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Abstract. Given a set of points Q in the plane, define the r
2

-Disk Graph, Q(r),
as a generalized version of the Unit Disk Graph: the vertices of the graph is Q
and there is an edge between two points in Q iff the distance between them is
at most r. In this paper, motivated by applications in wireless sensor networks,
we study the following geometric problem of color-spanning sets: given n points
with m colors in the plane, choosing m points P with distinct colors such that
the r

2
-Disk Graph, P (r), is connected and r is minimized. When at most two

points are of the same color ci (or, equivalently, when a color ci spans at most
two points), we prove that the problem is NP-hard to approximate within a factor
3 − ε. And we present a tight factor-3 approximation for this problem. For the
more general case when each color spans at most k points, we present a factor-
(2k-1) approximation. Our solutions are based on the applications of the famous
Hall’s Marriage Theorem on bipartite graphs, which could be useful for other
problems.

1 Introduction

In a wireless sensor network (WSN), the typical objective is to use a set of sensors
(modelled as unit disks) to cover a region (or a set of objects) completely. However, in
many situations this is either impossible or too costly to achieve, like in a battlefield or
in a vast rural area. Hence, recently partial covers are proposed to cover a region (or a
set of objects) with a decent quality guarantee [18, 27]. (It is well-known that in WSNs
the communication range is greater than the sensing range and if the former is at least
twice the latter then a complete coverage implies a communication connectivity [26].)
Certainly, in partial covers the sensors are usually disconnected (within their sensing
range), so we need to increase the communication range (radius) to make the whole
WSN connected — which certainly takes energy.

In Figure 1, we show a partial cover with three connected components/clusters A, B
and C. To save energy, we just need to select three leaders a, b, c respectively so that by
increasing the communication range of these leaders they can communicate with each
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other and possibly relay some important sensing data from each cluster. In fact, in a
more general and slightly different setting, say, in a social network where the members
in each group can communicate in different ways, the clusters could even be interleaved
and might be inseparable geometrically.

This is often referred to as the color-spanning problem in computational geometry,
usually to handle imprecise data. In this model, each imprecise point is modelled as a
set T of discrete points which can all be painted by one distinct color ci (we also say
that the color ci spans T ). The causes of imprecise data can be various, for example, the
uncertain properties of a moving object [5], measurement error, sampling error, network
latency [20,21], location privacy protection [3,6,12], etc. Any or a combination of these
factors could be leading to imprecision of the data, hence such a new model makes sense
for many applications.

In the database area, a similar framework under a different name “uncertain data”
has also been used. An imprecise point is called an uncertain object and the different
positions with the same color are regarded as the different possible instances of an
uncertain object. Pei et al. have performed some research that pertains to geometric
problems in this framework [4, 19, 24].

In general, the color-spanning problem is to select exactly one point from each col-
ored point set such that certain properties (e.g. area, distance, perimeter, etc) of some
underlying geometric structures (e.g. convex hulls, minimum spanning trees, etc) based
on the selected points with different colors are minimized or maximized. We give a
brief review for some works in computational geometry below.

In the following review, we assume that there are n points with m colors for the sake
of notation consistency. Zhang et al. [25] proposed a brute force algorithm to address the
minimum diameter color-spanning set problem (MDCS). The running time is O(nm).
Fleischer and Xu [11] showed that the MDCS problem can be solved in polynomial time
for the L1 and L∞ metrics, while it is NP-hard for all other Lp metrics (even for p = 2).
They also gave an efficient algorithm to compute a constant factor approximation.

A

B

C
a

b

c

Fig. 1. Three connected components A,B and C for a partial cover. a, b and c can be selected to
use the minimum energy to make them connected via communication.

Abellanas et al. [1] showed that the Farthest Color Voronoi Diagram (FCVD) is of
complexity Θ(nm) if m ≤ n/2. Then they proposed algorithms to construct FCVD,
the smallest color-spanning circle based on FCVD, the smallest color-spanning rectan-
gle and the narrowest color-spanning strip of arbitrary orientation. In [2], Abellanas et
al. also proposed an O(min{n(n−m)2, nm(n−m)}) time algorithm for computing
the smallest perimeter axis-parallel rectangle enclosing at least one point of each color.
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In [9], Das et al. proposed an algorithm for identifying the smallest color-spanning cor-
ridor in O(n2 logn) time and O(n) space and an algorithm for identifying the smallest
color-spanning rectangle of arbitrary orientation with an O(n3 logm) running time and
O(n) space.

