Beating O(nm) in Approximate
LZW-Compressed Pattern Matching*

Pawel Gawrychowski! and Damian Straszak?

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
gawryQcs.uni.wroc.pl
2 Institute of Computer Science, University of Wroclaw, Poland
damian.straszak@gmail.com

Abstract. Given an LZW/LZ78 compressed text, we want to find an
approximate occurrence of a given pattern of length m. The goal is to
achieve time complexity depending on the size n of the compressed rep-
resentation of the text instead of its length. We consider two specific
definitions of approximate matching, namely the Hamming distance and
the edit distance, and show how to achieve O(ny/mk?) and O(n./mk?)
running time, respectively, where k is the bound on the distance, both in
linear space. Even for very small values of k, the best previously known
solutions required {2(nm) time. Our main contribution is applying a
periodicity-based argument in a way that is computationally effective
even if we operate on a compressed representation of a string, while the
previous solutions were either based on a dynamic programming, or a
black-box application of tools developed for uncompressed strings.

Keywords: approximate pattern matching, edit distance, Lempel-Ziv.

1 Introduction

Pattern matching, which is the question of locating an occurrence of a given
pattern in a text, is the most natural task as far as processing text data is
concerned. Virtually any programming language contains a more or less efficient
procedure for solving this problem, and any text processing application, including
the widely available grep utility, gives users the means of solving it. While exact
pattern matching is well-understood, and in particular many linear time solutions
are known [5], it seems that its approximate version is less understood. Two most
natural versions of the question are pattern matching with errors, where one ask
for a substring of the text with small edit distance to the pattern, and pattern
matching with mismatches, where one is interested in a substring with small
Hamming distance to the pattern. It is known that if IV is the length of the text
and k is the number of allowed errors or mismatches, both problems can be solved
in O(Nk) time [10,11], and in fact the complexity for the latter version can be
improved to O(N+y/klogk) [2]. Under the natural assumption that the value of k

* Supported by NCN grant 2011/01/D/ST6/07164, 2011-2014.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 78-88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Beating O(nm) in Approximate LZW-Compressed Pattern Matching 79

is small, one can do even better, and solve the problems in O(N + Nn}f) [4] and
O((N + Nwlfs)log k) [2] time complexity, respectively, which might be linear in N
if k is small enough. Unfortunately, in some cases even a linear time complexity
might be not good enough. This is the case when we are talking about large
collections of repetitive data stored in a compressed form. Then the length of the
text N might be substantially larger than the size n of its actual representation,
and the goal is to achieve a running time depending on n, not N. Whether
achieving such goal is possible clearly depends on the power of the compression
method. In this paper we focus on the LZW/LZ78 compression [12,13], which
is not as powerful as the more general LZ77 method, but still has some nice
theoretical properties, and is used in real-world applications. It is known that
exact LZW-compressed pattern matching can be solved very efficiently [1,6], even
in the fully compressed version, where both the text and the pattern are LZW-
compressed [8]. The obvious question is how efficiently can we solve approximate
LZW-compressed pattern matching?

The best previously known solution by Kérkkéinen, Navarro, and Ukkonen [9],
locates all occ occurrences with up to k errors using O(nmk-+occ) time and O(nmk)
space. More precisely, it outputs all ending positions j such that there is ¢ for which
the edit distance between t[i..j] and p is at most k. In some cases, this time bound
can be decreased using the idea of Bille, Fagerberg, and Gertz [3], who presented a
way to translate all uncompressed pattern matching bounds into the compressed
setting. Their approach works for both the edit and Hamming distance, and by
plugging the best known uncompressed pattern matching solutions, we can get:

1. O(nmk + occ) time and O(", + m + occ) space for the edit distance,

mk
2. O(nk* +nm + occ) time and O(wipm M+ occ) space for the edit distance,
3. O(n(k® + m)logk + occ) time and O (k3.£m) 10g 1, T ™ + 0cc) space for the
Hamming distance.

While the space complexity of the resulting algorithms is small, even for con-
stant values of k the time complexity is £2(nm), and in fact this is an inherent
shortcoming of the approach: the best we can hope for is O(nm) for sufficiently
small values of k, say, k = O(m'/3).

