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Abstract. Say that an edge of a graph G dominates itself and every
other edge sharing a vertex of it. An edge dominating set of a graph
G = (V,E) is a subset of edges E′ ⊆ E which dominates all edges of
G. In particular, if every edge of G is dominated by exactly one edge
of E′ then E′ is a dominating induced matching. It is known that not
every graph admits a dominating induced matching, while the problem
to decide if it does admit it is NP-complete. In this paper we consider the
problems of finding a minimum weighted dominating induced matching,
if any, and counting the number of dominating induced matchings of a
graph with weighted edges. We describe an exact algorithm for general
graphs that runs in O∗(1.1939n) time and polynomial (linear) space, for
solving these problems. This improves over the existing exact algorithms
for the problems in consideration.

Keywords: exact algorithms, dominating induced matchings, branch &
reduce.

1 Introduction

Under the widely accepted assumption that P �= NP there are several problems
with important applications for which no polynomial algorithm exists. The need
to get an exact solution for many of those problems has lead to a growing in-
terest in the area of design and analysis of exact exponential time algorithms
for NP-Hard problems [14,25]. Even a slight improvement of the base of the
exponential running time may increase the size of the instances being tractable.
There has been many new and promising advances in recent years towards this
direction [1,2].
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In this paper we give an exact algorithm for the weighted and counting ver-
sions of the problem Dominating Induced Matching (also known as DIM or Effi-
cient Edge Domination) which has been extensively studied [3,4,5,7,8,17,9,20,21].
Further notes about this problem and some applications related to encoding the-
ory, network routing and resource allocation can be found in [15,19].

The unweighted version of the DIM problem is known to be NP-complete [15],
even for planar bipartite graphs of maximum degree 3 [3] or regular graphs [9].
There are polynomial time algorithms for some classes, such as chordal graphs
[20], generalized series-parallel graphs [20] (both for the weighted problem),
claw-free graphs [7], graphs with bounded clique-width [7], hole-free graphs [3],
convex graphs [17], dually-chordal graphs [4], P7-free graphs [5], bipartite per-
mutation graphs [21], AT-free graphs [4], interval-filament graphs [4], weakly
chordal graphs [4]. See also [6].

If P �= NP it is not possible to solve this problem in polynomial time, hence
it becomes important to improve the exponential algorithm in order to identify
instances that can be solved within reasonable time.

A straightforward brute-force algorithm using an alternative definition of the
problem explained later to solve the weighted DIM requires O∗(2n) time and
polynomial space.

The paper [18] describes an algorithm for solving the weighted DIM problem
in O∗(1.7818n), time while requiring O(n + m) time, if the graph contains a
vertex dominating set of fixed size. In the same work another approach based
on enumerating maximal independent sets allows to solve both DIM problems
(minimum weighted problem and counting problem) in O∗(1.4423n) time. There
is also an O∗(1.5849n) algorithm from [16].

The minimum weighted DIM problem can be expressed as an instance of the
maximum weighted independent set (MWIS) problem on the square of the line
graph L(G) of G, and also as an instance of the minimum weighted dominating
set problem on L(G), by slightly adjusting the models [4,22] for the unweighted
DIM problem. The MWIS problem can be solved in O∗(1.2377n) time [24] (how
one obtains an algorithm for MWIS from an algorithm for weighted 2-Sat is
described in [10]). On the other hand, the minimum weighted dominating set
problem can be solved in time O∗(1.5535n) [12], and the special case where the
weights are polynomially bounded in time O∗(1.5048n) [23]. Hence the minimum
weighted DIM problem for a graphG can be solved by using the L2(G) algorithm
in O∗(1.2377m) time using the MWIS algorithm and in O∗(1.5048m) time using
the minimum weighted dominating set algorithm.

For the counting problem, there exist algorithms such as [11] which can be used
to count the number ofMWIS’s inO∗(1.3247n) time, leading anO∗(1.3247m) time
algorithm to count the numbers of DIM’s.

In this paper, we propose an algorithm for solving the problems of finding the
minimum weighted DIM and that of counting the DIM’s in O(m · 1.1939n) ∈
O∗(1.1939n) time and O(m) space in general graphs, which improves over the
existing algorithms. We employ techniques described in [14] for the analysis of
our algorithm, and as such we use their terminology. The proposed algorithm
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was designed using the branch & reduce paradigm. More information about this
design technique as well as the running time analysis for this kind of algorithms
can be found in [14].

