pq ∈ P such that
Pp ∼ Pq. We denote by 〈T,P〉/Pp,Pq

the representation that is obtained from

〈T,P〉 by replacing the two paths Pp, Pq by the path Pp∪Pq , i.e. 〈T,P〉/Pp,Pq

def
=

〈T,P \ {Pp, Pq} ∪ {Pp ∪ Pq}〉. We term this operation a union, and note the
following important property of split vertices with respect to the union operation,
and the following Lemma that it implies.
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Remark 3. For every Pp, Pq, Pr ∈ P such that Pp ∼ Pq, split(Pp ∪ Pq, Pr) =
split(Pp, Pr) ∪ split(Pq, Pr).

Lemma 4. Let 〈T,P〉 be a representation for the pair (G,G′), and let e =
{p, q} ∈ E(G′). Then G/e is an EPT graph. Moreover G/e = Ept(〈T,P〉/Pp,Pq

).

We now extend the definition of the contraction operation to pairs. Based on
Observation 3, the contraction of an ENPT edge does not preserve ENPT edges.
More concretely, let Pp,Pq and Pq′ such that Pp ∼ Pq, Pp ∼ Pq′ and Pq � Pq′ .
Then G′

/p,q is not necessarily isomorphic to Enpt(〈T,P〉/Pp,Pq
) as {q′, p.q} /∈

E(Enpt(〈T,P〉/Pp,Pq
)). Let (G,G′) be a pair and e ∈ E(G′). If for every edge

e′ ∈ E(G′) incident to e, the edge e′′ = e�e′ (forming a triangle together with e

and e′) is not an edge of G then (G,G′)/e
def
= (G/e, G

′
/e), otherwise (G,G′)/e is

undefined. Whenever (G,G′)/e is defined we say that (G,G′) is contractible on

e, or that e is contractible. A pair (G,G′) is contractible if it contains at least one
contractible edge. Clearly, (G,G′) is non-contractible if and only if every edge
of G′ is contained in at least one BBR triangle.

4 Representation of ENPT Holes

The ENPT representations of C3 is characterized by Lemma 1. Therefore we
assume n > 3, which implies that (G,Cn) does not contain blue triangles. More-
over, in this section we confine ourselves to pairs (G,Cn) and representations
〈T,P〉 satisfying the following three assumptions:

(P1): (G,Cn) is not contractible.
(P2): (G,Cn) is (K4, P4)-free, i.e., it does not contain an induced sub-pair iso-

morphic to a (K4, P4).
(P3): Every red triangle of (G,Cn) is a claw clique, i.e. corresponds to a pie of

〈T,P〉.

Assumptions (P1), (P2) are relaxed in Section 5. Note that (P1) and (P2) are
assumptions about the pair (G,C) and (P3) is an assumption about the represen-
tation 〈T,P〉. We say that (P3) holds for a pair (G,C) if it has a representation
〈T,P〉 satisfying (P3).

W.l.o.g. let V (G) = V (Cn) = {0, 1, . . . , n− 1} where the numbering of the
vertices follows their order in C. Arithmetic operations on vertex numbers are
modulo n. The corresponding set of paths is P = {P0, . . . , Pn−1}.

C4 is exceptional because all its representations satisfy assumptions (P1− 3),
but some of our results fail to hold. The following Lemma 5 characterizes the
representations of (G,C4).

Lemma 5. (i) All the representations of (G,C4) satisfy assumptions (P1− 3),
(ii) G is one of the two graphs in Figure 2, and (iii) each one of these two graphs
has a unique minimal representation (also depicted in Figure 2).
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Fig. 2. Two possible ENPT representations of C4 corresponding to different (G,C4)
pairs

Weak Dual Trees: We extend the definition of the weak dual tree of Hamilto-
nian outerplanar graphs to any Hamiltonian graph as follows. Given a pair (G,C)
where C is a Hamiltonian cycle of G, a weak dual tree of (G,C) is the weak dual
treeW(G,C) of an arbitrary Hamiltonian maximal outerplanar subgraphO(G,C)
of G. O(G,C) can be built by starting from C and adding to it arbitrarily chosen
chords from G as long as such chords exists and the resulting graph is planar.

Vertices of W(G,C) correspond to faces of O(G,C), and the faces of O(G,C)
correspond to holes of G. The degree of a vertex of W(G,C) is the number of
red edges in the corresponding face of O(G,C). To emphasize the difference, for
an outerplanar graph G we will refer to the weak dual tree of G, whereas for a
(not necessarily outerplanar) graph G we will refer to a weak dual tree of G.

Edges of W(G,C) correspond to red edges of O(G,C). The degree of a vertex
of W(G,C) is the number of red edges in the corresponding face of O(G,C).
Therefore leaves (resp. intermediate vertices, junctions) of W(G,C) correspond
to BBR triangles (resp. BRR triangles, red holes) of (G,C). |V (G)| = |V (C)| =
|E(C)| = 2�+ i where � is the number of leaves of W(G,C) and i is the number
of its intermediate vertices.

Lemma 6. Let n > 4 and (G,Cn) be a pair satisfying (P1 − 3). Then every
edge of Cn is in exactly one BBR triangle.

Lemma 7. Let (G,C) be a pair satisfying (P2), (P3) and letW(G,C) be a weak
dual tree of (G,C). (i) There is a bijection between the contractible edges of
(G,C) and the intermediate vertices of W(G,C). (ii) The tree obtained from
W(G,C) by smoothing out the intermediate vertex corresponding to a con-
tractible edge e is a weak dual tree of (G,C)/e.

We note that Lemma 6 does not hold for n = 4. However the following corol-
lary of lemmata 6 and 7 holds for every n.

Corollary 1. If (G,C) is a pair satisfying (P1 − 3) with C isomorphic to
Cn, then: (i) W(G,C) does not have intermediate vertices, (ii) n is even and
W(G,C) has n/2 leaves. (iii) W(G,C) is a path if and only if n = 4.

The Minimal Representation: Algorithm 1 gets a pair (G,C) satisfying
assumptions (P1), (P2) where C is a (Hamiltonian) cycle of G, and returns a
planar tour that is the unique minimal representation of (G,C) satisfying (P3).
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The algorithm finds a planar tour of a weak dual tree W(G,C), and verifies
that the solution found is valid before returning it, otherwise it returns that
no solution exists. The representation

〈
T̄ , P̄

〉
calculated by the algorithm is a

planar tour, that clearly satisfies (P3). If (G,C) has no representation satisfying
(P3), then the algorithm detects this at line 10 and returns correctly that there
is no solution. Therefore, we assume that (G,C) has at least one representation
satisfying (P3). The correctness is implied by the following lemma.

Algorithm 1. BuildPlanarTour(G,C)

Require: |V (G)| ≥ 5, (G,C) satisfies (P1), (P2)
1: T̄ ← W(G,C). � Corresponding to O(G,C)

Build the planar tour:
2: Let {v0, v1, . . . , vk−1} be the leaves of T̄ ordered by the DFS traversal of T̄
3: corresponding to the planar embedding suggested by O(G,C).
4: Let Li = pT̄ (vi, vi+1 mod k

)
5: Let Si be the path of length 1 starting at vi.
6: P̄L ← {Li| 0 ≤ i ≤ n− 1}, P̄S ← {Si| 0 ≤ i ≤ n− 1}.

7: Let P̄i =

{
Li/2 if i is even
S�i/2� otherwise

8: P̄ ←
{
P̄i| 0 ≤ i ≤ 2n− 1

}
� = P̄L ∪ P̄S

9:
10: if Ept(P̄) = G then return

〈
T̄ , P̄

〉
11: else return ”NO SOLUTION”
12: end if

Lemma 8. Let (G,C) be a pair satisfying (P1 − 3), 〈T,P〉 a representation of
(G,C) satisfying (P3) and

〈
T̄ , P̄

〉
the representation returned by the algorithm.

Then
〈
T̄ , P̄

〉 ∼= 〈T,P〉 and
〈
T̄ , P̄

〉
� 〈T,P〉.

Sketch of proof: For a representation 〈T,P〉 of (G,C) that satisfies (P3) we
define a mapping f : V (T̄ ) �→ V (T ) that maps junctions to junctions. The basic
property of this mapping is that for a given vertex u of W(G,C), and every
vertex i on the corresponding face of O(G,C), the vertex f(u) is on the path Pi.

A junction u of T̄ (= W(G,C)) corresponds to a face of O(G,C) which in turn
corresponds to a hole of G corresponding to a pie of 〈T,P〉. f(u) is the center of
this pie. A leaf v of T̄ is adjacent to a junction u. v corresponds to a BBR triangle
{i− 1, i, i + 1} of O(G,C). Then {i− 1, i + 1} is a red edge of G belonging to
the face in O(G,C) corresponding to a pie centered at f(u). Therefore Pi−1 and
Pi+1 are two consecutive paths of this pie, i.e. f(u) ∈ split(Pi−1, Pi+1) and the
paths Pi−1, Pi+1 intersect on some path P of T starting at f(u). The path Pi

satisfies Pi ∼ Pi−1 and Pi ∼ Pi+1, therefore it intersects the path P . f(v) is the
most distant vertex from f(u) on this intersection.

We prove that f preserves the topology of the tree. We then define a
set of paths P∗ of the minimum subtree T ∗ of T containing all the vertices{
f(u)|u ∈ T̄

}
such that 〈T ∗,P∗〉 is equivalent to

〈
T̄ , P̄

〉
and

〈
T̄ , P̄

〉
� 〈T ∗,P∗〉 �

〈T,P〉. ��
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We are now ready to prove our main result

Theorem 3. If n > 4 the following statements are equivalent:
(i) (G,Cn) satisfies assumptions (P1− 3).
(ii) (G,Cn) has a unique minimal representation satisfying (P3) which is a pla-
nar tour of a weak dual tree of G.
(iii) G is Hamiltonian outerplanar and every face adjacent to the unbounded face
F is a triangle having two edges in common with F , (i.e. a BBR triangle).

Proof. (i)⇒ (ii) Implied by Lemma 8.
(ii) ⇒ (iii) Consider a planar tour representation 〈T,P〉. We show that EPT(P)
is a Hamiltonian outerplanar graph. As P is a tour, ENPT(P) is a ring, therefore
EPT(P) is Hamiltonian. It is not hard to prove that no chords of this cycle are
crossing.

(iii) ⇒ (i) Assume that G is outerplanar with faces adjacent to the unbounded
face being BBR triangles. Consequently G is K4-free, thus satisfies (P2). More-
over every edge of C is in (exactly) one BBR triangle, therefore (P1) holds. The
planar tour of the weak dual tree of G is a representation of (G,C). This rep-
resentation satisfies (P3) because every edge clique of size 3 contains one short
path whose incident edges are blue. ��

5 Extensions

The details of the results presented in this section are given in [3]. When we
relax assumption (P1) then the unique minimal representation can be obtained
by slightly modifying the planar tour as follows. Let us call breaking apart the
inverse of a sequence of union operations that create one path. A broken tour is
a representation obtained by breaking apart long paths of a tour.

Theorem 4. [3] Let (G,C) be a pair satisfying (P2), (P3). The unique min-
imal representation 〈T ′,P ′〉 of (G,C) satisfying (P3) is a broken planar tour.
Moreover 〈T ′,P ′〉 can be calculated in polynomial-time.

We further relax assumption (P2) and we replace all sub-pairs (K4, P4) by
BBR triangles. The unique minimal representation of the modified pair is a
broken planar tour by Theorem 4. We replace the short paths (corresponding to
the inserted BBR triangles) by two paths in an appropriate way. We call such a
representation a broken planar tour with cherries.

Theorem 5. [3] The minimum representation 〈T,P〉 satisfying (P3) of a pair
(G,C) is an broken planar tour with cherries. Moreover 〈T ′,P ′〉 can be calculated
in polynomial-time.

Generalization of the results to representations that do not satisfy assumption
(P3) is work in progress. Note that if we allow red edge cliques in the repre-
sentation 〈T,P〉 then 〈T,P〉 is not necessarily a planar tour, as any tour is a
representation of a hole.
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Another direction of research would be to investigate the relation of the class of
ENPTgraphs with other graph classes, in particular withEPT.ENPT\EPT 
= ∅
because the wheel graph W5,1 = C5 + K1 is in ENPT \ EPT. In [11] graphs in
VPT∩EPTare characterized. The characterization of the graphs inEPT∩ENPT

is an interesting research topic. Lastly, decision/optimization problems restricted
toENPTgraphs, such as minimum vertex coloring, maximum stable set, and hard-
ness of recognition of ENPT graphs seem to be major problems to investigate.

References

1. Biedl, T.C., Stern, M.: On edge-intersection graphs of k-bend paths in grids. Dis-
crete Mathematics & Theoretical Computer Science 12(1), 1–12 (2010)

2. Boyacı, A., Ekim, T., Shalom, M., Zaks, S.: Graphs of Edge-Intersecting Non-
Splitting Paths in a Tree: Towards Hole Representations-Part I. arXiv:1309.2898
(2013)

3. Boyacı, A., Ekim, T., Shalom, M., Zaks, S.: Graphs of Edge-Intersecting Non-
Splitting Paths in a Tree: Towards Hole Representations-Part II. arXiv:1309.6471
(2013)

4. Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri
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Hajo Broersma1, Jǐŕı Fiala2,��, Petr A. Golovach3, Tomáš Kaiser4,���,
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kaisert@kma.zcu.cz

5 School of Engineering and Computing Sciences, Durham University
daniel.paulusma@durham.ac.uk

6 Department of Computer Science, University of Oregon, Eugene
andrzej@cs.uoregon.edu

Abstract. We show that for all k ≤ −1 an interval graph is −(k + 1)-
Hamilton-connected if and only if its scattering number is at most k.
We also give an O(n +m) time algorithm for computing the scattering
number of an interval graph with n vertices and m edges, which improves
the O(n3) time bound of Kratsch, Kloks and Müller. As a consequence
of our two results the maximum k for which an interval graph is k-
Hamilton-connected can be computed in O(n+m) time.

1 Introduction

The Hamilton Cycle problem is that of testing whether a given graph has
a Hamilton cycle, i.e., a cycle passing through all the vertices. This problem is
one of the most notorious NP-complete problems within Theoretical Computer
Science and remains NP-complete on many graph classes. In contrast, for inter-
val graphs, Keil [19] showed in 1985 that Hamilton Cycle can be solved in
O(n+m) time, thereby strengthening an earlier result of Bertossi [4] for proper
interval graphs. Bertossi and Bonucelli [5] proved that Hamilton Cycle is
NP-complete for undirected path graphs, double interval graphs and rectangle
graphs, all three of which are classes of intersection graphs that contain the class
of interval graphs. We examine whether the linear-time result of Keil [19] can be
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strengthened on interval graphs to hold for other connectivity properties, which
are NP-complete to verify in general.

1.1 Terminology

We only consider undirected finite graphs with no self-loops and no multiple
edges. Throughout the paper we let n and m denote the number of vertices and
edges, respectively, of the input graph.

Let G = (V,E) be a graph. If G has a Hamilton cycle, i.e., a cycle contain-
ing all the vertices of G, then G is hamiltonian. Recall that the correspond-
ing NP-complete decision problem is called Hamilton Cycle. If G contains a
Hamilton path, i.e., a path containing all the vertices of G, then G is traceable.
In this case, the corresponding decision problem is called the Hamilton Path

problem, which is also well known to be NP-complete (cf. [15]). The problems
1-Hamilton Path and 2-Hamilton Path are those of testing whether a given
graph has a Hamilton path that starts in some given vertex u or that is between
two given vertices u and v, respectively. Both problems are NP-complete by a
straightforward reduction from Hamilton Path. The Longest Path problem
is to compute the maximum length of a path in a given graph. This problem is
NP-hard by a reduction from Hamilton Path as well.

Let G = (V,E) be a graph. If for each two distinct vertices s, t ∈ V there
exists a Hamilton path with end-vertices s and t, then G is Hamilton-connected .
If G−S is Hamilton-connected for every set S ⊂ V with |S| ≤ k for some integer
k ≥ 0, then G is k-Hamilton-connected . Note that a graph is Hamilton-connected
if and only if it is 0-Hamilton-connected. The Hamilton Connectivity prob-
lem is that of computing the maximum value of k for which a given graph is
k-Hamilton-connected. Dean [12] showed that already deciding whether k = 0 is
NP-complete. Kužel, Ryjáček and Vrána [21] proved this for k = 1. A straight-
forward generalization of the latter result yields the same for any integer k ≥ 1.
As an aside, the Hamilton Connectivity problem has recently been studied
by Kužel, Ryjáček and Vrána [21], who showed that NP-completeness of the case
k = 1 for line graphs would disprove the conjecture of Thomassen that every
4-connected line graph is hamiltonian, unless P = NP.

A path cover of a graph G is a set of mutually vertex-disjoint paths P1, . . . , Pk

with V (P1)∪· · ·∪V (Pk) = V (G). The size of a smallest path cover is denoted by
π(G). The Path Cover problem is to compute this number, whereas the 1-Path
Cover problem is to compute the size of a smallest path cover that contains a
path in which some given vertex u is an end-vertex. Because a Hamilton path of
a graph is a path cover of size 1, Path Cover and 1-Path Cover are NP-hard
via a reduction from Hamilton Path and 1-Hamilton Path, respectively.

We denote the number of connected components of a graph G = (V,E) by
c(G). A subset S ⊂ V is a vertex cut of G if c(G − S) ≥ 2, and G is called
k-connected if the size of a smallest vertex cut of G is at least k. We say that G
is t-tough if |S| ≥ t · c(G−S) for every vertex cut S of G. The toughness τ(G) of

a graph G = (V,E) was defined by Chvátal [10] as τ(G) = min
{ |S|
c(G−S) : S ⊂
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V and c(G − S) ≥ 2
}

, where we set τ(G) = ∞ if G is a complete graph. Note
that τ(G) ≥ 1 if G is hamiltonian.

The scattering number of a graph G = (V,E) was defined by Jung [18] as
sc(G) = max{c(G − S) − |S| : S ⊂ V and c(G − S) ≥ 2}, where we set
sc(G) = −∞ if G is a complete graph. We call a set S on which sc(G) is attained a
scattering set. Note that sc(G) ≤ 0 if G is hamiltonian. Shih, Chern and Hsu [25]
show that sc(G) ≤ π(G) for all graphs G. Hence, sc(G) ≤ 1 if G is traceable. The
Scattering Number problem is to compute sc(G) for a graph G.

A set of p internally vertex-disjoint paths P1, . . . , Pp, all of which have the
same end-vertices u and v of a graph G, is called a stave or p-stave of G, which
is spanning if V (P1)∪· · ·∪V (Pp) = V (G). Given an integer p ≥ 1 and two vertices
u and v of a general input graph G, deciding whether there exists a spanning p-
stave between u and v is clearly an NP-complete problem: for p = 1 the problem
is equivalent to 2-Hamilton Path; for p = 2 the problem is equivalent to the
NP-complete problem of deciding whether a graph is hamiltonian; for p ≥ 3,
the NP-completeness follows easily by induction and by considering the graph
obtained after adding one vertex adjacent to u and v. We call a spanning stave
between two vertices u and v of a graph optimal if it is a p-stave and there does
not exist a spanning (p + 1)-stave between u and v.

A graph G is an interval graph if it is the intersection graph of a set of closed
intervals on the real line, i.e., the vertices of G correspond to the intervals and
two vertices are adjacent in G if and only if their intervals have at least one point
in common. An interval graph is proper if it has a closed interval representation
in which no interval is properly contained in some other interval.

1.2 Known Results

We first discuss the results on testing hamiltonicity properties for proper interval
graphs. Besides giving a linear-time algorithm for solving Hamilton Cycle on
proper interval graphs, Bertossi [4] also showed that a proper interval graph is
traceable if and only if it is connected. His work was extended by Chen, Chang
and Chang [9] who showed that a proper interval graph is hamiltonian if and
only if it is 2-connected, and that a proper interval graph is Hamilton-connected
if and only if it is 3-connected. In addition, Chen and Chang [8] showed that a
proper interval graph has scattering number at most 2 − k if and only if it is
k-connected.

Below we survey the results on testing hamiltonicity properties for interval
graphs that appeared after Keil [19] solved the Hamilton Cycle problem on
interval graphs.

Testing for Hamilton cycles and Hamilton paths. The O(n + m) time algorithm
of Keil [19] makes use of an interval representation. One can find such a rep-
resentation by executing the O(n + m) time interval recognition algorithm of
Booth and Lueker [6]. If an interval representation is already given, Manacher,
Mankus and Smith [24] showed that Hamilton Cycle and Hamilton Path

can be solved in O(n log n) time. In the same paper, they ask whether the time
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bound for these two problems can be improved to O(n) time if a so-called sorted
interval representation is given. Chang, Peng and Liaw [7] answered this question
in the affirmative. They showed that this even holds for Path Cover.

When no Hamilton path exists. In this case, Longest Path and Path Cover

are natural problems to consider. Ioannidou, Mertzios and Nikolopoulos [17] gave
an O(n4) algorithm for solving Longest Path on interval graphs. Arikati and
Pandu Rangan [1] and also Damaschke [11] showed that Path Cover can be
solved in O(n+m) time on interval graphs. Damaschke [11] posed the complex-
ity status of 1-Hamilton Path and 2-Hamilton Path on interval graphs as
open questions. The latter question is still open, but Asdre and Nikolopoulos [3]
answered the former question by presenting an O(n3) time algorithm that solves
1-Path Cover, and hence 1-Hamilton Path. Li and Wu [22] announced an
O(n+m) time algorithm for 1-Path Cover on interval graphs. Deogun, Kratsch
and Steiner [13] show that for all k ≥ 1 any cocomparability graph, and hence
also any interval graph, has a path cover of size at most k if and only if its
scattering number is at most k. 1 They also prove that a cocomparability graph
G is hamiltonian if and only if sc(G) ≤ 0. Recall that the latter condition is
equivalent to τ(G) ≥ 1. Hung and Chang [16] gave an O(n +m) time algorithm
that finds a scattering set of an interval graph G with sc(G) ≥ 0.

1.3 Our Results

When a Hamilton path does exist. In this case, Hamilton Connectivity is
a natural problem to consider. However, the results of Deogun, Kratsch and
Steiner [13] suggest that trying to characterize k-Hamilton-connectivity in terms
of the scattering number of an interval graph may be more appropriate than
doing this in terms of its toughness. We confirm this by showing that for all
k ≥ 0 an interval graph is k-Hamilton-connected if and only if its scattering
number is at most −(k + 1). Together with the results of Deogun, Kratsch and
Steiner [13] this leads to the following theorem.

Theorem 1. Let G be an interval graph. Then sc(G) ≤ k if and only if

(i) G has a path cover of size at most k when k ≥ 1
(ii) G has a Hamilton cycle when k = 0
(iii) G is −(k + 1)-Hamilton-connected when k ≤ −1.

Moreover, we give an O(n+m) time algorithm for solving Scattering Number

that also produces a scattering set. This improves the O(n3) time bound of a
previous algorithm due to Kratsch, Kloks and Müller [20]. Combining this result
with Theorem 1 yields that Hamilton Connectivity can be solved in O(n+m)
time on interval graphs. For proper interval graphs we combine Theorem 1 with
the result of Chen and Chang [8] to state that for all k ≥ 0, a proper interval
graph is k-Hamilton-connected if and only if it is (k + 3)-connected.

1 This has also been shown by Lehel in an unpublished manuscript [23].
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Damaschke’s algorithm [11] for solving Path Cover on interval graphs, which
is based on the approach of Keil [19], actually solves the following problem in
O(n + m) time: given an interval graph G and an integer p, does G have a
spanning p-stave between the vertex u1 corresponding to the leftmost interval of
an interval model of G and the vertex un corresponding to the rightmost one? We
extend Damaschke’s algorithm in Section 2 to an O(n+m) time algorithm that
takes as input only an interval graph G and finds an optimal stave of G between
u1 and un, unless it detects that it is not hamiltonian. Hence, sc(G) ≥ 1 as shown
by Deogun, Kratsch and Steiner [13]. Therefore, the O(n + m) time algorithm
by Hung and Chang [16] for computing a scattering set may be applied. If there
is an optimal stave between u1 and un, we show how this enables us to compute
a scattering set of G in O(n + m) time. We then conclude that G contains a
spanning p-stave between u1 and un if and only if sc(G) ≤ 2− p.

In Section 3 we prove Theorem 1 (iii), i.e., the case when k ≤ −1. In particular,
for proving the subcase k = −1, we show that an interval graph G is Hamilton-
connected if it contains a spanning 3-stave between the vertex corresponding to
the leftmost interval of an interval model of G and the vertex corresponding to
the rightmost one.

2 Spanning Staves and the Scattering Number

In order to present our algorithm we start by giving the necessary terminology
and notations.

A set D ⊆ V dominates a graph G = (V,E) if each vertex of G belongs to D
or has a neighbor in D. We will usually denote a path in a graph by its sequence
of distinct vertices such that consecutive vertices are adjacent. If P = u1 . . . un is
a path, then we denote its reverse by P−1 = un . . . u1. We may concatenate two
paths P and P ′ whenever they are vertex-disjoint except for the last vertex of P
coinciding with the first vertex of P ′. The resulting path is then denoted by P ◦P ′.

A clique path of an interval graphGwith vertices u1, . . . , un is a sequenceC1, . . . ,
Cs of all maximal cliques of G, such that each edge of G is present in some clique
Ci and each vertex of G appears in consecutive cliques only. This yields a specific
interval model forG that we will use throughout the remainder of this paper: a ver-
tex ui ofG is represented by the interval Iui = [�i, ri], where �i = min{j : ui ∈ Cj}
and ri = max{j : ui ∈ Cj}, which are referred to as the start point and the end
point of ui, respectively. By definition, C1 and Cs are maximal cliques. Hence both
C1 and Cs contain at least one vertex that does not occur in any other clique. We
assume that u1 is such a vertex in C1 and that un is such a vertex in Cs. Note that
Iu1 = [1, 1] and Iun = [s, s] are single points.

Damaschke made the useful observation that any Hamilton path in an interval
graph can be reordered into a monotone one, in the following sense.

Lemma 1 ([11]). If the interval graph G contains a Hamilton path, then it
contains a Hamilton path from u1 to un.

We use Lemma 1 to rearrange certain path systems in G into a single path
as follows. Let P be a path between u1 and un and let Q = (Q1, . . . , Qk) be a
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collection of paths, each of which contains u1 or un as an end-vertex. Further-
more, P and all the paths of Q are assumed to be vertex-disjoint except for
possible intersections at u1 or un. Consider the path Q1. By symmetry, it may
be assumed to contain u1. We apply Lemma 1 to P ◦ (Q1 − un) and obtain a
path P ′ between u1 and un containing all the vertices of P ∪ Q1. Proceeding
in a similar way for the paths Q2, . . . , Qk, we obtain a path between u1 and
un on the same vertex set as P ∪

⋃k
j=1 Qj . We denote the resulting path by

merge(P,Q1, . . . , Qk) or simply by merge(P,Q).
Let G be an interval graph with all the notation as introduced above. In

particular, the vertices of G are u1, . . . , un, we consider a clique path C1, . . . , Cs,
and the start point and the end point of each ui are �i = min{j : ui ∈ Cj} and
ri = max{j : ui ∈ Cj}, respectively, where Iu1 = [1, 1] and Iun = [s, s]. We can
obtain this representation of G by first executing the O(n+m) time recognition
algorithm of interval graphs due to Booth and Lueker [6] as their algorithm also
produces a clique path C1, . . . , Cs for input interval graphs.

Algorithm 1 is our O(n + m) time algorithm for finding an optimal spanning
stave between u1 and un if it exists. It gradually builds up a set P of internally
disjoint paths starting at u1 and passing through vertices of Ct \ Ct+1 before
moving to Ct ∩ Ct+1 for t = 1, . . . , s − 1. It is convenient to consider all these
paths ordered from u1 to their (temporary) end-vertices that we call terminals ,
and to use the terms predecessor, successor, and descendant of a fixed vertex
v in one of the paths with the usual meaning of a vertex immediately before,
immediately after, and somewhere after v in one of these paths, respectively.

We note that the path system P provided by Algorithm 1 is a valid stave. A
routine check confirms that the following loop invariant holds at line 6: the last
vertices of paths from P all belongs to the clique Ct. This is guaranteed by the
computations at lines 10–18. At line 20 it also holds that all vertices of Ct \Ct+1

appear in the current P ∪ Q, as they have been included at line 8. When the
loop terminates, the remaining vertices are incorporated at line 22. Thus the
resulting path system P is a spanning stave.

In Theorem 2 we show that no spanning stave may consist of more than
2− sc(G) paths. On the other hand, we will also show that the k-stave found by
Algorithm 1 can be supplied with a scattering set witnessing that k ≥ 2− sc(G).
In other words this is an optimal scattering set whose existence also proves the
optimality of the spanning stave. For this goal, we first develop some auxiliary
terminology related to our algorithm.

We say that a vertex v has been added to a path, if, at some point in the
execution of Algorithm 1, some path R ∈ P such that v /∈ V (R) has been ex-
tended to a longer path containing v (and possibly some other new vertices). If
ui has been processed by the algorithm and added to a path at lines 8 or 11
of Algorithm 1, we say that ui has been activated at time ai, and we assign ai
the current value of the variable t. Thus, we think of time steps t = 1, . . . , t = s
during the execution of the algorithm. When at the same or a later stage a
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Input: A clique-path C1, . . . , Cs in an interval graph G.
Output: An optimal spanning stave P between u1 and un, if it exists.

1 begin
2 let p = deg(u1);
3 let Ri = u1 for all i = 1, . . . , p;
4 let P = {R1, . . . , Rp};
5 let Q = ∅;
6 for t := 1 to s− 1 do
7 choose a P ∈ P whose terminal has the smallest end point among all

terminals;
8 if Ct \ (Ct+1 ∪

⋃
(P ∪Q)) �= ∅ then extend P by attaching vertices of

Ct \ (Ct+1 ∪
⋃
(P ∪Q)) in an arbitrary order

9 for every path R ∈ P do
10 if the terminal of R is not in Ct+1 then
11 try to extend R by a new vertex u from (Ct ∩ Ct+1) \

⋃
(P ∪Q)

with the smallest end point;
12 if such u does not exist then
13 remove R from P ;
14 insert R into Q;
15 decrement p;
16 if p = 0 then report that G has no spanning 1-stave

between u1 and un and quit
17 end

18 end

19 end

20 end
21 choose any P ∈ P ;
22 extend P by attaching vertices of Cs \

⋃
(P ∪Q) in an arbitrary order;

23 let P = merge(P,Q);
24 for every path R ∈ P \ P do extend R by un;
25 report the optimal spanning p-stave P .

26 end
Algorithm 1. Finding an optimal spanning stave

vertex uj has been added as a successor of ui to a path, we say that ui has been
deactivated at time di, and assign di = aj. Hence, as soon as ai and di have
assigned values, we have �i ≤ ai ≤ di ≤ ri. Furthermore, any of the implied
inequalities holds whenever both of its sides are defined. Note that any of these
inequalities may be an equality; in particular, a vertex can be activated and
deactivated at the same time.

If the involved parameters have assigned values, we consider the open (time)
intervals (�i, ai), (ai, di) and (di, ri), and we say that ui is free during (�i, ai) if
this interval is nonempty, active during (ai, di) if this interval is nonempty, and
depleted during (di, ri) if this interval is nonempty. In particular, note that the
vertices that are added to a path at line 8 (if any) are from Ct \ Ct+1, so they
satisfy ri = t and ai = t. Such vertices will not be active or depleted during any
(nonempty) time interval, but they are free during the time interval (�i, ri) if
this interval is nonempty.
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For 1 ≤ j ≤ k ≤ s, we define Cj,k =
(⋃k

i=j Ci

)
.

The following lemma is crucial. (Its proof is omitted due to space restrictions.)

Lemma 2. Suppose that Algorithm 1 terminates at line 16 or finishes an iter-
ation of the loop at lines 6–20. Let the current value of the variable t be also
denoted by t. If there is at least one depleted vertex during the interval (t, t+ 1),
then there exists an integer t′ < t with the following properties:

(i) Ct′+1,t \ (Ct′ ∪ Ct+1) 
= ∅,
(ii) a unique vertex ui ∈ Ct′ ∩Ct+1 is active during (t′, t′ +1) and is depleted

during (t, t + 1),
(iii) all vertices that are active during (t, t+1) are also active during (t′, t′+1),

with the only possible exception of the last descendant of ui (which we
denote by v) that can be free during (t′, t′ + 1),

(iv) all vertices that are depleted during (t, t + 1) and distinct from ui are
also depleted during (t′, t′ + 1),

(v) all vertices that are active during (t′, t′+1) are also active during (t, t+1),
with the only exception of ui, and

(vi) all vertices that are free during (t′, t′ + 1) are also free during (t, t + 1),
with the only possible exception of v if it is active during (t, t + 1).

Now we are ready to state and prove the main structural result.

Theorem 2. An interval non-complete graph G contains a spanning p-stave
between u1 and un if and only if sc(G) ≤ 2− p.

Proof. Let us first assume that P = (R1 . . . , Rp) is a spanning p-stave between
u1 and un. If G is complete, then the claim is trivial. Otherwise, let S ⊂ V (G) be
a scattering set. We claim that u1, un /∈ S. Suppose the contrary. Since the vertex
u1 is simplicial, i.e. its neighborhood induces a clique, we get that c(G − S) ≤
c(G− (S−{u1})) and therefore c(G−S)− |S| < c(G− (S−{u1}))− |S−{u1}|,
a contradiction with the choice of S. The argument for un is symmetric.

Since each path in P connects u1 and un, the union of intervals corresponding
to the internal vertices of such a path is the interval [1, s]. In other words, the
internal vertices of each path in P dominate G. Hence, the vertex cut S contains
an internal vertex from each path of P . From each path Ri of P , we choose a
vertex si ∈ S and set S′ = {s1, . . . , sp}.

Consider the spanning subgraph G′ of G induced by the edges of P . Observe
that G′ − S′ has two components. If we remove the remaining vertices of S \ S′

one by one, then with each vertex we remove, the number of components of the
remaining graph can increase by at most one as u1, un /∈ S. Hence c(G − S) ≤
c(G′ − S) ≤ 2 + |S| − p and sc(G) ≤ 2 − p, proving the forward implication of
the statement.

For the other direction, let us assume that G does not have a spanning p-
stave between u1 and un. If deg(u1) < p, then let S be the set of neighbors
of u1. Because G is not a complete graph, un /∈ S, i.e., S is a vertex cut and
c(G − S) ≥ 2. Then sc(G) ≥ c(G − S) − |S| ≥ 2 − |S| > 2 − p. Otherwise, if
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deg(u1) ≥ p, then during the execution of Algorithm 1, at some stage the value
set at line 15 becomes smaller than p. Suppose t1 is the value of the variable t
at this moment. We will complete the proof by constructing a scattering set S
and showing that for this set c(G− S)− |S| > 2− p.

We repeatedly use Lemma 2 and find a finite sequence t1, t2, . . . , tk, such that
ti+1 = (ti)

′ as long as there are depleted vertices during (ti, ti + 1) for i < k.
Notice that there are no depleted vertices during (1, 2), i.e., this process stops and

we have no depleted vertices during (tk, tk+1). We choose S =
⋃k

i=1(Cti ∩Cti+1)
and prove that G− S has at least |S| − p + 3 components.

The subgraphs G[C1,tk ]−S and G[Ct1+1,s]−S contain u1 and un, respectively;
in particular, they have at least one component each. By property (i) in Lemma 2,
G[Cti+1+1,ti ] − S has at least one component for each i ∈ {1, . . . , k − 1}. Since
all these components are distinct components of G− S, the graph G− S has at
least k + 1 components.

By properties (ii), (v) and (vi) in Lemma 2, (Cti+1 ∩ Cti+1+1) \ (Cti ∩ Cti+1)
contains only vertices that are depleted during (ti+1, ti+1 + 1) for each i ∈
{1, . . . , k− 1}. Further, Ct1 ∩Ct1+1 has no vertices that are free during (t, t+ 1),
because at least one path is not extendable at time t1. Also this set has at most
p− 1 vertices that are active during (t, t + 1). Hence, the remaining vertices are
depleted. By properties (ii) and (iv) in Lemma 2, for each i ∈ {1, . . . , k − 1},
exactly one vertex that is depleted during (ti, ti+1) has a different status during
(ti+1, ti+1 + 1) and is active. It follows that |S| ≤ (p− 1) + (k − 1) = k + p− 2
as required. ��

Recall that the scattering number can be determined in O(n+m) time by an
algorithm of Hung and Chang [16] if the scattering number is positive. Then, by
analyzing Algorithm 1, we get the following result:

Corollary 1. The scattering number as well as a scattering set of an interval
graph can be computed in O(n + m) time.

The only operation whose time complexity has not been discussed is merge(P,Q)
at line 23. We refer to Damaschke’s proof of Lemma 1 to verify that this can be
implemented in O(n+m) time. Our proof of Theorem 2 provides a construction
of a scattering set that can be straightforwardly implemented in linear time.

3 Hamilton-Connectivity

In this section we prove our contribution to Theorem 1, which is the following.

Theorem 3. For all k ≥ 0, an interval graph G is k-Hamilton-connected if and
only if sc(G) ≤ −(k + 1).

Proof. Let k ≥ 0 and G be an interval graph with leftmost and rightmost vertices
u1 and un as defined before. The statement of Theorem 3 is readily seen to hold
when G is a complete graph. Hence we may assume without loss of generality
that G is not complete.
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First suppose that G is k-Hamilton-connected. Then G has at least k + 3
vertices. We claim that G − R is traceable for every subset R ⊂ V (G) with
|R| ≤ k + 2. In order to see this, suppose that R ⊆ V (G) with |R| ≤ k + 2.
We may assume without loss of generality that |R| = k + 2. Let s and t be two
vertices of R. By definition, G∗ = G − (R \ {s, t}) has a Hamilton path with
end-vertices s and t. Hence G − R = G∗ − {s, t} is traceable. Below we apply
this claim twice.

Because G is not complete, G has a scattering set S. By definition, S is a
vertex cut. Hence S = {s1, . . . , s�} for some � ≥ k + 3, as otherwise G−S would
be traceable, and thus connected, due to our claim. Let T = {s1, . . . , sk+2} and
let U = {sk+3, . . . , s�}. By our claim, G′ = G − T is traceable implying that
sc(G′) ≤ 1 [25]. Because c(G′ − U) = c(G − S) ≥ 2, we find that U is a vertex
cut of G′. We use these two facts to derive that 1 ≥ sc(G′) ≥ c(G′ −U)− |U | =
c(G−T −U)−|T |−|U |+ |T | = c(G−S)−|S|+ |T | = sc(G)+ |T | = sc(G)+k+2,
implying that sc(G) ≤ 1− (k + 2) = −(k + 1), as required.

Now suppose that sc(G) ≤ −(k+1). First let k = 0. By Theorem 2, there exists
a spanning 3-stave P = (P,Q,R) between u1 and un. Let v, w be an arbitrary
pair of vertices of G. We distinguish four cases in order to find a Hamilton path
between v and w.

Case 1: v = u1 and w = un. In this case, merge(P,Q,R) is the desired Hamilton
path.

Case 2: v = u1 and w 
= un. Assume without loss of generality that w ∈ R. We
split R before w into the subpaths R1 and R2, i.e., w becomes the first vertex
of R2 and it does not belong to R1. Then merge(P,Q,R1) ◦ R−1

2 is the desired
path. The case with v 
= u1 and w = un is symmetric.

Case 3: v 
= u1 and w 
= un belong to different paths, say v ∈ Q and w ∈ R.
We split Q after v into Q1 and Q2, and we also split R before w, as above. Then
Q−1

1 ◦merge(P,Q2, R1) ◦R−1
2 is the desired path.

Case 4: v 
= u1 and w 
= un belong to the same path, say Q. Without loss of
generality, assume that both v 
= u1 and w 
= un appear in this order on Q.
We split Q after v and before w into three subpaths Q1, Q2, Q3. If v and w are
consecutive on Q, i.e., when Q2 is empty, then Q−1

1 ◦merge(P,R) ◦Q−1
3 is the

desired path. Otherwise, let z be any vertex on R that is a neighbor of the first
vertex of Q2. Such z exists since the path R dominates G. We split R after z
into R1 and R2. By the choice of z, R1 and Q2 can be combined through z into
a valid path R′ containing exactly the same vertices as R1 and Q2 and starting
at u1. Then we choose Q−1

1 ◦merge(P,R′, R2) ◦Q−1
3 .

Now let k ≥ 1. Let S be a set of vertices with |S| ≤ k. We need to show that G−S
is Hamilton-connected. Let T be a scattering set of G − S and let S∗ = S ∪ T .
Because T is a scattering set of G−S, we find that S∗ is a vertex cut of G. We use
this to derive that sc(G−S) = c(G−S−T )−|T | = c(G−S∗)−|S∗|+|S∗|−|T | ≤
sc(G) + k− 0 ≤ −1. Then, by returning to the case k = 0 with G− S instead of
G, we find that G − S is Hamilton-connected, as required. This completes the
proof of Theorem 3. ��
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4 Future Work

We conclude our paper by posing a number of open problems. We start with
recalling two open problems posed in the literature. First of all, Damaschke’s
question [11] on the complexity status of the 2-Hamilton Path problem is still
open. Our results imply that we may restrict ourselves to interval graphs with
scattering number equal to 0 or 1. This can be seen as follows. Let G be an
interval graph that together with two of its vertices u and v forms an instance of
2-Hamilton Path. We apply Corollary 1 to compute sc(G) in O(n + m) time.
If sc(G) < 0, then G is Hamilton-connected by Theorem 1. Then, by definition,
there exists a Hamilton path between u and v. If sc(G) > 1, then G is not
traceable, also due to Theorem 1. Hence, there exists no Hamilton path between
u and v.

Second, Asdre and Nikolopoulos [3] asked about the complexity status of the
�-Path Cover problem on interval graphs. This problem generalizes 1-Path
Cover and is to determine the size of a smallest path cover of a graph G
subject to the additional condition that every vertex of a given set T of size � is
an end-vertex of a path in the path cover. The same authors show that both �-
Path Cover and 2-Hamilton Path can be solved in O(n+m) time on proper
interval graphs [2].

The Spanning Stave problem is that of computing the minimum value of p
for which a given graph has a spanning p-stave. Because a Hamilton path of a
graph is a spanning 1-stave and Hamilton Path is NP-complete, this problem is
NP-hard. What is the computational complexity of Spanning Stave on interval
graphs?

Kratsch, Kloks and Müller [20] gave an O(n3) time algorithm for solving
Toughness on interval graphs. Is it possible to improve this bound to linear on
interval graphs just as we did for Scattering Number?

Finally, can we extend our O(n + m) time algorithms for Hamilton Con-

nectivity and Scattering Number to superclasses of interval graphs such
as circular-arc graphs and cocomparability graphs? The complexity status of
Hamilton Connectivity is still open for both graph classes, although Hamil-

ton Cycle can be solved in O(n2 logn) time on circular-arc graphs [25] and in
O(n3) time on cocomparability graphs [14]. It is known [20] that Scattering

Number can be solved in O(n4) time on circular-arc graphs and in polynomial
time on cocomparability graphs of bounded dimension.

Acknowledgement. We thank referees for valuable references to related works.
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Abstract. We consider L-graphs, that is contact graphs of axis-aligned L-shapes
in the plane, all with the same rotation. We provide several characterizations of L-
graphs, drawing connections to Schnyder realizers and canonical orders of max-
imally planar graphs. We show that every contact system of L’s can always be
converted to an equivalent one with equilateral L’s. This can be used to show a
stronger version of a result of Thomassen, namely, that every planar graph can be
represented as a contact system of square-based cuboids.

We also study a slightly more restricted version of equilateral L-contact sys-
tems and show that these are equivalent to homothetic triangle contact represen-
tations of maximally planar graphs. We believe that this new interpretation of the
problem might allow for efficient algorithms to find homothetic triangle contact
representations, that do not use Schramm’s monster packing theorem.

1 Introduction

A contact graph is a graph whose vertices are represented by geometric objects (such
as curves, line segments, or polygons), and edges correspond to two objects touching in
some specified fashion. There is a large body of work about representing planar graphs
as contact graphs. An early result is Koebe’s 1936 theorem [16] that all planar graphs
can be represented by touching disks.

In 1990 Schnyder showed that maximally planar graphs contain rich combinatorial
structure [18]. With an angle labeling and a corresponding edge labeling, Schnyder
shows that maximally planar graphs can be decomposed into three edge disjoint span-
ning trees. This combinatorial structure, called Schnyder realizer, can be transformed
into a geometric structure to produce a straight-line crossing-free planar drawing of the
graph with vertex coordinates on the integer grid. While Schnyder realizers were de-
fined for maximally planar graphs [18], the notion generalizes to 3-connected planar
graphs [9]Fusy’s transversal structures [11] for irreducible triangulations of the 4-gon
also provide combinatorial structure that can be used to obtain geometric results. Later,
de Fraysseix et al. [7] show how to use Schnyder realizer to produce a representation of
planar graphs as T-contact graphs (vertices are axis-aligned T’s and edges correspond
to point contact between T’s) and triangle contact graphs.

Recently, a similar combinatorial structure, called edge labeling, was identified for
the class of planar Laman graphs, and this was used to produce a representation of
such graphs as L-contact graphs, with L-shapes in all four rotations [15]. Planar Laman
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A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 139–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



140 S. Chaplick, S.G. Kobourov, and T. Ueckerdt

graphs contain several large classes of planar graphs (e.g., series-parallel graphs, outer-
planar graphs, planar 2-trees) and are also of interest in structural mechanics, chemistry
and physics, due to their connection to rigidity theory [13].

Planar bipartite graphs can be represented by axis-aligned segment contacts [6,17].
Triangle-free planar graphs can be represented via contacts of segments with only
three slopes [5]. They can also be represented by contact axis-aligned line segments,
L-shapes, and Γ -shapes [4].

Planar graphs have also been considered as intersection graphs of geometric objects.
One major result is the proof of Scheinerman’s conjecture that all planar graphs are
intersection graphs of line segments in the plane [3]. Recently the k-bend Vertex inter-
section graphs of Paths in Grids (Bk-VPG)were introduced and it was shown that pla-
nar graphs are B3-VPG [1]. It was recently shown that planar graphs are B2-VPG [4],
where the authors also conjectured that all planar graphs are intersection graphs of one
fixed rotation of axis-aligned L-shapes (a special case of B1-VPG).

In the 3D case Thomassen [20] shows that any planar graph has a proper contact
representation by touching cuboids (axis-alligned boxes). Felsner and Francis [10] show
that any planar graph has a (not necessarily proper) representation by touching cubes.
In a proper contact representation of cuboids contacts must always have non-zero area
and cubes are special cuboids where all sides have the same length. Recently Bremner
et al. [2] described two new proofs of Thomassen’s result: one based on canonical
orders [8] and the other based on Schnyder’s realizers [18].

Our Contributions: In this paper we consider contact graphs of L-shapes in only one
fixed rotation, so-called L-graphs. In Section 2 we briefly review Schnyder realizers, T-
contact representations, triangle contact representations, and canonical orders. In Sec-
tion 3 we characterize L-graphs in terms of canonical orders, Schnyder realizers, and
edge labelings. We also show how to recognize L-graphs in polynomial time. In Sec-
tion 4 we show that every L-representation has an equivalent one with only equilateral
L-shapes. Using this we strengthen the result of Thomassen [20] and Bremner et al. [2],
by showing that every planar graph admits a proper contact representation with square-
based cuboids. Finally, we consider a special class of equilateral L-representations,
drawing connections to homothetic triangle contact representations of maximally planar
graphs and contact representations with cubes.

2 Preliminaries

Schnyder realizers for maximally planar graphs were originally described in 1990 [18]
and have played a central role in numerous problems for planar graphs.

Definition 1 ([18]). Let G = (V,E) be a maximally planar graph with a fixed plane
embedding. Let v1, v2, vn be the outer vertices in clockwise order. A Schnyder realizer
of G is an orientation and coloring of the inner edges of G with colors 1 (red), 2 (blue)
and n (green), such that:

(i) Around every inner vertex v in clockwise order there is one outgoing red edge, a
possibly empty set of incoming green edges, one outgoing blue edge, a possibly
empty set of incoming red edges, one outgoing green edge, a possibly empty set of
incoming blue edges.
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Fig. 1. (a) The Schnyder rules for inner and outer vertices. (b) A maximally planar graph G with
a Schnyder realizer (S1, S2, Sn). (c) A T-contact representation of G w.r.t. (S1, S2, Sn). (d) A
triangle contact representation of G w.r.t. (S1, S2, Sn). (e) A canonical order of G w.r.t. S1, S2.

(ii) All inner edges at outer vertices are incoming and edges at v1 are colored red,
edges at v2 are colored blue, edges at vn are colored green.

Schnyder realizer have several useful properties; see Fig. 1. For example, if S1, S2

and Sn are the sets of red, blue and green edges, then for i = 1, 2, n we have that Si is
a directed tree spanning all inner vertices plus vi, where each edge is oriented towards
vi. This way the orientation of edges can be recovered from their coloring and hence
we denote a Schnyder realizer simply by the triple (S1, S2, Sn). For i = 1, 2, n let S−1

i

be the set Si with the orientation of every edge reversed. It is well-known that for every
Schnyder realizer S1 ∪ S2 ∪ S−1

n is an acyclic set of directed edges.
Schnyder realizers are often used to show that planar graphs admit certain contact

representations. In a T-contact representation of a maximally planar graph G = (V,E)
the vertices are assigned to interior disjoint axis-aligned upside down T-shapes, so that
two T-shapes touch in a point if and only if the corresponding vertices are joined by
an edge in G. For a vertex v ∈ V let Tv be the corresponding T-shape. From every
T-contact representation we get a Schnyder realizer by coloring an edge uv red (respec-
tively blue and green) if the top (respectively left and right) endpoint of Tu is contained
in Tv; see Fig. 1(c).

Similarly to T-contact representations, de Fraysseix et al. [7] consider triangle con-
tact representations. In a triangle contact representation of a maximally planar graph
G = (V,E) the vertices are assigned to interior disjoint triangles, so that two triangles
touch in a point if and only if the corresponding vertices are joined by an edge in G.
We can indeed assume w.l.o.g. all triangles are isosceles with horizontal bases and the
tip above. For a vertex v ∈ V let Δv be the corresponding triangle. We again get a
Schnyder realizer by coloring an edge uv red (respectively blue and green) if the top
(respectively left and right) corner of Δu is contained in Δv; see Fig. 1(d).

Theorem 1 ([7]). Let G be a maximally planar graph with a fixed embedding. Then:

– Every T-contact representation defines a Schnyder realizer and vice versa.
– Every triangle contact representation defines a Schnyder realizer and vice versa.

A homothetic triangle representation is a triangle contact representation in which
every triangle is a translate and/or uniform scaling of a fixed triangle. It has been noticed
by Gonçalves, Lévêque and Pinlou [12], that a result of Schramm [19] implies the
following.
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Theorem 2 ([12]). Every 4-connected maximally planar graph admits a homothetic
triangle representation.

Canonical orders were first introduced by De Fraysseix, Pach and Pollack in 1990 [8].
For maximally planar graphs Schnyder realizers and canonical orders are very closely
related, as shown in Lemma 1 below.

Definition 2 ([8]). Let G = (V,E) be a biconnected planar graph with a fixed embed-
ding and some distinguished outer edge v1v2. A canonical order of G is a permutation
(v1, v2, v3, . . . , vn) of the vertices of G, such that:

(i) For each i ≥ 3 the induced subgraph Gi of G on {v1, . . . , vi} is biconnected, and
the boundary of its outer face is a cycle Ci containing the edge v1v2.

(ii) For each i ≥ 4 the vertex vi lies in the outer face of Gi−1, and its neighbors in
Gi−1 form a subpath of Ci \ v1v2.

The outer edge v1v2 of G is then called the base edge of the canonical order.

Lemma 1. If G is a maximally planar graph with Schnyder realizer (S1, S2, Sn), then
every topological ordering of S1 ∪S2 ∪S−1

n defines a canonical order of G. Moreover,
every canonical order of G is a topological order of S1 ∪ S2 ∪ S−1

n for some Schnyder
realizer (S1, S2, Sn).

We call a canonical order that is a topological order of S1 ∪ S2 ∪ S−1
n a canonical

order w.r.t. S1, S2. See Fig. 1(e) for an example. Note that the same Schnyder realizer
may give rise to several canonical orders as for example swapping the order of v4 and
v5 in Fig. 1(e) results in a different canonical order w.r.t. S1, S2.

Another vertex order that can be defined for any graph is the so-called k-degenerate
order. For an n-vertex graphG and a number k ∈ N (v1, . . . , vn) is a k-degenerate order
of G if for each i = 1, . . . , n the vertex vi has no more than k neighbors in the induced
subgraph Gi−1 of G on {v1, . . . , vi−1}. Moreover, a maximally k-degenerate order of
G further requires vi to have exactly min{i − 1, k} neighbors in Gi. A graph is (max-
imally) k-degenerate if it admits some (maximally) k-degenerate order. A very impor-
tant subclass of maximally k-degenerate graphs are k-trees. A maximally k-degenerate
graphG is a k-tree if in some k-degenerate order of G the neighborhood of vi is a clique
in Gi−1, i = 1, . . . , n. Equivalently, k-trees are exactly the inclusion-maximal graphs
of tree-width k; i.e., adding any edge to a k-tree results in a graph with tree-width k+1.

3 Contact L-Graphs: Characterization and Recognition

An L-contact representation, or L-representation for short, of a graph G = (V,E) is
a set of interior disjoint axis-aligned L-shapes, one for each vertex, such that two L-
shapes touch in a point if and only if the corresponding vertices in G are adjacent.
Unless stated otherwise we allow only one of the four possible rotations of L-shapes
here. An L-representation is degenerate if two endpoints of L-shapes or an endpoint
and a bend coincide, and non-degenerate otherwise. A graph is an L-contact graph or
simply L-graph if it admits an L-representation. Since one can remove any contact in
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Fig. 2. (a) An L-representation with base edge v1v2 and outer staircase S ⊂ Lv1 ∪ Lx1 ∪ Lx2 ∪
Lx3 ∪ Lv2 drawn thick. (b) The corresponding embedded L-graph with the corresponding edge
labeling. (c) A corresponding 2-canonical order of the graph.

an L-representation by shortening one L, L-graphs are closed under taking subgraphs.
Throughout this section we consider maximal L-graphs only, that is, L-graphs (with
n ≥ 2 vertices), that are not proper subgraphs of another L-graph (with n vertices).

For a fixed L-representation we denote the L-shape corresponding to a vertex v by
Lv. The vertex for the L-shape with topmost horizontal leg and the vertex for the L-
shape with rightmost vertical leg is denoted by v1 and v2, respectively. The edge v1v2
is called the base edge of the L-representation. Every L-representation defines a plane
embedding of the underlying L-graph G. Each inner face of G corresponds to a rectilin-
ear polygon whose boundary lies in the union of L-shapes for the vertices of that face.
The L-shapes whose bends lie in at most one such rectilinear polygon correspond to
the outer vertices of G. The maximal rectilinear path S containing all bends of these L-
shapes is called the outer staircase of the L-representation. The L-shapes appear along
S starting with Lv1 and ending with Lv2 in the same order as the outer vertices of G
along the outer face starting with v1 and ending with v2; see Fig. 2.

For a maximally planar graph G and a Schnyder realizer (S1, S2, Sn) of G we define
G \ Sn as the graph (V \ vn, E \ Sn).

Lemma 2. For every maximal L-graph G with base edge v1v2 there is a maximally
planar graph H with a Schnyder realizer (S1, S2, Sn), such that G = H \ Sn.

Proof. We consider any L-representation of G with base edge v1v2. We introduce a
T-shape Tvn whose vertical leg lies to the left of Lv1 and whose horizontal leg lies
below Lv2 . We obtain a T-representation by adding a left leg to every L-shape so that
its endpoint touches some vertical leg but is interior disjoint from any other leg. Let
H be the maximally planar graph with that T-representation and (S1, S2, Sn) be the
corresponding Schnyder realizer. Then G = H \ Sn. ��

Recall from Definition 2 that if (v1, . . . , vn) is a canonical order of some biconnected
graph G, then for every i ∈ {3, . . . , n} the subgraph Gi = G[v1, . . . , vi] is also bicon-
nected, which implies that for each i = 3, . . . , n the vertex vi has degree at least two
in G[v1, . . . , vi]. A 2-canonical order is a canonical order for which each vi has degree
exactly two in Gi. In particular a 2-canonical order is a special 2-degenerate order of a
planar graph that depends on the chosen embedding. Note that there are planar maximal
2-degenerate graphs that admit no 2-canonical order; see Fig. 3(a) and (b). Note also
that the graph in Fig. 3(a) admits a 2-degenerate order in which every vertex is put into
the outer face of the graph induced by vertices of smaller index.
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Fig. 3. (a),(b) Planar maximal 2-degenerate graphs that admit no 2-canonical order. (c) A graph
with a 2-canonical order with base edge e = v1v2.

Lemma 3. If a graph admits a 2-canonical order with base edge v1v2 then it admits
an L-representation with base edge v1v2. Moreover, given a 2-canonical order an L-
representation can be found in linear time.

Proof. We use induction on the number of vertices, where the base case of just two
vertices trivially holds. So let G be a graph on at least three vertices. Assume that G
admits a 2-canonical order and let x be the last vertex in the order. Applying induction
to G\x – a graph with a 2-canonical order in which both neighbors of x lie on the outer
face – we obtain an L-representation of G \ x. The L-shapes for the two neighbors, u
and v, of x appear on the outer staircase S. It is now possible to add an L-shape Lx,
making contact with Lu and Lv, and this way obtain an L-representation of G. ��

For a graph G with a fixed plane embedding and distinguished outer edge v1v2 we
define an edge labeling of G with base edge v1v2 to be an orientation and coloring of
the edges of G different from v1v2 with colors 1 (red) and 2 (blue), such that:

(i) Around every inner vertex v in clockwise order there is one outgoing red edge,
one outgoing blue edge, a possibly empty set of incoming red edges, a possibly
empty set of incoming blue edges.

(ii) All non-base edges at v1 (v2) are incoming at v1 (v2) and colored red (blue).
(iii) Reversing all edges of color 1 gives an acyclic graph; e.g., every monochromatic

path ends at either v1 or v2.

The labeling defined above is a special case of the edge labeling in [15], which charac-
terizes contact L-representations with L-shapes in all four rotations.

Theorem 3. For every graph G with a plane embedding and distinguished outer edge
v1v2 the following are equivalent:

(C1) G admits an L-representation with base edge v1v2.
(C2) G = H\Sn for some maximally planar graphH and Schnyder realizer (S1, S2, Sn).
(C3) G admits an edge labeling with base edge v1v2.
(C4) G admits a 2-canonical order with base edge v1v2.

Proof. (C1) =⇒ (C2): This is Lemma 2.
(C2) =⇒ (C3): Follows immediately from the definition of a Schnyder realizer.
(C3) =⇒ (C4): Consider an orientation and coloring of E(G) \ v1v2 with the above

properties. We do induction on the number of vertices of G. For |V (G)| = 2 there
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is nothing to show. For |V (G)| ≥ 3 consider the path P = x0, x1, . . . , xk, xk+1 on
the outer face of G not containing the edge v1v2, where x0 = v1 and xk+1 = v2.
Since the edges x0x1 and xkxk+1 are oriented towards x0 and xk+1, respectively,
for some i ∈ {1, . . . , k} the edges xi−1xi and xixi+1 are outgoing at xi. Since
every vertex different from v1 and v2 has one outgoing red and one outgoing blue
edge, we find a directed red path from xi to v1 and a directed blue path from xi

to v2. No vertex v 
= xi lies on both of these paths, since otherwise we would
have a directed cycle after reversing all red edges. It follows that xi−1xi is colored
red and xixi+1 is blue. From the local coloring around xi we see that xi has no
incoming edge. Applying induction to G \ xi we obtain a 2-canonical order of
G \ xi and putting xi at the end of this order gives a 2-canonical order of G.

(C4) =⇒ (C1): This is Lemma 3. ��

The remainder of this section deals with the recognition problem of maximal L-
graphs. From Theorem 3, every maximal L-graph is necessarily 2-degenerate and pla-
nar. Moreover, both planarity [14] and 2-degeneracy can be tested in linear time. For
the maximal 2-degeneracy test, we simply iteratively remove a vertex of smallest de-
gree. Clearly, if every vertex removed has degree exactly two, then G is maximal 2-
degenerate. The correctness of this method follows from the fact that no pair of degree
two vertices are adjacent in a maximal 2-degenerate graph. This test is easily imple-
mented in linear time via a pre-processing bucket sort of the vertices by degree and
adjusting the “bucket membership” of each vertex with each vertex deletion. Thus, to
recognize maximal L-graphs we will focus on the planar 2-degenerate graphs.

We now demonstrate a linear time test to determine whether G has a 2-canonical
order with a given base edge e = v1v2.

Lemma 4. Let G be planar 2-degenerate with an edge e = v1v2. For every vertex v of
G, in every 2-degenerate order starting from e, the neighbors of v that precede v are
the same. Let

−→
Ge denote the orientation of G according to the precedence order with

base edge e.

Suppose we are given an edge e = v1v2 and need to determine whether G has a
2-canonical order starting from e. We first construct a 2-degenerate order σ. If no such
order exists, we reject e. Otherwise, by Lemma 4, we use σ to construct

−→
Ge.

We initialize the L-representation L = {Lv1, Lv2} where Lv1 is the “top-most” L-
shape and Lv2 is the “right-most” L-shape. We also initialize the admissible vertices A

as the vertices that could be added next according to
−→
G (i.e., A contains the vertices

adjacent to both v1 and v2).
We now describe the main loop of our algorithm. Consider any admissible vertex

u1 and let x and y be u′
1s neighbors with Lx, Ly ∈ L. Moreover, let u2, ..., uk be the

other admissible vertices adjacent to both x and y. Notice that in order to add every
Lui , we need an appropriate visibility between Lx and Ly in L. However, we delay
testing this until the end of the algorithm to save time. Observe the following properties
of u1, . . . , uk. The L-shapes corresponding to these vertices will be “stacked” on top
of each other. This means that, if e is the base edge of an L-representation of G, no
pair ui, uj can belong to the same connected component of G \ {x, y}. Thus, we let
Hi be the connected component of G \ {x, y} which contains ui. We now consider
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two cases. First, if (wlog) H1 contains v1, then Lu1 must be “lowest” L-shape among
Lu1 , . . . , Luk

in any representation since it requires a path of L-shapes that reaches
Lv1 while avoiding Lx and Ly. In particular, for each i ∈ {2, . . . , k}, we need Gi =
(G[Hi ∪ {x, y}] together with the edge xy) to have an L-representation Li with xy as
the base edge. Moreover, if H1 does not contain v1, we also need such an L1 for G1.
We recursively construct these Li’s then insert them into L. If any recursive call fails,
we know e was not a good base edge for G. If H1 contained v1, we add the an L-
shape for u1 to L, and update the admissible vertices with respect to u1 (note: we don’t
need to update with respect to u2, . . . , uk since we have already processed their entire
connected components). From here we repeat this main loop until we have exhausted
all vertices or we have found a contradiction. After exhausting the vertices we check
whether our constructed representation is correct. This completes the description of the
algorithm and it is easy to see that it runs in polynomial time.

4 Equilateral L-Representations and Related Representations

Every L-representation of G with base edge v1v2 induces an edge labeling of G with
base edge v1v2, by orienting an edge uv from u to v if an endpoint of Lu is contained
in the interior of Lv, and coloring it red (blue) if it is the top (right) endpoint of Lu.
We say that two L-representations are equivalent if they induce the same edge labeling.
An L-shape is equilateral if its horizontal and vertical leg are of the same length. An
equilateral L-representation is one with only equilateral L-shapes.

Theorem 4. Every L-representation has an equivalent equilateral L-representation.

Proof. For a given L-representation with base edge v1v2, consider the induced edge
labeling and fix one corresponding 2-canonical order (v1, v2, . . . , vn). We construct an
equivalent L-representation with equilateral L-shapes along this 2-canonical order, i.e.,
by a variant of the algorithm given in Lemma 3. We maintain the following invariant:

Invariant: There is a line � of slope −1 that intersects every segment of the outer
staircase in an interior point.

In the beginning we fix the line � arbitrarily – say � = {(r, 1 − r) | r ∈ R}. We
keep � fixed throughout the entire construction. In the base case one can easily define
the L-shapes Lv1 and Lv2 so that all four legs intersect � in an interior point – say Lv1

and Lv2 have top endpoint (1, 2) and (3,−1), respectively, and right endpoint (4,−1)
and (5,−3), respectively; see Fig. 4(a). In general we have an L-representation of Gi =
G[v1, . . . , vi] in which the invariant is maintained.

Consider what happens when we insert a new L-shape for vi+1. Let u and v be the
two neighbors of vi+1 in Gi+1. W.l.o.g. u comes before v when going counterclockwise
around the outer face of Gi starting at v1. Let su and sv be the horizontal segment and
vertical segment of the outer staircase which are contained in Lu and Lv, respectively.
Note that by the invariant, if we would choose the points � ∩ su and � ∩ sv as top and
right endpoint of the newly inserted L-shape, then this would be equilateral. However,
we do not insert Lvi+1 exactly there as this would break the invariant. Instead, we insert
a slightly smaller L-shape in such a way that the corresponding two new segments of
the outer staircase intersect � in the interior; see Fig. 4(b). ��
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Fig. 4. (a) The definition of Lv1 and Lv2 . (b) Introducing the L-shape for vi+1 maintaining the in-
variant. (c) A contact L-representation with L-shapes in two different rotations without equivalent
equilateral representation for both L1 and L2.

Fig. 5. An equilateral L-representation requiring an exponential size grid. Notice that D is less
than half the size of A; i.e., this requires a grid with height Ω(2n/6). Special thanks to an anony-
mous referee for this observation.

We remark that the equilateral L-representation constructed in Theorem 4 requires
an exponential size grid. Moreover, one can show that an exponential sized grid is re-
quired for some plane graphs (e.g., see Figure 5). Further we remark that with more
than one of the four possible rotations in an L-representation, it is no longer true that
every L-representation has an equivalent equilateral one. Consider the L-representation
in Fig. 4(c): in every equivalent representation the horizontal leg of L1 is longer than
the horizontal leg of L2 and the vertical leg of L1 is shorter than the vertical leg of L2.
Thus L1 and L2 cannot be both equilateral.

For a maximally planar graph G with Schnyder realizer (S1, S2, Sn) and an inner
vertex v we define σi(v) to be the outgoing neighbor of v in Si, i = 1, 2, n. For conve-
nience, let σn(v1) = σn(v2) = σn(vn) = vn+1 for a dummy vertex vn+1 /∈ V (G).

Definition 3 (cuboid representation). Let G = (V,E) be a maximally planar graph,
(S1, S2, Sn) a Schnyder realizer of G, {Lv | v 
= vn} an L-representation of G \ Sn,
and h(v) a number for every vertex v ∈ V ∪vn+1. For v 
= vn let (xr

v, y
r
v) and (xt

v, y
t
v)

be the right and top endpoint of Lv, respectively. Define an L-shape Lvn with right
endpoint (xr

vn , y
r
vn) := (xt

v2 , y
r
v2) and top endpoint (xt

vn , y
t
vn) := (xt

v1 , y
r
v1). Then for

every v ∈ V its cuboid is defined as:

Qv := [xt
v, x

r
v]× [yrv, y

t
v]× [h(σn(v)), h(v)]

Note that for any v the projection of Qv onto the xy-plane gives a rectangle, two
sides of which form the L-shape Lv. The number h(v) corresponds to the “height”, i.e.,
z-coordinate, of the top side of the cuboid Qv; see Fig. 6. A cuboid representation of
a graph G is a set of interior disjoint cuboids, one for each vertex, so that two cuboids
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intersect exactly if the corresponding vertices are adjacent in G. A cuboid representation
is proper if every non-empty intersection of two cuboids is a 2-dimensional rectangle.

Proposition 1. The cuboids given by Definition 3 form a cuboid representation of G
whenever h(vn+1) < h(vn) and for every inner vertex v of G we have

h(σ1(v)) > h(v) and h(σ2(v)) > h(v) and h(σn(v)) < h(v). (1)

Further, a non-degenerate L-representation implies a proper cuboid representation.

Proof. Note that conditions (1) imply that along the edges of S1∪S2∪S−1
n the h-values

are non-decreasing. It is easy to show that the cuboids for the outer three vertices are
mutually touching with proper side contacts. So let uv be an inner edge of G. First as-
sume v = σi(u), i.e., uv ∈ Si, for some i ∈ {1, 2}. Looking at the L-representation we
see that projecting Qu and Qv onto the xy-plane gives two rectangles with non-empty
intersection or a proper side contact in the non-degenerate case, which is horizontal
if i = 1 and vertical if i = 2. Projecting Qu and Qv onto the z-axis gives intervals
[h(σn(u)), h(u)] and [h(σn(v)), h(v)], respectively. Since there is a directed path from
σn(v) to u in S1 ∪ S2 ∪ S−1

n we get from (1) that h(σn(v)) < h(u) < h(v). Thus Qu

and Qv overlap non-trivially.
Next assume v = σn(u), i.e., uv ∈ Sn. Looking at the L-representation we see

that projecting Qu and Qv onto the xy-plane gives two rectangles that intersect or
overlap non-trivially in the non-degenerate case. Projecting Qu and Qv onto the z-
axis gives intervals [h(σn(u)), h(u)] = [h(v), h(u)] and [h(σn(v)), h(v)], respectively.
Thus Qu ∩Qv 
= ∅ or is a rectangle parallel to the xy-plane in the non-degenerate case.

Finally let u and v be non-adjacent. If the rectangles defined by Lu and Lv do not
overlap, i.e., can be separated by a horizontal or vertical line, then in 3-space Qu and
Qv are separated by a plane parallel to the yz-plane or xz-plane. If the rectangles do
overlap, there is a path on at least two edges in Sn starting and ending in u and v,
respectively. From (1) and the definition of the z-component of cuboids follows that
Qu and Qv can separated by a plane parallel to the xy-plane. ��

Theorem 5. Planar graphs have proper contact representation by square-based cuboids.

Proof. As every planar graph is an induced subgraph of some maximally planar graph
we may assume w.l.o.g. that G = (V,E) is a maximally planar graph. We fix any
Schnyder realizer (S1, S2, Sn) of G, consider any non-degenerate equilateral L-repre-
sentation of G \ Sn, which exists by Theorem 4. Further we let (v1, v2, . . . , vn) be
any canonical order of G w.r.t. S1, S2 and define h(vi) = −i for i = 1, . . . , n and
h(vn+1) = −(n + 1). Clearly, (1) holds for these h-values. Hence by Proposition 1 the
cuboids given by Definition 3 form a proper cuboid representation of G, and since the
L-representation is equilateral every cuboid has a square base. ��

We remark that a square-based cuboid representation can be found efficiently with
an iterative approach, when the L-representation and the cuboids are defined along a
single sweep of the chosen canonical order. This approach is illustrated in Fig. 6.

Next we address the question when the cuboids from Definition 3 are actually cubes.
This is clearly the case exactly if the chosen L-representation is equilateral and for
every vertex v we set h(v) = h(σn(v)) + |Lv|, where |Lv| is the length of a leg of Lv.
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Lv1

Lv2
Lv3

Lv4

Lv5

Lvn

(a)

Qv1

Qv2
Qv3

Qv4

Qv5

(b)

Qv1

Qv2
Qv3

Qv4

Qv5

Qvn

(c)

Fig. 6. (a) An equilateral L-representation of G \ Sn together with an L-shape for the vertex vn.
(b)–(c) The cuboids can be defined along a canonical order w.r.t. S1, S2: The projection of each
Qv onto the xy-plane is a rectangle spanned by Lv . The maximum and minimum z-coordinate
of Qv is given by (the negative of) the index in the canonical order of v and σn(v), respectively.

For a given equilateral L-representation we call this set of h-values the cubic heights.
We remark that in any L-representation we can choose the vertical leg of Lv1 and the
horizontal leg of Lv2 (keeping the rest unchanged), so that Lv1 and Lv2 are equilateral.
The cubic heights clearly satisfy h(σn(v)) < h(v), but in general (1) is not satisfied and
we are not guaranteed by Proposition 1 to obtain a cuboid representation. However, as
we show next we can sometimes choose the equilateral L-representation (and implicitly
the Schnyder realizer) more carefully so that (1) is satisfied for the cubic heights.

Consider a fixed L-representation and let P be the set of all endpoints and bends of
L-shapes. For a vertex v let �v be the line through the top and right endpoint of Lv. A
segment s of an L-shape Lv is a connected component of Lv \ P , i.e., s ⊂ Lv, each
endpoint of s is a point fromP and no further point fromP is contained in s. Let C ⊂ P
be the set of contact points between any two L-shapes. We call an L-representation
Square-L, or SL-representation if for every p ∈ C the vertical segment whose right end
is p and the horizontal segment whose top end is p have the same length; see Fig. 6(a).

Lemma 5. Consider a maximally planar graph G, a Schnyder realizer (S1, S2, Sn),
and an SL-representation of G \ Sn. Then for every v ∈ V (G) the line �v has slope −1
and contains the bends of L-shapes corresponding to vertices w with σn(w) = v.

Proof. Consider any vertex v 
= v1, v2 and the corresponding L-shape Lv. Let Sv be
the staircase that connects the top and right endpoint of Lv and contains the bends of
L-shapes corresponding to vertices w with σn(w) = v. If s1, . . . , s2k are the segments
along Sv , then by assumption s2i−1 and s2i are of the same length, i = 1, . . . , k.
Equivalently, all bends on Sv lie on �v, and �v has slope −1. ��

Corollary 1. Let {Lv | v ∈ V } be an SL-representation. Then it is equilateral and
{Δv := conv(Lv) | v ∈ V } is a homothetic triangle representation of G. Further, the
cubic heights satisfy (1) and Proposition 1 yields a contact cube representation of G.

Not every L-representation has an equivalent SL-representation, since not every pla-
nar graph admits a homothetic triangle representation. But homothetic triangle rep-
resentations exist for 4-connected maximally planar graphs (Theorem 2) and planar
3-trees. Felsner and Francis [10] observed that from Theorem 2 one obtains a cube
representation for every planar graph. However, the only proof of Theorem 2 relies on
Schramm’s result [19], which gives no efficient computation of such representations.
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We believe that our interpretation may help to find homothetic triangle representations
and hence cube representations efficiently.

5 Conclusions and Open Problems

We investigated L-graphs, provided a characterization, showed relations to Schnyder
realizers and canonical orders, and described a recognition algorithm. Moreover, we
showed that every L-representation can be transformed into an equivalent equilateral
one, thus proving that every planar graph admits a proper contact representation with
square-based cuboids, strengthening results by Thomassen [20] and Bremner et al. [2].
Finally, we showed that a more restrictive version of equilateral L-representations is
equivalent to contact representations with homothetic triangles. Many problems remain,
including characterizing contact L-graphs with L’s in two or three rotations, and the
existence of linear time recognition algorithm for L-graphs.
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gestions, and especially S. Felsner, M. Kaufmann, G. Liotta, and T. Mchedlidze.
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Abstract. We study parameterized algorithms and approximation al-
gorithms for the maximum agreement forest problem, which, for two
given leaf-labeled trees, is to find a maximum forest that is a subgraph
of both trees. The problem was motivated by the research in phylo-
genetics. For parameterized algorithms, while the problem is known to
be fixed-parameter tractable for binary trees, it was an open problem
whether the problem is still fixed-parameter tractable for general trees.
We resolve this open problem by developing an O(3kn)-time parame-
terized algorithm for the problem on general trees. Our techniques on
tree structures also lead to a polynomial-time approximation algorithm
of ratio 3 for the problem, giving the first constant-ratio approximation
algorithm for the problem on general trees.

1 Introduction

The evolutionary relationships between a set of species are usually represented
by a phylogenetic tree in which each leaf is labeled by a distinct species. Phy-
logenetic trees can be constructed by different methods, which often lead to
different trees. In order to facilitate the comparison of different phylogenetic
trees, several distance metrics have been proposed for measuring their similarity
[1,7,9,11,12]. In particular, the tree-bisection-and-reconnection (TBR) and the
subtree-prune-and-regraft (SPR) distances [2,10,16] correspond to the size of the
maximum agreement forest (abbr. MAF) on unrooted trees [1] and on rooted
trees [5], respectively.

While most previous work on MAF is restricted to bifurcating (i.e., binary)
trees, the problem and related problems on multifurcating (i.e., general) trees
have drawn attention recently. While soft multifurcations correspond to ambi-
guities during the phylogenetic tree construction process, hard multifurcations
represent simultaneous speciation events [3,15,16].

In this paper, we focus on algorithms for the MAF problem on unrooted
general trees, which corresponds to the TBR distance on general phylogenetic
trees with respect to hard multifurcations [1].

Review on Related Research. The problem to construct an MAF for two
unrooted trees is NP-hard and MAX SNP-hard [1,4].

Approximation algorithms have been studied for the problem, mainly on bi-
nary trees. An approximation algorithm of ratio 3 for the problem on rooted
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c© Springer-Verlag Berlin Heidelberg 2013
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binary trees was claimed by Hein et al. [11], who also claimed that the MAF
problem on rooted binary trees corresponds to the SPR distance. Allen and Steel
[1] showed that the claim in [11] on the relationship between MAF and SPR was
not true, and, on the other hand, proved that the MAF problem on unrooted bi-
nary trees corresponds to the TBR distance. Rodrigues et al. [14] found a subtle
error in [11], showed that the algorithm in [11] has ratio at least 4, and pre-
sented a new approximation algorithm which they claimed has ratio 3. Bonet
et al. [3] provided a counterexample and showed that for the TBR distance, the
algorithm in [11] has approximation ratio at least 5 while the algorithm in [14]
has approximation ratio at least 4. Using very different methods, Chataigner [6]
developed an approximation algorithm of ratio 8 for the TBR distance for two
or more binary trees. Recently, Whidden et al. [16,17] presented a linear-time
approximation algorithm of ratio 3 for the TBR distance on unrooted binary
trees. This is the best known approximation algorithm for the TBR distance on
binary trees. For general trees, to our knowledge, there are currently no known
approximation algorithms for the TBR distance. For the SPR distance on rooted
general trees, Rodrigues et al. [15] developed an approximation algorithm of ra-
tio d + 1, where d is the maximum number of children a node in the input trees
may have. There is also a line of research on the maximum acyclic agreement
forest problem on general trees [13].

Parameterized algorithms for the MAF problem, parameterized by the num-
ber k of trees in an MAF, have also been studied. A problem is fixed-parameter
tractable [8] if it is solvable in time f(k)nO(1), where k is the parameter and n is
the input size. Allen and Steel [1] showed that the MAF problem on unrooted bi-
nary trees, which corresponds to the TBR distance, is fixed-parameter tractable.
By branching on inconsistent quartets, Hallett and McCartin [10] developed an
algorithm of time O(4kk5 + nO(1)) for the problem. Whidden and Zeh [17,16]
further improved the time complexity to O(4kn), which is currently the best
known parameterized algorithm for the MAF problem on unrooted binary trees.
For the MAF problem on rooted binary trees, Bordewich et al. [4] proposed a
parameterized algorithm of time O(4kk4 + n3), and Whidden et al. [16,17] im-
proved the time complexity to O(2.42kn). While there has been significant work
showing the fixed-parameter tractability for the MAF problem on binary trees,
it has been an open problem posted by several researchers [10,16] whether the
MAF problem on general trees is fixed-parameter tractable.

Our Contributions. We study parameterized algorithms and approximation
algorithms for the MAF problem on unrooted general trees. Our method is
based on careful study of the graph structures that takes advantage of special
relationships among sibling leaves in trees. We develop an O(3kn)-time parame-
terized algorithm for the MAF problem on unrooted general trees, thus showing
the fixed-parameter tractability of the problem and resolving the open problem
posed in [10,16]. We also present a polynomial-time approximation algorithm
of ratio 3 for the MAF problem on unrooted general trees. The ratio matches
the best known result for the problem on unrooted binary trees [16,17], but our
algorithm keeps the same constant ratio and works for general trees. The only
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previously known approximation algorithm for the MAF problem on general
trees [15] is on rooted trees and has ratio d+1, where d is the maximum number
of children a node in the trees may have. Our algorithm is the first constant-ratio
approximation algorithm for the MAF problem, on unrooted general trees.

2 Preliminaries and Problem Reformulations

All graphs will be undirected. For a vertex v, an edge e, and an edge subset E′

in a graph G, denote by G− v, G− e, and G− E′ the graphs obtained from G
with v, e, and the edges in E′ removed, respectively. All trees in our discussion
are unrooted. A leaf of a tree is a vertex of degree less than 2. A forest is a
collection of disjoint trees. A forest F is leaf-labeled over a label-set L if there is
a one-to-one mapping from the leaves of F to the elements of L (with all non-leaf
vertices in F unlabeled). The label for a leaf v is denoted by �(v). For a subforest
F ′ of F , denote by �(F ′) the set of labels for the leaves in F ′.

Two leaf-labeled forests F1 and F2 over the same label-set L are isomorphic
if there is a bijection function f between the vertex sets of F1 and F2 such that
any two vertices u and v of F1 are adjacent if and only if f(u) and f(v) are
adjacent in F2, and the corresponding leaves have the same label. The forests
F1 and F2 are homeomorphic if they become isomorphic after smoothing all
degree-2 vertices (smoothing a degree-2 vertex v is to replace the vertex v and
its incident edges with a new edge connecting the two neighbors of v). Note
that if a leaf-labeled forest F1 is homeomorphic to a subforest of a leaf-labeled
forest F2, then there is a unique subforest of F2 that is homeomorphic to F1.
Therefore, in this case, without any confusion, we can simply say that the forest
F1 is a subforest of F2. An agreement forest for two leaf-labeled forests F1 and
F2 over the same label-set L is a leaf-labeled forest F ′ over L such that F ′ is
a subforest of both F1 and F2. A maximum agreement forest F∗ (abbr. MAF)
for F1 and F2 is an agreement forest for F1 and F2 such that the size of (i.e.,
the number of trees in) F∗ is minimized over all agreement forests for F1 and
F2 [10].

The two versions of the MAF problem studied in the current paper are

para-maf. Given two leaf-labeled trees T1 and T2 over the same label-
set L, and a parameter k, is there an agreement forest of size at most k
for T1 and T2?

max-maf. Given two leaf-labeled trees T1 and T2 over the same label-set
L, construct an MAF for T1 and T2.

Our algorithms on two leaf-labeled trees T1 and T2 will proceed by removing
edges in the tree T2 to construct an agreement forest for T1 and T2. Removing
edges in T2 will result in a forest consisting of more than one tree. Therefore, our
algorithms will really work on a pair of forests F1 and F2. However, the size of
an agreement forest F ′ for two forests may not properly reflect the complexity
of the construction of F ′: the size of F ′ also heavily depends on the sizes of the
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given forests F1 and F2. Thus, we need a careful reformulation of the problems
that allows to apply more accurate analysis on the problem complexity.

An L-partition P = {L1, . . . , Lr} of a label-set L satisfies Li 
= ∅,
⋃r

i=1 Li = L,
and Li∩Lj = ∅, for all i, j, where each Li is called a label-subset. A label-subset
Li is unit if |Li| = 1. For a leaf-labeled forest F = {T1, . . . , Th} over a label-
set L, the L-partition {�(T1), . . . , �(Th)} is called the label-partition for F . For
a subset L′ of L, denote by F [L′] the subforest of F induced by L′, that is,
F [L′] consists of all paths in F that connect pairs of leaves with labels in L′.
An L-partition P = {L1, . . . , Lr} induces a subforest {F [L1], . . . ,F [Lr]} of F
if F [L1], . . ., F [Lr] are vertex-disjoint trees in F . An L-partition P is a c-cut
label-partition for F , where c ≥ 0 is an integer, if there exists a minimum set Ec

of c edges in F such that after removing the c edges in Ec, the label-partition of
the resulting forest is P . Note that the label-partition for the forest F is a 0-cut
label-partition for F .

An unlabeled vertex in a leaf-labeled forest F may have degree 2, and our
algorithms may delete edges and make an unlabeled vertex to have degree even
less than 2. Contraction is an operation on an unlabeled vertex v of degree less
than 3, defined as follows: (1) if v has degree 2, then smooth v; and (2) if v
has degree less than 2, then remove v. Contractions enable us to keep the leaves
of a forest always labeled. Note that contracting an unlabeled vertex of degree
less than 2 does not change the label-partition for a forest. For contracting a
degree-2 vertex v, which replaces v and its two incident edges by a new edge
e′, it is easy to verify that the forest obtained by removing any one of the two
edges incident to v in the old forest and the forest obtained by removing the
edge e′ in the new forest have the same label-partition. These observations give
immediately the following lemma.

Lemma 1. Let F be a leaf-labeled forest over a label-set L, and let F ′ be the
forest obtained from F by applying an arbitrary sequence of contractions on F .
For any integer c ≥ 0, an L-partition P is a c-cut label-partition for F if and
only if P is a c-cut label-partition for F ′.

Lemma 2. Suppose that P = {L1, . . . , Lr} is a c-cut label-partition for a leaf-
labeled forest F consisting of h trees. Then r = h + c.

Lemma 2 directly implies the following corollary, which allows us to charac-
terize agreement forests for two leaf-labeled forests F1 and F2 in terms of c-cut
label-partitions for F2.

Corollary 1. For an agreement forest F∗ = {T1, . . . , Tk} for two leaf-labeled
forests F1 and F2 over the same label-set L, where F2 consists of h trees, the
L-partition {�(T1), . . . , �(Tk)} is a (k − h)-cut label-partition for F2.

When a c-cut label-partition P for a forest is given, it is easy to find the c
edges whose removal results in a forest whose label-partition is P .

Lemma 3. Let L be the label-set for a forest F , and let P be an L-partition.
Let e be an edge in F whose removal splits a leaf-labeled tree in F into two leaf-
labeled trees T1 and T2 such that no label-subset in P has labels in both T1 and
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T2. Then for any integer c ≥ 1, P is a c-cut label-partition for F if and only if
P is a (c− 1)-cut label-partition for F − e.

Corollary 1 and Lemma 3 suggest a formulation of the MAF problem in terms
of c-cut label-partitions. We say that an L-partition P induces an agreement
forest for F1 and F2 if the subforest induced by P in F1 and the subforest induced
by P in F2 are homeomorphic. By definition, if an L-partition P = {L1, . . . , Lk}
induces an agreement forest for F1 and F2, and if F2 consists of h2 trees, then
P is a (k − h2)-cut label-partition for F2. This characterization and Lemma 3
provide a way for a branch-and-search process: once we know that an edge e is
not on the path connecting any two leaves whose labels are in the same label-
subset in the desired (k − h2)-cut label-partition P for the forest F2, we can
remove e, and recursively construct a (k − h2 − 1)-cut label-partition in F2 − e.

Our study uses above characterization on the following problem formulations.

para-maf’. Given two leaf-labeled forests F1 and F2 over the same
label-set L, and a parameter k, is there a k′-cut label-partition for the
forest F2 that induces an agreement forest for F1 and F2, where k′ ≤ k?

max-maf’. Given two leaf-labeled forests F1 and F2 over the same label-
set L, construct an L-partition P such that P is a k-cut label-partition
for the forest F2 and that P induces an agreement forest for F1 and F2,
with k minimized.

An L-partition P will be called a solution for the pair (F1,F2) of leaf-labeled
forests over the label-set L if P induces an agreement forest for F1 and F2.
The value of the solution P is c if P is a c-cut label-partition for F2. By this
definition, constructing a solution of value c for (F1,F2) is to find c edges in F2

whose removal results in a subforest that is an agreement forest for (F1,F2). In
particular, by Lemma 2, a minimum-value solution for (F1,F2) induces an MAF
for F1 and F2.

3 Bottommost Sibling Sets and Reduction Rules

By Lemma 1, we will assume that there are no unlabeled vertices of degree less
than 3. Moreover, if our algorithms create unlabeled vertices of degree less than
3 during their processing, then we will immediately contract these vertices and
work on the resulting forests without unlabeled vertices of degree less than 3.

A tree is a single-vertex tree if it is a single vertex (which is a leaf). A tree is
a single-edge tree if it is a single edge (which contains two leaves). The parent
of a leaf v in a tree with at least three vertices is the unique unlabeled vertex
adjacent to v. Two leaves are siblings if they either share the same parent, or
are the two leaves of a single-edge tree. A sibling set is a set of leaves that are all
siblings. A bottommost sibling set (abbr. BSS) is a maximal sibling set X such
that either the degree of their parent is at most |X |+ 1, or X is the leaf set of
a single-edge tree. By definition, the leaf of a single-vertex tree is not a BSS. Since
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we assume an unlabeled vertex has degree at least 3, a BSS contains at least two
leaves, and a leaf-labeled tree that is not single-vertex must contain a BSS.

In the rest of this section, we fix two leaf-labeled forests F1 and F2 over the
same label-set L, and consider their agreement forests. Note that if contraction
is not applicable on an agreement forest F∗ for F1 and F2, then each vertex in
F∗ corresponds to a unique vertex in F1 as well as to a unique vertex in F2.
Therefore, it makes sense to say that two vertices in F∗ are “adjacent in F1,”
or that a vertex in F∗ is “the parent of a leaf in F2.” Moreover, because of the
one-to-one mapping between the leaf set and the label-set of a leaf-labeled forest,
we can refer to a leaf by its label without confusions. Thus, we may say “a label
� is in the tree T in the forest F ,” or “the parent of the label � is the vertex v.”

If F1 consists of only single-vertex trees, then F1 itself is the agreement forest
for F1 and F2. Therefore, in the following discussion, we assume that F1 contains
at least one tree that is not a single-vertex tree. Thus, F1 always contains a BSS.

Lemma 4. Let X1 be a BSS in F1, and let P be a solution for (F1,F2). Then
P has at most one label-subset Li that intersects �(X1) and |Li| > 1.

Let P be an L-partition, and let Y be a set of leaves in F2. Denote by PY

the L-partition that consists of all label-subsets in P that do not intersect �(Y ),
plus a label-subset that is the union of all label-subsets in P that intersect �(Y ).

Lemma 5. Let X1 be a BSS in F1, and let Y be a sibling set in F2 with �(Y ) ⊆
�(X1). Let P be a solution for the pair (F1,F2) such that a label-subset in P
contains at least two labels in �(Y ). Then, the L-partition PY is also a solution
for the pair (F1,F2).

The following lemma shows that a solution for the pair (F1,F2) is symmetric
with respect to two labels when certain conditions are enforced.

