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Abstract. We consider the following variant of a classical pursuit-evasion
problem: how many pursuers are needed to capture a single (adversarial)
evader on the surface of a 3-dimensional polyhedral body? The players re-
main on the closed polyhedral surface, have the same maximum speed,
and are always aware of each others’ current positions. This generalizes
the classical lion-and-the-man game, originally proposed by Rado [12], in
which the players are restricted to a two-dimensional circular arena. The
extension to a polyhedral surface is both theoretically interesting and prac-
tically motivated by applications in robotics where the physical environ-
ment is often approximated as a polyhedral surface. We analyze the game
under the discrete-timemodel,where the players take alternate turns, how-
ever, by choosing an appropriately small time step t > 0, one can approx-
imate the continuous time setting to an arbitrary level of accuracy. Our
main result is that 4 pursuers always suffice (upper bound), and that 3 are
sometimes necessary (lower bound), for catching an adversarial evader
on any polyhedral surface with genus zero. Generalizing this bound to
surfaces of genus g, we prove the sufficiency of (4g + 4) pursuers. Fi-
nally, we show that 4 pursuers also suffice under the “weighted region”
constraints where the movement costs through different regions of the
(genus zero) surface have (different) multiplicative weights.

1 Introduction

Pursuit-evasion problems serve as a mathematical abstraction for a number of
applications that involve one group (pursuers) attempting to track down mem-
bers of another group (evaders). Many such games with colorful names including
Cops-and-Robbers, Hunter-and-Rabbit, Homicidal Chauffeur, and Princess-and-
Monster have been studied in the literature [1,3,5,8]. We are inspired by the
oldest such problem, the so-called man-and-the-lion game, in which a lion and a
man are enclosed in a circular arena, both able to move continuously with the
same maximum speed, and able to react instantaneously to each other’s motion.
Can the lion capture the man? For many years, it was believed that the following
simple strategy guarantees a win for the lion in finite time: start at the center
of the arena and continuously move toward the man along the radial line. This
was proved false by Besicovitch who showed that the man can in fact evade the
lion forever [12]: in Besicovitch’s strategy, the lion can get arbitrarily close to
the man but never quite reach it. This impossibility proof can be circumvented
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by either allowing the lion a fixed non-zero capture radius r > 0, or playing the
game in discrete-time (alternating moves).

In this paper, we investigate the pursuit-evasion problem played on the (closed)
surface of a 3-dimensional polyhedron. Multiple pursuers (lions) attempt to cap-
ture an adversarial evader (man), with all players constrained to remain on the
polyhedral surface, and all able to move equally fast. In this setting, how many
pursuers are needed to capture the evader in finite time? We study the problem
in the discrete time model: this avoids the intractable problem of computing
players’ moves and reactions instantaneously, and also allows approximation of
the continuous time setting to an arbitrary level of accuracy by choosing an ap-
propriately small time step t > 0. On the practical side, the problem of pursuit
on a polyhedral surface is well-motivated because many robotics applications
involve searching or tracking on “terrain-like” surfaces. On the theoretical side,
the problem is interesting because the surface acts as an “intrinsic” obstacle,
introducing non-linearity in the behavior of shortest paths. For instance, al-
though the genus zero polyhedral surface is topologically equivalent to a disk, the
game has a distinctly different character and outcome than its planar counter-
part (circular arena). In particular, it is known that a single pursuer can always
win the discrete-time man-and-the-lion game in the plane (an easy corollary
of [16]). Therefore, one may hope that an appropriate topological extension of
the “follow the shortest path towards the evader” strategy will also succeed on
the polyhedral surface. However, we show that this is not possible, and provide a
constructive lower bound that at least 3 pursuers are needed in the worst-case for
successful capture on a polyhedral surface. Intuitively, the problem is caused by
the discontinuity in mapping “straight line” shortest paths in the unobstructed
planar arena to geodesics on the polyhedral surface; in the unobstructed plane,
a small move by the evader only causes a small (local) change in the straight line
connecting pursuer and the evader, but on the polyhedral surface, the geodesic
can jump discontinuously.