2 Preliminaries

By G(V,E) we denote a simple undirected graph with vertex set V and edge set
E, n = |V | and m = |E|. We consider G as a weighted graph, that is, one in
which there is a non-negative real value, denoted weight(vw) assigned to each
edge vw of G. If v ∈ V and V ′ ⊆ V , then denote by N(v), the set of vertices
adjacent (neighbors) to v, denote d(v) = |N(v)| the degree of the vertex, denote
by G[V ′] the subgraph of G induced by V ′, and write NV ′(v) = N(v)∩V ′. Some
special graphs or vertices are of interest for our purposes. A graph formed by
two triangles having a common edge is called a diamond. By removing an edge
incident to a vertex of degree 2 of a diamond, we obtain a paw. Finally, a vertex
of degree 1 is called pendant.

Given an edge e ∈ E, say that e dominates itself and every edge sharing a
vertex with e. Subset E′ ⊆ E is an induced matching of G if each edge of G is
dominated by at most one edge in E′. A dominating induced matching (DIM) of
G is a subset of edges which is both dominating and an induced matching. Not
every graph admits a DIM, and the problem of determining whether a graph
admits it is also known in the literature as efficient edge domination problem.
The weighted version of DIM problem is to find a DIM such that the sum of the
weights of its edges is minimum among all DIM’s, if any. The counting version of
the problem consists on counting the number of DIM’s of the graph. We assume
the weights to be non-negative. However, the methods can be easily extended to
the case of negative weights, without increasing the complexity of the algorithms.

It is not hard to see that every DIM is a maximum induced matching, and
hence the number of edges of every DIM in G is the same. Therefore it is straight-
forward to modify the graph in order to solve the problem with non-negative
weights and then transform it back to the original graph.

We assume the graph G to be connected, otherwise, the DIM of G is the
union of the DIM’s of its connected components, and so we can restrict to the
connected case.

We will use an alternative definition [8] of the problem of finding a dominating
induced matching. It asks to determine if the vertex set of a graph G admits a
partition into two subsets. The vertices of the first subset are called white and
induce an independent set of the graph, while those of the second subset are
named black and induce an 1-regular graph.

A straightforward brute-force algorithm for finding the DIM of a graph G
consists in finding all bipartitions of V (G), color one of the parts as white, the
other as black, and checking if the result is a valid DIM. The complexity of this
algorithm is O(2n ·m) ∈ O∗(2n).
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3 Extensions of Colorings

Assigning one of the two possible colors, white or black, to vertices of G is called
a coloring of G. A coloring is partial if only part of the vertices of G have been
assigned colors, otherwise it is total. A black vertex is single if it has no black
neighbor, and is paired if it has exactly one black neighbor. Each coloring, partial
or total, can be valid or invalid.

Next, we describe the natural conditions for determining if a coloring is valid
or invalid.

Definition 1. RULES FOR VALIDATING COLORINGS:

A partial coloring is valid whenever:

(V1). No two white vertices are adjacent, and
(V2). Each black vertex is either single or paired. Each single vertex has some

uncolored neighbor.

A total coloring is valid whenever:

(V3). No two white vertices are adjacent, and
(V4). Each black vertex is paired.

Lemma 1. There is a one-to-one correspondence between total valid colorings
and dominating induced matchings of a graph.

Proof: It follows from the definitions. �

For a coloring C of the vertices of G, denote by C−1(white) and C−1(black),
the subsets of vertices colored white and black. A coloring C′ is an extension of
a C if C−1(black) ⊆ C′−1(black) and C−1(white) ⊆ C′−1(white). For V ′, V ′′ ⊂
V (G) if C′ is obtained from C by adding to it the vertices of V ′ with the color
black and those of V ′′ with the color white then write C = C′ ∪BLACK(V ′)∪
WHITE(V ′′).

Given a partial coloring C, the basic idea of the algorithm is to iteratively
find extensions C′ of C, until eventually a total valid coloring is reached. It
follows from the validation rules that if C is invalid, so is C′. Therefore, the al-
gorithm keeps checking for validation, and would discard an extension whenever
it becomes invalid.

Basically, there are two different ways of possibly extending a coloring, using
propagation rules and branching rules. At the beginning, there are partial col-
orings C which force the colors of some of the so far uncolored vertices, leading
to an extension C′ of C. In this case, say that C′ has been obtained from C by
propagation. The following is a convenient set of rules, whose application may
extend C, in the above described way.
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Lemma 2. RULES FOR PROPAGATING COLORS:
The following are forced colorings for the extensions of a partial coloring of G.

(P1). The degree-3 vertices of a diamond must be black and the remaining ones
must be white

(P2). The neighbor of a pendant vertex must be black
(P3). Each neighbor of a white vertex must be black
(P4). Except for its pair, the neighbors of a paired (black) vertex must be white
(P5). Each vertex with two black neighbors must be white
(P6). If a single black vertex has exactly one uncolored neighbor then this neigh-

bor must be black
(P7). In an induced paw, the two odd-degree vertices must have different colors
(P8). In an induced C4, adjacent vertices must have different colors
(P9) If ∀v ∈ NU (s), N [v] ⊆ N [s] where s is a single (black vertex) then an

uncolored neighbor v of s minimizing weight(sv) must be black. Break ties
arbitrarily. We require rules (P1). and (P8). to be applied before (P9).