Lemma 6. Let X1 be a BSS in F1, and let Y be a sibling set in F2 with �(Y ) ⊆
�(X1). For any solution P for (F1,F2), swapping two labels of �(Y ) in P also
results in a solution for (F1,F2).

Now we are able to state our main result in this section.

Theorem 1. Let X1 be a BSS in F1 and let Y be a sibling set in F2 with
�(Y ) ⊆ �(X1). For any u0 ∈ Y , there is a maximum agreement forest F∗ for F1

and F2 such that either (1) all labels in �(Y ) are in a single tree in F∗, or (2)
each label �(u) in �(Y ), where u 
= u0, is in a single-vertex tree in F∗.

We now present two reduction rules on a pair (F1,F2) of leaf-labeled forests.

Reduction Rule 1. If a label � is in a single-vertex tree in one of the forests
F1 and F2, then remove the edge (if any) incident to the label � in the other.

Lemma 7. Let (F ′
1,F ′

2) be the pair produced by Reduction Rule 1 on the pair
(F1,F2), then an L-partition P is a solution of value c for (F1,F2) if and only
if P is a solution of value c′ for (F ′

1,F ′
2), where c′ = c − 1 if an edge in F2 is

removed, and c′ = c otherwise.
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Let X be a sibling set in a forest. By shrinking X , we mean we delete all
leaves in X , and introduce a new leaf vX with a new label �X (e.g., we can use
�(X) for �X), and let vX be adjacent to the common neighbor of the leaves in
X if such a common neighbor exists.

If the sibling set X is the leaf set of a single-edge tree, then shrinking X gives
a single-vertex tree with the vertex vX . If X is the set of all leaves of a tree with
a single non-leaf vertex v, then shrinking X makes v a degree-1 vertex adjacent
to the new leaf vX , and v will be contracted so that the resulting tree again
becomes a single-vertex tree with the leaf vX .

Reduction Rule 2. Let X1 be a BSS in F1, and let X2 be a set of leaves in
F2 such that �(X1) = �(X2). If X2 is the leaf set of a single-edge tree in F2, or
if X2 is a sibling set whose parent has degree at most |X2| + 1, then shrink X1

in F1, and shrink X2 in F2.

Note that after applying Reduction Rule 2, if a vertex v in either F1 or F2 is
adjacent to the new leaf (there is at most one such vertex), then the degree of v
is at most 2. In particular, if v is an unlabeled vertex, then v will be contracted.

Lemma 8. Let (F ′
1,F ′

2) be the pair produced by Reduction Rule 2 on the pair
(F1,F2), then the pair (F1,F2) has a solution of value at most c if and only if
the pair (F ′

1,F ′
2) has a solution of value at most c.

The following theorem follows from the definitions of Reduction Rules 1-2.

Theorem 2. For a pair (F1,F2) of leaf-labeled forests on which Reduction Rules
1-2 are not applicable, (1) a label is in a single-vertex tree in F1 if and only if
it is in a single-vertex tree in F2; and (2) for any sibling set X2 in F2 such that
the set X1 in F1 with �(X1) = �(X2) is a BSS, the siblings in X2 must have a
parent and the parent has degree at least |X2|+ 2.

4 maf Is Fixed-Parameter Tractable

Let (F1,F2; k) be an instance of the para-maf’ problem, for which we look for
a solution of value at most k for the pair (F1,F2) of leaf-labeled forests. Because
of Lemmas 7 and 8, during our process, we will exhaustively apply Reduction
Rules 1-2 on the pair of forests whenever the rules are applicable, and work on
the reduced instance (note that by Lemma 7, in case we apply Reduction Rule 1
that removes an edge in F2, we also decrease the parameter k by 1). An instance
is strongly reduced if none of the contraction operation and Reduction Rules
1-2 are applicable on the corresponding pair of forests. Therefore, throughout
the discussion, we will assume that our instance (F1,F2; k) is always a strongly
reduced instance.

As explained in section 3, we can assume that there is a BSS X1 in F1 such
that |X1| ≥ 2. Let X2 be the leaf set in F2 such that �(X2) = �(X1).

Our algorithm is a branch-and-bound process. A branching rule is safe if the
branching rule on an instance I for para-maf’ produces a set S of instances
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such that I is a yes-instance if and only if at least one of the instances in S is a
yes-instance. We will examine all possible cases. For each case, we identify a set
of edges, and show that at least one of the identified edges must be the “correct”
edge to be removed, which ensures that branching on the identified edges is
safe. Also, we say that a branching rule satisfies the recurrence relation T (k) =
T (k1) + · · · + T (kr) if on an instance (F1,F2; k) of para-maf’, the branching
rule produces r instances (F1,1,F1,2; k1), . . ., (Fr,1,Fr,2; kr) for the problem.
Moreover, we assume that the function T (k) is non-decreasing. Therefore, if
k ≤ k′ then T (k) ≤ T (k′).

Case 1. Leaves in X2 are not in the same tree in F2.

Branching Rule 1. Let u2 and v2 be two leaves in X2 that are in different
trees in F2, then decrease k by 1, and branch into two ways: [W1] cut u2 in F2;
and [W2] cut v2 in F2.

Lemma 9. Branching Rule 1 is safe, and satisfies T (k) = 2T (k − 1).

Case 2. X2 is a sibling set in F2.
Because the instance (F1,F2; k) is strongly reduced, by Theorem 2, X2 has a
parent p2 of degree ≥ |X2|+ 2.

Branching Rule 2. If X2 is a sibling set, fix a leaf u2 in X2, and let E2 =
{e1, . . . , eh}, h ≥ 2, be the set of edges that are incident to the parent p2 of X2

but not to any leaf in X2. Then branch into h+ 1 ways: [W (0)] remove all edges
incident to X2 except the one incident to u2 and decrease k by |X2|− 1; and, for
each 1 ≤ i ≤ h, [W (i)] remove all edges in E2 except ei and decrease k by h− 1.

Lemma 10. Branching Rule 2 is safe, and satisfies T (k) = T (k− (|X2| − 1)) +
hT (k − (h− 1)).

Case 3. X2 contains a sibling set Y2 with |Y2| ≥ 2.
We consider this case when Cases 1-2 do not apply. Thus, X2 contains a leaf z2
that is in the same tree but not a sibling of the leaves in Y2. Fix a u2 in Y2. Let
P be the path between the parent p2 of Y2 and z2. Let E2 be the set of edges
that are not on the path P but adjacent to a vertex w 
= p2 on P . See Fig. 1(A)
in appendix for an illustration. Note that E2 cannot be empty because the path
P consists of at least three vertices and by our assumption of the contraction
operation, no unlabeled vertex has degree less than 3.

Branching Rule 3. In Case 3, branch into three ways: [W1] cut all leaves in
Y2 except u2 and decrease k by |Y2| − 1; [W2] cut z2 and decrease k by 1; and
[W3] cut all edges in E2 and decrease k by |E2|.

Lemma 11. Branching Rule 3 is safe and satisfies T (k) ≤ 3T (k − 1).

Case 4. No two leaves in X2 are siblings in F2.
If none of Cases 1-3 apply, then all leaves in X2 are in the same tree and no two
leaves in X2 are siblings. We split this case into three subcases based on the size
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|X1| and the number of unlabeled vertices on the path P = {u2, w1, . . . , wh, v2}
between two leaves u2 and v2 in X2, where h ≥ 2. Let int(P ) = {w1, . . . , wh}.
Subcase 4.1: The path P consists of at least five vertices, i.e., h ≥ 3.

Branching Rule 4.1 In Subcase 4.1, branch into h + 2 ways: [W1] cut u2

and decrease k by 1; [W2] cut v2 and decrease k by 1; and, for each 1 ≤ i ≤ h,
[W (2 + i)] cut the edges incident to int(P ) \ {wi} but not on the path P , and
decrease k by the number of edges cut.

Lemma 12. Branching Rule 4.1 is safe, and satisfies T (k) ≤ 2T (k−1)+hT (k−
(h− 1)).

Note that if |X2| ≥ 3 and no two leaves in X2 are siblings, then there are
always two leaves u2 and v2 in X2 such that the path connecting u2 and v2 in
F2 satisfies the condition in Subcase 4.1. Therefore, in the following, we will
assume that X2 contains exactly two leaves u2 and v2, the path P connecting
u2 and v2 consists of exactly four vertices, of which two are unlabeled, and
int(P ) = {w1, w2}. Let E2 be the set of edges that are incident to either w1 or
w2 but not on the path P .

Subcase 4.2: E2 = {e1, . . . , eh} with h ≥ 3, see Fig. 1(B) in appendix.

Branching Rule 4.2 In Subcase 4.2, branch into h+ 2 ways: [W1] cut u2 and
decrease k by 1; [W2] cut v2 and decrease k by 1; and, for 1 ≤ i ≤ h, [W (2 + i)]
cut all edges in E2 except ei and decrease k by h− 1.

Lemma 13. Branching Rule 4.2 is safe, and satisfies T (k) = 2T (k−1)+hT (k−
(h− 1)).

Since u2 and v2 are not siblings, the path P has at least two unlabeled vertices.
Since an unlabeled vertex has degree at least 3, |E2| ≥ 2. Thus, only the case
|E2| = 2 has not been covered by the above cases.

Subcase 4.3: E2 = {e1, e2}, see Fig. 1(C) in appendix.

Branching Rule 4.3 In Subcase 4.3, decrease k by 1, and branch into three
ways: [W0] cut u2 in F2; [W1] cut e1 in E2; and [W2] cut e2 in E2.

Lemma 14. Branching Rule 4.3 is safe, and satisfies T (k) = 3T (k − 1).
An instance (F1,F2; k) of para-maf’ with k ≤ 0 can be easily handled: if

k < 0 then it is a no-instance; and if k = 0 then it is a yes-instance if and only if
F2 is a subforest of F1. If F1 consists of only single-vertex trees, then the MAF
for F1 and F2 is just F1. Excluding these cases, the forest F1 contains a BSS X1

of at least two leaves. Under the assumptions that F1 contains a BSS X1 and
that the contraction operation and reduction rules are applied whenever they
are applicable, Cases 1-4 cover all possible cases for a given instance (F1,F2; k).
Therefore, our parameterized algorithm just proceeds with each of the cases and
applies the corresponding branching rule, as given in Fig. 2 in appendix.

We need the following lemma for the recurrence relations to our algorithm.

Lemma 15. Let Th(k) be a positive-valued function satisfying Th(k) = 2Th(k−
1) + hTh(k − (h− 1)), where h ≥ 3 is a constant. Then 2k ≤ Th(k) ≤ 3k.
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We analyze the algorithm Para-MAF in the following theorem.

Theorem 3. The problem para-maf’ can be solved in time O(3kn), thus is
fixed-parameter tractable.

It is straightforward to solve the original problem para-maf by using the
algorithm Para-MAF, where two leaf-labeled trees T1 and T2 and a parameter k
are given. The problem can be regarded as an instance (T1, T2; k−1) of the para-

maf’ problem where we look for a solution of value at most k − 1 for (T1, T2),
i.e., a k′-cut label-partition for the forest (i.e., the tree) T2, with k′ ≤ k − 1,
which induces an agreement forest (of k′ + 1 ≤ k trees) for T1 and T2.

Corollary 2. The parameterized problem para-maf is fixed-parameter tractable.

Corollary 2 resolves an open problem posed in the literature [10,17].

5 A Constant-Ratio Approximation Algorithm for
max-maf

The analysis in previous sections based on BSS also motivates an approximation
algorithm for the max-maf’ problem which, on a pair (F1,F2) of leaf-labeled
forests over the same label-set L, looks for a solution of the minimum value, i.e.,
an L-partition P that induces an agreement forest for F1 and F2 and is a c-cut
label-partition for F2 with the value c minimized. A solution of the minimum
value will be called an optimal solution, whose value will be called the optimal
value for the instance (F1,F2). Recall that a maximum agreement forest for F1

and F2 is induced by an optimal solution for (F1,F2).
Again, our instances are assumed strongly reduced, which means that none

of the contraction operation and Reduction Rules 1-2 are applicable on the
instances.

An edge-removal meta-step of an algorithm is a collection of consecutive steps
that on an instance (F1,F2) of max-maf’ removes a set of edges in F2.

Definition 1. An edge-removal meta-step M keeps ratio r if on an instance
(F1,F2) of max-maf’, M removes a set EM of edges in F2 such that |EM | ≤
r(c − c′), where c and c′ are the optimal values for the instances (F1,F2) and
(F1,F2 − EM ), respectively.

For example, if Reduction Rule 1 removes an edge e in F2, then it is an
edge-removal meta-step that keeps ratio 1 because |EM | = |{e}| = 1, and by
Lemma 7, the optimal value for (F1,F2 − e) is one less than that for (F1,F2).
Also by definition, a meta-step that neither removes edges in F2 nor changes the
optimal value for the forest pair (e.g., Reduction Rule 1 removes an edge in F1)
keeps ratio r for any r ≥ 0.

Before we present our algorithm, we observe the following:

Lemma 16. Let (F1,F2) be an instance of max-maf’ and let e2 be any edge
in F2. Then the optimal value for (F1,F2 − e2) is at most the optimal value for
(F1,F2).
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In the rest of this section, we fix an instance (F1,F2) of max-maf’, assuming
that (F1,F2) is strongly reduced and that F1 contains a BSS X1. Let X2 be the
leaf set in F2 with �(X2) = �(X1).

As we did in the parameterized algorithm, we consider different cases based
on the structure of X2 in F2. For each case, we apply a meta-step that removes
a set of edges in F2 and we verify that the meta-step keeps a ratio at most 3.

Case 1. Leaves in X2 are not in the same tree in F2.

Meta-Step 1. Let u2, v2 ∈ X2 be in different trees in F2, then remove the
edges incident to u2 and v2.

Lemma 17. Meta-Step 1 keeps ratio 2.

Case 2. X2 is a sibling set in F2.
Because (F1,F2) is strongly reduced, by Theorem 2, X2 has a parent p2 of degree
≥ |X2| + 2. Let E′′ be the set of edges that are incident to p2 but not incident
to X2. We apply the following meta-steps based on the difference between the
sizes of X2 and E′′. See Fig. 3(A) in appendix.

Subcase 2.1: |E′′| > |X2|.

Meta-Step 2.1. If |E′′| > |X2|, then pick any set E1 of |X2|− 1 edges incident
to the leaves in X2, and pick any set E2 of |X2| edges in E′′, remove E1 ∪ E2.

Lemma 18. Meta-Step 2.1 keeps ratio 3.

Subcase 2.2: |E′′| ≤ |X2|.

Meta-Step 2.2. If |E′′| ≤ |X2|, then pick any set E′
1 of |E′′|− 1 edges incident

to the leaves in X2, and remove all edges in E′
1 ∪ E′′.

Lemma 19. Meta-Step 2.2 keeps ratio 3.

Case 3. X2 contains a sibling set Y2 with |Y2| ≥ 2.
Because of Case 2, here we assume that X2 itself is not a sibling set.

Meta-Step 3 Let u2, v2 ∈ Y2, and let w2 be a leaf in X2 that is not a sibling
of u2 and v2. Let e be an edge incident to the parent of w2 but not on the path
between u2 and w2. Then remove the edge e, the edge eu incident to u2, and the
edge ew incident to w2. See Fig. 3(B) in appendix.

Lemma 20. Meta-Step 3 keeps ratio 3.

When none of the cases 1-3 hold true, all leaves in X2 are in the same tree in
F2 but no two are siblings. For this last case, we first prove the following lemma.

Lemma 21. If all leaves in X2 are in the same tree but no two are siblings, there
is a leaf in X2 whose parent has degree 2 in the induced subforest F2[�(X2)].
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Case 4. All leaves in X2 are in the same tree in F2 but no two are
siblings.

Meta-Step 4 Let u2, v2 ∈ X2 such that the parent p2 of u2 has degree 2 in
F2[�(X2)]. Let e be an edge in F2 that is incident to p2 but not on the path Puv

between u2 and v2. Then, cut the edge e, the edge eu incident to u2, and the
edge ev incident to v2. See Fig. 3(C) in appendix.

Lemma 22. Meta-Step 4 keeps ratio 3.

We present our approximation algorithm for this problem in Fig. 4 in ap-
pendix.

Theorem 4. Apx-MAF is an approximation algorithm for the max-maf’ prob-
lem that runs in time O(n2) and has an approximation ratio at most 3.

The original max-maf problem on two leaf-labeled trees T1 and T2 over the
label-set L asks to construct a maximum agreement forest for T1 and T2. Suppose
that a maximum agreement forest for T1 and T2 consists of c leaf-labeled trees.
Then the L-partition that is an optimal solution for (T1, T2) consists of c label-
subsets, i.e., the optimal value for (T1, T2) is c−1. We can apply the Apx-MAF
algorithm on the instance (T1, T2), which will return an L-partition P that is a
solution of value at most 3(c− 1) for (T1, T2). Therefore, the solution P induces
an agreement forest of at most 3c− 2 trees for (T1, T2). The ratio (3c− 2)/c < 3
shows that Apx-MAF can also be used as an approximation algorithm for the
problem max-maf that has an approximation ratio bounded by 3.

When applied on binary trees, the algorithm Apx-MAF with its ratio of
3 matches the best previous known ratio for the problem on binary trees [17].
The only previously known approximation algorithm for the MAF problem on
general trees is on rooted trees and has a ratio of d+ 1, where d is the maximum
number of children a node in the forests may have [15]. Our algorithm is the first
constant-ratio approximation algorithm for the MAF problem on general trees,
where the trees are unrooted.

6 Conclusions

We have presented a parameterized algorithm and an approximation algorithm
for the MAF problem on unrooted general trees, which corresponds to the TBR
distance on multifurcating phylogenetic trees. For general trees, our parame-
terized algorithm is the first fixed-parameter tractable algorithm and our ap-
proximation algorithm is the first constant-ratio approximation algorithm. Our
algorithms are based on the concept of a bottommost sibling set in one tree and
the structure of the corresponding leaf set in the other tree. The methods based
on sibling sets have been used by other researchers [16], but the special structure
of the bottommost sibling set enables us to deal with operations on general trees
more effectively. The techniques should be useful for the study on parameterized
and approximation algorithms for other problems related to phylogenetic simi-
larity, such as those related to the SPR distance, the rooted SPR distance, and
the hybridization distance.
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Abstract. A total dominating set in a graph is a set of vertices such that
every vertex of the graph has a neighbor in the set.We introduce and study
graphs that admit non-negative real weights associated to their vertices so
that a set of vertices is a total dominating set if andonly if the sumof the cor-
respondingweights exceeds a certain threshold.We showthat these graphs,
whichwe call total domishold graphs, form a non-hereditary class of graphs
properly containing the classes of threshold graphs and the complements
of domishold graphs. We present a polynomial time recognition algorithm
of total domishold graphs, and obtain partial results towards a character-
ization of graphs in which the above property holds in a hereditary sense.
Our characterization in the case of split graphs is obtained by studying a
new family of hypergraphs, defined similarly as the Sperner hypergraphs,
which may be of independent interest.
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1 Introduction and Background

A possible approach for dealing with the intractability of a given decision or
optimization problem is to identify restrictions on input instances under which
the problem can still be solved efficiently. One generic framework for describing
a kind of such restrictions for graph problems is the following: Given a graph G,
does G admit non-negative integer weights on its vertices (or edges, depending
on the problem) and a set T of integers such that a subset X of its vertices
(or edges) has property P if and only if the sum of the weights of elements of
X belongs to T ? Property P can denote any of the desired substructures we
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are looking for, such as matchings, cliques, stable sets, dominating sets, etc. If
weights as above are integer and given with the graph, and the set T is given by
a membership oracle, then a dynamic programming algorithm can be employed
to find a subset with property P of either maximum or minimum cost (according
to some given cost function on the vertices) in O(nM) time and with M calls of
the membership oracle, where n is the number of vertices (or edges) of G and
M is a given upper bound for T [18].

The advantages of the above framework depend both on the choice of propertyP
and on the constraints (if any) imposed on the structure of the setT . For example, if
P denotes the property of being a stable (independent) set and the setT is restricted
to be an interval unbounded from below, we obtain the class of threshold graphs [5],
which is very well understood and admits several characterizations, as well as linear
time algorithms for recognition and for several optimization problems [17]. If P
denotes the property of being a dominating set andT is an interval unbounded from
above, we obtain the class of domishold graphs [1], which enjoy similar properties
as threshold graphs. On the other hand, if P is the property of being a maximal
stable set and T is restricted to consist of a single number, we obtain the class of
equistable graphs [19], for which the recognition complexity is open (see, e.g., [16]),
no structural characterization is known, and the maximum size of a stable set in an
equistable graph is hard to approximate [18].

As the above examples show, the resulting class of graphs can be either heredi-
tary (that is, closed under vertex deletion)—as in the case of threshold or domish-
old graphs—, or non-hereditary—as in the case of equistable graphs. When the
resulting graph class is not hereditary, it is natural to consider the hereditary
version of the property, in which the requirement (the existence of weights and
the set T ) is extended to all induced subgraphs of the given graph.

In this paper, we introduce and study the case when P is the property of
being a total dominating set and T is an interval unbounded from above. Given
a graph G = (V,E), a total dominating set (a TD set, for short) is a subset S of
the vertices of G such that every vertex of G has a neighbor in S. For surveys
of the literature on the subject of total domination, see [11–14].

Definition 1. A graph G = (V,E) is said to be total domishold (TD for short)
if there exists a pair (w, t) where w : V → R+ is a weight function and t ∈ R+

is a threshold such that for every subset S ⊆ V , w(S) :=
∑

x∈S w(x) ≥ t if and
only if S is a total dominating set in G. A pair (w, t) as above will be referred
to as a total domishold structure of G.

We remark that for convenience, the above definition allows G to have isolated
vertices. Every graph with an isolated vertex is total domishold, even though it
does not have any TD sets.

Example 1. The complete graph of order n is total domishold. Indeed, a subset
S ⊆ V (Kn) is a total dominating set of Kn if and only if S is of size at least
two, and consequently the pair (w, 2) where w(x) = 1 for all x ∈ V (Kn) is a
total domishold structure of Kn. On the other hand, the 4-cycle C4 is not a total
domishold graph (cf. Proposition 5 in Section 4).
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It is easy to see that adding a new vertex to the 4-cycle and connecting it
to exactly one vertex of the cycle results in a total domishold graph. Therefore,
contrary to the classes of threshold and domishold graphs, the class of total
domishold graphs is not hereditary. This motivates the following definition:

Definition 2. A graph G is said to be hereditary total domishold (HTD for
short) if every induced subgraph of it is total domishold.

Our results. We initiate the study of TD and HTD graphs. We identify several
operations preserving the class of TD graphs, which, together with results from
the literature [1, 5], imply that the class of HTD graphs properly contain the
classes of threshold graphs and the complements of domishold graphs (Section 3).
We obtain the following partial results towards a characterization of HTD graphs
(this is done in Section 4): (1) We identify a set of 13 forbidden induced subgraphs
for the class of HTD graphs, which implies that every HTD graphs is a (1, 2)-
polar chordal graph. (2) Split graphs form a well known class of (1, 2)-polar
chordal graphs. As our main result, we characterize the HTD split graphs. The
characterization is obtained by studying a new family of hypergraphs, defined
similarly as the Sperner hypergraphs, which might be of independent interest.
Finally, we show that TD graphs can be recognized in polynomial time, and
develop a simple polynomial time algorithm to find a minimum total dominating
set in a given TD graph (this is done in Section 5).

2 Preliminaries and Notation

Graphs and Graph Classes. A graph G is chordal if it does not contain any
induced cycle of order at least 4, split if its vertex set can be partitioned into
a clique and an independent set, and (1, 2)-polar if it admits a partition of its
vertex set into two (possibly empty) parts K and L such that K is a clique and
L induces a subgraph of maximum degree at most 1. For a set of graphs F , a
graph G is said to be F-free (or just F -free if F = {F}), if it does not contain
any induced subgraph isomorphic to a member of F . Every member of F is said
to be a forbidden induced subgraph for the (hereditary) set of F -free graphs. The
neighborhood of a vertex v in a graph will be denoted by NG(v), and its closed
neighborhood by NG[v] := NG(v) ∪ {v}, omitting the subscript G if the graph
is clear from the context. A vertex in a graph G is universal if it is adjacent
to every other vertex in G and isolated if it is of degree 0. By G + H we will
denote the disjoint union of graphs G and H . The join of graphs G and H is the
graph obtained from the disjoint union G + H by adding all edges of the form
{uv | u ∈ V (G), v ∈ V (H)}. For a graph G, we denote by 2G the disjoint union
of two copies of G. As usual, we denote by Kn, Pn and Cn the complete graph,
the path and the cycle on n vertices.

Boolean Functions. A Boolean function f : {0, 1}n → {0, 1} is positive if
f(x) ≤ f(y) holds for every two vectors x, y ∈ {0, 1}n such that x ≤ y (that is,
xi ≤ yi for all i ∈ {1, . . . , n}). A positive Boolean function f : {0, 1}n → {0, 1}
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is threshold if there exist non-negative real weights w = (w1, . . . , wn) and a non-
negative real number t such that for every x ∈ {0, 1}n, f(x) = 0 if and only if∑n

i=1 wixi ≤ t (see, e.g., [7]). Such a pair (w, t) is called a separating structure
of f . Every threshold positive Boolean function admits an integral separating
structure [7].

Threshold Boolean functions have been characterized by Chow [4] and El-
got [8], as follows. For k ≥ 2, a positive Boolean function f : {0, 1}n → {0, 1} is
said to be k-summable if, for some r ∈ {2, . . . , k}, there exist r (not necessarily
distinct) false points of f , say, x1, x2, . . . , xr, and r (not necessarily distinct)
true points of f , say y1, y2, . . . , yr, such that

∑r
i=1 x

i =
∑r

i=1 y
i. (A false point

of f is an input vector x ∈ {0, 1}n such that f(x) = 0; a true point is defined
analogously.) Function f is said to be k-asummable if it is not k-summable, and
it is asummable if it is k-asummable for all k ≥ 2.

Theorem 1 (Chow [4], Elgot [8], see also Theorem 9.14 in [7]). A positive
Boolean function f is threshold if and only if it is asummable.

The problem of determining whether a positive Boolean function given by its
complete DNF is threshold is solvable in polynomial time, using dualization and
linear programming. This result is summarized in the following theorem.

Theorem 2 (Peled and Simeone [20], see also Theorem 9.16 in [7]).
There exists a polynomial time algorithm that determines, given the complete
DNF of a positive Boolean function f(x1, . . . , xn), whether f is threshold. If this
is the case, the algorithm also computes an integral separating structure of f .

Hypergraphs. A hypergraph is a pair H = (V,E) where V is a finite set of
vertices and E is a set of subsets of V , called (hyper)edges [2]. A hypergraph
H = (V,E) is threshold if there exist a weight function w : V → R+ and a
threshold t ∈ R+ such that for all subsets X ⊆ V , it holds w(X) ≤ t if and only
if X contains no edge of H [10]. Reformulating the characterization of threshold
positive Boolean functions given by Theorem 1 in the language of hypergraphs,
we obtain the following characterization of threshold hypergraphs.

Theorem 3 (Chow [4], Elgot [8]). A hypergraph H = (V,E) is not threshold
if and only if there exists an integer n with n ≥ 2 and n (not necessarily distinct)
subsets A1, . . . , An of V , each containing an edge of H, and n (not necessarily
distinct) subsets B1, . . . , Bn of V , each containing no edge of H, such that for
every vertex v ∈ V ,

|{i | v ∈ Ai}| = |{i | v ∈ Bi}| . (1)

For a positive integer n, we will use the notation [n] for the set {1, . . . , n}.

3 Basic Properties of TD Graphs

In this section, we establish some basic properties of TD graphs.

Proposition 1. Every graph with an isolated vertex is TD.
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Proof. If G has an isolated vertex, then G does not have any TD sets, and hence
the pair (w, |V (G)| + 1), where w(x) = 1 for all x ∈ V (G) is a total domishold
structure of G. ��

As shown by the 4-cycle, TD graphs are not closed under join. However, they
are closed under join with K1, that is, under adding a universal vertex. This is
stated formally in Proposition 2 and proved using the following auxiliary lemma.

Lemma 1. Every TD graph admits a total domishold structure in which all
weights are positive.

Proof. Let (w, t) be a total domishold structure of a TD graph G = (V,E). The
value of

δ = t−max{w(S) | S ∈ P(V ) \ T } ,

where P(V ) denotes the power set of V and T denotes the set of all total
dominating sets of G, is well defined and positive. Let w′ : V → R+ \ {0}
and t′ ∈ R be defined as: w′(x) = |V |w(x) + δ/2 for all x ∈ V , and
t′ = |V |t. We claim that (w′, t′) is a total domishold structure of G. On
the one hand, if S ∈ T , then w′(S) = |V |w(S) + δ|S|/2 ≥ |V |t = t′. On
the other hand, if S ∈ P(V ) \ T , then w(S) + δ/2 < t and consequently
w′(S) = |V |w(S) + δ|S|/2 ≤ |V |(w(S) + δ/2) < |V |t = t′. ��

Proposition 2. Let G be a graph, and let G′ be the graph obtained from G by
adding to it a vertex adjacent to all vertices of G. Then, G is TD if and only if
G′ is TD.

Proof. The proof will follow from the observation that the sets T and T ′ of total
dominating sets of G and G′, respectively, are related as follows:

T ′ = T ∪ {{v} ∪ S | ∅ 
= S ⊆ V (G)} ,

where v is the added vertex.
Suppose first that G is TD. By Lemma 1, G admits a total domishold structure

(w, t) with w(x) > 0 for all x ∈ V (G). Let w′ : V (G′) → R+ be defined as follows:
for all x ∈ V (G), let w′(x) = w(x); let w′(v) = t −min{w(x) | x ∈ V (G)}. We
claim that (w′, t) is a total domishold structure of G′. Indeed, if S ∈ T ′ then
we consider two cases. If v 
∈ S, then S ∈ T and w′(S) = w(S) ≥ t. If v ∈ S,
then {x, v} ⊆ S for some x ∈ V (G), and hence w′(S) ≥ w′(x) + w′(v) =
w(x) + t − min{w(z) | z ∈ V (G)} ≥ t. Similarly, if w′(S) ≥ t, we consider
two cases. If v 
∈ S, then w(S) ≥ t and therefore S ∈ T ⊆ T ′. If v ∈ S, then
S∩V (G) 
= ∅ (since otherwise we would have w′(S) = w′(v) < t by the positivity
of w), and thus S ∈ T ′.

The other direction is straightforward. Since T ′∩P(V (G)) = T , any pair (w, t)
such that (w′, t) is a total domishold structure of G′ and w is the restriction of
w′ to V (G), is a total domishold structure of G. ��

Corollary 1. Every threshold graph is HTD.
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Proof. Chvátal and Hammer proved in [5] that the class of threshold graphs is
hereditary, and that every threshold graph contains either an isolated vertex or
a universal vertex. Therefore, an induction on the number of vertices together
with Propositions 1 and 2 shows that every threshold graph is TD. Since the
class of threshold graphs is hereditary, every threshold graph is HTD. ��

In general, TD graphs are not closed under disjoint union: the path P3 is TD,
but the graph 2P3 is not (cf. Proposition 5 in Section 4). However, they are
closed under adding a (TD) graph with a unique (inclusion-wise) minimal TD
set. Due to space limitations, the proof of the following proposition is omitted.

Proposition 3. Let G and H be graphs such that H has a unique minimal TD
set. Then, G + H is TD if and only if G is TD. ��

Corollary 2. Let G be a graph, and let G′ = G + K2. Then, G is TD if and
only if G′ is TD.

A graph G is said to be co-domishold if its complement is domishold. Since
threshold graphs are exactly the domishold co-domishold graphs [1, 5], the fol-
lowing result generalizes Corollary 1.

Corollary 3. Every co-domishold graph is HTD.

Proof. This can be proved similarly as Corollary 1, using Corollary 2 in addition
to Propositions 1 and 2, and the facts that: (1) the class of co-domishold graphs
is hereditary (this is because the class of domishold graph is hereditary [1]); (2)
every co-domishold graph contains either an isolated vertex, a universal vertex,
or a connected component isomorphic to K2 [1]. ��

Note that not every HTD graph is co-domishold. For example, the 4-vertex
path P4 is easily verified to be HTD but it is not domishold [1], and hence also
not co-domishold.

As observed in the introduction, the set of TD graphs is not hereditary. We
now strengthen this observation by showing that the set of TD graphs is not
contained in any nontrivial hereditary class of graphs (even if we disallow graphs
with isolated vertices).

Proposition 4. For every graph G there exists a TD graph G′ without isolated
vertices such that G is an induced subgraph of G′.

Proof. Let G be a graph. First, add to G = (V,E) a new vertex, say v, and
connect v only to isolated vertices of G. Second, add a new private neighbor to
every vertex of the resulting graph. Denoting by G′ the obtained graph, it is
clear that G is an induced subgraph of G′. By construction, the set V ∪ {v} is
the unique minimal total dominating set in G′. Therefore, the pair (w, t), where
w : V (G′) → R+ is given by w(x) = 1 if x ∈ V ∪ {v} and w(x) = 0, otherwise,
and t = |V |+ 1, is a total domishold structure of G′. ��
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We conclude this section with a characterization of TD graphs in terms of the
thresholdness of a derived Boolean function, a characterization that will turn
out useful in proofs in later sections.

We first fix some terminology and notations. Given a set V and a binary
vector x ∈ {0, 1}V , the support set of a vector x ∈ {0, 1}V is the set S(x) = {v ∈
V | xv = 1}. Also, by x we denote the vector x ∈ {0, 1}V given by (x)i = 1− xi

for all i ∈ V . Given a graph G = (V,E), its neighborhood function is the positive
Boolean function fG : {0, 1}V → {0, 1} that takes value 1 precisely on vectors
x ∈ {0, 1}V whose support set S(x) contains the neighborhood of some vertex
of G. Formally, fG(x) =

∨
v∈V

∧
u∈N(v) xu for every vector x ∈ {0, 1}V . (If

N(v) = ∅ then
∧

u∈N(v) xu = 1.)

Lemma 2. A graph G = (V,E) with V = {v1, . . . , vn} is total domishold if and
only if its neighborhood function fG is threshold. Moreover, if (w1, . . . , wn, t) is
an integral separating structure of fG, then (w;

∑n
i=1 wi− t) with w(vi) = wi for

all i ∈ [n] is a total domishold structure of G.

Proof. First, recall that a positive Boolean function f(x1, . . . , xn) is threshold if
and only if its dual function fd(x) = f(x) is threshold, and that if (w1, . . . , wn, t)
is an integral separating structure of f , then (w1, . . . , wn,

∑n
i=1 wi − t − 1) is a

separating structure of fd [7]. Therefore, it suffices to argue that G is total
domishold if and only if fd

G is threshold.
Let x ∈ {0, 1}V and let S(x) be the support set of x. By definition, fd

G(x) = 0
if and only if f(x) = 1, which is the case if and only if V \ S contains the
neighborhood of some vertex. In other words, fd

G(x) = 0 if and only if S is not a
total dominating set. Hence, if the dual function fd

G is threshold with an integral
separating structure (w1, . . . , wn, t), then (w, t+1) with w(vi) = wi for all i ∈ [n]
is a total domishold structure of G, and conversely, if (w, t) is an integral total
domishold structure of G, then (w1, . . . , vn, t− 1) with wi = w(vi) for all i ∈ [n]
is a separating structure of fd

G.
Finally, if (w1, . . . , wn, t) is an integral separating structure of fG, then

(w1, . . . , wn,
∑n

i=1 wi − t − 1) is a separating structure of fd
G and hence

(w;
∑n

i=1 wi − t) with w(vi) = wi for all i ∈ [n] is a total domishold struc-
ture of G. ��

4 Partial Characterizations of HTD Graphs

In this section, we obtain some partial results towards a characterization of
hereditary total domishold graphs. We start by identifying 13 forbidden induced
subgraphs for the set of HTD graphs.

Proposition 5. Every HTD graph is {F1, . . . , F13}-free, where F1, . . . , F13 are
the graphs depicted in Fig. 1.

Proof. We only need to verify that none of the graphs F1, . . . , F13 is TD. Argu-
ing by contradiction, assume that there is a graph F ∈ {F1, . . . , F13} that is TD.
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F13F12F11F10F9F8

F1 = C4 F2 = C5 F3 = C6 F4 = P6 F5 = 2P3 F6 = P3 +K3 F7 = 2K3

Fig. 1. Graphs F1, . . . , F13

Take two vertices of degree 2 in F , say a and b, such that a and b have disjoint
neighborhoods (e.g., the two black vertices in the depiction of F in Fig. 1).
Denote their respective neighbors by a1, a2 and b1, b2. (If F ∈ {F1, F2}, then let
b1 = a and a2 = b). It is easy to see that the union of the two neighborhoods
N(a) ∪N(b) can be partitioned into two disjoint sets, namely A = {a1, b1} and
B = {a2, b2}, none of which contains the neighborhood of another vertex in the
graph. For a set S ⊆ V (F ), let xS ∈ {0, 1}V (F ) denote the characteristic vector
of S, that is,

xS
i =

{
1, if i ∈ S;
0, otherwise.

Clearly, xN(a) and xN(b) are true points of fF , and xA and xB are false points
of fF . Since xA + xB = xN(a) + xN(b), the neighborhood function fF is not
2-asummable. By Theorem 1, function fF is not threshold, which by Lemma 2
implies that F is not TD, a contradiction. ��

Proposition 5 implies a nice structural feature of HTD graphs. Recall that a
graph is said to be (1, 2)-polar if it admits a partition of its vertex set into two
(possibly empty) parts K and L, such that K is a clique and L induces a subgraph
of maximum degree at most 1. The following result is an immediate consequence
of Proposition 5 and the forbidden induced subgraph characterization of (1, 2)-
polar graphs due to Gagarin and Metelskĭi [9] (see also [21]).

Corollary 4. Every HTD graph is a (1, 2)-polar chordal graph.

Notice that the converse of Corollary 4 does not hold: graphs F8, F9, . . . , F13

are (1, 2)-polar chordal graphs that are not TD.
In the rest of this section, we give a complete characterization of HTD graphs

within a well known subclass of (1, 2)-polar chordal graphs – the split graphs. The
characterization will be based on a new family of hypergraphs, defined similarly
as the Sperner hypergraphs. Recall that a hypergraph H = (V,E) is said to be
Sperner (or: a clutter) if no edge of H contains another edge, or, equivalently, if
for every two distinct edges e and f of H , it holds that min{|e \ f |, |f \ e|} ≥ 1 .
This motivates the following definition.
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Definition 3. A hypergraph H = (V,E) is said to be dually Sperner if for every
two distinct edges e and f of H, it holds that

min{|e \ f |, |f \ e|} ≤ 1 .

Lemma 3. Every dually Sperner hypergraph is threshold.

Proof. Suppose for a contradiction that there exists a dually Sperner hypergraph
H = (V,E) that is not threshold. By Theorem 3, there exists an integer n ≥ 2
and n (not necessarily distinct) subsets A1, . . . , An of V , each containing an edge
of H , and n (not necessarily distinct) subsets B1, . . . , Bn of V , each containing
no edge of H , such that for every vertex v ∈ V , condition (1) holds. For every
i ∈ [n], let ei be an edge of H contained in Ai. Let i∗ ∈ [n] be such that
|ei∗ | ≤ |ei| for all i ∈ [n]. In particular, this implies that for every i ∈ [n], it
holds that |ei∗ \ ei| ≤ |ei \ ei∗ | , which, since H is dually Sperner, implies

|ei∗ \ ei| ≤ 1 (2)

for every i ∈ [n]. On the other hand, since no Bi contains the edge ei∗ , we have,
for all i ∈ [n], the inequality

1 ≤ |ei∗ \Bi| . (3)

Adding up the inequalities (3) for all i ∈ [n], we obtain n ≤
∑

i∈[n] |ei∗ \ Bi| .
This implies the following contradicting chain of equations and inequalities

n ≤
∑
i∈[n]

|ei∗ \Bi| =
∑
i∈[n]

∑
v∈ei∗\Bi

1 =
∑
v∈ei∗

∑
i : v �∈Bi

1 =
∑
v∈ei∗

(n− |{i : v ∈ Bi}|)

=
∑
v∈ei∗

(n− |{i : v ∈ Ai}|) =
∑
v∈ei∗

∑
i : v �∈Ai

1 =
∑
i∈[n]

∑
v∈ei∗\Ai

1 =
∑
i∈[n]

|ei∗ \Ai|

≤
∑
i∈[n]

|ei∗ \ ei| =
∑
i∈[n]
i�=i∗

|ei∗ \ ei| ≤
∑
i∈[n]
i�=i∗

1 = n− 1 .

The first equality in the second line follows from condition (1), while the first
inequality in the third line follows from the fact that ei ⊆ Ai, which implies
ei∗ \Ai ⊆ ei∗ \ ei. The last inequality follows from (2).

This contradiction completes the proof. ��

Using Lemma 3, we can now derive the following characterization of split
HTD graphs.

Theorem 4. Let G = (V,E) be a split graph. Then, the following statements
are equivalent:

1. G is hereditary total domishold.
2. G is F13-free (see Fig. 1).



174 N. Chiarelli and M. Milanič

Proof. The implication (1) ⇒ (2) follows immediately from Proposition 5.
For the implication (2) ⇒ (1), let G = (V,E) be an F13-free split graph. Since

the class of F13-free split graphs is hereditary, it is enough to show that G is total
domishold. We prove this by induction on |V |. For |V | = 1, the graph G is K1

and hence TD. Let |V | > 1. By Proposition 2 and the inductive hypothesis, we
may assume that G has no universal vertices. Let V = K∪I where K is a clique,
I is an independent set, and K ∩ I = ∅. By Lemma 2, it suffices to show that
the neighborhood function fG(x) =

∨
v∈V

∧
u∈N(v) xu is threshold. Notice that

since G has no universal vertices, for every vertex v ∈ K there exists a vertex
u ∈ I such that N(u) ⊆ N(v). In particular, this implies that the neighborhood
function of G is logically equivalent to the function g : {0, 1}V → {0, 1} given
by g(x) =

∨
v∈I

∧
u∈N(v) xu. Consider the hypergraph H = (K, {N(v) | v ∈ I}).

Since G is F13-free, H is dually Sperner, and by Lemma 3, H is threshold.
Therefore, there exist a weight function w : K → R+ and a threshold t ∈ R+

such that for all subsets X ⊆ K, it holds w(X) ≤ t if and only if X contains no
neighborhood of a vertex in I. Let w′ : V → R+ be the extension of w that agrees
with w on K and assigns 0 to every vertex in I. The definition of g implies that
for all x ∈ {0, 1}V , we have g(x) = 0 if and only if the set S(x)∩K, where S(x)
is the support set of K, contains no neighborhood of a vertex in I. Consequently,
the pair (w′, t) is a separating structure of g, which implies that g is threshold,
and so is fG. By Lemma 2, G is total domishold. ��

5 Algorithmic Aspects

In this section, we show that total domishold graphs can be recognized in poly-
nomial time, and examine some algorithmic consequences of this result. A poly-
nomial time algorithm for the recognition of total domishold graphs will be ob-
tained by reducing the problem to the problem of recognizing threshold Boolean
functions given by a positive DNF.

Theorem 5. There exists a polynomial time algorithm for recognizing total
domishold graphs. If the input graph G is total domishold, the algorithm also
computes an integral total domishold structure of G.

Proof. Theorem 2 and Lemma 2 imply that the following polynomial time algo-
rithm correctly determines whether G is total domishold, and if this is the case,
computes a total domishold structure of it. First, compute the complete DNF φ
of the neighborhood function fG of G. More specifically, let φ =

∨
S∈N

∧
u∈S xu

where N is the set of neighborhoods of vertices of G that do not properly contain
any other neighborhood. Second, apply the algorithm given by Theorem 2 to the
input φ. If the algorithm detects that fG is not threshold, then G is not total
domishold. Otherwise, the algorithm will compute an integral separating struc-
ture (w1, . . . , wn, t) of fG, in which case Lemma 2 implies that (w;

∑n
i=1 wi − t)

with w(vi) = wi for all i ∈ [n] is a total domishold structure of G. ��

Let us now examine some consequences of Theorem 5. The total dominating
set problem is the problem of finding a minimum-sized total dominating set in a
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given graph. The problem is NP-complete in general, and remains NP-complete
even for restricted graph classes such as bipartite graphs or split graphs (see [6]).
On the positive side, polynomial time algorithms have been designed for several
graph classes (see, e.g., [14, 15] for an overview). With the exception of dually
chordal graphs [3] and DDP-graphs [14], all known polynomial time algorithms
for the total dominating set problem (we are aware of) deal with hereditary graph
classes. The following result provides another example of a non-hereditary graph
class for which the problem is polynomial.

Proposition 6. The total dominating set problem is solvable in polynomial time
for total domishold graphs.

Proof. Applying Theorem 5, we may assume that the input graph G is given
together with an integral total domishold structure (w, t). A greedy approach
can be now used to find a minimum-sized total dominating set S: Start with the
empty set, S = ∅, and, as long as w(S) < t, keep adding to S vertices according
to non-increasing weights. The correctness and the polynomial running time of
this algorithm are immediate. ��

While the total dominating set problem is NP-complete for chordal graphs (in
fact, even for split graphs), Proposition 6 shows that the problem is polynomial
in the class of HTD graphs, which, by Corollary 4, is a subclass of chordal graphs.

In conclusion, we would like to mention the following open questions related
to total domishold graphs. Is every {F1, . . . , F13}-free graph total domishold?
What is the complexity of recognizing HTD graphs?

Note added in proof: Since writing this paper, we have been able to answer
the above questions, by proving that every {F1, . . . , F13}-free graph is total
domishold.

Acknowledgements. We would like to thank Endre Boros for fruitful discus-
sions and helpful comments, and an anonymous reviewer for useful comments
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Abstract. We show that it can be decided in polynomial time whether a
graph of maximum degree 6 has a square root; if a square root exists, then
our algorithm finds one with minimum number of edges. We also show
that it is FPT to decide whether a connected n-vertex graph has a square
root with at most n−1+k edges when this problem is parameterized by
k. Finally, we give an exact exponential time algorithm for the problem
of finding a square root with maximum number of edges.

1 Introduction

Squares and square roots are classical concepts in graph theory. The square G2

of the graph G = (VG, EG) is the graph with vertex set VG such that any two
distinct vertices u, v ∈ VG are adjacent in G2 if and only if u and v are of dis-
tance at most 2 in G. A graph H is a square root of G if G = H2. Note that
there exist graphs with no square root and that there exist graphs with many
square roots. The characterization of those graphs that have a square root, or
equivalently of those graphs that are the square of a graph, has already been
studied in the 1960s. Mukhopadhyay [17] characterized squares of undirected
graphs in 1967, whereas Geller [8] did the same for directed graphs in 1968. Nei-
ther characterization yields a polynomial time algorithm for recognizing squares.
In fact, in 1994, Motwani and Sudan [16] showed that the problem of recognizing
whether a given graph has a square root is NP-complete. As we will discuss, this
fundamental result triggered a lot of research on the computational complexity
of recognizing squares of graphs and computing square roots under the presence
of additional structural assumptions. In particular, the following two recognition
questions have attracted attention; here G denotes some fixed graph class.

(1) How hard is it to recognize the graphs that are the square of a graph from G?
(2) How hard is is to recognize the graphs from G that have a square root?
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Ross and Harary [18] characterized those graphs that are the square of a
tree. They proved that if a connected graph G has a tree square root, then
this root is unique up to isomorphism. Moreover, they gave an algorithm for
determining a tree that is a square root of any graph known to be the square
of some tree. Lin and Skiena [13] obtained a linear time algorithm for deciding
whether a graph is the square of a tree. They also proved that it can be decided
in linear time whether a planar graph has a square root, and their algorithm
finds such a square root if it exists. Lau and Corneil [10] gave a polynomial time
algorithm for recognizing graphs that are the square of a proper interval graph,
and they showed that the following three problems are NP-complete: recognizing
the graphs that are the square of a chordal graph, the graphs that are the square
of a split graph, and the chordal graphs that have a square root, respectively.
Lau [9] gave a polynomial time algorithm that recognizes the graphs that are the
square of a bipartite graph. Le and Tuy [11] obtained structural and algorithmic
results for squares of block graphs that generalize the aforementioned results for
squares of trees. In a later paper [12] they presented a quadratic time algorithm
for recognizing the graphs that are the square of a strongly chordal split graph.
Recently, Milanic and Schaudt [14] considered two other subclasses of chordal
graphs, namely trivially perfect graphs and threshold graphs, and they gave
linear time algorithms for recognizing the graphs from these two classes that
have a square root. Adamaszek and Adamaszek [1] proved that if a graph has a
square root of girth at least 6, then this square root is unique up to isomorphism.
Farzad, Lau, Le and Tuy [7] gave a polynomial time algorithm for recognizing
the graphs that have a square root of girth at least 6. They also showed that
this problem is NP-complete for square roots of girth 4. The latter result was
improved by Farzad and Karimi [6], who established the dichotomy by showing
that the problem of recognizing the graphs that have a square root of girth 5 is
NP-complete.

Our Results. In the first part of our paper (Section 3) we give a polynomial
time algorithm that recognizes the graphs of maximum degree 6 that have a
square root. If a square root exists, then our algorithm finds one with minimum
number of edges and thus solves the following optimization problem for graphs
of maximum degree 6.

Minimum Square Root

Input: a graph G and a positive integer s.
Question: does there exist a graph H with at most s edges such that G = H2?

It can be shown that graphs of maximum degree at most 5 that have a square
root have bounded pathwidth, which leads to a linear-time recognition algorithm
of such graphs. However, this is not the case for graphs of maximum degree at
most 6: consider the square of a wall with subdivided edges. Our approach is to
preprocess a given graph G of maximum degree at most 6 in order to obtain a
graph of bounded pathwidth.

In the second part of our paper (Section 4) we take a parameterized road to
square roots; up to our knowledge, this has not been done so far. A problem with
input size n and a parameter k is said to be fixed parameter tractable (or FPT)
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if it can be solved in time f(k) · nO(1) for some function f that only depends
on k. Because any square root of a connected n-vertex graph G is a connected
spanning subgraph of G, every square root of G has at least n − 1 edges. This
means that s ≥ n − 1 for any yes-instance (G, s) of Minimum Square Root.
As such, a natural choice for the parameter would be k = s − (n − 1). This
leads to the following problem that we call the Tree +k Edges Square Root

problem: given a graph G and an integer k, has G a square root with at most
n− 1 + k edges? We show that this problem is FPT when parameterized by k.

In the third part of our paper (Section 5) we consider the Maximum Square

Root problem, which is the problem of finding a square root with maximum
number of edges. We present an exact exponential time algorithm for Maximum

Square Root. In Section 5 we also observe that it is FPT to decide whether a
square root can be obtained by at most k edge deletions.

2 Preliminaries and Structural Lemmas

We only consider finite undirected graphs without loops and multiple edges.
We refer to the textbook by Diestel [4] for any undefined graph terminology.
Let G be a graph. We denote the vertex set of G by VG and the edge set by
EG. The subgraph of G induced by a subset U ⊆ VG is denoted by G[U ]. The
graph G − U is the graph obtained from G by removing all vertices in U . If
U = {u}, we also write G − u. A set S is a separator in a connected graph G
if G − S is disconnected. For two disjoint subsets of vertices X,Y in G, a set
of vertices S is an (X,Y)-separator, if G − S has no path connecting a vertex
of X with a vertex of Y. An (X,Y )-separator S is minimal, if no proper subset
of S is an (X,Y )-separator. The distance distG(u, v) between a pair of vertices
u and v of G is the number of edges of a shortest path between them. The
open neighborhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG},
and its closed neighborhood is defined as NG[u] = NG(u) ∪ {u}. Two vertices
u, v are said to be true twins if NG[u] = NG[v], and u, v are false twins if
NG(u) = NG(v). A vertex u is simplicial, if NG(u) is a clique. The degree of
a vertex u ∈ VG is denoted dG(u) = |NG(u)|. The maximum degree of G is
Δ(G) = max{dG(v)|v ∈ VG}. A vertex of degree one is said to be a pendant
vertex.

A tree decomposition of a graph G is a pair (X,T ) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold: i)

⋃
i∈VT

Xi = VG, ii) for each edge xy ∈ EG,
x, y ∈ Xi for some i ∈ VT , and iii) for each x ∈ VG the set {i | x ∈ Xi} induces
a connected subtree of T . The width of a tree decomposition ({Xi | i ∈ VT }, T )
is maxi∈VT {|Xi| − 1}. The treewidth tw(G) of a graph G is the minimum width
over all tree decompositions of G. If T restricted to be a path, then we say that
(X,T ) is a path decomposition of a graph G. The pathwidth pw(G) of G is the
minimum width over all path decompositions of G.

In the remainder of this section we give some structural results about sparse
square roots. We start with the following observation that we will frequently use.
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Observation 1. Let H be a square root of a connected graph G.

i) If u is a pendant vertex of H, then u is a simplicial vertex of G.
ii) If u, v are pendant vertices of H adjacent to the same vertex, then u, v are

true twins in G.
iii) If u, v are pendant vertices of H adjacent to different vertices, then u and v

are not adjacent in G unless H = K2.

We now state a number of lemmas, the proofs of which have been omitted due
to space restrictions, although we note that the proof of Lemma 1 is straightfor-
ward. Moreover, Lemmas 1 and 2 can also be found implicitly in the paper of
Ross and Harary [18]. Because Ross and Harary [18] consider tree square roots,
whereas we are concerned with finding general square roots, we cannot apply
their results directly, and as such we give explicit statements of these lemmas.

Lemma 1. Let H be a square root of G. Let {u1, . . . , ur} ⊆ VH for some r ≥ 3
induce a star in H with central vertex u1. Let u3, . . . , ur be pendant and {u2} be
a ({u1, u3, . . . , ur}, VH \{u1, . . . , ur})-separator. Then {u1, . . . , ur} is a clique of
G, and {u1, u2} is a minimal ({u3, . . . , ur}, VG \ {u1, . . . , ur})-separator of G.

Lemma 2. Let {u1, . . . , ur}, r ≥ 3, be a clique in a connected graph G such
that {u1, u2} is a minimal ({u3, . . . , ur}, VG \ {u1, . . . , ur})-separator. Let also
{x1, . . . , xp} = NG(u1) \ {u1, . . . , ur} and {y1, . . . , yq} = NG(u2) \ {u1, . . . , ur}.
Let G be a graph having a square root.

i) For any square root H of G, the following holds: u1u2 ∈ EH and, either
u3u1, .., uru1 ∈ EH , u3u2, . . . , uru2 /∈ EH , u1x1, . . . , u1xp /∈ EH , and {u2}
is a minimal ({u1, u3, . . . , ur}, VH \ {u1, . . . , ur})-separator in H or, sym-
metrically, u3u1, . . . , uru1 /∈ EH , u3u2, . . . , uru2 ∈ EH , u2y1, . . . , u2yq /∈ EH

and {u1} is a minimal ({u2, .., ur}, VH \ {u1, .., ur})-separator in H.
ii) If u1, u2 are true twins in G, then either u1x1, . . . , u1xp ∈ EH or

u2y1, . . . , u2yq ∈ EH , G is the union of two complete graphs with vertex sets
{u1, . . . , ur} and {u1, u2, x1, . . . , xp}, and G has two isomorphic square roots
with edge sets {u1u2, . . . , u1ur} ∪{u2x1, . . . , u2xp} and {u2u1, u2u3, . . . , u2ur}
∪{u1x1, . . . , u1xp} respectively.

iii) If NG[u2] \ NG[u1] 
= ∅, then u2u1, . . . , uru1 ∈ EH , u3u2, . . . , uru2 /∈ EH ,
u1x1, . . . , u1xp /∈ EH , and G has a square root such that {u1, . . . , ur} in-
duces the star with central vertex u1 such that u3, . . . , ur are pendant in H;
moreover, this square root can be obtained from any square root of G by the
deletion of the edges uiuj for i, j ∈ {2, . . . , r}, i 
= j.

Lemma 3. Let H be a square root of G. Suppose that H contains the graph
F shown in Fig. 1 as a subgraph, r ≥ 3, u4, . . . , ur are pendant vertices of
H, dH(u2) = r − 1, u1u2u3 is an induced path in H that is not included in
any cycle of length at most 6, p, q ≥ 1, {x1, . . . , xp} = NH(u1) \ {u2} and
{y1, . . . , yq} = NH(u3)\{u2}. Then {u1, . . . , ur} is a clique in G such that either
r = 3 or {u1, u2, u3} is a minimal ({u4, . . . , ur}, VG \ {u1, . . . , ur}) separator in
G and the following holds:
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u1 u2 u3

u4 ur

x1
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Fig. 1. The graph F

i) {x1, . . . , xp} = NG(u1)∩NG(u2) \ {u3, . . . , ur} and {y1, . . . , yq} = NG(u2)∩
NG(u3) \ {u1, u4, . . . , ur};

ii) dG(u2) = p + q + r − 1;
iii) NG(u1) ∩NG(u3) = {u2, u4, u5, . . . , ur};
iv) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈ {1, . . . , p}

and j ∈ {1, . . . , q}.
Lemma 4. Let {u1, . . . , ur}, r ≥ 3, be a clique in a connected graph G such
that either r = 3 or {u1, u2, u3} is a minimal ({u4, . . . , ur}, VG \ {u1, . . . , ur})-
separator. Assume also that

i) {x1, . . . , xp} = NG(u1) ∩ NG(u2) \ {u3, . . . , ur} 
= ∅ and {y1, . . . , yq} =
NG(u2) ∩NG(u3) \ {u1, u4, . . . , ur} 
= ∅;

ii) dG(u2) = p + q + r − 1;
iii) NG(u1) ∩NG(u3) = {u2, u4, . . . , ur};
iv) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈ {1, . . . , p}

and j ∈ {1, . . . , q}.
Then for any square root H of G (if there is one), the graph F shown in Fig. 1
is a subgraph of H such that dH(u2) = r− 1, {x1, . . . , xp} = NH(u1) \ {u2} and
{y1, . . . , yq} = NH(u3) \ {u2}. Moreover, if H is a square root of G, then the
graph obtained from H by deleting the edges uiuj for i, j ∈ {4, . . . , r}, i 
= j, is
a square root of G, where u4, . . . , ur are pendant vertices in H.

Lemma 5. Let u, v be true twins in a connected graph G with at least three
vertices. Let also G′ be the graph obtained from G by the deletion of v. If H ′

is a square root of G′, then the graph H obtained from H ′ by adding v with
NH(v) = NH′(u) (i.e, by adding a false twin of u) is a square root of G. If H is
a square root of G such that u, v are false twins in H, then the graph H ′ obtained
by the deletion of v is a square root of G′.

3 Square Roots for Graphs of Bounded Degree

In this section we show that the Minimum Square Root problem is polynomial-
time solvable for graphs of maximum degree at most 6. We start with some
additional terminology and lemmas, the proofs of which have been omitted.

Let G be a connected graph, and let u ∈ VG. We let L0(u), . . . , Ls(u)(u)
denote the levels in the breadth-first search (BFS) from u, that is, Li(u) = {v ∈
VG | distG(u, v) = i} for i = 1, . . . , s(u), where s(u) is the number of levels in
the decomposition. Hence Li = ∅ if i > s(u).
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Lemma 6. For a connected graph G and u ∈ VG,

pw(G2) ≤ max{|Li(u) ∪ Li+1(u) ∪ Li+2(u)||0 ≤ i ≤ s(u)} − 1.

We define the following auxiliary problem.

Minimum Square Root with Labels

Input: a graph G, positive integer s and sets of edges R,B ⊆ EG.
Question: does there exist a graph H with at most s edges such that G = H2,

R ⊆ EH and B ∩ EH = ∅?

We will use the following lemma.

Lemma 7. The Minimum Square Root with Labels problem can be solved
in time O(f(t)n) for n-vertex graphs of treewidth at most t.

Using Lemma 6 we show that if a square root of G has no induced paths with
internal vertices of degree 2 that are parts of short cycles, then G has bounded
pathwidth.

Lemma 8. Let H be a square root of a graph G with Δ(G) ≤ 6 such that H
has no induced path xyz with dH(y) = 2, dH(x) ≥ 2 and dH(z) ≥ 2 that is not
included in any cycle of length at most 6 in H. Then pw(G) ≤ 71.

The following example shows that we cannot obtain an analog of Lemma 8
for graphs of maximum degree at most 7. Let H ′ be a cubic graph. We construct
a graph H as follows. For each vertex u ∈ VH′ with NH′ (u) = {v1, v2, v3}, u is
replaced by three pairwise adjacent vertices u1, u2, u3, and the edges uv1, uv2, uv3
are replaced by u1v1, u2v2, u3v3. We observe that H is cubic and that Δ(H2) =
7. However, not only pw(H2) but also tw(H2) is not bounded, because the
treewidth of H ′ can be arbitrary.

We can now prove the main theorem of this section.

Theorem 1. Minimum Square Root can be solved in time O(n5) for n-vertex
graphs of maximum degree at most 6.

Proof. The proof is constructive. Our algorithm has two stages. At the first stage
we exclude induced paths from square roots with internal vertices of degree two
that are not included in short cycles in roots.

Let G be a graph of maximum degree at most 6. We use two sets of edges
R and B, and we are trying to find square roots that contain edges of R but
that do not contain any edge of B, that is, we are solving Minimum Square

Root with Labels. Initially, R = ∅ and B = ∅. We recursively apply the
following rule. Here, we say that a sequence u1, . . . , u� is maximal if it cannot
be extended by adding new vertices in the beginning or in the end in such a way
that conditions i)–v) of step 1 are fulfilled for the modified sequence.
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Path reduction rule.

1. Find a maximal sequence of vertices u1, . . . , u�, � ≥ 3 such that
i) ui, ui+1, ui+2 are pairwise adjacent for i ∈ {1, . . . , �− 2},

ii) the sets {x1, . . . , xp} = NG(u1)∩NG(u2)\{u1, u2, u3} and {y1, . . . , yq} =
NG(u�−1) ∩NG(u�) \ {u�−2, u�−1, u�} are not empty,

iii) dG(u2) = p + q + 2 if � = 3, and dG(u2) = p + 3, dG(u�−1) = q + 3,
dG(ui) = 4 for i ∈ {3, �− 2} if � ≥ 4,

iv) NG(ui) ∩NG(ui+2) = {ui+1} for i ∈ {1, . . . , �− 2}, and
v) if � ≤ 4, then x1u�, . . . , xpu� /∈ EG, y1u1, . . . , yqu1 /∈ EG, and if � = 3,

then xiyj /∈ EG for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.
2. Set R′ = {u1u2, u2u3, . . . , u�−1u�}∪ {x1u1, . . . , xpu1}∪ {y1u�, . . . , yqu�} and

B′ = {x1u2, . . . , xpu2}∪{y1u2, . . . , yqu2}∪{uiui+2|1 ≤ i ≤ �−2}∪{zu1|z ∈
NG(u1) \ {u2, u3, x1, . . . , xp}} ∪ {zu�|z ∈ NG(u�) \ {u�−2, u�−1, y1, . . . , yq}}.

3. If R ∩B′ 
= ∅ or R′ ∩B 
= ∅, then stop and return no.
4. Delete vertices u2, u4 . . . , u� from G, and also delete the edge u1u3 if � = 3.

Set R = (R ∪R′) ∩ EG and B = (B ∪B′) ∩ EG. Set s = s− � + 1.

To show that the path reduction rule is safe, consider an instance (G,R,B, s)
of Minimum Square Root with Labels and assume that u1, . . . , u� is a
sequence of vertices that satisfies i)–v) of step 1. By Lemma 4, for any square
root H of G (if it exists), R′ ⊆ EH and B′ ∩ EH = ∅ for the sets R′ and B′

constructed at step 2. Hence, if R ∩ B′ 
= ∅ or R′ ∩ B 
= ∅, then we have a no-
answer. Assume that we did not stop at step 3, and denote by (Ĝ, R̂, B̂, ŝ) the
instance of Minimum Square Root with Labels obtained at step 4. Let H
be a solution for (G,R,B, s). Because R′ ⊆ EH and B′ ∩ EH = ∅ by Lemma 4,
it is straightforward to check that the graph Ĥ obtained from H by the deletion
of u2, . . . , u�−1 is a solution for (Ĝ, R̂, B̂, ŝ). From another side, if Ĥ is a solution
for (Ĝ, R̂, B̂, ŝ), then H obtained by joining u1 and u� by a path of length �− 1
is a solution for (G,R,B, s).

We apply the path reduction rule recursively and as long as possible. As-
sume that we did not stop and returned no. To simplify notation, assume that
(G,R,B, s) is the obtained instance of Minimum Square Root with Labels.
Because we cannot apply the path reduction rule, by Lemma 3, we conclude that
for any square root H of G, H has no induced path u1u2u3 with dH(u2) = 2,
dH(u1) ≥ 2 and dH(u3) ≥ 2 that is not included in any cycle of length at most
6 in H , as otherwise we could apply the rule for the maximal sequence that
includes u1, u2, u3. By Lemma 8, pw(G) ≤ 71 if G has a square root. Using
Bodlaender’s algorithm [3], we check whether pw(G) ≤ 71. If pw(G) > 71, then
we conclude that we have a no-answer. Otherwise, we solve Minimum Square

Root with Labels using Lemma 7.

To conclude the proof, it remains to evaluate the complexity. Each application
of the path reduction rule can be done in time O(n3m) where m is the number
of edges. We can check all triples u1, u2, u3 of pairwise adjacent vertices in time
O(n3). Then we can construct the sets NG(u1)∩NG(u2)\{u1, u2, u3}, NG(u1)∩
NG(u2) \ {u1, u2, u3} and check conditions i)–v) in time O(m). Observe that we
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possibly can extend the sequence u1, . . . , ui for i ≥ 3 only if NG(ui−1)∩NG(ui)\
{ui−2, ui−1, ui} contains exactly one element. Hence, the total time needed to
obtain a maximal sequence if u1, u2, u3 are given is O(m). Also the checking
whether we have a no-answer at step 3 and construction of the new instance can
be done in linear time. As the rule is applied at most n times, we conclude that
the total time for this step is O(n5). It remains to observe that the Bodlaender’s
algorithm [3] runs in linear time, and Square Root with Labeled Edges is
also can be solved in linear time for graphs of bounded treewidth. ��

We observe that by the same approach we can solve other variants of square
root problems for graphs of maximum degree at most 6. We can find, for example,
a square root of maximum size. Also we can count all square roots.

4 The Tree +k Edges Square Root Problem

In this section we prove the following theorem.

Theorem 2. The Tree +k Edges Square Root problem can be solved in
time 2O(k4) + O(n4m) time on graphs with n vertices and m edges.

Proof. Due the space restrictions, we only sketch the proof here.
We need the following auxiliary problem:

Tree +k Edges Square Root with Labels

Input: an n-vertex graph G, a non-negative integer k and two subsets of edges
R,B ⊆ EG.

Parameter: k.
Question: does there exist a graph H with at most n + k − 1 edges such that

G = H2, R ⊆ EH and B ∩ EH = ∅?

In order to prove the theorem, we reduce Tree +k Edges Square Root to
Tree +k Edges Square Root with Labels where the size of the graph in
the obtained instance is bounded by a function of k. Then we solve Tree +k
Edges Square Root with Labels by a brute force algorithm.

Let G be a connected graph with n vertices and m edges, and let k be a
positive integer. First, we check whether G has a tree square root using the
algorithm by Lin and Skiena [13], and if we find one, then we stop and return
a yes-answer. From now on we assume that any square root of G (if there is
one) has cycles. Clearly, connected graphs that have square roots have no cut
vertices. Hence, we also check whether G is 2-connected, and stop and return no

otherwise. We introduce two sets of edges R and B. Initially R = B = ∅.
As in the algorithm of Lin and Skiena [13], we “trim” pendant edges in po-

tential roots. Since the root we are looking for is not a tree, our trimming rule
is more sophisticated and based on Lemmas 1 and 2.

Trimming Rule

1. Find a pair S = {u1, u2} of two adjacent vertices such that one component
of G−S has a set of vertices {u3, . . . , ur} such that {u1, . . . , ur} is a clique.
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2. If either NG[u1] = NG[u2] or NG[u1] \NG[u2] 
= ∅ and NG[u2] \NG[u1] 
= ∅,
then stop and return no.

3. If NG[u1] \NG[u2] 
= ∅, then rename u1 by u2 and u2 by u1.
4. Set R′ = {u1u2, . . . , u1ur} and B′ = {uiuj|2 ≤ i < j ≤ r} ∪ {u1x|x ∈

NG(u1) \ {u2, . . . , ur}}.
5. If R ∩ B′ 
= ∅ or R′ ∩ B 
= ∅, then stop and return no. Otherwise, set

R = R ∪ R′, B = B ∪ B′, delete u3, . . . , ur from G and delete the edges
incident to these vertices from R and B.

We apply this rule recursively until we either stop and return no or else
obtain an instance of Tree +k Edges Square Root Labels such that we
cannot apply the rule anymore. Suppose that we did not return no. To simplify
notations, assume that (G,R,B) is the obtained instance. We need the set R
constructed up to now. Let R0 = R. We now apply the following rule, which is
based on Lemmas 3 and 4.

Path Reduction Rule

1. Find a triple S = {u1, u2, u3} of pairwise adjacent vertices such that

i) either NG(u1) ∩NG(u2) ∩NG(u3) = ∅ or NG(u1) ∩NG(u2) ∩NG(u3) =
{u3, . . . , ur} is a clique of G and S is a ({u4, . . . , ur}, VG \ {u1, . . . , ur})-
separator,

ii) {x1, . . . , xp} = NG(u1)∩NG(u2)\{u1, . . . , ur} and {y1, .., yq} = NG(u3)∩
NG(u2) \ {u1, . . . , ur} are not empty,

iii) dG(u2) = p + q + r − 1,
iv) NG(u1) ∩NG(u3) = {u2, u4, . . . , ur}, and
v) x1u3, . . . , xpu3 /∈ EG, y1u1, . . . , yqu1 /∈ EG and xiyj /∈ EG for i ∈
{1, . . . , p} and j ∈ {1, . . . , q}.

2. Set R′ = {u2u1, u2u3, . . . , u2ur} and B′ = {x1u2, . . . , xpu2}∪{y1u2, .., yqu2}∪
{u1u3, . . . , u1ur} ∪ {u3u4, . . . , u3ur}.

3. If R ∩B′ 
= ∅ or R′ ∩B 
= ∅, then stop and return no.
4. Delete the vertices u2, u4 . . . , ur from G and delete all edges incident to these

vertices from R and B. If u1u3 ∈ B, then delete u1u3 from B. Include u1u3

in R. Modify G by adding edges x1u3, . . . , xpu3 and y1u1, . . . , yqu1 in G. Put
these edges in B.

We apply the rule recursively and as long as possible. Suppose that we did not
stop and return no. As before, assume that (G,R,B) is the obtained instance.
Recall that R0 is the set of vertices placed in R by the trimming rule. Let
R1 = R0 ∩R and R2 = R \R1. Now we are ready to describe the final reduction
rule based on Observation 1 and Lemma 5.

Simplicial Vertex Reduction Rule

1. Find the set S of all simplicial vertices v of G such that v is not incident to
the edges of R2 and if v is incident to an edge of R1, then all other edges
incident to v are in B.

2. If |VG \ S| > 15k − 14, then stop and return no.
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3. Construct the partition S1, . . . , St of S such that any two vertices in each
Si are true twins, and vertices from Si and Sj are not adjacent if i 
= j. Let
X1, . . . , Xt be the sets of vertices incident to the edges of R1 in S1, . . . , St

respectively.
4. If t > 15k − 14, then stop and return no.
5. If for some i ∈ {1, . . . , t}, all the edges of R1 incident to the vertices of Xi

have no common end-point, then stop and return no.
6. For each i ∈ {1, . . . , t}, if |Xi| > 1, then delete arbitrary |Xi| − 1 vertices of

Xi from G and Si, and delete the edges of R,B incident to these vertices.
7. For each i ∈ {1, . . . , t}, if |Si| > 15k−13, then delete arbitrary |Si|−15k+13

vertices of Si \Xi from G.

For these rules, we prove that if we stop while executing them, then the
problem has no solution. If (Ĝ, R̂, B̂) is the instance obtained by one application
of the rules, then Ĝ is connected, Tree +k Edges Square Root with Labels

has a yes-answer for (Ĝ, R̂, B̂) if and only if Tree +k Edges Square Root

with Labels has a yes-answer for (G,R,B), and Ĝ has at most (15k−14)(15k−
12) vertices.

To complete the proof of Theorem 2, it remains to solve the obtained reduced
instance (Ĝ, R̂, B̂) and evaluate running time. As the obtained graph has at
most (15k − 14)(15k − 12) vertices, it has at most (15k − 14)(15k − 12)((15k −
14)(15k − 12)− 1)/2 edges. Therefore, we can solve Tree +k Edges Square

Root with Labels for the obtained instance in time 2O(k4) by brute force
checking all edge subsets of size at most |VĤ | + k − 1. Now we observe that
the trimming and path reduction rules are applied at most n times to construct
(Ĝ, R̂, B̂). Each application of the trimming rule can be done in time O(n2m) and
each application of the path reduction rule takes O(n3m). Finally, the simplicial
vertex reduction rule can be done in O(nm). Hence, the total running time is

2O(k4) + O(n4m). ��

Note we reduced Tree +k Edges Square Root to Tree +k Edges

Square Root with Labels, i.e., we did not obtain a polynomial kernel.
In fact, a polynomial kernel for Tree +k Edges Square Root can be ob-
tained by similar reduction rules, but the obtained graph would have more than
(15k − 14)(15k − 12) vertices.

5 Conclusions

We proved that Tree +k Edges Square Root is FPT when parameterized by
k. We also showed that Minimum Square Root can be solved in polynomial
time for graphs of maximum degree at most 6. It would be interesting to know
whether this degree restriction is tight. Is it possible to solve the problem in
polynomial time for graphs of maximum degree at most Δ for some fixed Δ ≥ 7?
Is there a fixed Δ such that Minimum Square Root is NP-complete for graphs
of maximum degree at most Δ? This question is open even if we ask about the
existence of any (not necessarily minimum) square root. Another interesting
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direction of research is to consider square roots of bounded degree. It is trivial
to check whether a graph has a square root of maximum degree at most two.
Can the existence of a subcubic square root be tested in polynomial time?

Is it possible to construct an exact algorithm for Minimum Square Root

that is better than the trivial exact algorithm for this problem? It can be noted
that if we consider Maximum Square Root (i.e. we ask about a square root
of maximum size), then such an algorithm exists. This algorithm is based on the
simple observation that to construct a square root H from a given graph G, for
every pair of adjacent edges not belonging to a triangle we have to delete at least
one of these edges. Since the structure of the paths in G is crucial, the following
auxiliary graph P(G) with vertex set EG is useful: for any distinct edges e1 = xy
and e2 = yz with a common end-point such that xz /∈ EG, e1e2 is an edge of
P(G). Clearly, for a given graph G, P(G) is a subgraph of the line graph of G.
This leads to the following lemma, the proof of which has been omitted.

Lemma 9. Let H be a spanning subgraph of G. Then H is a square root of the
graph G if and only if EH is an independent set of P(G) and for all adjacent
vertices u, v in G, u and v are at distance at most 2 in H.

By using Lemma 9 we obtain an exact exponential time algorithm for Max-

imum Square Root.

Theorem 3. Maximum Square Root can be solved by an exact exponential
time algorithm of running time O∗(3m/3), where m denotes the number of edges
of the input graph.

Proof. Let G be a graph. We compute the graph P(G), enumerate all maximal
independent sets I of P(G), and verify for each I ⊆ E whether G is the square
of the graph HI = (VG, I). Out of those graphs HI that are square roots of
G, return the one with maximum number edges; if no such graph HI has been
found, then G has no square roots. Correctness follows from Lemma 9. The
graph P(G) can be computed in time O(m2). All the maximal independent sets
of the m-vertex graph P(G) can be enumerated in time O∗(3m/3) using the
polynomial delay algorithm of Tsukiyama et al. [19], since P(G) has at most
3m/3 maximal independent sets [15]. Finally, for each maximal independent set
I, we can check in time O(nm) whether (HI)2 = G. Hence the overall running
time of our algorithm is O∗(3m/3). ��

Lemma 9 also implies that it can be decided in time O∗(2k) whether a square
root of a graph G can be obtained by deleting at most k edges. It is sufficient
to check whether P(G) has a vertex cover C of size at most k such that H =
(VG, EG \C) is a square root of G. All vertex covers of size at most k of a graph
can be enumerated by adapting the standard O∗(2k) branching algorithm for
the vertex cover problem (see e.g. [5]).

Aingworth, Motwani and Harary [2] proved that if H is a square root of a
connected n-vertex graph G 
= Kn, then |EG \EH | ≥ n−2. Trivially, a complete
graph is its own square root. Hence, we conclude the paper with the following
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question: is it FPT to decide whether a connected n-vertex graph G 
= Kn has
a square root with at least |EG| − |VG| − k + 2 edges when parameterized by k?
In particular, can it be decided in polynomial time whether a connected graph
G has a square root with exactly |EG| − |VG|+ 2 edges?
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Abstract. We consider the problem of deciding whether a k-colored
graph can be completed to have a given property. We establish that,
when k is not fixed, the completion problem for circular-arc graphs, even
unit or proper circular-arc graphs, is NP-complete. When k is fixed, in the
case of completion to circular-arc graphs and Helly circular-arc graphs,
we fully classify the complexities of the problems. We also show that
deciding whether a 3-colored graph can be completed to be strongly
chordal can be done in O(n2) time. As a corollary of our results, the
sandwich problem for Helly circular-arc graphs is NP-complete.

1 Introduction

The graphs we consider are simple and vertex colorings are proper. A k-colored
graph is a graph properly colored with k colors. In the Π sandwich problem, given
graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex-set with E1 ⊆ E2

and a property Π , the question is whether there is a graph G = (V,E) that has
property Π and E1 ⊆ E ⊆ E2 holds. The set E1 contains the required edges,
while the set E2\E1 contains the optional edges. It is seen that when E1 = E2

the sandwich problem is the same as the recognition problem for property Π .
The sandwich problem was introduced in 1995 by Golumbic et al. in [10] where
they studied the problem for the property of membership in several classes of
perfect graphs. Since then, the sandwich problem has been studied for a variety
of NP properties, and a number of published papers can be found on the topic.

In the Π completion of a colored graph problem, given a property Π and a
graph G = (V,E) with a proper vertex coloring c : V → Z, the question is
whether there exists a supergraph G′ = (V,E′) of G that has property Π and
is properly colored by c. When such a G′ exists, we say G′ is a Π completion of
G and G admits a Π completion. By taking the edges in E to be the required
edges and {xy | x ∈ V , y ∈ V , xy /∈ E, and c(x) 
= c(y)} to be the set of optional
edges, it is seen that the Π completion of a colored graph is a restriction of the
sandwich problem for property Π . There are sandwich problems that are NP-
complete (such as for comparability graphs), whose corresponding colored graph
completion problem is trivial (as every complete k-partite graph is a compara-
bility graph). However, there are also NP-complete sandwich problems whose
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colored graph completion version remains hard. Π completion of colored graphs
has been studied inside and outside the context of the sandwich problem.

It was established in [17] that the perfect phylogeny problem is equivalent
to problem of chordal completion of colored graphs. It was subsequently shown
that this problem is NP-complete [4], which in turn implies that the sandwich
problem for chordal graphs is also NP-complete. The sandwich problems for
strongly chordal graphs and chordal bipartite graphs were two of the problems
whose complexity was left as an open question in [10]. It was shown in [7,15] that
these problems are NP-complete; these proofs established that the problems of
strongly chordal completion of colored graphs and chordal bipartite completion
of colored graphs are NP-complete.

The complexity of chordal completion of colored graphs has been studied when
the input graph G is colored with k colors, where k is constant. For the case
that k = 3, several linear-time algorithms are known [5,11,12]. It is also known
that for every fixed k, the problem can be solved in polynomial time [14].

Due to potential applications to the problem of DNA physical mapping [3,9],
the problem of interval completion of a colored graph, and its variants, have been
studied extensively in the literature. It is known that the problems of interval
completion of a colored graph [6] and the unit interval completion of a colored
graph [9] are NP-complete. Several results are known for the case of interval and
unit interval completions when the input is restricted. Let k be the number of
colors used on the input graph. In contrast to the case for chordal graphs, the
best known algorithm for interval completion, when k = 3, runs in O(n2) time
[3]. In further contrast, the problem has been shown to be NP-complete for every
fixed k ≥ 4 [3]. In fact, the interval completion of a colored graph is NP-complete
[1] even for 4-colored caterpillars. Similarly, it is known that the unit interval
completion of a colored graph is solvable in polynomial time for caterpillars
with hair length less than 2 [2], while it is NP-complete for caterpillars with hair
length at least 2 [2].

Our main contributions in this paper are as follows: First, we show that the
problems of completing a colored graph to be a circular-arc graph, a proper
circular-arc graph, and a unit circular-arc graph are NP-complete. Then, we
provide a full classification of the complexity of the problem of completing a
colored graph to be a circular-arc graph when the number of colors used is fixed.
Specifically, given a k-colored graph, we show that when k = 2, there is an O(n)-
time algorithm for the problem, but when k = 3, the problem is NP-complete;
in turn, the problem remains NP-complete for every fixed k, k ≥ 3. We provide
an identical classification for the problem of completing a k-colored graph to
be a Helly circular-arc graph. To the best of our knowledge, these are the first
instances of a colored graph completion problem on 3-colored graphs that are
hard. We also show that deciding whether a 3-colored graph admits a strongly
chordal completion can be decided in O(n2) time; our algorithm is based on a
characterization of bi-connected 3-colored graphs that admit a strongly chordal
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completion. We conjecture that the corresponding problem for 4-colored graphs
is NP-complete. It is known that the sandwich problems for interval and circular-
arc graphs are NP-complete [10]. It follows from our results that the sandwich
problem for Helly circular-arc graphs is NP-complete.

We note that the proofs omitted due to space constraints can be found in the
full version of the paper.

2 Definitions

For graph G = (V,E), we use n = |V | and m = |E|. For S ⊆ V , G[S] is the
subgraph of G induced by S. Vertex x is simplicial if N(x) is a clique. G is
chordal if every cycle with at least 4 vertices in G has a chord. For k ≥ 1, a
k-tree is defined recursively as follows: a Kk+1 is a k-tree. Given a k-tree Tn on
n vertices, a k-tree on n+ 1 vertices can be constructed by adding a new vertex
that is adjacent only to every vertex of a clique of size k in Tn. A partial k-tree is a
subgraph of a k-tree. A sequence v1v2 · · · vn of all the vertices of a chordal graph
is a perfect elimination scheme provided for every i, 1 ≤ i < n, vi is simplicial
in G[{vi+1, · · · , vn}]. An n-sun is the graph on 2n vertices (n ≥ 3) whose vertex
set can be partitioned into W = {w0, . . . , wn−1} and U = {u0 . . . , un−1} such
that U is a clique, W is an independent set, and ui is adjacent to wj if and only
if i = j or i = j + 1 (mod n). A graph is strongly chordal if it is chordal and
does not contain an n-sun, n ≥ 3. G is an interval graph if every x ∈ V can
be mapped to an interval Ix on the real line such that xy ∈ E if and only if
Ix ∩ Iy 
= ∅. G is a circular-arc graph if every x ∈ V can be mapped to an arc
Ax on a circle such that xy ∈ E if and only if Ax ∩ Ay 
= ∅; {Ax|x ∈ V } is a
model for G. A set of pair-wise intersecting arcs in the model for a circular-arc
graph has the Helly property if they all have a common point of intersection. A
circular-arc graph is a Helly circular-arc graph if admits a model in which any
set of arcs corresponding to a clique has the Helly property. It is well known
that G is a Helly circular-arc graph if and only if there is a circular ordering of
the cliques of G with the consecutive ones property, i.e., for any vertex x of G,
the cliques containing x are consecutive in the ordering.

3 Circular-Arc Completions

3.1 Completing Arbitrarily Colored Graphs

Using the fact that the interval [3] and unit interval [9] completion of a colored
graph problems are NP-complete and the following theorem due to Tucker, we
prove Theorem 2.

Theorem 1. [16] Suppose the vertex set of a circular-arc graph G can be par-
titioned into two cliques. Then in any circular-arc model for G there exist two
points p1 and p2 such that each circular arc contains at least one of them.

Theorem 2. The circular-arc, proper circular-arc, and unit circular-arc com-
pletion of a colored graph problems are NP-complete.
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3.2 Completing 2-Colored Graphs

A short caterpillar is a tree obtained from a path on k vertices, k ≥ 1, by and
optionally attaching vertices of degree one to the vertices on the path. A bug is
a graph obtained from a cycle on 2k vertices, k ≥ 2 , by optionally attaching
vertices of degree one to the vertices on the cycle. A short caterpillar and a bug
have unique 2-colorings (up to flipping color classes).

3-colored-kite

c2 x2 x3 y1 y2 y3 z1x1

T2 pan

c3

Fig. 1. Three relevant graphs

Observation 1. The tree T2 is not a circular-arc graph. Any tree that is not
an interval graph must contain T2 as an induced subgraph. A circular-arc graph
cannot contain a pan as a subgraph.

Lemma 1. Let G be a 2-colored graph. G is a circular-arc graph if and only if
G is either the disjoint union of one or more short caterpillars or G is a bug.

Theorem 3. Let G be a 2-colored graph. Then, the following are equivalent:

(i) G admits a circular-arc completion.
(ii) G admits a Helly circular-arc completion.
(iii) G is either the disjoint union of short caterpillars or G is the disjoint

union of a bug with isolated vertices of either color.

Corollary 1. Whether a 2-colored graph admits a circular-arc completion (or
Helly circular-arc completion) can be tested in O(n) time.

3.3 Completing 3-Colored Graphs

We show that the problem of deciding whether a 3-colored graph G admits
a circular-arc completion (or Helly circular-arc completion) is NP-complete by
a transformation from the strongly NP-complete problem [8] 3-partition. Our
transformation uses ideas from [3]. However, the proof in [3] is for interval com-
pletion of a 4-colored graph; we require only three colors.

Problem 3-partition
Instance: Integers m ∈ N and Q ∈ N, a sequence s1, · · · , s3m ∈ N such that∑3m

i=1 si = mQ and 1
4Q < si <

1
2Q, 1 ≤ i ≤ 3m.

Question: Can the set {1, · · · , 3m} be partitioned into m disjoint sets S1, · · · , Sm

such that for 1 ≤ j ≤ m,
∑

i∈Sj
si = Q ?
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Note, if the answer is yes, then each set Si is a 3-set. Given an instance I of
the 3-partition problem, we describe the construction of 3-colored graph G(I).
Then we establish that I admits a 3-partition if and only if G(I) admits a (Helly)
circular-arc completion.

Suppose we are given an instance I of 3-partition m,Q, s1, s2, · · · , s3m ∈ N.
The graph G(I) is constructed as follows:

C-cliques: Clique Ci consists of the vertices ci,1, ci,2, and ci,3 where vertex ci,j
is colored j. Add cliques C0, C1, · · · , Cm−1 to G(I).

Note that when clique Ci+1 is referred to, and wherever appropriate, the
arithmetic is done modulo m.

Tracks: Track-i consists of the path di,1di,2 · · · di,24Q where vertex di,j is col-
ored 1 if j mod 3 = 1, colored 2 if j mod 3 = 2, and colored 3 if j mod 3
= 0. Thus, the color pattern 123123... repeats on the path. Construct track-0,
track-1, · · ·, track-m− 1. Identify vertex ci,1 of Ci with vertex di,1 of track-i, for
0 ≤ i ≤ m− 1. Also, identify vertex di,24Q of track-i with vertex c(i+1),3 of Ci+1,
for 0 ≤ i ≤ m− 1.

Thus, the part of G(I) formed so far consists of cyclically ordered cliques
C0, C1, · · · , Cm−1 where Ci is connected to Ci+1 by track-i.

W-paths: Corresponding to si, construct the path W i = ei,1ei,2 · · · ei,24si−2.
Vertex ei,j is colored 2 if j mod 3 = 1, colored 3 if j mod 3 = 2, and colored 1
if j mod 3 = 0. Thus, the color pattern 231231... repeats on the path with each
of the vertices ei,1 and ei,24si−2 colored 2. Add the paths W 1,W 2, · · · ,W 3m to
G(I).

In summary, the 3-colored graph G(I) consists of the m C-cliques cyclically
connected by the m tracks in disjoint union with the 3m W-paths. We refer
to the part of G(I) consisting of the C-cliques connected by the tracks as the
circle-gadget. The reader is referred to Figure 2 for a schematic.

In the transformation in [3] from 3-partition to the interval completion of
4-colored graphs the weight-gadgets are paths. The graph G in the constructed
instance includes two cliques of size 4, and a vertex that is adjacent to exactly
one vertex in each of these cliques and to one endpoint of each weight path.
This forces the weight paths to lie between the cliques of size 4 in any interval
model of an interval completion of G. In the case of completion to a circular-arc
graph, this type of structure in the constructed graph would over-constrain the
completion; hence we are able to construct a 3-colored graph.

Let 3-colored-kite be the 3-colored graph given in Figure 1, where each vertex
with subscript i has color i.

Proposition 1. Let A be a model of any circular-arc completion of a 3-colored-
kite. Then, the arcs corresponding to the vertices of the clique {x1, c2, c3} must
have the Helly property in A.

Proposition 2. Let A be a model of any circular-arc completion of the circle-
gadget. Then, A is a Helly circular-arc model that covers the circle.
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W 1

W 3m

e1,1 e1,2 e1,3 e1,4 e1,24s1−2

d0,24Q−1

cm−1,2

c1,3 = d0,24Q

dm−1,1 = cm−1,1

dm−2,24Q = cm−1,3

c0,1 = d0,1

d0,2

d0.3

dm−1,24Q = c0,3

c1,2
c1,1 = d1,1

dm−1,24Q−1

c1,2

c0,2

Fig. 2. A schematic of the transformation: the graph G(I)

Corollary 2. Let A be a model of any circular-arc completion of G(I). Then,
A is a Helly circular-arc model.

In the next two lemmata, we employ ideas from [3] where it is shown that the
interval completion problem for 4-colored graphs is NP-complete.

Lemma 2. Suppose I admits a 3-partition. Then, G(I) admits a circular-arc
completion. Further, any model for a circular-arc completion of G(I) is a Helly
circular-arc model.

Lemma 3. Suppose G(I) admits a circular-arc completion. Then, any model
for a circular-arc completion of G(I) is a Helly circular-arc model. Further, I
admits a 3-partition.

