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Abstract. Drawing a random variate from a given binomial distribu-
tion B(n, p) is an important subroutine in many large-scale simulations.
The naive algorithm takes O(n) time and has no precision loss, however,
this method is often too slow in many settings. The problem of sam-
pling from a binomial distribution in sublinear time has been extensively
studied and implemented in such packages as R [22] and the GNU Sci-
entific Library (GSL) [10], however, all known sublinear-time algorithms
involve precisions loss, which introduces artifacts into the sampling, such
as discontinuities.

In this paper, we present the first algorithm, to the best of our
knowledge, that samples binomial distributions in sublinear time with
no precision loss.

1 Introduction

Let B(n, p) be the binomial distribution of n trials and success rate p. Drawing
a random variate b from B(n, p) means that

Pr[b = k] = pk(1− p)n−k

(
n

k

)
for all k ∈ {0, 1, . . . , n}. (1)

To draw a random variate b from a binomial distribution B(n, p), one can naively
realize n Bernoulli trials of success rate p and count how many of them have a
positive outcome in O(n) time. In other words, binomial sampling can be used
as an alternative for realizing n Bernoulli trials.

Sampling variates from binomial distribution is a common procedure provided
by the GNU Scientific Library [10] and the statistical software R [22], both of
which use the algorithm Btpe proposed in [14]. These implementations have
inaccuracies, such as the discontinuity shown in Figure 1. In particular, we show
that Btpe substantially overestimates the probability of the tail of the distribu-
tion. In Figure 1, the overestimation is by a factor of 2.59, or 0.74% of the total
samples. Thus, the occurence of a rare event in Btpe cannot be trusted.

Many applications use these implementations as part of the procedures, such
as the efficient generation of random graphs from G(n, p) [3,19,4], logistic regres-
sion [9], generating virtual data sets in GLM analysis [1], generating random
data or parameters [21] and speeding up Monte-Carlo simulation system [27].
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Recently, both efficient and exact sampling algorithm for some distributions
are developed, e.g. for normal and geometric distributions [15,5] but not yet
for binomial distribution. In this paper, we present what is, to the best of our
knowledge, the first sublinear-time algorithm for drawing a sample from a
binomial distribution with no loss of precision. In particular, we show that:

Theorem 1. Given a binomial distribution B(n, p) for n ∈ N, p ∈ Q, draw-
ing a sample from it takes O(log2 n) time using O(n1/2+ε) space w.h.p., after
O(n1/2+ε)-time preprocessing for small ε > 0. The preprocessing does not depend
on p and can be used for any p′ ∈ Q and for any n′ ≤ n.

PreviousWork. Several sublinear-timealgorithmshavebeendescribed [17,7,14],
although all of these trade precision for speed. AlgorithmsBinv [14] andBg [6,14]
both run in expected O(np) time. The former requires calculating (1 − p)n; the
latter requires calculating the ratio of two logarithms. Algorithm Balias [18,14]
requires calculating

(
n
k

)
for all k in {0, 1, . . . , n} and constructing an alias table [18]

based on the calculated values. The alias table can be constructed in O(n) time
and then each variate generation can be computed inO(1) time with bounded pre-
cision. Algorithm Btpe [14] divides the binomial distribution into parts and ap-
proximates each part by an upper-bound function. To pick a variate at random,
the algorithm samples a variate following the distribution composed of the upper
bound functions and accepts it with a probability equal to the ratio of the binomial
distribution and upper bound function. The procedure is repeated if the test fails.
This skill is known as the accept/reject rule, used in [17,14,7,27].Btpe runs in sub-
linear time and is used by default in the statistical software R and GNU Scientific
Library [22,10]. Because the distribution is divided piecewise and the piece is se-
lected by an approximation to the true probability,Btpe does not exactly compute
the binomial distribution. See [2,7,12,25,13] for moreO(1)-time algorithms in real
computation model.

These algorithms run in sublinear time only if the precision of the calculations
is truncated. When full precision is used, in calculating ratios, logarithms, or
exponential functions, the time grows to at least linear. It is not clear how to
modify them to be both accurate to full precision and sublinear.

