
Augmenting Graphs to Minimize the Diameter

Fabrizio Frati1, Serge Gaspers2,3,
Joachim Gudmundsson1,3, and Luke Mathieson4

1 University of Sydney, Australia
brillo@it.usyd.edu.au, joachim.gudmundsson@sydney.edu.au

2 The University of New South Wales, Australia
sergeg@cse.unsw.edu.au

3 NICTA, Australia
4 Macquarie University, Australia
luke.mathieson@mq.edu.au

Abstract. We study the problem of augmenting a weighted graph by inserting
edges of bounded total cost while minimizing the diameter of the augmented
graph. Our main result is an FPT 4-approximation algorithm for the problem.

1 Introduction
We study the problem of minimizing the diameter of a weighted graph by the inser-
tion of edges of bounded total cost. This problem arises in practical applications [2,4]
such as telecommunications networks, information networks, flight scheduling, protein
interactions, and it has also received considerable attention from the graph theory com-
munity, see for example [1,7,11].

We introduce some terminology. Let G = (V,E) be an undirected weighted graph.
Let [V ]2 be the set of all possible edges on the vertex set V . A non-edge of G is an
element of [V ]2 \ E. The weight of a path in G is the sum of its edge weights. For any
u, v ∈ V , the shortest u-v path in G is the path connecting u and v in G with minimum
weight. The weight of this path is said to be the distance between u and v in G. Finally,
the diameter of G is the largest distance between any two vertices in G. The problem
we study in this paper is formally defined as follows.

PROBLEM: Bounded Cost Minimum Diameter Edge Addition (BCMD)
INPUT: An undirected graph G = (V,E), a weight function w : [V ]2 → N,

a cost function c : [V ]2 → N
∗, and an integer B.

GOAL: A set F of non-edges with
∑

e∈F c(e) ≤ B such that the diameter
of the graphGB = (V,E∪F ) with weight function w is minimized.
We say that GB is a B-augmentation of G.

The main result of this paper is a fixed parameter tractable (FPT) 4-approximation
algorithm for BCMD with parameter B. FPT approximation algorithms are surveyed by
Marx [14]. For background on parameterized complexity we refer to [6,8,15] and for
background on approximation algorithms to [17].

Several papers in the literature already dealt with the BCMD problem. However, most
of them focused on restricted versions of the problem, namely the one in which all costs
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and all weights are identical [3,5,12,13], and the one in which all the edges have unit
costs and the weights of the non-edges are all identical [2,4].

The BCMD problem can be seen as a bicriteria optimization problem where the two
optimization criteria are: (1) the cost of the edges added to the graph and (2) the diam-
eter of the augmented graph. As is standard in the literature, we say that an algorithm
is an (α, β)-approximation algorithm for the BCMD problem, with α, β ≥ 1, if it com-
putes a set F of non-edges of G of total cost at most α · B such that the diameter
of G′ = (V,E ∪ F ) is at most β · DB

opt, where DB
opt is the diameter of an optimal

B-augmentation of G.
We survey some known results about the BCMD problem. Note that all the algorithms

discussed below run in polynomial time.

Unit Weights and Unit Costs. The restriction of BCMD to unit costs and unit weights
was first shown to be NP-hard in 1987 by Schoone et al. [16]; see also the paper by Li
et al. [13]. Bilò et al. [2] showed that, as a consequence of the results in [3,5,13], there
exists no (c logn, δ < 1 + 1/DB

opt)-approximation algorithm for BCMD if DB
opt ≥ 2,

unless P=NP. For the case in which DB
opt ≥ 6, they proved a stronger lower bound,

namely that there exists no (c logn, δ < 5
3 − 7−(DB

opt+1) mod 3

3DB
opt

)-approximation algo-

rithm, unless P=NP.
Dodis and Khanna [5] gave an (O(log n), 2+2/DB

opt)-approximation algorithm (see
also [12]). Li et al. [13] showed a (1, 4+2/DB

opt)-approximation algorithm. The analy-
sis of the latter algorithm was later improved by Bilò et al. [2], who showed that it gives
a (1, 2 + 2/DB

opt)-approximation. In the same paper they also gave a (O(log n), 1)-
approximation algorithm.

