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Preface

This volume contains the proceedings of ISAAC 2013, the 24th International
Symposium on Algorithms and Computation, held in Hong Kong, China, De-
cember 16–18, 2013. ISAAC is a well-established annual international symposium
covering a wide range of topics in theoretical computer science.

ISAAC 2013 received 177 submissions worldwide. Each submission was re-
viewed by at least three Program Committee members, possibly with the as-
sistance of external reviewers. The Program Committee accepted 67 papers to
be presented at the conference, and special issues of Algorithmica and Interna-
tional Journal of Computational Geometry and Applications are prepared for
some selected papers among the accepted ones. The best paper award was given
to “RAM-Efficient External Memory Sorting” by Lars Arge and Mikkel Thorup.

Two eminent invited speakers, S. Muthukrishnan of Rutgers University, USA,
and Moni Naor of Weizmann Institute of Science, Israel, gave two interesting
invited talks at the conference.

“Cryptography and Data Structures: A Match Made in Heaven,” Moni
Naor.

“Market Approach to Social Ads: The MyLikes Example and Related
Problems,” S. Muthukrishnan.

The talk by Prof. Muthukrishnan was based on a paper included in these pro-
ceedings that has the same title.

We are very grateful to all Program Committee members and external re-
viewers for their excellent work in the difficult selection process. We thank all
authors who submitted their work for our consideration. They all contributed
to the high quality of the conference. Finally, we thank Conference Co-chairs
Chung-Keung Poon and Hing-Fung Ting and all conference volunteers for their
dedication that made the conference possible and enjoyable.

December 2013 Leizhen Cai
Siu-Wing Cheng
Tak-Wah Lam
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Hüffner, Falk
Im, Sungjin
Izumi, Taisuke
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Novotný, Petr
Oh, Eunjin
Okamoto, Yoshio
Ott, Sebastian
Pagh, Rasmus
Pan, Jiangwei
Park, Dongwoo
Poon, Sheung-Hung
Popa, Alexandru
Puglisi, Simon
Radoszewski, Jakub
Raghavendra, Prasad
Ramanujan, M.S.
de Rezende, Pedro
Rutter, Ignaz
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Matthew Johnson, Daniël Paulusma, and Erik Jan van Leeuwen

Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded
Degree Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Marc Lelarge and Hang Zhou

The Complexity of Finding a Large Subgraph under Anonymity
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Robert Bredereck, Sepp Hartung, André Nichterlein, and
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Tomáš Gavenčiak, Vı́t Jeĺınek, Pavel Klav́ık, and Jan Kratochv́ıl

SEFE with No Mapping via Large Induced Outerplane Graphs in Plane
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Patrizio Angelini, William Evans, Fabrizio Frati, and
Joachim Gudmundsson

Hardness and Algorithms for Variants of Line Graphs of Directed
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
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Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary,
Lhouari Nourine, and Takeaki Uno

Testing Mutual Duality of Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter

Session 5B: Fixed-Parameter Tractable Algorithms

Effective and Efficient Data Reduction for the Subset Interconnection
Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Jiehua Chen, Christian Komusiewicz, Rolf Niedermeier,
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Market Approach to Social Ads:

The MyLikes Example and Related Problems
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Abstract. A potential way to advertise on social networks is to rely
on word of mouth. What is a market approach to word of mouth social
advertising? We describe an example: MyLikes, which is a new adver-
tising platform. It lets anyone on a social network be a “publisher” of
advertisements (ads). It provides a matching market so advertisers can
find social publishers to advertise their products. Further, interestingly,
it lets the social publishers modify the ad. As a result, a single base ad
may be morphed into many. MyLikes lets publishers broadcast and com-
municate the ads to others in their social network. Finally, it provides a
mechanism for advertisers to pay the publishers based on engagement of
the social users with the ads. We describe research problems that emerge
in such a marketplace for social ads.

1 Introduction

There are established online ad markets like sponsored search and display ads.
In sponsored search, users are shown ads in response to their searches and based
on variety of signals including the searches, history and location of the users. In
display ads, users are shown ads in response to their browsing behavior based on
signals including visited websites, behavioral profiles and so on. These established
ad markets have led to a lucrative and successful online ad industry.

Our focus is on ads in social platforms. Obviously, social platforms like Face-
book, Twitter and others provide new signals for ads targeting, such as ones’
friends and followers, topics of interest, events in their life, likes, and so on. These
signals seem rich and promising, and so they could be immediately used within
established ad markets like display ads for social platforms. In addition, social
platforms provide other opportunities for ads, unique to their platform, such as
word of mouth. Social platforms let people talk to a large number of others —
grouped according to social circles or interests — directly. So, instead of getting
global celebrities to endorse a product and using broadcast systems like TV to
reach many users, social networks offer an alternative, which is to use several
social entities to each reach out to islands of users.

We focus on such word of mouth social ads. There has been prior research
focus on individual problems like finding “influential” social entities, and there is
fledgling industry around providing social entities with products so they can plug

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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them on social networks. We go beyond these and address the central question of
what would be an overall market that will enable social ads via word of mouth.

– We describe an example of a marketplace for word of mouth social ads,
namely, MyLikes.

– We present research questions of interest from optimization to machine learn-
ing and strategic problems that arise.

We hope to initiate research on market approaches to social ads.

2 Example: The MyLikes Platform

MyLikes is a word of mouth advertising platform. It has a direct recruiting
model for advertisers to find publishers via a market, who will publish their ads
to their social circle. It works on top of certain existing social mediums, such
as Twitter or YouTube. We focus on Twitter-based MyLikes. At high level, the
market works as follows.

– Parties Register with MyLikes. Any registered social user of Twitter can
register with MyLikes to be a publisher p. Any advertiser a who wishes to
advertise their product through the word of mouth may register at MyLikes
and set up an ad campaign C.

– Matching of the Two Parties. MyLikes matches publishers p’s to campaigns
C’s using multiple signals and presents each p with a ranked list L of a subset
of campaigns. p’s choose from their lists.

– Word of Mouth Advertising. p may modify the creative (ad) in the campaign
C they choose and create a sponsored post p(C) with the ad. MyLikes tweets
p(C) on behalf of p. Tweet p(C) will appear on timeline of publisher p along
with her other posts.

– Ad Engagement and Pricing. Any follower f(p) of p may interact with the
p(C), clicking or retweeting p(C) and so on. MyLikes determines a price for
the engagement, charges the advertiser a and pays the publisher p, after
taking out their cut.

There are a number of crucial details behind this high level picture that ulti-
mately determine the precise market. Examples include, how do advertisers a’s
specify their target users for campaign C’s, how is this targeting used in the
matching and pricing steps, how is the engagement different for sponsored vs
standard posts, how do advertisers control their ad intent despite the modifi-
cations by publishers, and many others. Figure 2 contains the overview of the
market. In what follows, we will describe these details.

Registration at MyLikes. Anyone with a Twitter account can become a publisher
p on MyLikes platform. First, p creates a MyLikes account. Then, she needs to
authorize MyLikes application to use her Twitter account. To do so, p has to
click on a button placed on main page of her MyLikes account, login into Twitter
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Fig. 1. The timing of MyLikes market for social ads

with her Twitter credentials. This will “attach” her Twitter account to MyLikes
account. Starting from that moment, MyLikes will be able to publish on behalf of
the user. MyLikes is also able to read tweets from p’s timeline, collect information
on the followers f(p) of p, and post tweets on behalf of p.

Any advertiser can register with MyLikes. Say advertiser a has a target audi-
ence G(a) of Twitter users they wish to reach. They set up a campaign C:

– Metadata: title, description and thumbnail
– Creative: language to use to address audience and sample posts (optional)
– Target: G(a). At this moment, G(a) can be only determined by geolocation

of users and device type (mobile or stationary), but one can posit other
languages to specify the properties of target users.

– Engagement: landing page URL
– Payment: weekly budget B and per click pay b.

Advertiser agrees to pay at most b for each eligible click. The click is eligible if it
satisfies targeting criteria, that is, user who clicked falls in G(a). The payment
for a click may be smaller than b and the total weekly payment of the advertiser
a does not exceed specified weekly budget of the campaign B. The MyLikes
platform provides advertisers with a set of tools that allows them to maintain,
modify and monitor campaigns.

The Matching. Say a publisher p accesses MyLikes. This is a recruitment op-
portunity. MyLikes considers the set of all available p’s, set of all available ad
campaigns C’s, and together with all the signals including target properties of
campaigns, behavior of p’s and their followers, and other signals in real time.
Then, p is presented a suitable subset of campaigns as ordered lists L’s. Typ-
ical ordering included ordering by revelance, newness, follower click rate, price
per click/view etc. Clearly the processing MyLikes performs to determine L’s is
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crucial to their business. This has to be strategic, balancing short term and long
term revenues of the market, with a good understanding of the various strate-
gies of the publishers and advertisers, even while modeling and understanding
the behavior of users. In the list, each campaign has a thumbnail, title, descrip-
tion, targeting criteria and estimated pay-per-click. Publisher p may choose any
number of campaigns from the list.

Word of Mouth Advertising. Say publisher p chooses an ad campaign C. p is
shown a (possibly empty) list of sample posts from advertiser a for campaign
C. p can choose any of these sample posts, can morph them to her liking or
can create her own version of the post. Once satisfied, publisher p submits it to
MyLikes. MyLikes creates a special url for each post of p which first directs user
who clicked on it to MyLikes servers, and then to the URL specified by a in the
description of C. Then MyLikes appends generated url and “- sp” tag to the
post submitted by p and creates the composite sponsored post p(C), and posts
it on Twitter on behalf of p. Tweet p(C) will appear on timeline of publisher p
along with her other posts and is visible to the followers f(p) of p.

MyLikes registers a short URL at bitly.com for each sponsored post. A click
on ad C’s short URL is first sent to Twitter which redirects it to bitly.com,
which in turn directs user to MyLikes servers. From MyLikes servers, user is
redirected to C’s landing page. Detailed are in Figure 2.

Fig. 2. 3-hop redirect system used by MyLikes for click accounting

Engagement and Pricing. Users see p(C) on the timeline of Twitterers they
follow. Users may not be able to tell the difference between a sponsored vs
standard non-sponsored post visually, unless they know the meaning of the suffix
“- sp” and are perspicacious and see it. As a result, thus far, MyLikes can work
potentially independent of Twitter without any explicit help or support from
it. In some cases publisher decides and deliberately removes the suffix: in order
to get paid publisher only needs to keep the URL from the post intact. There
are a variety of ways for the publisher to do this in the platform and likewise, a
variety of ways for MyLikes to detect that and deter such behavior.

bitly.com
bitly.com
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Users may engage with p(C) in many ways. For example, a follower f(p) of p
may click on the tweet p(C). She may also retweet it, and some follower f(f(p))
may click on p(C), and so on. When some user clicks on p(C), MyLikes can track
the event via their URL for accounting purposes, and forward the click to the
campaign URL.

Pricing depends on the user u who clicked on p(C). Since MyLikes can track
clicks, MyLikes can determine (or estimate) if u meets targeting criteria G(a).
If yes, MyLikes determines a payment q ≤ b of C and the amount is paid to
publisher p. This payment q may vary over time for the same p and C, may
depend on u and p, or auction involved in the list of campaigns shown to p.
Similarly to advertisers, MyLikes provides a dashboard for publishers to follow
performance of their sponsored posts.

2.1 Observations on the Market

Here are some observations on the market for social ads, such as MyLikes.

– Advertisers specify the target users they wish to reach, and not the inter-
mediate publishers they wish to have advertise their products. This is an
interesting decision that removes the burden of advertisers thinking about
“how” to reach their audience, and instead shifts the burden to the platform
to find the most effective matching of publishers that will result in reaching
the target audience.

– Publishers can rewrite creatives or write a new creative. This is a significant
departure in the ads industry where brands control the creative. The insight
is that each publisher knows their audience and crafts or morphs the ads to
be suitable for their followers. It will be difficult for the advertiser to achieve
this effect on their own, of thousands of smart, incentivized intermediaries
writing versions of ads suitable to islands of users. This can be thought of
as crowd sourcing the creation of ads.

– One approach to do word of mouth dissemination is to mine the data to
identify the “influential” entities. But in the market approach, no particular
model of influence is baked in, either in campaigns or in the platform. Em-
pirical and predicted effectiveness is used to focus publishers’ attention on a
list L of ads, but each publisher gets to pick their campaigns. Being selfish
agents, they will strategize in ways that may not fit any succinct model of
influence. For instance, a publisher may let a lucrative ad campaign go if
they thought their followers have seen a lot of ads recently or if their fol-
lowers will likely overlap with a different publisher that they think will pick
up this campaign etc. Such strategic behavior from each potential publisher
will determine the ultimate success of this market.

– In any word of mouth advertising platform, one can not guarantee that ad
reaches only the target audience. Each intermediary or publisher p reaches
that audience, some of whom will match G(a) and others will not. MyLikes
design gives the platform the access to followers information so that from
their profile and behavior, MyLikes can estimate the part of the audience
that does not satisfy G(a).
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– The pricing model is simple. A publisher p who posts a sponsored post gets
paid not only for all the users who hear from them directly and click on the
sponsored post, but also others who do that but due to retweeted posts, even
recursively. While one can debate, research and try out different schemes for
compensating the intermediate publishers in chains that led to users’ clicking
on a sponsored post, the basic design choice is elegant and interesting.

– Unlike sponsored search and display ads where the platform can control the
number of impressions (and also the number of clicks) of an ad and hence
guarantee not exceeding the budget, the social platform has an inherent chal-
lenge. Once a campaign begins as a sponsored post, the post may get clicked
on any number of times, possibly even after retweeting. So, if one charges
per click, at some point, the budget will be exhausted and the campaign can
continue to generate impressions and clicks, without getting charged.

– There are certain challenges. For example, what if an advertiser finds one
of the publishers of their ad to be unsuitable or finds the sponsored post
unsuitable to their brand. This can be controlled by quickly detecting and
eliminating offending creatives and publishers. Also, this social market, by
working independent of Twitter, is unable to track the number of impressions
of an ad. Help from Twitter will help address these challenges.

3 Overview of Novel Research Directions

In what follows, we provide an overview of research problems that arise in word
of mouth social ad markets.

Strategy Space. Consider an advertiser a who has a true underlying value v per
user engagement, true budget B∗ in mind and true target G(a)∗. Advertiser has
many strategies available to them, reporting a bid b, budgetB and targetG(a) —
all possibly different from the true quantities — and experimenting with multiple
campaigns. By misreporting these parameters, the advertiser might benefit. For
example:

– Say a misreports G(a) to be G′(a) and for the same budget, reach some from
G′(a) but also a large number of those in G(a) for no additional cost as a
consequence just because of the overlap of G(a) and G′(a) in the broadcast
communication platform.

– Say a reports B lower than B∗. Publishers p may still be tempted, but p will
exhaust the budget soon. The tweet will still remain in the system and will
be clicked on and retweeted by many, for which a will not have to pay.

– Say p chooses a campaign C to sponsor. p can modify it to tune the engage-
ment of any subset of its followers to C.

Hence, underlying mechanisms in social ad markets have to contend with such
strategies.
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Learning and Estimation. There are many parameters that need to be learned.
This includes

– For p and G(a), the estimated number of impressions, clicks, retweets and
other engagements. p’s need these to figure out if they should choose to tweet
a campaign and a’s need these to design their campaigns.

– For each p and campaign C of some advertiser a, the rate at which the
above quantities accumulate. Since user engagement happens potentially in
the future, the platform needs these estimates to match ads to publishers
based on their potential leftover budget.

These items have be to learned as statistical quantities without regard to the
strategies of players, or as e.g. regret learning, as online estimations in presence
of strategic agents. Further, feedback from users such as click on retweets arrives
delayed over time, and hence exploration and estimation has to work in large
time scales.

Auction/Allocation/Optimization Problems. There are three major players: ad-
vertiser, publisher and the market platform.

– The publisher has to determine the series of ads to promote and optimize
both short and long term revenue and satisfaction of their followers.

– The advertiser has to consider v, B∗ and G∗(a)’s and construct ad campaigns
in order to maximize their profit or brand goals, while cognizant of the other
advertisers in the market.

– The platform needs to select a small set of a’s to show to p, rank them into
an ordered list, determine a pricing for user engagement on each, and so on.

These problems have been studied extensively in sponsored search and display
ads markets, and studying them in markets for social ads leads to new research
problems.

Consider a publisher p. Assume that each follower f(p) is a node in a bipartite
graph, as is each potential campaign C. We will use G(C) as the target audience
set of C, using it to denote both the set of features of the users and the set of
users with those features. Then, there is an edge (f(p), C) if f(p) ∈ G(C). We
can also assume that for each edge (f(p), C), p knows the quality of engagement.
This defines a weighted bipartite graph, similar in spirit to sponsored search and
display ads. Now we have a few departures. C’s arrive online or can be assumed
to be may be known a priori for benchmarking purposes as is standard in those
markets. In social ad markets, since a publisher may tweet more than once for any
campaign, we also have an intermediate model where the campaigns that have
arrived thus far are known and persistent, but the others are online. A bigger
departure is that pmay morph the campaign ads strategically to tune the quality
of edge (f(p), C) in a joint way among groups of f(p)’s. Another big departure is
that p has to solve a production problem. Knowing the arrival estimates of C’s,
the tweet consumption habits of their f(p)’s and the graph above, at what (say
periodic) rate should p tweet sponsored posts, and during each tweeting, which
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and how many sponsored posts should p tweet and how should they be morphed
and targeted? One can formulate a suitable objective function and solve the
offline or online versions. In contrast, sponsored search and display ads markets
typically study yield optimization which for a given inventory determines which
ads to place or procure, and exogenizes the production of inventory [5,1].

Consider an advertiser a with true budget B∗, target audience G∗(a), and
true value v per engagement v that is identical for all engagements from the
target. a needs to set up campaigns C1, . . . , Ck for some k, each with its budget
Bi, bid bi and target G(Ci) such that the total budget is no more than B, and
the engagement from G∗(a) is optimized. This is akin to budget optimization in
sponsored search and display ads markets [4]. At the high level, one commonly
approaches this as a best response problem given summary of the impact of
other campaigns in the market, which ultimately becomes knapsack problems
given estimates of performance of each campaign Ci. In social ad markets, the
departure happens when one wishes to optimize not the total impressions or
clicks for

∑
i |G(Ci)|, but rather say their union, |

∑
iG(Ci)|. Another departure

occurs when a considers negative audience. Each campaign Ci with target G(Ci)
reach an audience T (Ci) that overlaps with G(Ci) but also contains others and
generates engagement from an unintended audience. It is reasonable to model
a negative audience N(Ci) ∈ T (Ci), N(Ci) ∩ G(Ci) = φ, and a then needs to
optimize over both G(Ci) and penalize for N(Ci)’s. This leads to potentially
hard variants of broad matching problems in sponsored search [3].

Consider the market. The market has a bipartite graph as well. Each publisher
p is a node in the graph, as is each ad campaign C. For each edge (p, C), the
market knows the engagement numbers for targetG(C) among the followers f(p)
of p. The problem of determining which campaigns to present to the p’s with
both short term and long term revenues in mind is an ad allocation problem.
There is a nice literature on ad allocation problems as they arise in sponsored
search and display ads, and their formulation as online matching problems with
possibly sub modular welfare functions [7,8]. In social ad markets, both C’s and
p’s arrive online, C’s persist and p’s may arrive several times, and this departs
from the online arrival of perishable impressions in sponsored search and display
ads markets. Another departure is that the overall metric optimize may not be a
function of the total engagement from each p, but in terms of the union of users
in f(p)’s which induces set union based objectives. Also, each occurrence of p is
related to other occurrences, and this induces graph constraints on one of the
partitions. Most crucially, ad allocation has to be solved in presence of strategies
of p’s. This does not have an immediate analogy in ad allocation problems in
sponsored search and display ads where users (impressions) are not thought to
be strategic.

One approach to ad allocation is repeated auctioning with some budget ad-
mission control on top. Then the question is what auctions are suitable. It is
natural to assume that when a publisher arrives, all applicable campaigns can
be considered and some version of Generalized Second Price (GSP) auction may
be run, as in sponsored search [2,13]. The departure in social ad markets is that
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p chooses a campaign strategically, in contrast to sponsored search where users
click on ads based on their utility to them. This leads to new modeling and
formulation of the auctioning problem.

Each of the above directions can be abstracted into concrete problems that
are open in theory.

4 Related Work

There is considerable literature on ad campaigns in sponsored search and display
ads, and in particular on the use of keywords, websites and user profiles in
these platforms [2,13,5,11], as well as real time exchanges. Some open research
problems are in [9,10].

In social networks, display advertising is prevalent. However, ads are shown to
users using additional signals drawn from the social network, e.g., connections,
interests, etc.. Such additional information is believed to be valuable http://

techcrunch.com/2013/06/11/salesforce-facebook-ads-benchmark.
Our focus is on word of mouth marketing. There is an industry that provides

products to certain individuals and lets them promote the product. An under-
lying problem is finding the influential people to target. There are number of
models for influence and finding sets of influential people in these models is often
hard [12,6].

Instead we focus on market methods. Besides Mylikes, there are other
examples, such as http://ad.ly/, http://sponsoredtweets.com/, and
http://revtwt.com/.

5 Concluding Remarks

We described a market approach to social ads, and the broad class of research
problems that arise. We believe this will be an interesting research agenda for
the community. Exending this approach to work over other social platforms such
as YouTube and Facebook brings up other interesting issues too.
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Abstract. Polygons are a paramount data structure in computational
geometry. While the complexity of many algorithms on simple polygons
or polygons with holes depends on the size of the input polygon, the
intrinsic complexity of the problems these algorithms solve is often re-
lated to the reflex vertices of the polygon. In this paper, we give an
easy-to-describe linear-time method to replace an input polygon P by a
polygon P ′ such that (1) P ′ contains P , (2) P ′ has its reflex vertices at
the same positions as P , and (3) the number of vertices of P ′ is linear in
the number of reflex vertices. Since the solutions of numerous problems
on polygons (including shortest paths, geodesic hulls, separating point
sets, and Voronoi diagrams) are equivalent for both P and P ′, our al-
gorithm can be used as a preprocessing step for several algorithms and
makes their running time dependent on the number of reflex vertices
rather than on the size of P .

1 Introduction

A simple polygon is a closed connected domain in the plane that is bounded
by a sequence of straight line segments (edges) such that any two edges may
intersect only in their endpoints (vertices), and such that in every vertex exactly
two edges intersect. Let P be a simple polygon and let H1, . . . ,Hk be a set of
pairwise-disjoint simple polygons such that Hi is contained in the interior of P
for 1 ≤ i ≤ k. Then the closure Q of P \

⋃
1≤i≤kHi is called a polygon with

holes. The polygons Hi are called the holes of Q, and the vertices and edges
of Q are the vertices and edges of P and all Hi, respectively. We regard P and Q
as closed sets, i.e., they include their boundary. All polygons we consider are
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either simple polygons or polygons with holes. A vertex of a polygon is reflex
if its inner angle is larger than 180◦. Given a polygon P with n vertices, the
geodesic path πP (p, q) between two points p and q of P is defined as the shortest
path that connects p and q among all the paths that stay within P . The length
of that path is called the geodesic distance. For any pair of points in P , such a
path always exists and, when P is simple, is unique. Moreover, such a path is
a polygonal chain whose vertices (other than p and q) are reflex vertices of P .
When the path πP(p, q) is a straight line segment, we say that p sees q (and vice
versa).

We say that two polygons P and P ′ have the same reflex vertices if for any
reflex vertex v ∈ P there is a reflex vertex v′ ∈ P ′ at the same point in the plane
and vice versa. We say that P ′ subsumes P if P and P ′ have the same reflex
vertices and P ⊆ P ′. See Fig. 1 for examples.

Fig. 1. Simple polygons (hatched) drawn on top of subsuming polygons (solid)

Observation 1. Let P ,P ′ be two simple polygons such that P ′ subsumes P.
Then, for any p, q ∈ P we have πP(p, q) = πP′(p, q).

For algorithms that solely rely on geodesic paths inside P , the output will re-
main equivalent if we replace P by P ′ in the input. It is therefore desirable to
construct a subsuming polygon P ′ such that (1) P ′ has few vertices and (2) the
construction can be done in time linear in the size of P . For the creation of a
subsuming polygon of minimal size, one has to connect the reflex vertices by
pairwise non-intersecting paths in the union of the exterior and the boundary of
the original polygon. Guibas, Hershberger, Mitchell, and Snoeyink [14] address
various aspects of the problem of approximating polygonal paths and polygons
by simpler ones. They show that the problem of finding a minimum link simple
polygon (of a given homotopy class) having its boundary inside a given region R
is NP-hard. In this paper, we show the following result.

Theorem 1. For any polygon P (possibly with holes) of n vertices out of which
r > 0 are reflex, there exists a polygon P ′ with O(r) vertices that subsumes P.
Moreover, P ′ can be computed in O(n) time and will have the same number of
holes as P.
Before giving the proof of Theorem 1 in Section 3, we review some basic prop-
erties of pointed pseudo-triangulations (or geodesic triangulations) in Section 2.
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Section 4 gives an overview of the various applications of our result. In Section 5
we summarize our approach and give a short account on the open problem of
computing an optimal subsuming polygon. Due to space constraints, the proofs
of some claims are deferred to the full version of the paper [1].

Related Work

We follow the common aim of relating the time and space complexity of algo-
rithms on polygons not only to the input size, but also to the number of reflex
vertices. This is often a more significant parameter for the actual difficulty of the
problem instance. Hertel and Mehlhorn [18] give an algorithm for triangulating
a simple polygon of n vertices, r of which are reflex, in O(n log r) time. Bose et
al. [8] give a Θ(m + n log r) algorithm for computing a geodesic ham-sandwich
cut of two given sets of m points in a simple polygon with r reflex vertices.

A related way of giving a more fine-grained analysis of algorithms on polygons
is by expressing its complexity in the number of edges in the visibility graph (i.e.,
the number of point pairs that see each other), see for example [11, p. 68]. Note
that, e.g., for computing the minimum weight triangulation of a simple polygon,
the currently known worst case appears when there are no reflex vertices [7].

The term “polygon simplification” is also used in connection with operations
that are used to compress polygons and to reduce noise in the representation.
A well-known algorithm to smoothen polygonal chains is the Douglas-Peucker
algorithm [10]. Guibas et al. [14] address several variations of the approach to
fatten existing polygonal chains and approximate the chain inside the fattened
region. There also exists work on constructing simple polygons that contain given
ones and fulfill certain properties, as a generalization of the convex hull of simple
polygons [4]; the main objective there is to approximate the shape.

2 Pseudo-Triangulations

In this section, we recall several properties of pseudo-triangles and pointed
pseudo-triangulations of simple polygons. For details on pseudo-triangulations
in various contexts see the survey by Rote, Santos, and Streinu [24].

A pseudo-triangle is a simple polygon with exactly three convex vertices.
The three convex vertices are the corners of the pseudo-triangle, and the three
polygonal chains between the corners are called the side chains. Note that a side
chain might consist only of one edge.

A pseudo-triangulation of a simple polygon P is a partition of P into pseudo-
triangles, such that the union of the vertices of the pseudo-triangles is exactly
the vertex set of P . A vertex v of a pseudo-triangulation is called pointed if it
is incident to a face in which the angle at v is larger than 180◦. In a pointed
pseudo-triangulation every vertex is pointed. Throughout this work, we are only
concerned with pointed pseudo-triangulations. It can be shown that a pointed
pseudo-triangulation of a simple polygon with c convex vertices has c−2 pseudo-
triangles and adds c−3 diagonals to the polygon (see, e.g., [24]). Our main result
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heavily relies on that fact. Guibas et al. [13] showed that, given a vertex v of a tri-
angulated simple polygon P , the set of all shortest paths between v and the ver-
tices of P (i.e., the shortest path tree of v) can be constructed in linear time (this
algorithm was later simplified by Hershberger and Snoeyink [17]). The union of
all these shortest paths gives a pointed pseudo-triangulation of P . Hence, given
a triangulation of a simple polygon P , a pointed pseudo-triangulation of P can
be constructed in linear time.1

Let ∇ be a pseudo-triangle. The line � bisecting the angle at any corner of ∇
separates the two adjacent side chains C1 and C2, and will leave ∇ through the
third chain C3. The bisecting line �′ of the angle of a second corner, say, the one
joining C1 and C3, separates C1 and C3. Therefore, � and �

′ intersect inside ∇
and hence separate C1 from C2 and C3. This allows us to make the following
basic observation.

Observation 2. For any side chain C of a pseudo-triangle ∇, the bisectors of
the angles at the corners of C define a wedge that separates C from the remaining
boundary of ∇.

We call this wedge the separating wedge of the side chain. Observation 2 is the
crucial property of pseudo-triangles that we will use in the next section.

3 Proof of the Main Theorem

We call a simple polygonal chain C hull-honest if it is completely contained in the
boundary of its convex hull CH(C). We call a simple chain C = 〈v1, v2, . . . , vk〉
simplifiable, if it is hull-honest and if the ray r(v1, v2) (i.e., the ray from v1
through v2) and the ray r(vk , vk−1) intersect. See Fig. 2. Note that if a chain is
simplifiable, then any of its subchains is simplifiable as well. For any simplifiable
chain C of vertices v1, v2, . . . vk we introduce an operation called the simplifica-
tion of C as follows: If k ≤ 3 then C remains unchanged. Otherwise, consider
the rays r(v1, v2) and r(vk, vk−1). As k > 3, these two rays intersect at a point
m not on the chain. In that case, we replace C by the chain C′ = 〈v1,m, vk〉.

m

v1
vk

vk
vk

v1
v1

Fig. 2. A chain that is not hull-honest (left), a hull-honest chain (center), and
a simplifiable chain (right)

The basic idea of our construction is to simplify long convex chains along the
boundary of P . The main challenge is to avoid that the edges introduced by the
simplification intersect with the remaining boundary of the resulting polygon.

1 The connection between pointed pseudo-triangulations and the shortest path tree
was mentioned by Speckmann and Tóth [25]; the concept of pseudo-triangulations
has been developed after the writing of [13].
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Lemma 1. All the side chains of any pseudo-triangle are simplifiable. When
simplifying an arbitrary number of pairwise interior-disjoint subchains, the re-
sulting polygon is again a pseudo-triangle, and, in particular, its boundary is not
self-intersecting.

Using this result we can now prove our main theorem.

Proof (Theorem 1). We first consider the case where P is a simple polygon with
at least one reflex vertex. Let CH(P) be its convex hull (which can be computed
in linear time using, e.g., Melkman’s algorithm [19]). The set CH(P) \ P is the
union of (the interiors of) simple polygons whose interiors are pairwise disjoint.
We call these polygons the pockets. Each pocket Pi is defined by exactly one
convex hull edge, which is not part of P and is called a lid edge, and a subchain C
of the boundary of P . The ci convex vertices of a pocket therefore consist of the
reflex vertices of P along C and the two vertices of the lid edge. Thus, a pointed
pseudo-triangulation of Pi has ci − 3 diagonals. We call the lid edges and the
pseudo-triangulation diagonals the support edges. For p pockets, the number of
support edges is p+

∑p
i=1(ci − 3) = p+ r + 2p− 3p = r. Since the only vertices

possibly shared by two pockets are the convex hull vertices, we can construct
a pointed pseudo-triangulation of each pocket in accumulated O(n) time for all
pockets. See Fig. 3 for an example of a pseudo-triangulated pocket.

Fig. 3.A pocket and its pointed pseudo-triangulation. Support edges are drawn dashed.

Consider a pocket Pi and a pointed pseudo-triangulation T (Pi) of Pi. A side
chain of a pseudo-triangle of T (Pi) consists of convex chains of P , possibly
separated by support edges. Note that any vertex of P that is not on CH(P)
is clearly part of a side chain of at least one pseudo-triangle of T (Pi) in some
pocket Pi of P . For each pseudo-triangle in every pocket of P we simplify all
maximal subchains of its side chains that do not contain support edges. Due to
Lemma 1, the resulting polygon is again simple and subsumes P .

Observe that CH(P) consists of convex chains of P , possibly separated by lid
edges. Unlike the maximal convex chains inside pseudo-triangles, there might
exist a maximal convex chain (not containing lid edges) C = 〈vi, . . . , vj〉 on
CH(P) that is not simplifiable. The reason for this being, that the turn of the
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chain is at least 180◦, i.e., the rays r(vi, vi+1) and r(vj , vj−1) do not intersect.
However, such a chain C appears at most once on P and can be split into two
simplifiable parts with a common vertex v∗.

It remains to count the number of convex vertices of the resulting polygon P ′.
To this end, we charge the convex vertices of P ′ either to reflex vertices or to
one of the r support edges. Let C = 〈vi, . . . , vj〉 be a maximal convex chain not
containing support edges of P ′. Each of the two end points of C is either a reflex
vertex of P (or v∗), or end point of a support edge, or both. If vi is the end point
of a support edge e, then we charge C to e. Otherwise, we charge C to the reflex
point vi (or to the special point v∗). Observe that each end point of a support
edge can be at most once a starting point (vi) of such a maximal convex chain
C of P ′. The same is true for each reflex vertex of P (and v∗). Thus, P ′ consists
of at most 2r + r + 1 maximal convex chains.

Each such maximal convex chain of P ′ consists of at most three vertices that
might all be convex in P ′. Observe though, that the last vertex vj of a chain
C is either a reflex vertex or also the first vertex of another maximal convex
chain C′ = 〈vj , . . . , vk〉 of P ′. Hence, we need to count only at most two convex
vertices per chain. Therefore, P ′ has at most 6r + 2 convex vertices.

Finally, observe that we can apply the same strategy to a polygon P with
holes Hi by considering each hole as a simple polygon itself. Recall that our
approach simplifies a polygon, preserving geodesics inside the polygon. We in-
dependently pseudo-triangulate the interior of each hole Hi (in time linear in
the number of vertices of Hi) and apply the simplification strategy. For each Hi

we obtain a polygon whose complexity is proportional to the number of convex
vertices of (the polygon) Hi and preserves geodesics outside Hi (i.e., paths that
considerHi as an obstacle). Thus, the resulting simplification preserves geodesics
inside P . As each convex vertex of Hi is a reflex vertex of P , the complexity of
this simplification will be proportional to the number of vertices that are reflex
in P . 	


Remark. Note that with this process we can explicitly give the coordinates of P ′.
If the coordinates of the vertices of P are rational, then the coordinates used
for P ′ are rational as well. Moreover, explicitly representing these vertices needs
at most a constant times the number of bits used by input vertices. Alternatively,
we can store the simplification in an implicit form: we store the first and last
vertices of each simplified chain, allowing an easy identification between each
connected component of P ′ \P and the simplified chains. In either case, at most
O(r) space is needed (for constant size vertex representation).

While our result is asymptotically optimal, we do not construct a subsuming
polygon with the minimal number of vertices. Given a polygon Q with h holes,
Guibas et al. [14, Theorem 5] show how to construct a simple polygon P with its
boundary insideQ such that P contains all holes and has only O(h) more vertices
than the (probably non-simple) optimum. We note that, after knowing that the
number of vertices of a minimal subsuming polygon is in O(r), also the method
by Guibas et al., after careful modification, could be used for constructing a
subsuming polygon within the given bounds when applying it to each pocket.
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However, our constructive proof of the bound gives a straight-forward algorithm
that can be implemented using standard tools used for visibility problems in
simple polygons.

4 Applications

Let A be an algorithm that receives a polygon P (and potentially other input I).
We say that A is subsuming if the result of executing A with input P and I is
equal to the result obtained when the input is P ′ and I, where P ′ is a polygon
that subsumes P . Note that, if A is subsuming, so will any other algorithm that
solves the same problem (thus we say that the problem is simplifiable).

Theorem 2. Let P be a polygon of size n with r reflex vertices and let I be
additional input of size m. Let A(P , I) be an algorithm that solves a simplifiable
problem and runs in T (n,m) time using S(n,m) space. Then, A(P , I) can be
modified to run in O(n+ T (r,m)) time and O(n+ S(r,m)) space.

In the following we present several applications for Theorem 2 which show the
versatility of our approach. Most of these problems can be stated in terms of
shortest paths, which immediately implies that the problems are simplifiable.
For each task, we briefly state the problem, mention the (to the best of our
knowledge) fastest existing algorithm, and explain how our approach helps to
reduce the running time.

4.1 Shortest Paths

Computing the shortest path that avoids a series of obstacles and connects two
given points belongs to the most fundamental problems in computational geome-
try. When looking for the shortest path between two given points inside a simple
polygon P of size n, the currently best known algorithm is due to Guibas and
Hershberger [12]: they provide a method that, after an O(n) time preprocess-
ing, can report the geodesic distance between any two points in P in O(log n)
time. If the geodesic is to be reported, their method needs O(k + logn) time
instead, where k is the number of vertices of the path. By applying our polygon
simplification strategy, we reduce the query time to O(log r).

Corollary 1. We can preprocess a simple polygon P of n vertices out of which
r > 0 are reflex in O(n) time and space, such that for any two points p, q ∈ P
we can determine their geodesic distance |πP(p, q)| in O(log r) time. Moreover,
the geodesic path can be reported in O(k + log r) time, where k is the number of
vertices of πP(p, q).

Many variations of the above problem have been studied in the literature (see [21]
for a survey). Among several results, we highlight the algorithm of Hersh-
berger and Suri [16] for computing shortest paths in the case where holes are
also present. The running time of their preprocessing algorithm is bounded by
O(n log n), which can again be improved by our approach.
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Corollary 2. We can preprocess a polygon P with holes of n vertices out of
which r > 0 are reflex in O(n+ r log r) time and space, such that for any point
p ∈ P we can determine the geodesic distance |πP (p, q)| with respect to a fixed
point q ∈ P in O(log r) time. Moreover, a geodesic path can be reported in
O(k + log r) time, where k is the number of vertices of πP(p, q).

Shortest path computation has also been studied in other metrics, like, for ex-
ample, the L1 metric [20]. Although the proposed algorithm claims a running
time of O(n log n), it is easy to see that convex vertices only contribute a linear
fraction to the running time. Thus, the running time of the algorithm in [20] can
be bounded by O(n+ r log r) using a simple counting argument.

4.2 Geodesic Hull

A set S ⊆ P is called geodesically (or relative) convex if and only if for any
p, q ∈ S, it holds that their geodesic πP(p, q) is in S. The geodesic hull of a set
S ⊆ P is defined as the (inclusion-wise) smallest geodesically convex set that
contains S.

Given a set S of m points and a simple polygon P of n vertices, Toussaint [27]
studied the problem of determining whether S is geodesically convex, and—
if not—computing its geodesic hull. The proposed algorithm runs in O((n +
m) log (n+m)) time, which we can reduce with our approach.

Corollary 3. Given a simple polygon P of n vertices out of which r > 0 are
reflex, we can compute the geodesic hull of a given set S of m points in the
interior of P in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.

4.3 Separating Point Sets

Given two sets R and B of m points in R2 and a geometric object ζ (usually
a line) that partitions the plane into two components, we say that ζ separates
R and B if each component of the plane only contains elements of one of the
two sets. The extension of separability to polygons with holes was studied by
Demaine et al. [9]. They showed that finding the minimum number of chords
that separate the two sets inside a polygon with holes is NP-hard.

However, if P is a simple polygon, the problem becomes easier: in [9] the
authors give necessary and sufficient conditions for the existence of a separating
geodesic in simple polygons, which results in an algorithm that runs in O((n +
m) log (n+m)) time to determine the separability of R and B. The combination
of their result with our simplification technique reduces the dependency in n.

Corollary 4. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and two sets R and B of m points each, we can determine whether or
not R and B are separable by a geodesic (and find a separating geodesic, if any
exists) in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.
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4.4 Triple Orientation

Many algorithms for point sets in the plane only use the orientations of point
triples, i.e., a ternary predicate p(a, b, c). In analogy to unconstrained point sets,
the orientation of a point triple inside a simple polygon is defined via the order
in which the points appear on the geodesic hull of the triple [2].

Corollary 5. We can preprocess a simple polygon P of n vertices out of which
r > 0 are reflex in O(n) time and space so that, for any three points a, b, c ∈ P,
we can determine their orientation in O(log r) time.

In [2], it was shown that each point set in a simple polygon corresponds to
an abstract order type, a generalization of point set order types in the plane
(roughly speaking, an order type is an equivalence class of point sets w.r.t. the
predicate p). Algorithms that operate on abstract order types can be applied
in this setting, using O(log r) time per orientation test. For example, using the
results of [3] one can compute a halving geodesic through a given point of a set S
of m points, and also the geodesic hull edges stabbed by (the extension of) a
geodesic through two given points in O(n +m log r) time.

4.5 Voronoi Diagram

Voronoi diagrams are another fundamental data structure in computational ge-
ometry, hence, it is no surprise that the geodesic variant was studied in the late
80s [5]. Since then the algorithms have been improved, and the currently best al-
gorithm is due to Papadopoulou and Lee [23]. The furthest-site Voronoi diagram
has also been studied in geodesic environments [6]. The fastest algorithms for
computing either diagram run in O((n+m) log (n+m)) time, and use O(n+m)
space [6,23]. It is easy to see that, for any point q ∈ P , its nearest or furthest
site (w.r.t. geodesic distance) will be the same in P and in any polygon that
subsumes P . Thus, in principle our approach can be used. Since the boundary
is part of the Voronoi diagram, some post-processing will be necessary for this
problem.

Corollary 6. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and a set S of m sites, we can compute the nearest- and furthest-site
geodesic Voronoi diagram of S with respect to P in O(n + (m + r) log(m + r))
time using O(n+m) space.

4.6 Geodesic Diameter, Median, and Maximum Distance

Given a set S of n sites in a simple polygon P , the geodesic median is the site
of S that minimizes the maximum geodesic distance to points of S. The geodesic
diameter of S is the maximal distance between any two sites of S. If we are given
two sets of sites S1 and S2 instead, their maximum geodesic distance is defined
as the largest distance between points of different sets. Toussaint [27] introduced
these concepts and gave algorithms on how to compute them. The running times
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of the proposed algorithms range between O((n+m) log(n+m)) and O(n2+m2).
As pointed out by Toussaint, these problems can also be solved by computing the
furthest-site geodesic Voronoi diagram and making O(m) queries. If we simplify
the polygon before making the queries, we obtain the following result.

Corollary 7. Given a simple polygon P of n vertices out of which r > 0 are
reflex, and two sets S1, S2 of m sites, we can compute the geodesic median, the
geodesic diameter of Si (for i ≤ 2), and the maximum geodesic distance between
S1 and S2 in O(n+ (m+ r) log(m+ r)) time using O(n+m) space.

5 Conclusion

While asymptotically tight, our method does not construct optimal subsuming
polygons, i.e., with the minimum number of vertices. An optimal subsuming
polygon consists of several disjoint paths with a minimum overall number of
vertices. In general, the minimum link path problem is 3SUM-hard [22] even
for a single path. However, the reduction used in [22] is not applicable to our
restricted setting where the paths are in a domain without holes. Inside simple
polygons, the minimum link path problem is solvable in linear time [26] for a
single path.

Guibas et al. [14] show that finding a minimum link simple polygon hav-
ing its boundary inside a given region R is NP-hard, but they point out that
their reduction requires holes in R on both sides of the polygon boundary. The
pairwise-disjoint link paths problem inside a simple polygon is discussed by
Gupta and Wenger [15]. They give a constant-factor approximation algorithm,
and ask whether there exists a polynomial-time algorithm for computing the
optimum. We state the same question for our restricted setting: Given a simple
polygon P , what is the complexity of constructing a subsuming polygon with
the least number of (convex) vertices?
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Abstract. We propose a linear working space algorithm for reconstruct-
ing a simple polygon from the visibility angle information at vertices up
to similarity. We also modify the algorithm such that its running time
is sensitive to the size of visibility graph and also the diameter of a
triangulation of the polygon.

1 Introduction

We consider a variation of the polygon reconstruction problem. The difficulty of
the polygon reconstruction problem depends on input information, and it often
becomes NP-hard ([2,3]). We particularly are interested in finding the shape of
a simple polygon from angle information.

If the polygon is a triangle, we learn in elementary school that the shape and
scale of a triangle is determined by either (1) the lengths of three edges (2) two
angles and a length of an edge, or (3) lengths of two edges and the angle between
those edges. In high school, we learn that the cosine theorem and sine theorem
give explicit way to compute other information from one of those minimal sets
of information. If we ingore scale, two angles are enough to determine the shape.

For a quadrangle, its shape cannot be determined from the set of four angles
between adjacent edges. For example, a square and any rectangle have exactly
the same set of four angles (i.e., π/2). However, if each vertex can see all other
three vertices and the two visibility angles are measure to be (π/4, π/4), we can
confidently say that the shape is a square.

It is a natural question to generalize the above observation. Given a simple
polygon P , a pair (u, v) is called a visiblity edge if the line segment uv lies in
the closure of P . We often call the ray from u towards v a visibility ray if (u, v)
is a visibility edge, and say v is visible from u and vice versa (Fig. 1). Note that
v is visible from u in the right picture although uv touches the boundary at t.
The visibility graph of P is a graph G(P ) = (V (P ), E(P )), where V (P ) is the
set of vertices of P , and E(P ) is the set of visibility edge.

The visibility angle information is the list of angles around each vertex in the
visibility graph drawn by line segments as shown in the left picture of Fig.2. We
say two polygons have the same shape if one can be transformed to the other
by applying a similarity translation. We would like to ask how to retrieve the
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Fig. 1. Visibility rays from v1 (left). Red vertices are visible from u (right).

shape of a simple polygon bounding a polygonal region P from the visibility
angle information.

Let us give the explicit formulation of the problem. We consider a simple
polygonal region P . The circular list {v1, v2, . . . , vn} of vertices of the boundary
polygon ∂P is given in the clockwise ordering such that vi is adjacent to vi−1 and
vi+1 (index is considered modulo n so that v0 = vn). Each vertex vi has a list
of visibility angles ξ(vi, 1), ξ(vi, 2), . . . ξ(vi, d(vi)− 1) where ξ(vi, j) is the angle
between rays towards the j-th and (j + 1)-th visible vertices in the clockwise
ordering, and d(vi) is the number of visible vertices from vi. We sometimes
denote ξ(v,−j) for ξ(v, d(v) − j) for convenience sake. By definition, vi+1 and
vi−1 are the first and last visible vertices from vi in the clockwise order. We
assume in this paper that the outer angle of P at each vi is also given as a part
of input; in other words, we have information of the partition of the circular
visibility about each node. Our task is to reconstruct the shape of the polygon
P from this visibility angle information.

To get intuition of the problem, imagine the case where the points vi are visual
sensors glittering and located at all vertices of a polygonal room, and they can
see other indistinguishable sensors if the right rays go straightly in the room.
Sensors can measure the visual angles between them, but cannot measure the
distances. Our task is to find the shape of the room.

Disser et al. [5] first considered this problem, and showed that the shape of
the polygon is uniquely determined. They gave an O(n3 logn) time algorithm
to compute it. The time complexity has been improved to O(n2) by Chen and
Wang [4]. Both of the algorithms are based on clever dynamic programming to
reconstruct the visibility graph of P .

Fig. 2. Visibility angle information corresponding to the visibility graph of a polygon
(left), and polygon reconstruction from the visibilty angle information (right)
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One drawback of those algorithms is the high space complexity. This is becase
they reconstruct the visibility graph. The visibility graph needs Ω(n2) space (e.g.
if P is a convex polygon) to store, and the dynamic programing algorithms need
quadratic space even if the visibility graph has a small size. Indeed, there is no
way to improve O(n2) time and space complexity given by Chen and Wang [4]l
if we explicitly construct the visibility graph. However, it seems to be overkill to
compute the visibility graph in order to find the shape of the polygon.

In this paper, we give a different idea to reconstruct the polygon. Instead of
using a visibility graph, we find a triangulation of P . We first give an algorithm
that runs in O(n2 logn) time and O(n) working space in the worst case. Note
that the Ω(n2) space is necessary to store the input information, since the input
size m in the word RAM model is asymptotically the number of visible pairs of
vertices, and there are n(n−1)/2 visible pairs if the polygon is a convex polygon.
However, the input data can be given in a read-only memory with fast access,
and we are interested in reducing working memory.

Next, we improve the algorithm if the input size is smaller than n2. The input
size m of the problem is linear in the number of edges of the visibility graph.
Although m can become quadratic in n, it was a research issue in the literature
to compute the visibility graph of a polygon in time sensitive to the size of the
visibility graph, and Hershberger [8] solved it by giving an optimal O(m) time
algorithm. Therefore, it is also valuable to give an algorithm sensitive tom for our
reconstruction problem. We modify the algorithm to reduce the time complexity
to O(n log4 n+m log2 n), which is faster than O(n2) if m = o(n2/ log2 n).

Then, we investigate the dependency of the running time of algorithms on
geometric properties of the polygon. One surprising fact is that our algorithms
often find the polygon without reading the whole input information, and the
running time can become o(m) for several types of input polygons. Indeed, the
running time of the first algorithm is O(nh log n+ n log2 n) if the obtained tri-
angulation has depth h (i.e., its dual graph is a tree of height h). In particular,
h = O(n0 + logn) if P happens to be a polygon with n0 concave vertices. Note
that the algorithm terminates when a unique candidate simple polygon consis-
tent with the input data read so far is identified, and we exclude the complexity
(it can be done in O(m log n) time with O(n) space ) to certify that the whole
input data is really consistent with the output polygon.

2 A Linear Space Algorithm

2.1 Remarks on Geometric Settings for Solving the Problem

Recall that a visibility edge uv may be tangent to the boundary polygon ∂P from
its inside. If uv touches at t on ∂P as shown in the right picture in Figure 1, u
can both see t and v, and it has a 0 angle ∠tuv in its list of visibility angles. We
assume this convention throughout this paper.

We remark that our algorithm may fail in a different setting where we do not
allow u and v visible to each other if there is another vertex or an edge touching
uv. However, previous known algorithms do not work in that setting, either.
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We allow P to be degenerate in the sense that ∂P may be tangent to itself.
Although the input polygon is a simple polygon, we use this convention since it
may happen that we need to handle such a subpolygon of P in our algorithm.
We often refer to a polygon for both the polygonal region and the polygonal
cycle.

Although nodes do not share a universal direction, we can provide it to them
with O(n) time computation from the counterclockwise ordering of vertices and
outer angles. In other words, we can find all slopes of edges of the polygon if we
assume that v1v2 is horizontal, since we can find the slope of vi−1vi by summing
the outer angles up to the vertex vi.

We note that if we could assume that there is no pair of visibility edges
parallel to each other, then the problem could be easily solved without using
serious geometry by sorting (or hashing) the slopes of rays and find the unique
pairing of them. In other words, existence of parallel visibility edges is essential
to the difficulty of the problem.

2.2 Idea of the Algorithm

It is well-known that a simple polygon has a triangulation, and the dual graph
of a triangulation of is a tree of maximum degree 3. A triangle corresponding
to a leaf of the tree is called an ear of the triangulation. If we remove an ear
� from the polygon, we obtain a smaller simple (possibly degenerate) polygon
P \ �. This operation is called ear clipping. We can use ear clipping iteratively
to triangulate a polygon as illustrated in Fig. 3. If we know the positions of
vertices of the polygon P explicitly, the ear clipping triangulation algorithm
works in O(n2) time [6].

Our main goal is to simulate this algorithm using only the visibility angle in-
formation. Initially, we test triangle �vi−1vivi+1 for each i = 1, 2, . . . , n whether
it is an ear or not. Indeed, �vi−1vivi+1 is an ear if and only if it does not contain
another vertex in its interior and the inner angle ∠vi−1vivi+1 ≤ π. We note that
the equality can happen since we allow degeneracy. Since the second condition
is easy to verify, we consider the first condition.

Fig. 3. Ear Clipping (left) and ear clipping triangulation(right)
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Fig. 4. Triangle-certificate equality is sufficent and necessary

Let ξ(v, k) (resp. ξ(v,−k)) be the k-th angles around v in CW (resp. CCW)
ordering starting from the ray to its right (resp. left) adjacent vertex in P . Here,
CW and CCW means clockwise and counter-clockwise, respectively.

In particular, if k = 1, they are the first angles in CW and CCW ordering,
respectively. We set θ = ∠vi−1vivi+1, ϕ = ξ(vi−1, 1) and ψ = ξ(vi+1,−1) as
shown in Fig. 4, and have the following elementary lemma:

Lemma 1. The triangle �vi−1vivi+1 is an ear if and only if ϕ+θ+ψ = π. We
call this equality the triangle-certificate equality.

Once we find an ear, we remove it and update the boundary chain of P , and
process it.

Suppose that we have a boundary chain vq(1), vq(2), . . . vq(k) of a polygonal
region Q during the processing of our algorithm, where q(1), q(2) . . . q(k) is a
subsequence of 1, 2, . . . n. Let e(i, Q) be the edge of Q between vq(i) and vq(i+1),
and let P (i) be the polygonal chain of P cut off from Q by the edge e(i, Q). Since
our algorithm removes ears one by one, P (i) has been triangulated. Hence the
locations of vertices of P (i) are known relative to e(i, Q), i.e. we know the exact
location once we fix the position and scale of e(i, Q). We also have all slopes of
e(i, Q) at this stage assuming that the initial edge v1v2 is horizontal.

Thus, one may consider that we can process Q similar to the original polygon
P . Unfortunately, the annoying problem is that the angle information at each
vertex has not been updated at removal of an ear, and the rays (and correspond-
ing angles) towards removed vertices still remain. Thus, the naive iteration of
the process will fail.

2.3 Ear Detection Routine

We describe how to detect an ear in our algorithm when some ears have been
already clipped. See the left picture of Fig.5.

Each vertex vq(i) identifies the rays towards its neighbor vertices vq(i−1) and
vq(i+1), since they can be recorded when the ears were clipped at the edges e(i, Q)
and e(i − 1, Q). Thus, we can easily compute θ = ∠vq(i−1)vq(i)vq(i+1). Suppose
that we want to decide whether the triangle �vq(i−1)vq(i)vq(i+1) is an ear of Q.
We slightly abuse the notation, and let ξ(vq(i−1), k) be the k-th visibility angle
around vq(i−1) starting from the edge vq(i−1)vq(i). Consider the ray rϕ emanated
from vq−1 defining the angle ϕ = ξ(vq(i−1), 1). There are three cases:

Case 1. The ray rϕ goes to vq(i+1). Consequently, the triangle is an ear.
Case 2. It goes to a vertex in P (i) excluding vq(i+1).
Case 3. It goes to other vertex. The triangle cannot be an ear for this case.
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Fig. 5. The destinations of rays emanated from vq(i−1) and vq(i+1)

We claim that we can decide which of the three cases happens. We write r
for rϕ from now on. Since know the direction of the ray r, we can compute the
projection Z = Proj(P (i), r) of P (i) with respect to the ray r, which shows the
visibility of the polygonal chain P (i) to the direction of r. The vertex defining
the ray r should have its projection in Z, and it should be the next (projected)
vertex w to vq(i) in the projection as shown in the right picture of Fig. 5. Note
that case 1 can happen only if w = vq(i+1).

Then, w should have a ray to the opposite direction to r (however, we need
not examine the angle data of w) if nothing blocks the ray from vq(i) towards w.

If Case 1 or Case 2 happens, r must go through w, and we can determine the
position of vq(i−1) explicitly as its intersection with the ray from vq(i) towards
vq(i−1) as shown in Fig. 6. Since the location of w is known (relative to e(i, Q)),
we now know the exact position of vq(i−1) relative to e(i, Q).

Therefore, we have an estimation α of ratio of lengths of edges e(Q, i− 1) =
vq(i−1)vq(i) to e(Q, i) = vq(i)vq(i+1). We do the same operation from vq(i+1) to
have another estimation α′ of the same ratio.

If α �= α′ as shown in the left picture of Fig. 6, we detect that the triangle
cannot be an ear, and hence we stop processing this triangle and move to the
next one. Therefore, let us assume that α = α′ as shown in the right picture of
Fig. 6.

Lemma 2. If α = α′, α is the actual ratio of lengths of edge vq(i−1)vq(i) to
vq(i)vq(i+1) even if the triangle is not an ear. As a consequence, the shape of the
triangle �vq(i−1)vq(i)vq(i+1) is explicitly determined.

Fig. 6. Finding the position of vq(i−1)
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Fig. 7. Illustration of proof of Lemma 2

Proof. Suppose that the ray r goes to a vertex x inside the triangle as shown in
Fig.7, where Case 3 happens. The ray should be tangent to ∂P at x, since the
ray defines the smallest angle and ∂P cannot cross the segment vq(i−1)vq(i).

Assume that the real ratio α0 of vq(i−1)vq(i) to vq(i)vq(i+1) is larger than α.
Then, the ray from vq(i−1) to w has smaller angle than ϕ. If the ray is blocked
by some edge, one of its endpoint must define another smaller angle at vq(i−1),
which is a contradiction. Thus, α ≥ α0 as shown in the figure (i.e., the estimated
position ṽq(i−1) is farther than the real position vq(i−1)). If we consider the same
argument at vq(i+1), we have 1/α′ ≥ 1/α0. Thus, if α = α′, α = α0, and we
correctly find the shape. �

Now, we can explicitly compute the visible vertices of P (i) from vq(i−1), and know
which rays point to vertices in P (i). Then, we compare it with the visibility angles
around vq(i−1). The rays that are not blocked should give a prefix sequence of angles
around vq(i−1) in the CW ordering. Thus, we check the rays one by one whether it
goes to a vertex of P (i). Now we know the last ray from vq(i−1) pointing to a vertex
of P (i). It points to vq(i+1) if and only if the triangle is an ear.

Note that it may happen that a ray from vq(i−1) towards a vertices y in
P (i) also reaches a point x of Q. We consider the first such ray in the list of
visibility rays at vq(i−1), and assume all rays prior to it go to vertices of P (i).
Then, the ray must be tangent to Q at x. Because of our assumption for the
visibility of degenerate case, vq(i−1) has an angle 0 in the angle list there (or,
equivalently it has multiple rays to this direction, and we know the multiplicity
by our assumption about degeneracy), and hence we can detect that the current
ray is the last ray reaching to a vertex of P (i).

Since the computation of projection and visibility from a point can be done
in O(|P (i)| logP (i)) time (we omit its details since it is forklore), the algorithm
finds at least one new ear in O(n log n) time. Thus, the total time complexity is
O(n2 logn) to find n−3 ears to compute the triangulation. The algorithm clearly
uses only inear working space (we omit details). Thus, we have the following
theorem:

Theorem 1. The reconstruction of a simple polygon from visibility angle date
can be done in linear space and O(n2 logn) time.
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3 Algorithm Sensitive to the Size of Visibility Graph

Although the time complexity of the problem has been analyzed as functions of
n in the previous section, the input size of the problem is in proportional to the
number of visibility angles, which we denote by m. Therefore, it is desirable to
analyze the complexity by using n and m.

3.1 Stage-Wise Greed Ear-Clipping Triangulation Algorithm

The algorithm given in the previous section finds an ear after testing O(n) tri-
angles. Therefore, it needs to test O(n2) triangles in the worst case. This can be
avoided by modifying the strategy to clip ears.

We consider a variant of the ear-clipping algorithm, in which only O(n) tri-
angles are examined whether they are ear or not. We divide the algorithm into
stages. In each stage, we check triangles one by one in the clockwise ordering.
In the first round, we check each triangle one by one whether it is an ear or not,
but if we find an ear �vi−1vivi+1, we skip its adjacent triangle (since the edge
vivi+1 has been removed) and next check vi+1vi+2vi+3.

In the j-th round for j ≥ 2, we only check triangles adjacent to at least one
newly created edge corresponding to the ears removed in (j − 1)-th round (See
Fig. 3 to get intuition, where colors indicate stages). We use the same skipping
rule once we find a new ear. The following lemma justifies the strategy of the
algorithm.

Lemma 3. In the j-th round, no triangle that does not use an edge created in
the (j − 1)-th round can be an ear.

Proof. Suppose that a triangle � formed by consecutive triple of vertices does
not use an edge created in the (j − 1)-th round. It was checked once in a stage
just after one of its edges was created (or in the first stage). Since it was not an
ear at that time, it intersected the complement of the polygonal region. However,
the complement of the polygonal region only grows in our ear clipping procedure.
Thus, the triangle cannot become an ear forever. �

If we find mi ears in the i-th round, then we only need to check 2mi triangles in
the (i+1)-th round. Thus, the number of examined triangles is at most twice of
the number of removed ears. Since we remove n− 1 ears in total, the number of
triangles we examine in the algorithm is O(n).

3.2 Reducing the Time Complexity by Using Ray-shooting Query

We next reduce the work at each triangle by using ray shooting query. We pre-
process a polygonal chain (in general, a set of segments) so that given any query
ray, the ray shooting query answers the first intersecting segment with the ray
(Fig.8, left picture). The following theorem is known.

Theorem 2 (Goodrich et al.[7]). Given a set of n segments forming edges
of a connected planar graph drawing, we can construct a data structure to per-
form ray shooting query in O(log2 n) time, and it can be dynamically updated in
O(log2 n) time per insertion and deletion.
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Now we describe the algorithm. The algorithm is almost same as the one pre-
sented in the previous section. The difference is that we use ray shooting query
to find the endpoint of a ray from vq(i−1) towards P (i).

The first task is to find the position of v(q−1). For the purpose, we need
to find the partner vertex w of the ray r defining ϕ = ξ(vq(i−1), 1) in P (i).
In order to simplify the argument, we assume that r is a vertical ray coming
from above, and the visible part of P (i) is projected to the horizontal interval
I = (s, t) = (Proj(vq(i)),Proj(vq(i+1))) on the x-axis, where Proj means the
vertical projection. Also, we assume ξ(vq(i−1), 1) > 0, since we can handle the
special case where the angle is zero independently (we omit its details).

In this setting, the vertex w must be the leftmost visible vertex of P (i) except
vq(i) as illustrated in the right picture of Figure 8. Let r(x) be the vertical ray
parallel to r with the abscissa x. For an infinitesimally small positive real value
ε, we consider the edge fs+ found by the ray shooting by r(s+ε). It is the unique
edge of the chain P (i) adjacent to vq(i) if its projection is in I; otherwise it is
the edge visible from vq(i) to the direction of r, which we can compute by using

the ray shooting query. Thus, we can find fs+ in O(log2 n) time. Let xw be the
abscissa of w. The following lemma is easy to observe (see Fig. 8).

Lemma 4. For any value x ∈ I, the ray shooting by r(x) finds a point on fs+ if
and only if xw > x. Moreover, if the ray shooting finds a vertex u of P (i), u = w if
and only if either vq(i))u is fs+ or the ray shooting from u finds a point on fs+.

By applying the above lemma, we can design a binary searching algorithm to
find xw if we have a sorted list of abscissa of vertices of P (i).

Unfortunately, it takes O(ni logni) time to obtain such a sorted list if P (i) has
ni vertiices, and it is too expensive. Instead, we apply the parametric searching
paradigm [9]. Using the general theory of the paradigm, if we can query in
O(T ) time at each position of the ray, and can decide which side of the ray the
vertex w lies, we can find the position of w in O(T 2) time. Therefore, it takes
O(T 2) = O(log4 n) time to find the position w. Since we examine O(n) triangles
during our triangulation algorithm, this process needs O(n log4 n) time in total.

Once we have w, we explicitly know the position of vq(i−1) relative to the edge
e(i, Q). Then, we perform the ray shooting from vq(i−1) to the directions of rays
emanated from it one by one, until either we find vq(i+1) or we find a ray that

Fig. 8. Ray-shooting(left) and binary searching by ray shooting(right)
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does not reach a vertex of P (i). In the first case, we declare that we have found
an ear, and in the second case, we declare that the current triangle is not an
ear. We store a finger to indicate the position of the last ray to reach a vertex
of P (i), so that we can restart from the position of the finger if we need to do
ray shooting from vq(i−1) later. Since the finger position does not go back, this

process takes O(m) ray shooting queries, and hence O(m log2 n) time in total.
Thus, the total time complexity spending ray shooting is O(n log4 n+m log2 n).

Once we find an ear, two polygonal chains are merged, and the data structure
of the ray shooting should be updated, where we insert edges in the smaller
chain to the structure of larger one. Then, the total time complexity for update
of this data structure for the whole process of our triangulation is O(n log3 n)
since each edge is inserted at most logn times. Thus, we have the following:

Theorem 3. The polygon reconstruction problem can be solved in O(n log4 n+
m log2 n) time using O(n) space.

Our algorithms may terminate before reading whole data. We can check the
consisteny of the rest of input data by applying ray shooting in the output
polygon P for each ray. It can be done in O(m logn) time and O(n) space if we
apply a static ray shooting data structure [1].

4 Analysis Dependent on Properties of Polygons

The time complexities of our algorithms are O(n2 log n) time and O(n log4 n +
m log2 n), respectively. However, the algorithm often runs much faster.

To get intuition, suppose that the polygon P is a convex polygon. where
m = n(n− 1)/2. If we apply the stage-wise clipping strategy in first algorithm,
it reduces the number N of vertices at each stage to the half by finding �N/2�
ears, and spend O(n logn) time for each stage. Thus, we have O(log n) stages,
and the total time complexity is O(n log2 n). We remark that it is important
that the outer angles are given as a part of input for this analysis.

This can be generalized as follows: Consider the triangulation of the polygon
P created by the stage-wise ear clipping algorithm. Its dual graph is a tree T ,
and let h be the height of the tree selecting any leaf node as its root. Then, we
have the following.

Theorem 4. We can compute P from the visibility angle information in
O(nh logn) time.

Proof. Let us consider the number of stages in the stage-wise ear-clipping algo-
rithm. An important fact is that each ear clipped in a stage was connected to an
ear clipped in the previous stage. Thus, if we trace back the clipping algorithm
from the end to the begining, it starts with a single triangle �, adding at least
two ears to grow the polygon, and in each stage new ears are attached to ears
created in the last stage. Thus, the number of stages is bounded by the length of
path from � to a leaf of the tree. Since the length of such path is at least twice
of the height of the tree, the number of stages is at most 2h. Since the algorithm
needs O(n log n) time for each stage, we have the theorem. �
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Corollary 1. Suppose that the polygon has n0 concave vertices and n−n0 convex
vertices. Then, we can compute P in O(n log2 n+ n0n logn) time.

Proof. The number n0 is counted from the outer angle information, and the
number of concave vertices never increases during the algorithm, since each inner
angle is only decreased by clipping an ear. Let n1 = n−n0. Each of the n1 convex
vertices defines a triangle with its adjacent vertices. This triangle is an ear if there
is no concave vertex inside it. Each concave vertex locates in at most two such
triangles. Thus, among those n1 triangles, at least n1 − 2n0 are ears. Thus, the
algorithm clips at least (n1−2n0)/2 ears in one stage. While n1 ≥ 4n0 holds, we
have (n1 − 2n0)/2 ≥ n/5, and the number of vertices is reduced to 4n/5. Thus,
after O(log n) stages, we have n1 < 4n0 and hence n < 5n0. Thus, there are at
most n0 stages after that, and we have the complexity. �

5 Concluding Remarks

Since the expected height of a random treap is O(log n), average time complex-
ity of our algorithm is O(nh log n) = O(n log2 n) if the trees generated by our
algorithm obey the distribution of random treap.

We do not have an input construction to force the algorithm to spend quadratic
running time even if m = Ω(n2), and we suspect that the time complexity of
the algorithm may be subquadratic in n for any polygon.
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Abstract. This paper is concerned with the crossing number of Eu-
clidean minimum-weight Laman graphs in the plane. We first investigate
the relation between the Euclidean minimum-weight Laman graph and
proximity graphs, and then we show that the Euclidean minimum-weight
Laman graph is quasi-planar and 6-planar. Thus the crossing number of
the Euclidean minimum-weight Laman graph is linear in the number of
points.

1 Introduction

A graph G is called Laman if |E(G)| = 2|V (G)|−3 and |E(H)| ≤ 2|V (H)|−3 for
any subgraph H of G with E(H) �= ∅. A Laman graph has a property of being
minimally rigid in the plane if it is realized as a generic bar-joint framework [5,4].
A bar-joint framework is a straight-line realization of a graph in the plane, and by
regarding each edge as a bar and each point as a joint the rigidity of such a graph
can be defined in a natural way (see, e.g., [4]). One of the most fundamental
results in combinatorial rigidity theory asserts that a graph G realized on a
generic point set (i.e., the set of the coordinates is algebraically independent
over the rational field) is rigid if and only if G contains a spanning Laman
subgraph [5]. Laman graphs appear in a wide range of applications, not only
statics but also mechanical design such as linkages, design of CAD systems,
analysis of protein flexibility, and sensor network localization [11,10].
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a
d

cb

Fig. 1. MLG(P ) that has an edge
crossing

Fig. 2. MLG(P ) that has Θ(|P |) edge
crossings

Throughout the paper, by a graph on a point set P we mean a graph drawn in
the plane with straight-line edges and vertex set P . In this paper we shall con-
sider a bar-joint framework as a straight-line drawing in the plane, and we shall
analyze geometric properties of the Euclidean minimum-weight Laman graph
MLG(P ) on a planar point set P , that is, a Laman graph on P with the min-
imum total edge-length over all Laman graphs on P . For simplicity of proofs,
we assume throughout this paper that no three points in P are collinear and all
interpoint distances are distinct. The point set satisfying these assumptions is
called semi-generic in this paper.

A graph on a point set is called plane (or non-crossing) if two edges do not
have an intersection except possibly at their endpoints. Extending the notion of
planarity, a graph on a point set is called k-plane if each edge crosses at most
k other edges [8]. Also, there is another extended notion, called quasi-planarity,
where no three edges mutually cross each other except for their endpoints [1].

Our study is motivated by the well-known property of the Euclidean minimum
spanning tree. For any semi-generic point set P on the plane, the Euclidean
minimum spanning tree on P (MST(P ) for short) is non-crossing. This is derived
from the fact that MST(P ) is a subset of the Delaunay triangulation of P , and
this property brings us an important algorithmic consequence. Namely, MST(P )
can be computed in O(n log n) time, which is faster than algorithms for general
weighted graphs [9].

Observe that both Laman graphs and spanning trees are characterized by sim-
ilar sparsity conditions. In general, a graph G is called (k, l)-sparse if |E(H)| ≤
k|V (H)| − l for any subgraph H of G with E(H) �= ∅, and a (k, l)-sparse graph
is called (k, l)-tight if it has exactly k|V (G)| − l edges (see, e.g., [6]). A spanning
tree is nothing but a (1, 1)-tight graph while a Laman graph is a (2, 3)-tight
graph. (k, l)-sparse graphs have several common combinatorial properties such
as being independent sets of a matroid. Hence a natural question is whether the
Euclidean minimum-weight (k, l)-tight graph on a point set has a nice planarity
property as does the Euclidean minimum-weight (1, 1)-tight graphs in the plane.
However it turns out that, unlike MST(P ), MLG(P ) may have a crossing in gen-
eral (see Figure 1) and there is a point set P for which MLG(P ) has Θ(|P |)
crossings as shown in Figure 2.
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One can describe the relation between MST(P ) and the Delaunay triangula-
tion in a detailed way by introducing the the nearest neighbor graph, the relative
neighborhood graph, the Gabriel graph and the Delaunay graph [9]. To define
these graphs, we introduce some notation, which will be used throughout the
paper. For two points p, q ∈ R2, ‖pq‖ denotes the Euclidean distance between p
and q. We abuse the notation pq to stand for ‖pq‖ when there is no confusion.
In particular, we write pq < rs if the length of segment pq is less than that of rs.
The closed disk with the segment pq as diameter is denoted by Dpq. Also, for a
point p ∈ R2 and r ∈ R, the closed disk (resp. circle) with center p and radius r
is denoted by Dp(r) (resp. Cp(r)).

In the (k + 1)-nearest neighbor graph (k+ 1)-NNG(P ), an edge pq is included
if and only if p is the i-th closest point among P from q for some i ≤ k + 1
or vice versa. In the k-relative neighborhood graph k-RNG(P ), pq is included if
and only if Dp(pq) ∩Dq(pq) contains at most k points among P \ {p, q}. In the
k-Gabriel graph k-GG(P ), pq is included if and only if Dpq contains at most
k points among P \ {p, q}. In the k-Delaunay graph k-DG(P ), pq is included
if and only if there is a circle through p and q that contains at most k other
points. As is well-known, 0-DG(P ) is always a triangulation, called the Delaunay
triangulation, if no four points lie on a circle. The following relations are classical
(see for example [3,2,9]):

(k + 1)-NNG(P ) ⊆ k-RNG(P ) ⊆ k-GG(P ) ⊆ k-DG(P )

1-NNG(P ) ⊆ MST(P ) ⊆ 0-RNG(P ).

In this context, we prove the next relations. (The proof is given at the end of
Section 2.)

Theorem 1. Let P be a semi-generic set of points in the plane. Then

MST(P ) ∪ 2-NNG(P ) ⊆ MLG(P ) ⊆ 1-GG(P ) ∩ 2-RNG(P ).

Ábrego et al. [2] recently investigated the crossing number and the maximum
crossing number of proximity graphs, and they proved that k-NNG(P ) has at
most k3n crossings for any P while there is a point set P such that k-GG(P ) has
k2n2/4 + o(k2n2) crossings if k = o(n). This result and Theorem 1 give rise to
the following question: Does MLG(P ) contain a linear number of crossings for
every point set P? Our main theorem, proved in Section 4, affirmatively answers
this question.

Theorem 2. (6-planarity) Let P be a semi-generic set of points in the plane.
For every edge ab ∈ MLG(P ), the number of edges crossing ab is at most six.

Moreover, we prove the following theorem in Section 3.

Theorem 3. (Quasi-planarity Theorem) Let P be a semi-generic set of points
in the plane. No three edges of MLG(P ) pairwise cross.

It is known that there is a point set P for which 1-GG(P ) contains three edges
that mutually cross each other [3, Figure 4].
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2 Preliminaries

For two points a, b in the plane, let lens(a, b) = Da(ab) ∩ Db(ab). Note that by
the semi-generic assumption made on the point set, for any two distinct points
a, b ∈ P , there is no point on the boundary of lens(a, b) other than a, b.

Let K(P ) be the complete graph on P . We sometimes abuse K(P ) to denote
the edge set of K(P ). An edge set E in K(P ) is called (k, l)-sparse if it induces
a (k, l)-sparse graph. It is known that the family of (2, 3)-sparse edge sets on a
point set P forms the family of independent sets of the so-called 2-dimensional
rigidity matroid [4] on K(P ). Among many properties of matroids, we shall use
the following facts (see, e.g., [7, Section 1.8]).

Lemma 1. For a point set P in the plane, MLG(P ) can be computed by a greedy
algorithm; it maintains a (2, 3)-sparse edge set I which is initially set to ∅, and
considers an edge one by one in the nondecreasing order of their lengths, and
adds it to I if the addition of the element to I maintains the (2, 3)-sparsity.

Lemma 2. Let P be a point set in the plane, Q ⊆ P , and a, b ∈ Q. Also let
E′ = {pq ∈ K(Q) | pq < ab}. If E′ contains the edge set of a Laman graph on
Q, then ab /∈ MLG(P ).

Lemma 2 in particular implies that, for Q ⊆ P with |Q| = 4, the longest edge in
K(Q) does not belong to MLG(P ) since K4 violates the (2, 3)-sparsity condition.
This fact will be frequently used.

Lemma 3. Let P be a semi-generic point set in the plane, and let ab ∈ MLG(P).

(i) Let R be one half of lens(a, b) divided by the edge ab. Then there exists at
most one point in the interior of R.

(ii) Suppose that there exists one point in each half of lens(a, b) (say, p and q).
Then pq > ab holds, and pq /∈ MLG(P ).

Proof. (i) Suppose that there exist two points (say, c, d) in one half of lens(a, b).
Then, consider the four-point set Q = {a, b, c, d}, and observe that ab is the
longest edge in K(Q). Therefore, Lemma 2 implies ab /∈ MLG(P ), a contradic-
tion.

(ii) It follows from p, q ∈ lens(a, b) that max{ap, aq, bp, bq} < ab. Therefore, if
pq < ab, ab /∈ MLG(P ) holds by Lemma 2. Since ab ∈ MLG(P ), we have pq > ab,
and hence pq /∈ MLG(P ) by Lemma 2. 	


Proof of Theorem 1: Let us show MST(P ) ⊆ MLG(P ). Consider any edge
ab ∈ MST(P ) and let E′ = {pq ∈ K(P ) | pq < ab}. Since ab ∈ MST(P ), ab
connects distinct connected components of the graph (P,E′) on P . Suppose to
the contrary that ab /∈ MLG(P ). Then there is F ⊆ E′ such that F satisfies the
(2, 3)-sparsity condition but F + ab violates the (2, 3)-sparsity condition. How-
ever, since ab is a bridge in the graph (P, F + ab), it can be easily seen that a
connected component of (P, F ) violates the (2, 3)-sparsity condition, contradict-
ing the (2, 3)-sparsity of F . Thus MST(P ) ⊆ MLG(P ).
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To see 2-NNG(P ) ⊆ MLG(P ), we first note the following well-known fact
(e.g., [4]). Let F be an edge set and v be a vertex, and suppose that F contains
exactly two edges e1 and e2 incident to v. Then F is (2, 3)-sparse if and only if
F \ {e1, e2} is (2, 3)-sparse.

Now we consider the greedy algorithm that computes MLG(P ), and an ar-
bitrary vertex v ∈ V as well as the shortest and the second shortest edges e1
and e2 incident to v. Then the algorithm always accepts e1 and e2 because v
has degree at most two when the algorithm tests the (2, 3)-sparsity of the graph
obtained by adding e1 or e2.

To see MLG(P ) ⊆ 1-GG(P ), suppose that Dab contains two points (say, p, q)
for some edge ab in MLG(P ). Then, inK({a, b, p, q}), ab is the longest edge which
contradicts ab ∈ MLG(P ) by Lemma 2. MLG(P ) ⊆ 2-RNG(P ) is immediate from
Lemma 3(i). 	


3 Quasi-planarity of MLG(P )

Given a line segment ab in the plane, the perpendicular bisector of ab (denoted by
bisect(ab)) divides the plane into halfplanes Ra containing a and Rb containing
b. Since P is semi-generic, all interpoint distances are distinct, for any distinct
points a, b ∈ P , no other point in P is on the boundary of lens(a, b). In the proof
of Theorem 3 we use the following property of six points in the plane.

Lemma 4. Let Q = {a, b, c, d, e, f} be a semi-generic set of six points in the
plane, and suppose that the three line segments ab, cd and ef intersect each other.
Then there exists at least one lens among lens(a, b), lens(c, d) and lens(e, f) that
contains two points among Q in its interior.

Before proving Lemma 4, we show the following two lemmas.

Lemma 5. Let {a, b, c, d} be a semi-generic set of four points in the plane such
that the two line segments ab and cd intersect each other. Suppose that c, d �∈
lens(a, b) and segment cd cuts the boundary of lens(a, b) once in Ra and once in
Rb. Then lens(c, d) contains both a and b in its interior.

Proof. Assume without loss of generality that ab is a vertical segment, and that
c (resp. d) belongs to Ra (resp. Rb) and lies on the right (resp. the left) halfplane
delimited by the supporting line of ab. See Figure 3.

We first show that ad < cd. If the line segment ac does not intersect lens(a, b),
bisect(ac) never intersects the left half of lens(a, b) and passes to the right of
b, and thus ad < cd holds. Therefore, we consider the case that ac intersects
lens(a, b). Let c′ be the intersection point of ac and lens(a, b). Then bisect(ac′) is
parallel to and on the left side of bisect(ac). Also, it passes through b, and thus
bisect(ac) passes the right of b. Therefore, d lies on the left side of bisect(ac).
Thus, ad < cd holds.

Now let us consider bisect(ad). Let d′ be the intersection point of ad and
the boundary of lens(ab) and m be the midpoint of ab. Since bisect(ad′) always
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Fig. 3. Illustration of the proof of Lemma 5
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Fig. 4. Illustration of the proof of
Lemma 6(i)

passes belowm, so does bisect(ad). Thus, ac < cd holds. Therefore, from ad < cd
and ac < cd, a ∈ lens(c, d) follows.

Replacing a with b, we can show b ∈ lens(c, d) by the same argument. This
proves the lemma. 	


For two line segments s and s′, the angle between s and s′ is defined to be the
smaller angle (it is at most 90◦) formed by the supporting lines of s and s′.