Organization. In Section 2, preliminary definitions and building blocks are
introduced. In Section 3, a simple algorithm is devised and further revised to
achieve the claimed time complexity. Then, in Section 4, we conducted a set of
experiments to compare the default algorithm used in GNU Scientific Library
with the proposed one.

2 Preliminaries

To make it easier to understand the proposed algorithms, we sketch the outline of
the algorithms and make definitions in this section. Given an input of a positive
integer n and a real number p ∈ [0, 1], the output is an integer b ∈ {0, 1, . . . , n}
selected so that Pr[b = k] =

(
n
k

)
pk(1 − p)n−k for all k ∈ {0, 1, . . . , n}; that is, a



242 M. Farach-Colton and M.-T. Tsai

sample b is drawn from the binomial distribution B(n, p) of n trials and success
rate p. We analyze algorithms under the log-cost RAM model [20]. We assume
that it takes O(1) time to do arithmetic calculations on constant number of
operands of O(log n) bits and to generate a fair binary random bit u ∈ {0, 1}.
We assume that p is rational and thus p can be represented by finite number
of digits in base two, possibly repeating. Without loss of generality, let p be
(0.a1 · · ·a�a�+1 · · · a�+r)2. If r > 0, the part a�+1 · · ·a�+r repeats; otherwise, no
part repeats. Formally, if r > 0, ai = ai−r for all i > �+ r; otherwise, ai = 0 for
all i > �.

Consider determining a Bernoulli trial T with success rate p = (0.a1a2 · · · )2,
as follows. Start by comparing a fairly-generated random bit u with a1. If u < a1,
T returns a positive outcome; if u > a1, T returns a negative outcome; otherwise
u = a1, proceed to the next digit and repeat the procedure. Then, expected O(1)
comparisons are needed.

A binomial variate b can be sampled from B(n, p) by simply checking how
many of n Bernoulli trials have a positive outcome. We can mimic the single
Bernoulli trial procedure above in which we replaced a comparison with p by
a sequence of comparisons with a fair coin. The variate b is initialized to 0.
Suppose we sample b1 from B(n, 1/2). That means that b1 trials had value 0 at
the first sampled digit and the remaining n−b1 trials had value 1. If a1 = 1, then
b = b + b1, because all b1 trials are less than p no matter what the remaining
sampled digits are. Having determined the outcome of b1 Bernoulli trials, set
n = n − b1. If a1 = 0, then n = b1, because n − b1 trials are greater than p.
We repeat this procedure until n = 0, which takes O(log n) rounds, both in
expectation and with high probability, considering that n will be roughly halved
(≤ n/2 +

√
cn lnn) in each round with probability 1−O(1/nc).

In Section 3, we show how to construct a structure S(n, c), a variation of dis-
crete distribution generating tree [16]. Both construction time and used space are
O((n log3 n)1/2). Affter which, sampling a variate from B(n, 1/2) takes O(log n)
time (matched the possible optimal bound [16]) with probability 1 − O(1/nc)
for any constant c ≥ 1. We also show how to construct S(n,∞) in O(n2) time.

Note that drawing a variate from B(n, p) by the above procedure possibly uses
B(n′, 1/2) for all n′ ∈ {1, 2, . . . , n}. It would be too slow to construct S(n′, c)
whenever we need to generate a variate from B(n′, 1/2). A possible solution
is to construct S(n′, c(n′)) for all n′ ∈ {1, 2, 4, . . . , ��n��} where c(n′) = 4c if
n′ > n1/4 or otherwise c(n′) = ∞ and ��x�� is the largest power of two no greater
than x. To generate a variate b from B(n′, 1/2) where n′ is not a power of two,
we decompose n′ into h = O(log n) powers of two ω1, ω2, . . . , ωh, generate a
variate bi from each B(ωi, 1/2), and let b =

∑
i bi. Therefore, if we have the

structures S(n′, c(n′)) for all n′ ∈ {1, 2, 4, . . . , ��n��}, generating a variate from
B(n′, 1/2) for any n′ ≤ n takes O(log2 n) time with probability 1−Pr