Unit Costs and Restricted Weights. Some of the results from the unweighted setting
have been extended to a restricted version of the weighted case, namely the one in which
the edges of G have arbitrary non-negative integer weights, however all the non-edges
of G have cost 1 and uniform weight ω ≥ 0.

Bilò et al. [2] showed how two of their algorithms can be adapted to this restricted
weighted case. In fact, they gave a (1, 2 + 2ω/DB

opt)-approximation algorithm and a
(2 − 1/B, 2)-approximation algorithm. Similar results were obtained by Demaine and
Zadimoghaddam in [4].

Bilò et al. [2] also showed that, for every DB
opt ≥ 2ω and for some constant c, there

is no (c logn, δ < 2 − 3ω/DB
opt)-approximation algorithm for this restriction of the

BCMD problem, unless P=NP.

Arbitrary Costs and Weights. To the best of our knowledge, only one theory paper
considered the general BCMD problem. In 1999, Dodis and Khanna [5] presented an
O(n logDB

opt, 1)-approximation algorithm, assuming that all weights are polynomially
bounded. Their result is based on a multicommodity flow formulation of the problem.

Our Results. In this paper we study the BCMD problem with arbitrary integer costs
and weights. Our main result is a (1, 4)-approximation algorithm with running time
O((3BB3 + n + log(Bn))Bn2). We also prove that, considering B as a parameter, it
is W [2]-hard to compute a (1 + c/B, 3/2− ε)-approximation, for any constants c and
ε > 0. Further, we present polynomial-time ((k + 1)2, 3)-, (k, 4)-, and (1, 3k + 2)-
approximation algorithms for the unit-cost restriction of the BCMD problem.
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2 Shortest Paths with Bounded Cost
Let (G = (V,E), w, c, B) be an instance of the BCMD problem and let K denote the
complete graph on the vertex set V . The edges of K have the same weights and costs
as they have in G (observe that an edge e of K is either an edge or a non-edge of G).
For technical reasons, we add self-loops with weight 0 and cost 1 at each vertex of K .

For any 0 ≤ β ≤ B, a path in K is said to be a β-bounded-cost path if it uses non-
edges of G of total cost at most β. We consider the problem of computing, for every
integer 0 ≤ β ≤ B and for every two vertices u, v ∈ V , a β-bounded-cost shortest path
connecting u and v, if such a path exists. We call this problem the All-Pairs B-Shortest
Paths (APSPB) problem. We will prove the following.

Theorem 1. The APSPB problem can be solved in O(Bn3+Bn2 log(Bn)) time using
O(Bn2) space.

In order to prove Theorem 1, we construct a directed graph H = (U, F ) as follows.
First, consider G as a directed graph, i.e., replace every undirected edge {u, v} with
two arcs (u, v) and (v, u) with the same weight and cost as the edge {u, v}. Then,
H = (U, F ) contains B + 1 copies of G, denoted by G0, . . . , GB . For any 0 ≤ i ≤ B,
we denote by (v, i) the copy of vertex v ∈ V in Gi = (Vi, Ei). The arc set F contains
the union of E′ and F ′, where E′ =

⋃
0≤i≤k Ei, and

F ′ =
{(

(u, i), (v, i+ c({u, v}))) : 0 ≤ i ≤ B − c({u, v}), {u, v} ∈ [V ]2 \ E
}
.

For each ((u, i), (v, j)) ∈ F ′, the weight and the cost of ((u, i), (v, j)) are w({u, v})
and c({u, v}) = j − i, respectively.

Observation 1 The number of vertices in U is (B + 1)n and the number of arcs in F
is O(Bn2).

We will use directed graph H to efficiently compute β-bounded-cost shortest paths in
K . This is possible due to the following two lemmata.

Lemma 1. Suppose that H contains a directed path PH with weight W connecting
vertices (u, i) and (v, j), for some j ≥ i. Then, there exists a (j− i)-bounded-cost path
PK in K with weight W connecting u and v.

Lemma 2. Suppose that there exists a β-bounded-cost path PK in K with weight W
connecting vertices u and v. Then, there exists a directed path PH in H with weight W
connecting vertices (u, 0) and (v, β).

We have the following.

Corollary 1. There is a β-bounded-cost path connecting vertices u and v in K with
weight W if and only if there is a directed path in H connecting vertices (u, 0) and
(v, β) with weight W .

