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Abstract. Text indexing is a fundamental problem in computer science,
where the task is to index a given text (string) T [1..n], such that when-
ever a pattern P [1..p] comes as a query, we can efficiently report all those
locations where P occurs as a substring of T . In this paper, we consider
the case when P contains wildcard characters (which can match with any
other character). The first non-trivial solution for the problem is given by
Cole et al. [STOC 2004], where the index space is O(n logk n) words or
O(n logk+1 n) bits and the query time is O(p+2h log log n+ occ), where
k is the maximum number of wildcard characters allowed in P , h ≤ k is
the number of wildcard characters in P and occ represents the number
of occurrences of P in T . Even though many indexes offering different
space-time trade-offs were later proposed, a clear improvement on this
result is still not known. In this paper, we first propose an O(n logk+ε n)
bits index achieving the same query time as that of Cole et al.’s index,
where 0 < ε < 1 is an arbitrary small constant. Then we propose another
index of size O(n logk n log σ) bits, but with a slightly higher query time
of O(p+ 2h log n+ occ), where σ denotes the alphabet set size.

1 Introduction and Related Work

Text indexing is a fundamental problem in computer science, where the task is to
index a given text (string) T [1..n], such that whenever a pattern P [1..p] comes as
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a query, we can efficiently report all those locations where P occurs as a substring
of T . The classic data structures for solving this problem are suffix trees [28] and
suffix arrays [21]. Both these linear space (O(n logn) bits) structures can perform
pattern matching in optimal O(p+ occ) and O(p+logn+ occ) time respectively,
where occ is the number of occurrences of P in T 1. Approximate string match-
ing and wildcard matching are natural extensions of the pattern matching prob-
lem. Both have been studied extensively. [2,11,15,8,18,26,27,14,6,19,20]. These
problems have several applications in information retrieval, bioinformatics, data
mining, and internet traffic analysis [7,13].

The focus of this paper is on the following problem: index T for handling
matching of a query pattern P with at most k wildcards. A wildcard, also known
as don’t care character (represented by φ) can match with any other character
in the alphabet set Σ (of size σ). Therefore, the pattern P can be written as
P0φP1φ..Ph−1φPh, the concatenation of substrings P0, P1, ...Ph−1, Ph separated
by φ and h ≤ k is the number of wildcards in P . The first non-trivial solution
for this problem was proposed by Cole et al. [11], where the index space is
O(n logk n) words or O(n logk+1 n) bits and query time is O(p + 2h log logn +
occ). Recently, Bille et al. [6] proposed an index, which is a generalization of
Cole et al.’s index. The space and query time are O(n log n logk−1

β n) words and

O(p+βh log logn+occ) respectively, where 2 ≤ β ≤ σ. Note that Cole et al.’s [11]
result can be obtained by substituting β = 2. Bille et al. [6] also proposed an

optimal O(p+occ) time index of space O(nσk2

logk logn) words. Another space-
efficient index of O(n logn) words proposed by Cole et al. [11] can answer this
query in O(p+ σh log logn+ occ) time, and is recently improved to O(n) words
without affecting the query time [6]. Several other linear space structures also
exist in literature, such as the ones by Iliopouls and Rahman [22], and Lam et
al. [18]. However, these indexes take Θ(nh) worst case time for answering the
query. Despite all these continued efforts, a clear improvement over the seminal
result by Cole et al. [11] (i.e., O(n logk+1 n) bits and O(p + 2h log logn + occ)
time) is still not known.

In this paper, we describe two results. The first one is an O(n logk+ε n) bits
index with O(p + 2h log logn + occ) query time, where where 0 < ε < 1 is an
arbitrary small constant. The second one is an O(n logk n log σ) bits index, but
with a slightly worse query time of O(p+2h logn+ occ), where Σ = [σ] denotes
the alphabet set. Notice that our first result is a clear improvement over the
earlier result by Cole et al., whereas the second one provides another space-time
trade-off for this problem when the alphabet set is small.

Another problem that is strongly connected to the problem under consider-
ation is to index the text wildcards. This was solved in Cole et al. [11] as well.
However, for this case, better solutions have appeared in a succession of papers
and indexes with succinct space and competitive query time [18,26,27,14] are
available in the literature. Yet another related problem is that of indexing with
gaps. Gaps are essentially longer wildcards. In [16] an index was proposed sup-
porting queries of patterns containing one gap with a predefined length. This

1 All logarithms in this article are base 2.
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result builds on the result of [2]. The case of one gap was further improved by
Bille et al. [5] with optimal query time. In [19] results were shown for the case
when there is a larger number of gaps.