[⋃
i Ei

] ≤
1−∑

i Pr
[Ei] = 1−O(h/nc) = 1−O(logn/nc) where Ei denotes the event that

generating bi takes more than O(log n) time. As a result, generating a variate
from B(n, p) takes O(log3 n) time with probability higher than 1−O(log2 n/nc).
We call this simple sampling.
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Our refined sampling algorithm is based on the fact that every natural number
is sum of four square numbers [26]. However, we are not going to construct
S(n′, c(n′)) for all n′ ∈ W = {k2 : k ≤ n} because it would take too long. Instead,
we construct a much smaller set W ′ ⊂ W such that every natural number is the
sum of h numbers in W ′, where h is a multiple of 4. Let h = 16, for example,
|W ′| ≈ |W|1/2. Therefore, whenever S(n′, c(n′)) is needed and n′ /∈ W ′, we
decompose n′ into square numbers w1, w2, . . . , wh ∈ W ′, generate a variant bi
from each B(wi, 1/2), and let b =

∑
i bi. Since h is constant, generating a variate

from B(n, p) takes O(log2 n) time with probability higher than 1−O(logn/nc).

3 Exact Binomial Sampling

In Section 2, we described how generating a variate from B(n, p) can be reduced
to generating variates from a sequence of O(log n) B(n′, 1/2) with probability
higher than 1 − O(logn/nc) no matter what the precision of p is and where
n′ ∈ {1, 2, . . . , n}. In this section, we begin by showing how to construct a
structure S(n, c) for generating a variate from B(n, 1/2) in O(log n) time with
probability higher than 1 − O(1/nc). Then, we show that constructing S(n′, c)
for each n′ in a small subset of {1, 2, . . . , n} suffices to generate B(n′, 1/2) for
each n′ ∈ {1, 2, . . . , n}.

In order to sample from B(n, 1/2), we need to be careful of how many bits we
use. To see why, consider that a generated variate b has value k with probability
P [b = k] =

(
n
k

)
/2n. The value of these probabilities can vary from 2−n to

Θ(1/
√
n). Thus, if we are not careful, we end up manipulating probabilities

that take n bits to represent.
The main idea will be to construct a structure that uses fewer bits to rep-

resent the needed probabilities. In most cases, this will be enough to correctly
compute the variates. In order to compute the sample with exactly the correct
probabilities, our structure S(n, c) will change from time to time, but with low
probability, expand the number of bits it uses to calculate the sample. Therefore,
with high probability, S(n, c) will be small and fast, but occasionally we might
expand it.

Consider the event space for sampling. In order to generate a variate from
B(n, 1/2), one must pick an event ei from E = {e0, e1, . . . , en} with probability
pi =

(
n
i

)
/2n and output the chosen i as the generated variate. We decompose

each pi =
(
n
i

)
/2n into �i powers of two which sum to pi and replace each ei ∈ E

with ei1, ei2, . . . , ei�i . If eij is picked, then the generated variate is i. Each event

eij from Ê = {eij : 0 ≤ i ≤ n, 1 ≤ j ≤ �i} is selected with probability pij , each
of which is a power of two. Note that there are many different ways to decom-
pose a probability pi into powers of two, though in only one of them does each
power of two occur only once. We will consider decompositions in which some
powers of two might appear twice so that it leaves the flexibility of comput-
ing pi incrementally without worrying about carries in arithmetic operations.
The distribution on the pij is heavily biased towards a few high-probability
events, which correspond to the most significant bits of the binomial coefficients
in base two.
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We construct a power tree on Ê in order to draw an event eij from Ê with
probability pij . Let a power tree be a binary tree in which each node of depth
d is associated with a probability 2−d. The set of probabilities on the leaf nodes
of TÊ are exactly P̂ = {pij : eij ∈ Ê}, in one-to-one correspondence, in an

arbitrary order. A variate can be generated according to P̂ by taking a random,
fair root-to-leaf path in TÊ .

To construct a power tree, we start with a root node associated with proba-
bility 1 and make it an unlabelled leaf. We process each eij ∈ Ê in an arbitrary
order as follows. When processing eij , find a candidate unlabeled leaf with small-
est probability p no smaller than pij . If p = pij , label the leaf with eij . Otherwise,
replace the candidate leaf with two children, each with half the probability, and
make one leaf the new candidate. Proceed until a leaf has been labelled with eij .

