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Abstract. We consider the generalized minimum Manhattan network problem
(GMMN). The input to this problem is a set R of n pairs of terminals, which
are points in R

2. The goal is to find a minimum-length rectilinear network that
connects every pair in R by a Manhattan path, that is, a path of axis-parallel line
segments whose total length equals the pair’s Manhattan distance. This problem
is a natural generalization of the extensively studied minimum Manhattan net-
work problem (MMN) in which R consists of all possible pairs of terminals. An-
other important special case is the well-known rectilinear Steiner arborescence
problem (RSA). As a generalization of these problems, GMMN is NP-hard. No
approximation algorithms are known for general GMMN.

We obtain an O(log n)-approximation algorithm for GMMN. Our solution
is based on a stabbing technique, a novel way of attacking Manhattan network
problems. Some parts of our algorithm generalize to higher dimensions, yielding
a simple O(logd+1 n)-approximation algorithm for the problem in arbitrary fixed
dimension d. As a corollary, we obtain an exponential improvement upon the
previously best O(nε)-ratio for MMN in d dimensions [ESA’11]. En route, we
show that an existing O(log n)-approximation algorithm for 2D-RSA generalizes
to higher dimensions.

1 Introduction
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{(a,b), (c,d), (e,f)}

Fig. 1: MMN versus GMMN

Given a set of terminals, which are points in
R

2, the minimum Manhattan network prob-
lem (MMN) asks for a minimum-length rec-
tilinear network that connects every pair of
terminals by a Manhattan path (M-path, for
short), i.e., a path consisting of axis-parallel
segments whose total length equals the pair’s
M-distance. Put differently, every pair is to be
connected by a shortest path in the L1-norm
(M-path). See Fig. 1a for an example.

In the generalized minimum Manhattan
network problem (GMMN), we are given a set R of n unordered terminal pairs, and
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the goal is to find a minimum-length rectilinear network such that every pair in R is M-
connected, that is, connected by an M-path. GMMN is a generalization of MMN since
R may contain all possible pairs of terminals. Figure 1b depicts such a network.

We remark that, in this paper, we define n to be the number of terminal pairs of a
GMMN instance, previous works on MMN defined n to be the number of terminals.
Moreover, we identify each terminal pair with a rectangle, namely the bounding box of
this pair. This is a natural convention as every M-path for this terminal pair lies within
the bounding box.

MMN naturally arises in VLSI circuit layout [8], where a set of terminals (such as
gates or transistors) needs to be interconnected by rectilinear paths (wires). Minimizing
the cost of the network (which means minimizing the total wire length) is desirable in
terms of energy consumption and signal interference. The additional requirement that
the terminal pairs are connected by shortest rectilinear paths aims at decreasing the in-
terconnection delay (see Cong et al. [4] for a discussion in the context of rectilinear
Steiner arborescences, which have the same additional requirement; see definition be-
low). Manhattan networks also arise in the area of geometric spanner networks. Specif-
ically, a minimum Manhattan network can be thought of as the cheapest spanner under
the L1-norm for a given set of points (allowing Steiner points). Spanners, in turn, have
numerous applications in network design, distributed algorithms, and approximation
algorithms, see, e.g., the book [14] and the survey [9].

MMN requires a Manhattan path between every terminal pair. This assumption is,
however, not always reasonable. For example, in VLSI design a wire connection is
necessary only for an, often comparatively small, subset of terminal pairs, which may
allow for substantially cheaper circuit layouts. In this scenario, GMMN appears to be a
more realistic model than MMN.

Previous Work and Related Problems. MMN was introduced by Gudmundsson et al. [8]
who gave 4- and 8-approximation algorithms for MMN running inO(n3) andO(n logn)
time, respectively. The currently best known approximation algorithms for MMN have
ratio 2; they were obtained independently by Chepoi et al. [2] using an LP-based method,
by Nouioua [16] using a primal-dual scheme, and by Guo et al. [10] using a greedy ap-
proach. The complexity of MMN was settled only recently by Chin et al. [3]; they proved
the problem NP-hard. It is not known whether MMN is APX-hard. Gudmundsson et al.
[7] consider a variant of MMN where the goal is to minimize the number of (Steiner)
nodes and edges. Using divide-and-conquer they show that there is always a Manhattan
network with O(n log n) nodes and edges. Knauer and Spillner [11] show that MMN is
fixed-parameter tractable. More specifically, they show that there is an exact algorithm
for MMN taking O∗(214h) time, where h is the number of horizontal lines that contain
all terminals and the O∗-notation neglects factors polynomial in n.