Lemma 6. Let {a, b, c, d} be a semi-generic set of four points such that the two
line segments ab and cd intersect each other. Suppose that c, d �∈ lens(a, b), and
that segment cd cuts the boundary of lens(a, b) twice in Ra. Then (i) lens(c, d)
contains a, and (ii) the angle between ab and cd is greater than 60◦.

Proof. Let x, y be the intersection points of circles Ca(ab) and Cb(ab).
(i) Then, ∠xay = 120◦ holds. Since c and d are separated by the supporting

line of ab as shown in Figure 4, the angle ∠cad > 120◦. This implies a ∈ lens(c, d).
(ii) It is easy to see that the angle between xy and cd is less than 30◦. Since

xy is perpendicular to ab, the lemma follows. 	


Proof of Lemma 4: Suppose to the contrary that none of the three lenses
contains two points of Q = {a, b, c, d, e, f} in its interior.

Let us first consider two lenses, lens(a, b) and lens(c, d). By Lemmas 5 and 6,
if c, d /∈ lens(a, b), then a ∈ lens(c, d) or b ∈ lens(c, d) holds. This implies that at
least one of c ∈ lens(a, b), d ∈ lens(a, b), a ∈ lens(c, d) or b ∈ lens(c, d) holds.

The corresponding relation holds for any pair of the three lenses. Since none of
the three lenses contains two points of Q in its interior, without loss of generality,
we may assume that lens(a, b) ∩ Q = {a, b, c}, lens(c, d) ∩ Q = {c, d, e}, and
lens(e, f) ∩Q = {e, f, a}.

Note then that ab cuts the boundary of lens(c, d) twice in Rc or twice in
Rd, since otherwise lens(c, d) contains a or b by Lemma 5. Therefore, the angle
between ab and cd is greater than 60◦.
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Fig. 5. Illustration of Case 1 in the
proof of Lemma 4
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Fig. 6. Illustration of Case 2 in the
proof of Lemma 4

By a symmetric argument, the angle between any pair of ab, cd and ef is
greater than 60◦ (and at most 90◦ by definition). However, this leads to a con-
tradiction because the sum of those three angles must be equal to 180◦ or the
sum of two angles is equal to the other. 	


Proof of Theorem 3: Suppose to the contrary that three edges ab, cd, ef of
MLG(P ) intersect each other.

By Lemma 4, we can assume without loss of generality that lens(a, b) contains
two points among c, d, e, f . By Lemma 3(ii) it cannot happen that both c and d
belong to lens(a, b), and that both e and f belong to lens(a, b). Therefore, assume
without loss of generality that c, e ∈ lens(a, b) and d, f /∈ lens(a, b). Suppose that
ab is a vertical line segment. Let l be the supporting line of ab, and L and R
be the left halfplane and the right halfplane of l, respectively. Without loss of
generality, we assume that c is on the right side of l. Then e is on the left side
of l by Lemma 3(i). Also, since both cd and ef intersect ab, we have d ∈ L and
f ∈ R.

Let lce be the supporting line of bisect(ce), Re be the halfplane determined
by lce that contains e and Rc be the halfplane determined by lce that contains c.
Observe then that d /∈ Rc or f /∈ Re holds. To see this, suppose to the contrary
that d ∈ Rc and f ∈ Re. Then we have c, d ∈ Rc and e, f ∈ Re hold, and hence
cd and ef do not intersect, a contradiction.

Therefore, without loss of generality, we may assume that d ∈ Re. Next we
show that c is the closest point from d among {a, b, c}. To see this, recall that
max{ac, cb, eb, ea} < ab. Moreover, since d ∈ Re, we have ed < cd. Suppose that
ad < cd. Then, we have max{ac, cb, eb, ea, ed, ad} < max{ab, cd}. Moreover ob-
serve that both {ac, cb, eb, ea, ed, ad, ab} and {ac, cb, eb, ea, ed, ad, cd} are Laman
graphs on {a, b, c, d, e}, which means, by Lemma 2, that at least ab or cd does
not exist in MLG(P ), a contradiction. Therefore we have ad > cd.

The same argument also implies that bd > cd, and hence c is the closest point
from d among {a, b, c}.

Let x be the leftmost point of lens(a, b) and α be the center of the circum-
circle of triangle abc (see Figure 7(a)). Note that α is on the supporting line of
bisect(ab). Since c is the closest point from d among {a, b, c} and d ∈ L\lens(a, b),
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Fig. 7. Illustrations of the proof of Theorem 3

α is in the left side of x, which in particular implies that c is in Dx(ab), the disk
with center x of radius ab as shown in Figure 7(b).

Consequently, both c and e belong to Dx(ab)∩Da(ab)∩Db(ab), and hence we
obtain ce < ab. This in turn implies that ab is the longest edge among those on
the four points {a, b, c, e}, and hence ab /∈ MLG(P ) by Lemma 2, a contradiction.

This completes the proof of Theorem 3. 	


4 6-planarity of MLG(P )

In this section, we prove the 6-planarity of MLG(P ). Let us fix an edge ab ∈
MLG(P ) which is assumed to be vertical. By Lemma 3(ii), edges crossing ab
can be classified into two types. Lens-crossing edges are the edges whose both
endpoints are outside of lens(ab). The other edges are called fan-crossing edges
and they are the edges with exactly one endpoint inside lens(ab).

The proof of Theorem 2 consists of two parts.
(i) For an edge ab ∈ MLG(P ), the number of lens-crossing edges is at most

two (Lemma 7).
(ii) For an edge ab ∈ MLG(P ), the number of fan-crossing edges is at most

four (Lemma 10).

Lemma 7. For any edge ab ∈ MLG(P ), the number of lens-crossing edges is at
most two.

Proof. Let us assume that ab is a vertical segment. Notice that there is no lens-
crossing edge that cuts the boundary of lens(ab) once in Ra and once in Rb by
Lemma 5 and Lemma 3(ii). We prove that there exists at most one lens-crossing
edge that cuts the boundary of lens(ab) twice in Ra, and there exists at most
one lens-crossing edge that cuts the boundary of lens(ab) twice in Rb.

Suppose that there are two lens-crossing edges cd and ef , each of which cuts
the boundary of lens(ab) twice in Ra. We first consider the case when {c, d, e, f}
are distinct points. Let x and y be intersection points of two circles Ca(ab) and
Cb(ab). Let l and l

′ be the supporting lines of line segments xa and ya, respec-
tively. Points c, d, e, f lie in the double wedge region delimited by two lines l and l′
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Fig. 8. Illustration of the proof of Lemma 7

(of course they are outside of lens(ab) by definition, see Figure 8). Since ∠cae <
60◦, ce < max{ac, ae} holds. Similarly, since ∠daf < 60◦, df < max{ad, af}
holds. Also, since ∠cad and ∠eaf are larger than 120◦, ac < cd, ad < cd, ae < ef
and af < ef hold. Therefore, max{ac, ae, ce, ad, af, df} < max{cd, ef}. Since
{ac, ae, ce, ad, af, df, cd} and {ac, ae, ce, ad, af, df, ef} are both Laman graphs
on the five-point set Q = {a, c, d, e, f}, it cannot happen that both cd and ef
belong to MLG(P ) by Lemma 2, a contradiction.

If c = e or d = f holds, say c = e, then it can be seen by the same argument
that max{ac, ad, af, df} < max{cd, ef}, which implies by Lemma 2 thatMLG(P )
does not contain cd or ef , a contradiction.

This proves the lemma. 	


Now we consider the number of fan-crossing edges. Lemma 10 is proved by
showing the following two lemmas. (The proofs are omitted.)

Lemma 8. Let c be a point in lens(a, b). Then, there exist at most four edges
emanating from c that cross ab.

Therefore there exist at most eight fan edges that cross ab, four edges are ema-
nating from a point in the right half and the other four from a point in the left
half lens. The following lemma improves this bound.

Lemma 9. Let c (resp. d) be a point in the right half (resp. the left half) of
lens(a, b) such that there exists at least one fan-crossing edge emanating from c
(resp. d). Then there exist at most two fan edges emanating from c (resp. d) that
cross ab, respectively.

From Lemmas 8 and 9, we have the following.
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Lemma 10. For each edge ab of MLG(P ), there exist at most four fan-crossing
edges that cross ab.

By Lemma 7 and Lemma 10, we establish the main theorem, Theorem 2.
Finally, we show that the 6-planarity is tight.

Theorem 4. There is a configuration P of 9 points in the plane such that an
edge of MLG(P ) is crossed by 6 edges of MLG(P ) .

Proof. Consider the following example on P = {a, a′, b, c, c′, d, d′, e, e′} as shown
in Figure 9. Let h be a large number (defined below). Parameter ε > 0 is chosen
such that c lies outside of lens(a, a′), i.e. a′c > 2h. Note that limh→∞ ε = 0.
Parameter δ > 0 is chosen such that cc′ is slightly larger than 2h. We can
assume that limh→∞ δ = 0.

b(1, 0)

a′(0,−h)

a(0, h)c(−1, h− ε) d(2h− 1, h− ε)

c′(−1− δ,−h+ ε) d′(2h− 1− δ,−h+ ε)

e(2− 2h, 1)

e′(2− 2h,−1)

Fig. 9. Point set P and graph G for the proof of tightness of 6-planarity of MLG(P )

Consider graph G = (V,E) shown in Figure 9. Let E′ be the set of pairs
x, y ∈ P such that xy ≤ 2h. We claim that, if h is sufficiently large, then
E′ = E. Indeed, the distances aa′, cd and c′d′ are equal to 2h. If h is large then
eb2 = (2h− 1)2+1 < 4h2 and thus, (e, b) ∈ E′. By symmetry e′b < 2h. We show
that ec > 2h. If h is large then

ec2 = (2h− 3)2 + (h− 1− ε)2 > 4h2.

Similarly e′c′ > 2h and db, d′b > 2h. Note that dd′ = cc′ > 2h. Therefore
E′ = E. By Lemma 1 graph G is a subgraph MLG(P ) since E is (2, 3)-sparse.
Then MLG(P ) contains edge aa′ which is crossed 6 times. 	
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Applying the similar argument as Lemma 7 and Lemma 8, it is not difficult to
prove a bound of O(k) for the number of crossings per edge in the Euclidean
minimum weight (k, l)-tight graph on P , but we omit the detail since all the
ideas are already presented in the case of k = 2 and l = 3. Improving the hidden
constant is left as a future work.
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Abstract. We characterize the self-parallel (mitered) offsets of a general
nonconvex polytope Q in 3-space and give a canonical algorithm that
constructs a straight skeleton for Q.

1 Introduction

The straight skeleton of a polygon P in the plane is a versatile skeletal
structure, composed of angular bisectors of P and thus of piecewise linear com-
ponents [1,8,12]. A well-known procedural definition exists, by a self-parallel
shrinking process for P and the resulting ‘events’ that construct the skeleton
nodes. Events are unique changes in the polygon boundary, yielding the mitered
offset of P , in contradistinction to the Minkowski sum offset specified by the
medial axis of P ; see e.g. [7,11]. Applications arise in diverse areas, including
computer graphics, robotics, architecture, and geographical information systems.

To construct a straight skeleton for a given polytope Q in 3-space, one tries
to proceed in a way analogous to the planar case. The facet planes of Q are
offset simultaneously, self-parallel, and at unit speed. Thereby, the shrinking
polytope undergoes changes of geometric, combinatorial, and topological nature.
Geometrical changes, of course, take place continuously, whereas combinatorial
changes (on the polytope boundary) and topological changes (like new tunnels,
or breaking the polytope locally or globally apart) occur once in a while. Each
type of change implies the former ones.

During the offsetting process, the edges and vertices of Q trace out the facets
and edges, respectively, of the spatial skeleton. Thus a concise specification of
the offsetting process results in a concise definition of the skeleton. However, un-
like parallel offsets of polygons, parallel offsets of polytopes in �3 are in general
not unique. This might be among the reasons why not much literature exists on
this topic. Barequet et al. [4] studied straight skeletons in 3-space, mainly for
the special case of orthogonal (i.e., axes-aligned) polytopes, where the skeleton
is the medial axis of the polytope for the L∞-metric (and thus can be defined via
distances). They mention ambiguity problems for the case of general polytopes,
referring to Demaine et al. [6]. Also, a nice offsetting possibility by means of
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the planar weighted straight skeleton [2] is observed, but the offset treatment
of general vertices remains unclear (as is explained in Subsection 2.2). In fact,
it remains open whether a boundary-continuous and non-selfintersecting offset
polytope always has to exist. For orthogonal polytopes, Martinez et al. [10] re-
cently described an implementation of a straight skeleton construction algorithm
that uses the space-sweep technique.

In this paper we give a systematic treatment of offsetting, in terms of gen-
eralized vertex figures of a given polytope Q in �3, and their spherical bisector
graphs (Subsection 2.1). This includes a characterization of all possible offsets
for Q, and consequently, of all possible spatial straight skeletons for Q.

As an algorithmic tool, the so-called spherical skeleton is introduced (Subsec-
tion 2.2), a generalization to the unit sphere of the classical unweighted straight
skeleton in the plane. This structure can uniformly treat arbitrary polytope ver-
tices, and all types of events that occur during the construction of a straight
skeleton in �3, including those which change the topology of the polytope.
A canonical offsetting algorithm results (Section 3), which produces a small
number of edges, among all offset possibilities, and comes with a certain opti-
mality property concerning edge convexity. The algorithm also provides a means
for converting boundary-triangulated (simplicial) nonconvex polytopes in �3

into 3-regular (simple) ones, via ε-thinning; see e.g. [11].
We define a polytope Q in 3-space �3 as a bounded, closed, and interior-

connected subset of �3 with piecewise linear boundary. The boundary compo-
nents of Q of dimensions 2, 1, and 0, respectively, are called facets, edges, and
vertices of Q. In the easiest case, Q is homeomorphic to a ball in �3.

A polytope is, in general, nonconvex and may contain tunnels, and even
‘voids’ that make its boundary disconnected. However, if the input polytope Q
is boundary-connected, no holes can be created in its offsetting process.

An edge e of Q is called reflex if there exists some line segment � ⊂ Q whose
interior intersects the interior of e in a single point. Otherwise, edge e is called
convex. (Topological notion like interior, boundary, etc. is meant relative to the
dimension of an object.)

2 Vertex Figure Resolution

2.1 Offset Characterization

In the offsetting process, the local facial structure of the input polytope has to be
updated, at existing or arising vertices of degree 4 or higher (apart from certain
degenerate cases). We describe these changes in terms of so-called vertex figures
of a polytope [9].

Consider some vertex, v, of the current polytope Q. Center a sphere at v,
sufficiently small to intersect only faces of Q incident to v. We can assume that,
w.l.o.g., this sphere is the unit sphere, U . The vertex figure, F(v), of v is then
defined as the intersection of Q with the unit ball; see Figure 1 (left).

The boundary of Q intersects U in a Jordan curve J composed of great arc
segments on U . (For ease of exposition, assume only one such curve for now.)
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v v

Fig. 1. Vertex figure and spherical polygon P (left). Offsetting the vertex figure (right).
The bisector graph G (dashed style) used for projecting is unique for P in this example.
The degree-6 vertex v splits into four vertices of degree 3 in the offset surface Γ (G).

Then Q ∩ U is a simply connected spherical polygon, P . The curve J consists
of nodes and segments ; the former are the intersections of U with the edges
of Q incident to v, and the latter belong to the boundary of the planar facets
f1, . . . , fm of the vertex figure F(v). Here m ≥ 3 is the degree of vertex v.

Let now Hi be the supporting plane of facet fi. Denote with HΔ
i the parallel

offset of Hi by Δ > 0, inward with respect to F(v). An (inward) offset of F(v)
is defined as a radially monotone (w.r.t. v) and continuous surface over P with
facets from the planes HΔ

i , including an unbounded facet for each plane.
For increasing Δ, the intersection line �ij = HΔ

i ∩ HΔ
j of two offset planes

sweeps along an angular bisector plane, Bij , of Hi and Hj . The point of inter-
section of three offset planes moves along the trisector line of these planes. Note
that these bisector planes and trisector lines all pass through the vertex v.

We next consider the picture on the unit sphere U . Define bij = Bij ∩ U ,
which is a great circle on U . Exactly three great circles bij , bik, bjk meet in two
common points, which are the intersections of U with the respective trisector
line. (We only discuss the non-degenerate situation here.) For a system of circles
with this property, we can consider any bisector graph G they define inside the
spherical polygon P .
G is defined as a crossing-free graph with labelled arcs aij ⊆ bij , where the

ordering of the labels (ij) indicates the position of the facets fi and fj with
respect to the bisector plane Bij . G contains nodes of degree 1 (the nodes of P),
and of degree 3 whose incident arcs have labels of the form (ij), (ik), (kj).
G can be disconnected and can even contain cycles. We have the following
characterization.

Lemma 1. For every offset surface for F(v) its edge graph maps, by central
projection with respect to v, to some bisector graph for the system (bij)1≤i<j≤m.
Conversely, each bisector graph G for this system lifts, by this projection, to the
edge graph of an offset surface ΓΔ(G) for F(v), which is unique for fixed Δ > 0.

Proof. From the way how offset planes intersect, it is obvious that each valid
offset surface radially projects to a crossing-free degree-3 graph with the required
labelling. To prove the converse, we lift G’s arcs aij to the lines �ij = HΔ

i ∩HΔ
j

by central projection with respect to v. This can be done because aij , �ij , and v
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t

Fig. 2. Different offset surfaces for a vertex figure of degree 10. The figure is based on a
pentagonal star P (of small area, so that P is almost flat.) Our algorithm will produce
the offset with the convex edge c (middle), avoiding the reflex edge r (left). The bisector
graph is highly ambiguous and even need not be a tree. Additional small facets for two
segments s and t bounding P might show up in the surface, either together (right), or
separately (not shown).

are contained in the same plane, Bij . Each connected face of G thus lifts to a
polygon in 3-space, which is planar because its edges eij are labelled with the
same offset plane index j on the ‘inside’, by the labelling of G. That is, G lifts
to a unique piecewise linear surface, whose facets fit continuously because their
edges eij are part of �ij and thus lie in both offset planes HΔ

i and HΔ
j . The

surface is radially monotone because G is crossing-free.

See Figure 1 (right) for an illustration. The combinatorial structure of ΓΔ(G)
does not change for Δ > 0, so we may just write Γ (G).

In general, there is more than one valid bisector graph for a given system (bij).
In fact, there can be exponentially many, in the degree m of v (which can be
obtained, for example, by combining the graphs shown in Figure 2 into bigger
ones). Consequently, there may be more than one valid offset surface for a given
vertex figure. That is, parallel offsets of polytopes in �3, and with it, their
straight skeletons, are not unique.

2.2 Spherical Skeleton

By Lemma 1, offsets of vertex figures – and in fact, of the entire polytope Q –
can be computed by generating bisector graphs. In principle, any valid bisector
graph for a spherical polygon P could be extracted from the arrangement of the
great circles bij defined on the unit sphere U . A more direct and also unique way
is to construct the spherical skeleton of P , denoted by Sph(P). We now define
this skeleton, by describing its events (and peculiarities).

We simulate the offsetting process, by considering the intersection of a vertex
figure’s facets with U . That is, we offset the Jordan curve J that bounds P ,
inwards with respect to P . The moving curve is denoted by JΔ, where Δ means
offset distance, hence time. (The case ‘outwards’ is analogous, and the case ‘more
than one Jordan curve’ is similar.)
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Δ
J J

JΔ

x

Fig. 3. Void event and arc merge event (left upper). Two stopping events; the interior
of the offsetting region is shaded (left lower). A triangular Jordan curve J and two
offsets JΔ, for Δ < 1 and Δ > 1 (right). The three extending skeleton arcs (dashed)
stop once each, at the marked positions. They meet at point x where JΔ vanishes in
a triangle collapse.

JΔ’s nodes move on the great circles bij and draw out the skeleton arcs. The
moving nodes bound shifted segments si from J on circles HΔ

i ∩U whose radii
all shrink identically. The speed of an expanding skeleton arc aij is given by
the (fixed) angle between the two planes HΔ

i and HΔ
j and by the time Δ. As

one possible event, three such arcs aij , ajk, and aik meet at the same time at a
point of intersection of U with the respective trisector line. This means a segment
collapse for sj , making JΔ lose this segment. Or, one of the arcs, say aij , bumps
into some shifting segment sk and splits it (segment split event). This breaks JΔ

into two closed curves, and lets two arcs aik and ajk start at the breaking point.
In both cases, a new node of the skeleton Sph(P) is created, quite similar to
the planar skeleton case [1]. Also similar is the simultaneous collapse of three
segments forming a spherical 3-gon (triangle collapse). On the other hand there
are new events, for example the collapse of a spherical 2-gon (arc merge) or of
a spherical 1-gon, i.e., a full circle (void event); see Figure 3 (left). These events
do not create nodes of Sph(P).

If the vertex figure F(v) based on P is pointed, that is, if there exists a
plane through v that has P on a fixed side, then the construction of Sph(P)
will be completed at time Δ < 1, when all the planes HΔ

i are still intersect-
ing the sphere U . Otherwise, more substantial differences to the planar case
occur: At time Δ = 1, the planes HΔ

i will start avoiding U , although Sph(P)
is still incomplete. To continue the construction, we let the planes return and
intersect U in circles with negative radii, which are expanding now. (That is,
the complements of the disks they bound are shrinking now, rather than the
disks themselves.) Arc extension along bij , which stopped at time 1−Δij and
at point pij when and where the line �ij = HΔ

i ∩HΔ
j left U , continues after

this stopping event at pij at time 1 +Δij , with the arc endpoint carrying two
segments si and sj of mirrored shape which stem from negative circles; see Fig-
ure 3 (left lower). The convexity status of their common endpoint alters thereby.
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v

Fig. 4. Vertex touch; the convex case. A polytope edge shrinks to length zero, creating
a vertex figure F(v) with four convex edges (left). Its base is a spherical rectangle P .
The two longest segments of P ’s boundary curve J yield an arc in the spherical skeleton
(dashed style, inside P) that connects two nodes. Accordingly, vertex v splits into two
offset vertices after the event (right lower).
For the inverse event, the outward offset is relevant. The spherical skeleton now lives
in the outer hemisphere U \ P , which corresponds to the complement of F(v). Four
skeleton arcs extend from J around U , but stop in between this time. The two shortest
segments of J yield a skeleton arc now. Vertex v splits into two vertices again, yielding
different facet adjacencies that describe the situation before the event (right upper).

(Intuitively speaking, the returning planes collect up their stopped arc endpoints
in reverse order, letting them continue at the right time.)

This ‘positive/negative switch’ at time Δ = 1 ensures that, for each trisector
line, both intersection points with U are taken into account as possible skeleton
nodes; see Figure 3 (right). For each stopped arc endpoint, its two incident
segments are temporarily inactive for split events.

Sph(P) is a bisector graph which is outerplanar. Each segment si of J sweeps
out a single region, which is incident to si. (Segments on the same great circle
might give the same region.) For, once all segments for an offsetting circleHΔ

i ∩U
have collapsed (unless in a stopping event), the plane HΔ

i cannot define any
further piece of Sph(P). Thus Sph(P) contains ≤ m regions and O(m) arcs and
nodes, where m is the number of segments of J . Figures 4 to 9 give illustrations.

Using weighted planar straight skeletons [2] to resolve high-degree vertices
has been considered in Barequet et al. [4]. In their approach, partial skeletons in
two osculating planes need to be merged into one skeleton. Thereby, components
from one plane might destroy the skeleton structure in the other, however. For
example, skeleton faces can expand, rather than shrink as they do for Voronoi-like
partitions. It remains unclear how to deal with this problem, which is equivalent
to the (unsolved) problem of computing a planar straight skeleton by divide &
conquer, or incremental insertion.

To base the offsetting process on Sph(P) is natural, as it is consistent with
the well-known process that constructs the straight skeleton in �2. This choice
is also preferable, not least because of the linear size of Sph(P). For general
bisector graphs, examples with Ω(m2) interior faces can be constructed. Also,
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c

Fig. 5. Vertex touch; saddle point. F(v) has four edges, of alternating convexity type
(left). Unlike the convex case in Fig. 4, two offsets exist (right). The spherical skeleton
produces the lower solution. The short skeleton arc corresponds to a convex edge c
in the offset polytope. It connects the two vertices which v is split into. In the upper
solution, the offset edge r is reflex.

Sph(P) is unweighted, and thus behaves like the classical planar straight skeleton
in certain respects. For example, if F(v) is pointed then one can show that no
new reflex edges are generated in the offset surface Γ (Sph(P)), only the ‘forced’
ones that are also present in F(v). A similar property holds for the ‘roof’ of the
planar straight skeleton [1], but not for weighted straight skeletons, in general.

Sph(P) can be computed in O(m2 logm) time with a trivial implementation,
like in the planar case [1]. Note that m (the degree of the vertex figure) will be
usually quite small in practice, for two reasons: Most solids can be accurately
approximated by polytopes having vertices of small constant degree. Also, in the
non-degenerate case, the straight skeleton events in �3 lead to vertex figures of
degree at most 8, as we shall see in the following section.

3 Straight Skeleton Algorithm in �3

When attempting to construct a straight skeleton in �3, the vertex figure reso-
lution problem arises immediately, when vertices of degree m ≥ 4 of the input
polytope Q have to be split. In the non-degenerate case, such a vertex splits into
m− 2 vertices of degree 3 in the shrunken polytope. Interestingly, by nature of
the straight skeleton events in �3, the vertex resolution problem is encountered
again each time a new event is to be handled.

An event in this sense is an increase in the number of facets for some vertex
of the shrinking polytope (for example, by touch with another degree-3 vertex).
We are then left with the problem of resolving that vertex, to continue the
skeleton construction for Q. As we have seen in Subsection 2.1, there are several
possibilities to proceed. This gives a tree of possible offset polytopes, with rootQ.
Each path fromQ to a tree leaf corresponds to a different straight skeleton for Q.
(If Q is convex then there is only one path, leading to the medial axis of Q.)

When the spherical skeleton approach from Subsection 2.2 is used, we always
obtain a unique path. This path is short because offsets with a small number
of edges are created, especially in the beginning where high-degree vertices of Q
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a

Fig. 6. Vertex touch; pointed saddle point. Again, F(v) has two reflex and two convex
edges, but they do not positively span �3 as in Fig. 5. The skeleton lives in the lower
hemisphere. It is generated by a segment collapse and a triangle collapse, followed by
a void event at the south pole. The short skeleton arc, a, gives a convex edge e in the
offset polytope (right lower), where the horizontal facet and the dark-shaded facet are
adjacent. The same adjacency existed already as edge e′ in the polytope before the
event (right upper), indicated by arc a′ in the skeleton in the upper hemisphere, which
specifies the inverse event. Observe that a and a′ lie on the same great circle.

may be present. The skeleton Sph(P) does not only encode the local facial struc-
ture at a vertex v after the event, but can also restore this structure before the
event (except for certain collapse events, see later). To this end, the outward
offset of the vertex figure F(v) based on P is considered. This is just the (in-
ward) offset of the complement of F(v). We obtain it by using the spherical
skeleton Sph(U \ P), as is illustrated in Figures 4, 6, 7, 8, and 9. In this way, an
event can be associated with a unique inverse invent.

As a consequence, the resulting unique straight skeleton, SKEL(Q), for the
polytope Q is given locally at each of its vertices v by

SKEL(Q) ∩ U = Sph(P) ∪ Sph(U \ P) .

Our vertex resolution procedure works, without conceptual changes, for all oc-
curring degenerate cases, be they by the special structure of Q (for example,
regular pyramid vertices that offset into vertices of degree ≥ 4) or by construc-
tion (during event handling, where coplanarities may arise naturally).

3.1 Event Categorization

Categorizing the (non-degenerate) events that construct SKEL(Q) is relatively
easy. A general distinction is between surface events which change the combi-
natorial structure of Q’s edge graph without topological effect, and solid events
which also change the topology of Q. For the former, the vertex figure yields a
single Jordan curve on U , whereas it gives two disjoint curves for the latter.

Note that a categorization of all possible events is not needed for handling
them; our algorithm automatically computes a unique local offset structure.

In the generic case, all vertices of the offsetting polytope are of degree 3 before
each event (except initially), and faces of dimension≥ 1 touch only in their interiors
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Fig. 7. Vertex touch; degree 6. In F(v), the two dark-shaded facets and the two horizon-
tal facets are coplanar, respectively (left). Thus the coincidence of the two approaching
polytope vertices u and w (right upper) that touch in v is not by degeneracy but by
construction; they move on the same straight line L. Vertex v splits into two degree-3
vertices after the event (right lower), as is witnessed by two nodes of the same degree
in the skeleton in the lower hemisphere. This skeleton is disconnected, as is the one for
the inverse event in the complementary hemisphere.

in an event. Then a surface event is either a vertex touch (of one of various types
displayed in Figures 4 to 7) which give a vertex figure F(v) of degree at most 6, a
vertex/edge touch (like in Figure 8) whereF(v) is of degree 5, or an edge/edge touch
where F(v) is of degree 8. Solid events include the piercing event (vertex/facet
touch, Figure 9), the kissing event (edge/edge touch), and the splitting event. For
each of them, F(v) has 4 facets. Tetrahedron collapse is the last one (and also the
chronologically final event), with 4 facets shrunk to a common point.

v

Fig. 8. Vertex/edge touch. The flat wedge retracts to the left, faster than does the
triangular pyramid on its top (right upper). At v, the pyramid splits the rim of the
wedge, whose lower facet then expands to above the rim in the offset polytope (right
lower). Correspondingly, the degree-5 vertex v in F(v) splits into three vertices, as is
witnessed by three nodes in the skeleton (left). This bisector graph for F(v) is unique.
Therefore no other offsets are possible. (The case where the upper (horizontal) wedge
facet expands at v leads to a wrong orientation of this plane. The corresponding graph
leaves P .) The situation before the event is encoded in the complementary skeleton,
which is disconnected. Its single arc represents the unsplit rim.
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v

Fig. 9. Piercing event. F(v) is based on a ‘spherical polygon’ bounded by two Jordan
curves, a spherical triangle and a full circle (left). The skeleton contains a triangular
cycle that corresponds to the hole pierced into the horizontal facet by the offsetting
pyramidal pit (right lower). Thus vertex v splits into three vertices.
For the inverse of the piercing event, the skeleton is just a degree-3 star inside the
triangular Jordan curve, corresponding to the pyramid whose apex now rises above the
horizontal polytope facet (right upper). The other curve, the full circle, contracts at
the south pole without leaving a trace – a void event.

The anatomy of events can be quite complex. We therefore provided examples
for most of them (but not all, due to space constraints), with detailed explana-
tions in the figures’ legends. The meaning of the events for the skeleton SKEL(Q)
in �3 being constructed is briefly commented below.

Each event constructs a particular vertex v of SKEL(Q). The surface events
in Figures 4, 5, and 6 complete a facet of SKEL(Q) at v, and start a new one.
Adjacency of skeleton cells ‘flips’ in the first two cases but, interestingly, remains
in the last case. For Figure 7 even the same facet, swept over by line L, continues
at v, with two parts. Two new facets, traced out by small pyramid edges, start
for Figure 8. Three new facets are created at v in a piercing event (Figure 9).
This event yields a tunnel in the shrinking polytope.

4 Concluding Remarks

Concerning the size of SKEL(Q), each event implies that four offset planes meet
at the same point, which happens only once during the entire offsetting pro-
cess. This bounds the number of events by

(
n
4

)
, if Q has n vertices. The size

of SKEL(Q) thus is O(n4). A lower bound of Ω(n2α(n)2) has been shown in [4].
The construction time depends on the number of occurring events, which tends

to stay linear for many inputs, as observed in our implementation. The detec-
tion of solid events is costly, though, due to the absence of a three-dimensional
analogue of motorcycle graphs [8,12]. The direct method checks self-intersection
of the offset polytope after each potential surface event, by intersecting O(n)
boundary triangles in O(n2) time. A theoretical speed-up to O(n4/5+εk4/5+ε) is
possible, provided the number k of triangle intersections is small [5].

The cells of SKEL(Q) are monotone in direction normal to their defining
polytope facets. This can be shown by generalizing the ‘roof’ argument in [1]
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to one dimension higher. The monotonicity of skeleton cells may be useful in
applications arising, for instance, in automatic meshing.

When not exclusively using Sph(P) but also other bisector graphs, offsets with
tailor-made features can be generated. We have investigated this issue in a com-
panion paper [3]. In particular, offset polytopes with a minimum or a maximum
number of reflex edges are generated. There can be super-exponentially many
(in n) different straight skeletons for a given polytope with n vertices. Finding
skeletons efficiently that require a minimum number of constructing events (or
even characterizing them in terms of vertex figure resolution) is of vital interest,
as such skeletons have a smallest number of vertices.

The skeleton construction approach in Sections 2 and 3 works in principle in
any dimension, though details get involved rapidly. As a possibly still tractable
instance, a spherical skeleton in �4 can be defined on the basis of SKEL(Q),
leading to a canonical straight skeleton for 4-dimensional polytopes.

Acknowledgements. We thank Günter Rote for interesting discussions.
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for polygons. Journal of Universal Computer Science 1, 752–761 (1995)

2. Aurenhammer, F.: Weighted skeletons and fixed-share decomposition. Computa-
tional Geometry: Theory and Applications 40, 93–101 (2007)

3. Aurenhammer, F., Walzl, G.: Three-dimensional straight skeletons from bisector
graphs. In: Proc. 5th International Conference on Analytic Number Theory and
Spatial Tessellations, Kiev, Ukraine (to appear, 2013)

4. Barequet, G., Eppstein, D., Goodrich, M.T., Vaxman, A.: Straight skeletons of
three-dimensional polyhedra. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008.
LNCS, vol. 5193, pp. 148–160. Springer, Heidelberg (2008)

5. De Berg, M., Guibas, L.J., Halperin, D.: Vertical decompositions for triangles in
3-space. Discrete & Computational Geometry 15, 35–61 (1996)

6. Demaine, E.D., Demaine, M.L., Lindy, J.F., Souvaine, D.L.: Hinged dissection of
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Abstract. The Sorting by Reversals Problem is known to be NP-hard.
A simplification, Sorting by Signed Reversals is polynomially computable.
Motivated by the Pattern Matching with Rearrangements model, we con-
sider Pattern Matching with Reversals. Since this is a generalization of
the Sorting by Reversals problem, it is clearly NP-hard. We, therefore
consider the simplification where reversals cannot overlap. Such a con-
strained version has been researched in the past for various metrics in
the rearrangement model - the swap metric and the interchange metric.
We show that the constrained problem can be solved in linear time. We
then consider the Approximate Pattern Matching with non-overlapping
Reversals problem, i.e. where mismatch errors are introduced. We show
that the problem can be solved in quadratic time and space. Finally, we
consider the on-line version of the problem. We introduce a novel signa-
ture for palindromes and show that it has a pleasing behavior, similar to
the Karp-Rabin signature. It allows solving the Pattern Matching with
non-overlapping Reversals problem on-line in linear time w.h.p.

1 Introduction

Consider a text T = t0 · · · tn−1 and pattern P = p0 · · · pm−1, both over an al-
phabet Σ. Traditional pattern matching regards T and P as sequential strings,
provided and stored in sequence (e.g. from left to right). Therefore, implicit in
the conventional approximate pattern matching is the assumption that there
may indeed be errors in the content of the data, but the order of the data
is inviolate. However, examples from text editing, bit torrent and video on de-
mand, computer architecture, and computational biology, motivated a new pat-
tern matching paradigm – pattern matching with rearrangements. For a survey
on the rearrangement paradigm see [5].

In addition to the theoretical combinatorial motivation, the paradigm is also
fueled by biological challenges. During the course of evolution areas of the
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genome may be shifted from one location to another. Considering the genome as
a string over the alphabet of genes, these problems represent a situation where
the difference between the original string and the resulting one is in the locations
rather than contents of the different elements. Several works have considered spe-
cific versions of this biological setting, primarily focusing on the sorting problem
(sorting by reversals [8,10], sorting by transpositions [6], and sorting by block
interchanges [11]).

The Min-SBR (Minimum Sorting by Reversals) problem, gets a permutation
π = π[1], ..., π[n] of {1, ..., n} as its input, and its task is to sort the permutation
using the minimum number of possible reversal operations. A reversal operation
reverses the order of a substring of the permutation, i.e.

rev(i,j)(π[1], ..., π[i− 1], π[i], π[i+ 1], ..., π[j− 1], π[j], π[j + 1], ..., π[n]) =

π[1], ..., π[i− 1], π[j], π[j− 1], ..., π[i+ 1], π[i], π[j + 1], ..., π[n].

The Min-SBR problem is NP-hard and has a long history. If the reversals are
signed, there exist polynomial time algorithms [8,15]. For unsigned reversals
there are efficient approximation algorithms [12,9].

This paper studies the reversals problem in a general alphabet setting, rather
than as a sorting problem, i.e. symbols may occur in the strings multiple times.
Consider a set A and let x and y be two m-tuples over A. We wish to convert x
to y through a sequence of reversal operations. We call this problem the General
Alphabet Matching with Reversals Problem.

Since the Sorting by Reversals problem is a special case of the General Al-
phabet Matching with Reversals problem, then the latter is also NP-hard. We
therefore consider a constrained version of this problem.

A very special case of the problem had been significantly studied. The Pattern
Matching with Swaps problem (the Swap Matching problem, for short), defined
by Muthukrishnan [20], requires finding all occurrences of a pattern of length m
in a text of length n. The pattern is said to match the text at a given location
i if adjacent pattern characters can be swapped, if necessary, so as to make the
pattern identical to the substring of the text starting at location i. All the swaps
are constrained to be disjoint, i.e., each character is involved in at most one
swap.

Swap Matching is a specialized case of General Alphabet Matching by Rever-
sals. It has two constraints:

Length: The length of a reversed substring is limited to 2.
Disjointness: All swaps are disjoint, i.e. each symbol can participate in at
most one swap.

Both these constraints together tremendously simplified the problem. While the
General Alphabet Matching by Reversals problem is NP-hard, a series of pa-
pers [2,4,13] culminated in a O(n logm log σ) time algorithm [3] for the Swap
Matching problem, where n is the length of the text, m is the length of the
pattern and σ is the minimum of the pattern length and the alphabet size. It
should be noted that unlike the definition of the Sorting by Reversals problem
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or the General Alphabet Matching with Reversals problem, the Swap Matching
problem “shifts” the pattern over a longer text, computing the swap match in
every text location. The reversal problems we defined above consider two strings
of the same length, thus no shift is done.

It is natural, then, to ask, what happens if only one of the above constraints
exists. If only the length constraint is kept, the problem becomes similar to that
of the time complexity of Bubble-sort. In this paper we consider the problem of
loosening the length constraint but keeping the disjointness constraint.

Definition 1. The Reversal Matching Problem is the General Alphabet Match-
ing with Reversals problem with the disjointness constraint, i.e., each symbol can
participate in at most one reversal.

We say that string S reversal matches string T if string T results from per-
forming a sequence of disjoint reversal operations on string S.

This natural constraint has been used not only in the Swap Matching problem
but also in other contexts of the rearrangements model, for example in the
Pattern Matching with Interchanges problem [1].

We summarize the differences between the above definition of the reversal
matching problem and the traditional sorting by reversals problem (Min-SBR).
The Min-SBR problem is a sorting problem (i.e. every symbols appears once
in the string) whereas the reversal matching problem is a pattern matching
problem, i.e. symbols can repeat. In the Min-SBR problem, the same symbol may
be part of several reversal operations, whereas in the reversal matching problem
if a symbol is part of a reversal operation, it cannot be moved again. Every
permutation can be sorted by reversals, consequently the interesting question
in the Min-SBR problem is finding the minimum number of reversals necessary
for sorting. However, because of the disjointness constraint, even strings having
the same alphabet and the same number of occurrences for each symbol, do not
necessarily reversal match, thus the question that interests us is whether two
strings reversal match. If they do, there is only one sequence of disjoint reversal
operations that achieves the reversals match.

The contributions of this paper are theoretical in nature:

1. Considering the Sorting by Reversals problem in the context of the Pattern
Matching with Rearrangements model.

2. A combinatorial analysis and understanding of the non-overlapping reversals
phenomenon.

3. Formalizing and exploiting the intuitive relation between reversals and palin-
dromes.

4. A novel fingerprint idea that enables on-line sorting by reversals, and on-line
palindrome detection.

We next consider the approximate reversal matching problem. Given two strings,
s1 and s2, does there exist a string s′2 that reversal matches s1, and such that the
Hamming distance between s1 and

′
2 is minimized, or is smaller than a given k. We

provide an algorithm that can compute the k-reversal distance of strings s1 and s2
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of length n in time O(n2k) and linear space, and an algorithm that computes the
k-reversal distance in time and space O(n2). We also show a trade-off algorithm
whose time is O(n2 log k) and whose space is O(nk).

2 Reversal Matching up to Distance k

2.1 Exact Reversal Matching

We start with an algorithm for solving the Reversal Matching problem without
mismatches.We first need some useful notation. Let s = s[1], s[2], · · · , s[n−1], s[n]
be a string.
We denote its reverse s[n], s[n− 1], · · · , s[2], s[1] by sR.
Let 1 ≤ i ≤ j ≤ n. Denote by s[i : j] the substring s[i], s[i+ 1], ..., s[j − 1], s[j].
Let 1 ≤ j ≤ n. We denote the length-j prefix of s, s[1 : j] by Prej(s). We denote
the suffix of s starting at position j, s[j : n], by Sufj(s).

The reversal property below enables a surprisingly simple greedy linear time
algorithm for the exact reversal matching.

Lemma 1. The Reversal Property: Let s be string of length n and let 1 ≤
j < n. If Prej(s) = Prej(s

R)R then Sufj+1(s) and Sufj+1(s
R) reversal match.

Proof: s = s[1] · · · s[n] and sR = s[n] · · · s[1]. Prej(s) = s[1] · · · s[j] and Prej(sR)
= s[n]s[n − 1] · · · s[n − j + 1]. We are given that Prej(s) = Prej(s

R)R, mean-
ing s[1] · · · s[j] = s[n− j + 1] · · · s[n]. The lemma’s condition, then, implies that
the first j symbols of s are equal to the last j symbols of s, i.e. Prej(s) =
Sufn−j+1(s) and, consequently, Prej(s

R) = Sufn−j+1(s
R).

We get Sufn−j+1(s) = Prej(s) = Prej(s
R)R = Sufn−j+1(s

R)R.
Consider now two cases:

1. If n > 2j then the first j symbols of s do not overlap the last j symbols. How-
ever, for every string t we have t = (tR)R so, in particular, s[j +1 : n− j] =
(sR[j+1 : n−j])R. Sufj+1(s) is s[j+1..n−j] concatenated with Sufn−j+1(s).
Sufj+1(s

R) is sR[j + 1 : n − j] concatenated with Sufn−j+1(s
R). But

s[j + 1 : n − j] = (sR[j + 1 : n − j])R and Sufn−j+1(s) = Sufn−j+1(s
R)R,

thus Sufj+1(s) and Sufj+1(s
R) reversal match.

2. If n ≤ 2j then the first j symbols overlap with the last j symbols. Neverthe-
less, we have seen that they are equal. Let so be the substring where the first
j symbols of s overlap with the last j symbols, and let x = |so. We have that
Sufj+1(s) consists of s1 = s[x+ 1] · · · s[j − x] followed by so. Sufj+1(s

R) is
sR1 concatenated with sRo , as can be seen in Figure 1. 	


The reversal property immediately suggests a greedy algorithm for reversal
matching.

Greedy Algorithm Outline: Given s1 and s2, go from left to right. Start
from index i = 1.
Assuming we have shown that s1 and s2 reversal match until index i, find the
shortest substring s′ starting at s1[i] such that s′R is the substring of s2 starting
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Fig. 1. Overlapping prefix and suffix of s

at s2[i]. If the length of s′ is j then the next index to check is i + j. If no such
substring exists then s1 does not reversal match s2.

Algorithm Correctness: The reason this greedy strategy works is the fol-
lowing. Suppose there is a reversal matching where the chosen reversal at position
i is not the shortest. Then at index i there is a longer substring s′′ that starts at
s1[i] such that s′′R is the substring of s2 starting at s2[i]. Because of the reversal
property, reversing s′ will still mean that the remaining suffix of s′′ in s1 reverse
matches the remaining suffix of s′′R in s2.

Algorithm Time: Finding s′ can be done in time |s′| by checking, for each
prefix Prei(s

′), i = 1, ..., |s′| of s′, whether Prei(s′)R equals the corresponding
prefix in s2. This can be done in a standard way by LCA queries on a suffix tree
of s1 and sR2 (e.g. [21,7]), or by LCP queries on a suffix array of s1 concatenated
to SR

2 (e.g. [16,18]). These queries take constant time following a linear-time
preprocessing for fixed finite alphabets. There is a multiplicative log σ factor for
general alphabets, where σ = min (n, |Σ|).

2.2 The Mismatch Case - Dynamic Programming

We now introduce mismatch errors into the problem. The philosophy is akin to
the prevailing one in pattern matching. We assume that mismatch errors have
been introduced to a string s2. We seek the smallest number of such mismatches
that, if fixed, will make s2 reversal match s1. We formally define this below, and
introduce a strong tool for an efficient solution – the palindrome distance.

Definition 2. Let s1, s2 be strings of length n. Denote by Ham(s1, s2) the Ham-
ming distance between s1 and s2, i.e. the number of mismatches between them. The
palindrome distance between s1 and s2, denoted by PD(s1, s2) is Ham(s1, s

R
2 ).

Denote

PDk(s1, s2) =
{
PD(s1, s2) if PD(s1, s2) ≤ k,
∞ otherwise.

The reversal distance between s1 and s2, denoted by RD(s1, s2) is the mini-
mum number k such that there exists a string s′2, where Ham(s2, s

′
2) = k and

where s1 reversal matches s′2.
The k-reversal distance between s1 and s2, denoted by RDk(s1, s2) is

RDk(s1, s2) =
{
RD(s1, s2) if RD(s1, s2) ≤ k,
∞ otherwise.
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We are interested in efficiently finding the k-reversal distance. The problem
with introducing mismatches is that the reversal property breaks down when
dealing with mistakes. It is therefore necessary to actually check all possibilities
of reversal matching the strings. This can be done using dynamic programming.

Dynamic Programming Algorithm Outline.
Let A be an array of length n+1. The cell A[i] will hold the reversal distance of
the two length-i prefixes of the strings, i.e. RD(Prei(s1), P rei(s2)). The array
can be constructed as follows:

Initialize A[0]← 0.
Assuming we have all the values of A[�], � = 0, ..., i − 1. Compute A[i] in
the following manner: For all � = 0, ..., i − 1, calculate the palindrome distance
between s1[� : i] and s2[� : i] plus the reversal distance between Pre�(s1) and
Pre�(s2). Formally:

A[i] = min
0≤�<i

{A[�] + PDk(s1[� : i], s2[� : i])}.

We will show below that, for a given i, we can calculate the palindrome dis-
tances up to k errors, PDk(s1[� : i], s2[� : i]) for all 0 ≤ � ≤ i in time O(ik).
The Palindrome Distance algorithm works in an on-line fashion, i.e. on the �-th
step the algorithm reads the �-th characters, s1[�] and s2[�], and outputs the
palindrome distance PDk(Pre�(s1), P re�(s2)). Each such step takes O(k) time.
Thus, in order to calculate A[i] we need to calculate PDk(s1[� : i], s2[� : i]) for
all 0 ≤ � < i.

Total Running Time: The time to calculate A[i] is O(ik), so the total time
is O(n2k).

It remains to show how one can calculate PDk(s1[� : i], s2[� : i]) in time O(k).
This is done by employing the kangaroo idea of Galil and Giancarlo [14]. Galil
and Giancarlo used the Landau and Vishkin idea [19] of using LCA’s on a suffix
tree in order to compute the k-Hamming distance of a pattern P at location i
of text T in time O(k). This is precisely what we need to do for s1[� : i] and
s2[� : i]

R. The same idea is used, but sR2 needs to be part of the suffix tree.

3 Speeding up the Dynamic Programming Algorithm

In this subsection we speed up the dynamic programming algorithm. The more
efficient time complexity is achieved due to the following lemma.

Lemma 2. For any 0 ≤ j < i < n and τ < i−j
2 :

PD(s1[j + τ : i − τ ], s2[j + τ : i − τ ]) = PD(s1[j : i], s2[j : i]) − (PD(s1[j :
j + τ ], s2[i− τ : i]) + PD(s1[i− τ : i], s2[j : j + τ ]))

Proof: Consider Figure 2.
The following string of equalities can be seen from Figure 2:

PD([s1[j : i], s2[j : i]) = Ham(s1[j : i], s2[j : i]
R) =

= Ham(s11s1cs12, (s21s2cs22)
R) = Ham(s11s1cs12, s

R
22s

R
2cs

R
21) =
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Fig. 2. Palindrome distance of s1[j : i] and s2[j : i]

= Ham(s11, s
R
22) +Ham(s1c, s

R
2c) +Ham(s12, s

R
21) =

= PD(s1[j : j+τ ], s2[i−τ : i])+PD(s1[j+τ : i−τ ], s2[j+τ : i−τ ])+PD(s1[i−τ :
i], s2[j : j + τ ]). 	


The lemma leads to a simple strategy for computing multiple palindrome
distances fast. In essence, adding or deleting a pair of symbols on the two edges
changes the palindrome distance depending on the equality or inequality of the
added symbols.

Conclusion 1. Given s1[j : i], s2[j : i], τ <
i−j
2 and PD(s1[j : i], s2[j : i]), one

can calculate PD(s1[j + μ : i− μ], s2[j + μ : i− μ]) for all μ < τ in O(τ) time.

Proof: Start from μ = 0. We are given PD(s1[j + 0 : i − 0], s2[j + 0 : i− 0]) =
PD(s1[j : i], s2[j : i]). Assume we have already calculated PD(s1[j + μ : i −
μ], s2[j + μ : i − μ]) = pdμ. Then PD(s1[j + μ + 1 : i − (μ + 1)], s2[j + μ + 1 :
i− (μ− 1)]) gets the following value:

⎧⎪⎪⎨
⎪⎪⎩

pdμ if s1[j + μ+ 1] = s2[i− (μ+ 1)]) and s1[i− (μ + 1)] = s2[j + μ+ 1],
pdμ + 1 if s1[j + μ+ 1] = s2[i− (μ+ 1)]) and s1[i− (μ + 1)] �= s2[j + μ+ 1],
pdμ + 1 if s1[j + μ+ 1] �= s2[i− (μ+ 1)]) and s1[i− (μ + 1)] = s2[j + μ+ 1],
pdμ + 2 if s1[j + μ+ 1] �= s2[i− (μ+ 1)]) and s1[i− (μ + 1)] �= s2[j + μ+ 1]. ��

Conclusion 2. Given s1[j : i], s2[j : i], one can calculate PD(s1[j + μ : i −
μ], s2[j + μ : i− μ]) for all μ ≤ � i−j

2 � in O(i − j) time.

Proof: A distinction needs to be made between the case where the length i−j+1
of s[j : i] is odd and where the length is even. If it is odd, then the element
s1[j +

i−j
2 ] is exactly in the middle of s1[j : i]. Call it the center element of

s1[j : i]. Similarly, s2[j +
i−j
2 ] is the center element of s2[j : i]. We compute the

palindrome distance from the center out. Start with μ = i−j
2 . PD(s1[j + μ :

i − μ], s2[j + μ : i − μ]) = PD(s1[j +
i−j
2 : j + i−j

2 ], s2[j +
i−j
2 : j + i−j

2 ]). Its
value is: {

0 if s1[j +
i−j
2 ] = s2[j +

i−j
2 ],

1 otherwise.

Assume now, that we have computed all values of PD up to PD(s1[j + μ :
i− μ], s2[j + μ : i− μ]) = pdμ. Compute the value of PD(s1[j + μ− 1 : i− μ+
1], s2[j + μ− 1 : i− μ+ 1]) as follows:
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⎧⎪⎪⎨
⎪⎪⎩

pdμ if s1[j + μ− 1] = s2[i− μ + 1] and s1[i− μ+ 1] = s2[j + μ− 1],
pdμ + 1 if s1[j + μ− 1] = s2[i− μ + 1] and s1[i− μ+ 1] �= s2[j + μ− 1],
pdμ + 1 if s1[j + μ− 1] �= s2[i− μ + 1] and s1[i− μ+ 1] = s2[j + μ− 1],
pdμ + 2 if s1[j + μ− 1] �= s2[i− μ + 1] and s1[i− μ+ 1] �= s2[j + μ− 1].

If |s[j : i]| = i− j+1 is even then the algorithm is the same, but the center lies
between two indices σ = � i−j

2 and σ + 1. We call s[σ] the center element of s.
Initialize PD for a nonexistent μ = σ+1, with PD(s1[j+μ : i−μ], s2[j+μ :

i − μ]) = 0. Subsequently, for μ going down from σ to 0 we compute the value
of PD(s1[j + μ− 1 : i− μ+ 1], s2[j + μ− 1 : i− μ+ 1]) in the same manner as
the odd-length case. 	


Conclusion 3. The palindrome distances PD(s1[i : j], s2[i : j]), 1 ≤ i ≤ j ≤ m
can be computed in time O(n2).

Proof: There are O(n2) palindrome distances to calculate. By Conclusion 2, one
can compute in time O(n) the palindrome distances of all odd-length substrings
whose center element is in index i. These are the distances:

{PD(s1[i− τ : i+ τ ], s2[i− τ : i+ τ ]) | τ = 0, ... min (n− i, i)}.

For even-length substrings, where the center element is in index i, one can sim-
ilarly compute in time O(n), all the values:

{PD(s1[i − τ : i+ 1 + τ ], s2[i− τ : i+ 1 + τ ]) | τ = 0, ... min (n− i− 1, i)}.

The union of all above substrings, for i = 0, ..., n for odd-length strings, and
i = 0, ..., n− 1 for even-length strings, is all relevant substrings, and can thus be
computed in time O(n2). 	

Conclusion 3 allows us to precompute all palindrome distances in time O(n2),
and use these precomputed values for the dynamic programming algorithm of
Section 2.2 to get a total algorithm time of O(n2). However, this algorithm
requires Θ(n2) space.

At this point we have an algorithm that can compute the k-reversal distance
of strings s1 and s2 of length n in time O(n2k) and linear space, and an algorithm
that computes the k-reversal distance in time and space O(n2).

We show below a trade-off algorithm whose time is O(n2 log k) and whose
space is O(nk).

Trade-Off Algorithm Outline.
Compute all palindrome distances of the O(n2) substrings as in Conclusion 3.
However, rather than storing them in an n × n table, store them in an n × k
table. For each substring centered at index i, write down the list of τ ’s where
the palindrome distances are incremented.

Now, in the dynamic programming algorithm, when PDk(s1[� : i], s2[� : 1])
is required, simply compute the center and the τ and do a binary search on the
n×k table to find the appropriate k-palindrome distance. This computation can
be easily done in constant time. This leads to the following conclusion.
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Conclusion 4. The k-reversal distance of strings s1 and s2 of length n can be
computed in time O(n2 log k) and space O(nk).

While the dynamic programming scheme goes from left to right and is on-line, the
efficient palindrome distance computations make use of mechanisms that are not
on-line. Although there exist algorithms that compute suffix trees on-line, it is
not known how to do both suffix trees and LCA on-line. To this end we develop an
alternate algorithm to efficiently compute the palindrome distance. At the heart
of this algorithm is a novel fingerprint scheme that detects palindromes with high
probability. This algorithm is also interesting because it is essentially the Karp-
Rabin algorithm [17] but with a different fingerprint formula. It demonstrates
nicely how different fingerprints can solve different pattern matching algorithms.

4 A Fingerprint-Based Algorithm for the Reverse
Matching Problem

4.1 Reversals and Palindrome Recognition

This subsection shows the direct relation between reversal matching and recog-
nizing palindromes.

Definition 3. Let s1 = s1[1], s1[2], · · · , s1[n− 1], s1[n] and s2 = s2[1], s2[2], · · · ,
s2[n− 1], s2[n] be two length-n strings. The interleaved string of s1 and s2 is the
string

Int(s1, s2) = s1[1], s2[1], s1[2], s2[2], · · · , s1[n− 1], s2[n− 1], s1[n], s2[n].

Example: Let s1 = ABCD and s2 = DCBA.
Int(s1, s2) = ADBCCBDA.

The interleave lemma below makes the connection between reversal matching
and palindromes.

Lemma 3. The Interleave Lemma: Let s1 and s2 be two length-n strings.
Then s2 = sR1 iff Int(s1, s2) is a palindrome.

We are now ready to define the key property enabling our algorithm’s on-line
efficiency.

Definition 4. Palindrome fingerprint: Given a string s = s[1], s[2], ...s[m]
over N, and some random number r ∈ Fp, we define the palindrome fingerprint,
or for brevity the fingerprint of s to be: φ(s) = r1s[1] + r2s[2] + ...rms[m]. We
define the reversal fingerprint of s, to be: φR(s) = r−1s[1]+ r−2s[2]+ ...r−ms[m]

Lemma 4. Given a string s, φ(s) = rm+1φR(s) iff s is a palindrome (s = sR)
w.h.p.
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4.2 Exact Linear-time Online Reversal Matching

The greedy exact reversal matching algorithm presented in Section 2.1 takes time
O(n2) as an on-line algorithm. We added the Suffix tree and LCA mechanism
to reduce it to linear time, but these mechanisms are not on-line. They can be
replaced by the palindrome fingerprint and the interleave lemma. Recall that the
greedy strategy works as follows. Suppose there is a reversal matching ending at
position i. We seek the shortest substring s′ that starts at s1[i] such that s′R is
the substring of s2 starting at s2[i]. Assume the length of s′ is �. The situation
is that s1[i : j]

R �= s2[i : j], j = i, ..., �− 1, but s1[i : �]
R = s2[i, �].

By the interleave lemma s1[i : j] interleaved with s2[i : j] is not a palindrome,
for j = i, ..., � − 1, but s1[i : �] interleaved with s2[i : �] is a palindrome. The
crucial point is that it takes O(1) time to extend the fingerprint and the reversal
fingerprint from s1[i : j] interleaved with s2[i : j] to s1[i : j +1] interleaved with
s2[i : j + 1]. We show this for the fingerprint, the reversal fingerprint is similar.
The fingerprint of s1[i : j] interleaved with s2[i : j] is

φj = r1s1[i]+r
2s2[i]+r

3s1[i+1]+r4s2[i+1]+ ...+r2(j−i)+1s1[j]+r
2(j−i+1)s2[j].

The fingerprint φj+1 of s1[i : j + 1] interleaved with s2[i : j + 1] is
r1s1[i] + r2s2[i] + r3s1[i+ 1]+ r4s2[i+ 1] + ...+ r2(j−i)+1s1[j] + r2(j−i+1)s2[j] +
r2(j+1−i)+1s1[j+1]+ r2(j+1−i+1)s2[j+1] I.e. φj+1 = φj + r

2(j+1−i)+1s1[j+1]+
r2(j+1−i+1)s2[j + 1].

By Lemma 4, it also takes constant time to check whether each s1[i : j]
interleaved with s2[i : j] is a palindrome. We conclude:

Conclusion 5. The exact reversal matching of strings s1 and s2 of length n can
be computed on-line in time O(n) w.h.p.
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vialette@univ-mlv.fr

Abstract. Let t be a permutation (that shall play the role of the text)
on [n] and a motif p be a sequence of m distinct integer(s) of [n], m ≤ n.
The motif p occurs in t in position i if and only if p1 . . . pm is order-
isomorphic to ti . . . ti+m−1, that is, for all 1 ≤ k < � ≤ m, pk > p� if and
only if ti+k−1 > ti+�−1. Searching for a motif p in a text t consists in
identifying all occurrences of p in t. We first present a forward automaton
which allows us to search for p in t in O(m2 log logm + n) time. We
then introduce a Morris-Pratt automaton representation of the forward
automaton which allows us to reduce this complexity to O(m log logm+
n) at the price of an additional amortized constant term. The latter
automaton occupies O(m) space. We then extend the problem to search
for a set of motifs and exhibit a specific Aho-Corasick like algorithm.
Next we present a sub-linear average case search algorithm running in

O
(

m logm
log logm

+ n logm
m log logm

)
time, that we eventually prove to be optimal

on average.

1 Introduction

Two sequences of distinct integers are order-isomorphic if the permutations re-
quired to sort them are the same. A sequence p is said to be a motif (or occurs)
within a sequence t if t has a subsequence that is order-isomorphic to p. Motif
involvement in permutations and sequences has now become a very active area
of research [9]. However, only few results on the complexity of finding motifs
in permutations and sequences are known. It appears to be a difficult problem
to decide given two permutations π and σ whether σ occurs in π, and in this
generality the problem is NP-complete [7]. Let [n] be the set of all integers from
1 to n and let Sn be the set of all permutations on [n]. For σ ∈ Sm and π ∈ Sn,
the O(nm) time brute-force algorithm was improved to O(n0.47m+o(m)) time in

� Most of the work was done when the author was in LIAFA.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 66–77, 2013.
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[2]. There are several ways in which this notion of permutation motifs may be
generalized, and we focus here on consecutive motifs (i.e. the match is required
to consist of contiguous elements) [9]. A sequence p is said to be a consecutive
motif or consecutively occurs within a sequence t if t has a substring that is
order-isomorphic to p. Searching for a motif p in a text t consists in identifying
all occurrences of p in t. Recently, using a modification of the classical Knuth-
Morris-Pratt string matching algorithm, a O(n +m logm) time algorithm has
been proposed for checking if a given sequence t of length n contains a substring
which is order-isomorphic to a given motif p of length m [10]. The time com-
plexity reduces to O(n+m) time under the assumption that the symbols of the
motif can be sorted in O(m) time.

Let t be a permutation of length n and p be a sequence of m ≤ n dis-
tinct integers in [n]. First we present a forward automaton which allows us
to search for p in t in O(m2 log logm + n) time. Next, we introduce a Morris-
Pratt automaton representation [11] of the forward automaton which allows us
to reduce this complexity to O(m log logm + n) at the price of an additional
amortized constant term for each symbol of the text. The latter automaton oc-
cupies O(m) space while the former occupies O(m2) space. We then extend the
problem to search for a set of motifs and exhibit a specific Aho-Corasick like
algorithm. Finally we present a sub-linear average case search algorithm run-

ning in O
(

m logm
log logm + n logm

m log logm

)
time that we eventually prove to be optimal

on average. Both lower and upper bounds assume all text permutations to be
equiprobable and all integer values in a motif to be distinct.

Let us define some notations. Let Σn = [n]. Abusing notations, we consider
in this paper permutations of Sn as strings without symbol repetition, and we
denote by Σ∗n the set of all strings without symbol repetition (including the
empty string), where each symbol is an integer in [n]. A prefix (resp. suffix,
factor) u of p is a string such that p = uw,w ∈ Σ∗n (resp. p = wu,w ∈ Σ∗n,
p = wuz,w, z ∈ Σ∗n). We also denote by |w| the number of integer(s) in a string
w,w ∈ Σ∗n. We eventually denote by pr the reverse of p, that is, the string formed
by the symbols of p read in the reverse order. We denote by p≡ the set of words
of Σ∗n which are order-isomorphic to p.

The following property is useful for designing automaton transitions.

Property 1. Let p = p1 . . . pm ∈ Σ∗n and w = w1 . . . w� ∈ Σ∗n, � < m, such that
w is order-isomorphic to p1 . . . p�, and let α ∈ [n] s.t. wα ∈ Σ∗n. Testing if wα is
order-isomorphic to p1 . . . p�p�+1 can be performed in constant time using only
a pair of integers.

Proof. The pair of integers (x1, x2) is determined as follows: x1 ≤ � is the
position of the largest number px1 in p1..p� which is smaller than p�+1, if any.
Otherwise, we fix x1 arbitrarily to −∞. Let x2 ≤ � be the position of the smallest
integer px2 in p1..p� which is larger than p�+1, if any. Otherwise, we fix x2 to
+∞. Now, it suffices to test if wx1 < α < wx2 to check whether wα is order-
isomorphic to p1 . . . p�+1 	
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We define a function rep(p = p1 . . . pm, j) which returns a pair of integers (x1, x2)
that represents the pair defined in Property 1 for the prefix of length j of the
motif p.

2 Tools

Before proceeding, we first describe some useful data structures we shall use
as basic subroutines of our algorithms. The problem called predecessor search
problem is defined as follows: given a set S = {x1, x2, . . . , xn} ⊂ [u] (u is called
the size of the universe), we support the following query: given an integer y return
its predecessor in the set S, namely the only element xi such that xi ≤ y < xi+1

1.
In addition, in the dynamic case, we also support updates: add or remove an
element from the set S. The standard data structures to solve the predecessor
search are the balanced binary search trees [1,5]. They use linear space and
support queries and updates in worst-case O(log n) time. However, there exist
better data structures that take advantage of the structure of the integers to get
better query and update time. Specifically, the Van-Emde-Boas tree [13] supports
queries and updates in (worst-case) time O(log log u) using O(u) space. Using
randomization, the y-fast trie achieves O(n) space with queries supported in
time O(log log u) and updates supported in randomized O(log log u) time. The
problem has received series of improvements which culminated with Andersson
and Thorup’s result [4]. They achieve O(n) space with queries and updates

supported in O(min(log log u,
√

logn
log logn )) (the update time is still randomized).

A special case occurs when space u is available and the set of keys S is known
to be smaller than logc u for some constant c. In this case all operations are
supported in worst-case constant time using the atomic-heap [14].

3 Forward Search Automaton

The problem we consider is to search for a motif p in a permutation t without
preprocessing the text itself. By analogy to the simpler case of the direct search
of a word p in text t, we build an automaton that recognizes (Σ∗n) · p≡.

We formally define our forward search automatonFD(p) built on p = p1 . . . pm
as follows (see Figure 1 for an example): (i) m+ 1 states corresponding to each
prefix (including the empty prefix) of p, state 0 is initial, state m is terminal;
(ii) m forward transitions from state j to j + 1 labeled by rep(p, j + 1);
(iii) some backward transitions δ(x, [i, j]), where x numbers a state, 0 ≤ x ≤ m,
i ∈ {1, . . . , x} ∪ {−∞}, j ∈ {1, . . . , x} ∪ {+∞}, defined the following way:
δ(x, [i, j]) = q if and only if for all pi < α < pj (resp. α < pj if i = −∞,
pi < α if j = +∞), the longest prefix of p that is order-isomorphic to a suffix of
p1 . . . pxα is p1 . . . pq. We also impose some constraints on outgoing transitions:

1 By convention, if all the elements of S are larger than y, then return −∞ and if no
elements is larger than y then return xn.
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+∞]∞−[ , ,1[ 2] +∞],2[
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,2[ 4]

∞−[ ,1]
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∞−[ , 3]

,5[ 4]

+∞],4[

+∞],4[
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0 1 2 3 4 5

,1[ +∞]

Fig. 1. Forward automaton built on p = (4, 12, 6, 16, 10). State 0 is initial and state 5
is terminal.

Let x be the state corresponding to the prefix p1 . . . px. Let us sort all pi, 1 ≤
i ≤ x and consider the resulting order pi0 = −∞ < pi1 < . . . < pik < +∞ =
pik+1

. We build one outgoing transition for each interval [pij , pij+1 ], except if
pij+1 = pij + 1. Also we merge transitions that start in the same state and end
if the same state whenever they are labeled by contiguous intervals.

It is obvious that the resulting automaton recognizes a given motif in a per-
mutation by reading one by one each integer and choosing the appropriate tran-
sition. The main result on the forward automaton is the following.

Lemma 1. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn using the forward automaton FD(p) built on p takes O(n) time.

We can build the forward automaton in O(m2 log logm) time. However, we defer
the proof of this construction for the following reason. This O(m2 log logm)
complexity might be too large for long motifs. Nevertheless, we show below that
we can compute in a first step a type of Morris-Pratt coding of this automaton
which can either (a) be directly used for the search for the motif in the text and
will preserve the linear time complexity at the cost of an amortized constant
term (we take more time for each text symbol), or (b) be developed to build the
whole forward automaton structure.

Therefore we present and build a new automaton MP that is a Morris-Pratt
representation of the forward automaton. The idea is to avoid building all back-
ward transitions by only considering a special backward single transition from
each state x, x > 0 named failure transition. We formally define our automaton
MP (p) built on p = p1 . . . pm the following way (see Figure 2 for an example):
(i) m+ 1 states corresponding to each prefix (including the empty prefix) of p,
state 0 is initial, state m is terminal;
(ii) m forward transitions from state j to j + 1 labeled by rep(p, j + 1);
(iii) m failure (non labeled) transitions which connect a state j > 0 to a state
k < j if and only if p1 . . . pk is the longest order-isomorphic border of p1 . . . pj :

Definition 1. Let p ∈ Σ∗n. A border of p is a word w ∈ Σ∗n, |w| < |p| that is
order-isomorphic to a suffix of p but also order-isomorphic to a prefix of p.

Reading a text t through the MP representation of the forward automaton is
performed the following way. Let us assume we reached state x < m and we
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+∞]∞−[ , ,1[ 2] +∞],2[ ,3[ 2]
0 1 2 3 4 5

,1[ +∞]

Fig. 2. MP automaton built on p = (4, 12, 6, 16, 10). State 0 is initial and state 5 is
terminal. Backward transitions are failure transitions.

read a symbol ti at position i of the text. Let [k, �] = rep(p, x + 1). If ti ∈
[ti−x−1+k, ti−x−1+�] we follow the forward transition and the new current state
is x+1. Otherwise, we fail reading ti from x and we retry from state q = fail(x)
and so-on until (a) either q is undefined, in which case we start again from state
0, (b) or a forward transition from q to q + 1 works, in which case the next
current state is q + 1.

Lemma 2. Searching for a motif p in a text t1 . . . tn using the Morris-Pratt
representation MP (p) of the forward automaton built on p takes O(n) time.

In order to prove Lemma 2 we need to focus on the classical notion of border
that we have extended to our framework in Definition 1.

The construction of the forward automaton relies on the maximal border of
each prefix that is followed by an appropriate integer in the motif. The Morris-
Pratt approach is based on the following property:

Property 2. A border of a border is a border.

This property allows us to replace the direct transition of the forward algo-
rithm by a search along the borders, from the longest to the smallest, to identify
the longest one that is followed by the appropriate integer. We state now that we
can build the Morris-Pratt representation of the forward automaton efficiently.

Lemma 3. Building a Morris-Pratt representation of the forward automaton on
a consecutive motif p = p1 . . . pm can be performed in (worst-case) O(m log logm)
time.

Lemma 2 and 3 allow us to state the main theorem of this section.

Theorem 1. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn can be done in O(m log logm+ n) time.

The Morris-Pratt representation of the forward automaton permits to search
directly in the text at the price of larger amortized complexity (considering the
constant hidden by the O notation) than that required by searching with the
forward automaton directly. If the real time cost of the search phase is an issue,
the forward automaton can be built from its Morris-Pratt representation.

Property 3. Building the forward automaton of a consecutive motif p = p1 . . . pm
can be performed in O(m2 log logm) time.

An interesting point is that the construction of the forward automaton from
its Morris-Pratt representation can also be performed in a lazy way, that is,
when reading the text. The missing transitions are then built on the fly when
needed.
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4 Multiple Worst Case Linear Motif Searching

We can extend the previous problem defined for a single motif to a set of motifs
S. We denote by d the number of motifs, by m the total length of the motifs
and by r the length of the longest motif. For this problem we adapt the Aho-
Corasick automaton [3] (or AC automaton for short). We first recall the classical
construction of the AC automaton (for regular motifs). The AC automaton is
a generalization of the MP automaton to a set of multiple motifs. We denote
by P the set of prefixes of strings in S. In order to simplify the description
we will assume that the set of motifs S is prefix-free. That is, we will assume
that no motif is prefix of another. Extending the algorithm to the case where
S is non-prefix free, should not pose any particular issue. The states of the AC
automaton are defined in the same way as in the MP automaton. Each state
t in the AC automaton corresponds uniquely to a string q ∈ P . The forward
transitions are defined as follows: there exists a forward transition connecting
state s corresponding to a prefix q to each state corresponding to an element
qc ∈ P (where c is a single symbol). Thus this definition of the forward tran-
sitions matches essentially the definition of the forward transitions in the MP
automaton. The failure transitions are defined as follows: the failure transition
from the state s corresponding to a prefix q goes to the state s′ corresponding to
the longest string q′ such that q′ ∈ P , q′ is a suffix of q and q′ �= q. The matching
using the AC automaton is done in the same way as in theMP automaton using
the forward and failure transitions.

Our Extension of the AC Automaton. We could use exactly the same
algorithm as the one used previously for our variant of the MP automaton with
few differences. We describe our modification to the AC automaton to adapt it
to the case of consecutive permutation matching (a similar result which has been
independently discovered is described in [8]). An important observation is that
we could have two or more elements of P that are both of the same length and
order-isomorphic. Those two elements should have a single corresponding state
in the AC automaton. Thus, if two or more elements of P are order-isomorphic
we keep only one of them. For the forward transitions, we can associate a pair of
positions (x1, x2) to each forward transition. Then we can check which transition
is the right one from a state corresponding to a string q by checking the condition
ti−|q|−1+x1

< ti < ti−|q|−1+x2
for every pair (x1, x2) and take the corresponding

transition. As any state can have up to d outgoing transitions, the time taken
to choose the transition would grow to O(d). We reduce the time to O(log d) by
organizing the forward transitions outgoing from the same state into a balanced
binary search tree. That is we put at the root of the balanced binary search
tree the pair of positions (x1, x2), where x1 is the median of all transition pairs
(sorting the pairs by px1 values), and then on the left (resp. right) subtree all
transitions whose corresponding pairs (x1 component) point to (resp. larger)
smaller values in the motif.

Altenatively we can use a different approach based on a dynamic balanced
binary search tree (or more sophisticated dynamic predecessor data structure).
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With the use of a binary search tree, we can achieve O(log r) time to decide
which transition to take. More precisely, each time we read ti we insert the pair
(ti, i) into the binary search tree. The insertion uses the number ti as the key.
Now suppose that we only pass through forward transitions. Then a transition
at step i is uniquely determined by: (1) the current state s corresponding to an
element q ∈ P ; (2) the position of the predecessor of ti among ti−|q| . . . ti−1.

To determine the predecessor of ti among ti−|q| . . . ti−1, the dynamic binary
search tree should contain precisely the |q| pairs corresponding to ti−|q| . . . ti−1.

In order to maintain the dynamic binary search tree we must do the following
actions while passing through a failure or a forward transition: (1) whenever
we pass through a forward transition at a step i we insert the pair (ti, i); (2)
whenever we pass through a failure transition from a state corresponding to a
prefix q1 to a state corresponding to a prefix q2, then we should remove from the
binary tree all the pairs corresponding to the symbols ti−|q1| . . . ti−|q2|.

It should be noted that each removal or insertion of a pair into the binary
search tree takes O(log r) time. The upper bound O(log r) comes from the fact
that we never insert more than r elements in the binary search tree. Since in
overall we are doing O(n) insertions or removals, the amortized time should
simplify to O(n log r). Finally if we replace binary search tree with a more ef-
ficient predecessor data structure, we will be able to achieve randomized time

O(n·τ) where τ = min(log logn,
√

log r
log log r ) is the time needed to do an operation

on the predecessor data structure (see Section 2 for details). We use the linear
space version of the predecessor data structure which guarantees only random-
ized performance but uses O(r) ≤ O(m) additional space only. We thus have the
following theorem :

Theorem 2. Searching in a text of size n for a set of d consecutive motifs whose
AC automaton has been built and where the longest motif is of length r can be

done in randomized O(n · τ) time, where τ = min(log logn,
√

log r
log log r , log d).

Preprocessing. We now show that the preprocessing phase can be done in
worst-case O(m log log r) time. As before our starting point will be to sort all
the motifs and reduce the range of symbols of each motif of length � from range
[n] to the range [1..�]. This takes worst-case time O(m log log r).

Recall that two or more elements of P of the same length and order-isomorphic
should be associated with the same state in the AC automaton. In order to
identify the order-isomorphic elements of P , we will carry a first step called
normalization. It consists in normalizing each motif. A motif p is normalized by
replacing each symbol pj by the pair rep(p = p1 . . . pj−1, j) (consisting in the
positions of the predecessor and successor among symbols p1 . . . pj−1). This can
be done for all motifs in total O(m log log r) time. In the next step, we build a
trie on the set of normalized motifs. This takes linear time. The trie naturally
determines the forward transitions. More precisely any node in the trie will
represent a state of the automaton and the labeled trie transitions will represent
follow transitions.
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Note that unlike the forward automaton (or the MP automaton) there could
be more than one outgoing forward transition from each node. In order to en-
code the outgoing transitions from each node, we will make use of a hash table
that stores all the transitions outgoing from that node. More precisely for each
transition labeled by the pair rep(p = p1 . . . pj−1, j) and directed to a state q,
the hash table will associate the key p1 associated with the value q. If we want
to achieve complexity O(log d) per transition, then we organize the transition
in a balanced binary search tree instead of a hash table. Now that the next
transitions have been successfully built, the final step will be to build the failure
transitions and this takes more effort. The construction of the failure transitions
can also be done in worst-case O(m log log r) time, but for lack of space we defer
the details to the extended version [6].

We thus have the following theorem:

Theorem 3. Building the AC automaton for a set of d consecutive motifs of
total length m and where the longest motif is of length r can be done in worst-case
O(m log log r) time.

5 Single Sublinear Average-Case Motif Searching

Algorithm forward takes O(n +m log logm) time in the worst case but also on
average.We present now a very simple and efficient average case-algorithm which
takes O( m logm

log logm + n logm
m log logm ) time.

In order to search for a motif p in t, we first build a tree T of all isomorphic-
order factors of length b = � 3.5 logm

log logm� of pr (the reverse of p). T is built by
inserting each such factor one after the other in a tree and building the corre-
sponding path if it does not already exist. The construction of this tree requires
O( m logm

log logm ) time (details are given below). The matching phase is performed
through a window of size m that is shifted along the text. For each position of
this window, b symbols are read backward from the end of the window in the
tree T . Two cases may occur: (i) either the factor is not recognized as a factor
of pr. This means that no occurrence of p might overlap this factor and we can
safely shift the search window past the first symbol of this factor;
(ii) or the factor is recognized, in which case we simply check if the motif is
present using a naive O(m) algorithm, and we repeat this test for the next m−b
symbols. This might require O(m2) steps in the worst case.
In both cases we then shift the window of m− b+ 1 symbols.

Let us analyze the average complexity of our algorithm, in the following model:
all text permutations are considered to be equiprobable, all integer values in a
motif are distinct.

We count the average number of symbol comparisons required to shift the
search window of m− b+1 symbols to the right. As there are n/(m− b+1) such
segments of length m− b+1 symbols in n, we will simply multiply the resulting
complexity of the matching phase by n/(m− b+ 1) = O(n/m) to get the whole
average complexity of our algorithm (assuming T is already built).
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There might be O(b!) distinct motifs that could appear in the text while this
number is bounded by m − b + 1 in the motif (one by position). Thus, with
a probability bounded by m−b+1

b! we will recognize the segment of the text as
a factor of p and enter case 2. In which case, moving the search window of
m − b + 1 = O(m) symbols to the right using the naive algorithm will require
O(m2) worst case time.

In the other case which occurs with probability at least 1 − m−b+1
b! , shifting

the search window by m − b + 1 symbols to the right only requires reading b
numbers.

The average complexity (in terms of number of symbol reading and com-
parisons) for shifting by m − b + 1 symbols is thus (upper) bounded by A =
O((m2)m−b+1

b! + b(1 − m−b+1
b! )) and the whole complexity by O((n/m)A). By

expanding and simplifying A we get that A = O(b + O(m3/b!)). Now using
the famous Stirling approximation ln(k!) = k ln k − k + O(ln k), it is not diffi-
cult to prove that b! = 2b log b−b log e+O(log b) = Ω(m3) and thus A = O(b) and
the whole average time complexity (in terms of number of symbol reading and
comparisons) turns out to be O( n logm

m log logm ).

Implementation Details. The tree T can actually be built in O( m logm
log logm ) time

by using appropriate data structures. Recall that the tree T recognizes all the
factors of pr of length � 3.5 logm

log logm�. To implement T , we use the same AC automa-
ton presented in previous section to build the tree T , but with two differences: we
only need forward transitions and the length of any motif is bounded by logm

log logm .

