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Abstract. The (distance) k-sector is a generalization of the concept of
bisectors proposed by Asano, Matoušek and Tokuyama. We prove the
uniqueness of the 4-sector of two points in the Euclidean plane. De-
spite the simplicity of the unique 4-sector (which consists of a line and
two parabolas), our proof is quite non-trivial. We begin by establish-
ing uniqueness in a small region of the plane, which we show may be
perpetually expanded afterward.
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1 Introduction

The bisector of two nonempty sets X and Y in R
2 is defined as

bisect(X,Y ) = { z ∈ R
2 : dist(z,X) = dist(z, Y ) }, (1)

where dist(z,X) = infx∈X dist(z, x) denotes the Euclidean distance of z from a
set X . For any integer k ≥ 2, a distance k-sector (or simply k-sector) of distinct
points p, q ∈ R

2 is a (k − 1)-tuple (C1, . . . , Ck−1) of nonempty subsets of R2

such that

Ci = bisect(Ci−1, Ci+1), i = 1, . . . , k − 1, (2)

where C0 = {p} and Ck = {q}.
For example, there is a 4-sector of two points that consists of a line and two

parabolas (Fig. 1). We will prove that this is the only one:

Theorem 1. The 4-sector between two points in the Euclidean plane is unique.
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Fig. 1. A 4-sector (C1, C2, C3) of p and q (whose uniqueness we will prove). If p =
(0,−1) and q = (0, 1), these curves are the graphs of y = ±(x2 + 1)/2 and y = 0.

The notion of distance k-sectors was introduced by Asano and Tokuyama [4] in
2004, motivated by a question about circuit board design. Asano, Matoušek and
Tokuyama [3] showed the existence and uniqueness of the 3-sector (trisector).
Despite the simple definition, k-sectors (with the exception of k = 2, 4) do
not seem to be easy to construct (note that bisecting between the curves in
Fig. 1 does not give an 8-sector). In particular, the 3-sector is not algebraic, as
conjectured in [3] and recently proved by Monterde and Ongay [8].

Although the original proof in [3] of the existence and uniqueness of the 3-
sector was rather involved, it turned out later that k-sectors exist in a fairly
general setting and for a relatively simple reason: Reem and Reich [9] used the
Tarski fixed point theorem to prove the existence of a closely related object called
double zone diagrams. Applying this idea, Imai et al. [6] proved the existence of
a k-sector for any k on any sets P , Q (instead of {p}, {q}), and for a general
class of metric spaces. The existence proofs sometimes suggest an algorithm to
compute (draw on a screen approximately) k-sectors, but its efficiency is unclear.
Some issues in computing k-sectors and double zone diagrams are discussed in
[6,10] (of course, such issues are trivial in our setting of 4-secting two points,
once we show that the only 4-sector is the one explicitly given in Fig. 1).

Uniqueness is harder to prove. The uniqueness of the 3-sector was extended
to the case where one of P , Q is a line segment instead of a point [5], and then
to the general case where P , Q can be any disjoint nonempty closed sets [7]
(in fact, they proved the uniqueness of the zone diagram [2], a generalization of
3-sectors where we start with many sets instead of just two sets P , Q). Unlike
existence, uniqueness relies on the properties of the Euclidean norm, and indeed
fails for, say, the l1 norm [1,7]. It remains open [6, Conjecture] whether k-sectors,
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for k ≥ 4, are unique even in the Euclidean plane. Theorem 1 answers this for
k = 4 (and points p, q).

Proof idea. Roughly speaking, the central part of our proof (Lemma 3) is based
on the following ideas. Suppose that there are two different k-sectors (Ci)i and
(Ĉi)i (here and in the sequel, the subscript i always ranges over 1, . . . , k− 1, so
that (Ci)i means (C1, . . . , Ck−1)). Then there is a gap somewhere between the
curves Ci and Ĉi. Since they both satisfy equation (2), we must have another gap
somewhere between Ci−1 and Ĉi−1 or between Ci+1 and Ĉi+1, which is not too
small compared to the original gap. From some observations about the size and
location of the new gap, we derive contradiction by arguing that this process
of finding a new gap cannot go on forever because it causes the gap to grow
too big to fit where it must be. This rough intuition is common to the proof of
3-sector uniqueness in [7], but there is a lot of room for creativity as to how we
define the size of the gap between two curves at a point. The proof in [7] used a
clever way to measure the gap under which the gap always grows bigger, but this
measure of the gaps only makes sense for 3-sectors. We measure the gap much
more simply, by the difference between the y-coordinates of the two curves at
a common x-coordinate. The downside is that under this measure, the gap gets
bigger only when the involved parts of the curves lie in certain configuration.
This necessitates some detailed argument that certain part of 4-sector indeed
has this configuration (Lemma 6) and that the uniqueness of this part of the
4-sector can then be extended gradually to other parts (Lemmas 4 and 5).