Recently, there has been an increased interest in MMN for higher dimensions. Muñoz
et al. [13] proved that 3D-MMN is NP-hard to approximate within a factor of 1.00002.
They also gave a constant-factor approximation algorithm for a (rather restricted) spe-
cial case of 3D-MMN. Das et al. [6] described the first approximation algorithm for
MMN in arbitrary, fixed dimension. Their algorithm recursively computes a grid and
attaches the terminals within a grid cell to grid vertices using RSA as a subroutine. Its
ratio is O(nε) for any ε > 0.
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GMMN was defined by Chepoi et al. [2] who posed the question whether it admits
an O(1)-approximation. Suprisingly, only special cases of GMMN such as MMN have
been considered so far—despite the fact that the problem is very natural and relevant
for practical applications.

Another special case of GMMN that has received significant attention in the past
is the rectilinear Steiner arborescence problem (RSA). Here, one is given a set of n
terminals in the first quadrant, and the goal is to find a minimum-length rectilinear net-
work that M-connects every terminal to the origin o. Hence, RSA is the special case
of GMMN where o is considered a (new) terminal and the set of terminal pairs con-
tains, for each terminal t �= o, only the pair (o, t). Note that RSA is very different from
MMN. Although every RSA solution is connected (via the origin), terminals are not
necessarily M-connected to each other. RSA was introduced by Nastansky et al. [15].
RSA is NP-hard [18]. Rao et al. [17] gave a 2-approximation algorithm for RSA. They
also provided a conceptually simpler O(log n)-approximation algorithm based on rec-
tilinear Steiner trees. In the full version of this paper [5], we generalize this algorithm
to dimensions d > 2. Lu et al. [12] and, independently, Zachariasen [19] described
polynomial-time approximation schemes (PTAS) for RSA, both based on Arora’s tech-
nique [1]. Zachariasen pointed out that his PTAS can be generalized to the all-quadrant
version of RSA but that it seems difficult to extend the approach to higher dimensions.

Our Contribution. Our main result is the first approximation algorithm for GMMN.
Its ratio is O(log n) (see Section 3). Our algorithm is based on two ideas. First, we
use a simple (yet powerful) divide-and-conquer scheme to reduce the problem to RSA.
This yields a ratio of O(log2 n). To bring down the ratio to O(log n) we develop a new
stabbing technique, which is a novel way to approach Manhattan network problems and
constitutes the main technical contribution of this paper.

We also consider higher dimensions. More specifically, we generalize an existing
O(log n)-approximation algorithm for RSA to arbitrary dimensions (see the full ver-
sion [5]). Combining this with our divide-and-conquer scheme yields an O(logd+1 n)-
approximation algorithm for d-dimensional GMMN (see Section 4). For the special
case of d-dimensional MMN, this constitutes an exponential improvement upon the
O(nε)-approximation algorithm of Das et al. [6]. Another advantage of our algorithm
is that it is significantly simpler and easier to analyze than that algorithm.

Our result is a first step towards answering the open question of Chepoi et al. [2].
In the full version [5] we give indications that it may be difficult to obtain an O(1)-
approximation algorithm since the problem can be viewed as a geometric rectangle
covering problem. There we also argue why existing techniques for MMN seem to fail,
which underlines the relevance of our techniques.

2 Divide-And-Conquer Scheme

As a warm-up, we start with a simple O(log2 n)-approximation algorithm illustrating
our divide-and-conquer scheme. This is the basis for (a) an improved O(log n)-appro-
ximation algorithm that uses our stabbing technique (see Section 3) and (b) a divide-
and-conquer scheme for GMMN in arbitrary dimensions (Section 4). We prove the
following.
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Theorem 1. GMMN admits an O(log2 n)-approximation algorithm running in
O(n log3 n) time.

