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Abstract. We address the problem of computing a Walrasian equilib-
rium price in an ascending auction with gross substitutes valuations. In
particular, an auction market is considered where there are multiple dif-
ferentiated items and each item may have multiple units. Although the
ascending auction is known to find an equilibrium price vector in finite
time, little is known about its time complexity. The main aim of this pa-
per is to analyze the time complexity of the ascending auction globally
and locally, by utilizing the theory of discrete convex analysis. An exact
bound on the number of iterations is given in terms of the ¢, distance
between the initial price vector and an equilibrium, and an efficient algo-
rithm to update a price vector is designed based on a min-max theorem
for submodular function minimization.

1 Introduction

We study an ascending auction, where given a set of discrete (or indivisible)
items, the auctioneer aims to find an efficient allocation of items to bidders as
well as market clearing prices of the items (see [5,6] for surveys). In recent years,
there has been a growing use of iterative auctions for items such as spectrum
licenses in telecommunication, electrical power, landing slots at airports, etc. In
this paper, we consider the setting where there are multiple indivisible items for
sale and each item may have multiple units; this is more general than the single-
unit setting used extensively in the literature. A fundamental concept in auctions
is the Walrasian equilibrium (or competitive equilibrium), which is a pair of a
price vector and an allocation of items satisfying a certain property (see below
for the precise definition). The main aim of this paper is to analyze the problem
of computing a Walrasian equilibrium with respect to the time complexity, by
utilizing the theory of discrete convex analysis.

Multi-item Auction and Walrasian Equilibrium. The auction market
model is formulated as follows. In the market, there are n types of items or goods,
denoted by N = {1,2,...,n}, and m bidders, denoted by M = {1,2,...,m}.
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We have u(i) € Z, units available for each item ¢ € N. The case with u(i) =1
(i € N) is referred to as the single-unit auction in this paper. We denote the
integer interval as [0,u]z = {x € Z™ | 0 < x < u}; note that [0,1]z = {0,1}™
Each vector z € [0,u]z is often called a bundle; a bundle x corresponds to a
(multi)-set of items, where x(7) represents the multiplicity of item ¢ € N. Each
bidder j € M has his valuation function f; : [0, u]z — R; the value f;(z) repre-
sents the degree of satisfaction for a bundle z. An allocation of items is defined
as a set of bundles x1, za, ...,z € [0,u]z satisfying Z;’L:l Tj=u.

In an auction, we want to find an efficient allocation and market clearing
prices. Given a price vector p € R™, each bidder 5 € M wants to have a bundle
x which maximizes the value fj(z) —p'z. For j € M and p € R", define

V;(p) = max{f;(z) —p x|z €[0,ulz}, (1)
Dj(p) = argmax{f;(z) —p x|z € [0,u]z}. 2)

We call the function V; : R — R and the set D;(p) C [0, u]z an indirect utility
function and a demand set, respectively. On the other hand, the auctioneer wants
to find a price vector under which all items are sold. Hence, all of the auctioneer
and bidders are happy if we can find a pair of a price vector p* and an allocation
x7,25,. ..,z satisfying the condition that z} € D,(p*) for j € M. Such a
pair is called a Walrasian equilibrium; p* is a Walrasian equilibrium price vector
(see, e.g., [5,6]). In this paper, we consider the problem of finding a Walrasian
equilibrium in a multi-unit auction.

Although the Walrasian equilibrium possesses a variety of desirable properties,
it does not always exist. It is known that a Walrasian equilibrium does exist in
single-unit auctions under a natural assumption on bidder’s valuation functions,
called gross substitutes condition.

Gross Substitutes Condition and Discrete Concavity. We say that func-
tion f; satisfies gross substitutes (GS) condition if it satisfies the following:

(GS) ¥p,q € R} with p < ¢, Yz € D;(p), Iy € D;(q)
such that x(i) < y(i) (Vi € N with p(i) = ¢(7)).

This condition means that a bidder still wants to get items that do not change
in price after the prices of other items increase. The concept of GS condition is
introduced in Kelso and Crawford [12] for a fairly general two-sided job matching
model. Since then, this condition has been widely used in various models such as
matching, housing, and labor markets (see, e.g., [2,4,5,6,8,9,14]). In particular,
Gul and Stacchetti [9] show the existence of a Walrasian equilibrium in a single-
unit auction if bidders’ valuation functions satisfy the GS condition; they also
show that the GS condition is an “almost” necessary condition for the existence
of an equilibrium in a single-unit auction.