Proof. Let H be a circular-arc completion of G(I) and let A be a circular-arc
model for H ; it follows from Corollary 2 that A is a Helly circular-arc model.
Consider a circular ordering R of cliques of H such that for any vertex x of H ,
the cliques containing x are consecutive in R. As the paths {W j} are disjoint
from the circle-gadget in G(I) and the vertices of a Ci are colored 1, 2, and 3,
each endpoint of each edge of W j is part of a clique that is between Ci and Ci+1

in the clockwise direction, for some i, in R. As the arcs corresponding to the
vertices of the circle-gadget cover the circle (ref. Proposition 2), every clique in
R must contain a ci,s or a di,r vertex that is colored 1, 2, or 3. It then follows
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that the endpoints of an edge ej,kej,k+1 of W j whose vertices are colored 3 and
1 must be part of a clique of R that contains a track vertex di,r colored 2.
Corresponding to each such vertex di,r of track-i that is colored 2, there exists
a segment S of R where each clique in S contains vertex di,r. Clearly, there are
8Q such segments in track-i, all the segments are between Ci and Ci+1, and the
segments are pairwise disjoint.

Now, we claim that there is at most one clique in S corresponding to vertex
di,r that contains the endpoints of an edge ej,kej,k+1 of W j, for some j, where
ej,k is colored 3 and ej,k+1 is colored 1. Let Ka be the last clique in the counter-
clockwise direction that contains the vertex di,r and let Kb be the last clique in
the clockwise direction that contains the vertex di,r. By way of contradiction,
suppose there is another edge ep,qep,q+1 of W p with ep,q colored 3 and ep,q+1

colored 1 such that clique Kc contains di,r , ej,k, and ej,k+1 and clique Kd contains
di,r, ep,q, and ep,q+1. Suppose w.o.l.g. that the ordering of the cliques in the
clockwise direction from Ka is: Ka,Kc,Kd,Kb. Note that it may be the case
that Ka = Kc or Kb = Kd. We will show that this implies that either the arc
for ej,k is contained in the arc for di,r or the arc for ej,k+1 is contained in the
arc for di,r. This yields a contradiction as each of ej,k and ej,k+1 is adjacent
to some vertex on W j colored 2. Let Kap be the first clique distinct from Ka

encountered when moving in the counter-clockwise direction from Ka. Observe
that Kap must contain a vertex of color 1 or a vertex of color 3 from the circle-
gadget (ref. Proposition 2). If Kap contained a vertex of color 3, then the arc
for ej,k is constrained to be contained in the arc for di,r; otherwise, the arc for
ej,k+1 is constrained to be contained in the arc for di,r.

Let Bi be the indices of paths from {W j} each of whose edges is part of a
clique between Ci and Ci+1 in the clockwise direction. Let Bi = {i1, · · · , ir};
we may assume r ≥ 1. As each W j contains 8sj − 1 edges whose endpoints
are colored 1 and 3, the total number of such edges corresponding to the W j

paths whose indices are in Bi is (8si1 − 1) + · · · + (8sir − 1). It follows that
8(si1 + · · ·+sir )−r ≤ 8Q. For each si, as si ∈ N and si >

Q
4 , we have si ≥ Q

4 + 1
4 .

Thus, we have 8(Q4 + 1
4 )r − r ≤ 8Q and hence, r ≤ 3. It follows from integrality

that (si1 + · · ·+ sir ) ≤ Q. Thus, there is a partition of {1, · · · , 3m} into sets S1,
· · ·, Sm such that the sum of members of {sj | j ∈ Si}, for 1 ≤ i ≤ m, is at most
Q. However, as the sum of s1 through s3m is mQ, members of {sj | j ∈ Si}, for
1 ≤ i ≤ m, sum to exactly Q and I admits a 3-partition. �

Theorem 4. Given a 3-colored graph G, each of the following is NP-complete:
(i) Does G admit a circular-arc completion? (ii) Does G admit a Helly circular-
arc completion?

Proof. Since circular-arc (Helly circular-arc) graphs can be recognized in poly-
nomial time, the problems are in NP. As 3-partition is NP-complete in the
strong sense, the transformation provided above, whose correctness follows from
Lemma 2 and Lemma 3, is a polynomial-time transformation. �

Remark 1. A modification of the transformation from 3-partition given here can
be used to prove that given a 3-colored graph G, deciding whether G admits a
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unit circular-arc completion is NP-complete and deciding whether G admits a
proper circular-arc completion is NP-complete.

Corollary 3. The Helly circular-arc sandwich problem is NP-complete.

Let G be a k-colored graph. Construct graph H from G by adding a new
vertex colored k + 1 that is adjacent to every vertex of G. It is seen that G
admits a (Helly) circular-arc completion if and only if H does. Thus, we have
the following:

Corollary 4. For every fixed k ≥ 3, deciding whether a k-colored graph admits
a circular-arc completion or Helly circular-arc completion is NP-complete.

4 Strongly Chordal Completions

We consider the problem of strongly chordal completion of a colored graph,
when the input graph is k-colored. The problem is NP-complete when k is not a
constant [7]. When k is fixed and k = 2, the problem is trivial. Next, we present
an O(n2)-time algorithm the problem when k = 3. The chordal completion of
a 3-colored graph is well studied and multiple linear-time algorithms are known
for it [5,11,12].

Observe that if a 3-colored chordal graph contains a sun, then it must be a
3-sun. Thus, given a 3-colored graph G, the problem of determining whether G
admits a strongly chordal completion is equivalent to the problem of determining
whether G admits a chordal completion that does not contain a 3-sun.

Proposition 3. [5,14] Let G be a k+ 1-colored graph. G admits a chordal com-
pletion if and only if G admits a chordal completion that is a k-tree.

We note that the corresponding statement for strongly chordal completion is
not true. Construct G as follows: Start with the P5 abcde colored with colors
1 and 2 and add vertex f colored 3 so that f is adjacent to each of a, b, c, d, e.
Finally, add vertex g colored 3 adjacent only to c. Every way G can be completed
to be a 2-tree contains a 3-sun, and hence, G does not admit any strongly
chordal completion that is a 2-tree. However, G clearly admits a strongly chordal
completion, namely itself. However, when the input graph is bi-connected, the
following shows that it is enough to consider completions to 2-trees.

Proposition 4. If G is a k-connected k + 1-colored chordal graph with at least
k + 1 vertices, then G is a k-tree.

Let G be a 3-colored graph given as input. It is clear that G can be completed
to be strongly chordal if and only if each bi-connected component of G can be
completed to be strongly chordal. So, we assume that the input graph is bi-
connected. Further, given Proposition 4, the problem reduces to testing whether
G admits a 2-tree completion that avoids a 3-sun. Therefore, it is necessary that
G is a partial 2-tree.
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A tree of cycles [5] is a graph defined recursively as follows: A chordless cycle
is a tree of cycles. A triangle is considered to be a chordless cycle. Given a tree
of cycles Tk with k chordless cycles, a tree of cycles Tk+1 with k + 1 chordless
cycles can be constructed by adding a new chordless cycle and identifying the
end vertices of an edge of the new cycle with the end vertices of an edge in Tk.
In a tree of cycles an attach edge is an edge shared by two or more chordless
cycles.

Given a bi-connected partial 2-tree G, a cell completion G′ of G [5] refers to
adding certain edges to G that must be present in every completion of G to a
2-tree. A cell completion of a 3-colored graph G that is properly colored, if it
exists, is called a 3-colored cell completion of G.

Theorem 5. [5] Bi-connected graph G is a partial 2-tree if and only if its cell
completion G′ is a tree of cycles. Further, the cell completion of G can be com-
puted in linear time.

Observation 2. Let G be a bi-connected 3-colored graph. G admits a strongly
chordal completion if and only if G has a 3-colored cell completion that admits
a strongly chordal completion.

In [5] a characterization was provided of the case when a cell completion (tree
of cycles) of a bi-connected 3-colored graph admits a chordal completion: it was
shown that the cell completion must be properly colored and every chordless
cycle in the cell completion must use all three colors. We provide a similar
characterization for the case of completion to strongly chordal graphs. It turns
out that the structure of the tree of cycles becomes restricted as well as the
completions of the individual chordless cycles.

Observation 3. A 3-coloring of a 3-sun is unique (up to naming the colors)
and it is impossible to destroy a 3-colored 3-sun by adding edges to it while
maintaining chordality and a proper coloring.

Lemma 4. Let G′ be a 3-colored cell completion of a bi-connected 3-colored
graph G. Then, G′ can be completed to be strongly chordal if and only if each
chordless cycle C of G′ can be completed to be strongly chordal without creating
a 3-sun each of whose edges is either an attach edge or has both its endpoints on
the same chordless cycle.

Therefore, it is sufficient to complete each chordless cycle to a strongly chordal
graph ensuring that when the completions of chordless cycles are glued together
at the attach edges, no 3-sun will be created.

Observation 4. Let C be 3-colored chordless cycle. Then, any chordal comple-
tion C′ of C is a triangulation, and hence, is a 2-tree. Further, every edge of C
is in a unique triangle in C′.

Let C′ be a triangulation of a 3-colored chordless cycle C. Triangle A in C′

is a border triangle if it includes two edges of C; A is an interior triangle if it
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includes exactly one edge of C. Let B be a cycle in graph G. Edge e of B is in
an exterior triangle of B if e is part of a triangle that has a vertex not on B.

In Lemma 5 and Corollaries 5 and 6, we assume a positive instance of the
strongly chordal completion of a 3-colored graph problem; let G′ be a 3-colored
cell completion of a bi-connected 3-colored graph G and let H be a strongly
chordal completion of G′.

Lemma 5. Suppose C′ is a triangulation of some cycle C in H.

(i) If an edge e of C is in an exterior triangle of C, then it is in a border
triangle of C′.

(ii) If each of the edges uv, vw on C is in an exterior triangle of C, then v is
adjacent in C′ to all the other vertices of C. Further, there cannot be another
edge on C in an exterior triangle of C.

(iii) If C has edge e that is in an exterior triangle of C, then C′ admits a linear
ordering of the triangles in C′ such that the ordering starts with a border
triangle containing e, ends with a border triangle, each of the other triangles
is an interior triangle, and for each vertex x of C, the triangles that contain
x are consecutive in the ordering. Further, if C has edge f 
= e that is also
in an exterior triangle of C, then f must be in the terminal border triangle
in the ordering.

Corollary 5. Suppose C′ is a triangulation of some cycle C in H. Then, C has
at most two edges each of which is in an exterior triangle of C. Specifically, a
chordless cycle in G′ has at most two attach edges.

Let G′ be a 3-colored cell completion of a bi-connected 3-colored graph G. A
chordless cycle C in G′ is of type-i, i = 0, 1, 2, if C has i attach edges.

Corollary 6. For a chordless cycle C in G′, let C′ be the triangulation of C in
H. Then, C′ is an interval graph that admits a linear ordering of its triangles
such that the first and last are border triangles of C′, the rest are interior trian-
gles of C′, and for every vertex x in C, the triangles containing x are consecutive
in the ordering. Further,

(i) if C is of type-2 with attach edges e and f , then e is in the first triangle and
f is in the last triangle.

(ii) if C is of type-1 with the attach edge e, then e is in the first triangle and
some edge in E(C) is in the last triangle.

(iii) if C is of type-0 with no attach edges, then some edge in E(C) is in the
first triangle and some edge in E(C) is in the last triangle.

Let C be a chordless cycle of type-i, i = 0, 1, 2, in a 3-colored cell completion
G′ of a bi-connected graph G. A triangulation C′ of C is a compatible interval
completion if C′ satisfies the part of Corollary 6 that applies to C.

Theorem 6. Let G′ be a 3-colored cell completion of a bi-connected 3-colored
graph G and H be an edge-supergraph of G′ that is properly colored. Then, H
is strongly chordal if and only if, for each chordless cycle C in G′, C has at
most two attach edges and the completion C′ of C in H is a compatible interval
completion.
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Algorithm 1. stc-completion

input: Bi-connected 3-colored graph G
output: yes if G can be completed to be strongly chordal and no otherwise
if G is not a partial 2-tree then

output no; stop
else

Compute any 2-tree completion H of G
end if
Use G and H to compute the cell completion G′ of G
if G′ is not properly colored then

output no; stop
else

Construct list L of chordless cycles in G′

end if
if some chordless cycle in L has more than two attach edges then

output no; stop
end if
for each chordless cycle C in L do

if C does not admit a compatible interval completion then
output no; stop

end if
end for
output yes

Theorem 7. Algorithm stc-completion is correct and it can be implemented to
run in O(n2) time. Thus, deciding whether a 3-colored graph can be completed
to be strongly chordal can be done in O(n2) time.

Proof. Since the cell completion adds edges that must be in every 2-tree comple-
tion of a bi-connected partial 2-tree, if the cell completion is not properly colored
then the answer is no. The rest of the correctness of the algorithm follows from
the lemmata, corollaries, and the discussions preceding it. Testing whether G is
a partial 2-tree, and if so completing it to a 2-tree H , can be done in linear time
[13]. It is shown in [5] that from G and H , the cell completion G′ of G can be
computed in linear time and a list of the chordless cycles in G′ can be found in
linear time. An algorithm to test whether a 3-colored chordless cycle admits a
compatible interval completion in O(n2) time appears in [3]. �

We note that from details in the paper, when a 3-colored graph has a strongly
chordal completion H , the graph H can be constructed in O(n2) time.

5 Conclusions

We have provided a full classification of the complexities of the problems of
completing a colored graph to be a circular-arc graph, and completing a col-
ored graph to be a Helly circular-arc graph, when the number of colors used
is fixed. We have also shown that deciding whether a 3-colored graph admits a
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strongly chordal completion can be decided in O(n2) time; we conjecture that
this problem for 4-colored graphs is NP-complete. It follows from our results
that the sandwich problem for Helly circular-arc graphs is NP-complete. In the
proof that deciding whether a 3-colored graph has a circular-arc completion is
NP-complete, the graph that we construct is disconnected. We remark that the
problem is unlikely to be easy for connected graphs.
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Abstract. A colouring of a graph G = (V,E) is a mapping c : V →
{1, 2, . . .} such that c(u) �= c(v) if uv ∈ E; if |c(V )| ≤ k then c is a
k-colouring. The Colouring problem is that of testing whether a given
graph has a k-colouring for some given integer k. If a graph contains no
induced subgraph isomorphic to any graph in some family H, then it
is called H-free. The complexity of Colouring for H-free graphs with
|H| = 1 has been completely classified. When |H| = 2, the classifica-
tion is still wide open, although many partial results are known. We
continue this line of research and forbid induced subgraphs {H1,H2},
where we allow H1 to have a single edge and H2 to have a single non-
edge. Instead of showing only polynomial-time solvability, we prove that
Colouring on such graphs is fixed-parameter tractable when parame-
terized by |H1| + |H2|. As a byproduct, we obtain the same result both
for the problem of determining a maximum independent set and for the
problem of determining a maximum clique.

1 Introduction

Graph colouring involves the labelling of the vertices of some given graph by
integers called colours such that no two adjacent vertices receive the same colour.
The Colouring problem is that of deciding whether or not a graph can be
coloured with at most k colours for some given integer k. Because Colouring

is NP-complete for any fixed k ≥ 3, its computational complexity has been
widely studied for special graph classes, see for example the surveys of Randerath
and Schiermeyer [23] and Tuza [26]. In this paper, we consider the Colouring

problem for graphs characterized by two forbidden induced subgraphs. Before
we summarize related results and explain our new results, we first state the
necessary terminology.
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1.1 Basic Terminology

We only consider finite undirected graphs without loops or multiple edges. We
refer to the textbook of Diestel [10] for any undefined graph terminology. Let
G = (V,E) be a graph. A colouring of G is a mapping c : V → {1, 2, . . .} such that
c(u) 
= c(v) whenever uv ∈ E. We call c(u) the colour of u and {u ∈ V | c(u) = i}
for some i ≥ 1 a colour class of c. A k-colouring of G is a colouring c of G with
1 ≤ c(u) ≤ k for all u ∈ V . The smallest integer k for which G has a k-colouring
is called the chromatic number of G, denoted χ(G); a χ(G)-colouring is said
to be optimal. The k-Colouring problem is that of deciding whether a given
graph admits a k-colouring. Here, k is fixed, that is, not part of the input. If k
is part of the input, then we denote the problem as Colouring.

Let G = (V,E) be a graph. A graph H is an induced subgraph of G if H
can be obtained from G by deleting zero or more vertices. In this case we write
H ⊆i G. For a set S ⊆ V , we let G[S] = (S, {uv ∈ E | u, v ∈ S}) denote the
subgraph of G induced by S. Let {H1, . . . , Hp} be a set of graphs. We say that
G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1, we may write that G is H1-free instead of (H1)-free.

The complement of a graph G = (V,E), denoted by G, has vertex set V and
an edge between two distinct vertices if and only if these vertices are not adjacent
in G. The disjoint union of two graphs G and H with V (G) ∩ V (H) = ∅ is the
graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H), and we denote
this by G + H . We denote the disjoint union of r copies of G by rG.

For r ≥ 1, the graph Pr denotes the path on r vertices, that is, V (Pr) =
{u1, . . . , ur} and E(Pr) = {uiui+1 | 1 ≤ i ≤ r − 1}. Adding the edge u1ur to
this graph yields the cycle on r vertices, denoted Cr. The graph sP1 denotes
the independent set on s vertices. The Independent Set problem is that of
testing whether a given graph has an independent set of size at least k for some
given integer k. The graph Kt denotes the complete graph on t vertices, that is,
V (Kt) = {u1, . . . , ut} and E(Kt) = {uiuj | 1 ≤ i < j ≤ t}. The vertex set of a
complete graph is called a clique. The Clique problem is that of testing whether
a given graph has a clique of size at least k for some integer k. The graph Kt− e
denotes the graph obtained from Kt after removing exactly one edge.

1.2 Our Results

We show fixed-parameter tractability results for three problems, namely for
Colouring, Independent Set and Clique, restricted to (sP1 + P2,Kt − e)-
free graphs. In parameterized complexity theory, the problem input consists of
a pair (I, p), where I is the problem instance and p is the parameter. A problem
is fixed-parameter tractable (fpt) with parameter p if it can be solved in time
f(p) · |I|O(1) for some function f that only depends on p. In our case, a natural
parameter is s + t. In Section 2 we show that Colouring is fixed-parameter
tractable with parameter s+ t when restricted to (sP1 +P2,Kt− e)-free graphs,
that is, can be solved in time f(s + t)(n + k)O(1) for some function f that only
depends on s+ t. In the same section, we show that the Independent Set and
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Clique problems are also fixed-parameter tractable with parameter s + t when
restricted to (sP1+P2,Kt−e)-free graphs. However, the main motivation for our
research comes from the area of graph colouring, as we explain in Section 1.3. In
Section 3 we give some directions for future research. There, we also show that
Colouring is polynomial-time solvable for (2P2,Kt − e)-free graphs.

Finally, it should be noted that many classes of (H1, H2)-free graphs are known
to have bounded clique-width (see Section 1.3), in which case it follows that
Colouring is polynomial-time solvable [19]. The graph classes we consider only
have bounded clique-width for small values of s and t; the proof of this claim
has been omitted due to space restrictions. Thus our results (which are stronger
than mere polynomial-time solvability) do not fall into this category.

1.3 Motivation and Related Work

The complexity of Maximum Independent Set restricted to H-free graphs
has only been partially classified. For instance, the complexity status of this
problem on P5-free graphs is a notorious open case (see [24] for a subexponential
algorithm). Because a graph has an independent set of size at least k if and only
if its complement has a clique of size at least k, the complexity classification
of the Clique problem on H-free graphs is also far from being settled. Our
research on the Colouring problem, which is the main focus of our paper, is
well embedded in the literature. As a starting point, Král’ et al. [18] completely
determined the computational complexity of Colouring for H-free graphs.

Theorem 1 ([18]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1 +P3, then Colouring can be solved in polyno-
mial time for H-free graphs; otherwise it is NP-complete for H-free graphs.

Theorem 1 initiated a study of the computational complexity of the
k-Colouring problem on H-free graphs. This classification is still open (see
[12] for a survey). Due to Theorem 1, the Colouring problem restricted to
graph classes characterized by two forbidden induced subgraphs has received a
significant amount of attention as well. We survey known results below.

We observe that Theorem 1 implies that Colouring is polynomial-time solv-
able for (H1, H2)-free graphs if one of H1, H2 is an induced subgraph of P4 or
of P1 + P3. Another straightforward case is as follows. For positive integers s
and t, the Ramsey number R(s, t) is the smallest number n such that all graphs
on n vertices contain an independent set of size s or a clique of size t. Ramsey’s
Theorem (see e.g. [10]) states that such a number exists for all positive integers
s and t. As an immediate consequence, Colouring is polynomial-time solvable
on (sP1,Kt)-free graphs for all s and t. Hence, it is natural to consider graph
classes that can be obtained by adding one edge to the first forbidden induced
subgraph and removing one edge from the second. This leads to the class of
(sP1 +P2,Kt− e)-free graphs; note that this class includes all (sP1,Kt− e)-free
graphs and all (sP1 +P2,Kt−1)-free graphs. As explained in Section 1.2, we have
fpt algorithms with parameter s+t for solving Colouring on (sP1+P2,Kt−e)-
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free graphs (and consequently for (sP1,Kt−e)-free graphs and for (sP1+P2,Kt)-
free graphs). This result adds to the body of existing work on Colouring for
(H1, H2)-free graphs, which we further discuss below.

The following result, which we will use later on, is due to Gyárfás [15].

Theorem 2 ([15]). Let �, t ≥ 1 be two integers. Then every (P�,Kt)-free graph
can be coloured with at most (�− 1)t−2 colours.

Theorem 2 was slightly improved by Gravier, Hoáng and Maffray [14], who
showed that every (P�,Kt)-free graph that is not a complete graph can be coloured
with at most (� − 2)t−2 colours. Each of these two results implies that Colour-

ing is polynomial-time solvable on (F,Kt)-free graphs, whenever F is the disjoint
union of one or more paths such that k-Colouring is polynomial-time solvable
on F -free graphs for all k ≥ 1. Combining this observation with such existing
results for k-Colouring [6,9,16] gives us a number of polynomial-time solvable
cases [11]. Also, the fact that Colouring can be solved in polynomial time on
graphs of bounded clique-width [19] directly leads to polynomial-time results for
Colouring restricted to (K1,3, C3 + P1)-free graphs [1], (P1 + P4, P1 + P4)-free
graphs [3], (P5, P1 + P4)-free graphs [2] and (P1+P4, P5)-free graphs [2]. Here, the
graph K1,r denotes the graph with vertices u, v1, . . . , vr and edges uv1, . . . , uvr.
Other results on Colouring for (H1, H2)-free graphs can be found
in [4,5,9,17,18,20,21,22,25], all of which are summarized in Theorem 3 together
with the above results and a weaker formulation of our new result (Statement (ii)-
8). For details we refer to Golovach and Paulusma [11], who formulate the same
theorem without Statement (ii)-8. In this theorem, C+

3 denotes the paw, which is
the graph with vertices a, b, c, d and edges ab, ac, ad, bc.

Theorem 3. Let H1 and H2 be two fixed graphs. Then the following holds:

(i) Colouring is NP-complete for (H1, H2)-free graphs if

1. H1 ⊇i Cr for some r ≥ 3 and H2 ⊇i Cs for some s ≥ 3
2. H1 ⊇i K1,3 and H2 ⊇i K1,3

3. H1 and H2 contain a spanning subgraph of 2P2 as an induced subgraph
4. H1 ⊇i C3 and H2 ⊇i K1,r for some r ≥ 5
5. H1 ⊇i Cr for r ≥ 4 and H2 ⊇i K1,3

6. H1 ⊇i C3 and H2 ⊇i P164

7. H1 ⊇i Cr for r ≥ 5 and H2 contains a spanning subgraph of 2P2 as an
induced subgraph

8. H1 ⊇i Cr + P1 for 3 ≤ r ≤ 4 or H1 ⊇i Cr for r ≥ 6, and H2 contains a
spanning subgraph of 2P2 as an induced subgraph

9. H1 ⊇i K4 or H1 ⊇i K4 − e, and H2 ⊇i K1,3.

(ii) Colouring is polynomial-time solvable for (H1, H2)-free graphs if

1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i K1,3 and H2 ⊆i C3 + P1

3. H1 
= K1,5 is a forest on at most six vertices and H2 ⊆i C
+
3

4. H1 ⊆i sP2 or H1 ⊆i sP1 + P5 for s ≥ 1, and H2 ⊆i C
+
3
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5. H1 ⊆i sP2 or H1 ⊆i sP1 + P5 for s ≥ 1, and H2 = Kt for t ≥ 4
6. H1 ⊆i P1 + P4 or H1 ⊆i P5, and H2 ⊆i P1 + P4

7. H1 ⊆i P1 + P4 or H1 ⊆i 2P2, and H2 ⊆i P5

8. H1 ⊆i sP1 + P2 for s ≥ 0 or H1 = 2P2, and H2 ⊆i Kt − e for t ≥ 2.

The following result is the only parameterized result known for Colouring

of H-free graphs. Recall that k is the number of colours permitted.

Theorem 4 ([7]). The Colouring problem on (sP1 +P2)-free graphs is fixed-
parameter tractable with parameter k + s.

Very few parameterized results on Independent Set are known [8]. In par-
ticular, we need the following one. Recall that k is the minimum number of
independent vertices required.

Theorem 5 ([8]). The Independent Set problem on (Kt − e)-free graphs is
fixed-parameter tractable with parameter k + t.

We remark that the running times of the algorithms of Theorems 4 and 5 are
f(k + s)nO(1) and g(k + t)nO(1), respectively, with k in the exponent of both f
and g, whereas in our setting k is part of the input.

2 The Proofs of Our Results

In this section, we show that the Colouring, Independent Set and Clique

problems on (sP1 + P2,Kt − e)-free graphs are fixed-parameter tractable with
parameter s + t. We need the following additional terminology.

Let G = (V,E) be a graph. Then N(u) = {v ∈ V | uv ∈ E} is the neighbour-
hood of u ∈ V . For S ⊆ V , we write N(S) = {v ∈ V \S | uv ∈ E for some u ∈ S}.
A subset M ⊆ E is a matching if no two edges in M share an end-vertex. A
matching M is A-saturating for some subset A ⊆ V if every vertex of A is an end-
vertex of some edge in M ; if M is V -saturating, then M is a perfect matching.
A graph is p-partite if its vertex set can be partitioned into at most p indepen-
dent sets, which we call partition classes. If p = 2, the graph is bipartite. The
complement of a p-partite graph is called a co-p-partite graph (whose partition
classes are cliques).

Before stating the proofs of our results, let us first give an outline. Because
a graph is (sP1 + P2,Kt − e)-free if and only if its complement is ((t − 2)P1 +
P2,Ks+2 − e)-free, the results for the Clique problem follow immediately from
those for the Independent Set problem. In Lemma 1 we show that every
(sP1 +P2,Kt−e)-free graph is ((s+1)P1,Kt−e)-free or (sP1 +P2,Ks2(t−3)+2)-
free. This enables us to do as follows. We first show our results for Colouring

and Independent Set on (sP1 + P2,Kt)-free graphs in Lemmas 2 and 3, re-
spectively, and on (sP1,Kt− e)-free graphs in Lemmas 8 and 4, respectively. To
prove these lemmas, we will use Theorems 2, 4 and 5. We also use Lemma 2 to
prove Lemma 3 and Lemma 4, along with some structural results (Lemmas 5–7)
to prove Lemma 8. We then combine our intermediate steps to prove Theorem 6,
in which we state our main results.
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As noted, we start with Lemma 1.

Lemma 1. Let G be a (sP1+P2,Kt−e)-free graph. Then G is ((s+1)P1,Kt−e)-
free or (sP1 + P2,Ks2(t−3)+2)-free.

Proof. Let G = (V,E) be a (sP1 +P2,Kt− e)-free graph. Suppose that G is not
(s + 1)P1-free. We will show that G must then be Ks2(t−3)+2-free.

Because G is not (s + 1)P1-free, G contains an independent set S on at least
s+ 1 vertices. We assume that S is maximal (with respect to set inclusion). Let
u1, . . . , up be the vertices of S for some p ≥ s + 1. Let X1 = N(u1), and for
i = 2, . . . , p, let Xi denote the set of vertices in V \ S that are adjacent to ui

but not to any vertex in {u1, . . . , ui−1}. By maximality of S, every vertex of G
is either in S or in some Xi.

We claim that Xi = ∅ for i ≥ s + 1. Indeed, if i ≥ s + 1 and x ∈ Xi then
G[{u1, . . . , us, x, ui}] would be isomorphic to sP1 + P2.

Now suppose that for some i, Xi contains a clique K on at least s(t − 3) +
1 vertices. If t − 2 vertices of K were adjacent to uj for some j 
= i, then
these t − 2 vertices, together with ui and uj , would induce a Kt − e in G.
Therefore, for each j 
= i, at most t − 3 vertices of K can be adjacent to uj .
Hence, there must be a vertex x ∈ K that is not adjacent to any vertex in
{u1, . . . , ui−1, ui+1, . . . , us+1}. However, then G[{u1, . . . , us+1, x}] is isomorphic
to sP1 + P2. This is a contradiction. Thus all sets X1, . . . , Xs can only contain
cliques of size at most s(t− 3). Because S is an independent set and Xi = ∅ for
i ≥ s + 1, this means that the largest clique in G has size at most s2(t− 3) + 1.
We conclude that G is Ks2(t−3)+2-free, as desired. ��

We are now ready to prove Lemmas 2 and 3.

Lemma 2. The Colouring problem on (sP1 + P2,Kt)-free graphs is fixed-
parameter tractable with parameter s + t.

Proof. We observe that every (sP1 + P2,Kt)-free graph is (P2s+2,Kt)-free, and
consequently can be coloured with at most (2s+1)t−2 colours due to Theorem 2.
Hence we can apply Theorem 4. In fact, Theorem 4 gives us an explicit optimal
colouring, rather than just the chromatic number. Hence, even the problem of
finding an optimal colouring in a (sP1 + P2,Kt)-free graph is fixed-parameter
tractable with parameter s + t. ��

Lemma 3. The Independent Set problem on (sP1 + P2,Kt)-free graphs is
fixed-parameter tractable with parameter s + t.

Proof. Let G be a (sP1 + P2,Kt)-free graph on n vertices. By (the proof of)
Lemma 2, we can find an optimal colouring c of G in fpt time with parameter
s + t. Because G is (P2s+2,Kt)-free, c uses k ≤ (2s + 1)t−2 colours due to
Theorem 2. Let C1, . . . , Ck be the colour classes of c. We may assume that C1

is a maximal independent set (with respect to set inclusion) in G, and that for
i = 2, . . . , k, the set Ci is a maximal independent set in G \ (C1 ∪ · · · ∪ Ci−1).
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Indeed, if some x ∈ Ci has no neighbours in Cj for some j < i, we can move x
to Cj in order to obtain another optimal colouring of G.

We branch by choosing an index b to be the largest index such that Cb contains
a vertex of the maximum independent set I that we are searching for. There are
at most (2s + 1)t−2 ways of doing this. We then branch further by choosing a
vertex x in Cb that we assume will be in I. This leads to at most n branches
altogether. By maximality, x has a neighbour in Ca for every a < b. Let Ja be
the set of vertices in Ca that are not adjacent to x. Because G is (sP1 + P2)-
free, Ja contains at most s − 1 vertices. Let Hx = J1 ∪ · · · ∪ Jb−1. By the
definition of the sets Ji and the choice of x, we find that I \Hx ⊆ Cb. We branch
further by choosing an independent set I ′ ⊆ Hx. Because Hx has size at most
β = (b − 1)(s − 1) ≤ ((2s + 1)t−2 − 1)(s − 1), there are at most 2β ways of
doing this. We then extend I ′ by adding all vertices of Cb that do not have a
neighbour in I ′. The final independent set is a candidate for being a maximum
independent set. After considering all independent sets obtained in this way,
we choose one that has maximum size. Because we considered all possible ways
of constructing a maximum independent set, the above algorithm is correct.
Because our algorithm constructs at most n2β independent sets, it runs in fpt
time when parameterized by s + t. ��

Here is Lemma 4, the proof of which we have omitted.

Lemma 4. The Independent Set problem on (sP1,Kt−e)-free graphs is fixed-
parameter tractable with parameter s + t.

To prove Lemma 8 we need three structural lemmas, the first of which is
well-known and can be found in [10].

Lemma 5 (Hall’s Marriage Theorem). A bipartite graph G with vertex
partition A ∪ B has an A-saturating matching if and only if |N(X)| ≥ |X | for
all X ⊆ A.

Lemma 6 follows from Lemma 5; we omit the proof details. Note that in
a bipartite graph with partition classes A and B an A-saturating matching is
perfect if |A| = |B|.

Lemma 6. Let G be a bipartite graph with partition classes A and B. Let p, q,
n be integers such that |A| = |B| = n ≥ p + q. If every vertex in A has degree at
least n − p and every vertex in B has degree at least n − q, then G contains a
perfect matching.

We need Lemma 6 to prove Lemma 7. Lemma 7 is a key lemma. It gives us a
sufficient condition on the number of edges that we may allow between mutually
vertex-disjoint cliques without increasing the chromatic number of their union.

Lemma 7. Let k, a, b be integers such that k ≥ 2a(b−1). Let G be a co-b-partite
graph with partition classes X1, . . . , Xb, all of size at most k. If every vertex in
Xi has at most a neighbours in Xj for all 1 ≤ i, j ≤ b when i 
= j, then G is
k-colourable.
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Proof. Without loss of generality, we may assume that every clique Xi contains
exactly k vertices. We use induction on b. The case b = 1 is trivial. Let b ≥ 2.
Let G′ = G[X1 ∪ · · · ∪Xb−1]. Because k ≥ 2a(b− 1) ≥ 2a(b − 2), we can apply
our induction hypothesis to find that G′ is k-colourable. Let c be a k-colouring
of G′, and let Xb = {x1, . . . , xk}. We construct an auxiliary bipartite graph F
as follows. For each colour 1 ≤ i ≤ k we create a vertex ui. This yields the set
U = {u1, . . . , uk}. For each vertex xj ∈ Xb we introduce a copy x′

j . This yields
the set X = {x′

1, . . . , x
′
k}. The partition classes of F are U and X . We add an

edge from ui to x′
j in F if and only if c does not assign colour i to any neighbour

of xj . We observe that c can be extended to a k-colouring of G if and only if F
has a perfect matching. Hence, it remains to show that this is indeed the case.

Because every Xi is a clique of size k, every colour of c occurs b − 1 times.
Recall that we assume that every vertex in Xi has at most a neighbours in Xj

for all 1 ≤ i, j ≤ b, where i 
= j. By combining these two facts we find that
every ui has degree at least k − a(b − 1) and that every x′

j has degree at least
k − a(b− 1). As k ≥ 2a(b− 1) = a(b− 1) + a(b− 1), we may apply Lemma 6 to
find that F has a perfect matching. ��

We are now ready to prove Lemma 8.

Lemma 8. The Colouring problem on (sP1,Kt − e)-free graphs is fixed-pa-
rameter tractable with parameter s + t.

Proof. Let G be an (sP1,Kt − e)-free graph on n vertices. We may assume
without loss of generality that s ≥ 2 and t ≥ 3, as the proof is straightforward
for s ≤ 1 or t ≤ 2. We first find a maximum independent set S of G. According
to (the proof of) Lemma 4, we can do this in fpt time with parameter s + t.

We may assume without loss of generality that S is of size s − 1; otherwise
G is ((s − 1)P1,Kt − e)-free. Let u1, . . . , us−1 be the vertices of S. For 1 ≤
i < j ≤ s − 1, let Xi,j be the set of vertices adjacent to both ui and uj. If
some Xi,j contains a clique on t − 2 vertices, then the vertices of this clique
together with ui, uj form an induced Kt − e. Hence, every Xi,j is (sP1,Kt−2)-
free. Recall that R(s, t) is the Ramsey number for integers s and t. Because Xi,j

is (sP1,Kt−2)-free, Xi,j contains at most R(s, t−2)−1 vertices. Let D =
⋃
Xi,j .

Then |D| ≤
(
s−1
2

)
(R(s, t− 2)− 1). Hence, the size of D is bounded by a function

of s and t.
Let Xi consist of ui and those vertices that are adjacent to ui but not to any

other vertex in S. Each Xi must be a clique, since if x, y ∈ Xi were non-adjacent,
then {x, y} ∪ S \ {ui} would be an independent set larger than S, contradicting
the fact that S is a maximum independent set. Note that every vertex of G is
either in D or in some Xi (see Fig. 1). Hence, we find that the vertices of G can
be partitioned into s− 1 cliques X1, . . . , Xs−1 and a set D. However, from these
s sets, we only know that D has bounded size (in terms of s and t).

Now suppose that some vertex x ∈ Xi had t − 2 neighbours in Xj for some
j 
= i. Then these t − 2 neighbours, together with x and uj, would induce a
Kt − e in G. Hence, every vertex in Xi has at most t − 3 neighbours in every
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Xi,j

u1 ui uj

X1 Xi Xj Xs−1

us−1

D

Fig. 1. Decomposition of the graph G into sets X1, . . . , Xs−1, D

Xj with j 
= i. Consequently, each vertex in Xi has at most (t− 3)(s− 1) + |D|
neighbours outside of Xi.

We now start a branching procedure by first colouring the vertices of D in
every possible way using colours from the set C = {1, . . . , |D|}. After colouring
D, for each i = 1, . . . , s − 1, we choose a subset Ci ⊆ C of size |Ci| ≤ |Xi|,
which we let consist of exactly those colours from C that will occur on Xi. We
branch over all possibilities for choosing such sets Ci. After choosing the sets Ci

we branch further. For all cliques Xi of size at most γ = (|D| + 2)(s − 2)(t −
3) + (t − 3)|D|+ |D| (we explain this number later) we branch by trying every
possible way of colouring a subset of Xi of size |Ci| with the colours from Ci.
This yields a partial colouring of G. The total number of these partial colourings
is at most

|D||D|
s−1∏
i=1

2|D|
(

γ

|Ci|

)
|Ci||Ci|,

which only depends on s and t, and which may be strictly less because whenever
two adjacent vertices are assigned the same colour, we naturally cut the branch.

Now let c be a partial colouring that is obtained in this way. Assume that
c uses kc colours. We let total(c) denote the smallest number of colours of a
colouring c′ of G subject to the following two conditions:

(i) c′ extends c;

(ii) c′ does not use any colours from C\Ci on vertices of Xi.

Let Z be the set of vertices that are not coloured by c. We may assume without
loss of generality that β = |X1| − |C1| = max{|Xi| − |Ci| | 1 ≤ i ≤ s− 1}.

First suppose that X1 has size at most γ, in which case Z has size at most∑
i |(Xi| − |Ci|) ≤ (s − 1)γ. By definition of the sets Ci, we are required to use

colours on Z that are not in C. In other words, we are to colour Z independently
from the way we coloured the rest of G. Because in this case |Z| only depends
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on s and t, we use brute force to compute the chromatic number χG[Z] of G[Z].
Hence we find that total(c) = kc + χG[Z] in this case.

Now suppose that X1 has size at least γ + 1. We observe the following. Let
v be any vertex in D. If v is adjacent to all vertices of a clique Xi, then c(v)
does not appear in Ci, as otherwise we can cut the branch. If v is adjacent
to a set X ′

i of t − 2 vertices of a clique Xi but not to some vertex w ∈ Xi,
then X ′

i ∪ {v, w} induce a Kt − e in G, which is not possible. Hence, we may
assume without of generality that every vertex in D is adjacent to at most t− 3
vertices in every clique Xi. This means that the total number of vertices in Xi

that have a neighbour in D is at most (t − 3)|D|. Also recall that every vertex
in Xi has at most t − 3 neighbours in any Xj with j 
= i. We may assume
without loss of generality that for some h ≤ s − 1, the cliques X1, . . . , Xh are
precisely those for which |Xi| ≥ γ + 1. We apply the following greedy approach
for assigning colours from Ci to every clique Xi with 1 ≤ i ≤ h. We arbitrarily
colour a set X∗

1 of |C1| vertices of X1 that are not adjacent to any vertices in
D with colours from C1. We then arbitrarily colour a set X∗

2 of |C2| vertices of
X2 that are not adjacent to any vertices in D ∪ X∗

1 with colours from C2, and
so on, until we have processed Xh. We can follow this greedy approach, because
a clique Xi with 1 ≤ i ≤ h has a size that is sufficiently large, that is, at least
γ + 1 = (|D|+ 2)(s− 2)(t− 3) + (t− 3)|D|+ |D|+ 1. (Note that we could have
chosen γ to be smaller here, but this value simplifies the arguments in the next
paragraph.) Let c∗ denote the resulting partial colouring. Note that c∗ extends
c.

Assume that c∗ uses kc∗ colours. We claim that total(c) = kc∗ + |X1| − |C1|.
Note that total(c) < kc∗ + |X1| − |C1| is not possible, because of condition (ii)
and the fact that X1 is a clique. Hence, we are left to show that all uncoloured
vertices of G can be coloured with at most |X1| − |C1| colours. This follows
immediately from Lemma 7 by taking k = |X1| − |C1|, a = t− 3 and b = s− 1.
We may apply this lemma for the following two reasons. First, for i = 1, . . . , h,
we have |Xi| − |Ci| ≤ |X1| − |C1| by definition. Second, we have |X1| − |C1| ≥
γ + 1− |C1| ≥ 2(s− 2)(t− 3).

As we branched in all possible ways, we find that the smallest total(c) is the
chromatic number of G. Note that our algorithm runs in fpt time with parameter
s + t, as required, and that it also produces an optimal colouring of G. ��

We are now ready to state and prove our main theorem.

Theorem 6. The Colouring, Independent Set and Clique problems on
(sP1 +P2,Kt− e)-free graphs are fixed-parameter tractable with parameter s+ t.

Proof. First recall the following. Because a graph is (sP1 + P2,Kt − e)-free if
and only if its complement is (P2 + (t − 2)P1,Ks+2 − e)-free, we only have to
consider the Independent Set and Colouring problems.

Let G be a (sP1 + P2,Kt − e)-free graph. We start by checking whether
G contains an independent set on s + 1 vertices. We can do this in fpt time
with parameter s + t by Theorem 5. If it does, then G is not (s + 1)P1-free. By
Lemma 1, this means that G must be (sP1+P2,Ks2(t−3)+2)-free. In this case, we
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can solve Colouring and Independent Set by Lemmas 2 and 3, respectively.
Otherwise, that is, if G contains no independent set on s + 1 vertices, then G
is ((s + 1)P1,Kt − e)-free. In that case, we can solve Independent Set and
Colouring by Lemmas 4 and 8, respectively. ��

3 Final Remarks

The ultimate goal is to complete Theorem 3. This requires new proof techniques
to deal with a number of nontrivial cases, such as when H1 is the claw K1,3

and H2 is a long path. As regards our result it seems natural to settle, as a
next step, the complexity status of Colouring for (sP2,Kt − e)-free graphs.
Our next result (proof omitted) shows that the case s = 2 is polynomial-time
solvable.

Theorem 7. The Colouring problem on (2P2,Kt−e)-free graphs can be solved
in polynomial time for all t ≥ 1.

Another possible generalization of our result on Colouring is to consider the
following variant of graph colouring. In Precolouring Extension we assume
that a (possibly empty) subset W ⊆ V of a graph G = (V,E) is precoloured by a
precolouring cW : W → {1, 2, . . . , k} for some given integer k, and the question is
whether we can extend cW to a k-colouring ofG. The classification ofPrecolour-
ingExtension onH-free graphs is known [13]. However, the classification ofPre-
colouring Extension on (H1, H2)-free graphs is still open. In this respect, we
note that our results cannot be generalized to another even more general variant
of graph colouring called list colouring. A list assignment of a graph G = (V,E) is
a function L that assigns a list L(u) of so-called admissible colours to each u ∈ V .
We say that a colouring c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for all
u ∈ V . The List Colouring problem is that of testing whether a given graph has
a colouring that respects some given list assignment. Golovach and Paulusma [11]
completely classified the complexity of theListColouringproblem for (H1, H2)-
free graphs by showing that this problem is polynomial-time solvable for (H1, H2)-
free graphs in the following three cases: (i) H1 ⊆i P3 or H2 ⊆i P3, (ii) H1 ⊆i C3

and H2 ⊆i K1,3 and (iii) H1 = sP1 for s ≥ 3 and H2 = Kt for t ≥ 3, whereas it is
NP-complete for all other pairs (H1, H2).
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Abstract. Let G be a 3-connected planar graph with n vertices and let p(G) be
the maximum number of vertices of an induced subgraph of G that is a path. We
prove that p(G) ≥ log n

12 log log n
. To demonstrate the tightness of this bound, we

notice that the above inequality implies p(G) ∈ Ω((log2 n)
1−ε), where ε is any

positive constant smaller than 1, and describe an infinite family of 3-connected
planar graphs for which p(G) ∈ O(log n). As a byproduct of our research, we
prove a result of independent interest: Every 3-connected planar graph with n
vertices contains an induced subgraph that is outerplanar and connected and that
contains at least 3

√
n vertices. The proofs in the paper are constructive and give

rise to O(n)-time algorithms.

1 Introduction

Determining whether a graph has a large subset of vertices that induce a path is a well
studied problem motivated by various applications including, for example, the perfor-
mance analysis of large communication and neural networks (see, e.g., [8]). Garey
and Johnson [7] prove the NP-completeness of computing the longest induced path
for general graphs and Lund and Yannakakis [14] show that this maximization prob-
lem is not approximable within O(n1−ε) for any positive constant ε. Exact algorithms
that have polynomial time complexity are also known for specific graph families (see,
e.g. [9,8,11,12]), while several papers study the complexity of various network opti-
mization problems under the assumption that the length of the longest induced path is
bounded (see, e.g. [2,13,17]).

From a graph theoretical point of view, Erdös, Saks, and Sós [5] prove a lower bound
on the length of the longest induced path in a connected graph G in terms of the radius
of G. They show that p(G) ≥ 2r(G)− 1, where p(G) denotes the maximum number of
vertices in an induced path of a connected graph G and r(G) is the radius of G. Since,
in general, the radius is not bounded from below by a function of n, the result by Erdös,
Saks, and Sós naturally raises the question about whether the length of the longest path
tends to infinity as the size of the graph tends to infinity. Clearly, this question becomes
interesting for graphs that are not too dense; namely, the longest induced path in a
complete graph consists of a single edge.

For 3-connected planar graphs, a positive answer to the above question is a conse-
quence of a Ramsey-type result by Böhme et al. [3]. Namely, in [3] it is proved that
for every positive integers k, r, s, there exists an integer n = n(k, r, s) such that any

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 213–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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k-connected graph with at least n vertices has either an induced path of length s or a
subdivision of Kk,r. Hence, by setting k = r = 3, we obtain that for every positive
integer s there exists a sufficiently large 3-connected planar graph having an induced
path of length s. However, the construction by Böhme et al. does not yield an explicit
function that defines a lower bound on the length of the longest induced path, which
can be found in a paper by Arocha and Valencia [1]. Let G be a 3-connected planar
graph with n vertices and having maximum degree Δ; Arocha and Valencia observe
that if Δ is bounded by a constant, then G has a diameter (and hence an induced path)
consisting of at least logΔ n vertices. If otherwise Δ is not a constant with n, then G
has an induced outerplanar graph with at least Δ vertices from which an induced path
with at least

√
log3 Δ vertices can be extracted.

The main contribution of this paper is to find bounds for p(G) that improve those
in [1,3]. Similar to Arocha and Valencia, we first construct an induced outerplanar graph
H and then compute an induced path in H ; however, our approach finds significantly
larger outerplanar graphs and significantly larger paths than those described in [1]. More
precisely, the results in this paper can be listed as follows.

– A 3-connected planar graph G with n vertices has an induced subgraph with at
least 3

√
n vertices that is outerplanar and connected. In the case that the external

face of G is a 3-cycle, the induced outerplanar graph is 2-connected. This result is
of independent interest because it improves a previous bound by Goaoc et al. [10]
who show that a maximal planar graph with n vertices has a 2-connected induced
outerplanar subgraph with Ω( log n

log logn ) vertices.
– Every 3-connected planar graph G with n vertices has an induced path with at

least logn
12 log logn vertices. We also prove that for every n there exists a 3-connected

planar graph G with n vertices such that the longest induced path of G has at most
2 log3(2n− 5) + 3 vertices.

– Asymptotically, the gap between the upper and lower bounds described in the item
above is arbitrarily small. Namely, a consequence of the above result is that for
any given positive constant ε smaller than 1 and for n that tends to infinity, every
3-connected planar graph has an induced path with at least (2 log3(2n−5)+3)1−ε

vertices.

Our arguments combine various techniques. We use the extension of Schnyder woods
to 3-connected planar graphs (see, e.g. [4,6]) to prove that there exist three partial
orders by which any two vertices of 3-connected planar graph can be compared. We
then exploit Mirsky’s theorem [15] to extract a large induced outerplanar graph H ;
finally, we analyze the structure of the extended dual of H to compute a long induced
path. The proofs for the lower bound are constructive and give rise to a linear-time
algorithm to compute a long induced path in a 3-connected planar graph.

The rest of the paper is organized as follows. Preliminaries are in Section 2. The
computation of a large induced outerplanar graph is described in Section 3. Lower and
upper bounds on the length of the longest induced path are given in Sections 4 and 5.
Finally, conclusions and open problems can be found in Section 6. For reasons of space,
some proofs are omitted.
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2 Preliminaries

A subgraph H of a graph G is said to be induced if, for any pair of vertices u and v of
H , (u, v) is an edge of H if and only if (u, v) is an edge of G. We denote by p(G) the
number of vertices of the longest induced path of G.

The connectivity of a graph is the minimum number of vertices whose removal re-
sults in a disconnected graph or a single vertex graph. A graph is k-connected if its con-
nectivity is at least k (k ≥ 1). Notice that a k-connected graph has at least k+1 vertices.
A cutvertex is a vertex whose removal disconnect the graph. Let G be a 1-connected
graph (also called a connected graph); the maximal subgraphs of G not containing a
cutvertex is a 2-connected component of G. Notice that a 2-connected component of a
connected graph is either a 2-connected subgraph or a single edge.

A graph G is planar if it can be drawn in the plane without edge crossings. A planar
drawing Γ partitions the plane into topologically connected regions called faces; the
unbounded region is the external face. A planar drawing of a planar graph determines
a circular ordering of the edges around each vertex. The cyclic ordering of the edges
around each vertex of Γ together with a choice of the external face is a planar embed-
ding of G. A plane graph is a graph with a fixed planar embedding. The boundary of
the external face of a plane graph G will be also called the external boundary of G.

(a) (b) (c)

Fig. 1. (a) A graph G and its dual graph G∗: the black dots are the vertices of G, while the white
squares are those of G∗; the solid edges are the edges of G, while the dashed edges are those of
G∗. (b) The weak dual of G. (c) The extended dual of G.

The dual graph Gd of a given plane graph G is a plane multigraph that has a vertex
corresponding to each face of G, and an edge joining two vertices corresponding to
neighboring faces of G (see for example Figure 1(a)). The weak dual Gw of G is the
graph obtained from Gd after removing the vertex that corresponds to the external face
of G (see for example Figure 1(b)). The extended dual of G is the graph G∗ obtained
from Gd by splitting the vertex fext of Gd corresponding to the external face of G into
deg(fext) vertices each incident to one of the edges incident to fext (see for example
Figure 1(c)). Notice that the dual Gd of a plane graph G has a vertex for each face
of G and an edge for each edge of G; the weak dual Gw of G has a vertex for each
internal face of G and an edge for each internal edge of G; the extended dual G∗ of G
has a vertex for each internal face, k vertices corresponding to the external face (where
k is the number of edges on the external boundary), and an edge for each edge of G.
A graph is outerplanar if it admits a planar embedding where all vertices are on the
external boundary. It is easy to see that the weak dual of an outerplanar graph is always
a tree and the same is true for the extended dual. An outerpath is an outerplanar graph
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whose weak dual is a path, hence an outerpath has at least one internal face. A bracelet
is a connected outerplanar graph such that each cutvertex is shared by two 2-connected
components and each 2-connected component has at most two cutvertices. Notice that
a 2-connected component of a connected graph can be a single edge.

3 Large Induced Outerplanar Subgraphs

We start this section by introducing the Schnyder woods [16], which are the basic tool to
prove that every 3-connected planar graph contains an outerplanar subgraph with at least
3
√
n vertices. Schnyder woods were first introduced for maximal planar graphs [16], and

have been then generalized to 3-connected planar graphs (see, e.g., [4,6]).

Schnyder woods. The following definition of Schnyder woods adopts the same notation
and terminology used in [6]. Let G be a plane graph and let a1, a2, a3 be three vertices
occurring in clockwise order on the outer face of G. A suspension Gσ of G is obtained
by attaching a half-edge that reaches into the outer face to each of these special vertices.
Let Gσ be a suspended 3-connected plane graph. A Schnyder wood rooted at a1, a2, a3
is an orientation and coloring of the edges of Gσ with the colors 1, 2, 3 satisfying the
following properties1 (see Figure 2(a) for an illustration).

(W1) Every edge e is oriented in one direction or in two opposite directions. The
directions of edges are colored such that if e is bidirected the two directions
have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.
(W3) Every vertex v has out-degree one in each color. The edges e1, e2, e3 leaving v

in colors 1, 2, 3 occur in clockwise order. Each edge entering v in color i enters
v in the clockwise sector from ei+1 to ei−1.

(W4) There is no interior face the boundary of which is a directed monochromatic
cycle.

a1 a3

a21

3
2

(a) S
a1 a3

a2

(b) T1

Fig. 2. (a) A Schnyder wood S of a 3-connected plane graph. (b) the tree T1.

Every suspension of a 3-connected plane graph has a Schnyder wood that can be
computed in linear time [4]. Notice that, in the definition of Schnyder woods the addi-
tion of the half edges to a1, a2, and a3 is used to make property (W3) hold for every

1 We assume a cyclic structure on the labels so that i+ 1 and i− 1 are always defined.
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vertex of G (otherwise it will not hold for a1, a2, and a3). In what follows we will often
refer to the Schnyder wood of a 3-connected plane graph without choosing a suspension
explicitly. Also, from now on we will ignore the half-edges at a1, a2, and a3. We denote
by T1, T2, and T3 the subgraph induced by the edges of color 1, 2, and 3, respectively
and by S the Schnyder wood {T1, T2, T3} of G. Let T−1

i be the subgraph obtained from
Ti by reversing all its edges. The following two properties of S are known (see [6]).

Property 1. Let S be a Schnyder wood of a 3-connected planar graph G. The digraph
Di = Ti ∪ T−1

i−1 ∪ T−1
i+1 is acyclic (i = 1, 2, 3).

Property 2. Let S be a Schnyder wood of a 3-connected planar graph G. Ti is a tree
rooted at ai (i = 1, 2, 3).

The tree T1 defined by the Schnyder wood of Figure 2(a) is shown in Figure 2(b). Let
S be a Schnyder wood of a 3-connected plane graph G, let v be an internal vertex and
let Pi(v), 1 ≤ i ≤ 3 be the oriented path of Ti from v to ai. The path Pi(v) is called
the i-path starting at v. For i 
= j (1 ≤ i, j ≤ 3), the two paths Pi(v) and Pj(v) only
share vertex v. Thus, for each internal vertex v, the three paths P1(v), P2(v), and P3(v)
divide G into three regions R1(v), R2(v), and R3(v), where Ri(v) (1 ≤ i ≤ 3) denotes
the vertices that are inside the cycle2 Pi−1(v) ∪Pi+1(v)∪Pi+1(ai−1) (see Figure 3(a)
for an illustration).

We now use the Schnyder wood S to define three different partial orders on the
vertices V (G) of G. For each i = 1, 2, 3, we define a directed graph Gi = Ti ∪ T−1

i+1

(see Figure 3(b)). By Property 1, Gi is a directed acyclic graph with one source ai+1

and one sink ai. Thus, it defines a partial order≺i for the vertices of G; namely, u ≺i v
if there is a directed path from u to v in Gi. Given a set X with a partial order ≺
(also called a partial ordered set), a subset of X such that every two of its elements are
comparable with respect to ≺ is called a chain of X . A subset of X such that no two of
its elements are comparable with respect to ≺ is called an antichain of X . According
to the definition of ≺i, a chain χ of V (G) with respect to ≺i corresponds to a oriented
path π in Gi. We say that π is the oriented path of Gi associated with χ. We prove now
some properties of the partial orders≺i.

Lemma 1. Let S be a Schnyder wood of a 3-connected planar graph G. Let u and v
be two vertices of G. Then u and v are comparable by at least one of the three partial
orders ≺1, ≺2, and ≺3.

Proof. If u belongs to a i-path starting at v for some i (1 ≤ i ≤ 3), then u and v are
comparable with respect to both≺i and≺i−1. Namely, the concatenation of Pi(v) with
the reversed version of Pi+1(v) is an oriented path of Gi containing both u and v, and
therefore u and v are comparable with respect to ≺i. Analogously, the concatenation of
Pi−1(v) with the reversed version of Pi(v) is an oriented path of Gi−1 containing both
u and v, and therefore u and v are comparable with respect to ≺i−1. Clearly, the same
argument applies if v belongs to an i-path starting at u for some i (1 ≤ i ≤ 3).

2 In the literature these regions are usually defined as including also P1(v), P2(v), and P3(v).
For our purposes, however, it results more useful to use this different definition.
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P1(v) P3(v)
v

P2(v)

R2(v)

R3(v) R1(v)

P2(a3)P1(a2)

P3(a1)a1 a3

a2

(a)

a1 a3

a2

(b)

Fig. 3. The three paths P1(v), P2(v), and P3(v), and the three regions R1(v), R2(v), and R3(v).
(b) The directed graph G1 used to define the partial order ≺1.

Consider the case when u does not belong to any i-path starting at v and vice versa. It
follows that umust be in one regionRi(v) (1 ≤ i ≤ 3). Consider the i-path starting at u,
Pi(u). Since this path does not contain v, it must share a vertexw with either Pi−1(v) or
Pi+1(v) (see Figure 4(a)). Suppose that w belongs to Pi−1(v), the case when it belongs
to Pi+1(v) is analogous. Consider the path P consisting of the concatenation of: (i) the
subpath of Pi−1(v) from v to w; (ii) the reversed version of the subpath of Pi(u) from
w to v. Path P is an oriented path of Gi−1 from v to u. Thus, u and v are comparable
with respect to ≺i−1. ��

ai ai−1

ai+1

v
uw

(a)

ai ai−1

ai+1

v
uw

(b)

Fig. 4. An illustration for the proof of Lemma 1. (a) The path P1(u) crosses the path P3(v). (b)
The oriented path containing u and v in G3.

Lemma 2. Let S be a Schnyder wood of a 3-connected planar graph G. Let u be an
internal vertex of G and let v be another vertex of G that is comparable with u by ≺i.
If v ≺i u then v ∈ Ri(u) ∪ Pi+1(u). If u ≺i v then v ∈ Ri+1(u) ∪ Pi(u).

In the next lemma we show that any maximal chain of V (G) with respect to any
partial order≺i defines an induced bracelet of G.

Lemma 3. Let S be a Schnyder wood of a 3-connected planar graph G. Let χ be a
maximal chain of V (G) with respect to the partial order≺i, 1 ≤ i ≤ 3 and let π be the
oriented path associated with χ. The graph induced by the vertices of π is an induced
bracelet of G.
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Proof. Since Gi has a single source ai+1 and single sink ai, then every maximal chain
of V (G) with respect to ≺i has ri+1 as the first element and ri as the last element.
As a consequence π starts at ri+1 and ends at ri. We first prove that the subgraph H
induced by the vertices in π is outerplanar. To this aim, it is sufficient to show that all
edges of H that are not in π are to right of π when walking along π from ai+1 to ai.
Consider an edge (u, v) of H not in π. Vertices u and v must be two non-consecutive
vertices of π. Without loss of generality assume u ≺i v, i.e., u is encountered first when
walking along π from ai+1 to ai. Since u and v are non-consecutive, there must be a
vertex w such that u ≺i w ≺i v. By Lemma 2, u is in Ri(w) ∪ Pi+1(w) and v is
in Ri+1(w) ∪ Pi(w). As a consequence, if edge (u, v) is not to the right of π, then it
crosses path Pi−1(w), which is not possible.

In order to prove that H is a bracelet, we need to show that: (i) each cutvertex of
H is shared by two 2-connected components and (ii) each 2-connected component has
at most two cutvertices. Suppose that there exists a cutvertex v shared by at least three
2-connected components. Then there exist three vertices w1, w2 and w3 such that every
path connecting wi to wj (1 ≤ i, j ≤ 3, i 
= j) contains v. On the other hand, w1, w2

and w3 belong to π and therefore at least two of them, say w1 and w2, either precede
or follow v along π; but this means that w1 and w2 are connected by a path that does
not contain v. Suppose now that there exists a 2-connected component B that has at
least three cutvertices. Also in this case there exist three vertices w1, w2 and w3 such
that every path connecting wi to wj (1 ≤ i, j ≤ 3, i 
= j) contains a vertex of B. The
vertices of B are consecutive along π and therefore at least two between w1, w2 and
w3, say w1 and w2, either precede or follow the vertices of B along π; but then w1 and
w2 are connected by a path that does not contain any vertex of B. ��

The next lemma shows that the bracelet of Lemma 3 has at least 3
√
n vertices.

Lemma 4. Let S be a Schnyder wood of a 3-connected planar graph G. V (G) has a
chain of size at least 3

√
n with respect to one of the three partial orders≺1,≺2, and≺3.

Proof. Consider first the partial order≺1. If V (G) has a chain of size at least 3
√
n with

respect to ≺1, then the statement is true. If not, by Mirsky’s theorem [15] (the dual of
Dilworth’s theorem), V (G) has a partition into at most 3

√
n antichains with respect to

≺1. Hence, one of this antichains must have at least n
3
√
n

= n2/3 vertices. Let U be such

a set of vertices. Since the vertices in U form an antichain of V (G) with respect to ≺1,
then, by Lemma 1, any two vertices in U must be comparable by≺2 or by≺3. Consider
≺2 restricted to the set U ; if U has a chain of size at least 3

√
n with respect to ≺2, then

the statement is true. Otherwise, applying again Mirsky’s theorem, U can be partitioned
into at most 3

√
n antichains. One of this antichain must have at least n2/3

n1/3 = 3
√
n vertices.

Let U ′ be such a set of vertices. The vertices in U ′ are not comparable with respect to
≺1, neither with respect to ≺2. Thus by Lemma 1 they must be comparable by≺3, i.e.,
they form a chain of U ′ with respect to ≺3. ��

Theorem 1. Let G be a 3-connected planar graph with n vertices. G contains an in-
duced connected outerplanar graph H . The subgraph H is a bracelet with at least 3

√
n

vertices and can be computed in O(n) time.
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Proof. Consider a Schnyder wood S of G and define the three partial orders ≺1, ≺2,
and≺3. By Lemma 4, V (G) has a chain of size at least 3

√
n with respect to one of these

partial orders. From Lemma 3 it follows that G contains an induced bracelet H with at
least 3

√
n vertices.

The Schnyder wood S can be computed in O(n) time [4]. Using S, the three graphs
G1, G2, and G3 can be also computed in O(n) time. By computing a longest path in
each of these directed graphs (which can be done in O(n) time) we find a longest chain
of V (G) with respect to one of the three partial orders ≺1, ≺2, and ≺3. The subgraph
induced by the vertices of this path is H . ��

The following corollary shows that if G is a maximal plane graph, then the bracelet
of Theorem 1 is in fact a 2-connected outerplanar graph.

Corollary 1. Let G be a 3-connected plane graph with n vertices. If the external bound-
ary of G is a 3-cycle, then G contains an induced 2-connected outerplanar graph with
at least 3

√
n vertices, which can be computed in O(n) time.

The result stated in Corollary 1 holds, in particular, for maximal plane graph, in
which case it improves a previous result by Goaoc et al. [10]. Namely, Theorems 4.7
and 4.11 of [10] imply that a maximal planar graph G contains an induced 2-connected

outerplanar graph of size Ω
(

log2 n
log2 log2 n

)
.

4 Lower Bound

In this section we prove that a 3-connected planar graph contains a long induced path.
Based on Theorem 1 it is sufficient to prove that a bracelet has a long induced path. The
next three lemmas are used to prove this.

Lemma 5. Let G be an outerpath with n vertices. Then p(G) ≥ n
2 .

Proof. Since G is an outerpath its weak dual is a path Π . Let f1 and f2 be the two faces
corresponding to the endvertices of Π (f1 coincides with f2 if Π is a single vertex). Let
v1 and v2 be two vertices belonging to f1 and f2, respectively, and not belonging to any
other internal face (such two vertices always exist in an outerpath). The external circuit
of G is divided into two paths Π1 and Π2 by v1 and v2. Both Π1 and Π2 are induced,
and one of them contains at least n

2 vertices. ��

Lemma 6. Let G be a 2-connected outerplanar graph with n vertices (n ≥ 3). Then
p(G) ≥ 1

2
log2 n

log2 log2 n .

Proof. First of all, notice that if n ≤ 4, then 1
2

log2 n
log2 log2 n ≤ 2 and the statement trivially

holds. So in the following we assume n > 4. Denote by α(n) the function log2 n
log2 log2 n

which is defined for every n > 4. Let G∗ be the extended dual of G. Since G is outer-
planar, G∗ is a tree. We distinguish two cases:
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There exists a node of G∗ whose degree is larger than α(n) + 1. In this case there
exists a face with at least α(n) + 2 vertices. The boundary of such a face is an
induced cycle with α(n) + 2 vertices and edges. Removing a vertex from this cy-
cle, we obtain an induced path with at least α(n) + 1 vertices. We have α(n) + 1 =

log2 n
log2 log2 n + 1 ≥ 1

2
log2 n

log2 log2 n .

Every node of G∗ has degree at most α(n) + 1. Denote by N(n) the number of
nodes ofG∗. Since every node ofG∗ has degree at mostα(n)+1,G∗ contains a path

Π with at leasth(n) vertices, whereh(n)≥ 2 logα(n)

(
(N(n)−1)(α(n)−1)+α(n)+1

α(n)+1

)
+

1 (notice that this function is defined and it is not equal to one for every n > 4). The
subgraphG′ ofG induced by the faces corresponding to the nodes ofΠ is an induced
outerpath of G. By Lemma 5 G′, and therefore G, has an induced path with at least
h(n)
2 vertices. We now write the functionh(n) in explicit form. The number of nodes

of G∗ is N(n) = fint(n) + n, where fint(n) is the number of internal faces of G.
Namely, the extended dual contains a vertex for each internal face ofG∗ and a vertex
for each edge of the external face (the external boundary has n edges because G is
2-connected). Furthermore, since the degree ofG∗ is at mostα(n)+1, each internal
face has at mostα(n)+1 edges. Thus, fint(n)·(α(n)+1)+n

2 ≥ m. By Euler’s formula,

n+fint(n)+1 ≤ fint(n)·(α(n)+1)+n
2 +2, from which we obtain fint(n) ≥ n−2

α(n)−1

and h(n) ≥ logα(n)
n·α(n)
α(n)+1 + 1. We have logα(n)

n·α(n)
α(n)+1 + 1 = logα(n) n +

logα(n) α(n)− logα(n)(α(n) + 1) + 1 = logα(n) n+ 2− logα(n)(α(n) + 1). Since
logα(n)(α(n) + 1) ≤ 2 for every n > 4, we have logα(n) n + 2− logα(n)(α(n) +
1) ≥ logα(n) n + 2 − 2 = logα(n) n. Thus we obtain h(n) ≥ logα(n) n. Now,

log log2 n

log2 log2 n

n = log2 n

log2
log2 n

log2 log2 n

= log2 n
log2 log2 n−log2 log2 log2 n .

Since log2 log2 log2 n ≥ 0 for n ≥ 4, we obtain h(n) ≥ log2 n
log2 log2 n . Thus G has an

induced path with at least 1
2

log2 n
log2 log2 n vertices. ��

Lemma 7. Let G be a bracelet with n vertices (n ≥ 3). Then p(G) ≥ 1
4

log2 n
log2 log2 n .

Proof. If n < 9, then 1
4

log2 n
log2 log2 n < 2 and the statement is trivially true. So assume

n ≥ 9. Let k be the number of cut-vertices of G. We distinguish two cases:
Case 1: k ≤

√
n− 1. In this case, there are at most

√
n 2-connected components. It

follows that there exists a 2-connected component G′ that contains n′ vertices with
n′ ≥

√
n. Since n > 9, we have n′ ≥ 3 and by Lemma 6, G′ has an induced path

with at least 1
2

log2 n′

log2 log2 n′ = 1
2

log2 n
1
2

log2 log2 n
1
2

= 1
4

log2 n

log2
1
2+log2 log2 n

= 1
4

log2 n
log2 log2 n−1 ≥

1
4

log2 n
log2 log2 n .

Case 2: k >
√
n− 1. In this case, there are at least

√
n 2-connected components. Since

each cutvertex is shared by two 2-connected components and each 2-connected
component has at most two cutvertices, the

√
n + 2 2-connected components form

a sequence G1, G2, . . . , Gk+1, where Gi and Gi+1 share a cutvertex ci. Since in
each 2-connected component there exists an induced path (possibly consisting of a
single edge) connecting ci−1 to ci, we have an induced path containing all cutver-
tices, i.e., containing at least

√
n− 1 ≥ 1

4
log2 n

log2 log2 n vertices. ��
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Lemma 7 and Theorem 1 imply the following.

Lemma 8. Let G be a 3-connected planar graph with n vertices. Then p(G) ≥
1
12

log2 n
log2 log2 n .

5 Upper Bound and Main Theorem

Lemma 8 gives a lower bound to the length of an induced path in a 3-connected planar
graph. Thus, it is natural to ask for an upper bound. In the following we prove that there
exists an n-vertex 3-connected planar graph G such that every induced path of G has
O(log n) vertices. It is worth remarking that an analogous upper bound is provided by
Arocha and Valencia [1] for outerplanar graphs.

A complete planar 3-tree is a 3-connected planar graph recursively defined as fol-
lows. The graph G0 consisting of a 3-cycle is a complete planar 3-tree. The graph Gi

obtained by inserting a vertex v inside each internal face u1, u2, u3 of Gi−1 and con-
necting v to each ui (i = 1, 2, 3) is a complete planar 3-tree. The face u1, u2, u3 is called
the attaching face of v. Let F be a subset of the internal faces of a complete planar 3-
tree Gi−1; the graph Gi obtained by inserting a vertex v inside each face u1, u2, u3 of
F and connecting v to each ui (i = 1, 2, 3) is an almost complete planar 3-tree. Notice
that a complete planar 3-tree is also an almost complete planar 3-tree.

Given an almost complete planar 3-tree Gi, we assign a value, called level of v and
denoted as lev(v), to each vertex v of Gi as follows. If v is a vertex of G0, then lev(v) =
0. If v is a vertex of Gi but it is not a vertex of Gi−1, then lev(v) = i.

Lemma 9. Let Gi be an almost complete planar 3-tree and let Π be an induced path
of Gi. There does not exist two consecutive edges (w1, v) and (v, w2) in Π such that
lev(w1) < lev(v) and lev(w2) < lev(v).

Proof. Let lev(v) = j. The only vertices of Gi adjacent to v and having level less than
j are the three vertices of the attaching face of v (which form a face of Gj−1). Thus,
if lev(w1) < lev(v) and lev(w2) < lev(v), then w1 and w2 would be adjacent and Π
would not be an induced path. ��

Lemma 10. For every n ≥ 3 there exists a 3-connected planar graph G such that
p(G) ≤ 2 log3(2n− 5) + 3.

Proof. A complete planar 3-tree Gi has 3i+5
2 vertices. Given a value of n, let i be the

integer such that 3i−1+5
2 ≤ n < 3i+5

2 . Let G be an almost complete planar 3-tree Gi

with n vertices (i.e., an almost complete planar 3-tree obtained from Gi−1 by adding
n − 3i−1+5

2 vertices). Let Π be an induced path of Gi; by Lemma 9, Π is such that
either the levels of the vertices monotonically increase along Π , or they monotonically
decrease, or they form a first sequence monotonically decreasing followed by a second
sequence monotonically increasing. Since the range of the values for the level of the
vertices is [0, i], each monotone sequence has at most i + 1 vertices, and Π has at most
2i + 1 vertices. It follows that p(G) ≤ 2i + 1 ≤ 2 log3(2n− 5) + 3. ��
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We are now ready to prove the main result of this paper, where we summarize the
results given above and also show that the gap between the lower bound of Lemma 8
and the upper bound of Lemma 10 is arbitrarily small in asymptotic terms.

Theorem 2. Let Gn be the set of the 3-connected planar graphs having n vertices. Let
pn = minG∈Gn{p(G)}. Then:

(i) logn
12 log log n ≤ pn ≤ 2 log3(2n− 5) + 3, for any value of n.

(ii) (2 log3(2n − 5) + 3)1−ε ≤ pn ≤ 2 log3(2n − 5) + 3, for every ε such that
0 < ε < 1 and n that tends to infinity.

Furthermore, there exists an O(n)-time algorithm that, for any G ∈ Gn, computes
an induced path of having at least logn

12 log log n vertices.

Proof. The upper and lower bound expressed by (i) follow from Lemmas 8 and 10. The
lower bound of (ii) immediately follows from:

lim
n→+∞

(2 log3(2n− 5) + 3)1−ε

logn
12 log logn

= 0.

As for the time complexity, a bracelet H of size at least 3
√
n can be computed in

O(n) time by Theorem 1; in O(n) time we can compute the cutvertices of H and
decide which case of Lemma 7 applies. If we are in Case 2, we can easily compute the
desired path in O(n) time by performing a BFS visit of each 2-connected component;
if we are in Case 1, we need to compute the extended dual H∗ of H and decide which
case of Lemma 6 applies; both things can be done in O(n) time. If we are in Case 1,
we compute in O(n) time the desired path (it is obtained by removing a vertex from the
boundary of the face corresponding the high degree vertex of H∗); if we are in Case
2 we compute the longest path in H∗ in O(n) time and then we use it to compute the
corresponding outerpath and from this the desired path; both things can be done in O(n)
time. ��

6 Conclusions and Open Problems

In this paper we proved that every 3-connected planar graph contains an induced path
with at least 1

12
log2 n

log2 log2 n vertices, which can be computed in O(n) time; we also
showed that for every n ≥ 3 there exists a graph G such that p(G) ∈ O(log n). We
also prove that, asymptotically speaking, the previous lower bound on the length of an
induced path can be improved to Ω((log2 n)1−ε). In order to prove the above mentioned
results, we proved that every 3-connected planar graph contains an induced connected
outerplanar graph with at least 3

√
n vertices, which is a result of independent interest.

A list of open problems suggested by the results of this paper includes:

– Close the gaps between upper and lower bounds described by Theorem 2.
– Improve the bound of Theorem 1 or show that it is tight.
– Study the length of induced paths for general planar graphs.
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Partial 2-Trees in Linear Time
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Abstract. We present a linear time algorithm for computing an implicit
linear space representation of a minimum cycle basis (MCB) in weighted
partial 2-trees, i.e., graphs of treewidth two. The implicit representation
can be made explicit in a running time that is proportional to the size
of the MCB.

For planar graphs, Borradaile, Sankowski, and Wulff-Nilsen [Min st-
cut Oracle for Planar Graphs with Near-Linear Preprocessing Time,
FOCS 2010] showed how to compute an implicit O(n log n) space repre-
sentation of an MCB in O(n log5 n) time. For the special case of partial
2-trees, our algorithm improves this result to linear time and space. Such
an improvement was achieved previously only for outerplanar graphs [Liu
and Lu: Minimum Cycle Bases of Weighted Outerplanar Graphs, IPL
110:970–974, 2010].

1 Introduction

A cycle basis of a graph G is a minimum-cardinality set C of cycles in G such
that every cycle C ∈ G can be written as the exclusive-or sum of a subset of
cycles in C. A minimum cycle basis (MCB) of G is a cycle basis that mini-
mizes the total weight of cycles in the basis. Minimum cycle bases have nu-
merous applications in the analysis of electrical networks, biochemistry, periodic
timetabling, surface reconstruction, and public transportation, and have been
intensively studied in the computer science literature, cf. [12] for an exhaustive
survey. It is therefore—both from a practical and a theoretical viewpoint—an
interesting task to compute them efficiently.

All graphs considered in this work are simple graphs G = (V,E) with a non-
negative edge-weight function w : E → R≥0. (Computing MCBs for graphs with
cycles of negative weight is an NP-hard problem [12]. In all previous work that
we are aware of it is therefore assumed that the edge-weights are non-negative.)
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1.1 Previous Work

The first polynomial time algorithm for computing MCBs was presented by Hor-
ton [11] in 1987. His algorithm has running time O(m3n). This was improved
subsequently in a series of papers by different authors, cf. [12] or [14] for surveys
of the history. The currently fastest algorithms for general graphs are a deter-
ministic O(m2n/ logn) algorithm of Amaldi, Iuliano, and Rizzi [2] and a Monte
Carlo based algorithm by Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [1]
of running time O(mω), where ω is the matrix multiplication constant.

The algorithm from [1] is deterministic on planar graphs, and has a running
time of O(n2). This improved the previously best known bound by Hartvigsen
and Mardon [10], which is of order n2 logn. The currently best known algorithm
on planar graphs is due to Borradaile, Sankowski, and Wulff-Nilsen [6]. It con-
structs an O(n log n) space implicit representation of an MCB in planar graphs
in time O(n log5 n).

Faster algorithms for planar graphs are known only for the special case of out-
erplanar graphs. For unweighted outerplanar graphs, Leydold, and Stadler [13]
presented a linear time algorithm. More recently, Liu and Lu [14] presented a
linear time, linear space algorithm to compute an MCB of a weighted outerpla-
nar graph (using an implicit representation). This is optimal in terms of both
time and space.

1.2 Our Result

In this contribution, we present a linear time algorithm for computing an implicit
O(n)-space representation of a minimum cycle basis in partial 2-trees (graphs
of treewidth two). The explicit representation can be obtained in additional
time that is proportional to the size of the MCB. Since partial 2-trees are pla-
nar graphs, the previously best known algorithm was the one by Borradaile,
Sankowski, and Wulff-Nilsen. That is, for the special case of partial 2-trees we
are able to improve their running time by a factor of Θ(log5 n).

The class of partial 2-trees subsumes, in particular, the class of outerplanar
graphs. Our result is achieved by an iterative decomposition of the partial 2-tree
into outerplanar graphs, to which the recent result of Liu and Lu [14] can be
applied. We state our main theorem.

Theorem 1. Given a partial 2-tree G on n vertices and a non-negative weight
function w : E → R≥0, a minimum cycle basis B of G (implicitly encoded in
O(n) space) can be obtained in O(n) time.

Moreover, B can be reported explicitly in time O(size(B)), where size(B) is
the number of edges in B counted according to their multiplicity.

Note in Theorem 1 that, although B has an implicit representation of linear
size, the explicit size of B may be quadratic. This is true already for outerplanar
graphs, cf. [14] for a simple grid graph G in which the unique MCB of G contains
Θ(n2) edges.
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For the proof of Theorem 1, it will be crucial that the set of lex short cycles
(cf. Section 2.3) in any weighted partial 2-tree forms a minimum cycle basis [15].
As lex short cycles are inherently defined by shortest paths, we will need a
data structure that reports the distance between two vertices in constant time
(e.g., for checking whether an edge is the shortest path between its endpoints).
In outerplanar graphs, such a data structure exists due to Frederickson and
Jannardan [9]. For our more general case, we will instead extend a result of
Chaudhuri and Zaroliagis [7, Lemma 3.2] on weighted partial k-trees, which is
able to give the distance of every two vertices in constant time, as long as both
are contained in one bag of a tree decomposition. Using this extension, we can
report the shortest path P between any two such vertices in time O(|E(P )|).

2 Graph Preliminaries, Partial 2-Trees and Lex Shortest
Paths

We consider weighted undirected graphs G = (V,E) where V denotes the set of
vertices, E the set of edges and w : E → R≥0 a non-negative weight function.
Throughout this work, we set n = |V | and m = |E|. All graph classes considered
in this paper are sparse, i.e., we have a linear dependence m = O(n).

We use standard graph terminology from [8]. The weight w(P ) of a path P
in G is the sum of weights of edges in P ; i.e., w(P ) :=

∑
e∈P w(e). For a graph

H , an H-subdivision is a graph obtained from H by replacing its edges with
non-empty and pairwise vertex-disjoint paths. In this work, we will be mainly
concerned with K2,3-subdivisions. In such a K2,3-subdivision, we call the vertices
of degree greater than two the branch vertices of the subdivision.

2.1 Minimum Cycle Bases

A cycle C in G is a connected subgraph of G in which every vertex has degree
two. Let C1, . . . , Ck be cycles in G and let ⊕ denote the symmetric difference
function. Then the sum S := C1 ⊕ . . .⊕Ck is the set of edges appearing an odd
number of times in the multi-set {C1, . . . , Ck}. It is well known that S is a union
of cycles in G.

Let a set C = {C1, . . . , Ck} of cycles of G span the cycle space of G if every
cycle C of G can be written as a sum Ci1 ⊕ . . . ⊕ Ci� of elements of C. In this
case, we say that Ci1 , . . . , Ci� generate C. The size size(C) of C is the number of
edges in C counted according to their multiplicity.

A cycle basis of G is a minimum cardinality set of cycles that spans the cycle
space of G. Put differently, a cycle basis is a maximal set of independent cycles,
where we consider a set of cycles to be independent if their incidence vectors in
{0, 1}m are independent over the field GF(2). The cardinality of a cycle basis is
sometimes referred to as the dimension of the cycle space of G. For any simple
weighted graph the dimension equals m− n + 1 [5].

We are interested in identifying a minimum cycle basis (MCB) of G; i.e., a
cycle basis C of minimum total weight

∑
C∈C w(C).
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A minimum cycle basis of a graph G is equal to the disjoint union of the
minimum cycle basis of the 2-connected components of G. Therefore, throughout
this paper, we assume without loss of generality that G is 2-connected.

2.2 Tree Decompositions and Partial 2-Trees

A tree decomposition of a graph G is a pair ({X1, . . . , Xr}, T ) of a set of bags
X1, . . . , Xr and a tree T with vertex set V (T ) = {X1, . . . , Xr} that satisfies the
following three properties:

1. X1 ∪ . . . ∪Xr = V ,
2. For each edge {u, v} ∈ E, there is an index 1 ≤ i ≤ r such that {u, v} ⊆ Xi,

and
3. For each vertex v ∈ V , the bags in T containing v form a subtree of T

(subtree property).

The treewidth of ({X1, . . . Xr}, T ) is max{|X1|, . . . |Xr|}− 1. The treewidth of G
is the minimum treewidth over all possible tree decompositions of G. We call
a tree decomposition ({X1, . . .Xr}, T ) optimal if the treewidth of T is equal to
the treewidth of G. To distinguish between the edges of G and T , we refer to
the edges of T as links.

A k-tree is a graph of treewidth k for which the addition of any edge between
non-adjacent vertices would increase the treewidth.

Any subgraph of a k-tree is called a partial k-tree. Partial 2-trees are also
known as graphs in which every biconnected component is a series-parallel
graph [4]. The partial 2-trees form a strict superclass of outerplanar graphs,
as outerplanar graphs are characterized by the forbidden minor set {K4,K2,3},
while partial 2-trees have the forbidden minor set {K4}. Equivalently, a partial
2-tree is outerplanar if and only if it does not contain a K2,3-subdivision (as a
subgraph). We will need the following somewhat stronger statement.

Lemma 2 (Lemma 2.4 in [15]). Let G be a weighted partial 2-tree. G is not
outerplanar if and only G contains a K2,3-subdivision with branch vertices u and
v such that G− {u, v} has at least 3 connected components.

2.3 Lex Shortest Paths and Lex Short Cycles

It is known (Proposition 4.5 in [10]) that for any edge-weighted simple graph G
the set of so-called lex short cycles contains a minimum cycle basis. For outer-
planar graphs [14] and partial 2-trees [15], the whole set of lex short cycles forms
a minimum cycle basis.

Definition 3 (Lex Shortest Paths). Let G = (V,E) be a graph with weight
function w : E → R≥0. Let σ : V → {1, 2, . . . , n} be an arbitrary ordering of the
vertices.

A path P between two distinct vertices u, v ∈ V is called a lex short-
est path if for any other path P ′ between u and v either w(P ′) > w(P ) or
(w(P ′) = w(P ) and |E(P ′)| > |E(P )|) or (w(P ′) = w(P ), |E(P ′)| = |E(P )|
and miny∈V (P ′)\V (P ) σ(y) > miny∈V (P )\V (P ′) σ(y)) holds.
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It is easily verified (cf. Proposition 4.1 in [10]) that between any two vertices
u, v in G there is exactly one lex shortest path. We refer to this path as lsp(u, v).
If the dependence of the graph is not clear from the context, we write lspG(u, v).
Note that every subpath of a lex shortest path is a lex shortest path.

Definition 4 (Lex Short Cycles). A lex short cycle C is a cycle that contains
for any two vertices u, v ∈ C the lex shortest path lsp(u, v). For an edge-weighted
graph G, we denote by LSC(G) the set of all lex short cycles in G.

Lemma 5 ([10,15]). For any edge-weighted simple graph G, there is a set B ⊆
LSC(G) such that B is a minimum cycle basis for G. Additionally, the set of
lex short cycles LSC(G) forms a minimum cycle basis if G is a weighted partial
2-tree.

Abusing notation (since MCB(G) may not be unique) we write MCB(G) ⊆
LSC(G) and MCB(G) = LSC(G), respectively, for the two statements in
Lemma 5. This lemma allows us to restrict ourselves to compute the set of
lex short cycles. For outerplanar graphs, Liu and Lu showed that an implicit
representation of LSC(G) can be computed in linear time.

Theorem 6 ([14]). For any weighted outerplanar graph G an O(n)-space rep-
resentation of the set LSC(G) can be computed in O(n) time. From this repre-
sentation, we can compute a cycle C ∈ LSC(G) explicitly in time O(size(C)).

3 High-Level Overview of Our Algorithm and Technical
Details

We first describe the high-level idea of our algorithm; the proofs and all details
are presented in the subsequent sections. From now on we assume that G is a
weighted partial 2-tree.

3.1 Preprocessing Steps

We introduce a few preprocessing steps besides 2-connectivity that will simplify
the description of our algorithm. As a first step, we construct an alternative to
the weight function w for which every lex shortest path is the unique shortest
path. That this can be done in linear time has been shown in [10].

Lemma 7 (Proposition 4.3 in [10]). If G is a simple graph with edge weight
function w, then there exists a perturbation ŵ of w such that every lex shortest
path lsp(u, v) under w is the unique shortest u− v path under ŵ.

We call an edge {u, v} tight if it is the unique shortest path between u and v,
and we call it long otherwise. The long edges in G will be treated separately.
This is based on the following lemma.

Lemma 8. Let G = (V,E) be an edge-weighted graph. Let L be the set of long
edges in G. Then MCB(G) = MCB(G \ L) ∪ {{e} ∪ lsp(u, v) | e = {u, v} ∈ L}.
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Proof. For every e = {u, v} ∈ L the cycle {e} ∪ lsp(u, v) is a lex short cycle
in G. By definition, it is the only lex short cycle that contains e. Therefore,
LSC(G) = LSC(G \ L) ∪ {e′ ∪ lsp(u′, v′) | e′ = {u′, v′} ∈ L}. By Lemma 5 we
know that MCB(G) ⊆ LSC(G). The independence of M := MCB(G \L)∪ {e′ ∪
lsp(u′, v′) | e′ = {u′, v′} ∈ L} follows again from the fact that e is contained in
M only in this one cycle {e} ∪ lsp(u, v). ��

As we shall see in Lemma 15 below, the set L in Lemma 8 can be identified and
removed from G in O(n) time using a suitable data structure. Using these two
lemmata, computing the contribution of the removed long edges to the MCB of
G takes at most linear time.

3.2 High-Level Overview of the Main Algorithm

By Lemma 5 it suffices to compute the set of lex short cycles in G. This set
forms a minimum cycle basis. For simplicity, we assume that the simplifications
described above have been performed in a preprocessing step. In particular, all
shortest paths in G are unique and G contains only tight edges. As shown above,
the preprocessing steps can be done in time O(n).

The key approach for our algorithm is to iteratively decompose the graph G
into outerplanar subgraphs G1, . . . , Gr. To these subgraphs we apply the linear
time algorithm of Liu and Lu (Theorem 6). Intuitively, the decomposition is
done as follows.

When G is not outerplanar, then there exists a K2,3-subdivision in G with
branch vertices u and v such that (i) {u, v} is a minimum vertex separator of
G and (ii) the removal of {u, v} disconnects G into at least three connected
components H1, . . . , Hk (cf. Lemma 2). We distinguish two cases. If {u, v} ∈ E,
we set Gi := G[V (Hi) ∪ {u} ∪ {v}]. Otherwise, let j ∈ {1, 2, . . . , k} such that
lsp(u, v) ∈ G[V (Hj) ∪ {u} ∪ {v}]. We set Gj := G[V (Hj) ∪ {u} ∪ {v}], and for
all 1 ≤ i 
= j ≤ k we set Gi := G[V (Hi) ∪ {u} ∪ {v}] ∪ blue({u, v}), where
blue({u, v}) denotes a new “colored” (i.e., marked) edge {u, v}. This blue edge
serves as a placeholder for the lex shortest path between u and v, as this is not
contained in Gi. The weight w(blue({u, v})) assigned to this new edge is therefore
w(lsp(u, v)). Let the operation decomp(G, u, v) decompose G into G1, . . . , Gk

with respect to the vertices u, v.
We now iteratively decompose the graphs G1, . . . , Gk as described above until

we are left with graphs G1, . . . , Gr that do not contain any K2,3-subdivision,
i.e., with outerplanar graphs according to Lemma 2. Since all the edges in Gi

are tight, the set of lex short cycles in Gi equals the boundaries of its in-
ternal faces. Extracting the internal faces of Gi can be done in linear time,
cf. [14]. We will show in Lemma 17 that LSC(G) equals the disjoint union of
expand(LSC(G1)), . . . , expand(LSC(Gr)), where expand(LSC(Gi)) replaces the
blue edges blue({u, v}) in every cycle by the lex shortest path lsp(u, v).

The challenging part of the algorithm is to find a data structure that allows
to identify all the K2,3-subdivisions and to do the respective decompositions in
linear time. To this end, we define suitable tree decompositions.
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3.3 Suitable Tree Decompositions

We define suitable tree decompositions and we show how they help in efficiently
computing our decomposition. Let the label of a link � = (X,Y ) in a tree de-
composition be X ∩ Y .

Definition 9 (Suitable Tree Decomposition). An optimal rooted tree de-
composition of G is suitable if it satisfies the following properties:

1. The size of every bag Xi is 3 and every two adjacent bags Xi, Xj in T differ
by exactly one vertex; i.e., |Xi ∩ Xj | = 2 (this property is called smooth
in [3]).