We are now ready to prove Theorem 1. Consider any vertex u in K . We first mark every
vertex that can be reached from (u, 0) in H with the weight of its shortest path from
(u, 0). By Observation 1, H has O(Bn) vertices and O(Bn2) edges, hence this can be
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done in O(Bn2 + Bn log(Bn)) time [9]. For every 0 ≤ β ≤ B and for every vertex
v �= u, by Corollary 1 the weight of a β-bounded cost shortest path in K is the same as
the weight of a shortest directed path from (u, 0) to (v, β) in H . Hence, for every 0 ≤
β ≤ B and for every vertex v �= u, we can determine in total O(Bn2 + Bn log(Bn))
time the weight of a β-bounded cost shortest path in K connecting u and v. Thus, for
every 0 ≤ β ≤ B and for every pair of vertices u and v in K , we can determine in
total O(Bn3 + Bn2 log(Bn)) time the weight of a β-bounded cost shortest path in K
connecting u and v. This concludes the proof of Theorem 1.

3 Arbitrary Costs and Weights
Our algorithms, as many afore-mentioned approximation algorithms for the BCMD

problem, use a clustering approach as a first phase to find a set C ofB+1 cluster centers.
The idea of the algorithm is to create a minimum height rooted tree T = (U ⊆ V,D),
so that C ⊆ U , by adding a set of edges of total cost at most B to G. We will prove that
such a tree approximates an optimal B-augmentation.

3.1 Clustering

We start by defining the clustering approach used to generate the B +1 cluster centers.
Whereas a costly binary search is used in [4] to guess the radius of the clusters, we
adapt the approach of [2] to our more general setting.

For two vertices u, v, we denote by distG(u, v) the distance between u and v in G.
For a vertex u and a set of vertices S, we denote by distG(u, S) the minimum distance
between u and any vertex from S in G, i.e., distG(u, S) = minv∈S{distG(u, v)}. For
a set of vertices S, we denote by distG(S) the minimum distance between any two
distinct vertices from S in G, i.e., distG(S) = minu∈S{distG(u, S \ {u})}.

The clustering phase computes a set C = {c1, . . . , cB+1} of B + 1 cluster centers
as follows. Vertex c1 is an arbitrary vertex in V ; for 2 ≤ i ≤ B + 1, vertex ci is chosen
so that distG(ci, {c1, . . . , ci−1}) is maximized. Ties are broken arbitrarily.

Lemma 3. The clustering phase computes in O(Bn2) time a set C ⊆ V of size B + 1
such that distG(v, C) ≤ DB

opt for every vertex v ∈ V .

Proof. First, note that the above described algorithm can easily be implemented in
O(Bn2) time using B iterations of Dijkstra’s algorithm with Fibonacci heaps [9]. Let
cB+2 denote a vertex maximizing distG(cB+2, C), and denote this distance by R. By
definition, distG(v, C) ≤ R for every v ∈ V . To prove the lemma it remains to show
that R ≤ DB

opt. For the sake of contradiction, assume DB
opt < R. Then, C ∪ {cB+2}

is a set of B + 2 vertices with pairwise distance larger than DB
opt in G. We prove the

following claim.

Claim 1. Let G′ be a weighted graph and let C′ be a set of vertices in G′ such that
distG′(C′) > D. Then, for every graph G′′ obtained from G′ by adding a single non-
edge of G′ with non-negative weight, there is a set C′′ ⊂ C′ with |C′′| = |C′| − 1 and
with distG′′(C′′) > D.

Now, since C ∪ {cB+2} is a set of B + 2 vertices with pairwise distance larger than
DB

opt in G, by iteratively using the claim we have that in any B-augmentation GB of
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Fig. 1. Illustrating the path defined in the proof of Lemma 5

G, we have a set of B + 2− |F | ≥ 2 vertices with pairwise distance greater than DB
opt,

thus contradicting the definition of DB
opt. This concludes the proof of the lemma. �

3.2 A Minimum Height Tree

Let C be a set of B + 1 cluster centers such that the B + 1 clusters with centers at
C = {c0, . . . , cB} and radius DB

opt cover the vertices of G. This set can be computed
as described in the previous section.

Definition 1. Let G = (V,E) be a graph together with a weight function w : [V ]2 →
N. Let C ⊆ V and let u be a vertex in V . A Shortest Path Tree of G, C, and u, denoted by
SPT(G,C, u), is a tree T rooted at u, spanningC, whose vertices and edges belong to V
and E, respectively, and such that, for every vertex c ∈ C, it holds dT (u, c) = dG(u, c).