Our algorithm consists of a main algorithm that recursively subdivides the input in-
stance into instances of so-called x-separated GMMN; see Section 2.1. We prove that
the instances of x-separated GMMN can be solved independently by paying a factor of
O(log n) in the overall approximation ratio. Then we solve each x-separated GMMN
instance within factor O(log n); see Section 2.2. This yields an overall approximation
ratio of O(log2 n). Our analysis is tight; see the full version [5]. Our presentation fol-
lows this natural top-down approach; as a consequence, we will make some forward
references to results that we prove later.

2.1 Main Algorithm

Our algorithm is based on divide and conquer. Let R be the set of terminal pairs that are
to be M-connected. Recall that we identify each terminal pair with its bounding box.
As a consequence of this, we consider R, a set of rectangles. Let mx be the median in
the multiset of the x-coordinates of terminals where a terminal occurs as often as the
number of pairs it is involved in. We identify mx with the vertical line at x = mx.

Now we partition R into three subsets Rleft, Rmid, and Rright. Rleft consists of all
rectangles that lie completely to the left of the vertical line mx. Similarly,Rright consists
of all rectangle that lie completely to the right of mx. Rmid consists of all rectangles
that intersect mx.

We consider the sets Rleft, Rmid, and Rright as separate instances of GMMN. We ap-
ply the main algorithm recursively to Rleft to get a rectilinear network that M-connects
terminal pairs in Rleft and do the same for Rright.

It remains to M-connect the pairs in Rmid. We call a GMMN instance (such as Rmid)
x-separated if there is a vertical line (in our case mx) that intersects every rectangle.
We exploit this property to design a simple O(log n)-approximation algorithm for x-
separated GMMN; see Section 2.2. In Section 3, we improve upon this and describe an
O(1)-approximation algorithm for x-separated GMMN.

In the following lemma we analyze the performance of the main algorithm, in terms
of ρx(n), our approximation ratio for x-separated instances with n terminal pairs.

Lemma 1. Let ρx(n) be a non-decreasing function. Then, if x-separated GMMN ad-
mits a ρx(n)-approximation algorithm, GMMN admits a (ρx(n) · log n)-approximation
algorithm.

Proof. We determine an upper bound ρ(n) on the main algorithm’s approximation ratio
for instances with n terminal pairs. Let Nopt be an optimum solution to an instance R
of size n and let OPT be the cost of Nopt. Let Nopt

left and Nopt
right be the parts of Nopt to

the left and to the right of mx, respectively. (We split horizontal segments that cross mx

and ignore vertical segments on mx.)
Due to the choice of mx, at most n terminals lie to the left of mx. Therefore, Rleft

contains at most n/2 terminal pairs. Since Nopt
left is a feasible solution to Rleft, we con-

clude (by induction) that the cost of the solution to Rleft computed by our algorithm
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is bounded by ρ(n/2) · ‖Nopt
left‖, where ‖ · ‖ measures the length of a network. Analo-

gously, the cost of the solution computed for Rright is bounded by ρ(n/2) · ‖Nopt
right‖.

Since Nopt is also a feasible solution to the x-separated instance Rmid, we can compute
a solution of cost ρx(n) ·OPT for Rmid.

As the networks Nopt
left and Nopt

right are separated by line mx, they are edge disjoint

and hence ‖Nopt
left ‖ + ‖Nopt

right‖ ≤ OPT. Therefore, we can bound the total cost of our
algorithm’s solution N to R by

ρ(n/2) · (‖Nopt
left‖+ ‖Nopt

right‖) + ρx(n) ·OPT ≤ (ρ(n/2) + ρx(n)) ·OPT .

This yields the recurrence ρ(n) = ρ(n/2) + ρx(n), which resolves to ρ(n) ≤ logn ·
ρx(n). ��

Lemma 1 together with the results of Section 2.2 allow us to prove Theorem 1.