In this paper we show that in fact this barrier can be broken. We prove that
for the Hamming distance, running time of O(n/mk?) is possible, which for
k = o(m'/*) is o(nm). Then we show how to extend the algorithm by building on
the ideas of Cole and Hariharan [4], and achieve O(n\/mk3) for the edit distance.
Both algorithms use O(n + m) space. For the sake of clarity, we concentrate on
the question of detecting just one occurrence, but our algorithms generalize to
generating all of them.

Some of our methods are based on the concepts first used by Cole and Har-
iharan [4], and later by Amir, Lewenstein and Porat [2]. Applying them in the
compressed setting is not just a trivial exercise, and creates new challenges. For
instance, verifying whether a given position corresponds to an occurrence with
no more than k£ mismatches in O(k) time is straightforward in the uncompressed
setting using the suffix tree, but in our case requires some additional ideas.

80 P. Gawrychowski and D. Straszak

We start with some basic tools in Sections 2. Then we distinguish between two
types of matches, called internal and crossing. Detecting the former is relatively
straightforward in both versions. To detect the latter, we reduce the question
to a problem that is easier to work with, which we call pattern matching in pc-
strings, see Section 3. To solve pattern matching with mismatches in pc-strings,
we distinguish between two cases depending on how periodic the pattern is. For
this we apply the concept of z-breaks, heavily used in the previous papers on
approximate pattern matching. If there are many such breaks, or in other words
the pattern is not very repetitive, we can solve the problem by reducing to a
generalization of (exact) compressed pattern matching with multiple patterns,
see Section 4. Otherwise, the pattern is highly periodic, and the situation is more
complicated. In Section 5 we show how to exploit the regular structure of such
pattern to construct an efficient algorithm. Then in Section 6, which is the most
technical part of the paper, we speed up the method using a new technique
which considers all candidates in a more global manner. Finally, in Section 7
we generalize the solution to solve the version with errors. Because of the space
limitation, we omit many details, which can be found in the full version.

2 Preliminaries

We are given a text ¢[1..N] and a pattern p[l..m], both are strings over an integer
alphabet Y. We assume that m < N and X' = {1,2,..., N}. The pattern is given
explicitly, but the text is described implicitly using the LZW /LZ78 compression
scheme. Such scheme is defined as follows: we partition the text into n disjoint
fragments t = 2125 ...z,, where each fragment z; is either a single letter, i.e.,
z; = ¢, or a word of the form z; = z;c, where j < i. The fragments z; are usually
called the codewords, and because their set is closed under taking prefixes, we
may represent it as a trie, which will be further denoted by T'. Depending on
how we choose the partition and encode the codewords, we get different concrete
compression methods, say LZW or LZ78. Our methods do not depend on such
technicalities as long as we are given T and the text is described as a list of
pointers to the nodes of T' representing the successive fragments.

The Hamming distance between two strings of the same length is simply
the number of positions where their corresponding characters differ. The edit
distance ed(s,t) is the minimal number of operations necessary to transform s
into ¢, where an operation is an insertion, replacement, or removal of a character.

The first problem we consider is compressed pattern matching with mismatches,
where we are given a compressed representation of a text ¢, a pattern p, and a
positive integer k. We want to find ¢ such that the Hamming distance between
t[i..i + m — 1] and the pattern is at most k. We also consider compressed pattern
matching with errors, where the goal is to find ¢ and j such that the edit distance
between t[i..j] and p is at most k.

To efficiently operate on the compressed text and the pattern, we need a number
of data structures. Given two subwords of the pattern s; and s, we can calculate
their longest common prefix, denoted LCPref(s1, s2), and longest common suffix,

Beating O(nm) in Approximate LZW-Compressed Pattern Matching 81

denoted LCSuf(sy, $2), in constant time. Given ¢ and j, we can retrieve z;[j] in
constant time. Given a chunk s;, where a chunk is a subword of some root-to-
leaf path in T', and a subword of the pattern sa, we can calculate LCSuf(sy, s2)
in constant time and LCPref(s1, s2) in O(logm). The total preprocessing time is

O(n +m).
We need also some basic concepts from combinatorics on words. « is a period of
a string s if s[i] = s[i + o] holds for every i = 1,2,...,|s| — a, or in other words we

can write s = w'u, where |w| = a and u # w is a prefix of w. The smallest such « is
called the period of s. If the period of s is at most ‘;l , s is periodic, and otherwise
we call it a break, or |s|-break. A word is primitive if it cannot be represented as a
nontrivial power of some other word. For every word s, there exists its unique cyclic
shift s" which is lexicographically smallest, and we call s’ the cyclic representative
of s. For a periodic s, the cyclic representative of w corresponding to the period
of s is called the canonical period of s. One of the basic results concerning periods
is the periodicity lemma, which says that if ¢ and ¢’ are both periods of s, and
q+q <|s|,so0is ged(q,q').