Complementing our lower bound, we show that 4 pursuers always suffice on
any polyhedral surface of genus zero. Specifically, we present a strategy for the
pursuers that always leads to capture of the evader in O(ΔS(n

2 logn+ logΔS))
time steps, where n is the number of vertices of the polyhedral surface S and ΔS

is its diameter (the maximum shortest path distance between any two points).
We then generalize our result to surfaces of non-zero genus and prove that (4+4g)
pursuers can always capture an evader on the surface of any genus g polyhedron.
Our technique for analyzing pursuit evasion on polyhedral surfaces appears to be
quite general, and likely to find application in other settings. As one example, we
consider pursuit evasion under the “weighted region” model of shortest paths,
where non-negative weights dictate the per-unit cost of travel through different
regions of the surface.

Related Work

In the discrete-time model, a single pursuer can capture the evader in a simply-
connected polygon [7], while 3 pursuers are both necessary and sufficient for
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polygonal environments with multiple holes (obstacles) [4]. In a visibility-sensing
model, where pursuers can localize the evader only when the latter is in direct
line of sight, the number of pursuers is O(

√
h+ logn) for n-vertex environment

with h holes [9].
There exists an extensive literature on pursuit-evasion in 3-dimensional en-

vironments and surfaces, but no result appears to be known on the number of
pursuers necessary for capture. Instead, the prior research has focussed on heuris-
tics approaches for capture [10], classification of environments where capture is
achievable [2], or on game-theoretical questions [11,13].

The most relevant work to our research is the cops-and-robbers games in graph
theory, where Aigner and Fromme have shown that 3 cops always suffice against
a robber in any planar graph [1], and �3g/2+3� cops are necessary for graphs of
genus g [15]. However, the continuous-space of polyhedral surfaces requires very
different set of techniques from those used for graphs.

2 Preliminaries and the Lower Bound

The geometric environment for our pursuit-evasion problem is the (closed) sur-
face of a 3-dimensional polyhedron S. We assume that S has n vertices, and
therefore O(n) faces and edges. Without loss of generality, we assume that each
face is a triangle, which is easily achieved by triangulating the faces with four
or more sides. We use the notation p1, p2, . . . to denote the group of pursuers
who wish to track and capture a single (adversarial) evader e. Slightly abusing
the notation, we also use e and pi, respectively, for the current location of the
evader and the ith pursuer.

We make the standard assumption about the game: all the players know the
environment (the surface of the polyhedron S), each player knows the current
positions of all the other players, all players have identical maximum speed, and
the game is played in the discrete-time alternating turn model. By an appro-
priate scaling of the environment, we assume that the maximum speed of the
players is 1, meaning that on its turn a player can move to any position within
geodesic distance one of its current location on the surface. On their turn, all
the pursuers move simultaneously. The pursuers win the game if, on their turn,
some pi reaches the current position of the evader and the evader wins if it can
avoid capture indefinitely.

We use the notation Pa,b for a shortest path between two points a and b on
the surface S, and d(a, b) for the length of this path. (In general, the path Pa,b is
not unique, but its length is.) The path Pa,b is piece-wise linear and its vertices
lie on the edges or vertices of the surfaces. Throughout, we will use the terms
vertices and edges to refer to the graph of the polyhedral surface, and points
and arcs to refer to the geometric objects embedded on the surface such as a
path. We explain specific properties of these shortest paths that are used in our
analysis in Section 3.3. The following theorem establishes the lower bound for
our pursuit game.
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Theorem 1. In the worst-case at least three pursuers are required to capture an
evader on the surface of a polyhedron.

Proof. We start with a dodecahedron D, all of whose edges have length 1 (see
Fig. 1(a). Our polyhedron S is constructed by extending each face of D orthog-
onally (to the face) into a “tower” of height ΔD + 1, where ΔD is geodesic
diameter of the dodecahedron; see Fig. 1(b). S has 12 such towers, one for each
of the 12 pentagonal faces of D. The “walls” of these towers meet along the edges
of D, forming the skeleton graph, which we denote G(D), as shown in Fig. 1(c).
We argue that an evader can indefinitely avoid capture from two pursuers on the
surface of this polyhedron. In particular, the two pursuers, p1 and p2 initially
choose their positions, and then the evader picks its initial position at a vertex of
G(D) to satisfy d(pi, e) > 1, for i = 1, 2. We show that regardless of the pursuers’
strategies, the evader can indefinitely maintain this distance condition (after its
move) by always moving among the vertices of G(D). The evader’s strategy is
reactive: it remains at a vertex until some pursuer is within distance 1. When
one or both pursuers are within distance 1 of the evader, we show that the evader
can move to a safe neighboring vertex and restore its distance condition. Due
to space limitation, we omit the further details and refer the reader to the full
version of the paper.