Note that after processing each eij , no two unlabelled leaves have the same

probability. Therefore, if Q ⊆ Ê is the set of events we have processed so far and
pQ = min{pij : eij ∈ Q}, there are |Q| labelled leaves and at most 1+ log(1/pQ)
unlabelled leaves, so the tree has size O(|Q|+ log(1/pQ)) in total.

Lemma 1. Given an event set Ê, the power tree on Ê can be constructed in
O(|Ê|) time using O(|Ê|) space. The construction is incremental, adding one
event at a time. During the construction, if some Q ⊆ Ê has processed, both
running time and used space are O(|Q|+ log(1/pQ)).

Proof. We maintain an array of pointers, ρ0, ρ1, . . . , ρlog(1/pQ), where ρi points

to the unique unlabelled leaf with probability 2−i, if such a leaf exists. Then,
it takes O(1) time to process an event eij if ρlog(1/pij) points to an unlabelled
node; otherwise, we have to find the unlabelled leaf with smallest p no smaller
than pij by traversing the pointer array in O(log(1/pij)− log(1/p)) time. Simple
charging scheme, in which the event that consumes a leaf is charged for creating
the leaf, yields the bound.

We show that the construction never fails as follows. Let U be the set of
probabilities of unlabelled leaves. For each coming eij , the associated probability
pij ≤

∑
p∈U p. If the procedure fails as eij comes, then it means we cannot find

p ∈ U, p ≥ pij . Since each p ∈ U is an unique power of two, if each p ∈ U, p < pij ,
then

∑
p∈U p < pij , a contradiction. �

The set Ê is as large as O(n2) for the power tree of B(n, 1/2) because each pi
requires O(n) bits, as noted above. Therefore, fully constructing power tree for
B(n, 1/2), i.e. S(n,∞), takes O(n2) time. We will construct the power tree of a
set Q chosen so that it has o(n) events and its power tree has depth O(log n), but
so that the total probability of Ê−Q is polynomially small. Lemma 2 establishes
that such a set always exists. If we sample using the power tree of Q, we will
almost always reach a labelled leaf. If we reach an unlabelled leaf, we complete
the construct of the power tree of Ê to finish the sampling procedure. That
is, once a random walk reaches an unlabeled leaf, we postpone the on-going
random walk, complete the unfinished part of the power tree construction, and
then resume the random walk at the point where it is postponed. Thus, with
very high probability, we will use small space and time to sample from Ê.
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Since the size of Q depends on how we decompose pi of ei ∈ Ê, we describe the
decomposition of pi first to complete the claim that Q has small size and then
describe the motivation of pi’s decomposition. For each pi, we find two positive
numbers Hs(pi) and Ls(pi) which add to pi. The first is roughly the high-order
(c+ 1) logn bits of pi and the second is roughly the remaining (low order) bits.
Ideally, they would be exactly the high and lower order bits, but it would be
computationally expensive to find the high-order bits of

(
n
i

)
, considering the

difficulty to determine certain bit of the product of two integers [23]. As the
computation efficiency is concerned, to make Hs(pi) to be of short length and
Ls(pi) to be of small value, we let Hs(pi) and Ls(pi) have an overlap as follows.

The value Ls(pi) = pi −Hs(pi), so we only need to worry about Hs(pi). We
defer the discussion of exactly how to compute Hs(pi) until later and here note
that Hs(pi) = k · 2s for non-negative integer k and pi −Hs(pi) < 2 · 2s. When
we drop the subscript s, the default value of s = −(c + 1) logn. Note that, if
Hr(pi) for r < s is given, one can get Hs(pi) by truncating the trailing s − r
bits of Hr(pi) because Lr(pi) < 2 · 2r ≤ 2s and trailing s− r bits of Hr(pi) are
less than 2s, which add up to a value less than 2 · 2s. We will show that such
an Hs(pi) can always be selected. And the only probability that a power of two
potentially gets repeated in such a decomposition of Hs(pi) and Ls(pi) is 2

s.
The high order bits of many events are all zeros because the binomial coeffi-

cient are strongly concentrated. We define the major range where the events of
non-zero high order bits located to be C(n) = [n/2± (cn lnn)1/2] (C for center).
Trivially, the number of bits is (c+ 1) logn ∗ 2(cn lnn)1/2, so picking this for Q
is small. Lemma 2 shows that the probability is high. Because every H(pi) is a
multiple of 2−(c+1) logn, this bounds the depth of the power tree to be O(c log n).