2 Preliminaries: Gradations

In the definition of k-sectors above, the components Ci are sets satisfying certain
equations, and we did not even say that they are curves. It is not entirely obvious,
although it is true, that each of them divides the plane into two regions, one
containing p and the other containing q. Imai et al. [6] made this claim precise (as
Lemma 1 below) by introducing k-gradations. We briefly review their definition,
as we also find k-gradations easier to reason with than k-sectors.

For nonempty X , Y ⊆ R
2, we define the dominance region of X over Y by

dom(X,Y ) = { z ∈ R
2 : dist(z,X) ≤ dist(z, Y ) }. (3)

It is not hard to see [6, Lemma 6] that, if X and Y are disjoint closed sets,
bisect(X,Y ) is the boundary of dom(X,Y ). A k-gradation between points p,
q ∈ R

2 is a (k − 1)-tuple (Ri, Si)i of pairs of subsets of R
2 satisfying

Ri = dom(Ri−1, Si+1), Si = dom(Si+1, Ri−1), i = 1, . . . , k − 1, (4)

where R0 = {p} and Sk = {q}. It is easy to see that this implies Ri ∪ Si = R
2,

{p} = R0 ⊆ R1 ⊆ · · · ⊆ Rk−1 and S1 ⊇ S2 ⊇ · · · ⊇ Sk = {q}.
By the following lemma (a special case of [6, Proposition 2]), a k-sector (Ci)i

can be identified with a k-gradation (Ri, Si)i:
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Lemma 1 ([6]). A (k − 1)-tuple (Ci)i of sets is a k-sector of points p, q ∈ R
2

if and only if

Ci = Ri ∩ Si, i = 1, . . . , k − 1 (5)

for some k-gradation (Ri, Si)i between p, q.

Imai et al. [6, Proposition 1] established the existence of a k-sector by proving
the existence of a k-gradation:

Lemma 2 ([6]). There exists a k-gradation between two distinct points in R
2.

In fact, there are the greatest and the least k-gradations under the order defined
by: (Ri, Si)i ≤ (R′

i, S
′
i)i if Ri ⊆ R′

i and Si ⊇ S′
i for all i = 1, . . . , k − 1.

In what follows, we will primarily deal with k-gradations as opposed to k-
sectors, as their use allows the proofs to be simpler and cleaner.

3 Proof of Theorem 1

For the rest of the paper, we fix p = (0,−1) and q = (0,+1) and consider the
4-sectors and 4-gradations between them. As explained above (Lemma 1), each
4-sector (Ci)i corresponds to a 4-gradation (Ri, Si)i. We will prove that this
4-gradation agrees with (R̂i, Ŝi)i, the trivial 4-gradation corresponding to the
trivial 4-sector (Ĉi)i described in Fig. 1.

Define the (closed) regions Iβ and Jβ , for β > 0, as follows (Fig. 2), using the

trivial 4-sector (Ĉi)i. Consider the normal lines to the parabolas Ĉ1 and Ĉ3 at
x = ±β. The closed, finite region of the plane (containing the origin) defined by
these lines is Iβ . The region Jβ contains Iβ , as well as all points lying above the

upper envelope of the normal lines to Ĉ1 and all points lying below the lower
envelope of the normal lines to Ĉ3. Calculation shows that the four vertices of
Iβ are (±(3 + β2)β/2, 0) and (0,±(3 + β2)/2).

We prove Theorem 1 using the following three lemmas. Note that the number
0.5774 in the lemmas is slightly greater than 1/

√
3, so that the boundary halflines

of J0.5774 make angle slightly less than π/3 with the x-axis.

Lemma 3. Let (Ri, Si)i be a 4-gradation. Then R2 and S2 agree with the trivial
4-gradation on J ′ := J0.5774∩ (R× [−4, 4]), i.e., R2∩J ′ = R̂2∩J ′ and S2 ∩J ′ =
Ŝ2 ∩ J ′.