Various characterizations of GS condition are given in the literature of discrete
convex analysis and auction theory [2,8,9]. Among others, Fujishige and Yang
[8] revealed the relationship between GS condition and discrete concavity called
M?-concavity. A valuation function f; : [0,u]z — R is said to be M?-concave
(read “M-natural-concave”) if it satisfies the following:
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(MA-EXC) Vz,y € [0,u]z, Vi € supp™ (z —y), 3k € supp™ (z —y) U{0}:
fi(@) + fi(y) < file —xi + xx) + fi(y + xi — xx)-

Here, we denote supp™(z) = {i € N | (i) > 0}, supp™ (z) = {i € N | z(¢) < 0}
for a vector x € R™, x; € {0,1}" is the characteristic vector of i € N, and
Xo =0=(0,0,...,0).

The concept of M¥-concave function is introduced by Murota and Shioura [18]
as a class of discrete concave functions (independently of GS condition). It is
an extension of the concept of M-concave function introduced by Murota [16].
The concepts of M¥-concavity/M-concavity play primary roles in the theory of
discrete convex analysis [17].

It is shown by Fujishige and Yang [8] that GS condition and M?-concavity are
equivalent in the case of single-unit auctions.

Theorem 1.1. A wvaluation function f : {0,1}" — R defined on 0-1 vectors
satisfies the GS condition if and only if it is an M?-concave function.

This result initiated a strong interaction between discrete convex analysis and
auction theory; the results obtained in discrete convex analysis are used in auc-
tion theory ([4,14], etc.), while auction theory provides discrete convex analysis
with interesting applications (see, e.g., [19]).

The GS condition, however, is not sufficient for the existence of an equilibrium
in a multi-unit setting. In the last decade, several researchers independently
tried to derive conditions for valuation functions to guarantee the existence of
an equilibrium in a multi-unit setting (see, e.g., [15,19]). Murota and Tamura
[19] derive a stronger version of GS condition by using the relationship with M?-
concavity, and prove the existence of an equilibrium in a more general setting
(see also [17, Ch. 11]). In this paper, we use the following alternative condition
given in [15], which is obtained by adding to (GS) an extra inequality:

(SGS) Vp,q € R} with p < ¢, Y € Dj(p), 3y € D;(q) such that
x(i) < y(i) (Vi € N with p(i) = q(i)) and 3,y (i) = > ey y(0)-

The extra inequality > ;. #(7) > > .y (i) means that if prices are increased,
then a bidder wants less items than before. This condition turns out to be es-
sentially equivalent to Mf-concavity (see Theorem 1.4 below), and also to the
condition in [19]. Note that for valuation functions on {0, 1}", the SGS condition
is equivalent to the GS condition (see [15]).

Throughout this paper we assume the following conditions for all bidders’
valuation functions f; (j =1,...,m):

(AO0) f; is monotone nondecreasing,
(A1) f; satisfies the SGS condition,
(A2) f; is concave-extensible,

(A3) f; takes integer values.

The concave-extensibility (A2) is a natural condition for valuation functions
[15,19]; a valuation function f : [0,u]z — Z is said to be concave-extensible
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if there exists a concave function f defined on {z € R® | 0 < x < u} such
that f(z) = f(x) for every z € [0,u]z. The assumption (A3) can be removed
if we want to compute an e-approximate equilibrium price vector instead of an
“exact” one; for € > 0, an e-approzimate equilibrium price vector p is defined as
a vector such that ||[p—p*||c < € for some equilibrium price vector p*. For such a
problem, all results in this paper can be easily adapted with slight modifications.

Iterative Auctions and Ascending Auctions. The main theme of this paper
is the computation of a Walrasian equilibrium in an ascending auction. We focus
on an equilibrium price vector p* since an allocation in the equilibrium can be
computed efficiently once we obtain p*. In the computation, we assume that
bidders’ valuation functions f; are given implicitly by so-called demand oracles,
i.e., we can get the information about demand set D;(p) for a price vector p,
but no information is available about the function values of f;. This assumption
is very plausible, since bidders want to preserve their privacy about valuation
functions and disclose only the information that is really needed.