Proof (of Theorem 1). By Lemma 1, our main algorithm has performance ρx(n) · log n,
where ρx(n) denotes the ratio of an approximation algorithm for x-separated GMMN.
In Lemma 2 (Section 2.2), we will show that there is an algorithm for x-separated
GMMN with ratio ρx(n) = O(log n). Thus overall, the main algorithm yields an
O(log2 n)-approximation for GMMN. See the full version [5] for the running time anal-
ysis. ��

2.2 Approximating x-Separated and xy-Separated Instances

We describe a simple algorithm for approximating x-separated GMMN with a ratio
of O(log n). Let R be an x-separated instance, that is, all rectangles in R intersect a
common vertical line.

The algorithm works as follows. Analogously to the main algorithm we subdivide
the x-separated input instance, but this time using the line y = my , where my is the
median of the multiset of y-coordinates of terminals in R. This yields sets Rtop, R′

mid,
and Rbottom, defined analogously to the sets Rleft, Rmid, and Rright of the main algo-
rithm, using my instead of mx. We apply our x-separated algorithm to Rtop and then
to Rbottom to solve them recursively. The instance R′

mid is a y-separated sub-instance
with all its rectangles intersecting the line my . Moreover, R′

mid (as a subset of R) is
already x-separated, thus we call R′

mid an xy-separated instance. Below, we describe
a specialized algorithm to approximate xy-separated instances within a constant factor.
Assuming this for now, we prove the following.

Lemma 2. x-separated GMMN admits an O(log n)-approximation algorithm.

Proof. Let ρx(n) be the ratio of our algorithm for approximating x-separated GMMN
instances and let ρxy(n) be the ratio of our algorithm for approximating xy-separated
GMMN instances. In Lemma 3, we show that ρxy(n) = O(1).

Following the proof of Lemma 1 (exchanging x- and y-coordinates and using
Rtop, R′

mid, Rbottom in place of Rleft, Rmid, Rright), yields ρx(n) = logn · ρxy(n)
= O(log n). ��



Generalized Minimum Manhattan Networks 727

It remains to show that xy-separated GMMN can be approximated within a constant
ratio. Let R be an instance of xy-separated GMMN. We assume, w.l.o.g., that it is the
x- and the y-axes that intersect all rectangles in R, that is, all rectangles contain the
origin o. To solve R, we compute an RSA network that M -connects the set of terminals
in R to o. Clearly, we obtain a feasible GMMN solution to R. In the full version [5] we
prove that this is a constant-factor approximation algorithm.

Lemma 3. xy-separated GMMN admits a constant-factor approximation algorithm.

3 An O(logn)-Approximation Algorithm via Stabbing

In this section, we present an O(log n)-approximation algorithm for GMMN, which is
the main result of our paper. Our algorithm relies on an O(1)-approximation algorithm
for x-separated instances and is based on a novel stabbing technique that computes a
cheap set of horizontal line segments that stabs all rectangles. Our algorithm connects
these line segments with a suitable RSA solution to ensure feasibility and approximation
ratio. We show the following (noting that our analysis is tight up to a constant factor;
see the full version [5]).

Theorem 2. For any ε > 0, GMMN admits a ((6+ε) · logn)-approximation algorithm
running in O(n1/ε log2 n) time.

Proof. Using our new subroutine for the x-separated case given in Lemma 7 below,
along with Lemma 1 yields the result. See the full version [5] for the run-time analysis.

��
We begin with an overview of our improved algorithm for x-separated GMMN. Let R
be the set of terminal pairs of an x-separated instance of GMMN. We assume, w.l.o.g.,
that each terminal pair (t, t′) ∈ R is separated by the y-axis, that is, x(t) ≤ 0 ≤ x(t′)
or x(t′) ≤ 0 ≤ x(t). Let Nopt be an optimum solution to R. Let OPTver and OPThor

be the total costs of the vertical and horizontal segments in Nopt, respectively. Hence,
OPT = OPTver + OPThor. We first compute a set S of horizontal line segments of
total cost O(OPThor) such that each rectangle in R is stabbed by some line segment
in S; see Sections 3.1 and 3.2. Then we M-connect the terminals to the y-axis so that
the resulting network, along with S, forms a feasible solution to R of cost O(OPT);
see Section 3.3.