Lemma 4. Let β ≥ 0.5774. Let (Ri, Si)i be a 4-gradation. Suppose that R2

and S2 agree with the trivial 4-gradation on Jβ, i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and

S2 ∩ Jβ = Ŝ2 ∩ Jβ. Then R1, S1, R3, S3 agree with the trivial 4-gradation on a
region Iβ′ , for some β′ ≥ 1.00001β. Moreover, for β = 0.5774, this holds with
Jβ replaced by the J ′ defined in Lemma 3.

Lemma 5. Let β > 0. Let (Ri, Si)i be a 4-gradation. Suppose that R1, S1,
R3, S3 agree with the trivial 4-gradation on Iβ , i.e., Ri ∩ Iβ = R̂i ∩ Iβ and

Si∩Iβ = Ŝi∩Iβ for each i = 1, 3. Then R2, S2 agree with the trivial 4-gradation

on Jβ, i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and S2 ∩ Jβ = Ŝ2 ∩ Jβ.
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Fig. 2. Closed regions Iβ (dark grey) and Jβ (light grey plus dark grey), defined from
the trivial 4-gradation (R̂i, Ŝi)i

Lemma 3 is the central part of our proof: it says that the middle component
(R2, S2) of the 4-gradation is uniquely determined (and agrees with the trivial
one) up to a certain point (i.e., in the region J ′). Lemma 4 says that if (R2, S2)
is uniquely determined up to some point, then it uniquely determines (R1, S1)
and (R3, S3) up to some point. Lemma 5 works the other way, stating that a
certain part of (R2, S2) is determined by certain parts of (R1, S1) and (R3, S3).

To prove Theorem 1, we use Lemma 3 followed by the last sentence (the
“moreover” part) of Lemma 4, and then apply Lemmas 5 and 4 alternately,
extending step by step the region on which the considered 4-gradation agrees
with the trivial one. This proves the uniqueness of the 4-gradation, and thus, by
Lemma 1, of the 4-sector.

The proofs of the lemmas require a number of additional properties, and so
their presentation is delayed to Sections 3.2 and 3.3.

3.1 Properties of a 4-Gradation

Before proving the lemmas, we need to get some rough estimates about what a
4-gradation must look like. Let B(w, r) (resp. B◦(w, r)) denote the closed (resp.
open) ball with centre w and radius r.

Lemma 6. Let (Ri, Si)i be a 4-gradation. Then
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1. R1 and S3 are convex.
2. dist(Ri, Si+1) ≥ 1/2 for each i = 0, 1, 2, 3.
3. B(p, i/2) ⊆ Ri and B(q, i/2) ⊆ S4−i for each i = 0, 1, 2, 3, 4.
4. R1 ⊆ R× (−∞,−1/2] and S3 ⊆ R× [1/2,∞).
5. Let w = (a, b) be a point with a ≥ 0 and b ≤ 0. Let v = (a′, b′) be a closest

point to w in S3. Then,
(a) 0 ≤ a′ ≤ a.
(b) If |a| ≤ 1.16, then b′ ∈ [1/2, 0.82].
Likewise for S3 and b ≤ 0 replaced by R1 and b ≥ 0, respectively.

6. For each t > 0, let L±
t = { (x, y) ∈ R

2 : ±y ≤ x2/t }, respectively. Then
R2 ⊆ L+

4 and S2 ⊆ L−
4 .

Proof. 1. R1 = dom(p, S2) =
⋂

s∈S2
dom(p, s), and the right-hand side is an

intersection of halfspaces. Similarly for S3.
2. Otherwise, there exists an i such that dist(xi, xi+1) < 1/2 for some xi ∈

Ri and xi+1 ∈ Si+1. By redefining xi and xi+1 on the segment xixi+1 if
necessary, we have xi ∈ Ri ∩ Si and xi+1 ∈ Ri+1 ∩ Si+1. Starting from this,
we can inductively obtain a point xj ∈ Rj ∩Sj with dist(xj , xj+1) < 1/2 for
each j = i−1, i−2, . . . , 0; and a point xj ∈ Rj∩Sj with dist(xj−1, xj) < 1/2
for each j = i + 2, i + 3, . . . , 4. Thus p and q are connected by a path
x0x1x2x3x4 of length less than 4× 1/2, a contradiction.

3. We prove the first claim by induction on i (the second claim is analogous).
By part 2 and the induction hypothesis, Si+1 ⊆ R

2 \ B◦(p, (i + 1)/2). By
this and Ri+1 ∪ Si+1 = R

2, we have Ri+1 ⊇ B◦(p, (i + 1)/2). Since Ri+1 is
closed, Ri+1 ⊇ B(p, (i + 1)/2).