Outline. Section 2 gives the preliminaries. Next, we describe a classical frame-
work for the case where k = 1 and then the framework by Cole et al.’s for k ≥ 1
in Section 3, and Section 4, respectively. Section 5 describes our space-efficient
data structures.

2 Preliminaries

2.1 Suffix Trees and Suffix Arrays

Suffix trees [28] and suffix arrays [21] are two classic data structures for online
pattern matching queries. For a text T [1..n], substring T [i..n], with i ∈ [1, n], is
called a suffix of T . The suffix tree for T is a lexicographic arrangement of all
these n suffixes in a compact trie structure, where the ith leftmost leaf represents
the ith lexicographically smallest suffix. For each node v in the suffix tree, we
use path(v) to denote the concatenation of edge labels along the path from the
root to v. For any pattern P (of length p), the locus of P in the suffix tree is
defined to be the highest node v (i.e., the closest node from the root) such that
P is a prefix of path(v) and can be computed in O(p) time.

The suffix array SA[1..n] is an array of length n, such that SA[i] is the starting
position of the ith lexicographically smallest suffix of T . The suffix array has an
important property that the starting positions of all suffixes with the same prefix
are always stored in a contiguous region in SA. Based on this property, the suffix
range of a pattern P in SA is defined as the the maximal range [sp, ep] such that
for all j ∈ [ep, ep], SA[j] is the starting point of a suffix of T with P as a prefix.
In other words, the suffix range of a string represents the set of leaves in the
subtree of its locus node in suffix tree. We also define its inverse, SA−1 to be
an array such that SA[i] = j if and only if SA−1[j] = i. Both suffix trees and
suffix arrays (along with an auxiliary data structure called LCP array) take
(n logn) bits space and can perform pattern matching in optimal O(p+occ) and
O(p + logn + occ) time respectively, where occ is the number of occurrences of
P in T .

2.2 Heavy Path and Heavy Path Decomposition

Let T be a tree with n nodes. We define the size of an internal node v to be
the number of leaves in the subtree rooted at v. Then the heavy path of the
tree T is the path starting from the root, where each node v on the path is
the largest-size child of its parent. The heavy path decomposition of the tree T
is the operation where we decompose each off-path subtree of the heavy path
recursively; as a result, the edges in T will be partitioned into disjoint heavy
paths. In [25], Sleator and Tarjan proved that the path from the root of T to
any node v traverses at most logn heavy paths.
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2.3 Two-Dimensional Orthogonal Range Reporting

Let R = {(x1, y1), (x2, y2), .., (xn, yn)} be a set of n points in an [1, n] × [1, n]
grid. Without loss of generality, we assume that xi ≤ xi+1. An orthogonal range
reporting query on R is defined as follows: Given a query range [x′, x′′]× [y′, y′′],
report all points (xi, yi) such that xi ∈ [x′, x′′] and yi ∈ [y′, y′′]. Such a query
can be answered optimally in O(log logn+ occ) time using an O(n logε n)-word
space structure, where ε > 0 is any arbitrary small constant [1]. See [20,10] for
connections between text indexing and range searching.

2.4 Partial Rank Queries

Let E[1..n] be an array of n characters taken from an alphabet set Σ = [σ].
Then rankE(i, c) where c ∈ Σ is defined as the number of occurrences of c in
E[1..i]. There exists n log σ+o(n log σ)-bit representations of E which can answer
rank queries in O(log log σ) time [12]. Rank queries of the type rankE(i, E[i])
(or simply prankE(i)) are called partial rank queries (also known as special
rank queries [17]), and can be supported in constant time by maintaining an
additional o(n log σ) bits structure [3,4].