3.1 Stabbing the Right Part

We say that a horizontal line segment h stabs an axis-aligned rectangle r if the inter-
section of r and h equals the intersection of r and the supporting line of h. A set of
horizontal line segments is a stabbing of a set of axis-aligned rectangles if each rectan-
gle is stabbed by some line segment. For any geometric object, let its right part be its
intersection with the closed half plane to the right of the y-axis. For a set of objects, let
its right part be the set of the right parts of the objects. Let R+ be the right part of R,
let N+ be the right part of Nopt, and let N+

hor be the set of horizontal line segments



728 A. Das et al.

in N+. In this section, we show how to construct a stabbing of R+ of cost at most
2 · ‖N+

hor‖.
For x′ ≥ 0, let �x′ be the vertical line at x = x′. Our algorithm performs a left-to-

right sweep starting with �0. For x ≥ 0, let Ix = {r ∩ �x | r ∈ R+} be the “traces” of
the rectangles in R+ on �x. The elements of Ix are vertical line segments; we refer to
them as intervals. A set Px of points on �x constitutes a piercing for Ix, if every interval
in Ix contains a point in Px.

Our algorithm continuously moves the line �x from left to right starting with x = 0.
In doing so, we maintain an inclusion-wise minimal piercing Px of Ix in the following
way: At x = 0, we start with an arbitrary minimal piercing P0. (Note that we can even
compute an optimum piercing.) We update Px whenever Ix changes. Observe that with
increasing x, the set Ix can only inclusion-wise decrease as all rectangles in R+ touch
the y-axis. Therefore, it suffices to update the piercing Px only at event points; x is an
event point if and only if x is the x-coordinate of a right edge of a rectangle in R+.
Let x′ and x′′ be consecutive event points. Let x be such that x′ < x ≤ x′′. Note that
Px′ is a piercing for Ix since Ix ⊂ Ix′ . The piercing Px′ is, however, not necessarily
minimal w.r.t. Ix. When the sweep line passes x′, we therefore have to drop some of the
points in Px′ in order to obtain a new minimal piercing. This can be done by iteratively
removing points from Px′ such that the resulting set still pierces Ix. We stop at the last
event point (afterwards, Ix = ∅) and output the traces of the piercing points in Px for
x ≥ 0 as our stabbing.

Note that with increasing x, our algorithm only removes points from Px but never
add points. Thus, the traces of Px form horizontal line segments that touch the y-axis.
These line segments form a stabbing of R+; see the thick solid line segments in Fig. 2a.
The following lemma is crucial to prove the overall cost of the stabbing.

Lemma 4. For any x ≥ 0, it holds that |Px| ≤ 2 · |�x ∩N+
hor|.

Proof. Since Px is a minimal piercing, there exists, for every p ∈ Px, a witness Ip ∈
Ix that is pierced by p but not by Px \ {p}. Otherwise we could remove p from Px,
contradicting the minimality of Px.

Now we show that an arbitrary point q on �x is contained in the witnesses of at
most two points in Px. Assume, for the sake of contradiction, that q is contained in the
witnesses of points p, p′, p′′ ∈ Px with strictly increasing y-coordinates. Suppose that q
lies above p′. Then the witness Ip of p, which contains p and q, must also contain p′,
contradicting the definition of Ip. The case q below p′ is symmetric.

Observe that �x ∩ N+
hor is a piercing of Ix and, hence, of the |Px| many witnesses.

Since every point in �x ∩N+
hor pierces at most two witnesses, the lemma follows. ��

Next, we analyze the overall cost of the stabbing.

Lemma 5. Given a set R of rectangles intersecting the y-axis, we can compute a set of
horizontal line segments of cost at most 2 ·OPThor that stabs R+.