Thus the cost is upper bounded by O( m logm
log logm · τ), where τ is the time needed to

do an operation on the predecessor data structure (maximum of the times needed
for inserts/deletes and searches). We now turn our attention to the cost of the
matching phase. From the previous section, we know that the total complexity
in terms of number of symbol reading and comparisons is O( n logm

m log logm ). The
total cost of the matching phase is dominated by the multiplication of the total
number of text symbols read multiplied by the cost of a transition in the AC
automaton which itself is dominated by τ = O(min(log logn,

√
log r

log log r , log d)),

the time to do an operation on a predecessor data structure (or traversing a
balanced binary search tree of size O(d)). The total cost of the matching phase
is thus O( n logm

m log logm · τ).
Now the performance of both matching and building phases crucially depend

on the used predecessor data structure. If a binary search tree is used then

τ = O
(
log logm

log logm

)
= O(log logm) and the total matching time becomes O(n ·

τ) = O(n log logm), and the total building time becomes O(m logm). However,
we can do better if we work in the word-RAM model. Namely, we can use the
atomic-heap (see Section 2) which would add additional o(m) words of space
and support all operations (queries, inserts and deletes) in constant time on

structures of size logO(1)m. In our case, we have structures of maximal size
O( logm

log logm ) and thus the operations can be supported in constant time. We thus
have the following theorem:
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Theorem 4. Searching for a consecutive motif p = p1 . . . pm in a permutation
t = t1 . . . tn can be done in average O( m logm

log logm + n logm
m log logm ) time.

6 Average Optimality

We prove in this section a lower bound on the average complexity of any consec-
utive motif matching algorithm. The proof of this bound is inspired by that of
Yao [15] which proved an average lower bound for matching a (regular) motif of
length m in a text of length n. We prove in our case of interest an average lower
bound of Ω( n logm

m log logm ) considering all permutations over [n] to be equiproba-
ble. As this average complexity is reached by the algorithm we designed in the
previous section, this bound is tight.

We begin to circumscribe our problem on small segments of length 2m− 1 of
the text into which we search for. Precisely, following [15,12], we divide our text in
�n/(2m−1)� contiguous and non-overlapping segments si, 1 ≤ i ≤ �n/(2m−1)�,
such that si(t) = t(2m−1)(i−1)+1 . . . t(2m−1)i. When searching for a motif in t,
there might be occurrences overlapping two blocks. But as we are interested in a
lower bound, the following lemma allows us to focus on the inside of all segments.

Lemma 4. A lower bound for finding a motif p inside all segments si(t) is also
a lower bound to the problem of searching for all occurrences of p in t.

We now claim that instead of focusing on all segments si(t), we can focus on
obtaining a lower bound to search p in any single segment. Indeed these segments
are non-overlapping and we are searching inside the segments.

Lemma 5. The average time for searching for p inside all segments si(t) is
�n/(2m−1)� times the average time for searching for p inside any such segment.

Let E(m) be the average complexity for searching a motif p of size m in any
segment of size 2m − 1. Using the two previous lemmas, the whole average

complexity is at least
∑
n/(2m−1)�

i=1 E(m) = �n/(2m−1)�E(m) = Ω(n/m)E(m).

It remains only to prove the lower bound E(m) = Ω( logm
log logm ) to obtain the

claimed lower bound for the whole problem.
Recall that we consider all m! motif of size m to be equiprobable among the

set Sm of permutations of length m. For 0 < � ≤ m, let Pm(�) be the set of
motifs of size m that can be searched using a sliding window of size m over a
text of size 2m − 1 and checking only � positions in this window. Then Sm is
the disjoint union of Pm(�) and Sm \Pm(�), that is the set of motifs that can be
searched with only � accesses and the others. For all motif in Pm(�), the average
search complexity is counted 1 (lower bound). For any other motif in Sm\Pm(�),
the average search complexity is at least �+1. This leads to the following lemma:

Lemma 6. For 0 < � ≤ m, let C(m, �) = |Pm(�)|+(m!−|Pm(�)|)(�+1)
m! . Then C(m, �)

is a lower bound for the average complexity E(m).
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We want now to maximize our bound in order to get a tight bound. To do so,
we can choose � depending on m.

Lemma 7. There exists �(m) s.t. 0 < �(m) ≤ m and C(m, �(m)) = Ω( logm
log logm ).

We now sketch the proof of Lemma 7. As C(m, �) decreases when Pm(�) in-
creases, we search an upper bound for Pm(�). We prove that |Pm(�)| ≤ m!(
1− 1

�!

)�m−1

�2
�
in the same way Yao proved the counting lemma of [15]. Thus we

have C(m, �) ≥ �+ 1− � ·
(
1− 1

�!

)�m−1

�2
�

We claim that � = b logm
log logm with b = 1+o(1) satisfies 98/100 ≤

(
1− 1

�!

)�m−1

�2
�

≤ 99/100 (Equation (E)). This gives C(m, �(m)) ≥ � + 1 − 98/100� = Ω(�) =
Ω( logm

log logm ), stating the lemma.
The idea to prove our claim :
Let us impose

⌈
m−1
�2

⌉
× 1

�! ≤ 1/10 (ineq.1). This allows us to approximate

Equation (E) using the classical formula (1 + x)a = 1 + ax + a(a−1)
2! x2 + . . . +

a!
n!(a−n)!x

n = 1+ ax+ γ where a =
⌈
m−1
�2

⌉
, x = −1

�! and γ =
∑n

i=2
a!

i!(a−i)!x
i. It is

easy to see that inequality (1) implies that γ converges and is dominated by its

first term which is bounded a(a−1)
2! x2 ≤ 1/200. We thus deduce that (1 + x)a ∈

[1+ax, 1+ax+1/200] which implies that (1+x)a−1/200 ≤ 1+ax ≤ (1+x)a. From

(1+x)a = |Pm(�)|
m! ∈ [ 98

100 ,
99
100 ], we obtain

98
100 −

1
200 ≤ 1+ ax ≤ 99

100 . By replacing
a and x in 1+ax we get : 98

100−
1

200 = 195/200 ≤ 1−
⌈
m−1
�2

⌉
× 1

�! ≤ 99/100. Then

we prove that � = b logm
log logm with b = 1 + o(1) satisfy these two last inequalities

and inequality (1), implying that Equation (E) is satisfied.
Putting all the lemmas of this section together, we have that Ω( n logm

m log logm ) is
a lower bound of the whole average complexity for searching for a consecutive
motif in a permutation.
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Abstract. Given an LZW/LZ78 compressed text, we want to find an
approximate occurrence of a given pattern of length m. The goal is to
achieve time complexity depending on the size n of the compressed rep-
resentation of the text instead of its length. We consider two specific
definitions of approximate matching, namely the Hamming distance and
the edit distance, and show how to achieve O(n√mk2) and O(n√mk3)
running time, respectively, where k is the bound on the distance, both in
linear space. Even for very small values of k, the best previously known
solutions required Ω(nm) time. Our main contribution is applying a
periodicity-based argument in a way that is computationally effective
even if we operate on a compressed representation of a string, while the
previous solutions were either based on a dynamic programming, or a
black-box application of tools developed for uncompressed strings.

Keywords: approximate pattern matching, edit distance, Lempel-Ziv.

1 Introduction

Pattern matching, which is the question of locating an occurrence of a given
pattern in a text, is the most natural task as far as processing text data is
concerned. Virtually any programming language contains a more or less efficient
procedure for solving this problem, and any text processing application, including
the widely available grep utility, gives users the means of solving it. While exact
pattern matching is well-understood, and in particular many linear time solutions
are known [5], it seems that its approximate version is less understood. Two most
natural versions of the question are pattern matching with errors, where one ask
for a substring of the text with small edit distance to the pattern, and pattern
matching with mismatches, where one is interested in a substring with small
Hamming distance to the pattern. It is known that if N is the length of the text
and k is the number of allowed errors or mismatches, both problems can be solved
in O(Nk) time [10,11], and in fact the complexity for the latter version can be
improved to O(N

√
k log k) [2]. Under the natural assumption that the value of k
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is small, one can do even better, and solve the problems in O(N + Nk4

m ) [4] and

O((N + Nk3

m ) log k) [2] time complexity, respectively, which might be linear in N
if k is small enough. Unfortunately, in some cases even a linear time complexity
might be not good enough. This is the case when we are talking about large
collections of repetitive data stored in a compressed form. Then the length of the
text N might be substantially larger than the size n of its actual representation,
and the goal is to achieve a running time depending on n, not N . Whether
achieving such goal is possible clearly depends on the power of the compression
method. In this paper we focus on the LZW/LZ78 compression [12,13], which
is not as powerful as the more general LZ77 method, but still has some nice
theoretical properties, and is used in real-world applications. It is known that
exact LZW-compressed pattern matching can be solved very efficiently [1,6], even
in the fully compressed version, where both the text and the pattern are LZW-
compressed [8]. The obvious question is how efficiently can we solve approximate
LZW-compressed pattern matching?

The best previously known solution by Kärkkäinen, Navarro, and Ukkonen [9],
locates all occ occurrenceswith up to k errors usingO(nmk+occ) time andO(nmk)
space.More precisely, it outputs all ending positions j such that there is i for which
the edit distance between t[i..j] and p is at most k. In some cases, this time bound
can be decreased using the idea of Bille, Fagerberg, and Gørtz [3], who presented a
way to translate all uncompressed pattern matching bounds into the compressed
setting. Their approach works for both the edit and Hamming distance, and by
plugging the best known uncompressed pattern matching solutions, we can get:

1. O(nmk + occ) time and O( n
mk +m+ occ) space for the edit distance,

2. O(nk4 +nm+ occ) time and O( n
k4+m +m+ occ) space for the edit distance,

3. O(n(k3 +m) log k + occ) time and O( n
(k3+m) log k +m + occ) space for the

Hamming distance.

While the space complexity of the resulting algorithms is small, even for con-
stant values of k the time complexity is Ω(nm), and in fact this is an inherent
shortcoming of the approach: the best we can hope for is O(nm) for sufficiently
small values of k, say, k = O(m1/3).

In this paper we show that in fact this barrier can be broken. We prove that
for the Hamming distance, running time of O(n

√
mk2) is possible, which for

k = o(m1/4) is o(nm). Then we show how to extend the algorithm by building on
the ideas of Cole and Hariharan [4], and achieveO(n

√
mk3) for the edit distance.

Both algorithms use O(n+m) space. For the sake of clarity, we concentrate on
the question of detecting just one occurrence, but our algorithms generalize to
generating all of them.

Some of our methods are based on the concepts first used by Cole and Har-
iharan [4], and later by Amir, Lewenstein and Porat [2]. Applying them in the
compressed setting is not just a trivial exercise, and creates new challenges. For
instance, verifying whether a given position corresponds to an occurrence with
no more than k mismatches in O(k) time is straightforward in the uncompressed
setting using the suffix tree, but in our case requires some additional ideas.
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We start with some basic tools in Sections 2. Then we distinguish between two
types of matches, called internal and crossing. Detecting the former is relatively
straightforward in both versions. To detect the latter, we reduce the question
to a problem that is easier to work with, which we call pattern matching in pc-
strings, see Section 3. To solve pattern matching with mismatches in pc-strings,
we distinguish between two cases depending on how periodic the pattern is. For
this we apply the concept of z-breaks, heavily used in the previous papers on
approximate pattern matching. If there are many such breaks, or in other words
the pattern is not very repetitive, we can solve the problem by reducing to a
generalization of (exact) compressed pattern matching with multiple patterns,
see Section 4. Otherwise, the pattern is highly periodic, and the situation is more
complicated. In Section 5 we show how to exploit the regular structure of such
pattern to construct an efficient algorithm. Then in Section 6, which is the most
technical part of the paper, we speed up the method using a new technique
which considers all candidates in a more global manner. Finally, in Section 7
we generalize the solution to solve the version with errors. Because of the space
limitation, we omit many details, which can be found in the full version.

2 Preliminaries

We are given a text t[1..N ] and a pattern p[1..m], both are strings over an integer
alphabet Σ. We assume thatm ≤ N and Σ = {1, 2, . . . , N}. The pattern is given
explicitly, but the text is described implicitly using the LZW/LZ78 compression
scheme. Such scheme is defined as follows: we partition the text into n disjoint
fragments t = z1z2 . . . zn, where each fragment zi is either a single letter, i.e.,
zi = c, or a word of the form zi = zjc, where j < i. The fragments zi are usually
called the codewords, and because their set is closed under taking prefixes, we
may represent it as a trie, which will be further denoted by T . Depending on
how we choose the partition and encode the codewords, we get different concrete
compression methods, say LZW or LZ78. Our methods do not depend on such
technicalities as long as we are given T and the text is described as a list of
pointers to the nodes of T representing the successive fragments.

The Hamming distance between two strings of the same length is simply
the number of positions where their corresponding characters differ. The edit
distance ed(s, t) is the minimal number of operations necessary to transform s
into t, where an operation is an insertion, replacement, or removal of a character.

The first problem we consider is compressed pattern matching with mismatches,
where we are given a compressed representation of a text t, a pattern p, and a
positive integer k. We want to find i such that the Hamming distance between
t[i..i+m− 1] and the pattern is at most k. We also consider compressed pattern
matching with errors, where the goal is to find i and j such that the edit distance
between t[i..j] and p is at most k.

To efficiently operate on the compressed text and the pattern, we need a number
of data structures. Given two subwords of the pattern s1 and s2 we can calculate
their longest common prefix, denoted LCPref(s1, s2), and longest common suffix,
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denoted LCSuf(s1, s2), in constant time. Given i and j, we can retrieve zi[j] in
constant time. Given a chunk s1, where a chunk is a subword of some root-to-
leaf path in T , and a subword of the pattern s2, we can calculate LCSuf(s1, s2)
in constant time and LCPref(s1, s2) in O(logm). The total preprocessing time is
O(n+m).

We need also some basic concepts from combinatorics on words. α is a period of
a string s if s[i] = s[i+α] holds for every i = 1, 2, . . . , |s|−α, or in other words we
can write s = wiu, where |w| = α and u �= w is a prefix ofw. The smallest such α is

called the period of s. If the period of s is at most |s|2 , s is periodic, and otherwise
we call it a break, or |s|-break. A word is primitive if it cannot be represented as a
nontrivial power of some other word. For everyword s, there exists its unique cyclic
shift s′ which is lexicographically smallest, and we call s′ the cyclic representative
of s. For a periodic s, the cyclic representative of w corresponding to the period
of s is called the canonical period of s. One of the basic results concerning periods
is the periodicity lemma, which says that if q and q′ are both periods of s, and
q + q′ ≤ |s|, so is gcd(q, q′).

3 Further Preprocessing

From now onwe fix k to be the number of allowedmismatches (errors) in our prob-
lem. We will say in short that the pattern matches at some position in the text if
the Hamming distance (or the edit distance) between the pattern and the frag-
ment of the text starting at this position is at most k. It is natural to distinguish
between two types of matches: internal matches (the pattern lies fully within a sin-
gle codeword) and crossing matches (the pattern crosses some boundary between
two codewords). The internal matches can be efficiently generated using standard
tools, and we focus on detecting the crossing matches, where the situation is much
more complicated. In this case the pattern crosses at least one boundary between
two codewords, and it may cross a lot of them, which seems hard to deal with.
Anyway, it suffices to iterate over all n − 1 boundaries and for each of them find
all matches that cross it. After fixing such a boundary, we may concentrate only
on a window of length 2m containingm characters to the left and m to the right.
Problems arise when there are many very short codewords in some fragment of
the text, because in such a case all boundaries in this fragment will create win-
dows containing lots of codewords. This is one of the obstacles we need to tackle
to construct an efficient algorithm.

We want to make now one technical assumption, which simplifies significantly
some definitions and the description of the algorithm.Namely, we will assume that
each letter appearing in text, appears also in the pattern. Our algorithms work in
the general case after minor modifications.

The notion of a pc-string will play the main role in the rest of the paper. Note
that the definition changes slightly when we want to move from mismatches to
errors.Nevertheless, the change is very small, so we prefer to have just one common
definition, and keep in mind that its meaning depends on the variant.
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Definition 1. Let p be a pattern and f be a string. We say that f = v1v2...vl is a
pattern-compressed-string, in short pc-string, if:

1. |f | ≤ 2m (|f | ≤ 2m+ 2k when we are dealing with errors) and l ≤ 4k + 5,
2. vi is a factor of p, for i = 1, 2, . . . , l,
3. vivi+1 is not a factor of p, for i = 1, 2, . . . , l− 1.

We represent such string as a list (a1, b1), (a2, b2), ..., (al, bl), where vi = p[ai..bi].

Pc-strings are very convenient to deal with. Because no vivi+1 appears in p as
a substring, we can answer any LCPref and LCSuf query between a subword of
f and a subword of the pattern in constant time, as each result of such a query
overlaps at most 3 vi’s, so we need at most 3 queries between factors of p.

Proposition 1. Given a position in a pc-string f , we can verify whether the align-
ment of the pattern at this position results in a match in O(k) time.

It turns out that finding matches crossing a fixed boundary can be reduced to one
instance of pattern matching with mismatches or errors in a pc-string.

Theorem 1. Suppose we have an algorithm solving pattern matching with k mis-
matches (errors) in pc-strings in TPC(m) time. Then we can solve pattern match-
ing with k mismatches (errors) in LZW-compressed text in O(nk log2m+m+n ·
TPC(m)) (O(nk2 + nk log2m+m+ n · TPC(m))) time.

4 DetectingMatches in Pc-Strings

In this section we concentrate on the version with mismatches and present an ef-
ficient algorithm for detecting matches in a pc-string. It will use a certain prepro-
cessing of the pattern, which takes O(m) time and is performed just once in the
whole solution, not every time we get a new pc-string.

We distinguish between two cases depending on the“level of periodicity”of the
pattern. Let z ≥ 3 be a parameter to be fixed later.We find in p as many disjoint z-
breaks as possible, which can be done inO(m) time [4]. If there are just a few such
breaks, the pattern can be seen as highly periodic. First we consider the opposite
case when p contains at least 2k disjoint z-breaks. Then we can discard most of
the starting positions, and verify all the remaining ones separately.

Lemma 1 (see [2]). Let f be a text of length 2m. Assume that the pattern p con-
tains at least 2k disjoint z-breaks. Then there are at most O(mz ) matches (with k
mismatches) of p in f .

Proof. Choose 2k disjoint occurrences of breaks in the pattern. Let b1, b2, ..., br be
all pairwise different breaks among them, with bi occurring xi times, so

∑r
i=1 xi =

2k. Consider one break bi, and denote the positions of the disjoint occurrences of
bi in p by o1, o2, ..., oxi . For each occurrence of bi in the text, say at position q, we
add a mark to all positions q − o1 + 1, q − o2 + 1, . . . , q − oxi + 1 within the text.
Since the distance between two different occurrences of bi in the text is at least z

2
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there will be at most
∑r

i=1 xi
2m
z = 4km

z marks. Consider now a position in the
text where pmatches with at most k mismatches. At least k of the 2k breaks have
to match exactly, so we have at least k marks there. But there are only at most
4m
z positions with at least k marks. 	


This lemma is very useful, but it does not give a method to find all these O(mz )
positions. For this we need to locate all occurrences in f of up to 2k pattern breaks.
We cannot simply use the usual multiple pattern matching algorithm, because it
would cost Ω(m) time, which is too much. However, we know that there are at
mostO(kmz ) occurrences of these breaks in f . This fact, combined with an efficient
algorithm for multiple pattern matching in a pc-string, which is an adaptation of
the method of Gawrychowski [7], gives a solution.

Lemma 2. We can preprocess the pattern and a collection of its disjoint z-breaks
in O(m) time, so that later given any pc-string f = v1v2...vl we can find all occ
occurrences of the breaks in f in O(l logm+ occ) time.

Theorem 2. Suppose the pattern contains at least 2k disjoint z-breaks. Then pat-
tern matching with k mismatches in pc-strings can be solved in O(k logm + km

z )
time.

Proof. First we find 2k disjoint z-breaks in the pattern. We want now to detect
the at most O(mz ) positions in f where p can potentially match. Proceeding as
in the proof of Lemma 1, first choose some 2k disjoint z-breaks and find all their
matches in f using the algorithm from Lemma 2. This costs us O(l logm+ occ) =
O(k logm + km

z ) time. The marking phase can be done in O(kmz ) time. Now for
each of the O(mz ) positions verify whether p matches there in O(k) time. So we

can find all matches of p in f in O(k logm+ km
z ) time. 	


Choosing big zmakes our algorithm really fast. However, the larger is z, the harder
is for the pattern to contain many z-breaks. Furthermore, we cannot expect each
pattern to have many z-breaks, even for small z. Therefore, we need a different
algorithm for the case when p has few breaks, or is highly periodic. The algorithm
has to take advantage of the regular structure of the pattern.

5 Basic Algorithm for Highly Periodic Patterns

In this section we assume the pattern is highly periodic. This means we can write
it in the form p = s1b1s2b2...srbrsr+1, where r < 2k, each bi is a z-break and each
si is a (possibly empty) string with period at most z

2 . The fragments s1, s2, ..., sr+1

are called periodic stretches. As in the previous section we are interested in finding
a match (with at most k mismatches) of p in a pc-string f .

Below we describe how to reduce the general case to the one where the number
of breaks in the text is small. A very similar reasoning can be also used in matching
with errors, the only change being increasing some constants.
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Lemma 3. Suppose f is a string of length at most 2m and p is a pattern containing
at most 2k disjoint z-breaks. There exists a subword f ′ of f having at most 6k+ 1
disjoint z-breaks such that each match of p in f lies fully within f ′. Moreover, such
f ′ can be found in O(kz) time.

By the discussion above we can restrict ourselves to pc-strings having at most
O(k) disjoint z-breaks. We will give now an algorithm achieving O(zk4) running
time for pattern matching with k mismatches in such pc-strings. While this is not
the best algorithm we have obtained, it serves well as an introduction to the more
complicated O(zk3) algorithm presented in the next section.

Let us summarize the situation. We are given a pattern of the form
p = s1b1...srbrsr+1 and a pc-string f = s′1b

′
1...s

′
qb
′
qs
′
q+1, where r, q = O(k), b’s

denote z-breaks and the periods of all s’s are at most z
2 . We will soon see that

alignments of the pattern, where the pattern breaks and text breaks are not too
close from each other, are nice to work with, so we handle the remaining ones
separately.

Proposition 2. There are at most O(zk3) alignments of the pattern in the text
such that some text break (or text endpoint) is within a distance of z(k + 1) from
some pattern break (or pattern endpoint).

In this (simple) version of the algorithmwe just verify all theseO(zk3) positions in
O(k) time per one. This results in O(zk4) complexity and leaves us with the con-
venient case, where all distances between pattern and text breaks (or endpoints)
are at least z(k+1). We call such alignments fine, and we will soon see that a fine
alignment resulting in a match has a very special structure.

Starting from now we assume that the distances between consecutive breaks
in the text (and in the pattern) are at least z(k + 1), and otherwise group some
breaks together. Our argument works also for such groups but we describe it just
for breaks. Similarly, we want to assume that s1 and sr+1) are either empty or of
length at least z(k + 1), so we extend the boundary breaks if needed.

One can easily see that there are at most O(k2) intervals of consecutive fine
alignments in the text. Within such an interval the order of appearance of the
breaks does not change. Fix one interval and suppose we have at least one match
there. We want to argue that in such a case all periodic stretches involved in this
match are compatible, meaning that their canonical periods are identical, and
moreover start with the same offset modulo the period.

Proposition 3. Suppose w1, w2 are periodic strings with periods not exceeding z
2 .

If w1 �= w2 and |w1| = |w2| ≥ z(k + 1) then there are at least k + 1 mismatches
between these two words.

Suppose there is a match at some fine alignment. Between two consecutive
breaks (we consider here all pattern and text breaks) there is always a periodic
portion of length at least z(k+1). By Proposition 3, there must be a perfect match
between the corresponding fragments. So in particular, the periods of the corre-
sponding pattern periodic stretch and text periodic stretch agree. Considering the
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≥ z(k + 1) ≥ z(k + 1) ≥ z(k + 1)

b1

b2

b3 b4

≥ z(k + 1)

b5

≥ z(k + 1)

Fig. 1. Long overlaps between stretches imply their canonical periods are the same

way how the stretches overlap each other, see Figure 1, by transitivity all periodic
stretches involved in the match have the same canonical period.

Suppose now all the periodic stretches in the pattern have the same canonical
period u. We consider an interval of consecutive fine alignments. Assume there is
a match somewhere in this interval. One can see that each two alignments i and
i+ |u| from the interval have the same number of mismatches, because each break
is aligned with a u-periodic stretch, so the fragment we compare it to is the same.
So in order to find all matches within one interval, we only need to verify at most
|u| ≤ z

2 alignments. Each verification takes O(k) time, so the time taken over all
intervals is O(k2 · z

2 · k) = O(zk3).

Theorem 3. For highly periodic patterns, pattern matching with k mismatches in
pc-strings can be solved in O(zk4) time.

6 Faster Algorithm for Highly Periodic Patterns

The purpose of this section is to show a faster algorithm for pattern matching
with k mismatches in pc-strings, assuming the pattern is highly periodic. We will
improve the time complexity from O(zk4) to O(zk3). We will make sure that the
additional space required by the improved algorithm is just O(zk2), which will be
crucial in achieving linear space usage of the whole solution.

In the previous section we showed that one can assume that the text has at
most O(k) disjoint z-breaks. The idea of the basic algorithm was to first work
with the“bad”alignments. An alignment was considered“bad”if there was a text
break and a pattern break close to each other (within a distance of z(k+ 1)). We
took all such alignments and verified them in O(k) time each. The fine alignments
(meaning not“bad”) were analyzed in total timeO(zk3). This approach, although
simple, seems to be very naive. Each time there is a single pair of close breaks, we
waste Ω(k) time to deal with such an alignment. It turns out that we can verify a
“bad”position in time proportional to the number of“bad”breaks. In the following
definitions and lemmas we make the idea formal.

Definition 2. In a fixed alignment of the pattern in the text, we call a pattern break
black if there is some text break or text endpoint within distance 23zk from it. Sim-
ilarly, we call a text break black if there is some pattern break or pattern endpoint
within distance 23zk from it. Non-black breaks are called white.

Note that one extreme case when a break is black is when it overlaps with some
other break. It is convenient to deal with such situations separately. There are only
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Fig. 2. Two consecutive black breaks

O(zk2) such alignments, so they can be all verified in O(zk3) time, and from now
on we assume that no two breaks overlap. Moreover, we assume that there is at
least one black break, as otherwise the alignment is fine.

Lemma 4. AfterO(zk3) time preprocessing, given an alignment withB ≥ 1 black
breaks we can test whether it corresponds to a match in O(B) time.

We will prove the above lemma in the remaining part of this section. Suppose
for a moment it holds, and consider all alignments with some black breaks. Call
the number of black breaks in these alignments B1, B2, ..., Bg. Then by the above
lemma, each single alignment can be processed in O(Bi) time, so the total time is
O(

∑g
i=1 Bi). Every specific break is black atmostO(k·(46z(k+1)+2z)) = O(zk2)

times, so O(
∑g

i=1 Bi) = O(zk3). So if we use this method to process the align-
ments, we will obtain an algorithm with O(zk3) running time.

The main idea in the proof of the lemma is to partition the alignment into dis-
joint parts, such that in each of these parts we can count the number of mismatches
easily. More precisely, if there are B black breaks in the considered alignment,
we distinguish O(B) intervals where the Hamming distance can be determined in
O(1) time, assuming some precalculation. We will now give the details by analyz-
ing the relative arrangement of black and white breaks. Recall we have already
reduced the situation to the case where no two breaks overlap.

Consider a periodic stretch s between two breaks in the pattern (text). It can
be written in the form s = u1u

iu2 where u is its canonical period (of length at
most z

2 ), i ≥ 0, u1 is some suffix of u and u2 is some prefix of u. Note also that the
word u is primitive in such a case. It is easier to imagine the whole picture (and
also to describe it) if u1 = u2 = ε, in other words when s is a power of its canonical
period.We can achieve it by merging u1 (u2 respectively) to the neighboring break
on the left (on the right). After this operation the breaks have lengths between z
and 2z and all periodic stretches, maybe except these at the start and at the end
of the word, are powers of primitive words.

Let us fix an alignment with at least one black break, and take any black pattern
break (the reasoning for text breaks is the same). We want to count the number of
mismatches between it and the corresponding periodic stretch from the text. To
answer such a query in constant time, for each pattern break and periodic stretch
ui from the text we count mismatches between the break and the stretch for every
possible shift smaller than |u| ≤ z

2 . Each such count can be performed in O(k)
time, which results in O(zk3) time preprocessing.
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Now take two consecutive black breaks b1, b2. Consider the case, when there
are no more breaks between them (of course there are no black ones, because we
chose b1, b2 to be consecutive, but some white breaks might be there). Two pos-
sible situations are depicted in Figure 2. Our aim is now to count the number of
mismatches between s1 and s2, which are length-L subwords of periodic stretches
from the text and pattern, respectively. If L ≥ z(k + 1) then by Proposition 3
either there are no mismatches between s1 and s2, or there are at least k + 1 of
them. It is easy to detect which case occurs: the strings agree if and only if their
canonical periods are the same and they start with the same period offset, which
can be determined in O(1) time after some straightforward preprocessing. So we
can assume L < z(k + 1). We consider the cases from Figure 2 separately.

Case 1. In this case s1 is length-L suffix of some text periodic stretch, s2 is length-
L prefix of some pattern periodic stretch. We want to precalculate all possible
O(zk3) results of such queries. Fix one pair of periodic stretches. We will calcu-
late all the O(zk) required numbers in O(zk) total time. Let w be the canonical
period of s1, d = |w| and let u be the canonical period of s2. First calculate the
answer for all overlaps of length at most d inO(dk) = O(zk) time. Now to process
an overlap of length D > d, we use the result for D − d, and add the number of
mismatches between w and some factor of an infinite word u∞, which can be pre-
viously precomputed in O(|u|k) = O(zk) total time. Hence we can precalculate
all values in O(zk3) time, but space usage of O(zk3) is too high to achieve linear
total space complexity. It can be reduced to O(z) per a pair of stretches by care-
fully arranging some partial results so that the final answer can be computed as a
difference of their prefix sums.

Case 2. In this case s1 is a complete periodic stretch, and s2 is a factor of a peri-
odic stretch. Note that if s2 has period d then there are only d essentially different
alignments of such form. Overall there are onlyO(zk2) possible queries, so we pre-
calculate all of them in O(zk3) time.

Then we need to consider the general situation when there are some white breaks
between two consecutive black breaks b1, b2. Using a similar (although more com-
plex) reasoning it can be solved in constant time after O(zk2) space and O(zk3)
time preprocessing. Hence whenever we have an alignment with B black breaks,
we may partition it into O(B) regions and either count the mismatches in each of
them, or report that it exceeds k, in constant time, thus the theorem.

Theorem 4. For highly periodic patterns, pattern matching with k mismatches in
pc-strings can be solved in O(zk3) time using O(zk2) additional space.

It is now a good moment to specify z. Let z =
√
m
k . Using Theorem 2 and Theo-

rem 4 we see that such a choice of z gives us a running time O(k logm+
√
mk2) =

O(
√
mk2) for pattern matching with k mismatches in pc-strings. The additional

space needed is O(zk2) = O(
√
mk). By Theorem 1 we then obtain that pattern

matchingwith kmismatches inLZW-compressed text canbe solved inO(nk log2m
+m + n

√
mk2), which is O(n

√
mk2) because n ≥

√
m. The space complexity is
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O(n+m+
√
mk). This is bounded byO(n+m)whenever k = O(

√
m). In the oppo-

site case we use theO(mk) algorithm [10] to process each pc-string usingO(n+m)
space and O(nmk) = O(n

√
mk2) total time.

Theorem 5. Pattern matching with k mismatches in LZW-compressed strings
can be solved in O(n

√
mk2) time and O(n+m) space.

7 Algorithm for PatternMatching with Errors

In this section we discuss the algorithm for pattern matching with k errors in pc-
strings. It is obtained by combining our methods for compressed strings (applied
for pattern matching with mismatches) with the ideas used by Cole and Hariha-

ran [4]. We needO(mk2

z +k logm) time for the case when p has at least 2k disjoint
z-breaks andO(zk4) for the case when p has less than 2k disjoint z-breaks. Choos-

ing z to be
√
m
k we obtain the following result.

Theorem 6. Pattern matching with k errors in LZW-compressed strings can be
solved in O(n

√
mk3) time and O(n+m) space.
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Abstract. Text indexing is a fundamental problem in computer science,
where the task is to index a given text (string) T [1..n], such that when-
ever a pattern P [1..p] comes as a query, we can efficiently report all those
locations where P occurs as a substring of T . In this paper, we consider
the case when P contains wildcard characters (which can match with any
other character). The first non-trivial solution for the problem is given by
Cole et al. [STOC 2004], where the index space is O(n logk n) words or
O(n logk+1 n) bits and the query time is O(p+2h log log n+ occ), where
k is the maximum number of wildcard characters allowed in P , h ≤ k is
the number of wildcard characters in P and occ represents the number
of occurrences of P in T . Even though many indexes offering different
space-time trade-offs were later proposed, a clear improvement on this
result is still not known. In this paper, we first propose an O(n logk+ε n)
bits index achieving the same query time as that of Cole et al.’s index,
where 0 < ε < 1 is an arbitrary small constant. Then we propose another
index of size O(n logk n log σ) bits, but with a slightly higher query time
of O(p+ 2h log n+ occ), where σ denotes the alphabet set size.

1 Introduction and Related Work

Text indexing is a fundamental problem in computer science, where the task is to
index a given text (string) T [1..n], such that whenever a pattern P [1..p] comes as
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a query, we can efficiently report all those locations where P occurs as a substring
of T . The classic data structures for solving this problem are suffix trees [28] and
suffix arrays [21]. Both these linear space (O(n logn) bits) structures can perform
pattern matching in optimal O(p+ occ) and O(p+logn+ occ) time respectively,
where occ is the number of occurrences of P in T 1. Approximate string match-
ing and wildcard matching are natural extensions of the pattern matching prob-
lem. Both have been studied extensively. [2,11,15,8,18,26,27,14,6,19,20]. These
problems have several applications in information retrieval, bioinformatics, data
mining, and internet traffic analysis [7,13].

The focus of this paper is on the following problem: index T for handling
matching of a query pattern P with at most k wildcards. A wildcard, also known
as don’t care character (represented by φ) can match with any other character
in the alphabet set Σ (of size σ). Therefore, the pattern P can be written as
P0φP1φ..Ph−1φPh, the concatenation of substrings P0, P1, ...Ph−1, Ph separated
by φ and h ≤ k is the number of wildcards in P . The first non-trivial solution
for this problem was proposed by Cole et al. [11], where the index space is
O(n logk n) words or O(n logk+1 n) bits and query time is O(p + 2h log logn +
occ). Recently, Bille et al. [6] proposed an index, which is a generalization of
Cole et al.’s index. The space and query time are O(n log n logk−1

β n) words and

O(p+βh log logn+occ) respectively, where 2 ≤ β ≤ σ. Note that Cole et al.’s [11]
result can be obtained by substituting β = 2. Bille et al. [6] also proposed an

optimal O(p+occ) time index of space O(nσk
2

logk logn) words. Another space-
efficient index of O(n logn) words proposed by Cole et al. [11] can answer this
query in O(p+ σh log logn+ occ) time, and is recently improved to O(n) words
without affecting the query time [6]. Several other linear space structures also
exist in literature, such as the ones by Iliopouls and Rahman [22], and Lam et
al. [18]. However, these indexes take Θ(nh) worst case time for answering the
query. Despite all these continued efforts, a clear improvement over the seminal
result by Cole et al. [11] (i.e., O(n logk+1 n) bits and O(p + 2h log logn + occ)
time) is still not known.

In this paper, we describe two results. The first one is an O(n logk+ε n) bits
index with O(p + 2h log logn + occ) query time, where where 0 < ε < 1 is an
arbitrary small constant. The second one is an O(n logk n log σ) bits index, but
with a slightly worse query time of O(p+2h logn+ occ), where Σ = [σ] denotes
the alphabet set. Notice that our first result is a clear improvement over the
earlier result by Cole et al., whereas the second one provides another space-time
trade-off for this problem when the alphabet set is small.

Another problem that is strongly connected to the problem under consider-
ation is to index the text wildcards. This was solved in Cole et al. [11] as well.
However, for this case, better solutions have appeared in a succession of papers
and indexes with succinct space and competitive query time [18,26,27,14] are
available in the literature. Yet another related problem is that of indexing with
gaps. Gaps are essentially longer wildcards. In [16] an index was proposed sup-
porting queries of patterns containing one gap with a predefined length. This

1 All logarithms in this article are base 2.
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result builds on the result of [2]. The case of one gap was further improved by
Bille et al. [5] with optimal query time. In [19] results were shown for the case
when there is a larger number of gaps.

Outline. Section 2 gives the preliminaries. Next, we describe a classical frame-
work for the case where k = 1 and then the framework by Cole et al.’s for k ≥ 1
in Section 3, and Section 4, respectively. Section 5 describes our space-efficient
data structures.

2 Preliminaries

2.1 Suffix Trees and Suffix Arrays

Suffix trees [28] and suffix arrays [21] are two classic data structures for online
pattern matching queries. For a text T [1..n], substring T [i..n], with i ∈ [1, n], is
called a suffix of T . The suffix tree for T is a lexicographic arrangement of all
these n suffixes in a compact trie structure, where the ith leftmost leaf represents
the ith lexicographically smallest suffix. For each node v in the suffix tree, we
use path(v) to denote the concatenation of edge labels along the path from the
root to v. For any pattern P (of length p), the locus of P in the suffix tree is
defined to be the highest node v (i.e., the closest node from the root) such that
P is a prefix of path(v) and can be computed in O(p) time.

The suffix array SA[1..n] is an array of length n, such that SA[i] is the starting
position of the ith lexicographically smallest suffix of T . The suffix array has an
important property that the starting positions of all suffixes with the same prefix
are always stored in a contiguous region in SA. Based on this property, the suffix
range of a pattern P in SA is defined as the the maximal range [sp, ep] such that
for all j ∈ [ep, ep], SA[j] is the starting point of a suffix of T with P as a prefix.
In other words, the suffix range of a string represents the set of leaves in the
subtree of its locus node in suffix tree. We also define its inverse, SA−1 to be
an array such that SA[i] = j if and only if SA−1[j] = i. Both suffix trees and
suffix arrays (along with an auxiliary data structure called LCP array) take
(n logn) bits space and can perform pattern matching in optimal O(p+occ) and
O(p + logn + occ) time respectively, where occ is the number of occurrences of
P in T .

2.2 Heavy Path and Heavy Path Decomposition

Let T be a tree with n nodes. We define the size of an internal node v to be
the number of leaves in the subtree rooted at v. Then the heavy path of the
tree T is the path starting from the root, where each node v on the path is
the largest-size child of its parent. The heavy path decomposition of the tree T
is the operation where we decompose each off-path subtree of the heavy path
recursively; as a result, the edges in T will be partitioned into disjoint heavy
paths. In [25], Sleator and Tarjan proved that the path from the root of T to
any node v traverses at most logn heavy paths.
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2.3 Two-Dimensional Orthogonal Range Reporting

Let R = {(x1, y1), (x2, y2), .., (xn, yn)} be a set of n points in an [1, n] × [1, n]
grid. Without loss of generality, we assume that xi ≤ xi+1. An orthogonal range
reporting query on R is defined as follows: Given a query range [x′, x′′]× [y′, y′′],
report all points (xi, yi) such that xi ∈ [x′, x′′] and yi ∈ [y′, y′′]. Such a query
can be answered optimally in O(log logn+ occ) time using an O(n logε n)-word
space structure, where ε > 0 is any arbitrary small constant [1]. See [20,10] for
connections between text indexing and range searching.

2.4 Partial Rank Queries

Let E[1..n] be an array of n characters taken from an alphabet set Σ = [σ].
Then rankE(i, c) where c ∈ Σ is defined as the number of occurrences of c in
E[1..i]. There exists n log σ+o(n log σ)-bit representations of E which can answer
rank queries in O(log log σ) time [12]. Rank queries of the type rankE(i, E[i])
(or simply prankE(i)) are called partial rank queries (also known as special
rank queries [17]), and can be supported in constant time by maintaining an
additional o(n log σ) bits structure [3,4].

3 The Classical Framework for k = 1

In this section, we describe a simple index for pattern matching with exactly
one wildcard character. In this case, P can be written as P0φP1, where P0 and
P1 are the longest prefix and suffix respectively of P which do not contain any
wildcard. The index is based on the following idea by Amir et al. [2]: if there
exists an occurrence of P in T with the wildcard character φ matching exactly
at the location i ∈ [1, n] in T , then P0 must be a suffix of T [1..i−1] and P1 must
be a prefix of T [i+ 1..n]. All such i’s can be quickly computed by maintaining
the following structures:

1. Suffix tree of T (ST)
2. Suffix tree of TR (RST), where TR is the reverse of T . i.e., TR[i] = T [n−i+1].
3. A two-dimensional orthogonal range reporting structure (RR2D) over a set

of n points of the form (xi, yi), where xi is the lexicographic rank of T [i+1..n]
among all suffixes of T , and yi is the lexicographic rank of T [1..i−1]R among
all suffixes of TR.

The index space can be bounded by O(n logε n) words, where ST and RST
takes O(n)-word space and RR2D structure (Section 2.3) takes O(n logε n)-word
space. The query corresponding to an input P = P0φP1 can be answered as fol-
lows: first find the suffix range [sp, ep] of P1 in ST, and the suffix range [sp′, ep′]
of PR

0 in RST in O(|P0|+ |P1|) time. Then, we issue a 2-dimensional orthogonal
range reporting query on RR2D structure with [sp, ep]× [sp′, ep′] as the query
range. The required time will be O(log logn) plus the number of outputs. Cor-
responding to each point (xj , yj) reported as an output, there exists a match
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of P in T at the position j − |P0|. Putting everything together, the total query
time can be bounded as O(|P0| + |P1| + log logn + occ). Bille et al. [5] showed
that the log logn additive factor in time can be removed by maintaining an
O(n log logn)-word and optimal query time structure for p < log logn.

Theorem 1. A given text T [1..n] can be indexed in O(n logε n) words, and all
occurrences of a query pattern P [1..p] = P0φP1 can be retrieved in O(p + occ)
time, where 0 < ε < 1 is an arbitrary small constant.

Unfortunately, this approach cannot be generalized for k ≥ 2.

4 Cole et al.’s Framework

In this section, we briefly describe the structure (we name it as STRk) by Cole
et al. [11] for handling pattern matching with at most k number of wildcards.
The exact pattern matching problem (i.e., k = 0) can be answered using a suffix
tree data structure, and for consistency we denote the suffix tree of T by STR0.
We shall call the nodes in STR0 as level-0 nodes. The structure STRk can be
constructed in a recursive manner. We start with the description of STR1, which
is essentially an STR0 with each of its nodes augmented with a compact trie
called a side tree as follows: for every node u in STR0 (i.e., level-0 nodes), with
v being a child on the same heavy path as that of u, we choose all suffixes in
the subtree of u 2, but not in the subtree of v, delete their first |Path(u)| + 1
characters 3 and maintain them as a compact trie. We call this compact trie as
the side tree of u and is represented by Sidetree(u). Then u is connected to the
root of Sidetree(u) via an edge with label φ (we fix the root of Sidetree(u) as the
last child of u). We now call a node a level-1 node, if it belongs to any Sidetree
associated with a level-0 node. Using the same procedure as described above for
constructing side trees from level-0 nodes, we construct side trees from level-1
nodes and call the newly formed nodes as level-2 nodes. Then we construct side
trees from level-2 nodes and obtain level-3 nodes as so on until level-k nodes.
The number of level-j nodes is given by O(n logj n), therefore STRk consists of

O(n
∑k

j=1 log
j n) = O(n logk n) nodes and it can be maintained in O(n logk n)

words or O(n logk+1 n) bits. For every node u in STRk, path(u) represents the
concatenation of edge labels on the path from the root of STRk to u. Let �i
represents the ith leftmost leaf node in STRk. Notice that path(�i) corresponds
to a suffix of T and we use pos(�i) to denote the starting position of that suffix4.
Moreover if �i is a level-0 node, then path(�i) = T [pos(�i)..n], whereas if it is
a level-j node for j ∈ [1, k], then path(�i) is given by T [pos(�i)..n] with its j
characters replaced by φ.

Now a query corresponding to a pattern P = P0φP1φ..φPh can be answered
as follows: start navigating the structure STRk from its root by matching the

2 This means all suffixes corresponding to the leaves in the subtree of u.
3 which is the same as removing |Path(u)|+ 1 characters from the prefix of all those
suffixes, yet again, a collection of suffixes

4 In the case of suffix tree STR0, pos(�i) = SA[i].
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characters in P one by one. Note, because φ is a wildcard it can match with
any other character. However, if we have reached up to a node u in STRk by
matching a prefix of P and the next character to be matched is φ, by continuing
to match φ with any other character will branch out the search into degree(u)
paths, where degree(u) ≤ σ + 1 represents the number of outgoing edges from
u. Cole et al. [11] observed that instead of matching in degree(u) paths, it is
enough to take only the following two paths (i) the outgoing path from u with
its first character being φ and (ii) the heavy path on which u is sitting. Thus
due to a single wildcard, the query will branch out to two paths, and in general
for h wildcards, query will branch out to at most 2h paths, ending up in O(2h)
locus nodes. However, the time required for finding those O(2h) locus nodes
is O(|P0| + 2|P1| + 4|P2| + ... + 2h|Ph|) = O(2hp). Using some auxiliary data
structures, which are called LCP data structures occupying O(n logk+1 n) bits,
this time complexity can be improved to O(p+2h log logn). Then for every leaf
�i in the subtree of a locus node, pos(�i) represents an occurrence of P in T .
Thus all occurrences can be reported by spending another O(occ) time.

Theorem 2. ([11]) A given text T of length n can be indexed in O(n logk+1 n)
bits, such that all those occ occurrences of a pattern P containing h ≤ k wildcards
can be reported in O(p+ 2h log logn+ occ) time.

4.1 Finding Locus Nodes without LCP Data Structures

Even without the LCP data structures, the locus nodes can be computed ef-
ficiently using an O(p + 2h logn) time algorithm. We start with the following
definition: let loc(u, d) refers to the location on the path from the root of STRk

to node u, such that the string obtained by concatenating edge labels on the
path from the root of STRk to loc(u, d) (denoted by path(loc(u, d))) is the pre-
fix of path(u) of length |path(u)|−d. Notice that, loc(u, 0) refers to node u itself.
The maximum value of d for a particular node u is restricted by the following
condition that there exits no other node on the path from loc(u, d) to u. We now
prove the following result.

Lemma 1. Let loc(u′, d′) represents a location in STRk, which can be reached if
we start matching a pattern P ′ from the location loc(u, d). Then, given loc(u, d)
and the suffix range [L′, R′] of a pattern P ′ in the suffix tree STR0, we can find
loc(u′, d′) (if it exists) in O(log n) time.

Proof. Let {�i|i ∈ [x, y]} and {�i|i ∈ [x′, y′]} represent the set of leaves in the
subtree of u and u′ respectively. Notice that x ≤ x′ ≤ y′ ≤ y. Since the first
|path(loc(u, d))| characters are the same for all strings corresponding to path(�i)
for i ∈ [x, y], the lexicographic ordering among these strings will remain un-
changed even if we remove their first |path(loc(u, d))| characters. This means
the function SA−1[pos(�i) + |path(loc(u, d))|] is monotonically increasing with
respect to i ∈ [x, y]. Moreover their next |P ′| characters match with P ′ iff
SA−1[pos(�i) + |path(loc(u, d))|] ∈ [L′, R′]. Therefore x′ and y′ are the mini-
mum and the maximum values of j satisfying this condition respectively, and
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they can be computed in O(log n) time using a binary search. Once x′ and y′

have been identified, u′ can be computed in O(1) by taking the lowest common
ancestor of �x′ and �y′ , and d′ is given by |path(u′)|−|path(u)|+d′−|P ′|. Notice
that |path(·)| for every node can be stored explicitly without changing the space
bounds. 	


Using the above result, we can compute the locus nodes as follows: for i =
0, 1, 2, ..., h, find the suffix ranges [spi, epi] of Pi in the suffix tree STR0 in overall
O(p) time. Now start navigating STRk from its root by matching the characters
of P0. Whenever the query branch out to two paths, and if the next character
to be matched is a wildcard character, it takes O(1) per match. After that if
we want to match the next Pi characters for some i ∈ [1, h], we simply use the
result in Lemma 1. Therefore, total time for pattern search can be bounded by
O(p+log n+2 logn+4 logn+ ...+2h logn) = O(p+2h logn). By putting every
thing together, we have the following result.

Lemma 2. There exists an O(p+ 2h logn) time algorithm for finding the locus
nodes of P in STRk. 	


5 New Space-Efficient Indexes

5.1 An O(n logk+ε n)-bit Index

This result is achieved by a simple combination of the classical framework and
Cole et al.’s framework. If there exists an occurrence of P in T with the first
wildcard character φ matching exactly at the location i ∈ [1, n] in T , then P0

must be a suffix of T [1..i− 1] and P1φ..φPh must be a prefix of T [i+ 1..n]. All
such i’s can be quickly computed by maintaining the following structures:

– Cole et al.’s structure (STRk−1 of space O(n logk n) bits) for handling the
case only up to k − 1 wildcards (along with the LCP data structures). The
number of nodes in this structure is O(n logk−1 n). Here we use �i to denote
the ith leftmost leaf in STRk−1.

– Suffix tree of TR (RST).
– Let Li represents the set of leaves in STRk−1 with its pos(·) = i + 1 and

let i′ be the lexicographic rank of T [1..i − 1]R among all suffixes of TR.
Construct the set Si of two dimensional points (j, i′) corresponding to each
leaf �j ∈ Li. Note that |Li| = |Si| = O(logk−1 n). We then maintain an
orthogonal range reporting structure RR2D (refer to section 2.3) over a set
∪n−1
i=2 Si of O(n log

k−1 n) two dimensional points. The space required for this

component is O(n logk+ε n) bits.

Now the pattern matching query can be answered as follows: if h ≤ k − 1,
the query can be answered using STRk−1 in O(p + 2h log log n + occ) time. If
h = k, we spilt the pattern P into Psuf = P1φ..φPh and Ppre = PR

0 . Then,
search for Psuf in STRk−1 and compute O(2h−1) locus nodes u1P , u

2
P , u

3
P , .. and
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their corresponding suffix ranges [L1, R1], [L2, R2], [L3, R3], .. etc (here �Lz and
�Rz represents the leftmost and the rightmost leaves in the subtree of uzP ) in
O(p+2h log logn) time (using LCP data structures). Then search for Ppre in RST
and obtain the suffix range [sp′, ep′]. Finally the occurrences can be computed by
issuing O(2h−1) two-dimensional range reporting queries on RR2D correspond-
ing to the ranges [L1, R1]× [sp′, ep′], [L2, R2]× [sp′, ep′], [L3, R3]× [sp′, ep′]... It
can be easily verified that for every point (j, .) reported as an output by the
structure, there exists an occurrence of Psuf starting at the location pos(�j) and
an occurrence of Ppre ending at the location pos(�j) − 2 in T . Hence an occur-
rence of P at the location pos(�j)− |P0| − 1. By combining the above pieces, we
have the following theorem.

Theorem 3. A given text T of length n can be indexed in O(n logk+ε n) bits,
such that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+2h log log n+ occ) time, where 0 < ε < 1 is an arbitrary small
constant. 	


By using an alternative RR2D structure of O(n)-word space with query time
O((1 + output) logε n) [9], we can obtain another space-time trade-off as follows:

Corollary 1 A given text T of length n can be indexed in O(n logk n) bits, such
that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+ (2h + occ) logε n) time, where 0 < ε < 1 is an arbitrary small
constant.

Remark. Our techniques can be combined with the result by Bille et al. [6], and
an O(n log1+ε n logk−2

β n)-word index with O(p+βh−1 log logn+occ) query time
can be obtained, where 0 < ε < 1 is an arbitrary small constant and 2 ≤ β ≤ σ.

5.2 An O(n logk n logσ)-bit Index via Side Tree Compression

First we maintain the structure STRk−1 (as described before) in O(n logk n) bits
space. Therefore, the string matching case where the number of wildcards is at
most k−1 can be handled efficiently. In order to handle the k-wildcard case (i.e.,
h = k), we augment the side trees with every level-(k− 1) node in STRk−1 and
obtain STRk. The explicit storage of these side trees requires O(log n) bits per
node. However, the desired storage space of O(log σ) bits per node is achieved
via a novel encoding technique. For every level-(k−1) node u in STRk, we define
the followings:

– �ui represents the ith leftmost leaf in Sidetree(u)
– Eu[1..nu] be an array of characters, where Eu[i] = T [pos(�ui )+ |path(u)|+1],

and nu represents the number of leaves in Sidetree(u).
– Bu[1..σ] be a bit vector of length σ, where Bu[z] = 1 if and only if there

exists an outgoing edge from u with z ∈ Σ as the leading character.

The following lemma summarizes the key idea behind our result.
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Lemma 3. For any level-(k − 1) node u and i ∈ [1, nu], pos(�
u
i ) is the same as

pos(·) of the prankEu(i)th leftmost leaf node in the subtree of node w, where w
is a child of u, with Eu[i] the leading character on the edge connecting u and w.

Proof. Corresponding to every leaf node in the subtree of any child node of u,
except the one on the same heavy path as that of u, there exists another unique
leaf node in Sidetree(u), such that both have the same pos(·) value. Then the
lemma follows from the fact that, the character at the position |path(u)|+ 1 is
the same for the suffix corresponding to any two leaves in the subtree of w, and
therefore the lexicographic ordering of those suffixes remains unchanged even
after replacing the (|path(u)|+ 1)th character by φ. 	


Based on the key observation in the above lemma, we obtain the following result.

Lemma 4. By maintaining an O(n logk n logσ) bits structure, we can compute
pos(�ui) for any i ∈ [1, nu] for any level-(k − 1) node u in O(1) time.

Proof. First we maintain the tree structure of STRk using succinct data struc-
tures [24] in O(n logk n) bits of space. Then for every level-(k − 1) node u, we
maintain Eu and the supporting structures for constant time partial rank queries
(refer to Section 2.4) on Eu, in total O(

∑
nu log σ) = O(n logk n log σ) bits. Also

maintain Bu[1..σ] corresponding to all level-(k− 1) nodes u, where Bu[1...σ] for
a particular node u can be maintained in O(degree(u) log(σ/degree(u)) bits or
O(degree(u)) words of space using an indexible dictionary [23]. Notice that the
total space (in words) for maintaing all such bit vectors can be asymptotically
bounded by the number of level-(k − 1) nodes, which is O(n logk−1 n). By com-
bining the above pieces, the overall space can be bounded by O(n logk n log σ)
bits. Using these structure, combined with the result in Lemma 3, pos(�ui) for
any i ∈ [1, nu] for any level-(k − 1) node u can be answered in O(1) time as
follows:

– Find the child node w of u, such that the leading character on the edge
connecting u and w is Eu[i] using the following steps: find k = rankBu (Eu[i])
(notice that Bu[Eu[i]] = 1, therefore k can be computed in O(1) from Bu,
which is maintained using an indexible dictionary) and w is given by the kth
leftmost child of u (which can be identified in constant time using the tree
structure of STRk).

– Report pos(·) of the (prankEu(i))th leaf node in the subtree of w, which is
again a constant time operation. 	


Lemma 5. The structure STRk can be encoded in O(n logk n log σ) bits such
that pos(·) of any of its leaf node can be computed in O(1) time.

Proof. The pos(·) values corresponding to all those leaves, which are not a level-k
node can be maintained explicitly in O(n logk n) bits. This is because the number
of such leaves is O(n logk−1 n). In order to encode these values efficiently for
level-k leaf nodes, we first mark all those nodes in STRk which are not level-k.
The information whether a node in STRk is marked or not can be maintained
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using a bit vector B of length equal to the number of nodes in STRk, where
B[i] = 1 iff the ith node (in terms of pre-order rank) is marked. Then, pos(�j)
of any level-k (i.e., unmarked) leaf node can be computed as follows: first find
the lowest marked ancestor u of �j. Let �j be the ith leftmost leaf in the subtree
of u, where i = j − f + 1 and �f is the leftmost leaf in the subtree of u (notice
that f can be computed in O(1) time). Therefore pos(�j) = pos(�ui ) and can be
decoded in O(1) time using the result of Lemma 4. 	


A pattern matching query on our encoded STRk can be performed in the
same standard way. Notice that using an LCP data structure, the locus nodes
can be identified in O(p + 2h log logn) time. However its space occupancy is
O(n logk+1 n) bits and we cannot afford to maintain it within the desired space
complexity. Therefore, (although slower) we use the O(p + 2h logn) time algo-
rithm described in Section 4.1 for identifying the locus nodes. As pos(·) for any
leaf node can be decoded in O(1) time (refer to Lemma 5), after finding the
locus nodes, it takes only O(occ) time to report the occurrences. By combining
the above pieces, we have the following final result.

Theorem 4. A given text T of length n can be indexed in O(n logk n logσ) bits,
such that all those occurrences of a pattern P containing h ≤ k wildcards can be
retrieved in O(p+ 2h logn+ occ) time. 	
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Abstract. For a linear code, deep holes are defined to be vectors that
are further away from codewords than all other vectors. The problem of
deciding whether a received word is a deep hole for generalized Reed-
Solomon codes is proved to be co-NP-complete [9][5]. For the extended
Reed-Solomon codes RSq(Fq, k), a conjecture was made to classify deep
holes in [5]. Since then a lot of effort has been made to prove the
conjecture, or its various forms. In this paper, we classify deep holes
completely for generalized Reed-Solomon codes RSp(D, k), where p is a
prime, |D| > k � p−1

2
. Our techniques are built on the idea of deep hole

trees, and several results concerning the Erdös-Heilbronn conjecture.

Keywords: Reed-Solomon code, deep hole, deep hole tree, Erdös-
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1 Introduction

Reed-Solomon codes are of special interest and importance both in theory and
practice of error-correcting.

Definition 1. Let Fq be a finite field with q elements and characteristic p. Let
D = {α1, . . . , αn} ⊆ Fq be the evaluation set and vi ∈ F∗q , 1 � i � n, be the
column multipliers. The set of codewords of the generalized Reed-Solomon code
RSq(D, k) of length n and dimension k over Fq is defined as

RSq(D, k) = {(v1f(α1), . . . , vnf(αn)) ∈ Fn
q | f(x) ∈ Fq[x], deg(f) � k − 1}.
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We will write generalized Reed-Solomon codes as GRS codes for short in the
sequel. If D = F∗q , it is called primitive. If D = Fq, it is called a singly-extended
GRS code. A GRS code is called normalized if its column multipliers are all
equal to 1. In this paper, we will work on the normalized GRS without loss of
generality. And we will write singly-extended GRS codes as extended GRS codes
for short.

The encoding algorithm of the GRS code can be described by the linear
map ϕ : Fk

q → Fn
q , in which a message (a1, . . . , ak) is mapped to a codeword

(f(α1), . . . , f(αn)), where f(x) = akx
k−1 + ak−1x

k−2 + · · ·+ a1 ∈ Fq[x].
The Hamming distance between two words is the number of their distinct

coordinates. The error distance of a received word u ∈ Fn
q to the code is defined

as its minimum Hamming distance to codewords. The minimum distance of a
code, which is denoted by d, is the smallest distance between any two distinct
codewords of the code. The covering radius of a code is the maximum distance
from any vector in Fn

q to the nearest codeword. A deep hole is a vector achieving
the covering radius. A linear code [k, d] is called maximum distance separable
(in short, MDS) if it attains the Singleton bound, i.e., k = n− d+ 1. GRS code
is a linear MDS code, and its minimum distance is known to be n − k + 1 and
the covering radius is known to be n − k. Thus for the GRS code, u is a deep
hole if d(u,RSq(D, k)) = n− k. A linear code can be represented by a generator
matrix. In this paper, we assume that the rows of a generator matrix form a
basis for the code.

1.1 Related Work

Efforts have been made to obtain an efficient decoding algorithm for GRS codes.
Given a received word u ∈ Fn

q , if the error distance is smaller than n −
√
nk,

then the list decoding algorithm of Sudan [17] and Guruswami-Sudan [8] solves
the decoding in polynomial time. However, in general, the maximum likelihood
decoding of GRS codes is NP-hard [9].

We would like to determine all the deep holes of the code. To this end, given
a received word u = (u1, u2, . . . , un) ∈ Fn

q , we consider the following Lagrange
interpolating polynomial

u(x) =

n∑
i=1

ui

∏
j =i(x− αj)∏
j =i(αi − αj)

∈ Fq[x],

where D = {α1, . . . , αn} is the evaluation set. The Lagrange interpolating poly-
nomial is the only polynomial in Fq[x] of degree less than n that satisfies u(αi) =
ui, 1 � i � n. In this paper, we say that a function u(x) generates a vector u ∈ Fn

q

if u = (u(α1), u(α2), . . . , u(αn)). We have the following conclusions:

– If deg(u) � k−1, then u ∈ RSq(D, k) by definition and d(u,RSq(D, k)) = 0.

– If deg(u) = k, then it can be shown that u is a deep hole by the following
proposition [10], i.e., d(u,RSq(D, k)) = n− k.
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Proposition 1. ([10]) For k � deg(u) � n− 1, we have the inequality

n− deg(u) � d(u,RSq(D, k)) � n− k.

When the degree of u(x) becomes larger than k, the situation becomes compli-
cated for GRS codes. However, in the case of (singly-)extended GRS codes, the
situation seems to be much simpler. Cheng and Murray [5] conjectured in 2007
that the vectors generated by polynomial of degree k are the only possible deep
holes.

Conjecture 1. ([5]) A word u is a deep hole of RSq(Fq, k) if and only if deg(u) =
k.

There is an analogous conjecture for deep holes of primitive Reed-Solomon
codes by Wu and Hong [20].

Conjecture 2. ([20]) A word u is a deep hole of RSq(F∗q , k) if and only if:

u(x) = axk + f�k−1(x), a �= 0;

or
u(x) = bxq−2 + f�k−1(x), b �= 0;

where f�k−1(x) denotes a polynomial with degree not larger than k − 1.

Cheng and Murray [5] got the first result by reducing the problem to the
existence of rational points on a hypersurface over Fq.

Theorem 1. [5] Let u ∈ Fq
q such that 1 � deg(u) − k � q − 1 − k. If q �

max(k7+ε, d
13
3 +ε) for some constant ε > 0, then u is not a deep hole.

Following a similar approach of Cheng-Wan [6], Li and Wan [12] improved the
above result with Weil’s character sum estimate.

Theorem 2. [12] Let u ∈ Fq
q such that 1 � deg(u)− k � q − 1− k. If

q > max((k + 1)2, d2+ε), k > (
2

ε
+ 1)d+

8

ε
+ 2

for some constant ε > 0, then u is not a deep hole.

Then Liao [13] proved the following result:

Theorem 3. [13] Let r � 1 be an integer. For any received word u ∈ Fq
q, r �

deg(u)− k � q − 1− k, if

q > max(2

(
k + r

2

)
+ d, d2+ε), k > (

2

ε
+ 1)d+

2r + 4

ε
+ 2

for some constant ε > 0, then d(u,RSq(Fq, k)) � q− k− r, which implies that u
is not a deep hole.
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Antonio Cafure etc. [4] proved the following result with tools of algebraic geom-
etry:

Theorem 4. [4] Let u ∈ Fq
q such that 1 � deg(u)− k � q − 1− k. If

q > max((k + 1)2, 14d2+ε), k > (
2

ε
+ 1)d,

for some constant ε > 0, then u is not a deep hole.

Using Weil’s character sum estimate and Li-Wan’s new sieve [11] for distinct
coordinates counting, Zhu and Wan [21] showed the following result:

Theorem 5. [21] Let r � 1 be an integer. For any received word u ∈ Fq
q, r �

deg(u)− k � q − 1− k, there are positive constants c1 and c2 such that if

d < c1q
1/2, (

d+ r

2
+ 1) log2(q) < k < c2q,

then d(u,RSq(Fq, k)) � q − k − r.

The deep hole problem for Reed-Solomon codes is also closely related to the
famous MDS conjecture in coding theory. On one hand, GRS codes are MDS
codes. On the other hand, it is known that all long enough MDS codes are essen-
tially GRS codes. Following the notation of [14], let Nmin(k, q) be the minimal
integer, if any, such that every [n, k] MDS code over Fq with n > Nmin(k, q) is
GRS and be q + 2 if no such integer exists. For the case of k = 3, Segre [15]
obtained the following result:

Theorem 6. [15] If q is odd, every [n, 3] MDS code over Fq with q−
√
q − 7

4
<

n � q + 1 is GRS.

When q = p is a prime, Voloch [18] obtained the following result:

Theorem 7. [18] If p is an odd prime number, every [n, 3] MDS code over Fp

with p− p

45
+ 2 < n � p+ 1 is GRS.

Further, there is a relation for Nmin(k + 1, q) and Nmin(k, q) [14] as follows:

Lemma 1. [14] For 3 � k � q − 2, we have

Nmin(k + 1, q) � Nmin(k, q) + 1.

Ball [2] showed the following result:

Theorem 8. [2] Let S be a set of vectors of the vector space Fk
q , with the prop-

erty that every subset of S of size k is a basis. If |S| = q + 1 and k � p or
3 � q − p + 1 � k � q − 2, where p is the characteristic of Fq, then S is
equivalent to the following set:

{(1, α, α2, . . . , αk−1) | α ∈ Fq} ∪ {(0, . . . , 0, 1)}.
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1.2 Our Result

In this paper, we classify the deep holes in many cases. Firstly, we show:

Theorem 9. Let p > 2 be a prime number, k � p−1
2 , D = {α1, α2, . . . , αn} with

k < n � p. The only deep holes of RSp(D, k) are generated by functions which
are equivalent to the following:

f(x) = xk, fδ(x) =
1

x− δ
,

where δ ∈ Fp \D. Here two functions f(x) and g(x) are equivalent if and only
if there exists a ∈ F∗p and h(x) ∈ Fp[x] with degree less than k such that

g(x) = af(x) + h(x).

Our techniques are built on the idea of deep hole trees, and several results
concerning the Erdös-Heilbronn conjecture. We also show the following theorem
based on some results of finite geometry.

Theorem 10. Given a finite filed Fq with characteristic p > 2, we have

– If k + 1 � p or 3 � q − p+ 1 � k + 1 � q − 2, then Conjecture 1 is true.

– If 3 � k <

√
q + 1

4
, then Conjecture 2 is true.

– If 3 � k <
p

45
, where q = p is prime, then Conjecture 2 is true.

This paper is organized as follows: Section 2 presents some preliminaries; Section
3 describes the idea of the deep hole tree; Section 4 demonstrates the proof of
Theorem 9.

2 Preliminaries

2.1 A Criterion for Deep Holes of Linear MDS Codes

By definition, deep holes of a linear code are words that has a maximum distance
to the code. In the case of linear MDS codes, there is another way to characterize
the deep hole as follows, which connects the concept of deep holes with the MDS
codes. The following is well known:

Proposition 2. Let Fq be a finite field with characteristic p. Suppose G is a
generator matrix for RSq(D, k) with covering radius ρ = |D| − k = n− k, then
u ∈ Fn

q is a deep hole of RSq(D, k) if and only if

G′ =

[
G
u

]
generates another linear maximum distance separable code.
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2.2 Some Additive Combinatorics Results

In this section, we introduce some additive combinatorics results that we will
use later. The first theorem is about the estimation of the size of restricted sum
sets, which is first proved by Dias da Silva and Hamidoune [16]. Then Alon etc.
[1] gave a simple proof using the polynomial method.

Theorem 11. [16,1] Let F be a field with characteristic p and n be a positive
integer. Then for any finite subset S ⊂ F we have

|n∧S| � min{p, n|S| − n2 + 1},

where n∧S denotes the set of all sums of n distinct elements of S.

Brakemeier [3] and Gallardo etc. [7] established the following theorem:

Theorem 12. [3,7] Let n be a positive integer and S ⊂ Z/nZ. If |S| > n
2 + 1,

then
2∧S = Z/nZ,

where 2∧S denotes the set of all sums of 2 distinct elements of S.

Hence we have the following corollary:

Corollary 1. Let Fp be a prime finite field, S ⊂ F∗p. If |S| > p+1
2 , then each

element of F∗p is the product of two distinct elements of S.

3 Construction of the Deep Hole Tree

Let Fq = {α1, α2, · · · , αq = 0}. The polynomials in Fq[x] of degree less than q
forms a Fq-linear space, with a basis

{1, x, . . . , xk−1,

k∏
i=1

(x− αi), . . . ,

q−1∏
i=1

(x− αi)}.

Given a polynomial f(x) ∈ Fq[x] with degree q − 1 we have

f(x) = l(x) + c1

k∏
i=1

(x− αi) + · · ·+ cq−k

q−1∏
i=1

(x− αi),

where l(x) is of degree less than k, we want to determine when f(x) generates
a deep hole of RSq(Fq, k). By Proposition 2, f(x) generates a deep hole if and
only if

G′ =

[
G
u

]
generates an MDS code, where G is the generator matrix of RSq(Fq, k), and
u = (f(α1), . . . , f(αq)).
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Observe that the function, which generates a deep hole for RSq(D2, k), also
generates a deep hole for RSq(D1, k) if D1 ⊂ D2. Instead of considering the
deep holes for RSq(Fq, k) at the first step, we propose to consider a smaller
evaluation set at the beginning and make it increase gradually. To be more
precise, firstly we determine c1 over D1 = {α1, . . . , αk+1}, then we determine c2
over D2 = {α1, . . . , αk+2} based on the knowledge of c1, so on and so forth. We
present the result as a tree, which we will call a deep hole tree in the sequel.

Remark 1. Wu and Hong [19] showed that if D = Fq \{β1, . . . , βl} then fβi(x) =
1

x−βi
generates a deep hole for RSq(D, k), where 1 � i � l. We can also deduce

this from Proposition 2. For convenience, we will call these deep holes and deep
holes generated by a function of degree k expected deep holes.

Motivated by Remark 1, firstly we construct the expected deep hole tree as
follows:

– The root node is 1 without loss of generality, i.e., c1 = 1.
– There are p−k−1 branches of the tree, each with distinct length in [2, p−k].

And we designate the sequence of nodes in a branch with length l as bl.
• If l = p− k, then bp−k = (0, . . . , 0).
• If 2 � l � p−k−1, then bl = (c1, . . . , cl), where f = 1

x−αl+1
is equivalent

to c1
∏k

i=1(x− αi) + · · ·+ cl
∏k+l−1

i=1 (x− αi).

Proposition 3. The expected deep hole tree is a part of the full deep hole tree.

Proof. This follows from Remark 1.

Now we can construct the full deep hole tree based on the expected deep hole
tree.

– The root node is 1 without loss of generality, i.e., c1 = 1.
– The children {ci+1} of a node ci, 1 � i � q−k−1 are defined as follows: given

the ancestors (c1, . . . , ci), for γ ∈ Fq, if γ is the child of ci in the expected
deep hole tree, then keep it; otherwise, if

c1

k∏
i=1

(x− αi) + · · ·+ ci

k+i−1∏
i=1

(x− αi) + γ

k+i∏
i=1

(x − αi)

satisfies the property of the function which generates a deep hole as in Propo-
sition 2, then γ is a child of ci.

That is, we keep the nodes of the expected deep hole tree and add additional
ones if necessary. Now we illustrate the procedure to construct the deep hole
tree by one example.

Example 1. Let p = 7, k = 2. The evaluation set is ordered such that αi =
i, 1 � i � 7.

(1) The expected deep hole tree is as follows:
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1

1 4

4

5

6

6

0

0

0

0

The root is corresponding to the evaluation set D1 = {1, 2, 3}. The expected

deep holes are generated by functions equivalent to
∏2

i=1(x− i). In depth 2, the
evaluation set is D2 = {1, 2, 3, 4}. One of the expected deep holes is generated

by the function
∏2

i=1(x− i) +
∏3

i=1(x− i), which is equivalent to f5 = 1
x−5 . In

depth 3, the evaluation set is D3 = {1, 2, 3, 4, 5}. One of the expected deep holes

is generated by the function
∏2

i=1(x− i) + 4
∏3

i=1(x− i) + 4
∏4

i=1(x− i), which
is equivalent to f6 = 1

x−6 . In depth 4, the evaluation set is D4 = {1, 2, 3, 4, 5, 6}.
One of the expected deep holes is generated by the function

∏2
i=1(x − i) +

5
∏3

i=1(x− i) + 6
∏4

i=1(x− i) + 6
∏5

i=1(x− i), which is equivalent to f0 = 1
x . In

depth 5, the evaluation set is D5 = {1, 2, 3, 4, 5, 6, 7}. One of the expected deep

holes is generated by the function
∏2

i=1(x − i).
(2) The full deep hole tree is as follows:

1

1

3 6

4

4

5

1 3 6

6

0

0

0

0

Note that there are more nodes here than the expected ones. For example, in
depth 3, there is an additional deep hole generated by the function

∏2
i=1(x −

i)+
∏3

i=1(x− i)+3
∏4

i=1(x− i). Also, there is an additional deep hole generated

by the function
∏2

i=1(x − i) + 5
∏3

i=1(x − i) +
∏4

i=1(x− i).
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4 Proof of Theorem 9

The basic idea of the proof of Theorem 9 is reducing the problem to some additive
number theory problems. We first present several lemmas.

Lemma 2. In depth d = 2, the nodes are the same in both the expected deep
hole tree and full deep hole tree.

Lemma 3. Let p be an odd prime, k � p−1
2 , d � 2 be a positive integer and

Dd = {α1, . . . , αk+d} ⊂ Fp, δ ∈ Fp \Dd. For any γ ∈ Fp, there exists a subset
{β1, . . . , βk} ⊂ Dd such that the matrix

A =

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...

βk−1
1 · · · βk−1

k δk−1

1
β1−δ · · ·

1
βk−δ γ

⎤⎥⎥⎥⎥⎥⎦
is singular.

Lemma 4. Let p be an odd prime, k � p−1
2 , d � 2 be a positive integer and

Dd+1 = {α1, . . . , αk+d+1 = δ} ⊂ Fp. For any δ′ ∈ Fp, δ
′ /∈ Dd+1, γ ∈ Fp, γ �=

1
δ−δ′ , there exists a subset {β1, . . . , βk} ⊂ Dd+1 \ {δ} such that the matrix

B =

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...

βk−1
1 · · · βk−1

k δk−1

1
β1−δ′ · · ·

1
βk−δ′ γ

⎤⎥⎥⎥⎥⎥⎦
is singular.

Now we prove Theorem 9.

Proof. (of Theorem 9) Proceed by induction on the depth of the full deep hole
tree.
Basis case This follows from Lemma 2.
Inductive step We need to show that if the set of nodes of the full deep hole
tree coincide with the nodes of the expected deep hole tree in the same depth
d � 2, then there are no additional nodes in depth d + 1 except the expected
ones. Denote the corresponding evaluation set by Dd = {α1, . . . , αk+d} in depth
d and Dd+1 = {α1, . . . , αk+d, αk+d+1 = δ} in depth d+1. In order to show there
are no new nodes in depth d+ 1, There are two cases to consider.
Case 1: We need to show the branch, which is corresponding to the function
f = 1

x−δ , will not continue in the depth d+1. It suffices to show that there exists
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a subset {β1, . . . , βk} ⊂ {α1, . . . , αk+d} such that for any γ ∈ Fp and matrix

A =

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...

βk−1
1 · · · βk−1

k δk−1

1
β1−δ · · ·

1
βk−δ γ

⎤⎥⎥⎥⎥⎥⎦ ,

we have det(A) = 0. This follows from Lemma 3.
Case 2:We need to show that the branch, which is corresponding to the function
f = 1

x−δ′ , where δ
′ /∈ Dk+1, has only one child in depth k+1. It suffices to show

that there exists a subset {β1, . . . , βk} ⊂ Dd such that for any δ′ /∈ Dd+1, γ ∈
Fp, γ �= 1

δ−δ′ and matrix

B =

⎡⎢⎢⎢⎢⎢⎣
1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...

βk−1
1 · · · βk−1

k δk−1

1
β1−δ′ · · ·

1
βk−δ′ γ

⎤⎥⎥⎥⎥⎥⎦ ,

we have det(B) = 0. This follows from Lemma 4.
From the principle of induction, the theorem is proved.

5 Concluding Remarks

In this paper, we classify deep holes completely for Generalized Reed-Solomon
codes RSp(D, k), where p is a prime, |D| > k � p−1

2 . We suspect that a similar
result hold over finite fields of composite order, and leave it as an open problem.

Acknowledgement. The authors would like to thank the anonymous referees
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Abstract We study the graph isomorphism problem for graph classes
defined by sets of forbidden subgraphs. We show that there is a com-
plexity dichotomy in case the set of forbidden subgraphs is finite. More
precisely, we show that the problem is polynomial-time solvable if the
forbidden set contains a forest of subdivided stars and is graph isomor-
phism complete otherwise. We also show that, assuming that the graph
isomorphism problem is not polynomial-time solvable in general, there is
no such dichotomy for the cases of infinite sets of forbidden subgraphs.
To this end, we conditionally show that there exists a graph class closed
under taking subgraphs with intermediate isomorphism problem, i.e., a
class on which the isomorphism problem is neither polynomial-time solv-
able nor graph isomorphism complete.

1 Introduction

The graph isomorphism problem is the algorithmic task to decide whether two
given graphs are isomorphic, i.e., whether there exists a bijection from the ver-
tices of one graph to the vertices of the other graph preserving adjacency and
non-adjacency. Although the problem is in NP, up to this point it is neither
known whether the problem is polynomial-time solvable nor whether it is NP-
hard. We refer the reader to [1,7,13] for introductions to the diverse complexity-
theoretic results related the isomorphism problem.

In this paper, we are interested in the complexity of the isomorphism prob-
lem on graph classes characterized by sets of forbidden (not necessarily induced)
subgraphs. These graph classes are exactly the classes closed under taking sub-
graphs, or, in other words, graph classes closed under vertex and edge deletion.

Related Work. There has been extensive study of the isomorphism problem on
graph classes. Ponomarenko [12] showed that the graph isomorphism problem
can be solved in polynomial time on any non-trivial, minor-closed class. In other
words, graph isomorphism is polynomial-time solvable on any graph class charac-
terized by a non-empty set of forbidden minors. In his monograph, Grohe (see [4])

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 111–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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showed that for every such graph class, a sufficiently high-dimensional Weisfeiler-
Lehman algorithm correctly decides isomorphism. Recently, Grohe and Marx [5]
developed a structure theory for graphs characterized by forbidden topological
minors. They use this theory to show that the graph isomorphism problem can
be solved in polynomial time on any graph class defined by a non-empty set of
forbidden topological minors.

All of the results mentioned above are concerned with graph classes that are
closed under taking subgraphs. Hereditary graph classes, which are graph classes
closed under taking induced subgraphs, do not always have this property. Ex-
amples of such classes are several forms of intersection graphs, for which various
results exists. For interval graphs for example, isomorphism can be solved in
polynomial time [10]. More generally, for various intersection models, isomor-
phism completeness or polynomial-time solvability is known, while for others
the complexity remains open (see [3,6,14] for pointers).

For graph classes characterized by one forbidden induced subgraph, Colbourn
and Colbourn (see [2, §4.7]) show the following dichotomy: if the forbidden graph
is an induced subgraph of P4, the path on four vertices, then the problem is
polynomial-time solvable; otherwise it is GI-complete. Not as much is known
for two or more forbidden induced subgraphs. In [8] the complexity of certain
classes characterized by two forbidden induced subgraphs is analyzed, where the
situation already appears to be more complex.

Our Results. We show that there is a dichotomy for the graph isomorphism
problem on graph classes characterized by a finite set of forbidden subgraphs,
and that there is no such dichotomy for graph classes characterized by an infinite
set of forbidden subgraphs. More precisely, we first show that the problem is
polynomial-time solvable if the forbidden set contains a forest of subdivided
stars and is GI-complete for any other finite set of forbidden subgraphs. We
then show that, assuming the graph isomorphism problem is not in P, there
is a graph class defined by an infinite set of forbidden subgraphs for which
the problem is neither GI-complete nor in P. Since classes closed under taking
subgraphs are in particular closed under taking induced subgraphs, this also
proves the conditional existence of intermediate hereditary graph classes.