3 The Classical Framework for k = 1

In this section, we describe a simple index for pattern matching with exactly
one wildcard character. In this case, P can be written as P0φP1, where P0 and
P1 are the longest prefix and suffix respectively of P which do not contain any
wildcard. The index is based on the following idea by Amir et al. [2]: if there
exists an occurrence of P in T with the wildcard character φ matching exactly
at the location i ∈ [1, n] in T , then P0 must be a suffix of T [1..i−1] and P1 must
be a prefix of T [i+ 1..n]. All such i’s can be quickly computed by maintaining
the following structures:

1. Suffix tree of T (ST)
2. Suffix tree of TR (RST), where TR is the reverse of T . i.e., TR[i] = T [n−i+1].
3. A two-dimensional orthogonal range reporting structure (RR2D) over a set

of n points of the form (xi, yi), where xi is the lexicographic rank of T [i+1..n]
among all suffixes of T , and yi is the lexicographic rank of T [1..i−1]R among
all suffixes of TR.

The index space can be bounded by O(n logε n) words, where ST and RST
takes O(n)-word space and RR2D structure (Section 2.3) takes O(n logε n)-word
space. The query corresponding to an input P = P0φP1 can be answered as fol-
lows: first find the suffix range [sp, ep] of P1 in ST, and the suffix range [sp′, ep′]
of PR

0 in RST in O(|P0|+ |P1|) time. Then, we issue a 2-dimensional orthogonal
range reporting query on RR2D structure with [sp, ep]× [sp′, ep′] as the query
range. The required time will be O(log logn) plus the number of outputs. Cor-
responding to each point (xj , yj) reported as an output, there exists a match
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of P in T at the position j − |P0|. Putting everything together, the total query
time can be bounded as O(|P0| + |P1| + log logn + occ). Bille et al. [5] showed
that the log logn additive factor in time can be removed by maintaining an
O(n log logn)-word and optimal query time structure for p < log logn.

Theorem 1. A given text T [1..n] can be indexed in O(n logε n) words, and all
occurrences of a query pattern P [1..p] = P0φP1 can be retrieved in O(p + occ)
time, where 0 < ε < 1 is an arbitrary small constant.

Unfortunately, this approach cannot be generalized for k ≥ 2.

4 Cole et al.’s Framework

In this section, we briefly describe the structure (we name it as STRk) by Cole
et al. [11] for handling pattern matching with at most k number of wildcards.
The exact pattern matching problem (i.e., k = 0) can be answered using a suffix
tree data structure, and for consistency we denote the suffix tree of T by STR0.
We shall call the nodes in STR0 as level-0 nodes. The structure STRk can be
constructed in a recursive manner. We start with the description of STR1, which
is essentially an STR0 with each of its nodes augmented with a compact trie
called a side tree as follows: for every node u in STR0 (i.e., level-0 nodes), with
v being a child on the same heavy path as that of u, we choose all suffixes in
the subtree of u 2, but not in the subtree of v, delete their first |Path(u)| + 1
characters 3 and maintain them as a compact trie. We call this compact trie as
the side tree of u and is represented by Sidetree(u). Then u is connected to the
root of Sidetree(u) via an edge with label φ (we fix the root of Sidetree(u) as the
last child of u). We now call a node a level-1 node, if it belongs to any Sidetree
associated with a level-0 node. Using the same procedure as described above for
constructing side trees from level-0 nodes, we construct side trees from level-1
nodes and call the newly formed nodes as level-2 nodes. Then we construct side
trees from level-2 nodes and obtain level-3 nodes as so on until level-k nodes.
The number of level-j nodes is given by O(n logj n), therefore STRk consists of

O(n
∑k

j=1 log
j n) = O(n logk n) nodes and it can be maintained in O(n logk n)

words or O(n logk+1 n) bits. For every node u in STRk, path(u) represents the
concatenation of edge labels on the path from the root of STRk to u. Let �i
represents the ith leftmost leaf node in STRk. Notice that path(�i) corresponds
to a suffix of T and we use pos(�i) to denote the starting position of that suffix4.
Moreover if �i is a level-0 node, then path(�i) = T [pos(�i)..n], whereas if it is
a level-j node for j ∈ [1, k], then path(�i) is given by T [pos(�i)..n] with its j
characters replaced by φ.