In the auction literature an algorithm called the iterative auction (or dynamic
auction, Walrasian auction, Walrasian tatonnement process, etc.) is often used
to find an equilibrium [5,6]. An iterative auction computes an equilibrium price
vector by iteratively updating a current price vector p by using the information
on demand sets D;(p). The most natural and popular iterative auction is the
ascending auction, in which the current price vector is increased monotonically.
The ascending auction is a natural generalization of the classical English auction
for a single item, and known to have various nice properties (see, e.g., [5,6]); in
particular, it is quite natural from the economic point of view, and easy to
understand and implement.

In this paper, we consider the ascending auction® presented in Ausubel [1].
This algorithm can be seen as a simplified version of the one in Gul and Stacchetti
[10], where the Lyapunov function defined by

Lp) =27 Vilp) +u'p  (peR™) (3)

is used. It is known (see [1,21]) that p* is an equilibrium price vector if and only
if it is a minimizer of the Lyapunov function and that there exists an integral
minimizer p* € Z" of the Lyapunov function. Based on this fact, the ascending
auction in [1] tries to find a minimizer of the Lyapunov function. For X C N
we denote by xx € {0,1}" the characteristic vector of X.

Algorithm ASCEND

Step0: Set p := p°, where p° € Z™ is a lower bound of some p* € argmin L
(e.g., p° =0).

Stepl: Find X C N that minimizes L(p + xx)-

! Our ASCEND is slightly different from “Ascending Tatonnement Algorithm” in [1]

in the choice of X in Step 1; X is a minimal minimizer of L(p + xx) in [1], while
it can be any minimizer in ours, which is easier to find than a minimal minimizer
and does not increase the number of iterations. This is an additional merit of our
algorithm.
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Step2: If L(p + xx) = L(p), then output p and stop.
Step3: Set p := p+ xx and go to Step 1.

It can be shown (cf. [1]) that this algorithm outputs an equilibrium price
vector in a finite number of iterations. While the ascending auction has various
nice properties (see, e.g., [5,6]), it has a disadvantage that the initial price vector
must be a lower bound of some equilibrium vector. Taking this into consideration,
Ausubel [1] also propose an alternative iterative auction, which allows us to start
with an arbitrary price vector, but has a drawback that the change of the price
vector is not monotone.

Our Contribution. The main aim of this paper is to theoretically analyze
the ascending auction and other iterative auctions with respect to their time
complexity. While computational experiments are often used to evaluate the
practical performance of iterative auctions (see [3,20]), there is no theoretical
analysis of the time complexity, even in the case of the single-unit auction,
except for the termination in finite time. This paper gives the first theoretical
analysis in the case of multi-unit auctions.
The results in this paper consist of the following two:

(i) Tight bounds on the number of iterations of iterative auctions,
(ii) An efficient algorithm for the update of a price vector.

Our first result is the analysis of the number of iterations required by the
algorithm ASCEND. The upper bound established in this paper is useful in prac-
tice by providing bidders with an a priori guarantee for the time period of the
auction process. The exact bound for the number of iterations in ASCEND is
given in terms of the distance between the initial price vector and a minimizer
of the Lyapunov function L. For the analysis, we define

fi(p) = min{||p* — pllos | p* € argmin L, p* > p} (p € Z").

The value fi(p) remains the same or decreases by one in each iteration of the
algorithm. Hence, if p° is the initial vector, then fi(p°) + 1 is a lower bound for
the number of iterations. We show that this bound is also an upper bound.

Theorem 1.2. Suppose that the initial vector p° € Z" in the algorithm ASCEND
1s a lower bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates exactly in [i(p°)+1 iterations.

This result shows that the trajectory of a price vector generated by ASCEND is
the “shortest” path between the initial vector and a minimizer of the Lyapunov
function. This reveals an additional advantage of the ascending auction. We also
propose some other iterative auctions in this paper and derive tight bounds for
the number of iterations in these algorithms.

Our second result is concerned with the update of a price vector. The algo-
rithm ASCEND and other iterative auctions considered in this paper update the
price vector by using an optimal solution of the problem minxcny L(p + xx)
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or minxcn L(p — xx). It is known that these problems can be reduced to sub-
modular function minimization (SFM, for short). Although polynomial-time al-
gorithms are available for SFM [7,17], they are quite slow and complicated.