3 Further Preprocessing

From now on we fix k to be the number of allowed mismatches (errors) in our prob-
lem. We will say in short that the pattern matches at some position in the text if
the Hamming distance (or the edit distance) between the pattern and the frag-
ment of the text starting at this position is at most k. It is natural to distinguish
between two types of matches: internal matches (the pattern lies fully within a sin-
gle codeword) and crossing matches (the pattern crosses some boundary between
two codewords). The internal matches can be efficiently generated using standard
tools, and we focus on detecting the crossing matches, where the situation is much
more complicated. In this case the pattern crosses at least one boundary between
two codewords, and it may cross a lot of them, which seems hard to deal with.
Anyway, it suffices to iterate over all n — 1 boundaries and for each of them find
all matches that cross it. After fixing such a boundary, we may concentrate only
on a window of length 2m containing m characters to the left and m to the right.
Problems arise when there are many very short codewords in some fragment of
the text, because in such a case all boundaries in this fragment will create win-
dows containing lots of codewords. This is one of the obstacles we need to tackle
to construct an efficient algorithm.

We want to make now one technical assumption, which simplifies significantly
some definitions and the description of the algorithm. Namely, we will assume that
each letter appearing in text, appears also in the pattern. Our algorithms work in
the general case after minor modifications.

The notion of a pc-string will play the main role in the rest of the paper. Note
that the definition changes slightly when we want to move from mismatches to
errors. Nevertheless, the change is very small, so we prefer to have just one common
definition, and keep in mind that its meaning depends on the variant.

82 P. Gawrychowski and D. Straszak

Definition 1. Let p be a pattern and f be a string. We say that f = viva...v; is a
pattern-compressed-string, in short pc-string, if:

1. |fI <2m (|f] < 2m + 2k when we are dealing with errors) and < 4k + 5,
2. v; is a factor of p, fori=1,2,...,1,
3. v;v;11 is not a factor of p, fori=1,2,...1 —1.

We represent such string as a list (a1, b1), (az,b2), ..., (ar, b;), where v; = pla;..b;].

Pc-strings are very convenient to deal with. Because no v;v;11 appears in p as
a substring, we can answer any LCPref and LCSuf query between a subword of
f and a subword of the pattern in constant time, as each result of such a query
overlaps at most 3 v;’s, so we need at most 3 queries between factors of p.

Proposition 1. Given a position in a pc-string f, we can verify whether the align-
ment of the pattern at this position results in a match in O(k) time.

It turns out that finding matches crossing a fixed boundary can be reduced to one
instance of pattern matching with mismatches or errors in a pc-string.

Theorem 1. Suppose we have an algorithm solving pattern matching with k mis-
matches (errors) in pe-strings in Tpo(m) time. Then we can solve pattern match-
ing with k mismatches (errors) in LZW-compressed text in O(nklog? m+m +n -
Tpc(m)) (O(nk? + nklog® m +m +n - Tpc(m))) time.

4 Detecting Matches in Pc-Strings

In this section we concentrate on the version with mismatches and present an ef-
ficient algorithm for detecting matches in a pc-string. It will use a certain prepro-
cessing of the pattern, which takes O(m) time and is performed just once in the
whole solution, not every time we get a new pc-string.

We distinguish between two cases depending on the “level of periodicity” of the
pattern. Let z > 3 be a parameter to be fixed later. We find in p as many disjoint z-
breaks as possible, which can be done in O(m) time [4]. If there are just a few such
breaks, the pattern can be seen as highly periodic. First we consider the opposite
case when p contains at least 2k disjoint z-breaks. Then we can discard most of
the starting positions, and verify all the remaining ones separately.

Lemma 1 (see [2]). Let f be a text of length 2m. Assume that the pattern p con-
tains at least 2k disjoint z-breaks. Then there are at most O(") matches (with k
mismatches) of p in f.