4. Since (0, 0) ∈ S2 by part 3, we have R1 = dom({p}, S2) ⊆ dom({p}, (0, 0)) =
R× (−∞,−1/2]. Similarly for S3.

5. Since S3 is convex by part 1, it is contained in the (closed) halfplane Hw

defined as the opposite side from w across the perpendicular of vw at v.
Since Hw contains B(q, 1/2) by part 3, and the point v on its boundary is
in R× [1/2,∞) by part 4, it must be the case that 0 ≤ a′ ≤ a.
We will prove the other claim, b′ ≤ 0.82. It suffices to show this for the
case where w is the upper-right-most point w0 = (1.16, 0). To see why, let
v0 = (a′0, b

′
0) be a closest point in S3 to w0, and define the halfplane Hw0 in

the same way as Hw from w0 and v0. Since Hw0 contains w and Hw contains
w0, they must coincide. So v must be at the same relative position from v0
as w is from w0, and thus must lie below, i.e., b′ ≤ b′0.
Thus our goal now is to show b′0 ≤ 0.82. Recall that Hw0 contains B(q, 1/2).
The line tangent to the lower half of the ball B(q, 1/2) at the point with
x-coordinate x0 is described as

y =
x0

√
1/4− x2

0

x+

√
1/4− x2

0 − 1/4
√
1/4− x2

0

. (6)

Similarly, the line perpendicular to this tangent and passing through w0 is

y = −
√
1/4− x2

0

x0
x+

1.16
√
1/4− x2

0

x0
. (7)
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These lines intersect at

x =
1.16/4 + x0/4− 1.16x2

0 − x0

√
1/4− x2

0

1/4 + x2
0

. (8)

Using substitution and a numerical calculation we get that the maximum
y-value achieved by this intersection point over the domain x0 ∈ (0, 1/2) is
0.819534 . . . < 0.82 at x0 = 0.243934 . . . . This value bounds b′0 from above.

6. By parts 3 and 4, R2 = dom(R1, S3) ⊆ dom(R × (−∞,−1/2],B(q, 1/2)) =
dom(R× (−∞,−1]), {q}) = L+

4 . Similarly for S2. ��
In the rest of this paper, part x of Lemma 6 is referred to as Lemma 6.x.

3.2 Proof of Lemma 3: Uniqueness Near the Origin

We now prove Lemma 3. Recall the statement:

Lemma 3. Let (Ri, Si)i be a 4-gradation. Then R2 and S2 agree with the
trivial 4-gradation on J ′ := J0.5774 ∩ (R × [−4, 4]), i.e., R2 ∩ J ′ = R̂2 ∩ J ′ and
S2 ∩ J ′ = Ŝ2 ∩ J ′.

Proof. We may assume that (Ri, Si)i is the greatest 4-gradation in the sense of
Lemma 2 (the same argument works for the least gradation by symmetry, and
proves that the greatest and least gradations, and hence all gradations, coincide
on J ′). This implies that Ri ⊇ R̂i and Si ⊆ Ŝi for each i. It suffices to prove that
R2 ∩ J ′ ⊆ R̂2 ∩ J ′. Suppose otherwise, i.e., that R2 ∩ J ′ contains a point above
the x-axis. Then the set of t > 0 with L+

t ⊇ R2 ∩ J ′ (see Lemma 6.6 for the
definition of L+

t ) is bounded from above. This set is closed, and contains 4 by
Lemma 6.6, so it has a maximum, which we call t from now on. By the maximality
of t, there is a point w = (a, ε) in (R2 ∩ J ′) \ {(0, 0)} on the boundary of L+

t .
This point w is on the boundary of R2. We assume without loss of generality
that a > 0. Calculation shows that the right uppermost point of J ′ ∩ L+

4 is
(1.15487 . . . , 0.33343 . . .), so a < 1.16 and ε < 0.34. Let ŵ := (a, 0).

Thus, we are looking at the point w ∈ R2 ∩ J ′ that lies on the boundary of
L+
t . Below, we will split into two cases, and argue that in either case we can find

another point u ∈ R2 ∩J ′ that does not belong to L+
t , contradicting the way we

defined t. Let l := dist(w,R1) = dist(w, S3) and l̂ := dist(ŵ, R̂1) = dist(ŵ, Ŝ3).

Case 1: l ≤ l̂. Define v to be the closest point to w in R1, and let v̂ := v− (0, ε)

(Fig. 3). Since dist(ŵ, v̂) = dist(w, v) = l, we have v̂ ∈ B(ŵ, l) ⊆ B(ŵ, l̂) ⊆ Ŝ1.