2. Any two links with the same label have a common parent in T .

Observe that for any internal bag in T , the number of children could be arbi-
trary, but there are at most three different labels associated with the links to its
children.

Our algorithm will perform all computations in a suitable tree decomposition
of the tight induced subgraph of G. It is therefore important that such a tree
decomposition can be computed in linear time.

Lemma 10. Given a weighted partial 2-tree G, a suitable tree decomposition
can be computed in linear time and has linear space.

One of the underlying key observations of our algorithm is the fact that for
all K2,3-subdivisions the two branch vertices must be contained in a common
bag of a suitable tree decomposition. This is shown using the following result.

Lemma 11 (Lemma 12.3.4 in [8]). Let W ⊆ V (G) and T be a tree decom-
position of G. Then T contains either a bag that contains W or a link {X1, X2}
such that two vertices of W are separated by X1 ∩X2 in G.

Lemma 12 (K2,3-subdivisions in partial 2-trees). For every K2,3-
subdivision H in a partial 2-tree G and every smooth tree decomposition T of G,
the two branch vertices u and v of H are contained in a common bag of T .

Proof. We apply Lemma 11 with W = {u, v}. If u and v are not contained in a
common bag, there must be a link {X1, X2} such that u and v are separated by
X1 ∩ X2 in G. Since H is a K2,3-subdivision, |X1 ∩X2| ≥ 3, contradicting the
smoothness of T . ��

3.4 Suitable Data Structures for Finding the Lex Shortest Paths

Another useful tool in our algorithm will be the following data structure. It
supports the query for an intermediate vertex that lies on the lex shortest path
between two nodes. The following lemma can be proven along the lines of [9].
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Lemma 13. Let T be a rooted tree decomposition of G. There is a linear space
data-structure with O(n) preprocessing time that supports the following query:
Given a bag A ∈ T and a vertex v ∈ G that is not in A, find the link incident to
A that leads to the subtree of T containing a bag with vertex v. The query time
is O(log d), where d is the degree of A in T .

We are finally ready to show that for any long edge {u, v} the lex shortest
path between u and v can be computed in time O(|E(lsp(u, v))|). The following
lemmata will be useful also to identify the subtree of the tree decomposition that
contains lsp(u, v) for two branch vertices u and v with {u, v} /∈ E.

Lemma 14 (Lemma 3.2 in [7]). Given a partial k-tree G and an optimal
tree decomposition T of G, there is an algorithm with running time O(k3n) that
outputs the distances of all vertex pairs that are contained in common bags and
that, for each such vertex pair, outputs some intermediate vertex of the shortest
path between the vertices.

Lemma 14 is originally stated for directed graphs in [7]. However, representing
each undirected edge with two edges oriented in opposite directions gives the
above undirected variant.

We extend Lemma 14 by giving the following data structure.

Lemma 15. Given a connected partial 2-tree G and a suitable tree decomposi-
tion T of G, there is an O(n)-space data structure requiring O(n) preprocessing
time that supports the following queries, given two vertices u and v and a bag
X ∈ T that contains u and v:

– Compute in time O(1) the distance of the shortest path between u and v
(distance query).

– Compute in time O(1) an intermediate vertex w of the shortest path between
u or v (if exists) and a bag Y ∈ T such that Y = {u, v, w} ( intermediate
vertex query)

– Compute in time O(|E(P )|) the shortest path P between u and v ( shortest
path extraction)

Proof. We perform the algorithm of Lemma 14 and store the distance of every
vertex pair {u, v} that is contained in a common bag, say in X , in a table linked
to X . Since T contains only linearly many bags, this takes O(n) space. The table
supports distance queries in constant time, as there are only constantly many
vertex pairs in each bag.

Assume for the moment that we know how to support the intermediate vertex
query. Then we can easily support the shortest path extraction by first applying
an intermediate vertex query, which gives Y , and subsequently recursing on the
two intermediate vertex queries {u,w} and {w, v}, both in Y , until each shortest
path is just an edge. This allows to extract the shortest path u and v in time
proportional to its length.

It remains to show how to support intermediate vertex queries. We initialize
the data structure D of Lemma 13 for the tree decomposition T in time O(n)
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and apply the algorithm of Lemma 14 in time O(n). Let X be a bag containing
u and v. By Lemma 14, we have already found an intermediate vertex z between
u and v, but want to find an intermediate vertex w that is in a common bag Y
with u and v. If z does not exist, the shortest path is just an edge, in which case
we just set w to be non-existent as well. If z ∈ X , we set w = z and Y = X and
are done.

Otherwise, we query D with (X, z) and get a link (X,A) such that z is con-
tained in the subtree of T that is separated by (X,A) and does not contain X
(note that A may be the parent of X in T ). According to Lemma 13, this query
takes time proportional to at most the degree of X in T .

We now distinguish two cases. In the case that A contains u and v, we iterate
this procedure further on A instead on X . In this iteration, this case cannot
happen more than a constant number of times, as T is suitable, so any path in
the subtree of T consisting of bags containing {u, v} has length at most 2.

Otherwise, A contains exactly one vertex of {u, v}, say u. Consider X =
{u, v, r} and the subtree T1 of T that is separated by the link (X,A) and contains
A. By the subtree property, T1 cannot contain a bag with v, as then v would
also be contained in A. Since T1 contains a part of the shortest path between
u and v, but has only u and r in common with X , r must be an intermediate
vertex. Since X contains u, v, and r, we set w = r and Y = X .

We investigate the preprocessing time of the data structure, i.e., the time
spent computing for all vertex pairs (u, v) the intermediate vertex w and the bag
containing all three vertices {u, v, w}. In every bag X , there are only constantly
many vertex pairs. For each such vertex pair, we could find w in time O(deg(X)),
where deg(X) is the degree of X in T . Hence, the preprocessing time sums up
to a linear total. ��

Since a tree decomposition maintains for every edge the bag that contains it,
the query of Lemma 15 can also be performed when no bag is given but an edge
{u, v}.

3.5 Obtaining LSC(G) from LSC(G1), . . . ,LSC(Gr)

As a last technicality, we show that—as claimed in the high-level overview
of our algorithm—the set of lex short cycles in G equals the disjoint union
expand(LSC(G1))" . . ." expand(LSC(Gr)). This follows from iteratively apply-
ing Lemma 17 below.

Definition 16. For any cycle C of G, let expand(C) be the cycle obtained from
C by replacing the blue edges blue({u, v}) in C (if exist) by the lex shortest path
lsp(u, v). For a set of cycles C, let expand(C) := {expand(C) | C ∈ C}.

As mentioned above, we obtain a minimum cycle basis of G by expanding the
cycles in the MCBs of the subgraphs.

Lemma 17. Let G be a weighted partial 2-tree in which every edge is tight. Let
u and v be the two branch vertices of a K2,3-subdivision in G. Let k ≥ 3 and let
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Algorithm 1. A linear time algorithm to compute the implicit represen-
tation of an MCB of a 2-connected weighted partial 2-tree G

1 Do the graph preprocessing steps described in Section 3.1;
2 Compute a suitable tree decomposition of G;
3 for each internal bag Y1 ∈ V (T ) and every u, v ∈ Y1 do
4 Let Y2, . . . Yk be the children of Y1 such that for

2 ≤ i ≤ k, Y1 ∩ Yi = {u, v};
5 if k ≥ 3 then
6 for 2 ≤ i ≤ k do remove the link {Y1, Yi};
7 if {u, v} /∈ E then
8 Find an intermediate vertex y in lsp(u, v) and compute

w(lsp(u, v)) ;
9 if there exists a j ∈ {2, . . . , k} such that the subtree rooted at

Yj has a bag that contains the vertex y then let j be that
index ; else j = 1;

10 for 1 ≤ i 
= j ≤ k do
11 Add the new blue edge blue({u, v}) to Yi and assign to it

weight w(lsp(u, v));

12 Let T1, . . . , Tr be the connected components of T ;
13 Obtain the graphs G1, . . . , Gr that correspond to the tree decompositions

T1, . . . , Tr, respectively;
14 Compute LSC(G1), . . . ,LSC(Gr) using [14] ; // LSC(Gi) equals the

internal faces of Gi

15 Store (L,LSC(G1), . . . ,LSC(Gr)) ; // L is the set of long edges

G1, . . . , Gk be the subgraphs resulting from the decomposition decomp(G, u, v).
Then LSC(G) = expand(LSC(G1)) " . . . " expand(LSC(Gk)).

Lemma 17 can be proven using the following observation.

Lemma 18 (Lemma 2.5 and Corollary 2.8 in [15]). Let G be a weighted
graph and let G′ be a subgraph of G. Let P be a path in G′. If P is lex shortest
in G, it is lex shortest in G′.

Furthermore, for G, k, and G1, . . . , Gk as in Lemma 17, we have
expand(LSC(Gi)) ⊆ LSC(G), 1 ≤ i ≤ k.

4 Computing an MCB in Weighted Partial 2-Trees

Our algorithm, Algorithm 1, can now be described as follows.

Preprocessing. Given a 2-connected weighted partial 2-tree G = (V,E) with
edge-weight function ŵ, we first compute the perturbation w of ŵ such that every
lex shortest path is the unique shortest path (cf. Lemma 7). We then identify the
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set L of long edges; i.e., the set of edges that are not the shortest paths between
their two endpoints (cf. Lemma 8), and, for the moment, we remove these edges
from G.

For the graph obtained from this preprocessing step, we compute a suitable
tree decomposition.

Main Procedure. In the main loop of Algorithm 1, we check for every vertex
pair {u, v} in every bag if {u, v} is a vertex separator that decomposes G into
at least three different components. By the Lemmata 2 and 12 and the fact that
G is assumed to be 2-connected, this identifies a K2,3-subdivision if it exists. If
so, we decompose along u and v by deleting the appropriate links in T in line 6.
Lines 8 and 9 are needed to identify the subtree of T that contains lsp(u, v). In
all other subtrees, the edge {u, v} is marked in blue, and the weight associated
to this edge is w(lsp(u, v)). By maintaining the data structure of Lemma 15, the
intermediate vertex can be found efficiently.

When Algorithm 1 stops, we compute the connected components T1, . . . , Tr

of T in linear time by performing a standard graph traversal routine. We can
compute the graphs G1, . . . , Gr that are represented by these tree decompositions
in linear total time by just collecting the vertices and edges in all bags. Note that
the total number of edges in G1, . . . , Gr is linear, as we add at most deg(V1) new
blue edges for each bag V1, where deg(V1) is the degree of bag V1 in T . Every
Gi is outerplanar and the LSCs of all these outerplanar graphs can be computed
in linear total time. (As mentioned in the high-level overview, one can simply
apply the result of Liu and Lu (Theorem 6) as a black-box. Or one observes
that since all edges in Gi are tight, the set of lex short cycles in Gi equals the
boundaries of its internal faces. Extracting the internal faces of Gi can be done
in linear time.)

The set L of long edges together with (the implicit representations) of
LSC(G1), . . . ,LSC(Gr) forms the implicit representation of our minimum cy-
cle basis.

This concludes the presentation of our main result, the first part of Theorem 1.
In order to get the explicit representation of the minimum cycle basis, we apply
Lemma 8. It thus suffices to augment every edge (u, v) in the set L of long edges
of the implicit representation by lsp(u, v), which can be done in time O(|C|) for
each constructed cycle C, according to Lemma 15.

5 Discussion

We have shown that an implicit representation of a minimum cycle basis of a
weighted partial 2-tree can be computed in linear time. It remains a challenging
question if our result can be extended to partial k-trees for k > 2. We remark
that it was noted in [15] that already for partial 3-trees the set of lex short
cycles do not necessarily form a minimum cycle basis. Extending our result to
partial 3-trees may therefore require substantially new ideas.
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Abstract. The geometric thickness θ(G) of a graph G is the smallest
integer t such that there exist a straight-line drawing Γ of G and a par-
tition of its straight-line edges into t subsets, where each subset induces
a planar drawing in Γ . Over a decade ago, Hutchinson, Shermer, and
Vince proved that any n-vertex graph with geometric thickness two can
have at most 6n − 18 edges, and for every n ≥ 8 they constructed a
geometric thickness two graph with 6n − 20 edges. In this paper, we
construct geometric thickness two graphs with 6n − 19 edges for every
n ≥ 9, which improves the previously known 6n − 20 lower bound. We
then construct a thickness two graph with 10 vertices that has geomet-
ric thickness three, and prove that the problem of recognizing geometric
thickness two graphs is NP-hard, answering two questions posed by Dil-
lencourt, Eppstein and Hirschberg. Finally, we prove the NP-hardness
of coloring graphs of geometric thickness t with 4t − 1 colors, which
strengthens a result of McGrae and Zito, when t = 2.

1 Introduction

The thickness θ(G) of a graph G is the smallest integer t such that the edges of
G can be partitioned into t subsets, where each subset induces a planar graph.
Since 1963, when Tutte [21] first formally introduced the notion of graph thick-
ness, this property of graphs has been extensively studied for its interest from
both the theoretical [2,5,7] and practical point of view [17,19]. A wide range
of applications, e.g., circuit layout design, simultaneous geometric embedding,
and network visualization, have motivated the examination of thickness in the
geometric setting [7,11,12,14]. The geometric thickness θ(G) of a graph G is the
smallest integer t such that there exist a straight-line drawing (i.e., a drawing on
the Euclidean plane, where every vertex is drawn as a point and every edge is
drawn as a straight line segment) Γ of G and a partition of its straight-line edges
into t subsets, where each subset induces a planar drawing in Γ . If t = 2, then G
is called a geometric thickness two graph (or, a doubly-linear graph [14]), and Γ
is called a geometric thickness two representation of G. While graph theoretical
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thickness does not impose any restriction on the placement of the vertices in
each planar layer, the geometric thickness forces the same vertices in different
planar layers to share a fixed point in the plane. Eppstein [11] clearly established
this difference by constructing thickness three graphs that have arbitrarily large
geometric thickness.

Structural Properties. Geometric thickness has been broadly examined on sev-
eral classes of graphs, e.g., complete graphs [7], bounded-degree graphs [4,10,11],
and graphs with bounded treewidth [8,9]. Hutchinson, Shermer, and Vince [14] ex-
amined properties of graphs with geometric thickness two. They proved that these
graphs at most 6n− 18 edges, and for every n ≥ 8 they constructed a geometric
thickness two graph with 6n− 20 edges. Even after several attempts [7,10] to un-
derstand the structural properties of geometric thickness two graphs, the question
whether there exists a geometric thickness two graph with 6n−18 edges remained
open for over a decade. Answering this question is quite challenging since although
one can generate many thickness two graphs with 6n − 18 or 6n − 19 edges, no
efficient algorithm is known that can determine the geometric thickness of such a
graph. However, by examining the point configurations that are likely to support
geometric thickness two graphs with large numbers of edges, we have been able to
construct geometric thickness two graphs with 6n− 19 edges (see Section 2).

Recognition. Although graph theoretical thickness is known for all complete
graphs [2] and complete bipartite graphs [5], geometric thickness for these graph
classes is not completely characterized. Dillencourt, Eppstein and Hirschberg [7]
proved an �n/4� upper bound on the geometric thickness of Kn, giving a nice
construction for representations with geometric thickness t = �n/4�. They also
gave a lower bound on the geometric thickness of complete graphs that matches
the upper bound for several smaller values of n. Their bounds show that the
geometric thickness of K15 is greater than its graph theoretical thickness, i.e.,
θ(K15) = 4 > θ(K15) = 3, which settles the conjecture of [16] on the relation
between geometric and graph theoretical thickness. Since the exact values of
θ(K13) and θ(K14) are still unknown, Dillencourt et al. [7] hoped that the relation
θ(G) > θ(G) could be established with a graph of smaller cardinality. In Section 3
we prove that the smallest such graph contains 10 vertices.

Since determining the thickness of an arbitrary graph is NP-hard [17], Dillen-
court et al. [7] suspected that determining geometric thickness might be also NP-
hard, and mentioned it as an open problem. The hardness proof of Mansfield [17]
relies heavily on the fact that θ(K6,8) = 2. Dillencourt et al. [7] mentioned that
this proof cannot be immediately adapted to prove the hardness of the problem
of recognizing geometric thickness two graphs by showing that θ(K6,8) = 3. This
complexity question has been repeated several times in the literature [8,11] since
2000, and also appeared as one of the selected open questions in the 11th Inter-
national Symposium on Graph Drawing (GD 2003) [6]. In Section 4 we settle
the question by proving the problem to be NP-hard.

Colorability. As a natural generalization of the well-known Four Color The-
orem for planar graphs [3], a long-standing open problem in graph theory is
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to determine the relation between thickness and colorability [15,20]. For every
t ≥ 3, the best known lower bound on the chromatic number of the graphs with
thickness t is 6t − 2, which can be achieved by the largest complete graph of
thickness t. On the other hand, every graph with thickness t is 6t colorable [15].
Recently, McGrae and Zito [18] examined a variation of this problem that given
a planar graph and a partition of its vertices into subsets of at most r vertices,
asks to assign a color (from a set of s colors) to each subset such that two
adjacent vertices in different subsets receive different colors. They proved that the
problem is NP-complete when r = 2 (respectively, r > 2) and s ≤ 6 (respectively,
s ≤ 6r − 4) colors. In Section 5 we prove the NP-hardness of coloring geometric
thickness t graphs with 4t − 1 colors. As a corollary, we strengthen the result
of McGrae and Zito [18] that coloring thickness t = r = 2 graphs with 6 colors
is NP-hard. Our hardness result is particularly interesting since no geometric
thickness t graph with chromatic number more than 4t is known.

2 Geometric Thickness Two Graphs with 6n − 19 Edges

Let K ′
9 be the graph obtained by deleting an edge from K9. In this section we

first construct a geometric thickness two representation Γ of K ′
9 that has 6n−19

edges. We then show how to add vertices in Γ such that for any n ≥ 9 one can
construct a geometric thickness two graph with 6n− 19 edges.

cb

h

(c)
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d
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e

d
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b (b)

(a)
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f

h
i

i
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f

e

Fig. 1. (a) Illustration for the shared edges (bold). (b) Initial point set. (c) A geometric
thickness two representation Γ of K′

9, where the planar layers are shown in red (dashed)
and blue (thin). Black edges can belong to either red or blue layer. Free quadrangles
are shown in green (shaded). Some edges are drawn with bends for clarity.

Hutchinson et al. [14, Theorem 6] proved that if any geometric thickness two
graph with 6n− 18 edges exists, then the convex hull of its geometric thickness
two representation must be a triangle. This representation is equivalent to the
union of two plane triangulations that share at least six common edges, i.e.,
the three outer edges and the other three edges are adjacent to the three out-
ervertices, as shown in black in Figure 1(a). Since each triangulation contains
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3n− 6 edges, the upper bound of 2(3n− 6)− 6 = 6n− 18 follows. These prop-
erties of an edge maximal geometric thickness two representation motivated us
to examine pairs of triangulations that create many edge crossings while drawn
simultaneously. In particular, we first created a set of points interior to the con-
vex hull such that addition of straight line segments from each interior point
to the three points on the convex hull creates two plane drawings that, while
drawn simultaneously, contain a crossing in all but the six common edges. Fig-
ure 1(b) illustrates such a scenario. We then tried to extend each of these two
planar drawings to a triangulation by adding new edges such that every new edge
crosses at least one initial edge. We found multiple distinct point sets for which
all but one newly added edge cross at least one initial edge, resulting in multiple
distinct geometric thickness two representations with 2(3n − 6) − 7 = 6n − 19
edges. For example, see Figure 1(c), where the underlying graph is K ′

9.
Let Γ be a geometric thickness two representation. A triangle in Γ is empty

if it contains exactly three vertices on its boundary, but does not contain any
vertex in its proper interior, e.g., the triangle Δghi in Figure 1(d). A quadrangle
in Γ is free if it is created by the intersection of two empty triangles but does
not contain any vertices of Γ , as shown in Figure 1(d) in green.

Theorem 1. For each n ≥ 9, there exists a geometric thickness two graph with
n vertices and 6n− 19 edges that contains K9 minus an edge as a subgraph. For
each n ≥ 11, there exists a geometric thickness two graph with 6n−19 edges that
does not contain K8.

Proof. Since K ′
9 has a geometric thickness two representation, as shown in Fig-

ure 1(c), the claim holds for n = 9. We now claim that given an n-vertex ge-
ometric thickness two representation with 6n − 19 edges that contains a free
quadrangle, one can construct a geometric thickness two representation with
n+1 vertices and 6(n+1)−19 edges. One can verify this claim as follows. Place
a new vertex p interior to the free quadrangle. Since a free quadrangle is the
intersection of two empty triangles, one can add three straight line edges from p
to the three vertices of each empty triangle such that the new drawing in each
layer remains planar, as shown in Figure 2(a). Since the number of vertices in-
creases by one, and the number of edges increases by six, the resulting geometric
thickness two representation must have 6n− 19 + 6 = 6(n + 1)− 19 edges.

Observe that there are at least four free quadrangles in the geometric thickness
two representation of K ′

9, as shown in Figure 1(d). Therefore, for each i, 9 ≤
i ≤ 12, we can construct a geometric thickness two representation Γi with i
vertices and 6i − 19 edges that contain at least one free quadrangle. We use
these four geometric thickness two representations as the base case, and assume
inductively that for each 9 ≤ i < n there exists a geometric thickness two
representation Γi with i vertices and 6i−19 edges that contains at least one free
quadrangle. We now construct a geometric thickness two representation with n
vertices and 6n− 19 edges that contains a free quadrangle. By induction, Γn−4

has a free quadrangle. We add four vertices to this quadrangle and complete the
triangulation in each planar layer by adding 24 new edges in total, as shown in
Figure 2(b). Consequently, the new geometric thickness two representation Γn
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(d)(c)(b)(a)

Fig. 2. (a)–(b) Adding vertices to a geometric thickness two drawing. (c)–(d) A graph
with 11 vertices, 47 edges and geometric thickness two that does not contain K8.

contains 6(n− 4)− 19 + 24 = 6n− 19 edges. Since the newly added edges create
new free quadrangles, Γn also contains a free quadrangle.

The existence of such graphs that do not contain K8 is proved using the graph
illustrated in Figure 2(c). The details are omitted due to space constraints. ��

3 Thickness Two Graphs with θ(G) ≥ 3

We enumerate all possible geometric thickness two drawings of K ′
9 using Aich-

holzer et al.’s [1] point-set order-type database. Figure 3 illustrates all the three
different configurations of nine points that support geometric thickness two draw-
ings of K ′

9. It might initially appear that Figures 3(a) and (b) are the same.
However, observe that g lies on the left half-plane of (d, e) in Figure 3(a) and
on the right-half plane of (d, e) in Figure 3(b). We enumerated these geometric
thickness two representations by performing the steps S1 and S2 below for every
point-set order-type P that consists of nine points.

S1. Construct a straight-line drawing Γ of K9 on P .
S2. For every edge e∗ in Γ , execute the following.

- Delete e∗ and test whether the proper intersection graph1 determined
by the remaining straight lines is 2-colorable. If the graph is 2-colorable,
then Γ is a geometric thickness two representation of K ′

9.
- Reinsert e∗ in Γ .

Let Γi, 1 ≤ i ≤ 3, be the drawings of K ′
9 depicted in Figures 3(a)–(c), re-

spectively. The seven black edges in each of these drawings do not contain any
crossing, i.e., these edges are shared in both triangulations. By Ei and E′

i we
denote the set of all edges, and the set of black edges in Γi, respectively. Let
E′′

i = Ei \ E′
i. We verify that the partition of the edges of E′′

i into red and blue
is unique by checking that the proper intersection graph Gi of E′′

i is connected.

1 Each vertex in a proper intersection graph G of a set of straight line segments cor-
responds to a distinct line, and two vertices of G are adjacent if and only the corre-
sponding straight lines properly cross.
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Fig. 3. (a)–(c) Geometric thickness two representations of K′
9, where K′

9 = K9 \ (d, e).
Edges are drawn with polylines for clarity.

Fact 1 Let Γ be a geometric thickness two representation of K ′
9. Then the par-

tition of the straight-line edges of Γ , except the seven edges that do not contain
any proper crossing, into two planar layers is unique.

We now categorize the vertices of a K ′
9 into two types: unsaturated (vertices

of degree 7), and saturated (vertices of degree 8). The vertices d and e of Fig-
ures 3(a)–(c) are unsaturated, and all other vertices are saturated vertices. Take
a new vertex and make it adjacent to the two unsaturated vertices and any five
saturated vertices of a K ′

9. Let the resulting graph with 10 vertices be Gs. The
following theorem shows that θ(Gs) = 3 > θ(Gs) = 2, whose proof is omitted
due to space constraint. The idea of the proof is first to show a thickness two
representation of Gs, and then to show that Gs contains a vertex v that is not
straight-line visible to all of its neighbors in any geometric thickness two repre-
sentation of Gs \ v. Finally, the proof shows that for every graph G with at most
9 vertices, θ(G) = θ(G).

Theorem 2. The smallest graph G (with respect to the number of vertices) such
that θ(G) = 3 > θ(G) = 2 contains 10 vertices.

4 Geometric Thickness Two Graph Recognition

Our proof that testing whether θ(G) ≤ 2 is NP-hard is inspired by a technique
of [13]. We reduce the 3SAT problem that given a CNF-system with a set U
of variables and a collection C of clauses over U , where each clause consists of
exactly three literals, asks whether there is a satisfying truth assignment for U .

Given an instance I(U,C) of 3SAT, we construct a graph G such that there
exists a satisfying truth assignment for U if and only if there exists a geometric
thickness two representation of G. Before describing the construction of G, we
observe some properties of the geometric thickness two representations of K ′

9.
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Fig. 4. (a) Hypothetical geometric thickness two representations of K′
9. (b)–(c) A path

through the unsaturated vertices, and its hypothetical representation. (d)–(e) A geo-
metric thickness two representation with 5 copies of ΓH , and its hypothetical represen-
tation. Note that the order (inside or outside) among the red (dashed) and blue (solid)
lines are not important. (f) A literal gadget, the arrows denote possible connections
with other gadgets. (g)–(h) Hypothetical representation of a literal gadget, when the
literal is (g) true, and (h) false. (i) Illustration for clause gadgets.

By Fact 1, observe that every geometric thickness two drawing of K ′
9 can be

denoted by one of the two hypothetical representations shown in Figure 4(a).
Each black (respectively, gray) vertex of Figure 4(a) is a saturated (respectively,
unsaturated) vertex2. We denote the two planar layers of a drawing by the red
layer Lr (containing the red edges) and blue layer Lb (containing the blue edges).
Each black edge can be assigned an arbitrary layer unless it is crossed by some
other edge. Observe from Figure 3 that if the unsaturated vertex d is surrounded
by a blue (respectively, red) triangle, then the other unsaturated vertex e is sur-
rounded by a red (respectively, blue) triangle. Therefore, if we create a path
connecting the unsaturated vertices of several copies of K ′

9, as shown in Fig-
ure 4(b), then the edges of that path must be of same color. Although here we
require the copies of K ′

9 to be non-overlapping and non-nesting, this will not be
significant for our reduction. In the hypothetical representation, we denote each
K ′

9 with either a black triangle (if its incident edges are of same color), or a gray
triangle (if its incident edges are of different colors).

Let G1 and G2 be two distinct copies of K ′
9. Let si and ui, be a saturated

and an unsaturated vertex of Gi, 1≤i≤2, respectively. Let H be the graph that
is obtained by merging s1 and u1 with u2 and s2, respectively, and then remov-
ing the resulting multi-edges (if any). Observe that a geometric thickness two
representation of H can be constructed by taking two copies of the drawing of
Figure 3(a), and then placing one copy on top of the other copy by rotating
it such that the two drawings share the edge (si, ui). Figure 4(d) illustrates a

2 As defined in Section 3, a vertex v is saturated if it has degree 8, and unsaturated if
it has degree 7.
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hypothetical geometric thickness two drawing ΓH of H . Examining every can-
didate pair ((s1, u1), (s2, u2)) in the drawing of Figures 3(a)–(c) we can observe
that in every geometric thickness two drawing of H , the vertex u1(=s2) must lie
on the convex hull of the drawing of G1. Similarly, the vertex u2(=s1) must lie
on the convex hull of the drawing of G2. Consequently, H can be represented by
ΓH . Figure 4(e) shows how to connect several copies of ΓH to create a geometric
thickness two representation where no two ΓH properly cross, and then shows
its hypothetical representation. We sometimes use a black square to illustrate
the connection between two different drawings, as shown in Figure 4(e).

Construction of G. Assume that I(U,C) contains l literals and t clauses.
For every literal xi, 1 ≤ i ≤ l, construct a literal gadget Γxi as depicted in
Figure 4(f). Figure 4(g) is a simplified representation of the literal gadget, which
will correspond to the value true. On the other hand, Figure 4(h) (i.e., the mirror
embedding of Figure 4(f)) will correspond to the value false. We call the vertex
xig the central vertex of Γxi . By the lower-half of Γxi we denote the subgraph
induced by xic, xid, xie and xif . The vertices of Γxi that are not in the lower-
half, induce the upper-half. Construct the clause gadgets as shown in Figure 4(i).
Observe that the vertices R1 and R2 are incident to a set of rectangles, where
each rectangle (i.e., clause box ) Br corresponds to a clause Cr , 1 ≤ r ≤ t. The
top, left and right sides of Br constitutes a chain of ΓH , and the bottom side
is a path of three vertices. We merge the central vertices of the three literals
of Cr with a distinct vertex of the bottom side of Br. Let Eb be the set that
consists of the edges on the bottom side of the clause boxes. The construction
of the clause gadget ensures that the edges of Eb lie on the same planar layer,
w.l.o.g., on blue layer Lb. Then the clause boxes force the edges (crb, R2) to lie
on the other planar layer, i.e., the red layer Lr. For each literal gadget Γl, we
add an edge between R2 and the gadget such that the edge is forced to lie on
Lr. Similarly, for each literal gadget Γl, add an edge between the top side of the
clause box and the gadget such that the edge is forced to lie on Lb.

We now add some edges among the literal gadgets that correspond to the
same literal. For every literal xi, we order its literal gadgets according to their
appearance in different clauses. Let l1, l2, . . . , lt′ be the literal gadgets that cor-
respond to the literal xi. Then for each index q, 1 ≤ q < t′, we add an edge
between the vertex xie (respectively, xif ) of lq and the vertex xic (respectively,
xid) of lq+1. We denote all these edges by El. Figure 5(a) shows how the edges
in El forces the corresponding literal gadgets to have the same truth value.

Finally, we add a few more edges among the literal gadgets that belong to
the same clause. Let xi, xj , xk be the three literals of Cr. We then add a path
between xib and xja that contains three unsaturated vertices of two copies of
K ′

9, as shown in Figure 5(b). Similarly, we add a path between xka and xjb that
contains three unsaturated vertices of two copies of K ′

9.

Theorem 3. It is NP-hard to determine whether the geometric thickness of an
arbitrary graph is at most two.
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Fig. 5. (a) Literal gadgets that correspond to the same literal, which is true. (b)–(c)
Two gadgets: (b) xj is true, xi, xk are false, (c) xi is true, xj , xk are false.

Proof. Given an instance I(U,C) of 3SAT, we first construct the corresponding
graph G and then prove that I(U,C) has a satisfying truth assignment if and
only if G has a geometric thickness two representation. The proof is similar
to the hardness proof for simultaneous straight-line embedding of two planar
graphs [13]; thus we give only an outline of the proof.

Assume first that I(U,C) is satisfiable. We now construct a geometric thick-
ness two representation of G. We draw the clause gadgets as shown in Figure 4(i).
Then for each literal, we assign a horizontal region and draw its corresponding
gadgets as shown in Figure 5. Finally, for each clause Cr = (xi ∨ xj ∨ xk), we
draw the paths between xib and xja, and xka and xjb such that no two edges on
the same layer cross, as follows. Observe that at least one literal in Cr is true. If
the literal in the middle, i.e., xj , is true, then we draw these paths as shown in
Figure 5(b). Observe that we can adapt this drawing for the case when one of
xi and xk, or both are true. Similarly, if the literal xi or xj is true, w.l.o.g., xi,
then we draw these paths as shown in Figure 5(c). Observe that we can adapt
this drawing for the case when one of xj and xk, or both are true.

Assume now that G has a geometric thickness two representation. Observe
that the graph induced by the edges in Lr in Figure 4(i) is a subdivision of a
triconnected planar graph. Consequently, by a theorem of Whitney [22], such
a graph has a unique combinatorial embedding up to homomorphisms of the
plane. We choose the planar embedding such that the edge (R1, R2) lies on the
outerface and the clause boxes obtain the same order as depicted in Figure 4(i).
Observe that upper-halves of the three literal gadgets of each clause are forced
to lie inside the corresponding clause box. Hence the paths between xib and xja,
and xka and xjb must be drawn inside the clause box. Consequently, at least one
of the literal gadget must correspond to true in each clause box, otherwise, there
must be a crossing in the same planar layer. Since the edges in El forces the
literal gadgets corresponding to the same literal to have consistent embeddings,
we find a satisfying truth assignment for I(U,C). ��
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5 NP-hardness of Colorability

In this section we show the NP-hardness of coloring a graph with geometric
thickness t with 4t− 1 colors. By I(G, T,C) we denote the problem of coloring
a graph G with C colors, where θ(G) ≤ T . We first introduce a few definitions.
A join between two graphs is an operation that given two graphs, adds all
possible edges that connect the vertices of one graph with the vertices of the
other graph. By Gt we denote a class of thickness t graphs that satisfies the
following conditions: (1) G1 is the class of planar graphs. (2) If t>1, then Gt
consists of the graphs obtained by taking a join of K2 and G, where G ∈ Gt−1.

Observe that θ(Gt) ≤ t. We now have the following lemma, whose proof is
omitted due to space constraints.

Lemma 1. It is NP-hard to color an arbitrary graph G ∈ Gt with 2t+ 1 colors.

We use Lemma 1 to prove the NP-hardness of coloring geometric thickness t
graphs with 4t − 1 colors. We employ induction on t. If t = 1, then coloring a
planar graph (i.e., t = 1) with 4t− 1 = 3 colors is NP-hard [15]. We now assume
inductively that for any t′ < t, it is NP-hard to color a geometric thickness t′

graph with 4t′−1 colors. To prove the hardness of coloring a geometric thickness t
graph with 4t−1 colors, we reduce the hardness of coloring a geometric thickness
t− 1 graph with 2(t− 1) + 1 colors. Given an instance I(G, t− 1, 2(t− 1) + 1),
we construct a graph H such that θ(H) ≤ t and H is 4t− 1 colorable if and only
if G is 2(t− 1) + 1 colorable.

Let the number of vertices in G be n. Take n copies H1, H2, . . . , Hn of K2t,
and join each vertex of G with a distinct Hi, 1 ≤ i ≤ n. Finally, take a copy H ′

of K2t−1 and join it with every Hi. Let the resulting graph be H(G, t). To prove
that θ(H(G, t)) = t, we first review a construction of Dillencourt et al. [7] that
gives a thickness t representation of K4t. They proved that the 4t vertices of a K4t

can be arranged in two rings of 2t vertices each, an outer ring and an inner ring,
such that it can be embedded using exactly t planar layers. The vertices of the
inner ring are arranged to form a regular 2t-gon. For each pair of diametrically
opposite vertices, a zigzag path is constructed as illustrated in Figure 6(a). This
path has exactly one diagonal connecting diametrically opposite points (i.e.,
the diagonal connecting the two gray points in the figure.) The union of these
zigzag paths, taken over all t pairs of diametrically opposite vertices, contains
all the edges of K2t in the inner ring, as shown in Figure 6(b). For each pair of
diametrically opposite vertices, we can draw rays from each vertex of the zigzag
path, in two opposite directions, so that none of the rays crosses any edge of the
zigzag path. These rays, in each direction, meet at a common point (e.g., p or
q) forming the outer ring, as shown in Figure 6(c).

Lemma 2. θ(H(G, t)) ≤ t, where t > 1 and G ∈ Gt−1.

Proof. We compute a thickness t representation of H(G, t), as follows. Since
G ∈ Gt−1, θ(G)≤t−1. Take a thickness t−1 representation of G and rotate it
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Fig. 6. (a)–(c) Dillencourt et al.’s construction [7]. (a) A zigzag path in the inner ring.
(b)K2t, where t=3. (c) K4t, where t=3. (d) The geometric thickness two representation
of H(G, t), where t=3. Each subgraph Hi is determined by an inner ring. The vertices
of G are in the green region.

(if necessary) such that no two vertices lie on the same vertical line. Let the
resulting drawing be Γ . Now construct an outer ring as in Dillencourt et al.’s
construction [7], and delete a vertex from the ring to obtain a thickness t drawing
of H ′, as shown in Figure 6(d). For each Hi, construct an inner ring that lies
along the vertical line determined by its corresponding vertex in Γ . Figure 6(d)
shows this correspondence with dotted lines. All the edges that connect the
vertices of G with the vertices of Hi (i.e., the edges in the light-gray region) lie
in the t-th layer. Note that the inner rings must be scaled down small enough
such that these edges do not create any edge crossing in the t-th layer. ��

Theorem 4. It is NP-hard to color an arbitrary geometric thickness t graph
with 4t− 1 colors.

Proof (Outline). If t = 1, then coloring a planar graph (i.e., t = 1) with 4t−1 = 3
colors is NP-hard [15]. Assume now that t > 1. Given an instance I(G, t−1, 2(t−
1) + 1), where G ∈ Gt−1, we construct a corresponding graph H(G, t). We prove
that G is 2(t − 1) + 1 colorable if and only if H(G, t) is 4t − 1 colorable. The
details are omitted due to space constraints. ��
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4. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electronic Journal of Combinatorics 13 (2006)

5. Beineke, L.W., Harary, F., Moon, J.W.: On the thickness of the complete bipartite
graph. Math. Proc. of the Cambridge Philosophical Society 60, 1–6 (1964)

6. Brandenburg, F.-J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G.,
Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD
2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)

7. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. Journal of Graph Algorithms and Applications 4(3), 5–17 (2000)

8. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry 37(4), 641–670 (2007)

9. Duncan, C.A.: On graph thickness, geometric thickness, and separator theorems.
Computational Geometry: Theory and Applications 44(2), 95–99 (2011)

10. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree
graphs. In: Proc. of SoCG, pp. 340–346. ACM (2004)

11. Eppstein, D.: Separating thickness from geometric thickness. In: Goodrich, M.T.,
Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 150–161. Springer, Heidel-
berg (2002)

12. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few
bends. Journal Graph Algorithms and Applications 9(3), 347–364 (2005)

13. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
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Abstract. We present two main results: a 2-page drawing and a recti-
linear drawing of the n-dimensional cube Qn. Both drawings have the

same number 125
768

4n − 2n−3

3

(
3n2 + 9+(−1)n+1

2

)
of crossings, even though

they are given by different constructions. The first improves the cur-
rent best general 2-page drawing, while the second is the first non-trivial
rectilinear drawing of Qn.

Keywords: two-page crossing number, rectilinear crossing number, n-
cube, topological graph theory.

1 Introduction

A drawing D(G) of a graph G = (V,E) is a mapping of G to a topological space
(usually the plane, but not always). The vertices go into distinct points called
nodes, and an edge maps into an arc – a homeomorphic image of the closed
interval [0, 1] – such that its interior contains no node and the endpoints of the
arc associated to an edge e = uv ∈ E are the nodes associated to the end vertices
of e: u and v.

A good drawing D(G) of a graph G is a drawing where each pair of arcs have
at most one point in common which is either a node or a crossing. All drawings
considered in this paper are good.

An embedding of a graph G = (V,E) in a topological space S is a drawing of
G in S without crossings.
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Given a graph G = (V,E), the crossing number ν(G) of G is the minimum
number of crossings in a drawing of G in the plane [10].

For a positive integer k, and a graph G, a k-page drawing of G is a drawing
of G in the union Hk of k closed half-planes, all having their boundary lines
in common, but otherwise disjoint, so that V (G) is contained in the common
boundary line and, for each edge e of G, the arc representing e is contained in
one of the half-planes [4]. The page number of a graph G is the smallest k such
that G embeds in Hk.

The k-page crossing number νk(G) of a graph G is the minimum number of
crossings of edges in a k-page drawing of G.

Since every 1-page drawing is a 2-page drawing, and every 2-page drawing
is a planar drawing, ν(G) ≤ ν2(G) ≤ ν1(G). Yannakakis [13] proved that every
planar graph has a 4-page embedding and announced the existence of a planar
graph that has no 3-page embedding.

The 2-page crossing number of Kn has been recently determined by Ábrego
et al. [1]. de Klerk and Pasechnik [6] used semidefinite programming to find
estimates for ν2(Km,n) and ν(Kn). Masuda et al. [12] proved that it is NP-
complete to determine if there is a 2-page drawing of G having at most k crossings
using a given linear order. This problem is called Fixed Linear Crossing Number.

A rectilinear drawing of a graph G = (V,E) is a drawing of G in the plane
such that edges are drawn as straight line segments. The rectilinear crossing
number cr(G) of a graph G is the smallest number of crossings in a rectilinear
drawing of G.

For n ≥ 0, the n-cube Qn has as its vertex set V (Qn) all binary strings of
length n and two vertices are adjacent if and only if the corresponding strings
differ in precisely one position. (Note that Q0 has one vertex and no edges.)
Thus, each edge e determines the position at which its incident vertices differ; if
this is position i, then e is in the i-th dimension.

Very little is known about exact values of ν(Qn), ν2(Qn), and cr(Qn), respec-
tively. It is known that if n ≤ 3, then ν(Qn) = ν2(Qn) = cr(Qn) = 0. Dean
and Richter [5] showed that ν(Q4) = 8; now appropriate drawings imply that
ν2(Q4) = cr(Q4) = 8. Buchheim and Zheng [3] used a brute force computer
approach with MAX CUT on an auxiliary graph to prove that ν2(Q5) = 60,
ν2(Q6) = 368, and ν2(Q7) ≤ 1874.

Madej [11] exhibited a 2-page drawing for Qn, thereby showing that ν2(Qn) ≤
4n

6 −2n−3n2−2n−43+ (−2)n

48 . In these 2-page drawings, Q5 has 64 crossings, Q6 has
384 crossings, and Q7 has 1920 crossings. Madej also exhibited a drawing for Q5

with 56 crossings; this is not a 2-page drawing. At WG’2003 [8], Faria et al. [9]
exhibited drawings that show ν(Q5) ≤ 56, ν(Q6) ≤ 352, and ν(Q7) ≤ 1760.
These are in line with the conjecture of Erdős and Guy [7]: ν(Qn) ≤ 4n 5

32 −
$n2+1

2 %2n−2 [9].
In Section 3, we give a 2-page drawing of Qn having

125

768
4n − 2n−3

3

(
3n2 +

9 + (−1)n+1

2

)
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crossings. Our drawings of Q5 and Q6 achieve the optimal 2-page values of
Buchheim and Zheng and improve slightly their upper bound for Q7.

By way of comparison, our leading term 125
768 is located within the interval

between the leading terms 5
32 and 1

6 of the upper bounds of Faria et al. [9] for
the crossing number of the n-cube and of Madej’s [11] for the 2-page crossing
number of the n-cube, respectively: 5

32 = 125
800 < 125

768 < 125
750 = 1

6 .
In Section 4 we present a rectilinear drawing of Q5 having 60 crossings. We

then use a slight modification of the vertex-cloning technique of [9] and induc-
tion to obtain a rectilinear drawing of Qn. Despite being a completely different
construction from our 2-page drawing, remarkably, the two drawings of Qn we
present have the same number of crossings.

All proofs are omitted here and will be included in the journal version.

2 Properties of Madej’s Linear Drawing

We use Madej’s construction within our construction; in particular, we use his
drawing of Qn−5 to obtain a drawing of Qn. This section is devoted to under-
standing both his drawing and its crossings.

The construction of Madej [11] is done by induction from the drawing of Q0.
Place side by side two copies of the same linear drawing of Qn, with the order of
the vertices in the copy on the right being inverted with respect to the copy on
the left. The bit 0 is added to the end of each vertex in the copy on the left and
the bit 1 is added to the end of each vertex of the copy on the right. The edges
of dimension n are drawn in the upper region if n is even and in the lower region
if n is odd, as semicircles joining symmetric vertices in the two copies. Examples
of this construction with n = 0, 1, 2, 3, 4 are shown in Figure 1. We denote the
drawing of Madej for the n-cube by Mn and its number of crossings by M(n).

Let S be a set of vertical straight lines, each one passing through each vertex
of Mn. Let un be the number of crossings of the edges in the 2-page drawing of
Madej with the vertical straight line set S. Madej [11] established Theorem 1:

Theorem 1. un = 4n

2 − (n + 1)2n−1.

We show in Figure 1 Madej’s drawings for the 0, 1, 2, 3 and 4-cubes with
their corresponding values for un in column 3.

We denote by Dn the 2-page drawing for the n-cube presented in this paper
and by D(n) its number of crossings. For our analysis of Dn, we split the value
un into the number Up(n) of crossings with the vertical lines that occur in the
upper half plane and the number Lw(n) that are in the lower half plane.

We summarize the relevant facts about these numbers, which are listed, for
n ≤ 4, in Columns 4 and 5 in Figure 1.

Lemma 2. Let n be a positive integer. Then:

1. if n is even, then Up(n) = 4n

3 −
2n

3 − 2n−2n;

2. if n is odd, then Up(n) = 4n

3 −
2n+1

3 − 2n−2(n− 1);
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2-page drawing
Q0

Q1

Q2

Q3

Q4

Qn u n
0
0
2

16

88

L   (n)w

0
0
0

4

24

U  (n)p

0
0
2

12

64

Fig. 1. The 2-page drawings of Madej [11] for Q0, Q1, Q2, Q3, and Q4 with the corre-
sponding values of un, Up(n) and Lw(n)

(a)

(b)

Fig. 2. Drawings for the upper plane of Dn with n = 2 (a), and with n = 4 (b)

3. Lw(n + 1) = 2Up(n); and
4. Up(n) + Lw(n) = un.

3 A 2-page Drawing of Qn

In this section we describe our drawing of Qn.
The linear order of the vertices in our drawing of Qn is the same as Madej’s.

We start with 2-page drawings of Q5 (Figure 4), Q6 (Figure 5), and Q7 (Figure 6).
For n ≥ 7, the drawing of Qn consists of 32 copies of Madej’s 2-page drawing
of Qn−5. The five highest dimensional edges are added so that each vertex of a
Qn−5 has two on one side and three on the other.
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(a)

(b)

Fig. 3. Drawings for the upper plane of Dn with n = 3 (a), and with n = 5 (b)

Enumerate the vertices of Qn as v1, v2, v3, . . . , v2n for the vertices of Qn from
left to right in the drawing Mn of Madej. We begin by specifying the locations
of the edges of dimension ≥ n− 4. For n ≥ 5, our 2-page drawing Dn of Qn uses
the following choices.

1. The edges of dimension n either joining the vertices v1, v2, . . . , v2n−4 to the
vertices v2n−415+1, v2n−415+2, . . . , v2n−1, v2n , or joining the vertices v2n−47+1,
v2n−47+2, . . . , v2n−1−1, v2n−1 to the vertices v2n−1+1, v2n−1+2, . . . , v2n−1+2n−4

are in the lower half-plane, while all other edges of dimension n are in the
upper half-plane.

2. All edges of dimension n− 1 belong to the lower half-plane.
3. The edges of dimension n−2 are divided into five sets. For j ∈ {0, 2n−2, 2n−1,

2n−23} (four sets), the edges joining the vertices v1+j , v2+j , v3+j , . . . , v2n−5+j ,
to the vertices v2n−57+1+j , v2n−57+2+j , v2n−57+3+j , . . . , v2n−2+j are in the up-
per half-plane. All other edges of dimension n − 2 (the fifth set) are in the
lower half-plane.

4. All edges of dimension n− 3 belong to the upper half-plane.
5. The edges of dimension n−4 are divided into five sets. For each of the two val-

ues j = 0, 2n−1, we have two sets of edges, one consisting of the edges joining
the vertices v1+j , v2+j , . . . , v2n−5+j to the vertices v2n−5+1+j , v2n−5+2+j , . . . ,
v2n−4+j , and the other consists of the edges joining the vertices v2n−514+1+j ,
v2n−514+2+j , . . . , v2n−515+j to the vertices v2n−515+1+j , v2n−515+2+j , . . . ,
v2n−1+j . All four of these sets are in the upper half-plane. The fifth set is all
other edges of dimension n− 4; these are in the lower half-plane.

We complete the construction of Dn by considering 32 sets of edges, each using
the drawing of Madej for Qn−5. These 32 drawings are partitioned according to
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1

1 2 3

2

4

3

5
4

6

5

7

1

2

3

4

5
6 7

8

9

10
2

8
9

6 10

1

n with n-1

n-1 with n-2

n with n-2
n with n-311

12

Fig. 4. Optimum 2-page drawing for Q5 with ν2(Q5) = 60. The crossings are labelled
according to the pair of dimension of the edges are (n, n − 1), (n, n − 2), (n, n − 3),
(n− 1, n− 2), in the half of the Figure.

the eight values of j ∈ {0, 2n−3, 2n−2, 2n−33, 2n−1, 2n−35, 2n−23, 2n−37}. For
each of these j, there are four drawings of Qn−5, as follows:

1. the Qn−5 on the vertices v1+j , v2+j , v3+j , . . . , v2n−5+j is upside down;
2. the Qn−5 on the vertices v2n−53+1+j , v2n−53+2+j , v2n−53+3+j , . . . , v2n−3+j is

upside down;
3. the Qn−5 on the vertices v2n−5+1+j , v2n−5+2+j , v2n−5+3+j , . . . , v2n−4+j is right-

side up; and
4. the Qn−5 on the vertices v2n−4+1+j , v2n−4+2+j , v2n−4+3+j , . . . , v2n−53+j is

rightside up.

For the convenience of the reader, our 2-page drawings of Q5, Q6, and Q7 are
shown in Figures 4, 5, and 6, respectively.

We divide the crossings in this drawing into three sets. In C≤n−5, we have the
crossings between edges of dimension at most n− 5; each of these occurs within
one of the thirty-two Qn−5’s. The set C≤≥ consists of those crossings involving
an edge of dimension at most n − 5 with an edge of dimension at least n − 4.
Finally, C≥n−4 has the crossings between edges that both have dimension at least
n− 4. We determine their sizes, as follows.
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Fig. 5. Optimum 2-page drawing for Q6 with ν2(Q6) = 368

Lemma 3. If n is an integer with n ≥ 6, then

1. |C≤n−5| = 32M(n− 5).
2. |C≤≥| = 64Up(n− 5) + 96Lw(n− 5).
3. |C≥n−4| = 31·4n−4 − 2n+1.

We can now determine D(n), the number of crossings in our drawing.

Theorem 4. ν2(Qn) ≤ D(n) = 125
7684n − 2n−3

3

(
3n2 + 9+(−1)n+1

2

)
.
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Table 1. Values for 5 ≤ n ≤ 15 and the corresponding current known best upper

bounds for the crossing number of the n-cube [9], the upper bounds for the 2-page

crossing number of this paper, and the upper bounds for the 2-page crossing number

of Madej [11]

Qn Crossing number This paper Madej
current best
upper bound

n 4n5
32

− �n2+1
2

�2n−2 4n125
768

− 2n−3

3
(3n2 + 9+(−1)n+1

2
) 4n

6
− 2n−3n2 − 2n−43 + (−2)n

48

5 56 60 64

6 352 368 384

7 1760 1856 1920

8 8192 8576 8832

9 35712 37376 38400

10 151040 157696 161792

11 624128 651264 667648

12 2547712 2656256 2721792

13 10311680 10747904 11010048

14 41541632 43286528 44335104

15 166846464 173834240 178028544

4 A Rectilinear Drawing of Qn

In this section, we introduce our rectilinear drawing of Qn. We proceed by in-
duction, beginning with the drawing R5 of Q5 shown in Figure 7. (Recall that,
for n ≤ 4, optimal rectilinear drawings are known.)

For the induction, we require the following notions.
A mesh one of index n is a set Mn

1 of points in the plane consisting of the
points of n-pairs of parallel straight lines by the points 0 and 1 with non-zero
slope, plus the points in the interval [0, 1] in the x-axis. In Figure 8, we show an
example of each M1

1 , M2
1 , M3

1 and M5
1 .

Likewise, a mesh one of index n without is a subset Mn
1 w of a mesh one

of index n Mn
1 , obtained by deleting one pair of parallel rays from the lower

half-plane. In Figure 9 we show a drawing of each of M1
1w, M2

1w, M3
1w and

M5
1w.
In Lemma 5 we evaluate the number of crossings of Mn

1 and Mn
1 w.

Lemma 5. For any positive integer n:

1. every drawing Mn
1 has n(n− 1) crossings;

2. every drawing Mn
1 w has (n− 1)2 crossings.

In order to construct a rectilinear drawing Rn+1 of Qn+1 from a rectilinear
drawing Rn of Qn, consider in turn each vertex v of a rectilinear drawing of Rn.
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1
2

Fig. 6. A 2-page drawing for Q7 demonstrating that ν2(Q7) ≤ 1856

Let e1, e2, e3, . . . , en be the straight line segments corresponding to the edges
incident to v. We add a twin vertex v′ of v, in a tiny neighborhood of v, and
edges e′1, e′2, e′3, . . . , e′n, respectively, with the same size and slope as e1, e2, e3,
. . . , en, so the corresponding Mn

1 or Mn
1 w has the minimum number of crossings

as determined in Lemma 5 (1) and (2).
We ensure that the twins are placed so that the corresponding new edges

match up, so that if uv is an edge of Rn, then u′v′ is an edge of Rn+1.

Theorem 6. For n ≥ 5, cr(Rn) = 125
7684n − 2n−3

3

(
3n2 + 9+(−1)n+1

2

)
.
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Fig. 7. A rectilinear drawing R5 for Q5 with 60 crossings

(a) (b) (c) (d)

r1 s1 r1 s1 r2 s2r1 s1r3 s3 r4 s4 r2 s2 r1 s1r3 s3 r5 s5r2 s2

Fig. 8. Drawings of (a) M1
1 , (b) M

2
1 , (c) M

3
1 and (d) M5

1

(a) (b) (c) (d)
r s r s r s r s

Fig. 9. Drawings of (a) M1
1w, (b) M2

1w, (c) M3
1w and (d) M5

1w. Dashed straight
rays represent the straight lines r and s which are removed in order to define the
corresponding drawing to Mn

1 w.
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5 Final Remarks

Since Madej’s construction is suboptimal, it seems plausible that using some
other drawing of Qn−5 in our construction might reduce the number of crossings.
In particular, we might start with our drawing R5 to get a drawing of Q10.

However, instead of being a strength it is a weakness, since the balance of
upper and lower half-plane crossings is not very good. In Madej’s drawings, the
quotient Up(n)/Lw(n) is asymptotically equal to 2. Hence, Madej’s construction
yields a better trade off than this other construction. On the other hand, perhaps
one could find another symmetry to explore the same idea with starting point
based on another drawing of Qn.

It is known [1,2] that, for n ≥ 10, ν2(Kn) < cr(Kn). On the other hand,
if G is a non-Hamiltonian planar triangulation, then ν2(G) > 0; for such a G,
cr(G) < ν2(G). Therefore, there is no general relation between cr(G) and ν2(G).
It would be interesting if there were a relation like ν2(Qn) ≤ cr(Qn). This
result would be interesting since there is the Buchheim and Zheng [3] method
to evaluate ν2(Qn), and then we would have a method to bound or determine
cr(Qn). In particular, such a relation would imply that our rectilinear drawings
of R5 and R6 are optimal.
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Abstract. Many graph problems were first shown to be fixed-parameter
tractable using the results of Robertson and Seymour on graph minors.
We show that the combination of finite, computable, obstruction sets
and efficient order tests is not just one way of obtaining strongly uni-
form FPT algorithms, but that all of FPT may be captured in this way.
Our new characterization of FPT has a strong connection to the theory of
kernelization, as we prove that problems with polynomial kernels can be
characterized by obstruction sets whose elements have polynomial size.
Consequently we investigate the interplay between the sizes of problem
kernels and the sizes of the elements of such obstruction sets, obtain-
ing several examples of how results in one area yield new insights in
the other. We show how exponential-size minor-minimal obstructions for
pathwidth k form the crucial ingredient in a novel or-cross-composition
for k-Pathwidth, complementing the trivial and-composition that is
known for this problem. In the other direction, we show that or-cross-
compositions into a parameterized problem can be used to rule out the
existence of efficiently generated quasi-orders on its instances that char-
acterize the no-instances by polynomial-size obstructions.

1 Introduction

This paper is concerned with the connection between fixed-parameter tractabil-
ity, kernelization, and the characterization of parameterized problems by effi-
ciently testable obstruction sets. Historically, this connection has been a major
impetus to the development of the field of parameterized complexity. The results
of the Graph Minors project were applied to obtain some of the first classifica-
tions [10] of problems as (nonuniformly) fixed-parameter tractable. Robertson
and Seymour proved that the set of unlabeled finite graphs is well-quasi-ordered
by the minor relation [21]. By standard well-quasi-order theory, this implies that
any set of graphs F that is closed under taking minors (a lower ideal in the mi-
nor order) is characterized by a finite obstruction set OF in the following sense:
a graph is contained in F if and only if it does not contain an element of OF
� This work was supported by the Netherlands Organization for Scientific Research
(NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”.
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as a minor. They also provided an algorithm for each fixed graph H that tests,
given a graph G, whether H is a minor of G in O(n3) time [20].

The algorithmic implications of this machinery are well known. Consider a
parameterized graph problem Q whose input consists of a graph G and inte-
ger k. Assume that Q is minor-closed, i.e., that (G′, k) is a yes-instance when-
ever (G, k) is a yes-instance and G′ is a minor of G. As the yes-instances of a
fixed parameter value k form a minor ideal, there is a finite obstruction set Ok

that characterizes the ideal. Thus we can decide whether (G, k) ∈ Q by testing
for each graph in Ok whether it is a minor of G, thereby solving Q in O(n3) time
for each fixed k. By deriving an algorithm to compute the obstruction sets Ok,
this approach yields constructive, uniform FPT algorithms (cf. [8, §7.9.2]).

Our first result in this paper shows that the described tools for developing
FPT algorithms — efficient order tests for quasi-orders that characterize the
yes-instances of a fixed parameter value by finite obstructions sets — are not
just one way of obtaining (strongly uniform) FPT characterizations, but that in
fact all of FPT can be characterized in this way. For this general result we relax
from the minor order and instead consider arbitrary quasi-orders on the set of
instances Σ∗ × N of a parameterized problem (see Section 2 for definitions).

We introduce some terminology to state the characterization. A quasi-order
is a reflexive and transitive binary relation & on a set S. For elements x, y ∈ S
such that x & y we say that x precedes y. If x precedes y and x 
= y then x
strictly precedes y, denoted x ≺ y. A quasi-order & is polynomial-time if there
is an algorithm that decides whether x & y in O((|x| + |y|)O(1)) time. If S is a
subset of a universe U and & is a quasi-order on U , then S is a lower ideal of U
if x ∈ S and x′ & x together imply that x′ ∈ S. Our characterization extends
the folklore result stating that all problems in FPT have kernels.

Theorem 1. For any parameterized problem Q ⊆ Σ∗ × N, the following state-
ments are equivalent:

1. Problem Q is strongly uniformly fixed-parameter tractable.
2. Problem Q is decidable and admits a kernel whose size is computable.
3. Problem Q is decidable and there is a polynomial-time quasi-order & on Σ∗×

N and a computable function f : N→ N such that:
a. The set Q is a lower ideal of Σ∗ × N under &.
b. For every (x, k) 
∈ Q there is an obstruction (x′, k′) 
∈ Q of size at

most f(k) with (x′, k′) & (x, k).

Let us make some remarks about the theorem. Criterion (3.b) is stated in
terms of small obstructions rather than finite, computable obstruction sets, to
make the subsequent theorem that proves the non-existence of such quasi-orders
(Theorem 4) stronger. The existence of computable obstruction sets follows di-
rectly from the given conditions, as will indeed be exploited in the proof of
Theorem 1 in Section 3. The proof also shows that problems with kernels of
size O(f(k)) are characterized by obstructions of size O(f(k)) under polynomial-
time quasi-orders. Hence problems with polynomial kernels can be characterized
by polynomial-size obstructions. This general quantitative connection
between kernel sizes and obstruction sizes leads us to investigate the relationship
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between the two in more concrete settings. While a construction due to Kratsch
and Wahlström [18] shows that it is unlikely that all problems characterized by
polynomial-size obstructions have polynomial kernels, there is a rich interaction
between the two domains, which forms the topic of the remainder of this work.

A Cross-Composition Based on Large Obstructions. In Section 4 we give
an example of how properties of obstruction sets can be exploited to obtain
kernel bounds. Our example concerns the k-Pathwidth problem, which asks
whether the pathwidth of a given graph G is at most k. For any sequence of
graphs G1, . . . , Gt, the disjoint union G1 ∪̇G2∪̇ . . . ∪̇Gt has pathwidth at most k,
if and only if each Gi has pathwidth at most k. Hence there is a trivial and-
composition [2] for k-Pathwidth. Using existing methods [2,9] this proves that
k-Pathwidth does not admit a polynomial kernel unless NP ⊆ coNP/poly.

The majority of kernelization lower bounds currently known, however, are not
obtained by and-composition but by or-(cross-)-composition [2,3]: polynomial-
time algorithms that take a sequence of instances as input, and output a single
instance of bounded parameter value whose answer is yes if and only if at least
one (rather than all) of the inputs are yes-instances. Given the nature of the
pathwidth problem, it seems to lend itself much better to and-composition than
to or-(cross-)-composition. However, we show that an or-cross-composition into
k-Pathwidth can be obtained by embedding instances of a related problem into
a minor-obstruction for pathwidth k containing Θ(3k) vertices. The properties
of obstructions are exploited to ensure the correctness of this construction. The
fact that the size of the obstruction is exponential in k, is crucial to obtaining
this superpolynomial kernelization lower bound. The construction illustrates how
properties of obstruction sets can be used to obtain kernelization bounds.

Bounds on Obstruction Sizes by Cross-Composition. We study how ker-
nel bounds may be used to derive properties of obstruction sets in Section 5.
The or-cross-composition framework for kernelization lower bounds turns out
to have interesting connections to obstruction sizes. We introduce the notion of
an efficiently generated quasi-order, which, roughly speaking, is a quasi-order
such that the elements preceding a given instance (x, k) can appear on the out-
put paths of a polynomial-time nondeterministic Turing machine. If there is an
efficiently generated quasi-order on the instances of a parameterized problem,
such that each no-instance (x, k) is preceded by a no-instance of size f(k) (an
obstruction), then this results in a nondeterministic form of kernel, of size f(k).
As an or-cross-composition together with a polynomial kernel implies that NP ⊆
coNP/poly [3], even in the nondeterministic setting [17], this gives us the means
to prove that certain parameterized problems are unlikely to be characterized
by efficiently generated quasi-orders with polynomial-size obstructions. Using
our or-cross-composition for k-Pathwidth we can conclude that obstructions
to k-Pathwidth are not only of superpolynomial size in the minor order, but
must be of superpolynomial size for all efficiently generated quasi-orders under
which k-Pathwidth is closed. Other examples of the connection between kernels
and obstructions are discussed in Section 6.
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Related Work. There are many alternative characterizations of FPT, as de-
scribed for example by Flum and Grohe [12, §1.6]. Obstruction sets form a
popular topic of study (e.g., [6,7,15,22,23]). The task of computing obstruction
sets has also been investigated thoroughly (e.g., [4,11,19]). Dinneen [5, Theorem
5] related properties of obstruction sets to complexity-theoretic assumptions. He
showed that the number of elements in obstruction sets corresponding to NP-
hard minor-closed graph problems with parameter k cannot be polynomial in k,
unless NP ⊆ coNP/poly.

2 Preliminaries

Parameterized Complexity and Kernels. A parameterized problem Q is
a subset of Σ∗ × N, the second component being the parameter. For an in-
stance (x, k) ∈ Σ∗ × N we define the size of (x, k) to be |(x, k)| := |x| + k. A
parameterized problem is (strongly uniformly) fixed-parameter tractable if there
exists an algorithm to decide whether (x, k) ∈ Q in time f(k)|x|O(1) where f is
a computable function. A kernelization algorithm (or kernel) of size f : N → N
for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-time algorithm that,
on input (x, k) ∈ Σ∗ × N, outputs an instance (x′, k′) of size at most f(k) such
that (x, k) ∈ Q ⇔ (x′, k′) ∈ Q. If f(k) ∈ O(kO(1)) then this is a polynomial
kernel (cf. [1]). We refer to the textbooks [8,12] for more background on param-
eterized complexity. The set {1, 2, . . . , n} is abbreviated as [n].

Cross-Composition. We use the framework of cross-composition to prove ker-
nel lower bounds, including the definition of a polynomial equivalence relation
and a cross-composition as given by Bodlaender et al. [3]. To highlight the differ-
ences between or and and compositions, we call the type of cross-composition
defined by Bodlaender et al. [3] or-cross-composition.

Theorem 2 ([3]). If a set L ⊆ Σ∗ is NP-hard under Karp reductions and L
or-cross-composes into the parameterized problem Q, then there is no polynomial
kernel for Q unless NP ⊆ coNP/poly.

Theorem 2 has been extended to the co-nondeterministic setting in recent
publications. Kratsch et al. [17, Theorem 2] exploited the fact that the lower
bound machinery also works if the cross-composition is co-nondeterministic.

Graphs. All graphs we consider are finite, simple, and undirected. An undirected
graph G consists of a vertex set V (G) and an edge set E(G), whose members
are 2-element subsets of V (G). We write G ⊆ H if graph G is a subgraph of
graph H . The clique number ω(G) of G is the size of a largest clique in G. For
a set of vertices X in a graph G we use G−X to denote the graph that results
after deleting all vertices of X and their incident edges. When deleting a single
vertex v, we write G−v rather than G−{v}. Graph H is a minor of graph G if H
can be obtained from a subgraph of H by edge contractions. If H 
= G is a minor
of G, then H is a proper minor of G. A vertex of degree at most one is a leaf. A
path decomposition of a graph G is a sequence (X1, . . . ,Xr) of subsets of V (G),
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called bags, such that: (i)
⋃

i∈[r]Xi = V (G), (ii) for each edge {u, v} ∈ E(G)

there is a bag Xi containing v and w, and (iii) for each v ∈ V (G), the bags
containing v are consecutive in the sequence. The width of a path decomposition
is max1≤i≤r |Xi|−1. The pathwidth of a graph G, denoted pw(G), is the minimum
width over all path decompositions of G. We say that an edge {u, v} is realized
by any bag that contains u and v. Condition (iii) is also called the convexity
property of path decompositions. Proofs for statements marked by a star (�)
had to be omitted from this extended abstract due to space restrictions.

3 Characterizing Problems in FPT by Small Obstructions

In this section we present the proof of Theorem 1 and consider some of its
consequences.

Proof (of Theorem 1). Let Q be a parameterized problem. It is well-known that
conditions (1) and (2) are equivalent [1, Theorem 1]. We prove that (3)⇒(1) and
that (2)⇒(3).

(3)⇒(1). Consider a combination of & and f : N → N that satisfies the pre-
conditions to (3). We obtain an FPT algorithm that decides Q by showing that
there is an algorithm that computes bounded-size obstruction sets to member-
ship in Q. Let k ∈ N and define Ok as the no-instances of Q that have size at
most f(k). Let Ok be the elements of Ok that are minimal under &, i.e., those
elements of Ok that are not preceded by another element of Ok.

Claim. Let k ∈ N. For any x ∈ Σ∗ we have (x, k) ∈ Q if and only if there is no
element in Ok that precedes (x, k).

Proof. Fix some k ∈ N and consider some x ∈ Σ∗. If (x, k) is a yes-instance
then all elements that precede it under & are yes-instances, by (3.a). If (x, k)
is a no-instance, then by (3) there is an obstruction (x′, k′) of size at most f(k)
that is a no-instance of Q and precedes (x, k). But then, using transitivity of &,
there is a minimal no-instance with these properties, which is contained in Ok

by definition. Hence there is an element of Ok that precedes (x, k). ♦

There is an algorithm that, on input k ∈ N, computes the set Ok: this follows
from the facts that Q is decidable, f is computable, and & is polynomial-time.
From the algorithm that computes the obstruction sets Ok we obtain a strongly
uniformly fixed-parameter tractable algorithm for Q, as follows. On input (x, k),
compute the set Ok. Test if there is an obstruction in Ok that precedes (x, k)
using the order testing algorithm for &. By the claim, the answer to (x, k)
is yes if and only if there is no such preceding element. The running time is
bounded by g(k)|x|O(1) for some computable function g: the time to compute Ok

is computable, while the |Ok| order tests take O((f(k) + |(x, k)|)O(1)) time each.
(2)⇒(3). Let K be a kernelization algorithm for Q that maps instances (x, k)

to equivalent instances (x′, k′) of size at most f , for some computable func-
tion f . We define a polynomial-time quasi-order & by giving an algorithm that



266 M.R. Fellows and B.M.P. Jansen

decides, given (x, k) and (x′, k′), whether (x′, k′) & (x, k). The algorithm pro-
ceeds as follows. If (x′, k′) = (x, k) then it immediately outputs yes. Other-
wise, it sets (x∗, k∗) := (x, k). While |K(x∗, k∗)| < |(x∗, k∗)| it replaces (x∗, k∗)
by K(x∗, k∗), i.e., it repeatedly applies the kernelization algorithm until this no
longer decreases the total size of the instance. It then outputs yes if and only
if (x′, k′) equals the resulting instance (x∗, k∗).

Claim. The relation & defined by the algorithm is a polynomial quasi-order
and Q is a lower ideal under &.

Proof. The number of iterations made by the algorithm on inputs (x, k) and
(x′, k′) is bounded by |x| + k, as the length of the instance is decreased in each
iteration. As each invocation of K takes polynomial time, the entire comparison
algorithm executes in polynomial time.

It is obvious that & is reflexive. To prove that it is a quasi-order, it remains to
prove transitivity. Consider three instances such that (x′′, k′′) & (x′, k′) & (x, k).
We shall prove that (x′′, k′′) = (x′, k′) or (x′, k′) = (x, k), which obviously implies
that (x′′, k′′) & (x, k). So assume that (x′, k′) 
= (x, k). By definition of the
algorithm that decides&, it then follows that (x′, k′) is the unique instance that is
obtained from (x, k) by repeatedly applying the kernelization algorithm K until
it no longer strictly shrinks the size of the instance. Hence for (x′, k′) we know
that |K(x′, k′)| ≥ |(x′, k′)|. But then any instance (x∗, k∗) with (x∗, k∗) & (x′, k′)
must be identical to (x′, k′), by that same definition. Thus (x′′, k′′) = (x′, k′),
which implies that (x′′, k′′) & (x, k). Hence & is transitive.

Finally let us establish that Q is a lower ideal of Σ∗ × N under &. Since
a kernelization maps an instance to an equivalent instance, it is easily seen
that if (x′, k′) & (x, k) then (x′, k′) ∈ Q ⇔ (x, k) ∈ Q. Hence (x, k) ∈ Q
and (x′, k′) & (x, k) together imply that (x′, k′) ∈ Q. ♦

Claim. For every (x, k) 
∈ Q there is an obstruction (x′, k′) 
∈ Q of size at
most f(k) with (x′, k′) & (x, k).

Proof. Consider some (x, k) 
∈ Q. Let (x′, k′) be the result of applying kernel-
ization K to the instance, as long as its total size decreases by this operation.
By definition of & we have (x′, k′) & (x, k). Since the kernelization preserves the
membership status in Q we find that (x′, k′) is a no-instance. Since K is a kernel
of size f(k) we have |K(x, k)| ≤ f(k), which implies that |(x′, k′)| ≤ f(k). ♦

The two claims show that the combination of & and the function f satisfy
the requirements of property (3), concluding the proof. ��

In the proof of Theorem 1, the size of the obstructions of (3.b) matches the
size bound of the kernel from which the quasi-order& is derived. Hence problems
with polynomial kernels can be characterized by polynomial-size obstructions.

Corollary 1. If Q ⊆ Σ∗×N is a decidable parameterized problem with a kernel
of size O(kc), then there is a polynomial-time quasi-order & on Σ∗ × N and a
function f that together satisfy statement (3) of Theorem 1, with f(k) ∈ O(kc).
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It follows from a construction by Kratsch and Wahlström [18] that the con-
verse of Corollary 1 is false, assuming NP 
⊆ coNP/poly. We give a concrete
example of a problem that is characterized by efficiently testable obstructions of
polynomial size, yet is unlikely to admit a polynomial kernel.

3-Coloring [Comp. size]

Input: An undirected graph G and an integer k that bounds the maxi-
mum size of a connected component in G.
Parameter: k.
Question: Is there a proper 3-coloring of the vertices of G?

Lemma 1 (�, Cf. [18]). 3-Coloring [Comp. size] does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly, but there is a polynomial-time quasi-order
on its instances that satisfies statement (3) of Theorem 1 with f(k) ∈ O(k2).

4 OR-Cross-Composition into k-Pathwidth

A minor-minimal obstruction to pathwidth k is a graph of pathwidth k+ 1, such
that all its proper minors have pathwidth ≤ k. Minor-minimal obstructions to
pathwidth k of size Θ(3k) form the crucial ingredient for an or-cross-composition
of an NP-complete problem into k-Pathwidth. The following improvement ver-
sion of the problem serves as the starting point for the composition.

Pathwidth Improvement

Input: A graph G, an integer k with 2 ≤ k ≤ |V (G)|, and a path
decomposition P of G having width k − 1.
Question: Is the pathwidth of G at most k − 2?

Lemma 2 (�). Pathwidth Improvement is NP-complete.

The path decomposition in the input of Pathwidth Improvement makes it
possible to verify in polynomial time that the pathwidth of the graph does not
exceed k− 1. The additive terms are chosen to simplify the correctness proof of
the or-cross-composition. The exponential-size obstructions to pathwidth that
we need for our construction are defined as follows.

Definition 1. For i ∈ N0, let Ti denote the complete ternary tree of height i
with 3i leaves. Let T̃i be the graph obtained from Ti by adding, for each leaf v
of Ti, a new vertex that is only adjacent to v.

Lemma 3 (�, Cf. [15,23]). For k ∈ N0 the graph T̃k is a minor-minimal
obstruction to pathwidth k.

In our or-cross-composition, we need to inflate obstructions before being able
to embed a series of input instances into them.

Definition 2. Let G be a graph and let k ∈ N. The graph G ( k, called the
inflation of G by k, is defined as follows:
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(a) The graph T2. (b) The graph T̃2. (c) The graph T̃2 � 3.

Fig. 1. A ternary tree, the corresponding obstruction, and its inflation. All possible
edges between connected groups of vertices are present.

– V (G ( k) :=
⋃

v∈V (G){v1, . . . , vk}.
– Vertices ui and vj are adjacent in G ( k if u = v or {u, v} ∈ E(G).

For a vertex v ∈ V (G) we call the vertices v1, . . . , vk in G ( k the copies of v.

Refer to Fig. 1 for an example. Inflation of a graph has a straight-forward effect
on its pathwidth.

Lemma 4 (�). For any graph G and k ∈ N : pw(G ( k) + 1 = k · (pw(G) + 1).

Theorem 3 (�). The Pathwidth Improvement problem or-cross-composes
into k-Pathwidth.

Proof (Sketch). Using a suitable choice of polynomial equivalence relation, per-
mitted by the cross-composition framework [3], it suffices to give a polynomial-
time algorithm of the following form. The input is a sequence (G1, k,P1), . . . ,
(Gt, k,Pt) of instances of Pathwidth Improvement that all share the same
value of k, and the output is a single instance (G′, k′) of k-Pathwidth, with k′

polynomial in maxi∈[t] |V (Gi)|+ log t, such that pw(G′) ≤ k′ if and only if there
is a yes-instance among the inputs. By standard arguments we may assume
that t is a power of three, so let t = 3s for s ∈ N.

The construction of (G′, k′) is based on the minor-minimal obstruction T̃s.

Label the 3s = t leaves of T̃s as x1, . . . , xt, and let y1, . . . , yt be the parents of
those leaves. As s ≥ 1 each vertex yi has degree exactly two in T̃s. We cross-
compose the instances into a single graph G′. It is obtained by inflating T̃s by a
factor k and replacing each k-vertex clique containing the copies of a leaf xi by
the graph Gi. More formally, we obtain G′ as follows.

– Initialize G′ as the inflation T̃s (k. For each leaf xi the copies created by the
inflation form a clique of size k on vertices xi

1, . . . , x
i
k.

– For each i ∈ [t], remove the vertices xi
1, . . . , x

i
k from G′ and replace them by

a copy of the graph Gi. Make all vertices of Gi adjacent to the copies of the
parent of xi, i.e., to the vertices yi1, . . . , y

i
k.

Refer to Fig. 2 for an example. Let k′ := k(s+2)−2 ∈ O(maxi∈[t] |V (G)| · log t).

Claim. pw(G′) ≤ k′ if and only if there is an i ∈ [t] such that pw(Gi) ≤ k − 2
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Fig. 2. Result of or-cross-composing nine inputs with k = 3 into one.

The “if” direction is proven as follows. Suppose that for the instance (Gi, k,P i)

of Pathwidth Improvement we have pw(Gi) ≤ k − 2. As pw(T̃s − xi) =

s by Lemma 3, the inflation satisfies pw((T̃s − xi) ( k) + 1 = k · (s + 1) by

Lemma 4. From a path decomposition P ′ of (T̃s − xi) ( k we obtain a path
decomposition of G′ − V (Gi) of the same width: for each inserted instance Gj

with j 
= i the vertices xj
1, . . . , x

j
k, y

j
1, . . . , y

j
k form a clique in T̃s − xi. Hence P ′

has a bag containing all those vertices, and we may replace xj
1, . . . , x

j
k by the

width-(k − 1) decomposition Pj of Gj without increasing the width. From a
path decomposition of G′−V (Gi) we obtain a decomposition of G′ by inserting
a width-(k − 2) decomposition for Gi in the appropriate place, increasing the
total width by k − 1 to k · (s + 1)− 1 + (k − 1) = k · (s + 2)− 2 = k′.

The “only if’ direction of the claim is proven by contraposition. We use that
the pathwidth of a graph equals minH(ω(H)−1) over its interval supergraphs H .
Suppose all inputs have pathwidth at least k−1, implying all interval supergraphs
of the inputs have clique number at least k. An interval supergraph H ′ of G′

contains interval supergraphs of G1, . . . , Gt. As the latter all contain a clique of
size at least k, graph H ′ is a supergraph of T̃s ( k. But then H ′ has pathwidth
at least k · (s + 2)− 1 by Lemmata 3 and 4, implying the same for G′.

The claim shows that (G′, k′) acts as the or of the inputs. As it can be built
in polynomial time, this concludes the proof. ��

Lemma 2 and Theorem 3 provide a new way of proving that k-Pathwidth

does not admit a polynomial kernel unless NP ⊆ coNP/poly, by Theorem 2.

5 Proving Nonexistence of Small Obstructions

In this section we show how the kernelization lower-bound framework of or-
cross-composition can be used to prove that a problem is not characterized by
polynomial-size obstructions under any quasi-order of the following form.

Definition 3. A quasi-order & on Σ∗ × N is efficiently generated if there is a
polynomial-time nondeterministic Turing machine that, on input (x, k) ∈ Σ∗×N,
outputs an instance (x′, k′) ∈ Σ∗ × N on each computation path such that:

– each output instance (x′, k′) precedes (x, k) under &, and
– all instances preceding (x, k) appear as the output of some computation path.
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Many well-known containment relations on graphs are efficiently generated. As a
concrete example, consider the relation on parameterized graphs (G, k) encoded
by adjacency matrices, where (G′, k) & (G, k) if G′ is a minor of G. This order
is efficiently generated. A NDTM nondeterministically selects a subgraph G′ of
its input (G, k), then selects a set of edges to contract to obtain the minor G′′,
and outputs (G′′, k). By using a nondeterministically selected order on the ver-
tices when encoding G′′ as an adjacency matrix, all isomorphism classes of the
minor G′′ are generated. The correctness of the procedure is easy to verify.

Other efficiently generated quasi-orders on parameterized graphs, encoded as
adjacency matrices, include the topological minor order, the (induced) subgraph
order, the immersion order, and the contraction order (cf. [8, §7.8]). The quasi-
order constructed in the proof of Theorem 1 is also efficiently generated.

The following lemma, along with the notion of coNP-kernelization, could be
considered folklore. Since the material never appeared in print, and has con-
sequences for our discussion of obstruction sets, we present it here. A coNP-
kernelization algorithm (or coNP-kernel) of size f : N → N for a parameterized
problem Q is a polynomial-time nondeterministic Turing machine that, on in-
put (x, k) ∈ Σ∗×N, outputs an instance (x′, k′) ∈ Σ∗×N of size at most f(k) on
each computation path, such that: (i) if (x, k) ∈ Q then all computation paths
output yes-instances, and (ii) if (x, k) 
∈ Q then at least one computation path
outputs a no-instance.

Lemma 5 (�). Let Q ⊆ Σ∗ × N be a parameterized problem. If there is a
polynomial p : N→ N and an efficiently generated quasi-order & such that:

a. Q is a lower ideal under &, and
b. for any (x, k) 
∈ Q there is an obstruction (x′, k′) 
∈ Q of size at most p(k)

with (x′, k′) & (x, k),

then Q has a coNP-kernel of size p(k) +O(1).

The coNP-kernel is built as follows: on input (x, k), generate the elements
preceding it. If a generated element has size at most p(k) then output it, other-
wise output a constant-size yes-instance as the result of the computation path.
The following theorem follows directly from Lemma 5 together with the co-
nondeterministic variant of Theorem 2 (see [17, Theorem 2]).

Theorem 4. Let L be a language that is NP-hard under Karp reductions and
that or-cross-composes into a parameterized problem Q ⊆ Σ∗ × N. Assuming
NP 
⊆ coNP/poly there is no efficiently generated quasi-order & on Σ∗ × N
and polynomial p : N → N such that: (a) Q is a lower ideal under &, and
(b) for any (x, k) 
∈ Q there is an obstruction (x′, k′) 
∈ Q of size at most p(k)
with (x′, k′) & (x, k).

Theorem 4 shows that an or-cross-composition of an NP-hard set into Q
makes it unlikely that Q admits an efficiently generated quasi-order on its in-
stances that characterizes the problem by obstructions of polynomial size. The
strength of the theorem comes from the fact that it excludes the existence of
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efficiently generated quasi-orders. As a polynomial-time quasi-order that char-
acterizes Q by polynomial-size obstructions places Q in coNP, no NP-complete
problem is characterized by polynomial-size obstructions under a polynomial-
time quasi-order, unless NP = coNP.

Applying Theorem 4 to k-Pathwidth, we obtain some interesting informa-
tion about the properties of the pathwidth measure. While it was already known
that the minor-minimal obstructions to pathwidth k can have size exponential
in k, Theorem 4 shows that any efficiently generated quasi-order under which
the yes-instances are closed, must have superpolynomial size obstructions. As
many natural quasi-orders on graphs are efficiently generated, this shows that
a nice characterization of pathwidth in terms of polynomial-size obstructions is
unlikely to exist, for any efficiently generated quasi-order.

6 Conclusion

The thesis underlying this paper is that the sizes of problem kernels and the
sizes of obstructions in a quasi-order are intimately related, and should be stud-
ied together. We gave a general characterization of FPT in terms of problems
admitting efficiently testable quasi-orders that characterize no-instances by ob-
structions of bounded size. In Sections 4 and 5 we showed how properties of
obstruction sets can be used to derive kernelization bounds, and vice versa.
There are various other examples of the strong connection between kernel sizes
and obstruction sizes in the literature. We briefly discuss three of them.

1) Obstructions to list-colorability played a crucial role in the analysis of ker-
nels for structural parameterizations of q-Coloring by Jansen and Kratsch [14].
They proved that the existence of polynomial kernels for q-Coloring, parame-
terized by a vertex modulator to a graph class F , is determined by the existence
of a bound on the size of obstructions to q-list-colorability of graphs in F .

2) Fomin et al. [13] studied the F-Deletion problem. It asks for a fixed, finite
family F , a graph G, and an integer k, whether k vertices can be removed from G
to ensure that the remainder does not contain a graph in F as a minor. The yes-
instances of parameter value at most k form a minor ideal GF ,k [10, Theorem
6]. Fomin et al. proved that F-Deletion admits a polynomial kernel for every
family of connected graphs F that contains a planar graph. A byproduct of their
kernel shows [13, Theorem 3] that for every such F , there is a polynomial p, such
that GF ,k is characterized by obstructions of size p(k).

3) The kernelization lower bound for k-Ramsey given by Kratsch [16], is sim-
ilar in spirit to Theorem 2: it composes a sequence of instances of an NP-hard
problem by embedding them in a larger host graph, whose size is superpolyno-
mial with respect to the associated parameter value. The employed host graph
is related to the Turán graph, which is extremal in Ramsey-settings.

We conclude with some directions for future research. Can Theorem 3 be
adapted for k-Treedepth? Can the contrapositive of Corollary 1 be used to
give kernel lower bounds? Are there problems, whose kernelization complexity
is still unknown, for which the nonexistence of an or-cross-composition can be
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proven by the contrapositive of Theorem 4? We expect a further investigation
of the interplay between kernels and obstructions to yield interesting insights.
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mostly dedicated to minors and not immersions and has been the source of many theo-
rems regarding the structure of graphs excluding some graph H as a minor. Moreover,
the minor relation has been extensively studied the past two decades and many struc-
tural results have been proven for minors with interesting algorithmic consequences
(see, for example, [4,14,17–19,21]). However, structural results for immersions started
appearing only recently. In 2011, DeVos et al. proved that if the minimum degree of a
graph G is 200t, then G contains the complete graph on t vertices as an immersion [5].
In [7] Ferrara et al., provided a lower bound (depending on graph H) on the minimum
degree of a graph G that ensures that H is contained in G as an immersion. Furthermore,
Wollan recently proved a structural theorem for graphs excluding complete graphs as
immersions as well as a sufficient condition such that any graph which satisfies the
condition admits a wall as an immersion [22]. The result in [22] can be seen as an im-
mersion counterpart of the grid exclusion theorem [17], stated for walls instead of grids
and using an alternative graph parameter instead of treewidth.

In terms of graph colorings, Abu-Khzam and Langston in [1] provided evidence sup-
porting the immersion ordering analog of Hadwiger’s Conjecture, that is, the conjecture
stating that if the chromatic number of a graph G is at least t, then G contains the com-
plete graph on t vertices as an immersion, and proved it for t ≤ 4. For t = 5, 6, 7,
see [6, 15]. For algorithmic results on immersions, see [2, 10, 12, 13].

In this paper, we prove structural results for the immersion relation on graphs embed-
dable on a fixed surface. In particular, we show that if G is a graph that is embeddable
on a surface of Euler genus γ and H is a connected graph then one of the following
is true: either G has bounded treewidth (by a function that depends only on γ and H),
or its edge connectivity is bounded by the maximum degree of H, or it contains H as
a (strong) immersion. Furthermore, we refine our results to obtain a counterpart of the
grid exclusion theorem for immersions. In particular, we prove (Theorem 3) that there
exists a function f : N→ N such that if G is a 4-edge-connected graph embedded on a
surface of Euler genus γ and the treewidth of G is at least f (γ) · k, then G contains the
k × k-grid as an immersion. Notice that the edge connectivity requirement is necessary
here as big treewidth alone is not enough to ensure the existence of a graph with a vertex
of degree 4 as an immersion. Although a wall of height at least h has treewidth at least
h, it does not contain the complete graph on t vertices as an immersion, for any t ≥ 5.
Finally, our results imply that when restricted to graphs of sufficiently big treewidth
embeddable on a fixed surface, large edge connectivity forces the existence of a large
clique as an immersion.

Our result reveals several aspects of the behavior of the immersion relation on sur-
face embeddable graphs. The proofs exploit variants of the grid exclusion theorem for
surfaces proved in [8] and [11] and the results of Biedl and Kaufmann [3] on optimal
orthogonal drawings of graphs.

The paper is organized as follows. In Section 2 we give some basic definitions and
preliminaries. In Section 3 we give a series of main combinatorial results. Based on
the results of Section 3, we prove the main theorem and we derive its corollaries in
Section 4.

Due to lack of space, the proofs of the results that are marked with (�) have been
omitted.
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2 Preliminaries

For every positive integer n, let [n] denote the set {1, 2, . . . , n}. A graph G is a pair (V, E)
where V is a finite set, called the vertex set and denoted by V(G), and E is a set of 2-
subsets of V , called the edge set and denoted by E(G). If we allow E to be a multiset
then G is called a multigraph. Let G be a graph. For a vertex v, we denote by NG(v) its
(open) neighborhood, that is, the set of vertices which are adjacent to v, and by EG(v)
the set of edges containing v. Notice that if G is a multigraph |NG(v)| ≤ |EG(v)|. The
degree of a vertex v is degG(v) = |EG(v)|. We denote by Δ(G) the maximum degree over
all vertices of G.

If U ⊆ V(G) (respectively u ∈ V(G) or E ⊆ E(G) or e ∈ E(G)) then G − U (respec-
tively G − u or G − E or G − e) is the graph obtained from G by the removal of vertices
of U (respectively of vertex u or edges of E or of the edge e). We say that a graph H is
a subgraph of a graph G, denoted by H ⊆ G, if H can be obtained from G after deleting
edges and vertices.

We say that a graph H is an immersion of a graph G (or H is immersed in G), H ≤im

G, if there is an injective mapping f : V(H) → V(G) such that, for every edge {u, v}
of H, there is a path from f (u) to f (v) in G and for any two distinct edges of H the
corresponding paths in G are edge-disjoint, that is, they do not share common edges.
The function f is called a model of H in G.

Let P be a path and v, u ∈ V(P). We denote by P[v, u] the subpath of P with endver-
tices v and u. Given two paths P1 and P2 who share a common endpoint v, we say that
they are well-arranged if their common vertices appear in the same order in both paths.

A tree decomposition of a graph G is a pair (T, B), where T is a tree and B is a
function that maps every vertex v ∈ V(T ) to a subset Bv of V(G) such that:

(i)
⋃

v∈V(T ) Bv = V(G),
(ii) for every edge e of G there exists a vertex t in T such that e ⊆ Bt, and

(iii) for every v ∈ V(G), if r, s ∈ V(T ) and v ∈ Br ∩ Bs, then for every vertex t on the
unique path between r and s in T , v ∈ Bt.