Ju et al. [16] recently studied several other color-spanning problems. They gave an
efficient randomized algorithm to compute a maximum diameter color-spanning set,
and they showed it is NP-hard to compute a largest closest pair color-spanning set and
a planar minimum color-spanning tree.

Given a set of points Q in the plane, define the r
2 -Disk Graph, Q(r), as a generalized

version of the Unit Disk Graph as follows: the vertex set of the graph is Q and there is
an edge between two points in Q iff the distance between them is at most r. For a Unit
Disk Graph, we have r = 2.

In this paper, we study the following color-spanning set problem: The input is a
set S of n points with m colors in the plane. We want to choose m points P from S
with m distinct colors such that the r

2 -Disk Graph on P , P (r), is connected and r is
minimized. We call this problem the minimum connected color-spanning set problem,
abbreviated as MCCS. When each color spans at most k points, the problem is denoted
as MCCS(k).

While this problem is new, it resembles some of the previous research on “Minimum
Spanning Tree with Neighborhoods”, etc. Interested readers are referred to [10, 23].

We summarize our results as follows.

1. MCCS(2) is NP-hard to approximate within a factor 3− ε, for some ε > 0.
2. For MCCS(2), we obtain a tight factor-3 approximation.
3. For MCCS(k), we obtain a factor-(2k-1) approximation.

We discuss the hardness and approximation algorithms for these problems in the
following two sections and then conclude the paper in the last section.

2 Hardness of the MCCS Problem

In this section we prove that MCCS is NP-hard even when each color spans at most two
points. We prove the NP-hardness of MCCS(2) by a reduction from Planar 3SAT [17],
see Figure 2. The Planar 3SAT problem is equivalent to the 3SAT problem restricted to
planar formulae.

Theorem 1. MCCS(2) is NP-hard.

Proof. We prove the hardness of MCCS(2) by a reduction from Planar 3SAT. Let φ be a
Boolean formula in conjunctive normal form with n variables x1, . . . , xn in m clauses
φ1, . . . , φm, each of size at most three. Given the planar embedding of φ, we take the
following steps to construct a set of points S for of MCCS(2).

For each Boolean variable xi in φ, let k+i and k−i be the number of times xi and xi

appears in φ respectively, and ki = max{k+i , k−i }. We use ki chains labeled with +
and ki chains labeled with −. (If k−i < ki = k+i , then we just make sure ki−k−i chains
labeled with − do not connect to any clause; and vice versa. For convenience, we call
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Fig. 2. An instance of planar 3SAT. The circles represent variables, the rectangles represent
clauses, the +,− on xi denote the clause connects to literal xi or xi respectively.

such a chain ‘dummy’ chain as it does not affect the truth assignment.) These (non-
dummy) chains are connected to some fixed points, each of a distinct color (which only
appears once and must be selected). These fixed points, denoted by the empty circles
in Figure 3, form a variable gadget. Note that the neighboring fixed points have a fixed
distance of d0. See Figure 3.
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Fig. 3. The variable gadget where each number represents a color

Let the chains labeled with + (−) around a variable xi be sorted in counterclockwise
order and let them be chain+

1 , chain
+
2 , ..., chain

+
ki

and chain−
1 , chain

−
2 , ..., chain

−
ki

respectively. Then, we use 2ki points with ki colors (each color spans two points). For
each of these ki colors, we put one point of the j-th color on chain+

i and the other
point of the j-th color on chain−

i . Each of these points is the first point of 2ki chains
respectively. This process is repeated until j = ki. In Figure 3, these points correspond
to the points labeled with 1, 2 and 3.

We use another 2ki points with ki colors where each color spans two points. For
these ki colors, we put one point of the j-th color on chain+

i and the other point of the
j-th color on chain−

i+1 (we take chain−
1 = chain−

ki+1). This process is repeated until
j = ki. Each of these points is the second point of 2ki chains respectively. The distance
between the first two adjacent points on any of these 2ki chains is set to be exactly d0.
In Figure 3, these points correspond to the points labeled with 4, 5 and 6.
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For the other points on the chains, the sequence is not important. For any color, we
just put one point on a chain with label + and the other on a chain with label −, as long
as there are not two points of the same color on a chain. Starting from the third point on
each chain, the adjacent points might have a distance less than or equal to d0. This will
allow us to construct chains of different lengths. Of course, right before a chain reaches
a clause, we need to perform something similar to the first two points on each chain.
This will be discussed when we cover the clause gadget next.