2 Preliminaries

In this paper we consider exclusively finite graphs. Let G be a graph. By NG(v)
we denote the neighborhood of a vertex v in G. By the contraction of an edge e =
{v, w} ∈ E(G), we obtain the graph with the vertex set V (G) ∪ {ue} \ {v, w}
and the edge set E(G)∪{{ue, x} | x ∈ NG(v)∪NG(w)} \ (Ev ∪Ew), where ue is
a new vertex and Ev and Ew are the edges incident to v and w, respectively. By
the vertex dissolution of a degree-2 vertex v with the two neighbors u and w, we
obtain the graph with the vertex set V (G)\{v} and the edge set E(G)∪{u,w}\
{{u, v}, {v, w}}. By the definitions, if v has degree 2, then edge contraction
of {v, w} is equivalent to the vertex dissolution of v, up to isomorphism.
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A graph H is an induced subgraph of G if H can be obtained from G by
a sequence of vertex deletions. If H is obtained by additionally deleting edges
then H is a subgraph of G. A graph H is a topological minor of G if H can
be obtained from a subgraph of G by a sequence of vertex dissolutions. If we
use edge contractions instead of vertex dissolutions, then H is a minor of G. A
graph G contains a graph H as an induced subgraph (a subgraph, a topological
minor, a minor) if an induced subgraph (a subgraph, a topological minor, a
minor, respectively) of G is isomorphic to H .

For a set of graphsH, the H-minor-free graphs form the class of all the graphs
that contain no graph in H as a minor. If H = {H}, then we write H-minor-
free graphs. Similarly, we define H-topological-minor-free graphs, H-subgraph-
free graphs, and H-induced-subgraph-free graphs. From the definitions, it fol-
lows directly that H-minor-free graphs ⊆ H-topological-minor-free graphs ⊆ H-
subgraph-free graphs ⊆ H-induced-subgraph-free graphs for any set of graphs H.

The edge subdivision on an edge replaces the edge with a path of length 2,
making an edge subdivision the reverse operation of a vertex dissolution. A graph
is a subdivision of a graph H if it can be obtained from H by a sequence of edge
subdivisions. With this notation, we see that G contains H as a topological
minor if an only if a subgraph of G is isomorphic to a subdivision of H .

A star is a graph isomorphic to the complete bipartite graph K1,s for some
positive integer s. A subdivided star is a subdivision of a star. Note that any
subdivision of a subdivided star is also a subdivided star. Since any subdivided
star is a tree, we call the disjoint union of subdivided stars a forest of subdivided
stars.

3 A Dichotomy for Finite Sets of Forbidden Subgraphs

In this section we present a complexity dichotomy of the graph isomorphism
problem for H-subgraph-free graphs when H is finite. In this dichotomy, the
presence of a forest of subdivided stars is the deciding factor. This is due to the
following property of these graphs.

Lemma 1. Let H be a forest of subdivided stars. A graph G contains H as a
subgraph if and only if it contains H as a topological minor.

Proof. The “only-if” part follows since every subgraph is also a topological minor.
We now prove the “if” part. Observe that every graph obtained by subdividing
an edge in H is isomorphic to a graph obtained from H by adding a new vertex
adjacent to a vertex that was previously a leaf. From this observation, we see
that any subdivision ofH is isomorphic to the graph obtained by attaching paths
of suitable lengths to leaves. Consequently, every subdivision of H contains H as
a subgraph. Therefore, if G contains a subgraph H ′ isomorphic to a subdivision
of H , then this subgraph H ′, and thus also G, contain a subgraph isomorphic
to H . 	


Using the lemma, we obtain our complexity dichotomy.
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Theorem 1. If H is a finite family of graphs, then the graph isomorphism prob-
lem for H-subgraph-free graphs is

1. polynomial-time solvable if H contains a forest of subdivided stars, and
2. GI-complete otherwise.

Proof. (1) Let H ∈ H be a forest of subdivided stars. By Lemma 1, all H-
free graphs are H-topological-minor-free. Therefore, by a result of Grohe and
Marx [5], isomorphism of H-free graphs can be decided in polynomial time.

(2) Suppose now that no graph in H is a forest of subdivided stars. This
implies that each H ∈ H contains a component with either a cycle or a path
between two vertices of degree at least 3. Let �H be the maximum length among
those cycles and paths in H , and let �H = max{�H | H ∈ H}. Note that �H
is a fixed constant since H is a fixed finite set. Now let G be the class of all
graphs and let G′ be the class of the graphs obtained from each graph in G by
subdividing each edge �H times. In each graph in G′, all cycles and all paths
connecting vertices of degree at least 3 have lengths more than �H . Thus there
is no graph in G′ that contains a graph in H as a subgraph. Observe that two
graphs are isomorphic if and only if the graphs obtained by subdividing each
edge �H times are isomorphic (see [2]). Hence the isomorphism problem is GI-
complete for graphs in G′. 	


Using the same arguments as in the proof, we can show that the property of
forests of subdivided stars proven in Lemma 1 in fact characterize them.

Corollary 1. Forests of subdivided stars are exactly the graphs H that satisfy
the following property: For every graph G, the graph G contains H as a subgraph
if and only if it contains G as a topological minor of G.

Proof. Assuming first that H is a forest of subdivided stars, the claim of the
corollary follows from Lemma 1.

We thus assume that H is not a forest of subdivided stars. As in the proof
of the previous theorem let �H be the maximum length among all cycles and
paths connecting vertices of degree at least 3 in H . Let G be the graph obtained
from H by subdividing every edge �H times. By construction G contains H as
a topological minor, but it does not contain H as a subgraph since G does not
contain cycles or paths connecting vertices of degree at least 3 of length �H . 	


4 Isomorphism on Graph Classes, Isomorphism-
Completeness and Reduction Types

To prove the existence of an intermediate graph class we need to clarify several
definitions that are typically used slightly vaguely. In other situations, for exam-
ple in the results of the previous section, the nuances of the various definitions
make no difference to the argumentation or the conclusion. However, a priori, in
our next section they might.
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Given an algorithm A that halts within polynomial time with output Yes
or No, we can consider the input pairs of labeled graphs (G,H) for which the
algorithm correctly decides isomorphism. We say algorithm A decides isomor-
phism for a graph class C if for all G,H,∈ C and all labeled versions G�, H�

the algorithm correctly decides isomorphism of (G�, H�). Note that we require
that A always halts within polynomial time, independent of the input graphs
being in C. This is no restriction since we can always alter an algorithm to halt in
polynomial time, for example by using a yardstick that keeps track of execution
time (see [11]).

In our context, a many-one reduction R is a polynomial time algorithm
that transforms every pair of labeled graphs (G�, H�) to some pair of labeled
graphs (G′�

′
, H ′�

′
). We define Red(R) to be the set of pairs of labeled graphs

that are the output of the algorithm for some input pair of labeled graphs.
The set of unlabeled graphs that appear in some labeled version in Red(R) is
graph isomorphism complete. We emphasize that the definition slightly differs
from other commonly used definitions, which define a decision problem to be
graph isomorphism complete if it is polynomially equivalent to graph isomor-
phism (see [2]). The difference is that we do not specify what the outcome of the
algorithm has to be when one of the input graphs is not within the graph class.
This difference becomes irrelevant if the graph class is recognizable in polyno-
mial time, a property we do not know to be true for the intermediate graph
class constructed in the next section. On a related note we remark that, while
for many graph classes recognition algorithms and isomorphism were developed
simultaneously, is it not clear that for arbitrary graph classes the two problems
are related in a complexity sense.

The conditional existence of an intermediate graph class proven in the next
section also holds for Turing reductions. For those, Red(R) has to be defined
as the set of graphs that appear in some oracle call. The proof of the theorem
remains the same. Note that there is no consensus what reduction type should
be used in the isomorphism context (see [2]).

Concerning encodings of graphs as bit strings, we will not further specify how
exactly labeled graphs are to be encoded. For concreteness we can assume they
are given as an adjacency matrix. However, recalling that the reasonable preva-
lent graph encodings are polynomial-time equivalent, which specific encoding is
used is irrelevant for us.

Whatever the specific combination of variants of the definitions may be, a
central conclusion common to all of them is that if a graph class is isomorphism
complete and graph isomorphism is not polynomial-time solvable then the iso-
morphism problem on the graph class is also not polynomial-time solvable.

5 An Intermediate Graph Class

Considering infinite sets of forbidden subgraphs, in this section we prove the exis-
tence of an intermediate graph class, assuming the general isomorphism problem
is not polynomial-time solvable. The idea of the proof follows Ladner’s [9] strat-
egy to prove the existence of an NP-intermediate problem (see also [11]). There
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are some differences though. On the one hand, simplifying our task, we are not
concerned with the recognition problem of the intermediate graph class being
in NP. On the other hand however, we have to deal with the fact that the sought-
after graph class contains unlabeled graphs, while isomorphism algorithms work
on pairs of labeled graphs.

Theorem 2. If graph isomorphism is not solvable in polynomial time then there
exists a graph class closed under taking subgraphs on which the isomorphism
problem is intermediate, that is, it is neither polynomial-time solvable nor graph
isomorphism complete.

Proof. We assume that graph isomorphism is not solvable in polynomial time
and construct a graph class C that is intermediate. Let A1, A2, . . . be a list of
all isomorphism algorithms that have a polynomial bound on their running time
and always output Yes or No. Let R1, R2, . . . be a list of polynomial-time graph
isomorphism reductions. Since they comprise subclasses of all algorithms, both
the list of algorithms and the list of reductions are countable.

We construct the class C by alternatingly adding graphs to C and forbidding
a set of graphs that are not to be added to C. To this end, we construct sets of
graphs C0,D0, C1,D1, . . . , such that C =

⋃
i∈N Ci, the sets Ci are all finite, and

the forbidden graphs collected in the sets Di have bounded girth but are not
forests.

The sets C0 and D0 are both the empty set. We explain the first step of
the construction for C1 and D1 and then the inductive construction in general.
Since we assume graph isomorphism is not polynomial-time solvable, there is
a pair of labeled graphs (G�

1, H
�
1) that cannot be distinguished by A1. We add

the unlabeled graphs G1 and H1 to the graph class which we are in the process
of constructing. Since our final class C is supposed to be closed under taking
subgraphs, we also add all subgraphs of G1 and H1 to C. Thus, if we denote
by Sub(G) the class of (not necessarily proper) subgraphs of a graph G then we
define C1 = Sub(G1) ∪ Sub(H1).

Since graph isomorphism is not polynomial-time solvable and since isomor-
phism of forests is polynomial-time solvable, the set Red(R1) (i.e., the set of
graph pairs to which R1 reduces to) contains infinitely many non-forest pairs.
In particular it contains a pair of graphs (G′�1 , H ′�1 ) both not in C1 such that nei-
ther G′1 nor H ′1 is a forest. We want to forbid all supergraphs of G′1 and H ′1 to be
added to our final set C. To prevent this, we add all supergraphs of G′1 and H ′1
to D1. We thus set D1 = Sup(G′1) ∪ Sup(H ′1), where for a graph G, Sup(G)
denotes the class of all (not necessarily proper) supergraphs of G.

Inductively we proceed as follows: For i ∈ N, given a finite set of graphs Ci that
must be included in C and a set of graphs Di of non-forests of bounded girth that
are forbidden to be included in C, we obtain Ci+1 from Ci and Di as follows: Since
for any k, the set of graphs of girth at least k is graph isomorphism complete,
there is a pair of graphs (G�

i+1, H
�
i+1) not in Di that cannot be distinguished by

the algorithm Ai+1. We add Gi+1 and Hi+1 and all their subgraphs to Ci, i.e.,
we define Ci+1 = Ci ∪ Sub(Gi) ∪ Sub(Hi). Next we obtain Di+1 from Di and Ci
as follows: Consider the set Red(Ri+1) to which Ri+1 reduces to. Since Ci+1 is
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finite, there is a pair (G′�i+1, H
′�
i+1) in Red(Ri+1), such that neither G′i+1 norH ′i+1

is in Ci+1. As before, since isomorphism of forests is polynomial-time solvable
we can require that neither G′i+1 nor H ′i+1 is a forest. We set Di+1 = Di ∪
Sup(G′i+1) ∪ Sup(H ′i+1).

We define C =
⋃

i∈N Ci. We claim that C is an intermediate class. To argue
this we define D =

⋃
i∈NDi. By construction Ci and Di are disjoint. Likewise Di

and Ci+1 are disjoint. Therefore C and D are disjoint. If isomorphism for graphs
in C were polynomial-time solvable then there would be an algorithm Aj solving
all graphs in C. However, C contains Cj which contains Gj and Hj and isomor-
phism of the pair (G�

j , H
�
j ) is not correctly decided by algorithm Aj (for some

labeling of the graphs). It remains to argue that the class C is not isomorphism
complete. If this were the case, there would be a reduction Rj such that all
unlabeled versions of graphs in Red(Rj) are contained in C. However, by con-
struction the graphs G′j and H ′j are in Dj . In particular they are not contained
in C but (G′�j , H ′�j ) is in Red(Rj). This shows that C is intermediate. Since all Ci
are closed under taking subgraphs, C is closed under taking subgraphs. 	


For the construction in the proof it is essential that the girth among all super-
graphs of a non-forest is bounded. Another way of stating this is that we can find
an infinite anti-chain of graphs with respect to the subgraph relation by exploit-
ing the girth. This explains why our construction will not work to construct an
intermediate minor closed graph class. Furthermore, the proof requires that the
class that does not contain any graph in Di is graph isomorphism complete. This
prevents us for example from applying the construction to obtain an intermediate
graph class closed under topological minors. Of course the conditional existence
of such intermediate graph classes closed under topological minors would imply
that the assumption that graph isomorphism is not polynomial-time solvable
is false.
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Abstract. Let F be a field of characteristic �= 2. The determinantal
complexity of a polynomial P ∈ F[x1, . . . , xn] is defined as the smallest
size of a matrix M whose entries are linear polynomials of xi’s over F,
such that P = det(M) as polynomials in F[x1, . . . , xn]. To determine
the determinantal complexity of the permanent polynomial is a long-
standing open problem.
Let K be an extension field of F; then P can be viewed as a polynomial

over K. We are interested in the comparison between the determinantal
complexity of P over K (denoted as dcK(P )), and that of P over F (de-
noted as dcF(P )). It is clear that dcK(P ) ≤ dcF(P ), and the question
is whether strict inequality can happen. In this note we consider poly-
nomials defined over Q. For P = x2

1 + · · · + x2
n, there exists a constant

multiplicative gap between dcR(P ) and dcC(P ): we prove dcR(P ) ≥ n
while �n/2	 + 1 ≥ dcC(P ). We also consider additive constant gaps: (1)
there exists a quadratic polynomial Q ∈ Q[x, y], such that dcQ(Q) = 3
and dcQ(Q) = 2; (2) there exists a cubic polynomial C ∈ Q[x, y] with a
rational zero, such that dcQ(C) = 4 and dcQ(C) = 3. For additive con-
stant gaps, geometric criteria are presented to decide when dcQ = dcQ.

1 Introduction

Let F be a field of characteristic �= 2. In algebraic complexity theory, a polynomial
P (x1, . . . , xn) ∈ F[x1, . . . , xn] is expressible as a determinant of size s if there ex-
ists a matrixM = (Li,j)i,j∈[s] where Li,j ’s are affine forms (linear polynomials) in
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F[x1, . . . , xn], such that P (x1, . . . , xn) ≡ det(M) as polynomials in F[x1, . . . , xn].
A family of polynomials P = {Pn(x1, . . . , xt(n)) | n ∈ N, Pn ∈ F[x1, . . . , xt(n)]},
where t(n) is a polynomial in n, is explicit1 if: (1) deg(Pn) is polynomial in n; (2)
the coefficient of a monomial in Pn can be computed in time polynomial in n.
The question of interest is to study, for an explicit polynomial family {Pn}n∈N,
the smallest s(n) such that Pn can be expressed as determinant of size s(n). s(n)
is called the determinantal complexity of Pn. The well-known permanent versus
determinant conjecture proposed by Valiant [14], is that for permanent polyno-
mials, asymptotically s(n) is exp(ω(log2 n)). (Recall that the characteristic of F
is not 2.) The best lower bound up-to-date is Ω(n2) by [5, 11]. For an almost
up-to-date survey on this problem, cf. Agrawal’s survey [1].

Let K be an extension field of F. Then a polynomial P over F can also be
viewed as a polynomial over K. It is natural to ask whether the determinantal
complexity of P over F and that of P over K are the same. Let dcK(P ) be
the determinantal complexity of P over K; similarly we have dcF(P ). Clearly,
dcK(P ) ≤ dcF(P ). The question is whether strict inequality can happen.

Broadly, how the underlying field affects the complexity in an algebraic com-
puting model is a classical question that dates back to Strassen [12]; Bürgisser [2,
Section 4.1] and Hrubes̆ and Yehudayoff [9] also contribute to the understanding
of this problem. We survey their results in Section 1.2. However, none of the
works mentioned provide concrete examples showing field extensions do reduce
complexity. A lack of concrete examples may be explained as follows: to exhibit
a gap between dcK and dcF where K is an extension field of F, one needs a lower
bound on dcF. Then the lower bound technique for permanent in [4,15], and the
one in [5, 11] apply to fields (of a specific characteristic �= 2) in a uniform way,
presumably not appropriate for such a separation.

1.1 Our Results

In this note we make a first and modest step to show the separation of deter-
minantal complexities due to field extensions. We consider polynomials defined
over Q (rational polynomials), and the goal is to understand how much the de-
terminantal complexity can be reduced by allowing field extensions (from R to
C, or from Q to the algebraic number field Q). We will use rational (algebraic,
real, complex. . . ) determinantal expressions whose meaning is self-explaining.

Our first result is a constant (≈ 2) multiplicative gap between dcC(P ) and
dcR(P ) for P = x21+· · ·+x2n ∈ Q[x1, . . . , xn]: it is easy to see dcC(P ) ≤ �n/2�+1.
On the other hand we prove

Theorem 1. dcR(x
2
1 + · · ·+ x2n) ≥ n.

We also consider additive constant gaps. The reason to still record these results
(in light of the constant multiplicative gap) is because in these cases, we are able
to obtain exact geometric conditions on whether the polynomial has a (relatively)
small expression over Q (cf. Proposition 2 and Theorem 7 for the description

1 See [8] for details on this concept, in particular its relation with Valiant’s VNP class.
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of these conditions). The latter criterion (Theorem 7) is actually due to L. E.
Dickson from 1920’s. In the following Theorem 2 (2), over Q, the dcQ(C) > 3
lower bound is due to Dickson [6, Sec. 4] and is rather involved. We complement
his result by providing an upper bound 4.

Theorem 2. 1. There exists quadratic Q(x, y) ∈ Q[x, y] s.t. dcQ(Q) = 3 and
dcQ(Q) = 2.

2. There exists cubic C(x, y) ∈ Q[x, y] with a rational zero, s.t. dcQ(C) = 4
and dcQ(C) = 3.

As mentioned, the interesting aspect of Theorem 2 is the connection with geom-
etry: the criteria of having small rational expressions are closely related to alge-
braic geometry and algebraic curves. In Theorem 2 (1), for a bivariate quadratic
polynomial Q, it turns out that modulo a certain degenerate case, Q has a ra-
tional expression of size 2 if and only if it has a zero with rational coordinates
(a rational zero). In Theorem 2 (2), for a bivariate cubic polynomial C with
a rational zero, Dickson presents a beautiful geometric criterion for whether
dcQ(C) > 3 (cf. Theorem 7).

1.2 Previous Works and Some Discussion

The works addressing this issue in algebraic complexity are by Strassen ( [12],
cf. [2, Sec. 4.1] and [3, Sec. 4.3]), Bürgisser [2] and Hrubes̆ and Yehudayoff [9].
Coincidentally, the authors sometimes come up with identical results indepen-
dently (cf. e.g. [2, Prop 4.1 (iii)] and a part of [9, Theorem 4.2]), while the focuses
can be different. In [3] the main results are concerned with when the extension
fields do not reduce the complexity, under the name “autarky.” In [2] the focus
is on how field extensions affect Valiant’s hypothesis. In [9], besides many other
results, the authors also considered noncommutative extensions. The focus of
the present work, is to provide concrete examples showing that the gaps indeed
happen in the determinantal expression model.

In particular lettingLF(P ) be the complexity of a polynomialP ∈ Q[x1, . . . , xn]
over an extension field F in general arithmetic circuits, Bürgisser asked whether
LQ(Perm) = nω(1) implies LQ(Perm) = nω(1), and posed this as an open prob-
lem [2, Problem 4.1]. It is also natural to pose this problem in the context of de-
terminantal expressions.

Problem 1. For P (x1, . . . , xn) ∈ Q[x1, . . . , xn], whether dcQ(P ) = nω(1) implies
dcQ(P ) = nω(1).

Two results in these works are of particular interest, namely (1) extensions
of an algebraically closed field do not help (via Nullstellensatz, an observation
by Strassen, cf. [2, Prop. 4.1 (i)]), and (2) for circuit complexity, going from
an algebraic extension of degree d to the base field increases the complexity
by a multiplicative factor O(d3) (cf. [2, Prop 4.1 (iii)] and [9, Theorem 4.2]).
The first result applies to determinantal complexity. The latter result can also
be adapted to determinantal expressions (with a slightly larger overhead) as
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follows: suppose K is an algebraic extension of F of degree d. First we convert
the optimal determinantal expression over K of size s, to a skew circuit [10,
13]. Then apply the construction as in [2, Prop 4.1 (iii)] and [9, Theorem 4.2]
to get another skew circuit over F; the construction there preserves the skew
circuit property with a little more care. Finally we convert back to determinantal
expression, which is of size O(d3s4) by the conversions between skew circuits
and determinantal expressions. This suggests the following natural strategy to
tackle Problem 1 (and Bürgisser’s problem). Given an optimal determinantal
expression det(A1x1+ · · ·+Anxn+A0) of size s over Q computing a polynomial
P (x1, . . . , xn) ∈ Q[x1, . . . , xn], consider the extension field K of Q by adjoining
the algebraic numbers in Ai, i ∈ {0, 1, . . . , n}. If the extension degree d of K
over Q was bounded by poly(n, s), then dcQ(P ) = O(d3s4) = poly(n, dcQ(P )),
showing a polynomial relation between dcQ and dcQ. However, to the best of
our knowledge such a bound on the extension degree is not known.

Dickson contributed to some important statements in this note, in [6,7] from
more than 90 years ago. In fact, the results in [6, 7] are beyond the ones cited
here. Motivated by geometric considerations and Diophantine analysis, he was
able to determine all the (n, d) pairs, such that a general degree-d homogeneous
polynomial in n variable can be expressed as determinantal expressions of size
d with linear forms. For cubic homogeneous polynomials in 3 and 4 variables
with at least one rational zeros, he could give out criteria to determine whether
one such polynomial is expressible rationally of size 3. The 3-variate case is just
the dcQ(C) > 3 part in Theorem 2, while the 4-variate case involves spectacular
calculation that spans over 18 pages.

In [11, Sec. 2], Mignon and Ressayre considered determinantal complexity of a
homogeneous polynomial P over algebraically closed fields, when (1) the number
of variables is ≤ 3; (2) deg(P ) = 2. These are just the cases treated here, but
our focus is on the comparison with over non-algebraically closed fields.
Organization. We prove Theorem 1 in Section 3, showing a constant multiplica-
tive gap. Section 4, 5 and 6 are devoted to prove Theorem 2, focusing on providing
geometric/algabraic criteria for having small rational expressions.

2 Preliminaries

For n ∈ N, [n] denotes {1, . . . , n}. For a field F, F denotes the algebraic closure
of F. Let K be another field; K/F means that K is an extension field of F. For
S ⊆ K, F(S) denotes the smallest extension field of F that contains S, called the
field generated by S over F. Recall that α ∈ K is algebraic over F if there exists
P (x) ∈ F[x] such that P (α) = 0; α is transcendental otherwise. A field extension
K/F is algebraic if every α ∈ K is algebraic over F; it is transcendental otherwise.
Let P (x) ∈ F[x]; P is homogenous if all monomials in it are of the same degree
d. If P is not homogenous, then it can be homogenized by adding a fresh variable
x0 not in x, and padding each monomial to degree d. The resulting homogeneous
polynomial in F[x0,x] is denoted as P . For K/Q, an affine transformation T over
K consists of M ∈ GL(n,K) and v ∈ Kn; for a ∈ Qn, T (a) = Ma + v. T is
rational if it is over Q. A projective transformation over K is M ∈ GL(n,K).
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Observation 3. it For P (x) ∈ F[x] of degree d, P (x) is expressible of size d if
and only if P (x0,x) is expressible of size d.

Observation 4. itLet T be a rational affine transformation. P (x) ∈ Q[x] has a
rational expression of size s if and only if P (T (x)) has a rational expression of
size s.

Fact 5. anx
n + an−1x

n−1 + · · · + a1x + a0 = det

⎛⎜⎜⎜⎜⎜⎝
1 anx
−x 1 an−1x

. . . . . .
...

. . . 1 a2x
−x a1x+ a0

⎞⎟⎟⎟⎟⎟⎠ ,

where empty entries are 0.

3 The Constant Multiplicative Gap

For P = x21 + · · · + x2n ∈ Q[x1, . . . , xn], we exhibit an expression over C of size
n/2+ 1 for even n. (This follows easily by the observation that P has a formula
(x1+ ix2)(x1− ix2)+ · · ·+(xn−1+ ixn)(xn−1− ixn), where i =

√
−1, and utilize

the reduction from formulas to determinantal expression as in [2, Proposition
2.30].) The odd n case follows by considering n+ 1.

P (x1, x2, . . . , xn) = det

⎛⎜⎜⎜⎜⎜⎝
0 x1 + ix2 x3 + ix4 · · · xn−1 + ixn

−(x1 − ix2) 1 0 · · · 0
−(x3 − ix4) 0 1 · · · 0

...
. . .

. . .
. . .

...
−(xn−1 − ixn) 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ .

We now show dcR(P ) ≥ n. First a lemma is required; recall that a linear form
is a linear polynomial with constant term vanishing.

Lemma 1. For j ∈ [n], let fj(x1, x2, · · · , xn) ∈ R[x1, . . . , xn] be a linear form,
and gj(x1, x2, · · · , xn) ∈ R[x1, . . . , xn]. If

∑n
i=1 x

2
i =

∑m
j=1 fjgj , then m ≥ n.

Proof. We prove this lemma by induction. It is trivial when n = 1. Now suppose
it is true for n = k − 1, and we know that

k∑
i=1

x2i =

m∑
j=1

fj(x1, x2, · · · , xk)gj(x1, x2, · · · , xk).

Without loss of generality, assume that f1(x1, x2, · · · , xn) =
∑k

i=1 aixi is nonzero
and a1 �= 0. Setting x1 = −(

∑
i>1 aixi)/a1 := h(x2, x3, · · · , xk), f1(x1, · · · , xk) =

0, and

h2(x2, x3, · · · , xk) +
k∑

i=2

x2i =
m∑
j=2

fj(h, x2, · · · , xk)gj(h, x2, · · · , xk).
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Note that h2(x2, x3, · · · , xk) +
∑k

i=2 x
2
i is a quadratic form in x2, · · · , xk with

real coefficients, and it is positive definite. By positive definiteness, there ex-
ist B = (bij) ∈ R(k−1)×(k−1), i, j ∈ {2, . . . , k}, B nonsingular, s.t. by set-

ting xi = �i(y2, . . . , yk) :=
∑k

j=2 bijyj where yj ’s are new variables, we have

h2(x2, x3, · · · , xk) +
∑k

i=2 x
2
i =

∑k
j=2 y

2
i . This gives

k∑
j=2

y2i =

m∑
j>1

fj(h(�2, �3, · · · , �k), �2, · · · , �k)gj(h(�2, �3, · · · , �k), �2, · · · , �k).

Note that for j > 1, fj(h(�2, �3, · · · , �k), �2, · · · , �k) = uj(y2, y3 · · · , yk) is a linear
form in y2, y3 · · · , yk with real coefficients, and gj(h(�2, �3, · · · , �k), �2, · · · , �k) is
a polynomial of (y2, y3 · · · , yk) with real coefficients. By the induction hypothe-
sis, m− 1 ≥ k − 1, that is m ≥ n. This completes the proof.

Theorem 1, restated. dcR(x
2
1 + · · ·+ x2n) ≥ n.

Proof. Suppose there exist real m × m matrices A1, · · · , An and B such that∑n
i=1 x

2
i = det(

∑n
i=1 xiAi + B). First, we note that det(B) = 0. Then there

exist real non-singular matrices P and Q such B = PDQ where D is a diagonal
matrix with the elements of the first row being 0. Therefore

x21 + · · ·+ x2n = det(

n∑
i=1

xiAi +B) = det(PQ) det(

n∑
i=1

xiP
−1AiQ

−1 +D).

The rest part of the proof is to expand det(
∑n

i=1 xiP
−1AiQ

−1 +D) along the
first row and invoke the previous lemma.

4 Bivariate Quadratic Polynomials

In this section we prove Theorem 2 (1), by showing the following: let Q be a
quadratic polynomial in Q[x, y].

1. (Upper bound, Section 4.1) Q(x, y) is expressible algebraically of size 2, and
rationally of size 3.

2. (Lower bound, Section 4.2) There exists a quadratic Q(x, y) s.t. dcQ(Q) > 2.

4.1 Expressibility

We set up some notations first. The target is the polynomial

Q(x, y) = ax2 + by2 + cxy + dx+ ey + f ∈ Q[x, y]. (1)

A useful representation of Q(x, y) is

Q(x, y) = (ax + cy + d)x+ (by2 + ey + f). (2)

Note that Q(x, y) can be expressed as det

(
L1 −R1

R2 L2

)
where Li, Ri are affine

forms if and only if Q(x, y) = L1L2 + R1R2. Thus by Equation 2, if b = 0 or
f = 0, by2 + ey + f is a product of two affine forms in Q[x, y], which shows:
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Observation 6. it If a = 0 or b = 0 or f = 0, then Q(x, y) can be expressed
rationally of size 2.

Proposition 1. Q(x, y) is expressible algebraically of size 2, and rationally of
size 3.

Proof. By Observation 6 we can assume that a, b, f are nonzero. Consider by2+
ey + f as in Equation 2, where b �= 0. Let r1, r2 in Q be the two roots of
y2 + (e/b)y + (f/b), then Equation 2 can be written as (ax + cy + d)x + (by −
br1)(y − r2), which gives an algebraic expression of size 2.

We construct a size-3 rational expression for Q(x, y). One construction is as
follows.

ax2 + by2 + cxy + dx+ ey + f = det

⎛⎝ 1 0 ax+ c
2y

0 1 c
2x+ by

−x −y dx+ ey + f

⎞⎠ . (3)

Here’s another construction for c �= 0; let t = d
c −

ea
c2 .

ax2 + by2 + cxy + dx+ ey + f = det

⎛⎝ 1 0 y
by cx+ e (−1)(f − et)
−1 1 a

cx+ t

⎞⎠ . (4)

Then, if c = 0, an appropriate affine transformation (like x → x + y) can be
performed to make it nonzero.

4.2 Inexpressibility

We present the existence of bivariate quadratic polynomials with dcQ > 2. Two
proofs will be given: the first one (Claim 4.2) is from the algebraic perspective,
while the other (Proposition 2) gives a geometric criterion of whether a size-2
rational expression exists. The reason to present both proofs is that they rep-
resent two approaches for this problem respectively: on one hand, by algebraic
manipulations, the problem would reduce to the rational solvability of another
polynomial (usually with higher degree). On the other hand, clean geometric
criterion may exist. For a more complicated example of the algebraic approach,
cf. [6, pp. 114, Theorem]; Theorem 7, proved also by Dickson, is a more compli-
cated example of the geometric criterion. For a concrete example, x2 + y2 +1 is
not expressible rationally of size 2.

Algebraic Approach. We first recall a classical representation of Q(x, y) =
ax2 + by2 + cxy + dx+ ey + f ∈ Q[x, y]. Let z = (x, y, 1)T , then Q(x, y) can be

written as zTAz where A is

⎛⎝ a c/2 d/2
c/2 b e/2
d/2 e/2 f

⎞⎠. While in fact, any matrix A(u, v, w)

of the form

⎛⎝ a u v
c− u b w
d− v e− w f

⎞⎠, where u, v, w are formal variables that can serve

to designate Q(x, y).
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Claim. Q(x, y) has a size-2 rational expression if and only if det(A(u, v, w)) =
0 ∈ Q[u, v, w] has a rational solution.

Proof. (⇐): Suppose thatQ(x, y) = L1L2+R1R2, where Li(x, y) = �i1x+�i2y+
�i3 and Ri(x, y) = ri1x + ri2y + ri3, Li, Ri ∈ Q[x, y]. Denote li = (�i1, �i2, �i3)
and ri = (ri1, ri2, ri3). Write L1L2 = (zT · l1)(lT2 · z) = zT (l1l

T
2 )z, and similarly

we have R1R2 = zT (r1r
T
2 )z. It follows that L1L2 + R1R2 = zT (l1l

T
2 + r1r

T
2 )z.

From the matrix representation of Q(x, y), it must be the case that l1l
T
2 +r1r

T
2 =

A(u, v, w) for certain u, v, w ∈ Q. By the definition of the matrix rank, A(u, v, w)
is singular thus det(A(u, v, w)) = 0 has a rational solution.
(⇒): if det(A(u, v, w)) = 0 has a rational solution (p, q, r), then A(p, q, r) is of
rank ≤ 2 over Q thus can be written as l1l

T
2 + r1r

T
2 where li, ri ∈ Q3.

Geometric Approach. Let us start with an observation. Suppose Q(x, y) is

expressed rationally of size 2 byM =

(
L1 −R1

R2 L2

)
. Let Li = �i1x+�i2y+�i3, and

Ri = ri1x+ ri2y + ri3. Consider the linear system V1 = Z(L1 = 0,−R1 = 0). If(
�11 �12
r11 r12

)
is of full rank, that is, V1 is nonsingular, then there is a rational zero

in V1, which is also a rational zero on Q(x, y). This argument can be applied
similarly to V2 = Z(L1 = 0, R2 = 0), V3 = Z(R2 = 0, L2 = 0) and V4 =
Z(−R1 = 0, L2 = 0). If all of Vi’s are singular, then −R1 = c2L1 + d2, R2 =
c3L1 + d3 and L2 = c4L1 + d4, for ci, di ∈ Q. Thus Q(x, y) can be written as
rL2

1 + sL1 + t, for r, s, t ∈ Q. We define Q(x, y) to be degenerate if it can be
written as such. That is, if P has a size-2 rational expression, then either it has
a rational zero, or it is degenerate. Conversely, if Q(x, y) is degenerate, then
Q(x, y) always has a size-2 rational expression. Also, if Q(x, y) has a rational
zero, then by a rational shift we can eliminate the constant term. Then a size-2
rational expression exists due to Observation 6. We now summarize the above
as the following proposition.

Proposition 2. Q(x, y) can be expressed rationally as size 2, if and only if
either Q(x, y) is degenerate, or Q(x, y) has a rational zero.

In [7], Dickson showed that the homogenized version of P can be expressible
rationally of size 2 if and only if it has a rational point in the projective space.

5 General Bivariate Cubic Polynomials

A bivariate cubic polynomial is:

D(x, y) = ax2+ by2+ cxy+dx+ey+f +gx3+hx2y+ ixy2+ jy3 ∈ Q[x, y], (5)

where at least one of g, h, i, j is nonzero.

Proposition 3. D(x, y) can be expressed rationally of size at most 5.
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Proof. We can assume g �= 0 by performing appropriate rational transforma-
tions. Consider D(x, y) = (gx3+ax2+dx+f)+y(jy2+hx2+ ixy+ cx+ by+e).
By Fact 5 (with some row and column permutations), we have gx3+ax2+dx+f =

det

⎛
⎝−x 0 1
1 −x 0
ax dx+ f gx

⎞
⎠ . Changing Equation 3 slightly, we get jy2+hx2+ ixy+ cx+

by+ e = det

⎛
⎝ 0 −1 y
1 0 −h

g
x

gx ix+ jy cx+ by + e

⎞
⎠ . Merging the above identities carefully, we

get D(x, y) = det

⎛
⎜⎜⎜⎜⎝
0 −y 0 0 1
0 0 0 −1 y
−x 0 1 0 −h

g
x

1 −x 0 0 0
ax dx+ f gx ix+ jy cx+ by + e

⎞
⎟⎟⎟⎟⎠ .

The following proposition is due to Dickson.

Proposition 4 (Dickson, [7]). D(x, y) has an algebraic expression of size 3.

6 Bivariate Cubic Polynomials with a Rational Zero

In this section we prove Theorem 2 (2), by showing the following: let C be a
cubic polynomial in Q[x, y] s.t. C has a rational zero.

1. (Upper bound, Section 6.1) C(x, y) is expressible rationally of size 4;
2. (Lower bound, Dickson [6], Section 6.2) There exists C(x, y) s.t. dcQ(C) > 3.

Recall that by Proposition 4 C(x, y) can be expressed algebraically of size 3.

6.1 Expressibility

Let D be given as in Equation 5. By a rational affine transformation, we can
assume that (0, 0) is a zero on D(x, y). Thus f term can be removed from D and
we get the target polynomial in this section:

C(x, y) = ax2 + by2 + cxy + dx+ ey + gx3 + hx2y + ixy2 + jy3. (6)

By fixing (0, 0) as a zero of C(x, y) we can not perform rational transformations
that violate so.

Claim. C(x, y) has a rational expression of size 4.

Proof. Write C(x, y) as C(x, y) = x(gx2+ax+d)+y(jy2+hx2+ixy+cx+by+e).
We can assume i, j �= 0 by performing a rational affine transformation like x→
x+λy (or y → x+λy), for an appropriate λ ∈ Q. Let t = c

i −
dj
i2 . By Equation 4,

we have jx2 + hy2 + ixy + cx + dy + e = det

⎛⎝ 1 0 y
hy ix+ d (−1)(e− dt)

−1 1 j
ix+ t

⎞⎠ . We
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shall express C(x, y) in the form of

⎛⎜⎜⎝
y � m n
0 1 0 y
x hy ix+ d (−1)(e− dt)

0 −1 1 j
ix+ t

⎞⎟⎟⎠ where �,m, n

are affine forms to be determined. Its determinant evaluates to

y(jx2 + hy2 + ixy + cx+ dy + e)− x · [m(
j

i
x+ t)− n+ y(�+m)].

Thus setting � = −m, m = − ig
j x and n = −[( igtj − a)x − d], we see that

m( jix+ t)− n+ y(�−m) = −(gx2 + ax+ d).

6.2 Dickson’s Inexpressibility Criterion

In this section we describe the geometric criterion of whether or not C has a
rational expression of size 3 by Dickson. He dealt with the homogeneous version
of C; this is legitimate by Observation 3. Homogenizing Equation 6 we get

C(x, y, z) = z2(dx + ey) + z(ax2 + by2 + cxy) + (gx3 + hx2y + ixy2 + jy3).

Note that (0 : 0 : 1) is a zero of C.
We first show that if C is reducible over Q then it is expressibly rationally of

size 3. Suppose C = � ·Q where � and Q are linear and quadratic forms in x, y, z,
respectively. By a projective transformation let �→ y; then C = y ·Q′. If x2 does
not appear in Q, then by Observation 6 Q is expressible rationally of size 2, thus
C is expressible rationally of size 3. Otherwise by a projective transformation on
x we eliminate xy and xz terms to get C = y · (x2 + αy2 + βyz + γz2). Finally

use y(x2 + αy2 + βyz + γz2) = det

⎛⎝ x y 0
−αy − βz x γz

z 0 y

⎞⎠ to conclude.

From now on we shall assume that C is irreducible. Before stating the criterion
for irreducible C we need to recall two concepts for algebraic curves.

Let R ∈ Q[x, y, z] be a homogeneous polynomial of d; it defines a projective

plane curve CR. The Hessian of R is HR(x, y, z) =

⎛
⎜⎝

∂2P
∂x∂x

∂2P
∂x∂y

∂2P
∂x∂z

∂2P
∂y∂x

∂2P
∂y∂y

∂2P
∂y∂z

∂2P
∂z∂x

∂2P
∂z∂y

∂2P
∂z∂z

⎞
⎟⎠ . det(HR)

is a polynomial in Q[x, y, z] with degree 3(d − 2). Then a nonsingular point
(a : b : c) ∈ CR is an inflection point if and only if detHR(a, b, c) = 0. 2 If R is
of degree 3, let O be a nonsingular point on CR but not an inflection point. By
Bézout’s theorem, the tangent at O to CR must intersect CR at a point distinct
from O. This new point is called the tangential of O w.r.t. CR.

Then we can state the theorem by Dickson.

Theorem 7 (Dickson, [6]). Let C be an irreducible homogeneous cubic bivari-
ate polynomial with a rational point O. Then C is expressible rationally of size
3 if and only if

2 Recall that geometrically, a nonsingular point O on a curve C is an inflection point
if the intersection of C and the tangent line to O is of multiplicity ≥ 3.
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– either O is an inflection point, and C has a further rational point not on
y = 0;

– or O is not an inflection point, and there exists a line L, such that: (1) L
is not the tangent to O; (2) L passes the tangential of O w.r.t. C; (3) L
intersects with C at 3 rational points.

Acknowledgement. We would like to thank the anonymous reviewers for help-
ful comments on a preliminary version of this note. In particular, one reviewer
suggested to consider the construction in Section 1.2.
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Abstract. Social networks are often analyzed through a graph model
of the network. The dot product model assumes that two individuals
are connected in the social network if their attributes or opinions are
similar. In the model, a d-dimensional vector av represents the extent to
which individual v has each of a set of d attributes or opinions. Then two
individuals u and v are assumed to be friends, that is, they are connected
in the graph model, if and only if au · av ≥ t, for some fixed, positive
threshold t. The resulting graph is called a d-dot product graph.
We consider two measures for diversity and clustering in social net-

works by using a d-dot product graph model for the network. Diversity
is measured through the size of the largest independent set of the graph,
and clustering is measured through the size of the largest clique. We ob-
tain a tight result for the diversity problem, namely that it is polynomial-
time solvable for d = 2, but NP-complete for d ≥ 3. We show that the
clustering problem is polynomial-time solvable for d = 2. To our knowl-
edge, these results are also the first on the computational complexity of
combinatorial optimization problems on dot product graphs.
We also consider the situation when two individuals are connected if

their preferences are not opposite. This leads to a variant of the standard
dot product graph model by taking the threshold t to be zero. We prove
in this case that the diversity problem is polynomial-time solvable for
any fixed d.

1 Introduction

Social networks are often modeled by a graph in order to use advanced algorith-
mic (or statistical) tools. Indeed, there is a large body of literature on (random)
graph models for social networks (see, for example, the surveys by Newman [23]
and Snijders [32]). Many of these studies verify that a particular model has prop-
erties that have been observed in real-world social networks, such as a power-law
degree distribution or the small-world principle, but do not consider why con-
nections are made in the first place. This has led to the development of models
that do take such reasons into account (a partial overview is in Liben-Nowell and
Kleinberg [21]). For example, the models of Simon [31], Price [26], and Barabási
and Albert [3] famously pose that if you have many friends, you are more likely

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 130–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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to befriend more people. A similar type of engagement was recently considered
from an algorithmic perspective by Bhawalkar et al. [6].

We consider a different predictor for connections in a social network, namely
the degree of similarity of attributes and opinions of different individuals. Gen-
erally, individuals with similar attributes or opinions are more likely to be con-
nected. This is known as the homophily principle and has a long tradition within
sociological research (see, for example, the survey by McPherson et al. [22]). To
model the attributes of an individual u, we can associate them with a vector au,
where an entry aui expresses the extent to which u has an attribute or opin-
ion i [33]. For example, a positive value of aui could indicate that u likes item i,
whereas a negative value suggests that u dislikes item i. We call this a vector
model.

There are many ways to measure similarity using a vector model (see, for ex-
ample, [1,14,19,33]). We will use the dot product as a similarity measure, leading
to the dot product model for social networks. Formally, this model is defined as
follows. Consider a social network that consists of a set V of individuals, together
with a vector model {au | u ∈ V }. Let

sim(u, v) = au · av =
∑d

i=1 a
u
i a

v
i .

If the similarity sim(u, v) is at least some specified threshold t > 0, then we view
the preferences of u and v to be sufficiently close together for u and v to be
connected, that is, to be friends within the network. This immediately implies a
graph G = (V,E), where (u, v) ∈ E if and only if sim(u, v) ≥ t. Such a graph is
called a dot product graph of dimension d, or a d-dot product graph. The vector
model {au | u ∈ V } together with the threshold t is called a d-dot product
representation of G.

The dot product graph as a model for social networks was recently formalized
by Nickel, Scheinerman, Tucker, and Young [24,30,34,35]. Their studies were
motivated by earlier work of Papadimitriou et al. [25] and Caldarelli et al. [7].
However, dot product graphs have a much longer tradition, both in sociology
(see, for example, Breiger [5]) and in graph theory. We briefly survey known
graph-theoretic results. Reiterman et al. [27,28,29] and particularly Fiduccia et
al. [10] proved several structural results. The work of Fiduccia et al. [10] implies
that 1-dot product graphs can be recognized in polynomial time. However, Kang
and Müller [17] showed the problem of deciding whether a graph has dot product
dimension d is NP-hard for all fixed d ≥ 2 (membership of NP is still open).
They also proved that an exponential number of bits is sufficient and can be
necessary to store a d-dot product representation of a dot product graph. There
are several papers that consider the minimum dimension d such that a graph is a
d-dot product graph (the dot product dimension of a graph) [16,20], deriving for
example a tight bound of 4 on the dot product dimension of a planar graph [16].
Finally, dot product graphs share some ideas with low-complexity graphs [2].

In this paper, we consider the complexity of computing advanced structural
measures of social networks through the dot product model. Note that many
standard structural measures, such as the graph diameter and the clustering
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coefficient, are easy to compute. Therefore, we consider two more advanced mea-
sures for diversity and clustering. These are related to classic graph optimization
problems whose computational complexity on dot product graphs was unknown.
In fact, to the best of our knowledge, our work provides the first complexity re-
sults for graph optimization problems on dot product graphs.

First, we consider a measure for diversity, by finding (the size of) a largest
group of individuals in the network that are different-minded, and thus pairwise
disconnected. This corresponds to the well-known Independent Set problem,
which is NP-complete, W[1]-complete, and very hard to approximate on general
graphs [18,9,13], but its complexity on dot product graphs is open. We settle
this by proving that Independent Set is polynomial-time solvable on 2-dot
product graphs, but becomes NP-complete on 3-dot product graphs.

Second, we consider a measure for clustering, by finding (the size of) a largest
group of individuals in the network that are like-minded, and thus pairwise
connected. This corresponds to the well-known Clique problem, which is also
NP-complete, W[1]-complete, and very hard to approximate on general graphs
[18,9,13], but its complexity has not been analyzed on dot product graphs. We
give initial insights into the complexity of this problem and show that it is
polynomial-time solvable on 2-dot product graphs.

To complement these results, we consider two variants of the dot product
model. For the first variant, we model the scenario in which two individuals
are connected if their preferences are not opposite. That is, consider the graph
where two individuals u, v are connected if and only if au ·av ≥ 0. We call such a
graph a d0-dot product graph. Recall that in d-dot product graphs, the threshold
t for connectivity must be greater than zero, and hence the definition of d0-dot
product graphs is different. Moreover, the structure of d0-dot product graphs
is substantially different from that of d-dot product graphs. To illustrate this,
we prove that Independent Set is polynomial-time solvable on d0-dot product
graphs for any fixed d and that Clique is polynomial-time solvable if d ≤ 3.

For the second variant, we model the situation in which two individuals are
connected in the model if their preferences are neither opposite nor orthogonal.
Consider the graph that is obtained when two vertices u, v are adjacent if and
only if au ·av > 0. We call this a d+-dot product graph. It follows from Fiduccia et
al. [10] that the graph class where two vertices are adjacent if and only if au ·av >
t for some t > 0 is equivalent to the class of d-dot product graphs. However, we
prove that the structure of d+-dot product graphs is different from that of d-
dot product graphs and that of d0-dot product graphs. Still, we can show that
Independent Set is polynomial-time solvable on d0-dot product graphs for
any fixed d, as is Clique when d ≤ 3.

We provide an overview of our results in Table 1.

2 Preliminaries

All graphs that we consider are finite, undirected, and have neither loops nor
multiple edges. For undefined graph terminology we refer to Diestel [8].
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Table 1. An overview of our results for the problems Independent Set and Clique

on d-dot product graphs (the first row), d0-dot product graphs (the second row), and
d+-dot product graphs (the third row), respectively, for fixed dimension d.

Setting Independent Set Clique

d-DPG (≥ 1) in P for d ≤ 2 in P for d ≤ 2
NP-complete for d ≥ 3 ? for d ≥ 3

d0-DPG (≥ 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

d+-DPG (> 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

Let G = (V,E) be a graph. We denote the neighbourhood of a vertex u ∈ V
by N(u) = {v | (u, v) ∈ E}. A subset U ⊆ V is independent if no two vertices
in U are joined by an edge, and U is a clique if every two vertices of U are
adjacent. Given U ⊆ V , G[U ] denotes the subgraph of G induced by U , that
is, it has vertex set U and an edge between two vertices of U if and only if G
has an edge between them. The complement of G has vertex set V and an edge
between two distinct vertices if and only if these vertices are not adjacent in G.

A graph is a comparability graph if there exists an assignment of exactly one
direction to each of its edges such that (a, c) is a directed edge whenever (a, b)
and (b, c) are directed edges. The complement of a comparability graph is called
a co-comparability graph. A graph is p-partite if its vertex set can be partitioned
into at most p independent sets. If p = 2, then the graph is called bipartite. The
complement of a p-partite graph is called a co-p-partite graph. Observe that the
vertex set of a co-p-partite graph can be partitioned into at most p cliques. The
complement of a bipartite graph is called co-bipartite.

3 Structure of d-Dot Product Graphs

In this section, we describe some of the structure of d-dot product graphs, which
we need in our algorithms later on. Fiduccia et al. [10, Theorem 20] proved that
1-dot product graphs have at most two nontrivial components, each of which are
threshold graphs. We show that d-dot product graphs, and in particular 2-dot
product graphs, exhibit similar interesting structural properties.

From now we assume that d ≥ 2. The reason for doing this is that our
polynomial-time results on Independent Set and Clique in Section 4 for
the case d = 2 readily carry over to the case d = 1: we can represent a (d− 1)-
dot product graph as a d-dot product graph for all d ≥ 2 by adding a zero entry
to all vectors of any of its (d− 1)-dot product representations.

We call a d-dot product representation of a graph clean if it contains no two
vectors au and av with au = γav for some γ ≥ 0.

Lemma 1. (�)1 Given a d-dot product graph G without isolated vertices and a
d-dot product representation of G, we can compute a clean d-dot product repre-
sentation of G in polynomial time.

1 Proofs marked with a star have been omitted due to page restrictions.
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Throughout the remainder of this section, we assume that we are given a d-
dot product graph G = (V,E) for some d ≥ 2 together with a d-dot product
representation with vectors {au | u ∈ V } and threshold t. For solving Indepen-

dent Set and Clique, we can preprocess G by removing any isolated vertices.
Hence, by Lemma 1, we may assume without loss of generality that the given
representation is clean.

We will use the notation θuv for the angle between au and av, which is the
smaller of the two angles between au and av in the plane defined by au and av.
We assume some fixed direction of rotation so θuv = −θvu.

We say that a vertex u is short if ||au|| ≤
√
t; otherwise, it is long. Note

that we can decide whether u is short in polynomial time by checking whether
||au||2 ≤ t. We first provide two lemmas about short vertices.

Lemma 2. (�) Let v be a short vertex. Then G[N(v)] is co-2d−1-partite.

The lemma shows in particular that G[N(v)] is co-bipartite if d = 2.

Lemma 3. (�) The set of short vertices is an independent set.

We say that a vertex v is between vertices u and w if av can be written as a
nonnegative linear combination of au and aw. In other words, v is between u
and w if av lies in the plane defined by au and aw and av lies within the smaller
of the two angles defined by au and av in this plane.

We now present two lemmas about the neighbourhoods of vertices.

Lemma 4. (�) Let L = {u ∈ V | ‖au‖ >
√
t}. If d = 2, then G[N(v) ∩ L] is a

co-comparability graph for all v ∈ V .

Lemma 5. (�) Let u, v, w ∈ V be such that v is between u and w. If u is
adjacent to w and ‖av‖ ≥ ‖aw‖, then u is adjacent to v.

We also require a result that is implied by Lemma 28 of Fiduccia et al. [10].

Lemma 6. Suppose d = 2. Let u, v, and w be vertices such that v is between u
and w. If u is adjacent to w, and v is adjacent to neither u nor w, then v is short.

4 Diversity and Clustering in Social Networks

In this section, we consider the complexity of computing our two measures of
diversity and clustering in social networks, i.e. Independent Set and Clique,
respectively, on a dot product graph model of the network. We first prove that
Independent Set is polynomial-time solvable if d ≤ 2 and NP-complete if
d ≥ 3. We then prove that Clique is polynomial-time solvable if d ≤ 2.

As before, throughout we have a d-dot product graph G = (V,E) and a clean
d-dot product representation with vectors {au | u ∈ V } and threshold t.

We first consider Independent Set in the case d ≤ 2. Recall that we may
assume without loss of generality that d = 2. Armed with the structural results
of the previous section, we can prove the following theorem.
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Theorem 1. Independent Set is solvable in O(n3) time on 2-dot product
graphs on n vertices.

Proof. Let G be a 2-dot product graph. We describe how to find a maximum
size independent set of G. In fact, we will describe how to find, for each long
vertex u of G, the maximum size independent set of G that contains u. This
is sufficient as the maximum size set of G is either the largest of these sets, or
the set of all short vertices which is also independent by Lemma 3; we use this
latter fact repeatedly in this proof. So let u be a fixed long vertex of G. Let
Gu be the graph obtained by removing all vertices that neighbour u and their
incident edges. If we can find the maximum size independent set of Gu, we will
have found the maximum size independent set of G that contains u.

We define a total (or linear) ordering ≺ of the vertices of Gu by ordering the
vertices by increasing angle of their vector representation from au. Using the
square of the cosine formula, ≺ can be computed in quadratic time using just
dot-products. We wish to relate this ordering to betweenness. Suppose that two
vertices v and w are adjacent in Gu and that θvw is positive. Any vertex between
v and w is, by Lemma 6, either short or adjacent to one of them, and we know
that u is a long vertex with no neighbours. So if x is between v and w, we have
v ≺ x ≺ w. The converse is clearly true, giving us:

Claim 1 : Let v, w, x be vertices in Gu where v and w are adjacent. Then x is
between v and w and θvw is positive if and only if v ≺ x ≺ w.

For a long vertex v in Gu, let J(v) be a largest independent set containing
v in the subgraph of Gu that contains all vertices up to v in the ordering ≺,
and let j(v) = |J(v)|. For a pair of long vertices v and w in Gu with w ≺ v, let
S(w, v) be the set of vertices x such that x is short, w ≺ x ≺ v and x is not
adjacent to either v or w. Let s(w, v) = |S(w, v)|.
Claim 2 : For each pair of non-adjacent long vertices v and w with w ≺ v in Gu,
j(v) ≥ j(w) + s(w, v) + 1.

Proof. Note that the claim will follow if we can show that J(w) ∪ S(w, v) ∪ {v}
is an independent set. All we need to show is that no vertex in S(w, v) ∪ {v} is
adjacent to a vertex in J(w).

Suppose that v is adjacent to a vertex x in J(w). We know v and w are not
adjacent so x �= w and x ≺ w ≺ v. Hence, w is between x and v (by Claim 1), and
the adjacency of x and v implies, by Lemma 6, that w is short; a contradiction.

If a vertex y ∈ S(w, v) is adjacent to any vertex x in J(w), then x �= w by the
definition of S(w, v). But x is adjacent to w using Lemma 5 and noting that w
is long, y is short and w is between x and y. This contradiction proves Claim 2.

Claim 3 : For each long vertex v �= u in Gu, j(v) is the maximum, over all long
vertices w with w ≺ v and v and w non-adjacent, of j(w) + s(w, v) + 1.

Proof. Note that the set of long vertices that precede v includes the isolated
vertex u so the maximum is well-defined, and the previous claim tells us that
j(v) is no less than this maximum. We must show that it is no larger. Let w be the
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long vertex that is last in the ordering amongst all long vertices in J(v)\{v} (as
J(v) contains u we can always find such a vertex). The subset of J(v) containing
only w and preceding vertices is independent and contains at most j(w) vertices.
The only other vertices in J(v) are short vertices between w and v and v itself.
Thus j(v) ≤ j(w) + s(w, v) + 1, and Claim 3 is proved.

Note that j can easily be computed since j(u) = 1, and Claim 3 tells us that if
we consider the vertices in order we can find the remaining values.

For each long vertex v in Gu, let S
+(v) contain each vertex w such that w

is short, v ≺ w and v is not adjacent to w. Let s+(v) = |S+(v)|. Let m be the
maximum, over all long vertices v in Gu, of j(v) + s+(v).

Claim 4 : Let J be a maximum size independent set in Gu. Then |J | = m.

Proof. Let v be a long vertex in Gu. We shall show that J(v) ∪ S+(v) is an
independent set. Let w be a vertex in S+(v) and suppose that x is a vertex in
J(v) adjacent to w. By the definition of S+(v), we have x �= v, so x ≺ v ≺ w. By
Claim 1, v is between x and w and, by Lemma 6, v is either short or adjacent
to x or w. This contradiction shows that J(v)∪S+(v) is an independent set. So
|J | ≥ j(v) + s+(v) for all long vertices v and hence |J | is at least m.

Now let z be the long vertex in J that is latest in the ordering. Let J1 be the
subset of J containing z and preceding vertices. Hence, |J1| ≤ j(z). The vertices
of J \ J1 are short vertices later than z in the ordering, so there are at most
s+(z) of them. Thus |J | ≤ j(z) + s+(z) ≤ m, and Claim 4 is proved.

We omit the details but it is straightforward to show that j and s+, and so
also m, can be computed in O(n2) time. The corresponding sets of vertices, and
thus a maximum size independent set of Gu, can also be found. By repeating for
each u, a maximum size independent set of G is found in time O(n3). 	


We contrast this positive result by the following result.

Theorem 2. (�) For any d ≥ 3, Independent Set is NP-complete on d-dot
product graphs 2.

The structural results of the previous section provide enough structure to solve
Clique in polynomial time on 2-dot product graphs.

Theorem 3. (�) Clique is solvable in O(n4) time on 2-dot product graphs on
n vertices, even if no 2-dot product representation is given.

5 Structure and Complexity for Variants of the Model

In this section, we consider two variants of the dot product graph model, which
model that two individuals are connected if and only if their preferences are not
opposite, or are neither opposite nor orthogonal. In the introduction, we defined
the d0-dot product graph and the d+-dot product graph model for these cases.
Recall that if {au | u ∈ V } is a representation of G = (V,E), then

2 Here the problem input consists of the graph, but not (necessarily) a representation.
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– (u, v) ∈ E if and only if au · av ≥ 0 when G is a d0-dot product graph, and
– (u, v) ∈ E if and only if au · av > 0 when G is a d+-dot product graph.

We study the complexity of computing the diversity and clustering measures
on these models, that is, of Independent Set and Clique, on d0-dot product
graphs and d+-dot product graphs.

Note that vertices of length 0 are adjacent to all other vertices in a d0-dot
product graph and are isolated in a d+-dot product graph, and so do not, in
either case, influence Independent Set or Clique. Hence, without loss of
generality all vectors in this section have non-zero length.

First, we describe the structure of independent sets in d0-dot product graphs.
The following lemma is equivalent to Lemma 18 of Fiduccia et al. [10].

Lemma 7. For all d ≥ 1, every independent set in a d0-dot product graph has
size at most d+ 1.

Independent sets in d+-dot product graphs have a different structure.

Lemma 8. (�) For all d ≥ 1, every independent set in a d+-dot product graph
has size at most 2d.

The proofs of Lemmas 7 and 8 can be turned into constructions to show that
the given bounds are tight. The lemmas show that d0-dot product graphs and
d+-dot product graphs have different structure, which is also different from the
structure of d-dot product graphs. Moreover, using exhaustive enumeration, the
two lemmas immediately imply the following.

Theorem 4. For all d ≥ 1, Independent Set is solvable in O(nd+1) time on
d0-dot product graphs and in O(n2d) time on d+-dot product graphs on n vertices,
even if no representation is given.

We now consider Clique on d0-dot product and d+-dot product graphs. For
d = 2, it suffices to observe that a set of vertices forms a clique if and only if
their corresponding vectors lie in the nonnegative quadrant (after an appropriate
rotation). However, this structural observation does not generalize to higher
dimensions, as is evident from the counterexamples by Gray and Wilson [12]
for d = 3 and d ≥ 5. Instead, we follow a different approach, which leads to a
polynomial-time algorithm for all d ≤ 3.

For any hyperplane h with normal n, let h+ be the half-space {p | p · n ≥ 0}
and let h− be the half-space {p | p · n ≤ 0}. Note that any two vectors a,b
induce a hyperplane with normal a×b, where × is the cross product operation.
We refer to the monograph by Barvinok [4] for any undefined terminology on
cones.

Theorem 5. For all d ≤ 3, Clique can be solved in O(n4.5) time on d0-dot
product graphs and d+-dot product graphs on n vertices.

Proof. We assume that d = 3 (fewer dimensions are a special case). Let G =
(V,E) be a 30-dot product graph or a 3+-dot product graph with representation
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{av | v ∈ V }. We first give a structural result, where we essentially show that
any clique C of G induces a basis such that the vectors of C lie in two octants
with respect to this basis. Then, we give an algorithm that finds this basis for a
maximum clique by guessing limited information about the clique, and uses the
basis to obtain a maximum clique of G.

We start with the structural result. Let C be any clique of G. Let K denote
the conic hull of av for all vertices v ∈ C, that is, K = {

∑
v∈C λva

v | λv ≥ 0}. We
call K the cone corresponding to C. The structural result considers the case that
K is not a ray (a ray is the conic hull of a single vector). Since K is generated
by a finite set, its extreme rays are vectors that correspond to vertices of C. Let
u be any vertex such that au spans an extreme ray of K, and let hu denote the
hyperplane with normal au. Because K is the conic hull of vectors corresponding
to a clique, p ·au ≥ 0 for any p ∈ K (this is true both when G is a 30-dot product
graph or a 3+-dot product graph). Hence, K ⊆ h+u .

Let w be any vertex such that aw spans an extreme ray of K that is not
spanned by u and such that the hyperplane huw induced by au and aw contains
a facet of K. Since huw contains a facet of K, either K ⊆ h+uw or K ⊆ h−uw.
Assume without loss of generality that K ⊆ h+uw, and let t denote the normal
of huw that lies in h+uw. Finally, let w

′ denote the projection of aw onto hu. By
definition, t, au, w′ are pairwise orthogonal. Moreover, as K ⊆ h+u ∩ h+uw and
h+u ∩ h+uw is the union of two octants in the basis induced by t,au,w′, we find
that K is a subset of two octants in the basis induced by t, au, w′.

We use the structural result in an algorithm that consists of two phases.
In the first phase of the algorithm, we ensure that we find a maximum clique

if the cone corresponding to some maximum clique is a ray. Therefore, we iterate
over all v ∈ V (G) and find the setX of vertices u for which au spans the same ray
as av. The setX is a clique irrespective of whether G is a 30-dot product graph or
a 3+-dot product graph. We keep a maximum clique found over all choices of v.

In the second phase of the algorithm, we ensure that we find a maximum
clique if the cone corresponding to some maximum clique is not a ray. Iterate
over all n2 ordered pairs (u,w) of the vertices of G such that au and aw do not
span the same ray. Define hu as the plane with normal au, and define huw as the
plane induced by au and aw . Consider h+u ∩h+uw (we also consider h+u ∩h−uw in a
similar way). Let t denote the normal of huw that lies in h+uw and let w′ denote
the projection of aw onto hw. Note that h+u ∩ h+uw is the union of two octants in
the basis induced by t, au, w′. As any octant induces a clique, h+u ∩h+uw induces
a co-bipartite graph H . We can find H in linear time as the graph induced by
the vertices whose corresponding vectors have positive or strictly positive dot
product with both au and t. Since H is co-bipartite, we can find a maximum
clique of H in O(n2.5) time, as it reduces to finding a maximum matching in a
bipartite graph, which takes O(n2.5) time [15]. We then keep a maximum clique
over all choices of u,w. The output of the algorithm is a largest of the two cliques
kept in the first and second phase.

The algorithm runs in O(n4.5) time, as claimed. To see correctness, let C be
a maximum clique. If the cone corresponding to C is a ray, then the algorithm
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considers C in the first phase. If the cone corresponding to C is not a ray, then
by our structural result there will be a choice of u,w for which u,w ∈ C and
huw contains a facet of K, where K is the cone corresponding to C. 	


6 Conclusions

This paper provided the first study of algorithms that measure diversity and
clustering in social networks that are modeled as dot product graphs. The diver-
sity and clustering measures considered correspond to Independent Set and
Clique on dot product graphs.

Our exploration of the complexity of Clique on d-dot product graphs leaves
further open problems. The current approach for d = 2 does not seem to extend
to d-dot product graphs for d ≥ 3, as our structural results (Lemma 2 for exam-
ple) seem to indicate that we need to solve clique on co-p-partite graphs for p ≥ 3.
However, this problem is NP-complete, as Independent Set is NP-complete on
2-subdivisions of planar graphs [11]. Hence, further structural insight into d-dot
product graphs is needed to resolve the complexity of Clique on these graphs.

We observe that our polynomial-time algorithms for Independent Set and
Clique on 2-dot product graphs generalize well-known polynomial-time algo-
rithms for these problems on interval graphs, because interval graphs have a
2-dot product representation [10, Theorem 21]. At the same time, we are un-
aware of any nontrivial superclasses of 2-dot product graphs, in particular for
which Independent Set and Clique are polynomial-time solvable. Finally,
we note that the dot product graph model of social networks might be able to
capture more problems for social networks as graph optimization problems.
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Abstract. For a graph G, let Z(G, λ) be the partition function of the
monomer-dimer system defined by

∑
k mk(G)λ

k, where mk(G) is the
number of matchings of size k in G. We consider graphs of bounded
degree and develop a sublinear-time algorithm for estimating logZ(G, λ)
at an arbitrary value λ > 0 within additive error εn with high probability.
The query complexity of our algorithm does not depend on the size of G
and is polynomial in 1/ε, and we also provide a lower bound quadratic
in 1/ε for this problem. This is the first analysis of a sublinear-time
approximation algorithm for a #P -complete problem. Our approach is
based on the correlation decay of the Gibbs distribution associated with
Z(G, λ). We show that our algorithm approximates the probability for
a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results
to approximate the average size and the entropy of such a matching
within an additive error with high probability, where again the query
complexity is polynomial in 1/ε and the lower bound is quadratic in
1/ε. Our algorithms are simple to implement and of practical use when
dealing with massive datasets. Our results extend to other systems where
the correlation decay is known to hold as for the independent set problem
up to the critical activity.

1 Introduction

The area of sublinear-time algorithms is an emerging area of computer science
which has its root in the study of massive data sets [6,24]. Internet, social net-
works or communication networks are typical examples of graphs with poten-
tially millions of vertices representing agents, and edges representing possible
interactions among those agents. In this paper, we present sublinear-time algo-
rithms for graph problems. We are concerned more with problems of counting
and statistical inference and less with optimization. For example, in a mobile
call graphs, phone calls can be represented as a matching of the graph where
each edge has an activity associated to the intensity of the interactions between
the pair of users. Given such a graphs, with local activities on edges, we would
like to answer questions like: what is the size of a typical matching? for a given
user what is the probability of being matched? As another example, models of
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statistical physics have been proposed to model social interactions. In particular,
spin systems are a general framework for modeling nearest-neighbor interactions
on graphs. In this setting, the activity associated to each edge allows to model
a perturbed best-response dynamics [2]. Again in this setting, it is interesting
to compute estimations for the number of agents playing a given strategy or the
probability for an agent in the graph to play a given strategy at equilibrium.

There are now quite a few results on sublinear-time approximation algorithms
for graph optimization problems: minimum spanning tree weight [5], minimum
set cover [21], maximum matching [21,32] and minimum vertex cover [21,22,23].
There are also a couple of works on sublinear-time algorithms for statistical
and counting problems, e.g., approximating the average degree of a graph [7,11]
and approximating the number of occurrences of a certain structure (such as
a star) in a graph [12]. Our focus in this paper is on the algorithmic problems
arising in statistical physics and classical combinatorics [30]. We now present the
monomer-dimer problem which will be the main focus of our paper.

Let G = (V,E) be an undirected graph with |V | = n vertices and |E| = m
edges, where we allow G to contain parallel edges and self-loops. We denote by
N(G, v) the set of neighbors of v in G. We consider bounded degree graphs with
maxv |N(G, v)| ≤ Δ. In a monomer-dimer system, the vertices are covered by
non-overlapping arrangement of monomers (molecules occupying one vertex of
G) and dimers (molecules occupying two adjacent vertices of G) [13]. It is con-
venient to identify monomer-dimer arrangements with matchings; a matching in
G is a subset M ⊂ E such that no two edges in M share an endpoint. Thus,
a matching of cardinality |M | = k corresponds exactly to a monomer-dimer ar-
rangement with k dimers and n−2k monomers. Let M be the set of matchings of
G. To each matching M , a weight λ|M| is assigned, where λ > 0 is called the ac-
tivity. The partition function of the system is defined by Z(G, λ) =

∑
M∈M λ

|M|,
and the Gibbs distribution on the space M is defined by πG,λ(M) = λ|M|

Z(G,λ) . The
function Z(G, λ) is also of combinatorial interest and called the matching poly-
nomial in this context [19]. For example, Z(G, 1) enumerates all matchings in
G. From an algorithmic viewpoint, no feasible method is known for computing
Z(G, λ) exactly for general monomer-dimes system; indeed, for any fixed value of
λ > 0, the problem of computing Z(G, λ) exactly in a graph of bounded degreeΔ
is complete for the class #P of enumeration problems, whenΔ ≥ 5 (see [28]). The
focus on computing Z(G, λ) shifted to finding approximate solutions in polyno-
mial time. For example, the Markov Chain Monte Carlo (MCMC) method yields
a provably efficient algorithm for finding an approximate solution. Based on the
equivalence between the counting problem (computing Z(G, λ)) and the sam-
pling problem (according to πG,λ) [16], this approach focuses on rapidly mixing
Markov chains to obtain appropriate random samples. A Fully Polynomial-time
Randomized Approximation Scheme (FPRAS) for computing the total number
of matchings based on MCMC was provided by Jerrum and Sinclair [14,25].

Another related problem in the monomer-dimer system is the average size of a
matching sampled according to πG,λ, defined by E(G, λ) =

∑
M∈M |M | πG,λ(M).

Sinclair and Srivastava recently proved in [27] that for any fixed value of λ > 0,
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the problem of computing E(G, λ) exactly in a bounded degree graph (allowing
parallel edges) is #P-hard, for any maximum degree Δ ≥ 5. Thus again we are
interested in finding approximate solutions to this problem.

In order to study sublinear-time approximation algorithms for these prob-
lems, we use the approach based on the concept of correlation decay originating
in statistical physics [20] and which has been used to get a deterministic approx-
imation scheme for counting matchings in polynomial time [1]. It follows already
from [13] that the marginals of the probability distribution πG,λ are local in
nature: the local structure of the graph around a vertex v allows to compute
an approximation of the corresponding marginal. In the computer science liter-
ature, this property follows from the so-called correlation decay property. Our
algorithm is then simple to understand: we need only to sample a fixed number
of vertices, approximate the marginals associated to these vertices locally and
then from these values output an estimate for the desired quantity. The corre-
lation decay property also holds for other systems such as the independent set
problem [29], the coloring problem [9], and the two-state spin system [17,18,26].
In the full version of the paper, we extend our technique to the independent set
problem. We believe that similar extensions can be done for other systems as
soon as the correlation decay property holds.

A graph G is represented by two kinds of oracles D and N such that D(v)
returns the degree of v ∈ V and N (v, i) returns the ith (with 1 ≤ i ≤ D(v))
neighbor of v ∈ V . The efficiency of an algorithm is measured by its query
complexity, i.e. the total number of accesses to D and N . Let VAL denote a real
value associated with the graph. We say that V̂AL is an ε-approximation of VAL
if V̂AL− ε ≤ VAL ≤ V̂AL+ ε, where ε > 0 is specified as an input parameter. An
algorithm is called an ε-approximation algorithm for VAL if for any graph G, it
computes an ε-approximation of VAL with high probability (e.g., at least 2

3 ). In
our model, we consider the case of constant maximum degree Δ as ε tends to
zero, i.e., we always first take the limit as ε→ 0 and then the limit Δ→∞.

Our main contribution (Theorem 5) is an εn-approximation algorithm for
logZ(G, λ) in a graph G of bounded degree Δ. The query complexity of the
algorithm is Õ

(
(1/ε)Õ(

√
Δ)
)
, which does not depend on the size of the graph.

From the relation between the partition function and the matching statistics, we
then obtain εn-approximation algorithms for the average size of a matching and
the entropy of πG,λ with the same query complexity as before. We also provide
the Ω(1/ε2) query lower bound for εn-approximation algorithms for logZ(G, λ)
and the other two problems.

The main tool of the above algorithms is the approximation of the marginal
pG,λ(v), which is the probability that the vertex v is not covered by a matching
under the Gibbs distribution. We estimate pG,λ(v) for an arbitrary vertex v ∈ V
within an error of ε > 0 with near-optimal query complexity Õ

(
(1/ε)Õ(

√
Δ)
)
.

The rest of the paper is organized as follows. In Section 2, we prove our first
main result concerning local computations for matchings. Based on this result,
we construct an εn-approximation algorithm for the partition function Z(G, λ)



144 M. Lelarge and H. Zhou

in Section 3 and εn-approximation algorithms for the average size of a matching
and the entropy of πG,λ in Section 4. We also provide query lower bounds in
these two sections. In Section 5, we give some applications of our technique for
approximating the permanent of constant degree expander graphs and the size of
a maximum matching (in this last case, our algorithm is outperformed by [32]).
In the full version of the paper, we also show the efficiency of our algorithms by
testing on large real-world networks.

2 Local Computations for Matchings

Recall that we defined for all λ > 0, the Gibbs distribution on matchings of a
graph G by:

∀M ∈ M, πG,λ(M) =
λ|M|

Z(G, λ)
where Z(G, λ) =

∑
M∈M

λ|M|.

The focus in this section is on the approximation of the probability that a vertex
v ∈ V is not coverd by a matching:

pG,λ(v) :=
∑
M �v

πG,λ(M),

where M � v is a matching not covering v.
First notice that

pG,λ(v) =
Z(G\{v}, λ)
Z(G, λ)

, (1)

where G\{v} is the graph obtained from G by removing the vertex v and all
incident edges. Then we have

Z(G, λ) = Z(G\{v}, λ) + λ
∑

u∈N(G,v)

Z(G\{u, v}, λ),

so that dividing by Z(G\{v}, λ), we get

pG,λ(v) =
1

1 + λ
∑

u∈N(G,v) pG\{v},λ(u)
. (2)

This recursive expression for pG,λ(v) is well-known and allows to compute the
marginal pG,λ(v) exactly for each v ∈ V . We follow the approach of Godsil [10].
First, we recall the notion of path-tree associated with a rooted graph: if G is
any rooted graph with root v0, we define its path-tree TG(v0) as the rooted tree
whose vertex-set consists of all finite simple paths starting at the root v0; whose
edges are the pairs {P, P ′} of the form P = v0 . . . vk, P ′ = v0 . . . vkvk+1(k ≥ 0);
and whose root is the single-vertex path v0. By a finite simple path, we mean here
a finite sequence of distinct vertices v0 . . . vk (k ≥ 0) such that vivi+1 ∈ E for
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all 0 ≤ i < k. Note that the notion of path-tree is similar to the more standard
notion of computation tree, the main difference being that for any finite graph
G, the path-tree is always finite (although its size might be much larger than
the size of the original graph G).

For every node u in the path-tree TG(v), define Ch(u) to be the set of chil-
dren of u in TG(v). The recursion (2) easily implies pG,λ(v) = pTG(v),λ(v) and
pTG(v),λ(v) = xv(v), where the vector x(v) = (xu(v), u ∈ TG(v)) solves the
recursion:

∀u ∈ TG(v), xu(v) =
1

1 + λ
∑

w∈Ch(u) xw(v)
(3)

(by convention a sum over the empty set is zero).
In order to approximate pG,λ(v), we will show that it suffices to solve the

recursion (3) restricted to a truncated path-tree of TG(v). For any h ≥ 1, let
T h
G(v) be the path-tree truncated at depth h and let xh(v) = (xhu(v), u ∈ T h

G(v))
be the solution of the recursion (3) when the path-tree is replaced by the trun-
cated version T h

G(v). Clearly xhv (v) = pG,λ(v) for any h ≥ n and the following
lemma gives a quantitative estimate on how large h needs to be in order to get
an ε-approximation of pG,λ(v).

Lemma 1. There exists h(ε,Δ) such that | log xhv (v) − log pG,λ(v)| ≤ ε for any
h ≥ h(ε,Δ). Moreover h(ε,Δ) = Õ

(√
Δ log(1/ε)

)
and satisfies

lim
Δ→∞

1√
Δ

lim
ε→0

h(ε,Δ)

log(1/ε)
=
√
λ.

Proof. Theorem 3.2 in [1] proves that:

| log xhv (v)− log pG,λ(v)| ≤
(
1− 2√

1 + λΔ+ 1

)h/2

log(1 + λΔ). (4)

The lemma then follows directly by taking h(ε,Δ) to be the h such that the
right-hand side equals ε. 	


We now present the algorithmic implication of Lemma 1. We start with a simple
remark. The exact value for h(ε,Δ) follows from the proof of the lemma, how-
ever this value will not be required in what follows as shown by the following

argument: the fact that (z1, . . . , zΔ) !→
(
1 + λ

∑Δ
i=1 zi

)−1

is strictly decreasing
in each positive variable zi implies (by a simple induction) that for any k ≥ 0,
we have

x2k+1
v (v) ≤ x2k+3

v (v) ≤ pG,λ(v) ≤ x2k+2
v (v) ≤ x2kv (v). (5)

Consider an algorithm that computes xhv (v) for increasing values of h and stops at
the first time two consecutive outputs are such that | log xh+1

v (v)−log xhv (v)| ≤ ε.
By Lemma 1, it takes at most h(ε,Δ) iterations and the last output will be an
ε-approximation of log pG,λ(v).
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The algorithm Approx-Marginal(λ, ε, v) provides an estimate of pG,λ(v),
based on the Depth-First-Search (DFS) on the truncated path-tree rooted at
v. In the algorithm DFS(λ, h, s, �), integer h is the truncated level of the path
tree TG(v); s ∈ V is the current node in the graph G visiting by the DFS; and
path maintains an array of nodes in G which form the path from v to s during
the DFS. This path also corresponds to a node in the path-tree T h

G(v) and let
� be the length of path. The algorithm DFS(λ, h, s, �) computes recursively the
marginal probability of path in T h

G(v). Recall that D(v) returns the degree of
v ∈ V and N (v, i) returns the ith (with 1 ≤ i ≤ D(v)) neighbor of v ∈ V .

Approx-Marginal(λ, ε, v)
1 x[1]← DFS(λ, 1, 1, v)
2 x[2]← DFS(λ, 1, 2, v)
3 h← 2
4 while | log x[h]− log x[h− 1]| > ε/e
5 do h← h+ 1
6 x[h]← DFS(λ, h, v, 1)
7 return x[h]

DFS(λ, h, s, �)
1 if � = h
2 then return 1
3 A← 1, path[�]← s
4 for i← 1 to D(s)
5 do t← N (s, i)
6 if ∀j ∈ [1, �], t �= path[j]
7 then A← A+DFS(λ, h, t, �+ 1)
8 return 1/(λA)

Proposition 2. The algorithm Approx-Marginal(λ, ε, v) gives an estimate p̂
of pG,λ(v), such that |p̂− pG,λ(v)| and | log p̂− log pG,λ(v)| are both smaller than
ε. Its query complexity is Q(ε,Δ) = Õ

(
(1/ε)Õ(

√
Δ)
)
. In addition, Q = Q(ε,Δ)

satisfies

lim
Δ→∞

1√
Δ logΔ

lim
ε→0

logQ

log(1/ε)
=
√
λ. (6)

Proof. Let h be the final truncated level of the path-tree TG(v) in the algo-
rithm. We have p̂ = xhv (v) and | log xhv (v) − log xh−1

v (v)| < ε/e. Thus | log p̂ −
log pG,λ(v)| < ε/e by Inequality (5). Since pG,λ(v) and p̂ are at most 1, we then
have |p̂− pG,λ(v)| < ε. The number of nodes visited by the algorithm is O

(
Δh

)
,

so the number of queries is also O
(
Δh

)
. The proposition follows by applying the

upper bound h(ε,Δ) on h from Lemma 1. 	