The width of a tree decomposition (T, B) is width(T, B) := max{|Bv| − 1 | v ∈ V(T )}
and the treewidth of a graph G, denoted by tw(G), is the minimum over the width(T, B),
where (T, B) is a tree decomposition of G.

Surfaces. A surface Σ is a compact 2-manifold without boundary (we always consider
connected surfaces). Whenever we refer to a Σ-embedded graph G we consider a 2-cell
embedding of G in Σ. To simplify notations, we do not distinguish between a vertex of
G and the point of Σ used in the drawing to represent the vertex or between an edge and
the line representing it. We also consider a graph G embedded in Σ as the union of the
points corresponding to its vertices and edges. That way, a subgraph H of G can be seen
as a graph H, where H ⊆ G in Σ. Recall that Δ ⊆ Σ is an open (respectively closed)
disc if it is homeomorphic to {(x, y) : x2 + y2 < 1} (respectively {(x, y) : x2 + y2 ≤ 1}).
The Euler genus of a non-orientable surface Σ is equal to the non-orientable genus g̃(Σ)
(or the crosscap number). The Euler genus of an orientable surface Σ is 2g(Σ), where
g(Σ) is the orientable genus of Σ. We refer to the book of Mohar and Thomassen [16] for
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more details on graphs embeddings. The Euler genus of a graph G (denoted by eg(G))
is the minimum integer γ such that G can be embedded on a surface of the Euler
genus γ.

Walls. Let k and r be positive integers where k, r ≥ 2. The (k × r)-grid Γk,r is the
Cartesian product of two paths of lengths k − 1 and r − 1 respectively. A wall of height
k, k ≥ 1, is the graph obtained from a ((k + 1) × (2 · k + 2))-grid with vertices (x, y),
x ∈ {1, . . . , 2 · k + 2}, y ∈ {1, . . . , k + 1}, after the removal of the “vertical” edges
{(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree 1. We
denote such a wall by Wk. The corners of the wall Wk are the vertices c1 = (1, 1),
c2 = (2 · k + 1, 1), c3 = (2 · k + 1 + (k + 1 mod 2), k + 1) and c4 = (1 + (k + 1
mod 2), k + 1). (The square vertices in Figure 1.)

A subdivided wall W of height k is a wall obtained from Wk after replacing some
of its edges by paths without common internal vertices. We call the resulting graph
W a subdivision of Wk and the new vertices subdivision vertices. The non-subdivision
vertices are called original. For example, in the wall of Figure 1, the black (respectively
white) vertices are the original (respectively subdivision) vertices. The perimeter P of
a subdivided wall (grid) is the cycle defined by its boundary.

Let W be a subdivided wall in a graph G and K′ be the connected component of G\P
that contains W \ P. The compass K of W in G is the graph G[V(K′) ∪ V(P)]. Observe
that W is a subgraph of K and K is connected.

The layers of a subdivided wall W of height k are recursively defined as follows.
The first layer of W, denoted by L1, is its perimeter. For i = 2, · · · , � k

2 �, the i-th layer
of W, denoted by Li, is the (i − 1)-th layer of the subwall W′ obtained from W after
removing from W its perimeter and (recursively) all occurring vertices of degree 1 (see
Figure 1).

c1 c2

c3c4

Fig. 1. The first (magenta-dashed) and second (red-dotted) layers of a wall of height 5

Given a graph G, a wall W, and a layer L of W let W′ be the subwall of W with
perimeter L. W′ is also called the subwall of W defined by L and C(L) denotes the
compass of W′ in G. When L is different from the perimeter of W we call the follow-
ing vertices, important vertices of L; the original vertices of W that belong to L and have
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Fig. 2. The important vertices the second layer of a wall of height 5

degree 2 in the underlying non-subdivided wall of W′ but are not the corners of W′
(where we assume that W′ shares the original vertices of W). (See Figure 2)

Observation 1. A layer L of a wall W that is different from its perimeter and defines a
subwall W′ of W of height k contains exactly 4k − 2 important vertices.

Let G be a graph that contains a subdivided wall of height k as a subgraph and let
W be the family of all the subdivided walls of height k that are subgraphs of G. For
every W ∈ W let Lw = {LW

i | i ∈ � k
2 �} be the set of all layers of W. A subdivided

wall W ∈ W is called tight if for every i ∈ � k
2 � the graph C(LW

i ) is edge-maximal,
that is, there is no W′ ∈ W such that for some i ∈ � k

2 �, E(C(LW
i )) ⊆ E(C(LW′

i )) and
E(C(LW

i )) � E(C(LW′
i )).

If W is a subdivided wall of height k, we call brick of W any facial cycle whose
non-subdivided counterpart in Wk has length 6. We say that two bricks are neighbors if
their intersection contains an edge.

Let Wk be a wall. We denote by P(h)
j the shortest path connecting vertices (1, j) and

(2 · k + 2, j) and call these paths the horizontal paths of Wk. Note that these paths are
vertex-disjoint. We call the paths P(h)

k+1 and P(h)
1 the southern path of Wk and northern

path of Wk respectively.
Similarly, we denote by P(v)

i the shortest path connecting vertices (i, 1) and (i, k + 1)
with the assumption that for, i < 2·k+2, P(v)

i contains only vertices (x, y) with x = i, i+1.
Notice that there exists a unique subfamilyPv of {P(v)

i | i < 2·k+2} of k+1 vertical paths
with one endpoint in the southern path of Wk and one in the northern path of Wk. We
call these paths vertical paths of Wk and denote them by P[v]

i , i ∈ [k], where P(v)
1 = P[v]

1

and P(v)
2·k+1 = P[v]

k+1. (See Figure 3.)
The paths P[v]

1 and P[v]
k+1 are called the western path of Wk and the eastern path of Wk

respectively. Note that the perimeter of the wall can alternatively be defined as the cycle
Ph

1 ∪ Ph
k+1 ∪ P[v]

1 ∪ P[v]
k+1.

Notice now that each vertex u ∈ V(Wk) \ V(P), is contained in exactly one vertical
path, denoted by P(v)

u , and in exactly one horizontal path, denoted by P(h)
u , of Wk. If W is



Excluding Graphs as Immersions in Surface Embedded Graphs 279

Fig. 3. The vertical paths of a wall of height 5

a subdivision of Wk, we will use the same notation for the paths obtained by the subdi-
visions of the corresponding paths of Wk, with further assumption that u is an original
vertex of W.

From Lemma 6 in [8] and Lemma 3 in [11] we obtain the following.

Lemma 1. Let G be a graph embedded in a surface of Euler genus γ. If tw(G) ≥
48 · (γ + 1)

3
2 · (k + 5), G contains as a subgraph a subdivided wall of height k, whose

compass in G is embedded in a closed disk Δ.

Confluent paths. Let G be a graph embedded in some surface Σ and let x ∈ V(G). We
define a disk around x as any open disk Δx with the property that each point in Δx∩G is
either x or belongs to the edges incident to x. Let P1 and P2 be two edge-disjoint paths
in G. We say that P1 and P2 are confluent if for every x ∈ V(P1) ∩ V(P2), that is not an
endpoint of P1 or P2, and for every disk Δx around x, one of the two disks contained
in Δx after the removal of the points that belong to P1 does not contain any point of
P2. We also say that a collection of paths is confluent if the paths in it are pairwise
confluent.

Moreover, given two edge-disjoint paths P1 and P2 in G we say that a vertex x ∈
V(P1) ∩ V(P2) that is not an endpoint of P1 or P2 is an overlapping vertex of P1 and
P2 if there exists a Δx around x such that both connected components of Δx \ P1 contain
points of P2. (See, Figure 4.) For a family of pathsP, a vertex v of a path P ∈ P is called
an overlapping vertex of P if there exists a path P′ ∈ P such that v is an overlapping
vertex of P and P′.

xx

Fig. 4. The vertex x is an overlapping vertex of the two paths on the left (dashed and dotted),
while it is not an overlapping vertex of the paths on the right



280 A.C. Giannopoulou, M. Kamiński, and D.M. Thilikos

Orthogonal drawings. An orthogonal drawing of a graph G in a grid Γ is a mapping
which maps vertices v ∈ V(G) to subgridsΓ(v) (called boxes) such that for every u1, u2 ∈
V(G) with u1 � u2, Γ(u1)∩Γ(u2) = ∅, and edges {u1, u2} ∈ E(G) to (u′1, u

′
2)-paths whose

internal vertices belong to Γ −⋃v∈V(G) Γ(v), their endpoints u′i (called joining vertices
of Γ(ui)) belong to the perimeter of Γ(ui), i ∈ [2], and for every two disjoint edges
ei ∈ E(G), i ∈ [2], the corresponding paths are edge-disjoint.

We need the following result.

Lemma 2 ( [3]). If G is a simple graph then it admits an orthogonal drawing in an
( m+n

2 × m+n
2 )-grid. Furthermore, the box size of each vertex v is deg(v)+1

2 × deg(v)+1
2 .

3 Preliminary Combinatorial Lemmata

Before proving the main result of this section we first state the following lemma which
we will need later on.

Lemma 3 ([9]). Let r be a positive integer. If G is a graph embedded in a surface
Σ, v, v1, v2, . . . , vr ∈ V(G), and P is a collection of r edge-disjoint paths from v to
v1, v2, . . . , vr in G, then G contains a confluent collection P′ of r edge-disjoint paths
from v to v1, v2, . . . , vr such that E(

⋃
P∈P′ P) ⊆ E(

⋃
P∈P P).

Detachment tree ofP in u. Let G be a graph embedded in a closed disk Δ, v, v1, v2, . . . , vk

be distinct vertices of G, and P = {Pi | i ∈ [k]} be a family of k confluent edge-disjoint
paths such that Pi is a path from v to vi, i ∈ [k]. Let also u ∈ V(G) \ {v, vi | i ∈ [k]} be an
internal vertex of at least two paths in P. Let Pu = {Pi1 , Pi2 , . . . , Pir } denote the family
of paths in P that contain u and Δu be a disk around u. Given any edge e with u ∈ e
we denote by ue its common point with the boundary of Δu. Moreover, we denote by e1

ir
and e2

ir
the edges of Pij incident to u, j ∈ [r].

We construct a tree Tu in the following way and call it detachment tree of P in u.
Consider the outerplanar graph obtained from the boundary of Δu by adding the edges
{ue1

i j
, ue2

i j
}, j ∈ [r]. We subdivide the edges {ue1

i j
, ue2

i j
}, j ∈ [r], resulting to a planar

graph. For every bounded face f of the graph, let V( f ) denote the set of vertices that
belong to f . We add a vertex v f in its interior and we make it adjacent to the vertices of
(V( f ) ∩ {ue | e ∈ u}) \ {ue1

i j
, ue2

i j
| j ∈ [r]}. Finally we remove the edges that lie in the

boundary of Δu. We call this tree Tu. Notice that for every e with u ∈ e, the vertex ue is
a leaf of Tu. (See Figure 5.)

We replace u by Tu in the following way. We first subdivide every edge e ∈ G incident
to u, and denote by ue the vertex added after the subdivision of the edge e. We denote by
Gs the resulting graph. Consider now the graph Gr = (Gs \ u)∪ Tu (where, without loss
of generality, we assume that V(G \ u) ∩ V(Tu) = {ue | u ∈ e}). The graph Gr is called
the graph obtained from G by replacing u with Tu. Notice here that, by construction of
Tu, u ∈ V(Tu) and thus, u ∈ V(Gr).

Observation 2. (�). Let k, h be positive integers and G be a multigraph containing
as a subgraph a subdivided wall W of height h, whose compass C is embedded in a
closed disk Δ. Furthermore, let v, vi, i ∈ [k], be vertices of W such that there exists a
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Fig. 5. Example of the construction of a detachment tree

confluent family P of k edge-disjoint paths from v to the vertices vi, i ∈ [k]. Finally, let
u ∈ V(C) \ {v, vi | i ∈ [k]} belong to more than one of the paths of P. The graph Gr

obtained from G by replacing u with Tu contains as a subgraph a subdivided wall W′
of height h, whose compass is embedded in Δ and there exists a family P′ of k confluent
edge-disjoint paths from v to vi, i ∈ [k], in W′ whose paths avoid u.

We now state the following auxiliary definitions. Let G be a multigraph that contains
a wall of height k whose compass is embedded in a closed disk. Let v ∈ A� k

2 �, that is, let
v be a vertex contained in the closed disk defined by the innermost layer of W, and let
P be a path from v to the perimeter of W. For each layer j of the wall, 2 ≤ j ≤ � k

2 �, we

denote by x j
P the first vertex of P (starting from v) that also belongs to L j and we call it

incoming vertex of P in L j.
We denote by P j the maximal subpath of P that contains v and is entirely contained

in the wall defined by L j. Moreover, we denote by y j
P its endpoint in L j and call it

outgoing vertex of P in L j. Notice that x j
P and y j

P are not necessarily distinct vertices.

Lemma 4. (�). Let λ and k be positive integers. Let G be a graph and W be a tight
subdivided wall of G of height k, whose compass is embedded in a closed disk Δ. Let
also v be a vertex such that v ∈ A� k

2 �. If there exist λ vertex-disjoint paths Pi, i ∈ [λ],

from v to vertices of the perimeter then there is a brick B of W with B ∩ A
o

j−1 � ∅ that

contains both y j
Pi

and x j−1
Pi

.

Lemma 5. (�) Let k be a positive integer and G be a multigraph that contains as a
subgraph a subdivided wall W of height at least 4·k2+1, whose compass K is embedded
in a closed disk Δ. Let also V be a set of k non-corner vertices lying in the perimeter
P of W, whose mutual distance in the underlying non-subdivided wall is at least 2. If
there exist a vertex v ∈ A2·k2+1 and k internally vertex-disjoint paths from v to vertices
of P, then there exist k internally vertex-disjoint paths from v to the vertices of V in K.
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We now state the main result of this section.

Lemma 6. (�) Let k be a positive integer and G be a k-edge-connected multigraph
embedded in a surface of Euler genus γ that contains a subdivided wall W of height at
least 4 · k2 + 1 as a subgraph, whose compass C is embedded in a closed disk Δ. Let
also S be a set of non-corner vertices in the perimeter of W, whose mutual distance in
the underlying non-subdivided wall is at least 2. If |S | ≤ k then there exist a vertex v in
W and |S | edge-disjoint paths from v to the vertices of S .

4 Main Theorem

Given a graph G, let n(G) and m(G) denote the number of vertices and edges of G
respectively. By combining Lemmata 6, 1 and 2 we obtain the following.

Theorem 1. There exists a computable function f : N → N such that for every multi-
graph G of Euler genus γ and every connected graph H one of the following holds:

1. tw(G) ≤ f (γ) · λ · k, where λ = Δ(H) and k = m(H)
2. G is not λ-edge-connected,
3. H ≤im G.

Proof. Let

f (γ, λ, k) = 48 · (γ + 1)
3
2 ·
(

4 (4λ + 1) k
2

+ 5

)

,

and assume that tw(G) ≥ f (γ, λ, k) and G is λ-edge-connected. From Lemma 1, we
obtain that G contains as a subgraph a subdivided wall W of height 2(2λ + 1)k whose
compass is embedded in a closed disk.

In what follows we will construct a model of H into the wall. From Lemma 2, H
admits an a orthogonal drawing ψ in an

(
m(H) + n(H)

2
× m(H) + n(H)

2

)

-grid,

where the box size of each vertex v ∈ V(H) is deg(v)+1
2 × deg(v)+1

2 .
Notice now that ψ can be scaled to an orthogonal drawing φ to the grid Γ of size
(

2 (4λ + 1) (m(H) + n(H))
2

+ 1

)

× 2

(
2 (4λ + 1) (m(H) + n(H)) + 2

2
+ 1

)

,

where the box size of each vertex is (4(deg(v))2 + 2) × 2(4(deg(v))2 + 2), the joining
vertices of each box have mutual distance at least 2 in the perimeter of the box and no
joining vertex is a corner of the box.

Moreover, for every vertex u, u ∈ Im(φ) \ ∪v∈V(H)Γ(v) of degree 4, that is, for every
vertex in the image of φ that is the intersection of two paths, there is a box in the grid
of size (4 deg(u)2 + 2) × 2(4 deg(u)2 + 2), denoted by Q(u), containing only this vertex
and vertices of the paths it belongs to. We denote by ui, i ∈ [4], the vertices of Im(φ)
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belonging to the boundary of Q(u) and, for uniformity, also call them joining vertices
of Q(u).

Towards finding a model of H in the wall observe that the grid Γ contains as a
subgraph a wall of height (4λ + 1) (m(H) + n(H)) such that each one of the boxes, either
Γ(v), v ∈ V(H), or Q(v), where v is the intersection of two paths in the image of φ
contains a wall W(v) of height 4 deg(v)2+1 and the joining vertices of Γ(v) (the vertices
vi, i ∈ [4], respectively) belong to the perimeter of the wall and have distance at least 2 in
it. Consider now the mapping of H to W where the boxes Γ(v) and Q(v) are mapped into
subwalls W(v) of W of height 4 deg(v)2 + 1 joined together by vertex-disjoint paths as
given by the orthogonal drawing φ. From Lemma 6, as every W(v) has height 4 deg(v)2+

1 and its compass is embedded in a closed disk, there exist a vertex zv ∈ V(W(v)) and
deg(v) edge-disjoint paths from zv to the joining vertices of W(v). It is now easy to see
that W contains a model of H.

Notice now that in the case when Δ(H) = O(1) we get the following.

Theorem 2. There exists a computable function f : N → N such that for every multi-
graph G of Euler genus γ and every connected graph H one of the following holds:

1. tw(G) ≤ f (γ) · n(H),
2. G is not Δ(H)-edge-connected,
3. H ≤im G.

The following two corollaries are immediate consequences of Theorems 1 and 2.

Corollary 1. There exists a computable function f : N → N such that for every multi-
graph G of Euler genus γ and every k ∈ N one of the following holds:

1. tw(G) ≤ f (γ) · k3,
2. G is not k-edge-connected,
3. Kk+1 ≤im G.

Corollary 2. There exists a computable function f : N → N such that for every multi-
graph G of Euler genus γ and every k ∈ N one of the following holds:

1. tw(G) ≤ f (γ) · k2,
2. G is not 4-edge-connected,
3. (k × k)-grid is an immersion of G.

However, when H is the grid a straightforward argument gives the following result.

Theorem 3. There exists a computable function f : N → N such that for every multi-
graph G that is embedded in a surface of Euler genus γ and every k ∈ N one of the
following holds:

1. tw(G) ≤ f (γ) · k.
2. G is not 4-edge-connected.
3. (k × k)-grid is an immersion of G.
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Proof. Let
f (γ, k) = 48 · (γ + 1)

3
2 · ((43 + 3) · k + 5).

Assume that G is 4-edge-connected and that tw(G) ≥ f (γ, k). As tw(G) ≥ f (γ, k),
from Lemma 1 it follows that G contains as a subgraph a subdivided wall W of height
(43 + 3)k, whose compass in G is embedded in a closed disk Δ.

Consider the k2 subwalls of W of height (43+1) that occur after removing from it the
paths P[v]

(43+3) j
, P[h]

(43+3) j
, i, j ∈ [k]. For every i, j ∈ [k], we denote by W(i, j) the subwall that

is contained inside the disk that is defined by the paths P(h)
(43+3)(i−1)

, P(h)
(43+3)i

, P[v]
(43+3)( j−1)

,

and P[v]
(43+3) j

. In the case where j = 1 and i = 1, we abuse notation and consider as

P(h)
(43+3)( j−1)

and P[v]
(43+3)( j−1)

the paths P(h)
1 and P[v]

1 , respectively.
From Lemma 6 and the hypothesis that G is 4-edge-connected, for k = 4, it follows

that in the compass of each one of the subwalls {W(i, j) | i, j ∈ [k]} we may find a vertex
v(i, j) and four edge-disjoint paths from v(i, j) to the vertices vn

(i, j), vs
(i, j), vw

(i, j), and ve
(i, j), that

lie in the northern, southern, western, and eastern path of the wall, respectively.
Finally, we consider the function g((i, j)) = v(i, j) that maps the vertex (i, j) of the

(k×k)-grid to the vertex v(i, j) of the wall W(i, j). Is now easy to see that g is an immersion
model of the (k × k)-grid in the compass of the wall W and the theorem follows as f is
linear on k.

5 Conclusions

In this paper, we proved sufficient conditions for the containment of any connected
graph H as an immersion in graphs of bounded genus. We would like to remark here
that our proofs also hold if we, instead, consider the strong immersion relation where
we additionally ask that the paths of the model f of H in G that correspond to the edges
of H are internally disjoint from f (V(H)).

In our results, it appears that both big treewidth and the edge connectivity require-
ment are necessary in order to enforce the appearance of a graph as an immersion. A
natural open problem to investigate is the existence of counterparts of our results for
the case of the topological minor relation. Certainly, here edge connectivity should be
replaced by vertex connectivity. However, what we can only report is that stronger con-
ditions than just asking for sufficiently big treewidth are required for such an extension.

Acknowledgement. We would like to thank the anonymous referees for helpful com-
ments and remarks that improved the presentation of this paper.
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2. Belmonte, R., van ’t Hof, P., Kamiński, M., Paulusma, D., Thilikos, D.M.: Characteriz-
ing graphs of small carving-width. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp.
360–370. Springer, Heidelberg (2012)



Excluding Graphs as Immersions in Surface Embedded Graphs 285

3. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings. In:
Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer,
Heidelberg (1997)

4. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameter-
ized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893
(2005)
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OBDD-Based Representation of Interval Graphs

Marc Gillé�

TU Dortmund, LS2 Informatik, Germany

Abstract. A graph G = (V,E) can be described by the characteristic
function of the edge set χE which maps a pair of binary encoded nodes
to 1 iff the nodes are adjacent. Using Ordered Binary Decision Diagrams
(OBDDs) to store χE can lead to a (hopefully) compact representation.
Given the OBDD as an input, symbolic/implicit OBDD-based graph
algorithms can solve optimization problems by mainly using functional
operations, e. g., quantification or binary synthesis. While the OBDD rep-
resentation size can not be small in general, it can be provable small for
special graph classes and then also lead to fast algorithms. In this paper,
we show that the OBDD size of unit interval graphs is O(|V |/ log |V |)
and the OBDD size of interval graphs is O(|V | log |V |) which both im-
prove a known result from Nunkesser and Woelfel (2009). Furthermore,
we can show that using our variable order and node labeling for interval
graphs the worst-case OBDD size is Ω(|V | log |V |). We use the structure
of the adjacency matrices to prove these bounds. This method may be of
independent interest and can be applied to other graph classes. We also
develop a maximum matching algorithm on unit interval graphs using
O(log |V |) operations and evaluate the algorithm empirically.

1 Introduction

The development of graph algorithms is a classic and intensively studied area
of computer science. But the requirements on graph algorithms have changed
by the emergence of massive graphs, e. g., the internet graph or social networks.
There are applications, e. g., dealing with a state transition graphs in circuit ver-
ification, where even polynomial running time may not be feasible or the input
does not fit into the main memory. In order to deal with such massive graphs,
implicit graph algorithms have been investigated, where the input is represented
by the characteristic function χE of the edge set and the nodes are encoded by bi-
nary numbers. Implicit representations can be significantly smaller than explicit
representations on structured graphs. χE can be represented by Ordered Binary
Decision Diagrams (OBDDs) introduced by Bryant [8] which are a commonly
used data structure for Boolean functions since they support many important
functional operations efficiently. A research area came up concerning the de-
sign and analysis of implicit (graph) algorithms on OBDD represented inputs
([12,13,16,25,26,27,30]). Implicit algorithms are successful in many practical ap-
plications, e. g., model checking [9], integer linear programming [18] and logic

� Supported by Deutsche Forschungsgemeinschaft, grant BO 2755/1-1.

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 286–297, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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minimization [11]. One of the first implicit graph algorithm was the maximum
flow algorithm on 0-1-networks presented by Hachtel and Somenzi [16] which
was able to solve instances up to 1036 edges and 1027 nodes in reasonable time.

The number of functional operations of an implicit algorithm is an important
measure of difficulty [2]. Algorithms using a polylogarithmic number of opera-
tions were designed for instance for topological sorting [30], maximal matching
[6] and minimum spanning tree [3] where a matching M , i. e., a set of edges
without a common vertex, is called maximal if M is no proper subset of another
matching. The actual running time depends on the OBDD sizes which are used
for these operations which are hard to determine in general. So the practical
performance is often evaluated experimentally, e. g., for the maximum matching
problem in bipartite graphs [4] or for the maximum flow problem [16,25].

For a good running time of an implicit algorithm the size of the OBDD rep-
resenting the input graph should be small. Nunkesser and Woelfel [22] inves-
tigated the OBDD size of restricted graph classes such as interval graphs. An
interval graph is an intersection graph of intervals on the real line, i. e., two
intervals (nodes) are adjacent iff they have a nonempty intersection. If the in-
tervals have a length of 1, then the graph is called unit interval graph. (Unit)
Interval graphs were extensively studied and have many applications, e. g., in
genetics, archaeology, scheduling, and much more [15]. Nunkesser and Woelfel
[22] proved that general interval graphs with N nodes can be represented by

OBDDs of size O(N3/2 log3/4 N) while the OBDD size of unit interval graphs
is O(N/

√
logN). They also proved a lower bound of Ω(N) for general interval

graphs and Ω(N/ logN) for unit interval graphs which means that the worst-case
OBDD size of a graph from these classes is bounded below by these values.

As in [22], we use n = �logN� bits, i. e., the minimal number of bits, to encode
the nodes of a graph. Since the worst-case OBDD size is exponentially large in
the number of input bits, using χE in an implicit algorithm motivates to use a
minimal amount of input bits to avoid a large worst-case OBDD size. Aiming
for a good compression of χE , Meer and Rautenbach [19] investigated graphs
with bounded clique-width or tree-width and increases the number of bits used
for the node labeling to c · logN with constant c and were able to improve for
instance the OBDD size of cographs from O(N logN) [22] to O(N).

Our Contribution. In Section 3 we present a new method to show upper and
lower bounds of the size of an OBDD representing a graph. Using some known
structure of the adjacency matrix of interval graphs [21], we improve the bound
on general interval graphs to O(N logN) while using a more convenient way to
label the nodes than in [22]. Using a probabilistic argument, we prove a lower
bound of Ω(N logN) if we use the same labeling and variable order as for our
upper bound. We can also close the gap of the upper bound and the lower bound
in the case of unit interval graphs and show that the OBDD size is Θ(N/ logN).

In Section 4 we present a maximum matching algorithm for unit interval
graphs using only O(logN) functional operations. We were able to compute
the transitive closure of a unit interval graph using only O(logN) operations
instead of O(log2 N) operations, which are needed in general. To the best of the
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author’s knowledge, this is the first time that the labeling of nodes is used to
speed up an implicit algorithm for a large graph class as unit interval graphs
and to improve the number of functional operations. In order to implement
the algorithm efficiently, we have to extend a known result due to Woelfel [30]
to a different variable order for constructing OBDDs representing multivariate
threshold functions. In Section 5 we evaluate the implicit matching algorithm
experimentally and see that it is both very fast and space efficient.

A simple implicit representation of an interval graph is a list of N inter-
vals using Θ(logN) bits for each endpoint summing up to Θ(N logN) space.
Our results show that in the worst case the OBDD representation is almost
as good as the interval representation with the advantage that it is possible to
use o(N logN) space for some instances. Together with our implicit algorithm,
this shows that the representation of at least unit interval graphs with OBDDs
enables a good compression without loosing the usability in algorithms.

2 Preliminaries

Omitted proofs and a more detailed version of this paper can be found in [14].

OBDDs. We denote the set of Boolean functions f : {0, 1}n → {0, 1} by
Bn. Let (x0, . . . , xn−1) = x ∈ {0, 1}n be a binary number of length n and

|x| :=
∑n−1

i=0 xi · 2i the value of x. Further, let l ∈ N be a natural number
then we denote by [l]2 the corresponding binary number of l, i. e., |[l]2| = l.
Let G = (V,E) be a directed graph with node set V = {v0, . . . , vN−1} and
edge set E ⊆ V × V . Here, an undirected graph is interpreted as a directed
symmetric graph. Implicit algorithms are working on the characteristic function
χE ∈ B2n of E where n = �logN� is the number of bits needed to encode
a node of V and χE(x, y) = 1 if and only if (v|x|, v|y|) ∈ E. In order to deal
with Boolean functions, OBDDs were introduced by Bryant [8] to get a compact
representation, which supports a bunch of functional operations efficiently.

Definition 1 (Ordered Binary Decision Diagram (OBDD)).
Order. A variable order π on the input variables X = {x0, . . . , xn−1} of a

Boolean function f ∈ Bn is a permutation of the index set I = {0, . . . , n− 1}.
Representation. A π-OBDD is a directed, acyclic and rooted graph G with

two sinks labeled by the constants 0 and 1. Each inner node is labeled by an input
variable from X and has exactly two outgoing edges labeled by 0 and 1. Each edge
(xi, xj) has to respect the variable order π, i. e., π(i) < π(j).

Evaluation. An assignment a ∈ {0, 1}n of the variables defines a path from
the root to a sink by leaving each xi-node via the ai-edge. A π-OBDD Gf repre-
sents f iff for every a ∈ {0, 1}n the defined path ends in a sink with label f(a).

Complexity. The size of a π-OBDD G, denoted by |G|, is the number of
nodes in G. The π-OBDD size of a function f is the minimum size of a π-
OBDD representing f . The OBDD size of f is the minimum π-OBDD size over
all variable orders π. The width of G is the maximum number of nodes labeled
by the same input variable.
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In the following we describe some important operations on Boolean functions
which we will use in this paper (see, e. g., Section 3.3 in [29] for a detailed list).
Let f and g be Boolean functions in Bn on the variable set X = {x0, . . . , xn−1}
and Gf and Gg be OBDDs representing f and g which are also the inputs for
the operations. The negation f ∈ Bn of f can be computed in time O(1), i. e.,
given the OBDD Gf it is possible to compute the OBDD Gf in O(1) time. Let
i ∈ {0, . . . , n−1} be an index and a ci ∈ {0, 1}. The replacement by constant, i. e.,
the subfunction f|xi=ci can be computed in time O(|Gf |). Let ⊗ ∈ B2 be a binary
Boolean operation. The synthesis of f and g w.r.t. ⊗, i. e., the function h ∈ Bn

with h := f⊗g, can be computed in time O(|Gf |·|Gg |). Finally, the quantification
h := Qxi : f of f with quantifier Q ∈ {∃, ∀} is defined by ∃xi : f := f|xi=0∨f|xi=1

and ∀xi : f := f|xi=0 ∧ f|xi=1. The time needed to compute the quantification
is determined by the computation time of two replacements by constant and
one synthesis. In the rest of the paper quantifications over k Boolean variables
Qx1, . . . , xk : f are denoted by Qx : f , where x = (x1, . . . , xk).

In implicit graph algorithms, the following operation (see, e. g., [27]) is useful
to reverse the edges of a given graph.

Definition 2. Let k ∈ N, ρ be a permutation of {1, . . . , k} and f ∈ Bkn with
input vectors x(1), . . . , x(k) ∈ {0, 1}n. The argument reordering Rρ(f) ∈ Bkn

with respect to ρ is defined by Rρ(f)(x(1), . . . , x(k)) := f(x(ρ(1)), . . . , x(ρ(k))).

This operation can be computed by just renaming the variables and repairing
the variable order using 3(k − 1)n functional operations (see [5]).

An important variable order is the interleaved variable order which is defined
on vectors of length n where the variables with the same significance are tested
one after another.

Definition 3. Let x(1), . . . , x(k) ∈ {0, 1}n be input vectors and π be a permu-

tation of {0, . . . , n − 1}. Then πk,n = (x
(1)
π(0), x

(2)
π(0), . . . , x

(k)
π(0), . . . , x

(1)
π(n−1), . . . ,

x
(k)
π(n−1)) is called k-interleaved variable order for x(1), . . . , x(k). If π = (n − 1,

. . . , 0) then we say that the variables are tested with decreasing significance.

An OBDD-based graph algorithm computes an output χO represented as an
OBDD given a characteristic function χE as an input by mainly using functional
operations. The running time depends on the actual size of the OBDDs used for
the operations during the computation which is difficult to bound in general.

However, if the input OBDD size representing a graph is large, any algorithm
using this OBDD is likely to have an inadequate running time. Beside the vari-
able order, the labeling of the nodes is another optimization parameter with huge
influence on the input size. For OBDDs representing state transitions in finite
state machines, Meinel and Theobald [20] showed that there can be an expo-
nential blowup of the OBDD size from a good labeling to a worst-case labeling.
Nevertheless, a small input OBDD size does not guarantee a good running time
since the sizes of the intermediate OBDDs do not have to be small. Indeed, an
exponential blowup from input to output size is possible [27,3].
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We denote by f|xπ(0)=aπ(0),...,xπ(i−1)=aπ(i−1)
the subfunction where xπ(j) is re-

placed by the constant aπ(j) for 0 ≤ j ≤ i−1. The function f depends essentially
on a variable xi iff f|xi=0 
= f|xi=1. A characterization of minimal π-OBDDs due
to Sieling and Wegener [28] can be often used to bound the OBDD size.

Theorem 1 ([28]). Let f ∈ Bn and for all i = 0, . . . , n− 1 let si be the number
of different subfunctions which result from replacing all variables xπ(j) with 0 ≤
j ≤ i− 1 by constants and which essentially depend on xπ(i). Then the minimal
π-OBDD representing f has si nodes labeled by xπ(i).

Basic Functions and Implicit Algorithms. The OBDD size of the equality
EQ(x, y) and greater than function GT (x, y) with EQ(x, y) = 1 ⇔ |x| = |y| and
GT (x, y) = 1 ⇔ |x| > |y| is linear in the number of input bits for an interleaved
variable order (see, e. g., [29]). For the sake of code readability, we use |x| = |y|
and |x| > |y| to denote EQ(x, y) and GT (x, y) in our algorithms. Furthermore,
by |x| > c (|x| = c) for some constant c we denote the function GT (x, y)|y=[c]2

(EQ(x, y)|y=[c]2). Every function R(x, y) ∈ B2n can be seen as a binary relation
R on the set {0, 1}n with xR y ⇔ R(x, y) = 1. The transitive closure of R(x, y)
can be computed implicitly by O(n2) functional operations using the so called
iterative squaring or path doubling technique (see, e. g., [14]).

Interval Graphs. Let I = {[ai, bi] | ai < bi and 0 ≤ i ≤ N − 1} be a set of N
intervals on the real line. The interval graph GI = (V,E) has one node for each
interval in I and two nodes v 
= w are adjacent iff the corresponding intervals
intersect. If no interval is properly contained in another interval, GI is called
proper interval graph. If the length of every interval in I is equal to 1 then GI
is called unit interval graph. Notice that the set of all interval graphs does not
change if we restrict ourselves to sets I where all endpoints are different. The
definitions of proper and unit interval graphs are equivalent in the sense that
they generate the same class of interval graphs [23]. Hence, in the following we
only use the term of unit interval graphs. An undirected graph H is a (unit)
interval graph iff there is a set of (unit) intervals I such that H = GI . Due to
the one-to-one correspondence of the nodes of GI and the elements of I, we use
the notion of node and interval synonymously.

3 OBDD Size of Interval Graphs

We present a way to count the subfunctions of the characteristic function χE of
the edge set of a graph using the adjacency matrix of the graph which can give
us a more graph theoretic approach to subfunctions.

The rows (columns) of an adjacency matrix correspond to the x-variables (y-
variables) of χE(x, y). We can sort the rows of the adjacency matrix according to

a variable order π by connecting the i-th row to the input x with
∑n−1

l=0 xπ(n−l−1)·
2l = i, i. e., we let the l-th x-variable in π have significance 2n−l−1 to sort the
rows. This can be done analogously to sort the columns. Thus, the variable
order π defines a permutation of the rows and columns of the adjacency matrix
resulting in a new matrix which we call π-ordered adjacency matrix.
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Definition 4. Let G = (V,E) be a graph and π := π2,n be a 2-interleaved
variable order for the characteristic function f := χE. The π-ordered adjacency
matrix Aπ of G is defined as follows: aij = 1 iff f(x, y) = 1 with

∑n−1
l=0 xπ(n−l−1) ·

2l = i and
∑n−1

l=0 yπ(n−l−1) · 2l = j.

Notice that the π-ordered adjacency matrix is equal to the “normal” adjacency
matrix where the rows and columns are sorted by the node labels iff the variables
in π are tested with decreasing significance. The π-ordered adjacency matrix
gives us a visualization of the subfunctions in terms of blocks of the matrix.

Definition 5. Let n ∈ N and A be a 2n × 2n matrix. For 0 ≤ k ≤ n and
0 ≤ i, j ≤ 2k − 1 the block Bk

ij of A is defined by the quadratic submatrix of size

2n/2k × 2n/2k which is formed by the intersection of the rows i · 2n/2k, . . . , (i +
1) · 2n/2k − 1 and the columns j · 2n/2k, . . . , (j + 1) · 2n/2k − 1.

Let i be even. Then the block B
i/2
|a|,|b| represents the function table of the subfunc-

tion which results from replacing the first i/2 x-variables w.r.t π by a ∈ {0, 1}i/2
and the first i/2 y-variables by b ∈ {0, 1}i/2. Thus, counting the number of differ-

ent blocks B
i/2
|a|,|b| is equivalent to counting the number of different subfunctions.

Bollig and Wegener [7] use a similar approach to visualize subfunctions of a
storage access function by building a matrix whose columns and rows are sorted
according to the variable order and correspond to variables (not assignments
as in our π-ordered matrix). Notice that Aπ is not the communication matrix
which is often used to show lower bounds of the OBDD size.

Theorem 2. Let π := π2,n be the interleaved variable order with decreasing
significance and G = (V,E) be an interval graph with N := |V | nodes. The
π-OBDD size of χE can be bounded above by O(N logN).

Proof. Let f := χE , 1 ≤ k ≤ n and sk be the number of different subfunctions
f|α,β of f where α ∈ {0, 1}k is an assignment to the variables xn−1, . . . , xn−k

and β ∈ {0, 1}k is an assignment to the variables yn−1, . . . , yn−k, respectively.
It is enough to bound sk by above because replacing an additional variable by a
constant can at most double the number of subfunctions.

We label the nodes according to their position in the sorted sequence of in-
terval starting points. Recall that ai,j is one if and only if interval i intersects
interval j. Now, notice that if aj,i is zero for j > i then no interval j′ > j with a
larger starting point can cut interval i. Thus, for every column i ∈ {0, . . . , N−1},
the sequence (ai+1,i, . . . , aN−1,i) is zero or starts with a continuous sequence of
ones followed by only zeros (see also [21]).

Every subfunction f|α,β corresponds to a block Bk
|α|,|β|. Let β = 0k and |α| ≥

1, i. e., we consider the blocks Bk
|α|,0 of size 2n−k × 2n−k (see Fig. 1). As we

observed, every column of Aπ has (below the diagonal) at most one possible
changing position k such that ak,i = 1 and ak+1,i = 0. Looking at the sequence
(Bk

1,0, . . . , B
k
2k−1,0) of blocks, this fact implies that a block Bk

i,0 can only form a
new block, i. e., all previous blocks in the sequence are different to this block, if
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Fig. 1. Possible adjacency matrix with
8 nodes and framed subfunctions f|α,β

with β = 0k, |α| ≥ 1, and k = 2.
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Fig. 2. Random interval graph
where only R is generated randomly

there is a changing position in one column inside of Bk
i,0 or inside the block Bk

i−1,0

or between these two blocks. Therefore, every changing position can induce at
most two different blocks and we can bound the number of different blocks by
two times the number of possible changing positions which is at most the number
of columns of a block, i. e., 2 · 2n−k. Since the graph is symmetric and there are
2k blocks on the diagonal, we can bound the overall number of different blocks
by O(2n−k · 2k + 2k) = O(2n) and thus sk = O(2n). Summing this up over all
possible values of k, the π-OBDD size is at most O(2n · n) = O(N logN). ��

In [22] it is proved that the OBDD size of unit interval graphs is Ω(N/ logN) and
O(N/

√
logN) which we can improve by using the π-ordered adjacency matrix.

Theorem 3. Let π be the interleaved variable order with decreasing significance.
The π-OBDD size of χE for a unit interval graph G = (V,E) is O(N/ logN).

The difference between unit and general interval graphs is that in general interval
graphs there is no dependence between the columns of the π-ordered adjacency
matrix, which is important for our lower bound, while in unit interval graphs,
the row number of the last 1 entry in a column is increasing from left to right.

The upper bound proof suggests that the number of blocks Bk
i,j with a chang-

ing position roughly determines the number of xn−k−1-nodes of the OBDD.
However, explicitly constructing a worst-case interval graph with OBDD size of
Ω(N logN) is difficult because there are many dependencies between blocks for
different values of k, since a block Bk

i,j results from dividing some block Bk−1
i′,j′ .

In order to overcome these dependencies, we look at a random interval graphs
and compute the expected value of the number of different blocks for Ω(n) values
of k. We choose the length of the 1-sequence of column j for all 0 ≤ j ≤ N

2 − 1

uniformly at random from {N2 − j, . . . , N − 1 − j} and for all N
2 ≤ j ≤ N − 1

we set the length to N − 1− j. Thus, the lengths of the 1-sequences within the
N
2 ×

N
2 lower left submatrix R are uniform at random in {1, . . . , N

2 } (see Fig. 2).

Lemma 1. Let G = (V,E) be a random interval graph generated by the above
process. The probability that a fixed block in R of size L1 × L2 with L1, L2 ≤
2n/2−1 has exactly one changing position is at least L2·(L1−1)

2n−1 · e−1.
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Theorem 4. The worst-case π-OBDD size of an interval graph is Ω(N logN)
where the nodes are labeled according to the interval starting points and π is an
interleaved variable order with decreasing significance.

Proof. Let G = (V,E) be a random interval graph generated by the above
process and f := χE . We know that each n/2 + 1 ≤ k ≤ (3/4)n induces a grid in
R consisting of 2k−1 · 2k−1 blocks Bk

i,j of size 2n−k × 2n−k. Using Lemma 1, the

expected number of blocks with exactly one changing position is at least 1
2e · 2k ·

2k · 2
n−k·(2n−k−1)

2n = Ω(2n). Now, we have to ensure that these blocks correspond
to different subfunctions which are also essentially dependent on xn−k−1. The
subfunctions, where, additionally, xn−k−1 is replaced by 0 and 1, correspond to a
half of the blocks. Thus, a block is symmetric iff the corresponding subfunction
is not essentially dependent on xn−k−1. Due to the one changing position in
each block, this is not possible. Blocks Bk

i,j and Bk
i′,j with exactly one changing

position and i 
= i′ clearly correspond to different subfunctions because they are
in the same block column. But blocks Bk

i,j and Bk
i′,j′ with j 
= j′, i. e., from

different block columns, do not have to be different. By replacing some columns
of the blocks by constants, we ensure that this also holds. Consider the case
k = (3/4)n. For every 0 ≤ j ≤ 2k − 1 we fix the first k columns of Bk

i,j with

0 ≤ i ≤ 2k − 1 such that they represent the binary number [j]2. As a result, the
blocks Bk

i,j and Bk
i′,j′ with j 
= j′ are always different. Since we looked at the

finest grid, this also holds for smaller values of k because every larger block is
equal to a union of small blocks. For k = (3/4)n the number of fixed columns is
(3/4)n and in each k → k−1 step this number is doubled, i. e., for n/2+1 ≤ k ≤
(3/4)n the number of “free” columns is 2n−k − 2(3/4)n−k · (3/4)n = Ω(2n−k) for
n large enough. Thus, the expected number of blocks with exactly one changing
position remains Ω(2n) for every n/2 + 1 ≤ k ≤ (3/4)n which means there is an
interval graph with π-OBDD size Ω(N logN) ��

4 Implicit Matching Algorithm on Unit Interval Graphs

In the following, the nodes of the unit interval graphs are labeled according to
the sorted sequence of starting points. At first, we have to look into so called
multivariate threshold functions.

Definition 6 (see, e. g., [30]). Let T ∈ Z and W ∈ N and w1, . . . , wk ∈
{−W, . . . ,W}. A Boolean function f : {0, 1}kn → {0, 1} with input vectors

x(1), . . . , x(k) ∈ {0, 1}n and f(x(1), . . . , x(k)) = 1 ⇔
∑k

j=1 wj · |x(j)| ≥ T is called
k-variate threshold function. The set of k-variate threshold functions f ∈ Bkn

with weight parameter W is denoted by TW
k,n.

Woelfel [30] investigated the OBDD size for the variable order where the variables
are tested with increasing significance, i. e., just the reverse of our variable order.
Hosaka et al. [17] showed that the difference of the OBDD sizes for this two orders
is at most n − 1. We can show that an OBDD using our variable order is not
only small but can also be constructed efficiently which is important in view of
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the implementation. The result also implies that we can compute a sequence of
O(1) binary synthesis of multivariate threshold functions efficiently using our
variable order if k and W are constants.

Theorem 5. Let f ∈ TW
k,n and πk,n be the k-interleaved variable order where the

variables are tested with decreasing significance. Then we can construct a πk,n-
OBDD representing f with width O(kW ) and size O(k2Wn) in time O(k2Wn).

We use the arithmetic notation in our algorithm instead of the functional nota-
tion, e. g., we denote by |x|−|y| = 1 the conjunction of the multivariate threshold
functions f(x, y) = 1 ⇔ |x| − |y| ≥ 1 and g(x, y) = 1 ⇔ |y| − |x| ≥ −1.

Maximum Matching on Unit Interval Graphs. Let G = (V,E) be a unit
interval graph. Then we can make a simple observation (see [10]): W.l.o.g. G is
connected. Then we have {vi, vi+1} ∈ E for all i = 0, . . . , N − 2. Assume that
there is an i such that {vi, vi+1} 
∈ E, then due to the connectivity there has
to be another interval with starting point left of vi and length greater than 1
(which is not possible) intersecting both intervals.

Algorithm 1 uses the characteristic function of the set of nodes which is here
equal to f(x) = 1 ⇔ |x| < N . The algorithm computes a directed subgraph
of G, which consists of the vertex disjoint paths visiting all nodes in the con-
nected components. Maximum matchings on arbitrary vertex disjoint paths can
be computed with O(log2 N) functional operations [6]. Here, we know that ev-
ery path consists of a consecutive sequence of nodes. We compute the set of
starting nodes of the paths and the connected components of the graph: Two
nodes x and y are connected iff every node z with |x| ≤ |z| < |y| has a successor
(v|z|, v|z|+1) ∈ E. This can be computed by O(logN) operations. Next, we can
compute the matching by adding every second edge of a path to the matching
beginning with the first edge. While computing this set of edges needs O(log2 N)
operations in general [6], here we can easily determine the set by comparing the
difference of two node labels due to the structure of the paths.

Algorithm 1. Implicit maximum matching algorithm for unit interval graphs

Input: Unit interval graph χE
Output: Matching χM

// Compute path graph
1: χ−→

E
(x, y) = χE(x, y) ∧ (|y| − |x| = 1)

// Compute set of starting nodes

2: F irst(z) = (|z| < N) ∧ ∀x : χ−→
E
(x, z)

// Compute set of reachable nodes
3: S(z) = ∃z′ : χ−→

E
(z, z′)

4: Reachable(x, y) = (|x| ≤ |y|) ∧ ∀z : (|x| ≤ |z| < |y|) ⇒ S(z)
5: Reachable(x, y) = Reachable(x, y) ∧ (|x| < N) ∧ (|y| < N)

// Compute matching
6: F (x) = ∃z, d : F irst(z) ∧ Reachable(z, x) ∧ (|x| − |z| = 2|d|)
7: M(x, y) = χ−→

E
(x, y) ∧ F (x)

8: χM (x, y) = M(x, y) ∨M(y, x)
9: return χM

Theorem 6. Algorithm 1 computes a maximummatching for unit interval graphs
using O(logN) functional operations.
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Fig. 3. Runtime and memory of the matching algorithms on random unit interval
graphs. Memory plot shows the ratio of S log S (space usage of the OBDD-based algo-
rithm) and number of nodes.

5 Experimental Evaluation

We evaluated the implicit maximum matching algorithm on unit interval graphs.
Unit interval graphs can be represented as balanced nonnegative strings over
{‘[’, ’]’} (see, [24]) and such strings are created randomly using the algorithm in
[1]. We generated 35 random graphs of size 2i for i = 10, . . . , 23. The nodes of
the graphs are encoded as in Section 3. We compare the OBDD-based algorithm
to the algorithm which gets the interval representation as an input, sort the
intervals according to their starting point and compute a maximum matching by
scanning this sorted sequence with the same idea used in the implicit algorithm.

Experimental Setup. We implemented the implicit algorithm with the BDD
framework CUDD 2.5.01 by F. Somenzi. The algorithms are implemented in
C++ and were compiled with Visual Studio 2012 in the default release config-
uration. All source files, scripts and random seeds are publicly available2. The
experiments were performed on a computer with a 2.6 GHz Intel Core i5 pro-
cessor and 4 GB main memory running Windows 7. The runtime is measured
by used processor time in seconds and the space usage of the implicit algorithm
is given by the maximum SBDD size which came up during the computation,
where a SBDD is a collection of OBDDs which can share nodes. Due to the small
variance of these values, we only show the mean in the diagrams.

Results. The implicit matching algorithm outperforms the explicit matching
algorithm on unit interval graphs (see Fig. 3). Even on graphs with more than
8 million nodes the implicit algorithm computes a maximum matching within
1 seconds. Storing a SBDD of size S needs O(S logS) bits. The memory dia-
gram shows that the asymptotic space usage of the implicit algorithm on these
instances is close to O(N). Recall that the unit interval representation needs
Θ(N logN) space since logN bits are needed to represent the starting points.

1 http://vlsi.colorado.edu/~fabio/CUDD/
2 http://ls2-www.cs.uni-dortmund.de/~gille/

http://vlsi.colorado.edu/~fabio/CUDD/
http://ls2-www.cs.uni-dortmund.de/~gille/


296 M. Gillé

I. e., the implicit algorithm needs less space and can compute a maximum match-
ing on larger instances than the explicit one. An interesting consequence of these
results is that the submodules of our maximum matching algorithm, namely
computing the connected components, a Hamiltonian path in every connected
component and a maximum matching on these paths, are also very fast and space
efficient which is surprising, since especially the computation of the transitive
closure is often a bottleneck in implicit algorithms.

Open Questions. Using the π-ordered adjacency matrix, we think that it is
possible to bound the OBDD size for other graph classes with a well structured
adjacency matrix, e. g., convex graphs where the nodes can be ordered such that
the neighborhood of every node consists of nodes which are consecutive in this
order. The gap between the upper and lower bound of the OBDD size of interval
graphs is O(logN). It is an interesting open question whether there is another
labeling and/or variable order such that the OBDD size is O(N) or the general
lower bound can be increased to Ω(N logN).

Even for a fixed variable order, the complexity of computing a node label-
ing for a given graph, such that the representing OBDD has minimal size, is
unknown. The π-ordered adjacency matrix seems to help to prove upper/lower
bounds on the OBDD size for a fixed labeling. Using this matrix to bound the
size of OBDDs for every labeling could be object of further research.

The investigation of implicit algorithms on special graph classes seems quite
promising and it would be interesting if the good performance can also be
achieved for other large graph classes.

Acknowledgements. I thank Beate Bollig, Melanie Schmidt and Chris
Schwiegelshohn for the valuable discussions and, together with the anonymous
referees, for their comments on the presentation of the paper.
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14. Gillé, M.: OBDD-Based Representation of Interval Graphs. ArXiv e-prints (2013),
http://arxiv.org/abs/1305.2772

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co. (2004)

16. Hachtel, G.D., Somenzi, F.: A symbolic algorithms for maximum flow in 0-1 net-
works. Formal Methods in System Design 10(2/3), 207–219 (1997)

17. Hosaka, K., Takenaga, Y., Kaneda, T., Yajima, S.: Size of ordered binary decision di-
agrams representing threshold functions. Theor. Comput. Sci. 180(1-2), 47–60 (1997)

18. Lai, Y.-T., Pedram, M., Vrudhula, S.B.K.: EVBDD-based algorithms for integer
linear programming, spectral transformation, and function decomposition. IEEE
Transactions on CAD of Integrated Circuits and Systems 13(8), 959–975 (1994)

19. Meer, K., Rautenbach, D.: On the OBDD size for graphs of bounded tree- and
clique-width. Discrete Mathematics 309(4), 843–851 (2009)

20. Meinel, C., Theobald, T.: On the influence of the state encoding on OBDD-
representations of finite state machines. ITA 33(1), 21–32 (1999)

21. Mertzios, G.B.: A matrix characterization of interval and proper interval graphs.
Applied Mathematics Letters 21(4), 332–337 (2008)

22. Nunkesser, R., Woelfel, P.: Representation of graphs by OBDDs. Discrete Applied
Mathematics 157(2), 247–261 (2009)

23. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 139–146 (1969)

24. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random generation and enu-
meration of proper interval graphs. IEICE Transactions 93-D(7), 1816–1823 (2010)

25. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas,
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Abstract. The Feedback Arc Set problem is one of the classical NP-
hard problems. Given a graph with n vertices and m arcs, it asks for a
subset of arcs whose deletion makes a graph acyclic. An equivalent is the
Linear Ordering problem, where the vertices are ordered from 1 to n,
and a feedback arc is an arc that is directed contrarily. Both problems
have been studied intensely.

Here, we add a new point of view. We first derive properties of linear
orderings, that can be established efficiently. Our main result are upper
bounds on the cardinality of a minimum feedback arc set for graphs with
degree at most 3 and 4. We prove that the bounds are at most n/3 and
m/3, respectively, and show that both are tight.

1 Introduction

Feedback Arc Set (FAS) is one of the classical NP-hard decision problems.
Given a directed graph G and an integer k, is there a subset S of G’s arcs, |S| ≤ k,
such that every directed cycle of G contains an arc in S? [11] The optimization
problem associated with FAS is to minimize the cardinality k of the feedback
arc set S. The complementary problem is known as the Maximum Acyclic

Subgraph (MAS) problem. A topological sorting of this acyclic graph leads
to a linear ordering of the graph’s vertices, which is often visualized by placing
the vertices according to the ordering from left to right on a horizontal line.
This perspective is known as the Linear Ordering problem (LO), which is
equivalent to both FAS and MAS, depending on whether we count the arcs
pointing from right to left or vice versa.

There is a number of applications for the Feedback Arc Set problem.
Among them are ranking problems, as the LO formulation immediately suggests,
penalty graph approaches, e. g., for 2-layered crossing minimization, and graph
drawing [16].

Karp proved the NP-hardness of FAS by a reduction from Vertex Cover

[11]. Furthermore, FAS is hard to approximate. For arbitrary graphs, the best
known ratio is O(logn log logn) [6]. FAS is APX -hard [10] and, unless P is
equal to NP , it cannot be approximated better than to a factor of 1.36 [4]. For
tournaments, however, there is a 3-approximation algorithm [1] and a polyno-
mial time approximation scheme [12] that admits an efficient computation of a
solution that is at most by a factor of 1 + ε worse than the optimum, for any
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ε > 0. These results show that FAS is in general a tough problem, which im-
mediately raises the question for special cases, where FAS becomes tractable.
Indeed, it can be solved to optimality in polynomial time on planar graphs [2],
graphs that do not have the K3,3 as a minor [14], or reducible flow graphs [15].

In contrast, FAS remains NP-hard for 3-regular graphs [7]. Although many
heuristics have been proposed to attack the Feedback Arc Set problem in
general, only few of them admit a special analysis of their quality on regular
graphs. Berger and Shor [3] were the first to give an algorithm that establishes
bounds depending on a graph’s maximum degree. For 3-regular graphs, they
achieved 5

18m. Eades and Lin [5] improved this bound to m
4 with an algorithm

specifically designed for this class of graphs. The result by Berger and Shor for
4- and 5-regular graphs, 11

30m, is still the best known so far. However, none of
these bounds have been shown to be best possible.

In this paper, we introduce necessary properties for a linear ordering to be
optimal and use them to obtain tight upper bounds for 3- and 4-regular graphs.
Our proofs are based on the following intuition: Consider a graph along with an
optimal linear ordering. Each backward arc, i. e., an arc pointing from right to
left, produces a pebble that lies at its head. The pebble must be transported
along a path to the backward arc’s tail and placed on a vertex on this path
that has neither an incident backward arc nor has another pebble already been
placed on it. This vertex can then uniquely be assigned to the backward arc that
produced the pebble. We will show that such an assignment is possible for every
3-regular graph, and that we can even assign to each backward arc its head and
tail. Thereby, we obtain a tight bound of n

3 . For 4-regular graphs, this approach
is not directly applicable. However, using graph operations, we can prove a tight
bound of m

3 here. Beyond that, we will show that a linear ordering that meets
the bounds can be constructed in polynomial time.

2 Preliminaries

We consider simple, directed, strongly connected graphs G = (V,A) with vertex
set V and arc set A ⊆ V × V , where |V | = n and |A| = m. A graph is strongly
connected, if for each pair of vertices v, w ∈ V there is a directed path from v to w
and vice versa. For a vertex v ∈ V , denote by d+(v) the number of outgoing arcs
from v, by d−(v) the number of incoming arcs to v and by d(v) = d+(v) + d−(v)
its degree. Let δ(v) = d+(v)−d−(v) be v’s delta degree. Note that for every graph∑

v∈V δ(v) = 0. An arc a with tail u and head v is specified by the tuple (u, v).
A cycle C = (c0, c1, . . . ck, ck+1 = c0), consisting of vertices c0, . . . ck, is always
directed and simple, i. e., ∀0 ≤ i ≤ k : (ci, ci+1) ∈ A and ∀i 
= j : ci 
= cj .

A feedback arc set for a graph G is a set of arcs B ⊆ A such that the graph
GF = (V,F), F = A \ B, is acyclic. We also say that a set of arcs is feasible if
it forms a valid feedback arc set. A feedback arc set is called minimal, if no arc
can be removed from it such that it remains feasible. B is minimum or optimal,
if its cardinality is minimum among all feedback arc sets of G.
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A linear ordering π of G is a bijective mapping V → [1 . . . n] that assigns to
each vertex v a unique position π(v). An arc (u, v) is called forward, if π(u) <
π(v), and otherwise backward. For every linear ordering, the set of backward
arcs uniquely identifies a feedback arc set. In contrast, the linear ordering that
corresponds to a given feedback arc set is in general not unique. However, every
topological sorting of GF yields a linear ordering whose set of backward arcs is
a subset of B. We say that π is optimal, if the induced feedback arc set is. The
quality of a linear ordering is measured by the cardinality of its induced feedback
arc set; the smaller it is, the higher is its quality.

A linear ordering π induces a layout L : V → N0
4 where for each vertex

v ∈ V , L(v) is a 4-tuple (fi, fo, bi, bo) that defines the number of incoming
forward, outgoing forward, incoming backward, and outgoing backward arcs of
v in π. In order to improve comprehensibility, we use small figures that visualize
the layout instead of the 4-tuples.

Observe that we can restrict ourselves to strongly connected graphs, as oth-
erwise, the feedback arc set problem can be solved separately for each strongly
connected component.

3 Properties of Optimal Linear Orderings

We now establish some properties of optimal linear orderings that will prove
useful later. A condition similar to the following was also observed in [9].

Lemma 1. (Nesting Property) For every optimal linear ordering π∗ of a graph
G, there are two injective mappings l, r : B → F such that
l(u, v) = (v, x) ⇒ π∗(x) < π∗(u) and r(u, v) = (y, u) ⇒ π∗(v) < π∗(y).

Proof. Let π be an arbitrary linear ordering of G. Consider the movement of a
vertex v to a new position p within π. If p > π(v), then all outgoing forward arcs
of v whose heads are at a position < p are turned into backward arcs and all
incoming backward arcs with tail in the same range become forward. Likewise,
if p < π(v), all incoming forward arcs become backward and outgoing backward
arcs become forward if the other end vertex lies at a position > p.

Apply a 1-OPT algorithm to π that moves each vertex v to a position that
minimizes the number of backward arcs incident to v for the current linear or-
dering. This procedure can be repeated until no vertex position can be improved
(cf. Alg. 1). Let π′ be the resulting linear ordering.

Define the injective mapping l as follows: For every vertex v, order the out-
going forward arcs (v, x1), (v, x2), . . . (v, xk) increasing in length, i. e., such that
π′(x1) < π′(x2) < · · · < π′(xk). Do the same for the incoming backward arcs
(u1, v), (u2, v), . . . (ul, v), with π′(u1) < π′(u2) < · · · < π′(ul). Note that l ≤ k,
otherwise moving v to position π′(ul)+1 decreases the number of backward arcs
incident to v by l − k. For each 0 ≤ i ≤ l, set l(ui, v) = (v, xi).

Consider the backward arc (ui, v) with l(ui, v) = (v, xi). Suppose π′(xi) >
π′(ui). Then, however, moving v to position π′(ui) + 1 would turn i backward
arcs into forward arcs, but at most i− 1 forward arcs would become backward.
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Algorithm 1. Nesting Property

1: function EstablishNesting(G, π)
2: repeat
3: for all v ∈ V do
4: s ← position that minimizes number of v’s incident backward arcs
5: move v to position s in π

6: until number of backward arcs did not change in last iteration

This contradicts the assumption that there is no position for v in π′ that de-
creases the number of incident backward arcs further.

The injective mapping r can be obtained by processing the outgoing backward
arcs and the incoming forward arcs for each vertex, again both increasing in
length. The argument can be applied likewise.

In particular, this guarantees the nesting property for every optimal ordering
π∗, since by definition, no ordering with strictly less backward arcs exists. ��

Observe that l[B] and r[B] need not be disjoint. For an example, consider the
graph depicted in Fig. 4(a). There, setting l(5, 2) = (2, 4) = r(4, 1) meets all
requirements.

The second property introduces the concept of forward paths and characterizes
a linear ordering that induces a minimal feedback arc set. Recall that every
optimal feedback arc set is also minimal.

Lemma 2. (Path Property) For every backward arc b = (u, v) ∈ B according to
an optimal linear ordering π∗, there is a forward path p = (x1 = v, x2, . . . , xk =
u) such that for all 1 ≤ i < j ≤ k : (xi, xj) ∈ F .

Proof. Let π∗ be an optimal linear ordering of a graph G. Suppose there is a
backward arc b = (u, v) in π∗ that lacks a forward path. Consider the feedback
arc set B induced by π∗. Then, B is optimal. Remove b from B and insert it into
F . Since there is no path from v to u in F , GF remains acyclic.

Subsequently, B \ {b} is feasible, a contradiction to the optimality of B and
therefore also π∗. ��

A graph G = (V,A) with a linear ordering π that respects the path property
allows to construct a forward path graph Gfp = (Vfp, Afp), where Vfp ⊆ V and
Afp ⊆ A. Let B be the feedback arc set induced by π and F the corresponding set
of forward arcs. For the construction of Gfp, select exactly one forward path pb for
each backward arc b ∈ B. Then, Vfp = {v ∈ V | ∃b ∈ B : pb = (x1, x2, . . . xk) ∧
v ∈ {x1, . . . xk−1}} and Afp = {a ∈ F | ∃b ∈ B : pb = (x1, x2, . . . xk) ∧ a ∈
{(xi, xi+1)}1≤i≤k−2}. Note that pb always refers to the single forward path that
was chosen for b. In other words, Gfp consists of the union of all selected forward
paths, but the last vertex of each is cut off. See Figs. 2(b) and (c) for an example.

Alg. 2 shows a straightforward approach to ensure the path property for an
arbitrary ordering. Note that if a feedback arc set is minimized in this way, then
every topological sorting of the remaining acyclic graph must result in the same
set of backward arcs.
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Algorithm 2. Path Property

1: function EstablishForwardPaths(G, π)
2: repeat
3: for all b ∈ B do
4: if no forward path exists for b then
5: F ← F ∪ {b}
6: π ← topological sorting of GF
7: until no change in last iteration

Corollary 1. Let B be the feedback arc set induced by a linear ordering π with
forward arcs F . Every topological sorting of GF yields a set of backward arcs
that equals B if and only if π fulfills the path property.

In the next step, we combine both properties to obtain an even stronger state-
ment. We define new injective mappings l+ and r+ : B → F similar to l and
r, but with reduced range. If l+(u, v) = (v, x) for a backward arc (u, v), then
there is a forward path for (u, v) starting with (v, x). Analogously, r+ maps
(u, v) to the last arc on a forward path from v to u. The mappings l+ and r+

can equally be described via a bipartite matching. For l+, the neighborhood
of every backward arc (u, v) ∈ B consists of all forward arcs that are the first
on any forward path of (u, v). The mapping l+ exists if and only if there is a
B-saturating matching, i. e., every backward arc can be mapped exclusively to
one arc of its neighborhood. r+ can be defined likewise. Using Hall’s marriage
theorem [8], we can show that if such a matching does not exist, then a feedback
arc set of strictly smaller cardinality can be constructed efficiently.

Lemma 3. (Combined Nesting and Path Property) For every optimal linear or-
dering π∗, there exists an injective mapping l+ : B → F that assigns to every
backward arc b = (u, v) ∈ B the first arc on a forward path pl of b, i. e.,
l+(u, v) = (v, x2) ⇒ ∃ forward path pl = (v = x1, x2, . . . , xk−1, u = xk).
Likewise, there is an injective mapping r+ : B → F that assigns to every back-
ward arc b = (u, v) ∈ B the last arc on a forward path pr of b.

Finally, we see that certain layouts can be eliminated from every linear ordering.

Lemma 4. (Eliminable Layouts) For every linear ordering π of G there is a
linear ordering π′ of at least equal quality such that π′ does not induce one of
the following layouts on any vertex v:
L(v) = (x, 1, 1, 0)

( )
or L(v) = (1, x, 0, 1)

( )
, where x ≥ 1.

Proof. Let π be a linear ordering of G. We can assume that π respects the
nesting and path property, otherwise, it can be established efficiently. This does
not increase the number of backward arcs.

Let v be a vertex with layout within π. Let (u, v) be the only incoming
backward arc of v and (v, v1) be the nesting forward arc, i. e., l(u, v) = (v, v1)
(cf. Fig. 1(a)). Consider the following operation: Modify π by moving v right
behind u (cf. Fig. 1(b)). Now, (u, v) counts as forward arc and (v, v1) is a new
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v v1 . . . vk u

(a)

v1 . . . vk u v

(b)

v v1 . . . vk u

(c)

Fig. 1. π before (a) and after (b) moving v; (c): no termination

Algorithm 3. Combined Nesting and Path Property/Layout Elimination

1: function EstablishProperties(G, π0)
2: π1 ← EstablishNesting(G, π0) with backward arcs B1; � k1 · O(n2)
3: π2 ← EstablishForwardPaths(G, π1) with backward arcs B2; � k2 · O(m2)
4: if |B2| < |B1| then π0 ← π2; goto 2;

5: Compute all candidate forward arcs per backward arc; � k3 · O(m2)
6: Compute maximum matching M ; � k3 · O(m2.38)
7: if |M | < |B2| then B3 ← new FAS via alternating paths; � k3 · O(m2)
8: π0 ← TopSort(GF 3); goto 2; � k3 · O(m)

9: if π2 contains eliminable layout then � k4 · O(n2)
10: π0 ← reordering of π2; goto 2;

backward arc, so the cardinality of the induced feedback arc set remains un-
changed. Afterwards, the layout of v is . Other vertices whose layouts have
changed are u and v1. Suppose that the layout of u now is . Then, it must
have been before the move, which is illegal, since π respects the nesting
property. Likewise, u cannot have a layout afterwards, since its layout would

have been before. Next, consider v1. After the movement of v, v1 has an

incoming backward arc, so it cannot have as layout. However, it may now
be . Then, its initial layout would have been . Hence, the elimination of
the layout at v may in turn produce this layout at at most one new vertex and
the process must be iterated.

It remains to show that the procedure eventually terminates. Note that if
v1 is moved behind v, then v’s layout changes to . Suppose there is no
termination. Then, there must be a cycle that has a vertex v with layout on
the smallest position within π, followed by vertices v1, . . . vk with layout and
finally a vertex u with layout . The cycle consists of the outgoing forward
arcs of v, v1, . . . vk that correspond to the incoming forward arcs of v1, . . . , vk, u
(in this order) and is closed by the backward arc (u, v) (cf. Fig. 1(c)). Because
of the arcs that are not part of the cycle, there must be at least one vertex w
in π that is not part of the cycle. Recall that G is strongly connected. Hence,
there is a directed path from every vertex to every other vertex. In particular,
this holds for v and w. However, there are no outgoing arcs from vertices within
the cycle to vertices outside, so there cannot be a directed path from v to w; a
contradiction. In consequence, the procedure terminates. Recall that it does not
produce new vertices with layout , either.

We can show with a similar argument that vertices with layout can be
eliminated likewise. ��
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We combine the procedures described above and obtain an algorithm (cf. Alg. 3)
that establishes all properties. The comments on the right side in Alg. 3 indicate
the running time per iteration in big O notation and the number of iterations
k1, k2, k3, k4. The running time of EstablishNesting is O(n2) per iteration
(cf. Alg. 1). For a total number of k1 iterations, it reduces the cardinality of
the feedback arc set by O(k1) arcs. EstablishForwardPaths is run each time
after EstablishNesting has finished, so k2 ≤ k1. The bipartite graph that
needs to be constructed for the matching has O(m) vertices and O(m2) edges.
Hence, a maximum bipartite matching requires O(m2.38) time [13]. The part of
the algorithm that guarantees the combined nesting and path property (ll. 5–
8), is repeated k3 ≤ k2 times. Finally, one vertex with eliminable layout causes
at most O(n) movements, so we have O(n2) for all vertices. This subroutine is
carried out k4 ≤ k3 times. As k4 ≤ k3 ≤ k2 ≤ k1 and k1 ∈ O(m), we get a total
running time of O(m3.38).

Corollary 2. There is an O(m3.38) time algorithm to construct a linear order-
ing that respects the combined nesting and path property and does not induce an
eliminable layout on any vertex of the graph.

4 A Tight Bound for Subcubic Graphs

In this section we consider subcubic graphs. A graph G = (V,A) is cubic if for
all vertices v ∈ V : d(v) = 3, and subcubic, if for all vertices v ∈ V : d(v) ≤ 3.

Theorem 1. The cardinality of an optimal feedback arc set of a subcubic graph
is at most n

3 and this bound is tight.

Let G = (V,A) be a subcubic graph. Consider a linear ordering π that fulfills
the nesting property. Among the vertices with an incident backward arc, we
observe six different layouts:

L(v) = (0, 1, 1, 0): , L(v) = (1, 1, 0, 1): , L(v) = (2, 0, 0, 1): ,

L(v) = (1, 0, 0, 1): , L(v) = (1, 1, 1, 0): , L(v) = (0, 2, 1, 0): .

Recall that by Lemma 4, we can eliminate the layouts and without
decreasing the quality of π.

Proof. Let π∗ be an optimal linear ordering of a subcubic graph G = (V,A). By
Lemma 1 and 2, π∗ fulfills the nesting and the path property. Furthermore, by
Lemma 4, we can assume that π∗ does not contain vertices with layout or

. Construct a forward path Gfp of G according to π∗. Fig. 2 provides an
example. As the layouts of vertices with incident backward arcs were one of ,

, , and , every vertex s that has an incoming backward arc in G is a

source in Gfp with δ(s) = 1 and there are no other sources. All other vertices in
Gfp are vertices that are not incident to a backward arc in G. Furthermore, Gfp

has no vertex v with δ(v) = −2. Otherwise, v must have layout according to
π∗ with an outgoing forward arc to a vertex with an outgoing backward arc, i. e.,
one with layout or , and the two incoming forward arcs of v hence would
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Fig. 2. The complete bipartite graph K3,3 (a), an optimal linear ordering (b) and a
forward path graph with delta degrees (c)

belong to two different forward paths for the same backward arc. However, for
the construction of Gfp, exactly one forward path per backward arc was selected.

Consequently, ∀v ∈ Vfp : δ(v) ∈ {−1, 0, 1}. As
∑

v∈Vfp
δ(v) = 0, there must

be at least as many vertices v with δ(v) = −1 as there are sources. Therefore,
for every backward arc in G, there are three exclusive vertices: its tail, its head,
which corresponds to a source in Gfp, and a vertex v with δ(v) = −1 in Gfp.
Hence, the cardinality of an optimal feedback arc set for G is at most n

3 .
The graph in Fig. 2 or a directed triangle testify that this bound is tight. ��

By Corollary 2, we can construct a linear ordering that meets the preconditions
of Theorem 1 in O(m3.38). Observe that for subcubic graphs, the path property
directly implies the combined nesting and path property, so these steps can be
omitted in Alg. 3. Furthermore, m ∈ O(n) for subcubic graphs, so we obtain:

Corollary 3. There is an O(n3)-time algorithm to construct a feedback arc set
with cardinality at most n

3 for a subcubic graph G.

5 An Extension for Graphs with Vertices of Degree 4

For a start, we restrict ourselves to quartic graphs. A graph is 4-regular or
quartic, if ∀v ∈ V : d(v) = 4. We can later loosen this restriction such that we
obtain a bound for subquartic graphs, i. e., ∀v ∈ V : d(v) ≤ 4.

Theorem 2. The cardinality of an optimal feedback arc set of a quartic graph
is at most m

3 and this bound is tight.

Let G = (V,A) be a quartic graph. Consider again a linear ordering π that
fulfills the nesting property. Here, we have nine different layouts for vertices
with an incident backward arc:

L(v) = (2, 1, 1, 0): , L(v) = (1, 2, 0, 1): , L(v) = (1, 2, 1, 0): ,

L(v) = (2, 1, 0, 1): , L(v) = (0, 3, 1, 0): , L(v) = (3, 0, 0, 1): ,

L(v) = (0, 2, 2, 0): , L(v) = (2, 0, 0, 2): , L(v) = (1, 1, 1, 1): .

By Lemma 4, we can eliminate the vertex layouts and without decreasing
the quality of π. It would be convenient now if we could reuse the arguments
from Sect. 4. Our intermediate goal is to reduce the degree of the vertices,
and, most notably, the number of incident backward arcs per vertex. At the
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Fig. 3. Quartic graph with 4 disjoint cycles (a), linear ordering that respects all prop-
erties (b), and an optimal linear ordering (c)

same time, we want to be able to maintain the combined nesting and path
property. We split every vertex v into two vertices, depending on L(v), as follows:

⇒ , ⇒ ,

⇒ , ⇒ ,

⇒ , ⇒ ,

⇒ , ⇒ ,

⇒ , ⇒ or

While most split operations preserve all forward paths by construction, one
that definitely does not is the split of vertices with layout into two vertices
with layouts . However, it is indeed possible to show that if the forward
path property is destroyed thereby, then a feedback arc set of strictly smaller
cardinality can be found. For a sketch of the proof, consider the graph depicted
in Fig. 3. The linear ordering given in Fig. 3(b) respects the combined nesting
and path property and there are no vertices with eliminable layouts. If vertex
3 is split here, backward arc b = (4, 2) loses its only forward path (2, 3, 4).
Consider forward arc (2, 3). All cycles running through vertex 3 must enter 3
either through this arc or through the backward arc (5, 3). Moreover, all cycles
that run through b and no other backward arc have to leave vertex 2 via (2, 3).
Hence, we can replace both b and (3, 1) in the current feedback arc set by the
single arc (2, 3) and thus obtain a new feedback arc set of smaller cardinality
(cf. Fig. 3(c)).

Lemma 5. Every vertex with layout in an optimal linear ordering π∗ can
be split into two vertices such that the combined nesting and path property
is preserved.

This result is mainly a preparation for the correctness of the complete set of split
operations. The proof of the following lemma specifies in what order the splits
must be carried out and how to decide for the correct split version of vertices
with layout .

Lemma 6. For every optimal linear ordering π∗, each vertex v with d(v) = 4
can be split into two vertices such that the resulting ordering fulfills the nesting
and the path property.



Tight Upper Bounds for Minimum Feedback Arc Sets of Regular Graphs 307

Proof. Let π∗ be an optimal linear ordering of a quartic graph G. We construct
the split graph Gs of G as follows: Carry out the split operation for all vertices
with layout . By Lemma 5, the combined nesting and path property still

holds. Next, apply all other split operations except for vertices with layout .

For vertices with layout and , the split must be such that the path property

holds afterwards. Observe that the split operations for all other vertices do not
affect the existence of forward paths.

Finally, for vertices with layout , we distinguish two cases. Let v be such

a vertex. If v is split into two vertices with layout , then all forward paths
are preserved. However, we want to avoid this split if the head of the outgoing
forward arc of v has an outgoing backward arc, too. We know that all vertices
with an outgoing backward arc have the layout after the split. In order to
make sure that the path property is not violated, we select exactly one forward
path of every backward arc in the split graph. Process the vertices with layout

in descending order of their position according to π∗.

Consider a vertex v with layout , whose outgoing forward arc points to a

vertex with layout . Recall that this vertex is already a split vertex. Suppose
both incoming forward arcs of v belong to one of the selected forward paths.
Then, these forward paths can only belong to either the backward arc leaving at
v or the backward arc leaving at the vertex with layout . Subsequently, there
are exactly two forward paths via v, so v can be split into two vertices with
layouts without destroying a forward path. In all other cases, vertices with

layout are split into . ��

Note that none of the split operations creates a vertex with an eliminable layout.
Now all requirements for the proof of Theorem 2 have been set.

Proof (Theorem 2). Let π∗ be an optimal linear ordering of a quartic graph G.
Fig. 4 shows the following steps for an example graph. Split G as defined above
and the vertices with layout exactly as described in the proof of Lemma 6.
We refer to the graph obtained after the splitting as Gs and the corresponding
linear ordering as π∗

s . By Lemma 6, π∗
s respects the path property. Construct

a forward path graph Gfp = (Vfp, Afp) of G according to π∗
s . For all vertices

v ∈ Vfp with d(v) ≤ 3, we have already shown in the proof of Theorem 1 that
δ(v) ∈ {−1, 0, 1}. The only vertices of degree 4 in Gs are those that were created

by splitting either a vertex with layout into two vertices with layout or

a vertex with layout into two vertices with layout . We refer to the split
vertices of a vertex v as va and vb. In the first case, the vertex of degree 4, vb,
has at least one incoming arc from va in Gfp, so δ(vb) ≤ 1. Suppose it has no
outgoing arcs in Gfp. Then, each of both outgoing arcs of v points to a vertex
with an outgoing backward arc, hence, v is part of exactly two forward paths.
Consequently, one of them is the forward path of the incoming backward arc of v.
Let (u, v) be this backward arc. Then, in G the forward path consists of a single
arc (v, u), but G is simple and therefore free of two-cycles. Thus, δ(vb) ≥ −1. In
the second case, if the vertex with degree 4 has two incoming forward arcs in Gfp,
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-1
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-1

4b

-1

(c)

Fig. 4. Quartic graph: optimal linear ordering (a), its split graph (b), and a forward
path graph with delta degrees (c)

then it also has an outgoing forward arc in Gfp. Otherwise, the outgoing forward
arc would be the head of a vertex with outgoing backward arc and the other split
operation would have been applied. Hence, its delta degree is in {−1, 0, 1}, too.
Furthermore, every vertex that has an incoming backward arc according to π∗

s

is a source in Gfp with exactly one outgoing arc and there are no other sources.
As
∑

v∈Vp
δ(v) = 0, there is a vertex v with δ(v) = −1 for every source in Gfp.

Consequently, for every backward arc there are again three exclusive vertices
in Gs. Since every vertex of G has been split in exactly two vertices in order
to obtain Gs, there are at least 3

2 vertices per backward arc in G. Hence, the
cardinality of an optimal feedback arc set for G is at most 2

3n = m
3 . This bound

is tight, as the graph in Fig. 3 shows. ��

We now loosen the restriction that every vertex v in the graph must have exactly
degree d(v) = 4 to d(v) ≤ 4 and obtain an upper bound for subquartic graphs:

Corollary 4. The cardinality of an optimal feedback arc set of a subquartic
graph is at most m

3 and this bound is tight.

Proof. Combine the procedures for vertices v with degree d(v) ≤ 3 and those
for vertices with d(v) = 4. Let π∗ be an optimal linear ordering of a subquartic
graph G. Eliminate vertex layouts according to Lemma 4. Split all vertices v
with d(v) = 4 such that the resulting linear ordering still fulfills the nesting and
the path property. This can be done in the same way as described in the proof
of Lemma 6. All other vertices remain unchanged. Analogously to the proofs of
Theorem 1 and 2, to every backward arc, three vertices can be assigned in the
split graph.

Let c be the number of vertices v in G with d(v) ≤ 3 and q the number of
vertices with d(v) = 4. Then, n = c + q and m = 3

2c + 2q. Let x be the number
of vertices in the split graph, i. e., x = c + 2q. We can assign to each backward
arc at least three vertices of the split graph. Hence we have |B| ≤ x

3 = c+2q
3 =

c
3 + 2

3q ≤
c
2 + 2

3q = m
3 . Since subquartic graphs include quartic graphs, the bound

is tight here, too. ��

As in the subcubic case, we can construct a linear ordering that meets the pre-
conditions of Theorem 2 in polynomial time and m ∈ O(n). Apart from the com-
bined nesting and path property, we have to check whether the split of vertices
with layout violates the forward path property. This can be accomplished in
time O(n) for splitting all vertices with this layout and O(n2) for the check. If
the property is violated, the new feedback arc set can be constructed in O(n).
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Corollary 5. There is an O(n3.38)-time algorithm to construct a feedback arc
set with cardinality at most m

3 for a subquartic graph G.

6 Conclusion

We have established tight bounds for both subcubic and subquartic graphs.
Furthermore, we have shown that a linear ordering that meets these bounds can
be constructed in polynomial time, using a combination of standard algorithms.

For graphs with maximum degree 5, we conjecture that the bound of 2
3n holds,

too. For degree 6, there are graphs that require more backward arcs.
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A Linear-Time Kernelization

for the Rooted k-Leaf Outbranching Problem
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Abstract. In the Rooted k-Leaf Outbranching Problem, a di-
graph G = (V,E), a vertex r ofG, and an integer k are given, and the goal
is to find an r-rooted spanning outtree of G with ≥ k leaves (a tree with
vertex set V , all edges directed away from r, and ≥ k leaves). We present
a linear-time algorithm to compute a problem kernel with O(k6) vertices
and O(k7) edges for the Rooted k-Leaf Outbranching Problem.
By combining the new result with a result of Daligault and Thomassé
[IWPEC 2009], a kernel with a quadratic number of vertices and edges
can be found on n-vertex m-edge digraphs in time O(n+m+ k14).

1 Introduction

To solve an NP-hard problem P , a common approach is to consider P as a
parameterized problem described by a language L ⊆ Σ∗ × IN . An instance of
P is a tuple (x, k) ∈ Σ∗ × IN composed of the problem specification x and a
problem-specific parameter k. We call (x, k) a yes instance if (x, k) ∈ L, and
otherwise a no instance. The goal is to solve P in nc · f(k) time, where n is
the size of the input, c is a constant, and f is an arbitrary function. There are
two research lines; one that tries to make f grow as slowly as possible and one
that tries to achieve the smallest possible c; one example of the latter is the
linear-time algorithm for Treewidth [5].

In recent years, several polynomial-time algorithms were published that trans-
form an instance (x, k) into a tuple (x′, k′) ∈ Σ∗ × IN such that |x′| and k′ are
bounded by a polynomial in k and such that (x, k) is a yes instance if and only if
(x′, k′) is a yes instance. Such an algorithm is called a kernelization, and (x′, k′)
is a kernel for (x, k). For numerous problems, a race has started to obtain bet-
ter and better bounds on the size of the kernel and, thus, on the corresponding
running times with more and more slowly growing functions f . In contrast, the
only linear-time kernelizations known to the author are for Vertex cover [7],
for (Bi)Cluster Graph Editing [11] on general undirected graphs, for d-
Hitting Set [2] on undirected hypergraphs, and for Feedback Vertex Set

[10] and Dominating Set [3,8] on undirected planar graphs.
We present a linear-time algorithm that, given a general digraph G and a

parameter k ∈ IN , computes a kernel of (G, k) with O(k6) vertices and O(k7)
edges for the Rooted k-Leaf Outbranching Problem. As usual, an outtree

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 310–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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T is a rooted tree in which all edges are directed away from a vertex r called the
root. Other vertices with only one incident edge are called leaves. A vertex u is
an ancestor (descendant) of a vertex v in T if there is a directed path from u to
v (from v to u) in T . An ancestor or descendant u of a vertex v is called proper
if u 
= v. A child (parent) of a vertex v is a proper descendant (ancestor) of v
that is adjacent to v.

Definition 1. A k-leaf outtree (r-rooted outtree) is an outtree with at least
k ∈ IN leaves (with root r). An outbranching of a digraph G=(V,E) is an outtree
T = (V, F ) with F ⊆ E. In the (Rooted) k-Leaf Outbranching Problem,
we are given a digraph G = (V,E), k ∈ IN (and r ∈ V ), and the goal is to find
an (r-rooted) k-leaf outbranching of G.

In 2009 Fernau et al. [4] showed that an O(k3)-sized kernel can be found for
the Rooted k-Leaf Outbranching Problem in polynomial time, whereas
this is not true for the related non-rooted version unless PH = Σ3

p. In the same
year, Daligault and Thomassé [6] described an algorithm to compute a kernel
of size O(k2) for the Rooted k-Leaf Outbranching Problem. An efficient
implementation of the algorithm runs in quadratic time. By running the algo-
rithm of Daligault and Thomassé on the output of the algorithm presented in
this paper, we can construct a kernel of size O(k2) on a digraph (V,E) in time
O(|V |+ |E|+k14). If there is a polynomial-time algorithm (including algorithms
still to be discovered) that computes a kernel of a certain size for this prob-
lem, we get a kernel of the same size in O(|V |+ |E|+ kO(1)) time with the new
algorithm.

2 Reduction Rules

A reduction rule for a parameterized problem P described by a language L is a
polynomial-time algorithm that, applied to an instance (x, k) of P , computes an
instance (x′, k′) of P with (x, k)∈L⇔ (x′, k′)∈L. Our algorithm is based on
one new and several well-known reduction rules [4,6], which we apply in a certain
order. Assume that we are given an instance of the parameterized Rooted k-
Leaf Outbranching Problem, i.e., a digraph G= (V,E), r∈V, and k≥ 2.
For all v ∈V , let N−(v) = {u | (u, v) ∈ E} and N+(v) = {u | (v, u) ∈ E}. A set
S ⊆ V is called a separator for a set U ⊆ V \ S if all directed paths from r to a
vertex in U contain a vertex in S. Following usual terminology, if S = {v} is a
separator for U = {u}, we say that v is a dominator of u and that u is dominated
by v. We call a vertex a dominator if it dominates at least one other vertex. An
edge (u, v) is useless if v is a dominator for u, and useful otherwise. A list L of
vertices (v1, . . . , vt) (t ∈ IN) is a bipath of length t− 1 in a digraph G′ if, for all
i = 2, . . . , t − 1, vi is incident to (vi−1, vi), (vi, vi−1), (vi, vi+1), and (vi+1, vi),
but to no other edge in G′. We now define our reduction rules.

Rule 1 (unreachable rule (Rule 1 in [4] and 0 in [6])). If a vertex is not
reachable from r, reduce the given instance to a trivial no instance.
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Rule 2 (useless-edge rule at (u, v) (Rule 2 in [4])). If the edge (u, v) is
useless, remove it.

Rule 3 (separator rule at (u,w) (Rule 4 in [4])). Remove the edge (u,w)
if there is a separator S ⊆ V \ {r, u} for {u} of size at most 2 such that an edge
(v, w) exists for all v ∈ S.

Rule 4. (dominator rule at v (Rule 1 in [6] combined with Rule 2 in
[4])) If v is a dominator, then remove v with all its incident edges and add all
edges from each vertex in N−(v) to each vertex in N+(v) except those that would
be useless, self-loops or copies of existing edges.

Rule 5 (bipath rule (Rule 2 in [6])). If P = (v1, . . . , vt) is a bipath of length
≥ 5, then replace P by the bipath (v1, v2, vt−1, vt).

Rule 6 (shortcut rule at v (new)). If there are pairwise distinct vertices
u, x, y with N−(u) = {v} and edges (y, v) and (v, x), then add a new edge (y, x)
if it does not already exist.

The correctness of Rules 1-5 follows from [4,6]. Consider the situation de-
scribed in Rule 6. A k-leaf outbranching in the original digraph is a k-leaf
outbranching in the modified digraph. For the reverse direction, take an out-
branching T that uses (y, x). By modifying T , we obtain an outbranching with
at least the same number of leaves, but without the edge (y, x) as follows: If v
is a descendant of y in T , replace the edge from the parent of v in T to v by
the edge (y, v). At this point, v cannot be a descendant of x. Now replace (y, x)
by (v, x). Before and after the replacement, v has u as a child. Thus the modi-
fications transform an outtree into an outtree with at least the same number of
leaves. Rule 6 is correct.

The separator rule is applied exhaustively by Fernau et al. [4], so that the
running time can be bounded only by a polynomial. In contrast, we use the
separator rule only if we already know the separator S. Moreover, a single ap-
plication of the dominator rule, which is used by Daligault and Thomassé [6],
can add a quadratic number of edges and, hence, by itself incurs a quadratic
running time. Informally speaking, the new shortcut rule allows us to do the
modifications of the dominator rule one by one.

If the reduction rules are applied repeatedly in an interspersed fashion, one
application of a reduction rule usually scans the whole graph and therefore takes
linear time. An additional idea of our algorithm is to structure the application
of the reduction rules by means of a breadth-first search (BFS). In contrast to
[6,4], our algorithm uses a dominator tree [1,9] to apply the useless-edge rule in
constant time per edge.

3 Definitions and the Algorithm

Let G = (V,E) be a digraph and let r ∈ V . For an r-rooted outtree T = (V, F )
with F ⊆ E, we classify the edges (u, v) of G with respect to T as follows: each
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edge in T is a tree edge; a non-tree edge (u, v) is a forward edge (back edge) if
T contains a directed path from u to v (from v to u); the remaining edges of G
are cross edges. When classifying an edge of G w.r.t. T , we also speak of a tree,
forward, back, or cross edge of (G, T ). For an edge (u, v), we call u and v the
tail and the head of (u, v), respectively. We also say that (u, v) is an incoming
edge of v and an outgoing edge of u. To contract an edge (u, v) means to replace
u and v by a new vertex w, then to replace the endpoints u and v of all edges
by w, and finally to remove self loops and multiple edges.