Proof. Choose 2k disjoint occurrences of breaks in the pattern. Let by, bo, ..., b, be
all pairwise different breaks among them, with b; occurring z; times, so >\, z; =
2k. Consider one break b;, and denote the positions of the disjoint occurrences of
b; in p by 01, 09, ..., 05,. For each occurrence of b; in the text, say at position g, we
add a mark to all positions ¢ —o1 +1,¢ — 02+ 1,...,q — 05, + 1 within the text.
Since the distance between two different occurrences of b; in the text is at least 3

Beating O(nm) in Approximate LZW-Compressed Pattern Matching 83

K3
text where p matches with at most £ mismatches. At least k of the 2k breaks have

to match exactly, so we have at least &k marks there. But there are only at most
4;” positions with at least k marks. a

there will be at most >_;_; @; " = 4'“;” marks. Consider now a position in the

This lemma is very useful, but it does not give a method to find all these O("")
positions. For this we need to locate all occurrences in f of up to 2k pattern breaks.
We cannot simply use the usual multiple pattern matching algorithm, because it
would cost 2(m) time, which is too much. However, we know that there are at
most O k;”) occurrences of these breaks in f. This fact, combined with an efficient
algorithm for multiple pattern matching in a pc-string, which is an adaptation of
the method of Gawrychowski [7], gives a solution.

Lemma 2. We can preprocess the pattern and a collection of its disjoint z-breaks
in O(m) time, so that later given any pc-string f = v1va...v; we can find all occ
occurrences of the breaks in f in O(llogm + occ) time.

Theorem 2. Suppose the pattern contains at least 2k disjoint z-breaks. Then pat-
tern matching with k mismatches in pe-strings can be solved in O(klogm + k;”)
time.

Proof. First we find 2k disjoint z-breaks in the pattern. We want now to detect
the at most O(") positions in f where p can potentially match. Proceeding as
in the proof of Lemma 1, first choose some 2k disjoint z-breaks and find all their
matches in f using the algorithm from Lemma 2. This costs us O(llogm + occ) =
O(klogm + *™) time. The marking phase can be done in O(*") time. Now for
each of the O(") positions verify whether p matches there in O(k) time. So we
can find all matches of p in f in O(klogm + k;”) time. O

Choosing big z makes our algorithm really fast. However, the larger is z, the harder
is for the pattern to contain many z-breaks. Furthermore, we cannot expect each
pattern to have many z-breaks, even for small z. Therefore, we need a different
algorithm for the case when p has few breaks, or is highly periodic. The algorithm
has to take advantage of the regular structure of the pattern.

5 Basic Algorithm for Highly Periodic Patterns

In this section we assume the pattern is highly periodic. This means we can write
it in the form p = s1b182b2...5,-b,-5,11, where r < 2k, each b; is a z-break and each
54 is a (possibly empty) string with period at most ;. The fragments s1, 52, ..., $,41
are called periodic stretches. As in the previous section we are interested in finding
a match (with at most k& mismatches) of p in a pc-string f.

Below we describe how to reduce the general case to the one where the number
of breaks in the text is small. A very similar reasoning can be also used in matching
with errors, the only change being increasing some constants.

84 P. Gawrychowski and D. Straszak

Lemma 3. Suppose f is a string of length at most 2m and p is a pattern containing
at most 2k disjoint z-breaks. There exists a subword f' of f having at most 6k + 1
disjoint z-breaks such that each match of p in f lies fully within f'. Moreover, such
f! can be found in O(kz) time.

By the discussion above we can restrict ourselves to pc-strings having at most
O(k) disjoint z-breaks. We will give now an algorithm achieving O(zk*) running
time for pattern matching with k£ mismatches in such pc-strings. While this is not
the best algorithm we have obtained, it serves well as an introduction to the more
complicated O(zk?3) algorithm presented in the next section.

Let us summarize the situation. We are given a pattern of the form
p = s1b1...8,br5,41 and a pe-string f = s1by...8,b}8; 1, where ., = O(k), b’s
denote z-breaks and the periods of all s’s are at most 5. We will soon see that
alignments of the pattern, where the pattern breaks and text breaks are not too
close from each other, are nice to work with, so we handle the remaining ones

separately.