Remark. In Section 3, we need to estimate the marginal probability at the node
v in the graph Gv = {u ∈ V | u " v} instead of the graph G, where # is some
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total order over V . To achieve this, we only need to add an additional constraint
t " v to line 6 of the DFS algorithm. Denote Approx-Marginal

∗(λ, ε, v) to be
the modified version of Approx-Marginal(λ, ε, v) with the underlying graph
Gv. Again, Proposition 2 holds for the algorithm Approx-Marginal

∗(λ, ε, v)
by replacing G by Gv.

The next propostion shows that there exists someQ(ε,Δ), such thatQ = Q(ε,Δ)
satisfies Equation (6) and that Q(ε,Δ) is a query lower bound for computing an
ε-approximation of pG,λ(v). This implies that Algorithm Approx-Marginal is
optimal when the influence of ε is much larger than that of Δ. The idea of the
lower bound proof is to construct two instances of almost full Δ-ary trees whose
marginal probabilities at the root differ by more than ε, while any approximation
algorithm using a small number of queries cannot distinguish them. See the full
version of the paper for a detailed proof of this proposition.

Proposition 3. In order to approximate the marginal pG,λ(v) within an addi-
tive error ε, any deterministic or randomized algorithm1 requires Ω (Q(ε,Δ))
queries where Q = Q(ε,Δ) satisfies Equation (6).

Remark. As noted in the introduction, the model with λe (e ∈ E) varying
across the edges is of practical interest (allowing to model various intensities
on edges). As soon as there exists λmax such that for all e ∈ E, we have λe ∈
[0, λmax], it is easy to extend the results of this section to the more general model
defined by (note that λ is now a vector in [0, λmax]

E): πG,λ(M) =
∏

e∈M λe

Z(G,λ)

where, Z(G,λ) =
∑

M∈M
∏

e∈M λe. Results in this section and Sections 3 and 4
hold provided λ is replaced by λmax.

3 Approximating the Partition Function

First, we need an arbitrary total order# over V . We can achieve this by assigning
a random number av ∈ [0, 1] to each vertex v and then defining u # v as au > av.
However, if there are only a small number of vertices involved in our computation,
we do not need to generate random numbers for all vertices. Using the technique
in [22], we generate a random number each time we visit a new vertex and then
save its value for the later visits. Generating a random number can be done in
sublinear time and the number of vertices in our computation is at most twice
the number of queries, which will later be proved to be a constant independent of
n. As a result, the total time complexity for this random generation is sublinear.

Define Gv = {u ∈ V | u " v}. The following formula which allows us to
compute the partition function from the marginals is obtained easily from (1):

logZ(G, λ) =
∑
v∈V

− log pGv ,λ(v). (7)

1 In the randomized case, the algorithm is expected to provide always an estimate
with an additive error ε, and the proposition implies a lower bound on the average
number of queries of such an algorithm.
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The algorithm below estimates logZ(G, λ). We sample �C/ε2� vertices uni-
formly at random from V , where C is some fixed constant. For every sampled
vertex u, we compute an estimate of the marginal pGu,λ(u) using the algorithm
Approx-Marginal

∗(λ, ε/2, u). We then obtain an estimate of Z(G, λ) from the
estimates of marginals at sampled vertices.

Approx-Partition-Function(λ, ε)
1 s← �C/ε2�
2 U ← random multi-subset of V with s elements
3 return (n/s) ·

(∑
u∈U − log(Approx-Marginal

∗(λ, ε/2, u))
)

We recall a basic lemma which follows from Hoeffding’s inequality and which
will be used several times in the paper.

Lemma 4. (see [4]) Let V be a set of n real numbers in [A,B], where A and
B are constant. Let V ′ be a multi-subset of V consisting of Θ(1/ε2) elements
chosen uniformly and independently at random. Let AVG be the average of all
elements and AVG′ be the average of sampled elements. Then with high constant
probability, we have: AVG′ − ε ≤ AVG ≤ AVG′ + ε.

Theorem 5. Approx-Partition-Function(λ, ε) is an εn-approximation al-
gorithm for logZ(G, λ) with query complexity Õ

(
(1/ε)Õ(

√
Δ)
)
.

Proof. Let A =
∑

v∈V − log(Approx-Marginal
∗(λ, ε/2, v)). By Proposition 2

and Equation (7), A is an εn/2-approximation of logZ(G, λ). By Lemma 4,
there exists some constant C such that approximating the marginal probability
at �C/ε2� sampled nodes gives an εn/2-approximation ofA with high probability.
This implies an εn-approximation of logZ(G, λ) with high probability. The query
complexity of this algorithm is �C/ε2� · Q(ε/2, Δ) = Õ

(
(1/ε)Õ(

√
Δ)
)
. 	


Note that the size of any maximal matching is always lower bounded by m
2Δ−1 ,

where m is the number of edges. In particular, since Z(G, 1) is the total number
of matchings, we have m

2Δ−1 log 2 ≤ logZ(G, 1) ≤ m log 2 ≤ nΔ
2 log 2 so that if

m = Ω(n), we also have logZ(G, 1) = Θ(n). Hence, if ε and Δ are constants
and m = Ω(n), the error in the output of our algorithm is of the same order as
the evaluated quantity. This is in contrast with the FPTAS (Fully Polynomial-
Time Approximation Scheme) in [1] or the FPRAS (Fully Polynomial-time Ran-
domized Approximation Scheme) in [14,25] which outputs an ε-approximation
instead of an εn-approximation. Of course, we can let ε tend to 0 with n like
c/n in Theorem 5, so that our result (when Δ is constant) is consistent with
the FPTAS in [1]. Indeed, in this case, clearly no sampling is required and if we
replace the sampling step by a visit of each vertex, our algorithm is the same as
in [1].

When we assume Δ to be fixed, the query complexity of the above algorithm
is polynomial in 1/ε. Next we give a lower bound on the query complexity which
is quadratic in 1/ε. In the proof, we use a lower bound result from [5], which is
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based on Yao’s Minimax Principle [31]. See the full version of the paper for the
proof of the following theorem.

Theorem 6. Any deterministic or probabilistic εn-approximation algorithm for
logZ(G, λ) needs Ω(1/ε2) queries on average. It is assumed that ε > C/

√
n for

some constant C.

4 Approximating Matching Statistics

We define the average size E(G, λ) and the entropy S(G, λ) of a matching as:

E(G, λ) =
∑
M∈M

|M | πG,λ(M) and S(G, λ) = −
∑
M∈M

πG,λ(M) log πG,λ(M).

The following algorithm estimates E(G, λ), where C is a fixed constant.

Approx-Matching-Statistics(λ, ε)
1 s← �C/ε2�
2 U ← random multi-subset of V with s elements
3 return n− (n/2s) ·

∑
u∈U (Approx-Marginal(λ, ε/2, u))

Theorem 7. Approx-Matching-Statistics(λ, ε) is an εn-approximation al-
gorithm for E(G, λ) with query complexity Õ

(
(1/ε)Õ(

√
Δ)
)
. In addition, any

εn-approximation algorithm for E(G, λ) needs Ω(1/ε2) queries.

Proof. Let A =
∑

v∈V Approx-Marginal(λ, ε/2, v). By Proposition 2, A is
an εn/2-approximation of

∑
v∈V pG,λ(v). By Lemma 4, there exists some con-

stant C such that approximating the marginal probability at �C/ε2� sampled
nodes gives an εn/2-approximation of A with high probability. This implies
an εn-approximation of

∑
v∈V pG,λ(v) with high probability. Since E(G, λ) =

n −
∑

v∈V pG,λ(v)/2, we thus get an εn-approximation of E(G, λ) with high
probability. The query complexity of this algorithm is �C/ε2� · Q(ε/2, Δ) =

Õ
(
(1/ε)Õ(

√
Δ)
)
. The query lower bound is obtained similarly as Theorem 6.

	


Corollary 8. We have an εn-approximation algorithm for S(G, λ) with query
complexity Õ

(
(1/ε)Õ(

√
Δ)
)
. In addition, any εn-approximation algorithm for

S(G, λ) needs Ω(1/ε2) queries.

Proof. A simple calculation gives: S(G, λ) = logZ(G, λ)− logλ ·E(G, λ). Let Ẑ
be the output of Approx-Partition-Function(λ, ε/2) and Ê be the output of
Approx-Matching-Statistics(λ, ε/(2 logλ)). By Theorem 5 and Theorem 7,
Ẑ − logλ · Ê is an εn-estimate of S(G, λ) with high probability. Both Ẑ and Ê
are computed using Õ

(
(1/ε)Õ(

√
Δ)
)

queries. The query lower bound is obtained
similarly as Theorem 6. 	
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5 Some Applications

So far, we did consider that the parameter λ is fixed. Letting λ grow with 1
ε

allows us to get new results for the permanent of a matrix. There is a FPRAS
for the permanent of a matrix with non-negative entries [15]. When the matrix
is the adjacency matrix of a constant degree expander graph, there is a PTAS
to estimate the permanent within a multiplicative factor (1 + ε)n [8]. Using a
key technical result of [8], we get a sublinear-time algorithm within the same
multiplicative factor (see the full version of the paper).

Note that for a fixed graph G, if λ→∞ then the distribution πG,λ converges
toward the uniform distribution on maximum matchings. Indeed, using a bound
derived in [3], we can show that if λ grows exponentially with 1

ε our technique
allows to approximate the size of a maximum matching (see the full version of
the paper). However our algorithm performs badly with respect to [32].

Acknowledgments. The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR) under reference ANR-11-JS02-005-01 (GAP
project).
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Abstract. We define and analyze an anonymization problem in undi-
rected graphs, which is motivated by certain privacy issues in social net-
works. The goal is to remove a small number of vertices from the graph
such that in the resulting subgraph every occurring vertex degree occurs
many times.
We prove that the problem is NP-hard for trees, and also for a number

of other highly structured graph classes. Furthermore we provide poly-
nomial time algorithms for other graph classes (like threshold graphs),
and thereby establish a sharp borderline between hard and easy cases of
the problem. Finally we perform a parametrized analysis, and we con-
cisely characterize combinations of natural parameters that allow FPT
algorithms.

1 Introduction

With the tremendous usage of social networks, the protection of privacy when
releasing underlying data sets has become an important and active field of re-
search [15]. If a graph contains only few vertices with some distinguished fea-
ture, then this might allow the identification (and violation of privacy) of the
underlying real world entities with that particular feature. Hence in order to
ensure pretty good privacy and anonymity behavior, every vertex should share
its features with many other vertices. In a landmark paper1, Liu and Terzi [11]
considered in their setting the vertex degrees as feature; see Wu et al. [15] for
other features considered in the literature. Correspondingly, a graph is called
k-anonymous if for each vertex there are at least k − 1 other vertices of same
degree. Therein, different values of k reflect different privacy demands and the
natural computational task arises to perform few changes to a graph in order to
make it k-anonymous.

Liu and Terzi [11] proposed an heuristic algorithm for the task of making
a graph k-anonymous by adding edges. The same variant has been studied by
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Hartung et al. [10] from a parameterized complexity perspective. In this paper,
we complement these previous studies by investigating the vertex deletion variant
which is defined as follows:

Degree Anonymity by Vertex Deletion (Anonym-V-Del)

Instance: An undirected graph G = (V,E); positive integers k and s.
Question: Is there subset S ⊆ V of size at most s such that deleting S in G

results in a k-anonymous graph?

Considering vertex deletions instead of edge additions seems to be a promising
approach on practical instances, especially on social networks. Therein, the de-
gree distribution of the underlying graphs often follow a so-called power law
distribution [1] implying that there are only few high degree vertices and most
vertices are of moderate degree; this suggests that only few vertices have to
be removed in order to get a k-anonymous graph. For instance, consider the
DBLP co-author graph (generated in Feb. 2012) with ≈ 715 thousand vertices
corresponding to authors and ≈ 2.5 million edges indicating whenever two au-
thors have a common scientific paper: This graph has maximum degree 804 but
only 208 vertices are of degree larger than 208, whereas the average degree is 7.
Interestingly, a heuristic that simply removes vertices violating the k-anonymous
property proves that one has to remove no more than 338 vertices to make it
5-anonymous and even to make it 10-anonymous requires at most 635 vertex
deletions.

While there are many different privacy models, there is a lack of algorithms
with provably good performance (as explicitly observed by [3]). In this work,
we will show that already the simple and highly specialized privacy model of
Anonym-V-Del is computationally hard from the parameterized as well as
from the approximation point of view. A variety of hardness results holds even
in very restricted graph classes, as for instance trees, cographs, and split graphs.

One reason for this hardness is shown in the following two examples illustrat-
ing that the number s of allowed removals and the degree k of anonymity are
independent of each other, and that a small change in one of these parameters
might lead to a large jump of the other parameter.

Example 1. Let G be a graph on n ≥ 5 vertices that consists of two components:
a clique of size n − 2 and a clique of size two. This 2-anonymous graph cannot
be transformed into a 3-anonymous graph by deleting only one vertex, however,
deleting two vertices makes it (n−2)-anonymous. Hence, by slightly increasing s
from 1 to 2 the reachable anonymity-degree jumps from k = 2 to k = n− 2.

Example 2. Let G = (V,E) be a graph with vertices X = {x1, . . . , x�} and
Y = {y1, . . . , y�} with an edge between xi and yj if i+ j > �. Clearly, xi and yi
are of degree i implying that G is 2-anonymous. Since N(xi) ⊆ N(xi+1) for
all i, deleting any subset of Y preserves the invariant deg(x1) ≤ deg(x2) ≤
. . . ≤ deg(x�). As the previous argument is symmetric, one can observe that
to make G 3-anonymous one has to remove 2/3 of the “jumps” in the initial
sequences deg(x1) < deg(x2) < . . . deg(x�) and deg(y1) < . . . < deg(y�). Since
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removing one vertex in X (Y ) removes only one jump in the sequence of X (Y )
and only one in Y (X), it follows that at least 2(� − 1) · 2

3 ·
1
2 ≈ 2

3� = 1
3 |V |

vertices have to be deleted in order to get a 3-anonymous graph. Summarizing,
by requiring anonymity k = 3 instead of anonymity k = 2, the number of vertices
needed to be removed jumps from zero to a constant fraction of vertices.

Related Work. Hartung et al. [10] studied the Anonym-E-Add problem as
proposed by Liu and Terzi [11]. Given a graph and two positive integers k and s,
Anonym-E-Add asks whether there exists a set of at most s edges whose addi-
tion makes the graph k-anonymous. The main result of Hartung et al. [10] is a
polynomial problem kernel with respect to the parameter maximum degree Δ of
the input graph. Furthermore, they showed that an heuristic algorithm proposed
by Liu and Terzi [11] is optimal for Anonym-E-Add solutions larger than Δ4.
Chester et al. [4] investigated the computational complexity of Anonym-E-Add

and variants with edge labels. They showed NP-hardness for the considered vari-
ants and a polynomial time algorithm for bipartite graphs.

Mathieson and Szeider [12] performed a parameterized complexity study for
the problem of finding a minimum amount of graph editions in order to fulfill
specified degree constraints. The graph editions considered are vertex deletion,
edge insertion, edge deletions, and combinations thereof.

Our Results. Whereas every graph is trivially 1-anonymous, we will show that
the combinatorial structure of 2-anonymous graphs is already rich and compli-
cated: Anonym-V-Del for k = 2 is NP-hard, even for strongly restricted graph
classes like trees, interval graphs, split graphs, trivially perfect graphs, and bi-
partite permutation graphs. All these hardness results are established by means
of a general framework in Section 2. As a side-result, our framework implies
the W[2]-hardness of various (natural) parameterized problem variants and the
in-approximability of various (natural) optimization versions. Furthermore, we
show that Anonym-V-Del is NP-hard even on graphs with maximum degree
three; this result is in stark contrast with the fixed-parameter tractability of
Anonym-E-Add with respect to the maximum degree Δ [10].

On the positive side, Section 3 presents (polynomial time) dynamic program-
ming approaches for Anonym-V-Del on three graph classes: graphs of maxi-
mum degree two, P3-free graphs, and threshold graphs. We frankly admit that
these three graph classes carry an extremely constraining combinatorial struc-
ture: Anonym-V-Del is such a vicious problem that without these heavily con-
straining structures there remains no hope for polynomial time results. Figure 1
summarizes the considered graph classes and their containment relations.

Finally, we analyze the parametrized complexity of Anonym-V-Del in Sec-
tion 4. Once again, Anonym-V-Del shows a difficult and challenging behavior:
It is intractable with respect to each of the three (single) parameters s, k and Δ.
Even worse, it is intractable with respect to the combined parameter (s, k). The
only positive parametrized results come with the combined parameters (Δ, s)
and (Δ, k). The latter result is based on bounding the number s of deleted
vertices in terms of Δ and k.
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trivially
perfect

unit
interval

split

P3-freethreshold

NP-hard

polynomial-
time solvable

Fig. 1. The complexity landscape of Anonym-V-Del for various graph classes. The
results for classes with thick frames are made in this work and they imply the results
for classes with thin frames.

Preliminaries. All graphs in this paper are undirected, loopless, and simple
(that is, without multiple edges). Throughout we use n to denote the number of
vertices in the considered graph. The maximum vertex degree of a graph G =
(V,E) is denoted ΔG. A vertex subset S ⊆ V is called k-deletion set if G[V \S]
is k-anonymous. For each vertex v ∈ V we denote by NG(v) the set of neighbors
of v and by NG[v] = NG(v)∪{v} the closed neighborhood. Correspondingly, for
a vertex subset V ′ we set NG[V

′] =
⋃

v∈V ′ NG[v] and NG(V
′) = NG[V

′] \ V ′.
For 0 ≤ a ≤ Δ, the block of degree a is the set DG(a) ⊆ V of all vertices with
degree a in G. Clearly, a graph is k-anonymous iff (if and only if) each block is
either of size zero or at least k. We omit subscripts if the corresponding graph
is clear from the context.

For the relevant notation of parameterized complexity and algorithmics we
refer to the monographs of Downey and Fellows [7], Niedermeier [13]. Due to the
space constraints some proofs are deferred to the appendix.

2 Computational Hardness

In this section we provide NP-hardness results for Anonym-V-Del on several
restricted graph classes such as trees, split graphs, and trivially perfect graphs.
As a warm up, we first prove that Anonym-V-Del is NP-hard on graphs with
maximum degree three. This contrasts the known fixed-parameter tractability
of Anonym-E-Add with respect to the parameter maximum degree [10].

Theorem 1. Anonym-V-Del is NP-hard on graphs with degree at most three.

Proof. We give a reduction from the Vertex Cover problem which is known
to be NP-complete even in three-regular graphs [8, GT1]. Therein, given a three-
regular graph together with an integer h ∈ N the task is to decide whether there
is vertex set of size at most h such that each edge has at least one endpoint in it.
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Given a Vertex Cover instance (G = (V,E), h), start by copying G to a new
graph G′. Finally, add h+1 degree-zero vertices to G′, set s = h, and k = |V |+1.

If G contains a vertex cover S of size h, then deleting S in G′ clearly results
in an edgeless graph with |V | + 1 = k vertices, implying that (G′, s, k) is a yes-
instance of Anonym-V-Del. In the other direction, for any k-deletion set S,
since 2k > n + h + 1 and G′ contains s + 1 degree-zero vertices, all vertices
in G′ \ S have degree zero. Thus, S ∩ V is a vertex cover in G. 	


NP-Hardness on Trees. Next we show that Anonym-V-Del is NP-hard
even on trees. Extracting the basic ideas of this result, subsequently we provide
a generic reduction to show NP-hardness on trivially perfect graphs, bipartite
permutation graphs, and split graphs. Both reductions will reduce from the NP-
hard Set Cover problem, which is defined as follows [8, SP5]: Given a universe
A = {a1, . . . , aα}, a collection B = {B1, . . . , Bβ} of sets over A, and h ∈ N the
task is to decide whether there is an index set I ⊆ {1, . . . , β} with |I| ≤ h, such
that

⋃
i∈I Bi = A?

Let (A,B, h) be an instance of Set Cover. We assume without loss of gen-
erality that for each element a ∈ A there exists a set B ∈ B with a ∈ B.
Furthermore, we assume without loss of generality that each set B ∈ B occurs
at least h + 2 times in B. To reduce the amount of indices in the construction
given below we introduce the function f : A→ N that maps an element ai ∈ A
to f(ai) = α+ (h+ 1)i.

The reduction for trees is as follows. Set k = 2 and s = h such that (G, k, s) is
an equivalent Anonym-V-Del-instance. Graph G = (V,E) is constructed as fol-
lows: For each element ai ∈ A add an element gadget consisting of a star K1,f(ai)

with the center vertex v(ai). Denote with VA = {v(a1), . . . , v(aα)} the set of all
these center vertices.

For each set Bj ∈ B add a set gadget which is a tree rooted in a vertex v(Bj).
The root has |Bj | child vertices where each element ai ∈ Bj corresponds
to exactly one of these children, denoted by v(ai, Bj). Additionally, we add
to v(ai, Bj) exactly f(ai) degree-one neighbors. Hence, the set gadget is a tree
of depth three rooted in v(Bj). We denote with VB = {v(B1), . . . , v(Bβ)} the
set of all root vertices. Observe that, as each set Bj ∈ B occurs at least h + 2
times, the set gadgets are h + 2-anonymous. Finally, to end up with one tree
instead of a forest, repeatedly add edges between any degree-one-vertices of
different connected components.

Observe that for each element ai ∈ A the only vertex of degree f(ai) is v(ai)
and there are no other vertices violating the 2-anonymous property. The key
point in the construction is that, in order to get a 2-anonymous graph, one has
to delete vertices of VB: Let ai ∈ A be an element and v(Bj) a root vertex such
that ai ∈ Bj . By construction the child vertex v(ai, Bj) of v(Bj) corresponds
to ai and therefore has f(ai) child vertices. Thus, deleting v(Bj) lowers the de-
gree of v(ai, Bj) to f(ai) and, hence, v(ai) no longer violates the 2-anonymous
property. Furthermore, as each set Bj ∈ B occurs at least h + 2 times, the
vertices VB are 2-anonymous. Hence, given a set cover one can construct a corre-
sponding k-deletion set of the same size and, thus, if (A,B, h) is a yes-instance,
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then (G, k, s) is a yes-instance. The proof of the converse direction which implies
the following theorem will be given later, after introducing the generic reduction.

Theorem 2. Anonym-V-Del is NP-hard on trees even if k = 2.

Generic Reduction. We now generalize the reduction given in the previ-
ous paragraph. More specifically, we will define properties such that a graph G
fulfilling them together with s = h and k = 2 forms a yes-instance of Anonym-

V-Del iff the given Set Cover instance (A,B, h) is a yes-instance. Based on
that, we then describe the construction of a several graphs contained in different
graph classes and fulfilling the properties. Formally, we require the constructed
graph G = (V,E) to fulfill the following:

1. For each element ai ∈ A there is a corresponding vertex, denoted by v(ai),
in G and the vertex set VA = {v(a1), . . . , v(aα)} is exactly the set of vertices
not being 2-anonymous in G.

2. For each set Bj ∈ B there is a corresponding vertex v(Bj) in G and
for each element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj) with
deg(v(ai, Bj)) = deg(v(ai)) + 1.
Set VB = {v(B1), . . . , v(Bβ)} and ABj = {v(ai, Bj) | ai ∈ Bj}.

3. The vertex subsets VA, VB, and AB1 , . . . , ABβ
are pairwise disjoint. We set

AB =
⋃

Bj∈B ABj .

4. For each D ⊆ VB, |D| ≤ h, the set of vertices violating the 2-anonymous
property in G[V \D] is a subset of VA.

5. It holds: (a) |N [v]∩VA| ≤ 1 for each vertex v ∈ V , (b)N(ABj )∩VB = {v(Bj)}
for all Bj ∈ B, and (c) N(VA) ∩ (VB ∪ AB) = ∅.

6. For each vertex v ∈ V there is a vertex u ∈ VB such that N(v)∩AB ⊆ N(u).
7. Any two vertices u ∈ VA and v /∈ AB satisfy | deg(v) − deg(u)| > s.

It is not hard to verify that the graph constructed in the reduction in the previous
paragraph has the above properties. Before proving the correctness of the generic
reduction we show the following observation.

Observation 1. For each D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exactly the set of vertices not being 2-anonymous in G[V \D].

Lemma 1. Let G be a graph satisfying Properties 1 to 7 for a given instance
(A,B, h) of Set Cover. Then (G, 2, h) is a yes-instance of Anonym-V-Del

if and only if (A,B, h) is a yes-instance of Set Cover.

Proof. If there is an index set I, |I| ≤ h, such that
⋃

j∈I Bj = A, then by
Observation 1 the set S = {v(Bj) | j ∈ I} ⊆ VB, |S| = |I|, is a k-deletion set
for G. It remains to prove the reverse direction.

Let S be a k-deletion set of size at most s = h for G = (V,E). We form a
k-deletion set S′ for G such that S′ ⊆ VB and |S′| ≤ |S|. Consider each vertex
v ∈ S: If v ∈ VB, then add v to S′ (Case 1). If v ∈ N [VA], then by Property 5
there is only one ai such that v ∈ N [v(ai)] and we add a vertex v(Bj) ∈ VB
with ai ∈ Bj to S′ (Case 2). Finally, if v ∈ N [AB], then by Property 6 there is
a vertex u ∈ VB with N(v) ∩ AB ⊆ N(u) and we add u to S′ (Case 3).
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We next prove that S′ is a k-deletion set for G and thus by Observation 1 the
index set corresponding to the vertices in S′ is a solution of size |S′| to the Set

Cover instance.
Assume towards a contradiction that G[V \ S′] is not 2-anonymous. Denot-

ing by X ⊆ V \ S′ the set of vertices not being 2-anonymous, it follows from
Observation 1 thatX ⊆ VA. Moreover, by the construction of S′ (see Case 2) and
Observation 1 it follows that N [X ] ∩ S = ∅ and thus degG[V \S](u) = degG(u)
for all u ∈ X . Hence, for each u ∈ X there is a vertex w ∈ V such that
degG(u) = degG[V \S](w) and thus by Property 7 it follows that w ∈ N [AB].
This implies a contradiction to the construction of S′ because from w ∈ N [AB]
it follows that S′ contains w’s neighbor in VB (see Case 3) and thus u /∈ X by
Observation 1. 	

Using this generic reduction we now show NP-hardness on several graph classes
which are defined as follows (see Brandstädt et al. [2]): Trivially perfect graphs
are the (P4, C4)-free graphs, that is, they do not contain an induced path or cycle
on four vertices. A graph G is a bipartite permutation graph if G is bipartite and
does not contain an asteroidal triple (is AT-free). Three vertices of a graph form
an asteroidal triple if every two of them are connected by a path avoiding the
neighborhood of the third. A graph is a split graph if it can be partitioned into
a clique and an independent set.

Theorem 3. Anonym-V-Del is NP-hard on trivially perfect graphs, bipartite
permutation graphs, and split graphs.

Since Set Cover is W[2]-complete with respect to h [7] we have the following.

Corollary 1. Anonym-V-Del is W[2]-hard with respect to parameter s, even
if k = 2 and if the input graph is a tree, a bipartite permutation graph, a split
graph, or a trivially perfect graph.

Dom et al. [6] showed that Set Cover does not admit a polynomial kernel with
respect to the combined parameter (α, h). Observe that in all above constructions
except the one for split graphs we can bound s and Δ in a polynomial in α and h.

Corollary 2. Anonym-V-Del on trees, bipartite permutation graphs or triv-
ially perfect graphs does not admit a polynomial kernel with respect to the com-
bined parameter (k, s,Δ).

There are two natural optimization versions associated with Anonym-V-Del:
in one version (called Max Anonym-V-Del) the goal is to maximize the
anonymity k subject to the constraint that the number s of deleted vertices does
not exceed a given bound; in the other version (called Min Anonym-V-Del)
the goal is to minimize the number s of deleted vertices subject to the constraint
that the anonymity does not go below a certain given bound. As Set Cover is
NP-hard to approximate within a ratio o(log n) [14], the above reduction yields
the following inapproximability result.

Corollary 3. The optimization problem Min Anonym-V-Del on n-vertex
graphs cannot be approximated within a factor of o(logn), unless P = NP .
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Since the above reduction gives NP-hardness for k = 2, we immediately get
inapproximability within a factor of two for Max Anonym-V-Del.

Corollary 4. The optimization problem Max Anonym-V-Del cannot be ap-
proximated

– within a factor of 2− ε, unless P = NP .
– within a factor of 2 − ε in f(s)nO(1) time for any computable f , unless

FPT=W[2].

3 Polynomially Solvable Cases

We complement our intractability results for Anonym-V-Del from Theorem 2
by showing that Anonym-V-Del is polynomial time solvable on graphs with
maximum degree two, on graphs that are disjoint unions of cliques, and on
threshold graphs.

3.1 Graphs with Maximum Degree Two

In contrast to graphs of maximum degree three (see Theorem 1), we observe that
Anonym-V-Del is polynomial time solvable on graphs of maximum degree two.
Note that a graph of maximum degree two is just a collection of paths and cycles.
Given five integers d0, d1, d2, x, y, it is easy to decide whether it is possible to
remove x vertices from a path of length y (respectively, from a cycle of length y)
such that there survive precisely d0 vertices of degree zero, d1 vertices of degree
one, and d2 vertices of degree two. A straight-forward dynamic programming
approach based on this observation leads to the following.

Theorem 4. On graphs of maximum degree two, Anonym-V-Del is polyno-
mial time solvable.

3.2 Disjoint Union of Cliques

Note that Anonym-V-Del is trivial on cliques: either the clique size is at least k,
or otherwise one has to delete all the vertices. The following theorem shows that
polynomial time solvability also carries over to the case where the graph is the dis-
joint union of several cliques. (Recall that a graph is the disjoint union of cliques
if and only if it does not contain the 3-vertex path P3 as an induced subgraph.)

Theorem 5. On a P3-free graph G with n vertices and maximum degree Δ,
Anonym-V-Del can be solved in O(n2Δ) time.

3.3 A Polynomial Time Result for Threshold Graphs

We recall that a graphG(V,E) is a threshold graph if there are positive real vertex
weights w(v) for v ∈ V , such that {v1, v2} ∈ E if and only if w(v1) +w(v2) ≥ 1;
see Chvátal and Hammer [5] and Golumbic [9] for more information. Without
loss of generality we will assume throughout that the vertex weights satisfy the
following conditions:
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– The vertex weights are pairwise distinct, and satisfy 0 < w(v) < 1
– Any v1, v2 ∈ V satisfy w(v1) + w(v2) �= 1; in particular w(v1) �= 1

2

Note that the closed neighborhoods in a threshold graph are totally ordered
by inclusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and consequently
deg(v1) ≤ deg(v2).

Lemma 2. Let U ⊆ V be a subset of vertices with |U | ≥ 2, let wmin =
minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the vertices with
w(u0) = wmin and w(u1) = wmax. All vertices in U have identical degree, if and
only if there is no vertex v ∈ V \ {u0, u1} with 1− wmax < w(v) < 1− wmin.

Proof. Note that all vertices in U have identical degree, if and only if NG[u0] =
NG[u1]. The latter condition in turn holds if and only if there is no vertex v in
the graph (with v �= u0 and v �= u1) that is adjacent to u1 but not to u0, and
this is equivalent to the stated condition 1− wmax < w(v) < 1− wmin. 	


Now consider some block U of constant degree in an optimal subgraph for
Anonym-V-Del, and let u0, u1 ∈ U and wmin and wmax be defined as in the
lemma. The territory of this block is defined as the union of the two closed in-
tervals [wmin, wmax] and [1− wmax, 1− wmin]; note that these two intervals will
overlap if wmin <

1
2 < wmax. The canonical superset U∗ ⊆ V consists of u0 and

u1, together with all vertices v ∈ V that satisfy wmin ≤ w(v) ≤ wmax but not
1 − wmax < w(v) < 1 − wmin. One message of Lemma 2 is that distinct blocks
in an optimal subgraph must have disjoint territories. Another message of the
lemma is that we may as well replace every block U by its canonical superset
U∗: By adding these vertices, the degree in every block either remains the same
or is uniformly increased by |U∗| − |U |. And if the territories of distinct blocks
were disjoint before the replacement, then they will also be disjoint after the
replacement. In other words, such a replacement does not violate k-anonymity
but simplifies the combinatorial structure of the considered subgraph.

This suggests the following dynamic programming approach. For every real
number r with 0 ≤ r ≤ 1

2 , we consider the threshold graph Gr that is induced
by the vertices v ∈ V with r ≤ w(v) ≤ 1 − r; note that the only crucial values
for r are the O(n) values w(v) and 1−w(v) that fall between the bounds 0 and
1
2 . The goal is to compute for every graph Gr a largest k-anonymous subgraph.
We start our computations with r = 1

2 and work downwards towards r = 0.
The initialization step of the dynamic program handles subgraphs that consist

of a single block whose territory contains the number 1
2 . Such a block will either

be empty, or it is a canonical superset specified by two values wmin and wmax.
All in all, this only yields a polynomial number of cases to handle. In the main
computation phase of the dynamic program, we consider a general graph Gr and
check all possibilities for the outermost block, which is the block whose territory
is farthest away from the center point 1

2 . Since this territory is the union of
two intervals [r, q] and [1 − q, 1 − r], we may simply check all possibilities for
the interval boundary q, and then combine the corresponding block with the
(previously computed) largest k-anonymous subgraph for graph Gq. Since there
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is only a linear number O(n) of candidate values for q, the largest k-anonymous
subgraph of Gr can be found in linear time.

Theorem 6. On threshold graphs with n vertices, Anonym-V-Del can be
solved in O(n2) time. 	


4 Parametrized Results

Theorem 1, Theorem 2, and Corollary 1 show that there is no hope for fixed-
parameter tractability neither for any of the individual parameters s, k or Δ nor
for the combined parameter (s, k). In this subsection, we show that Anonym-

V-Del becomes fixed-parameter tractable when considering the combined pa-
rameters (s,Δ) as well as (k,Δ). We start with a fixed-parameter algorithm for
(s,Δ) and show that the minimum size of a solution is bounded by a function
only depending on k and Δ.

Theorem 7. Anonym-V-Del can be solved in (sΔ)O(sΔ2)n2 logn time.

Lemma 3. For every yes-instance (G = (V,E), k, s) of Anonym-V-Del

with Δ denoting the maximum degree of G there is a subset S ⊆ V with
|S| < 2ΔΔ32k such that G[V \ S] is k-anonymous.

By combining Theorem 7 and Lemma 3 we obtain fixed-parameter tractability
with respect to the parameter (k,Δ): For an instance (G, k, s) of Anonym-

V-Del apply the algorithm from Theorem 7 on (G, k,min{s, 2ΔΔ32k}). The
running time is bounded by (2ΔΔ42k)O(2ΔΔ52k)n2 log n.

Corollary 5. Anonym-V-Del is fixed-parameter tractable with respect to the
combined parameter (k,Δ).

5 Conclusion

In this paper, we have complemented the investigations of Hartung et al. [10] on
the edge addition version of the degree anonymity problem to the vertex deletion
version. To our surprise, there is a strong contrast in the complexity of the two
problem versions: Whereas Anonym-E-Add admits a polynomial kernel with
respect to the maximum degree [10], we proved NP-hardness of Anonym-V-Del

on graphs with maximum degree three. Furthermore, bounding one of the input
parameters s and k does not yield fpt-algorithms for Anonym-V-Del; however
bounding the degree and bounding one of the input parameters s and k brings
the problem into FPT.

Our results also provide a good view on the colorful complexity landscape of
the vertex deletion version. We have shown that the problem is hard for most
of the standard graph classes, and that one has to move on to highly structured
classes like threshold graphs in order to get some polynomial time results. A
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number of questions remained open: What is the complexity of Anonym-V-

Del on claw-free graphs? What is the complexity of Anonym-V-Del on unit
interval graphs? Corollary 4 does not exclude the existence of a constant-factor
approximation for Max Anonym-V-Del. Are there stronger inapproximability
results? Can the bounds stated in Theorem 7 and Lemma 3 be improved?
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Abstract. A graph drawn in the plane with n vertices is fan-crossing
free if there is no triple of edges e, f and g, such that e and f have a
common endpoint and g crosses both e and f . We prove a tight bound of
4n− 9 on the maximum number of edges of such a graph for a straight-
edge drawing. The bound is 4n − 8 if the edges are Jordan curves. We
also discuss generalizations to monotone graph properties.

Keywords: graph theory, graph drawing, planar graph, extremal graph.

1 Introduction

A topological graph G is a graph drawn in the plane: vertices are points in
the plane, and the edges of the graph are drawn as Jordan curves connecting
the vertices. Edges are not allowed to pass through vertices other than their
endpoints. We will assume the topological graph to be simple, that is, any pair
of its edges have at most one point in common (so edges with a common endpoint
do not cross, and edges cross at most once). Figure 1 (a–b) shows configurations
that are not allowed.

If there are no crossings between edges, then the graph is planar, and Euler’s
formula implies that it has at most 3n − 6 edges, where n is the number of
vertices. What can be said if we relax this restriction—that is, we permit some
edge crossings?

For instance, a topological graph is called k-planar if each edge is crossed at
most k times. Pach and Tóth [13] proved that a k-planar graph on n vertices
has at most (k + 3)(n − 2) edges for 0 � k � 4, and at most 4.108

√
kn edges

for general k. The special case of 1-planar graphs has recently received some
attention, especially in the graph drawing community. Pach and Tóth’s bound
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Fig. 1. (a) and (b) shows illegal embeddings of edges of a graph. (c) is a fan crossing.

is 4n− 8, and this is tight: starting with a planar graph H where every face is a
quadrilateral, and adding both diagonals results in a 1-planar graph with 4n− 8
edges. However, Didimo [4] showed that straight-line 1-planar graphs have at
most 4n− 9 edges, showing that Fáry’s theorem does not generalize to 1-planar
graphs. Hong et al. [8] characterize the 1-planar graphs that can be drawn as
straight-line 1-planar graphs. Didimo’s bound is tight, as he constructed an
infinite family of straight-line 1-planar graphs with 4n − 9 edges. Korzhik and
Mohar [9] showed that testing if a given graph is 1-planar is NP-hard.

A topological graph is called k-quasi planar if it does not contain k pairwise
crossing edges. It is conjectured that for any fixed k the number of edges of a
k-quasi planar graph is linear in the number of vertices n. Agarwal et al. [2]
proved this for straight-line 3-planar graphs, Pach et al. [11] for general 3-planar
graphs, Ackerman [1] for 4-planar graphs, and Fox et al. [7] prove a bound of

the form O(n log1+o(1) n) for k-planar graphs.
A different restriction on crossings arises in graph drawing: Humans have

difficulty reading graph drawings where edges cross at acute angles, but graph
drawings where edges cross at right angles are nearly as readable as planar ones.
A right-angle crossing graph (RAC graph) is a topological graph with straight
edges where edges that cross must do so at right angle. Didimo et al. [5] showed
that an RAC graph on n vertices has at most 4n− 10 edges. Testing whether a
given graph is an RAC graph is NP-hard [3]. Eades and Liotta [6] showed that
an extremal RAC graph, that is, an RAC graph with n vertices and 4n − 10
edges, is 1-planar, and is the union of two maximal planar graphs sharing the
same vertex set.

A radial (p, q)-grid in a graph G is a set of p + q edges such that the first
p edges are all incident to a common vertex, and each of the first p edges crosses
each of the remaining q edges. Pach et al. [10] proved that a graph without a
radial (p, q)-grid, for p, q � 1, has at most 8 ·24qpn edges. We call a radial (2, 1)-
grid a fan crossing. In other words, a fan crossing is formed by an edge g crossing
two edges e and f that are incident to a common vertex, see Figure 1 (c). A
topological graph is fan-crossing free if it does not contain a fan crossing.

By Pach et al.’s result, a fan-crossing free graph on n vertices has at most
384n edges. We improve this bound by proving the following theorem.

Theorem 1. A fan-crossing free graph on n � 3 vertices has at most 4n − 8
edges. If the graph has straight edges, it has at most 4n− 9 edges. Both bounds
are tight for n � 10.
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A 1-planar graph is fan-crossing free, so Theorem 1 generalizes both Pach and
Tóth’s and Didimo’s bound. We also extend their lower bounds by giving tight
constructions for every value of n.

In an RAC graph all edges crossed by a given edge g are orthogonal to it and
therefore parallel to each other, implying that an RAC graph is fan-crossing free.
Our theorem, therefore, “nearly” implies Didimo et al.’s bound: a fan-crossing
free graph has at most one edge more than an RAC graph.

We can completely characterize extremal fan-crossing free graphs, that is, fan-
crossing free graphs on n vertices with 4n−8 edges: Any such graph consists of a
planar graph H where each face is a quadrilateral, together with both diagonals
for each face. This implies the same properties obtained by Eades and Liotta for
extremal RAC graphs: An extremal fan-crossing free graph is 1-planar, and is
the union of two maximal planar graphs.

Most of the graph families discussed above have a common pattern: the sub-
graphs obtained by taking the edges crossed by a given edge e may not contain
some forbidden subgraph. We can formalize this notion as follows: For a topo-
logical graph G and an edge e of G, let Ge denote the subgraph of G containing
exactly those edges that cross e.

A graph property P is called monotone if it is preserved under edge-deletions.
In other words, if G has P and G′ is obtained from G by deleting edges, then
G′ must have P . Given a monotone graph property P , we define a derived graph
property P∗ as follows: A topological graph G has P∗ if for every edge e of G
the subgraph Ge has P . Some examples are:
– If P is the property that a graph does not contain a path of length two, then
P∗ is the property of being fan-crossing free;

– if P is the property of having at most k edges, then P∗ is k-planarity;
– if P is planarity, then P∗ is 3-quasi-planarity.

We can consider P∗ for other interesting properties P , such as not containing a
path of length k, or not containing a K2,2.

We prove the following very general theorem:

Theorem 2. Let P be a monotone graph property such that any graph on n
vertices that has P has at most O(n1+α) edges, for a constant 0 � α � 1. Let
G be a graph on n vertices that has P∗. If α > 0, then G has O(n1+α) edges. If
α = 0, then G has O(n log2 n) edges.

This immediately covers many interesting cases. For instance, a graph where
no edge crosses a path of length k, for a constant k, has at most O(n log2 n)
edges. Graphs where no edge crosses a K2,2 have at most Θ(n3/2) edges (and
this is tight, as there are graphs with Θ(n3/2) edges that do not contain a K2,2,
implying that no edge can cross a K2,2).

2 A Combinatorial Puzzle

At the core of our bound lies a combinatorial question that we can express as
follows: An m-star is a regular m-gon ψ with a set of arrows. An arrow is a ray
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starting at a vertex of ψ, pointing into the interior of ψ, and exiting through an
edge of ψ.

ψ

We require the set of edges and arrows to be fan-
crossing free—that is, no edge or arrow intersects
two arrows or an edge and an arrow incident to
the same vertex. The side figure shows a 7-star.
The dashed arrows are impossible—each of them
forms a fan crossing with the solid edges and ar-
rows.

The question is: How many arrows can an m-
star possess?

Observation 1. A 3-star has at most one arrow.

Proof. An arrow from a vertex v has to exit the triangle ψ through
the opposing edge, so no vertex has two arrows. But two arrows
from different vertices will also form a fan crossing, see the side
figure. 	


It is not difficult to see that a 4-star possesses at most 2 arrows. The reader may
enjoy constructing m-stars with 2m− 6 arrows, for m � 4. We conjecture that
this bound is tight. In the following, we will only prove a weaker bound that is
sufficient to obtain tight results for fan-crossing free graphs.

While we have posed the question in a geometric setting, it is important to
realize that it is a purely combinatorial question. We can represent the m-star by
writing its sequence of vertices and indicating when an arrow exits ψ. Whether or
not three edges/arrows form a fan crossing can be determined from the ordering
of their endpoints along the boundary of ψ alone.

Let C = v1, . . . , vm be the sequence of vertices of ψ in counter-clockwise order,
such that the ith boundary edge of ψ is ei = vivi+1 (all indices are modulo m).
Consider an arrow e starting at vi. It exits ψ through some edge ej, splitting ψ
into two chains vi+1 . . . vj and vj+1 . . . vi−1. The length of e is the number of
vertices on the shorter chain.

We will call an arrow short if it has length one. A long arrow is an arrow of
length larger than one.

Lemma 1. For m � 4, an m-star ψ has at most 2m− 8 long arrows.

Proof. The proof is by induction over m.
Any arrow in a 4-star partitions the boundary into chains of length one and

length two, and so there are no long arrows, proving the claim for m = 4.
We suppose now that m > 4 and that the claim holds for all 4 � m′ < m. We

delete all short arrows, and let L denote the remaining set of arrows, all of which
are now long arrows. Let e be an arrow of shortest length � in ψ. Without loss of
generality, we assume that e starts in v1 and exits through edge e�+1 = v�+1v�+2.
Then, the following properties hold (see Figure 2):
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Fig. 2. Left: properties (A) to (F), right: property (G) for the proof of Lemma 1.

(A) Every arrow starting in v2, . . . , v�+1 must cross e, as otherwise it would be
shorter than e.

(B) There is no arrow that starts in v�+1. By (A), such an arrow must cross e,
and so it forms a fan crossing with e and e�+1.

(C) At most one arrow starts in vi, for i = 2, . . . , �. Indeed, two arrows starting
in vi, for i = 2, . . . , �, must cross e by (A), and so they form a fan crossing
with e.

(D) No arrow starting in v�+2 exits through e2, . . . , e�, as then it would be
shorter than e.

(E) An arrow starting in v�+2 and exiting through e1 cannot exist either, as it
forms a fan crossing with e and e1.

(F) No arrow starting in vm crosses e1, . . . , e�−1, as then it would be shorter
than e.

(G) The following two arrows cannot both exist: An arrow e′ starting in vm and
exiting through e�, and an arrow e′′ starting in v�. Indeed, if both e

′ and e′′

are present, then either e′′ exits through em and forms a fan crossing with
e and em, or e′′ intersects e′ and so e′, e′′, and e� form a fan crossing (see
the right side of Figure 2).

We now create an (m − � + 1)-star ϕ by removing the vertices v2 . . . v� with
all their incident arrows from ψ, such that v1 and v�+1 are consecutive on the
boundary of ϕ. An arrow that exits ψ through one of the edges e1 . . . e� exits ϕ
through the new edge g = v1v�+1.

Let L′ ⊂ L be the set of arrows of ϕ, that is, the arrows of ψ that do not
start from v2 . . . v�. Among the arrows in L′, there are one or two short arrows:
the arrow e, and the arrow e′ starting in vm and exiting through e� in ψ (and
therefore through g in ϕ) if it exists. We set q = 1 if e′ exists, and else q = 0.

We delete from ϕ those one or two short arrows, and claim that there is
now no fan crossing in ϕ. Indeed, a fan crossing would have to involve the new
edge g = v1v�+1. But any arrow that crosses g must also cross e, and there is no
arrow starting in v�+1 by (B).

Since � � 2, we have m − � + 1 < m, and so by the inductive assumption ϕ
has at most 2(m− � + 1)− 8 = 2m− 2� − 6 long arrows. Since there are 1 + q
short arrows in L′, we have |L′| � 2m − 2� − 5 + q. By (C) and (G), we have
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|L| − |L′| � �− 1− q. It follows that

|L| � |L′|+ �− 1− q � 2m− �− 6 � 2m− 8. 	


vi

e vi+1

ei+1

ei

vi+2

e′

e′′

It remains to count the short arrows. Let e be a short ar-
row, say starting in vi and exiting through ei+1. Let us
call vi+1 the witness of e. We observe that no arrow e′ can
start in this witness—e′ would form a fan crossing with e
and ei+1. The vertex vi+1 can serve as the witness of only
one short arrow: The only other possible short arrow e′′

with witness vi+1 starts in vi+2 and exits through ei. How-
ever, e, e′′, and ei form a fan crossing.

We can now bound the number of arrows of an m-star.

Lemma 2. For m � 3, an m-star ψ has at most 3m− 8 arrows. The bound is
attained only for m = 3.

Proof. By Observation 1, the claim is true for m = 3. We consider m > 3. By
Lemma 1, there are at most 2m− 8 long arrows. Each short arrow has a unique
witness. If all vertices are witnesses then there is no arrow, and so we can assume
that at most m− 1 vertices serve as witnesses, and we have at most m− 1 short
arrows, for a total of 3m− 9 arrows. 	


3 The Upper Bound

HG

Let G = (V,E) be a fan-crossing
free graph. We fix an arbitrary max-
imal planar subgraph H = (V,E′)
of G. Let K = E \ E′ be the set
of edges of G that is not in H . Since
H is maximal, every edge inK must

cross at least one edge of H . We will replace each edge of K by two arrows.
Let e ∈ K be an edge connecting vertices v and u. The initial segment of e

must lie inside a face ψ of H incident to v, the final segment must lie inside a
face ϕ of H incident to u. It is possible that ψ = ϕ, but in that case the edge e
does not entirely lie in the face. We replace e by two arrows: one arrow starting
in v and passing through ψ until it exits ψ through some edge; another arrow
starting in u and passing through ϕ until it exits ϕ through some edge.

In this manner, we replace the set of edges K by a set of 2|K| arrows. The re-
sult is a planar graph whose faces have been adorned with arrows. The collection
of edges and arrows is fan-crossing free.

Every edge ofH is incident to two faces ofH , which can happen to be identical.
If we distinguish the sides of an edge, the boundary of each face ψ of H consists
of simple chains of edges. If ψ is bounded, one chain bounds ψ from the outside,
while all other chains bound holes inside ψ; if ψ is unbounded, then all chains
bound holes in ψ.
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If the graph H is connected, then
the boundary of each face consists
of a single chain. Let ψ be such a
face whose boundary chain consists
of m edges (where edges that
bound ψ on both sides are counted
twice). Then ψ has at most 3m −
8 arrows. This follows immediately
from Lemma 2: Recall that m-stars
can be defined purely combinatori-
ally. Whether three edges form a fan
crossing can be decided solely by the

ordering of their endpoints along the boundary chain. The boundary of a simply
connected face is a single closed chain, and so Lemma 2 applies to this setting,
see the side figure.

Unfortunately, we cannot guarantee thatH is connected. The following lemma
bounds the number of arrows of a face ψ in terms of its complexity and its number
of boundary chains. The complexity of a face is the total number of edges of all
its boundary chains, where edges that are incident to the face on both sides are
counted twice.

Lemma 3. A face of H of complexity m bounded by p boundary chains possesses
at most 3m+8p−16arrows. The bound can be attained only whenm = 3 and p = 1.

We will prove the lemma below, but let us first observe how it implies the upper
bound on the number of edges of fan-crossing free graphs.

Lemma 4. A fan-crossing free graph G on n vertices has at most 4n− 8 edges.

Proof. Let m be the number of edges, let r be the number of faces, and let p be
the number of connected components of H . Let F be the set of faces of H . For
a face ψ ∈ F , let m(ψ) denote the complexity of ψ, let p(ψ) denote the number
of boundary chains of ψ, and let a(ψ) denote the number of arrows of ψ.

We have
∑

ψ∈F m(ψ) = 2m and
∑

ψ∈F (p(ψ) − 1) = p − 1 (each component
is counted in its unbounded face, except that we miss one hole in the global
unbounded face).

The graph G has z = m+ |K| edges. Using Lemma 3 we have

2z = 2m+ 2|K| =
∑
ψ∈F

m(ψ) +
∑
ψ∈F

a(ψ)

�
∑
ψ∈F

(
4m(ψ) + 8p(ψ)− 16

)
= 4

∑
ψ∈F

m(ψ) + 8
∑
ψ∈F

(p(ψ)− 1)− 8r

= 8m+ 8p− 8− 8r.
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By Euler’s formula, we have n−m + r = 1 + p, so m − r = n − 1 − p, and we
have

2z � 8(m− r) + 8p− 8 = 8n− 8− 8p+ 8p− 8 = 8n− 16. 	


It remains to fill in the missing proof.

Proof (of Lemma 3). Let ψ be a face of H , and let m = m(ψ) and p = p(ψ) be
its complexity and its number of boundary components. A boundary component
is a chain of edges, and could possibly degenerate to a single isolated vertex.

We say that two boundary chains ξ and ζ are related if an arrow starting in
a vertex of ξ ends in an edge of ζ, or vice versa. Consider the undirected graph
whose nodes are the boundary chains of ψ and whose arcs connect boundary
chains that are related. If this graph has more than one connected component,
we can bound the number of arrows separately for each component, and so in
the following we can assume that all boundary chains are (directly or indirectly)
related.

v

u2

u1

ψ

ξ

e ζ

v

u2

u1

ψ

ξ

e ζ

Fig. 3. Building a bridge between ξ and ζ

Consider two related boundary chains ξ and ζ. By assumption there must be
an arrow e, starting at a vertex v ∈ ξ, and ending in an edge u1u2 of ζ. We create
a new vertex z on ζ at the intersection point of e and u1u2, split the boundary
edge u1u2 into two edges u1z and zu2, and insert the two new boundary edges vz
and zv, see Figure 3. This operation has increased the complexity of ψ by three.
Note that some arrows of ψ might be crossing the new boundary edges—these
arrows will now be shortened, and end on the new boundary edge.

The two boundary chains ξ and ζ have now merged into a single boundary
chain. In effect, we have turned an arrow into a “bridge” connecting two bound-
ary chains. No fan crossing is created, since all edges and arrows already existed.
We do create a new vertex z, but no arrow starts in z, and so this vertex cannot
cause a fan crossing.

We insert p − 1 bridges in total and connect all p boundary chains. In this
manner, we end up with a face ϕ whose boundary is a single chain consisting of
m′ = m+ 3(p− 1) edges.

If m′ = 3, then ϕ has at most one arrow, by Observation 1. This case happens
only for m = 3 and p = 1, and is the only case where the bound is tight.
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If m′ > 3, then we can apply Lemma 1 to argue that ϕ has at most 2m′ − 8
long arrows. To count the short arrows, we observe that the vertex z created in
the bridge-building process cannot be the witness of a short arrow: such a short
arrow would imply a fan crossing in the original face ψ. It is also not the starting
point of any arrow.

It follows that building a bridge increases the number of possible witnesses
by only one (the vertex v now appears twice on the boundary chain). There are
thus at most m+ p− 1 possible witnesses in ϕ. However, if all of these vertices
are witnesses, then there is no arrow at all, and so there are at most m+ p− 2
short arrows.

Finally, we converted p − 1 arrows of ψ into bridges to create ϕ. The total
number of arrows of ψ is therefore at most

2m′ − 8 + (m+ p− 2) + (p− 1) = 2(m+ 3p− 3)− 8 + (m+ p− 2) + (p− 1)

= 3m+ 8p− 17. 	


For reasons of space we have to omit the characterization of extremal fan-crossing
free graphs and the lower bounds in this extended abstract. We state the follow-
ing lemma:

Lemma 5. A fan-crossing free graph G with 4n − 8 edges contains a planar
graph Q on its vertex set, where each face of Q is a quadrilateral. G is obtained
from Q by adding both diagonals for each face of Q.

Lemma 5 implies the bound for straight-line graphs:

Lemma 6. A fan-crossing free graph drawn with straight edges has at most
4n− 9 edges. This bound is tight for n � 6.

Finally, we can give tight lower-bound constructions for every value of n.

Lemma 7. Extremal fan-crossing free graphs with 4n− 8 edges exist for n = 8
and all n � 10. For n ∈ {7, 9}, extremal fan-crossing free graphs have 4n − 9
edges.

4 The General Bound

We now prove Theorem 2. The proof makes use of the following lemma by Pach
et al. [12]:

Lemma 8 ([12, Theorem 2.1]). Let G be a graph with n vertices of de-
gree d1, . . . , dn and crossing number χ. Then there is a subset E of b edges
of G such that removing E from G creates components of size at most 2n/3, and

b2 � (1.58)2
(
16χ+

n∑
i=1

d2i
)
.
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Proof (of Theorem 2). Let G be a graph on n vertices with m edges having
property P∗. Since each edge e crosses a graph that has property P , the crossing
number of G is at most χ � O(mn1+α). The degree of any vertex is bounded
by n− 1, and so we have d2i � n · di. It follows using Lemma 8 that there exists
a set E of b edges in G such that

b2 � O(χ+

n∑
i=1

d2i ) � O(mn1+α + n

n∑
i=1

di) � O(mn1+α +mn) � O(mn1+α),

and removing E from G results in components of size at most 2n/3.
We recursively subdivide G. Level 0 of the subdivision is G itself. We obtain

level i+1 from level i by decomposing each component of level i using Lemma 8.
Consider a level i. It consists of k components G1, . . . , Gk. Component Gj has

nj vertices and mj edges, where nj � (23 )
in. The total number of edges at level i

is r =
∑k

j=1mj .
Using the Cauchy-Schwarz inequality for the vectors

√
mj ,

√
nj , we have

k∑
j=1

√
mjnj �

√√√√ k∑
j=1

mj

√√√√ k∑
j=1

nj =
√
rn �

√
mn.

We first consider the case α > 0. The number of edges needed to subdivide Gj

is O(
√
mjn

1+α
j ). We bound this using nj � (23 )

in as O(
√
mjnj((

2
3 )

in)α/2), and

we obtain that the total number of edges removed between levels i and i + 1 is
bounded by O(

√
mn((23 )

in)α/2). Since ( 23 )
α/2 < 1, summing over all levels results

in a geometric series, and so the total number of edges removed is O(
√
mn1+α).

But this implies that the total number of edges in the graph is bounded as

m � O(
√
mn1+α),

and squaring both sides and dividing by m results in

m � O(n1+α).

Next, consider the case α = 0. The number of edges removed between levels i
and i+ 1 is bounded by O(

√
mn). Adding over all O(log n) levels shows that

m � O(
√
mn logn).

Again, squaring and dividing by m leads to

m � O(n log2 n). 	


5 Conclusions

A natural next question to ask is if our techniques can be used for graphs that
do not contain a radial (p, q)-grid, for other values of p and q, and if we can find
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tighter bounds than Pach et al. [10]. It is not difficult to generalize our argument
to the case of graphs without radial (p, 1)-grids, but we do not seem to be able
to obtain tight bounds yet.

In Theorem 2, we have given a rather general bound on the number of edges of
graphs that exclude certain crossing patterns. The theorem shows that for graph
properties P that imply that the number of edges grows as Θ(n1+α), for α > 0,
the size of the entire graph is bounded by the same function. For the interesting
case α = 0, which arises for instance for fan-crossing free graphs, our bound
includes an extra log2 n-term. Is this term an artifact of our proof technique, or
are the examples of graph properties where P implies a linear number of edges,
but graphs with P∗ and a superlinear number of edges exist?

Acknowledgments. For helpful discussions, we thank Antoine Vigneron,
Yoshio Okamoto, and Shin-ichi Tanigawa, as well as the other participants of
the Korean Workshop on Computational Geometry 2011 in Otaru, Japan.
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Abstract. The game of cops and robber, introduced by Nowakowski and
Winkler in 1983, is played by two players on a graph G, one controlling k
cops and the other one robber, all positioned on VG. The players alternate
in moving their pieces to distance at most 1 each. The cops win if they
capture the robber, the robber wins by escaping indefinitely. The cop-
number of G, that is the smallest k such that k cops win the game, has
recently been a widely studied parameter.
Intersection graph classes are defined by their geometric represen-

tations: the vertices are represented by certain geometrical shapes and
two vertices are adjacent if and only if their representations intersect.
Some well-known intersection classes include interval and string graphs.
Various properties of many of these classes have been studied recently,
including an interest in their game-theoretic properties.
In this paper we show an upper bound on the cop-number of string

graphs and sharp bounds on the cop-number of interval filament graphs,
circular graphs, circular arc graphs and function graphs. These results
also imply polynomial algorithms determining cop-number for all these
classes and their sub-classes.

Keywords: intersection graphs, string graphs, interval filament graphs,
cop and robber, pursuit games, games on graphs.

1 Introduction

The Cops and Robber game on graphs has been introduced by Winkler and
Nowakowski [9] and independently by Quilliot [11]. In this paper, we investigate
this game on the classes of intersection graphs.

Rules of The Game. In this game two players alternate their moves. Player
One (called the Cops) places k cops in the graph that is the playground of the
game, i.e., the Cops chooses k vertices of the graph. Then Player Two (called
the Robber) chooses a vertex. Then the players alternate. In the Cops’ move,
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every cop either stays in its vertex or moves to one of its neighbors. More cops
may occupy the same vertex if they wish so. In the Robber’s move, the Robber
either stays in its vertex, or goes to a neighboring vertex. The game ends if a cop
occupies the same vertex as the robber, we say that the robber was captured in
such a case. The cop number of a graph G is the minimum number k such that
Player One has a winning strategy on G with k cops. For a given class of graphs,
the maximum cop number is the maximum cop number achieved by a graph of
this class (possibly +∞ if unbounded).

Known Results. Graphs of the cop number one were characterized already
by Quilliot [11]. These are the graphs whose vertices can be linearly ordered
v1, v2, . . . , vn so that each vi is a corner of G[v1, . . . , vi], i.e., vi has a neighbor
vj for j < i such that vj is adjacent to all other neighbors of vi.

For k part of the input, deciding whether the cop number of a graph does not
exceed has been shown to be NP-hard [3] and recently even PSPACE-hard [7]. It
is even EXPTIME-complete to decide whether the cops can capture the robber
if their initial positions (both for the cops and the robber) are given as part
of the input. We can test whether k cops suffice to capture the robber on an
n-vertex graph, we can search the game graph which has O(nk+1) vertices to
find a winning strategy for cops. So on the other hand if k is a fixed constant,
we get a polynomial-time algorithm.

Determining bounds on the cop number for special graph classes is a recently
intensively studied question. For general graphs on n vertices it is known that at
least

√
n cops may be needed (e.g., for the incidence graph of a finite projective

plane). On the other hand, the celebrated Meyniel’s conjecture states that the
cop number of a connected n-vertex graph is O(

√
n). For more details and results

see the recent book [2].
What one would like to see are large classes of graphs for which a fixed num-

ber of cops are always sufficient to capture the robber. Aigner and Fromme [1]
showed that the maximum cop number of planar graphs is 3. This result has
been generalized to bounded genus graphs by Quilliot [11] and Schroeder [12].
However, while for planar graphs the constant 3 is known to be the best possi-
ble, already for genus 1 the exact value of the maximum cop number of toroidal
graphs is not known.

Our Results. It has been asked at several occasions, last during the Banff
Workshop on Graph Searching in October 2012 whether intersection-defined
graph classes (other than interval graphs) have bounded maximum cop num-
bers. The classes in question have included circle graphs, intersection graphs of
disks in the plane, graphs of boxicity 2, and others. We solve the question in
affirmative in the most general way. Before stating the result let us note that
intersection graphs of arc-connected sets (i.e., intersection graphs of connected
regions bounded by closed simple Jordan curves) are of the main interest, as it
is known that every graph is an intersection graph of topologically connected
sets in the plane. Intersection graphs of regions are exactly intersection graphs
of curves in the plane, the so called string graphs [13]. See [8] for an overview of
the topic.
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Fig. 1. Known results and new results of this paper. The Hasse diagram depicts inclu-
sions between important classes of geometrically represented and intersection graphs.

For overview of results of this paper, see Fig. 1. Our main result is the following.

Theorem 1. Let G be a connected string graph. Then 30 cops have a strategy
to capture a robber in G.

The constant does not seem to be optimal but we answer the question by showing
that the maximum cop number of these classes are bounded. We prefer to keep
the proof readable and did not try to improve on this bound much.

From other graph classes that have been questioned we single out circle graphs,
the intersection graphs of chords of a circle. For them one cop is not enough as
they contain all cycles, but we prove that two cops always suffice. We prove this
in the setting of a much wider class of so called interval filament graphs.

Theorem 2. Let G be a connected interval filament graph on n vertices. Then
2 cops have a strategy to capture a robber in G in O(n) moves. Moreover,
there exist interval filament graphs such that a robber cannot be captured with a
single cop.

We note that the strategies of cops of both theorems are geometric, based on an
intersection representation of G; so without knowledge of a representation they
cannot be applied. If only the graph G is given, we cannot construct these rep-
resentation since recognition of both classes is known to be NP-complete [6,10].
Nevertheless, our bounds on the maximum cop number still apply and we can
determine in time O(nk+1) a winning strategy for the cops using the standard
algorithm searching the game space. Further, one can use our results as a rather
strange heuristic for testing whether the given graph is a string graph, or an
interval filament graph. If the cop-win number of a connected graph G is too
high, it cannot be represented by arc-connected sets in the plane.
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2 Definitions and Preliminaries

Let G = (V,E) be a graph. For a vertex v, we use the open neighborhood N(v) =
{u : uv ∈ E} and the closed neighborhood N [v] = N(v) ∪ {v}. Similarly for
V ′ ⊆ V , we put N [V ′] =

⋃
v∈V ′ N [v] and N(V ′) = N [V ′] \ V ′. For V ′ ⊆ V , we

denote by G|V ′ the subgraph of G induced by V ′.

Intersection Representations. An intersection representation of G is a map
ϕ : V → 2X for some ground set X such that the edges of G are prescribed by
intersections of the sets ϕ(v); formally, uv ∈ E if and only if ϕ(u) ∩ ϕ(v) �= ∅.
Given the (multi)set of the images of ϕ, the corresponding intersection graph is
uniquely defined up to isomorphism.

The ground set X and the images of ϕ are usually somehow restricted to get
a particulate intersection graph family. For example, to get the well-known class
of interval graphs, let X = R and require every ϕ(v) to be a closed interval.

A string graph is an intersection graph of a set of strings. We let X = R2 and
every ϕ(v) is required to be a finite curve, in this context called a string, that is
a continuous image of the interval [0, 1] to R2.

We also study a subclass of string graphs called interval filament graphs. An
interval filament graph is a string graph such that each interval filament ϕ(v) is a
continuous (x-monotone) function defined on [a, b] such that ϕ(v)(a) = ϕ(v)(b) =
0 and ϕ(v)(x) > 0 for all x ∈ (a, b). This class was introduced by Gavril [4] as a
generalisation of interval graphs on which his algorithm for weighted maximum
clique/independent set can be used. The connection with interval graphs is as
follows: Let ϕ(u) is a filament defined on [a, b] and ϕ(v) be filament defined
on [c, d]. If the intervals [a, b] and [c, d] are disjoint, then ϕ(u) cannot intersect
ϕ(v). If the intervals single overlaps, e.g. a < c < b < d, then the filaments
have to intersect. But if one interval is contained inside the other interval, e.g,
a < c < d < b, then there the filaments ϕ(u) and ϕ(v) might or might not
intersect. (Unlike in interval graphs where the edge/non-edge uv depends only
on intersection of [a, b] and [c, d].)

Assumptions on Representations. Let ϕ : V → 2R
2

be a string representa-
tion of G. Without loss of generality, we may assume that there is only a finite
number of string intersections in the representation, that strings never only touch
without either also crossing each other or at least one of them ending, that no
three or more strings meet at the same point and that no string self-intersects.
This follows from the fact that strings are compact subsets of the plane and
as such can replaced by piece-wise linear curves with finite numbers of linear
segments, for more details see [5]. We always assume these properties.

Regions. For a V ′ ⊆ V , let ϕ(V ′) =
⋃

v∈V ′ ϕ(v). Then ϕ(V ′) divides R2 into one
or more open regions which are the connected sets of R2 \ ϕ(V ′). Let A(ϕ(V ′))
be the set of these regions. Since we assume there are finitely many intersections,
the set A(ϕ(V ′)) is always finite throughout this paper. Let C(X) denote the
topological closure of a set X . We mostly use this operator on elements of some
A(ϕ(V ′)) to include the bounding curves.
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Meetings. Let π1 and π2 be curves (as continuous functions from [0, 1]). A
meeting of these curves are intervals I1, I2 ⊆ [0, 1] such that π1[I1] = π2[I2] and
this intersection has non-zero length. π1 and π2 meet if they have at least one
meeting. Note that one-point intersection (crossing) of curves is not a meeting.

3 Capturing Robber in Interval Filament Graphs

In this section, we establish a strategy for two cops to catch a robber in any
connected interval filament graph with a given representation ϕ. In other words,
we show that the cop-number of interval filament graphs is at most two. Since
interval filament graphs contain all cycles Cn, it is easy to see that one cop is not
sufficient. So we prove that two is the maximum cop number of interval filament
graphs.

We have several assumptions on the representation ϕ. First, all filaments have
only finitely many intersections. If a filament ϕ(u) is defined on [a, b], we call
a the left endpoint and b the right endpoint of ϕ(u). Another assumption is
that the filaments have pairwise distinct endpoints and the defining intervals are
always non-trivial.

In the description, we move the cops on the representation ϕ, and we say that
a cop takes a filament ϕ(u) if it is placed on the vertex u which this filament
represents. We shall assume that the robber never moves into the neighborhood
of a vertex taken by a cop, and a cop catches the robber immediately if he stands
on a neighboring vertex.

Filaments and Regions. It is important that each filament splits the half-plane
into two regions: the top region and the bottom region. We say that a filament
ϕ(u) is nested in a filament ϕ(v) if ϕ(u) is contained in the bottom region of
ϕ(v). We say that the robber is/moves/stays in a region if he is/moves/stays in
a filament contained in this region. The robber is confined by ϕ(u) if a cop takes
ϕ(u) and the robber is in the bottom region of ϕ(u).

Lemma 3. Suppose that the robber is confined in ϕ(u). Then he stays in the
bottom region of ϕ(u) until the cops moves from ϕ(u).

Proof. This is obvious since to move from one region to another, the robber has
to use a filament ϕ(v) which crosses ϕ(u). But then v is a neighbor of u, and the
cop catches the robber. 	


A filament ϕ(u) is called top in x if it maximizes the value ϕ(v)(x) over all
filaments v defined for x. Suppose that � is the left-most and r is the right-most
endpoint of the representation. We have a sequence of top filaments {ϕ(ti)}ki=1

as we traverse from � to r. We note that one filament can appear several times
in this sequence. See Fig. 2 for an example.

Let ϕ(ti) be top in xi. Each filament ϕ(ti) together with the upward ray
starting at

(
xi, ϕ(ti)(xi)

)
separates the half-plane into three regions: the left

region, the bottom region and the right region. The key property is that there is
no filament intersecting the left and right regions, and avoiding ϕ(ti).
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ϕ(t1)

ϕ(t2)ϕ(t3)

ϕ(t4)

ϕ(t5) ϕ(t6)

ϕ(t7)

Fig. 2. An example of a sequence of top filaments. Only the top part of each ϕ(ti) is
depicted in bold.

Lemma 4. Suppose that a cop stands on ϕ(ti) and the robber is in the right
region. If the cop moves to the neighboring ϕ(tj) with the maximal index j, the
robber cannot move to the left region of ϕ(tj).

Proof. Since ϕ(ti) on [a, b] intersects ϕ(tj) on [c, d] and j is maximal, we have
a < c < b < d. Suppose that the cop moves from ϕ(ti) to ϕ(tj) and the robber
stands on a filament ϕ(u) defined on [e, f ]. We know that c < b < e < f , so
ϕ(u) does not intersect the left region of ϕ(tj). And since ϕ(tj) is top, there is
no path going to the left region which avoids ϕ(tj). So the robber cannot move
there. 	


Theorem 2. We are ready to prove that the maximum cop number of interval
filament graphs is equal two.

Proof (Theorem 2). We already argued that two cops are necessary for some
interval filament graphs. We now describe a strategy how to catch a robber with
two cops. We call one cop the guard, and the other one the hunter. The guard
stays on one filaments ϕ(u) such that the robber is confined by it; so according
Lemma 3, the robber can only move in the bottom region of ϕ(u). The guard
stays on ϕ(u) till the robber is either caught by the hunter, or confined by the
hunter in some filament ϕ(v) nested in ϕ(u). If the confinement happens, the
guard moves to the filament ϕ(v) taken by the hunter, and then the hunter
proceeds with catching the robber inside the bottom region of ϕ(v).

So the strategy catches the robber in phases, and each phase starts by the
guard cofining the robber by taking some filament ϕ(u) and ends by the guard
moving to a nested filament ϕ(v). In the beginning, both cops stand at any
filament. For the initial phase, we can imagine that the guard takes some imag-
inary filament in infinity, so the robber is confined to its bottom region, i.e., to
the entire graph G. The guard can move arbitrarily, or just stand at his initial
position.

Suppose that we are in some phase where the guard is placed on ϕ(u). Since
the guard stays there till the robber is confined in some nested ϕ(v), the strategy
ensures that the robber can never move to or through ϕ(u) and all filaments
which are contained in the top region of ϕ(u) or intersect ϕ(u) without being
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cauptured. We remove these vertices from the graph and additionaly, if the
resulting graph contains multiple components, we remove all of them except
the one containing the robber, as the robber would have to move to one of the
already removed vertices to get there, getting captured in the process. We call
this a simplified representation. It is important that as we remove these filaments
for the movements of the robber, the graph does not become disconnected and
the hunter and the guard can still use them to travel towards the robber.

Let {ϕ(ti)}ki=1 be the sequence of top intervals in the simplified representation.
The hunter first goes to ϕ(t1). When he arrives to ϕ(t1), the robber cannot be in
the left region of ϕ(t1) since there is no filament contained there. Now suppose
that the hunter is in ϕ(ti) and assume the induction hypothesis that the robber
is not in the left region of ϕ(ti). If the robber is confined in ϕ(ti), the phase ends
with the guard moving towards ϕ(ti). If the robber is in the right region of ϕ(ti),
the hunter moves to the neighbor ϕ(tj) of the maximal index j. According to
Lemma 4, the robber cannot move to the left region of ϕ(ti+1), so he is either
in the bottom or the right region. The robber cannot stay in the right regions
forever since ϕ(tk) has no filament contained in the right region, so after some
time it is confined in ϕ(ti) or caught directly.

Since there are only finitely many filaments nested in each other, the strat-
egy proceeds in finitely many phases and the robber is caught. With a small
modification, we can prove that this strategy catches the robber in O(n) turns.
Suppose that initially both cops are placed in the filament with the left-most
endpoint �.

It is sufficient to notice that in each turn only one cop moves, and if the
cops use always shortest paths, they never visit any vertex of the graph more
twice. To see this, suppose that both cops are on ϕ(u) in the beginning of a
phase. Then it takes several moves to get to the simplified representation to
either ϕ(t1), or ϕ(tk), and at most k moves to get to ϕ(t1). Then the hunter
confines the robber in ϕ(ti) in at most k moves, and the guard gets there in at
most k moves. It is important that in further phases the cops only move in the
simplified representation in the bottom region of ϕ(ti), except for the filaments
used to get into the simplified representation (which are used at most two times
by each cop). 	


4 Guarding Paths and Curves in String Graphs

Shortest Paths. We recall a lemma by Aigner and Fromme [1] giving us a
strategy to prevent the robber to enter any given shortest path using only one
cop in general graphs.

Lemma 5 (Lemma 4 in [1]). Let G be a graph, and P = u = p0, p1, . . . , pk = v
be any shortest u − v path. Then a single cop C can, after a finite number of
moves (used to move cop C to an appropriate position on P ), prevent the robber
from entering P . That is, if the robber ever moved on P , he would be captured
in the next move.
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This result turned out to be particularly useful for planar graphs where one
can cut the graph by protecting several shortest paths. For intersection graph,
this is not true, and so we need a more general result. We show that in general
graphs we can also protect the neighbourhood of a given shortest path using five
cops. We note that this result may be of independent interest. The proof of the
theorem is in the full version.

Lemma 6. Let G be a graph, and P be any shortest u− v path. Then five cops
C−2, C−1, C0, C1, C2 can, after a finite number of initial moves (used to move
the cops to appropriate positions on P ), prevent the robber from entering N [P ],
i.e., capture the robber when he moves onto P or its neighbourhood.

In the case five cops play as in the Lemma, we say that P is guarded by the five
cops. In the following discussion, when we say “start protecting a path”, we do
not explicitly mention the initial time required to position the five cops onto the
path and assume that the strategy waits for enough turns.

Shortest Curves. Since our strategy for string graphs is geometric, we intro-
duce a geometric concept of shortest curves as particular curves through the
string representation of a shortest path.

Let G be a string graph together with a fixed string representation ϕ, and P
be any shortest u − v path. Suppose that we choose two points πu ∈ ϕ(u) and
πv ∈ ϕ(v). Let πuv ⊆ ϕ(P ) be a curve from πu to πv such that for every p ∈ P
it has a connected intersection with φ(p). We call πuv a shortest curve of P with
endpoints πu and πv. A curve π is called a shortest curve if it is a shortest curve
of some shortest path.

The shortest path corresponding to a shortest curve π is actually uniquely
defined by the sequence of strings that intersect π on a substring of non-zero
length. To guard a shortest curve π means to guard its corresponding shortest
path. The number of its strings is the length of π; the geometric length of π
plays no role in this paper.

Corollary 7. Let G be a string graph together with a string representation ϕ
and let π be a shortest curve. Then five cops can (after a finite number of initial
moves) prevent the robber from entering any string intersecting π.

Proof. Let P be the shortest path such that π is a shortest curve of P . By
guarding P , the cops prevent the robber to enter N [P ]. 	


Lemma 8. Any continuous part of a shortest curve is also a shortest curve.

Proof. This follows from the fact that any sub-path of a shortest path is also a
shortest path. 	


Lemma 9. If two shortest curves π1 and π2 meet more than once, part of π2
can be re-routed via π1 such that they meet only once.

Proof. Every meeting implies shared vertices. Let u be the first and v the last
shared vertex when going along π2, denote πu the start of the meeting on u and
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πv the end of the meeting on v. Then let π′2 consist of the initial part of π2 up to
πu, then the part of π1 between πu and πv, and then again π2 from πv onward.
The length of π′2 is not larger than that of π2 since the lengths of the u − v
sub-paths under π1 and π2 must be the same. 	


5 Capturing Robber in String Graphs

In this section we show that the number of cops sufficient to capture a rob-
ber on a connected string graphs is bounded. Note that this is not the case
for disconnected graphs, since at least one cop is needed for every component
(as the robber could otherwise choose a cop-free component after the cops are
positioned).

Before we prove Theorem 1, we define a graph restricted to a region and show
how can we use a strategy for a situation in the restricted graph for a related
situation in the original graph.

Given a region B ⊂ R2, let G|B be the intersection graph G′ of the curves
of ϕ restricted to B. This operation may remove vertices (entire strings outside
B), remove edges (crossings outside B) and it also splits each vertex v whose
string ϕ(v) leaves and then reenters B at least once. In the last case, every arc-
connected part of ϕ(v)∩B spans a new vertex vi. The new vertices are also called
the splits of v. The new graph is again a string graph with representation ϕ|B
directly derived from ϕ. Note that this operation preserves the representation
properties assumed above and we only use it with closed B yielding finite graphs.

Lemma 10. If there is a cop’s strategy S ′ capturing a robber in G′ with a closed
curve π guarded while never letting him leave R ⊆ VG′ and G′ is obtained from
G by removing vertices, removing edges not ending in R and splitting vertices
not in R, there is a strategy S for the same number of cops capturing the robber
on G with π guarded while never letting him leave R.

Proof. The strategy S plays out as S ′ except when S ′ wants to move a cop to
a split vi ∈ VG′ of v ∈ VG, move the cop to v. All such moves are possible and
robber’s choices while in R are not extended in any way. When the robber leaves
R from u ∈ R to v which is split in G′, S plays as if the robber moved to one of
the splits adjacent to r and captures him immediately. 	


Proof (Theorem 1). Let ϕ be a string representation of G. We denote the strings
entirely contained within R by VR = {v ∈ V | ϕ(v) ⊆ R}.