We also need some non-standard definitions. Call a vertex u of T a branching
vertex if u is the root of T or has ≥ 2 children in T . A treepath of (G, T ) is
a directed path in T without a branching vertex. For a vertex v belonging to
a treepath P of (G, T ), edges of the forms (u, v) and (v, w) are called entering
edges of P and exiting edges of P , respectively, if neither they nor their reverses
are tree edges and u and w do not belong to P . A maximal (nonextensible)
subpath Q of a maximal treepath P such that none of the vertices of Q is the
head of an entering edge of P is called an isolated treepath of (G, T ). If (G, T )
or P are clear from the context, we may omit these terms. When we later apply
the shortcut rule, we want to add edges connecting so-called essential vertices
of the same isolated treepath. A vertex v is essential if it is part of an isolated
treepath and not dominated by any vertex in the same isolated treepath. Unless
stated otherwise, here and below “domination” is meant with respect to the
whole graph G. Note that an essential vertex has an incoming back edge unless
it is the first vertex of an isolated treepath or the head of a forward edge. The
attachment of an essential vertex v of an isolated treepath Q is the (possible
empty) set consisting of all vertices of Q dominated by v.

Our algorithm is shown in pseudocode below—the concepts of “jumping back
edges” and “strongly isolated treepaths” are defined subsequently. Suppose that
we are given an input consisting of a digraph G, a prescribed root r and an
integer k. An important idea of the algorithm is to apply a sequence of reduc-
tion rules to G and corresponding modifications to an easy-to-compute r-rooted
outbranching T of G to arrive at a pair (G̃, T̃ ) for which, roughly speaking, the
number of non-tree edges is polynomial in k. With such a pair (G̃, T̃ ), the set
V ′ of vertices incident on non-tree edges is of size kO(1). Assume that T̃ has
fewer than k leaves (otherwise, we can return a trivial yes instance). Then the
set V ′′ of branching vertices is smaller than k, and G̃ has fewer than 2k maximal
treepaths. The vertices outside of V ′ ∪ V ′′ induce kO(1) vertex-disjoint paths in
G̃. Let G′ be the graph obtained from G̃ by applying the bipath-rule to each of
these paths to shrink it to constant length. Since G′ has kO(1) vertices and we
apply only reduction rules, (G′, k) is a kernel.

Initially, we take T to be an arbitrary outbranching computed by a BFS in
Step 1 and 2. Thus, (G, T ) has no forward edges. As we show later in Lemma 3,
this property is maintained during the whole algorithm.

For the next steps, consider an isolated treepath Q = (q1, q2, q3, . . .) as the
example in Fig. 1. Let w be an essential vertex of Q with a non-empty attachment
S. By Lemma 4, each v ∈ S can have only a tree edge and useless back edges
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Algorithm 1. A kernel for the r-Rooted k-Leaf Outbranching Problem

Input: A digraph G=(V,E), r∈V , and k≥ 2. Output: A kernel of size O(k7).
1.) if some vertex is not reachable from r, then return a trivial no instance.
2.) Compute an outbranching T with root r by a BFS.
3.) Remove all useless back edges of (G,T ) by using a dominator tree—see Sect. 4.
4.) Traverse T bottom-up, and for each vertex u in G with parent v in T do

if (N−(u) = {v} /* v is a dominator */ ) and (|N−(v)| = 1)
and (neither v nor its parent in T is a branching vertex) then

Apply the dominator rule at v both to G and to T .

5.) for each strongly isolated treepath R of (G,T ) do for each vertex v of R
. that dominates its child and has a non-exiting back edge (v, x) do

Let (y, v) be a back edge. Apply the shortcut rule at v to add (y, x).

6.) for each strongly isolated treepath R = (u1, . . . , ut) of (G,T ) do
for each vertex w not in R with �≥ 3 edges of the form (vertex in R, w) do

Choose � maximal and 1<σ1 < . . .< σ� <t s.t. (uσ1 , w), . . . , (uσ� , w) ∈ E.
x := �; if uσ�−1 is a dominator of uσ� , then x := �− 1
Apply the separator rule with S = {uσ1 , uσx} at each edge
e ∈ {(uσ2 , w), . . . , (uσ� , w)} \ {(uσx , w)} to remove e.

7.) if (T has ≥ k leaves)
|| (a maximal treepath of (G,T ) has ≥ 2k different heads of entering edges)
|| (a vertex of a maximal treepath P is the tail of ≥k back edges not exiting P )
|| (an isolated treepath of (G,T ) has ≥ 4k2 heads of jumping back edges)
then return a trivial yes instance.

8.) for each strongly isolated treepath R = (u1, . . . , ut) of (G,T ) do
for each maximal subpath R′ of R consisting exclusively of vertices
. such that each vertex is not the tail of an exiting or jumping back edge do

Apply the dominator rule to each vertex in R′ dominating its child. Let
R′′ be the path obtained. Apply the bipath rule to shrink R′′ to length
O(1).

9.) Let G′ be the digraph obtained in Step 8. return (G′, k).

as incoming edges. Since there are no useless back edges after their deletion in
Step 3 (Lemma 5), each vertex in S has only one incoming edge, which is a
tree edge. If we consider the subpath Q′ of Q induced by S ∪ {w}, each vertex
with a successor is a dominator. In Step 4, the if conditions are satisfied for each
dominator v in Q′, and we can remove v by applying the dominator rule at v.
Afterwards the attachment of w is of size one. To sum up, each isolated treepath
consists of a first vertex, essential vertices, and attachments of size one after
Step 4.

We next consider subpaths of isolated treepaths. If u and v are vertices of the
same isolated treepath Q and if the path from v to u in Q contains ≥ 2 essential
vertices w1 
= v and w2 
= v, we call a back edge (u, v) (Q-)jumping. Intuitively,
such an edge jumps over a vertex that can be made a leaf if we traverse Q
backwards—in Fig. 2, a z-rooted outbranching with ≥ 2 leaves needs a jumping
back edge. A maximal subpath R of an isolated treepath Q = (q1, q2, q3, . . .)
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w s1 s2 s3 s4

S = {s1, . . . , s4}

z

essential vertices:
non-essential vertices:

cross edge:

Fig. 1. An isolated treepath consisting of the round vertices with tree edges shown as
straight arrows. The essential vertices define which back edges are useless. All possible
useless edges are shown as curved arrows. In addition, each essential vertex is head of
a useful but non-displayed back edge whose tail is for example z.

v w1 uw2 z

Fig. 2. Jumping (bold) and non-jumping back edges (thin)

without q1 and without heads of Q-jumping back edges is called a strongly iso-
lated treepath of (G, T )—by excluding q1, R has only essential vertices and at-
tachments of size one.

In Step 6, we need the following property for each strongly isolated treepath R:
If a vertex v in R is dominating its child, all back edges e = (v, x) are exiting R.
To ensure that the property holds, in Step 5 the algorithm chooses a vertex y such
that (y, v) is a back edge—such an edge must exist since v is essential and not the
first vertex of an isolated treepath—and adds a jumping back edge e′ = (y, x) so
that e becomes exiting (for more details see Lemma 6 and its proof). Note that
e′ is a back edge since (y, v) and e are back edges. In Step 6, for each strongly
isolated treepath R = (u1, . . . , ut) and each vertex w not in R, we remove all
except 2 (cross or jumping back) edges of the form (ui, w) (1 ≤ i ≤ t) by applying
the separator rule. Lemma 7a shows that the set S chosen by the algorithm is
indeed a separator. In Step 7, we check several conditions that reveal an obvious
yes instance. The correctness is shown in Section 6. In Step 8, we iterate over
all strongly isolated treepaths R = (u1, . . . , ut) and all maximal subpaths R′ of
(u2, . . . , ut) without tails of exiting and jumping back edges. By Lemma 7b, the
application of the dominator rule at each vertex with a non-empty attachment
turns R′ into a bipath, which is then shrunk by the bipath rule.

4 Running Time

A outtree T and the classification of the edges in Step 2 can be computed in linear
time, i.e., linear in the number of vertices and edges. Recall that an edge (u, v)
is useless if and only if v dominates u. Step 3 can also be executed in linear time
since a dominator tree allows queries of the form “Is u a dominator of v?” to be
answered in constant time and can be constructed in linear time [1,9]. In Step 4,
the traversal can be done in linear time since the if condition of (|N−(v)| = 1)
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guarantees that we only have to replace each outgoing edge of v by an outgoing
edge of its parent. In Step 5, by two scans over all edges, we can split all treepaths
in isolated and subsequently in strongly isolated treepath. Using a dominator
tree we can find each v that dominates its child. By iterating over all outgoing
edges of v, we compute all non-exiting back edges. For each such edge, we add
one new edge to G. Thus, the running time of this step is linear. Step 6 can be
implemented in linear time by using radix sort to find the exiting edges of each
strongly isolated treepath. We so know all vertices w for which the inner for loop
is executed. In Step 8, the time to process each path R′ is linear in the number
of vertices of R′ by Lemma 7b.

5 Properties of the Computation

We start with an auxiliary lemma. Many proofs are skipped.

Lemma 2. Let G̃ be a digraph with an r-rooted outbranching T̃ such that (G̃, T̃ )
has no forward edges. Let e = (p(v), v) be a tree edge with N−(v) = {p(v)} and
assume that neither p(v) nor v is a branching vertex. Applying the cutvertex rule
at v in G̃ and in T̃ does not change the classification (back edge, etc.) of any
edge e′ /∈ {(p(v), v), (v, p(v))}. Moreover, a useful back edge remains useful after
the application of the cutvertex rule.

Lemma 3. (G, T ) has no forward edges throughout Steps 1 to 7.

Lemma 4. Let G and T as in the algorithm after Step 1. Let w be an essential
vertex whose attachment contains a vertex v. Then v has as incoming edges only
one tree edge and useless back edges.

Proof. Let (x, v) be an edge of G. By Lemma 3, (x, v) is not a forward edge.
Assume that (x, v) is a cross edge. Since w is not a branching vertex, the path
P from the root r to x in T cannot contain w. Taking P and the edge (x, v) we
obtain a path Q from r to v that avoids w.

Assume that (x, v) is a useful back edge. Let P be a path from r to x avoiding
v with a minimal number of cross and back edges. Note that w is not a vertex
of P since otherwise, P would use a cross or back edge (w, y) to avoid v—y is
consequently not a descendant of v—and the path from r to y consisting of tree
edges combined with the subpath of P from y to x avoids v and has fewer cross
and back edges than P . Thus, P and (x, v) defines a path Q from r to v that
avoids w.

In both cases, v is not part of the attachment of w—contradiction. �

Lemma 5. (G, T ) has no useless back edges throughout Steps 4 to 7.

Lemma 6. After Step 5, if a vertex v of a strongly isolated treepath Q dominates
its child, each back edge e = (v, x) is exiting Q.
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Proof. The attachment of v is {child of v}. Since a vertex of a strongly iso-
lated treepath is not the first vertex of an isolated treepath, recall that v is not
dominated by its parent after Step 4. Thus, v has an incoming non-tree edge
e′ = (y, v), which must be a non-jumping back edge since v is a vertex of a
strongly isolated treepath.

Assume that e is not exiting. Then, e is a non-jumping back edge. See Fig. 3.
In Step 5, all conditions regarding v are satisfied and the shortcut rule applied
to v adds an edge (y, x). Thus, Q is no strongly isolated treepaths after Step 5.
Contradiction, and e must be exiting. �

Lemma 7. Let R = (u1, . . . , ut) be a strongly isolated treepath.

a) In Step 6, S = {uσ1 , uσ�
} is a separator for {uσ2 , . . . , uσ�−1

} except if uσ�−1

dominates uσ�
, in which case S = {uσ1 , uσ�−1

} is a separator for {uσ2 , . . . ,
uσ�−2

, uσ�
}.

b) If a subpath R′ of R consists exclusively of vertices such that each vertex
is not the tail of an exiting or jumping back edge, the application of the
dominator rule to each vertex of R′ that dominates its child turns R′ into a
bipath and can be done in time O(|vertices of R′ |).

Proof. After Step 5, the distribution of the essential vertices of R fixes the back
edges with both endpoints in R: Each essential vertex v of R is the head of a
back edge e. Since e can neither be jumping nor useless and because of Lemma 6,
the tail of e is the first essential vertex w after v in R if w does not dominate
its child, and the only vertex in the attachment of w otherwise. Fig. 4 shows
examples of all cases. To sum up, if repeated visits are forbidden, there is a
unique way to visit the vertices of R if we start with the first (last) vertex of
R. In the forward direction we can use only the tree edges. In the backward
direction, we must use a tree edge at each vertex with a non-empty attachment,
and a back edge otherwise.

a) Note that each path P from the root r to a vertex of Umust visit one
endpoint ũ of R. If we now consider the subpath of P starting in ũ, we can observe
that P has to visit a vertex of S before it can reach U = {uσ1 , . . . , uσ�

} \ S. In
each of the two cases, S is a separator for U .

x v y
essential vertices:

non-essential vertices:

Fig. 3. A strongly isolated treepath (consisting of all vertices above) is split into two
parts by Step 5, and (y, x) and (v, x) are exiting

σlσl-1σ1

Fig. 4. A strongly isolated treepath after Step 5. Exiting edges are not shown.
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b) Let us group the vertices of R′. Each vertex dominated by its parent builds
a group with its parent. Every other vertex forms a group by itself. Then there
is exactly one back edge from each group to the previous group. The application
of the dominator rule contracts each group, which turns R′ into a bipath, and
this can be done in O(1) time per group. �

6 Correctness of Step 7

If the first condition of Step 7 holds, the answer of the algorithm is correct. Thus,
for the remaining analysis, we can assume that T has fewer than k branching
vertices, and the number of maximal treepaths of (G, T ) is less than 2k.

The correctness of the second and the third condition of Step 7 is shown by
Lemmata 8 and 9, respectively. The requirements of the lemmata are satisfied
by Lemmata 3 and 5. Since we want to use Lemma 8 again in the proof of
Lemma 10, we allow a certain kind of forward edges.

Lemma 8. Let G̃ be a digraph, and let T̃ be an outbranching of G̃ with root r
such that every forward edge of (G̃, T̃ ) has tail r. If no back edge of (G̃, T̃ ) is
useless and if a treepath of (G̃, T̃ ) has ≥ 2k different heads of entering edges,
then G̃ has a k-leaf outbranching.

Lemma 9. Let G̃ be a digraph with an outbranching T̃ such that (G̃, T̃ ) has no
forward edges. If a vertex u of a maximal treepath P is the tail of ≥ k useful
back edges that do not exit P , G̃ has a k-leaf outbranching.

Assume that in Step 7 an isolated treepath P of (G, T ) has ≥ 4k2 heads of
jumping back edges. Let D be the set of essential vertices of (G, T ) that have an
attachment. Recall that the following property holds: each vertex v in D with its
parent p(v) in the same isolated treepath is not dominated by p(v) after Step 4.

For the analysis, consider the digraph G̃, the outtree T̃ , and the directed path
P̃ obtained from G, T, and P , respectively, by contracting each vertex v ∈ D
with the only vertex in the attachment of v. By Lemmata 3 and 5, (G, T ) has
neither forward nor useless back edges. Lemma 2 shows that this property is
maintained in (G̃, T̃ ). Moreover, each jumping back edge (u, v) of (G, T ) is a
jumping back edge of (G̃, T̃ ) since the number of essential vertices on the v-
u-path is not changed by the contract operation. Also the number of heads of
jumping back edges do not change. Let v1, . . . , vt be the vertices of P̃ , and for
each vertex vi (2 ≤ i ≤ t), denote by pT̃ (vi) its parent in T̃ . By the property
mentioned in the last paragraph, each vertex vi (2 ≤ i ≤ t) is not dominated
by pT̃ (vi) in G̃, i.e., vi is the head of a non-tree edge e. Since vi cannot be the
head of a cross edge and since no edges are useless, e is a useful back edge.
By Lemma 10, G̃ has an outbranching with at least k leaves. It is easy to see
by “undoing” the contraction from above that the outbranching for G̃ can be
transformed into an outbranching for G without decreasing the number of leaves.
Thus, the last condition of Step 7 is correct.
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Lemma 10. Let G̃ be a digraph with an outbranching T̃ such that (G̃, T̃ ) has no
forward and no useless back edges. Let r be the root of T̃ , and let P = (v1, . . . , vt)
( t ∈ IN) be an isolated treepathsuch that each vertex vi (i ≥ 2) is the tail of a
useful back edge. If P contains ≥ 4k2 heads of jumping back edges, G̃ has an
r-rooted outbranching with ≥ k leaves.

7 Kernel Size

Next, we want to analyze the size of the kernel returned in Step 9. For this
purpose, it is interesting to bound the number of maximal subpaths of a strongly
isolated treepath consisting exclusively of vertices that are not a tail of an exiting
or jumping back edge.

Lemma 11. After Step 7, the number of heads of entering edges of a maximal
treepath of (G, T ) is less than 2k and the number of exiting edges with a tail in
a fixed isolated treepath of (G, T ) is at most 44k4.

Proof. T has fewer than k branching vertices by the first condition of Step 7.
Thus, (G, T ) has at most 2k maximal treepaths. Moreover, each treepath of
(G, T ) has fewer than 2k heads of entering edges due to the second condition
of Step 7. Let z be the number of exiting edges with a tail in a fixed strongly
isolated treepath R that is a subpath of a maximal treepath P . Because of
Step 6, z is bounded by twice the number of heads of entering edges of the other
maximal treepaths P ′ 
= P plus the number of branching vertices since a head of
an exiting edge of R is either a branching vertex or the head of an entering edge
of some other maximal treepath P ′ 
= P . By the pigeon-hole principle R has
fewer than 2(k + 2k · 2k) ≤ 10k2 tails of exiting edges. By the fourth condition
of Step 7, each isolated treepath Q has fewer than 4k2 heads of jumping back
edges, i.e., Q can be divided into at most 4k2 strongly isolated treepaths. Since
each vertex of Q either belongs to a strongly isolated treepath or is one of the at
most 4k2 remaining vertices, there are at most 4k2 · 10k2 + 4k2 = 44k4 exiting
edges with a tail in Q. �

Lemma 12. After Step 7, for an isolated treepath P , the number of heads and
tails of jumping back edges is less than 4k2 and 32k4, respectively.

Proof. By the fourth condition of Step 7, P can be divided into at most 4k2

strongly isolated treepaths. By Step 6, each vertex can be the head of two jump-
ing back edges with a tail in the same strongly isolated treepath P ′ subpath of
P . In total, each vertex can be the head of at most 8k2 jumping back edges.
Since P has at most 4k2 vertices being a head of jumping back edge, P has at
most 32k4 tails of jumping back edges. �

By the last two lemmata, the number of isolated treepaths is k ·2k = O(k2) in
total, and each such treepath has 44k4+4k2+32k4 = O(k4) tails of exiting edges
and endpoints of jumping back edges. Thus, we have O(k6) directed paths R′ in
Step 8, which are shrunk to length O(1). Since the number of vertices between
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two such path is O(1), we have O(k6) vertices. Let P be the set of treepaths that
are shrunk to length O(1) in Step 8. Let T ′ be the outtree obtained from T by
shrinking each directed path in P in the same way. T ′ is then an outbranching
for G′ without forward edges. Therefore, edges that are neither tree nor exiting
edges must be back edges. (G′, T ′) has O(k) tree edges, O(|isolated treepaths|) ·
44k4 + |vertices outside all isolated treepaths|2 = O(k2) ·44k4 +O(k2)2 = O(k6)
exiting edges, and O(k) · O(k6) = O(k7) edges incident to the O(k) branching
vertices. By the third condition of Step 7, there are < k back edges incident to
a non-branching vertex. To sum up, G′ has O(k7) edges.

Theorem 13. In linear time, a kernel with O(k6) vertices and O(k7) edges can
be found for the Rooted k-Leaf Outbranching Problem.
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Abstract. Let G and H be two cographs. We show that the problem
to determine whether H is a retract of G is NP-complete. We show
that this problem is fixed-parameter tractable when parameterized by
the order of H . When restricted to the class of threshold graphs or to
the class of trivially perfect graphs, the problem becomes tractable in
polynomial time. The problem is also solvable in linear time when one
cograph is given as an induced subgraph of the other. We characterize
absolute retracts for the class of cographs. Foldings generalize retractions.
We show that the problem to fold a trivially perfect graph onto a largest
possible clique is NP-complete. For a threshold graph this folding number
equals its chromatic number and achromatic number.

Keywords: Retract, Absolute Retract, Fold, Cograph.

1 Introduction

Graph homomorphisms have regained a lot of interest by the recent characteri-
zation of Grohe of the classes of graphs for which Hom(G,−) is tractable [15]. To
be precise, Grohe proves that, unless FPT = W [1], deciding whether there is a
homomorphism from a graph G ∈ G to some arbitrary graph H is polynomial if
and only if the graphs in G have bounded treewidth modulo homomorphic equiv-
alence. The treewidth of a graph modulo homomorphic equivalence is defined as
the treewidth of its core, i.e., a minimal retract. This, and other recent results
make it desirable to have algorithms that compute cores, or general retracts in
graphs.

For any graph G, all the cores of G are isomorphic subgraphs of G. Therefore,
one speaks of the core of a graph. However, a fixed copy of the core in G is
not necessarily a retract. Therefore, when studying retracts or cores one usually
assumes that the objective is given as an induced subgraph of G. When H is
given as an induced subgraph of cograph G, it can be determined in linear time
whether H is a retract. We prove this in Section 5. In the rest of the paper we
do not assume that the graph H is given as an induced subgraph of G. In that
case the problem turns out to be NP-complete. We prove that in Section 4.
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In this paper we consider the retract problem for cographs. The related surjec-
tive graph homomorphism problem was recently studied in [12] in which it was
shown that the problem to decide whether there is a surjective homomorphism
from one connected cograph to another connected cograph is NP-complete. The
surjective homomorphism problem is also NP-complete of the set of proper in-
terval graphs and linear forests in addition to the union of complete graphs.
Let us mention also the classic result of Damaschke, which is that the induced
subgraph isomorphism problem is NP-complete for cographs [7].

The retract problem for cographs can be perceived as a pattern recognition
problem for labeled trees. Many pattern recognition variants have been investi-
gated and classified. However, the pattern recognition problem that corresponds
with the retract problem on cographs seems to have eluded all these investiga-
tions [16]. For basic terminology on graph homomorphisms we refer to [17,20].

Definition 1. Let G and H be graphs. A homomorphism φ : G→ H is a map
φ : V (G) → V (H) which preserves edges, that is,

{x, y} ∈ E(G) ⇒ {φ(x), φ(y)} ∈ E(H).

We write G→ H if there is a homomorphism φ : G→ H . Notice that

G→ Kk ⇔ χ(G) ≤ k and also that Kk → G ⇔ ω(G) ≥ k,

where χ(G) and ω(G) denote the chromatic and clique, respectively, numbers
of G.

Definition 2. Let G and H be graphs. The graph H is a retract of G if there
exist homomorphisms ρ : G→ H and γ : H → G such that ρ◦γ = idH , which is
the identity map V (H) → V (H). The functions ρ and γ are called the retraction
and co-retraction, respectively.

When H is a retract of G then H is isomorphic to an induced subgraph of
G. Since there are homomorphisms in two directions, G and H have the same
clique number, chromatic number and odd girth. Also, there is a retraction from
G to Kk if and only if χ(G) = ω(G) = k.

There is a homomorphism G→ H if and only if the union of G and H retracts
to H . When H is a fixed pseudoforest, i.e., each connected component has at
most one cycle, given as an induced subgraph of G, the complexity of the retract
problem has been classified in [9]. If H is bipartite or contains a loop, then
checking if there is a homomorphism G → H is polynomial and otherwise it is
NP-complete when H is fixed [20]. It follows that, for any graph H , checking if
a graph H is a retract of a graph G is NP-complete, unless H is bipartite. The
problem remains NP-complete, even when H is an even cycle of length at least
six, given as an induced subgraph of G. The question whether a graph G has a
homomorphism to itself which is not the identity is also NP-complete.

Remark 1. No connected graph has a disconnected retract since the homomor-
phic image of a connected graph is connected. To see that, notice that a homo-
morphism φ : G→ H is a vertex coloring of G, where the vertices of H represent
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colors. By that we mean that, for each v ∈ V (H), the pre-image φ−1(v) is an
independent set in G or ∅. One obtains the image φ(G) by identifying vertices in
G that receive the same color. When G is connected, this ‘quotient graph’ on the
color classes is also connected, which is easy to prove by means of contradiction.

Definition 3 ([5]). A graph is a cograph if it has no induced path of four ver-
tices, denoted P4.

Definition 4 ([13,25]). A graph G is trivially perfect if for all induced sub-
graphs H of G, α(H) is equal to the number of maximal cliques in H, where
α(H) is the stability number of H. Trivially perfect graphs are those graphs
without induced C4 and P4, where C4 is a cycle of four vertices.

Definition 5 ([4]). Threshold graphs are the graphs without induced 2K2, C4

and P4, where 2K2 is a pair of K2.

By above definitions, the class of threshold graphs is a subclass of the class
of trivially perfect graphs which is a subclass of the class of cographs. Since
the complement of a P4 is a P4, cographs are closed under complementation.
Actually, the class of cographs is the smallest class of graphs which is closed
under complementation and taking unions.

A similar characterization of cographs reads as follows. A graph G is a cograph
if and only if one of the following holds [5].

(1) G has only one vertex, or

(2) G is disconnected and every component is a cograph, or

(3) the complement of G, Ḡ is disconnected and every component of Ḡ is a
cograph.

It follows that cographs have a decomposition tree, called a cotree, defined as
follows. The decomposition tree is a rooted tree T . There is a bijection from the
leaves of T to the vertices of G. When G has at least two vertices then each
internal node of T , including the root, is labeled as ⊗ or ⊕. The ⊕ label at a
node takes the union of the graphs that correspond with the children of the node.
The ⊗ label takes the join of the graphs that correspond with the children.

Remark 2. When defined as above, the labels of the internal nodes in any path
from the root to a leaf alternate between ⊕ and ⊗. Alternatively, one frequently
defines a cotree as a rooted binary tree, in which each internal node is labeled as
⊕ and ⊗. In this paper, when talking about cotrees, we always assume the first
type of cotree. Thus, each child of the root corresponds with one component or,
with one cocomponent of the graph.

Remark 3. There is a linear-time cograph recognition algorithm which also pro-
duces the cotree on recognizing a cograph [5]. A cotree has O(n) nodes, where
n = |V (G)|.
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This paper is organized as follows. In Sections 2 and 3 we show that the
retract problem is polynomial when restricted to the classes of threshold and
trivially perfect graphs. In Section 4 we show that the problem is NP-complete
for cographs. In Section 5 we show that, when H is given as an induced sub-
graph of G, it can be determined in polynomial time whether H is a retract
of G. In Section 6 we show that the retract problem for cographs is fixed-
parameter tractable. In Section 7 we show that computing the folding number is
NP-complete for trivially perfect graphs. For threshold graphs the folding num-
ber equals the chromatic and achromatic number. Absolute retracts for the class
of cographs are discussed in Section 8.

2 Retracts in Threshold Graphs

We use the following characterization of threshold graphs.

Theorem 1. A graph is a threshold graph if and only if every induced subgraph
has a universal vertex or an isolated vertex, where a universal vertex is a vertex
of degree n− 1.

Theorem 2. Let G and H be threshold graphs. There exists a linear-time algo-
rithm to check if H is a retract of G.

Proof. Assume that H is a retract of G and let ρ and γ be the retraction and
co-retraction. Assume that G has a universal vertex, say x1. Then H must have
a universal vertex as well, since a retract of a connected graph is connected. Let
y1 be a universal vertex of H . Let yi = ρ(x1). Since ρ is a homomorphism it
preserves edges, and since x1 is universal in G, ρ maps no other vertex of G to
yi. Notice also that γ(yi) = x1 since ρ ◦ γ = idH and ρ maps no other vertex to
yi. Assume that yi 
= y1. Let γ(y1) = x�. Then x� 
= x1 since γ preserves edges.
Furthermore, since y1 is universal, γ maps no other vertex of H to x�. Of course,
since ρ ◦ γ = idH , ρ(x�) = y1.

We claim that yi is universal in H , and therefore exchangeable with y1. As-
sume not and let ys ∈ V (H) be another vertex of H not adjacent to yi. Let
γ(ys) = xp. Then xp 
= x1 since ρ ◦ γ = idH and ρ(x1) = yi 
= ys. Now, since ρ
is a homomorphism and since x1 is universal,

{x1, xp} ∈ E(G) ⇒ {ρ(x1), ρ(xp)} = {yi, ys} ∈ E(H),

which is a contradiction. Therefore, we may assume that yi = y1. That is, from
now on we assume that

ρ(x1) = y1 and γ(y1) = x1.

This proves that, when G is connected then H is a retract of G if and only if
H − y1 is a retract of G− x1. By the way, notice that if |V (H)| = 1 then H can
be a retract of G only if G is an independent set, so this case is easy to check.
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Finally, assume that G is not connected. Since G has no induced 2K2, all com-
ponents, except possibly one, have only one vertex. The number of components
of H can be at most equal to the number of components of G, since ρ maps com-
ponents in G to components of H , and ρ ◦ γ = idH , and so any two components
of H are mapped by γ to different components of G.

First assume that H is also disconnected. Without loss of generality, let
x1, . . . , xa be the isolated vertices of G and let y1, . . . , yb be the isolated ver-
tices of H . If H is a retract of G, then H is an induced subgraph of G which
implies a ≥ b; otherwise, H is not a retract of G. Now, H is a retract of G if and
only if H − {y1, . . . , yb} is a retract of G− {x1, . . . , xa}.

If H is connected, with at least two vertices, then let y1 be a universal vertex.
If H is a retract of G then G must have exactly one component with at least
two vertices, since G is a threshold graph and ρ is a homomorphism. Let xu be
the universal vertex of the component and x1, . . . , xa be the isolated vertices in
other components. In this case, H is a retract if and only if H − y1 is a retract
of G− {x1, . . . , xa, xu}.

An elimination ordering, which eliminates successive isolated and universal
vertices in a threshold graph, can be obtained in linear time. This proves the
theorem. ��

Remark 4. Co-trivially perfect graphs are the graphs without induced 2K2 and
P4. The retract problem is polynomial for this class via matching since a co-
trivially perfect graph is the join of a bunch of threshold graphs.

3 Retracts in Trivially Perfect Graphs

Theorem 3 ([25]). A graph is trivially perfect if and only if every connected
induced subgraph has a universal vertex.

Theorem 4. Let G and H be trivially perfect graphs. There exists an O(N5/2)
algorithm which checks if H is a retract of G, where N = |V (G)| · |V (H)|.

Proof. Assume that H is a retract of G. Let C1, . . . , Ct be the components of G
and let D1, . . . , Ds be the components of H . Then s ≤ t; otherwise, H is not a
retract of G. Without loss of generality, let Di be a retract of Ci for i ∈ {1, . . . , s}.
For the components Ci with i > s, there must be a j ≤ s such that there is a
homomorphism from Ci to Dj.
First assume that G and H are connected. Let g1, . . . , gk be the universal ver-
tices of G and let h1, . . . , h� be the universal vertices of H . As in the proof of
Theorem 2 it follows that H is a retract of G if and only if

(i) k ≤ �, and
(ii) either H is a clique and ω(G) = ω(H) or H − {h1, . . . , hk} is a retract of

G− {g1, . . . , gk}.

For the general case, consider the following bipartite graph B. The vertices of B
are the components of G and H . There is an edge {Ci, Dj} ∈ E(B) if and only
if Ci retracts to Dj . Then G retracts to H if and only if
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(a) B has a matching which exhausts all components of H , and
(b) for every component Ci which is not an endpoint of an edge in the matching

there is a Dj such that there is a homomorphism from G[Ci] to H [Dj ].

To check if a component G[Ci] retracts to some H [Dj ] the algorithm greedily
matches the universal vertices of G[Ci] and H [Dj ] and checks if the remaining
graph G′, i.e., after removal of the matched universal vertices, retracts to the
remaining graph H ′. Let C1

i , . . . , C
p
i and D1

j , . . . , D
q
j be the components of G′ and

H ′, respectively. After constructing the bipartite graph Bij on the components
Ck

i and D�
j , where k ∈ {1, . . . , p} and � ∈ {1, . . . , q}, the algorithm checks if

there is an edge (Ck
i , D

�
j) ∈ E(Bij) in O(1) time by table look-up, and so the

bipartite graph Bij is constructed in

O(pq) = O(|Ci| · |Dj |).

Edmonds’ algorithm [8] computes a maximum matching in Bij in time

O((p + q)5/2) = O((|Ci|+ |Dj |)5/2).

Summing over the components Ci and Dj, for i ∈ {1, . . . , t} and j ∈ {1, . . . , s},
we obtain

t∑
i=1

s∑
j=1

(|Ci| · |Dj |+ (|Ci|+ |Dj|)5/2) = O(|V (G)|5/2 · |V (H)|5/2).

This proves the claim. ��

4 NP-Completeness of Retracts in Cographs

Recall that a graph G is perfect when ω(G′) = χ(G′) for every induced subgraph
G′ of G. By the perfect graph theorem a graph is perfect if and only if it has no
odd hole or odd antihole. This implies that cographs are perfect. Perfect graphs
are recognizable in polynomial time. For a graph G, when ω(G) = χ(G) one can
compute this value in polynomial time via Lovász theta function.

Lemma 1 ([10]). Assume that ω(H) = χ(H). There is a homomorphism G→
H if and only if χ(G) ≤ ω(H).

Corollary 1. When G and H are perfect one can check in polynomial time
whether there is a homomorphism G→ H.

It is well-known that retracts, like general homomorphisms, constitute a tran-
sitive relation. We provide a short proof for completeness sake.

Lemma 2. Let A be a retract of G and let B be a retract of A. Then B is a
retract of G.
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Proof. Let ρ1 and γ1 be a retraction and co-retraction from G to A and let ρ2
and γ2 be a retraction and co-retraction from A to B. Since all four maps ρ1,
ρ2, γ1 and γ2 are homomorphisms, the following two maps are homomorphisms
as well.

ρ2 ◦ ρ1 : G→ B and γ1 ◦ γ2 : B → G.

Furthermore,

(ρ2 ◦ ρ1) ◦ (γ1 ◦ γ2) = ρ2 ◦ idA ◦ γ2 = ρ2 ◦ γ2 = idB.

This proves that B is a retract of G. ��

Throughout the remainder of this section it is assumed that G and H are
cographs. Note that, using the cotree, ω(G) and χ(G) can be computed in linear
time when G is a cograph.

Lemma 3. Assume that H is a retract of a graph G, where H is disconnected
with components H1, . . . , Ht. Then there is an ordering of the components of G,
say G1, . . . , Gs such that

(a) s ≥ t, and
(b) Gi retracts to Hi, for every i ∈ {1, . . . , t}, and
(c) for every j ∈ {t + 1, . . . , s}, there is a homomorphism Gj → H.

Proof. Assume that G retracts to H . Then we may assume that H1, . . . , Ht are
induced subgraphs of components G1, . . . , Gt of G and that each Gi retracts to
Hi. For the remaining components Gj , where j > t, there is a homomorphism
Gj → H .

Notice that, for j > t, we can check if there is a homomorphism Gj → H by
checking if Gj ⊕Hk retracts to Hk, for some 1 ≤ k ≤ t or, equivalently (since
cographs are perfect), if ω(Gj) ≤ ω(Hk) for some 1 ≤ k ≤ t. ��

Remark 5. Assume that we are given, for each pair Gi and Hj whether Gi re-
tracts to Hj or not. Then, to check if G retracts to H , we may consider a
bipartite graph B defined as follows. One color class of B has the components
of G as vertices and the other color class has the components of H as vertices.
There is an edge between Gi and Hj whenever Gi retracts to Hj . To check if
G retracts to H , we can let an algorithm compute a maximum matching in B.
There is a retraction only if the matching exhausts all components of H and if
ω(G) = ω(H).

A cocomponent of a graph G is a subset of vertices which induces a component
of the complement Ḡ.

Lemma 4. Assume G is connected and assume that G retracts to H. Then H is
also connected. Let G1, . . . , Gt be the subgraphs of G induced by the cocomponents
of G. Then there is a partition of the cocomponents of H such that the subgraphs
of H induced by the parts of the partition, can be ordered H1, . . . , Ht such that
Gi retracts to Hi for i ∈ {1, . . . , t}.
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Proof. Every subgraph Gi of G, induced by a cocomponent, retracts to some
induced subgraph. These retracts are pairwise joined, so each part is the join of
some subgraphs induced by cocomponents of H . Thus the parts of V (H) that
are the images of the subgraphs induced by cocomponents of G form a partition
of the cocomponents of H . ��

Theorem 5. Let G and H be cographs. The problem to decide whether H is a
retract of G is NP-complete.

Proof. We reduce the 3-partition problem to the retract problem on cotrees.
The 3-partition problem is the following. Let m and B be integers. Let S be a
multiset of 3m positive integers, a1, . . . , a3m. Determine if there is a partition of
S into m subsets S1, . . . , Sm, such that the sum of the numbers in each subset is
B. Without loss of generality we assume that B/4 ≤ ai ≤ B/2 for 1 ≤ i ≤ 3m,
which guarantees that in a solution each subset contains exactly three numbers
that add up to B.

The 3-partition problem is strongly NP-complete [11], that is, the problem
remains NP-complete when all the numbers in the input are represented in unary.
In our reduction, the cotree for the graph H has a root which is labeled as a
join-node ⊗ (see Figure 1 for an illustration). The root has 3m children, one for
each number ai. For simplicity we refer to the children as ai, i ∈ {1, . . . , 3m}.
Each child ai has a union node ⊕ as the root. The root of each ai-child has two
children, one is a single leaf and the other is a join-node ⊗ with ai leaves. This
ends the description of H .

The cotree for the graph G has a join-node ⊗ as a root which has m children.
The idea is that each child corresponds with one set of a 3-partition of S. The
subtrees for all the children are identical. Each subtree has a union-node ⊕ as
the root. Consider all triples {i, j, k} for which ai + aj + ak = B. For each such
triple create one child, which is the join of three cotrees for ai, aj and ak in
the triple. The subtree for ai is a union of two subtrees. As in the cotree for
the pattern H , one subtree is a single leaf, and the other subtree is the join of
ai leaves. The other two subtrees, for the numbers aj and ak in the triple are
constructed similarly.

Let TH and TG be the cotrees for H and G as constructed above. Say TH

and TG have roots rH and rG. When the graph H is a retract of G then the
ai-children of rH are partitioned into triples, such that there is a bijection be-
tween these triples, say {ai, aj , ak} and a branch in the cotree of G. Each ⊕-node
which is the root of a child of rG must have exactly one {ai, aj, ak}-child that
corresponds with the triple. Notice that, by the construction, all subgraphs in-
duced by remaining components of the ⊕-node have maximal cliques of size B.
Therefore, all other children of the ⊕-node are homomorphic to the one child
which corresponds to the triple {ai, aj , ak}.

It now follows from Lemma 4 that there is a 3-partition if and only if the
graph H is a retract of G. This completes the proof. ��
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(a) TH

(b) TG

Fig. 1. The cotrees for G and H used in the proof of Theorem 5

5 The Partitioned Case for Retracts in Cographs

Theorem 6. Let G and H be cographs and assume that H is given as an induced
subgraph of G. There exists a linear-time algorithm to test if G retracts to H.

Proof. We describe the algorithm. Construct a cotree for the graph G. Repeat-
edly, remove children of ⊕-nodes for which

(a) the branch has no leaves corresponding with vertices in H , and
(b) the subgraph induced by the branch has clique number at most equal to the

clique number of a sibling.

When the algorithm ends such that all remaining vertices are in H then G
retracts to H and otherwise it does not.

For brevity we omit the proof of correctness (which is straightforward). ��

6 A Fixed-Parameter Solution for Retracts in Cographs

In this section we look at a parameterized solution for the retract problem. The
reader is referred to [23] for the details of fixed-parameter algorithms. Let G and
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H be cographs. We consider the parameterization by the number of vertices in
H . Let

k = |V (H)|.

Proposition 1. When H is a retract of G then ω(G) = ω(H) ≤ k. Let TG be a
cotree for G. Then every join-node in TG has at most k children, and the height
of the cotree is O(k).

Lemma 5. The retract problem, which asks if a cograph H is a retract of G, is
fixed-parameter tractable when parameterized by the number of vertices in H.

Proof. See arXiv:1301.3979.
��

Proposition 2. For everyH, theH-retract problem can be formulated inmonadic
second-order logic (without quantification over subsets of edges).

By Courcelle’s theorem [6] we may also conclude the following.

Corollary 2. There exists a function f : N → N such that, for every H, say
with k = |V (H)|, there is an O(f(k) ·n) algorithm which checks if H is a retract
of a cograph G.

7 Foldings

Definition 6. Let G = (V,E) be a graph and let x and y be two vertices in
G that are at distance two. A simple fold with respect to x and y is the op-
eration which identifies x and y and eliminates duplicate edges. A folding is a
homomorphism which is a sequence of simple folds.

When G→ H is a folding then we say that G folds onto H . It is well-known that
any retraction of a connected graph is a folding, see e.g., [17, Proposition 2.19].

Definition 7. The folding number Σ(G) of a connected graph G is the largest
number s such that G folds onto Ks. When G is disconnected the folding number
is the maximal folding number of the graphs induced by the components of G.

Recall that the achromatic number Ψ(G) of a graph G is the largest number
of colors with which one can properly color the vertices of G such that for any
two colors there are two adjacent vertices that have those colors.

Lemma 6. Assume that G has a universal vertex u. Then

Σ(G) = 1 + Ψ(G− u) = Ψ(G).

Proof. Any two nonadjacent vertices of G−u are at distance two in G. Thus any
achromatic coloring of G is a folding. The universal vertex must be in a color
class by itself. Harary and Hedetniemi [18] show that, when G is the join of two
graphs G1 and G2 then Ψ(G) = Ψ(G1) + Ψ(G2). This proves the lemma. ��
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Notice that the achromatic number problem is NP-complete, even for trees.
However, the problem is fixed-parameter tractable [22]. The image of a tree after
a simple fold is a tree. Therefore, the folding number of a tree is at most two.

Theorem 7. The problem to compute the folding number is NP-complete, even
when restricted to trivially perfect graphs.

Proof. Bodlaender shows in [3] that computing the achromatic number is NP-
complete, even when restricted to trivially perfect graphs. Since the class of
trivially perfect graphs is closed under adding universal vertices, by Lemma 6
computing the folding number is NP-complete for trivially perfect graphs. ��

Theorem 8. When G is a threshold graph then

χ(G) = Σ(G) = Ψ(G).

Proof. When G is the join of two graphs G1 and G2 then

Ψ(G) = Ψ(G1) + Ψ(G2).

Assume that G has an isolated vertex x. In any achromatic coloring, the vertex
must have a color that is used by another vertex also. Therefore,

Ψ(G) = max { 1, Ψ(G− x) }.

This proves the theorem. ��

8 Absolute Retracts for Cographs

Definition 8. Let G be a class of graphs. A graph H is an absolute retract for
G if H is a retract of a graph G ∈ G whenever G is an isometric embedding of
H and χ(H) = χ(G).

Hell, in his Ph.D. thesis, characterized absolute retracts for the class of bipar-
tite graphs as the retracts of components of categorical products of paths [19].
Pesch and Poguntke characterized absolute retracts of k-chromatic graphs [24].
Their characterization can be strengthened for the case of bipartite graphs such
that it leads to a polynomial recognition algorithm for absolute retracts of bipar-
tite graphs [2]. Examples of absolute retracts of bipartite graphs are the chordal
bipartite graphs [14]. Median graphs are exactly the absolute retracts of hy-
percubes [1]. For reasons of brevity we leave out the mention of all results on
reflexive graphs.

Theorem 9. Let H be a connected cograph. Then H is an absolute retract for
the class of cographs if and only if every vertex of H is in a maximal clique of
cardinality ω(H).

Proof. See arXiv:1301.3979. ��
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Abstract. Recently, Pawlik et al. have shown that triangle-free inter-
section graphs of line segments in the plane can have arbitrarily large
chromatic number. Specifically, they construct triangle-free segment in-
tersection graphs with chromatic number Θ(log log n). Essentially the
same construction produces Θ(log log n)-chromatic triangle-free inter-
section graphs of a variety of other geometric shapes—those belonging
to any class of compact arc-connected subsets of R2 closed under hor-
izontal scaling, vertical scaling, and translation, except for axis-aligned
rectangles. We show that this construction is asymptotically optimal for
the class of rectangular frames (boundaries of axis-aligned rectangles).
Namely, we prove that triangle-free intersection graphs of rectangular
frames in the plane have chromatic number O(log log n), improving on
the previous bound of O(log n). To this end, we exploit a relationship
between off-line coloring of rectangular frame intersection graphs and
on-line coloring of interval overlap graphs. Our coloring method decom-
poses the graph into a bounded number of subgraphs with a tree-like
structure that “encodes” strategies of the adversary in the on-line col-
oring problem, and colors these subgraphs with O(log log n) colors using
a combination of techniques from on-line algorithms (first-fit) and data
structure design (heavy-light decomposition).

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph
such that no two adjacent ones are in the same color. The minimum number of
colors sufficient to color a graph G properly is called the chromatic number of G
and denoted by χ(G). The maximum size of a clique (a set of pairwise adjacent
vertices) in a graph G is called the clique number of G and denoted by ω(G). It
is clear that χ(G) � ω(G). The classes for which there is a function f : N → N
such that χ(G) 	 f(ω(G)) holds for any graph G from the class are called
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χ-bounded. A triangle is a clique of size 3. A graph is triangle-free if it does not
contain any triangle.

It has been observed in the 1940s that the existence of large cliques is not nec-
essary for the chromatic number to grow. Various classical constructions show
that it can be arbitrarily large even for triangle-free graphs. The first such con-
struction was given by Zykov [1], and the one perhaps best known is due to
Mycielski [2]. Kim [3] constructed triangle-free graphs with chromatic number
Θ(
√

n/ logn), which is tight as shown by Ajtai, Komlós and Szemerédi [4].
In this paper, we focus on the relation between the chromatic number and

the number of vertices of a graph for classes of triangle-free graphs arising from
geometry. The intersection graph of a family of sets F is the graph with vertex
set F and edge set consisting of pairs of intersecting elements of F . For simplicity,
we identify the family F with its intersection graph.

The study of the chromatic number of graphs with geometric representation
was initiated in the seminal paper of Asplund and Grünbaum [5], where they
proved that the families of axis-aligned rectangles are χ-bounded. In particular,
they proved a tight bound of 6 on the chromatic number of triangle-free families
of axis-aligned rectangles. Gyárfás [6,7] proved that the class of overlap graphs,
that is, graphs represented by closed intervals on the line so that edges are pairs of
intervals that intersect but are not nested, is χ-bounded. In contrast, Burling [8]
showed that triangle-free intersection graphs of axis-aligned boxes in R3 can have
arbitrarily large chromatic number. Pawlik et al. [9,10] provided a construction
of triangle-free families of segments and, more generally, triangle-free families of
vertically and horizontally scaled translates of any fixed arc-connected compact
set in R2 that is not an axis-aligned rectangle, with arbitrarily large chromatic
number. These families require Ω(log log n) colors, where n is the size of the
family. One of the problems posed in [9] is to determine (asymptotically) the
maximum chromatic number that a triangle-free family of n segments can have.

We solve the analogous problem for triangle-free families of frames, that is,
boundaries of axis-aligned rectangles in the plane, showing that the construction
of Pawlik et al. is asymptotically best possible.

Theorem 1. Every triangle-free family of n frames can be properly colored with
O(log logn) colors.

Note that the intersection graph of a family of frames is not the same as the
intersection graph of the rectangles enclosed by these frames. Specifically, two
frames intersect if and only if their corresponding rectangles intersect but are
not nested. Frame intersection graphs can thus be considered as two-dimensional
generalizations of overlap graphs.

Theorem 1 provides the first asymptotically tight bound on the chromatic
number for a natural class of geometric intersection graphs that does not allow
a constant bound. So far, best upper bounds were of order O(log n), following
from the results of McGuinness [11] or Suk [12] for families of shapes including
segments and frames, or polylogarithmic on n, obtained by Fox and Pach [13] for
families of curves with bounded clique number and bounded number of pairwise
intersections. Recently, Fox and Pach [14] established polylogarithmic upper
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bounds for arbitrary families of curves with bounded clique number. The only
known lower bounds follow from the above-mentioned constructions of Burling
and Pawlik et al. We hope that our ideas will lead to improving the bounds for
other important classes, in particular, for segment intersection graphs.

On-line coloring is an intensively studied variant of the coloring problem.
The difference between regular and on-line coloring is that in the on-line setting
the vertices appear one by one and the coloring algorithm must assign colors
to them immediately, knowing only the edges between vertices shown thus far.
Our proof exploits a correspondence between on-line coloring of overlap graphs
and usual (off-line) coloring of frame intersection graphs. We obtain a structural
decomposition of an arbitrary frame graph, yielding a constant number of so-
called directed frame families. Their intersection graphs turn out to be so-called
overlap game graphs, which may be viewed as encodings of adversary strategies in
the on-line overlap graph coloring problem. We succeed in coloring overlap game
graphs with O(log logn) colors using a mixture of two strategies: heavy-light
decomposition of trees (first introduced by Sleator and Tarjan [15]) and first-
fit coloring. For frame intersection graphs, we use a result due to McGuinness
[11] that simple triangle-free families of arc-connected compact sets in the plane
pierced by a common line have bounded chromatic number, as well as coloring
techniques introduced by Gyárfás in his proof that overlap graphs are χ-bounded.

2 Basic Ideas

A frame is the boundary of an axis-aligned rectangle. The filling rectangle of
a frame F , denoted by rect(F ), is the rectangle whose boundary is F . The x-
coordinates of the left and right sides of F and the y-coordinates of the bottom
and top sides of F are denoted by �(F ), r(F ), b(F ), t(F ), respectively. Thus
rect(F ) = [�(F ), r(F )]× [b(F ), t(F )].

Throughout the paper we assume that all frames are in general position, that
is, no corner of any frame lies on another frame. We can easily adjust any family
of frames to satisfy this condition without introducing or losing any intersection,
just by expanding each frame in every direction by a tiny amount inversely pro-
portional to the area enclosed by the frame. We distinguish the following types of
frame intersections, illustrated in Fig. 1: crossings, leftward-, rightward-, down-
ward- and upward-directed intersections, and diagonal intersections. A family of
frames F is leftward-, rightward-, downward- or upward-directed if the following
two conditions are satisfied:

(D1) the intersection of any two frames in F is leftward-, rightward-, down-
ward- or upward-directed, respectively,

(D2) no frame in F is enclosed by two intersecting frames in F (see Fig. 1).

The first condition explains the term “directed”, while the second one is for
technical reasons. A family of frames F is directed if it is leftward-, rightward-,
downward- or upward-directed. Note that in a directed family, we still allow only
one of the four types of directed intersections, we just do not specify which one.
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Fig. 1. From left to right: a crossing; a leftward-, rightward-, downward- and upward-
directed intersection; two diagonal intersections; forbidden configuration in a rightward-
directed family

The first step in our proof of Theorem 1, explained in Section 5, is to reduce
to the case of directed triangle-free families of frames:

Lemma 1. Every triangle-free family of frames F can be partitioned into a
bounded number of directed subfamilies, where the bound is independent of F .

The next step is a more abstract description of the structure of intersection
graphs of directed families of frames in terms of intervals on R. We denote the
family of all closed intervals on R by I. The left and right endpoints of an
interval I are denoted by �(I) and r(I), respectively. Again, we assume that
we are dealing with intervals in general position, that is, the endpoints of all
intervals are distinct. Intervals I and J overlap if �(I) < �(J) < r(I) < r(J) or
�(J) < �(I) < r(J) < r(I). The overlap graph defined on a family of intervals
has an edge for each pair of overlapping intervals.

Let G be a triangle-free graph, M be a rooted forest with V (M) = V (G),
and μ : V (G) → I. For u, v ∈ V (G), we write u ≺ v if u 
= v and u is an
ancestor of v in M . The graph G is an overlap game graph with meta-forest M
and representation μ if the following conditions are satisfied:

(G1) �(μ(x)) < �(μ(y)) whenever x ≺ y,
(G2) x and y are adjacent in G if and only if x ≺ y and μ(x) and μ(y) overlap,
(G3) there are no x, y, z such that x ≺ y ≺ z, μ(x) and μ(y) overlap, and

μ(z) ⊂ μ(x) ∩ μ(y).1

Lemma 2. The intersection graph of a directed family of frames is an overlap
game graph.

It should be noted that the converse of Lemma 2 also holds, that is, every
overlap game graph is the intersection graph of a directed family of frames. To
see this, for each u ∈ V (G) define η(u) ∈ I so that η(v) ⊂ η(u) whenever u ≺ v,
and η(u) ∩ η(v) = ∅ whenever u and v are ≺-incomparable. The boundaries of
μ(u)× η(u) for u ∈ V (G) form the requested family.

Lemma 3. Overlap game graphs have chromatic number O(log logn).

Now, Theorem 1 follows from Lemmas 1, 2, and 3. We prove Lemmas 2 and
3 in Sections 4 and 3, respectively.

1 Lemmas 2 and 3 remain valid if we drop the conditions (D2) in the definition of
a directed intersection and (G3) in the definition of an overlap game graph. The
reason why we impose them is that we get (D2) for free in the proof of Lemma 1,
while (G3) simplifies the proof of Lemma 3.
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The construction from [10] shows that the bound in Theorem 1 is tight. By
Lemmas 1 and 2, the bound in Lemma 3 is also tight.

We complete this outline by explaining the meaning of the word “game” in
the notion of overlap game graphs. Let k ∈ N. Consider the following overlap
coloring game between two players: Presenter, who presents intervals one by one,
and Painter, who colors them on-line, that is, each interval is colored right after
it is presented and without possibility of changing the color later. Presenter’s
moves are restricted by the following rules:

(i) if an interval I2 is presented after I1, then �(I1) < �(I2);
(ii) no three intervals I1, I2, I3 such that �(I1) < �(I2) < �(I3) < r(I1) <

r(I2) < r(I3) are presented, that is, the overlap graph defined on the in-
tervals presented is triangle-free;

(iii) no three intervals I1, I2, I3 such that �(I1) < �(I2) < �(I3) < r(I3) <
r(I1) < r(I2) are presented, that is, no two overlapping intervals contain a
third one.

The coloring constructed by Painter has to be proper. Presenter aims to force
Painter to use more than k colors, while Painter tries to do with at most k colors.

Every finite strategy of Presenter (not necessarily winning or deterministic)
gives rise to an overlap game graph G with meta-forest M and representation μ
such that the root-to-leaf paths in M correspond to the intervals presented on
the possible branches of the strategy. Specifically, each root r of M corresponds
to an interval μ(r) that can be played in Presenter’s first move, and each child
of a vertex x of M corresponds to an interval that Presenter can play right after
μ(x) at the position represented by x. Conversely, an overlap game graph G with
meta-forest M and representation μ represents a non-deterministic strategy of
Presenter, as follows. Presenter starts with an arbitrarily chosen root r of M
presenting μ(r), and then, in each move from position u in M , follows to an
arbitrarily chosen child v of u and presents μ(v). Now, the crucial observation
is that Painter has a strategy to use at most k colors against the considered
strategy of Presenter if and only if χ(G) 	 k. The proof of Lemma 3 essentially
shows that each such strategy needs to have a double exponential number of
branches.

3 Coloring Overlap Game Graphs

For the purpose of this entire section, let G be an n-vertex overlap game graph
with meta-forest M and representation μ. Our goal is to prove that G has chro-
matic number O(log logn). Since different components of M are not connected
by edges of G, they can be colored independently using the same set of colors.
Thus it is enough to consider each component of M separately, and therefore we
can assume without loss of generality that M is a single tree.

The relation ≺ defines an orientation of the edges of G: we write x → y if x
is adjacent to y and x ≺ y. We classify each vertex v of G as either primary or
secondary as follows:
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• if v is the root of M , then v is primary;
• if μ(v) ⊂ μ(u), where u is the parent of v, then v is secondary; otherwise v

is primary.

Let P (u) ⊂ V (G) be the set of vertices v for which u is the first primary vertex on
the path from v to the root of M (including u itself). Clearly, P (u) is independent
in G and μ(v) ⊂ μ(u) for v ∈ P (u). Let P (u) → P (v) denote that u ≺ v and
there are x ∈ P (u) and y ∈ P (v) such that x→ y.

We are going to show that any proper k-coloring of the primary vertices of G
can be transformed into a proper 2k-coloring of the whole graph G. This can be
done with the help of the following lemma.

Lemma 4. Let S be an independent set of primary vertices in G, and let v ∈ S.
There is at most one vertex u ∈ S such that P (u) → P (v).

Proof. Omitted.

We now show how to color the vertices of G with 2k colors. Let S be a color
class in a proper k-coloring of the primary vertices of G. Consider all the sets
P (u) for u ∈ S. Each of these sets is independent, and by Lemma 4, the edges
between the sets form a bipartite graph. Therefore, we need just two colors for
the vertices in

⋃
u∈C P (u) and 2k colors in total for the whole G.

It suffices to show that the chromatic number of the graph induced on the
primary vertices is O(log logn). The primary vertices induce an overlap game
graph witnessed by the restriction of μ and ≺. From now on, we simply assume
that there are no secondary vertices in G.

Let P be the set of (primary) vertices lying on a path from the root to a leaf
of M . We say that two edges x → y and z → t with x, y, z, t ∈ P overlap if
either x ≺ z ≺ y ≺ t or z ≺ x ≺ t ≺ y. The following lemma essentially means
that the set P induces a forest in G with no overlapping edges.

Lemma 5. The following statements hold:

(1) For every v ∈ P there is at most one w ∈ P such that v → w.
(2) No two edges v1 → v3 and v2 → v4 with v1, v2, v3, v4 ∈ P overlap.

Proof. Omitted.

To continue the proof we need to introduce the idea of heavy-light decompo-
sition due to Sleator and Tarjan [15]. Let T be a rooted tree, and let Tv denote
the subtree of T rooted at a vertex v. For every internal vertex u of T , let s(u)
be a child v of u such that the number of vertices in Tv is as large as possible.
The edges of T connecting u to s(u) are called heavy. Clearly, there is a unique
root-to-leaf path in T consisting of heavy edges only—call it the heavy path of T .
Remove the heavy path from the tree, obtaining a forest. Continue by removing
heavy paths from each tree in the forest, until there is nothing left to remove.
The resulting vertex cover of T by paths is called the heavy-light decomposition
of T . We will call each path in this cover a heavy path of T . The heavy-light
decomposition has the following crucial property.
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Lemma 6. If a root-to-leaf path in T intersects k heavy paths, then T has at
least 2k − 1 vertices.

Proof. Straightforward induction. ��

Fix a heavy-light decomposition of M . Form an auxiliary graph G′ by remov-
ing the edges of G that connect two vertices in different heavy paths. By Lemma
5(1), the vertices on each heavy path induce a forest in G, hence G′ is a forest
and can be properly colored with two colors. Let C1 and C2 be the coloring
classes in a proper two-coloring of G′, and fix i ∈ {1, 2}. For any x, y ∈ Ci, the
following holds:

If x→ y, then x and y are in different heavy paths. (∗)

We color the vertices from Ci with positive integers one at a time, going from
the root of M towards the leaves. We choose the color of a vertex v ∈ Ci to be
the least positive integer not occurring as a color of any vertex w with w ∈ Ci

and w → v (every such vertex has been colored before v). This coloring strategy
is known as first-fit.

Lemma 7. If first-fit assigns a color k to some vertex v ∈ Ci, then the path P
in M from the root to v intersects at least 2k−2 heavy paths.

Proof. Let f(w) denote the color chosen by first-fit for each vertex w ∈ Ci. The
colors 1, . . . , f(v) − 1 have been chosen for vertices w ∈ P ∩ Ci with w → v, so
there are at least f(v) − 1 such vertices. Let F be a minimal subset of P ∩ Ci

that satisfies the following conditions:

• F contains v,
• for any w ∈ F , there are w1, . . . , wf(w)−1 ∈ F such that wj → w and
f(wj) = j for 1 	 j 	 f(w)− 1.

By Lemma 5(1), the set F induces a directed tree T in G with the root v
and edges directed towards v. By the minimality of F , each vertex w of T has
exactly f(w) − 1 children (which are closer in M to the root of M). It follows
that T has exactly 2k−1 vertices and 2k−2 internal vertices.

Let w be an internal vertex of T , and let u ∈ F be the vertex that precedes
w in the order ≺ on F . We claim that u is a child of w in T . Suppose it is not.
Since u precedes w in the order ≺ and therefore is not the root of T , it has a
parent p in T . Since w is an internal vertex of T , it has a child c in T . We know
that w ≺ p and c ≺ u, as u and w are consecutive in the order ≺ on F . It follows
that c ≺ u ≺ w ≺ p and the edges c→ w and u→ p overlap, which contradicts
Lemma 5(2). We have shown that there is an edge between u and w in T , so they
must lie on different heavy paths. Consequently, any two ≺-consecutive internal
vertices of T lie on different heavy paths, which shows that P intersects at least
2k−2 heavy paths. ��

Proof (Lemma 3). As noted previously, we may assume that G consists of pri-
mary vertices only and is connected. Suppose that k is the maximal color used
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by first-fit on a vertex v ∈ Ci. By Lemma 7, the path in M from the root to v in-

tersects at least 2k−2 heavy paths. This implies, by Lemma 6, that n � 22
k−2−1.

Therefore, first-fit uses at most O(log logn) colors on Ci. We color C1 and C2 by
first-fit using two separate sets of colors, obtaining a proper coloring of G with
O(log logn) colors. ��

4 Reduction to Overlap Game Graphs

Proof (Lemma 2). Let F be a directed family of rectangular frames. We assume
without loss of generality that F is rightward-directed. Define a map μ : F → I
so that μ(F ) is the interval obtained by projecting F on the x-axis. Thus we
have �(μ(F )) = �(F ) and r(μ(F )) = r(F ).

For F ∈ F , let L(F ) be the subfamily of F consisting of such F ′ that �(F ′) <
�(F ) < r(F ′) and b(F ′) < b(F ) < t(F ) < t(F ′). We define a rooted forest
M on F as follows. If L(F ) is empty, then F is a root of M . Otherwise, the
parent of F in M is the member F ′ of L(F ) with greatest �(F ′). We show that
the intersection graph of F is an overlap game graph with meta-forest M and
representation μ. To this end, we argue that the conditions (G1)–(G3) from the
definition of an overlap game graph are satisfied by the intersection graph of F .

It follows directly from the definition of parent that F1 ≺ F2 implies �(F1) <
�(F2) and b(F1) < b(F2) < t(F2) < t(F1). This already shows (G1) and the
right-to-left implication in (G2). Let F1, F2, F3 ∈ F be such that F1 ≺ F2 ≺ F3,
μ(F1) and μ(F2) overlap, and μ(F3) is contained in both μ(F1) and μ(F2). We
have �(F1) < �(F2) < �(F3) < r(F3) < r(F1) < r(F2) and b(F1) < b(F2) <
b(F3) < t(F3) < t(F2) < t(F1). However, such a configuration is forbidden in
a directed family of rectangular frames. This contradiction shows (G3). Now,
let F1 and F2 be two intersecting members of F . By the assumption that F
is rightward-directed, μ(F1) and μ(F2) overlap, and we have F1 ∈ L(F2) or
F2 ∈ L(F1). Therefore, in order to prove the left-to-right implication in (G2),
it remains to show that F1 ∈ L(F2) implies F1 ≺ F2. To this end, we use
induction on the increasing order of �(F2). There is nothing to prove when F1

is the parent of F2, so assume the other case. Let F ′
2 be the parent of F2.

We have �(F1) < �(F ′
2) < �(F2) < r(F1) and, since F is rightward-directed,

b(F1) < b(F ′
2) < t(F ′

2) < t(F1). Thus F1 ∈ L(F ′
2). This and the induction

hypothesis yield F1 ≺ F ′
2 and thus F1 ≺ F2. ��

5 Reduction to Directed Families of Frames

The goal of this section is to prove Lemma 1. This is achieved via a combination
of techniques introduced by Asplund and Grünbaum [5] and Gyárfás [6].

Lemma 8. Every triangle-free family of frames F can be partitioned into two
subfamilies each containing no pair of crossing frames.

Proof. Omitted.
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Two families of frames F1 and F2 are mutually independent if any pair of
frames F1 ∈ F1 and F2 ∈ F2 is non-intersecting. Let F be a family of frames.
For L ⊂ F , a frame F ′ ∈ F \ L is external to L if F ′ 
⊂

⋃
F∈L rect(F ). A

subfamily L of F is a layer with respect to F if |L| = 1 or every frame in L
intersects some frame in F \ L external to L.

Lemma 9. Every family of frames F has a partition P into layers. Moreover,
there is a bipartition P = P1 ∪ P2 such that each Pi consists of mutually inde-
pendent layers.

Proof. Omitted.

Theorem 2 (Asplund, Grünbaum [5]). Every triangle-free family of axis-
aligned rectangles can be properly colored with 6 colors.

Theorem 3 (McGuinness [11]). Let L be a closed Jordan loop. Let C be a
triangle-free family of curves such that |L ∩ C| = 1 for any C ∈ C and |C1 ∩
C2| 	 1 for any distinct C1, C2 ∈ C. It follows that χ(C) 	 β for a constant β
independent of L and C.

Proof (Lemma 1). By Lemma 8, it is enough to find the required partition for
triangle-free families of frames containing no crossings. Thus, assume F is such
a family of frames. Our goal is to color F with a bounded number of colors so
that the frames of each color form a directed family. For simplicity, we construct
a coloring of F such that every connected component of the intersection graph
of frames of each color corresponds to a directed family. We call such a coloring
good. Once we have a good coloring of F , we can easily obtain a coloring required
by the lemma using at most four times as many colors.

Let P be a partition of F into layers and P = P1∪P2 be a bipartition claimed
by Lemma 9. Each layer L ∈ P consists of a single frame or is such that for every
F ∈ L there is F ′ ∈ F \ L external to L and intersecting F . This guarantees
that each layer L satisfies the condition (D2) in the definition of directed family
of frames: if F, F1, F2 ∈ L are such that F1 and F2 intersect and both enclose F ,
then F1, F2 and F ′ form a triangle. It is enough to find a good coloring of each
layer L ∈ P with a bounded number of colors. Then, we can color all the layers
in P1 with one set of colors and all the layers in P2 with another, separate set
of colors, obtaining a good coloring of the entire F with twice as many colors in
total.

Fix a layer L ∈ P , and once again apply Lemma 9 to get a partition Q of
L into layers. By the very same argument, it is enough to find a good coloring
of each layer G ∈ Q with a bounded number of colors. So fix a layer G ∈ Q,
and assume |G| > 1. It follows that for each F ∈ G there is a frame F ′ ∈ L \ G
external to G and intersecting F .

Let E be the family of those frames in G that are not enclosed by any other
frame in G. Two frames in E intersect if and only if their filling rectangles in-
tersect. Therefore, by Theorem 2, E can be colored properly with 6 colors. Let
ξ : E → {1, . . . , 6} be such a coloring. For each F ∈ G \ E , choose any frame
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e(F ) enclosing F . For E ∈ E , let e−1(E) = {F ∈ G : e(F ) = E}. It is enough to
obtain a good coloring of each e−1(E) with a bounded number of colors. Indeed,
one can first partition G into at most 6 families according to ξ(F ) when F ∈ E
and ξ(e(F )) otherwise. Each of these families has a good coloring with bounded
number of colors, as when E1, E2 ∈ E , E1 
= E2 and ξ(E1) = ξ(E2), the families
e−1(E1) ∪ {E1} and e−1(E2) ∪ {E2} are mutually independent.

Fix E ∈ E , and let M = e−1(E). For each M ∈ M, choose a frame s(M) ∈
L\G external to G and intersecting M . If there are more than one candidates for
s(M), choose one that is not enclosed by any other candidate. The frame s(M)
is the support of M . Each s(M) is external to M∪{E} and thus intersects E. It
follows that the supports of frames in M have pairwise disjoint filling rectangles.
Indeed, no two supports of frames in M intersect, as together with E they would
form a triangle. Moreover, since each frame in M is enclosed by E and no frame
in L can be enclosed by two intersecting frames in L, no frame in M is enclosed
by any support. Therefore, no s(M1) encloses any s(M2) with M1,M2 ∈ M, as
then s(M1) would either enclose or intersect M2, the latter being excluded by
the choice of s(M2).

When the intersection of two frames is leftward-, rightward-, downward- or
upward-directed, we say that the frame whose two opposite sides intersect one
side of the other frame enters that other frame from the left, the right, below or
above, respectively.

At most four supports enclose corners of E. Since frames with a common sup-
port must be pairwise disjoint, the members ofMwith supports enclosing a corner
of E can be colored properly with four colors. The remaining frames inM are par-
titioned into four classes according to whether their supports enter E from below,
above, the left, or the right, and each of these classes is colored independently with
a separate set of colors. We restrict our attention to the class M′ of frames with
supports entering E from below—the others are handled analogously.

Let I = int(rect(E)) \
⋃

M∈M′ rect(s(M)). Each frame M ∈ M′ intersects
I, as it cannot be enclosed by any support. The frames in M′ entering some
support from the left are pairwise disjoint (see Fig. 2)—we use a separate color
on them. Similarly for the frames in M′ entering some support from the right.
Let M′′ be the family of the remaining frames, that is, those frames in M′ that
enter their supports from above, are entered by their supports from below, or
intersect their supports diagonally.

For each frame M ∈M′′, define two curves, the left and right trace of M , as
follows. The left (right) trace starts at the top right (left) vertex of M , follows to
the top left (right) vertex of M along the top side of M , and then continues along
M until it reaches the boundary of I on either the left (right) or the bottom side
of M .

No frame M1 ∈ M′′ can enter any M2 ∈ M′′ from above, as M1, M2 and
s(M1) would form a triangle or M1 would be enclosed by s(M2) (see Fig. 3).
Therefore, only the following types of intersections can occur in M′′:

(i) one frame enters another from below,
(ii) one frame enters another from the left,
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E

I

R1 R2

M1 M2

M3

Fig. 2. Frames M1 and M2 (M2 and M3) entering some support from the left are
disjoint, as otherwise they would form a triangle with R1 (R2, respectively)

Fig. 3. From left to right: no frame in M′′ can enter another from above; case (i),
right traces intersect; case (i), traces do not intersect; case (ii), left traces intersect;
case (iii), right traces intersect; case (iv), left traces intersect

(iii) one frame enters another from the right,
(iv) two frames intersect diagonally.

It is easy to see that in cases (ii)–(iv) either the left or the right traces of the two
frames intersect, and in every case the left or right traces intersect at at most
one point (see Fig. 3).

The intersection graph of the left (right) traces is triangle-free, because it is a
subgraph of the intersection graph of M′′. Since every trace meets the boundary
of I at exactly one point, we can apply Theorem 3 twice to obtain two colorings
ξL, ξR : M′′ → {1, . . . , β}, one proper on the left traces and the other proper on
the right traces. The coloring by pairs (ξL, ξR) distinguishes all pairs of frames in
M′′ with intersections of types (ii)–(iv), and thus only intersections of type (i)
remain in each color class. Additionally, no frame is enclosed by two intersecting
frames within one color class, as this has been excluded earlier in the argument.
Therefore, each color class is a directed family of frames and the coloring that
we obtained is good as required. ��

6 Open Problems

The authors of [9] asked for the maximum possible chromatic number of a
triangle-free intersection graph of n segments. In this paper, we resolved a sim-
ilar question for frames. The following problems ask whether segment graphs
behave similarly to frame graphs with respect to proper coloring.
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Problem 1. Can every triangle-free segment intersection graph be decomposed
into a bounded number of overlap game graphs?

Problem 2. Does every triangle-free segment intersection graph with chromatic
number k contain an overlap game graph with chromatic number at least ck as
an induced subgraph, for some absolute constant c > 0?

The positive answer to the question in Problem 1 would yield the answer
Θ(log logn) bound for triangle-free segment intersection graphs, while the neg-
ative answer to the question in Problem 1 or 2 would help us understand the
limitations of our methods. The questions can be generalized to Kk-free graphs.

Problem 3. What is the maximum possible chromatic number of a Kk-free in-
tersection graph of n frames?
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Abstract. Lekkerkerker and Boland characterized the minimal forbid-
den induced subgraphs for the class of interval graphs. We give a linear-
time algorithm to find one in any graph that is not an interval graph.
Tucker characterized the minimal forbidden submatrices of matrices that
do not have the consecutive-ones property. We give a linear-time algo-
rithm to find one in any matrix that does not have the consecutive-ones
property.

1 Introduction

A graph is an interval graph if it is the intersection graph of a set of intervals on a
line. Such a set of intervals is known as an interval model of the graph. They are
an important subclass of perfect graphs [4], they have been written extensively
about and they model constraints in various combinatorial optimization and
decision problems [13, 15]. They have a rich structure and history, and interesting
relationships to other graph classes. For a survey, see [2].

If M is a 0-1 (binary) matrix, we let size(M) denote the number of rows,
columns and 1’s. Such a matrix has the consecutive-ones property if there exists
a reordering of its columns such that, in every row, the 1’s are consecutive. A
consecutive-ones matrix is a matrix that has the consecutive-ones property, and
a consecutive-ones-ordered matrix is a matrix where the 1’s are consecutive in
every row. A clique matrix of a graph is a matrix that has a row for each vertex,
a column for each clique, and a 1 in row i, column j if vertex i is contained in
clique j. A graph is an interval graph if and only if its clique matrices have the
consecutive-ones property, see, for example [4].

In 1962, Lekkerkerker and Boland described the minimal induced forbidden
subgraphs for the class of interval graphs [7], known as the LB graphs (Fig-
ure 2). Ten years later, Tucker described the minimal forbidden submatrices for
consecutive-ones matrices [19]. These are depicted in Figure 1. Not surprisingly,
there is a relationship between the intersection graphs of rows of Tucker matrices
and the LB graphs, depicted in Figure 2.

In this paper, we give a linear time bound for finding one of the LB subgraphs
when a graph is not an interval graph. As part of our algorithm, we also give
a linear-time (O(size(M)) bound for finding one of Tucker’s submatrices in a
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Fig. 1. The minimal forbidden submatrices for consecutive-ones matrices. For MI ,
k ≥ 3, and for MII and MII , k ≥ 4. MIV and MI have fixed size.

matrix M that does not have the consecutive-ones property. This latter problem
was solved previously in O(n ∗ size(M)) time in [17], where n is the number of
rows of the matrix. An O(Δ3m2n(m+n2)) bound for finding a Tucker submatrix
of minimum size is given in [9], where Δ is the maximum number of 1’s in any
row.

A graph is chordal if it has no chordless cycle (an induced cycle on four or
more vertices). A vertex is simplicial if it and its neighbors induce a complete
subgraph. Every chordal graph has a simplicial vertex, and every interval graph
is chordal [4].

An interval graph is proper if there exists an interval model where no interval
is a subset of another. It is a unit interval graph if there exists an interval model
where all intervals have the same length. These graph classes are the same, and
Wegner showed that a graph is a proper interval graph if and only if it does not
have a chordless cycle, the special case of GIV or GV for n = 6 or the claw (K1,3)
as an induced subgraph [20]. Hell and Huang give an algorithm that produces
one of them in linear time [5] . The problem of finding a forbidden subgraph
reduces easily to finding an LB subgraph. Each of the LB graphs is either one of
Wegner’s forbidden subgraphs or contains an obvious claw, and finding a claw in
linear time, given an interval model, is elementary. By itself, this approach has no
obvious advantages over Hell and Huang’s elegant algorithm, but such reductions
are useful when studying or programming a collection of related algorithms.

A certifying algorithm is an algorithm that provides, with each output, a
simple-to-check proof that it has answered correctly [6, 11]. An interval model
gives a certificate that a graph is an interval graph, and an LB subgraph gives
one if the graph is not an interval graph. However, a certifying algorithm was
given previously in [6]. The ability to give a consecutive-ones ordering or a Tucker
submatrix in linear time gives a linear-time certifying algorithm for consecutive-
ones matrices, but one was given previously in [10]. The previous certificates are
easier to check, which is a desirable property for certifying algorithms. However,
they are neither minimal nor uniquely characterized. Aside from the theoreti-
cal interest in LB subgraphs, it is easy to obtain a minimal certificate of the form
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given in [6] from an LB subgraph found by the algorithm we describe below.
Tucker submatrices may be useful in heuristics for finding large submatrices that
have the consecutive-ones property, small Tucker matrices, or identifying errors
in biological data [16, 3]. Our techniques provide new tools for such heuristics.
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Fig. 2. GI through GV are the minimal non-interval graphs discovered by Lekkerkerker
and Boland. The circled vertices are the simplicial vertices in the graphs. Below them
are the intersection graphs of the rows of the corresponding Tucker matrices, numbered
as they are in Figure 1. Removing the rows belonging to the simplicial vertices in the
clique matrix of each Lekkerkerker-Boland graph gives the Tucker matrix below it in
the figure.

2 Preliminaries

Given a graph G, let V denote the number of vertices and E denote the number
of edges. If ∅ ⊂ X ⊆ V , let G[X ] denote the subgraph induced by X . Standard
sparse representations of 0-1 matrices take O(size(M)) space to represent M .
We treat the rows and columns as sets, where each row R is the set of columns in
which the row has a 1 and each column C is the set of rows in which the column
has a 1. Suppose R is the set of rows of a consecutive-ones ordered matrix and
(C1, C2, . . . , Cm) is the ordering of the columns. In linear time, we can find, for
each row, the leftmost and rightmost column in the row. Let us call these the
left endpoint and right endpoint of the row.

That interval graphs are a subclass of the class of chordal graphs follows from
inclusion of the GIII ’s among the LB subgraphs. Rose, Tarjan and Lueker give
an O(V + E) algorithm that recognizes whether a graph is a chordal graph,
and, if so, produces its maximal cliques [14]. Otherwise, the algorithm of [18]
produces a chordless cycle (GIII) in linear time.

When a graph is chordal, the problem of deciding whether it is an interval
graph reduces to the problem of deciding whether its clique matrix has the
consecutive-ones property. Booth and Lueker further reduced this problem to
that of finding a maximal prefix R′ = {R1, R2, . . . , Rr} of the rows of a binary
matrix M that has the consecutive-ones property, and give an algorithm that
solves this in O(size(M)) time [1].
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Assigning a left-to-right order to children of each internal node of a rooted tree
results in a unique left-to-right order of the leaves. Booth and Lueker’s algorithm
produces a PQ tree, for R′. The PQ tree represents all possible consecutive-ones
orderings of R′. There is one leaf {c} for each column c. The internal nodes of
the PQ tree consist of P nodes and Q nodes. The consecutive-ones ordering of
columns are given by the leaf orders obtainable by assigning an arbitrary left-to-
right order to children of each P node, and for each Q node, assigning the given
left-to-right order or its reverse.

Though the PQ tree can be represented using O(1) space per node, conceptu-
ally, we will consider each node of the PQ tree to be a set given by the disjoint
union of its children; equivalently, it is the union of its leaf descendants.

Definition 1. Let S be a collection of subsets of a set U . Two elements of U
are in the same Venn class if they are elements of the same set of members of
S. The unconstrained Venn class consists of those elements of U that are not in
any member of S; all others are constrained. Two sets R1, R2 overlap if their
intersection is nonempty, but neither is a subset of the other. The overlap graph
of S is the undirected graph whose vertices are the members of S, and R1, R2 ∈ S
are adjacent if and only if R1 and R2 overlap.

Lemma 1. [12] A set of columns is a Q node of a consecutive-ones matrix M
if and only if it is the union of rows of a connected component of the overlap
graph of rows of M . The Venn classes of rows in this component are its children.

3 Breadth-First Search on the Overlap Graph of a
Collection of Sets, Given a Consecutive-Ones Ordering

In linear time, we may label each row of a consecutive-ones ordered matrix with
its left and right endpoints. We may then label each column ci of a consecutive-
ones ordered matrix with the set of rows that have their left endpoints in ci. In
linear time, we can then radix sort the list of sets that have their left endpoint
at ci in descending order of index of right endpoint, yielding a list Ri. This is
accomplished with a single radix sort that has the index of the left endpoint as
its primary sort key and index of the right endpoint as the secondary sort key.
By symmetry, we can construct a list Li of rows that have their right endpoint
in each column ci, sorted in ascending order of index of left endpoint.

This allows us to perform a breadth-first search on the overlap graph of the
rows in time linear in the size of the matrix, as follows. The lists Li and Ri are
represented with doubly-linked lists. We maintain the invariant that elements
that have been placed in the BFS queue have been removed from these lists.
When a consecutive-ones ordered set R comes to the front of the queue, we
traverse its list (cj , cj+1, . . . , ck) of columns. For each ch in the list (excluding
the first column), we remove elements from Rh and place them in the queue,
until we reach an element in Rh whose right endpoint is no farther to the right
than ck. All of the removed elements overlap R. Since Rh is sorted in descending
order of right endpoint, all these elements are a prefix of Rh, and any remaining
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elements in the list do not overlap R. When we remove an element from Rh, we
remove it from any list Lh′ that it is a member of, to maintain the invariant.
This takes O(1) time for each element moved to the BFS queue, plus O(1) time
for each column of R. The lists Lh are handled symmetrically. Summing over all
rows R, the time is O(size(M)).

4 Finding Tucker Submatrices

4.1 Tucker Matrices with at Most Four Rows

Lemma 2. If a set R′ of rows has the consecutive-ones property and Z is a row
such that R = R′ ∪ {Z} does not, then Z is one of the rows of every Tucker
submatrix in R.

Algorithm 1. initialRows(M ′,k)

Precondition: M ′ does not have the consecutive-ones property
Postcondition: Given by Lemma 3
M ←− M ′;
i ←− 1;
while i ≤ k + 1 and M has at least i− 1 rows do

Using Booth and Lueker’s algorithm [1], find the minimal prefix
(R1, R2, . . . , Rr, Z) of rows of M that does not have the consecutive-ones
property;
M ←− (Z,R1, R2, . . . , Rr); //set Z as first row of M
i ←− i+ 1;

Lemma 3. Suppose Algorithm 1 is run with parameter k and a matrix M ′ that
does not have the consecutive-ones property. If the returned matrix M has at
most k rows, then these are the rows of every Tucker matrix of M . Otherwise,
M fails to have the consecutive-ones property and every Tucker submatrix in M
has at least k + 1 rows.

Proof. By induction on i, M does not have the consecutive-ones property at
the end of iteration i. Also, by induction on i, using Lemma 2, at the end of
iteration i, for every Tucker submatrix MT of M , the rows of MT include the
first i rows of M . If MT has only i rows, then the first i rows of M do not have
the consecutive-ones property, so at the end of iteration i + 1, M will have i
rows.

We run Algorithm 1 for k = 4. If it returns a matrix with j rows, where
j ≤ 4, it is easy to get a linear time bound to get the columns. (One way is to
generate all j! ≤ 24 orderings of rows and for each, to check for the columns of
each Tucker matrix of size j.) Otherwise, Algorithm 1 returns a matrix M of more
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than 4 rows. By Lemma 3, M fails to have the consecutive-ones property and
every Tucker submatrix of M has at least five rows. This excludes any instances
of MIV , MV or the anomalous case of MI on three rows that does not correspond
to a chordless cycle.

4.2 Matrices in Which All Tucker Submatrices Have More Than
Four Rows

Lemma 4. The overlap graphs of MI , MII, and MIII are simple cycles.

Definition 2. Suppose R′ is a set of rows with the consecutive-ones property, Q
is a Q node of its PQ tree, (X1, X2, . . . , Xk) is the ordering of Q’s children and
Z is a row not in R′. Let Xh, Xi, Xj be three children of Q such that h < i < j.
They are a 1-0-1 configuration for Z if Xh and Xj each contain a 1 of row Z
and Xi contains a 0 of row Z. They are a 0-1-0 configuration for Z if Xh and
Xj each contain a 0 of row Z and Xi contains a 1 of row Z.

Lemma 5. If R′ is a set of rows that has the consecutive-ones property and Z
is a row not in R′, then R′ ∪ {Z} does not have the consecutive-ones property if
the PQ tree of R′ has a Q node Q such that either:

1. Q has a 1-0-1 configuration for Z;
2. Q has a 0-1-0 configuration for Z and Z is not a subset of Q.

This test is implicit in Booth and Lueker’s algorithm, where it is a sufficient
condition, but not a necessary one. The following is a consequence of Lemma 1.

Lemma 6. [10] The conditions of Lemma 5 are necessary and sufficient if the
overlap graph of R′ is connected.

Lemma 7. If a matrix fails to have the consecutive-ones property and has no
Tucker submatrix with fewer than five rows, then when Algorithm 1 is run on it
with k = 4, at the end of one of the five iterations of its loop, the PQ tree of
R′ = {R1, R2, . . . , Rr} will have a Q node Q with the following properties for
the row Z of the iteration:

– Q has a 1-0-1 configuration (Xh, Xi, Xj) for Z;
– There exist A,B ∈ R′ that are members of the component of the overlap

graph on R′ whose union is Q, and such that A contains Xh and is disjoint
from Xi and Xj, and B contains Xj and is disjoint from Xh and Xi.

Proof. If T is the rows of M that contain a Tucker submatrix MT , at the end of
an iteration of the loop of Algorithm 1, Z ∈ T by Lemma 2. By Lemma 4, the
overlap graph of T ′ = T \ {Z} is connected, so T ′ is a subset of a component of
the overlap graph of R′, which gives rise to a Q node Q of the PQ tree of R′,
by Lemma 1. Since the children of Q are the Venn classes of the component, no
two Venn classes of T ′, hence no two columns of MT , can lie in the same child
of the Q node.
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Fig. 3. Consecutive-ones orderings of all but the last row of MI , MII and MIII for
different choices of the last row. For all but at most four choices of the last row, there
exists a 1-0-1 configuration and rows A and B satisfying Lemma 7.

For each choice of a last row of a Tucker matrix on at least five rows, Figure 7
gives the possible orderings imposed on the last row by a consecutive-ones or-
dering of T ′, which is unique up to reversal, by Lemmas 4 and 1. In each case,
if row i 
∈ {0, 1, k − 2, k − 1} is chosen to go last, rows i − 1 and i + 1 satisfy
the requirements of A and B. MT has at least five rows and no row of MT is
contained in Z more than once in the five iterations, so in at least one of the
iterations a row i 
∈ {0, 1, k − 2, k − 1} will go last.

Algorithm 2. findRows(M)

Preconditions: M does not have the consecutive-ones property or any Tucker
matrix with fewer than five rows.
Postconditions: The rows of a Tucker matrix of M have been returned.
Run initialRows(M, 4) (Algorithm 1) to find R′, Z, A,B that satisfy Lemma 7;
P ←− shortest path in overlap graph of R′ from A to B;
P1 ←− minimal prefix of P such that the union of {Z} and the set P1 of rows
of P1 does not have the consecutive-ones property;
P2 ←− minimal suffix of P1 such that the union of {Z} and the set P2 of rows
of P2 does not have the consecutive-ones property;
return P2 ∪ {Z};

In O(size(M)) time, all nodes can be labeled as having no descendants in
Z (empty), all descendants in Z (full), or some descendants in Z and some not
(partial), working from leaves toward the root. A procedure is given in Booth
and Lueker’s paper. Given this labeling, checking for the conditions of Lemma 7
in O(size(M)) time is trivial; details are omitted.
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The correctness and linear time bound for the following are the key results of
this section:

Lemma 8. If M does not have the consecutive-ones property and every Tucker
matrix of M has at least five rows, then Algorithm 2 returns the set of rows of
a Tucker matrix of M .

Proof. Since A and B lie in the same component of the overlap graph of R′, P
exists. Let P be the set of rows of P . Since R′ has the consecutive-ones property,
so does P . Because P has a connected overlap graph,

⋃
P is a single Q node

of the PQ tree of P , by Lemma 1. Because of A and B, Xh, Xi, and Xj are
contained in distinct Venn classes of P , and the ones containing Xh and Xj

are constrained. Since
⋃
P is consecutive, it must have a row that contains Xi,

hence the Venn class of P containing Xi is also constrained. Therefore, P ∪ {Z}
does not have the consecutive-ones property by Lemma 5, and P1 and P2 exist.
By Lemma 2, all Tucker matrices in R′ ∪ {Z} contain Z, so this applies also to
P2 ∪ {Z}.

Suppose there is a proper subset R′′ of the rows on P2 such that R′′ ∪ {Z}
contains a Tucker matrix. The overlap graph of R′′ is connected, by Lemma 4.
Since P2 is a shortest path, it is a chordless path, so R′′ is a subpath of P2

by Lemma 4. Let R′
1 be the rows on P1, excluding the last row on P1. Let R′

2

be the rows of P2, excluding the first row on P2. By the minimality of P1 and
P2, R′

1 ∪ {Z} and R′
2 ∪ {Z} have the consecutive-ones property. Since R′′ is a

subpath of P2, R′′ ⊆ R′
1 or R′′ ⊆ R′

2, so R′′ ∪ {Z} has the consecutive-ones
property, contradicting our assumption that it does not. Therefore, P2 ∪ {Z} is
the set of rows of a Tucker matrix.
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Fig. 4. Example of finding a minimal set of rows that does not have the consecutive-
ones property

Figure 4 gives an example on which we illustrate some implementation details.
Z is given by the 1’s and 0’s above the column numbers in the figure on the
left, and R′ is depicted by the intervals. The rows labeled A and B satisfy the
requirements of A and B for Lemma 7, and P = (A,E, F,G,H, J, L,B) is a
shortest path from A to B in the overlap graph of R′, found using the BFS
algorithm of Section 3.
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Using Booth and Lueker’s terminology, we maintain labels on each class indi-
cating whether it is full (contains only 1’s of Z), empty (contains only 0’s of Z), or
partial (contains both 1’s and 0’s of Z). The minimal prefix P1 of P whose rows,
together with Z, do not have the consecutive-ones property, is (A,E, F,G,H, J).
This is detected as follows. It is easy to verify that its sequence of constrained
Venn classes is ({0, 1},{2},{3}, {4, 5}, {6, 7, . . . , 9}, {10, 11}, {12}, {13, 14}, {15},
{16}), and their full/partial/empty labels (F, F, F, F, P, P,E,E,E,E), respec-
tively. Selecting a 1 from a full class, a 0 from the first partial class and a 1 from
the second partial class gives a 1-0-1 configuration satisfying Lemma 5. It is the
minimal such prefix. A smaller prefix, (A,E, F ) has a 0-1-0 configuration, but it
does not satisfy Lemma 5 because Z ⊂ A ∪E ∪ F .

The minimal suffix P2 of P1 that satisfies Lemma 5 is (F,G,H, J), which is
found in the same way by working on the reverse of P1. Its sequence of con-
strained Venn classes are ({2, 3, . . . , 9}, {10, 11}, {12− 14}, {15}, {16}), labeled
(P, P,E,E,E), respectively. Selecting a 0 from the first partial class, a 1 from
the next, and a 0 from an empty class gives a 0-1-0 configuration. It satisfies con-
dition 2 of the lemma, because the unconstrained class, {0, 1} is partial, hence
Z 
⊆ F ∪G ∪H ∪ J .