(a) (b)

u
x

y

z

(c)

Fig. 1. A dodecahedron (a); partial construction with three faces orthogonally ex-
tended (b); and the skeleton graph (c)

3 Catching the Evader with 4 Pursuers

We begin with a high level description of the pursuers’ strategy, and then develop
the necessary technical machinery to prove its correctness.

3.1 Surround-and-Contract Pursuit Strategy

The pursuers’ overall strategy is conceptually quite simple: repeatedly shrink the
region containing the evader while making sure that it cannot escape from this
region, which can be intuitively thought of as a surround-and-contract strategy.
More specifically, at any time, the evader is constrained within a connected
portion Si of the surface S, which is bounded by at most three paths, each
guarded by a pursuer. The fourth pursuer is used to divide Si into two non-empty
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regions (contraction), trapping the evader within one of them. This division is
done in such a way that that at least one of the 3 pursuers bounding Si becomes
free, thus allowing the process to continue until the target region reduces to a
single triangle, and the capture can be completed.

The paths used by the pursuers are shortest paths on the polyhedral sur-
face, restricted to the current region. The computation of shortest paths on a
polyhedral surface is a well-known problem in computational geometry, and we
rely on the following result of [6,14]: given a source point x on the surface of a
polyhedron S of n vertices, one can compute a shortest path map encoding the
shortest paths from x to all other points on S, in O(n2) time using O(n log n)
space. With this map, one can find the shortest path from x to any other point
y in time O(log n+ k) when the path consists of k arcs.

We use phases to monitor the progress of the algorithm: in phase i, the region
containing the evader is denoted Si where Si ⊆ Si−1, for all i. Each time the
pursuers guard a new path dividing Si, the phase transitions, with Si+1 as the
region containing the evader. In addition, each region Si has a rather special
form: it is bounded by either two or three shortest paths. The finite automaton
of Figure 2 shows the simple state diagram of the pursuit: the pursuit transitions
between regions bounded by 2 and 3 paths until it reaches a special terminal
state marked EndGame. For ease of reference, we name the first two states
BiPolar and TriPolar to emphasize that the regions corresponding to these
states are bounded by shortest paths between 2 or 3 points (poles). The region
in the terminal state EndGame is also bounded by 3 paths but contains no
vertices in the interior (only the points of the boundary paths), which simplifies
the search leading to capture. In particular, the three possible states throughout
the pursuit are the following:

BiPolar: Si is bounded by two shortest paths Pa,b and P ′
a,b between two points

(poles) a and b.
TriPolar: Si contains at least one interior vertex, and is bounded by three

shortest paths Pa,b, Pb,c, and Pa,c.
EndGame: Si has no interior vertices and is bounded by three shortest paths

Pa,b, Pb,c, and Pa,c.

Fig. 2. A finite state machine representing
the possible states of the pursuit and tran-
sitions between them

We initialize the pursuit by choos-
ing a triangular face (a, b, c) of the
surface, and assigning one pursuer to
each of the three (single-arc) shortest
paths Pa,b, Pb,c, and Pa,c. If the evader
lies inside the triangle face, we enter
the terminal state EndGame; other-
wise, we are in state TriPolar. The
fourth pursuer shrinks the region Si,
resulting in a smaller TriPolar re-
gion, or forces a transition to a BiPo-
lar region. In each stateBiPolar, at
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least one interior vertex is eliminated from Si. Further, each state consists of a
finite number of phases, which guarantees that the algorithm terminates in the
region EndGame.

In the following, we use ν(Si) to denote the number of interior vertices of
Si; that is, the number of vertices in Si that are not on the boundary paths.
Throughout the pursuit, the following invariant is maintained.