Now a query corresponding to a pattern P = P0φP1φ..φPh can be answered
as follows: start navigating the structure STRk from its root by matching the

2 This means all suffixes corresponding to the leaves in the subtree of u.
3 which is the same as removing |Path(u)|+ 1 characters from the prefix of all those
suffixes, yet again, a collection of suffixes

4 In the case of suffix tree STR0, pos(�i) = SA[i].
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characters in P one by one. Note, because φ is a wildcard it can match with
any other character. However, if we have reached up to a node u in STRk by
matching a prefix of P and the next character to be matched is φ, by continuing
to match φ with any other character will branch out the search into degree(u)
paths, where degree(u) ≤ σ + 1 represents the number of outgoing edges from
u. Cole et al. [11] observed that instead of matching in degree(u) paths, it is
enough to take only the following two paths (i) the outgoing path from u with
its first character being φ and (ii) the heavy path on which u is sitting. Thus
due to a single wildcard, the query will branch out to two paths, and in general
for h wildcards, query will branch out to at most 2h paths, ending up in O(2h)
locus nodes. However, the time required for finding those O(2h) locus nodes
is O(|P0| + 2|P1| + 4|P2| + ... + 2h|Ph|) = O(2hp). Using some auxiliary data
structures, which are called LCP data structures occupying O(n logk+1 n) bits,
this time complexity can be improved to O(p+2h log logn). Then for every leaf
�i in the subtree of a locus node, pos(�i) represents an occurrence of P in T .
Thus all occurrences can be reported by spending another O(occ) time.

Theorem 2. ([11]) A given text T of length n can be indexed in O(n logk+1 n)
bits, such that all those occ occurrences of a pattern P containing h ≤ k wildcards
can be reported in O(p+ 2h log logn+ occ) time.

4.1 Finding Locus Nodes without LCP Data Structures

Even without the LCP data structures, the locus nodes can be computed ef-
ficiently using an O(p + 2h logn) time algorithm. We start with the following
definition: let loc(u, d) refers to the location on the path from the root of STRk

to node u, such that the string obtained by concatenating edge labels on the
path from the root of STRk to loc(u, d) (denoted by path(loc(u, d))) is the pre-
fix of path(u) of length |path(u)|−d. Notice that, loc(u, 0) refers to node u itself.
The maximum value of d for a particular node u is restricted by the following
condition that there exits no other node on the path from loc(u, d) to u. We now
prove the following result.

Lemma 1. Let loc(u′, d′) represents a location in STRk, which can be reached if
we start matching a pattern P ′ from the location loc(u, d). Then, given loc(u, d)
and the suffix range [L′, R′] of a pattern P ′ in the suffix tree STR0, we can find
loc(u′, d′) (if it exists) in O(log n) time.

Proof. Let {�i|i ∈ [x, y]} and {�i|i ∈ [x′, y′]} represent the set of leaves in the
subtree of u and u′ respectively. Notice that x ≤ x′ ≤ y′ ≤ y. Since the first
|path(loc(u, d))| characters are the same for all strings corresponding to path(�i)
for i ∈ [x, y], the lexicographic ordering among these strings will remain un-
changed even if we remove their first |path(loc(u, d))| characters. This means
the function SA−1[pos(�i) + |path(loc(u, d))|] is monotonically increasing with
respect to i ∈ [x, y]. Moreover their next |P ′| characters match with P ′ iff
SA−1[pos(�i) + |path(loc(u, d))|] ∈ [L′, R′]. Therefore x′ and y′ are the mini-
mum and the maximum values of j satisfying this condition respectively, and
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they can be computed in O(log n) time using a binary search. Once x′ and y′

have been identified, u′ can be computed in O(1) by taking the lowest common
ancestor of �x′ and �y′ , and d′ is given by |path(u′)|−|path(u)|+d′−|P ′|. Notice
that |path(·)| for every node can be stored explicitly without changing the space
bounds. ��

Using the above result, we can compute the locus nodes as follows: for i =
0, 1, 2, ..., h, find the suffix ranges [spi, epi] of Pi in the suffix tree STR0 in overall
O(p) time. Now start navigating STRk from its root by matching the characters
of P0. Whenever the query branch out to two paths, and if the next character
to be matched is a wildcard character, it takes O(1) per match. After that if
we want to match the next Pi characters for some i ∈ [1, h], we simply use the
result in Lemma 1. Therefore, total time for pattern search can be bounded by
O(p+log n+2 logn+4 logn+ ...+2h logn) = O(p+2h logn). By putting every
thing together, we have the following result.