Therefore, {F,G,H, J, Z} is the set of rows of a Tucker submatrix. A minimal
set of columns that illustrates that it satisfies the lemma is {0, 6, 10, 12, 15, 16}.
On the righthand side of Figure 4 is the resulting Tucker matrix, which matches
the final configuration in the sequence for MIII in Figure 7.

This example shows that the key to finding P1 and P2 is maintaining the
sequence of constrained Venn classes and their full/partial/empty labels as rows
are added in the order in which they occur on P or on the reverse of P1. Since
they are added in an order such that every prefix of the order has a connected
overlap graph, the sequence is uniquely constrained after each row is added, by
Lemma 1. When a row Ri is added, if it overlaps a constrained Venn class X ,
X must be replaced in the sequence with two Venn classes, (X \Ri, X ∩Ri) or
with (X ∩Ri, X \Ri), whichever is required to maintain consecutiveness of Ri.
If Ri intersects the unconstrained class, S, then Ri ∩ S must be added at one
extreme end of the sequence, whichever maintains consecutiveness of Ri. Details
are given in [10].

The difference between this algorithm and that of [10] (and Booth and Lueker)
is that, instead of testing at each iteration whether the next row Ri can be added
to those considered so far without undermining the consecutive-ones property,
it must repeatedly perform this test on the fixed row Z after each row Ri is
added. We already know that Ri can be added, since R′ has the consecutive-
ones property. Like Booth and Lueker, the previous algorithm of [10] applies the
full/partial/empty labels for Ri to facilitate the test, in O(|Ri|) time, and then
removes them before considering the next row Ri+1. Though we must perform
the test on the fixed row Z at each iteration, instead of on Ri, we must do it
O(|Ri|) time, not O(|Z|) time, in order to retain the linear time bound. To do
this, we leave the full/partial/empty labelings for Z from one iteration to the
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next, so that we only have to update them, using Ri, rather than re-creating
them each time a new row is considered.

To facilitate this, we keep updated labels c(X) and n(X) on each Venn class
X , where c(X) denotes the cardinality of X and n(X) is the number of elements
of Z in X . Labels only need to be updated when a Venn class is split. It is split
into X ∩Ri and X \Ri. We may find c(X ∩Ri) and n(X ∩Ri) by counting them
directly, since there are O(|Ri|) of these elements. The classes are implemented
with doubly-linked lists, and these sets are removed from the list for X , leaving
it to represent X \Ri. Subtracting c(X ∩Ri) and n(X ∩Ri) from the old labels
c(X) and n(X) gives the updated labels for c(X \ Ri) and n(X \ Ri) in O(1)
time. Each of the new classes is full if its c() and n() labels are equal, empty if
its n() label is 0, and partial otherwise.

To evaluate whether one of the conditions of Lemma 5 holds, it is easy to see
that it suffices to keep track of transition pairs, which are consecutive pairs
such that one contains a 0 and one contains a 1. This happens when their
full/partial/empty labels are unequal, or else both partial. When a new tran-
sition pair forms, we have touched at least one member of the pair within our
O(|Ri|) operations, so keeping track of these does not affect this time bound.

Since finding P takes linear time by the BFS of Section 3, it remains only to
bound the time required to find the first step, finding the elements A and B of
Lemma 7. This is much more straightforward, since we apply it once for each
iteration of the loop of Algorithm 1 hence we can afford to take Θ(size(M))
time for the test. We can apply the entire set of full/partial/empty labels for Z
to the PQ tree within this bound, by working from the leaves to the root.

For each Q node Q, the members of the overlap component whose union is Q
are unions of more than one and fewer than all of its children. How to find them
in linear time for all Q nodes has been described previously, for example in [8].
We find the rows of the overlap component that contain a Venn child of Q that
is labeled full or partial (a “1”). Out of all such rows, let A′ be the one with a
leftmost right endpoint, and let B′ be the one with the rightmost left endpoint.
By a simple greedy swapping argument, the overlap component giving rise to
Q contains an A and a B satisfying Lemma 7 if and only if A′ and B′ satisfy
it, which happens if and only if there is a child between the right endpoint of
A′ and the left endpoint of B′ that is labeled partial or empty (a “0”). This
can also clearly be implemented so that the time bound over all Q nodes takes
O(size(M)) time.

Once the set P2∪{Z} of rows of a Tucker matrix have been found, it remains
to find the columns. This is a set of columns, the removal of any one of which
would undermine the conditions of Lemma 5, which are satisfied initially by
P2 ∪ {Z}. Deletion of a column undermines the lemma if and only if:

1. It disconnects the path in overlap graph on R; or
2. It undermines the only remaining 1-0-1 configuration, or 0-1-0 configuration

with a 1 in the unconstrained class.

The second test is elementary and omitted because of space constraints. For
the first test, recall that P2 = (R1, R2, . . . , Rk) is a chordless path in the overlap
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graph. Let A = {R1 \ R2} ∪ {X |X = Ri ∩ Ri+1 for i ∈ {1, 2, . . . , k − 1}}
∪{Y |Y = Ri+1 \Ri for i ∈ {1, 2, . . . , k − 1}}. Each element of A is consecutive-
ones ordered, the sum of cardinalities of sets in A is O(size(M)). The overlap
graph remains connected if and only if every member of A contains at least one
retained column. We give each column a list of members of A it is contained in
and keep a counter on each element of A indicating the number of remaining
columns it contains. When removing a column C, the counters can be updated
by decrementing the counters of members of A in its list. A column cannot be
removed if removing it would decrement a counter to 0.

5 Finding a Lekkerkerker-Boland Subgraph

Tucker observed that the smallest graphs whose clique matrices contain a Tucker
matrix must be exactly the LB graphs [19]. Deletion of rows for the three simpli-
cial vertices in the clique matrix of GI , GII , GIV of GV gives a Tucker matrix.
However, it does not follow that every such Tucker submatrix in a clique matrix
of G can be extended to a submatrix giving the clique matrix of one of these LB
graphs. This is illustrated by Figure 5. Fortunately, it is true for clique matrices
of chordal graphs, which we show next.
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Fig. 5. A graph G and its clique matrix. In the upper left of the matrix is a Tucker
matrix, MIII . The only LB subgraph of G is the chordless cycle (b, c, e, d), which does
not contain row a of the MIII . This illustrates that not every Tucker submatrix in a
clique matrix can be extended to the clique matrix of an LB subgraph.

If G is not chordal, we may return a GIII by the algorithm of [18]. Henceforth,
we may assume that the graph is chordal. A clique tree of a chordal graph is
a tree that has one node for each maximal clique, and with the property that
for each vertex v of G, the cliques that contain v induce a connected subtree.
Every chordal graph has a clique tree, see for example [4]. The following Lemma
is immediate from results that appear in [4].

Lemma 9. Let T be a clique tree for a chordal graph G, and let K be a leaf.
Then K contains a simplicial vertex of G. Let S be the simplicial vertices of K,
and let T ′ be the result of deleting leaf K from T . Deleting S from G yields an
induced subgraph that has T ′ as a clique tree.
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Definition 3. By shrinking a clique tree T , let us denote the operation of delet-
ing the set S of simplicial vertices in a leaf K of T , yielding a smaller graph G′

with the smaller clique tree described by Lemma 9.

Lemma 10. Let G be a chordal graph and let MT be a submatrix of a clique
matrix of G that is an instance of MI on three vertices or an instance of MII −
MV . Then the clique matrix of an LB graph occurs in the submatrix of K induced
by the columns of MT , the rows of MT , and three additional rows, one for each
of the simplicial vertices depicted in Figure 2.

Proof. Let T be the column numbers occupied by MT in the clique matrix of G,
let i ∈ T , let K be the cliques of G corresponding to columns of T , and Ki be
the clique of G corresponding to the column i. Let V ′ be vertices corresponding
to rows occupied by MT , let C = {K ∩ V ′|K ∈ K} and let Ci = Ki ∩ V ′. Let
C′ = {C′ \ Ci|C′ ∈ C and C′ 
= Ci}. If the intersection graph of C′ is connected,
then let us say that Ci is an outsider in MT .

If Ci is an outsider, then in any clique tree of G, Ki does not lie on the path
between any pair of members of K in the clique tree of G. This is seen as follows.
Suppose Ki lies on the path P between two members of K. Then removal of Ki

from the clique tree separates the clique tree into two or more trees, at least
two of which contain members of K. Because the intersection graph of C′ is
connected, there exists v ∈ V ′ \ Ci that resides in cliques in two of these trees.
Since v 
∈ Ci, the subtree of the clique tree induced by cliques containing v is
not connected, a contradiction.

Therefore, suppose we iteratively shrink the clique tree of G subject to the
constraint that we do not shink any member of K when it becomes a leaf. The
procedure halts when all leaves of the clique tree of the resulting graph G′ are
members of K. If Ci is an outsider, Ki is a leaf in the clique tree of G′, which
means that it has a simplicial vertex s, by Lemma 9. The only column of T
where s has a 1 is in column i, hence Ci is the set of neighbors of s in G′.

It is easily verified that in MII(k), the first and last two columns of MII(k)
({1, k− 1}, {0, k− 2}, {k− 2, k− 1}) are outsiders. These are the neighbor sets
of GV (k + 3). Therefore, the MII(k) can be extended to a submatrix that is the
clique matrix of GV (k + 3). The rows of this submatrix is an induced GV (k + 3)
in G, as illustrated on the righthand side of Figure 2. Similarly, the first, third
and fifth column of MIV and the first, third and fourth column of MV the first
column and last two columns of MIII(k), and all columns of MI(3) are outsiders.
Any instance of these submatrices in the clique matrix of a chordal graph can
be extended to an instance of GI , GII , GIV (k + 3), and GV (6), respectively,
identifying an LB subgraph of G.

References

[1] Booth, S., Lueker, S.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379
(1976)



On Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs 357

[2] Brandstaedt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics, Philadelphia (1999)

[3] Chauve, C., Haus, U.-U., Stephen, T., You, V.P.: Minimal conflicting sets for the
consecutive ones property in ancestral genome reconstruction. Journal of Compu-
tational Biology 17, 1167–1181 (2010)

[4] Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

[5] Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper inteval
graphs and proper interval bigraphs. SIAM J. Discrete Math. 18, 554–570 (2004)

[6] Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms.
SIAM Journal on Computing 36, 236–353 (2006)

[7] Lekkerker, C., Boland, D.: Representation of finite graphs by a set of intervals on
the real line. Fund. Math. 51, 45–64 (1962)

[8] Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph
isomorphism. J. ACM 26, 183–195 (1979)

[9] Neidermeier, R., Dom, M., Guo, J.: Approximation and fixed-parameter algo-
rithms for consecutive ones submatrix problems. J. Comput. Syst. Sci. 76, 204–221
(2010)

[10] McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In:
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), vol. 15, pp. 761–770 (2004)
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Certifying 3-Edge-Connectivity

Kurt Mehlhorn, Adrian Neumann, and Jens M. Schmidt

Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract. We present a linear-time certifying algorithm that tests graphs for 3-
edge-connectivity. If the input graph G is not 3-edge-connected, the algorithm
returns a 2-edge-cut. If G is 3-edge-connected, the algorithm returns a construc-
tion sequence that constructs G from the graph with two nodes and three parallel
edges using only operations that (obviously) preserve 3-edge-connectivity.

1 Introduction

Advanced graph algorithms answer complex yes-no questions such as “Is this graph
planar?” or “Is this graph k-vertex-connected?”. They are not only nontrivial to imple-
ment, it is also difficult to test their implementations, as usually only small test sets are
available. It is hence possible that bugs persist unrecognized for a long time. An exam-
ple is the linear time planarity test of Hopcroft and Tarjan [7] in LEDA [13]. A bug was
discovered only after two years of intensive use.

Certifying algorithms [12] approach this problem by computing an additional certifi-
cate that proves the correctness of the answer. This may, e.g., be either a 2-coloring or
an odd cycle for testing bipartiteness, or either a planar embedding or a Kuratowski sub-
graph for testing planarity. Certifying algorithms are designed such that checking the
correctness of the certificate is substantially simpler than solving the original problem.
Ideally, checking the correctness is so simple that the implementation of the checking
routine allows for a formal verification. In that case, the solution of every instance is
correct by a formal proof [1].

Our main result is a linear time certifying algorithm for 3-edge-connectivity based
on a result of Mader [11]. He showed that every 3-edge-connected graph can be ob-
tained from K3

2 , the graph consisting of two vertices and three parallel edges, by a
sequence of three simple operations that each introduce one edge and, trivially, pre-
serve 3-edge-connectivity. We show how to compute such a sequence in linear time for
3-edge-connected graphs. If the input graph is not 3-edge-connected, a 2-edge-cut is
computed. The previous algorithms [6, 15, 22–24] for deciding 3-edge-connectivity are
not certifying; they deliver a 2-edge-cut for graphs that are not 3-edge-connected but no
certificate in the yes-case.

Our algorithm uses the concept of a chain decomposition of a graph introduced
in [19]. A chain decomposition is an ear decomposition [10]. It is used in [21] as
a common and simple framework for certifying 1- and 2-vertex, as well as 2-edge-
connectivity. Further, [20] uses them for certifying 3-vertex-connectivity. Chain decom-
positions are an example of path-based algorithms (see, e.g., Gabow [5]), which use
only the simple structure of certain paths in a DFS-tree to compute connectivity infor-
mation about the graph.

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 358–369, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Certifying 3-Edge-Connectivity 359

We use chain decompositions to certify 3-edge-connectivity in linear time. Thus,
chain decompositions form a common framework for certifying k-vertex- and k-edge-
connectivity for k ≤ 3 in linear time. We use many techniques from [20], but in a
simpler form. Hence our paper may also be used as a gentle introduction to the 3-vertex-
connectivity algorithm in [20].

Related Work. Deciding 3-edge-connectivity is a well researched problem, with appli-
cations in fields such as bioinformatics [4] and quantum chemistry [3]. Consequently,
there are many linear time solutions known [6, 15, 22–24]. None of them is certifying.

The paper [12] is a recent survey on certifying algorithms. For a linear time certify-
ing algorithm for 3-vertex-connectivity, see [20] (implemented in [16]). For general k,
there is a randomized certifying algorithm for k-vertex connectivity in [9] with expected
running time O(kn2.5 + nk3.5). There is a non-certifying algorithm [8] for deciding k-
edge-connectivity in time O(m log3 n) w.h.p..

In [6], a linear time algorithm is described that transforms a graph G into a graph G′

such that G is 3-edge-connected if and only if G′ is 3-vertex-connected. Combined with
this transformation, the certifying 3-vertex-connectivity algorithm from [20] certifies 3-
edge-connectivity in linear time. However, that algorithm is much more complex than
the algorithm given here. Moreover, we were unable to find an elegant method for trans-
forming the certificate obtained for the 3-vertex-connectivity of G′ into a certificate for
3-edge-connectivity of G.

2 Preliminaries

We consider finite undirected graphs G with n vertices, m edges, no self-loops, and
minimum degree three, and use standard graph-theoretic terminology from [2], unless
stated otherwise. We use uv to denote an edge with endpoints u and v.

A set of edges that leaves a disconnected graph upon deletion is called edge cut. For
k ≥ 1, let a graph G be k-edge-connected if n ≥ 2 and there is no edge cut X ⊆ E(G)
with |X | < k. Let v→G w denote a path P between two vertices v and w in G and let
s(P) = v and t(P) = w be the source and target vertex of P, respectively. Every vertex
in P\ {s(P), t(P)} is called an inner vertex of P and every vertex in P is said to lie on
P.

Let T be an undirected tree rooted at vertex r. For two vertices x and y in T , let x be
an ancestor of y and y be a descendant of x if x∈V (r→T y). If additionally x 
= y, x is a
proper ancestor and y is a proper descendant. We write x≤ y (x < y) if x is an ancestor
(proper ancestor) of y. The parent p(v) of a vertex v is its immediate proper ancestor.
The parent function is undefined for r. Let Km

2 be the graph on 2 vertices that contains
exactly m parallel edges.

Let subdividing an edge uv of a graph G be the operation that replaces uv with a path
uzv, where z was not previously in G. All 3-edge-connected graphs can be constructed
using a small set of operations starting from a K3

2 .
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Fig. 1. Two ways of constructing the 3-edge-connected graph shown in the rightmost column. The
upper row shows the construction according to Theorem 1. The lower row shows the construction
according to Corollary 1. Branch (non-branch) vertices are depicted as filled (non-filled) circles.
The black edges exist already, while dotted gray vertices and edges do not exist yet.

Theorem 1 (Mader [11]). Every 3-edge-connected graph (and no other graph) can be
constructed from a K3

2 using the following three operations:
– Adding an edge (possibly parallel or a loop).
– Subdividing an edge xy and connecting the new vertex to any existing vertex.
– Subdividing two distinct edges wx, yz and connecting the two new vertices.

A subdivision G′ of a graph G is a graph obtained by subdividing edges zero or more
times. The branch vertices of a subdivision are the vertices with degree at least three
(we call the other vertices non-branch-vertices) and the links of a subdivision are the
maximal paths whose inner vertices have degree two. If G has no vertex of degree two,
the links of G′ are in one-to-one correspondence to the edges of G. Theorem 1 readily
generalizes to subdivisions of 3-edge-connected graphs.

Corollary 1. Every subdivision of a 3-edge-connected graph (and no other graph) can
be constructed from a subdivision of a K3

2 using the following three operations:
– Adding a path connecting two branch vertices.
– Adding a path connecting a branch vertex and a non-branch vertex.
– Adding a path connecting two non-branch vertices lying on distinct links.

In all three cases, the inner vertices of the path added are new vertices.

Each path that is added to a graph H in the process of Corollary 1 is called a Mader-
path (with respect to H). Note that an ear is always a Mader-path unless both endpoints
lie on the same link.

Figure 1 shows two constructions of a 3-edge-connected graph, one according to
Theorem 1 and one according to Corollary 1. In this paper, we show how to find the
Mader construction sequence according to Corollary 1 for a 3-edge-connected graph in
linear time. Such a construction is readily turned into one according to Theorem 1.

3 Chain Decompositions

We use a very simple decomposition of graphs into cycles and paths. The decomposi-
tion was previously used for linear-time tests of 2-vertex- and 2-edge-connectivity [21]
and 3-vertex-connectivity [20]. In this paper we show that it can also be used to find
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Mader’s construction for a 3-edge-connected graph. We define the decomposition algo-
rithmically; a similar procedure that serves for the computation of low-points can be
found in [18].

Let G be a connected graph without self-loops and let T be a depth-first search tree
of G. Let r be the root of T . We orient tree-edges uv up, i.e., such that v < u, and
back-edges xy down, that is, such that x < y.

We decompose1 G into a set C = {C1, . . . ,C|C |} of cycles and paths, called chains,
by applying the following procedure for each vertex v in the order in which they were
discovered during the DFS.

First, we declare v visited2. Then, for every back-edge vw with s(vw) = v, we tra-
verse w→T r until a vertex x is encountered that was visited before; x is a descendant
of v. The traversed subgraph vw∪ (w →T x) forms a new chain C with s(C) = v and
t(C) = x. All inner vertices of C are declared visited. Observe that s(C) and t(C) are
already visited when the construction of the chain starts.

Figure 2 illustrates these definitions. Since every back-edge defines one chain, there
are precisely m−n+1 chains. We number the chains in the order of their construction.

1 2 3 4 5 6 7

C1

C2

C3

C4

C5

C1

C2

C4

interlacing

C3

nested

C5

nested

Fig. 2. The left side of the figure shows a DFS tree with a chain decomposition; tree-edges are
solid and back-edges are dashed. C1 is (16,65,54,43,32,21), C2 is (17,76), C3 is (24), C4 is (37),
and C5 is (45). C3 and C5 are nested children of C1 and C4 is an interlacing child of C2. Also,
s(C4) s-belongs to C1.

In the algorithm of Sect. 6, we start with Gc = C1 ∪C2. In the first phase, we form three
segments, namely {C4}, {C3}, and {C5}. The first segment can be added according to Lemma 4.
Then C3 can be added and then C5.

We call C a chain decomposition. It can be computed in time O(n + m). For 2-edge-
connected graphs the term decomposition is justified by Lemma 1.

Lemma 1 ([21]). Let C be a chain decomposition of a graph G. Then G is 2-edge-
connected if and only if G is connected and the chains in C partition E(G).

Since the condition of Lemma 1 is easily checked, we assume from now on that G is
2-edge-connected. Then C partitions E(G) and the first chain C1 is a cycle containing
r (since there is a back-edge incident to r). We say that r strongly belongs (s-belongs)
to the first chain and any vertex v 
= r s-belongs to the chain containing the edge v p(v).

1 If G is not 2-edge-connected, there will be edges and maybe vertices not belonging to any
chain.

2 Initially, no vertex is visited.
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We use s-belongs instead of belongs since a vertex can belong to many chains when
chains are viewed as sets of vertices.

We can now define a parent-tree on chains. The first chain C1 has no parent. For any
chain C 
= C1, let the parent p(C) of C be the chain to which t(C) s-belongs. We write
C ≤ D (C < D) for chains C and D if C is an ancestor (proper ancestor) of D in the
parent-tree on chains.

The following lemma summarizes important properties of chain decompositions.

Lemma 2. Let {C1, . . . ,Cm−n+1} be a chain decomposition of a 2-edge-connected graph
G and let r be the root of the DFS-tree. Then
(1) For every chain Ci, s(Ci)≤ t(Ci).
(2) Every chain Ci, i ≥ 2, has a parent chain p(Ci). We have s(p(Ci)) ≤ s(Ci) and

p(Ci) = Cj for some j < i.
(3) For i≥ 2: If t(Ci) 
= r, t(p(Ci)) < t(Ci). If t(Ci) = r, t(p(Ci)) = t(Ci).
(4) If u≤ v, u s-belongs to C, and v s-belongs to D then C ≤ D.
(5) If u≤ t(D) and u s-belongs to C, then C ≤ D.
(6) For i≥ 2: s(Ci) s-belongs to a chain Cj with j < i.

4 Chains as Mader-Paths

We show that, assuming that the input graph is 3-edge-connected, there are two chains
that form a subdivision of a K3

2 , and that the other chains of the chain decomposition
can be added one by one such that each chain is a Mader-path with respect to the union
of the previously added chains. We will also show that chains can be added parent-first,
i.e., when a chain is added, its parent was already added. In this way the current graph
Gc consisting of the already added chains is always parent-closed. We will later show
how to compute this ordering efficiently.

We assume that the input graph is 2-edge-connected. This is easily checked using
Lemma 1. This guarantees that the chain decomposition is a partition of the edge set
of the input graph. We will also use the following necessary condition for 3-edge-
connectivity.

Proposition 1. Let T be a DFS tree starting at r for a graph G. If G is 3-edge-connected,
then the subtree of every child of r must be connected to r by at least two back-edges.

Using the chain decomposition, we can identify a K3
2 subdivision in the graph as

follows. We may assume that the first two back-edges explored from r in the DFS have
their other endpoint in the same subtree T ′ rooted at some child of r. The first chain C1

forms a cycle. The vertices in C1 \r are then contained in T ′. By assumption, the second
chain is constructed by another back-edge that connects r with a vertex in T ′. If there
is no such back-edge, Proposition 1 exhibits a 2-edge-cut, namely the tree-edge and the
back-edge connecting r and T ′. Let x = t(C2). Then C1 ∪C2 forms a K3

2 subdivision
with branch vertices r and x. The next lemma derives properties of parent-closed unions
of chains.

Lemma 3. Let Gc be a parent-closed union of chains that contains C1 and C2. Then
(1) For any vertex v 
= r of Gc, the edge v p(v) is contained in Gc, i.e., the set of vertices

of Gc is a parent-closed subset of the DFS-tree.
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(2) s(C) and t(C) are branch vertices of Gc for every chain C contained in Gc.
(3) Let C be a chain that is not in Gc but a child of some chain in Gc. Then C is an ear

with respect to Gc and the path t(C)→T s(C) is contained in Gc. C is a Mader-path
(i.e., the endpoints of C are not inner vertices of the same link of Gc) with respect
to Gc if and only if there is a branch vertex on t(C)→T s(C).

We can now prove that chains can always be added in parent-first order.

Theorem 2. Let G graph and let Gc be a parent-closed union of chains such that no child
of a chain C⊂Gc is a Mader-path with respect to Gc and there is at least one such chain.
Then the extremal edges of every link of length at least two in Gc are a 2-cut in G.

Proof. Assume otherwise. Then there is a parent-closed union Gc of chains such that
no child of a chain in Gc is a Mader-path with respect to Gc and there is at least one
such child outside of Gc, but for every link in Gc the extremal edges are not a cut in G.

Consider any link L of Gc. Since the extremal edges of L do not form a 2-cut, there
is a path connecting an inner vertex on L with a vertex that is either a branch vertex
of Gc or a vertex on a link of Gc different from L. Let P be such a path of minimum
length. By minimality, no inner vertex of P belongs to Gc. Note that P is a Mader-path
with respect to Gc. We will show that at least one edge of P belongs to a chain C with
p(C) ∈Gc and that C can be added, contradicting our choice of Gc.

Let a and b be the endpoints of P, let z be the lowest common ancestor of all points
in P. Since a DFS generates only tree- and back-edges, z lies on P. Since z ≤ x for all
x ∈ P, no inner vertex of P belongs to Gc, and the vertex set of Gc is a parent-closed
subset of the DFS-tree, z is equal to a or b. Assume w.l.o.g. that z = a. All vertices of P
are descendants of a. We view P as oriented from a to b.

Since b is a vertex of Gc, the path b→T a is part of Gc by Lemma 2 and hence no
inner vertex of P lies on this path. Let av be the first edge on P. The vertex v must be a
descendant of b as otherwise the path v→P b would contain a cross-edge, i.e. an edge
between different subtrees. Hence av is a back-edge. Let D be the chain that starts with
the edge av. D does not belong to Gc, as no edge of P belongs to Gc.

We claim that t(D) is a proper descendant of b or D is a Mader-path with respect to
Gc. Since v is a descendant of b and t(D) is an ancestor of v, t(D) is either a proper
descendant of b, equal to b, or a proper ancestor of b. We consider each case separately.

If t(D) were a proper ancestor of b the edge b p(b) would belong to D and hence D
would be part of Gc, contradicting our choice of P. If t(D) is equal to b as then D is
a Mader-path with respect to Gc. This leaves the case that t(D) is a proper descendant
of b.

Let yb be the last edge on the path t(D)→T b. We claim that yb is also the last edge
of P. This holds since the last edge of P must come from a descendant of b (as ancestors
of b belong to Gc) and since it cannot come from a child different from y as otherwise
P would have to contain a cross-edge.

Let D∗ be the chain containing yb. Then D∗ ≤ D by Lemma 2.(5) (applied with
C = D∗ and u = y) and hence s(D∗) ≤ s(D) ≤ a by part (4) of the same lemma. Also
t(D∗) = b. Since b = t(D∗) ∈Gc, p(D∗) ∈Gc.

As a and b are not inner vertices of the same link, the path t(D∗)→T s(D∗) contains
a branch vertex. Thus D∗ is a Mader-path by Lemma 3. ��
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Corollary 2. If G is 3-edge-connected, chains can be greedily added in parent-first
order.

Theorem 2 gives rise to an O((n + m) log(n + m)) algorithm, the Greedy-Chain-
Addition Algorithm. Details can be found in the full version of this paper.

5 A Classification of Chains

When we add a chain in the Greedy-Chain-Addition algorithm, we also process its
children. Children that do not have both endpoints as inner nodes of the chain can
be added to the list of addable chains immediately. However, children that have both
endpoints as inner nodes of the chain cannot be added immediately and need to be
observed further until they become addable. We now make this distinction explicit by
classifying chains into two types, interlacing and nested.

We classify the chains {C3, . . .Cm−n+1} into two types. Let C be a chain with parent
Ĉ = p(C). We distinguish two cases3 for C.

– If s(C) is an ancestor of t(Ĉ) and a descendant of s(Ĉ), C is interlacing. We have
s(Ĉ)≤ s(C)≤ t(Ĉ)≤ t(C).

– If s(C) is a proper descendant of t(Ĉ), C is nested. We have s(Ĉ) ≤ t(Ĉ) < s(C) ≤
t(C) and t(C)→T s(C) is contained in Ĉ.

These cases are exhaustive as the following argument shows. Let s(Ĉ)v be the first
edge on Ĉ. By Lemma 2, s(Ĉ) ≤ s(C) ≤ v. We split the path v→T s(Ĉ) into two parts
corresponding to the two cases above, namely t(Ĉ) →T s(Ĉ), and (v →T t(Ĉ))\t(Ĉ).
Depending on which of these paths s(C) lies, it is classified as interlacing or nested.

The following simple observations are useful. For any chain C 
= C1, t(C) s-belongs
to Ĉ. If C is nested, s(C) and t(C) s-belong to Ĉ. If C is interlacing, s(C) s-belongs
to a chain which is a proper ancestor of Ĉ or Ĉ = C1. The next lemma confirms that
interlacing chains can be added once their parent belongs to Gc.

Lemma 4. Let Gc be a parent-closed union of chains that contains C1 and C2, let C be
any chain contained in Gc, and let D be an interlacing child of C not contained in Gc.
Then D is a Mader-path with respect to Gc.

6 A Linear Time Algorithm

According to Lemma 4, interlacing chains whose parent already belongs to the cur-
rent graph are always Mader-paths and can be added. Adding a chain may create new
branching vertices which in turn can turn other chains into Mader-paths. This obser-
vation suggests adding interlacing chains as early as possible. Only when there is no
interlacing chain to add, we need to consider nested chains. In that case and if the graph
is 3-edge-connected, some nested chain must be addable (because a previously added

3 In [20], three types of chains are distinguished. What we call nested is called Type 1 there and
what we call interlacing is split into Types 2 and 3 there. We do not need this finer distinction.
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Algorithm 1. Certifying linear-time algorithm for 3-edge connectivity.
procedure CONNECTIVITY(G=(V,E))

Let {C1,C2, . . . ,Cm−n+1} be a chain decomposition of G as described in Sect. 3;
Initialize Gc to C1 ∪C2;
for i from 1 to m−n+ 1 do

� Phase i: add all chains whose source s-belongs to Ci

Group the chains C for which s(C) s-belongs to Ci into segments;
� Part I of Phase i: add segments with interlacing root

Add all segments whose minimal chain is interlacing to Gc;
� Part II of Phase i: add segments with nested root

Either find an insertion order S1, . . . ,Sk on the segments having a nested minimal chain
or exhibit a 2-edge-cut and stop;

for j from 1 to k do
Add the chains contained in S j parent-first;

end for
end for

end procedure

chain created a branching vertex on the tree-path from the sink to the source of the
chain). The question is how to find this nested chain efficiently.

The following observation paves the way. Once we add a nested chain, its interlacing
children and then their interlacing children etc. become addable. This suggests consid-
ering nested chains not in isolation, but to consider them together with their interlacing
offspring. We formalize this intuition in the concept of segment below.

Nested chains have both endpoints on their parent chain. Consider the chains nested
in chain Ci. Which chains can help their addition by creating branching points on Ci?
First, chains nested in Ci and their interlacing offspring, and second, interlacing chains
having their source on some Cj with j < i. Chains having their source on some Cj with
j > i cannot help because they have no endpoint on Cj. These observations suggest an
algorithm operating in phases. In the i-th phase, we try to add all chains having their
source vertex on Ci.

The overall structure of the linear-time algorithm is given in Algorithm 1. An im-
plementation in Python is available athttps://github.com/adrianN/edge-
connectivity. The algorithm operates in phases and maintains a current graph Gc.
Let C1, C2, . . . , Cm−n+1 the chains of the chain decomposition in the order of creation.
We initialize Gc to C1 ∪C2. In phase i, i ∈ [1,m− n + 1], we consider the i-th chain Ci

and either add all chains C to Gc for which the source vertex s(C) s-belongs to Ci to Gc

or exhibit a 2-edge-cut. As already mentioned, chains are added parent-first and hence
Gc is always parent-closed. We maintain the following invariant:

Invariant: After phase i, Gc consists of all chains for which the source vertex s-belongs
to one of the chains C1 to Ci.
Lemma 5. For all i, the current chain Ci is part of the current graph Gc at the beginning
of phase i or the algorithm has exhibited a 2-edge-cut before phase i.

The next lemma gives information about the chains for which the source vertex s-
belongs to Ci. None of them belongs to Gc at the beginning of phase i (except for chain

https://github.com/adrianN/edge-connectivity
https://github.com/adrianN/edge-connectivity
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C2 that belongs to Gc at the beginning of phase 1) and they form subtrees of the chain
tree. Only the roots of these subtrees can be nested. All other chains are interlacing.

Lemma 6. Assume that the algorithm reaches phase i without exhibiting a 2-edge-cut.
Let C 
= C2 be a chain for which s(C) s-belongs to Ci. Then C is not part of Gc at the
beginning of phase i. Let D be any ancestor of C that is not in Gc. Then:
(1) s(D) s-belongs to Ci.
(2) If D is nested, it is a child of Ci.
(3) If p(D) is not part of the current graph, D is interlacing.

We can now define the segments with respect to Ci. Consider the set S of chains
whose source vertex s-belongs to Ci. For a chain C ∈S , let C∗ be the minimal ancestor
of C that does not belong to Gc. Two chains C and D in S belong to the same segment
if and only if C∗ = D∗, see Figure 2 for an illustration.

Consider any C ∈S . By part (1) of the preceding lemma either p(C) ∈S or p(C)
is part of Gc. Moreover, C and p(C) belong to the same segment in the first case. Thus
segments correspond to subtrees in the chain tree. In any segment only the minimal
chain can be nested by Lemma 6. If it is nested, it is a child of Ci (parts (2) and (3) of
the preceding lemma). Since only the root of a segment may be a nested chain, once it
is added to the current graph all other chains in the segment can be added in parent-first
order by Lemma 4. All that remains is to find the proper ordering of the segments . We
do so in Lemma 10. If no proper ordering exists, we exhibit a 2-edge-cut.

Lemma 7. All chains in a segment S can be added in parent-first order if its minimal
chain can be added.

It is easy to determine the segments with respect to Ci. We iterate over all chains C
whose source s(C) s-belongs to Ci. For each such chain, we traverse the path C, p(C),
p(p(C)), . . . until we reach a chain that belongs to Gc or is already marked4. In the
former case, we distinguish cases. If the last chain on the path is nested we mark all
chains on the path with the nested chain. If we hit a marked chain we copy the marker
to all chains in the path. Otherwise, i.e., all chains are interlacing and unmarked, we add
all chains in the path to Gc in parent-first order, as this segment can be added according
to Corollary 7. We have now completed part I of phase i, namely the addition of all
segments whose minimal chain is interlacing. We have also determined the segments
with nested minimal chain.

It remains to compute a proper ordering of the segments in which the minimal chain
is nested or to exhibit a 2-edge-cut. We do so in part II of phase i. For simplicity, we
will say ‘segment’ instead of ‘segment containing a nested chain’ from now on.

For a segment S let the attachment points of S be all vertices in S that are in Gc.
Note that the attachment points must necessarily be endpoints of chains in S and hence
adding the chains of S makes the attachment points branch vertices. Nested children
C of Ci can be added if there are branch vertices on t(C)→T s(C), therefore adding a
segment can make it possible to add further segments.

Lemma 8. Let C be a nested child of Ci and let S be the segment containing C. Then
all attachment points of S lie on the path t(C)→T s(C) and hence on Ci.

4 Initially, all chains are unmarked
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For a set of segments S1, . . . ,Sk, let the overlap graph be the graph on the segments
and a special vertex R for the branch vertices on Ci. In the overlap graph, there is an
edge between R and a vertex Si, if there are attachment points a1 ≤ a2 of Si such that
there is a branch vertex on the tree path a2 →T a1. Further, between two vertices Si and
S j there is an edge if there are attachment points a1, a2 in Si and b1, b2 in S j, such that
a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2. We say that Si and S j overlap.

Lemma 9. Let C be a connected component of the overlap graph H and let S be any
segment with respect to Ci whose minimal chain C is nested. Then S ∈ C if and only if

(i) R ∈ C and there is a branch vertex on t(C)→T s(C) or
(ii) there are attachments a1 and a2 of S and attachments b1 and b2 of segments in C

with a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2.

Lemma 10. Assume the algorithm reaches phase i. If the overlap graph H induced by
the segments with respect to Ci is connected, we can add all segments of Ci. If H is not
connected, we can exhibit a 2-edge-cut for any component of H that does not contain R.

It remains to show that we can find an order as required in Lemma 10, or a 2-edge-cut,
in linear time. We reduce the problem of finding an order on the segments to a problem
on intervals. W.l.o.g. assume that the vertices of Ci are numbered consecutively from
1 to |Ci|. Consider any segment S, and let a0 ≤ a1 ≤ . . . ≤ ak be the set of attachment
points of S, i.e., the set of vertices that S has in common with Ci. We associate the
intervals {[a0,a�]|1 ≤ � ≤ k}∪{[a�,ak]|1 ≤ � < k}, with S and for every branch vertex
v on Ci we define an interval [0,v]. See Figure 3 for an example.

1 2 3 4 1 2 3 40

Fig. 3. Intervals for the solid segment with attachment points 1,2,4

We say two intervals [a,a′], [b,b′] overlap if a≤ b≤ a′ ≤ b′. Note that overlapping is
different from intersecting; an interval does not overlap intervals in which it is properly
contained or which it properly contains. This relation naturally induces a graph H ′ on
the intervals. Contracting all intervals that belong to the same segment makes H ′ iso-
morphic to the overlap graph as required for Lemma 10. Hence we can use H ′ to find
the order on the segments.

A naive approach that constructs H ′, contracts intervals, and runs a DFS will fail,
since the overlap graph can have a quadratic number of edges. However, using a method
developed by Olariu and Zomaya [17], we can compute a spanning forest of H ′ in time
linear in the number of intervals. The presentation in [17] is for the PRAM and thus
needlessly complicated for our purposes. A simpler explanation can be found in the full
version of this paper [14].

Since the number of intervals created for a chain Ci is bounded by |NC(Ci)|+2|In(Ci)|
+ |Vbranch(Ci)|, where NC(Ci) are the nested children of Ci, In(Ci) are the interlacing
chains that start on Ci, and Vbranch(Ci) is the set of branch vertices on Ci, the total time
spent on this procedure for all chains is O(m). From the above discussion follows:
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Theorem 3. For a 3-edge-connected graph, a Mader construction sequence can be
found in time O(n + m).

7 Verifying the Certificate

The certificate is either a 2-edge-cut, or a sequence of Mader-paths. For a 2-edge-cut,
we simply remove the two edges and verify that G is no longer connected.

Checking the Mader sequence is slightly more involved. We assume that each edge
in a Mader-path is doubly linked to the corresponding edge in G. Let G′ be a copy of
G. We remove the Mader-paths again, in reverse order, suppressing vertices of degree
two as they occur. This can create multiple edges and loops. Let G′i be the multi-graph
before we remove the i-th path Pi. There are several things that we need to verify:

– G must have minimum degree three.
– The union of Mader-paths must be isomorphic to G and the Mader-paths must

partition the edges of G. This is easy to check using the links between the edges of
the paths and the edges of G.

– The paths we remove must be ears. More precisely, at step i, Pi must have been
reduced to a single edge in G′i, as inner vertices of Pi must have been suppressed if
Pi is an ear for G′i.

– The Pi must not subdivide the same link twice. That is, after deleting the edge
corresponding to Pi, it must not be the case that both endpoints are still adjacent (or
equal, i.e. Pi is a loop) but have degree two.

– When only two paths are left, the graph must be a K3
2 .

8 Conclusion

We presented a certifying linear time algorithm for 3-edge-connectivity based on chain
decompositions of graphs. It is simple enough for use in a classroom setting and can
serve as a gentle introduction to the certifying 3-vertex-connectivity algorithm of [20].
We also provide an implementation in Python, available at https://github.com/
adrianN/edge-connectivity.

There remain some open problems. Foremost, our algorithm only computes one 2-
edge-cut. Is it possible to compute the 3-edge-connected components easily?

Mader’s construction sequence is general enough to construct k-edge-connected graphs
for any k≥ 3, and can thus be used in certifying algorithms for larger k. So far, though,
it is unclear how to compute these more complicated construction sequences. We hope
that the chain decomposition framework can be adapted to work in these cases too.
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Abstract. Weaddress the parameterized complexity ofMaxColorable

Induced Subgraph on perfect graphs. The problem asks for a maximum
sized q-colorable induced subgraph of an input graph G. Yannakakis and
Gavril [ IPL 1987 ] showed that this problem is NP-complete even on split
graphs if q is part of input, but gave a nO(q) algorithm on chordal graphs.
We first observe that the problem is W[2]-hard parameterized by q, even
on split graphs. However, when parameterized by �, the number of vertices
in the solution, we give two fixed-parameter tractable algorithms.

– The first algorithm runs in time 5.44�(n+#α(G))O(1) where #α(G)
is the number of maximal independent sets of the input graph.

– The second algorithm runs in time q�+o(�)nO(1)Tα where Tα is the
time required to find a maximum independent set in any induced
subgraph of G.

The first algorithm is efficient when the input graph contains only
polynomially many maximal independent sets; for example split graphs
and co-chordal graphs. The running time of the second algorithm is
FPT in � alone (whenever Tα is a polynomial in n), since q ≤ � for all
non-trivial situations. Finally, we show that (under standard complexity-
theoretic assumptions) the problem does not admit a polynomial kernel
on split and perfect graphs in the following sense:

(a) On split graphs, we do not expect a polynomial kernel if q is a part
of the input.

(b) On perfect graphs, we do not expect a polynomial kernel even for
fixed values of q ≥ 2.

1 Introduction

A fundamental class of graph optimization problems involve finding a maximum
induced subgraph satisfying specific properties, such as being edgeless (maxi-
mum independent set) [4,5,6,19], acyclic [9], bipartite [4,5], regular [12] or q-
colorable [1,20] (equivalent to finding a maximum independent set when q = 1,
and a maximum induced bipartite subgraph when q = 2). Several of these prob-
lems are NP-hard on general undirected graphs. Therefore, studies of these prob-
lems have involved algorithmic paradigms designed to cope with NP-hardness,

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 370–381, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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like approximation and parameterization [4,5,9,6,19,20]. The focus of this paper
is the Max q-Colorable Induced Subgraph problem, with a special focus
on co-chordal graphs and perfect graphs. Our results are of a parameterized
flavor, involving both FPT algorithms and lower bounds for polynomial kernels.

Before we can describe our results, we establish some basic notions. A graph
G = (V,E) is called q-colorable if there is a coloring function f : V → [q] such
that f(u) 
= f(v) for any (u, v) ∈ E. Equivalently, a graph is q-colorable if its
vertex set can be partitioned into q independent sets. The Max q-Colorable

Induced Subgraph asks for a maximum induced subgraph that is q-colorable,
and the decision version, p-mcis, may be stated as follows:

p-Max Colorable Induced Subgraph (p-mcis) Parameter: �
Input: An undirected graph G = (V,E) and positive integers q and �.
Question: Does there exist Z ⊆ V , |Z| ≥ �, such that G[Z] is q-colorable?

We will sometimes be concerned with the problem above for fixed values of q,
and to distinguish this from the case when q is a part of the input, we use p-q-
mcis to refer to the version where q is fixed. The problem is clearly NP-complete
on general graphs as for q = 1 this corresponds to Independent Set problem.
Yannakakis and Gavril [20] showed that this problem is NP-complete even on
split graphs (which is a proper subset of perfect graphs, chordal graphs and
co-chordal graphs, see Section 2 for definitions). However, they showed that p-q-
mcis is solvable in time nO(q) on chordal graphs. A natural question, therefore,
is whether the problem admits an algorithm with running time f(q) · nO(1) on
chordal graphs, or even on split graphs. This question was our main motivation
for looking at p-mcis on special graph classes like co-chordal and perfect graphs.

Our study of p-mcis involves determining the parameterized complexity of
the problem. The goal of parameterized complexity is to find ways of solving
NP-hard problems more efficiently than brute force: here the aim is to restrict
the combinatorial explosion to a parameter that is hopefully much smaller than
the input size. Formally, a parametrization of a problem is assigning an integer
k to each input instance and we say that a parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm that solves the problem in
time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary com-
putable function depending on the parameter k only. Just as NP-hardness is
used as evidence that a problem probably is not polynomial time solvable, there
exists a hierarchy of complexity classes above FPT, and showing that a parame-
terized problem is hard for one of these classes gives evidence that the problem is
unlikely to be fixed-parameter tractable. The principal analogue of the classical
intractability class NP is W[1]. A convenient source of W[1]-hardness reductions
is provided by the result that Independent Set parameterized by solution
size is complete for W[1]. Other highlights of the theory include that Dominat-

ing Set, by contrast, is complete for W[2]. For more background, the reader
is referred to the monographs [8]. A parameterized problem is said to admit
a polynomial kernel if every instance (I, k) can be reduced in polynomial time
to an equivalent instance with both size and parameter value bounded by a
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polynomial in k. The study of kernelization is a major research frontier of pa-
rameterized complexity and many important recent advances in the area are on
kernelization. The recent development of a framework for ruling out polynomial
kernels under certain complexity-theoretic assumptions [3,7,10] has added a new
dimension to the field and strengthened its connections to classical complexity.
For overviews of kernelization we refer to surveys [2,11] and to the corresponding
chapters in books on parameterized complexity [8,18].

Our results and related work. Most of the “induced subgraph problems” are
known to be W-hard parameterized by the solution size on general graphs by a
generic result of Khot and Raman [14]. In particular this also implies that p-
mcis is W[1]-hard parameterized by the solution size on general graphs. Observe
that Independent Set is essentially p-mcis with q = 1. There has been also
some study of parameterized complexity of Independent Set on special graph
classes [6,19]. Yannakakis and Gavril [20] showed that p-mcis is NP-complete on
split graphs and Addario-Berry et al. [1] showed that the problem is NP-complete
on perfect graphs for every fixed q ≥ 2. We observe in passing that the known
NP-completeness reduction given in [20] implies that p-mcis when parameterized
by q alone is W[2]-hard even on split graphs. Our main contributions in this
paper are two randomized FPT algorithms for p-mcis and a complementary
lower bound, which establishes the non-existence of a polynomial kernel under
standard complexity-theoretic assumptions.

Our first algorithm runs in time (2e)�(n + #α(G))O(1) where #α(G) is the
number of maximal independent sets of the input graph and the second algorithm
runs in time q� ·Tα ·nO(1), where Tα is the time required to compute the largest
independent set in any subgraph of the given graph. Observe that since q ≤ � for
all non-trivial situations, we have that the second algorithm is FPT in � alone,
provided Tα is a polynomial in n. The first algorithm is efficient when the input
graph contains only polynomially many maximal independent sets; for example
on split graphs and co-chordal graphs. The second algorithm is efficient for a
larger class of graphs, because it only relies on an efficient procedure for finding
a maximum independent set (although this comes at the cost of the running
time depending on q in the base of the exponent). In particular, the second
algorithm runs in time q�nO(1) on the class of perfect graphs. We also describe
de-randomization procedures. While the derandomization technique for the first
algorithm is standard, to derandomize the second algorithm we need a notion
which generalizes the idea of “universal sets”, introduced by Naor et al. [16]. We
believe that our construction, though simple, could be of independent interest.
Further, we show that unless co-NP ⊆ NP/poly, the problem does not admit
polynomial kernel even on split graphs. Also, on perfect graphs, we show that
the problem does not admit a polynomial kernel even for fixed q ≥ 2, unless
co-NP ⊆ NP/poly.

2 Preliminaries and Definitions

For a finite set V , a pair G = (V,E) such that E ⊆ V 2 is a graph on V . The
elements of V are called vertices, while pairs of vertices (u, v) such that (u, v) ∈ E
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are called edges. We also use V (G) and E(G) to denote the vertex set and the
edge set of G, respectively. In the following, let G = (V,E) and G′ = (V ′, E′) be
graphs, and let U ⊆ V be some subset of vertices of G. Let G′ be a subgraph of
G. If E′ contains all the edges {u, v} ∈ E with u, v ∈ V ′, then G′ is an induced
subgraph of G, induced by V ′, denoted by G[V ′]. For any U ⊆ V , we denote
G[V \ U ] by G \ U . For v ∈ V , NG(v) = {u | (u, v) ∈ E}. The complement of
a graph G = (V,E), denoted by Ḡ, is the graph with vertex set V and edge set
V ×V \ (E∪{(v, v) | v ∈ V }). A set X ⊆ V is called a clique (resp., independent
set) if every pair of vertices in X is adjacent (resp., non-adjacent) in G. X is
called a maximal clique (resp., independent set), if no proper super set of X is
clique (resp., independent set). We denote the size of the maximum clique in
graph G by w(G). A graph G is q-colorable if we can partition the vertex set in
to q independent sets. The chromatic number χ(G) of a graph G is the minimum
q such that G is q-colorable.

A graph G is called perfect, if ∀ U ⊆ V (G), w(G[U ]) = χ(G[U ]). A graph
G = (V,E) is called chordal if every simple cycle of with more than three vertices
has an edge connecting two nonconsecutive vertices on the cycle. A graph is co-
chordal if its complement is a chordal graph. All chordal graphs and co-chordal
graphs are perfect graphs. A split graph is a graph whose vertex set can be
partitioned into two subsets I and Q such that I is an independent set and Q
is a clique. Split graphs are closed under complementation. We denote the set
{1, 2, . . . , n} by [n] and all possible subsets of size k of [n] by

(
[n]
k

)
.

Definition 2.1. Let G = (V,E) and Hx = (Vx, Ex) for x ∈ V be graphs. We
define the graph G′ = Embed(G; (Hx)x∈V ) as the graph obtained from G by
replacing each vertex x with the graph Hx . Formally, V (G′) = {ux|x ∈ V, u ∈
Vx} and E(G′) = {(ux, vx)|(u, v) ∈ Ex} ∪ {(ux, vy)|(x, y) ∈ E, u ∈ Vx, v ∈ Vy}.

We say that the graph Embed(G; (Hx)x∈V ) is obtained by embedding (Hx)x∈V

into G. We say that a graph class Π is closed under embedding if whenever
G ∈ Π and Hx ∈ Π, ∀x ∈ V (G), then the graph Embed(G; (Hx)x∈V (G))
belongs to Π . It is known that perfect graphs are closed under embedding [15].
Let G = (V,E) be a graph and E′ ⊆ E. We define the graph Δ(G;E′) as adding
vertices xe and edges (xe, u), (xe, v) for all (u, v) = e ∈ E′.

Lemma 2.1 (�). If G = (V,E) is a perfect graph and E′ ⊆ E, then Δ(G;E′)
is also a perfect graph.

Due to space constraints, some proofs have been deferred to a full version of the
paper. Results whose proofs are omitted are marked with a �.

3 Generalized Universal Sets

In this section we generalize a derandomization tool, universal sets given by Naor
et al. [16].
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Definition 3.1. An (n, k, q)-universal set is a set of vectors V ⊆ [q]n such that

for any index set S ∈
(
[n]
k

)
, the projection of V on S contains all possible qk

configurations.

Theorem 3.1 (�). An (n, k, q)-universal set of cardinality qkkO(log k) log2 n can
be constructed deterministically in time O(qkkO(log k)n log2 n).

Definition 3.2 ([16]). Let H be a family of functions from [n] to [l]. H is an

(n, k, l)-family of perfect hash functions if for all S ∈
(
[n]
k

)
, there is an h ∈ H

which is one-to-one on S.

Theorem 3.2 ([16]). There is a deterministic algorithm with running time
O(ekkO(log k)n logn) that constructs an (n, k, k)-family of perfect hash functions
F such that |F| = ekkO(log k) logn.

4 FPT Algorithms

In this section we design two randomized algorithms for p-mcis. The first algo-
rithm requires a subroutine that enumerates all maximal independent sets in the
input graph and this algorithm is useful only when the input graph has poly-
nomially many maximal independent sets. We can derandomize this algorithm
using a (n, �, �)-family of perfect hash functions.

The second algorithm requires a subroutine which computes the maximum
independent set of any induced subgraph of the input graph. Thus, this algorithm
is FPT on all graph classes for which Independent Set is either polynomial
time solvable or FPT parameterized by the solution size. We derandomize this
algorithm using the (n, �, q)-universal sets described in the previous section.

Notice that the second algorithm is less demanding than the first: we only
need to find the largest independent set, rather than enumerating all maximal
ones. Thus the second algorithm solves the problem for a larger class of graphs
than the first, however, as we will see, the running time is compromised in that a
dependence on q creeps into the base of the exponent. In particular, this is why
the second algorithm does not render the first obsolete. The first can be thought
of as a more efficient algorithm when the class of graphs was restricted further.

Algorithm based on enumerating Maximal Indepenent Sets. Let #α(G) denote
the number of maximal independent sets of G, and T#α(G) denote the time
taken to enumerate the maximal independent sets of a graph G. In this section
we give a randomized algorithm with one sided error for p-mcis that uses all the
maximal independent sets in the graph, runs in time T#α(G) + 2�(n + #α)O(1),
and gives the correct answer with probability at least e−�. The error is one-sided:
if the input instance is No instance, then the algorithm will output No always.
Thus, in any graph class where the maximal independent sets can be enumerated
in polynomial time, we can solve p-mcis with constant success probability in
O((2e)�nO(1)) time.
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Algorithm 1. An Algorithm for p-mcis based on enumerating MIS.

Input: A graph G = (V,E) and positive integers �, q
Output: Yes, if there exists S ⊆ V , |S| = � and G[S] is q-colorable, No otherwise.

1. Enumerate all maximal independent sets in G. Let M = {m1,m2, . . . ,mt} be the
set of all maximal independent sets.

2. Construct a split graph G′ = (V �M,E′ = {(v,mi)| mi ∈ M, v ∈ V ∩mi}), where
G′[M ] is a clique.

3. Color each vertex in V with a color from an �-sized set of colors uniformly at
random.

4. Merge all vertices in each color class into a single vertex. Formally, replace each
color class Ci by a single vertex ci, and let N(ci) = {u | ∃v ∈ Ci, (u, v) ∈ E′}. Let
the graph after contraction be G∗ = (C �M,E∗).

5. If there exists a partition of C into q sets C1, C2, . . . , Cq such that for all i, Ci has a
common neighbor in M , then output Yes, otherwise output No. (This is based on
a Steiner Tree computation with C as terminals, see the proof for a description.)

Lemma 4.1. Algorithm 1 runs in time O(2�nO(1)) on graphs where the maximal
independent sets can be enumerated in polynomial time. Further, if (G, �, q) is a
Yes instance of p-mcis, then Algorithm 1 will output Yes with probability at
least e−l, otherwise Algorithm 1 will output No with probability 1.

Proof. We first argue the running time bound. Since we assume that maximal
independent sets are enumerable in polynomial time, Steps 1—4 are clearly poly-
nomial time. To find the partition in Step 5, we run a Steiner Tree algorithm on
the instance with C given as the set of terminals. We claim that a partition of
the desired kind exists if and only if there exists a Steiner Tree using at most q
additional vertices to connect the terminal set C. First, if the set C can be con-
nected with at most q additional vertices {s1, . . . , sq} from M , then notice that
the non-terminal vertices in the Steiner Tree constitute a dominating set for C
(indeed, any non-dominated vertex ci is necessarily disconnected from C \ {ci}).
Therefore, {N(si)\

⋃
1≤j<i N(sj) | 1 ≤ i ≤ q} gives the desired partition. On the

other hand, suppose we have a partition of C into q sets C1, C2, . . . , Cq such that
for all i, Ci has a common neighbor si in M . Note that the set S := {s1, . . . , sq}
is a Steiner Tree for C: given x ∈ Ci and y ∈ Cj , the path (x, si), (si, sj), (sj , y)
(where si = sj if i = j) lies in C ∪ S. Since finding the optimal Steiner Tree on
an instance with k terminals can be done in O(2knO(1)) time [17], we have that
the last step of the algorithm runs in time O(2�nO(1)).

We now show the correctness of the algorithm whenever the output is posi-
tive. Suppose Algorithm 1 outputs Yes. Then there exist q vertices in M that
dominates all vertices in C which implies at least one vertex in each color class
that is dominated by one or more of these q vertices. In particular, there ex-
ists a subset T ⊆ V with � vertices and a subset S ⊆ M with q vertices, such
that S dominates T . We argue that G[T ] is the desired q-colorable subgraph.
Let T := {v1, v2, . . . , v�}. For each vi, let c(vi) be the smallest j for which vi
is dominated by mj . Notice that c defines a partition of T into q sets. For all



376 N. Misra et al.

Algorithm 2. An Algorithm for p-mcis based on finding maximum IS.

Input: A graph G = (V,E) and a positive integers �, q
Output: Yes, if there exists S ⊆ V , |S| = l and G[S] is q-colorable, No otherwise.

– Color the graph uniformly at random with q colors. Let Ci be the color classes for
1 ≤ i ≤ q.

– Find the maximum independent sets Hi for each Ci.
– If |

⋃
1≤i≤q Hi| ≥ �, say Yes, otherwise say No.

1 ≤ j ≤ q, it is clear that c−1(j) is a subset of some maximal independent set,
and hence the proposed partition is a proper coloring. Therefore, (G, �, q) is a
Yes instance of p-mcis.

We now argue the probability that the algorithm finds a solution given that
the input is a Yes instance. Let (G, �, q) be a Yes instance of p-mcis, and let
T ⊆ V with |T | = �, be a solution. When we randomly color the vertices, each
vertex in T will get different colors with probability �!

��
≥ e−�. If T gets different

colors then there exists q sets in M which dominate C because there exists a
maximal independent set that contains each color class in G[T ] (since G[T ] is q-
colorable). Hence Algorithm 1 will output Yes with probability at least e−l. ��

We can boost the success probability to a constant by executing Algorithm 1

e� times, in which case the success probability will be at least (1 − e−�)e
� ≥

1
e . It is easy to see that we can derandomize the algorithm using a (n, �, �)-
family of perfect hash functions (see Theorem 3.2) to obtain a deterministic
algorithm with running time (2e)��O(log �)nO(1) for p-mcis on graph classes for
which maximal independent sets can be enumerated in polynomial time. Since
the number of maximal cliques in chordal graphs with n vertices is bounded by
n and all maximal cliques in chordal graphs can be enumerated in polynomial
in n time, the number of independent sets in co-chordal graphs are bounded by
linear in n and they can be enumerated in polynomial in n time as well. We
therefore have the following corollary:

Corollary 4.1. p-mcis can be solved in time (2e)� · �O(log �)nO(1) on co-chordal
graphs and split graphs.

Algorithm based on finding a Maximum Independent Set. In Algorithm 2, we
describe a randomized polynomial time algorithm which succeeds with proba-
bility q−� on graph classes where Maximum Independent Set can be solved
in polynomial time.

Lemma 4.2 (�). If (G, �, q) is a Yes instance of p-mcis, then Algorithm 2
will output Yes with probability q−�, otherwise Algorithm 2 will output No with
probability 1. The algorithm runs in time Tα ·nO(1), where Tα is the time required
to find a maximum independent set up to size l in any induced subgraph of G.

Corollary 4.2. The problem of finding a �-sized q-colorable subgraph on perfect
graphs can be solved in time q��O(log �)nO(1).
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5 Kernelization Lower Bounds

In this section we show that Max Induced Bipartite Subgraph (i.e, q=2 in
p-mcis) on perfect graphs and p-mcis on split graphs do not admit polynomial
kernels unless co-NP ⊆ NP/poly.

Lower bound Machinery We begin by stating some of the known techniques
developed for showing some problems do not admit polynomial kernels under
standard complexity theoretic assumptions.

Definition 5.1 (Composition [3]). A composition algorithm (also called OR-
composition algorithm) for a parameterized problem Π ⊆ Σ∗×N is an algorithm
that receives as input a sequence ((x1, k), ..., (xt, k)), with (xi, k) ∈ Σ∗ × N for
each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N

with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial
in k. A parameterized problem is compositional (or OR-compositional) if there
is a composition algorithm for it.

We define the notion of the unparameterized version of a parameterized prob-
lem Π . The mapping of parameterized problems to unparameterized problems
is done by mapping (x, k) to the string x#1k , where # ∈ Σ denotes the blank
letter and 1 is an arbitrary letter in Σ. In this way, the unparameterized version
of a parameterized problem Π is the language Π̃ = {x#1k|(x, k) ∈ Π}. The
following theorem yields the desired connection between the two notions.

Theorem 5.1 ([3,10]). Let Π be a compositional parameterized problem whose
unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then co-NP ⊆ NP/poly.

5.1 Max Induced Bipartite Subgraph on Perfect and Split Graphs

The Max Induced Bipartite Subgraph problem is formally given as follows:

Max Induced Bipartite Subgraph (p-mibs) Parameter: k
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Does there exist S ⊆ V such that |S| = k and G[S] is bipartite?

Here, we show that unless co-NP ⊆ NP/poly, p-mibs does not have a polyno-
mial kernel when restricted to perfect graphs. We note that we are dealing here
with the case of finding a maximum induced bipartite subgraph in the interest of
exposition; a more general result that shows the hardness of finding a maximum
induced q-colorable subgraph for any fixed q ≥ 2 on the class of perfect graphs
is described in the full version of this work.

Our result here is established by demonstrating an OR-composition. Let
(G0, k), (G1, k), . . . , (Gt−1, k) be t instances of p-mibs, where every Gi is a per-
fect graph. Notice that we may assume that t ≤ 2k log k+k. This is because, by
Corollary 4.2, we may solve p-mibs in time 2k log k+k (note that q = 2) on per-
fect graphs. Therefore, if t > 2k log k+k, then we may solve every instance in time
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Fig. 1. Identity gadget Hij

t · 2k log k+k < t2, and return a trivial Yes or No instance as the output of the
composition, depending on whether there was at least one Yes instance or not,
respectively.

Thus, we assume that t ≤ 2k log k+k, and therefore, log t ≤ kO(1). For conve-
nience, we assume that t is a power of two (so that log t is an integral value).
This can be done by padding the set of instances with trivial No instances,
and at most doubling the number of instances. We construct a composed in-
stance (G, k∗) as follows. To begin with, let G be the disjoint union of all Gi,
0 ≤ i ≤ t− 1. For all i 
= j add all possible edges between Gi and Gj .

Now add 2k log t identity gadgets, named Hij for 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t.
The gadget Hij consists of eight vertices {xij , yij , wij , zij , aij , bij , cij , dij}, where
the vertices {xij , yij , wij , zij} form a clique, and the vertex aij is adjacent to xij

and wij ; bij is adjacent to xij and zij ; cij is adjacent to wij and yij and dij is
adjacent to yij and zij (see Fig 1). For all 0 ≤ l ≤ t−1, if the jth bit of the log t-bit
binary representation of l is 0, then add edges from all vertices in Gl to xij and
yij . Otherwise add edges from all vertices in Gl to wij and zij . This completes
the description of the composed graph; we let k∗ = k + 12k log t ≤ k + 12k(k +
k log k) = O(k2 log k). Having shown that k∗ is polynomially dependent on k,
for simplicity, in the remaining discussion we continue refer to k∗ in terms of t.
We first show that this is indeed a valid OR-composition, and then demonstrate
that G, as described, is a perfect graph.

Lemma 5.1. The instance (G, k + 12k log t) is a Yes instance of p-mibs if,
and only if, (Gl, k) is a Yes instance of p-mibs for some 0 ≤ l ≤ (t− 1).

Proof. (⇒) Assume (G, k + 12k log t) is a Yes instance of p-mibs and let S ⊆
V (G) be a solution. We first claim that S will not contain vertices from more
than two input instances. Indeed, suppose not. Then for i1 
= i2 
= i3, let vi1 ∈
S ∩ V (Gi1 ), vi2 ∈ S ∩ V (Gi3 ) and vi3 ∈ S ∩ V (Gi3 ). Note that vi1 , vi2 , vi3 will
induce a triangle and contradict the fact that G[S] is bipartite. We now assume
that S contains vertices from two input graphs Gp and Gq. If one of them has at
least k vertices in S, then we are done. Otherwise, |S∩V (Gp)|+|S∩V (Gq)| < 2k.
Hence,
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2k∑
i=1

log t∑
j=1

|S ∩ V (Hij)| > k + 12k log t− 2k ≥ 12k log t− k

Therefore, by an averaging argument, there exists an i′ such that
∑log t

j=1 |S ∩
V (Hi′j)| ≥ 6 log t. Since vertices xij , yij , wij , zij from Hij form a complete graph,
S can contain at most 2 vertices from {xij , yij , wij , zij}. So |S ∩ V (Hij)| ≤ 6
and if |S ∩ V (Hij)| = 6 then either S ∩ V (Hij) = {aij , bij , cij , dij , xij , yij} or
S ∩ V (Hij) = {aij , bij , cij , dij , wij , zij}. We know that to meet the budget, it
must be the case that ∀j, |S ∩ V (Hi′j)| = 6.

Since p 
= q there exists a j′ such that j′th bit of binary representation of
p and q are different (say 0 and 1, respectively). Hence, all the vertices from
Gp are connected to xi′j′ , yi′j′ and all the vertices from Gq are connected to
wi′j′ , zi′j′ . Hence there exists a triangle in G[S ∩ (V (Gp) ∪ V (Gq) ∪ V (Hi′j′))].
This contradicts the fact that G[S] is bipartite, showing that the case |S ∩
V (Gp)|+ |S ∩ V (Gq)| < 2k is infeasible. The remaining case is when S contains
vertices from at most one input graph (say Gp). Since |S ∩ V (Hij)| ≤ 6, S will
contain at least k vertices from V (Gp). Hence S ∩V (Gp) is a solution of (Gp, k).
(⇐) Let (Gp, k) be a Yes instance of p-mibs, and let S ⊆ V (Gp) be the solution.
Let b1b2 . . . blog t be the binary representation of p. Now consider the vertex set

T := {xij , yi,j | 1 ≤ i ≤ 2k ∧ bj = 1} ∪ {wij , zi,j | 1 ≤ i ≤ 2k ∧ bj = 0}
∪{aij , bij , cij , dij |1 ≤ i ≤ 2k ∧ 1 ≤ j ≤ log t}. (1)

It is easy to see that T involves exactly six vertices from each of the 2k log t
gadgets, and the vertices are chosen such that G[T ] induces a bipartite graph.
Further, the vertices are chosen to ensure that there are no edges between vertices
in S and vertices in T , and therefore, it is clear that G[S∪T ] induces a bipartite
subgraph of G of the desired size. Hence (G, k + 12k log t) is a Yes instance of
p-mibs. ��

Lemma 5.2. The graph G constructed as the output of the OR-composition is
a perfect graph.

Proof. We begin by describing an auxiliary graph G′, and show that G′ is perfect.
This graph is designed to be a graph from which G can be obtained by a series
of operations that preserve perfectness, and this will lead us to establishing
that G is perfect. The graph G′ contains a clique on t vertices, Kt. We let
V (Kt) := {v0, v1, . . . vt−1}. G′ also contains 2k log t small graphs, each of which
consist of two vertices with an edge between them (i.e, each small graph is an
edge). Let {nij, pij} for all 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t be the vertices of small
graphs. For all 0 ≤ l ≤ t− 1, if the jth bit of the log t-bit binary representation
of l is 0, then add edges from vl to nij for all i. Otherwise add edges from vl to
pij for all i.

We claim that G′ is perfect. Let H be an induced subgraph of G′. If |V (H)∩
V (Kt)| ≤ 1, then H is a forest and so in this case ω(H) = χ(H). Else, r =
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|V (H) ∩ V (Kt)| ≥ 2. Since the neighborhoods of nij and pij do not intersect,
and there are no edges between small graphs in G′, at most one vertex from
the entire set of small graphs can be part of the largest clique in H containing
V (H)∩V (Kt) (note that there exists a largest clique that contains all the vertices
in V (H)∩V (Kt)). So ω(H) ≤ r+1. Let us denote by H∗ the subgraph H [V (H)∩
{nij , pij | 1 ≤ i ≤ 2k, 1 ≤ j ≤ log t}].

If ω(H) = r + 1, then we define the following coloring. Color all r vertices in
V (H) ∩ V (Kt) with colors 1, 2, . . . , r. For all x ∈ V (H∗) such that x is adjacent
to all vertices in V (H) ∩ V (Kt), we give a color r + 1 (note that these vertices
are independent by construction). If an x ∈ V (H∗) is not adjacent to all vertices
in V (H) ∩ V (Kt), then we can color it with a color that is already used on one
of its non adjacent vertices in V (H) ∩ V (Kt). If ω(H) = r, then there is no
vertex in V (H∗) which is adjacent to V (H) ∩ V (Kt). So we can color vertices
in V (H) ∩ V (Kt) with r colors and for a vertex x ∈ V (H∗) we can color x
with a color same as (one of) its non adjacent vertex in V (H) ∩ V (Kt).Hence
ω(H) = χ(H).

Let be G∗ be a graph obtained by embedding Gi on vi ∈ V (G′) for all 0 ≤
i ≤ t − 1 and embedding an edge on each vertex in {nij , pij | 1 ≤ i ≤ 2k, 1 ≤
j ≤ log t}. It can be observed that G∗ is isomorphic to

G \
⋃

1≤i≤2k,1≤j≤log t

{aij , bij , cij , dij}.

It follows that G∗ is perfect. Finally, observe that the graph G is Δ(G∗;E′) for
a suitable choice of E′ ⊆ E(G∗), and it follows that G is perfect. ��

Lemmas 5.1,5.2 and Theorem 5.1, give us the following result.

Theorem 5.2. p-Max Induced Bipartite Subgraph on perfect graphs does
not admit a polynomial kernel unless co-NP ⊆ NP/poly.

We finally show that p-mcis does not admit a polynomial kernel on split
graphs unless co-NP ⊆ NP/poly by showing a “parameter-preserving reduc-
tion” from Small Universe Set Cover.

Theorem 5.3 (�). p-mcis on split graphs does not admit a polynomial kernel
unless co-NP ⊆ NP/poly.

6 Conclusion

In this paper we studied the parameterized complexity of p-mcis on perfect
graphs and showed that the problem is FPT when parameterized by the solution
size. We also studied its kernelization complexity and showed that the problem
does not admit polynomial kernel under certain complexity theory assumptions.
An interesting direction of research that this paper opens up is the study of pa-
rameterized complexity of Induced Subgraph Isomorphism on special graph
classes. As a first step it would be interesting to study the parameterized com-
plexity of Induced Tree Isomorphism parameterized by the size of the tree
on perfect graphs.
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Abstract. In this paper, we present the clique arrangement A(G) for
a chordal graph G to describe the intersections between the maximal
cliques of G more precisely than in clique trees or related concepts. In
particular, the node set of A(G) consists of all intersections of maximal
cliques of G. In A(G), there is an arc from a node X to a node Z, if X
is a subset of Z and there is no node Y , that is a superset of X and a
subset of Z.

We provide a new characterization of strongly chordal graphs in terms
of forbidden cyclic structures in the corresponding clique arrangements
and we show how to compute the clique arrangement of a strongly chordal
graph efficiently.

1 Introduction

Chordal graphs are an important generalization of trees that has been studied
and characterized extensively. For a comprehensive survey refer to [2]. By defi-
nition, in a chordal graph, every cycle of length at least four has a chord, that
is, an edge between two not consecutive vertices. Consequently, chordal graphs
are also characterized by forbidden induced cycles on at least four vertices. This
is a natural generalization of trees, where induced cycles of length three are for-
bidden as well. Moreover, chordal graphs are a generalization of trees in terms of
decomposition. Whereas trees are the graphs that can be completely decomposed
by repeatedly detaching leaves, this can be done on chordal graphs by detaching
vertices that are adjacent to cliques. Such a decomposition of a chordal graph is
called perfect elimination ordering.

The characterization of chordal graphs in terms of clique trees illustrates the
close relation to trees most impressively. A clique tree T of a graph G is a tree
with the maximal cliques of G as nodes, such that for every vertex v of G, the
maximal cliques containing v induce a subtree in T . In [10], McKee shows that
chordal graphs are exactly the graphs that admit a clique tree.

Clique trees have proven to represent the structure of chordal graphs fairly
well by being utilized in many algorithms solving complex problems. In partic-
ular, the edges of a clique tree illustrate the structure of intersections between
maximal cliques of the corresponding graph G and they identify all minimal ver-
tex separators of G. In fact, Ho and Lee [8] show that a pair of maximal cliques
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C1 and C2 forms an edge in some clique tree of G, if and only if C1 ∩ C2 is a
minimal vertex separator of G.

The structure of a chordal graph G, in particular the structure of its maximal
clique intersections, is not entirely described by a corresponding clique tree. One
can easily find quite different chordal graphs admitting isomorphic clique trees.
For this reason, researchers developed a number of other descriptive graphs,
using the maximal cliques as the node set, to capture their mutual intersection
more accurately. In the clique graph developed by Shibata [12], two nodes are
joined by an edge, if and only if the corresponding maximal cliques of G have
a nonempty intersection. Bernstein and Goodman [1] describe a more general
data structure called weighted clique intersection graph, which adds a weight
to every edge specifying the cardinality of the intersection. Interestingly, McKee
[10] shows that every maximum spanning tree of this graph is a clique tree for
the original graph. Based on this, Galinier, Habib and Paul [7] give a graph that
contains only the edges occurring in at least one maximum spanning tree, hence,
in at least one clique tree, and thus, just the edges that represent minimal vertex
separators.

All these concepts are not suited well to understand the intersections of more
than two maximal cliques, in particular the intersections between minimal vertex
separators. One promising attempt to better describe the clique intersections in
a descriptive graph structure has been made by Ibarra in [9], introducing the
clique-separator graph. This graph takes the union of all maximal cliques and
all minimal vertex separators of G into its node set. Two nodes X and Z are
connected by an edge XZ, if and only if X is a proper subset of Z and there is
no other node Y with X ⊂ Y ⊂ Z. Ibarra shows that the clique-separator graph
can be constructed in time O(n3) for chordal graphs on n vertices and improves
this time to O(n2) for interval graphs and to O(n log n) for unit interval graphs.

In [9], Ibarra asks if subclasses of chordal graphs can be characterized in
terms of the clique-separator graph, in particular strongly chordal graphs, the
well-studied subclass introduced by Farber in [5]. Strongly chordal graphs are
defined as the chordal graphs that have an odd chord in every cycle of even
length. They have been characterized in many ways, for instance as the chordal
graphs without induced k-suns for any k ≥ 3 [5] and by the existence of strong
elimination orderings [13], special kinds of perfect elimination orderings.

In fact, the clique-separator graph is not precise enough to distinguish between
chordal graphs and strongly chordal graphs. For example, Figure 1 shows the 3-
sun, which is not strongly chordal, and the net, which is strongly chordal. These
two graphs have an isomorphic clique-separator graph. This happens, because
the intersections between maximal cliques do not necessarily need to be minimal
vertex separators and, consequently, such intersections and their relations are
missed in the clique-separator graph.

To approach this problem, we propose the clique arrangement A(G) in Sec-
tion 3. The node set of the clique arrangement consists of all intersections of a
subset of maximal cliques of G. Like in the clique-separator graph, two nodes X
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and Z are connected by an arc XZ if and only if X ⊂ Z and there is no node
Y with X ⊂ Y ⊂ Z.

Such a data structure has been used earlier in the analysis of relational
database schemes [4] and was called Bachman diagram. But the structural prop-
erties of clique arrangements on chordal graphs have yet been analyzed only for
ptolemaic graphs [14], a subclass of strongly chordal graphs. Uehara and Uno
show that a graph is ptolemaic if and only if the clique arrangement is a tree.
Therefore, the clique arrangement is called clique laminar tree in their paper. On
the other hand, clique arrangements turn out to be infeasibly large for general
chordal graphs, as their size may grow exponentially in the number of vertices
in G, which is demonstrated in Section 3.

This paper generalizes the work of Uehara and Uno [14] and characterizes
clique arrangements for strongly chordal graphs. In Section 4, we show that a
graph G is strongly chordal if and only if the clique arrangement A(G) does not
contain a specific cyclic structure. This is a generalization of the ptolemaic case,
where the complete absence of cycles is known.

In Section 5, we give an algorithm that computes A(G) in linear time, if a
strong elimination ordering of G is given, hence, in time O(m log n) for strongly
chordal graphs on n vertices and m edges. This also implies that, in contrast
to general chordal graphs, the clique arrangement of strongly chordal graphs
cannot grow exponentially in the size of the input. Moreover, the algorithm
marks all nodes in the arrangement that are maximal cliques and all nodes
that are minimal vertex separators of the graph. With this information, we can
construct the clique-separator graph in linear time from the clique arrangement.
Hence, our algorithm can be used to construct the clique-separator graph for
strongly chordal graphs in time O(m log n), which improves the running time of
O(n3) given by Ibarra.

Fig. 1. The graphs net (left), 3-sun (center) and 4-sun (right)

Because of space limitations all proofs are omitted.

2 Preliminaries

For a comprehensive survey on graph classes we would like to refer to [2].
In this paper, all graphs are simple, without loops and, if not stated explicitly,

with vertex set V and edge set E, where |V | = n and |E| = m. An independent
set in G is a set of mutually nonadjacent vertices. Conversely, a clique C ⊆ V in
G is a set of mutually adjacent vertices and C is called maximal, if there is no
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clique C′ with C ⊂ C′. The set of all maximal cliques of a graph G is denoted
by C(G).

For any subset U ⊆ V we let G[U ] = (U,EU ) denote the subgraph of G
induced by U . We simply write G− U for G[V \ U ] and G− x for G− {x}.

We call a set U = {x1, . . . , xk} ⊆ V an induced k-cycle in G, if G[U ] contains
exactly the edges x1xk and xi, xi+1 for all i ∈ {1, . . . , k − 1}. A vertex set
U = {x0, . . . , xk−1, y0, . . . , yk−1} ⊆ V induces a k-sun in G, if G[U ] is partitioned
into the clique X = {x0, . . . , xk−1} and the independent set Y = {y0, . . . , yk−1}
and for every edge xiyi between X and Y , either i equals j or i + 1 equals j,
where the indices are counted modulo k. By definition, a graph is chordal, if and
only if it does not contain induced k-cycles for all k ≥ 4. By Farber [5], a chordal
graph is strongly chordal, if and only if every cycle of even length has an odd
chord, that is, an edge between two vertices that have odd distance on the cycle.
Farber also characterizes strongly chordal graphs by forbidden induced k-suns
for all k ≥ 3.

For all vertices x ∈ V , we let N(x) = {y | xy ∈ E} denote the open neigh-
borhood and N [x] = N(x) ∪ {x} the closed neighborhood of x in G. A vertex
x ∈ V is simplicial in G, if N(x) is a clique. An ordering x1, . . . , xn of G’s ver-
tices is called perfect elimination ordering, if xi is simplicial in G[{xi, . . . , xn}]
for all i ∈ {1, . . . , n}. If either N [y] ⊆ N [z] or N [z] ⊆ N [y] for all y, z ∈ N(x),
then a simplicial vertex x is called simple and accordingly a perfect elimination
ordering is called simple elimination ordering, if xi is simple in G[{xi, . . . , xn}]
for all i ∈ {1, . . . , n}. Moreover, a simple elimination ordering is called strong
elimination ordering, if for all i, j, k : 1 ≤ i < j < k ≤ n with xj , xk ∈ N(xi),
N [xj ] ∩ {xi, . . . , xn} ⊆ N [xk] ∩ {xi, . . . , xn}. According to Dirac [3], chordal
graphs are characterized by the existence of perfect elimination orderings and
by Paige and Tarjan [13], a graph is strongly chordal, if and only if it admits
a simple elimination ordering. Interestingly, a graph also is strongly chordal, if
and only if it admits a strong elimination ordering.

For all x, y ∈ V , S ⊂ V is an xy-separator, if x and y are not connected in
G−S. Moreover, S is a minimal xy-separator, if there is no xy-separator S′ with
S′ ⊂ S. We call S ⊆ V separator for short, if S is a minimal xy-separator for at
least two vertices x, y ∈ V and S(G) denotes the set of all separators in G.

We also use directed graphs in this paper. Actually, the data structure pro-
posed in Section 3 is an acyclic directed graph. Directed edges are called arcs. For
a directed graph G = (V,A), a sequence x1, . . . , xk of vertices is called directed
path, if xixi+1 ∈ A for all i ∈ {1, . . . , k − 1}.

The data structure proposed in this paper is related to the clique-separator
graph CS(G) = (C∪S, E∪A), which was introduced by Ibarra [9] and is a mixed
graph built on the node set C ∪ S with C = C(G) and S = S(G). Any pair of
nodes X ∈ S, Z ∈ C ∪ S is adjacent by an edge of E or an arc of A, if and only
if X ⊂ Z and there is no other node Y ∈ C ∪ S with X ⊂ Y ⊂ Z. In particular,
XZ ∈ E if Z ∈ C, and XZ ∈ A if Z ∈ S.
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3 Clique Arrangements for Chordal Graphs

For a chordal graph G = (V,E) we call a directed acyclic graph A(G) = (X , E)
the clique arrangement of G, if the node set X contains exactly all nonempty
intersections of maximal cliques of G, that is,

X =

{
X

∣∣∣∣∣ X =
⋂
C∈C

C with C ⊆ C(G) and X 
= ∅
}
,

and the arc set E describes their mutual inclusion, that is,

E = {XZ | X,Z ∈ X with X ⊂ Z and �Y ∈ X : X ⊂ Y ⊂ Z } .

Naturally, we can find the set C(G) in X by focusing on the sinks of A(G).
Every other X ∈ X is the overall intersection of a set C1, . . . , Ck of at least two
maximal cliques. This means that X contains in particular all separators of G.

To illustrate how the nodes of a clique arrangement are related, we list the
following two observations:

Observation 1. If X ∈ X is a node in the clique arrangement A(G) = (X , E)
of a chordal graph G and if Y1, . . . , Y� ∈ X are the direct successors of X, that
is, the nodes such that XY1, . . . XY� ∈ E, then X = Y1 ∩ . . . ∩ Y�. Moreover, if
C1, . . . , Ck are the sinks of A(G) that are reached from X by directed paths, then
X = C1 ∩ . . . ∩ Ck.

Observation 2. If Y1, . . . , Yk ∈ X are nodes in the clique arrangement A(G) =
(X , E) of a chordal graph G such that their intersection X = Y1 ∩ . . .∩ Yk is not
empty, then X ∈ X .

As stated above, many nodes in a clique arrangement may be neither maximal
cliques nor separators. Actually, the existence of these nodes makes up the differ-
ence to the clique-separator graph by Ibarra [9]. See for example the graph and
its clique arrangement in Figure 3. It contains {7, 8}, which is the intersection
of {4, 5, 7, 8} and {0, 2, 3, 7, 8}, but it is not a separator.

Taking all possible maximal clique intersections into X also has a remark-
able drawback. In fact, the cardinality |X | can be exponentially high for general
chordal graphs and even for the subclass of split graphs. For example, con-
sider the split graph build on the clique {x1, . . . , xk} and the independent set
{y1, . . . , yk}, where xiyj is an edge, if and only if i 
= j for all i, j ∈ {1, . . . , k}.
The corresponding clique arrangement contains, amongst some others, one node
for every subset of {x1, . . . , xk}, hence more than 2k nodes.

This makes clique arrangements a little unwieldy to represent chordal graphs
in general. For that reason we turn our attention to strongly chordal graphs
in the next sections and show for this important and well studied subclass of
chordal graphs that the corresponding clique arrangements have a nice structural
characterization and remain of linear size.
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Fig. 2. A strongly chordal graph G (left) with strong elimination ordering 1, 2, 3, 4, 5,
6, 7, 8, a schematic diagram of its maximal cliques (center), and its clique arrangement
(right). Maximal cliques are double framed and separators are single framed.
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Fig. 3. The strongly chordal graph of Figure 2 extended by the simple vertex 0 (left)
with strong elimination ordering 0, 1, 2, . . . , 8, the according schematic diagram of its
maximal cliques (right), and the modified clique arrangement (below). Compared to
Figure 2, the clique arrangement contains three new nodes that result from intersections
of the new maximal clique N0 and the arc a is replaced by the arc b. The dashed framed
node is neither a maximal clique nor a separator.

4 Clique Arrangements for Strongly Chordal Graphs

In contrast to general chordal graphs, the clique arrangements of strongly chordal
graphs have only polynomial size, which is shown by the following lemma:

Lemma 3. If G is a strongly chordal graph with clique arrangement A(G) =
(X , E) and X ∈ X , then there are C1, C2 ∈ C(G) such that X = C1 ∩ C2.

By Lemma 3, the cardinality of X is at most |C(G)|2. As chordal graphs have at
most n−1 maximal cliques [6], it follows that |X | < n2. On the other hand, O(n2)
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is the worst case lower bound for |X |, which holds even for the very restricted
subclass of unit interval graphs. For example, the clique arrangement of the unit
interval graph with vertices x1, . . . , x3k−1 and cliques Ci = {xi, . . . , xi+k−1}, i ∈
{1, . . . , 2k} contains the node {xi, . . . , xj} for all i, j : k ≤ i ≤ j < 2k, and thus,
Ω(k2) = Ω(n2) nodes.

By the upper size bound, clique arrangements might be useful in yet to de-
velop algorithms coping with strongly chordal graphs. In fact, it would be nice,
if this new representation helped to answer the open question whether strongly
chordal graphs can be recognized in linear time. To support the ongoing analysis
of this and other complex problems, we provide a characterization for clique ar-
rangements of strongly chordal graphs in this section and analyze the complexity
of constructing these clique arrangements in the following section.

The characterization of strongly chordal graphs is based on the following
definition of cycles in the clique arrangement: For any k ∈ �, a k-cycle of A(G)
is a set of nodes S0, . . . , Sk−1, T0, . . . , Tk−1 such that for all i ∈ {0, . . . , k − 1}
there is a directed path from Si to Ti and a directed path from Si to Ti−1

(counted modulo k). The nodes S0, . . . , Sk−1 are called starters of the cycle and
the nodes T0, . . . , Tk−1 are called terminals of the cycle. Note that, by definition,
Si ⊆ Ti and Si ⊆ Ti−1 for all i ∈ {0, . . . , k − 1}.

But like cycles in chordal graphs are forbidden only if they are induced, a
k-cycle is not per se forbidden in the clique arrangement of a strongly chordal
graph. We call a k-cycle bad , if k ≥ 3 and for all i, j ∈ {0, . . . , k − 1} there
is a directed path from Si to Tj only if j ∈ {i − 1, i} (counted modulo k). In
the following theorem we show that the clique arrangements of strongly chordal
graphs are characterized by forbidden bad k-cycles with k ≥ 3:

Theorem 1 Let G = (V,E) be a chordal graph and A(G) = (X , E) be the clique
arrangement of G. Then G is strongly chordal, if and only if A(G) is free of bad
k-cycles for all k ≥ 3.

5 Efficient Construction of Clique Arrangements for
Strongly Chordal Graphs

In this section, we show how to construct a clique arrangement of a strongly
chordal graph in time O(m logn). In fact, the construction works in linear time
on a given strong elimination ordering. The O(m logn) time bound results from
Paige and Tarjan’s strong elimination ordering construction algorithm [13].

By a strong elimination ordering x1, . . . , xn of the input graph G, the al-
gorithm constructs A(G) step by step. As the clique arrangement of a graph
containing a single vertex is fairly simple, the initialization easily constructs
A(G[{xn}]). In every step, the algorithm modifies the current clique arrangement
A(G[{xi+1, . . . , xn}]), to obtain the next clique arrangementA(G[{xi, . . . , xn}]).
For that purpose, we have to analyze what happens to the clique arrangement,
when a simple vertex xi is added to the graph. If the neighborhood of xi is empty
or a maximal clique, things are not very complicated. In the first case, xi forms a
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Table 1. The explicit procedure

Procedure: AddSimpleVertex

Input: A strongly chordal graph G = (V,E) with simple vertex x, the neighborhood
ordering y1, . . . , yd of x, the clique arrangement A(G − x) = (X ,E) and the set S of
separators of G − x.
Output: The clique arrangement A(G) = (Xx, Ex) and the set Sx of separators of G.

1. Let Xx := X and Ex := E .
2. If N(x) is a maximal clique of G− x, replace every occurrence of N(x) in Xx and

Ex by N [x]. STOP.
3. Let N0 = N [x] and add the new element N0 to Xx.
4. Let p := 0 and i := 1.
5. While {yi, . . . , yd} �∈ X and i ≤ d, do:

(a) Find Ti ∈ X such that yi ∈ Ti but there is no X ∈ X with yi ∈ X and X ⊂ Ti.
(b) If i > 1 and yi−1 ∈ Ti, continue with the next iteration of the loop.
(c) Add the new element Ni = {yi, . . . , yd} to Xx.
(d) Add the arcs NiTi and NiNp to Ex.
(e) Set p := i and i := i+ 1.

6. If i ≤ d, find Ti as in Step 5a and replace arc TiTp ∈ Ex by TiNp.
7. If i > 1, set Sx := S ∪ {N1} and otherwise, set Sx := S .
8. STOP.

connected component of G[{xi, . . . , xn}] and hence, the new clique arrangement
is simply provided by an additional isolated node containing exactly xi. In the
second case, N(xi) is a sink of A(G[{xi+1, . . . , xn}]), which has to be extended
with xi in the new clique arrangement. Since this node is the only maximal
clique that contains xi, all other nodes and their relations remain unchanged.

The interesting case occurs when N(xi) is neither empty nor a maximal
clique. Then G[{xi, . . . , xn}] contains a new maximal clique, N [xi], and hence
the clique arrangement needs a new sink for N [xi]. Furthermore, additional
nodes may be introduced in A(G[{xi, . . . , xn}]) due to intersections of N [xi]
and other maximal cliques. To characterize these new nodes and their relations
in A(G[{xi, . . . , xn}]), the algorithm takes advantage of xi being a simple ver-
tex. In particular, there is an ordering y1, . . . , yd of the neighbors of xi such that
N [yj] ⊆ N [yk] if j < k. In fact, it turns out that every node added to the clique
arrangement has the form {yj , . . . , yd} for some j ∈ {1, . . . , d}. Hence, all these
new nodes are ordered in terms of set inclusion and we can show that they form
a directed path in A(G[{xi, . . . , xn}]) that ends in N [xi].

Before we are able to describe the entire algorithm, we provide the procedure
AddSimpleVertex in Table 1, which inserts the mentioned directed path of new
nodes into A(G[{xi+1, . . . , xn}]). For the input of this procedure we need, beside
a strongly chordal graph G with simple vertex x, also the following ordering for
the neighborhood of x. The neighborhood ordering of a simple vertex x is an
ordering y1, . . . , yd of N(x) such that N [yi] ⊆ N [yj ], if and only if i < j for all
i, j ∈ {1, . . . , d}.