The height of a weighted rooted tree T , which is denoted by �(T ), is the maximum
weight of a path from the root to a leaf.

Definition 2. Let G = (V,E) be a graph together with a weight function w : [V ]2 → N

and a cost function c : [V ]2 → N
∗. Let C ⊆ V , let u be a vertex in V , and let B ≥ 0

be an integer. A Minimum HeightB SPT of G, C, and u, denoted by MHBSPT (G, c, u),
is a SPT(GB , C, u) of minimum height over all B-augmentations GB of G.

Let GB be a B-augmentation of G with diameter DB
opt.

Lemma 4. The height of a MHBSPT (G,C, u) is at most DB
opt.

Proof. By definition, we have (A) �(MHBSPT(G,C, u)) ≤ �(SPT(GB , C, u)). Since
GB is a B-augmentation of G with diameter DB

opt, we have (B) �(SPT(GB , C, u)) ≤
DB

opt. Inequalities (A) and (B) together prove the lemma. �
We now present a relationship between the BCMD problem and the problem of comput-
ing a MHBSPT (G,C, u).

Lemma 5. Let G′
B be a B-augmentation of G such that it holds �(SPT(G′

B, C, u)) =
�(MHBSPT(G,C, u)), for any u ∈ V . Then, the diameter of G′

B is at most 4 ·DB
opt.

Proof. Consider two vertices x and y in V , see Fig. 1. Let cx and cy be centers of the
clusters x and y belong to, respectively. Then, we have distG′

B
(x, y) ≤ distG(x, cx) +

distG′
B
(cx, u)+distG′

B
(u, cy)+distG(cy, y). By Lemma 3, distG(x, cx), distG(cy, y)

≤ DB
opt. Since �(SPT(G′

B, C, u)) = �(MHBSPT(G,C, u)) and by Lemma 4, it holds
distG′

B
(cx, u), distG′

B
(u, cy) ≤ DB

opt. Hence, distG′
B
(x, y) ≤ 4 ·DB

opt. �
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Fig. 2. Illustration for the proof of Lemma 6

3.3 Constructing a Minimum Height Tree

In this section, we show an algorithm to compute a MHBSPT (G,C, c1).
We introduce some notation and terminology. Let C′ = C \ {c1}. Observe that a

MHBSPT (G,C′, c1) is also a MHBSPT (G,C, c1), given that a MHBSPT (G,C′, c1)
contains c1 as its root. Denote by djK(u, v) the minimum weight of a j-bounded cost
path connecting u and v in K . For any u ∈ V , for any S ⊆ C′, and for any 0 ≤ j ≤ B,
let γ(u, S, j) denote the height of a MHjSPT (G,S, u). Hence, the height of a MHBSPT

(G,C′, c1) is γ(c1, C′, B). The following main lemma gives a dynamic programming
recurrence for computing γ(c1, C

′, B).

Lemma 6. For any u ∈ V , any S ⊆ C′, and any 0 ≤ j ≤ B, the following hold: If
|S| = 1, then γ(u, S, j) = djK(u, ci) where S = {ci}. If |S| > 1, then

γ(u, S, j) = min
v∈V
S′�S

j=j1+j2+j3

dj1K(u, v) + max{γ(v, S′, j2), γ(v, S \ S′, j3)}.

Proof. If |S| = {ci}, then MHjSPT (G, {ci}, u) is a minimum-weight path connecting
u and ci and having total cost at most j. Hence, γ(u, S, j) = djK(u, ci). In particular,
notice that, if u = ci, then γ(u, {u}, j) = djK(u, u) = 0.

If |S| = m > 1, then suppose that the lemma holds for each γ(u′, S′, j′) with |S′| ≤
m−1 by induction. Denote by T any MHjSPT (G,S, u). Denote by P (v, w) the unique
path in T connecting two vertices v and w of T . We distinguish three cases, based on
the structure of T . In Case (a), the degree of u in T is at least two (see Fig. 2(a)). In
Case (b), the degree of u in T is one and there exists a vertex u′ ∈ S such that every
internal vertex of P (u, u′) has degree 2 in T and does not belong to S (see Fig. 2(b)).
Finally, in Case (c), the degree of u in T is one and there exists a vertex u′ /∈ S such
that every internal vertex of P (u, u′) has degree 2 in T and does not belong to S, and
such that the degree of u′ is greater than two (see Fig. 2(c)).