Proposition 2. There are at most O(zk3) alignments of the pattern in the text
such that some text break (or text endpoint) is within a distance of z(k + 1) from
some pattern break (or pattern endpoint).

In this (simple) version of the algorithm we just verify all these O(zk?) positions in
O(k) time per one. This results in O(zk*) complexity and leaves us with the con-
venient case, where all distances between pattern and text breaks (or endpoints)
are at least z(k+ 1). We call such alignments fine, and we will soon see that a fine
alignment resulting in a match has a very special structure.

Starting from now we assume that the distances between consecutive breaks
in the text (and in the pattern) are at least z(k + 1), and otherwise group some
breaks together. Our argument works also for such groups but we describe it just
for breaks. Similarly, we want to assume that s; and s,11) are either empty or of
length at least z(k + 1), so we extend the boundary breaks if needed.

One can easily see that there are at most O(k?) intervals of consecutive fine
alignments in the text. Within such an interval the order of appearance of the
breaks does not change. Fix one interval and suppose we have at least one match
there. We want to argue that in such a case all periodic stretches involved in this
match are compatible, meaning that their canonical periods are identical, and
moreover start with the same offset modulo the period.

Proposition 3. Suppose w1, ws are periodic strings with periods not exceeding 3 .
If wy # wa and |wi| = |we| > z(k + 1) then there are at least k + 1 mismatches
between these two words.

Suppose there is a match at some fine alignment. Between two consecutive
breaks (we consider here all pattern and text breaks) there is always a periodic
portion of length at least z(k+1). By Proposition 3, there must be a perfect match
between the corresponding fragments. So in particular, the periods of the corre-
sponding pattern periodic stretch and text periodic stretch agree. Considering the

Beating O(nm) in Approximate LZW-Compressed Pattern Matching 85

— T %) \
[b] Lo [bs] A L ‘

Dak41) L makD) L saka1) L osaaD) L sk
d -+ - -

Fig. 1. Long overlaps between stretches imply their canonical periods are the same

way how the stretches overlap each other, see Figure 1, by transitivity all periodic
stretches involved in the match have the same canonical period.

Suppose now all the periodic stretches in the pattern have the same canonical
period u. We consider an interval of consecutive fine alignments. Assume there is
a match somewhere in this interval. One can see that each two alignments ¢ and
i+ |u| from the interval have the same number of mismatches, because each break
is aligned with a u-periodic stretch, so the fragment we compare it to is the same.
So in order to find all matches within one interval, we only need to verify at most
|u| < 5 alignments. Each verification takes O(k) time, so the time taken over all
intervals is O(k? - 5 - k) = O(zk?).

Theorem 3. For highly periodic patterns, pattern matching with k mismatches in
pe-strings can be solved in O(zk*) time.

6 Faster Algorithm for Highly Periodic Patterns

The purpose of this section is to show a faster algorithm for pattern matching
with & mismatches in pc-strings, assuming the pattern is highly periodic. We will
improve the time complexity from O(zk?*) to O(zk?). We will make sure that the
additional space required by the improved algorithm is just O(zk?), which will be
crucial in achieving linear space usage of the whole solution.

In the previous section we showed that one can assume that the text has at
most O(k) disjoint z-breaks. The idea of the basic algorithm was to first work
with the “bad” alignments. An alignment was considered “bad” if there was a text
break and a pattern break close to each other (within a distance of z(k 4 1)). We
took all such alignments and verified them in O(k) time each. The fine alignments
(meaning not “bad”) were analyzed in total time O(zk?). This approach, although
simple, seems to be very naive. Each time there is a single pair of close breaks, we
waste (2(k) time to deal with such an alignment. It turns out that we can verify a
“bad” position in time proportional to the number of “bad” breaks. In the following
definitions and lemmas we make the idea formal.

Definition 2. In a fized alignment of the pattern in the text, we call a pattern break
black if there is some text break or text endpoint within distance 23zk from it. Sim-
tlarly, we call a text break black if there is some pattern break or pattern endpoint
within distance 23zk from it. Non-black breaks are called white.