We prove the following claim by induction on |A(ϕ(V ))|, that is the number
of regions of the representation, with the base case |A(ϕ(V ))| ≤ 2 trivially won
for the cops.

Note that with some additional technical assumptions, we could use an
induction-like argument on the area of the region Sabc defined by a simple closed
curve πabc as in the claim since the area always decreases by at least the area of
the smallest region of A(ϕ(V )) and the base case can be estabilished for regions
with the area smaller than the smallest region of A(ϕ(V )).
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Fig. 3. Situations in the claim in proof of Theorem 1. Left: The claim assumptions. The
shortest curves πab, πbc and πca are dotted, the strings of the corresponding shortest
paths Pab, Pbc and Pc′a′ are thicker. Note that Pab and Pbc share the vertex b while
the endpoints c and c′ of Pbc and Pc′a′ are only adjacent. Right: The main idea of the
inductive proof. Note that the interaction of the curves can be much more complicated.

Claim. Assume the following game state on a connected graph G with a string
representation ϕ. The cops guard three shortest curves πab, πbc and πca (with
5 cops each), the remaining 15 cops are positioned arbitrarily. The curves form
a triangle with corners πa, πb and πc, the curve πab goes from πa to πb, πbc
from πb to πc and πca from πc to πa. The curves are disjoint except for their
endpoints. Denote πabc = πab ∪ πbc ∪ πca the simple closed curve and denote the
open region inside it Sabc. Additionally, ϕ(V ) ⊆ C(Sabc), that is all the strings
of G are inside or touch Sabc in their entire length.

The robber is on r ∈ V with ϕ(r) disjoint from πabc and with ϕ(r) ⊆ Sabc.
See Fig. 3 for an illustration. In this case, 30 cops have a strategy to capture the
robber such that they never let the robber leave Sabc.
The proof of the claim is presented in the full version of this paper. The main
idea is to choose d ∈ V ′ and πd ∈ ϕ(d) together with shortest curves πad, πbd
and πcd and guard them with 15 cops. Then the robber will be in one of the
regions of A(πabc ∪ πad ∪ πbd ∪ πcd) and we choose three sub-strings bounding
this region and then use the induction assumption. See Fig. 3 for an illustration.
The complication of the proof are the many ways the curves πad, πbd and πcd
may interact.

Now we need to satisfy the conditions of the claim. If G is a tree, one cop is
enough to capture the robber. Otherwise, let C be any shortest cycle in G and
choose shortest curves πab, πbc and πca in ϕ(C) to form a simple cycle and let
Sabc be the region inside πabc = πab ∪ πbc ∪ πca. Start the game with 15 cops
guarding πab, πbc and πca.

In case the robber is inside πabc, apply the claim on G|C(Sabc) with πab, πbc
and πca guarded. In case the robber is outside πabc, apply circular inversion on
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ϕ to obtain ϕ′ with the robber inside π′abc (which is the inverted image of πabc
and has interior S′efg) and apply the claim on G|C(S′

efg)
with πef , πfg and πge

guarded and using the representation ϕ′. 	


6 Conclusions

We showed the sharp bound on cop-number for circle, circular arc, function
and interval filament graphs and a fixed upper bound for string graphs (and
therefore all subclasses of string graphs). It still remains to decide whether other
intersection classes have bounded cop-number, such as bounded boxiciy graphs.
Boxicity k graphs are intersection graphs of axis-aligned boxes in Rk. Another
direction is improving the bounds for string graphs, outer string graphs, etc.

References

1. Aigner, M., Fromme, M.: Game of cops and robbers. Discrete Appl. Math. 8(1),
1–12 (1984)

2. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Society (2011)

3. Fomin, F.V., Golovach, P.A., Kratochv́ıl, J., Nisse, N., Suchan, K.: Pursuing a fast
robber on a graph. Theor. Comput. Sci. 411(7-9), 1167–1181 (2010)

4. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Inf. Process. Lett. 73(5-6), 181–188 (2000)
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Abstract. We show that every n-vertex planar graph admits a simultaneous em-
bedding with no mapping and with fixed edges with any (n/2)-vertex planar
graph. In order to achieve this result, we prove that every n-vertex plane graph
has an induced outerplane subgraph containing at least n/2 vertices. Also, we
show that every n-vertex planar graph and every n-vertex planar partial 3-tree
admit a simultaneous embedding with no mapping and with fixed edges.

1 Introduction
Simultaneous embedding is a flourishing area of research studying topological and ge-
ometric properties of planar drawings of multiple graphs on the same point set. In the
seminal paper in the area by Braß et al. [7], two types of simultaneous embedding are
defined, namely with mapping and with no mapping. In the former variant, a bijective
mapping between the vertex sets of any two graphs G1 and G2 to be drawn is part of
the problem’s input, and the goal is to construct a planar drawing of G1 and a planar
drawing ofG2 so that corresponding vertices are mapped to the same point. In the latter
variant, the drawing algorithm is free to map any vertex of G1 to any vertex of G2 (still
the n vertices of G1 and the n vertices of G2 have to be placed on the same n points).
Simultaneous embeddings have been studied with respect to two different drawing stan-
dards: In geometric simultaneous embedding, edges are required to be straight-line seg-
ments. In simultaneous embedding with fixed edges (also known as SEFE), edges can be
arbitrary Jordan curves, but each edge that belongs to two graphs G1 and G2 has to be
represented by the same Jordan curve in the drawing of G1 and in the drawing of G2.

Many papers deal with the problem of constructing geometric simultaneous embed-
dings and simultaneous embeddings with fixed edges of pairs of planar graphs in the
variant with mapping. Typical considered problems include: (i) determining notable
classes of planar graphs that always or not always admit a simultaneous embedding;
(ii) designing algorithms for constructing simultaneous embeddings within small area
and with few bends on the edges; (iii) determining the time complexity of testing the
existence of a simultaneous embedding for a given set of graphs. We refer the reader to
the recent survey by Blasiüs, Kobourov, and Rutter [4].

In contrast to the large number of papers dealing with simultaneous embedding with
mapping, little progress has been made on the no mapping version of the problem.
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Braß et al. [7] showed that any planar graph admits a geometric simultaneous em-
bedding with no mapping with any number of outerplanar graphs. They left open the
following attractive question: Do every two n-vertex planar graphs admit a geometric
simultaneous embedding with no mapping?

In this paper we initiate the study of simultaneous embeddings with fixed edges and
no mapping (SEFENOMAP ). In this setting, the natural counterpart of the Braß et al. [7]
question reads as follows: Do every two n-vertex planar graphs admit a SEFENOMAP ?

Since answering this question seems to be an elusive goal, we tackle the following
generalization of the problem: What is the largest k ≤ n such that every n-vertex
planar graph and every k-vertex planar graph admit a SEFENOMAP ? That is: What is
the largest k ≤ n such that every n-vertex planar graph G1 and every k-vertex planar
graph G2 admit two planar drawings Γ1 and Γ2 with their vertex sets mapped to point
sets P1 and P2, respectively, so that P2 ⊆ P1 and so that if edges e1 of G1 and e2 of
G2 have their end-vertices mapped to the same two points pa and pb, then e1 and e2 are
represented by the same Jordan curve in Γ1 and in Γ2? We prove that k ≥ n/2:

Theorem 1. Every n-vertex planar graph and every (n/2)-vertex planar graph have a
SEFENOMAP .

Observe that the previous theorem would be easily proved if n/2 were replaced with
n/4: First, consider an (n/4)-vertex independent set I of any n-vertex planar graph
G1 (which always exists, as a consequence of the four color theorem [11,12]). Then,
construct any planar drawing Γ1 of G1, and let P (I) be the point set on which the ver-
tices of I are mapped in Γ1. Finally, construct a planar drawing Γ2 of any (n/4)-vertex
planar graph G2 on point set P (I) (e.g. using Kaufmann and Wiese’s technique [10]).
Since I is an independent set, any bijective mapping between the vertex set of G2 and
I ensures that G1 and G2 share no edges. Thus, Γ1 and Γ2 are a SEFENOMAP of G1

and G2.
In order to get the n/2 bound, we study the problem of finding a large induced

outerplane graph in a plane graph. A plane graph is a planar graph together with a
plane embedding, that is, an equivalence class of planar drawings, where two planar
drawings Γ1 and Γ2 are equivalent if: (1) each vertex has the same rotation scheme in
Γ1 and in Γ2, i.e., the same clockwise order of the edges incident to it; (2) each face has
the same facial cycles in Γ1 and in Γ2, i.e., it is delimited by the same set of cycles; and
(3) Γ1 and Γ2 have the same outer face. An outerplane graph is a graph together with an
outerplane embedding, that is a plane embedding where all the vertices are incident to
the outer face. An outerplanar graph is a graph that admits an outerplane embedding;
a plane embedding of an outerplanar graph is not necessarily outerplane. Consider a
plane graph G and a subset V ′ of its vertex set. The induced plane graph G[V ′] is the
subgraph of G induced by V ′ together with the plane embedding inherited fromG, i.e.,
the embedding obtained from the plane embedding of G by removing all the vertices
and edges not in G[V ′]. We show the following result:

Theorem 2. Every n-vertex plane graphG(V,E) has a vertex set V ′ ⊆ V with |V ′| ≥
n/2 such that G[V ′] is an outerplane graph.

Theorem 2 and the results of Gritzmann et al. [8] yield a proof of Theorem 1, as follows:
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Fig. 1. (a) A 10-vertex planar graph G1 (solid lines) and a 5-vertex planar graph G2 (dashed
lines). A 5-vertex induced outerplane graph G1[V

′] in G1 is colored black. Vertices and edges
of G1 not in G1[V

′] are colored gray. (b) A straight-line planar drawing Γ (G2) of G2 with no
three collinear vertices, together with a straight-line planar drawing of G1[V

′] on the point set
P2 defined by the vertices of G2 in Γ (G2). (c) A SEFENOMAP of G1 and G2.

Proof of Theorem 1: Consider any n-vertex plane graph G1 and any (n/2)-vertex
plane graph G2 (see Fig. 1(a)). Let Γ (G2) be any straight-line planar drawing of G2

in which no three vertices are collinear. Denote by P2 the set of n/2 points to which
the vertices of G2 are mapped in Γ (G2). Consider any vertex subset V ′ ⊆ V (G1)
such that G1[V

′] is an outerplane graph. Such a set exists by Theorem 2. Construct
a straight-line planar drawing Γ (G1[V

′]) of G1[V
′] in which its vertices are mapped

to P2 so that the resulting drawing has the same (outerplane) embedding as G1[V
′].

Such a drawing exists by results of Gritzmann et al. [8]; also it can found efficiently by
results of Bose [6] (see Fig. 1(b)). Construct any planar drawing Γ (G1) of G1 in which
the drawing of G1[V

′] is Γ (G1[V
′]). Such a drawing exists, given that Γ (G1[V

′]) is a
planar drawing of a plane subgraph G1[V

′] of G1 preserving the embedding of G1[V
′]

in G1 (see Fig. 1(c)). Both Γ (G1) and Γ (G2) are planar, by construction. Also, the
only edges that are possibly shared by G1 and G2 are those between two vertices that
are mapped to P2. However, such edges are drawn as straight-line segments both in
Γ (G1) and in Γ (G2). Thus, Γ (G1) and Γ (G2) are a SEFENOMAP of G1 and G2. �
By the standard observation that the vertices in the odd (or even) levels of a breadth-
first search tree of a planar graph induce an outerplanar graph, we know that G has
an induced outerplanar graph with at least n/2 vertices. However, since its embedding
in G may not be outerplane, this seems insufficient to prove the existence of a SE-
FENOMAP of every n-vertex and every (n/2)-vertex planar graph.

Theorem 2 might be of independent interest, as it is related to (in fact it is a weaker
version of) one of the most famous and long-standing graph theory conjectures:

Conjecture 1. (Albertson and Berman 1979 [2]) Every n-vertex planar graph G(V,E)
has a vertex set V ′ ⊆ V with |V ′| ≥ n/2 such that G[V ′] is a forest.

Conjecture 1 would prove the existence of an (n/4)-vertex independent set in a pla-
nar graph without using the four color theorem [11,12]. The best known partial result
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(a) (b) (c)

Fig. 2. (a) A maximal plane graph G with outerplanarity 4. (b) Graphs G[V1] (on the top) and
G[V2] (on the bottom). (c) Graphs G[V3] (on the top) and G[V4] (on the bottom).

related to Conjecture 1 is that every planar graph has a vertex subset with 2/5 of its ver-
tices inducing a forest, which is a consequence of the acyclic 5-colorability of planar
graphs [5]. Variants of the conjecture have also been studied such that the planar graph
in which the induced forest has to be found is bipartite [1], or is outerplanar [9], or such
that each connected component of the induced forest is required to be a path [14,15].

The topological structure of an outerplane graph is arguably much closer to that of
a forest than the one of a non-outerplane graph. Thus the importance of Conjecture 1
may justify the study of induced outerplane graphs in plane graphs in its own right.

To complement the results of the paper, we also show the following:

Theorem 3. Every n-vertex planar graph and every n-vertex planar partial 3-tree have
a SEFENOMAP .

Because of space limitations, some proofs are omitted or sketched. Complete proofs
can be found in the full version of the paper [3].

2 Proof of Theorem 2
In this section we prove Theorem 2. We assume that the input graph G is a maximal
plane graph, that is, a plane graph such that no edge can be added to it while maintaining
planarity. In fact, if G is not maximal, then dummy edges can be added to it in order
to make it a maximal plane graph G′. Then, the vertex set V ′ of an induced outerplane
graph G′[V ′] in G′ induces an outerplane graph in G, as well.

Let G∗1 = G and, for any i ≥ 1, let G∗i+1 be the plane graph obtained by removing
from G∗i the set Vi of vertices incident to the outer face of G∗i and their incident edges.
Vertex set Vi is the i-th outerplane level of G. Denote by k the maximum index such
that Vk is non-empty; then k is the outerplanarity ofG. For any 1 ≤ i ≤ k, graphG[Vi]
is a (not necessarily connected) outerplane graph and graph G∗i is a (not necessarily
connected) internally-triangulated plane graph, that is, a plane graph whose internal
faces are all triangles. See Fig. 2. For 1 ≤ i ≤ k, denote by H∗i,1, . . . , H

∗
i,hi

the con-
nected components of G∗i and, for 1 ≤ j ≤ hi, denote by Hi,j the outerplane graph
induced by the vertices incident to the outer face of H∗i,j . Since G is maximal, for any
1 ≤ i ≤ k and for any internal face f of G[Vi], at most one connected component of
G∗i+1 lies inside f .

A 2-coloring ψ = (W ∗, B∗) of a graph H∗ is a partition of the vertex set V (H∗)
into two sets W ∗ and B∗. We say that the vertices in W ∗ are white and the ones in
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Fig. 3. (a) A connected internally-triangulated plane graph H∗ with a 2-coloring ψ, (b) the block-
cutvertex tree BC(H∗), and (c) the contracted block-cutvertex tree CBC(H∗, ψ)

B∗ are black. Given a 2-coloring ψ = (W ∗, B∗) of a plane graph H∗, the subgraph
H∗[W ∗] of H∗ is strongly outerplane if it is outerplane and it contains no black vertex
inside any of its internal faces. We define the surplus of ψ as s(H∗, ψ) = |W ∗| − |B∗|.

A cutvertex in a connected graph H∗ is a vertex whose removal disconnects H∗.
A maximal 2-connected component of H∗, also called a block of H∗, is an induced
subgraph H∗[V ′] of H∗ such that H∗[V ′] is 2-connected and there exists no V ′′ ⊆
V (H∗) where V ′ ⊂ V ′′ and H∗[V ′′] is 2-connected. The block-cutvertex tree BC(H∗)
of H∗ is a tree that represents the arrangement of the blocks of H∗ (see Figs. 3(a)
and 3(b)). Namely, BC(H∗) contains a B-node for each block of H∗ and a C-node for
each cutvertex of H∗; further, there is an edge between a B-node b and a C-node c
if c is a vertex of b. Given a 2-coloring ψ = (W ∗, B∗) of H∗, the contracted block-
cutvertex tree CBC(H∗, ψ) of H∗ is the tree obtained from BC(H∗) by identifying all
the B-nodes that are adjacent to the same black cut-vertex c, and by removing c and
its incident edges (see Fig. 3(c)). Each node of CBC(H∗, ψ) is either a C-node c or
a BU-node b. In the former case, c corresponds to a white C-node in BC(H∗). In the
latter case, b corresponds to a maximal connected subtree BC(H∗(b)) of BC(H∗) only
containing B-nodes and black C-nodes. The subgraph H∗(b) of H∗ associated with a
BU-node b is the union of the blocks of H∗ corresponding to B-nodes in BC(H∗(b)).
Finally, we denote byH(b) the outerplane graph induced by the vertices incident to the
outer face of H∗(b). We have the following:

Lemma 1. For any 1 ≤ i ≤ k and any 1 ≤ j ≤ hi, there exists a 2-coloring ψ =
(W ∗

i,j , B
∗
i,j) of H∗i,j such that:

(1) the subgraphH∗i,j [W
∗
i,j ] of H∗i,j induced by W ∗

i,j is strongly outerplane; and
(2) for any BU-node b in CBC(H∗i,j , ψ), one of the following holds:

(a) s(H∗i,j(b), ψ) ≥ |W ∗
i,j ∩ V (Hi,j(b))|+ 1;

(b) s(H∗i,j(b), ψ) = |W ∗
i,j ∩ V (Hi,j(b))| and there exists an edge with white end-

vertices incident to the outer face of H∗i,j(b); or
(c) s(H∗i,j(b), ψ) = 1 and H∗i,j(b) is a single vertex.

Lemma 1 implies Theorem 2 as follows: SinceG is a maximal plane graph,G∗1 has one
2-connected component, hence H∗1,1(b) = H∗1,1 = G∗1 = G. By Lemma 1, there exists
a 2-coloring ψ = (W,B) of G such thatG[W ] is an outerplane graph and |W | − |B| ≥
|W ∩ V1| ≥ 0, hence |W | ≥ n/2.
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We emphasize that Lemma 1 shows the existence of a large induced subgraph
H∗i,j [W

∗
i,j ] of H∗i,j satisfying an even stronger property than just being outerplane;

namely, the 2-coloring ψ = (W ∗
i,j , B

∗
i,j) is such that H∗i,j [W

∗
i,j ] is outerplane and con-

tains no vertex belonging to B∗i,j in any of its internal faces.
In order to prove Lemma 1, we start by showing some sufficient conditions for a

2-coloring to induce a strongly outerplane graph inH∗i,j . We first state a lemma arguing
that a 2-coloring ψ of H∗i,j satisfies Condition (1) of Lemma 1 if and only if it satisfies
the same condition “inside each internal face” ofHi,j . For any face f ofHi,j , we denote
by Cf the cycle delimiting f ; also, we denote by H∗i,j [W

∗
i,j(f)] the subgraph of H∗i,j

induced by the white vertices inside or belonging to Cf .

Lemma 2. Let ψ = (W ∗
i,j , B

∗
i,j) be a 2-coloring ofH∗i,j . Assume that, for each internal

face f of Hi,j , graphH∗i,j [W
∗
i,j(f)] is strongly outerplane. Then, H∗i,j [W

∗
i,j ] is strongly

outerplane.

An internal face f of Hi,j is empty if it contains no vertex of G∗i+1 in its interior. Also,
for a 2-coloringψ ofH∗i,j , an internal face f ofHi,j is trivial if it contains in its interior
a connected componentH∗i+1,k of G∗i+1 that is a single white vertex or such that all the
vertices incident to the outer face of H∗i+1,k are black. We have the following.

Lemma 3. Let ψ = (W ∗
i,j , B

∗
i,j) be a 2-coloring of H∗i,j and let f be a trivial face of

Hi,j . Let H∗i+1,k be the connected component of G∗i+1 in f ’s interior. If H∗i+1,k[W
∗
i,j ]

is strongly outerplane and if Cf contains at least one black vertex, then H∗i,j [W
∗
i,j(f)]

is strongly outerplane.

We now prove Lemma 1 by induction on the outerplanarity of H∗i,j .
In the base case, the outerplanarity of H∗i,j is 1; then, color white all the vertices

of H∗i,j . Since the outerplanarity of H∗i,j is 1, then H∗i,j [W
∗
i,j ] = H∗i,j is an outer-

plane graph, thus satisfying Condition (1) of Lemma 1. Also, consider any BU-node
b in the contracted block-cutvertex tree CBC(H∗i,j , ψ) (which coincides with the block-
cutvertex tree BC(H∗i,j), given that all the vertices ofH∗i,j are white). All the vertices of
H∗i,j(b) are white, hence either Condition (2b) or Condition (2c) of Lemma 1 is satisfied,
depending on whether H∗i,j(b) has or does not have an edge, respectively.

In the inductive case, the outerplanarity of H∗i,j is greater than 1.
First, we inductively construct a 2-coloring ψk = (W ∗

i+1,k, B
∗
i+1,k), satisfying the

conditions of Lemma 1, of each connected component H∗i+1,k of G∗i+1, for 1 ≤ k ≤
hi+1. The 2-coloring ψ of H∗i,j is such that each connected componentH∗i+1,k of G∗i+1

that lies inside an internal face of Hi,j “maintains” the coloring ψk, i.e., a vertex of
H∗i+1,k is white in ψ if and only if it is white in ψk. Then, in order to determine ψ, it
suffices to describe how to color the vertices of Hi,j .

Second, we look at the internal faces of Hi,j one at a time. When we look at a face
f , we determine a set Bf of vertices of Cf that are colored black. This is done in such
a way that the graph H∗i,j [W

∗
i,j(f)] is strongly outerplane even if we color white all the

vertices in V (Cf ) \ Bf . By Lemma 2, a 2-coloring of H∗i,j such that H∗i,j [W
∗
i,j(f)] is

strongly outerplane for every internal face f of Hi,j is such that H∗i,j [W
∗
i,j ] is strongly

outerplane. We remark that, when a set Bf of vertices of Cf are colored black, the
vertices in V (Cf ) \ Bf are not necessarily colored white, as a vertex in V (Cf ) \ Bf
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might belong to the set Bf ′ of vertices that are colored black for a face f ′ �= f of Hi,j .
In fact, only after the set Bf of vertices of Cf are colored black for every internal face
f of Hi,j , are the remaining uncolored vertices in Hi,j colored white.

We now describe in more detail how to color the vertices of Hi,j . We show an al-
gorithm, that we call algorithm cycle-breaker, that associates a set Bf to each internal
face f of Hi,j as follows.

Empty faces: For any empty face f of Hi,j , let Bf = ∅.
Trivial faces: While there exists a vertex v∗1,2 incident to two trivial faces f1 and

f2 of Hi,j to which no sets Bf1 and Bf2 have been associated yet, respectively, let
Bf1 = Bf2 = {v∗1,2}. When no such vertex exists, for any trivial face f of Hi,j to
which no set Bf has been associated yet, let v be any vertex of Cf and let Bf = {v}.

Non-trivial non-empty faces: Consider any non-trivial non-empty internal face f
of Hi,j . Denote by H∗i+1,k the connected component of G∗i+1 inside f . By induction,
for any BU-node b in the contracted block-cutvertex tree CBC(H∗i+1,k, ψk), it holds
s(H∗i+1,k(b), ψk) ≥ |W ∗

i+1,k ∩ V (Hi+1,k(b))| + 1, or s(H∗i+1,k(b), ψk) = |W ∗
i+1,k ∩

V (Hi+1,k(b))| and there exists an edge incident to the outer face of H∗i+1,k(b) whose
both end-vertices are white.

We repeatedly perform the following actions: (i) We pick anyBU-node b that is a leaf
in CBC(H∗i+1,k, ψk); (ii) we insert some vertices of Cf in Bf , based on the structure
and the coloring of H∗i+1,k(b); and (iii) we remove b from CBC(H∗i+1,k, ψk), possibly
also removing its adjacent cutvertex, if it has degree one. We describe in more detail
action (ii).

For every white vertex u incident to the outer face of H∗i+1,k(b), we define the right-
most neighbor r(u, b) of u in Cf from b as follows. Denote by u′ the vertex following
u in the clockwise order of the vertices along the cycle delimiting the outer face of
H∗i+1,k(b). Vertex r(u, b) is the vertex preceding u′ in the clockwise order of the neigh-
bors of u. Observe that, sinceH∗i,j is internally-triangulated, then r(u, b) belongs to Cf .
Also, r(u, b) is well-defined because u is not a cutvertex (in fact, it might be a cutvertex
of H∗i+1,k, but it is not a cutvertex of H∗i+1,k(b), since such a graph contains no white
cut-vertex).

Suppose that s(H∗i+1,k(b), ψk) ≥ |W ∗
i+1,k ∩ V (Hi+1,k(b))| + 1. Then, for every

white vertex u incident to the outer face of H∗i+1,k(b), we add r(u, b) to Bf .
Suppose that s(H∗i+1,k(b), ψk) = |W ∗

i+1,k ∩ V (Hi+1,k(b))| and there exists an edge
(v, v′) incident to the outer face of H∗i+1,k(b) such that v and v′ are white. Assume,
w.l.o.g., that v′ follows v in the clockwise order of the vertices along the cycle delimit-
ing the outer face ofH∗i+1,k(b). Then, for every white vertex u �= v incident to the outer
face of H∗i+1,k(b), we add r(u, b) to Bf .

After the execution of algorithm cycle-breaker, a set Bf has been defined for every
internal face f of Hi,j . Then, color black all the vertices in

⋃
f Bf , where the union is

over all the internal faces f of Hi,j . Also, color white all the vertices of Hi,j that are
not colored black. Denote by ψ = (W ∗

i,j , B
∗
i,j) the resulting coloring of H∗i,j . We have

the following lemma, that completes the induction, and hence the proof of Lemma 1.

Lemma 4. Coloring ψ satisfies Conditions (1) and (2) of Lemma 1.

Proof sketch: Condition (1). By Lemma 2, it suffices to prove that, for every internal
face f of Hi,j , graph H∗i,j [W

∗
i,j(f)] is strongly outerplane. This is trivially true for any
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empty face f of Hi,j . By construction, for any trivial face f of Hi,j , there is a black
vertex in Cf ; hence, by Lemma 3, graphH∗i,j [W

∗
i,j(f)] is strongly outerplane. Consider

any non-empty non-trivial internal face f of Hi,j containing a connected component
H∗i+1,k ofG∗i+1 in its interior. Suppose, for a contradiction, thatH∗i,j [W

∗
i,j(f)] contains

a cycle C with a vertex x in its interior. By induction and since algorithm cycle-breaker
inserts in Bf at least one vertex of Cf , it follows that C contains vertices of Cf and
vertices in the interior ofCf . Then, consider a maximal pathP inC∩Cf connecting two
vertices u and v; let u′ be the neighbor of u in C \ P , where u′, u, and v appear in this
clockwise order alongC, and let (u′, u′′) be the first edge ofH∗i+1,k following (u′, u) in
the clockwise order of the edges incident to u′. Then, algorithm cycle-breaker inserts in
Bf either the rightmost neighbor r(u′, b) of u′ inCf from a node b of CBC(H∗i+1,k, ψk),
or the rightmost neighbor r(u′′, b′) of u′′ in Cf from a node b′ of CBC(H∗i+1,k, ψk). By
planarity, r(u′, b) and r(u′′, b′) belong to P , thus contradicting the fact that all the
vertices of P are white.

Condition (2). Consider any BU-node b in CBC(H∗i,j , ψ). Denote by Hi,j(b) the
outerplane graph induced by the vertices incident to the outer face of H∗i,j(b). The
surplus s(H∗i,j(b), ψ) is the sum of the surpluses s(H∗i+1,k, ψ) of the connected compo-
nents H∗i+1,k of G∗i+1 inside the internal faces of Hi,j(b), plus the number |W ∗

i,j ∩
V (Hi,j(b))| of white vertices in Hi,j(b), minus the number |B∗i,j ∩ V (Hi,j(b))| of
black vertices in Hi,j(b), which is equal to |

⋃
f Bf |, where the union is over all the

internal faces f of Hi,j(b). The proof distinguishes three cases. In Case A, Hi,j(b)
contains at least one non-trivial non-empty internal face. Then, the trivial faces of
Hi,j(b) do not give any contribution to s(H∗i,j(b), ψ). Further, for every non-trivial
non-empty internal face f of Hi,j(b) containing a connected component H∗i+1,k of
G∗i+1 in its interior, algorithm cycle-breaker inserts into Bf at most s(H∗i+1,k, ψ) − 1
vertices. Since Hi,j(b) contains at least one non-trivial non-empty internal face, then
s(H∗i,j(b), ψ) ≥ |W ∗

i,j ∩V (Hi,j(b))|+1, thus Condition (2a) is satisfied. In Case B, all
the faces of Hi,j(b) are either trivial or empty, and there exists a vertex incident to two
trivial faces of Hi,j(b). Then, the sum of the surpluses s(H∗i+1,k, ψ) of the connected
componentsH∗i+1,k ofG∗i+1 inside the internal faces f of Hi,j(b) is at least one greater
than the number of vertices inserted by algorithm cycle-breaker into |

⋃
f Bf |. Hence,

s(H∗i,j(b), ψ) ≥ |W ∗
i,j ∩ V (Hi,j(b))| + 1, thus Condition (2a) is satisfied. Finally, in

Case C, all the faces of Hi,j(b) are either trivial or empty, and there exists no vertex
incident to two trivial faces of Hi,j(b). Then, the sum of the surpluses s(H∗i+1,k, ψ)
of the connected components H∗i+1,k of G∗i+1 inside the internal faces f of Hi,j(b)
might not be greater than the number of vertices inserted by algorithm cycle-breaker
into |

⋃
f Bf |. However, there exists an edge incident to the outer face ofH∗i,j(b) whose

end-vertices belong to W ∗
i,j , thus Condition (2b) is satisfied. �

3 Proof of Theorem 3
In this section we prove Theorem 3. It suffices to prove Theorem 3 for an n-vertex
maximal plane graph G1 and an n-vertex (maximal) plane 3-tree G2. In fact, if G1

and G2 are not maximal, then they can be augmented to an n-vertex maximal plane
graph G′1 and an n-vertex plane 3-tree G′2, respectively; the latter augmentation can
be always performed, as proved in [13]. Then, a SEFENOMAP can be constructed for
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Fig. 4. (a) Setting for Lemma 5. White circles are points in P . White squares are points in R.
Dashed curves are in S. Curves suv , svz, and szu are solid thin curves. (b) A planar drawing of
G2 (solid thick lines) satisfying the properties of Lemma 5.

G′1 and G′2, and finally the edges not in G1 and G2 can be removed, thus obtaining a
SEFENOMAP of G1 and G2. In the following we assume that G1 and G2 are an n-
vertex maximal plane graph and an n-vertex plane 3-tree, respectively, for some n ≥ 3.
Denote byCi = (ui, vi, zi) the cycle delimiting the outer face ofGi, for i = 1, 2, where
vertices ui, vi, and zi appear in this clockwise order along Ci.

Let pu, pv, and pz be three points in the plane. Let suv, svz , and szu be three curves
connecting pu and pv, connecting pv and pz , and connecting pz and pu, respectively,
that do not intersect except at their common end-points. Let Δuvz be the closed curve
suv ∪ svz ∪ szu. Assume that pu, pv, and pz appear in this clockwise order along Δuvz .
Denoting by int(Δ) the interior of a closed curve Δ, let cl(Δ) = int(Δ) ∪Δ. Let P
be a set of n− 3 ≥ 0 points in int(Δuvz) and let R be a set of points on Δuvz , where
pu, pv, pz ∈ R. Let S be a set of curves whose end-points are in R∪P such that: (i) No
two curves in S intersect, except possibly at common end-points, (ii) no two curves in S
connect the same pair of points inR∪P , (iii) each curve in S is contained in cl(Δuvz),
(iv) any point in R, except possibly for pu, pv , and pz , has exactly one incident curve
in S, and (v) no curve in S connects two points of R both lying on suv , or both lying
on svz , or both lying on szu. See Fig. 4(a). We show the following.

Lemma 5. There exists a planar drawing Γ2 of G2 such that:
(a) Vertices u2, v2, and z2 are mapped to pu, pv, and pz , respectively;
(b) edges (u2, v2), (v2, z2), and (z2, u2) are represented by curves suv , svz , and szu,

respectively;
(c) the internal vertices of G2 are mapped to the points of P ;
(d) each edge ofG2 that connects two points p1, p2 ∈ P ∪ {pu, pv, pz} such that there

exists a curve s ∈ S connecting p1 and p2 is represented by s in Γ2; and
(e) each edge e of G2 and each curve s ∈ S such that e is not represented by s in Γ2

cross at most once.

Proof sketch: The statement is proved by induction on n. If n = 3, then drawing Γ2 is
easily constructed by mapping vertices u2, v2, and z2 to pu, pv, and pz , respectively, and
by mapping edges (u2, v2), (v2, z2), and (z2, u2) to curves suv , svz , and szu. Suppose
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that n > 3. By the properties of plane 3-trees, G2 has an internal vertex w2 that is con-
nected to all of u2, v2, and z2. Also, the subgraphsGuv

2 ,Gvz
2 , andGzu

2 ofG2 induced by
the vertices inside or on the border of cycles Cuv

2 = (u2, v2, w2), Cvz
2 = (v2, z2, w2),

and Czu
2 = (z2, u2, w2), respectively, are plane 3-trees with nuv , nvz , and nzu internal

vertices, respectively, where nuv +nvz +nzu = n− 4. Then, the proof of the lemma is
completed by proving that there exists a point pw ∈ P and three curves suw, svw, and
szw connecting pu and pw, connecting pv and pw, and connecting pz and pw, respec-
tively, such that suw, svw, and szw split cl(Δ) into three regions cl(Δuvw), cl(Δvzw),
and cl(Δzuw) satisfying the same properties cl(Δ) satisfies. Hence, induction can be
applied three times, to construct a drawing Γ uv

2 of Guv
2 in cl(Δuvw), to construct a

drawing Γ vz
2 of Gvz

2 in cl(Δvzw), and to construct a drawing Γ zu
2 of Gzu

2 in cl(Δzuw).
Placing Γ uv

2 , Γ vz
2 , and Γ zu

2 together results in a drawing Γ2 of G2 satisfying Properties
(a)–(e) of the lemma. �
Fig. 4(b) shows a planar drawing ofG2 satisfying the properties of Lemma 5. Lemma 5
implies a proof of Theorem 3. Namely, construct any planar drawing Γ1 of G1. Denote
by P the point set to which the n − 3 internal vertices of G1 are mapped in Γ1. Let
suv, svz , and szu be the curves representing edges (u1, v1), (v1, z1), and (z1, u1) in
Γ1, respectively. Let S be the set of curves representing the internal edges of G1 in
Γ1. Let pu, pv, and pz be the points on which u1, v1, and z1 are drawn, respectively.
Let R = {pu, pv, pz}. Construct a planar drawing Γ2 of G2 satisfying the properties
of Lemma 5. Then, Γ1 and Γ2 are planar drawings of G1 and G2, respectively. By
Properties (a) and (c) of Lemma 5, the n vertices of G2 are mapped to the same n
points to which the vertices of G1 are mapped. Finally, by Properties (b) and (d) of
Lemma 5, if edges e1 of G1 and e2 of G2 have their end-vertices mapped to the same
two points pa, pb ∈ P ∪{pu, pv, pz}, then e1 and e2 are represented by the same Jordan
curve in Γ1 and in Γ2; hence, Γ1 and Γ2 are a SEFENOMAP of G1 and G2.

4 Conclusions
In this paper we studied the problem of determining the largest k1 ≤ n such that every
n-vertex planar graph and every k1-vertex planar graph admit a SEFENOMAP . We
proved that k1 ≥ n/2. No upper bound smaller than n is known. Hence, tightening this
bound (and in particular proving whether k1 = n or not) is a natural research direction.

To achieve the above result, we proved that every n-vertex plane graph has an (n/2)-
vertex induced outerplane graph, a result related to a famous conjecture stating that
every planar graph contains an induced forest with half of its vertices [2]. A suitable
triangulation of a set of nested 4-cycles shows that n/2 is a tight bound for our algo-
rithm, up to a constant. However, we have no example of an n-vertex plane graph whose
largest induced outerplane graph has less than 2n/3 vertices (a triangulation of a set of
nested 3-cycles shows that the 2n/3 bound cannot be improved). The following ques-
tion arises: What are the largest k2 and k3 such that every n-vertex plane graph has an
induced outerplane graph with k2 vertices and an induced outerplanar graph with k3 ver-
tices? Any bound k2 > n/2 would improve our bound for the SEFENOMAP problem,
while any bound k3 > 3n/5 would improve the best known bound for Conjecture 1,
via the results in [9].
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A different technique to prove that every n-vertex planar graph and every k4-vertex
planar graph have a SEFENOMAP is to ensure that a mapping between their vertex sets
exists that generates no shared edge. Thus, we ask: What is the largest k4 ≤ n such that
an injective mapping exists from the vertex set of any k4-vertex planar graph and the
vertex set of any n-vertex planar graph generating no shared edge? It is easy to see that
k4 ≥ n/4 (a consequence of the four color theorem [11,12]) and that k4 ≤ n − 5 (an
n-vertex planar graph with minimum degree 5 does not admit such a mapping with an
(n− 4)-vertex planar graph having a vertex of degree n− 5).

Finally, it would be interesting to study the geometric version of our problem. That is:
What is the largest k5 ≤ n such that every n-vertex planar graph and every k5-vertex
planar graph admit a geometric simultaneous embedding with no mapping? Surpris-
ingly, we are not aware of any super-constant lower bound for the value of k5.
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tralian Research Council FT100100755, and by ESF project 10-EuroGIGA-OP-003
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Abstract. Given a directed graph D = (V,A) we define its intersection
graph I(D) = (A,E) to be the graph having A as a node-set and two
nodes of I(D) are adjacent if their corresponding arcs share a common
node that is the tail of at least one of these arcs. We call them facility
location graphs since they arise from the classical uncapacitated facility
location problem. In this paper we show that facility location graphs are
hard to recognize but they are easy to recognize when the underlying
graph is triangle-free. We also determine the complexity of the vertex
coloring, the stable set and the facility location problem for triangle-free
facility location graphs.

1 Introduction

In this paper we study the following class of intersection graphs. Given a directed
graph D = (V,A), we denote by I(D) = (A,E) the intersection graph of D
defined as follows:

– the node-set of I(D) is the arc-set of D,
– two nodes a = (u, v) and b = (w, t) of I(D) are adjacent if one of the

following holds: (1) u = w, (2) v = w, (3) t = u, (4) (u, v) = (t, w) (see
Figure 1(a)).

We focus on two aspects: the recognition of these intersection graphs and
some combinatorial optimization problem in this class. De Simone and Mannino
[1] considered the recognition problem and provided a characterization of these
graphs based on the structure of the (directed) neighbourhood of a vertex. Un-
fortunately this characterization does not yield a polynomial time recognition
algorithm.

Intersection graphs we consider arise from the uncapacitated facility location
problem (UFLP) defined as follows. We are given a directed graph D = (V,A),
costs f(v) of opening a facility at node v and cost c(u, v) of assigning v to u
(for each (u, v) ∈ A). We wish to select a subset of facilities to open and an
assignment of each remaining node to a selected facility so as to minimize the
cost of opening the selected facilities plus the cost of arcs used for assignments.
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This problem can be formulated as a linear integer program equivalent to
maximal clique formulation of the maximum stable set problem associated with
I(D), where the weight of each node (u, v) of I(D) is f(u)− c(u, v). This corre-
spondence is well known in the literature (see [2,3,1]). We may consider several
combinatorial optimization problems on directed graphs that may be reduced to
the maximum stable set problem on an undirected graph. For example, Chvátal
and Ebenegger [4] reduce the max cut problem in a directed graph D = (V,A)
to the maximum stable set problem in the following intersection graph called
the line graph of a directed graph: we assign a node to each arc a ∈ A and two
nodes are adjacent if the head of one (corresponding) arc is the tail of the other.
They prove that recognizing such graphs is np-complete. Balas [5] considered
the asymmetric assignment problem. He defined an intersection graph of a di-
rected graph D where nodes are arcs of D and two nodes are adjacent if the two
corresponding arcs have the same tail, the same head or the same extremities
without being parallel. Balas uses this correspondence to develop new facets for
the asymmetric assignment polytope.

a
b b

a
a b ab

(a) (b)

Fig. 1. (a)The adjacency of two nodes a and b in I(D) (b) A graph which is not a FL
graph

We may generalize the notion of line graphs to directed graphs in many ways.
The simplest involves deciding

1. if arcs that share a head are adjacent,
2. if arcs that share a tail are adjacent, and
3. if two arcs are adjacent when the head of one arc is the tail of the other.

It is not too difficult to show the recognition problem is easy if we choose
non-adjacency for (3).

So suppose arcs of type (3) are adjacent. Choosing adjacency for (1) and (2)
gives the line graphs of the underlying undirected graph, and these are easy
to recognize [6]. Choosing non-adjacency for both (1) and (2) leads to the line
graphs defined by Chvátal and Ebenegger and it is np-complete to recognize
them [4]. And picking exactly one of (1) and (2) to be adjacent and non-adjacency
for the other leads to the same class of graphs (as we can simply reverse all arcs of
a digraph before taking its line graph) and we wish to determine the complexity
of recognizing this very last class.

Finally, note that since the stable set problem in our class is equivalent to
the facility location problem, one may use tools developed for facility location
problem to solve the stable set problem on these graphs. It is well known that
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in practice the facility location problem may be solved efficiently via several
approaches: polyhedra, approximation algorithms and heuristics.

This paper is organized as follows. Section 2 contains some basic definitions and
notations. Other definitions and notations will be given when needed. In Section 3
we show that the subclass of triangle-free facility location graphs are recognizable
in linear time and, in contrast, in Section 4, we show that facility location graphs
are hard to recognize. Section 5 is devoted to some combinatorial optimization
problem in facility location graphs. In particular we show that the maximum sta-
ble set problem remains np-complete in triangle-free facility location graphs but
the vertex coloring problem is solvable in polynomial time in this class. We also
discuss the facility location problem and show it is np-complete in some restricted
class of graphs. We omit some of the more routine but tedious proofs in this ex-
tended abstract but make available a complete preprint [7].

2 Definitions and Notations

Let G be an undirected graph, we say that G is a facility location (FL) graph if
there exists a directed graph D such that G = I(D). D is the preimage of G.

Let D = (V,A) be a directed graph. For an arc a = (u, v) ∈ A, we say t(a) = u
is the tail of a and h(a) = v is the head of a. A sink is a node which is a tail of
no arc in A. A branch is an arc a where h(a) is not the head or tail of any other
arc.

An undirected graph G is triangle-free if it does not contain a clique of size
3. A wheel Wn is a graph obtained from a cycle Cn by adding a vertex adjacent
to all vertices of the cycle.

3 Recognizing Triangle-Free Facility Location Graphs

In Section 4, we will show recognizing FL graphs is np-complete. Our reduction
constructs a graph with many cliques of size 3 but none of size 4. Hence it is
natural to ask if the recognition problem remains difficult for triangle-free FL
graphs. In this section, we show triangle-free FL graphs can be recognized in
polynomial time.

In subsection 3.1 we examine the structure of general FL graphs. In subsection
3.2, we prove the main result of this section.

3.1 Structural Properties of Facility Location Graphs

Here, we state some basic properties of FL graphs.

Remark 1. The preimage of any cycle either contains two arcs with the same
tail or is a directed cycle.

We will use the next three propositions as reduction rules in a recognition algo-
rithm. Each rule allows us to find some structure in the graph and recurse on a
simpler graph until no rules apply. If such a simpler graph is also triangle-free
then it has a very specific form that is easy to recognize.
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Remark 2. If u is a degree one vertex adjacent to a degree two vertex in an
undirected graph G then G is a FL graph if and only if G− u is a FL graph.

Lemma 1. If G is a FL graph, then there exists a digraph D such that G = I(D)
and every sink node in D has exactly one entering arc.

Lemma 2. If u and v are adjacent degree two vertices in G with no common
neighbours in an undirected graph G then G is a FL graph if and only if G− uv
is a FL graph.

3.2 Application to Triangle-Free Facility Location Graphs

We now characterizes FL graphs on which no rules from the previous section
apply. The outdegree of a vertex is the number of arcs leaving that vertex.

Lemma 3. Let G be a connected triangle-free graph with no degree two vertex
adjacent to degree ≤ 2 vertices. If G = I(D) then vertices of D have outdegree
at most two. Furthermore, vertices with outdegree exactly 2 have a sink as one
of their outneighbours.

Theorem 3. Let G be a triangle-free graph. Let G′ be the graph obtained from
G by removing all edges between degree two vertices. Then G is a FL graph if
and only if G′ has at most one cycle per connected component.

Proof. By Lemma 2 (and since G is triangle-free so no adjacent vertices share a
common neighbour), we only need to show that G′ is a FL graph if and only if
G′ has at most one cycle per component. Note that G′ is also triangle-free.

Necessity. Let G′ be a triangle-free facility location graph. By Lemma 1, there
is a D where every sink has indegree one with G′ = I(D). By Remark 1 and
Lemma 3, the preimage of every cycle in G′ is a directed cycle.

Suppose that a connected component of G′ contains two cycles C1 and C2.
Since both their preimages are directed cycles, the preimages of any vertex in
both C1 and C2 is a common arc in both directed cycles and this leads to a
triangle in G′ (by taking a common arc and two differing arcs following it, one
in each cycle). Thus, C1 and C2 are vertex disjoint. Since C1 and C2 belong to
the same connected component, there is a path P in G′ from some u ∈ C1 to
v ∈ C2. Then the image of the second vertex of P points towards the image of
C1 and the image of the second to last vertex of P points towards the image
of C2. So the image of P is not a directed path. But then some two consecu-
tive vertices in P have an image that share a common tail, a contradiction to
Lemma 3.

Sufficiency. Consider a connected component of G. Suppose that it consists
of a tree. Let us construct a directed graph D with G = I(D). Pick any node
r as a root. Let r = (u0, v0). Let r1, . . . , rk be the children of r in G, we set
ri = (vi, u0) for i = 1, . . . , k. Now each node ri play the role of r and we repeat
this step. This procedure ends with a directed graph D such that G = I(D).
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Suppose that there is a cycle C. This cycle must be chordless. Let C′ be a
directed cycle where each arc in C′ correspond to a node in C. The rest of this
component consist of disjoint trees each intersect C in one node. If this node is
chosen to be the root of the tree, then the procedure above may be applied to
get a directed graph D such that G = I(D). 	


We are now ready to describe our recognition algorithm, which is the main result
of this section.

Theorem 4. Given an undirected triangle-free graph G = (V,E), we may decide
whether or not G is a facility location graph in O(|E|).

Proof. In O(|E|) we may remove all the edges e = bc with both b and c of degree
two. Then we apply a breadth-first search in O(|E|). If a node is encountered
more than twice or there are two nodes that were encountered twice, then there
are two cycles. Otherwise G is a facility location graph. 	


4 Recognizing Facility Location Graphs is np-complete

The main result of this section is the following theorem.

Theorem 5. Recognizing facility location graphs is np-complete.

We will reduce the problem 3-sat to the recognition of FL graphs. We assume
we are given an instance of 3-sat. That is, variables x1, . . . , xn and a Boolean
formula F = C1∧· · ·∧Cm, where each clause Cj = λj1∨λj2∨λj3 , for j = 1 . . . ,m.
We construct an undirected graph GF from F and we show that F is satisfiable
if and only if GF is a facility location graph.

We build GF using gadgets for variables and clauses. Values for variables are
stored, replicated and negated through the “branches” of the variable gadgets.
These branches are then connected to the clauses gadgets of clauses that contain
these variables (and their negation).

More precisely, the construction of GF follows three steps: (1) for each variable
xi, we construct a graph called Gad

1
i (Gad stands for gadget), (2) for each clause

Cj , another gadget called Gad
2
j is constructed and (3) we connect the graphs

Gad
1
i and Gad

2
j to produce GF . Each graph Gad

1
i contains 2m branches where

each branch express the fact that the variable xi (or x̄i) is present in the clause
Cj , j = 1, . . . ,m. Each graph Gad

2
j contains exactly three branches where each

branch expresses the literals of this clause λj1 , λj2 and λj3 .
The three following subsections are devoted to the construction of the graphs

Gad
1
i , Gad

2
j and GF .

4.1 Variable Gadgets

Our variable gadgets is built by identifying vertices in many copies of a graph
I with only two preimages. We think of one preimage of I as the Boolean value
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(a) The wheel W5
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(b) I and I ′ are extensions of W5

Fig. 2.

“true” and the other as “false”. I (see Figure 2(b)) is constructed from the wheel
W5 (see Figure 2(a)) by adding four vertices.

We make m copies of I for each variable and combine these copies so that the
associated Boolean values are all equal. To ease our analysis, we first examine
two copies of I identified on the vertex j in both copies (see Figure 3). Then the
preimage of the two copies of I are forced to be the same. We call this graph
Inv, the inverter, and will use in later construction.

a
b

c

d

e

f

g h

i
j

a′
b′

c′

d′

e′

f ′

g′ h′

i′

g g′b′b

Fig. 3. The graph Inv and its abbreviation

Now if we take m copies of I and identify the node labelled j in a copy with
the node labelled i in the next copy (for the first m − 1 copies, which have
successor) then the resulting gadget (see Figure 4) forces all copies of I to have
the same preimage. In fact, the preimages of vertices labelled i, j and d in all
copies for a directed path.

Lemma 4. For each directed graph D with I(D) = Gad
1
i exactly one of the

following two assumptions holds:

(i) h(bij) = t(gij) and t(f ij) = h(hij) for each j = 1, . . . ,m,
(ii) t(bij) = h(gij) and h(f ij) = t(hij) for each j = 1, . . . ,m.
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Fig. 4. Graph for every variable xi, Gad
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4.2 Clause Gadgets

We now describe how to build clause gadgets (see Figure 5(a) for one such gadget
and the labelling we use). They are built from three nets (triangles with three
degree 1 vertices, one adjacent to each vertex of the triangle) and two copies of
Inv (of the previous section) by identifying some edges.

a′

b′ e′

f ′

a

b

c d

e

f

r

r′

s

s′

t

t′

(a) Graph Gad2j for clause Cj

D1 D2 D3

(b) The solid line are the nodes of
the triangle Δ and the dashed lines
are its pending nodes

Fig. 5.

We begin with the following remark.

Remark 6. There are only three possible preimages for a triangle of a net: those
shown in Figure 5(b).

Lemma 5. No preimage of Gad
2
j has h(r′j) = t(rj), h(s′j) = t(sj) and h(t′j) =

t(tj).
However, if we pick any proper subset of the above three contraints then there is

a preimage of Gad
2
j where those constraints are satisfied and no other constraints

are satisfied.
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4.3 Reduction from 3-sat

As discussed at the beginning of this section, we build a graphGF from a Boolean
formula F . Build a copy of Gad

1
i for each Boolean variable xi and a copy of

Gad
2
j for each clause Cj . We combine some of these disjoint gadgets as follows.

We connect Gad
1
i and Gad

2
j through their branches if xi or x̄i appears in

Cj . Specifically, for each clause Cj = λj1 ∨ λj2 ∨ λj3 we identify the following
vertices:

if λj1 = xj1 , we identify rj with gj1j and r′j with bj1j ,
if λj1 = x̄j1 , we identify rj with hj1j and r′j with f j1j .
We proceed in the same way for remaining literals λj2 and λj3 .

4.4 Proof of Theorem 5

Since the problem 3-sat is NP-complete, it is sufficient to prove that a Boolean
formula F is true if and only if the graph GF we build is a facility location graph.

Suppose GF is a facility location graph with preimage D. Then we claim F
evaluates to true with the following assignment.

xi =

{
true if the arc gi1 enters the arc bi1 in D,
false otherwise

We say an arc a enters an arc b if h(a) = t(b).
Notice that from Lemma 4 whenever the arc gi1 enters the arc bi1, then gij

enters the arc bij for each j = 1, . . . ,m. Let Cj be any clause of F . From Lemma
5 (i), we must have that rj enters r′j , or sj enters s′j or that tj enters t′j in any
directed graph whose intersection graph is Gad

2
j . We may assume that rj enters

r′j . By the definition of GF the branch rjr
′
j is identified with gijb

i
j when xi is

present in Cj and in this case xi = 1 and so Cj = 1. Otherwise the branch rjr′j
is identified with hijf ij when x̄i is present in Cj . So the arc hij enters the arc f ij
and from Lemma 4 we have that the arc bij enters the arc gij and by definition
we have xi = 0, which implies that Cj = 1.

Now assume that there is an assignment of the variables xi, i = 1, . . . , n for
which F evaluates to true. We build a preimage of GF as follows. By Lemma 4,
we can (independently) build preimages for each Gad

1
i so that gij enters bij if xi

is true and bij enters gij if xi is false. Now given a clause Cj = λj1 ∨λj2 ∨λj3 , from
Lemma 5 there is no preimage only when the assumption (i) of Lemma 5 is not
satisfied. But one can check that this may happen only when all of λj1 , λj2 , λj3
are false, which is not possible.

5 Consequences and Related Problems

5.1 The Vertex Coloring Problem

A vertex coloring of a graph is an assignment of colors to the nodes of the graph
such that no two adjacent nodes receive the same color. The minimum number
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needed for a such coloring is called the chromatic number and denoted by χ(G).
It is well known that finding χ(G) is np-complete for triangle-free graphs. A
direct consequence of the previous section shows that when G is a triangle-free
facility location graph, it is 2-degenerate, and therefore χ(G) ≤ 3.

Theorem 7. If G is a triangle-free facility location graph, then χ(G) ≤ 3. More-
over, χ(G) may be computed in O(|E|).

A natural question arises: whether or not coloring facility locations graphs is
polynomial. Unfortunately this problem is np-complete by a reduction from the
edge coloring problem (i.e., the vertex coloring problem for line graphs).

Theorem 8. Coloring facility locations graphs is np-complete.

Proof. Given an input graph G that we wish to k edge color (a task that is
np-complete [8]), we build an auxiliary digraph D obtained from vertices V (G)
with no arcs by adding a vertex xuv for each edge uv ∈ E(G) with entering arcs
from u and v and k − 1 leaving arcs to k − 1 new vertices. Now any k vertex
coloring of I(D) forces vertices corresponding to both entering arcs of xuv to be
colored the same as vertices of leaving arcs from xuv take up k − 1 colors. It is
easy to see that a k vertex coloring of I(D) leads to a k edge coloring of G by
giving e ∈ E the color of arcs entering xe. Similarly, a k edge coloring of G gives
a k vertex coloring of I(D). 	


5.2 The Stable Set Problem

Given an undirected graph G = (V,E), a subset of nodes S ⊆ V of an undirected
graph is called a stable set if there is no edge between any two nodes of S. The
maximum stable set problem is to find a stable set of maximum size. This size is
usually called the stability number and denoted by α(G). If we associate a weight
w(v) to each vertex v ∈ V , then the maximum weighted stable set problem is to
find a stable set S with

∑
v∈S w(v) maximum.

The maximum stable set problem is np-complete for triangle-free graph. Pol-
jak [9] showed this by building an auxiliary graph SubG from an input graph
G = (V,E) by replacing any edge e = uv in E by a path uu′, u′u′′, u′′v. Now
SubG is triangle-free and α(SubG) = α(G)+ |E|. By Theorem 3, SubG is also a
facility location graph since the removal of the edges u′u′′ yields a graph where
each connected component is a star. Hence, we obtain the following result,

Theorem 9. The maximum stable set problem is np-complete in triangle-free
facility location graphs.

Since any triangle-free facility location graph can be colored with 3 colors in
O(|E|) Theorem 7, we can get a 3-approximation algorithm for the maximum
(weighted) stable set problem. Indeed, we may assume the input graph G has
only positive weights and pick the color class S of maximum (total) weight. Now
S has weight at least a third of the weight of all of G which is at least a third of
the weight of largest stable set in G.
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5.3 The Facility Location Problem

Recall that the uncapacitated facility location problem (UFLP) associated with
a directed graph D is equivalent to the maximum weighted stable set problem
for I(D). Therefore, from Theorem 9 we have the following corollary.

Corollary 10. The uncapacitated facility location problem remains np-complete
even when the input digraph does not contain the four graphs of Figure 6(a) as
subgraphs.

T1 T2 T3 T4

(a)

F1 F2

(b)

Fig. 6. (a)Graphs T1, T2, T3 and T4 (b)Graphs F1 and F2

Mohar proved the following result in [10].

Theorem 11. [10] The maximum stable set problem in 2-connected cubic planar
graphs is np-complete.

This results allows us to strengthen Corollary 10 to the following theorem.

Theorem 12. The uncapacitated facility location problem is np-complete for
graphs that do not contain any of T1, T2, T3, T4, F1 and F2 as a subgraph.

Proof. Let G = (V,E) be an undirected 2-connected cubic planar graph. From
G define the subdivision of it, SubG, as in the previous subsection, that is each
edge e = uv ∈ E is replaced by path of size three. Now we construct a directed
graph D containing none of the graphs T1, T2, T3, T4, F1 and F2 as a subgraph
and such that I(D) = SubG. Thus from Theorem 11 the maximum weighted
stable set problem is np-complete in 2-connected cubic planar graphs, and by
equivalence we have that UFLP is also np-complete in graphs satisfying the
theorem’s hypothesis. Now let us give the construction of D.

From Petersen’s theorem the graph G contains a perfect matching M . Let G′
be the graph obtained by removingM . Each component ofG′ is a chordless cycle.
Let C = v0, v1, . . . , vp be one of these cycles. In SubG this cycle corresponds to
a cycle C′ = v0, v1, v2, . . . , v3p, v3p+1, v3p+2. Let us construct a directed graph D
with I(D) = SubG. Each cycle C′ of SubG may be defined in D by the directed
cycle where the arc vi enters the arc vi+1 for each i = 0, . . . , 3p + 1, and the
arc v3p+2 enters the arc v0 (an arc a enters an arc b means that the head of a
coincide with the tail of b). To complete the definition of D we need to consider



206 M. Baïou et al.

all the edges of M and their subdivisions. Let e = uv ∈M and u1, u2, u3, u4 the
corresponding path in SubG. Complete the construction of D by creating for
every such edge e two arcs u2 and u3 having the same tail where u2 enters the
arc u1 and u3 enters the arc u4.
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Performance Guarantees for Scheduling

Algorithms under Perturbed Machine Speeds �
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Abstract. We study two local search and a greedy algorithm for sched-
uling. The worst-case performance guarantees are well-known but seem
to be contrived and too pessimistic for practical applications. For un-
restricted machines, Brunsch et al. [3] showed that the worst-case per-
formance guarantees of these algorithms are not robust if the job sizes
are subject to random noise. However, in the case of restricted related
machines the worst-case bounds turned out to be robust even in the
presence of random noise. We show that if the machine speeds rather
than the job sizes are perturbed, also the performance guarantees for
restricted machines decrease thus yielding a stronger result.

Keywords: smoothed analysis, scheduling, performance guarantees

1 Introduction

For many simple scheduling algorithms, the worst-case performance guarantees
are known up to a constant factor. However, the instances used to construct
lower bounds seem to be artificial and not practically relevant if there is some
noise on the input. Therefore, we use the framework of smoothed analysis to
identify worst-case bounds which are too pessimistic with high probability if the
input is perturbed. In this section, we define the scheduling problem, introduce
the framework of smoothed analysis shortly and compare briefly our results with
the worst-case bounds and the bounds given in [3]. In Section 2 and Section 3,
we give some ideas for our proofs for the settings of unrestricted and restricted
machines, respectively. Many formal proofs and technical details are omitted due
to space constraints. They will be included in a full version of this paper.

The Scheduling Problem. Let J = {1, . . . , n} be the set of jobs and M =
{1, . . . ,m} be the set of machines on which the jobs shall be processed. Each
machine i ∈M has a speed si and each job j ∈ J has a processing requirement pj .
The speeds of the fastest and the slowest machine are denoted by smax and smin,
respectively. We consider two different environments: In the case of unrestricted
machines, each job is allowed to run on any machine. In the case of restricted
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machines, each job j ∈ J has a setMj ⊆M of allowed machines. These variables
form an instance I of the scheduling problem.

A function σ : J →M is called a schedule. The time a machine i needs to pro-
cess job j is pj/si if job j is allowed to run on machine i, and∞ otherwise. Given
a schedule σ for an instance I, the load of a machine i is defined as Li(I, σ) =∑

j∈σ−1(i) pj/si. The makespan is defined as Cmax(I, σ) = maxi∈M Li(I, σ). We

write C∗max(I) for an optimal makespan. The goal is to minimize the makespan.
Sometimes we omit the parameters I and σ, respectively, if they are clear from
the context.

Studied Scheduling Algorithms. We study a greedy and two local search
algorithms.

The list scheduling algorithm starts with an empty schedule. Then it itera-
tively assigns an unscheduled job to the machine on which it will be completed
first with respect to the current partial schedule. Any schedule which can be
generated this way is called a list schedule.

The jump and lex-jump algorithms start with an arbitrary schedule and then
perform local improvement steps. In each step, a job is reassigned to a different
machine where it finishes earlier. We assume here that all jobs assigned to a
machine finish at the same time, which is the load of the machine. In the jump
algorithm, only jobs assigned to a critical machine, i.e., a machine with maximal
load, are allowed to be reassigned whereas the lex-jump algorithm does not
have this limitation. A schedule which cannot be improved by the (lex-)jump
algorithm is called (lex-)jump optimal.

We write Jump(I) for the set of all jump optimal schedules for a scheduling
instance I.

Smoothed Analysis. The framework of smoothed analysis was introduced by
Spielman and Teng [13] to explain the good running time of some algorithms in
practice despite a bad worst-case running time. We use the more general model
suggested by Beier and Vöcking [2]. Let φ ≥ 1 be a parameter for the maximum
probability density. A φ-smooth instance I consists of job sizes p1, . . . , pn, subsets
Mj ⊆ M, j ∈ J, in the case of restricted machines, the number m of machines,
and density functions fi : [0, 1]→ [0, φ] for all machines i ∈ {1, . . . ,m}. Each ma-
chine speed si is then chosen according to the density function fi independently
of the other machine speeds. Thus, any φ-smooth instance is a distribution over
infinitely many scheduling instances. We then look for φ-smooth instances for
which the expected performance ratio is as bad as possible. For example, we can
choose for every si an interval of length 1/φ from which it is drawn uniformly at
random. For φ = 1, this model complies with an average case analysis, whereas
for φ→∞ the smoothed analysis tends to a worst-case analysis as the machine
speeds can be specified within arbitrary precision.

Related Work and Our Results. Minimizing the makespan in a schedul-
ing instance is a well-known strongly NP-hard problem. There is a polynomial
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Table 1. Performance guarantees for unrestricted machines

algorithm worst-case perturbed job sizes perturbed speeds

jump Θ(
√
m) [4,12] Θ(φ) [3] Θ(φ)

lex-jump Θ
(
min

{
logm

log logm
, log smax

smin

})
[5] Θ(log φ) [3] Θ(log φ)

list Θ(logm) [1,4] Θ(log φ) [3] Θ(log φ)

approximation scheme for the unrestricted case by Hochbaum and Shmoys [7] as
well as a 2-approximation algorithm for restricted machines by Lenstra et al. [9].
For the algorithms studied in this paper, Table 1 shows an overview of the worst-
case and smoothed performance guarantees in the environment of unrestricted
machines. We were able to reproduce the same results as Brunsch et al. [3] with
perturbed machine speeds instead of perturbed job sizes. Accordingly, we get
the same conclusions that the lex-jump algorithm and the list jump algorithm
should perform well in practice. An interesting deduction of theirs is that the
smoothed price of anarchy for routing games on parallel links is Θ(log φ) as well,
as pure Nash equilibria can be seen as local optima according to the lex-jump
algorithm. This result carries over to our smoothed model with perturbed link
speeds.

Table 2. Performance guarantees for restricted machines. Here, S =
∑m

i=1
si

smin
.

algorithm worst-case perturbed job sizes perturbed machine speeds

jump Θ
(√

m · smax
smin

)
[11] Θ

(√
m · smax

smin

)
[3] Θ

(
m
√
φ
)

lex-jump Θ
(

log S
log log S

)
[11] Ω

(
logm

log logm

)
[3] Θ

(
min

{
m, log(mφ)

log log(mφ)

})

As Table 2 shows, the worst-case performance guarantees in the environ-
ment of restricted machines are robust against random noise on the job sizes.
We calculate the expected values of these worst-case bounds to obtain the
smoothed bounds in our model. As the expected speed of the slowest machine
is in Θ(1/(mφ)), the bounds change in an intuitive way. On the other hand, we
construct classes of smoothed scheduling instances showing that the resulting
upper bounds are tight up to a constant factor.

2 Unrestricted Machines

For unrestricted machines, we are able to yield the same results with perturbed
machine speeds as Brunsch et al. [3] did with perturbed job sizes. As the main
ideas in this section are similar to the proofs by Brunsch et al., we often refer to
this paper and omit the formal proofs.
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2.1 Bounds for the Jump Algorithm

For the lower bound, we consider a smoothed scheduling instance with one fast
and many slow machines as well as one big and many small jobs. Here, fast
and big mean roughly 1 and slow and small mean roughly 1/φ, respectively. If
we assign the big job to the fast machine and each small job to a single slow
machine, we get a constant makespan. If we assign the big job to the fastest
slow machine, it does not improve its running time by jumping to a different
slow machine even if it is empty. If we are now able to assign enough small jobs
to the fast machine such that this machine is not critical but the big job does
not jump to it, we gain a jump optimal schedule with a makespan of roughly φ.
This yields the following theorem:

Theorem 1. There is a class of φ-smooth instances I with unrestricted and
related machines such that for each I ∈ I,

max
σ∈Jump(I)

Cmax(I, σ)

C∗max(I)
= Ω(φ) .

For a matching upper bound, we use the observation that the sum of the machine
speeds cannot be too small with high probability due to Hoeffding’s bound [8].
We can then use the following lemma, which can also be found for example in
[12].

Lemma 1. Let I be a scheduling instance with unrestricted machines and let
si ∈ (0, 1] for all i ∈ {1, . . . ,m}. Then for each σ ∈ Jump(I),

Cmax(I, σ) ≤
(
1 +

m∑m
i=1 si

)
C∗max(I) .

The remaining parts of the proof of the following theorem are analogous to the
corresponding proof by Brunsch et al. [3], which is why we omit them here.

Theorem 2. For any φ-smooth instance I with unrestricted related machines,

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
< 5.1φ+ 2.5 = O(φ) .

2.2 Upper Bounds for List Schedules and Lex-jump Optimal
Schedules

Let w.l.o.g. the machine speeds of a scheduling instance I be sorted in descending
order. We derive an upper bound for the performance guarantees of so-called near
list schedules, which include all list schedules and all lex-jump optimal schedules.
We only repeat the definition of near list schedules. For further explanations as
well as the proofs of some properties (including the relation between near list
schedules, list schedules, and lex-jump optimal schedules), we refer to Brunsch
et al. [3]. We then use a notation which goes back to Czumaj and Vöcking [5].
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Definition 1. We call a schedule σ a near list schedule if we can index the jobs
in such a way that for all machines i ∈M, i′ �= i and all jobs j ∈ σ−1(i),

Li′ +
pj
si′

≥ Li −
∑

�∈σ−1(i)∩{1,...,j−1}

p�
si
. (1)

With NL(I) we denote the set of all near list schedules for instance I.

Definition 2. For a schedule σ, let

1. c := �Cmax(σ)/C
∗
max� − 1.

2. ∀k ∈ {0, . . . , c} : Hk := {1, . . . , ik}, where
ik = max {i ∈M : Li′ ≥ k · C∗max ∀i′ ≤ i}.

3. ∀k ∈ {0, . . . , c− 1} : Rk := Hk \Hk+1, Rc := Hc.

It is easy to show that |Hk| ≤ m/k for each 1 ≤ k ≤ c since
∑

i∈Hk
Li ≥ |Hk| ·k ·

C∗max and
∑

i∈M Li ≤ m · C∗max. Therefore, |R0 ∪R1| = |M \H2| ≥ m/2. From
Brunsch et al. [3], we know that machine 1 is in Rc and that, for 0 ≤ k2 ≤ k1 ≤ c
and machines i1 ∈ Rk1 , i2 ∈ Rk2 , the relation si1 ≥ si2 · 2
(k1−k2)/6� holds.
Hence, for each machine i ∈ R0 ∪ R1, we get 1 ≥ s1 ≥ si · 2
(c−1)/6�, i.e.,
si ≤ 2�(1−c)/6� ≤ 2(1−c)/6+5/6 = 21−c/6, where the last inequality holds due
to the integrality of c. So at least half of the machines have a speed which is
exponentially small in the makespan. Therefore, it is unlikely that the makespan
is much greater than logφ. Formally, we get the following results.

Lemma 2. For any α > 0,

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
≤
(
16φ

2α/6

)m/2

.

Theorem 3. For any φ-smooth instance I with unrestricted related machines,

E
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)

]
≤ 18 log2 φ+ 24 = O(logφ) .

2.3 Lower Bounds for List Schedules and Lex-jump Optimal
Schedules

For the matching lower bound, we use a similar idea like Brunsch et al. [3] do.
The intuition behind it can be found in the mentioned paper.

Theorem 4. There is a class of φ-smooth instances I with unrestricted and
related machines such that for each I ∈ I,

max
σ∈Lex(I)

Cmax(I, σ)

C∗max(I)
= Ω(log φ) and max

σ∈List(I)

Cmax(I, σ)

C∗max(I)
= Ω(log φ) .
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Proof. For a given instance I ∈ I, we create a list schedule which is lex-jump
optimal. It suffices to show the claim for φ ≥ 4. For the sake of notational
simplicity, we consider scaled probability densities fi : (0, 2

r] → [0, φ/2r] where
r = �log4 φ�. It is 22r ≤ φ, i.e.,

2r

φ
≤ 2−r ≤ 1

2
. (2)

We define machine classes M0, . . . ,Mr with |Mk| = r!
k! for each machine class

Mk. Each machine speed si for a machine i ∈ Mk is chosen uniformly from(
2k − 2r

φ , 2
k
]
⊆ (0, 2r]. Note that these intervals are disjoint due to inequal-

ity (2), i.e., the machine classes are sorted in ascending order by speed. Let the
set of jobs be partitioned into job classes J1, . . . , Jr, where each class J� contains

r!
(�−1)! jobs of the size 2�. Use Algorithm 1, which is due to Brunsch et al. [3], to

obtain a list schedule σ.

Algorithm 1

1. for k = 1 to r do
2. for � = r down to k do
3. Schedule r!/�! arbitrary jobs of class J� according to list scheduling.
4. end for
5. end for

First construct a schedule σ′ with constant makespan: For any � ∈ {0, . . . , r−
1}, assign exactly one job from J�+1 to each machine in M�. The single machine
in Mr remains empty. The running time of a machine i ∈ M� is bounded from
above by

Li(σ
′) ≤ 2�+1

2� − 2r

φ

≤ 2�+1

2� − 1
2

≤ 2�+1

2�−1
= 4 .

Hence, it suffices that σ has a makespan of at least r and that σ is lex-jump
optimal. The following two lemmata conclude the proof of the theorem.

Lemma 3. For any � ∈ {1, . . . , r}, any machine i ∈ Ml is assigned exactly �
jobs of job class J� and no other jobs. The machines in M0 remain empty.

Lemma 4. The generated schedule σ is lex-jump optimal and its makespan is
at least r.

Proof. For any � ∈ {0, . . . , r} and any machine i ∈ M�, it is � ≤ Li < � + 2�−r,
which can be shown by a short calculation. Especially, the makespan of σ is at
least r as Mr is not empty. Let j be a job assigned to machine i. Then pj = 2�.
Let i �= i′ ∈ M�′ . If we assigned job j to machine i′, this machine would have a
load of

Li′ +
pj
si′

≥ �′ +
2�

2�′
= �− (� − �′) + 2�−�′ ≥ �+ 1 ≥ �+ 2�−r > Li ,

where the second inequality follows from 2k − k ≥ 1 for all k ∈ N. Hence, no job
can improve its running time. 	
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3 Restricted Machines

In this section, we provide matching upper and lower bounds for the performance
guarantees of the jump optimal and lex-jump optimal schedules which are smaller
than the previously known bounds for the worst case and for perturbed job sizes.
Due to space constraints, many proofs are omitted.

3.1 Bounds for the Jump Algorithm

The worst-case upper bound for the performance guarantee of the Jump algo-
rithm on restricted machines is

max
σ∈Jump(I)

Cmax(I, σ)

C∗max(I)
≤ 1

2
+

√
1

4
+ (m− 1)

smax

smin
(3)

due to Recalde et al. [11]. In our setting of scaled and perturbed machine speeds,
the fraction smax/smin cannot be too small in expectation. This way we derive
an upper bound for the smoothed performance guarantee.

Theorem 5. For each φ-smooth instance I with restricted related machines

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
≤ 1 + 2m

√
φ = O

(
m
√
φ
)
.

We now derive a matching lower bound. It suffices to construct a φ-smooth
instance which has a bad jump optimal schedule with constant probability, which
is 1/9 in our case. We can then assume the smallest machine speed to be in a
certain interval.

Lemma 5. Let m ≥ 2, s1, . . . , sm be drawn independently from the interval

[0, 1/φ]. Then Pr
[
smin ∈

[
1

mφ ,
2

mφ

]]
≥ 1

9 .

Theorem 6. For every φ > 4 and m ≥ 6, there is a φ-smooth instance I with
m restricted machines and uniform job sizes such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
= Ω

(
m
√
φ
)
.

Proof. Let k =
⌊
m
3

⌋
≥ 2. The machine speeds s1, . . . , sk are uniformly drawn

from [0, 1/φ], whereas the machine speeds sk+1, . . . , s2k and s2k+1, . . . , sm are

drawn from
(

1√
φ
− 1

φ ,
1√
φ

)
and

[
φ−1
φ , 1

]
, respectively. The jobs are partitioned

in two classes J = J1 ∪̇J2 with J1 = {1, . . . , k} and |J2| = k
⌈√
φ
⌉
. All jobs have

size 1. Job j ∈ J1 is only allowed to run on the machines j and k+ j while each
job in J2 is allowed to run on the machines 1, . . . , 3k.

First consider a schedule σ′, which assigns each job j ∈ J1 to machine k + j.
The jobs in J2 are distributed evenly over the k machines 2k+1, . . . , 3k. It follows
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that C∗max(I) ≤ Cmax(I, σ
′) ≤ max

{(
1√
φ
− 1

φ

)−1

,
k�√φ�

k · φ
φ−1

}
≤ 2

√
φ , where

the last inequality follows from a simple calculation using φ > 4.
We now construct a bad jump optimal schedule σ: Let i0 be the slowest

machine. Since 1
φ ≤ 1√

φ
− 1

φ , we know that i0 ≤ k. Let F be the event that

si0 �∈
[

1
kφ ,

2
kφ

]
. If F occurs, set σ to an arbitrary schedule. Otherwise assign job

i0 ∈ J1 to machine i0 and
⌈
sk+i0

si0
− 1

⌉
jobs from J2 to machine k+ i0. Distribute

the remaining jobs in the same way as in σ′. This procedure is well-defined, as⌈
sk+i0

si0
− 1

⌉
≤ sk+i0

si0
≤ 1/

√
φ

1/(kφ) = k
√
φ ≤ k

⌈√
φ
⌉
= |J2|. Note that this way no

further jobs are assigned to the machines i0 and k + i0 and that every other
machine has not a greater load than in σ′. Because of

Lk+i0 =

⌈
sk+i0

si0
− 1

⌉
sk+i0

<

sk+i0

si0

sk+i0

=
1

si0
= Li0 ≤

⌈
sk+i0

si0

⌉
sk+i0

= Lk+i0 +
pi0
sk+i0

and Li0 = 1
si0

≥ kφ
2 ≥ φ > 2

√
φ ≥ Cmax(I, σ

′) ≥ Li for all i ∈ M \ {i0, k + i0},
machine i0 is the only critical machine and σ is jump optimal with Cmax(I, σ) =
1
si0

≥ kφ
2 . Therefore,

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
≥ 1 ·Pr[F ] +

kφ/2

2
√
φ
·Pr

[
F
]
≥ k

√
φ

36
= Ω

(
m
√
φ
)
,

where we used Pr
[
F
]
≥ 1

9 due to Lemma 5. 	


3.2 Bounds for the Lex-jump Algorithm

In a deterministic setting, there are two tight upper bounds which do not dom-
inate each other.

Lemma 6. Let I be a scheduling instance with restricted machines. Then

max
σ∈Lex(I)

Cmax(I, σ)

C∗max(I)
≤ Γ−1(S) = O

(
logS

log logS

)
, where S =

∑
i∈M

si
smin

,

and

max
σ∈Lex(I)

Cmax(I, σ)

C∗max(I)
= O(m) .

For both bounds exist scheduling instances such that the particular bound is tight
up to a constant factor.

The first bound is by Recalde et al. [11] and the second by Garing et al. [6].
Again we obtain a smoothed upper bound by computing the expected values of
these worst-case bounds.
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Theorem 7. For every φ-smooth instance I with restricted machines,

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
= O

(
min

{
m,

logmφ

log logmφ

})
.

The proof is essentially an application of Jensen’s inequality. Now we want to
show a matching lower bound.

Theorem 8. For every φ ≥ 6 and m ≥ 216, there is a φ-smooth instance with
m restricted machines such that

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
= Ω

(
min

{
m,

logmφ

log logmφ

})
.

To prove Theorem 8, we use a lemma by Lu and Yu [10]:

Lemma 7.

max

{
log x

log log x
,

log y

log log y

}
= Ω

(
log xy

log log xy

)
.

Due to this lemma and the well-known fact that Γ−1(x) = Θ(log x/ log log x), it
suffices to show the lower bound

Ω
(
min

{
m,max

{
Γ−1(m), Γ−1(φ)

}})
= Ω

(
max

{
min

{
m,Γ−1(φ)

}
, Γ−1(m)

})
.

We accomplish this by specifying two families of φ-smooth instances for every
φ ≥ 6 and m ≥ 216, one with an expected performance guarantee of at least
min{m,Γ−1(φ)} and one with an expected performance guarantee of at least
Γ−1(m). For the first of these two bounds, we modify some instances used by
Lu and Yu [10]. For the latter bound, we introduce some instances which are
distantly related to the instance used by Brunsch et al [3] to show the lower
bound Γ−1(m) for perturbed job sizes.

Theorem 9. For every φ ≥ 6 and m ≥ 3, there exists a φ-smooth instance with
restricted machines such that

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
= Ω(min{m,Γ−1(φ)}) .

Theorem 10. For every φ ≥ 4 and m ≥ 216, there is a φ-smooth instance with
restricted machines such that

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
= Ω(Γ−1(m)).
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Fig. 1. Idea of the load creation on three machines from different machine classes with
average speed, according to the bad schedule σ. Let x ∈ N. The main load on the second
machine is created by x − 2 big jobs from JA

x . Many small jobs from JB
x generate an

additional constant load. No big job switches to a neighbored machine as the load
differences are too small.

Proof Sketch. Let r = max{3, �Γ−1(
√
m)−4�}. We construct a φ-smooth instance

I with a constant optimum makespan as well as a schedule σ such that σ has a
makespan of at least r− 1/8 and is lex-jump optimal with constant probability.
This yields the theorem.

Let X =
{
3, 3 + 1

2 , 4, . . . , r −
1
2 , r

}
. The setM of machines is partitioned into

machine classes Mx of the size mx = |Mx|, x ∈ X . Every machine speed is

chosen uniformly from the interval
[
φ−1
φ , 1

]
. For each machine class Mx there

is a job class JA
x consisting of

∣∣JA
x

∣∣ = �x − 2�mx jobs with the size pA = 2φ−1
2φ ,

which are only allowed to run on machines in Mx ∪Mx−1/2, where M2+1/2 = ∅.
If we distribute for each x ∈ X the jobs from JA

x to the machines in Mx

with the list scheduling algorithm and if we assume that every machine speed
is roughly 2φ−1

2φ , then every machine i ∈ Mx has a load of roughly �x − 2�.
Therefore, if we can show that this schedule is lex-jump optimal, we know that
the worst lex-jump optimal schedule has a makespan of at least r − 2. On the

other hand, if we setmx =
∣∣∣JA

x+1/2

∣∣∣, x ∈ X\{r}, we can assign each job in JA
x+1/2

to a different machine in Mx yielding a schedule with a constant makespan.
The assumption that the machine speeds are all roughly 2φ−1

2φ is too optimistic,

however. Instead, we can assume due to Hoeffding’s bound [8] that the average
speed of all machines in a machine classMx is close to 2φ−1

2φ with high probability.