First, we prove that one of the three cases always applies. If the degree of u in T is
at least two, then Case (a) applies. Otherwise, the degree of u is 1. Traverse T from u
until a vertex v′ is found such that v′ ∈ S or the degree of v′ is at least 3. If v′ ∈ S,
then every internal vertex of P (u, u′) has degree 2 in T and does not belong to S, hence
Case (b) applies. If v′ /∈ S, then the degree of v′ is at least 3, and every internal vertex
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of P (u, u′) has degree 2 in T and does not belong to S, hence Case (c) applies. We now
discuss the three cases.

In Case (a), T is composed of two subtrees MHxSPT (G,Sa, u) and MHySPT (G,S \
Sa, u), only sharing vertex u, with ∅ � Sa � S. The height of T is the maximum
of the heights of MHxSPT (G,Sa, u) and MHySPT (G,S \ Sa, u); also the cost of
T is at most x + y. By induction, the heights of MHxSPT (G,Sa, u) and MHySPT

(G,S \ Sa, u) are γ(u, Sa, x) and γ(u, S \ Sa, y)), respectively. Thus, the height of T
is max{γ(v, Sa, x), γ(v, S \Sa, y)} and hence γ(u, S, j) = max{γ(u, Sa, x), γ(u, S \
Sa, y)}. Such a value is found by the recursive definition of γ(u, S, j) with v = u,
S′ = Sa, j1 = 0, j2 = x, and j3 = y.

In Case (b), T is composed of a path from u to u′ with cost x and weight dxK(u, u′),
and of a MHySPT (G,S \ {u′}, u′). The height of T is the sum of dxK(u, u′) and the
height of MHySPT (G,S \ {u′}, u′); also the cost of T is at most x + y. By induction,
the height of MHySPT (G,S \ {u′}, u′) is γ(u′, S \ {u′}, y). Thus, the height of T is
dxK(u, u′) + γ(u′, S \ {u′}, y) and hence γ(u, S, j) = dxK(u, u′) + γ(u′, S \ {u′}, y).
Such a value is found by the recursive definition of γ(u, S, j) with v = u′, S′ =
S \ {u′}, j1 = x, j2 = y, and j3 = 0.

In Case (c), T is composed of a path from u to u′ with cost x and weight dxK(u, u′), of
a MHySPT (G,Sa, u

′), and of a MHzSPT (G,S\Sa, u
′) with ∅ � Sa � S. The height of

T is the sum of dxK(u, u′) and the maximum between the heights of MHySPT (G,Sa, u
′)

and MHzSPT (G,S \ Sa, u
′); also the cost of T is at most x+ y + z. By induction, the

heights of MHySPT (G,Sa, u
′) and MHzSPT (G,S\Sa, u

′) are γ(u′, Sa, y) and γ(u′, S\
Sa, z), respectively. Thus, the height of T is dxK(u, u′) + max{γ(u′, Sa, y), γ(u

′, S \
Sa, z)} and hence γ(u, S, j) = dxK(u, u′) + max{γ(u′, Sa, y), γ(u

′, S \ Sa, z)}. Such
a value is found by the recursive definition of γ(u, S, j) with v = u′, S′ = Sa, j1 = x,
j2 = y, and j3 = z.

This concludes the induction and hence the proof of the lemma. �
Lemma 6 yields the following.

Theorem 2. There exists a (1, 4)-approximation algorithm for the BCMD problem with
O((3BB3 + n+ log(Bn))Bn2) running time.

4 Unit Costs and Arbitrary Weights
For the special case in which each edge has unit cost and arbitrary weight, our tech-
niques lead to several results, that are described in the following. Observe that, in
this case we are allowed to insert in G exactly k non-edges of G, where k = B =
O(n2). We remark that Theorem 2 gives a (1, 4)-approximation algorithm running in
O((3kk3 + n)kn2) time for this special case.

In the following, we denote by C a clustering with k + 1 clusters constructed as
described in Subsection 3.1. We first show a ((k + 1)2, 3)-approximation algorithm.