Pursuit Invariant. During the ith phase of the pursuit, (1) Si ⊆ Si−1, (2)
ν(Si) ≤ ν(Si−1), and if phase i−1 is in stateBiPolar, then ν(Si) < ν(Si−1),
and (3) at most 4 paths are guarded, each by a single pursuer at any time.

The first condition ensures that the region containing the evader only shrinks;
the second ensures that at least one interior vertex is removed in state BiPolar;
and the third ensures that 4 pursuers succeed in capturing the evader.

3.2 Guarding Shortest Paths

Our algorithm employs one pursuer to guard a shortest path, ensuring that any
attempt by the evader to cross the shortest path leads to capture. The key idea
behind this strategy is the “projection” of the evader along the shortest path,
defined as follows.

Projection. Given a shortest path Pa,b between two points a and b, and the
current evader location e, a point eπ on Pa,b is called the projection of e if
d(eπ, x) ≤ d(e, x), for all x ∈ Pa,b.

That is, if a pursuer p is positioned at eπ, then it is always closer than evader
to every point of Pa,b, and therefore any move by the evader crossing Pa,b leads to
capture by p on its next move. While multiple projections may exist, the pursuers
will guard a path by maintaining their location at the canonical projection of
the evader, defined as follows.

Canonical Projection. Given a shortest path Pa,b between two points a
and b, and the current evader location e, a point eπ on Pa,b is called the
canonical projection of e if d(a, eπ) = min(d(a, e), d(a, b)).

The following three lemmas establish the technical preliminaries about the
existence, maintainability, and reachability of the canonical projection. Due to
space limitation, we omit the further details and refer the reader to the full
version of the paper. Throughout, a shortest path always means the minimum
length path restricted to the current subsurface Si, and eπ refers to the unique
canonical projection.

Lemma 1. Given any shortest path Pa,b on the polyhedral surface, the canonical
projection eπ is a projection of the evader.
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Lemma 2. Suppose the current position of the evader is e, the pursuer p is
positioned at the canonical projection eπ on the shortest path Pa,b, and the evader
moves to a new position e′. Then, p can reposition itself at the new canonical
projection e′π in one move, or capture the evader if the evader’s move crossed
the path Pa,b.

Lemma 3. Consider a shortest path Pa,b on the polyhedral surface S, and sup-
pose a pursuer p is located at the endpoint a of this path. Then, after at most
L+ 1 moves, p can locate itself at the canonical projection of the evader, where
L is the (Euclidean) length of the Pa,b.

These lemmas together show that a single pursuer is able to guard a shortest
path on the surface. We now describe the pursuers’ strategy for each of the three
states: BiPolar, TriPolar, EndGame.

3.3 Pursuit Strategy for the TriPolar State

In TriPolar state, the current region Si is bounded by three shortest paths,
Pa,b, Pa,c, and Pb,c, between the three poles a, b, c. The pursuers’ strategy is to
force the game either into BiPolar or EndGame state while preserving the
Pursuit Invariant. Towards that goal, we need to introduce some properties of
shortest paths on polyhedral surfaces.

It is well-known that a shortest path is a sequence of line segments (arcs),
whose endpoints lie on the edges of the surface, and that the path crosses any
edge of the surface at most once. Thus, the sequence of edges crossed by a path,
called the edge sequence, consists of at most n edges. Given a source point a
and an edge (b, c), it is also known that (b, c) is partitioned into O(n) closed
intervals of optimality [14], where the shortest path from a to any point d in
an interval follows the same edge sequence. Let us suppose that an edge (b, c)
is partitioned into k intervals of optimality, [d0, d1], [d1, d2], · · · , [dk−1, dk], where
the edge sequence for the interval [di−1, di] is denoted as σi. Since two adjacent
intervals, say [dj−1, dj ] and [dj , dj+1], share a common endpoint dj , there are
two equal length shortest paths from a to dj , following edge sequences σj and
σj+1. Because our algorithm may guard one or both of these shortest paths,
we use a superscript to identify the associated edge sequence. In particular, the
shortest path from x to y under the edge sequence σj is denoted P j

x,y.
The following lemma shows that if the shortest paths Pa,b and Pa,c have the

same edge sequence, and Pb,c is a single arc, then the interior of the region
bounded by these 3 paths has no vertex of the surface, which implies that the
pursuit region has entered the terminal state EndGame.