Lemma 3. [3] If G contains a K4 then G has no DIM.

Say that a coloring C is empty if all vertices are uncolored. Let C be a valid
coloring and C′ an extension of it, obtained by the application of the propagation
rules. If C = C′ then C is called stable. On the other hand, if C �= C′ then C′ is
not necessarily valid. Therefore, after applying iteratively the propagation rules,
we reach an extension which is either invalid or stable. In order to possibly extend
a stable coloring C, we apply branching rules. Any coloring directly obtained
by these rules is not forced. Instead, in each of the these rules, there are two
possibly conflicting alternatives leading to distinct extensions C′

1, C
′
2 of C. Each

of C′
1 or C

′
2 may be independently valid or invalid. The next lemma describes the

branching rules. We remark that there exist simpler branching rules. However,
using the rules below we obtain a sufficient number of vertices that get forced
colorings, through the propagation which follow the application of any branching
rule, so as to guarantee a decrease of the overall complexity of the algorithm.
The complexity obtained relies heavily on this fact.
In general, we adopt the following notation. If C is a stable coloring then S
denotes the set of single vertices of it , U is the set of uncolored vertices and
T = U \ ∪s∈SNU (s).

Lemma 4. BRANCHING RULES
Let C be a partial (valid) stable coloring of a graph G. At least one of the following
alternatives can be applied to define extensions C′

1, C
′
2 of C.

(B1) If C is an empty coloring: choose an arbitrary vertex v then
C′

1 := C ∪BLACK({v}) and C′
2 := C ∪WHITE({v})

(B2) If ∃ edge vw s.t. v ∈ NU (s) and w ∈ NU (s
′), for some s, s′ ∈ S, s �= s′

then C′
1 := C ∪BLACK({v}) and C′

2 := C ∪WHITE({v})
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(B3) For some s ∈ S, if ∃v ∈ NU (s) s.t. ∃w ∈ NT (v):

B3(a) If |NU (s)| �= 3∨d(w) �= 3∨|NT (v)| ≥ 2 then C′
1 := C∪BLACK({v})

and C′
2 := C ∪WHITE({v}).

B3(b) If |NU (s)| = 3 ∧ d(w) = 3 ∧NT (v) = {w}, let NU (s) = {v, v′, v′′}.

B3(b).i If NU (v
′) = NU (v

′′) = ∅ then C′
1 := C ∪ BLACK({v}) and

C′
2 := C ∪WHITE({v})

B3(b).ii If NU (v
′) �= ∅, let w′ ∈ NT (v

′), with w′ �= w. If
|N(w) ∪ N(w′)| > 5 or ww′ /∈ E(G) then C′

1 := C ∪ BLACK({v})
and C′

2 := C ∪WHITE({v})

B3(b).iii If NU (v
′) �= ∅, let w′ ∈ NT (v

′), with w′ �= w. If ww′ ∈ E(G)
and z ∈ N(w) ∩ N(w′) then C′

1 := C ∪ BLACK({v′′}), while
if weight(sv) + weight(w′z) ≤ weight(sv′) + weight(wz) then
C′

2 := C ∪BLACK({v}), otherwise C′
2 := C ∪BLACK({v′})

Each rule is applied after the previous rule, that is, if the condition of the
previous case is not verified in the entire graph. Note that this applies to subitems
of case (B3).

4 The Algorithm

The lemmas described in the last section lead to an exact algorithm for finding
a minimum weight DIM of a graph G, if any.

In the initial step of the algorithm, we find the set K4 containing the K4’s
of G. If K4 �= ∅, by Lemma 3, G does not have DIM’s, and terminate the
algorithm. Otherwise, define the set COLORINGS to contain through the pro-
cess the candidates colorings to be examined and eventually extended. Next,
include in COLORINGS an empty coloring. In the general step, we choose any
coloring C from COLORINGS and remove it from this set. Then iteratively
propagate the coloring by Lemma 2 into an extension C′ of it, and validate the
extension by Definition 1 The iterations are repeated until one of the following
situations is reached: C′ is invalid, C′ is a total valid coloring, or a partial stable
(valid) coloring. In the first alternative, C′ is discarded and a new coloring from
COLORINGS is chosen. If C′ is a a total valid coloring, find its weight and if
smaller than the least weight so far obtained, it becomes the current candidate
for the minimum weight of a DIM of G. Finally, when C′ is stable we extended
it by branching rules: choose the first rule of Lemma 4 satisfying C′, compute
the extensions C′ and C′′, insert them in COLORINGS, select a new coloring
from COLORINGS and repeat the process.