We show that the SFM problems appearing in iterative auctions can be solved
more efficiently than by a straightforward application of the existing SFM algo-
rithms. We denote U = ||| co-

Theorem 1.3. For every integral vector p € Z", the problems minxcn L(p +
xx) and minxcy L(p — xx) can be solved in O(mn*logU log(mnU)) time.

This improvement is achieved by exploiting the fact that valuation functions are
given by demand sets and the submodular functions to be minimized can be
represented in terms of demand sets as follows. For x € R™ and Y C N, we

denote z(Y') = >,y (7).
Proposition 1.1 (cf. [1,17]). For p € Z™ and X C N, we have

L(p+xx) — — > min{y(X) | y € D;(p)} + u(X),
jeEM
L(p — xx) = > max{y(X) |y € Dj(p)} — u(X).
JjeEM

The problem setting of SFM in terms of demand sets is interesting in its own
right.

Proofs of the results in this paper are based on the following equivalence
between the SGS condition and M%-concavity.

Theorem 1.4. Let f : [0,u]z — Z be a concave-extensible function. Then, f
satisfies the SGS condition if and only if it is an M?-concave function.

We also point out in Corollary 2.1 that the Lyapunov function has a discrete
convexity called Li-convexity. The concepts of MP-concavity and Li-convexity
play primary roles in the theory of discrete convex analysis [17]. On the basis of
these facts, we can make full use of rich results from discrete convex analysis to
prove Theorems 1.2 and 1.3.

2 Property of Indirect Utility Functions

In this section, we show that the indirect utility function V; : R — R given by
(1) is an Lf-convex function. Function g : R” — R is said to be Li-convex [17] if
for every p,q € R™ and every nonnegative A € R, it holds that

g) +9(q) = g((p+ A1) Ag) + g(pV (¢ — A1),

where 1 = (1,1,...,1) and for p,q € R™ the vectors p A ¢ and p V ¢ denote,
respectively, the vectors obtained by component-wise minimum and maximum
of p and ¢. It is easy to see that an L-convex function is a submodular function
on R”, i.e., it satisfies g(p) + g(q) > g(pAq) +9(pV q) (Vp,q € R™).
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Theorem 2.1. The indirect utility function V; : R = R is an LA -convex func-
tion.

Proof. The assumptions (A1) and (A2) imply the M®-concavity of valuation
function f; by Theorem 1.4. Hence, the indirect utility function V; is Lf-convex
by the conjugacy theorem in discrete convex analysis [17, Ch. 8]. g

From this property we obtain the Li-convexity of the Lyapunov function L
given by (3) since any linear function is also an Lf-convex function and Lf-
convexity is closed under the addition of functions.

Corollary 2.1. The Lyapunov function L : R* — R is an Lf-convex function.
In particular, L is a submodular function.

It follows from Corollary 2.1 and the integrality assumption (A3) for valuation
functions f; that argmin L is an integral polyhedron by the results in discrete
convex analysis [17]. Since argmin L is exactly the same as the set of equilibrium
price vectors [1,21], this observation implies the known fact that there exists an
integral equilibrium price vector.

3 Analysis for Number of Iterations in Iterative Auctions

In this section, we consider the algorithm ASCEND and several other iterative
auction algorithms for finding an integral equilibrium price vector, and analyze
the number of iterations.

We first show that there exists an integral equilibrium price vector in the
finite interval [0, p]z, where p € Z'} is given by p(i) = maxjen{ fi(xi) — f;(0)}.
Note that p can be easily computed from bidders’ valuation functions.

Proposition 3.1. There exists an equilibrium price vector p* with p* € [0, plz.

Hence, the number of iterations of the algorithm ASCEND is at most ), n ().
We will see below that the bounds for the number of iterations in ASCEND and
other iterative auction algorithms are much smaller than ), p(7).

As stated in Theorem 1.2, the number of iterations in ASCEND is j(p°) + 1.
Its proof is quite nontrivial and can be done with the aid of some known results
in discrete convex analysis. Note that any algorithm requires at least ji(p°) + 1
iterations if it increases the price vector by a 0-1 vector in each iteration. Hence,
the algorithm ASCEND is the fastest among all iterative auction algorithms of this
type, and the trajectory of the price vector is a “shortest” path from the initial
vector to an equilibrium. In addition, since i(p°) < max;en{p(i) — p°(i)}, we
can guarantee that the algorithm terminates in at most max;e ny{p(i) —p°(7)} +1
iterations; note that this bound can be computed in advance before executing
the algorithm.