Lemma 4. Suppose the current region Si is bounded by pairwise shortest paths
between the three points a, b, c, and that Pb,c consists of a single arc. Then, the
paths Pa,b and Pa,c follow the same edge sequence if and only if Si contains no
interior vertices.

Proof. Clearly, if Pa,b and Pa,c have the same edge sequence, then there cannot
be an interior vertex in Si because Pb,c is a single arc. For the converse, if Si has
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no interior vertices and Pb,c is a single arc, then Si can only contain edges that
intersect both Pa,b and Pa,c. These edges do not cross each other, and therefore
they must be crossed by Pa,b and Pa,c in the same order. �	
By the preceding lemma, if Pa,b and Pa,c follow the same edge sequence and Pb,c

consists of a single arc, then we are in the terminal state EndGame. Therefore,
assume that either the edge sequences of Pa,b and Pa,c are unequal or Pb,c consists
of multiple arcs. In both cases, the following lemma shows how to either reduce
Pb,c to a single point, which changes the state to BiPolar, or replace Pa,b and
Pa,c with shortest paths with the same edge sequence, and Pb,c with a single arc,
which changes the state to EndGame.

d0

a

dkdk/2

P 1
a,d0 P k

a,dk

Pd0,dk

P
k/2
a,dk/2

R1 R2

(a)

a

dj dj+1

P j
a,dj

P j
a,dj+1

(b)

a

dj

P j
a,dj P j+1

a,dj

(c)

Fig. 3. Illustration for the proof of Lemma 5

Lemma 5. Suppose Si is in state TriPolar, then we can force a transition
either to state BiPolar or state EndGame.

Proof. Consider the shortest path map with source a, and suppose it partitions
Pb,c into k intervals of optimality (across all of Pb,c’s arcs), [d0, d1], [d1, d2] · · ·,
[dk−1, dk] with corresponding edge sequences σ1, σ2, · · · , σk, where do = b and
dk = c. Relabel Pa,b as P 1

a,d0
, and Pa,c as P k

a,dk
, and order the paths by their

endpoints on Pb,c as follows:

P 1
a,d0

, P 1
a,d1

, P 2
a,d1

, P 2
a,d2

, . . . , P k
a,dk−1

, P k
a,dk

We leave two pursuers to guard (maintain canonical projections on) the paths

Pa,b and Pa,c, and deploy a guard on the center path P
k/2
a,dk/2

(constrained to lie

within the current region); see Figure 3(a). This path splits the original region Si

into two non-empty regions, each containing half the intervals of optimality, and
we recurse the process on the side with the evader, namely, the region Si+1. The
first two conditions of the invariant are trivially satisfied, since the evader region
can only shrink, and the third condition holds because the pursuer associated
with either the path Pa,b or Pa,c is freed up, keeping the total pursuer count
at four.

The recursion terminates when the evader is confined between two succes-
sive paths in the original ordering. In particular, if the evader is trapped be-
tween paths P j

a,dj
and P j

a,dj+1
, then we have state EndGame as shown shown
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in Fig. 3(b). On the other hand, if the evader is trapped between two paths
P j−1
a,dj

and P j
a,dj

, we have successfully transitioned to state BiPolar, as shown

in Fig. 3(c). It is clear that throughout this search, the evader remains confined
to a subsurface of Si and cannot escape without being captured, and that the
pursuit invariant is maintained. Because the path Pb,c has at most n arcs, with
n intervals of optimality each, we have k ≤ n2. Thus, in O(log n) phases, we can
force a change of state to either BiPolar or EndGame. �	

3.4 Pursuit Strategy for the BiPolar State

a

b
c

Pa,b

R1

R2

P ′
a,b

Pa,c
Pb,c

Fig. 4. An abstract illustration of the two
paths that may be guarded during state
BiPolar