Note that one extreme case when a break is black is when it overlaps with some
other break. It is convenient to deal with such situations separately. There are only

86 P. Gawrychowski and D. Straszak

Case 1 Case 2
b b1 ba
l . ‘ S1 | | l l | | S1 | | |
1 1 ‘
T || 52 | l || ‘ 52 W]
L . L .
-« B e

Fig. 2. Two consecutive black breaks

O(zk?) such alignments, so they can be all verified in O(zk?) time, and from now
on we assume that no two breaks overlap. Moreover, we assume that there is at
least one black break, as otherwise the alignment is fine.

Lemma 4. After O(zk?) time preprocessing, given an alignment with B > 1 black
breaks we can test whether it corresponds to a match in O(B) time.

We will prove the above lemma in the remaining part of this section. Suppose
for a moment it holds, and consider all alignments with some black breaks. Call
the number of black breaks in these alignments B1, Bo, ..., B4. Then by the above
lemma, each single alignment can be processed in O(B;) time, so the total time is
O(X-Y_, B;). Every specific break is black at most O(k-(46z(k+1)422)) = O(zk?)
times, so O(}.%_, B;) = O(zk?). So if we use this method to process the align-
ments, we will obtain an algorithm with O(zk?) running time.

The main idea in the proof of the lemma, is to partition the alignment into dis-
joint parts, such that in each of these parts we can count the number of mismatches
easily. More precisely, if there are B black breaks in the considered alignment,
we distinguish O(B) intervals where the Hamming distance can be determined in
O(1) time, assuming some precalculation. We will now give the details by analyz-
ing the relative arrangement of black and white breaks. Recall we have already
reduced the situation to the case where no two breaks overlap.

Consider a periodic stretch s between two breaks in the pattern (text). It can
be written in the form s = wujufus where u is its canonical period (of length at
most 3),4 > 0, uy is some suffix of u and uy is some prefix of u. Note also that the
word u is primitive in such a case. It is easier to imagine the whole picture (and
also to describe it) if uy = ug = €, in other words when s is a power of its canonical
period. We can achieve it by merging u; (us respectively) to the neighboring break
on the left (on the right). After this operation the breaks have lengths between z
and 2z and all periodic stretches, maybe except these at the start and at the end
of the word, are powers of primitive words.

Let us fix an alignment with at least one black break, and take any black pattern
break (the reasoning for text breaks is the same). We want to count the number of
mismatches between it and the corresponding periodic stretch from the text. To
answer such a query in constant time, for each pattern break and periodic stretch
u® from the text we count mismatches between the break and the stretch for every
possible shift smaller than |u| < 2. Each such count can be performed in O(k)

2
time, which results in O(zk3) time preprocessing.

Beating O(nm) in Approximate LZW-Compressed Pattern Matching 87

Now take two consecutive black breaks b1, bs. Consider the case, when there
are no more breaks between them (of course there are no black ones, because we
chose by, ba to be consecutive, but some white breaks might be there). Two pos-
sible situations are depicted in Figure 2. Our aim is now to count the number of
mismatches between s, and ss, which are length-L subwords of periodic stretches
from the text and pattern, respectively. If L > z(k + 1) then by Proposition 3
either there are no mismatches between s; and so, or there are at least k + 1 of
them. It is easy to detect which case occurs: the strings agree if and only if their
canonical periods are the same and they start with the same period offset, which
can be determined in O(1) time after some straightforward preprocessing. So we
can assume L < z(k 4+ 1). We consider the cases from Figure 2 separately.

Case 1. Inthis case s; is length- L suffix of some text periodic stretch, ss is length-
L prefix of some pattern periodic stretch. We want to precalculate all possible
O(2k3) results of such queries. Fix one pair of periodic stretches. We will calcu-
late all the O(zk) required numbers in O(zk) total time. Let w be the canonical
period of s1, d = |w| and let u be the canonical period of s9. First calculate the
answer for all overlaps of length at most d in O(dk) = O(zk) time. Now to process
an overlap of length D > d, we use the result for D — d, and add the number of
mismatches between w and some factor of an infinite word 4°°, which can be pre-
viously precomputed in O(|ulk) = O(zk) total time. Hence we can precalculate
all values in O(zk?) time, but space usage of O(zk?) is too high to achieve linear
total space complexity. It can be reduced to O(z) per a pair of stretches by care-
fully arranging some partial results so that the final answer can be computed as a
difference of their prefix sums.