The formulation below describes the details. The propagation and vali-
dation of a coloring C are performed by the procedure PROPAGATE −
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V ALIDATE(C,RESULT ). At the end, the returned coloring corresponds to
the extension C′ of C, after iteratively applying propagation. The variable
RESULT indicates the outcome of the validation analysis. If C′ is invalid then
RESULT is ‘invalid’; if C′ is a valid total coloring then it contains ‘total’,
and otherwise RESULT equals ‘partial’. Finally, BIFURCATE(C,C′

1, C
′
2)

computes the extensions C′
1 and C′

2 of C.

Algorithm Minimum Weighted DIM / Counting DIM

1. Find the subset K4
if K4 �= ∅ then terminate the algorithm: G has no DIM

SOLUTION := NODIM
2. COLORINGS := {C}, where C is an empty coloring
3. while COLORINGS �= ∅ do

a. choose C ∈ COLORINGS and remove it from COLORINGS
b. PROPAGATE − V ALIDATE(C,RESULT )
c. if RESULT = ‘total’ and weight(C) < SOLUTION then

SOLUTION := weight(C)
else if RESULT = ‘partial’ then

Set C′
1 and C′

2 according to branching RULES on C
COLORINGS := COLORINGS ∪ {C′

1, C
′
2}

end if

4. Output SOLUTION

procedure PROPAGATE − V ALIDATE(C,RESULT )

Comment Phase 1: Propagation
1. C′ := C
2. repeat

C := C′

C′ := extension of C obtained by the PROPAGATION RULES until
C = C′

Comment Phase 2: Validation
3. Using the VALIDATION RULES 1 do as follows:

if C is an invalid coloring then return (C, ‘invalid’)
else if C is a partial coloring then return (C,‘partial’)
else return (C, ‘total’)

5 Correctness and Complexity

It is easy to see that our algorithm fits the branch & reduce paradigm [14]. The
propagation rules can be mapped into reduction rules.

Theorem 1. The algorithm described in the previous section correctly computes
the minimum weight of a dominating induced matching of a graph G.

Proof: The correctness of the algorithm follows from the fact that the al-
gorithm considers all colorings that represent a DIM that can have minimum
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weight. Lemmas 2 and 4 are applied to extend partial colorings. Invalid colorings
are discarded, while valid colorings are further extended, except if some other
valid coloring representing a better DIM (with less weight) appeared before.

For proving the worst-case running time upperbound for the algorithm we
will use the following useful definition and theorem.

Definition 2. [14] Let b a branching rule and n the size of the instance. Suppose
rule b branches the current instance into r ≥ 2 instances of sizes respectively at
most n−t1, n−t2, . . . , n−tr, for all instances of size n ≥ max{ti : i = 1, 2, . . . , r}.
Then we call b = (t1, t2, . . . , tr) the branching vector of branching rule b.

The branching vector b = (t1, t2, . . . , tr) implies the linear recurrence T (n) ≤
T (n− t1) + T (n− t2) + . . . , T (n− tr).

Theorem 2. [14] Let b be a branching rule corresponding to the branching vec-
tor (t1, t2, . . . , tr). Then the running time of the branching algorithm using only
branching rule b is O∗(αn), where α is the unique positive real root of

xn − xn−t1 − xn−t2 − . . .− xn−tr = 0

The unique positive real root α is the branching factor of the branching vector
b. We denote the branching factor of (t1, t2, . . . , tr) by τ(t1, t2, . . . , tr).

Therefore for analyzing the running time of a branching algorithm we can
compute the factor αi for every branch rule bi, and an upper bound of the
running time of the branching algorithm is obtained by taking α = maxiαi and
the result is an upper bound for the running time of O∗(αn).

The upper bound is obtained by counting the leaves of the search tree given by
the algorithm, using the fact that each leaf can be executed in polynomial time.
The complexity of the algorithm without hiding the polynomial factor depends
on the time for the execution of each branch in the search tree.

Further notes on this topic can be found in [14]

Theorem 3. The algorithm above described requires O∗(1.1939n) time and
O(n+m) space for completion.

6 Counting the Number of DIM’s

The previous algorithm can be easily adapted to count the number of DIM’s.
Given a coloring C we define TV C(C) the number of total valid colorings that
can be extended from C. If we apply any propagation rule to coloring C we
obtain a coloring C ′. Clearly TV C(C) = TV C(C′), except for rule (P9). In the
latter case TV C(C) = TV C(C′) · |NU (s)| where s is the single vertex chosen to
apply the rule.

If we apply any branching rule to coloring C we obtain two extended colorings
C′

1 and C′
2. Clearly TV C(C) = TV C(C′

1) + TV C(C′
2), except for rule B3(b).iii.

In the latter case TV C(C) = TV C(C′
1) + 2 · TV C(C′

2).
Using the above facts it is trivial to modify the algorithm to solve the counting

problem.
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