Theorem 3. Given an instance of the BCMD problem with unit costs, there exists a
((k + 1)2, 3)-approximation algorithm with O(kn3) running time.

Proof. For every pair of cluster centers ci, cj ∈ C compute a shortest path in K be-
tween ci and cj that contains at most k non-edges of G. Add those edges to F and let
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G′ = (V,E ∪ F ). By Theorem 1 and since k = O(n2), G′ can be constructed in
O(kn3) time. Observe that, for each pair of cluster centers, the algorithm adds at most
k non-edges of G to F , thus at most k(k + 1)2 non-edges in total. We prove that, for
every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose weight is at most
3 ·Dk

opt. Denote by ci and cj the centers of the clusters vi and vj belong to, respectively.
We have distG′(vi, vj) ≤ distG′(vi, ci)+distG′(ci, cj)+distG′(cj , vj). By Lemma 3,
distG′(vi, ci), distG′(vj , cj) ≤ Dk

opt; also, by construction, distG′(ci, cj) ≤ Dk
opt, and

the theorem follows. �
Next, we give a (k, 4)-approximation algorithm.

Theorem 4. Given an instance of the BCMD problem with unit costs, there exists a
(k, 4)-approximation algorithm with O(kn2) running time.

Proof. Pick an arbitrary cluster center, say c1. For every cluster center cj ∈ C \ {c1},
compute a shortest path between c1 and cj in K containing at most k non-edges of
G. Add those edges to F and let G′ = (V,E ∪ F ). By Corollary 1, a shortest path
between c1 and cj in K containing at most k non-edges of G corresponds to a shortest
path between (c1, 0) and (cj , k) in digraph H . By Observation 1, H has O(kn) vertices
and O(kn2) edges. Hence, Dijkstra’s algorithm with Fibonacci heaps [9] computes
all the shortest paths between (c1, 0) and (cj , k), for every cj ∈ C \ {c1}, in total
O(kn2) time. Observe that, for each cluster different from c1, the algorithm adds at
most k non-edges of G to F , thus at most k2 non-edges in total. We prove that, for
every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose weight is at
most 4 · Dk

opt. Denote by ci and cj the centers of the clusters vi and vj belong to,
respectively. We have distG′(vi, vj) ≤ distG′(vi, ci)+distG′(ci, c1)+distG′(c1, cj)+
distG′(cj , vj). By Lemma 3, distG′(vi, ci), distG′(vj , cj) ≤ Dk

opt; by construction,
distG′(ci, c1), distG′(c1, cj) ≤ Dk

opt, and the theorem follows. �
Finally, we present a (1, 3k + 2)-approximation algorithm.

Theorem 5. Given an instance of the BCMD problem with unit costs, there exists a
(1, 3k + 2)-approximation algorithm with O(n2 + k2) running time.

Proof. For every pair of clusters Ci and Cj , with 1 ≤ i < j ≤ k + 1, let eij be
the edge of minimum weight connecting a vertex in Ci with a vertex in Cj . We de-
note by F ′ the set of these edges. For a subset F of F ′, we say that F spans C if the
graph representing the adjacencies between clusters via the edges of F is connected.
Let F be a minimum-weight set of k edges from F ′ spanning C. Let G′ = (V,E ∪F ).
The set F ′, and hence the graph G′, can be constructed in O(n2 + k2) time as fol-
lows. Consider all the edges of K and keep, for each pair of clusters, the edge with
smallest weight. This can be done in O(n2) time. Finally, compute in O(k2) time a
minimum spanning tree of the resulting graph [10], that has O(k) vertices and O(k2)
edges. Observe that the algorithm adds at most k non-edges of G to F . We prove
that, for every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose
weight is at most (3k + 2)Dk

opt. Denote by PC the (unique) subset of F connect-
ing the clusters vi and vj belong to. Let (x1, y1), (x2, y2), . . . , (xm, ym) be the edges
of PC in order from vi to vj . Then, distG′(vi, vj) ≤ distG(vi, x1) + w(x1, y1) +
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distG(y1, x2) + . . . + w(xm, ym) + distG(ym, vj). By Lemma 3, distG(yi, xi+1) ≤
2Dk