To obtain Q, we decompose H(pi) into its binary representation for i ∈ C(n).
The following lemma completes the claim that |Q| is small. Let bit(p) be the set
of powers of two in the binary representation of p.

Lemma 2. Let P(E) be the sum of probabilities associated with the events in
E. Let Q be the set of events associated with the probability in⋃

i∈C(n)
bit(H(pi)). (2)

Then, |Q| is O((c3n log3 n)1/2) and P(Q) ≥ 1−O(1/nc).

Proof. Let Q1 and Q2 be the set of events associated with the probability in,
respectively, ⋃

i/∈C(n)
bit(H(pi)) ∪ bit(L(pi)) and

⋃
i∈[0,n]

bit(L(pi)). (3)

We have P(Q1) ≤ 2/nc by Chernoff bound [8] and P(Q2) ≤ 2(n + 1)/nc+1 by
the definition of L(pi). Because Q = Q1 ∪Q2,

P(Q) ≥ 1− P(Q1)− P(Q2) = 1−O(1/nc) (4)

as desired. Then, |Q| = (cn logn)1/2(c+ 1) logn = O((c3n log3 n)1/2). �
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We claim that H(pi) for all i ∈ C(n) can be efficiently computed. We first
show how to compute H(pi) for i ∈ C(n) from H(p�n/2�) and then show how to
compute H(p�n/2�) itself. Given the Hs(p�n/2�) for s = (c + 2) logn, Lemma 3

shows how we can compute H(pi) for i ∈ C(n) in O((c3n logn)1/2) time. In
other words, if we have the central probability of the binomial computed to
more precision, we can use that to compute the surrounding values.

Lemma 3. Given Hs(p�n/2�) for s ≤ −(c + 2) logn, it takes O((c3n logn)1/2)
time to calculate H(pi) for all i ∈ C(n).
Proof. Let �a�s ≡ �a/2s�2s. Given Hs(p�n/2�), we claim that H(p�n/2�−1) can
be obtained by truncating some trailing bits in �1 ≡ �Hs(p�n/2�) ∗ r1�s where

r1 =
(

n
�n/2�−1

)
/
(

n
�n/2�

)
= �n/2�/(�n/2�+ 1) < 1 because

p�n/2�−1 − �1 = p�n/2� ∗ r1 − �1

= (Hs(p�n/2�) + Ls(p�n/2�)) ∗ r1 − �1

= (Hs(p�n/2�) ∗ r1 − �Hs(p�n/2�) ∗ r1�s) + Ls(p�n/2�) ∗ r1
< 2s + 2 · 2s < 3 · 2s.

Then, �1 has −s bits and p�n/2�−1−�1 < 3 ·2s. If we get �′1 by truncating the last
two bits in �1, then �′1 has −s−2 bits and p�n/2�−1− �′1 < 3 ·2s+3 ·2s < 2 ·2s+2.
Hence, �′1 is a validHs+2(p�n/2�−1) and we haveH(p�n/2�−1) if s ≤ −(c+2) logn.
Similarly, we claim that H(p�n/2�−2) can be obtained by truncating some trailing
bits in �2 ≡ ��1 ∗ r2�s where r2 = (�n/2� − 1)/(�n/2�+ 2) < 1 because

p�n/2�−2 − �2 = p�n/2�−1 ∗ r2 − �2

= (�1 + (p�n/2�−1 − �1)) ∗ r2 − �2

= (�1 ∗ r2 − ��1 ∗ r2�s) + (p�n/2�−1 − �1)

< 2s + 3 · 2s < 4 · 2s

Again, we get �′2 by truncating the last two bits in �2, then �′2 has −s−2 bits and
p�n/2�−2−�′2 < 3·2s+4·2s < 2·2s+2 as desired. Clearly, p�n/2�−k−�k < (k+2)·2s
and we can calculate H(pi) for all i ∈ C(n) if s = −(c + 2) logn. Since each �′i
can be calculated by O(1) arithmetic calculations on operands of O(c logn) bits,
we need O(c) time for each �′i and thus O((c3n logn)1/2) in total. �
To compute Hs(p�n/2�) for s = −(c+ 2) logn, we exploit the idea of computing
Q; that is, consider summing up the terms of i ∈ C(n) in the equality