Case 2. In this case s1 is a complete periodic stretch, and ss is a factor of a peri-
odic stretch. Note that if so has period d then there are only d essentially different
alignments of such form. Overall there are only O(zk?) possible queries, so we pre-
calculate all of them in O(zk?) time.

Then we need to consider the general situation when there are some white breaks
between two consecutive black breaks by, be. Using a similar (although more com-
plex) reasoning it can be solved in constant time after O(zk?) space and O(zk?)
time preprocessing. Hence whenever we have an alignment with B black breaks,
we may partition it into O(B) regions and either count the mismatches in each of
them, or report that it exceeds k, in constant time, thus the theorem.

Theorem 4. For highly periodic patterns, pattern matching with k mismatches in
pe-strings can be solved in O(zk?) time using O(zk?) additional space.

It is now a good moment to specify z. Let z = ‘/km. Using Theorem 2 and Theo-
rem 4 we see that such a choice of z gives us a running time O(klogm + /mk?) =
O(y/mk?) for pattern matching with & mismatches in pc-strings. The additional
space needed is O(zk?) = O(y/mk). By Theorem 1 we then obtain that pattern
matching with k£ mismatches in LZW-compressed text can be solved in O(nk log®m
+ m + ny/mk?), which is O(n\/mk?) because n > y/m. The space complexity is

88 P. Gawrychowski and D. Straszak

O(n+m++/mk). This is bounded by O(n+m) whenever k = O(y/m). In the oppo-
site case we use the O(mk) algorithm [10] to process each pc-string using O(n+m)
space and O(nmk) = O(ny/mk?) total time.

Theorem 5. Pattern matching with k mismatches in LZW-compressed strings
can be solved in O(n\/mk?) time and O(n + m) space.

7 Algorithm for Pattern Matching with Errors

In this section we discuss the algorithm for pattern matching with k errors in pc-
strings. It is obtained by combining our methods for compressed strings (applied
for pattern matching with mismatches) with the ideas used by Cole and Hariha-

ran [4]. We need O(mZkQ + klog m) time for the case when p has at least 2k disjoint
z-breaks and O(zk*) for the case when p has less than 2k disjoint z-breaks. Choos-

ing z to be \/km we obtain the following result.

Theorem 6. Pattern matching with k errors in LZW-compressed strings can be
solved in O(ny/mk?) time and O(n + m) space.

References

1. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in Z-
compressed files. J. Comput. Syst. Sci. 52(2), 299-307 (1996)

2. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with &
mismatches. J. Algorithms 50(2), 257-275 (2004)

3. Bille, P., Fagerberg, R., Ggrtz, I.LL.: Improved approximate string matching and reg-
ular expression matching on Ziv-Lempel compressed texts. ACM Transactions on
Algorithms 6(1) (2009)

4. Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm.
SIAM J. Comput. 31(6), 1761-1782 (2002)

5. Crochemore, M., Rytter, W.: Jewels of stringology. World Scientific (2002)

6. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: Pro-
ceedings of the Twenty-Second Annual ACM-STAM Symposium on Discrete Algo-
rithms, SODA 2011, pp. 362-372. STAM (2011)

7. Gawrychowski, P.: Simple and efficient LZW-compressed multiple pattern match-
ing. In: Kérkkéinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 232-242.
Springer, Heidelberg (2012)

8. Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern match-
ing. In: Diirr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 624-635. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

9. Kérkkéinen, J., Navarro, G., Ukkonen, E.: Approximate string matching on Ziv-
Lempel compressed text. J. Discrete Algorithms 1(3-4), 313-338 (2003)

10. Landau, G.M., Vishkin, U.: Efficient string matching with k& mismatches. Theor.
Comput. Sci. 43, 239-249 (1986)

11. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10(2), 157-169 (1989)

12. Welch, T.A.: A technique for high-performance data compression. Computer 17(6),
8-19 (1984)

13. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530-536 (1978)

	Beating O(nm) in Approximate
LZW-Compressed Pattern Matching

	1 Introduction
	2 Preliminaries
	3 Further Preprocessing
	4 Detecting Matches in Pc-Strings
	5 Basic Algorithm for Highly Periodic Patterns
	6 Faster Algorithm for Highly Periodic Patterns
	7 Algorithmfor PatternMatching with Errors
	References