We now describe how to make
progress when the search region is
BiPolar. Without loss of generality,
assume that the current region Si is
bounded by two shortest paths be-
tween points a and b, each guarded
by a pursuer. The algorithm shrinks
the region by removing at least one
vertex from the interior of Si. In par-
ticular, let c be a vertex of the surface
that lies in the interior, and consider
the two shortest paths (constrained to remain inside Si) from c to a and b. The
concatenation of these two paths splits Si into two subregions, say R1 and R2,
both bounded by three paths. (These paths can share a common prefix, starting
at c, but they do not cross each other.) Only one of these regions contains the
evader, and so by guarding Pa,b an Pa,c the state of the search transitions to
either TriPolar or EndGame depending on whether or not this region, which
becomes Si+1, contains an interior vertex. See Figure 4 for illustration. During
this transition the pursuit invariant holds because (1) R1, R2 ⊆ Si, (2) both R1

and R2 contain at least one fewer interior vertex, namely, c, and (3) at most 4
pursers are used. Thus, we have established the following lemma, completing the
discussion of the state BiPolar.

Lemma 6. If the evader lies in a BiPolar region Si, then we can force a
transition to a TriPolar or EndGame region with at least one fewer interior
vertex, and no more than 4 pursuers are used during the pursuit.

3.5 Pursuit Strategy for the EndGame State

We now describe how the pursuers capture the evader when the search region
is EndGame. First, by Lemma 5, the path Pb,c can be reduced to a single arc.
Next, by Lemma 4, since Si has no interior vertices, Pa,b and Pa,c follow the
same edge sequence. Thus, Si consists of a chain of faces, each a triangle or a
quadrilateral. For ease of presentation, we assume that all faces are triangles,
which is easily achieved by adding a diagonal to each quadrilateral. The pursuers
perform a sweep of Si, by repeatedly replacing Pb,c with the previous edge in
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the edge sequence of Pa,b and Pa,c, until the evader is trapped in a triangle each
of whose sides are guarded by a pursuer. For example, in Figure 5(a), the fourth
pursuer guards the edge (b, x1), which either confines the evader to the triangle
b, c, x1 or frees the evader guarding Pb,c.

Lemma 7. Once the evader enters the EndGame state, the 4 pursuers can
shrink the confinement region to a single triangle of Si in O(n) phases.

b

a

c

Pa,b Pa,c

Pb,c

x1x2

x3x4

x5x6

(a)
a

b

d

c

(b)

Fig. 5. Illustrating the algorithm used for capture in state EndGame

Finally, the following lemma completes the capture inside the triangle.

Lemma 8. If Si consists of a single triangle, then in O(ΔS logΔS) moves the
evader can be captured.

Proof. The pursuers progressively “shrink” the triangle containing the evader,
leading to eventual capture, as follows. Pick the midpoint of the arc (b, c), say
d, and deploy a guard on the arc (a, d); see Figure 5(b). This path splits the
original triangle into two non-empty triangles, and we recurse the process on the
triangle containing the evader. Notice that the pursuer associated with either
the path Pa,c or Pa,b is freed up, keeping the total pursuer count at four. After
logΔS applications (b, c) will be replaced with an arc of length at most one, at
which point a pursuer can capture the evader by sweeping the triangle once. At
most O(logΔS) paths of length O(ΔS) are guarded, and so this process takes
at most O(ΔS logΔS) moves. �	
We can now state our main result.

Theorem 2. On a n-vertex genus 0 polyhedral surface S, 4 pursuers can always
capture the evader in O(ΔS(n

2 logn+ logΔS)) moves.

4 Extensions and Generalizations

Our surround-and-contract technique appears to be quite general, and may be
applicable to many other settings where shortest paths are well-behaved and
where the frequency of state transitions between BiPolar and TriPolar can
be combinatorially bounded. In particular, we have the following two results,
whose details can be found in the full version of the paper.
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Theorem 3. On a n-vertex genus g polyhedral surface S, 4g + 4 pursuers can
always capture the evader in O(((gn)2 log(gn) + logΔS) ·ΔS) moves.

Theorem 4. Given a polyhedron S with n vertices, and weighted regions with
min weight ωmin and max weight ωmax, 4 pursuers can capture the evader in
O(ωmax

ωmin
· n6 ·ΔS + log((ωmax

ωmin
) ·ΔS) · ωmax

ωmin
·ΔS) moves.
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