Lemma 2. There exists an O(p+ 2h logn) time algorithm for finding the locus
nodes of P in STRk. ��

5 New Space-Efficient Indexes

5.1 An O(n logk+ε n)-bit Index

This result is achieved by a simple combination of the classical framework and
Cole et al.’s framework. If there exists an occurrence of P in T with the first
wildcard character φ matching exactly at the location i ∈ [1, n] in T , then P0

must be a suffix of T [1..i− 1] and P1φ..φPh must be a prefix of T [i+ 1..n]. All
such i’s can be quickly computed by maintaining the following structures:

– Cole et al.’s structure (STRk−1 of space O(n logk n) bits) for handling the
case only up to k − 1 wildcards (along with the LCP data structures). The
number of nodes in this structure is O(n logk−1 n). Here we use �i to denote
the ith leftmost leaf in STRk−1.

– Suffix tree of TR (RST).
– Let Li represents the set of leaves in STRk−1 with its pos(·) = i + 1 and

let i′ be the lexicographic rank of T [1..i − 1]R among all suffixes of TR.
Construct the set Si of two dimensional points (j, i′) corresponding to each
leaf �j ∈ Li. Note that |Li| = |Si| = O(logk−1 n). We then maintain an
orthogonal range reporting structure RR2D (refer to section 2.3) over a set
∪n−1
i=2 Si of O(n logk−1 n) two dimensional points. The space required for this

component is O(n logk+ε n) bits.

Now the pattern matching query can be answered as follows: if h ≤ k − 1,
the query can be answered using STRk−1 in O(p + 2h log log n + occ) time. If
h = k, we spilt the pattern P into Psuf = P1φ..φPh and Ppre = PR

0 . Then,
search for Psuf in STRk−1 and compute O(2h−1) locus nodes u1

P , u
2
P , u

3
P , .. and
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their corresponding suffix ranges [L1, R1], [L2, R2], [L3, R3], .. etc (here �Lz and
�Rz represents the leftmost and the rightmost leaves in the subtree of uz

P ) in
O(p+2h log logn) time (using LCP data structures). Then search for Ppre in RST
and obtain the suffix range [sp′, ep′]. Finally the occurrences can be computed by
issuing O(2h−1) two-dimensional range reporting queries on RR2D correspond-
ing to the ranges [L1, R1]× [sp′, ep′], [L2, R2]× [sp′, ep′], [L3, R3]× [sp′, ep′]... It
can be easily verified that for every point (j, .) reported as an output by the
structure, there exists an occurrence of Psuf starting at the location pos(�j) and
an occurrence of Ppre ending at the location pos(�j) − 2 in T . Hence an occur-
rence of P at the location pos(�j)− |P0| − 1. By combining the above pieces, we
have the following theorem.

Theorem 3. A given text T of length n can be indexed in O(n logk+ε n) bits,
such that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+2h log log n+ occ) time, where 0 < ε < 1 is an arbitrary small
constant. ��

By using an alternative RR2D structure of O(n)-word space with query time
O((1 + output) logε n) [9], we can obtain another space-time trade-off as follows:

Corollary 1 A given text T of length n can be indexed in O(n logk n) bits, such
that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+ (2h + occ) logε n) time, where 0 < ε < 1 is an arbitrary small
constant.

Remark. Our techniques can be combined with the result by Bille et al. [6], and
an O(n log1+ε n logk−2

β n)-word index with O(p+βh−1 log logn+occ) query time
can be obtained, where 0 < ε < 1 is an arbitrary small constant and 2 ≤ β ≤ σ.

5.2 An O(n logk n logσ)-bit Index via Side Tree Compression

First we maintain the structure STRk−1 (as described before) in O(n logk n) bits
space. Therefore, the string matching case where the number of wildcards is at
most k−1 can be handled efficiently. In order to handle the k-wildcard case (i.e.,
h = k), we augment the side trees with every level-(k− 1) node in STRk−1 and
obtain STRk. The explicit storage of these side trees requires O(log n) bits per
node. However, the desired storage space of O(log σ) bits per node is achieved
via a novel encoding technique. For every level-(k−1) node u in STRk, we define
the followings:

– �ui represents the ith leftmost leaf in Sidetree(u)
– Eu[1..nu] be an array of characters, where Eu[i] = T [pos(�ui )+ |path(u)|+1],

and nu represents the number of leaves in Sidetree(u).
– Bu[1..σ] be a bit vector of length σ, where Bu[z] = 1 if and only if there

exists an outgoing edge from u with z ∈ Σ as the leading character.