Similarly to ASCEND, we can consider an algorithm DESCEND as in [1], where
the price vector is decreased by a vector xx € {0,1}"™ which is a minimizer of
L(p—xx)- It is easy to see that algorithm DESCEND enjoys similar properties as
ASCEND. We define fi(p) = min{||p* — p|le | p* € argmin L, p* < p} for p € Z™.



Computing a Walrasian Equilibrium 475

Theorem 3.1. Suppose that the initial vector p°€Z™ in the algorithm DESCEND
s a upper bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates exactly in [i(p°)+1 iterations.

An advantage of algorithms ASCEND and DESCEND is that a price vector is
updated monotonically, which is an important property from the viewpoint of
auctions. They, however, have a drawback that the initial price vector should be
a lower or upper bound for some minimizer of Lyapunov function L. In contrast,
the following two algorithms can start from any initial price vector and find an
equilibrium. Therefore, the number of iterations can be small if we can choose
an initial vector that is close to some minimizer of L.

The next algorithm TWOPHASE can be seen as an application of ASCEND with
an arbitrary initial vector, followed by DESCEND. The algorithm has a merit that
the price vector is updated “almost” monotonically.

Step 0: Set p := p°, where p° € Z" is a vector with p° € [0, plz.
Go to Ascending Phase.

Ascending Phase:

Step Al: Find X C N that minimizes L(p 4+ xx) — L(p).

Step A2: If L(p + xx) = L(p), then go to Descending Phase.

Step A3: Set p := p+ xx and go to Step Al.

Descending Phase:

Step D1: Find X C N that minimizes L(p — xx) — L(p).

Step D2: If L(p — xx) = L(p), then output p and stop.

Step D3: Set p := p — xx and go to Step DI1.

A version of this algorithm specialized to valuation functions defined on
{0,1}™ coincides with the one in [21]. Another algorithm called “Global Wal-
rasian tatonnement algorithm” in [1] repeats ascending and descending phases
until a minimizer of L is found; our analysis shows that this algorithm terminates
after only one ascending phase and only one descending phase.

To analyze the number of iterations required by TWOPHASE, we define

w(p) = min{|p* — p|L + Ip* —pll% | p* € argmin L} (p € Z"),
p* — pll&, = max max(0,p* (i) — p(i)), llp* — plls = max max(0, —p* (i) + p(7)).
ieEN iEN

The value p(p) can be regarded as the “distance” between the vector p and a
minimizer of L. By definition, p(p) remains the same or decreases by one if p is
updated by adding or subtracting a 0-1 vector. Hence, the algorithm TWOPHASE
requires at least p(p°®) + 1 iterations. In the following, we show that the number
of iterations is bounded by 3u(p°) + 2.

Theorem 3.2. The algorithm TWOPHASE outputs an equilibrium price vector
in at most 3u(p°)+2 iterations; more precisely, the ascending (resp., descending)
phase terminates in at most u(p°®) + 1 iterations (resp. 2u(p°®) + 1 iterations).

We finally consider the algorithm GREEDY, which can be seen as the steepest
descent (or greedy) algorithm for the minimization of the Lyapunov function.
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Step 0: Set p := p°, where p° € Z" is a vector with p° € [0, p]z.
Step 1: Find € € {+1,—1} and X C N that minimize L(p 4+ exx).
Step 2: If L(p 4+ exx) = L(p), then output p and stop.

Step 3: Set p := p+ exx and go to Step 1.

This can be seen as an application of the steepest descent algorithm for LE-
convex function minimization (see [17]), for which the number of iterations is
analyzed in [13]. We give a refined analysis of this algorithm in terms of the
“distance” between the initial vector and a minimizer of L.

Theorem 3.3. The algorithm GREEDY outputs an equilibrium price vector and
terminates exactly in p(p°) + 1 iterations.

As mentioned above, any iterative auction algorithm of this type requires at
least u(p°) + 1 iterations. Theorem 3.3 shows that GREEDY is the fastest among
all iterative auction algorithms of this type, and the trajectory of a price vector
is a “shortest” path from the initial vector to an equilibrium. Although GREEDY
has such merits in the choice of the initial vector and in the number of iterations,
it also has a drawback that it may repeat the increment and decrement of the
price vector many times, which is not a desirable behavior from the viewpoint
of auction.