(
2k

k

)
=

∑
i

(
k

i

)2

≈
∑

i∈C(n)
H
((

k

i

))2

. (5)

Suppose
(

k
�k/2�

)
has been computed, we use it to compute

(
k
i

)
for i ∈ C(k) in

O((c3k log k)1/2) time by Lemma 3 and use all of them to compute
(
2k
k

)
by Equa-

tion 5. To compute Hs

((
2k
k

))
with s = 2k− (c+2) log 2k (i.e. Hs(

(
2k
k

)
/22k) with
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s = −(c+2) log 2k), we need Hs

((
k

�k/2�
))

with s = k− (c+4+1/2) logk implied

by Lemma 4 if k ≥ 2(c+7)/2. Otherwise k < 2(c+7)/2, the binomial coefficient(
k

�k/2�
)
can be computed in O(1) time because c is a constant. Consequently, for

even n, the computation of
(

n
n/2

)
can be reduced to the computation of

( n/2
�n/2�

)
;

for odd n, the computation of
(

n
�n/2�

)
could simply add

(
n−1
�n/2�

)
and

(
n−1

�n/2�−1

)
,

each of which is a case of even n. We apply this procedure to compute
(

n
�n/2�

)
recursively and the time complexity is

logn∑
k=0

O(((c + 5k/2 + 2)3(n/2k) log(n/2k))1/2) = O((n log2 n)1/2), (6)

dominated by the construction time of the power tree, remarked in Theorem 2.

Lemma 4. Let pk = H2
s

((
n
k

))
/
(
2n
n

)
with s ≤ n− (2c+ 1/2) logn. Then,

∑
k∈C(n)

pk ≥ 1− 18/n2c.

Proof.

∑
k∈[0,n]

(
n

k

)2

−
∑

k∈C(n)
H2

s

((
n

k

))
=

∑
k/∈C(n)

(
n

k

)2

(7)

+
∑

k∈C(n)
2

(
n

k

)
Ls

((
n

k

))
− L2

s

((
n

k

))
(8)

Consider the sum of sampled n values from a pool of n 0’s and 1’s without

replacement. The probability of the sum being k is qk =
(
n
k

)2
/
(
2n
n

)
. By Corollary

1.1 in [24], we have
∑

k/∈C(n) qk ≤ 2exp[−4(c lnn)/(1 + 1/n)] ≤ 2/n2c. Then,

(7)/
(
2n
n

) ≤ 2/n2c.

By definition, Ls(
(
n
k

)
) < 2 ·2s and therefore (8) ≤ 4 ·2s ·2n = 2n+s+2. Because(

2n
n

) ≥ 22n−2/n1/2 by Stirling’s approximation, (8)/
(
2n
n

) ≤ 16/n2c. Putting the
results together, we have

∑
k∈C(n)

H2
s

((
n

k

))
/

(
2n

n

)
≥ 1− 18/n2c. �

Theorem 2. To compute S(n, c), it takes O((n log3 n)1/2) time, after which,
it is stored in O((n log3 n)1/2) space. Given S(n, c), it takes O(log n) time to
generate a variate from B(n, 1/2) with probability 1−O(1/nc).

Now we have S(n, c) for generating variates from B(n, 1/2) and show how to use
it for B(n, p) as follows; that is, building a set of S(n′, c(n′)). We suppress the
term c(n′) for convience without changing the time complexity.
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Simple Sampling. generates a variate from B(n, p) for n ∈ N, p ∈ Q denoted
by (0.a1a2 · · · )2 using the structure S(n) for all n′ ∈ {1, 2, 4, . . . , ��n��}.

In Section 2, we have shown how to use B(n′, 1/2) for n′ ∈ [n] to generate a
variate from B(n, p). Because S(n′) might not be contained in the constructed
structure {S(1), S(2), S(4), . . . , S(n)}, to generate a variate from B(n′, 1/2), we
generate a variate from each of B(ω1, 1/2), . . . , B(ωh, 1/2) and add the variates,
where ωi are powers of two added to n′. Clearly, h can be O(log n′).