The following lemma summarizes the key idea behind our result.
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Lemma 3. For any level-(k − 1) node u and i ∈ [1, nu], pos(�
u
i ) is the same as

pos(·) of the prankEu(i)th leftmost leaf node in the subtree of node w, where w
is a child of u, with Eu[i] the leading character on the edge connecting u and w.

Proof. Corresponding to every leaf node in the subtree of any child node of u,
except the one on the same heavy path as that of u, there exists another unique
leaf node in Sidetree(u), such that both have the same pos(·) value. Then the
lemma follows from the fact that, the character at the position |path(u)|+ 1 is
the same for the suffix corresponding to any two leaves in the subtree of w, and
therefore the lexicographic ordering of those suffixes remains unchanged even
after replacing the (|path(u)|+ 1)th character by φ. ��

Based on the key observation in the above lemma, we obtain the following result.

Lemma 4. By maintaining an O(n logk n logσ) bits structure, we can compute
pos(�ui) for any i ∈ [1, nu] for any level-(k − 1) node u in O(1) time.

Proof. First we maintain the tree structure of STRk using succinct data struc-
tures [24] in O(n logk n) bits of space. Then for every level-(k − 1) node u, we
maintain Eu and the supporting structures for constant time partial rank queries
(refer to Section 2.4) on Eu, in total O(

∑
nu log σ) = O(n logk n log σ) bits. Also

maintain Bu[1..σ] corresponding to all level-(k− 1) nodes u, where Bu[1...σ] for
a particular node u can be maintained in O(degree(u) log(σ/degree(u)) bits or
O(degree(u)) words of space using an indexible dictionary [23]. Notice that the
total space (in words) for maintaing all such bit vectors can be asymptotically
bounded by the number of level-(k − 1) nodes, which is O(n logk−1 n). By com-
bining the above pieces, the overall space can be bounded by O(n logk n log σ)
bits. Using these structure, combined with the result in Lemma 3, pos(�ui) for
any i ∈ [1, nu] for any level-(k − 1) node u can be answered in O(1) time as
follows:

– Find the child node w of u, such that the leading character on the edge
connecting u and w is Eu[i] using the following steps: find k = rankBu (Eu[i])
(notice that Bu[Eu[i]] = 1, therefore k can be computed in O(1) from Bu,
which is maintained using an indexible dictionary) and w is given by the kth
leftmost child of u (which can be identified in constant time using the tree
structure of STRk).

– Report pos(·) of the (prankEu(i))th leaf node in the subtree of w, which is
again a constant time operation. ��

Lemma 5. The structure STRk can be encoded in O(n logk n log σ) bits such
that pos(·) of any of its leaf node can be computed in O(1) time.

Proof. The pos(·) values corresponding to all those leaves, which are not a level-k
node can be maintained explicitly in O(n logk n) bits. This is because the number
of such leaves is O(n logk−1 n). In order to encode these values efficiently for
level-k leaf nodes, we first mark all those nodes in STRk which are not level-k.
The information whether a node in STRk is marked or not can be maintained
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using a bit vector B of length equal to the number of nodes in STRk, where
B[i] = 1 iff the ith node (in terms of pre-order rank) is marked. Then, pos(�j)
of any level-k (i.e., unmarked) leaf node can be computed as follows: first find
the lowest marked ancestor u of �j. Let �j be the ith leftmost leaf in the subtree
of u, where i = j − f + 1 and �f is the leftmost leaf in the subtree of u (notice
that f can be computed in O(1) time). Therefore pos(�j) = pos(�ui ) and can be
decoded in O(1) time using the result of Lemma 4. ��

A pattern matching query on our encoded STRk can be performed in the
same standard way. Notice that using an LCP data structure, the locus nodes
can be identified in O(p + 2h log logn) time. However its space occupancy is
O(n logk+1 n) bits and we cannot afford to maintain it within the desired space
complexity. Therefore, (although slower) we use the O(p + 2h logn) time algo-
rithm described in Section 4.1 for identifying the locus nodes. As pos(·) for any
leaf node can be decoded in O(1) time (refer to Lemma 5), after finding the
locus nodes, it takes only O(occ) time to report the occurrences. By combining
the above pieces, we have the following final result.

Theorem 4. A given text T of length n can be indexed in O(n logk n logσ) bits,
such that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+ 2h logn+ occ) time. ��
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