It should be noted that the algorithms as well as their analysis in this section
can be applied not only to the Lyapunov function but also to any general Li-
convex function since our proofs do not rely on any special structure of the
Lyapunov function. In particular, the key property used in our proofs is the
following property of Li-convex functions.

Proposition 3.2 ([17, Theorem 7.7]). Let g : R* — R be an L*-convex
function. For every integral p,q € Z"™ with supp™(p — q) # 0, it holds that
9(p) +9(a) =2 9(p — xx) + 9(q + xx), where X = argmax;en{p(i) — q(i)}.

Finally, we point out that in all of the iterative auction algorithms considered
in this paper we use linear and anonymous pricing rule, meaning that the price
of any bundle z of goods is equal to p' 2 and is the same for all bidders. In this
case, we need to impose conditions on the valuation of bidders to guarantee that
iterative auction algorithms work. On the other hand, so-called combinatorial
auction algorithms use nonlinear and discriminatory pricing rule, i.e., the price
p(z, 1) of a bundle z of goods depends on x and bidder ¢ and is not linear. In this
case, iterative auction algorithms work with more general valuation functions,
although auction algorithms of this type are difficult to use in practice.

4 Efficient Update of Price Vector

For an update of the price vector in the ascending auction and other iterative
auctions, we repeatedly solve the local optimization problems minxcny L(p+xx)
and minxcny L(p—xx) for some integral p € Z™, both of which can be reduced to
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submodular function minimization (SFM, for short). Indeed, the former problem
can be reduced to the minimization of a set function given by

pr(X)=L(p+xx)—Llp) (X CN), (4)

which is submodular since the Lyapunov function L is submodular by Corollary
2.1. The latter problem can also be reduced to SFM. In this section, we show
that by using demand sets D;(p) obtained from bidders, these problems can be
solved faster than a straightforward application of SFM algorithms.

In the following, we consider minimization of py, given by (4). Throughout
this section, we assume that for a given integral vector p € Z™ and j € M,
a vector 7 € Dj(p) is available and the membership test in D;(p) can be
done in constant time. This means that the evaluation of pr,(X) requires solving
optimization problems on D;(p), which can be done in O(mn?log U) time, where
U = ||u/|co- Recall that SFM is solvable in polynomial time [7,17], provided the
function value can be evaluated in polynomial time.

Almost all “combinatorial” polynomial-time algorithms for SFM are based
on the following min-max formula (see, e.g., [7,17]). For a submodular function
p: 2N — 7, we define a set

B(p) ={zeZ" [z(Y) < p(Y) (VY CN), z(N) = p(N)},
which is called the base polyhedron associated with p.

Proposition 4.1. For an integer-valued submodular function p : 2N — Z,

min{p(X) | X € N} = max { ),y min{0, z(i)} | z € B(p)} (5)

holds. Moreover, if x* € B(p) is an optimal solution of the mazimization problem
on the right-hand side of (5), then a set X* C N is a minimizer of p if and only
if{ie N|a*(i) <0} CX*C{ie N |a*(i) <0} and p(X*) = z*(X™).

Solving the maximization problem in (5) requires the membership test in
B(p). For the efficient membership test in B(p), the existing polynomial-time
algorithms use a technique to represent a vector x as a convex combination of
extreme points in B(p), which makes the algorithms slow and complicated. The
fastest (weakly-)polynomial algorithm runs in O((n*EO + n®)log I") time [11],
where I is an upper bound on [p(X)| and EO denotes the time for function
evaluation; I' = mnU and EO= O(mn?logU) in our case.

We show that the minimization of p; can be solved faster by using a repre-
sentation of the base polyhedron B(pr) in terms of demand sets D, (p).

Proposition 4.2. It holds that B(pr) ={u—>_,cpr 7 | 25 € D;(p) (j € M)},
where Bj(p) is the set of minimal vectors in D;(p) for j € M.

This formula can be proven by using the representation of L(p + xx) — L(p) in
Proposition 1.1. Note that D;(p) is a base polyhedron. By Propositions 4.1 and
4.2, the minimization of py, is equivalent to the problem

max { 3,y min{0, ()} | & = u— 3,00 5, 25 € D;i(p) (j € M)}
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Based on this observation, we can prove Theorem 1.3. The established bound
O(mn*log U log(mnU)) is smaller than the bound O(mn®log U log(mnU)) ob-
tained by a straightforward application of the SFM algorithm in [11].
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