Let h := dist(v, S2) and ĥ := dist(v̂, Ŝ2). Since v ∈ R × [−0.82, 0.82] by

Lemma 6.5b, and ε < 0.34, we have h = dist(v, p) > dist(v̂, p) ≥ ĥ.
Define û to be the closest point to v̂ in Ŝ2 and let u := û + (0, ε) = (a′, ε).

Thus, u and û are vertically aligned with v̂. Since dist(v, u) = dist(v̂, û) = ĥ < h,
the point u belongs to R2 and is different from w (because dist(v, w) ≥ h). By
Lemma 6.5a, it lies on the left of w, which was in J ′ and on the boundary of
L+
t . Hence, u ∈ J ′ \ L+

t , contradicting R2 ∩ J ′ ⊆ L+
t .
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Fig. 3. Illustration of Case 1 from the proof of Lemma 3
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Fig. 4. Illustration of Case 2 from the proof of Lemma 3

Case 2: l ≥ l̂. Define v̂ to be the closest point to ŵ in Ŝ3, and let v := v̂+ (0, ε)

(Fig. 4). Since dist(w, v) = dist(ŵ, v̂) = l̂, we have v ∈ B(w, l̂) ⊆ B(w, l) ⊆ R3.

Let h := dist(v,R2) and ĥ := dist(v̂, R̂2). Since v̂ ∈ R × [−0.82, 0.82] by

Lemma 6.5b, and ε < 0.34, we have h ≤ dist(v, q) < dist(v̂, q) = ĥ.
Define u to be the closest point (or one of the closest points) to v in R2, and

let û = u−(0, ε). Since w ∈ J ′∩R2 ⊆ J ′∩L+
4 by Lemma 6.6, the point v is in the

region V in Fig. 5. Calculation shows that V does not intersect dom(R2\J ′, {q}).
In particular, dist(v,R2 \ J ′) > dist(v, q) ≥ h = dist(v, u). Hence u ∈ J ′.

Again, our goal is to prove u /∈ L+
t , thus contradicting R2 ∩ J ′ ⊆ L+

t . Note

that u ∈ B(v, l̂), because u is a closest point to v in R2, and hence closer than w.

Note also that u ∈ R× (ε,∞), because û lies in the interior of B(v̂, ĥ) ⊆ Ŝ2 by

dist(v̂, û) = dist(v, u) = h < ĥ. Thus, it suffices to prove that the three regions

L+
t , B(v, l̂) and R× (ε,∞) do not intersect. We argue as follows.
Notice that the boundaries of these three regions all pass through w. At this

point w, the boundary of B(v, l̂) has slope b, where b is the x-coordinate of v̂ and
v, and the boundary of L+

t has slope 2a/t, which is smaller than b because a =
(3+b2)b/2 < 2b and t ≥ 4. And also on the right of w, the slope of the boundary

of B(v, l̂) continues to be greater than that of L+
t , because the curvature of the

former is greater than that of the latter by l̂ ≤ dist((1.16, 0), Ŝ3) = 0.874 . . . < 1.

Hence, the boundaries of B(v, l̂) and L+
t never meet on the right of w, so the

intersection B(v, l̂) ∩ L+
t lies entirely below w, and thus misses R× (ε,∞). ��
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R̂3

R̂2

R̂1

Ŝ3

Ŝ2

Ŝ1

p

q
L+
4

J ′

V

W0.5774

Fig. 5. The light-shaded region is J ′. Since the point w is in the region W = L+
4 ∩Ŝ2∩J ′,

the point v (obtained from w by way of ŵ and v̂ as described in Case 2 of the proof of
Lemma 3) is in the region V (defined by suitable algebraic curves).

3.3 Proof of Lemmas 4 and 5: Extending Uniqueness

We define an additional closed region Kβ. The boundaries of Kβ are line seg-
ments which are positioned at angles of ±π/3 with respect to the x-axis and
intersect the boundary of Iβ on the x-axis, so the vertices bounding Kβ are
(±(3 + β2)β/2, 0) and (0,±(3 + β2)

√
3β/2). Note Iβ ⊂ Kβ when β > 1/

√
3.