We then introduce new job classes JB
x for every x ∈ X with

∣∣JB
x

∣∣ = (2 + x −
�x�)32mx jobs of size pB = pA

32 which are only allowed to run on machines
from Mx. If we assign these small jobs by list scheduling after the big jobs have
been distributed, we can assure that the loads of two different machines of one
machine class according to the obtained schedule σ do not differ much. Hence,
the load of every machine in a machine class Mx is roughly (�x − 2�mx + (2 +
x − �x�)mx)/mx = x with an absolute error of at most 1/8. This construction
is depicted in Figure 1.
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4 Concluding Remarks

We have shown that a smoothed input model with perturbed machine speeds
leads to the same tight bounds for the performance guarantees for unrestricted
machines as a model with perturbed job sizes. In particular, these bounds do
not depend on the number of machines anymore like the worst-case bounds do.
For the setting of restricted machines, we were able to improve the worst-case
bounds to their expected values gaining a stronger result than the former work
by Brunsch et al. [3]. We conjecture that perturbing both jobs sizes and machine
speeds does not result in smaller bounds as the instances used to prove the lower
bounds in our setting seem to be robust against random noise on the job sizes.
But we heavily used that the sets Mj are not randomly chosen. We conjecture
that the bounds for restricted machines decrease significantly if one is able to
justify random noise on the sets Mj using for example a model from [14].
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k packets. Kesselman et al. introduced this problem and showed that its
competitive ratio is unbounded even when k = 2. They also introduced
an “order-respecting” variant of k-FTM, called k-OFTM, where inputs
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and showed that its competitive ratio is at most 2kB
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1 Introduction

When transmitting data through the Internet, each data is fragmented into
smaller pieces, and such pieces are encapsulated into data packets. Packets are
transmitted to the receiver via several switches and routers over a network, and
are reconstructed into the original data at the receiver’s side. One of the bottle-
necks in achieving high throughput is processing ability of switches and routers.
If the arrival rate of packets exceeds the processing rate of a switch, some pack-
ets must be dropped. To ease this inconvenience, switches are usually equipped
with FIFO buffers that temporarily store packets which will be processed later.
In this case, the efficiency of buffer management policies is important since it
affects the performance of the overall network.

Aiello et al. [1] initiated the analysis of buffer management problem using
the competitive analysis [10,32]: An input of the problem is a sequence of events
where each event is an arrival event or a send event. At an arrival event, one
packet arrives at an input port of the buffer (FIFO queue). Each packet is of
unit size and has a positive value that represents its priority. A buffer can store
at most B packets simultaneously. At an arrival event, if the buffer is full, the
new packet is rejected. If there is room for the new packet, an online algorithm
determines whether to accept it or not without knowing the future events. At
each send event, the packet at the head of the queue is transmitted. The gain of
an algorithm is the sum of the values of the transmitted packets, and the goal of
the problem is to maximize it. If, for any input σ, the gain of an online algorithm
ALG is at least 1/c of the gain of an optimal offline algorithm for σ, then we
say that ALG is c-competitive.

Following the work of Aiello et al. [1], there has been a great amount of
work related to the competitive analysis of buffer management. For example,
Andelman et al. [5] generalized the two-value model of [1] into the multi-value
model in which the priority of packets can take arbitrary values. Another gen-
eralization is to allow preemption, i.e., an online algorithm can discard packets
existing in the buffer. Results of the competitiveness on these models are given in
[18,33,20,4,3,12]. Also, management policies not only for a single queue but also
for the whole switch are extensively studied, which includes multi-queue switches
[7,5,2,6,28,9], shared-memory switches [14,19,27], CIOQ switches [21,8,25,22],
and crossbar switches [23,24]. See [13] for a comprehensive survey.

Kesselman et al. [26] proposed another natural extension, called the k-frame
throughput maximization problem (k-FTM), motivated by a scenario of recon-
structing the original data from data packets at the receiver’s side. In this model,
a unit of data, called a frame, is fragmented into k packets (where the jth packet
of the frame is called a j-packet for j ∈ [1, k]) and transmitted through the In-
ternet. At the receiver’s side, if all the k packets (i.e., the j-packet of the frame
for all j) are received, the frame can be reconstructed (in such a case, we say
that the frame is completed); otherwise, even if one of them is missing, the re-
ceiver can obtain nothing. The goal is to maximize the number of completed
frames. Kesselman et al. [26] considered this scenario on a single FIFO queue.
They first showed that the competitive ratio of any deterministic algorithm for
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k-FTM is unbounded even when k = 2 (which can also be applied to randomized
algorithms with a slight modification). However, their lower bound construction
somehow deviates from the real-world situation, that is, although each packet
generally arrives in order of departure in a network such as a TCP/IP network,
in their adversarial input sequence the 1-packet of the frame fi arrives prior to
that of the frame fi′ , while the 2-packet of fi′ arrives before that of fi. Moti-
vated by this, they introduced a natural setting for the input sequence, called the
order-respecting adversary, in which, roughly speaking, the arrival order of the
j-packets of fi and fi′ must obey the arrival order of the j′-packets of fi and fi′
(j′ < j) (a formal definition will be given in Sec. 2). We call this restricted prob-
lem the order-respecting k-frame throughput maximization problem (k-OFTM).
For k-OFTM, they showed that the competitive ratio of any deterministic algo-
rithm is at least B/�2B/k� when 2B ≥ k and k is a power of 2. As for an upper
bound, they designed a non-preemptive algorithm called StaticPartitioning

(SP ), and showed that its competitive ratio is at most 2kB

B/k� + k for any B ≥ k.

1.1 Our Results

In this paper, we present the following results:
(i) We design a deterministic algorithm Middle-Drop and Flush (MF ) for

B ≥ 2k, and show that its competitive ratio is at most 5B+
B/k�−4

B/2k� . Note that

this ratio is O(k), which improves O(k2) of Kesselman et al. [26] and matches
the lower bound of Ω(k) up to a constant factor.

(ii) For any deterministic algorithm, we give a lower bound of 2B

B/(k−1)� + 1

on the competitive ratio for any k ≥ 2 and any B ≥ k − 1. This improves the
previous lower bound of B


2B/k� by a factor of almost four. Moreover, we show

that the competitive ratio of any deterministic online algorithm is unbounded if
B ≤ k − 2.

(iii) In the randomized setting, we establish the first nontrivial lower bound
of k − 1 against an oblivious adversary for any k ≥ 3 and any B. This bound
matches our deterministic upper bound mentioned in (i) up to a constant factor,
which implies that randomization does not help for this problem.

Because of the space restriction, all the proofs of the lemmas and theorems
are omitted and are included in [17].

1.2 Used Techniques

Let us briefly explain an idea behind our algorithm MF . The algorithm SP by
Kesselman et al. [26] works as follows: (1) It virtually divides its buffer evenly
into k subbuffers, each with size A = �Bk �, and each subbuffer (called j-subbuffer
for j ∈ [1, k]) is used for storing only j-packets. (2) If the j-subbuffer overflows,
i.e., if a new j-packet arrives when A j-packets are already stored in the j-
subbuffer, it rejects the newly arriving j-packet (the “tail-drop” policy). It can
be shown that SP behaves poorly when a lot of j-packets arrive at a burst,
which increases SP ’s competitive ratio as bad as Ω(k2) (such a bad example for



Better Bounds for Online k-Frame Throughput Maximization 221

SP is included in the full version of this paper [17]). In this paper, we modify
the tail-drop policy and employ the “middle-drop” policy, which preempts the
(�A/2�+1)st packet in the j-subbuffer and accepts the newly arriving j-packet,
which is crucial in improving the competitive ratio to O(k), as explained in the
following.
MF partitions the whole set of given frames into blocks BL1, BL2, . . ., each

with about 3B frames, using the rule concerning the arrival order of 1-packets.
(This rule is explained in Sec. 3.1 at the definition of MF , where the block
BLi corresponds to the set of frames with the block number i.) Each block
is categorized into good or bad: At the beginning of the input, all the blocks
are good. At some moment during the execution of MF , if there is no more
possibility of completing at least �A/2� frames of a block BLi (as a result of
preemptions and/or rejections of packets in BLi), then BLi turns bad. In such
a case, MF completely gives up BLi and preempts all the packets belonging to
BLi in its buffer if any (which is called the “flush” operation). Note that at the
end of input, MF completes at least �A/2� frames of a good block.

Consider the moment when the block BLi turns bad from good, which can
happen only when preempting a j-packet p (for some j) of BLi from the j-
subbuffer. Due to the property of the middle-drop policy, we can show that there
exist two integers i1 and i2 (i1 < i < i2) such that (i) just after this flush oper-
ation, BLi1 and BLi2 are good and all the blocks BLi1+1, BLi1+2, . . . , BLi2−1

are bad, and (ii) just before this flush operation, all the j-packets of BLi (in-
cluding p) each of which belongs to a frame that still has a chance of being
completed are located between p1 and p2, where p1 and p2 are j-packets in the
buffer belonging to BLi1 and BLi2 , respectively. The above (ii) implies that even
though i2 may be much larger than i1 (and hence there may be many blocks
between BLi1 and BLi2), the arrival times of p1 and p2 are close (since p1 is
still in the buffer when p2 arrived). This means that j-packets of BLi1 through
BLi2 arrived at a burst within a very short span, and hence any algorithm (even
an optimal offline algorithm OPT ) cannot accept many of them. In this way,
we can bound the number of packets accepted by OPT (and hence the number
of frames completed by OPT ) between two consecutive good blocks. More pre-
cisely, if BLi1 and BLi2 are consecutive good blocks at the end of the input, we
can show that the number of frames in BLi1 , BLi1+1, . . . , BLi2−1 completed by
OPT is at most 5B + A − 4 = O(B) using (i). Recall that MF completes at
least �A/2� = Ω(B/k) frames of BLi1 since BLi1 is good, which leads to the
competitive ratio of O(k).

1.3 Related Results

In addition to the above mentioned results, Kesselman et al. [26] proved that
for any B, the competitive ratio of a preemptive greedy algorithm for k-OFTM
is unbounded when k ≥ 3. They also considered offline version of k-FTM and
proved the approximation hardness. Recently, Kawahara and Kobayashi [16]
proved that the optimal competitive ratio of 2-OFTM is 3, which is achieved by
a greedy algorithm.
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Scalosub et al. [31] proposed a generalization of k-FTM, called the max frame
goodput problem. In this problem, a set of frames constitute a stream, and a
constraint is imposed on the arrival order of packets within the same stream.
They established an O((kMB + M)k+1)-competitive deterministic algorithm,
where M denotes the number of streams. Furthermore, they showed that the
competitive ratio of any deterministic algorithm is Ω(kM/B).

Emek et al. [11] introduced the online set packing problem. This problem
is different from k-FTM in that each frame may consist of different number
(at most kmax) of packets. Also, a frame f consisting of s(f) packets can be
reconstructed if s(f)(1 − β) packets are transmitted, where β (0 ≤ β < 1) is
a given parameter. There is another parameter c representing the capacity of a
switch. At an arrival event, several packets arrive at an input port of the queue.
A switch can transmit c of them instantly, and operates a buffer management
algorithm for the rest of the packets, that is, decides whether to accept them (if
any). Emek et al. designed a randomized algorithm Priority, and showed that
it is kmax

√
σmax-competitive when β = 0 and B = 0, where σmax is the maximum

number of packets arriving simultaneously. They also derived a lower bound of
kmax

√
σmax(log log k/ log k)

2 for any randomized algorithm. If the number of
packets in any frame is exactly k, Mansour et al. [29] showed that for any β the
competitive ratio of Priority is 8k

√
σmax(1− β)/c. Moreover, some variants

of this problem have been studied [15,30].

2 Model Description and Notation

In this section, we give a formal description of the order-respecting k-frame
throughput maximization problem (k-OFTM). A frame f consists of k packets
p1, . . . , pk. We say that two packets p and q belonging to the same frame are
corresponding, or p corresponds to q. There is one buffer (FIFO queue), which
can store at most B packets simultaneously. An input is a sequence of phases
starting from the 0th phase. The ith phase consists of the ith arrival subphase
followed by the ith delivery subphase. At an arrival subphase, some packets
arrive at the buffer, and the task of an algorithm is to decide for each arriving
packet p, whether to accept p or reject p. An algorithm can also discard a packet
p′ existing in the current buffer in order to make space (in which case we say
that the algorithm preempts p′). If a packet p is rejected or preempted, we say
that p is dropped. If a packet is accepted, it is stored at the tail of the queue.
Packets accepted at the same arrival subphase can be inserted into the queue
in an arbitrary order. At a delivery subphase, the first packet of the queue is
transmitted if the buffer is nonempty. For a technical reason, we consider only
the inputs in which at least one packet arrives.

If a packet p arrives at the ith arrival subphase, we write arr(p) = i. For any
frame f = {p1, . . . , pk} such that arr(p1) ≤ · · · ≤ arr(pk), we call pi the i-packet
of f . Consider two frames fi = {pi,1, . . . , pi,k} and fi′ = {pi′,1, . . . , pi′,k} such
that arr(pi,1) ≤ · · · ≤ arr(pi,k) and arr(pi′,1) ≤ · · · ≤ arr(pi′,k). If for any j and
j′, arr(pi,j) ≤ arr(pi′,j) if and only if arr(pi,j′) ≤ arr(pi′,j′), then we say that fi
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and fi′ are order-respecting. If any two frames in an input sequence σ are order-
respecting, we say that σ is order-respecting. If all the packets constituting a
frame f are transmitted, we say that f is completed, otherwise, f is incompleted.
The goal of k-FTM is to maximize the number of completed frames. k-OFTM
is k-FTM where inputs are restricted to order-respecting sequences.

For an input σ, the gain of an algorithm ALG is the number of frames
completed by ALG and is denoted by VALG(σ). If ALG is a randomized al-
gorithm, the gain of ALG is defined as an expectation E[VALG(σ)], where the
expectation is taken over the randomness inside ALG. If VALG(σ) ≥ VOPT (σ)/c
(E[VALG(σ)] ≥ VOPT (σ)/c) for an arbitrary input σ, we say that ALG is c-
competitive, where OPT is an optimal offline algorithm for σ. Without loss of
generality, we can assume that OPT never preempts packets and never accepts
a packet of an incompleted frame.

3 Upper Bound

In this section, we present our algorithm Middle-Drop and Flush (MF ) and
analyze its competitive ratio.

3.1 Algorithm

We first give notation needed to describeMF . Suppose that n packets p1, p2, . . . ,
pn arrive at MF ’s buffer at the ith arrival subphase. For each packet, MF
decides whether to accept it or not one by one (in some order defined later).
Let tpj denote the time when MF deals with the packet pj , and let us call tpj

the decision time of pj . Hence if p1, p2, . . . , pn are processed in this order, we
have that tp1 < tp2 < · · · < tpn . (We assume that OPT also deals with pj at
the same time tpj , which makes the competitive analysis simpler.) Also, let us
call the time when MF transmits a packet from the head of its buffer at the ith
delivery subphase the delivery time of the ith delivery subphase. A decision time
or a delivery time is called an event time, and any other moment is called a non-
event time. Note that during the non-event time, the configuration of the buffer
is unchanged. For any event time t, t+ denotes any non-event time between t
and the next event time. Similarly, t− denotes any non-event time between t
and the previous event time.

Let ALG be either MF or OPT . For a non-event time t and a packet p of a
frame f , we say that p is valid for ALG at t if ALG has not dropped any packet
of f before t, i.e., f still has a chance of being completed. In this case we also
say that the frame f is valid for ALG at t. Note that a completed frame is valid
at the end of the input. For a j-packet p and a non-event time t, if p is stored
in MF ’s buffer at t, we define �(t, p) as “1+(the number of j-packets located in
front of p)”, that is, p is the �(t, p)th j-packet in MF ’s queue. If p has not yet
arrived at t, we define �(t, p) =∞.

During the execution,MF virtually runs the following greedy algorithm GR1

on the same input sequence. Roughly speaking, GR1 is greedy for only 1-packets
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and ignores all j(≥ 2)-packets. Formally, GR1 uses a FIFO queue of the same
size B. At an arrival of a packet p, GR1 rejects it if it is a j-packet for j ≥ 2.
If p is a 1-packet, GR1 accepts it whenever there is a space in the queue. At a
delivery subphase, GR1 transmits the first packet of the queue as usual.
MF uses two internal variables Counter and Block. Counter is used to count

the number of packets accepted by GR1 modulo 3B. Block takes a positive
integer value; it is initially one and is increased by one each time Counter is
reset to zero.

Define A = �B/k�. MF stores at most A j-packets for any j. For j = 1, MF
refers to the behavior of GR1 in the following way: Using two variables Counter
and Block, MF divides 1-packets accepted by GR1 into blocks according to
their arrival order, each with 3B 1-packets. MF accepts the first A packets of
each block and rejects the rest. For j ≥ 2, MF ignores j-packets that are not
valid. When processing a valid j-packet p, if MF already has A j-packets in its
queue, then MF preempts the one in the “middle” among those j-packets and
accepts p.

For a non-event time t, let b(t) denote the value of Block at t. For a packet p,
we define the block number g(p) of p as follows. For a 1-packet p, g(p) = b(t−)
where t is the decision time of p, and for some j(≥ 2) and a j-packet p , g(p) =
g(p′) where p′ is the 1-packet corresponding to p. Hence, all the packets of the
same frame have the same block number. We also define the block number of
frames in a natural way, namely, the block number g(f) of a frame f is the
(unique) block number of the packets constituting f . For a non-event time t and
a positive integer u, let hALG,u(t) denote the number of frames f valid for ALG
at t such that g(f) = u.

Recall that at an arrival subphase, more than one packet may arrive at a
queue. MF processes the packets ordered non-increasingly first by their frame
indices and then by block numbers. If both are equal, they are processed in arbi-
trary order. That is,MF processes these packets by the following rule: Consider
an i-packet p and an i′-packet p′. If i < i′, p is processed before p′ and if i′ < i,
p′ is processed before p. If i = i′, then p is processed before p′ if g(p) < g(p′) and
p′ is processed before p if g(p′) < g(p). If i = i′ and g(p) = g(p′), the processing
order is arbitrary. The formal description of MF is as follows.

Middle-Drop and Flush

Initialize: Counter := 0, Block := 1.
Let p be a j-packet to be processed.
Case 1: j = 1:

Case 1.1: If GR1 rejects p, reject p.
Case 1.2: If GR1 accepts p, set Counter := Counter+1 and do the following.
Case 1.2.1: If Counter ≤ A, accept p. (We can guarantee thatMF ’s buffer

has a space whenever Counter ≤ A, as proven in [17].)
Case 1.2.2: If A < Counter < 3B, reject p.
Case 1.2.3: If Counter = 3B, reject p and set Counter := 0 and

Block := Block+ 1.
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Case 2: j ≥ 2:
Case 2.1: If p is not valid for MF at tp−, reject p.
Case 2.2: If p is valid for MF at tp−, do the following.
Case 2.2.1: If the number of j-packets in MF ’s buffer at tp− is at most

A− 1, accept p.
Case 2.2.2: If the number of j-packets in MF ’s buffer at tp− is at least A,

then preempt the j-packet p′ such that �(tp−, p′) = �A/2�+ 1,
and accept p. Preempt all the packets corresponding to p′ (if any).

Case 2.2.2.1: If hMF,g(p′)(tp−) ≤ �A/2�, preempt all the packets p′′

in MF ’s buffer such that g(p′′) = g(p′). (Call this operation “flush”.)
Case 2.2.2.2: If hMF,g(p′)(tp−) ≥ �A/2�+ 1, do nothing.

3.2 Overview of the Analysis

Let τ be any fixed time after MF processes the final event, and let c denote the
value of Counter at τ . Also, we define M = b(τ) − 1 if c = 0 and M = b(τ)
otherwise. Note that for any frame f , 1 ≤ g(f) ≤M . Define the set G of integers
as G = {M}∪{i | there are at least �A/2� frames f completed byMF such that
g(f) = i} and let m = |G|. For each j ∈ [1,m], let aj be the jth smallest integer
in G. We call a block number good if it is in G and bad otherwise. Note that
aj denotes the jth good block number, and in particular that am = M since
M ∈ G. Our first key lemma is the following:

Lemma 1. a1 = 1.

Since at the end of the input any valid frame is completed, we have VOPT (σ) =∑M
i=1 hOPT,i(τ) and VMF (σ) =

∑M
i=1 hMF,i(τ) ≥

∑m
i=1 hMF,ai(τ).

We first bound the gain of MF for good block numbers, which follows from
the definition of G:

hMF,ai(τ) ≥ �A/2� for any i ∈ [1,m− 1]. (1)
We next focus on the mth good block number M . Since it has some exceptional
properties, we discuss the number of completed frames with block number M
independently of the other good block numbers as follows:

Lemma 2. (a) If either c = 0 or c ∈ [�A/2�, 3B − 1], hMF,M (τ) ≥ �A/2�.
(b) If c ∈ [1, �A/2� − 1] and M ≥ 2, hMF,M (τ) + B − 1 ≥ hOPT,M (τ). (c) If
c ∈ [1, �A/2� − 1] and M = 1, hMF,M (τ) ≥ hOPT,M (τ).

Also, we evaluate the number of OPT ’s completed frames from a viewpoint of
good block numbers:

Lemma 3. (a) hOPT,M (τ) ≤ 4B − 1. (b)
∑a2−1

j=a1
hOPT,j(τ) ≤ 4B + A − 3. (c)∑ai+1−1

j=ai
hOPT,j(τ) ≤ 5B +A− 4 for any i ∈ [2,m− 1].

Using the above inequalities, we can obtain the competitive ratio ofMF by case
analysis on the values ofM and c. First, note that ifM = 1 then c ≥ 1 because at
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least one packet arrives. Thus VOPT (σ) > 0. Now ifM = 1 and c ∈ [1, �A/2�−1],

then VOPT (σ)
VMF (σ) =

hOPT,1(τ)
hMF,1(τ)

≤ 1 by Lemma 2 (c). IfM = 1 and c ∈ [�A/2�, 3B−1],

then VOPT (σ)
VMF (σ) =

hOPT,1(τ)
hMF,1(τ)

≤ 4B−1

A/2� <

5B+A−4

A/2� by Lemma 2(a) and Lemma 3(a).

If M ≥ 2 and c ∈ {0} ∪ [�A/2�, 3B − 1],

VOPT (σ) =

M∑
i=1

hOPT,i(τ) =

m−1∑
i=1

ai+1−1∑
j=ai

hOPT,j(τ) + hOPT,am(τ)

≤ (m− 1)(5B +A− 4)−B + 1 + (4B − 1) < m(5B +A− 4)

by Lemma 3 (note that a1 = 1 by Lemma 1 and am = M). Also, VMF (σ) ≥∑m
i=1 hMF,ai(τ) ≥ m�A/2� by (1) and Lemma 2(a). Therefore, VOPT (σ)

VMF (σ) <
5B+A−4

A/2� . Finally, if M ≥ 2 and c ∈ [1, �A/2� − 1],

VOPT (σ) =

M∑
i=1

hOPT,i(τ) =

m−1∑
i=1

ai+1−1∑
j=ai

hOPT,j(τ) + hOPT,am(τ)

≤ (m− 1)(5B +A− 4)−B + 1 + hOPT,M (τ)

≤ (m− 1)(5B +A− 4) + hMF,M (τ)

by Lemma 2(b) and Lemma 3(b) and (c). Also, VMF (σ) =
∑m

i=1 hMF,ai(τ) ≥
(m− 1)�A/2�+ hMF,M (τ) by (1). Therefore,

VOPT (σ)

VMF (σ)
≤ (m− 1)(5B +A− 4) + hMF,M (τ)

(m− 1)�A/2�+ hMF,M (τ)
<

5B +A− 4

�A/2� .

We have proved that in all the cases VOPT (σ)
VMF (σ) < 5B+A−4


A/2� . By noting that
5B+A−4

A/2� = 5B+
B/k�−4


B/2k� , we have the following theorem:

Theorem 1. WhenB/k ≥ 2, the competitive ratio ofMF is at most 5B+
B/k�−4

B/2k� .

4 Lower Bound for Deterministic Algorithms

In this section, we give a lower bound on the competitive ratio for deterministic
algorithms, improving the previous lower bound by a constant factor.

Theorem 2. Suppose that k ≥ 2. The competitive ratio of any deterministic
algorithm is at least 2B


B/(k−1)� + 1 if B ≥ k − 1, and unbounded if B ≤ k − 2.

5 Lower Bound for Randomized Algorithms

As for randomized algorithms, we give a first nontrivial lower bound. As men-
tioned previously, this matches the upper bound we proved in Sec. 3.2 up to a
constant factor, implying that randomization does not help too much.

Theorem 3. When k ≥ 3, the competitive ratio of any randomized algorithm is
at least k − 1− ε for any constant ε against an oblivious adversary.
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11. Emek, Y., Halldórsson, M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing and competitive scheduling of multi-part tasks.
In: Proc. of the 29th ACM Symposium on Principles of Distributed Computing,
pp. 440–449 (2010)

12. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer manage-
ment in QoS switches. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 352–363. Springer, Heidelberg (2006)

13. Goldwasser, M.: A survey of buffer management policies for packet switches. ACM
SIGACT News 41(1), 100–128 (2010)

14. Hahne, E., Kesselman, A., Mansour, Y.: Competitive buffer management for
shared-memory switches. In: Proc. of the 13th ACM Symposium on Parallel Algo-
rithms and Architectures, pp. 53–58 (2001)
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The Solvable Cases of a Scheduling Algorithm

Sam Walker1 and Yakov Zinder1

University of Technology, Sydney

Abstract. When considering the NP-hard problem of scheduling prece-
dence constrained tasks with preemptions on identical parallel machines
with the goal of minimising the maximum lateness, approximation al-
gorithms are commonly studied. It is desirable to characterise in some
way the circumstances under which a given algorithm will provide an op-
timal solution. This paper considers a well-known scheduling algorithm
called the Brucker-Garey-Johnson Algorithm, known to produce optimal
schedules whenever the precedence constraints are in the form of in-trees.
A new class of partial orders is presented and it is proved not only that
the Brucker-Garey-Johnson Algorithm will solve every problem instance
constrained by a partial order from that class but also that no larger
class has this property.

Keywords: scheduling theory, solvable cases, precedence constraints,
identical parallel machines, preemptions, maximum lateness.

1 Introduction

The paper is concerned with the problem of preemptive scheduling of partially
ordered tasks on parallel identical machines with the criterion of maximum late-
ness. This problem can be described as follows. A finite set of tasks (jobs, opera-
tions) N = {1, 2, . . . , n} is to be processed on m ≥ 1 identical parallel machines
(processors). The processing of tasks begins at time t = 0. Each machine can
process only one task at a time. The order in which tasks can be processed is re-
stricted by precedence constraints – a transitive, antireflexive and antisymmetric
relation on N . If task j precedes task g, denoted j → g, then task g cannot be
processed until task j has been completed. In this case g is called a successor of
j and j is a predecessor of g.

In order to be completed, a task j requires pj units of processing time. At
any point in time, the processing of a task can be interrupted and resumed later
on the same or a different machine. In order to be completed, each task j ∈ N
should receive in total pj units of processing time. The processing of a task can
be interrupted only a finite number of times.

For each feasible schedule σ and each j ∈ N , the completion time of task j
in schedule σ will be denoted by Cj(σ). The goal is to minimise the criterion of
maximum lateness

Lmax(σ) = max
j∈N

{Cj(σ)− dj},

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 229–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where dj is the due date associated with task j. In the three field notation, see
for example [1] or [6], the considered problem is denoted by P |prmp, prec|Lmax.

Several algorithms were developed for this problem, [4], [7], [10]. Since the
problem is NP-hard [8], all these algorithms can solve only some particular cases
of the considered problem. Thus, the Brucker-Garey-Johnson Algorithm origi-
nally presented in [2] for unit execution time tasks was modified in [4] for arbi-
trary tasks with preemptions. It was shown in [4] that this modified algorithm
produces an optimal schedule for P |prmp, in− tree|Lmax, where in− tree indi-
cates that the partially ordered set of tasks is an in-tree. A similar result holds
for the modification of the Brucker-Garey-Johnson algorithm presented in [7].
Other algorithms include one presented in [10] as well as a modification of the
algorithm originally presented in [3] for unit execution time tasks. None of the
algorithms developed for the considered problem have an exhaustive description
of all solvable cases, here known as the domain of an algorithm. The domain D
of an algorithm can be thought of as the set of all partial orders S such that

1. if S ∈ D all problem instances with precedence constraints S will be solved
by the algorithm and

2. if S /∈ D there exists a problem instance with precedence constraints S that
is not solved by the algorithm.

This paper completely describes the domain of the Brucker-Garey-Johnson
Algorithm. This leads to a new class of partially ordered sets which include as
a particular case for example in-trees.

2 Scheduling Using Priorities

Several algorithms for the maximum lateness problem modify the original due
dates (see for example [2], [3], [4], [7], [9] and [10]). Therefore, it is convenient
to consider the following objective function

G(σ) = max
j∈N

[Cj(σ) + μj ] (1)

without specifying how values μj are calculated. The algorithm below, Algorithm
P , constructs a schedule, say σ, by scheduling tasks j according to their priorities
pj(t, σ) + μj , where pj(t, σ) is the remaining processing time of task j at time t
in schedule σ. It has been described several times before, including in [10].

Algorithm P schedules tasks in several stages. Each stage corresponds to a
point in time that will be referred to as a point of allocation. According to Step
1 the first point of allocation is t0 = 0. Let 0 = t0 < t1 < . . . < tk be the points
of allocation. For each ti, 0 ≤ i < k, let Ai be the set of all tasks j such that
pj(ti, σ) > 0 and pg(ti, σ) = 0 for all g → j. In other words, Ai is the set of
tasks that are available for processing at point ti. Steps 2, 3, 4 and 5 split Ai

into three sets: N1, N2 and N3. The priority of each task in N1 is strictly greater
than the priority of any task in N2 and N3; the priority of all tasks in N2 are
equal, and this common priority is strictly greater than the priority of any task
in N3. Any of these sets can be empty.
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Let Δ = ti+1 − ti. According to Step 7, between ti and ti+1, each j ∈ N1

receives vj = Δ units of processing time. Therefore the tasks constituting N1

occupy m1 = |N1| machines. Between ti and ti+1, each g ∈ N2 receives vg =
m−m1

|N2|
Δ units of processing time (see Step 7). Tasks constituting N3 are not

processed between ti and ti+1.
Step 6 calculates Δ using the following conditions. Conditions (2) and (3)

guarantee that the remaining processing time of each task is not less than cor-
responding vj . Condition (4) ensures that at ti+1 the priority of any task in N1

is not less than the priority of tasks in N2. Condition (5) states that at ti+1

the priority of any task in N1 is not less than the priority of any task in N3.
Condition (6) specifies that at ti+1 the priority of any task in N2 is not less than
the priority of any task in N3.

Step 8 uses as a subroutine the McNaughton’s Algorithm described in [5].
This algorithm schedules k tasks with no precedence constraints and processing
times vj on parallel machines in time

max

⎧⎨⎩ 1

m

n∑
j=1

vj ,max
j
{vj}

⎫⎬⎭ ,

and is thus used to schedule each interval [ti, ti+1] separately.
Algorithm P

1. Set i = 0 and ti = 0..
2. Partition Ai into sets S1, S2, . . . , Sb such that for any 1 ≤ e ≤ b and any
j ∈ Se and g ∈ Se,

pj(ti, σ) + μj = pg(ti, σ) + μg,

and for any 1 ≤ e < b and any j ∈ Se and g ∈ Se+1,

pj(ti, σ) + μj > pg(ti, σ) + μg.

3. If |S1| ≤ m, then among all a ≤ b such that

a∑
e=1

|Se| ≤ m

select the largest one, say h. Set N1 = ∪h
e=1Se and m1 = |N1|. Otherwise,

set m1 = 0, h = 0 and N1 = ∅.
4. If h = b or m1 = m, then set N2 = ∅. Otherwise, set N2 = Sh+1.
5. Set N3 = Ai \N1 \N2.
6. Find the largestΔ satisfying, for all j ∈ N1, g ∈ N2 and q ∈ N3, the following

inequalities:

pj(ti, σ) ≥ Δ (2)
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pg(ti, σ) ≥
m−m1

|N2|
Δ (3)

pj(ti, σ) −Δ + μj ≥ pg(ti, σ) −
m−m1

|N2|
Δ+ μg (4)

pj(ti, σ) −Δ + μj ≥ pq(ti, σ) + μq (5)

pg(ti, σ) −
m−m1

|N2|
Δ+ μg ≥ pq(ti, σ) + μq (6)

7. For all j ∈ N1, set vj = Δ. For all j ∈ N2, set

vj =
m−m1

|N2|
Δ.

8. Let ti+1 = ti +Δ and use McNaughton’s Algorithm to schedule vj units of
time for each j ∈ N1 ∪N2 on the interval [ti, ti+1].

9. Set i = i+ 1. If Ai �= ∅, go to Step 2. Otherwise, stop.

Note that, due to Step 6 of the preceding algorithm, pj(ti, σ)+μj ≥ pg(ti, σ)+
μg implies pj(ti+1, σ)+μj ≥ pg(ti+1, σ)+μg for all 0 ≤ i < k and all j ∈ Ai and
g ∈ Ai.

3 Schedule Structure

Different methods of computing μ’s may result in different schedules produced
by Algorithm P . Defining K(j) = {g : j → g}, the Brucker-Garey-Johnson
Algorithm calculates μj as specified below.

Brucker-Garey-Johnson Algorithm

1. For every task j such that K(j) = ∅, set μj = −dj .
2. Select some task j such that

(a) μj has not been specified;
(b) for each g ∈ K(j), μg has been already specified.

3. Set

μj = max

{
−dj , max

g∈K(j)
(pg + μg)

}
.

If all tasks j in N are assigned μj , then stop. Otherwise, go to Step 2.

This algorithm computes μ’s such that

μj ≥ μg + pg, for all pairs j → g. (7)

The three lemmas below characterise μ’s and the structure of the resultant
schedule. These lemmas and their proofs can be found in [7] and [10].

Lemma 1. For all schedules σ, G(σ) = Lmax(σ).
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Let σBGJ be a schedule produced by the Brucker-Garey-Johnson Algorithm.
Consider all points in time t such that there exists a task j̃ satisfying

Cj̃

(
σBGJ

)
≥ t and t+ pj̃

(
t, σBGJ

)
+ μj̃ = Lmax

(
σBGJ

)
. (8)

Among all considered t, select the smallest one, say τ . It is easy to see that
if τ = 0, then σBGJ is an optimal schedule. In what follows, we assume that
ti∗−1 < τ ≤ ti∗ , for some i∗ ≥ 1.

Lemma 2. The set N1 specified at time point ti∗−1 is empty.

Lemma 3. The set N2 associated with ti∗−1 contains a task x such that

Cx

(
σBGJ

)
≥ ti∗ and ti∗ + px

(
ti∗ , σ

BGJ
)
+ μx = G

(
σBGJ

)
.

4 A New Class of Partial Orders

It will now be proved that the domain of the Brucker-Garey-Johnson Algorithm
is the set of all partial orders not containing a member from either one of two
classes of prohibited graph, described below. A pair of nodes is said to be inde-
pendent if neither node precedes the other. A set of more than two nodes is said
to be independent if all nodes are pairwise independent.

The first class is that of graphs with six nodes, divided into two sets A1 and
B1, each containing three independent nodes. One node in A1, which will be
called the key node, precedes all three nodes in B1. Any precedence constraints
between the other two nodes in A1 and the three nodes in B1 are allowed in this
class of graphs.

The second class is that of graphs with eight nodes, divided into two sets A2

and B2, each containing four independent nodes. Two nodes in A2, which will
be called the key nodes, precede disjoint sets, each of two nodes, in B2 in such
a way that each precedes only one of these two sets. Any precedence constraints
between the other two nodes in A2 and the four nodes in B2 are allowed in this
class of graphs.

These classes of prohibited graphs are represented below, with the mandatory
precedence constraints as solid lines and the optional constraints as dashed lines.
The key nodes are shaded.

Fig. 1. The two classes of prohibited graphs
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There are thirteen isomorphically distinct prohibited graphs in the first class.
Several prohibited graphs in the second class contain a graph from the first class.
Consequently thirty prohibited graphs are needed to specify the domain of the
Brucker-Garey-Johnson Algorithm.

Fig. 2. The thirteen prohibited graphs of the first kind

Fig. 3. The seventeen prohibited graphs of the second kind



The Solvable Cases of a Scheduling Algorithm 235

The first thing to note is that all prohibited subgraphs contain a subgraph
consisting of three nodes n1, n2 and n3 with two order relations n1 → n2 and
n1 → n3. Consequently all in-trees are in the domain of the Brucker-Garey-
Johnson Algorithm, as was proven in [4]. Note, however, that many graphs that
are not in-trees are also in the domain of the considered algorithm, indicating
a broadening of the well known classical result. Additionally, to the authors’
knowledge this is the first time the domain of an algorithm has been completely
specified.

5 Proving Sufficiency

For the purpose of the following analysis it is convenient to introduce the fol-
lowing notation. For each 0 ≤ i < i∗ define

Hi =
{
j : j ∈ Ai, pj

(
ti+1, σ

BGJ
)
+ μj ≥ px

(
ti∗ , σ

BGJ
)
+ μx

}
.

Lemma 4. For all 0 ≤ i′ < i < i∗, if j ∈ Hi, then there exists a task j′ ∈ Hi′

such that either j = j′ or j′ → j.

Proof. If j ∈ Ai′ the relation

pj
(
ti′+1, σ

BGJ
)
+ μj ≥ pj

(
ti+1, σ

BGJ
)
+ μj ≥ px

(
ti∗ , σ

BGJ
)
+ μx

implies j ∈ Hi′ .
On the other hand, if j /∈ Ai′ the fact that j ∈ Hi ⊆ Ai implies Cj

(
σBGJ

)
>

ti′ and thus there exists at least one task j′ ∈ Ai′ such that j′ → j. In this case
(7) implies

pj′
(
ti′+1, σ

BGJ
)
+ μj′ ≥ pj

(
ti+1, σ

BGJ
)
+ μj ≥ px

(
ti∗ , σ

BGJ
)
+ μx

thus completing the proof. 	


Corollary 1. For all 0 ≤ i < i∗, |Hi| ≥ 1.

Suppose there is some problem instance for which the Brucker-Garey-Johnson
Algorithm does not provide the optimal solution. The lemma below provides an
insight into the structure of the resulting schedule.

Lemma 5. If there exists 0 ≤ ı̄ < i∗ such that |Hi| ≤ m for i < ı̄ and |Hi| ≥ m
for i ≥ ı̄, σBGJ is an optimal schedule.

Proof. For all i < ı̄, |Hi| ≤ m and

pj
(
ti, σ

BGJ
)
+ μj > pg

(
ti, σ

BGJ
)
+ μg

for all j ∈ Hi and all g ∈ Ai \Hi. Consequently, Hi ⊆ N1 in that iteration of
Algorithm P . From Step 6 of Algorithm P the tasks in N1 are processed during
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the entire interval [ti, ti+1]. Additionally, (7) implies that if j ∈ Hi, all g → j
have

μg ≥ pj + μj ≥ pj
(
ti+1, σ

BGJ
)
+ μj ≥ px

(
ti∗ , σ

BGJ
)
+ μx

and thus g ∈ Ai′ implies g ∈ Hi′ . As a consequence, for all 0 ≤ i < ı̄ and
all j ∈ Hi and t ∈ [ti, ti+1] the relation pj

(
t, σBGJ

)
≤ pj (t, σ) holds for all

schedules σ.
For ı̄ ≤ i < i∗ all j ∈ Hi were processed as much as possible before time tı̄.

For all t ∈ [tı̄, ti∗ ] tasks with pj
(
t, σBGJ

)
+ μj ≥ px

(
ti∗ , σ

BGJ
)
+ μx consume

all available machine-time: consequently for every schedule σ there is a task j
with Cj(σ) ≥ ti∗ such that ti∗ + pj(ti∗ , σ) + μj ≥ Lmax

(
σBGJ

)
. 	


The corollary below follows from the lemma above and Corollary 1.

Corollary 2. When m = 1 the Brucker-Garey-Johnson Algorithm produces an
optimal schedule.

Let the class of graphs not containing any of the thirty prohibited subgraphs
described earlier be denoted D.

Theorem 1. For any problem with precedence constraints in D, the Brucker-
Garey-Johnson Algorithm produces an optimal schedule.

Proof. By Lemma 2 and Lemma 5 the non-optimal schedule must have some
0 ≤ i < ı̂ < ı̄ < i∗ such that |Hı̂| < m, |Hı̄| > m and |Hi| > m.

Of all tasks j ∈ Hı̂ select as ĵ a task that precedes the largest number of
tasks from Hı̄. Since |Hı̄| ≥ |Hı̂| + 2 task ĵ must have at least two successors
in Hı̄. From Lemma 4 either j = ĵ or j → ĵ for some j ∈ Hi, so at least one
task j ∈ Hi must have at least two successors in Hı̄. Select as j1 ∈ Hi the task
with the most such successors. From Corollary 2 a problem instance creating a
non-optimal schedule must have m ≥ 2, which implies |Hı̄| ≥ 3 and |Hi| ≥ 3.
Consequently, if j1 has three or more successors in Hı̄ then the problem instance
contains a prohibited subgraph of the first kind, with j1 as the key task.

On the other hand, if j1 precedes two tasks in Hı̄ this implies ĵ also precedes
two tasks in Hı̄. Since |Hı̄| ≥ |Hı̂|+2 there must exist ĵ′ ∈ Hı̂ \{ĵ} that precedes
two tasks in Hı̄ \ K (ĵ). This implies that |Hi| > m > |Hı̂| ≥ |{ĵ, ĵ′}| = 2 and
thus Hi ≥ 4. Again from Lemma 4 either j = ĵ′ or j → ĵ′ for some j ∈ Hi \ {j1}.
Let j2 ∈ Hi \ {j1} be such a task. Since Hi ≥ 4, and since |K(j1) ∩ Hı̄| = 2,
|K(j2) ∩Hı̄| = 2 and K(j1) ∩K(j2) ∩Hı̄ = ∅, this problem instance contains a
prohibited subgraph of the second kind, with j1 and j2 as the key tasks. 	


6 Proving Necessity

I what follows O(ε) will denote any function with the property

lim
ε→0+

O(ε)

ε
= constant.
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Theorem 2. For any partial order not in D there exists an assignment of m, pi
and di such that the Brucker-Garey-Johnson Algorithm produces a non-optimal
schedule.

Proof. The proof will be accomplished by taking any partial order of tasks with
one of the prohibited subgraphs and assigning due dates and processing times
such that the Brucker-Garey-Johnson Algorithm will schedule it incorrectly.

Suppose that the given partially ordered set of tasks contains a prohibited sub-
graph of the first kind, composed of the set of tasksM with key task k. In order to
specify an instance for which the Brucker-Garey-Johnson Algorithm fails to con-
struct an optimal schedule, set m = 2, pk = 2, pj = 1 for all j ∈ M \ {k}, and
pj = ε for all j ∈ N \M . To complete the instance, set dk = 2, dj = 3 1

3 for all
j ∈ K(k) ∩M , dj = 1 for all j ∈M \ ({k} ∪K(k)), and dj = δ for all j ∈ N \M .

The value of ε may be made arbitrarily small, and δ may be made arbitrarly
large, reducing the impact of tasks in N \ M on the resulting schedule. The
Brucker-Garey-Johnson Algorithm will first schedule, in some number of inter-
vals, all tasks preceding M \K(k). Since they are more urgent than any task in
M they will all be completed by time nε. At this point in time, the three tasks
constituting M \K(k) may have been processed for different amounts, and thus
have priorities differing by O(ε). The more urgent tasks, i.e. the tasks receiving
less processing time, will be processed faster than the less urgent tasks according
to Algorithm P and the priorities will converge at a linear rate, therefore at some
time O(ε) all tasks inM \K(k) will have received the same amount of processing.
These tasks will be processed until time 1 1

2 +O(ε) at which point the two tasks
in M \ (K(k) ∪ {k}) will simultaneously be completed. After this task k will be
processed for one unit of processing time on the interval [1 1

2 +O(ε), 2 1
2 +O(ε)]

and be completed. During this interval, any tasks in N \ (M ∪K(k)) that have
not already been completed will be processed in parallel with k. Within time nε
all tasks in K(k) \M that precede any task in M will be processed, resulting
in the three tasks in M ∩K(k) having priorities that differ by O(ε). As before,
after some amount of time O(ε), these three tasks will again have equal priority.
These tasks will be completed in the interval [2 1

2 + O(ε), 4 + O(ε)]. After this,
all remaining tasks will be processed in O(ε) time.

For adequately large δ and adequately small ε the maximum lateness of this
schedule is 2

3 +O(ε), attained on tasks in set K(k) ∩M .
An alternative schedule would begin with an interval [0, nε] in which all

tasks not in M and not preceded by a task in M are completed. On interval[
nε, 13 + nε

]
task k receives 1

3 of a unit of processing time while the two tasks
in M \ ({k} ∪K(k)) each receive 1

6 of a unit of processing time. On interval[
1
3 + nε, 1 7

12 + nε
]
all three tasks in M \K(k) receive 5

6 of a unit of processing,

finishing both tasks in M \ ({k} ∪K(k)). On interval
[
1 7
12 + nε, 2 5

12 + nε
]
task

k is processed for 5
6 of a unit, and completed. On interval

[
2 5
12 + nε, 2 5

12 + 2nε
]

all tasks in N \M that may be completed in this interval are completed. On
interval

[
2 5
12 + 2nε, 3 11

12 + 2nε
]
all three tasks inM ∩K(k) receive 1 unit of pro-

cessing and are completed. Finally, all remaining tasks in N \M are processed
to completion in interval

[
3 11
12 + 2nε, 3 11

12 + 3nε
]
.
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The maximum lateness of this schedule, for adequately large δ and adequately
small ε is 7

12 +2nε obtained from the tasks in set K(k)∩M . Since ε can be made
arbitrarily small there is a value of ε for which this schedule has a maximum
lateness less than 2

3 , thus the Brucker-Garey-Johnson Algorithm fails to produce
an optimal schedule.

On the other hand, suppose the given partially ordered set of tasks contains
a prohibited subgraph of the second kind, composed of the set of tasks M with
key tasks k1 and k2. In order to specify an instance for which the Brucker-
Garey-Johnson Algorithm fails to construct an optimal schedule, set m = 3,
pk1 = pk2 = 2, pj = 1 for all j ∈M \ {k1, k2}, and pj = ε for all j ∈ N \M . To
complete the instance, set dk1 = dk2 = 2, dj = 3 1

4 for all j ∈ (K(k1)∪K(k2))∩M ,
dj = 1 for all j ∈M \ ({k1, k2} ∪K(k1) ∪K(k2)), and dj = δ for all j ∈ N \M .

The Brucker-Garey-Johnson Algorithm will first schedule, in some number of
intervals, all tasks preceding M \ (K(k1) ∪K(k2)). Since they are more urgent
than any task in M they will all be complete by time nε. At this point the tasks
in M \ (K(k1) ∪ K(k2)) may have been processed for different amounts, and
thus have priorities differing by O(ε). As before, the priorities will converge at
a linear rate, therefore at some time O(ε) all tasks in M \ (K(k1) ∪K(k2)) will
have received the same amount of processing. These tasks will be processed until
time 1 1

3 +O(ε) at which point the two tasks in M \ (K(k1) ∪K(k2) ∪ {k1, k2})
will simultaneously be completed. After this tasks k1 and k2 will be processed
for one unit of processing time on the interval [1 1

3 + O(ε), 2 1
3 + O(ε)] and both

will be completed. In parallel with this, any tasks in N \ (M ∪K(k1) ∪K(k2))
that have not already been completed will be processed in parallel with k1 and
k2. Within time nε all tasks in (K(k1) ∪ K(k2)) \M that precede any task in
M will be processed, resulting in the four tasks in M ∩ (K(k1) ∪K(k2)) having
priorities that differ by O(ε). As before, these tasks will have equal priority again
after some amount of time O(ε). These tasks will receive equal processing on the
interval [2 1

3 +O(ε), 3
2
3 +O(ε)] and be completed. After this, all remaining tasks

will be processed in O(ε) time.
For adequately large δ and adequately small ε the maximum lateness of this

schedule is 5
12 +O(ε), obtained from the tasks in set (K(k1) ∪K(k2)) ∩M .

An alternative schedule would begin with an interval [0, nε] in which all
tasks not in M and not preceded by a task in M are completed. On interval[
nε, 16 + nε

]
tasks k1 and k2 receive processing time 1

6 while the two tasks in

M \ ({k1, k2} ∪K(k1) ∪K(k2)) each receive 1
12 . On interval

[
1
6 + nε, 1 7

18 + nε
]

all four tasks in M \ (K(k1) ∪ K(k2)) receive processing time 11
12 , completing

two of them. On interval
[
1 7
18 + nε, 2 11

36 + nε
]
tasks k1 and k2 are processed

for 11
12 of a unit, completing them. On interval

[
2 11
36 + nε, 2 11

36 + 2nε
]
all tasks

in N \ M that may be completed in this interval are completed. On interval[
2 11
36 + 2nε, 3 23

36 + 2nε
]
all four tasks in (K(k1) ∪K(k2)) ∩M receive 1 unit of

processing and are completed. Finally, all remaining tasks in N \M are processed
to completion in interval

[
3 23
36 + 2nε, 3 23

36 + 3nε
]
.
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The maximum lateness of this schedule, for adequately large δ and adequately
small ε is 7

18 + 2nε, and as before a small enough value of ε gives this a smaller
maximum lateness than σBGJ . 	
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Abstract. Drawing a random variate from a given binomial distribu-
tion B(n, p) is an important subroutine in many large-scale simulations.
The naive algorithm takes O(n) time and has no precision loss, however,
this method is often too slow in many settings. The problem of sam-
pling from a binomial distribution in sublinear time has been extensively
studied and implemented in such packages as R [22] and the GNU Sci-
entific Library (GSL) [10], however, all known sublinear-time algorithms
involve precisions loss, which introduces artifacts into the sampling, such
as discontinuities.
In this paper, we present the first algorithm, to the best of our

knowledge, that samples binomial distributions in sublinear time with
no precision loss.

1 Introduction

Let B(n, p) be the binomial distribution of n trials and success rate p. Drawing
a random variate b from B(n, p) means that

Pr[b = k] = pk(1− p)n−k

(
n

k

)
for all k ∈ {0, 1, . . . , n}. (1)

To draw a random variate b from a binomial distribution B(n, p), one can naively
realize n Bernoulli trials of success rate p and count how many of them have a
positive outcome in O(n) time. In other words, binomial sampling can be used
as an alternative for realizing n Bernoulli trials.

Sampling variates from binomial distribution is a common procedure provided
by the GNU Scientific Library [10] and the statistical software R [22], both of
which use the algorithm Btpe proposed in [14]. These implementations have
inaccuracies, such as the discontinuity shown in Figure 1. In particular, we show
that Btpe substantially overestimates the probability of the tail of the distribu-
tion. In Figure 1, the overestimation is by a factor of 2.59, or 0.74% of the total
samples. Thus, the occurence of a rare event in Btpe cannot be trusted.

Many applications use these implementations as part of the procedures, such
as the efficient generation of random graphs from G(n, p) [3,19,4], logistic regres-
sion [9], generating virtual data sets in GLM analysis [1], generating random
data or parameters [21] and speeding up Monte-Carlo simulation system [27].

� This research was supported by NSF Grants IIS-1247750 and CCF-1114930.
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c© Springer-Verlag Berlin Heidelberg 2013



Exact Sublinear Binomial Sampling 241

Recently, both efficient and exact sampling algorithm for some distributions
are developed, e.g. for normal and geometric distributions [15,5] but not yet
for binomial distribution. In this paper, we present what is, to the best of our
knowledge, the first sublinear-time algorithm for drawing a sample from a
binomial distribution with no loss of precision. In particular, we show that:

Theorem 1. Given a binomial distribution B(n, p) for n ∈ N, p ∈ Q, draw-
ing a sample from it takes O(log2 n) time using O(n1/2+ε) space w.h.p., after
O(n1/2+ε)-time preprocessing for small ε > 0. The preprocessing does not depend
on p and can be used for any p′ ∈ Q and for any n′ ≤ n.

PreviousWork. Several sublinear-timealgorithmshavebeendescribed [17,7,14],
although all of these trade precision for speed. AlgorithmsBinv [14] andBg [6,14]
both run in expected O(np) time. The former requires calculating (1 − p)n; the
latter requires calculating the ratio of two logarithms. Algorithm Balias [18,14]
requires calculating

(
n
k

)
for all k in {0, 1, . . . , n} and constructing an alias table [18]

based on the calculated values. The alias table can be constructed in O(n) time
and then each variate generation can be computed inO(1) time with bounded pre-
cision. Algorithm Btpe [14] divides the binomial distribution into parts and ap-
proximates each part by an upper-bound function. To pick a variate at random,
the algorithm samples a variate following the distribution composed of the upper
bound functions and accepts it with a probability equal to the ratio of the binomial
distribution and upper bound function. The procedure is repeated if the test fails.
This skill is known as the accept/reject rule, used in [17,14,7,27].Btpe runs in sub-
linear time and is used by default in the statistical software R and GNU Scientific
Library [22,10]. Because the distribution is divided piecewise and the piece is se-
lected by an approximation to the true probability,Btpe does not exactly compute
the binomial distribution. See [2,7,12,25,13] for moreO(1)-time algorithms in real
computation model.

These algorithms run in sublinear time only if the precision of the calculations
is truncated. When full precision is used, in calculating ratios, logarithms, or
exponential functions, the time grows to at least linear. It is not clear how to
modify them to be both accurate to full precision and sublinear.

Organization. In Section 2, preliminary definitions and building blocks are
introduced. In Section 3, a simple algorithm is devised and further revised to
achieve the claimed time complexity. Then, in Section 4, we conducted a set of
experiments to compare the default algorithm used in GNU Scientific Library
with the proposed one.

2 Preliminaries

To make it easier to understand the proposed algorithms, we sketch the outline of
the algorithms and make definitions in this section. Given an input of a positive
integer n and a real number p ∈ [0, 1], the output is an integer b ∈ {0, 1, . . . , n}
selected so that Pr[b = k] =

(
n
k

)
pk(1 − p)n−k for all k ∈ {0, 1, . . . , n}; that is, a
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sample b is drawn from the binomial distribution B(n, p) of n trials and success
rate p. We analyze algorithms under the log-cost RAM model [20]. We assume
that it takes O(1) time to do arithmetic calculations on constant number of
operands of O(log n) bits and to generate a fair binary random bit u ∈ {0, 1}.
We assume that p is rational and thus p can be represented by finite number
of digits in base two, possibly repeating. Without loss of generality, let p be
(0.a1 · · ·a�a�+1 · · · a�+r)2. If r > 0, the part a�+1 · · ·a�+r repeats; otherwise, no
part repeats. Formally, if r > 0, ai = ai−r for all i > �+ r; otherwise, ai = 0 for
all i > �.

Consider determining a Bernoulli trial T with success rate p = (0.a1a2 · · · )2,
as follows. Start by comparing a fairly-generated random bit u with a1. If u < a1,
T returns a positive outcome; if u > a1, T returns a negative outcome; otherwise
u = a1, proceed to the next digit and repeat the procedure. Then, expected O(1)
comparisons are needed.

A binomial variate b can be sampled from B(n, p) by simply checking how
many of n Bernoulli trials have a positive outcome. We can mimic the single
Bernoulli trial procedure above in which we replaced a comparison with p by
a sequence of comparisons with a fair coin. The variate b is initialized to 0.
Suppose we sample b1 from B(n, 1/2). That means that b1 trials had value 0 at
the first sampled digit and the remaining n−b1 trials had value 1. If a1 = 1, then
b = b + b1, because all b1 trials are less than p no matter what the remaining
sampled digits are. Having determined the outcome of b1 Bernoulli trials, set
n = n − b1. If a1 = 0, then n = b1, because n − b1 trials are greater than p.
We repeat this procedure until n = 0, which takes O(log n) rounds, both in
expectation and with high probability, considering that n will be roughly halved
(≤ n/2 +

√
cn lnn) in each round with probability 1−O(1/nc).

In Section 3, we show how to construct a structure S(n, c), a variation of dis-
crete distribution generating tree [16]. Both construction time and used space are
O((n log3 n)1/2). Affter which, sampling a variate from B(n, 1/2) takes O(log n)
time (matched the possible optimal bound [16]) with probability 1 − O(1/nc)
for any constant c ≥ 1. We also show how to construct S(n,∞) in O(n2) time.

Note that drawing a variate from B(n, p) by the above procedure possibly uses
B(n′, 1/2) for all n′ ∈ {1, 2, . . . , n}. It would be too slow to construct S(n′, c)
whenever we need to generate a variate from B(n′, 1/2). A possible solution
is to construct S(n′, c(n′)) for all n′ ∈ {1, 2, 4, . . . , ��n��} where c(n′) = 4c if
n′ > n1/4 or otherwise c(n′) =∞ and ��x�� is the largest power of two no greater
than x. To generate a variate b from B(n′, 1/2) where n′ is not a power of two,
we decompose n′ into h = O(log n) powers of two ω1, ω2, . . . , ωh, generate a
variate bi from each B(ωi, 1/2), and let b =

∑
i bi. Therefore, if we have the

structures S(n′, c(n′)) for all n′ ∈ {1, 2, 4, . . . , ��n��}, generating a variate from
B(n′, 1/2) for any n′ ≤ n takes O(log2 n) time with probability 1−Pr

[⋃
i Ei

]
≤

1−
∑

i Pr
[
Ei
]
= 1−O(h/nc) = 1−O(logn/nc) where Ei denotes the event that

generating bi takes more than O(log n) time. As a result, generating a variate
from B(n, p) takes O(log3 n) time with probability higher than 1−O(log2 n/nc).
We call this simple sampling.
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Our refined sampling algorithm is based on the fact that every natural number
is sum of four square numbers [26]. However, we are not going to construct
S(n′, c(n′)) for all n′ ∈ W = {k2 : k ≤ n} because it would take too long. Instead,
we construct a much smaller set W ′ ⊂ W such that every natural number is the
sum of h numbers in W ′, where h is a multiple of 4. Let h = 16, for example,
|W ′| ≈ |W|1/2. Therefore, whenever S(n′, c(n′)) is needed and n′ /∈ W ′, we
decompose n′ into square numbers w1, w2, . . . , wh ∈ W ′, generate a variant bi
from each B(wi, 1/2), and let b =

∑
i bi. Since h is constant, generating a variate

from B(n, p) takes O(log2 n) time with probability higher than 1−O(logn/nc).

3 Exact Binomial Sampling

In Section 2, we described how generating a variate from B(n, p) can be reduced
to generating variates from a sequence of O(log n) B(n′, 1/2) with probability
higher than 1 − O(logn/nc) no matter what the precision of p is and where
n′ ∈ {1, 2, . . . , n}. In this section, we begin by showing how to construct a
structure S(n, c) for generating a variate from B(n, 1/2) in O(log n) time with
probability higher than 1 − O(1/nc). Then, we show that constructing S(n′, c)
for each n′ in a small subset of {1, 2, . . . , n} suffices to generate B(n′, 1/2) for
each n′ ∈ {1, 2, . . . , n}.

In order to sample from B(n, 1/2), we need to be careful of how many bits we
use. To see why, consider that a generated variate b has value k with probability
P [b = k] =

(
n
k

)
/2n. The value of these probabilities can vary from 2−n to

Θ(1/
√
n). Thus, if we are not careful, we end up manipulating probabilities

that take n bits to represent.
The main idea will be to construct a structure that uses fewer bits to rep-

resent the needed probabilities. In most cases, this will be enough to correctly
compute the variates. In order to compute the sample with exactly the correct
probabilities, our structure S(n, c) will change from time to time, but with low
probability, expand the number of bits it uses to calculate the sample. Therefore,
with high probability, S(n, c) will be small and fast, but occasionally we might
expand it.

Consider the event space for sampling. In order to generate a variate from
B(n, 1/2), one must pick an event ei from E = {e0, e1, . . . , en} with probability
pi =

(
n
i

)
/2n and output the chosen i as the generated variate. We decompose

each pi =
(
n
i

)
/2n into �i powers of two which sum to pi and replace each ei ∈ E

with ei1, ei2, . . . , ei�i . If eij is picked, then the generated variate is i. Each event

eij from Ê = {eij : 0 ≤ i ≤ n, 1 ≤ j ≤ �i} is selected with probability pij , each
of which is a power of two. Note that there are many different ways to decom-
pose a probability pi into powers of two, though in only one of them does each
power of two occur only once. We will consider decompositions in which some
powers of two might appear twice so that it leaves the flexibility of comput-
ing pi incrementally without worrying about carries in arithmetic operations.
The distribution on the pij is heavily biased towards a few high-probability
events, which correspond to the most significant bits of the binomial coefficients
in base two.
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We construct a power tree on Ê in order to draw an event eij from Ê with
probability pij . Let a power tree be a binary tree in which each node of depth
d is associated with a probability 2−d. The set of probabilities on the leaf nodes
of TÊ are exactly P̂ = {pij : eij ∈ Ê}, in one-to-one correspondence, in an

arbitrary order. A variate can be generated according to P̂ by taking a random,
fair root-to-leaf path in TÊ .

To construct a power tree, we start with a root node associated with proba-
bility 1 and make it an unlabelled leaf. We process each eij ∈ Ê in an arbitrary
order as follows. When processing eij , find a candidate unlabeled leaf with small-
est probability p no smaller than pij . If p = pij , label the leaf with eij . Otherwise,
replace the candidate leaf with two children, each with half the probability, and
make one leaf the new candidate. Proceed until a leaf has been labelled with eij .

Note that after processing each eij , no two unlabelled leaves have the same

probability. Therefore, if Q ⊆ Ê is the set of events we have processed so far and
pQ = min{pij : eij ∈ Q}, there are |Q| labelled leaves and at most 1+ log(1/pQ)
unlabelled leaves, so the tree has size O(|Q|+ log(1/pQ)) in total.

Lemma 1. Given an event set Ê, the power tree on Ê can be constructed in
O(|Ê|) time using O(|Ê|) space. The construction is incremental, adding one
event at a time. During the construction, if some Q ⊆ Ê has processed, both
running time and used space are O(|Q|+ log(1/pQ)).

Proof. We maintain an array of pointers, ρ0, ρ1, . . . , ρlog(1/pQ), where ρi points

to the unique unlabelled leaf with probability 2−i, if such a leaf exists. Then,
it takes O(1) time to process an event eij if ρlog(1/pij) points to an unlabelled
node; otherwise, we have to find the unlabelled leaf with smallest p no smaller
than pij by traversing the pointer array in O(log(1/pij)− log(1/p)) time. Simple
charging scheme, in which the event that consumes a leaf is charged for creating
the leaf, yields the bound.

We show that the construction never fails as follows. Let U be the set of
probabilities of unlabelled leaves. For each coming eij , the associated probability
pij ≤

∑
p∈U p. If the procedure fails as eij comes, then it means we cannot find

p ∈ U, p ≥ pij . Since each p ∈ U is an unique power of two, if each p ∈ U, p < pij ,
then

∑
p∈U p < pij , a contradiction. 	


The set Ê is as large as O(n2) for the power tree of B(n, 1/2) because each pi
requires O(n) bits, as noted above. Therefore, fully constructing power tree for
B(n, 1/2), i.e. S(n,∞), takes O(n2) time. We will construct the power tree of a
set Q chosen so that it has o(n) events and its power tree has depth O(log n), but
so that the total probability of Ê−Q is polynomially small. Lemma 2 establishes
that such a set always exists. If we sample using the power tree of Q, we will
almost always reach a labelled leaf. If we reach an unlabelled leaf, we complete
the construct of the power tree of Ê to finish the sampling procedure. That
is, once a random walk reaches an unlabeled leaf, we postpone the on-going
random walk, complete the unfinished part of the power tree construction, and
then resume the random walk at the point where it is postponed. Thus, with
very high probability, we will use small space and time to sample from Ê.
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Since the size of Q depends on how we decompose pi of ei ∈ Ê, we describe the
decomposition of pi first to complete the claim that Q has small size and then
describe the motivation of pi’s decomposition. For each pi, we find two positive
numbers Hs(pi) and Ls(pi) which add to pi. The first is roughly the high-order
(c+ 1) logn bits of pi and the second is roughly the remaining (low order) bits.
Ideally, they would be exactly the high and lower order bits, but it would be
computationally expensive to find the high-order bits of

(
n
i

)
, considering the

difficulty to determine certain bit of the product of two integers [23]. As the
computation efficiency is concerned, to make Hs(pi) to be of short length and
Ls(pi) to be of small value, we let Hs(pi) and Ls(pi) have an overlap as follows.

The value Ls(pi) = pi −Hs(pi), so we only need to worry about Hs(pi). We
defer the discussion of exactly how to compute Hs(pi) until later and here note
that Hs(pi) = k · 2s for non-negative integer k and pi −Hs(pi) < 2 · 2s. When
we drop the subscript s, the default value of s = −(c + 1) logn. Note that, if
Hr(pi) for r < s is given, one can get Hs(pi) by truncating the trailing s − r
bits of Hr(pi) because Lr(pi) < 2 · 2r ≤ 2s and trailing s− r bits of Hr(pi) are
less than 2s, which add up to a value less than 2 · 2s. We will show that such
an Hs(pi) can always be selected. And the only probability that a power of two
potentially gets repeated in such a decomposition of Hs(pi) and Ls(pi) is 2

s.
The high order bits of many events are all zeros because the binomial coeffi-

cient are strongly concentrated. We define the major range where the events of
non-zero high order bits located to be C(n) = [n/2± (cn lnn)1/2] (C for center).
Trivially, the number of bits is (c+ 1) logn ∗ 2(cn lnn)1/2, so picking this for Q
is small. Lemma 2 shows that the probability is high. Because every H(pi) is a
multiple of 2−(c+1) logn, this bounds the depth of the power tree to be O(c log n).

To obtain Q, we decompose H(pi) into its binary representation for i ∈ C(n).
The following lemma completes the claim that |Q| is small. Let bit(p) be the set
of powers of two in the binary representation of p.

Lemma 2. Let P(E) be the sum of probabilities associated with the events in
E. Let Q be the set of events associated with the probability in⋃

i∈C(n)
bit(H(pi)). (2)

Then, |Q| is O((c3n log3 n)1/2) and P(Q) ≥ 1−O(1/nc).

Proof. Let Q1 and Q2 be the set of events associated with the probability in,
respectively, ⋃

i/∈C(n)
bit(H(pi)) ∪ bit(L(pi)) and

⋃
i∈[0,n]

bit(L(pi)). (3)

We have P(Q1) ≤ 2/nc by Chernoff bound [8] and P(Q2) ≤ 2(n + 1)/nc+1 by
the definition of L(pi). Because Q = Q1 ∪Q2,

P(Q) ≥ 1− P(Q1)− P(Q2) = 1−O(1/nc) (4)

as desired. Then, |Q| = (cn logn)1/2(c+ 1) logn = O((c3n log3 n)1/2). 	




246 M. Farach-Colton and M.-T. Tsai

We claim that H(pi) for all i ∈ C(n) can be efficiently computed. We first
show how to compute H(pi) for i ∈ C(n) from H(p
n/2�) and then show how to
compute H(p
n/2�) itself. Given the Hs(p
n/2�) for s = (c + 2) logn, Lemma 3

shows how we can compute H(pi) for i ∈ C(n) in O((c3n logn)1/2) time. In
other words, if we have the central probability of the binomial computed to
more precision, we can use that to compute the surrounding values.

Lemma 3. Given Hs(p
n/2�) for s ≤ −(c + 2) logn, it takes O((c3n logn)1/2)
time to calculate H(pi) for all i ∈ C(n).

Proof. Let �a�s ≡ �a/2s�2s. Given Hs(p
n/2�), we claim that H(p
n/2�−1) can
be obtained by truncating some trailing bits in �1 ≡ �Hs(p
n/2�) ∗ r1�s where

r1 =
(

n

n/2�−1

)
/
(

n

n/2�

)
= �n/2�/(�n/2�+ 1) < 1 because

p
n/2�−1 − �1 = p
n/2� ∗ r1 − �1

= (Hs(p
n/2�) + Ls(p
n/2�)) ∗ r1 − �1

= (Hs(p
n/2�) ∗ r1 − �Hs(p
n/2�) ∗ r1�s) + Ls(p
n/2�) ∗ r1
< 2s + 2 · 2s < 3 · 2s.

Then, �1 has −s bits and p
n/2�−1−�1 < 3 ·2s. If we get �′1 by truncating the last
two bits in �1, then �

′
1 has −s−2 bits and p
n/2�−1− �′1 < 3 ·2s+3 ·2s < 2 ·2s+2.

Hence, �′1 is a validHs+2(p
n/2�−1) and we haveH(p
n/2�−1) if s ≤ −(c+2) logn.
Similarly, we claim thatH(p
n/2�−2) can be obtained by truncating some trailing
bits in �2 ≡ ��1 ∗ r2�s where r2 = (�n/2� − 1)/(�n/2�+ 2) < 1 because

p
n/2�−2 − �2 = p
n/2�−1 ∗ r2 − �2

= (�1 + (p
n/2�−1 − �1)) ∗ r2 − �2

= (�1 ∗ r2 − ��1 ∗ r2�s) + (p
n/2�−1 − �1)

< 2s + 3 · 2s < 4 · 2s

Again, we get �′2 by truncating the last two bits in �2, then �
′
2 has −s−2 bits and

p
n/2�−2−�′2 < 3·2s+4·2s < 2·2s+2 as desired. Clearly, p
n/2�−k−�k < (k+2)·2s
and we can calculate H(pi) for all i ∈ C(n) if s = −(c + 2) logn. Since each �′i
can be calculated by O(1) arithmetic calculations on operands of O(c logn) bits,
we need O(c) time for each �′i and thus O((c3n logn)1/2) in total. 	


To compute Hs(p
n/2�) for s = −(c+ 2) logn, we exploit the idea of computing
Q; that is, consider summing up the terms of i ∈ C(n) in the equality(

2k

k

)
=
∑
i

(
k

i

)2

≈
∑

i∈C(n)
H
((

k

i

))2

. (5)

Suppose
(

k

k/2�

)
has been computed, we use it to compute

(
k
i

)
for i ∈ C(k) in

O((c3k log k)1/2) time by Lemma 3 and use all of them to compute
(
2k
k

)
by Equa-

tion 5. To compute Hs

((
2k
k

))
with s = 2k− (c+2) log 2k (i.e. Hs(

(
2k
k

)
/22k) with
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s = −(c+2) log 2k), we need Hs

((
k


k/2�
))

with s = k− (c+4+1/2) logk implied

by Lemma 4 if k ≥ 2(c+7)/2. Otherwise k < 2(c+7)/2, the binomial coefficient(
k


k/2�
)
can be computed in O(1) time because c is a constant. Consequently, for

even n, the computation of
(

n
n/2

)
can be reduced to the computation of

( n/2

n/2�

)
;

for odd n, the computation of
(

n

n/2�

)
could simply add

(
n−1

n/2�

)
and

(
n−1


n/2�−1

)
,

each of which is a case of even n. We apply this procedure to compute
(

n

n/2�

)
recursively and the time complexity is

logn∑
k=0

O(((c + 5k/2 + 2)3(n/2k) log(n/2k))1/2) = O((n log2 n)1/2), (6)

dominated by the construction time of the power tree, remarked in Theorem 2.

Lemma 4. Let pk = H2
s

((
n
k

))
/
(
2n
n

)
with s ≤ n− (2c+ 1/2) logn. Then,∑

k∈C(n)
pk ≥ 1− 18/n2c.

Proof.

∑
k∈[0,n]

(
n

k

)2

−
∑

k∈C(n)
H2

s

((
n

k

))
=

∑
k/∈C(n)

(
n

k

)2

(7)

+
∑

k∈C(n)
2

(
n

k

)
Ls

((
n

k

))
− L2

s

((
n

k

))
(8)

Consider the sum of sampled n values from a pool of n 0’s and 1’s without

replacement. The probability of the sum being k is qk =
(
n
k

)2
/
(
2n
n

)
. By Corollary

1.1 in [24], we have
∑

k/∈C(n) qk ≤ 2exp[−4(c lnn)/(1 + 1/n)] ≤ 2/n2c. Then,

(7)/
(
2n
n

)
≤ 2/n2c.

By definition, Ls(
(
n
k

)
) < 2 ·2s and therefore (8) ≤ 4 ·2s ·2n = 2n+s+2. Because(

2n
n

)
≥ 22n−2/n1/2 by Stirling’s approximation, (8)/

(
2n
n

)
≤ 16/n2c. Putting the

results together, we have∑
k∈C(n)

H2
s

((
n

k

))
/

(
2n

n

)
≥ 1− 18/n2c. 	


Theorem 2. To compute S(n, c), it takes O((n log3 n)1/2) time, after which,
it is stored in O((n log3 n)1/2) space. Given S(n, c), it takes O(log n) time to
generate a variate from B(n, 1/2) with probability 1−O(1/nc).

Now we have S(n, c) for generating variates from B(n, 1/2) and show how to use
it for B(n, p) as follows; that is, building a set of S(n′, c(n′)). We suppress the
term c(n′) for convience without changing the time complexity.
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Simple Sampling. generates a variate from B(n, p) for n ∈ N, p ∈ Q denoted
by (0.a1a2 · · · )2 using the structure S(n) for all n′ ∈ {1, 2, 4, . . . , ��n��}.

In Section 2, we have shown how to use B(n′, 1/2) for n′ ∈ [n] to generate a
variate from B(n, p). Because S(n′) might not be contained in the constructed
structure {S(1), S(2), S(4), . . . , S(n)}, to generate a variate from B(n′, 1/2), we
generate a variate from each of B(ω1, 1/2), . . . , B(ωh, 1/2) and add the variates,
where ωi are powers of two added to n′. Clearly, h can be O(log n′).

There are O(log n) steps in the reduction from B(n, p) to B(n′, 1/2) for
n′ ∈ [n]. Each step requires to generate a variate from B(n′, 1/2), where n′ can be
decomposed into O(log n′) powers of two. Thus, it takes O(log2 n) time to gen-
erate a variate from B(n′, 1/2) with probability 1−O(log n/nc) by union bound.
Considering that the number of steps is O(log n) with probability 1−O(1/nc),
the total running time for generating B(n, p) is therefore O(log3 n) with proba-
bility 1−O(log2 n/nc).

Refined Sampling. is as the simple sampling but selects an integer set R
such that every positive integer n′ ≤ n is a sum of j elements in R, where j
is a constant. In this way, to generate a variate from S(n′), one can generate
a variate from each of S(w1), S(w2), . . . , S(wj) and add the generated variates,
where n′ = w1 +w2+ · · ·+wj . R

′ = {k2 ≤ n : k ∈ N} is a possible candidate for
R because each positive integer is a sum of at most four square numbers [26].
However, we do not build the data structure S(n′) for all n′ ∈ R′ because the
time complexity

∑
k∈{1,4,9,...,n}O((n log3 n)1/2) = O((n2 log3 n)1/2) is too much.

A better candidate for R could be

R1 ∪R2 = {k2 ≤ n : k ∈ N, k2 ≡ 0 mod t} ∪ {k2 ≤ n : k ∈ N, k2 < t}, (9)

where t is a chosen square number. Let n′ be represented as w1t+w2. Because w1t
(resp. w2) is a sum of at most 4 square numbers in R1 (resp. R2), every integer
n′ ≤ n is a sum of at most 4× 2 numbers in R1 ∪R2. Thus, the time complexity
is reduced to O((t2 log3 t)1/2) + O((t(n/t)2 log3 n)1/2) or O((n4/3 log3 n)1/2) by
letting t = n2/3. Similarly, let n′ = w1t1+w2t2+· · ·+wh, the time complexity can

be furtherly reduced to O((n2
h/(2h−1) log3 n)1/2) = O(n1/2+ε) for some constant

h and small ε > 0. To decompose each witi into four square numbers in the
corresponding set Ri in O(1) time, we preprocess a small table for lookup. The
small table is used to decompose integers no more than n1/8+ε into four square
numbers, whose construction time is bounded by O((n1/8+ε)4) dominated by the
main procedure. Therefore, there is no problem to decompose w1, w2, . . . , wh−2

because all of them are no more than n1/8+ε. For wh−1 bounded by n1/4+ε, one
can first decompose wh−1 as x+ y, where x is the largest square number smaller
than wh−1 and thus y = O(n1/8+ε) so that it can be decomposed by table-lookup
in O(1) time. Similar decomposition is applied to wh. As a result, the mentioned
constant j = 4h+ 3.

As the arguments used for the simple sampling, generating a variate from
B(n, p) takes O(log2 n) time with probability 1 − O(log n/nc) after O(n1/2+ε)-
time preprocessing.
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4 Empirical Evaluation

In this section, we conducted experiments to compare the quality of gener-
ated variates and to compare the computation time used for generating vari-
ates among the algorithms with and without loss of precision. We compare our
proposed algorithm with Btpe [14], which is the default algorithm for binomial
sampling in both R [22] and GNU Scientific Library (GSL) [10]. The implemen-
tation of GSL is used to conduct the experiments.

We generated 108 random variates from B(230, 1/2) and plotted a histogram
of outputs. Btpe demonstrated a discontinuity, as shown in Figure 1.

Our algorithm takes poly-logarithmic time. In contrast, Btpe takes approxi-
mately constant time. As shown in Figure 2, the computation time is about the
same for n ≤ 215 and increases to 3.5 times more for n = 230. When we stored
the power tree in pre-order, the running time of our algorithm improved, sug-
gesting that cache misses were to blame. Therefore, our algorithm could benefit
from more tuning.

We implemented our algorithm in C++ with GNU Scientific Library [10] and
GNUMultiple Precision Arithmetic Library [11], compiled it with G++4.63 with
optimization flag -O3. The machine we used is equipped with a Celeron G530
2.4GHz CPU and 2GB of 1066MHz RAM. The operating system is Ubuntu 12.04
Desktop. The computation time is measured by wall time, i.e., the elapsed time.
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Trivial, Tractable, Hard. A Not So Sudden

Complexity Jump in Neighborhood Restricted
CNF Formulas

Dominik Scheder�,��,� � �
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Abstract. For a CNF formula F we define its 1-conflict graph as follows:
Two clauses C,D ∈ F are connected by an edge if they have a nontrivial
resolvent – that is, if there is a unique literal u ∈ C for which ū ∈ D.
Let lc1(F ) denote the maximum degree of this graph.
A k-CNF formula is a CNF formula in which each clause has exactly

k distinct literals. We show that (1) a k-CNF formula F with lc1(F ) ≤
k − 1 is satisfiable; (2) there are unsatisfiable k-CNF formulas F with
lc1(F ) = k; (3) there is a polynomial time algorithm deciding whether
a k-CNF formula F with lc1(F ) = k is satisfiable; (4) satisfiability of
k-CNF formulas F with lc1(F ) ≤ k + 1 is NP-hard.
Furthermore, we show that if F is a k-CNF formula and lc1(F ) ≤ k,

then we can find in polynomial time a satisfying assignment (if F is
satisfiable) or a treelike resolution refutation with at most |F | leaves (if
F is unsatisfiable). Here, |F | is the number of clauses of F .

1 Introduction

There are several parameters to measure the structural complexity of CNF
formulas, and they influence the computational complexity of their associated
satisfiability decision problem. Some of them yield a fixed-parameter tractable
problem – for example the treewidth of formulas (Allender, Chen, Lou, Papakon-
stantinou, and Tang [1]). For other parameters we are hit by the full power of
NP-completeness once the parameter is large enough. Think of k, the maximum
clause width of a formula: For k = 2 we know polynomial algorithms, for k ≥ 3
the problem is NP-complete. In this paper we define in a natural way a graph
on the clauses of the formula and investigate the complexity of the satisfiabil-
ity problem depending on the maximum degree of this graph. We connect two
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clauses C,D of our formula with an edge if those clauses have a non-trivial re-
solvent. That is, if there is exactly one literal u ∈ C for which ū ∈ D. We call
this the 1-conflict graph. Thus, the degree of a clause C in this graph is the
number of potential resolution partners in the formula. This graph is similar to
the one defined by Ostrowski, Grégoire, Mazure, and Sais [2].1 We show that a
k-CNF formula is satisfiable if its 1-conflict graph has maximum degree at most
k − 1; the satisfiability problem is NP-hard if we allow a maximum degree of
k + 1; in between, for k-CNF formulas graphs of maximum degree k, there is a
nontrivial algorithm that runs in polynomial time. If the formula is satisfiable,
the algorithm returns a satisfying assignment. If it is unsatisfiable, it returns a
treelike resolution refutation of size at most 2m− 1, where m is the number of
clauses.