Proof. Observe that ‖N+
hor‖ =

∫ |�x ∩N+
hor| dx. The cost of our stabbing is

∫ |Px| dx.
By Lemma 4, this can be bounded by

∫ |Px| dx ≤ ∫
2 · |�x∩N+

hor| dx = 2 ·‖N+
hor‖. ��
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Fig. 2: The improved algorithm for x-separated GMMN

3.2 Stabbing the Right and Left Parts

We now detail how we construct a stabbing of R. To this end we apply Lemma 5 to
compute a stabbing S− of cost at most 2 · ‖N−

hor‖ for the left part R− of R and a
stabbing S+ of cost at most 2 · ‖N+

hor‖ for the right part R+. Note that S− ∪ S+ is
not necessarily a stabbing of R since there can be rectangles that are not completely
stabbed by one segment (even if we start with the same piercing on the y-axis in the
sweeps to the left and to the right). To overcome this difficulty, we mirror S− and S+ to
the respective other side of the y-axis; see Fig. 2a. Let S denote the union of S− ∪ S+

and the mirror image of S− ∪ S+.

Lemma 6. Given a set R of rectangles intersecting the y-axis, we can compute a set of
horizontal line segments of cost at most 4 ·OPThor that stabs R.

Proof. Let S be the set of horizontal line segments described above. The total cost of S
is at most 4(‖N−

hor‖ + ‖N+
hor‖) = 4 · OPThor. The set S stabs R since, for every

rectangle r ∈ R, the larger among its two (left and right) parts is stabbed by some
segment s and the smaller part is stabbed by the mirror image s′ of s. Hence, r is
stabbed by the line segment s ∪ s′. ��

3.3 Connecting Terminals and Stabbing

We assume that the union of the rectangles in R is connected. Otherwise we apply our
algorithm separately to each subset of R that induces a connected component of

⋃
R.

Let I be the line segment that is the intersection of the y-axis with
⋃
R. Let top(I)

and bot(I) be the top and bottom endpoints of I , respectively. Let L ⊆ T be the
set containing every terminal t with (t, t′) ∈ R and y(t) ≤ y(t′) for some t′ ∈ T .
Symmetrically, let H ⊆ T be the set containing every terminal t with (t, t′) ∈ R and
y(t) ≥ y(t′) for some t′ ∈ T . Note that, in general, L and H are not disjoint.

Using a PTAS for RSA [12,19], we compute a near-optimal RSA network Aup con-
necting the terminals in L to top(I) and a near-optimal RSA networkAdown connecting
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the terminals in H to bot(I). Then we return the network N = Aup∪Adown∪S, where
S is the stabbing computed by the algorithm in Section 3.2.

We prove in the following lemma that the resulting network is a feasible solution
to R, with cost at most constant times OPT.

Lemma 7. x-separated GMMN admits, for any ε > 0, a (6 + ε)-approximation
algorithm.

Proof. First we argue that the solution is feasible. Let (l, h) ∈ R. W.l.o.g., y(l) ≤ y(h)
and thus l ∈ L and h ∈ H . Hence, Aup contains a path πl from l to top(I), see Fig. 2b.
This path starts inside the rectangle (l, h). Before leaving (l, h), the path intersects a
line segment s in S that stabs (l, h). The segment s is also intersected by the path πh

in Adown that connects h to bot(I). Hence, walking along πl, s, and πh brings us in a
monotone fashion from l to h.

Now, let us analyze the cost of N . Clearly, the projection of (the vertical line seg-
ments of) Nopt onto the y-axis yields the line segment I . Hence, ‖I‖ ≤ OPTver.
Observe that Nopt ∪ {I} constitutes a solution to the RSA instance (L, top(I)) con-
necting all terminals in L to top(I) and to the RSA instance (H, bot(I)) connecting all
terminals in H to bot(I). This holds since, for each terminal pair, its M-path π in Nopt

crosses the y-axis in I; see Fig. 2c. Since Aup and Adown are near-optimal solutions to
these RSA instances, we obtain, for any δ > 0, that ‖Aup‖ ≤ (1 + δ) · ‖Nopt ∪ I‖ ≤
(1+δ)·(OPT+OPTver) and, analogously, that ‖Adown‖ ≤ (1+δ)·(OPT+OPTver).