The procedure AddSimpleVertex handles the first case, N(xi) = ∅, in Step 3
and by terminating without entering the loop in Step 5. The second case, where
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N(xi) is a maximal clique, is handled in Step 2. The loop in Step 5 deals with the
last case. Here, we test for every possible new node Nj = {yj , . . . , yd}, whether it
is the intersection of N [xi] and another maximal clique of G[{xi, . . . , xn}]. Only
in that case we add Nj and the appropriate arcs to the clique arrangement.

The following lemma states the correctness of the procedure for all three cases:

Lemma 4. Procedure AddSimpleVertex is correct.

To illustrate the principles of procedure AddSimpleVertex, we refer to Fig-
ure 2 and Figure 3, which show the clique arrangement of a strongly chordal
graph before and after adding the simple vertex 0. As the neighborhood of ver-
tex 0, that is, N(0) = {2, 3, 7, 8}, is neither empty nor a maximal clique, we are in
case three. Hence, in Step 3 the procedure adds the new sink N0 = {0, 2, 3, 7, 8}
to the clique arrangement. After this, the loop in Step 5 is entered, which step
by step considers N1 = {2, 3, 7, 8}, N2 = {3, 7, 8} and N3 = {7, 8}. But only N1

and N3 become part of the new clique arrangement, as the procedure decides
in Step 5b, that N2 is not an intersection of N0 and another maximal clique.
The loop is left for N4 = {8}, because N4 is already contained in the old clique
arrangement, and finally, the arc a is replaced by the arc b.

On the basis of AddSimpleVertex, a complete algorithm would (1) compute
a strong elimination ordering x1, . . . , xn for the input graph G including all
neighborhood orderings, (2) initialize the clique arrangement A(G[{xn}]), and
(3) call AddSimpleVertex with simple vertex xi for every i from n− 1 to 1. By
Lemma 4 this method correctly leads to the clique arrangement A(G).

Notably, we find all maximal cliques and all separators of G along the way.
Whereas the maximal cliques are simply the sinks of the clique arrangement,
the separators are identified in Step 7 of AddSimpleVertex. In particular, by
Theorem 3 in [11], a clique X of G is a separator, if and only if there is a vertex
xi in a perfect elimination ordering x1, . . . , xn, such that X is not a maximal
clique in G[{xi+1, . . . , xn}] and X is the intersection N(xi) ∩ {xi, . . . , xn}.

The problem with the algorithm described above is that we cannot expect
it to run in time O(m log n). In worst case, we may have O(n2) nodes in the
final clique arrangement and, as nodes have an average worst case size of O(n),
the construction takes at least O(n3) time. Actually, the procedure in Table 1 is
even more inefficient.

But as it is most likely sufficient for algorithmic purposes to compute just the
graph structure of the clique arrangement, we propose another algorithm in this
section that desists from explicitly determining the node contents. In fact, Ibarra
[9] constructs his clique-separator graph in just the same way, as otherwise he
would not be able to achieve a running time below O(n2) for unit interval graphs,
either.

Hence, the time improvement of our second algorithm is achieved by rather
constructing the following abstract version of the clique arrangement: The ab-
stract clique arrangement A′(G) = (X ′, E ′, s, t,S ′) of a strongly chordal graph
G = (V,E) is a directed acyclic graph with functions s : X ′ → N and t : V → X ′

and a set S ′ ⊆ X ′. It is related to A(G) = (X , E) in the following way: There
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Table 2. The fast procedure

Procedure: AddSimpleVertexAbstract

Input: A strongly chordal graph G = (V,E) with simple vertex x and its neighborhood
ordering y1, . . . , yd and the abstract clique arrangement A′(G− x) = (X ′, E ′, s, t,S ′).
Output: The abstract clique arrangement A′(G) = (X ′

x, E ′
x, sx, tx,S ′

x).

1. Let X ′
x := X ′ and E ′

x := E ′.
2. Let sx(X) := s(X) and tx(z) := t(z) for all X ∈ X ′ and z ∈ V \ {x}.
3. If d > 0 and t(y1) is a sink in A′(G − x) with s(t(y1)) = d, set sx(t(y1)) := d + 1

and tx(x) := t(y1), STOP.
4. Add a new element N ′

0 to X ′
x and set sx(N

′
0) := d+ 1 and tx(x) := N ′

0.
5. Let p := 0 and i := 1.
6. While s(t(yi)) �= d− i+ 1 and i ≤ d, do:

(a) If i > 1 and t(yi) = t(yi−1), continue with the next iteration of the loop.
(b) Add a new element N ′

i to X ′
x and set sx(N

′
i) := d− i+ 1 and tx(yi) := N ′

i .
(c) Add the edges N ′

i t(yi) and N ′
iN

′
p to E ′

x.
(d) Set p := i and i := i+ 1.

7. If i ≤ d, replace edge (t(yi), t(yp)) ∈ E ′
x by (t(yi), tx(yp)).

8. If i > 1, set S ′
x := S ′ ∪ {N ′

1} and otherwise, set S ′
x := S ′.

9. STOP.

is a bijective function b : X ′ → X such that for all X,Y ∈ X ′ we have
XY ∈ E ′ ⇔ b(X)b(Y ) ∈ E and for all X ∈ X ′:

1. s(X) = |b(X)|,
2. t(x) = X , if and only if x ∈ b(X) and there is no Y ∈ X ′ with |b(Y )| < |b(X)|

and x ∈ b(Y ), and
3. X ∈ S ′ ⇔ b(X) ∈ S(G).

Notice that the value of t(x) is well defined, as the existence of two nodes X,Y ∈
X ′ with x ∈ b(X), x ∈ b(Y ), and |b(X)| = |b(Y )| implies another node Z ∈ X ′

with x ∈ b(Z) = b(X) ∩ b(Y ) and |b(Z)| < |b(X)|.
The idea for the faster algorithm is to keep the described framework, but to

replace AddSimpleVertex by the procedure AddSimpleVertexAbstract, given
in Table 2, which simulates the step by step construction process to build the
abstract clique arrangement. In fact, we firstly introduced AddSimpleVertex just
to clarify the approach, because the function of the new procedure is technical
and hard to follow.

The ability of AddSimpleVertexAbstract to work without explicitly knowing
the contents of the nodes, arises from the possibility to infer these contents just
from the information stored in the functions s and t. The correctness and the
running time of AddSimpleVertexAbstract is stated by the following lemma:

Lemma 5. Procedure AddSimpleVertexAbstract runs in time O(deg(x) + 1)
and is correct.

We would like to conclude with a little remark on the relation between abstract
clique arrangements and clique-separator graphs. Since we can identify the nodes
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inA′(G) that represent the maximal cliques and the separators of G, it is possible
to derive the clique-separator graph from G′(G) in linear time:

Corollary 2. The clique-separator graph of a strongly chordal graph G can be
computed in time O(m log n).

6 Conclusions and Future Work

This paper characterizes clique arrangements for strongly chordal graphs in
terms of forbidden bad cycles and gives a respective O(m logn) time algorithm
to construct a clique arrangement for any given strongly chordal graph. We leave
it as an open question, whether the presence of bad cycles can be tested in linear
time. In that case, it would be exciting to think about possibilities of construct-
ing clique arrangements for strongly chordal graphs in linear time, because this
would accordingly imply linear time recognition of strongly chordal graphs – a
long standing open problem.

Moreover, as clique arrangements for strongly chordal graphs are character-
ized by forbidden bad cycles, it would be nice to know if we could find similar
forbidden structures for subclasses, such as rooted directed path graphs or in-
terval graphs. In case of ptolemaic graphs, it is already known that the clique
arrangement is free of any kind of cycles.

Conversely, one could ask if there are natural subclasses of strongly chordal
graphs defined by banning other cycles from the clique arrangement. In fact,
we would like to ask for a graph characterization when additionally 2-cycles are
forbidden.
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Abstract. In the classic knights and knaves problem, there are n people
in a room each of whom is a knight or a knave. Knights always tell the
truth while knaves always lie. Everyone in the room knows each other’s
identity. You are allowed to ask questions of the form “Person i, is person
j a knight?” and you are told that there are more knights than knaves.
What is the fewest number of questions you can ask to determine a
knight? How about to determine everyone’s identity?

In this paper, we consider the knights and no-men problem, where a
no-man is a person who always answers “no”. Assuming there are at least

k knights, we show that
(
n−1
2

)
−� (k−2)(n−1)2

2(k−1)
� questions are necessary and

sufficient in the worst case to identify a knight. We also show that n− 2

questions suffice to identify a no-man, and
(
n−1
2

)
−� (k−2)(n−1)2

2(k−1)
�+n− 2

questions suffice to identify everyone in the room.
We then consider a generalization of the knights and knaves problem

that captures most of the variants of the knights and knaves problem
in the literature. In the agent labeling problem, we wish to identify ev-
eryone’s type; in the agent identification problem, we wish to identify an
agent having a particular type. We present results with regards to the
fewest number of questions needed in the worst case to solve both the
agent labeling and agent identification problems. Our tools and results
are graph theoretic in nature.

1 Introduction

In the classic knights and knaves problem there are n people in a room. Each
person is either a knight or a knave. Knights always tell the truth while knaves
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always lie. Everyone in the room knows each other’s identity. You are allowed
to ask questions of the form “Person i, is person j a knight?” and you are told
that there are more knights than knaves. What is the fewest number of questions
you can ask to determine a knight? How about to determine everyone’s identity?
Popular variations to this problem introduce new “types” of people such as spies,
who lie or tell the truth arbitrarily, and yes-men, who answer “yes” all the time.

Several equivalent formulations of the knights and knaves problem have been
studied by other authors including the problem of classifying computer chips as
faulty or reliable [1], the problem of identifying a coin of the majority weight by
performing weight comparisons [2], the problem of identifying a ball of the most
common color by performing color comparisons [3,4,5], etc.

Saks and Werman [5] studied a version of the knights and knaves problem
where knights are in the majority if such a majority exists. Their goal was to
identify a knight or declare the nonexistence of such a majority. They showed
that n − B(n) questions are necessary and sufficient in the worst case, where
B(n) is the number of ones in the binary representation of n. Simpler proofs
were given later by Alonso et al. [4] and Wiener [2]. If the number of knights is
at least k, and k > n/2, Aigner [3] showed that n− 1−p questions are necessary
in the worst case, where p is the highest power of two dividing

(
n−1
k−1

)
, and that

2(n−k)−B(n−k) questions are necessary and sufficient in the worst case when
it is known that a majority exists.

When we want to identify everyone as either a knight or a knave, Aigner [3]
observed that n−1 questions are necessary in the worst case when n > 2. Aigner

also showed that if the number of knights is at least k, k > n/2, � (n−k)n+(n−k)
n−k+1 �

questions are necessary in the worst case, up to a possible error of 1.
The knights and spies problem is just like the knights and knaves problem

except that agents which are not knights are spies. Alonso et al. [1] showed that,
surprisingly, any strategy that can identify a knight in the knights and knaves
setting can also be used to identify a knight in the knights and spies setting.
Therefore, the two problems require the same number of questions to identify
a knight in the worst case. Aigner [3] also proved that the same result is true
when the number of knights is bounded below by k, k > n/2.

If we wish to identify everyone in a room of knights and spies and there are
k > n/2 knights, Blecher [6] and Wildon [7] showed independently that 2n−k−1
questions are necessary and sufficient in the worst case. Thus, it follows that
3n/2 − 1 questions are necessary and sufficient in the worst case if it is only
known that knights are in the majority.

Most recently, Hanajiri [8] introduced the concept of yes-men and studied the
knights and yes-men problem. Suppose there are n people in the room, at most
p of whom are knights and at most q of whom are yes-men. Hanajiri showed
that n+ $log2(p+ q−n)% questions suffice for identifying everyone in the room.
Additionally, he conjectured that the same number of questions are necessary
in the worst case when p, q /∈ {0, n}. He was able to verify his conjecture when
p + q ∈ {n, n + 1, 2n− 1}.
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Our Results. Inspired by Hanajiri’s work, we introduce the notion of a no-
man, a person who always answers “no”. Assume that there are n people each
of whom is a knight or a no-man, and that there are at least k knights. We show

that
(
n−1
2

)
− $ (k−2)(n−1)2

2(k−1) % questions are necessary and sufficient in the worst

case to identify a knight. We also show that n− 2 questions suffice to identify a

no-man, and
(
n−1
2

)
−$ (k−2)(n−1)2

2(k−1) %+n− 2 questions suffice to identify everyone.

Next, we present a generalization of the knights and knaves problem that
allows us to consider new types of people and/or put multiple types (not just
two types) of people in a room. An instance consists of n people, the m types
that each person can have, and a 0-1 matrix Q of order m that describes how the
m types of people interact with each other. We use DQ to denote the directed
graph on [m] whose adjacency matrix is Q. In the agent labeling problem, we wish
to determine the type of every individual in the room; in the agent identification
problem, we wish to find an agent having a particular type.

It turns out that even when we have asked the agents all the possible questions
we can ask, we may not be able to solve the agent labeling or agent identification
problems. When this happens, we call the instance ill-formed ; otherwise, it is
well-formed. We provide a characterization of the well-formed instances of both
the agent labeling and agent identification problems in terms of DQ.

For the agent labeling problem, we prove that when a well-formed instance’s
DQ has what we call an uninformative partition, identifying everyone’s type
requires Ω(n2/m4) questions in the worst case. On the other hand, when the
instance’s DQ has no uninformative partitions, everyone’s type can be deter-
mined using O(mn) questions. This implies that when m = o(n1/5) there are
hard and easy variants of the knights and knaves problem. In particular, when
m is a constant, the hard variants need Ω(n2) questions to solve the agent label-
ing problem in the worst case. The easy variants, however, can solve the agent
labeling problem using O(n) questions.

For the agent identification problem, we prove that when a well-formed in-
stance’s DQ has uninformative partitions and s∗ is an informative type with
respect to one of the uninformative partitions, then finding an agent of type s∗

requires Ω(n2/m4) questions in the worst case. On the other hand, when the
instance’s DQ has no uninformative partitions, finding an agent of any type can
be solved using O(mn) questions. Thus, setting aside the case when s∗ is an
uninformative type with respect to every uninformative partition of DQ, our
results again imply that when m = o(n1/5), there are easy and hard variants of
the knights and knaves problem when solving the agent identification problem.

We emphasize that although our problems do not inherently involve graphs,
our tools and results are graph theoretic in nature. A full version of our paper
can be found at http://www.cs.uwm.edu/~ccheng/.

2 The Knights and No-Men Problem

Let A = {a1, a2, . . . , an} be a set of agents each of whom is a knight or a
no-man. We are allowed to ask questions of the form “ai, is aj a knight?” for

http://www.cs.uwm.edu/~ccheng/
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i 
= j. A knight always answers truthfully while a no-man always answers “no”.
Additionally, we are told that there are at least k ≥ 2 knights. Let us consider
the problem of finding a knight.

Suppose we asked the agents a set of questions S. Let GS be the undirected
graph where V (GS) = A and E(GS) = {{ai, aj} : “ai, is aj a knight?” or “aj, is
ai a knight?” is in S}. We shall say that a labeling of the agents f : A →
{knight, no-man} is consistent with respect to S if based on the agents’ answers
it is plausible that each ai has type f(ai). More specifically, f is a consistent
labeling with respect to S if for each question “ai, is aj a knight?” in S, the
answer given by ai is the same as the answer an agent of type f(ai) would give
if asked about an agent of type f(aj).

Lemma 1. After asking the questions in S, we can conclude that some partic-
ular agent is a knight if and only if at least one of these conditions hold:
(1) some question’s answer is “yes”, or
(2) the answers to all the questions are “no” and there is some ai that is in
every independent set of size k in GS .

Proof. First, we argue that the conditions are sufficient. We get a response of
“yes” if and only if one knight is asked about another knight. Thus, if condition
(1) holds we can identify two agents as knights. So suppose the answers to the
questions in S are all “no”. It must be the case that no knight has been asked
about another knight. The set of knights form an independent set of size at
least k in GS . If condition (2) holds, some ai is part of every independent set of
size k in GS , including the independent sets containing k knights. We can then
conclude that ai is a knight.

Next, let us show that the conditions are necessary. Suppose neither condition
holds. Since condition (1) does not hold, the responses to the questions in S are
all “no”. Once again the set of knights form an independent set I of size at least
k in GS . Since condition (2) does not hold, for every ai ∈ A, there exists an
independent set Iai in GS of size k such that ai 
∈ Iai . Now, for each ai ∈ A,
let fi be a labeling of the agents that assigns the agents in Iai as knights and
all other agents as no-men. Clearly, fi is consistent with respect to S. Since it
is possible that each ai is not a knight, we cannot conclude that any particular
agent in A is a knight. ��

The Turán graph T (n, k) is the graph whose n vertices are partitioned into
k parts of as equal size as possible, and two vertices are adjacent if and only if
they belong to different parts. Turán’s theorem [9] states that among n-vertex
graphs without a clique of size k + 1, the graph with the most number of edges

is T (n, k). In particular, T (n, k) has $ (k−1)n2

2k % edges.

Lemma 2. Let G(n, k) contain all graphs G on n vertices such that G has a
vertex that is part of every independent set of size k. Let G∗ ∈ G(n, k) so that
among all the graphs in G(n, k) it has the fewest number of edges. Then G∗ is
the complement of T (n− 1, k − 1) unioned with an isolated vertex.
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Proof. Let v be a vertex of G∗ that is part of every independent set of size k.
Notice that deg(v) = 0. Otherwise, any edge incident to v can be removed and
v will still part of every independent set of size k, contradicting our assumption
about the minimality of |E(G∗)|. Next, consider G∗ − v. By our assumptions
about G∗ and v, it must be the case that G∗− v has no independent sets of size
k, and among such graphs with n−1 vertices, it has the fewest number of edges.
Consequently, its complement has the property that it has no cliques of size k,
and among such graphs with n − 1 vertices, it has the most number of edges.
According to Turán’s theorem [9], this complement is T (n− 1, k − 1). ��

Theorem 1. Let I(n, k) be the fewest number of questions needed in the worst
case to identify a knight in the knights and no-men problem when there are n

agents at least k ≥ 2 of whom are knights. Then I(n, k) =
(
n−1
2

)
−$ (k−2)(n−1)2

2(k−1) %,
the number of edges in the complement of T (n− 1, k − 1).

Proof. Let t′(n − 1, k − 1) denote the number of edges in the complement of
T (n − 1, k − 1). First, we describe a strategy for finding a knight. Start by
setting aside an agent. Partition the remaining n − 1 agents into k − 1 parts
of as equal size as possible. For each part, ask every pair {ai, aj} of agents the
question “ai, is aj a knight?”. (The order of ai and aj doesn’t matter here.) If
the response is “yes”, stop and conclude that that ai and aj are knights. If none
of the agents answered “yes”, conclude that (1) there are exactly k knights, (2)
each part has exactly one of them, and (3) the agent we had set aside is a knight.
Using the fact that there are at least k knights and at most k − 1 parts, it is
easy to verify that our strategy’s conclusions are correct. It also asks the most
number of questions when the answers to all its questions are “no”. Now, we
have chosen the questions so that they form a graph that is isomorphic to G∗ so
the number of questions our strategy will ask in the worst case is t′(n−1, k−1);
i.e., I(n, k) ≤ t′(n− 1, k − 1).

Next, consider an arbitrary strategy. Suppose there are situations where the
strategy will conclude that some agent is a knight even though all the answers to
its questions are “no”. Let G be the graph formed by these questions. According
to Lemma 1, G must have the property described in condition (2). Thus, G ∈
G(n, k). According to Lemma 2, G must have at least t′(n−1, k−1) edges. Now,
suppose the strategy will conclude that some agent is a knight only when it
receives a “yes” response. Assume that in the worst case it will ask r questions.
This means that in every situation where the strategy has already asked r − 1
questions and the answers were all “no”, the rth question must generate a “yes”
answer and the two agents that are part of the question are knights. Thus, if
the strategy knows about the worst case bound r, it can avoid asking the rth
question since after receiving the “no” answer to the (r − 1)st question, it can
already identify an agent that is a knight.

Applying the reasoning we used in the previous case, we have that r − 1 ≥
t′(n − 1, k − 1) so r > t′(n − 1, k − 1). We have shown that every strategy for
finding a knight where there are n agents and at least k ≥ 2 knights will need
to ask at least t′(n− 1, k − 1) questions. ��
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Theorem 2. Let Î(n, k) be the fewest number of questions needed in the worst
case to identify a no-man in the knights and no-men problem when there are n
agents, at least k ≥ 2 knights, and at least 2 no-men. Then Î(n, k) ≤ n− 2.

Theorem 3. Let L(n, k) be the fewest number of questions needed in the worst
case to identify all agents as a knight or no-man when there are n agents at least
k ≥ 2 of whom are knights. Then I(n, k) ≤ L(n, k) ≤ I(n, k) + n− 2.

Suppose we have a room with n people and all we know is that there are
at least two knights and two non-knights. Under these conditions Hanajiri’s [8]
result implies that O(n) questions suffice to identify everyone in a room of knights
and yes-men, while Theorem 3 states that Ω(n2) questions may be needed in a
room of knights and no-men. A similar contrast exists when we want to find a
knight or a no-man in a room of knights and no-men: Theorem 2 states that O(n)
questions suffice to find a no-man while Theorem 1 states that Ω(n2) questions
may be necessary to find a knight. Our results in the next section explain why
these situations contrast as they do.

3 Generalizing the Knights and Knaves Problem

We now consider a generalization of the knights and knaves problem that encom-
passes most of the variants we discussed in the introduction. It has the following
set-up: There are n agents in a room each of whom is one of m types. The agents
know each other’s types. Outsiders are allowed to communicate with the agents
by asking only one kind of question. This question is “directed” – it is addressed
to some agent ai and is about another agent aj – and has a yes or no answer.
Agent ai’s response is a deterministic function of his and aj’s types. You are
told how agents respond to the directed questions as a function of their types.
Your goal is to determine the types of all the agents or identify an agent of a
particular type using as few questions as possible.

Notice that in our set-up, the actual question itself is not a factor since it is
the only question an outsider can ask. What matters instead is the “direction”
of the question and the response to it. Assume the types are from the set [m] =
{1, 2, . . . ,m}. We shall use a (0, 1)-matrix Q of order m to encode responses
where Qst is equal to 0 if the answer to the question addressed to an agent of type
s about an agent of type t is “no” and is equal to 1 otherwise. Throughout the
paper, we shall represent the structure of agent types in terms of DQ = ([m], Q),
the directed graph whose vertex set is [m] and whose adjacency matrix is Q.

Formally, our model has a set of n agents A = {a1, a2, . . . , an}, where t(ai)
denotes the type of agent ai. Every t(ai) ∈ [m]. As an outsider, we do not know
the agents’ types. However, we are allowed to ask one agent about another agent
using some standard format. Let q(ai, aj) denote the answer to the question
addressed to ai about aj, where ai 
= aj. This answer, given by ai, is Qt(ai),t(aj).

We are interested in the following problems, which we would like to solve
using as few questions as possible. In the agent labeling problem we are given A
and Q, and our goal is to determine the types of all the agents in A. In the agent
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identification problem we are given A, Q, and s∗ ∈ [m], and our goal is to find
an agent in A of type s∗.

As an example, consider an instance where the agents can have three types:
knights, knaves, or yes-men. The table on the left shows how the three types of
agents respond to the question “Agent ai, is agent aj a knight?”, the matrix in
the middle encodes these responses, while the directed graph on the right has
the matrix as its adjacency matrix.

Knight Knave Yes-man
(v1) Knight Yes No No
(v2) Knave No Yes Yes
(v3) Yes-man Yes Yes Yes

⎛⎝1 0 0
0 1 1
1 1 1

⎞⎠ v1

v3v2

Assumptions. Finally, we make the following assumptions about our model: First,
for each s ∈ [m], there are at least two agents with type s. This is a technicality
we need because we cannot ask an agent about himself. For example, if there is
only one agent of a certain type, we will not be able to tell if this agent’s type
has a loop or not in DQ. Second, for any two types s and s′, they either have
a different in-neighborhood or a different out-neighborhood in DQ. Otherwise,
we have two versions of the same type, and it would be impossible for us to
distinguish between these two versions. Third, we have “infinite computational
power”. That is, we can develop strategies and process the agents’ responses
using algorithms that may not be efficient. This will allow us to focus solely on
analyzing the number of questions we need to ask to solve the agent labeling
and agent identification problems.

3.1 Ill-Formed Instances and Uninformative Partitions

Consider the scenario where we have asked the agents all the possible questions
we can ask. We would like to group them according to how they answered as
well as how others answered when asked about them.

Let agent b 
= ai, aj . We say that ai and aj are similar with respect to b,
denoted as ai ∼b aj , if q(ai, b) = q(aj , b) and q(b, ai) = q(b, aj). Additionally,
we say that ai and aj are similar, denoted as ai ∼ aj, if they are similar with
respect to every agent b 
= ai, aj.

Lemma 3. For any two agents ai and aj, ai ∼ aj if and only if t(ai) = t(aj).
Hence ∼ is an equivalence relation over A and has m equivalence classes.

Next, we extend the notion of consistent labelings described from the previous
section to our general setting. Let S be a set of questions we have asked the
agents. Based on their answers, we assign each agent a label from [m]. We say
that such a labeling of the agents f : A → [m] is consistent with respect to S if
for each question addressed to ai about aj in S, the answer given by ai is the
same as the answer an agent of type f(ai) would give if asked about an agent of
type f(aj). When S contains all the questions we can ask the agents of A, we
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simply say that f is a consistent labeling. One such example is the labeling f∗

that assigns each agent their type (i.e., f∗(a) = t(a) for each a ∈ A).
When we trade questions and answers with the agents, we are in effect nar-

rowing down the set of consistent labelings of the agents. In the agent labeling
problem, our goal is to get to a point where there is only one consistent labeling
left so that we are certain about each agent’s type. In the agent identification
problem where we want to identify an agent of type s∗, our goal is to reach a
point where there is an agent ai, so that in all of the labelings consistent with
the set of questions asked so far, ai is assigned the label s∗.

We call (A,Q) an ill-formed instance of the agent labeling problem if there
is more than one consistent labeling of the agents. That is, the agent labeling
problem cannot be solved even after we have asked all the questions. Similarly,
(A,Q, s∗) is an ill-formed instance of the agent identification problem if there is
no agent ai so that ai is assigned the label s∗ in every consistent labeling of the
agents. For both problems, we call an instance well-formed if it is not ill-formed.

Theorem 4. An instance (A,Q) of the agent labeling problem is ill-formed if
and only if DQ has more than one automorphism. An instance (A,Q, s∗) of the
agent identification problem is ill-formed if and only if some automorphism of
DQ does not fix s∗ (i.e., the automorphism does not map s∗ to itself).

Let E1, E2, . . . , Em denote the equivalence classes of ∼. For each Ei, let bi
and b′i be two agents in Ei. Denote by D∼ the directed graph whose vertex set
is {E1, E2, . . . , Em} and whose edge set is {(Ei, Ej) : q(bi, bj) = 1} ∪ {(Ei, Ei) :
q(bi, b

′
i) = 1}. Since the equivalence classes are in one-to-one correspondence

with the m types of agents, D∼ is in fact isomorphic to DQ. We now describe a
procedure for labeling the agents of A:

Label(A,Q, {q(ai, aj) : ai, aj ∈ A})

Partition the agents according to the equivalence classes of ∼.
Construct the directed graph D∼.
Find an isomorphism α from D∼ to DQ.

For each agent a in equivalence class E, set f(a) = α(E).
Return f.

Theorem 5. The labeling f returned by Label is consistent. Consequently,
(1) when (A,Q) is awell-formed instance of the agent labeling problem, f = f∗.
(2) when (A,Q, s∗) is a well-formed instance of the agent identification problem,
f(a) = s∗ if and only if t(a) = s∗ for each a ∈ A.

Theorem 5 shows that when we have asked the agents all the questions we
can ask and the instances are well-formed, Label will solve the agent labeling
and agent identification problems. From here on, we will assume that the inputs
to the agent labeling or agent identification problems are well-formed.

In order to address the issues raised at the end of Section 2 we now introduce
the concept of informative partitions. Any two (not necessarily distinct) types s
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and s′ have four possible relationships based on the questions that can be asked
between agents of type s and with those of type s′: (1) Qs,s′ = Qs′,s = 1; (2)
Qs,s′ = 1, Qs′,s = 0; (3) Qs,s′ = 0, Qs′,s = 1; (4) Qs,s′ = Qs′,s = 0. Keeping
this in mind, let P = {P1, P2, . . . , Pr} be a partition of [m] with r < m. Type
s is uninformative with respect to P if, for i = 1, . . . , r, the relationship of s
with each type in Pi is the same. That is, we cannot use questions addressed
to or about agents of type s to distinguish between agents whose types belong
to the same part in P . Otherwise, s is informative with respect to P . We call
P an uninformative partition of DQ = ([m], Q) if each of its parts contains an
uninformative type with respect to P .

For example, in the knights and yes-men problem, the only possible candidate
for an uninformative partition is P = {{knight, yes-man}} since we can only
consider partitions with just one part. A knight is informative with respect to
P because two knights have a relationship that is described by (1) whereas a
knight and a yes-man have a relationship that is described by (3). Similarly, a
yes-man is also informative with respect to P because the relationship between
a yes-man and a knight is described by (2) whereas that between a yes-man and
another yes-man is described by (1). Thus, the knights and yes-men problem
has no uninformative partitions. On the other hand, in the knights and no-men
problem, we leave it up to the reader to verify that the no-man is uninformative
with respect to P = {{knight, no-man}} while the knight a informative with
respect to the same partition. Hence, the knights and no-man problem has an
uninformative partition.

Proposition 1. Let P = {P1, P2, . . . , Pr} be an uninformative partition of DQ.
Each part of P contains exactly one uninformative type with respect to P.

Let L(n,Q) denote the fewest number of questions needed in the worst case
to solve the agent labeling problem whose input is a well-formed instance (A,Q)
with |A| = n. Similarly, let I(n,Q, s∗) be the fewest number of questions needed
in the worst case to solve the agent identification problem whose input is a well-
formed instance (A,Q, s∗) with |A| = n. The proof of Theorem 6, omitted due
to length constraints, follows a line of reasoning closely matching that used to
prove Theorem 1. In particular, we have counterparts to Lemmas 1 and 2.

Theorem 6. When DQ = ([m], Q) has an uninformative partition, L(n,Q) ∈
Ω(n2/m4). Additionally, when s∗ is an informative type in some uninformative
partition of DQ, I(n,Q, s∗) ∈ Ω(n2/m4).

3.2 LabelOrDetect

Given (A,Q) where |A| = n and Q has order m, we now present an algorithm
called LabelOrDetect that either outputs a consistent labeling of the agents
in A or detects the presence of an uninformative partition in DQ using O(mn)
questions. In the first part of the algorithm, a set of special agents are chosen. All
questions addressed to the special agents or about the special agents are asked
during the course of the algorithm. The answers are then used to partition a
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subset of the agents into parts. The goal is to get to a point where each part has
exactly one special agent because the algorithm intends to make a special agent
represent the agents in its part. This seems valid because if special agent bi is in
part Ai, bi’s answers are just like those of the agents in Ai. In the second part
of the algorithm, the answers to all the unanswered questions are then obtained
by assuming that, for each part Ai, the agents in it have the same type as bi.
The agents in A are then partitioned according to the ∼ relation. If the number
of equivalence classes is less than what is expected – which is m – the earlier
assumption must be false. The algorithm concludes that it had encountered an
uninformative partition. However, if the number of equivalence classes is m, the
algorithm passes the answers to all the questions to the procedure Label, which
then outputs a labeling f .

AskAndPartition(A,Q)

A′ ← A, A′ ← {A}, B ← ∅
For every pair of agents a and a′, initialize q′(a, a′) to −1.
Mark all agents in A′ as not special.

while (some part of A′ has no agent marked special)

Denote the parts in A′ as A′
1, A

′
2, . . . , A

′
k.

Bnew ← ∅
for each part A′

i in A′

A′
i ← {Ai′}

if Ai′ does not have an agent marked special

Choose an arbitrary agent bi ∈ Ai′, mark it as special, and

add it to Bnew.

Ask all questions between bi and every other agent in A′ and

record the answers in q′.
if A′

i �= {bi}
A′

i ← refine(Ai′ − bi,Ai′ − bi, bi)
if A′

i contains two or more parts

Move bi from A′
i to B.

else

A′
i ← {A′

i}
endfor

for each bi ∈ Bnew

for each part A′
j that does not contain bi

/* Questions between bi and A′
j were asked earlier. */

A′
j ← refine(A′

j ,A′
j , bi)

endfor

endfor

A′ ←
⋃k

i=1 A
′
i, A′ ←

⋃k
i=1 A

′
i

endwhile

return(A′,A′, B, {q(a, a′) : a, a′ ∈ A})

Fig. 1. The procedure AskAndPartition
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Consider any two agents of A. Just like any two types, these two agents have
four possible relationships based on how they answer queries about each other.
Let A′ ⊆ A, let A′ be a partition of the agents in A′, and let b be an agent not
in A′. In our algorithm, we use refine(A′,A′, b) to denote the operation that
partitions the agents in each part of A′ according to their relationship with b.

The first part of the algorithm is done through the procedure AskAndPartition,
shown in Figure 1. Initially, A′ and A′ are set to A and {A} respectively, and all
agents are unmarked. The values q′(a, a′) for each a, a′ ∈ A are set to −1 as an
indication that the question addressed to a about a′ has not been asked. The al-
gorithm then enters a while loop. At the beginning of each iteration, the parts in
A′ may or may not contain special agents. For those parts A′

i that are missing a
special agent, an agent bi ∈ A′

i is chosen, marked special and noted as new. All
questions between bi and every agent in A′ − bi are asked and then stored in q′.
Based on the answers, bi is used to refine A′

i − bi and every other part of A′ later.
If bi subdivided A′

i − bi into two or more parts, bi is moved from A′
i to B because

it is no longer obvious which part bi should belong to; otherwise, bi stays in A′
i.

Notice that AskAndPartition is type-preserving. That is, if two agents have
the same type and neither one was moved to B, they stayed in the same part
of A′ throughout the execution of the procedure. Since there are only m types,
the number of parts in A′ never exceeds m. Additionally, from one iteration to
the next in the while loop of AskAndPartition, the number of parts in A′ either
increases or stays the same.

Lemma 4. The algorithm AskAndPartition terminates.

Lemma 5. Let A′
f , A′

f , and Bf denote the sets A′, A′ and B at the end of the
while loop in AskAndPartition. Either each part in A′

f consists of agents of the
same type or DQ has an uninformative partition.

Although we omit the proof of Lemma 5 due to length constraints, we will de-
scribe how such an uninformative partition would be found. Let A′

1, A
′
2, . . . , A

′
m′

be the parts in A′
f , and let bi be the special agent in A′

i for i = 1, . . . ,m′.
Let P = {P1, . . . , Pm′ , . . . , Pm′′} such that (1) for 1 ≤ i ≤ m′, Pi contains the
types of the agents in A′

i and (2) Pm′+1, . . . , Pm′′ are singleton sets contain-

ing the types not found in ∪m′
j=1Pi. Then P is an uninformative partition and

(∪m′
j=1t(bj))∪Pm′+1∪. . .∪Pm′′ is exactly the set of labels which are uninformative

with respect to P .

Theorem 7. The total number of questions asked in LabelOrDetect is O(mn).
Furthermore, if the algorithm outputs a function f , the function is a consistent
labeling of A. On the other hand, when it concludes that DQ has an uninformative
partition, it really has an uninformative partition.

According to Theorem 5, when the instances of the agent labeling and iden-
tification problems are well-formed, the consistent labeling produced by Label

will solve the problems.
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LabelOrDetect(A, Q)

(A′,A′, B, {q(a, a′) : a, a′ ∈ A}) ← AskAndPartition(A, Q)

for each pair of distinct agents a, a′ ∈ A such that q′(a, a′) = q′(a′, a) = −1
if a and a′ are not marked special

Let A′
i and A′

j denote the parts of A′ containing a and

a′ respectively.

if A′
i �= A′

j

Set q′(a, a′) and q′(a′, a) to q′(bi, bj) and q′(bj , bi) respectively.

else

Set q′(a, a′) and q′(a′, a) to q′(bi, a′) and q′(a′, bi) respectively.

endfor

Based on {q′(a, a′), a, a′ ∈ A}, partition the agents according to ∼.

if there are m equivalence classes

f ←Label(A,Q, {q′(a, a′) : a, a′ ∈ A}), return(f)
else

return(DQ has an uninformative partition)

Fig. 2. The algorithm LabelOrDetect

Corollary 1. When DQ = ([m], Q) has no uninformative partitions, L(n,Q) ∈
O(nm) and for each s∗ ∈ [m], I(n,Q, s∗) ∈ O(nm). When DQ = ([m], Q) has
only one uninformative partition, this partition is {[m]}, and s∗ is the uninfor-
mative type in {[m]}, I(n,Q, s∗) ∈ O(nm).
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Abstract. Let G = (V,E) be a planar graph. An arrangement of cir-
cular arcs is called a composite arc-drawing of G, if its 1-skeleton is iso-
morphic to G. Similarly, a composite segment-drawing is described by an
arrangement of straight-line segments. We ask for the smallest ground set
of arcs/segments for a composite arc/segment-drawing. We present algo-
rithms for constructing composite arc-drawings for trees, series-parallel
graphs, planar 3-trees and general planar graphs. In the case where G
is a tree, we also introduce an algorithm that realizes the vertices of the
composite drawing on a O(n1.81)× n grid. For each of the graph classes
we provide a lower bound for the maximal size of the arrangement’s
ground set.

1 Introduction

A graph is drawn by realizing its vertices as points in the plane and connecting
adjacent vertices by continuous curves. There exists a large number of design
criteria such as small area, good vertex and angular resolution, or a small number
of edge crossings. All these measures assure that vertices and edges in a drawing
are distinguishable for the observer. In this paper we propose a novel criterion
for aesthetic and readable graph drawings. Our goal is to generate drawings that
are easy to perceive by the viewer. When reading a drawing the human mind
decomposes the received picture into geometric entities such as lines, segments,
arcs, disks, circles, and so on. By interpreting the relationship between these
entities an understanding of the drawing is obtained. We refer to the number of
entities used in the drawing as its visual complexity.

Straight edges and the absence of crossings are desirable features for a draw-
ing. A straight edge would be considered as one single entity, whereas, for exam-
ple, a polygonal chain might be considered as a combination of several geometric
entities. Something similar is true for edge crossings. If two edges cross, they in-
troduce a new perceptional feature in the drawing, the crossing point. In this
paper we go beyond crossing-free straight-line drawings and try to reduce the
number of geometric entities of a drawing further. To make this possible, we
group edges, such that they form a new entity. For example, if we are able to

� The research was performed in cooperation with Eurogiga project GraDR - Graph
Drawings and Representations, and supported in part by ESF Eurogiga networking
grant.
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draw a path of the graph as a straight-line segment in the drawing (with vertices
in its interior), the visual complexity of the drawing is reduced. More formally,
we define.

Definition 1 (Composite drawing). Let A be an arrangement of simple geo-
metric bounded 1d objects in the plane. The objects might be subdivided by placing
additional vertices on them. Let G be the 1-skeleton of the subdivided arrange-
ment. The arrangement A is called a composite drawing of G. If A contains
only line segments it is called a composite segment-drawing, if A contains also
circular arcs it is called a composite arc-drawing. The number of arcs/segments
of A refers to the cardinality of the ground set of A.

Fig. 1 shows examples of composite arc-drawings.
Our motivation for the perception based approach stems partially from the

work of the artist Mark Lombardi. Lombardi’s visual art was focused on graph
drawings of social networks within the political and financial sector [9]. The
drawings of Lombardi had a unique style. Maybe the most characteristic fea-
ture is the use of circular arcs to represent consecutive edges. These circular-arc
paths kept the visual complexity of the drawings low. By aligning edges Lom-
bardi enhanced his drawings with additional informations. For example, these
alignments were used to decode temporal or sequential dependencies of events
represented by the vertices.

(a) (b)

Fig. 1. A drawing with low visual complexity of the graph of the dodecahedron (a). The
drawing uses 10 circular arcs, which is the best possible. A drawing of the icosahedron
graph that has not the lowest possible visual complexity (b).

In this work, we focus on the combinatorial aspects of drawings with low vi-
sual complexity. As simple geometric objects for composite drawings we consider
(straight-line) segments and circular arcs. Using straight-line segments is the
most natural way for drawing edges, but also circular arcs have been proposed
as “edge shapes” before [1,3]. In our understanding, a line segment is a degener-
ated circular arc, and by a suitable Möbius transformation these segments can
be converted to circular arcs. We present bounds on the maximal number of
arcs/segments necessary in a composite drawing. Our approach cannot handle
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Table 1. Combinatorial results obtained in the paper. Some lower bounds are presented
as slightly simplified expressions.

graph class upper bounds lower bounds
segments [5] arcs segments

trees �|E|/2� �|E|/2� �|E|/2� [5]
trees on O(n1.81)× n grid – �3|E|/4� �|E|/2� Thm. 1
series-parallel 3|E|/4 + 1 |E|/2 + 1 |E|/4 Thm. 2
planar 3-trees 2|E|/3 + 4 11|E|/18 + 3 |E|/6 Thm. 3
planar 3-connected 5|E|/6 + 2 2|E|/3 |E|/6 Thm. 4

edge crossings, since every crossing defines a subdivision of geometric objects
and hence introduces an additional vertex in the composite drawing. Therefore
we only study (noncrossing) drawings of planar graphs, such as trees, series-
parallel graphs, and planar 3-trees. Moreover, all graphs that we consider are
simple, which means that we forbid parallel edges and self-loops. The results of
this paper are listed in Tab. 1. All lower bounds presented in this paper are due
to the following simple observation.

Lemma 1. Let G be a graph with N vertices of odd degree. Every composite
arc-drawing or segment-drawing of G requires at least N/2 arcs.

Proof. In every odd degree vertex at least one arc/segment has to start, respec-
tively end. Hence we have at least N endpoints of arcs. �

Related Work. Dujmović et al. [5] studied the complexity of composite segment-
drawings. They presented their results in a slightly different form, namely, the
bounds on the number of segments are expressed in terms of |V |, instead in
terms of |E|. We are however convinced that a bound in terms of |E| gives a
more universal expression since a graph with fewer edges tends to require fewer
segments or arcs. The results of Dujmović et al. are presented in Tab. 1. Our
results imply that in a composite drawing circular arcs are indeed more powerful
than segments, since they are an improvement over the (straight-line segment)
bounds of Dujmović et al.. None of the drawings of Dujmović et al. fulfilled ad-
ditional aesthetic quality criteria. In fact, they stated the problem of designing
algorithms with small area as an open problem. From this perspective, Theo-
rem 1 gives the first algorithm that constructs composite drawings on a small
polynomial grid.

Recently, user studies comparing straight-line drawings with circular-arc draw-
ing were conducted [10,13]. Both studies showed that certain tasks are easier to
carry out by the observer, when straight edges are used. On the other hand, users
preferred the aesthetics of circular arc drawings over straight-line drawings in
one of the studies [10]. Note that these studies have not considered drawings with
low visual complexity, but only drawings with circular arcs. The hypothesis that
drawings with low visual complexity are indeed easier to perceive still needs to
be checked empirically, which is work in progress.
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2 Composite Drawing of Trees

Let T = (V,E) be a tree that we want to realize as a composite segment-drawing.
Drawings with �|E|/2� segments can be constructed by a greedy algorithm [5],
which is optimal.

2.1 Grid Drawings of Trees with Few Arcs

In this subsection we show how to draw an unordered tree as a composite arc-
drawing with few arcs and the additional constraint that all vertices lie on the
Z2 grid. Our objective is to obtain a drawing that uses few arcs but also requires
a small grid. Note that the greedy algorithm yields an embedding on a grid
exponential in O(|V |). Therefore, the produced drawing cannot be placed on a
polynomial grid.

To obtain a drawing on a small grid we do not aim at drawings with the lowest
visual complexity. We believe that both grid size, and visual complexity cannot
be optimized at the same time. As an easy example, the reader might consider
the realization of a simple cycle. Obviously this graph can be drawn with only
one circle. However realizing a circle such that it contains many grid points is
a highly nontrivial task. To our knowledge the best method uses a grid of size
O(5n/4) [11].

Heavy Edge Path-Decomposition. The drawing algorithm is based on a
decomposition scheme for trees, called the heavy edge path-decomposition [12],
which works as follows. We root the tree T = (V,E) at some vertex r. Let u be a
node of T , then Tu denotes the subtree rooted at u, and N(u) denotes the size of
this subtree. For every non-leaf u we select a child v, for which N(v) is maximal
(with respect to the size of the subtrees of the other children). The edge (u, v)
is called a heavy edge and all edges that are not heavy are called light edges. A
maximal connected component of heavy edges is called a heavy path. The tree T
decomposes into heavy paths and light edges. Note that every path in T to the
root visits at most �log |V |� light edges.

For the drawing algorithm it is convenient to introduce the following defini-
tions. We call the node on a heavy path that is closest to r its top node. The
subtree induced by a heavy path is the subtree rooted at its top node. The light
edge that links the top node with its parent in T is called light parent edge. The
depth of a heavy path P is defined as follows: If P is not incident to light parent
edges of other heavy paths it has depth one. Otherwise we obtain the depth
of P by adding one to the maximal depth of a heavy path linked to P via its
light parent edge. Note that the subtrees of heavy paths of a fixed depth are all
disjoint.

Algorithm Outline. The drawing algorithm works (high-level) as follows. We
draw all subtrees of heavy paths with increasing order of their depth. Further-
more, we associate every subtree of a heavy path with an axis-aligned rectangle
called its safe box. The drawing of a subtree is exclusively contained inside its
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safe box, and the root of the subtree is placed on the top edge of its safe box,
but not on its corners. For convenience we require that every safe box has width
at least 3, in particular every leaf is placed inside a 3× 1 safe box. When going
from a depth k to a depth k+ 1 subtree we arrange the drawings of the subtrees
whose heavy paths have smaller depth to a new drawing (details will be given
later). The algorithm terminates when the heavy path subtree with the largest
depth has been drawn.

Let us explain how to build the subtrees of the heavy paths (see Fig. 2(a) for
an illustration). The heavy path is drawn as a single vertical segment. The only
exception might be its edge (u, v) incident to the leaf v. Note that every subtree
incident to u has to be a leaf as well. Hence all k children of u are leaves, a node
with this property is called a k-fork in the following. The children of u are placed
on the line y = 0 and u is placed on (0, 1). In case that k is even, we place the
children of u symmetrically around the y-axis such that they have x-coordinates
−k/2,−k/2 + 1, . . . ,−1, 1, . . . k/2 − 1, k/2. Two vertices are joined by an arc
through u when they have the same absolute x-coordinate (see Fig. 2(a)). In
case that k is odd we place the light edges as in the even case and realize the
heavy edge (u, v) by extending the vertical segment that contains the remaining
heavy path (see Fig. 2(b)).

Assume now that u is not a fork. All safe boxes of subtrees incident to u
will be drawn, such that their roots lie on the same horizontal line which is one
unit vertically apart from u. Moreover, they will be distributed, such that two
of them are connected by a single arc running through u. Note that if we have
an odd number of light edges for u, one of the safe boxes does not have a sibling
to pair with. In this case we draw the arc as if there would be a sibling (leaf)
but we draw only the half of the arc that connects to v. The location of the safe
boxes incident to u needs vertical space, which is determined by the safe box
with the largest height. The smallest horizontal strip containing all safe boxes
incident to u is called a row. The tree is constructed such that all of its rows are
separated vertically by one unit. The node w following u on the heavy path is
placed at the bottom boundary of the row directly below u.

Box Displacement. We now discuss how to arrange the safe boxes within
each row. Let u be a node on the heavy path P (not a leaf or fork) and let
v1, v2, . . . , vk be the k children of u not on P . By recursion, the subtrees rooted
at the vis have already been drawn, so we have for every vi a safe box Bi with
width wi and height hi. Recall that vi is placed on the top edge of Bi. We will
arrange all safe boxes Bi such that their top edges lie on a common horizontal
line, the node vi has x-coordinate xi, and the node u is placed one unit above
at x = 0. To draw multiple light edges with a single arc, we pair two children,
say vi and vj , and connect both by an arc running through u. This implies that
xi = −xj for every such pair of vertices.

We determine the location of the safe boxes by a greedy strategy (see Fig. 3).
Let �i be the distance from vi to the top left corner of Bi, and similarly, let ri
be the distance from vi to the top right corner of Bi. We first orient all boxes
such that �i ≥ ri (it is valid to reflect the whole safe box including the drawing).
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v1

v3

v2

(a) (b)

Fig. 2. (a) A drawing of a heavy path’s subtree. Rows are drawn shaded and the heavy
path is drawn thick. (b) An example of a composite arc-drawing of a tree. The safe
boxes used in the algorithm are indicated by dashed rectangles. Vertex v1 is a hep, v2
is a 2-fork and, v3 is a 3-fork.

Then we sort the boxes by �i in increasing order, and finally we flip all boxes
with an even index vertically, such that ri ≥ �i.

Assume for now that k is an even number. We place the safe boxes in rounds.
In round t we place the safe boxes B2t−1 and B2t and connect them by an arc
passing through u. For convenience we introduce the following notation: If a box
Bi is placed left of the heavy edge, then ci := ri and bi := �i, otherwise ci := �i
and bi := ri.

In the first round we place B1 and B2. Without loss of generality we assume
that c1 ≤ c2 (otherwise the strategy is symmetric). We place B2 as close as
possible to the x = 0 line. Since no safe boxes have been placed before, we only
have to avoid the heavy edge emanating from u, hence, the safe box is placed
such that x2 = c2+1. Next, we place B1. The location of x1 is already determined
since we have fixed x2. Let S be vertical strip with smallest width centered at
the y-axis that contains the safe boxes placed so far. In the following rounds we
place the remaining safe boxes such that they are separated from S by one unit
and update S after every round.

In case k is odd, only one safe box needs to be placed in the final round. We
draw the final safe box on the left side, such that it is separated from S by one
unit. When all safe boxes have been arranged we determine the width of the
displacement Δ, that is the distance between the most extreme top corners. The
only exception is when k = 1; in this case Δ equals the width of the only safe
box plus 2.

Lemma 2. Assume we carried out the box displacement for the safe boxes inci-
dent to some u on P by the greedy strategy as explained above. We have

Δ ≤ 7/4

k∑
i=1

wi.

The proof of the lemma can be found in the full version. Let t be the top node
of a heavy path P . After carrying out the box displacements for all rows we
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Δ

S

u

v1 v2v3
v4v5

B2B1
B4

B5

c2 b2b5 c5

B3

Fig. 3. A snapshot during the execution of the greedy strategy for the box displace-
ment. The safe boxes up to B4 have already been placed. When placing the last box
B5 we avoid the restricted strip S . The boundaries of the strip S after round 1 and 2
are drawn as dashed lines.

can define the safe box for the subtree of P . Its width is determined by the row
with the maximal displacement width. By construction, t lies on the top edge,
but not on a corner of the new safe box. Fig. 3 shows an example of the greedy
strategy.

Lemma 3. By inductively laying out the safe boxes with the greedy strategy
explained above, the heavy edge path-decomposition yields a drawing where every
vertex is placed on a O(n1.81)× n grid.

Proof. In every inductive step we construct a drawing of a subtree and its safe
box out of smaller safe boxes. Assume we have k such safe boxes B1, . . . , Bk.
Due to Lemma 2 the width of the new safe box is at most 7/4

∑k
i=1 wi, since it

might happen that all safe boxes are placed in one row. On the other hand, at
least one box is placed in every row, and these rows are vertically separated by
one unit. This shows that the height of the new safe box is at most m+

∑k
i=1 hi,

for m being the number of rows plus one.
The claim of the lemma follows by induction. We first discuss the height. When

a small box contains only a single vertex, its height is one. When combining the
small boxes to a new subtree, we obtain as new height m +

∑k
i=1 hi. This new

subtree, however, has at least the vertices contained in the smaller safe boxes
and the m vertices on its heavy path. Hence the height of its safe box is at most
the number of its vertices.

For the width we notice that due to the heavy edge path-decomposition the
recursion depth is at most �logn�. By induction a subtree of a heavy path with
depth k and n′ vertices is contained inside a safe box of width at most 3·(7/4)k·n′.
Hence the whole tree is contained in a box of width 3n·(7/4)�logn� which is upper
bounded by O(n1.81). �

Analysis. A node is a heavy even-prefork (short hep), if its heavy edge child is
a k-fork, with k even. Fig. 2(b) illustrates the definitions. A charging scheme for
the “saved edges” in forks and heps leads to the following lemma, whose proof
can be found in the full version of the paper. Combining Lemma 2, 3, 4 yields
Theorem 1.
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Lemma 4. Let T = (V,E) be a tree drawn as a composite arc-drawing with the
algorithm based on the heavy edge path-decomposition. Then the drawing uses at
most �3|E|/4� arcs.

Theorem 1. The algorithm for realizing a tree G = (V,E) as composite arc-
drawings uses at most �3|E|/4� arcs. The computed drawing realizes all vertices
on a O(n1.81)× n grid, for n = |V |.

3 Composite Drawings of 2-Trees and Planar 3-Trees

In this section we study composite arc-drawings of series-parallel graphs (also
known as 2-trees) and planar 3-trees. We start with the series-parallel graphs.

Every series-parallel graph G = (V,E) can be decomposed into a sequence of
paths E1, E2, . . . Ek, such that (1) the endpoints for every path not E1 lie both
on some path Ej with smaller index (the path between the two endpoints on Ej

is called a nested interval), (2) no interior point of a path is contained in a path
with smaller index, and (3) all nested intervals are either disjoint or contain each
other [6]. Such a decomposition is called a nested open ear-decomposition. Based
on the series-parallel composition history of G a nested open ear-decomposition
can be easily constructed.

Theorem 2. Let G = (V,E) be a series-parallel graph. Based on a nested open
ear-decomposition we can obtain a composite arc-drawing with at most (|E|+1)/2
arcs. For every n there is a series-parallel graph G = (V,E) with more than n
vertices, whose composite segment-drawings need at least |E|/4 + 1/2 segments.

The proof of the theorem can be found in the full paper.
The next class of graphs we consider are the planar 3-trees. A planar 3-

tree is a triangulation that can be defined recursively as follows: Suppose G =
({v1, . . . , vn}, E) is a triangulation, we can pick one of its faces, say it is spanned
by the vertices vi, vj , vk and add a new vertex u inside this face together with
the three edges connecting vi, vj , vk with u. By this we remove one face and
introduce 3 new faces. This operation is called a stacking operation. Any graph
that can be generated from a triangle by a sequence of stacking operations is
called a planar 3-tree. We say that a planar 3-tree is k-fan if it has k+ 3 vertices
and it contains the triangle v1, v2, v3 and for every 4 ≤ i ≤ k + 3 the edges
(vi, v1), (vi, v2), and (vi, vi−1).

To develop an algorithm for a composite arc-drawing we first introduce a
crucial lemma. For the lemma we need the following definitions. A triangle is
called spherical if its edges are circular arcs that do not intersect and every angle
at a triangle corner is larger than zero and smaller than π. We say a vertex v
inside a spherical triangle S is spherically visible from a triangle corner c, if there
exists a circular arc connecting c and v that lies entirely in S (see Fig. 4(a)).



414 A. Schulz

v1

v2

v3

v4
v5

(a) (b) (c)

Fig. 4. (a) A spherical triangle spanned by v1, v2, v3 with interior point u. (b) The
image of the same spherical triangle under a Möbius transformation that turns two
boundary arcs into straight-lines. (c) Construction in the proof of Lemma 6.

Lemma 5. Let S be a spherical triangle and let u be a point inside S. Then u
is spherically visible from every of the three corners of S. Furthermore, the arc
that witnesses the spherical visibility and the boundary arcs of the corresponding
corner c have all a distinct tangent at c, if u is not on a boundary arc incident
to c.

Proof. Let the corners of S be v1, v2, v3. We prove the statement for the corner
v1. Let f be the Möbius transformation that maps the arcs v1v2 and v1v3 to
straight-line segments. Clearly u′ := f(u) lies inside S′ := f(S). We set v′i :=
f(vi). Let s be the ray that starts in v′1 and is pointed towards u′. The ray
s cannot intersect the arcs v′1v′2 and v′1v′3, since Möbius transformations are
conformal and therefore the angles at v′2 and v′3 in S′ are both less than π.
It follows that s hits first the vertex u′ and then the boundary of S′ without
reentering. Therefore, the Möbius function f−1 maps the segment v′1u′ to a
circular arc that witnesses the spherical visibility of u in S. Clearly the tangents
of v1v2, v1v3, and f−1(s) are all distinct in v1 because f and f−1 are conformal.
Fig. 4 shows an example of a triangle S and its image S′. �

Lemma 6. Let G be a k-fan with outer face f0, and let S be a spherical triangle.
Then G can be drawn with k+4 circular arcs such that the boundary of S realizes
f0.

Proof. Let us first discuss the case k = 1. Let the vertices of f0 be v1, v2, and
v3. The vertex v4 is placed reasonably close to the arc v1v2, such that the arc
connecting v1 with v2 via v4 lies inside S. By this we define a new spherical
triangle S′ � S, which has the corners v1, v2 and v3. Due to Lemma 5, v4 is
spherically visible from v3 in S′, and therefore we can connect v3 with v4 by an
arc inside S′. The drawing needs five arcs.

Assume now that G is a 2-fan. We extend the arc ending at v4 (without
changing the curvature), such that it reaches inside the spherical triangle spanned
by v1, v2, v4. Let the endpoint of the extended arc be v5. We can interpolate in
between the two arcs between v1 and v2 such that we get a circular arc connecting
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v1 and v2 via v5. The new arc does not introduce any crossings. See Fig. 4(c) for
an illustration. By repeating this argument, we can draw every k-fan with k + 4
arcs. �

Theorem 3. Every planar 3-tree G = (V,E) can be drawn with 3 + 11|E|/18
arcs as a composite arc-drawing. For every number n, there is a planar 3-tree
G = (V,E) with more then n vertices, whose composite arc-drawings require at
least |E|/6 arcs.

Proof. Note that we can naturally recurse on a planar 3-tree, since when the
first vertex v4 is stacked on the face v1v2v3, the graphs contained in the three
interior triangles are planar 3-trees as well. For the drawing algorithm we assume
that there were at least 2 stacking operations. Let Gf the subgraph of G that
is isomorphic to a k-fan and that includes the boundary face, such that k is
maximal. We draw G as discussed in Lemma 6 including all induced 1-fans of
G that would lie inside faces of Gf . For every such 1-fan we need 2 arcs. This
implies that in the worst case there is a 1-fan for every face in Gf , except for
v1, v2, vk+3. Therefore we have 2k 1-fans, contributing a total of 4k arcs. The
k-fan requires k + 1 arcs for the interior edges. Thus we have 5k + 1 arcs for the
9k interior edges. This shows that the ratio between interior arcs and edges is
at most 11/18 (recall that k ≥ 2). The faces of Gf that contain parts of G with
more than one additional vertex are analyzed by recursion. The asserted bound
of 3+11|E|/18 follows. The lower bound is due to Lemma 1, since an arbitrarily
large planar 3-tree with odd degree vertices only can be easily constructed. �

4 Composite Drawings of 3-Connected Planar Graphs

Let G = (V,E) be a triangulation. We order the vertices of G with respect
to some canonical order as defined by de Fraysseix, Pach, and Pollack [4]. In
particular, let v1, v2, . . . , vn be the vertices of G, such that Di is the boundary
face of the graph Gi induced by Vi := {v1, v2, . . . vi}. The graph Gi+1 is obtained
by introducing the new vertex vi+1 that is connected to some (at least 2) vertices
of Di. The boundary face Di+1 is updated accordingly, also D2 = G2 is the initial
segment.

The composite arc-drawing is constructed in the reverse order of the canonical
order. We start with drawing the face v1, v2, vn, such that vn lies on a circular
arc that connects v1 and v2 and furthermore v1 and v2 are joined by a circular
arc such that the boundary face is convex. We maintain as an invariant that the
region enclosed by the current face Di is strictly convex. Assume that we have
already drawn the edges of Dk with k ≥ i. Let Dj be the face with the largest
index that contains points that have not be drawn yet. We draw Dj by adding
a straight-line segment �j that connects the corresponding vertices in Di. The
new vertices Vj \ Vi are placed arbitrarily on �j in the order they appear on
Dj . Next we add the (possibly) remaining edges that connect vi with the points
on �j . The edges can be drawn either as straight-line segments or as circular
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arcs. To guarantee the convexity of the face Dj we perturb �j with its incident
vertices to a slightly curved circular arc. We continue this way until all vertices
are placed. Fig. 1(b) shows a drawing constructed with the described strategy. If
G is a planar 3-connected graph, then we can find a similar construction based
on the canonical ordering of Kant [8].

Theorem 4. The above method constructs a composite arc-drawing of a planar
3-connected graph G = (V,E) with at most 2|E|/3 arcs. For every n there is a
triangulation G = (V,E) with more than n vertices whose composite segment-
drawings need at least |E|/6 + 1 segments.

Proof. The drawing obtained by the technique explained above draws for every
vertex (except v1,v2) two edges as one arc. For a planar graph there are at most
3|V | − 6 edges. Hence, the number of arcs differs from |E| by |V | − 2, which
proves the first statement of the theorem. The lower bound follows from the
lower bound of Theorem 3. �

5 Future Work

In this paper we presented the first algorithms for composite drawings. For all
graph classes except for trees there is a gap between the lower and upper bound
on the number of necessary arcs. We are interested in tightening these gaps, but
we think that new methods are required for a substantial improvement.

This paper concentrates on the combinatorial question, i.e., how small can the
visual complexity be. On the other hand, drawings with very low visual complex-
ity might violate other criteria for readable drawings. We addressed this issue in
Theorem 1 by combining classical graph drawing criteria (grid size) with low vi-
sual complexity. We would like to extend this result for more complicated graph
classes in order to construct more readable drawings with low visual complexity.

It is ongoing research to evaluate our hypothesis, that a graph with low visual
complexity is easier to percept by the viewer with empirical user studies. Our
hope is that we can show that drawings with small visual complexity are easier
to memorize and we think this might be especially applicable for drawings of
graphs with a small number of vertices.

Finally, we would like to point out, that we are interested in small decom-
positions of planar graphs into edge-disjoint simple paths. This graph-theoretic
question might yield better lower bounds. Although this problem seems elemen-
tary, only partial results are known. If the graph is a triangulation it can be
decomposed into edge-disjoint simple paths that all have exactly three edges [7].
The same is true for cubic bridge-less graphs [2]. We would like to see a similar
bound for general planar 3-connected graphs.

Acknowledgement. I thank Thomas van Dijk, Phillip Hanraths, Jan-Henrik
Haunert, Birgit Vogtenhuber, and Alexander Wolff for helpful discussions on this
subject.
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Abstract. Given a graph G = (V,E) and a set of terminal vertices T we
say that a superset S of T is T -connecting if S induces a connected graph,
and S is minimal if no strict subset of S is T -connecting. In this paper

we prove that there are at most
(|V \T |
|T |−2

)
· 3

|V \T |
3 minimal T -connecting

sets when |T | ≤ n/3 and that these can be enumerated within a polyno-
mial factor of this bound. This generalizes the algorithm for enumerating
all induced paths between a pair of vertices, corresponding to the case
|T | = 2. We apply our enumeration algorithm to solve the 2-Disjoint

Connected Subgraphs problem in time O∗(1.7804n), improving on the
recent O∗(1.933n) algorithm of Cygan et al. 2012 LATIN paper.

1 Introduction

The listing of all inclusion minimal combinatorial objects satisfying a certain
property is a standard approach to solving certain NP -hard problems exactly.
Some examples are the algorithms for Minimum Dominating Set in time
O∗(1.7159n) [3], for Feedback Vertex Set in time O∗(1.7548n) [2], and for
Minimal Separators in time O∗(1.6181n) [4]. At the time of their appearance
these algorithms were the fastest ones available.

This is an approach that usually requires little in the way of correctness argu-
ments. For example, in the minimum dominating set problem it is obvious that
a dominating set of minimum cardinality is also an inclusion minimal dominating
set. The main task in this approach is to firstly enumerate the inclusion minimal
objects, preferably by an algorithm whose runtime is within a polynomial factor
of the number of such objects, and secondly to provide a good upper bound on
the number of objects. Probably the most famous example is the polynomial de-
lay enumeration algorithm for Maximal independent set [7] where there are
matching upper and lower bounds on the number of objects [8].

Another case with matching upper and lower bounds is the O∗(3
n
3 ) folklore

algorithm enumerating all induced paths between two fixed vertices u and v in
an n-vertex graph1. In this paper we consider some generalizations of this graph
problem. We first generalize to the enumeration of induced paths starting in v
and ending in a vertex from a given set R, with no intermediate vertices in N(R).

1 We have not been able to find a proof of this algorithm in the literature. The graph in
Figure 1, with |R| = 1, shows optimality of the algorithm, up to polynomial factors.

A. Brandstädt, K. Jansen, and R. Reischuk (Eds.): WG 2013, LNCS 8165, pp. 418–428, 2013.
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The algorithm we give for this generalization will be optimal, up to polynomial
factors. Given a subset of vertices T let us say that a superset S of T is T -
connecting if S induces a connected graph, and that S is minimal T -connecting
if no strict subset of S is T -connecting. Our main generalization is the following
enumeration task:

Enumeration of minimal T -connecting Sets

Input: A graph G = (V,E) and a set T ⊆ V .
Output: All minimal T -connecting sets.

Note that for the case |T | = 2 the minimal T -connecting sets are in 1-1
correspondence with the set of induced paths between the two vertices of T . We
give an algorithm for Enumeration of minimal T -connecting Sets with

runtime O∗(
(n−|T |
|T |−2

)
·3n−|T|

3 ) where |T | ≤ n/3. For |T | > n/3 a trivial O∗(2n−|T |)
brute force enumeration can be used. We apply this enumeration algorithm to
solve the following problem:

2-Disjoint Connected Subgraphs

Input: A connected graph G = (V,E) and two disjoint subsets of terminal
vertices Z1, Z2 ⊆ V .
Question: Does there exist a partition A1, A2 of V , with Z1 ⊆ A1, Z2 ⊆ A2 and
G[A1], G[A2] both connected?

The general version of this problem with an arbitrary number of sets was used
as one of the tools in the result of Robertson and Seymour showing that Minor

containment can be solved in polynomial time for every fixed pattern graph
H [11]. We require the input graph to be connected since otherwise it is easy to
reduce the problem to a connected component.

Let us look at some previous work on this problem. Motivated by an ap-
plication in computational geometry, Gray et al [6] showed that 2-Disjoint

Connected Subgraphs is NP-complete on planar graphs. van’t Hof et al
[12] showed that on general graphs it is NP-complete even when |Z1| = 2
and also that it remains NP-complete on P5-free graphs but is polynomial-
time solvable on P4-free graphs. Notice that the naive brute-force algorithm
that tries all 2-partitions of non-terminal vertices runs in time O(2knO(1)),
where k = n − |Z1 ∪ Z2|. This shows that 2-Disjoint Connected Sub-

graphs is fixed-parameter tractable when parameterizing by the number of
non-terminals. However, Cygan et al [1] show that breaking this O∗(2k) bar-
rier for the number k of non-terminals would contradict the Strong Exponential
Time Hypothesis, and that a polynomial kernel for this parameterization would
imply NP ⊆ coNP/poly. Paulusma and van Rooij [10] gave an algorithm with
runtime O∗(1.2051n) for P6-free graphs and asked whether it was possible to
solve the problem in general graphs faster than O(2nnO(1)). This question was
recently answered affirmatively by Cygan et al [1] who gave an algorithm for
2-Disjoint Connected Subgraphs on general graphs, based on the branch
and reduce technique, with runtime O∗(1.933n).
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Our algorithm for 2-Disjoint Connected Subgraphs on general graphs
will be based on Enumeration of minimal T -connecting Sets and have
runtime O∗(1.7804n).

Our paper is organized as follows. In Section 2 we give the main definitions.
In Section 3 we address the enumeration of induced paths starting in v and
ending in a vertex from a given set R, with no intermediate vertices in R. In
Section 4 we give an algorithm for Enumeration of minimal T -connecting
Sets. In Section 5 we apply this enumeration algorithm to solve the 2-Disjoint

Connected Subgraphs problem. We end in Section 6 with some questions.

2 Definitions

We deal with simple undirected graphs and use standard terminology. For a
graph G = (V,E) and S ⊆ V we denote by G[S] the graph induced by S. An
induced subgraph G[S] for S ⊂ V is called connected if any pair of vertices of S
are connected by a path in G[S]. We may also denote the vertex set of a graph G
by V (G). We denote by N [S] the set of vertices that are in S or have a neighbor
in S, and let N(S) = N [S] \ S.

A path P of a graph G is a sequence of vertices (v1, v2, . . . , vq) such that
vjvj+1 ∈ E for 1 ≤ j < q, and the path is called induced if G[{v1, v2, . . . , vq}]
has no other edges. A subpath of P is of the form (v1, v2, . . . , vi) for some i ≤ q.

Contracting an edge uv into vertex v in a graph G is defined as the operation
of adding, for every vertex w ∈ N(u)\N [v], the edge vw to G if it is not already
present, and then deleting u and all edges incident to u. Notice that a graph is
connected after the contraction operation if and only if it was connected before
the contraction operation.

Given a graph G = (V,E), a vertex set T ⊂ V , a vertex v1 ∈ V \ T , and an
induced path P = (v1, v2, ..., vq) in G[V \ T ], we define the branch depth of path
P to be

b(P ) = |N [{v1, v2, ..., vq−1}]| − 1.

3 Induced Paths from a Vertex to a Set of Vertices

It is folklore knowledge that the set of induced paths between a pair of vertices
in an n-vertex graph can be enumerated in O∗(3

n
3 ) time. We have not been

able to find a written proof of this in the literature. In the following theorem
the induced paths between a pair of vertices is a special case, thus providing a
generalization of a well known result.

Theorem 1. Given a graph G = (V,E), a vertex v ∈ V and R ⊆ V \N [v], we
can enumerate all induced paths from v to a vertex of N(R), with no intermediate

vertex in N [R], in time O∗(3
|V \R|

3 ).

We actually want the paths from v to R, but since these paths must have the
second-to-last vertex in N(R) we state the result as above. Theorem 1 will follow
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R
..........v ...

Fig. 1. The number of induced paths between vertex v and a vertex of N(R) (the

rightmost column of 3 vertices) is 3
n−|R|−1

3 . Since each such path P has branch depth
b(P ) = n−|R|−1 this graph shows tightness of Lemma 2 when b(P ) is a multiple of 3.
If b(P ) = 3i+1 then replace one column of 3 vertices by 4 vertices and if b(P ) = 3i+2
add a new column of 2 vertices. R induces a connected graph so the number of minimal

R ∪ {v}-connecting sets is also 3
n−|R|−1

3 .

from Lemma 2, which is stated in terms of branch depth of paths in order to be
used for the branching algorithm in the next section. Since the branch depth of
each induced path from v to N(R), with no intermediate vertex in N(R), is at
most |V \R| − 1, Theorem 1 will follow from Lemma 2 below and is tight up to
polynomial factors, see Figure 1. We start with a combinatorial lemma.

Lemma 1. Fix a non-negative integer t and let T be a rooted tree where any
root-to-leaf path v1, v2, ..., vq has Σq

i=1 c(vi) ≤ t, with c(v) the number of children
of node v. The maximum number of leaves that T can have is l(t) with l(1) = 1
and for t 
= 1

l(t) =

⎧⎨⎩
3i if t = 3i,
4 · 3i−1 if t = 3i + 1,
2 · 3i if t = 3i + 2.

Proof. We first show that for any t there is a tree Ut achieving the maximum,
where all nodes at the same level have the same number of children. For any
t let Tt be any rooted tree achieving the maximum. Define r(t) as the number
of children of the root of Tt. In the tree Ut all nodes at level i ≥ 1 will have
u(i) children, with u(i) defined level-by-level as follows. The root of Ut will
have the same number of children as the root of Tt, in other words we define
u(1) = r(t). The sum of the number of children of nodes on any path from a
child of the root of Ut to a leaf of Ut should be t − u(1), thus nodes at level 2
of Ut should have the same number of children as the root of Tt−u(1), in other
words we define u(2) = r(t − u(1)). Continuing like this we get that in general
u(i) = r(t − Σ1≤j<i u(j)). By induction on t it follows that Ut has as many
leaves as Tt and any root-to-leaf path has t children.

Assume Ut has p levels. We then have that u(1) +u(2) + ...+u(p− 1) = t and
that u(1) · u(2)... · u(p− 1), the number of leaves of Ut, is maximized. Since the
product of these integers is maximized we can assume that we have no integer
x ≥ 4 among them since then we could replace x by 2 · (x − 2) ≥ x which does
not decrease the product nor changes the sum of the integers. Also, if 2 appears
then it appears at most twice since we could replace 2 · 2 · 2 by 3 · 3 > 2 · 2 · 2.
This implies that the number of leaves in Ut is l(t) as stated in the Lemma.
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Note that l(t) is the maximum number of maximal independent sets in a graph
on t vertices [8,5]. For the connection to the largest integer which is the product
of positive integers with sum t see e.g. [13].

Lemma 2. Given a graph G = (V,E), a vertex v1 ∈ V , R ⊆ V \ N [v1], and
an integer t. Then there exist at most l(t) induced paths P = (v1, v2, ..., vq) in G
such that

(a) b(P ) ≤ t,
(b) vi 
∈ N [R] for 1 ≤ i ≤ q − 1, and
(c) vq ∈ N(R).

Furthermore all these paths can be enumerated in O∗(3
t
3 ) time.

Proof. The enumeration algorithm will be a standard backtracking algorithm
starting in v1 that checks all choices. At the first step the choices for v2 are
the vertices in N(v1). In general, when we have a subpath P = (v1, v2, ..., vi), if
vi 
∈ N(R) the choices for vi+1 are the vertices in N(vi) \ N [{v1, v2, ..., vi−1}],
and if this latter set is empty then the subpath P will not be part of the rooted
tree T of all possible choices. On the other hand, if vi ∈ N(R) then P is a root
to leaf path in T . Thus, in the rooted tree T of all possible choices, if we label
the nodes of T with the vertex chosen, the set of paths from the root to a leaf
in T will be in 1-1 correspondence with the set of paths satisfying (b) and (c) in
the Lemma.

Consider such a path P = (v1, v2, ..., vq). By definition the branch depth of
P is b(P ) = |N [{v1, v2, ..., vq−1}]| − 1. Consider the root-to-leaf path PT in T
corresponding to P . For any 1 ≤ i < q−1 the children of the node in PT labelled
vi have labels N(vi)\N [{v1, v2, ..., vi−1}], and the node labelled vq is a leaf. Thus
the children of all nodes of PT have distinct labels and the union of all these
labels is N [{v1, v2, ..., vq−1}]\{v1}. Thus the sum of the number of children over
all nodes on PT is exactly b(P ).

Consider any rooted tree T having the property that for any root-to-leaf path
the sum of the number of children of all nodes on this path is at most t. Lemma
1 bounds the number of leaves in such a tree to l(t). By the above observations,
and the fact that l(t) ≤ 3t/3 since 2 ≤ 32/3 and 4 ≤ 34/3, this proves the Lemma.

This enumeration algorithm is optimal to within polynomial factors, see Fig-
ure 1.

4 Enumeration of Minimal T -Connecting Sets

Theorem 1 with |R| = 1 can be viewed as an enumeration of all minimal T -
connecting sets when T = {u, v}. We now generalize this approach to an arbi-
trary terminal set T by a branching algorithm. The following observation will
be used to simplify our branching algorithm.
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Lemma 3. Given G = (V,E), T ⊆ V , and two vertices u, v ∈ T such that
uv ∈ E. Let G′ be the graph obtained by contracting edge uv into v. Then there
is a one to one mapping between minimal T -connecting Sets in G and minimal
T \ {u}-connecting Sets in G′.

Proof. For every minimal T -connecting Set S in G we can contract edge uv and
obtain a minimal T \ {u}-connecting Set S′ = S \ {u} in G′. For every minimal
T \{u}-connecting Set S′ in G′ we can observe that G[S′∪{u}] is a T -Connecting
Set in G and it is also minimal as u ∈ T .

Consider Algorithm Main Enumeration. It will solve Enumeration of

minimal T -connecting Sets for any graph G = (V,E) and T ⊆ V . Let us
first give the informal intuition for the algorithm. We fix a vertex u ∈ T and
using the algorithm of Lemma 2 we find all induced paths from u to N(T \ {u}).
For each of these paths P = (u, v2, ..., vq) we again call the algorithm of Lemma
2, but now on the graph G′ obtained by recursively contracting the edge uvi, in
increasing order for i = 2 to q. In this graph G′ the path P together with the
vertices of T that P has in its neighborhood, have all been contracted into u.
The path we find in G′ will in G start at some vertex of P or a neighbor in T
and we see that we start forming a tree of paths. We carry on recursively in this
way until the collection of paths spans all of T , note however that the vertices of
these paths may induce a graph containing cycles. To avoid repeating work we
label vertices by a total order and use this ordering to guide the recursive calls.

Lemma 4. Given G = (V,E), T ⊆ V and |T | ≤ n/3 Algorithm Main Enumer-
ation will:

1. output every minimal T -connecting Set of G,
2. output, for any integer r ∈ [0..|V \T |], at most

(|V \T |
|T |−2

)
·3r/3 vertex sets S ⊇ T

such that |N [S] \ T | ≤ r, and

3. run in O∗(
(|V \T |
|T |−2

)
· 3|V \T |/3) time.

Proof. 1.) Let us first argue that every minimal T -connecting vertex set is output
by the algorithm. In the case where |T | ≤ 1 the single vertex set T is output by
the algorithm. In the remaining cases |T | > 1.

Let S be a minimal T -connecting vertex set. Our goal will be to show that
there will be a call MCS(C,X) performed by the algorithm in which T ∪C = S.
Initially C = X = ∅ so we trivially have T∪C ⊆ S and X∩S = ∅. Consider a call
MCS(C,X) where we have |T ∪ C| maximized under the constraint T ∪ C ⊆ S
and S∩X = ∅. We show by contradiction that T∪C = S for this call MCS(C,X).
Assume, by sake of contradiction, that there is a terminal vertex not in Cu, i.e.
not in the component of G[T ∪ C] containing u, i.e. that T ′ 
= ∅. Let v2 be the
lowest numbered vertex of N(Cu) ∩ S. As S is minimal we have that G[S] is
connected but G[S \{v2}] is not connected. By the minimality of S we have that
G′[S′] is connected but G′[S′ \ {v2}] is not connected for S′ = (S \ Cu) ∪ {u}.
Vertex v2 is not a vertex of C∪T and as S is minimal we have that each connected
component of G′[S′ \ {v2}] contains a vertex of T ′. If this was not the case, this
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Algorithm Main Enumeration
Input: A graph G = (V,E) and terminal set T ⊆ V
Output: A family of sets containing all minimal T -connecting Sets
begin

assign each vertex a unique label between 1 and |V |
choose u ∈ T
MCS(∅, ∅)

end

Procedure MCS(C,X)
Parameter C: vertex set used to connect T
Parameter X : vertices not to explore in this call
begin
if G[T ∪ C] is connected then output T ∪ C
else

set Cu ⊇ C as vertex set of connected component of G[T ∪ C] containing u
set T ′ = T \ Cu i.e. the terminals not yet connected to u by C
set G′ to be graph obtained from G by contracting edges of G[Cu] to u
call the algorithm of Lemma 2 on G′[V (G′) \X ] with v1 = u and R = T ′

for every path P = (v1, v2, . . . , vq) output by that call
MCS(C ∪ {v2, . . . , vq}, X ∪ {w ∈ N(Cu) : label(w) < label(v2)})

end-for
end

component could simply be removed from S without changing the connectivity
between vertices of T . Let B be a connected component of G′[S′ \ {v2}] not
containing u. By the previous arguments B contains a vertex of T ′. Therefore
the call of the algorithm in Lemma 2 on graph G′[V (G′) \X ] with R = T ′ will
find a path P = (u, v2, . . . , vq) with all vertices in S and with vq a neighbor of
a vertex of T ′ in B and containing only vertex v2 from N(Cu). This would lead
to a recursive call where C would be updated to C ∪ {v2, . . . , vq} ⊆ S, and to
X there would not be added any vertices of S as v2 had lowest label among
all vertices in N(Cu) ∩ S, contradicting the maximality of |T ∪ C| under the
constraint T ∪ C ⊆ S and S ∩X = ∅.

2.) We bound the number of recursive calls in the algorithm and thus also
the number of vertex sets that is output. Our objective will be to prove that the
number of recursive calls MCS(C,X) where r = |N [Cu]\T | and p is the number

of times a path is added to C, is at most
(|X|+p

p−1

)
· 3r/3. Note that p is equal

to the depth of the recursion. Let x = |X |. Since the algorithm ensures that
X ⊂ N(Cu), p ≤ |T | − 1, and at least one vertex is added to C for each found
path so p ≤ |C|, we have that x+p ≤ |N [Cu]\T | = r. Given that |T | ≤ n/3 and

thus |V \ T | ≥ 2|T | it is clear that
(|V \T |
|T |−2

)
≥
(
x+p
p−1

)
and the claim of the lemma

follows.
The proof will be by induction on s = x + p. We assume without loss of

generality that |T | ≥ 2. The first call is MCS(∅, ∅) in which case p = 0, and
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this is in fact the only call where x + p ≤ 0. The execution of MCS(∅, ∅) will
call the algorithm of Lemma 2 on G′ with v1 = u and R = T ′ and make a
recursive call MCS(C,X) for each path P output by the algorithm of Lemma
2. Consider such a call MCS(C,X) originating from path P . This call will have
x = |X | ≥ 0, p = 1, and it will have r = |N [Cu] \ T | ≥ b(P ). The number
of paths P with b(P ) ≤ r output by the algorithm of Lemma 2 applied to the
execution of MCS(∅, ∅) on G′ with v1 = u and R = T ′ is at most 3r/3. Since
3r/3 ≤

(
x+p
p−1

)
·3r/3 for p = 1 we have just established the base case s = x+p ≤ 1

this also covers all cases where p ≤ 1 in our induction.
In the induction step we consider the case where s = x+p ≥ 2 and p > 1. Let

MCS(C′, X ′) be a call and let x′ = |X ′|, r′ = |N [C′
u] \ T |, and p′ be the number

of paths added, or equivalently the depth of the recursion. By the induction
hypothesis we assume that the bound holds for the number of calls MCS(C′, X ′)
where x′ + p′ ≤ x + p− 1.

Every call MCS(C,X) where x + p = s is created by a call MCS(C′, X ′) and
a path P = (v1, v2, . . . , vq) such that C = C′ ∪ {v2, . . . , vq}, p′ = p − 1, and
X = X ′ ∪ {w ∈ N(C′

u) : label(w) < label(v2)}. As each vertex from N(C′
u) \X ′

chosen as v2 will create a unique size of the set X = X ′ ∪ {w ∈ N(C′
u) :

label(w) < label(v2)} for the next recursive call there is at most one choice
for v2 starting from a fixed MCS(C′, X ′) when it should lead to a recursive call
MCS(C,X) where x+p = s. However, there are choices for the sub-path vertices
(v3, . . . , vq), but these vertices can be chosen only among V \ (N [C′

u]∪ T ), since
v2 is fixed in N(C′

u) and the path P is induced. Note that any such sub-path
has branch-depth at most |N [Cu] \ (N [C′

u]∪T )|. We can use Lemma 2 to bound
the number of such sub-paths, as follows. By applying Lemma 2 to the graph
obtained from G[V \ (N(C′

u) \ {v2})] by contracting C′
u ∪ {v2} to u with v1 = u

and with R = T \ C′
u we deduce that the number of such sub-paths is at most

3(|N [Cu]\(N [C′
u]∪T )|)/3.

This means that the number of calls MCS(C,X) where x + p = s is at most
the number of calls MCS(C′, X ′) where C′ ⊆ C, X ′ ⊆ X thus x′ ≤ x, and p′ =
p− 1, times 3(|N [Cu]\(N [C′

u]∪T )|)/3. By the induction hypothesis we have that the

number of calls MCS(C′, X ′) where x′ + p′ < s is at most
(
x′+p−1
p−1−1

)
· 3|N [C′

u]\T |/3.

Multiplying these two factors we get
(x′+(p−1)
(p−1)−1

)
·3|N [C′

u]\T |/3·3(|N [Cu]\(N [C′
u]∪T )|)/3

which can be simplified to
(x′+(p−1)
(p−1)−1

)
· 3(|N [Cu]\T |)/3.

Thus it remains to bound the number of calls MCS(C′, X ′) that can make a
new recursive call MCS(C,X) where x + p = s to be at most

(
x+p
p−1

)
. We know

that each call MCS(C′, X ′) can only make calls where x+p = s when it uses the
unique vertex v2 ∈ N(C′

u) \X as the second vertex of the path. Thus it suffices
to count these calls, and let y be the number of such calls. We have that

y ≤
x∑

i=0

(
i + p− 1

p− 1− 1

)
· 3(|N [Cu]\T |)/3

Using the standard observation that
∑n

k=0

(
k
m

)
=
(
n+1
m+1

)
we can conclude that

y ≤
(
x+p
p−1

)
· 3(|N [Cu]\T |)/3 and the proof is completed.
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3.) In the previous claim we bounded the number of recursive calls in the

algorithm to
(|V \T |
|T |−2

)
· 3r/3 vertex sets S ⊇ T such that |N [S] \ T | ≤ r and |T | ≤

n/3, and as Lemma 2 ensures that all paths in a single call can be enumerated
within a polynomial delay it follows that the polynomial bound holds.

Using Lemma 4 we can make the following conclusion.

Theorem 2. For an n vertex graph G = (V,E) and a terminal set T ⊆ V where

|T | ≤ n/3 there is at most
(n−|T |
|T |−2

)
· 3(n−|T |)/3 minimal T -connecting vertex sets

and these can be enumerated in O∗(
(n−|T |
|T |−2

)
· 3(n−|T |)/3) time.

5 The 2-Disjoint Connected Subgraphs Problem

Let us now use Theorem 2 to solve the 2-Disjoint Connected Subgraphs problem.
Recall that the problem is defined as follows:

2-Disjoint Connected Subgraphs

Input: A connected graph G = (V,E) and two disjoint subsets of vertices
Z1, Z2 ⊆ V .
Question: Does there exist two disjoint subsets A1, A2 of V , with
Z1 ⊆ A1, Z2 ⊆ A2 and G[A1], G[A2] both connected?

Theorem 3. There exists a polynomial space algorithm that solves the
2-Disjoint Connected Subgraphs problem in O∗(1.7804n) time.

Proof. Let us assume without loss of generality that |Z1| ≤ |Z2| and let α =
|Z1|/n; note that 0 < α ≤ 0.5. The algorithm has a first stage that finds a list
of potential candidates for A1 and a second stage that checks each candidate to
see if it can be used as a solution.

Consider first the case where |Z1∪Z2| > 2(0.0839). In this case the algorithm
simply loops over all subsets of V \ (Z1 ∪ Z2) to list every vertex subset A ⊆
(V \Z2) where Z1 ⊆ A. As |Z1∪Z2| > 2(0.0839) we get that the number of such
subsets is at most 2n−2(0.0839) ≤ 1.7804n and they can be found in O∗(1.7804n)
time.

In the remaining case |Z1 ∪ Z2| ≤ 2(0.0839) and in particular α ≤ 0.0839 as
|Z1| ≤ |Z2|. Vertices of Z2 are of no use when searching for a potential set A1 so it
suffices to consider the graph G[V \Z2]. As |Z1| ≤ 0.0839n ≤ n(1− 2(0.0839))/3
we know that by the algorithm for Enumeration of minimal T -connecting
Sets of Theorem 2 all minimal Z1-connecting sets of G[V \Z2] can be enumerated

in O∗(
(n−|Z1|−|Z2|

|Z1|−2

)
· 3(n−|Z1|−|Z2|)/3) time. As |Z1| ≤ |Z2| it is clear that αn ≤

|Z2|. The number |Z2| only contributes negatively so we can observe that(
n− |Z1| − |Z2|
|Z1| − 2

)
· 3(n−|Z1|−|Z2|)/3 ≤

(
(1 − 2α)n

αn− 2

)
· 3(1−2α)n/3.

By using β = (1−2α) and Stirling approximation we get that
(
(1−2α)n
αn−2

)
≤
(
βn
αn

)
is O∗(( ββ

αα·(β−α)(β−α) )n) or O∗(( (1−2α)(1−2α)

αα·(1−3α)(1−3α) )n). It is not hard to verify by



Connecting Terminals and 2-Disjoint Connected Subgraphs 427

computer that the maximum value of ( (1−2α)(1−2α)

αα·(1−3α)(1−3α) )n · 3(1−2α)n/3 for 0 < α ≤
0.0839 occurs when α = 0.0839 and that

(
(1−2α)n
αn−2

)
· 3(1−2α)n/3 ≤ 1.7804n for

α = 0.0839. Thus, we can conclude that when α ≤ 0.0839 a list of all minimal
Z1-connecting sets can be found in time O∗(1.7804n).

For the second stage of the algorithm, for every listed set A, the algorithm
tests if vertices of Z2 are contained in the same connected component of G \A
and if so the algorithm returns the solution with A1 = A and A2 being the
vertices of the connected component of G \ A containing Z2. This is clearly a
solution to the problem. Conversely, if there is a solution A1, A2 to the problem,
then there is clearly one where A1 is a minimal Z1-connecting set.

Finally, as a simple branching algorithm is used for both cases, the algorithm
uses polynomial space.

6 Conclusion

The graph in Figure 1 shows that our algorithm for Enumeration of minimal

T -connecting Sets given by Theorem 2 is optimal, up to polynomial factors,
for the case |T | = 2. Is the algorithm optimal, up to polynomial factors, also for
larger T , let us say |T | ≤ 0.1n?

Let us remark that our algorithm for Enumeration of minimal

T -connecting Sets can be used to give a O∗(
(|V \T |
|T |−2

)
· 3

|V \T |
3 ) algorithm for

Steiner Tree with unit weights on terminal vertices T . This is upper
bounded by O∗(1.8778n) when balanced with the standard brute force search,
but will not beat the fastest algorithm for this problem, which is by Nederlof [9]
and has runtime O∗(1.3533n) using polynomial space.

The algorithm given in this paper for Enumeration of minimal

T -connecting Sets may have more applications in the future, apart from 2-

Disjoint Connected Subgraphs, in particular for problems where the enu-
meration of all solutions is required.
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