The idea is that if we need to choose one point for each color to construct the variable
xi, all these points chosen need to be connected (via a communication range of d0/2)
to the fixed point of xi. We either choose the point set on the chains with label +, or
the point set on the chains with label −. The points in different variables have totally
different colors. All the fixed points of variables are connected by adding some fixed
points, see the dashed line in Figure 3.

For each clause φp = (xi ∨ xj ∨ xk) in φ, we add one fixed (clause) point and
six points with three colors, two for each color. We try to connect the three chains
(corresponding to the three literals in φp) to the fixed point as follows. We put two
points with different colors at the end of each chain such that the three points next to
the fixed (clause) point have different colors (e.g., 1,2 and 3 in Figure 4) and they are
at distance d0 to the fixed clause point. Then we connect three chains (in this example,
chains with label + for xi and xj and with label − for xk) by using three points in
a permutation of these three colors such that the last two points on each chain are of
different colors and the distance between them is d0. See Figure 4. The unique design
of the clause gadget makes sure that the fixed point of φp can only connect to exactly
one variable of xi, xj , xk.

Recall that for two intermediate points on a chain, their distance could be less than
d0. For two points p, q from two different chains, we make d(p, q) > 2d0 to ensure that
there are no edges between points from different chains.

As the fixed (clause) point for φp has to connect one of the fixed (variable) point of
xi, xj , xk, it is only possible when xi is true, or xj is true, or xk is false. In fact, the
clause point φp can only connect to one variable of xi, xj , xk even if there are more
than one literals making φp true.

Let S be the set of points hence constructed. We finally prove that the planar 3SAT
instance φ is satisfiable if and only if there is a connected color-spanning d0

2 -Disk Graph
of S.

“→”: If the planar 3SAT instance φ is satisfied, then each clause could connect to
one variable. For each variable xi, we either choose all the points on the chains labeled
with +, or choose choose all the points on the chains labeled with −, which means we
choose one point for each color. Let M be the points selected. All the variable points
are connected through fixed points, then the d0

2 -Disk Graph on M is connected.
“←”: If there is a connected color-spanning d0

2 -Disk Graph on a subset of points of
S, first notice that in our design of variable and clause gadgets, all the points chosen
on the chains between variable xi and the clause containing xi or xi must connect to
the fixed point of variable xi. Otherwise, the d0

2 -Disk Graph on the chosen points is not
connected. According to the configuration of a variable gadget, we either choose the
points on chain+

1 , chain
+
2 , ..., chain

+
ki

or the points on chain−
1 , chain

−
2 , ..., chain

−
ki

.
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Fig. 4. Clause gadget for φp = (xi ∨ xj ∨ xk). Different numbers mean different colors.

For the 4ki points to construct the first two points for all the variables, we either choose
the points on the chains labeled + or the points on the chains labeled −. Then we either
choose all the immediate points connecting the chains labeled+ or the immediate points
connecting the chains labeled −. (Otherwise, either a clause cannot be connected to any
variable it contains, or the subset of points we choose does not span all the colors.) The
first case represents the value True for this variable, and the second case represents the
value False. As the fixed point of each clause connects to at least one variable, which
means at least one literal in that clause is true, the instance φ is hence satisfied.

Therefore, the planar 3SAT instance φ is satisfiable if and only if there is a connected
color-spanning d0

2 -Disk Graph of S. ��
With our construction, we have in fact proved that MCCS(2) is NP-hard to approx-

imate with a factor of 2 − ε. We can strengthen the result by proving that MCCS(2) is
NP-hard to approximate within a factor of 3 − ε. We briefly summarize the necessary
changes in the next theorem.

Theorem 2. MCCS(2) is NP-hard to approximate within a factor of 3 − ε, for some
ε > 0.

Proof. Omitted due to space limitation. ��
In the next section, we present approximation algorithms for MCCS(2) and MCCS(k).

3 Approximation Algorithms for MCCS(k)

As a warm-up, we first discuss a special 2SAT instance which will be the basis of our
approximation algorithm for MCCS(2). As we will see a bit later, it is a special case
of bipartite graphs which always admit a perfect matching following Hall’s Marriage
Theorem [14]. But the 2SAT formulation is straightforward and is easier for implemen-
tation purpose.