opt, and distG(vi, x1), distG(ym, vj) ≤ Dk
opt. Also, w((xi, yi)) ≤ Dk

opt, and the
theorem follows. �

5 Hardness Results
The main theorem of this section provides a parameterized intractability result for
BCMD with unit weights and unit costs, and some related problems. The U-BCMD prob-
lem has as input an unweighted graph G = (V,E) and two integers k and d, and the
question is whether there is a set F ⊆ [V ]2 \ E, with |F | ≤ k, such that the graph
(V,E ∪ F ) has diameter at most d. The parameter is k. We will show that U-BCMD

is W [2]-hard. We will also provide refinements to the minimum conditions required
for intractability, namely U-BCMD remains NP-complete for graphs of diameter 3 with
target diameter d = 2. We note that although Dodis and Kanna [5] provide an inap-
proximability reduction from SET COVER, they begin with a disconnected graph, and
expand the instance with a series of size 2 sets, which does not preserve the size of the
optimal solution, and therefore their reduction cannot be used to show parameterized
complexity lower bounds.

Theorem 6. SET COVER is polynomial-time reducible to U-BCMD. Moreover, the re-
duction is parameter preserving and creates an instance with diameter 3 and target
diameter 2.

Proof. Let (X,S, k) be an instance of SET COVER where S is the base set and X ⊂
P(S) is the set from which we must pick the set cover of S with size at most k. We
construct an instance (G = (V,E), k, d) of U-BCMD as follows.

Let m = |X | · k. The vertex set V is the disjoint union of 5 sets:
– a set Y corresponding to the set X where for each x ∈ X we have a vertex y ∈ Y ,
– a set T =

⊎
i∈[m] Ti corresponding to S where, for each s ∈ S and i ∈ [m], we

have a vertex ti ∈ Ti (i.e., we have m copies of a set of vertices corresponding
to S),

– a set U with
(
m
2

)
vertices uij , one for each pair of disjoint subsets Ti, Tj of T

(where i �= j),
– the set {a}, and
– the set {b}.

The edge set E consists of the following edges:

– ab,
– by for each vertex y ∈ Y ,
– buij for each vertex uij ∈ U ,
– yy′ for each pair of vertices y, y′ ∈ Y ,
– yti for each pair of vertices y ∈ Y and ti ∈ Ti for each i ∈ [m] where the

corresponding element s ∈ S is in the corresponding set x ∈ X in the SET COVER

instance,
– tiujl for each pair of vertices ti ∈ Ti and ujl ∈ U such that i ∈ {j, l}, and
– uijulp for each pair of vertices uij , ulp ∈ U .
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Fig. 3. Sketch of the construction for the SET COVER to U-BCMD reduction. The edge sets rep-
resented in gray are complete, the edge sets represented in light green correspond to the set
membership from the SET COVER instance. The vertex sets Y and U are cliques. The vertex sets
Ti are independent sets for all i ∈ [m].

We set d = 2. Note that k in the U-BCMD instance is the same k as for the SET COVER

instance. The construction is sketched in Fig. 3.

Claim 2. For all v, v′ ∈ V \ {a} we have dist(v, v′) ≤ 2.

Claim 3. For all v ∈ V we have dist(a, v) ≤ 3. Moreover, dist(a, v) = 3 if and only
if v ∈ T .

Thus we are concerned only with reducing the distance between a and the vertices of
T .

Claim 4. (X,S, k) is a YES-instance of SET COVER if and only if (G, k, d) is a YES-
instance of U-BCMD.

We note that the reduction is obviously polynomial-time computable, and the parameter
k is preserved. The theorem now follows from the previous claims. �

Corollary 2. U-BCMD is NP-complete even for graphs of diameter three with target
diameter two.

As SET COVER is W [2]-hard with parameter k, combined with Corollary 2 we also
have the following result.

Corollary 3. U-BCMD is W [2]-hard even for graphs of diameter three with target di-
ameter two.

We note additionally that as the initial graph has diameter 3 and the target diameter is 2,
it is even NP-hard and W[2]-hard to decide if there is a set of k new edges that improves
the diameter by one. Furthermore by taking a as source vertex, the results transfer im-
mediately to the single-source version as discussed by Demaine & Zadimoghaddam [4].
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The construction of Theorem 6 can even be extended to give a parameterized inap-
proximability result for U-BCMD.

Theorem 7. It is W [2]-hard to compute a (1 + c
k ,

3
2 − ε)-approximation for U-BCMD

for any constants c and ε > 0.
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