There are O(log n) steps in the reduction from B(n, p) to B(n′, 1/2) for
n′ ∈ [n]. Each step requires to generate a variate from B(n′, 1/2), where n′ can be
decomposed into O(log n′) powers of two. Thus, it takes O(log2 n) time to gen-
erate a variate from B(n′, 1/2) with probability 1−O(log n/nc) by union bound.
Considering that the number of steps is O(log n) with probability 1−O(1/nc),
the total running time for generating B(n, p) is therefore O(log3 n) with proba-
bility 1−O(log2 n/nc).

Refined Sampling. is as the simple sampling but selects an integer set R
such that every positive integer n′ ≤ n is a sum of j elements in R, where j
is a constant. In this way, to generate a variate from S(n′), one can generate
a variate from each of S(w1), S(w2), . . . , S(wj) and add the generated variates,
where n′ = w1 +w2+ · · ·+wj . R

′ = {k2 ≤ n : k ∈ N} is a possible candidate for
R because each positive integer is a sum of at most four square numbers [26].
However, we do not build the data structure S(n′) for all n′ ∈ R′ because the
time complexity

∑
k∈{1,4,9,...,n} O((n log3 n)1/2) = O((n2 log3 n)1/2) is too much.

A better candidate for R could be

R1 ∪R2 = {k2 ≤ n : k ∈ N, k2 ≡ 0 mod t} ∪ {k2 ≤ n : k ∈ N, k2 < t}, (9)

where t is a chosen square number. Let n′ be represented as w1t+w2. Because w1t
(resp. w2) is a sum of at most 4 square numbers in R1 (resp. R2), every integer
n′ ≤ n is a sum of at most 4× 2 numbers in R1 ∪R2. Thus, the time complexity
is reduced to O((t2 log3 t)1/2) + O((t(n/t)2 log3 n)1/2) or O((n4/3 log3 n)1/2) by
letting t = n2/3. Similarly, let n′ = w1t1+w2t2+· · ·+wh, the time complexity can

be furtherly reduced to O((n2h/(2h−1) log3 n)1/2) = O(n1/2+ε) for some constant
h and small ε > 0. To decompose each witi into four square numbers in the
corresponding set Ri in O(1) time, we preprocess a small table for lookup. The
small table is used to decompose integers no more than n1/8+ε into four square
numbers, whose construction time is bounded by O((n1/8+ε)4) dominated by the
main procedure. Therefore, there is no problem to decompose w1, w2, . . . , wh−2

because all of them are no more than n1/8+ε. For wh−1 bounded by n1/4+ε, one
can first decompose wh−1 as x+ y, where x is the largest square number smaller
than wh−1 and thus y = O(n1/8+ε) so that it can be decomposed by table-lookup
in O(1) time. Similar decomposition is applied to wh. As a result, the mentioned
constant j = 4h+ 3.

As the arguments used for the simple sampling, generating a variate from
B(n, p) takes O(log2 n) time with probability 1 − O(log n/nc) after O(n1/2+ε)-
time preprocessing.
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4 Empirical Evaluation

In this section, we conducted experiments to compare the quality of gener-
ated variates and to compare the computation time used for generating vari-
ates among the algorithms with and without loss of precision. We compare our
proposed algorithm with Btpe [14], which is the default algorithm for binomial
sampling in both R [22] and GNU Scientific Library (GSL) [10]. The implemen-
tation of GSL is used to conduct the experiments.

We generated 108 random variates from B(230, 1/2) and plotted a histogram
of outputs. Btpe demonstrated a discontinuity, as shown in Figure 1.

Our algorithm takes poly-logarithmic time. In contrast, Btpe takes approxi-
mately constant time. As shown in Figure 2, the computation time is about the
same for n ≤ 215 and increases to 3.5 times more for n = 230. When we stored
the power tree in pre-order, the running time of our algorithm improved, sug-
gesting that cache misses were to blame. Therefore, our algorithm could benefit
from more tuning.

We implemented our algorithm in C++ with GNU Scientific Library [10] and
GNUMultiple Precision Arithmetic Library [11], compiled it with G++4.63 with
optimization flag -O3. The machine we used is equipped with a Celeron G530
2.4GHz CPU and 2GB of 1066MHz RAM. The operating system is Ubuntu 12.04
Desktop. The computation time is measured by wall time, i.e., the elapsed time.
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