Lemma 1. Let 2SAT(1) be a special instance of 2SAT where a variable xi and its nega-
tion xi each appears at most once in the instance. Then 2SAT(1) always has a truth
assignment.
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Proof. Let φ be a 2SAT(1) instance and the clauses are φ1, φ2, · · · . Each clause is
composed of two literals, e.g., φj = (xj ∨ yj). (xj ∨ yj) is equivalent to xj → yj and
yj → xj . So we have a directed graph D(φ) on all the literals. If φ is not satisfiable,
then suppose there is a path xi → x2 → · · ·x� → xi in D(φ) which does not contain
nodes xk and xk between xi and xi (otherwise, we take a proof for xk). Then, the
clause corresponding to the path is (xi ∨ x2) ∧ · · · ∧ (x� ∨ xi). Hence, either the literal
xi appears twice in φ (a contradiction) or x� = x2. If x� = x2, then there is a path from
x2 to x2 between xi and xi, again a contradiction to the assumption. ��

3.1 Approximation Algorithm for MCCS(2)

Given an r
2 -Disk Graph G with n points and m colors, each node of G is painted with

one color, we want to choose a set T of m nodes (one node for each color) from G.
We define a graph H =< T,E′ >, where there is an edge (u, v) ∈ E′ for two nodes
u, v ∈ T if there is a path between u and v of length at most k in G. If H is connected
for some value k, we say that H is a (k − 1)-hop color-spanning subgraph of G. In
Figure 5, if we select H as node 1 and the remaining doubly labeled nodes from 2 to 6,
then H is a 1-hop color-spanning subgraph of G. We now prove the following lemma
regarding MCCS(2).

Lemma 2. Given an r
2 -Disk Graph G with m colors and each color spans at most two

points, if there exists a connected component of G which contains all the m colors, then
there is a 2-hop color-spanning subgraph H of G.

Proof. If this connected component only contains exactly one point z of certain color,
then we say z is a fixed point. Obviously, a fixed point must be selected to form any
color-spanning subgraph. We also do some preprocessing by removing any edge be-
tween two nodes of the same color — as such an edge cannot be in any optimal solution.
As there exists a connected component of G whose nodes contain all the m colors, we
perform a depth-first search on this connected component from a fixed node (point) of
G and if there is no fixed point then start with any node. In the searching process, we
build a disjoint set of groups, each containing an edge of G, as follows. Let a be the
current node which has not been completely explored (see [8]) and let b a neighbor of a
in G. If both a and b are not fixed points, and neither a nor b is already in some group,
then we build a new group {a, b}.

Suppose that there are a total of m1 groups and each group has two points of different
colors, hence there are m2 colors in the m1 groups with m2 ≥ m1. See Figure 5. In the
m1 groups, if a color paints only one point, then we simply choose that point for H . If
a color spans two points in the m1 groups, we need to choose one for H . We use xi and
xi to denote the two points of color ci respectively, and each group Gt (1 ≤ t ≤ m1)
containing two points of color ci and cj can be expressed as a clause like (xi ∨ xj)).
xi (resp. xj) is assigned true when the point of color ci (resp. cj) in the group Gt is
chosen. Then, the m1 groups can be expressed as an instance I of 2SAT(1).

By Lemma 1, the above 2SAT(1) instance always has a truth assignment. The truth
assignment gives us the selection of the corresponding points for H . If a color spans
two points in the connected component but these points never appear in the m1 groups,
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then just choose any one of the points for H . Recall that if a color contains only one
point in the connected component, we choose that fixed point at the first place for H .
Hence we choose m points H from G to have m distinct colors.

Within this connected component of G which contains m distinct colors, from the
above construction, it can be seen that between two groups there can be either an edge
connecting two nodes from the two groups, or the two groups are connected by a se-
quence of fixed points. Let these two groups be Gi = {ai, bi} and Gj = {aj , bj}
respectively. In the worst case, we select one point each from them (say, ai and bj) for
H , leaving the other two as hops to maintain connectivity in G; i.e., ai → bi→ aj → bj .
Hence, there are at most three edges (or two hops) in G connecting points in H whose
corresponding groups are adjacent.

For any non-fixed point p selected for H which does not belong to any group, p is
either adjacent to some fixed point or is adjacent to a point in some groupGt. Otherwise
p and one of its neighbors would be forming a new group. Hence, there are at most two
edges (or one hop) between p and its nearest point in H .

In summary, if there exists a connected component of G which contains all the m
colors, then there is a 2-hop color-spanning subgraph H of G. ��

1

2

3

5

4

2

6

3

4

65

Fig. 5. A connected component of graph G which is divide into groups by DFS and each group
has just two points.

The above lemma implies that for nodes in H , if we increase their communication
range to 3r

2 , then H will be connected even if all other nodes in G−H are deleted.

Theorem 3. There is a factor-3 approximation for MCCS(2).