Recall Lemma 4:

Lemma 4. Let β ≥ 0.5774. Let (Ri, Si)i be a 4-gradation. Suppose that R2

and S2 agree with the trivial 4-gradation on Jβ , i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and

S2 ∩ Jβ = Ŝ2 ∩ Jβ . Then R1, S1, R3, S3 agree with the trivial 4-gradation on a
region Iβ′ , for some β′ ≥ 1.00001β. Moreover, for β = 0.5774, this holds with Jβ
replaced by the J ′ defined in Lemma 3.

Proof. Let z ∈ Kβ. We demonstrate that Kβ ∩R1 = Kβ ∩ R̂1; the argument is
similar for S1, R3, S3. The condition β ≥ 0.5774 > 1/

√
3 ensures that the lines

delimiting Jβ have slope smaller (in absolute value) than
√
3, so that any point

in Kβ is closer to Ŝ2 ∩ Jβ (which coincides with S2 ∩ Jβ) than to R
2 \ Jβ . So the

nearest point to z in S2 is in Jβ . Hence

dist(z, S2) = dist(z, S2 ∩ Jβ) = dist(z, Ŝ2 ∩ Jβ) = dist(z, Ŝ2). (9)

So z ∈ R1 if and only if z ∈ R̂1. Since z was an arbitrary element of Kβ, we have

Kβ ∩R1 = Kβ ∩ R̂1.
Define β′ to be the absolute value of the x-coordinate of an intersection point

of R1 (or equivalently R̂1) with the boundary ofKβ . Since R1 is convex, it cannot

contain a point in Iβ′ \Kβ, and thus Iβ′ ∩R1 = Iβ′ ∩ R̂1.
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It remains to prove β′ ≥ 1.00001β. To express β′ in terms of β, it suffices to
equate the expressions for C1 and the boundary of Kβ and solve for the roots:

β′ = −√
3 +

√

2 +
√
3β3 + 3

√
3β. (10)

Finally, it may be shown that σ′ ≥ 1.00001σ for σ′ :=
√
3 β′ and σ :=

√
3β ≥

0.5774
√
3 ≥ 1.000018. Calculation shows that

σ′ = −3 +
√
6 + 9σ + σ3 ≥ −3 + (3 + σ9/8) = σ1/8 · σ ≥ 1.00001σ, (11)

where the first inequality holds because (6+ 9σ+ σ3)− (3+ σ9/8)2 = 3(σ− 1)+
σ(σ10/8 + σ11/8 + σ12/8 + σ13/8 + σ14/8 + σ15/8 − 6)(σ1/8 − 1) ≥ 0.

For the final statement of the lemma (the “moreover” part), note that if
β = 0.5774, then (3 + β2)

√
3 β/2 < 1.66. Thus, K0.5774 ⊂ R× [−1.66, 1.66], and

so points in J0.5774 \ J ′ are irrelevant. ��
Finally, we prove Lemma 5. Recall its statement:

Lemma 5. Let β > 0. Let (Ri, Si)i be a 4-gradation. Suppose that R1, S1,
R3, S3 agree with the trivial 4-gradation on Iβ , i.e., Ri ∩ Iβ = R̂i ∩ Iβ and

Si∩Iβ = Ŝi∩Iβ for each i = 1, 3. Then R2, S2 agree with the trivial 4-gradation

on Jβ , i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and S2 ∩ Jβ = Ŝ2 ∩ Jβ .

Proof. Let z ∈ Jβ . Because R1 is convex (Lemma 6.1) and agrees with R̂1 on
Iβ , the nearest point to z in R1 is in Iβ . Hence

dist(z,R1) = dist(z,R1 ∩ Iβ) = dist(z, R̂1 ∩ Iβ) = dist(z, R̂1), (12)

and likewise

dist(z, S3) = dist(z, S3 ∩ Iβ) = dist(z, Ŝ3 ∩ Iβ) = dist(z, Ŝ3). (13)

So z ∈ S2 if and only if z ∈ Ŝ2. Since z was an arbitrary element of Jβ , we have

Jβ ∩ S2 = Jβ ∩ Ŝ2. Similarly for R2. ��
This completes the proof of Theorem 1.

4 Conclusions

We have shown that the 4-sector of two points is unique. Although we tried
our best to simplify our proof, we still find it frustrating (and intriguing) that
the uniqueness of such a seemingly basic object needed several pages to prove.
As mentioned in the introduction, the main idea was to argue that if there are
two k-sectors that differ at some point, there must be another point where they
differ “more”, in terms of some measure of the difference. But to implement this
idea, we had to resort to calculation that relied heavily on the special setting of
k = 4 and P , Q being points. It would be nice if this tedious calculation could be
replaced by a conceptually simpler argument that works in more general settings.
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