By Lemma 6, we have ‖S‖ ≤ 4 ·OPThor. Assuming δ ≤ 1, this yields

‖N‖ = ‖Aup‖+ ‖Adown‖+ ‖S‖ ≤ (2 + 2δ) · (OPT+OPTver) + 4 ·OPThor

≤ (2 + 2δ) ·OPT+ 4 · (OPTver +OPThor) = (6 + 2δ) ·OPT .

Setting δ = ε/2 yields the desired approximation factor. ��

4 Generalization to Higher Dimensions

In this section, we describe an O(logd+1 n)-approximation algorithm for GMMN in d
dimensions and prove the following result (see below for the proof). In the full ver-
sion [5] we show that the analysis of the algorithm is essentially tight (up to one log-
factor).

Theorem 3. In any fixed dimension d, GMMN admits an O(logd+1 n)-approximation
algorithm running in O(n2 logd+1 n) time.

In Section 2 we reduced GMMN to x-separated GMMN and then x-separated GMMN
to xy-separated GMMN. Each of the two reductions increased the approximation ra-
tio by a factor of O(log n). The special case of xy-separated GMMN was approxi-
mated within a constant factor by solving a related RSA problem. This gave an overall
O(log2 n)-approximation algorithm for GMMN. We generalize this approach to higher
dimensions.

An instance R of d-dimensional GMMN is called j-separated for some j ≤ d if
there exist values s1, . . . , sj such that, for each terminal pair (t, t′) ∈ R and for each
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dimension i ≤ j, we have that si separates the i-th coordinates xi(t) of t and xi(t
′)

of t′ (meaning that either xi(t) ≤ si ≤ xi(t
′) or xi(t

′) ≤ si ≤ xi(t)). Under this
terminology, an arbitrary instance of d-dimensional GMMN is always 0-separated.

The following lemma reduces j-separated GMMN to (j − 1)-separated GMMN at
the expense of a (logn)-factor in the approximation ratio. The proof is similar to the
2D case; see the full version [5].

Lemma 8. Let 1 ≤ j ≤ d. If j-separated GMMN admits a ρj(n)-approximation algo-
rithm, then (j−1)-separated GMMN admits a (ρj(n)·log n)-approximation algorithm.

Analogously to dimension two we can approximate instances of d-separated GMMN by
reducing the problem to RSA. Rao et al. [17] presented an O(log |T |)-approximation
algorithm for 2D-RSA, which generalizes to d-dimensional RSA as we show in the full
version [5]. Using this, we derive there the following result.

Lemma 9. d-separated GMMN admits an O(log n)-approximation algorithm for any
fixed dimension d.

We are now ready to give the proof of Theorem 3.

Proof (Proof of Theorem 3). Combining Lemmata 8 and 9 and applying them induc-
tively to arbitrary (that is, 0-separated) GMMN instances yields the claim. See the full
version [5] for the run-time analysis. ��
As a byproduct of Theorem 3, we obtain an O(logd+1 n)-approximation algorithm for
MMN where n denotes the number of terminals. This holds since any MMN instance
with n terminals can be considered an instance of GMMN with O(n2) terminal pairs.

Corollary 1. In any fixed dimension d, MMN admits an O(logd+1 n)-approximation
algorithm running in O(n4 logd+1 n) time, where n denotes the number of terminals.

5 Conclusions

In 2D, there is quite a large gap between the currently best approximation ratios for
MMN and GMMN. Whereas we have presented an O(log n)-approximation algorithm
for GMMN, MMN admits 2-approximation algorithms [2,10,16]. In the full version [5],
we give indications that this gap might not only be a shortcoming of our algorithm. It
would be interesting to derive some non-approximability result for GMMN. So far, the
only such result is the APX-hardness of 3D-MMN [13].

Concerning the positive side, for d ≥ 3, a constant-factor approximation algorithm
for d-dimensional RSA would shave off a factor ofO(log n) from the current ratio for d-
dimensional GMMN. This may be in reach since 2D-RSA admits even a PTAS [12,19].
Alternatively, a constant-factor approximation algorithm for (d− k)-separated GMMN
for some k ≤ d would shave off a factor of O(logk n) from the current ratio for d-
dimensional GMMN.
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