Proof. It is easy to see that the optimal solution value r∗ must be the distance between
a pair of points of S which are of different colors. We sort the distances between all
pairs of n points of S, and let d1, d2, d3, ..., dq be the sorted sequence. We try each of
di as r, for i = 1, 2, ..., q, and build the corresponding r

2 -Disk Graph G(r). Suppose
that G(r) contains a connected component which contains of all the m colors the first
time when the value of r is increased to dj , then the optimal solution value r∗ satisfies
r∗ ≥ dj . The reason is that if it is not the case, the number of colors of any connected
component of G(r), r < dj , is less than m; hence, there are at least two colors whose
corresponding points belong to two different components (which is at least dj distance
away). Therefore, when r < dj , it is impossible to find a color-spanning subgraph of
G(r) which is connected.
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Following Lemma 2, we can compute a 2-hop color-spanning subgraph H(dj) of
G(dj). In other words, distance between two adjacent points in H(dj) is at most 3dj ,
as dj is the maximum length of any edge in a connect component of G(dj) which
contains m colors. This means that we obtain an approximation whose solution value
APP satisfies

APP ≤ 3dj ≤ 3r∗.

We finally analyze the time complexity of the algorithm. Computing and sorting
O(n2) distances takes O(n2 logn) time. Each time the value of r is increased from r′,
we either add an edge into a connected component of G(r′) (which takes O(1) time) or
merge two connected components of G(r′) into one (which takes O(α(n)) on average
— if we use the standard union-find data structure as some auxiliary structure to test
whether two elements lie in the same connected component [8,22].) As there are O(n2)
edges and O(n) merges, the total cost is O(n2). A connected component contains m
colors only when there are at least m points in it, that means the graph G(dj) has at
most two connected components satisfying this condition. Hence the time to decide if
a connected component contains m = Θ(n) colors takes O(n) time. When we have
a connected component satisfying the condition, the depth-first search, and solving the
resulting 2SAT(1) instance takes O(n) time.

Hence the total time complexity is O(n2 logn), and the space complexity is O(n2).
��

3.2 Approximation Algorithm for MCCS(k)

For the more general case when each color spans at most k points, we use a similar
method as in the previous section until the first time we obtain a dj

2 -Disk Graph G(dj)
such that it contains a connected component which contains all the m colors. On any
such connected component, we can use the depth-first search (or other method, say a
spanning tree) to divide the component into (connected) groups, each containing exactly
k points. Then, we choose at least one point from each group (which is proven to be
always possible in the next lemma), to form the color-spanning subgraph H . Since
in the worst case two points selected are from two neighboring groups, which could
be 2(k-1) hops away (or, 2k-1 edges away), we can give each point selected for H a
communication radius of (2k-1)dj to make H connected. Hence, we obtain a factor-
(2k-1) approximation for MCCS(k).

Lemma 3. In a connected component of G(dj) which contain all the m colors, if there
are g groups of points containing the m colors (g ≤ m), each group has exactly k
points, and each color spans at most k points, then we can always choose one point for
each color such that each group has at least one point chosen.

Proof. We construct a bipartite graph (U, V,E): U denotes the g groups {G1, G2, ....,
Gg}, V denotes the m colors {c1, c2, ..., cm}, and there is an edge between Gi and cj iff
the groupGi contains at least one point of color cj . Following Hall’s Marriage Theorem
[14], which, in this setting, states that there is a perfect matching for the bipartite graphs
(U, V,E) iff the degree of nodes in U ’s are at least m, there is a perfect matching where
all nodes in U (or groups) will be in a matching. Then, the lemma follows immediately.

��
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We comment that the 2SAT(1) instance we covered previously is a special case of
the bipartite graph we have just discussed. Combined with the previous discussions,
it is easily seen that this is gives us a polynomial time approximation. In addition,
as the maximum matching algorithm takes O(n5/2) time [15] but can be improved
to O(n2 log k) = O(n2) time for regular bipartite graphs [7], so the overall running
time of this algorithm remains to be O(n2 logn). (We comment that with a randomized
solution the perfect matching can be computed in O(n logn) time [13], but it will not
change the overall running time of our algorithm.)

Theorem 4. There is a factor-(2k-1) approximation for MCCS(k).

4 Concluding Remarks

We give tight approximation bounds for the Minimum Connected Color-Spanning Set
problem, which arises in wireless sensor networks. When k is big, the 2k-1 factor for
MCCS(k) might not be efficient enough. So an interesting question is whether a con-
stant factor approximation can be obtained for MCCS.
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