1.1 Notions of Degree, Neighborhood, and Conflict

A k-CNF formula in which every variable appears in at most 2k/(ek) clauses is
satisfiable. This is a direct consequence of the Lovász Local Lemma [3] and was
first observed by Kratochv́ıl, Savický, and Tuza [4]. There is no reason to believe
that 2k/(ek) is tight. This motivates the following definition: Let f(k) be the
largest integer d such that every k-CNF formula F with Δ(F ) ≤ d is satisfiable.
Here, Δ is the “maximum degree” of a formula: The maximum number of clauses
in which a variable appears. The above result shows that f(k) ≥ 2k/(ek). Proving
matching upper bounds, i.e., constructing unsatisfiable k-CNF formulas of low
maximum variable degree, turned out to be not trivial at all. The upper bound
has been improved in several papers, to O

(
2k/k0.26

)
by Savický and Sgall [5] and

to O
(
2k log k/k

)
by Hoory and Szeider [6]. Gebauer [7] improved it to O

(
2k/k

)
,

which is tight up to a constant factor, and finally Gebauer, Szabó, Tardos [8]
proved that f(k) = (1 ± o(1))2k+1/ek, i.e., they even found the right constant
factor.

How difficult is satisfiability of k-CNF formulas of bounded degree? Let (k, d)-
SAT denote the problem of deciding whether a given k-CNF formula F of
maximum degree Δ(F ) ≤ d is satisfiable. Clearly, (k, f(k))-SAT is trivial: All
instances are satisfiable. Kratochv́ıl, Savický, and Tuza [4] showed that (k, d)-
SAT exhibits a complexity jump: When the number of permitted occurrences
per variable increases from f(k) to f(k)+1, the complexity of the decision prob-
lem jumps from trivial (all instances are satisfiable) to NP-complete. It seems
surprising that one can prove such a result without knowing the value of f(k).

Other structural parameters exhibit complexity jumps, too. For a clause C in
a CNF formula F , let ΓF (C) denote the clauses of F (excluding C) that have
at least one variable in common with C, regardless of its sign. Let Γ (F ) :=
maxC∈F |ΓF (C)|. Again by the Lovász Local Lemma, every k-CNF formula F
with Γ (F ) ≤ 2k/e − 1 is satisfiable. Gebauer, Moser, Welzl, and myself [9]

1 Their graph has edges also between clauses with a trivial resolvent, for example
(x ∨ y ∨ z̄), (u ∨ ȳ ∨ z), which is labeled as a trivial edge. Our graph is such the
subgraph of all non-trivial edges of the graph of Ostrowski et al.
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showed that there is some number �(k) such that (1) all k-CNF formulas F with
Γ (F ) ≤ �(k) are satisfiable; (2) there exists an unsatisfiable k-CNF formula
F with Γ (F ) ≤ �(k) + 1; (3) satisfiability of k-CNF formulas F with Γ (F ) ≥
max(k + 3, �(k) + 2) is NP-hard. Note that k + 3 ≤ �(k) + 2 for sufficiently
large k. This means an “almost sudden” complexity jump, where in the case
Γ (F ) = �(k) + 1 the decision problem is neither known to be in P nor to be
NP-complete.

Define Γ ′F (C) to be the number of clauses in F with which C has a conflict,
that is those clauses D for which u ∈ C and ū ∈ D for some literal u. Let
lc(F ) := maxC∈F |Γ ′F (C)|. Here, lc stands for local conflict. The lopsided Lovász
Local Lemma shows that every k-CNF formula F with lc(F ) ≤ 2k/(ek) − 1
is satisfiable. In [9] it was proven that this notion of conflict degree exhibits
a sudden complexity jump: There is a function lc(k) such that (1) all k-CNF
formulas F with lc(F ) ≤ lc(k) are satisfiable; (2) deciding satisfiability of k-CNF
formulas F with lc(F ) ≥ lc(k) + 1 is NP-hard.

1.2 Our Contribution

Two clauses C,D have a 1-conflict if there is exactly one literal u such that
u ∈ C and ū ∈ D. In other words, if C and D have a non-trivial resolvent.
For example, the clauses {x, y, z} and {x̄, y} have a 1-conflict, but {x, y, z} and
{x̄, z̄} do not. We denote by Γ 1

F (C) the set of clauses D ∈ F such that C and
D have a 1-conflict, and lc1(F ) := maxC∈F |Γ 1

F (C)|. In contrast to Δ(F ), Γ (F )
and lc(F ), it turns out that we completely understand the complexity of k-SAT
when we restrict lc1:

Theorem 1 (Complexity Jump). The following three statements hold for all
k ≥ 0:

1. Every k-CNF formula F with lc1(F ) ≤ k − 1 is satisfiable.
2. There exists an unsatisfiable k-CNF formula F with lc1(F ) = k.
3. Satisfiability of k-CNF formulas F with lc1(F ) ≤ k is in P.
4. Deciding satisfiability of k-CNF formulas F with lc1(F ) ≤ k + 1 is NP-

complete, if k ≥ 3.

Let us say a word about the proof of this theorem. Point 2 is very simple,
we just provide a construction of a k-CNF formula for every k ∈ N. Point 4,
the hardness result, uses a reduction that is very similar to that of Kratochv́ıl,
Savický, and Tuza [4] and Gebauer, Moser, Welzl, and myself [9]. Point 1 uses
the concept of blocked clauses (Kullmann [10]). These are special clauses that
are redundant and can be removed. The proof of Point 3 is the most interesting
in our opinion. It consists of two main observations: (1) It is enough to decide
satisfiability separately for each connected component of the 1-conflict graphs.
(2) If the 1-conflict graph is connected, then splitting on a variable and iteratively
deleting blocked clauses drastically reduces the size of the input formula. Blocked
clause elimination (Järvisalo, Biere, and Heule [11]; Ostrowski, Grégoire, Mazure,
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and Sais [2]) is a known preprocessing step in SAT solvers and is quite useful
in practice. In theory, however, eliminating blocked clauses can increase the
resolution complexity of a formula exponentially: There are examples of formulas
with short resolution proofs, but if one removes blocked clauses, every resolution
proof of the remaining formula most be of exponential size; see for example
Cook [12]. The class of formulas we discuss in Point 3 is thus not of this form:
Blocked clause elimination is provably beneficial here.

Point 3 shows that there is a provable gap between the trivial and the NP-
hard regime of the parameter lc1. Such a gap is non-existent or not known to
exist for the other parameters discussed above. We give a SAT algorithm that is
correct in general, and in the special case of k-CNF formulas F with lc1(F ) ≤ k
runs in polynomial time. It is a branching algorithm and thus produces a treelike
resolution refutation whose size is bounded by the number of recursive calls (this
is a well-known fact; for a proof see [13], Theorem 3.2.5, page 35). Therefore, we
get the following theorem:

Theorem 2 (Short Resolution Proofs). If F is an unsatisfiable k-CNF for-
mula and lc1(F ) = k, then there is a treelike resolution refutation of F with at
most |F | leaves, where |F | is the number of clauses in F .

Theorem 3 (Finding the Satisfying Assignment). Suppose F is a satisfi-
able k-CNF formula and lc1(F ) ≤ k. Then we can find a satisfying assignment
in polynomial time.

2 Notation

A CNF formula is a conjunction (AND) of clauses: C1 ∧ · · · ∧Cm. A clause is a
disjunction (OR) of literals: x ∨ ȳ ∨ z, where a literal is either a variable or its
negation. We typically let n denote the number of variables in a formula, m the
number of clauses, and k the size of its clauses: In a k-CNF formula, all clauses
have size k. For notational purposes, we view formulas as set of clauses and
clauses as sets of literals. So {{x, y}, {x̄, ȳ}} is the 2-CNF formula (x∨y)∧(x̄∨ ȳ)
(which by the way is equivalent to x⊕ y). By vbl(C) and vbl(F ) we denote the
set of variables in a clause C or formula F , respectively. For a clause D =
{u1, . . . , uk}, we write D̄ := {ū1, . . . , ūk}. This is not the negation of D. For
a CNF formula F and a variable x, F [x �→1] is the CNF formula we obtain by
replacing x by the constant 1. Thus, every clause containing x is satisfied (and
can be removed from F ), and every occurrence of x̄ is unsatisfied and can be
removed. We define F [x �→0] analogously.

2.1 Resolution

If C and D have a one-conflict, i.e., C ∩ D̄ = {u}, we call the clause E :=
(C \ {u})∪ (D \ ū) the resolvent of C and D. It is an easy exercise to show that
the formulas C ∧D and C ∧D ∧E are equivalent. Let F be a CNF formula. A
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resolution derivation from F is a sequence of clauses C1, C2, . . . , Cm where each
Ci is (1) a clause of F or (2) the resolvent of two earlier clauses in the sequence.
It is not difficult to see that F implies each clause in the sequence; that is, any
assignment satisfying F satisfies C1, . . . , Cm. If Cm = �, i.e., the empty clause,
which always evaluates to 0, we call C1, . . . , Cm a resolution refutation, as it
shows that F is unsatisfiable. A treelike resolution derivation from F is a binary
tree T with the following properties: Every vertex u is labeled with a clause Cu;
a leaf is labeled with a clause of F ; if an inner vertex u has children v and w,
then Cu is the resolvent of Cv and Cw. If the root is labeled with the empty
clause �, we call it a treelike resolution refutation of F .

3 Proofs

We prove Point 2 of Theorem 1, which is the simplest of the four points. Take k
variables and let Fk be the k-CNF formula containing all 2k k-clauses over the
k variables. Fk is unsatisfiable and lc1(Fk) = k. For an alternative construction,
take 2k − 1 variables and let Gk consist of all

(
2k−1

k

)
completely positive k-

clauses and all
(
2k−1

k

)
completely negative k-clauses. Again one checks that Gk

is unsatisfiable and lc1(Gk) = k. For example, for k = 2 those two constructions
yield

{{x, y}, {x̄, y}, {x, ȳ}, {x̄, ȳ}} (1)

and

{{x, y}, {x, z}, {y, z}, {x̄, ȳ}, {x̄, z̄}, {ȳ, z̄}} . (2)

Their 1-conflict graphs are a C4 and a C6, respectively.

3.1 Basic Properties of the 1-Conflict Graph

Before we attack the remaining three points of the theorem, let us collect some
interesting facts about 1-conflicts. Let us start with a simple but surprising
observation, which probably is folklore.

Proposition 1. Every CNF formula F with � �∈ F and lc1(F ) = 0 is satisfiable.

Note that without that proposition, the notion “1-conflict” would be mislead-
ing. After all, under any reasonable notion of conflict, a formula without conflicts
should be satisfiable (extreme cases like � ∈ F excluded). A direct consequence
of the above proposition is that a hypergraph in which |e∩ f | �= 1 for all hyper-
edges e, f is 2-colorable. This is a result of Lovász (Problem 13.33 in [14]).

Proof. A CNF formula F is unsatisfiable if and only if there is a resolution
derivation of the empty clause (For a proof use induction over the number of
variables or see for example [15], Theorem 4.2.1, page 26). Since F has no 1-
conflicts, we cannot build any new resolvents. Since � �∈ F , the formula is
satisfiable. �
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Lemma 1. A CNF formula F is satisfiable if and only if every connect compo-
nent of its 1-conflict graph is satisfiable. Furthermore, given satisfying assign-
ments α1, . . . , αt for each of its t connected components, we can efficiently find
a satisfying assignment α of F .

Again, this is something we expect from a reasonable notion of conflict.

Proof. One direction is trivial: If F is satisfiable, then all connected components
are satisfiable. For the other direction, write F = F1 ) F2 such that there is
no 1-conflict between F1 and F2. By induction on the number of connected
components, both F1 and F2 are satisfiable.

Choose a pair α1, α2 of assignments to vbl(F ) such that α1 satisfies F1, α2

satisfies F2, and the Hamming distance dH(α1, α2) is minimized. We claim that
α1 satisfies F2 as well, and therefore F . Suppose for the sake of contradiction that
this is not the case. There is a clause D ∈ F2 such that α1 does not satisfy D.
Since α2 satisfies D, there is a literal u ∈ D such that α1(u) = 0 and α2(u) = 1.
Define α′1 := α[u !→ 1]. Clearly dH(α′1, α2) = dH(α1, α2) − 1. If we can prove
that α′1 still satisfies F1, we have arrived at a contradiction to dH being minimal,
and are done. Consider any C ∈ F1. By the assumptions of the lemma, there
is no 1-conflict between C and D. Hence either C ∩ D̄ = ∅ or |C ∩ D̄| ≥ 2. In
the first case, α1(C) = α′1(C) = 1. In the second case, α1 satisfies at least two
literals in C, and therefore, α′1 satisfies at least one literal in C. This shows that
α′1 indeed satisfies F1, contradicting minimality of dH(α1, α2).

As for the algorithmic aspect, suppose we are given assignments α1 and α2

satisfying F1 and F2, respectively. As above, we we locally modify α1, reducing
the Hamming distance between to α2, until we arrive at a single assignment α
satisfying both F1 and F2. This takes only polynomial time. �

3.2 Blocked Literals and Blocked Clauses

It will pay off to introduce some notation. Let F be a CNF formula, C a clause,
and u ∈ C a literal. Define Γ 1

F (C, u) := {D ∈ F | C ∩ D̄ = {u}}, that is, those
clauses that have a 1-conflict with C, and this 1-conflict is generated by u. Note
that

Γ 1
F (C) =

⋃
u∈C

Γ 1
F (C, u) ,

and this union is a disjoint one.

Definition 1 (Blocking Literals and Blocked Clauses, Kullmann [10]).
We say u blocks C in F if Γ 1

F (C, u) = ∅. A clause C is blocked in F if some
u ∈ C blocks C in F .

If the ambient formula is understood, we simply say that u blocks C and C is
blocked, not explicitly referring to F . Blocked clauses are redundant, in some
way:
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Proposition 2 (Kullmann [10]). Let F be a CNF formula and C ∈ F some
clause. If C is blocked in F , then F is satisfiable if and only if F \ {C} is.
Furthermore, given a satisfying assignment α of F \ {C}, we can efficiently find
a satisfying assignment α′ of F .

We can use Proposition 2 to repeatedly remove blocked clauses in a formula, fi-
nally arriving at a formula without blocked clauses, which we denote by
deleteBlocked(F ).

Proposition 3 (Kullmann [10]). Let F be a CNF formula and let F ′ :=
deleteBlocked(F ). Then F is satisfiable if and only if F ′ is, and given a sat-
isfying assignment α′ of F ′, we can efficiently construct a satisfying assignment
α of F .

Proof. This follows from Proposition 2 and induction on the number of clauses.�

Proposition 3 yields another proof of Proposition 1: If lc1(F ) = 0, then every
non-empty clause is blocked by one of its literals. The algorithm deleteBlocked

will remove one by one, finally arriving at the empty formula, which is satisfiable.
Here we were using an innocent but crucial fact: If a clause C is blocked with
respect to F , then it is also blocked with respect to every subformula F ′ ⊆ F
for which C ∈ F ′.

This proves Point 1 of the theorem: If F is a k-CNF formula and lc1(F ) ≤ k−1,
then every clause contains at least one literal that blocks it. Thus
deleteBlocked(F ) = {}, the empty formula, thus it is satisfiable.

3.3 Simple and Tight Formulas

Definition 2. A CNF formula F is simple if |ΓF (C, u)| ≤ 1 for every C ∈ F
and every u ∈ C. It is tight if |ΓF (C, u)| = 1 for every C ∈ F and every u ∈ C.

For example, the following formula is tight and satisfiable.

{{x̄1, x2}, {x̄2, x3}, . . . , {x̄n−1, xn}, {x̄n, x1}}

As another example, the formulas in (1) and (2) are tight and unsatisfiable.

Proposition 4. Suppose F is simple. Then deleteBlocked(F ) is tight. Sup-
pose F is a k-CNF formula and lc1(F ) ≤ k. Then deleteBlocked(F ) is tight.

Proof. Suppose F is simple. Then any subformula F ′ ⊆ F is simple, too. Thus
F ′ := deleteBlocked(F ) ⊆ F is simple. It contains no blocked clauses, so
|ΓF ′(C, u)| ≥ 1 for all u ∈ C ∈ F ′. But |ΓF ′(C, u)| ≤ |ΓF (C, u)| ≤ 1, which
means they must be exactly 1. In other words, F ′ is tight.

For the second statement, suppose F is a k-CNF formula and lc1(F ) ≤ k. Then
this statement is true for F ′ := deleteBlocked(F ), too. Since F ′ contains no
blocked clause, |ΓF ′(C, u)| ≥ 1 for all u ∈ C ∈ F ′. Thus k ≤

∑
u∈C |ΓF ′(C, u)| =

|ΓF ′(C)| ≤ lc1(F
′) = k, so equality holds throughout, meaning |ΓF ′(C, u)| = 1,

and F ′ is tight. �
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Proposition 5. Suppose F is simple, and x is a variable. Then F [x �→1] is sim-
ple, and so is F [x �→0].

Proof. Suppose F ′ := F [x �→0] is not simple. We will show that F is not simple.
By assumption on F ′, there is a clause C′ ∈ F ′ and a literal u ∈ C′ such that
|ΓF ′(C′, u)| ≥ 2. This means there are clauses D′1, D

′
2 such that C′ ∩ D̄′1 =

C′∩ D̄′2 = {u}. Since F ′ = F [x �→0], this means that F contains clauses C,D1, D2

such that either C = C′ or C = C′ ∨ x; either D1 = D′1 or D1 = D′ ∨ x; either
D2 = D′2 or D2 = D′ ∨ x. None of those clauses contains x̄, though. Therefore
C ∩ D̄1 = C′ ∩ D̄′1 = {u}, and similarly C ∩ D̄2 = C′ ∩ D̄2 = {u}. Thus,
D1, D2 ∈ Γ 1

F (C, u), and F is not simple, either. �

3.4 An Efficient Algorithm

We will now use the above notions of blocked clauses and simple and tight
formulas to prove the main result of this paper, i.e., Point 3 of Theorem 1. We
give an algorithm that efficiently decides satisfiability of k-CNF formulas F with
lc1(F ) ≤ k. See Algorithm simpleSAT below. To see the correctness simpleSAT,

Algorithm 1.1. simpleSAT(CNF formula F )

1: F ← deleteBlocked(F )
2: if � ∈ F then
3: return false

4: else if F = {} then
5: return true

6: else if F =F1 � F2 for some F1, F2 �= {} and |C ∩ D̄| �= 1 for all C ∈ F1, D ∈ F2

then
7: return simpleSAT(F1) ∧ simpleSAT(F2)
8: else
9: x ← vbl(F )
10: G1 := deleteBlocked(F [x �→1])
11: G0 := deleteBlocked(F [x �→0])
12: return simpleSAT(G1) ∨ simpleSAT(G0)
13: end if

consider lines 1.1 and 1.1. The algorithm recurses on F1 and F2 and returns
true if both calls return true. By Lemma 1, F is satisfiable if and only if F1

and F2 are both satisfiable individually. The challenging part is to argue that
its running time is polynomial in our case.

Lemma 2. If F is simple, then simpleSAT(F ) runs in polynomial time. More
precisely, let m be the number of clauses in F . The total number of calls to
simpleSAT(F ) during its execution is 2m− 1 if m ≥ 1 and 1 otherwise.



Trivial, Tractable, Hard 259

Proof. If m = 0, then F = {} and the algorithm just returns true. So the claim
holds for m = 0. After the first line, F is tight, which follows from Proposition 4.
If m = 1, then F = {�} or F = {} after the first line, so there is no further
recursive call either. So the claim holds for m = 1, too.

Otherwise, suppose m ≥ 2, i.e., F has at least two clauses. Then simpleSAT

either recurses on two subformulas F1, F2 (line 1.1) or on G0, G1 (line 1.1).
Suppose simpleSAT recurses on F1 and F2. Note that both F1 and F2 have at
least one clause. We apply induction to F1 and F2 and see that the total number
of calls is at most 1 + (2|F1| − 1) + (2|F2| − 1) = 2(|F1| + |F2|) − 1 = 2m − 1.
If simpleSAT recurses on G0 and G1, things are more complicated. This is the
only point where we need that F is tight:

Proposition 6. Suppose F is tight, x ∈ vbl(F ), and let G0 := deleteBlocked

(F [x �→0]) and G1 := deleteBlocked(F [x �→1]). Then |G0|+ |G1| ≤ |F |.

With this proposition, we apply induction to G0 and G1. If both G0 and G1

contain at least one clause, then the total number of calls is 1 + (2|G0| − 1) +
(2|G1| − 1) ≤ 2|F | − 1.

At this point we are almost done, but have to deal with the annoying special
case that G0 or G1 might be empty. If G0 contains no clause but G1 does, then
we apply induction on G1 and see that the number of calls is 1+1+(2|G1|−1) =
2|G1|+ 1 ≤ 2|F | − 1, since |G1| < |F |. If G0 = G1 = {}, then there is a total of
3 calls. Since F has m ≥ 2 clauses, this completes the proof of the lemma. �.

Proof (of Proposition 6). Let C ∈ F be a clause. We argue that C may make
its way into either G0 or G1, but not both. Thus |G0|+ |G1| ≤ F .

There are two cases: Suppose x ∈ C or x̄ ∈ C, without loss of generality
x ∈ C. Then setting x !→ 1 satisfies C, and C does not make it into G1, but
C [x �→0] may make it into G0 (provided it survives deleteBlocked).

So suppose x �∈ C and x̄ �∈ C. After line 1.1, the 1-conflict graph of F is
connected. So there is a path C = C1, C2, . . . , Ct−1, Ct such that x ∈ vbl(Ct)
but x �∈ vbl(Ci) for 1 ≤ i ≤ t − 1. Without loss of generality, x ∈ Ct. After
setting x !→ 1, the clause Ct is satisfied, and Ct−1 has one 1-conflict neighbor
less. So now Ct−1 is blocked, and deleteBlocked(F [x �→1]) deletes it. Thus Ct−2

loses a neighbor and becomes blocked, and so on, until finally C = C1 will be
removed. See Figure 1 for an illustration. Thus, C does not make its way into
G1. This proves the proposition. �

Resolution Size – Proof of Theorem 2

The algorithm simpleSAT is a branching algorithm, and it is a well-known fact
that branching algorithms implicitly produce a treelike resolution refutation
when run on an unsatisfiable formula (see e.g. [13], Theorem 3.2.5, page 35).
The number of clauses in the refutation is at most the number of recursive calls.
Since an unsatisfiable formula has m ≥ 1 clauses, the number of calls is at most
2m− 1, by Lemma 2. Thus the resolution tree has at most 2m − 1 nodes, and
therefore at most m leaves. This proves Theorem 2.
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{u, x̄1} {x1, x2, x3}

{x̄3, x4}

{x̄4}

{x̄2}

{ȳ1, y2, ū}

{ȳ2}

{ȳ3, y1}

{y3}

Fig. 1. Illustration of Proposition 6. When we set u to 1, the clause {u, x̄1} disappears.
The clause {x1, x2, x3} has only one outgoing edge labeled x1. Once {u, x̄1} disappears,
the literal x1 will block {x1, x2, x3}, and {x1, x2, x3} will be deleted, too. Then x̄2 will
block {x̄2} and x̄3 will block {x̄3, x4}, thus these clauses are also deleted, and so on.

Finding the Satisfying Assignment – Proof of Theorem 3

Suppose F is a satisfiable k-CNF formula and lc1(F ) ≤ k. We construct a sat-
isfying assignment F by tracking the execution of simpleSAT(F ). Denote by
F ′ := deleteBlocked(F ) the input formula after the first line. By Proposition 4,
F ′ is tight. If we can efficiently find a satisfying of F ′, then by Proposition 3 we
can efficiently find a satisfying assignment of F . If simpleSAT recurses in line 1.1
on F1 and F2, we assume by induction that we know satisfying assignments α1

of F1 and α2 of F2. By Lemma 1 we can efficiently combine α1, α2 into a single α
satisfying of F ′. If simpleSAT recurses in line 1.1 on G0 and G1, suppose without
loss of generality that G1 is satisfiable and let α be a satisfying assignment. Since
G1 = deleteBlocked(F

′[x �→1]), we can efficiently find a satisfying assignment
α′ of F

′[x �→1], by Proposition 3. Thus, α′ ∪ [x !→ 1] satisfies F ′. Summing up,
we can construct a satisfying assignment of F by adding some bookkeeping to
simpleSAT.

4 Hardness for lc1 ≥ k + 1: Proof Sketch

We sketch a reduction from k-SAT to k-SAT with lc(F ) ≤ k + 1, but refer the
reader to the appendix for the full details. Let F be a k-CNF formula and let
degF (x) denote the number of clauses in F in which x occurs, regardless of its
sign. In a first step, we introduce 2 degF (x) new variables x1, x2, . . . , x2 degF (x)

for each x ∈ vbl(F ) and replace the ith occurrence of x by x2i.
In a second step, we add an equalizer formula Eq(x1, . . . , x2 degF (x)) for each

x ∈ vbl(F ). This is a 2-CNF formula which is satisfied if and only if its 2 degF (x)
variables receive the same truth value. The resulting formula is satisfiable if and
only if F is. However, it is not a k-CNF formula, because it contains 2-clauses.

In a third step, we “fill up” each 2-clause {u, v} to a k-clause, by adding k− 2
new variables. This is, we replace {u, v} by {u, v, w3, . . . , wk}. Finally, we add
a “forcer” for every new variable wi introduced in the third step. A forcer is a
k-CNF formula that is satisfiable, but only if wi is set to 0. Such a forcer can be
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built in a rather straightforward manner from an unsatisfiable k-CNF formula
G with lc1(G) = k.
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Emo Welzl. The question posed and answered in this paper arose during our
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Dynamic Point Labeling is Strongly

PSPACE-Complete
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Abstract. An important but strongly NP-hard problem in automated
cartography is how to best place textual labels for point features on a
static map. We examine the complexity of various generalizations of this
problem for dynamic and/or interactive maps. Specifically, we show that
it is strongly PSPACE-complete to decide whether there is a smooth dy-
namic labeling (function from time to static labelings) when the points
move, when points are added and removed, or when the user pans, ro-
tates, and/or zooms their view of the points.

1 Introduction

Map labeling involves associating textual labels with certain features on a map
such as cities (points), roads (polylines), and lakes (polygons). This task takes
considerable time to do manually, and for some applications cannot be done
manually beforehand. In air traffic control, for example, a set of moving points
(airplanes) has to be labeled at all times. In interactive maps users may pan, ro-
tate, and/or zoom their view of the map, which may also require relabeling. It is
therefore unsurprising that map labeling has attracted considerable algorithmic
research (see, for instance, the on-line Map Labeling Bibliography [9], currently
containing 371 references).

Static Points. A good labeling for a point set has legible labels, and an unam-
biguous association between the labels and the points. This has been formalized
by regarding the labels as axis-aligned rectangles slightly larger than the text

1P 2PH 1SH

2PV 4P

2SH

1SV 2SV

4S

Fig. 1. A label model specifies the allowed positions (shown in gray) for the label
of a point. Fixed-position models: the 1-position (1P), 2-position (2PH, 2PV), and
4-position (4P) models. Slider models: the 1-slider (1SH, 1SV), 2-slider (2SH, 2SV),
and 4-slider (4S) models.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 262–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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they contain, which must be placed without overlap so that each contains the
point it labels on its boundary. Not all placements are equally desirable, and as
such various label models have been proposed which specify allowed positions for
the labels (Fig. 1). In the fixed-position models, every point has a finite number
of label candidates. In particular, in the 1-, 2-, and 4-position models a subset
of 1, 2, or 4 corners is designated and each label must have one of these coincide
with the point it labels. The slider models generalize this. In the 1-slider models
one side of each label is designated, but the label may contain its point any-
where on this side. In the 2-slider models there is a choice between two opposite
sides, and in the 4-slider model the label can contain the point anywhere on its
boundary.

Ideally, one would label all points with non-intersecting labels, but this is not
always possible. Deciding this is a strongly NP-complete problem for the 4-posi-
tion [4] and 4-slider [7] models. We may deal with this difficulty in several ways.
Firstly, we may shrink the labels. The size-maximization problem asks to label
all points with non-intersecting labels of maximal size. Secondly, we may remove
labels. The number-maximization problem asks to label a maximum-cardinality
subset of the points with non-intersecting labels of given dimensions. Thirdly,
we may allow labels to overlap, but try to keep such occurrences to a minimum.
The free-label-maximization problem asks for all points to be labeled with labels
of given dimensions, maximizing the number of non-intersecting labels. As the
decision problem mentioned above is strongly NP-hard for the 4-position and
4-slider models, these three optimization problems are as well.

Dynamic Points. A natural generalization of static point labeling is dynamic
point labeling. Here the point set P changes over time, by points being added
and removed, and/or by points moving continuously. This can be inherent to the
point set (as in air traffic control), or be the result of the user panning, rotating,
and zooming (as in interactive maps). Thus, the input is a dynamic point set
P , which specifies for each point p ∈ P its arrival and departure times, as well
as its trajectory. We seek a dynamic labeling L, which for all t assigns a static
labeling L(t) to the static points P (t) present at time t. For the 4-slider model
we require that labels move continuously. For the fixed-position and 2-slider
models we must allow labels to make “jumps”. We only allow p’s label to jump
from position A to position B, if there is no candidate position C in between A
and B in clockwise (or counter-clockwise) order around p. For the 4-position
model we thus allow horizontal and vertical jumps, but no diagonal ones. For a
2-slider model we only allow jumps from an endpoint of one slider to the “same”
endpoint of the other slider.

For static point labeling, practical heuristic algorithms and theoretical algo-
rithms with guaranteed approximation ratios abound. Dynamic point labeling,
however, has seen very few theoretical results. Been et al. [1] studied number-
maximization for points under zooming, giving constant-factor approximations
for unit-square labels in the 1-position model. Gemsa et al. [5] gave a PTAS for
the same problem with rotation instead of zooming. Theoretical treatment of
other label models and general point trajectories are sorely missing.
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Our Results. We believe the relative lack of theoretical results for dynamic point
labeling is not due to a lack of attempts. Intuitively, dynamic point labeling
should be much harder than its static counterpart. We prove and quantify this
intuition. Specifically, we consider the problem of deciding whether there exists a
dynamic labeling without intersections for a given dynamic point set. We prove
that this is PSPACE-complete for unit-square labels in the 4-position, 2-slider,
and 4-slider models, and remains so even if the input is given in unary nota-
tion (it is strongly PSPACE-complete). This is the case when points are added
or removed from the point set, when (some of) the points move, and when
the point set is panned, rotated, or zoomed within a finite viewport. Any dy-
namic generalization of the mentioned static optimization problems is therefore
strongly PSPACE-hard in these settings. Additionally, we prove that label-size
maximization on dynamic point sets admits no PTAS unless P=PSPACE.

2 Structure of the Reduction

To prove PSPACE-hardness of dynamic point labeling, we reduce from non-
deterministic constraint logic (NCL) [6], which is an abstract, single-player game.
The game board is a constraint graph: an undirected graph with non-negative
weights on both the vertices and the edges. A configuration of the constraint
graph specifies an orientation for each of its edges. A configuration is legal if and
only if each vertex’s inflow (the summed weight of its incoming edges) is at least
its own weight. The outflow of vertices, on the other hand, is not constrained. To
make a move in this game is to reverse a single edge in a legal configuration such
that the resulting configuration is again legal. Hearn and Demaine [6] showed
that each of the following questions is PSPACE-complete.

– Configuration-to-configuration NCL: Given two legal configurations CA and
CB, is there a sequence of moves transforming CA into CB?

– Configuration-to-edge NCL: Given a legal configuration CA and an orientation
for a single edge eB, is there a sequence of moves transforming CA into a legal
configuration CB in which eB has the specified orientation?

– Edge-to-edge NCL: Given orientations for edges eA and eB, do there exist legal
configurations CA and CB, and a sequence of moves transforming the one into
the other, such that eA has the specified orientation in CA and eB has the
specified orientation in CB?

These decision problems remain PSPACE-complete even for planar, 3-regular
constraint graphs consisting only of AND vertices and protected OR vertices. An
AND vertex has a weight of 2, and its three incident edges have weights 1, 1, 2.
To orient the weight-2 edge away from the vertex requires both weight-1 edges
to be oriented towards the vertex. An OR vertex also has weight 2, as do its three
incident edges. Thus at least one edge needs to be oriented towards the vertex
at all times. An OR vertex is called protected if it has two edges that, because
of constraints imposed on them by the rest of the constraint graph, cannot both
be directed inward.
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and

or

edge

Fig. 2.Our construction for simulating non-deterministic constraint logic with dynamic
point labeling. In this figure, and all that follow, weight-1 edges are drawn as thin, red
lines and weight-2 edges are drawn as thick, blue lines.

As a first step towards proving hardness of dynamic labeling, we will show
how to simulate a constraint graph G with a point set P . This will be done
in such a way that labelings of P will correspond to configurations of G, and
label movements will correspond to changing the orientations of edges in G. In
the next section, we will then show how to use this construction to prove the
PSPACE-hardness of various dynamic labeling problems.

At a high level, our construction works as follows. Given a planar constraint
graph G with n vertices, we first embed it on a regular grid that has been
turned by 45◦ relative to the coordinate axes. In this embedding G’s vertices
lie on grid vertices, and its edges form interior-disjoint paths along grid lines,
as depicted in the center of Fig. 2. From the structure of Hearn and Demaine’s
hardness proof of NCL [6] we may in fact assume that such an embedding of
G is given, but otherwise we can compute one in O(n) time, for example with
an algorithm of Biedl and Kant [3]. The next step is to replace each vertex and
edge by appropriate gadgets built out of points that are to receive labels. In the
figure, our gadgets are depicted in the circular insets. We call the points that
have been depicted with dark gray labels blockers, as we can consider their labels
to be fixed obstacles: labeling them differently than shown will only restrict the
placement of other labels further. As is, the depicted blockers restrict the red
and blue labels to two possible positions each in the 4-position model. These
correspond to the two different orientations of edges. Labels “directed” into a
vertex gadget (such as the red labels in the depicted AND gadget) correspond
to edges pointing out of the vertex. Conversely, labels directed out of a vertex
gadget (such as the blue labels in the depicted AND gadget) correspond to edges
pointing into the vertex. The inflow constraints are then enforced by the light
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Fig. 3. Our gadgets simulating the (a) AND vertex, (b) protected OR vertex, and (c)
edge shown in the insets. For the edge gadget, the left side shows its building pieces.
They may be rotated arbitrarily in 90◦ increments, and “connected” together along
the dotted lines. The right side shows an example that can be built. The gadgets work
for square labels of side length 1 (depicted) up to 1 + δ − ε. In the figure, δ = 3/8 and
ε = 1/8. The distance marked x may be varied along an edge gadget in order to make
it line up correctly with vertex gadgets. For the 4-position model, x ∈ [δ− ε, 1); for the
2-slider and 4-slider models, x ∈ [δ − ε, 1− 3ε).

gray labels, which restrict the amount of usable space for the red and blue labels
inside the vertex gadget.

Figure 3 shows our vertex and edge gadgets in more detail. As mentioned, the
blockers restrict the colored labels marked A, B, and C to two possible positions
each in the 4-position model. We call the label position closest to the center of
the vertex gadget inward, and the other outward. In the figure, labels A and B
are placed inward, and label C is placed outward. In the slider models, labels
can take on any position in between these two extremes, but we may assume
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that only a very small range of positions is actually used. Consider, for example,
label A in Fig. 3(b). Without moving label A′, we can only move A up by at
most ε, or left by at most 2ε. We refer to positions for A from this range as
inward, and define the term similarly for B and C. If (and only if)A′ is moved
left by at least 1 − ε, then A can move further upward. We may then move A
all the way to its uppermost position, and there is no reason not to do so. Thus
we may define outward as in the 4-position model.

Our edge gadgets ensure that their two incident vertex gadgets cannot both
have their corresponding label placed outward simultaneously. Both can be
placed inward simultaneously, however, which corresponds to the NCL edge
having an indeterminate orientation. Modifying the definition of a legal con-
figuration to allow such edges does not meaningfully change NCL, though, as
any inflow constraints that were already satisfied would remain so after arbitrar-
ily orienting such edges. With these definitions there is a direct correspondence
between static and dynamic labelings for our construction on the one hand, and
legal configurations and moves on a constraint graph on the other hand. This
is expressed in the following theorem, the proof of which we omit due to space
constraints.

Theorem 1. Let G be a planar constraint graph with n vertices, and let ε and
δ be two real numbers with 0 < ε � δ < 1 − 3ε. One can then construct a point
set P = P (G, δ, ε) in polynomial time that has the following properties for any
s ∈ [1, 1 + δ − ε]:
– the size of P , and the coordinates of its points, are polynomially bounded in n,
– for any legal configuration of G there is an overlap-free static labeling of P

with s× s square labels in the 4-position model and vice versa,
– there is a sequence of moves transforming one legal configuration of G into an-

other if and only if there is a dynamic labeling transforming the corresponding
static labelings of P into each other.

When δ < 1/3− 4ε/3, the same results hold for the 2- and 4-slider models.

3 Hardness of Dynamic Point Labeling

In this section we will define a number of dynamic point-labeling problems. The
input to all of them is a dynamic point set P , which specifies for each point
p ∈ P an arrival and departure time, as well as a continuous trajectory. In some
problems these changes to the point set may be fairly arbitrary, in others they
must be the result of the user panning, rotating, or zooming their viewport of a
static point set. In all cases we seek a dynamic labeling L of P for a given time
interval [a, b]. That is, L(t) must be a static labeling of P (t) for all t ∈ [a, b], and
each of L’s labels must move continuously over time.

Various optimization questions may be formulated for dynamic labeling. We
may disallow label overlap entirely, and then seek a dynamic labeling that labels
as many points as possible for as long as possible. Alternatively, perhaps we wish
to label all points at all times, and wish to have as little label overlap as possible.
Whatever the case may be, labeling all points at all times without any overlap
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is likely the most desirable outcome. Unfortunately, we will see that deciding
whether such a solution exists is already strongly PSPACE-complete, even if we
drastically restrict the dynamic nature of the point set. Thus, all optimization
problems of this kind are strongly PSPACE-hard.

Theorem 2. The following decision problem is strongly PSPACE-complete for
the 4-position, 2-slider, and 4-slider label models.

Given: A dynamic point set P (with given trajectories, arrival times, and
departure times), and numbers a and b with a < b.
Decide: Whether there exists a dynamic labeling L for P that labels all points
with non-overlapping unit-square labels over the time interval [a, b].

Additionally, unless P = PSPACE, the maximum label size for which there is
such an L cannot be (4/3− ε′)-approximated in polynomial time for any ε′ > 0.
For the 4-position model, it cannot even be (2−ε′)-approximated. All of the above
remains true when

– all points are stationary, and during [a, b] two points are removed and two
points are added,

– no points are added or removed, and all points move at the same, constant
speed along parallel (but possibly opposite), straight-line trajectories, or

– no points are added or removed, and all but two points are stationary.

Proof. We omit the proof of membership in PSPACE and only show strong
PSPACE-hardness. To do so we reduce from edge-to-edge NCL. Thus we are
given a constraint graph G with orientations for two edges eA and eB, and
want to decide whether there is a sequence of moves on G starting from a legal
configuration CA where eA has its specified orientation and ending in a legal
configuration CB where eB has its specified orientation. We start with the point
set P = P (G, δ, ε) of Theorem 1 (for δ and ε to be determined below), and slightly
modify the edge gadgets for eA and eB as follows. Pick one blocker q ∈ P in the
edge gadget for eB, and suppose p ∈ P is the point for which q blocks some label
candidates. Now make q move at a constant speed of v = 3ε/(b− a) towards the
nearest non-blocked candidate of p, as in Fig. 4(a)–(b). In the edge gadget for eA
we select a blocker q′ and non-blocker p′ in the same way. Now, however, we alter

...

..
.

q

...

..
.

. . .

. .
.

p
q
p eAeB

(a) (b) (c)

eB
p′
q′

Fig. 4. Our reduction from edge-to-edge NCL to dynamic labeling of moving points.
(a) The modified gadget for edge eB at time a. (b) The modified gadget for edge eB
at time b. (c) The modified gadget for edge eA at time a.
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the position of q′ at time a to be inside the non-blocked label candidate of p′, and
make q′ move at speed v in the direction of its original position, as in Fig. 4(c).
This causes eA to be constrained to a single orientation during the time interval
[a, a+Δ), and eB during the time interval (b−Δ, b], where Δ = (b− a)/3. We
may achieve the same result with all points moving on parallel trajectories by
being careful how we lay out the edge gadgets on the grid. We can then ensure
that the two blockers move in the same direction (as they do in the figure), and
may reduce their speeds to v/2, while moving all other points at speed v/2 in
the opposite direction. Alternatively, we may keep all points stationary and at
time a + Δ remove q′ from P and re-insert it at its new location, and do the
same for q at time b−Δ. In all cases, the desired dynamic labeling exists if and
only if there is a sequence of moves transforming CA into CB, and deciding the
latter is PSPACE-hard. All coordinates are polynomially bounded in the size
of G, making the decision problem strongly PSPACE-hard. The construction
works for identical square labels with a side length in the range [1, 1 + δ − ε].
We must have 0 < ε � δ < 1− 3ε for the 4-position model, so pick ε = ε′/4 and
δ = 1 − ε′ to obtain the hardness-of-approximation result. For the 2-slider and
4-slider models δ < 1/3− 4ε/3 must hold, so pick δ = 1/3− ε′ instead. 	


In some applications it may be that the static labelings L(a) and/or L(b) are
already given. The trajectories of the points may only become known through
periodic updates, for example. If we know the trajectories up to time b at time a,
then we have to find a dynamic labeling that extends from the currently displayed
labeling L(a). As another example, P (a) and P (b) may represent two stationary
configurations of the points for which we have computed high-quality labelings
L(a) and L(b). As the points are smoothly transitioned from one configuration
to the other, we then want to do likewise with the labeling. These variants of
the problem are even harder, in the sense that less dynamism is needed in P to
prove them PSPACE-hard.

Theorem 3. (i) When L(a) or L(b) is given, Theorem 2 holds even when
– all points are stationary, one point gets removed and one point gets added,
– no points are added or removed, and all points move at the same, constant

speed along parallel (but possibly opposite), straight-line trajectories, or
– no points are added or removed, and all points but one are stationary.
(ii) When both L(a) and L(b) are given the theorem holds even for static point
sets (all points stationary, none added or removed).

Proof (sketch). (i) Follow the proof of Theorem 2 but reduce from configuration-
to-edge NCL and modify only one edge gadget instead of two. (ii) Follows directly
from Theorem 1. 	


In interactive maps, users are presented with a rectangular viewport V showing
a portion of a larger map. By panning, rotating, and/or zooming the map, the
user controls which portion of the map is displayed at any given time. The task
of labeling the points inside V can be seen as a special case of labeling dynamic
point sets. Continuous panning, rotation, and zooming of the map may cause
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points to enter or leave V at its boundary, and causes all points within V to
move on continuous trajectories. We will require only the points inside V to be
labeled, and these labels must be fully contained in V . Points outside of V need
not be labeled, but we may wish to do so in order to ensure a smooth dynamic
labeling. Otherwise a label would have to instantly appear or disappear whenever
its point hits the boundary of V . Regardless of whether we allow such “popping”
of labels, the question of whether a dynamic labeling can label all points in the
viewport without overlap is strongly PSPACE-complete.

Theorem 4. The following decision problem is strongly PSPACE-complete for
the 4-position, 2-slider, and 4-slider label models.

Given: A closed rectangle V , a set of points P being panned and/or rotated,
and two numbers a and b with a < b.
Decide: Whether there exists a dynamic labeling L for P that labels P (t) ∩ V
with non-overlapping unit-square labels inside V for all t ∈ [a, b].

This is true regardless of whether the labelings L(a) and/or L(b) are given, and
whether points on the boundary of V may instantly lose/gain their labels, even
– when the points are only panning, along a straight line at constant speed, or
– when the points are only rotating, in a fixed direction at constant speed.

Proof. We prove PSPACE-hardness for the 4-slider model, with neither L(a) nor
L(b) being given. The remaining results can then be derived by similar techniques
as in previous theorems. Our reduction is from edge-to-edge NCL, where we are
given a constraint graph G and orientations for two of its edges eA and eB. We
construct the point set P = P (G, δ, ε) as usual, but this time we lay it out on
the grid in such a way that eA is on the far left and eB is on the far right, as in
Fig. 5. While this is always possible, it may introduce edge crossings. However,
Hearn and Demaine show [6] how to construct a planar “cross-over” in NCL that
functions as two crossing edges. This cross-over uses only AND and protected
OR vertices, so we may emulate it using our gadgets.

Next, we add two additional points q and q′, with q to the left of eA by 1− 2ε
and q′ to the right of eB by 1 − 3ε, as in Fig. 5. We construct a viewport

1− 3ε

eB

V

q′

. . .

. .
.

eAq

...

..
.

q q′1− 2ε 1− 4ε

Fig. 5. Our reduction from edge-to-edge NCL to dynamic labeling under panning. The
main figure shows the construction for the 4-slider model, the circular insets at the left
and right show how to modify the construction for the 4-position model.
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rectangle V with its left side containing q, and its right side ε to the left of q′.
This forces us to label q in a way that constrains eA to a single orientation.
Now suppose the points move to the left (that is, the view pans to the right).
This lifts this constraint on eA, as we may then move q’s label out of V (either
immediately, or over a short time interval). Panning may continue for a distance
of 1 − ε before disturbing the functioning of the edge gadget for eA. However,
already after moving by ε are we required to start labeling point q′ in a way
that constrains eB to a single orientation. Thus there exists a dynamic labeling
of P for this panning motion if and only if there exists a sequence of moves
in G starting with eA in its specified orientation and ending with eB in its
specified orientation. This makes the problem PSPACE-hard for the 4-slider
model. For a horizontal 2-slider model we may use the exact same construction;
for a vertical 2-slider model we simply rotate the construction by 90◦, placing
eA and eB at the top and bottom. For the 4-position model, the construction
needs a small modification so that labels always contain their point on a corner.
This modification is depicted in the circular insets of Fig. 5.

Now suppose that instead of panning, P is rotating. We modify V so that q
and q′ both lie below its center c. Rotating P clockwise around c then moves
q out of V , and q′ towards V , similar as for panning. However, this now also
changes the horizontal and vertical distances between the points of the gadgets.
As long as these changes are less than ε, all gadgets will still work. Thus, a
sufficiently small rotation will not disturb our reduction. To ensure q′ ends up
inside V during this rotation, decrease the initial distance between V and q′

appropriately by moving the right side of V slightly farther to the right. 	


In contrast to panning and rotation, PSPACE-hardness for zooming depends on
whether a static labeling is given and which one. If L(t) is given, and during
[a, b] the view is maximally zoomed out at time t ∈ [a, b], then the problem is
trivial. When zooming in further all inter-point distances increase, and no new
points enter V , so the given labeling can be used throughout [a, b]. If we are not
given any labelings, the problem is “merely” NP-complete: determine the time
t ∈ [a, b] where the view is maximally zoomed out, and solve the static labeling
problem for P (t). The remaining cases, however, are PSPACE-complete.

Theorem 5. Theorem 4 also applies to zooming, assuming at least one static
labeling is given, and not the one at which the view is maximally zoomed out
during [a, b]. This is true even when only zooming in or only zooming out, at
constant speed.

Proof. Consider again the construction in Fig. 5. Suppose we delete the point q′,
and then start zooming in. This will cause q to move out of V , and the constraint
on eA will be lifted. Conversely, suppose we delete point q, and then start zoom-
ing out. This will cause q′ to move into V , adding a constraint on eB. Thus we
can reduce configuration-to-edge NCL to dynamic labeling under zooming. As
with rotation, we will have to be careful that the changes to inter-point distances
do not disturb the gadgets. The solution is the same: move the right side of V
closer to q′ so that we do not have to zoom so far as to disturb the gadgets. 	
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4 Conclusion

We have examined the following dynamic point labeling problem. Given a set
of points moving along continuous trajectories, and where points may be added
and removed over time, is there a smooth function from time to static point la-
belings? For the 4-position, 2-slider, and 4-slider models this problem is strongly
PSPACE-complete. In addition, finding the maximum label size at which such
a labeling does exist admits no PTAS, unless P = PSPACE. For the 4-position
model a 2-approximation is the best that can be hoped for, and for the other
models a 4/3-approximation. The PSPACE-completeness results also apply for
the special case where the points are panned, rotated, or zoomed inside a fixed
viewport. For this case our constructions have less “wiggle room”, meaning our
hardness-of-approximation results do not apply. The wiggle room is still non-
zero, however, meaning that a PTAS would still imply P = PSPACE.

It remains to examine other label models such as the 1- and 2-position models
and the 1-slider model. For static labeling their corresponding decision problems
are easily solved in polynomial time. On the other hand, the number-maximiza-
tion problem is still NP-hard for them. Perhaps the complexity landscape of
dynamic labeling is similar. Most importantly, perhaps, is the continued pursuit
of approximation algorithms for optimization problems in dynamic point label-
ing. While there are heuristics for both number maximization [8] and free-label
maximization [2], no guaranteed approximation ratios have been achieved.
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Unsatisfiable CNF Formulas

contain Many Conflicts
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Abstract. A pair of clauses in a CNF formula constitutes a conflict if
there is a variable that occurs positively in one clause and negatively
in the other. A CNF formula without any conflicts is satisfiable. The
Lovász Local Lemma implies that a CNF formula with clauses of size
exactly k (a k-CNF formula), is satisfiable unless some clause conflicts

with at least 2k

e
clauses. It does not, however, give any good bound on

how many conflicts an unsatisfiable formula has globally. We show here
that every unsatisfiable k-CNF formula requires Ω(2.69k) conflicts and
there exist unsatisfiable k-CNF formulas with O(3.51k) conflicts.

1 Introduction

A boolean formula in conjunctive normal form (short a CNF formula) is a con-
junction (AND) of clauses, which are disjunctions of literals. A literal is either
a boolean variable x or its negation x̄. SAT, the problem of deciding whether a
CNF formula is satisfiable is a central problem in theoretical computer science,
and was one of the first problems to be proven NP-complete. How can a CNF
formula become unsatisfiable? Roughly speaking, there are two possibilities: Ei-
ther some clause itself is impossible to satisfy – this is only the case for the empty
clause. Or, each clause is individually satisfiable, but there are conflicts between
the clauses, making it impossible to satisfy all of them simultaneously. When
we consider k-CNF formulas, where each clause consists of exactly k literals (we
require that literals in a clause do not repeat), then each clause is extremely
easy to satisfy: Of the 2k possible truth assignments to its variables, all but
one satisfy it. If a k-CNF formula is unsatisfiable, we expect it to have many
conflicts.

To give a formal setup, we say two clauses conflict if there is at least one
variable that appears positively in one clause and negatively in the other. For
example, the two clauses (x ∨ y) and (x̄ ∨ u) conflict. Similarly, (x ∨ y) and
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(x̄∨ ȳ) do. Suppose F is a CNF formula without the empty clause, and without
any conflicts. Then clearly F is satisfiable. For a formula F we define the conflict
graph CG(F ), whose vertices are the clauses of F , and two clauses are connected
by an edge if they conflict. Δ(F ) denotes the maximum degree of CG(F ) and
e(F ) the number of conflicts in F , i.e. the number of edges in CG(F ). Our above
observation now reads as follows: If F does not contain the empty clause, and
e(F ) = 0, then F is satisfiable. In fact, any k-CNF formula is satisfiable unless
Δ(F ) and e(F ) are large. How large? A quantitative result follows from the
Lopsided Lovász Local Lemma [1,2,3]: A k-CNF formula F is satisfiable unless

some clause conflicts with 2k

e or more clauses, i.e., unless Δ(F ) ≥ 2k

e . Up to a
constant factor, this is tight: Consider the formula containing all 2k clauses over
the variables x1, . . . , xk. We call this a complete k-CNF formula and denote it
by Kk. It is unsatisfiable, and Δ(Kk) = 2k − 1.

As its name suggests, the Lopsided Lovász Local Lemma implies a local result:
A k-CNF formula F is satisfiable, unless somewhere in F there are many conflicts.
We want to obtain a global result: F is satisfiable unless the total number of
conflicts is very large. We define two functions:

lc(k) := max{d ∈ N0 | every k-CNF formula F with Δ(F ) ≤ d is satisfiable} ,
gc(k) := max{d ∈ N0 | every k-CNF formula F with e(F ) ≤ d is satisfiable} .

The abbreviations lc and gc stand for local conflicts and global conflicts, respec-

tively. From the above discussion, 2k

e − 1 ≤ lc(k) ≤ 2k − 2, hence we know
lc(k) up to a constant factor. In contrast, it does not seem to be easy to prove
nontrivial upper and lower bounds on gc(k). Let us see what we get: Surely,

gc(k) ≥ lc(k) ≥ 2k

e − 1. For an upper bound, gc(k) ≤ e(Kk) − 1 =
(
2k

2

)
− 1.

Ignoring constant factors, gc(k) lies somewhere between 2k and 4k. This leaves
much space for improvement. In [4], Zumstein and I proved that gc(k) ∈ Ω(2.27k)

and gc(k) ≤ 4k

log3 k
k. In this paper, we significantly improve upon these bounds.

Somehow surprisingly, gc(k) is exponentially smaller than 4k.

Theorem 1. Any unsatisfiable k-CNF formula contains Ω
(
2.69k

)
conflicts. On

the other hand, there is an unsatisfiable k-CNF formula with O
(
3.51k

)
conflicts.

We obtain the lower bound by a more sophisticated application of the idea used
in [4]. The upper bound follows from a construction that is partially probabilistic,
and inspired in parts by Erdős’ construction in [5] of small k-uniform hypergraphs
that are not 2-colorable.

1.1 Related Work

Let F be a CNF formula and u be a literal. We write occF (u) := |{C ∈ F | u ∈
C}|. For a variable x, we write dF (x) = occF (x)+ occF (x̄). So dF (x), the degree
of x, counts the number of clauses containing the variable x, irrespective of its
polarity. We write d(F ) = maxx dF (x). It is easy to see that for a k-CNF formula,
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Δ(F ) ≤ k(d(F ) − 1). We define

f(k) := max{d ∈ N0 | every k-CNF formula F with d(F ) ≤ d is satisfiable} .

The function f(k) has been subject of some research. By an application of Hall’s
Theorem, Tovey [6] showed that every k-CNF formula F with d(F ) ≤ k is
satisfiable, hence f(k) ≥ k. Later, Kratochv́ıl, Savický and Tuza [7] showed that

f(k) ≥ 2k

ek : In our terminology, they showed that lc(k) ≥ 2k

e − 1 and then used
the fact that Δ(F ) ≤ k(d(F ) − 1). As for an upper bound, in [7] the authors
show that f(k) ≤ 2k−1−2k−4−1. This was improved by Savický and Sgall [8] to

f(k) ∈ O(k−0.262k), by Hoory and Szeider [9] to f(k) ∈ O
(

log(k)2k

k

)
, and only

recently, by Gebauer [10] to f(k) ≤ 2k+2

k − 1 clauses, closing the gap between
lower and upper bound on f(k) up to a constant factor. Finally, Gebauer, Szabó,
Tardos [11] proved that f(k) = (1 ± o(1))2k+1/ek, which even determines the
constant factor.

1.2 Conflicts Generated by a Single Variable

Let F be a CNF formula and x a variable. Every clause containing x conflicts
with every clause containing x̄, thus e(F ) ≥ occF (x) · occF (x̄). In fact,

e(F ) ≥ 1

k

∑
x

occF (x) · occF (x̄) (1)

where the 1
k comes from the fact that each conflict might be counted up to

k times, if two clauses contain several complementary literals. By [7], every

unsatisfiable k-CNF formula F contains a variable x with dF (x) ≥ 2k

ek . If this

variable is balanced, i.e. occF (x) and occF (x̄) are both at least 2k

poly(k) , then

e(F ) ≥ 4k

poly(k) . Indeed, in the formulas constructed in [10], all variables are

balanced. The same holds for the complete k-CNF formula Kk. Thus, it might
be the case that in every unsatisfiable k-CNF formula, there is a single variable
that already generates many conflicts:

Conjecture 1. There exists a number a > 2 such that every unsatisfiable k-CNF
formula F contains a variable x such that occF (x) · occF (x̄) ≥ Ω

(
ak
)
.

We do not know whether this conjecture is true. However, we will give non-
trivial upper bounds on occF (x) · occF (x̄):

Theorem 2. For all sufficiently large k, there is an unsatisfiable k-CNF formula
with occF (x) · occF (x̄) ≤ 3.01k for all variables x.

2 Notation and Tools

Throughout the paper, we regard formulas as sets of clauses and clauses as sets
of literals. This is purely to simplify notation. For a truth assignment α and a
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clause C, we will write α |= C if α satisfies C. Similarly α �|= C if it does not. If
α satisfies a formula F , we write α |= F .

We will state a version of the Lopsided Lovász Local Lemma formulated in
terms of satisfiability. For a derivation of this version see [12].

Lemma 1 (SAT Version of the Lopsided Lovász Local Lemma). Let F
be a CNF formula not containing the empty clause. Sample a truth assignment
α by independently setting each variable x to true with p(x) ∈ [0, 1]. If for any
clause C ∈ F , it holds that ∑

D∈F : C and D conflict

Pr[α �|= D] ≤ 1

4
(2)

then F is satisfiable.

In our proofs, it will be difficult to apply Lemma 1 to a formula F which we
want to prove satisfiable. Instead, we apply it to a formula F ′ we obtain from F
in the following way:

Definition 1. Let F be a CNF formula. A truncation of F is a CNF formula
F ′ that is obtained from F by deleting some literals from some clauses.

For example, (x ∨ y) ∧ (ȳ ∨ z) is a truncation of (x ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z). A
truncation of a k-CNF formula is not a k-CNF formula anymore. It is easy to
see that any truth assignment satisfying a truncation F ′ of F also satisfies F . In
our proofs, we will often find it easier to apply Lemma 1 to a special truncation
of F than to F itself. We need a technical lemma on the binomial coefficient.

Lemma 2. Let a, b ∈ N with b/a ≤ 0.75. Then

ab

b!
≥
(
a

b

)
>
ab

b!
e−b2/a .

Proof. The upper bound is trivial and true for all a, b. The lower bound follows
like this.(

a

b

)
=
a(a− 1) · · · (a− b+ 1)

b!
=
ab

b!

b−1∏
j=0

a− j

a
>
ab

b!
e−

2
a

∑b−1
j=0 j >

ab

b!
e−b2/a ,

where we used the fact that 1− x > e−2x for 0 ≤ x ≤ 0.75. 	


3 Upper Bounds – Probabilistic Constructions of
Unsatisfiable Formulas

As we have argued in Section 1.2, in order to improve significantly upon the
upper bound gc(k) ≤ 4k, we must construct a formula that is very unbalanced,
i.e. occF (x) is exponentially larger than occF (x̄). The central idea is that we do
not construct an unsatisfiable k-CNF formula, but allow certain clauses to be
smaller. In a second step, we expand these clauses to size k.
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Definition 2. Let F be a CNF formula with clauses of size at most k. For
each k′-clause C with k′ < k, construct a complete (k− k′)-CNF formula Kk−k′

over k − k′ new variables yC1 , . . . , y
C
k−k′ . We replace C by C ∨ Kk−k′ . Using

distributivity, we expand it into a k-CNF formula G called the k-CNFification
of F .

For example, the 3-CNFification of (x ∨ y)∧ (x̄∨ y ∨ z) is (x ∨ y ∨ y1)∧ (x∨ y ∨
ȳ1)∧ (x̄ ∨ y ∨ z). It is easy to see that a truth assignment satisfies F if and only
if it satisfies its k-CNFification G.

Definition 3. Let �, k ∈ N0. An (�, k)-CNF formula is a formula consisting of
�-clauses containing only positive literals, and k-clauses containing only negative
literals.

If F is an (�, k)-CNF formula, we write F = F+ ∧ F−, where F+ consists of
purely positive �-clauses and F− of purely negative k-clauses.

Proposition 1. Let � ≤ k, and let F = F+∧F− be an (�, k)-CNF formula. Let
G be the k-CNFification of F . Then

(i) e(G) ≤ 4k−�|F+|+ 2k−�|F+| · |F−|,
(ii) occG(x) · occG(x̄) ≤ max{4k−�, 2k−�|F+| · |F−|} for every variable x.

Proof. Every edge in CG(F ) runs between a positive �-clause C and a negative
k-clause D. Thus, e(F ) ≤ |F+| · |F−|. In G, this edge is replaced by 2k−� edges,
since C is replaced by 2k−� copies. Replacing C by 2k−� copies introduces less
than 4k−� edges. This proves (i). To prove (ii), there are two cases. First, if
x appears in F , then occG(x̄) = occF (x̄) and occG(x) = occF (x)2

k−�, thus
occG(x)occG(x̄) ≤ 2k−�|F+| · |F−|. Second, if x does not appear in F , it has
been introduced in the k-CNFification. Then occG(x) = occG(x̄) = 2k−�−1, and
occG(x) · occG(x̄) ≤ 4k−�. 	


We will explore for which values of |F+| and |F−| there are unsatisfiable (�, k)-
CNF formulas. Then we use Proposition 1 to derive the upper bounds of Theo-
rem 1 and Theorem 2.

Lemma 3. (i) For any ρ ∈ (0, 1), there is a constant c such that for all k
and � ≤ k, there exists an unsatisfiable (�, k)-CNF formula F = F+ ∧ F− with
|F−| ≤ ck2ρ−k and |F+| ≤ ck2(1− ρ)−�.

(ii) Let F = F+ ∧ F− be an (�, k)-CNF formula. If there is a ρ ∈ (0, 1) such
that |F+| < 1

2 (1 − ρ)−� and |F−| < 1
2ρ
−k, then F is satisfiable.

Proof. We begin with (ii), which is easier. Sample a truth assignment α by
setting each variable independently to true with probability ρ. For a negative
k-clause C, it holds that Pr[α �|= C] = ρk. Similarly, for a positive �-clause D,
Pr[α �|= D] = (1 − ρ)�. Hence the expected number of clauses in F that are
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unsatisfied by α is ρk|F−|+ (1− ρ)�|F+| < 1
2 + 1

2 = 1. Therefore, with positive
probability α satisfies F .

For (i), we choose a set V = {x1, . . . , xn} of n = k2 variables. Let c be a
constant, to be determined later. We form F− by sampling, with replacement,
ck2ρ−k negative k-clauses from all

(
n
k

)
possible. Similarly, we form F+ by sam-

pling ck2(1−ρ)−� positive �-clauses. We claim that for a suitable choice of c this
formula is unsatisfiable with high probability. Let α be any truth assignment.
There are two cases. First, suppose α sets at least ρn variables to true. For a
random negative clause C,

Pr[α �|= C] ≥
(
ρn
k

)(
n
k

) ≥
(ρn)k

k! · e−k2/(ρn)

nk

k!

= ρke−1/ρ = c′ρk

By independence, Pr[α |= F−] ≤ (1 − c′ρk)ck
2ρ−k

< e−cc′k2

. Second, suppose
α sets at most ρn variables to true. By a similar argument, Pr[α |= F+] ≤
(1 − c′′(1 − ρ)�)ck

2(1−ρ)−�

< e−cc′′k2

. For suitable c, we obtain Pr[α |= F ] <

e−k2

= e−n for any α. The expected number of satisfying assignments of F is
thus less than 2ne−n < 1. With high probability F is unsatisfiable. 	


It should be pointed out that for k = �, an (�, k)-CNF formula is just a
monotone k-CNF formula. The size of a smallest unsatisfiable monotone k-CNF
formula is the same – up to a factor of at most 2 – as the minimum num-
ber of hyperedges in a k-uniform hypergraph that is not 2-colorable. In 1963,
Erdős [13] raised the question what this number is, and proved a 2k−1 lower
bound (this is easy, simply choose a random 2-coloring). One year later, he [5]
gave a probabilistic construction of a non-2-colorable k-uniform hypergraph us-
ing ck22k hyperedges. For � = k and ρ = 1

2 , the above proof is basically the same
as Erdős’ proof.

Proof (Proof of Theorem 2). Combining Lemma 3 and Proposition 1, we con-
clude that for any ρ ∈ (0, 1) and 0 ≤ � ≤ k, there is an unsatisfiable k-CNF
formula F with

occF (x) · occF (x̄) ≤ max{4k−�, 2k−�c2k4ρ−k(1− ρ)−�} ,

for every variable x. The constant c depends on ρ, but not on k or �. The term
ρ−k(1− ρ)−� is minimized for ρ = k

k+� . Choosing � = �0.2055k�, we get ρ ≈ 0.83

and occF (x) · occF (x̄) ∈ O(3.01k). 	


Proof (Proof of the upper bound of Theorem 1). As in the previous proof, Propo-
sition 1 together with Lemma 3 yield an unsatisfiable k-CNF formula F with

e(F ) ≤ 4k−�ck2(1 − ρ)−� + 2k−�c2k4ρ−k(1− ρ)−� .

For ρ ≈ 0.6298 and � = �0.333k�, we obtain e(F ) ∈ O(3.51k). 	
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4 A Lower Bound on the Number of Global Conflicts

Proof (of the lower bound in Theorem 1). Let F be an unsatisfiable k-CNF
formula and let e(F ) be the number of conflicts in F . We will show that e(F ) ∈
Ω
(
2.69k

)
. In the proof, x denotes a variable and u a positive or negative literal.

We assume occF (x̄) ≤ occF (x) for all variables x. We can do so since otherwise
we just replace x by x̄ and vice versa. This changes neither e(F ), nor satisfiability
of F . Also we can assume that occF (x) and occF (x̄) are both at least 1, if x
occurs in F at all. For x, we define

p(x) := max

{
1

2
, k

√
occF (x)

16e(F )

}
.

We define a random truth assignment α by setting x to true with probability
p(x), independently for each variable. Since occF (u) ≤ e(F ), we have p(x) ≤ 1.
We set p(x̄) = 1− p(x). By definition p(x) ≥ p(x̄). Let us list some properties of
this distribution. First, if p(u) < 1

2 for some literal u, then u is a negative literal

x̄, and p(x) = k

√
occF (x)
16e(F ) > 1

2 . Second, if p(u) = 1
2 , then both k

√
occF (x)
16e(F ) ≤ 1

2

and k

√
occF (x̄)
16e(F ) ≤

1
2 hold. We distinguish two types of clauses: Bad clauses, which

contain at least one literal u with p(u) < 1
2 , and good clauses, which contain only

literals u with p(u) ≥ 1
2 .

Lemma 4. Let B ⊆ F denote the set of bad clauses. Then
∑

C∈B Pr [α �|= C]
≤ 1

8 .

Proof. For each clause C ∈ B, let uC be the literal in C minimizing p(u), breaking
ties arbitrarily. This means Pr[α �|= C] ≤ p(ūC)

k. Since C is a bad clause,

p(uC) <
1
2 , uC is a negative literal x̄C , and p(xC) =

k

√
occF (xC)
16e(F ) . We can calculate

∑
C∈B

Pr[α �|= C] ≤
∑
C∈B

p(xC)
k =

∑
C∈B

occF (xC)

16e(F )
. (3)

Since clause C contains x̄C , it conflicts with all occF (xC) clauses containing xC ,
thus

∑
C∈B occF (xC) ≤ 2e(F ). The factor 2 arises since we count each conflict

possibly twice—once from each side. Combining this with (3) proves the lemma.
	


We cannot directly apply Lemma 1 to F . Therefore we apply the following
sparsification process to F :

Lemma 5. If F ′ does not contain the empty clause, then F is satisfiable.

Proof. We will prove this using Lemma 1, the SAT version of the Lopsided Lovász
Local Lemma. Fix a clause C ∈ F ′. After the sparsification process, every literal
u fulfills

∑
D:u∈D∈G′ Pr[α �|= D] ≤ 1

8k . We combine this with Lemma 4 to show
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Algorithm: Sparsification Process

Let G = {D ∈ F | p(u) ≥ 1
2
,∀u ∈ D} be the set of good clauses in F .

G′ := G
while ∃ a literal u :

∑
D:u∈D∈G′ Pr[α �|= D] > 1

8k
do

Let C be some clause maximizing Pr[α �|= C] among all clauses in G′

containing u.

C′ := C \ {u}
G′ := (G′ \ {C}) ∪ {C′}

end
return F ′ := G′ ∪ B

that the condition (2) of the Local Lemma holds:∑
D∈F ′: C and D conflict

Pr[α �|= D] =
∑
D∈B

Pr[α �|= D]+
∑

D∈G′: C and D conflict

Pr[α �|= D]

≤ 1

8
+
∑
u∈C

∑
D∈G′:ū∈D

≤ 1

8
+ k · 1

8k
=

1

4
.

Hence (2) holds and by Lemma 1, F ′ is satisfiable, and clearly F as well. 	


If F is unsatisfiable, the sparsification process produces the empty clause. We
will show that in this case, e(F ) is large (at least Ω

(
2.69k

)
). If the sparsification

process produces the empty clause, then there is some C ∈ G all whose literals
are being deleted during the sparsification process. Write C = {u1, u2, . . . , uk},
and order the ui such that occF (u1) ≤ occF (u2) ≤ · · · ≤ occF (uk). Since C is a
good clause, the definition of p(x) implies that p(u1) ≤ p(u2) ≤ · · · ≤ p(uk). Fix
any � ∈ {1, . . . , k} and let uj be the first literal among u1, . . . , u� that is deleted
from C. Let C′ denote what is left of C just before that deletion, and consider
the set G′ at this point of time. Then {u1, . . . , u�} ⊆ C′ ∈ G′. By the definition
of the process,

1

8k
<

∑
D: uj∈D∈G′

Pr[α �|= D] ≤
∑

D: uj∈D∈G′
Pr[α �|= C′] ≤

≤ occF (uj) Pr[α �|= C′] ≤

≤ occF (u�)

�∏
i=1

(1 − p(ui)) .

Since p(u) ≥ k

√
occF (u)
16e(F ) for all literals u in a good clause, it follows that

1
128ke(F ) ≤ p(u�)

k
∏�

i=1(1 − p(ui)), for every 1 ≤ � ≤ k.
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Let (q1, . . . , qk) ∈ [ 12 , 1]
k be any sequence satisfying the k inequalities 1

128ke(F )

≤ qk�
∏�

i=1(1 − qi) for all 1 ≤ � ≤ k. The p(ui) are such a sequence. We want

to make the q� as small as possible: If q� >
1
2 and 1

128ke(F ) < qk�
∏�

i=1(1 − qi),

we can decrease q� until one of the inequalities becomes an equality. The other
k−1 inequalities stay satisfied. In the end we get a sequence q1, . . . , qk satisfying

1
128ke(F ) = qk�

∏�
i=1(1− qi) whenever q� > 1

2 . This sequence is non-decreasing: If

q� > q�+1, then q� >
1
2 , and

1
128ke(F ) ≤ qk�+1

∏�+1
i=1(1 − qi) < qk�

∏�
i=1(1 − qi) =

1
128ke(F ) , a contradiction.

If all qi are 1
2 , then the kth inequality yields 128ke(F ) ≥ 4k, and we are

done. Otherwise, there is some �∗ = min{i | qi > 1
2}. For �∗ ≤ j < k both

qj and qj+1 are greater than 1
2 , thus q

k
j+1

∏j+1
i=1 (1 − qi) = qkj

∏j
i=1(1 − qi), and

qj = qj+1
k
√
1− qj+1. We define

fk(t) := t k
√
1− t ,

thus qj = fk(qj+1). By f
(j)
k (t) we denote fk(fk(. . . (fk(t)) . . . )), the j-fold iter-

ated application of fk(t), with f
(0)
k (t) = t. In this notation, qj = f

(k−j)
k (qk) >

1
2

for �∗ ≤ j ≤ k. The figure below shows the graph of f4(t).

Proposition 2. For k ≥ 2 and any t ∈ (0, 1], f
(k−1)
k (t) ≤ 1

2 .

Please see the full version of the paper for the (easy) proof of this fact. By

Proposition 2, f
(k−1)
k (qk) ≤ 1

2 , thus �
∗ ≥ 2. Therefore q1 = · · · = q�∗−1 = 1

2 , and
the (l∗ − 1)st inequality reads as

1

128ke(F )
≤ qk�∗−1

�∗−1∏
i=1

(1− qi) = 2−k−�∗+1 .

We obtain e(F ) ≥ 2k+�∗−1

128k . How large is �∗? Define Sk := min{� ∈ N0 | f (�)k (t) ≤
1
2 ∀t ∈ [0, 1]}. By Proposition 2, Sk ≤ k−1 and thus is finite. Since f

(k−�∗)
k (q1) =

q�∗ >
1
2 , we conclude that k − �∗ ≤ Sk − 1, thus e(F ) ≥ 22k−Sk

128k .

Lemma 6. The sequence Sk

k converges to limk→∞
Sk

k = −
∫ 1

1
2

1
x ln(1−x)dx <

0.572.
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The proof of this lemma is technical and not related to satisfiability. Please see

the full version of this paper for a proof. We conclude that e(F ) ≥ 2(2−0.572)k

128k ∈
Ω
(
2.69k

)
. 	


5 Conclusion

We want to give some hindsight why a sparsification procedure is necessary in
both lower bound proofs in this paper. The probability distribution we define is
not a uniform one, but biased towards setting x to true if occF (x) * occF (x̄).
The set of clauses conflicting with a specific clause C may contain many clauses
containing some x with x̄ ∈ C. If x is the only literal in these clauses with
p(x) > 1

2 , then each such clause is unsatisfied with probability not much smaller
than 2−k, and the sum (2) is greater than 1

4 By removing x from these clauses,
we reduce the number of clauses conflicting with C, making the sum (2) much
smaller. However, for other clauses C′, this sum might increase by removing
x. We think that one will not be able to prove a tight lower bound using just
a smarter sparsification process. We want to state some open problems and
questions.

Question: Does limk→∞
k
√
gc(k) exist?

If it does, it lies between 2.69 and 3.51. One way to prove existence would be to
define “product” taking a k-CNF formula F and an �-CNF formulaG to a (k+�)-
CNF formula F ◦G that is unsatisfiable if F and G are, and e(F ◦G) = e(F )e(G).
With 2 and 4 ruled out, there seems to be no obvious guess for the value of the
limit.

Question: Is there an a > 2 such that every unsatisfiable k-CNF
formula contains a variable x with occF (x) · occF (x̄) ≥ ak?

Where do our methods fail to prove this? The part in the proof of the lower
bound of Theorem 1 that fails is Lemma 4. On the other hand, Lemma 4 proves
more than we need for Theorem 1: It proves that Pr[α |= D], summed up over
all bad clauses gives at most 1

8 . We only need that the bad clauses conflicting
with a specific clause sum up to at most 1

8 . Still, we do not see how to apply or
extend our methods to prove that such an a > 2 exists.

Acknowledgments. I am very thankful to Philipp Zumstein. We discussed the
results of this paper extensively, and in particular the idea behind the proof of
Lemma 6 is due to him.
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Abstract. We consider the following variant of a classical pursuit-evasion
problem: how many pursuers are needed to capture a single (adversarial)
evader on the surface of a 3-dimensional polyhedral body? The players re-
main on the closed polyhedral surface, have the same maximum speed,
and are always aware of each others’ current positions. This generalizes
the classical lion-and-the-man game, originally proposed by Rado [12], in
which the players are restricted to a two-dimensional circular arena. The
extension to a polyhedral surface is both theoretically interesting and prac-
tically motivated by applications in robotics where the physical environ-
ment is often approximated as a polyhedral surface. We analyze the game
under the discrete-timemodel,where the players take alternate turns, how-
ever, by choosing an appropriately small time step t > 0, one can approx-
imate the continuous time setting to an arbitrary level of accuracy. Our
main result is that 4 pursuers always suffice (upper bound), and that 3 are
sometimes necessary (lower bound), for catching an adversarial evader
on any polyhedral surface with genus zero. Generalizing this bound to
surfaces of genus g, we prove the sufficiency of (4g + 4) pursuers. Fi-
nally, we show that 4 pursuers also suffice under the “weighted region”
constraints where the movement costs through different regions of the
(genus zero) surface have (different) multiplicative weights.

1 Introduction

Pursuit-evasion problems serve as a mathematical abstraction for a number of
applications that involve one group (pursuers) attempting to track down mem-
bers of another group (evaders). Many such games with colorful names including
Cops-and-Robbers, Hunter-and-Rabbit, Homicidal Chauffeur, and Princess-and-
Monster have been studied in the literature [1,3,5,8]. We are inspired by the
oldest such problem, the so-called man-and-the-lion game, in which a lion and a
man are enclosed in a circular arena, both able to move continuously with the
same maximum speed, and able to react instantaneously to each other’s motion.
Can the lion capture the man? For many years, it was believed that the following
simple strategy guarantees a win for the lion in finite time: start at the center
of the arena and continuously move toward the man along the radial line. This
was proved false by Besicovitch who showed that the man can in fact evade the
lion forever [12]: in Besicovitch’s strategy, the lion can get arbitrarily close to
the man but never quite reach it. This impossibility proof can be circumvented

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 284–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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by either allowing the lion a fixed non-zero capture radius r > 0, or playing the
game in discrete-time (alternating moves).

In this paper, we investigate the pursuit-evasion problem played on the (closed)
surface of a 3-dimensional polyhedron. Multiple pursuers (lions) attempt to cap-
ture an adversarial evader (man), with all players constrained to remain on the
polyhedral surface, and all able to move equally fast. In this setting, how many
pursuers are needed to capture the evader in finite time? We study the problem
in the discrete time model: this avoids the intractable problem of computing
players’ moves and reactions instantaneously, and also allows approximation of
the continuous time setting to an arbitrary level of accuracy by choosing an ap-
propriately small time step t > 0. On the practical side, the problem of pursuit
on a polyhedral surface is well-motivated because many robotics applications
involve searching or tracking on “terrain-like” surfaces. On the theoretical side,
the problem is interesting because the surface acts as an “intrinsic” obstacle,
introducing non-linearity in the behavior of shortest paths. For instance, al-
though the genus zero polyhedral surface is topologically equivalent to a disk, the
game has a distinctly different character and outcome than its planar counter-
part (circular arena). In particular, it is known that a single pursuer can always
win the discrete-time man-and-the-lion game in the plane (an easy corollary
of [16]). Therefore, one may hope that an appropriate topological extension of
the “follow the shortest path towards the evader” strategy will also succeed on
the polyhedral surface. However, we show that this is not possible, and provide a
constructive lower bound that at least 3 pursuers are needed in the worst-case for
successful capture on a polyhedral surface. Intuitively, the problem is caused by
the discontinuity in mapping “straight line” shortest paths in the unobstructed
planar arena to geodesics on the polyhedral surface; in the unobstructed plane,
a small move by the evader only causes a small (local) change in the straight line
connecting pursuer and the evader, but on the polyhedral surface, the geodesic
can jump discontinuously.

Complementing our lower bound, we show that 4 pursuers always suffice on
any polyhedral surface of genus zero. Specifically, we present a strategy for the
pursuers that always leads to capture of the evader in O(ΔS(n

2 logn+ logΔS))
time steps, where n is the number of vertices of the polyhedral surface S and ΔS

is its diameter (the maximum shortest path distance between any two points).
We then generalize our result to surfaces of non-zero genus and prove that (4+4g)
pursuers can always capture an evader on the surface of any genus g polyhedron.
Our technique for analyzing pursuit evasion on polyhedral surfaces appears to be
quite general, and likely to find application in other settings. As one example, we
consider pursuit evasion under the “weighted region” model of shortest paths,
where non-negative weights dictate the per-unit cost of travel through different
regions of the surface.

Related Work

In the discrete-time model, a single pursuer can capture the evader in a simply-
connected polygon [7], while 3 pursuers are both necessary and sufficient for
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polygonal environments with multiple holes (obstacles) [4]. In a visibility-sensing
model, where pursuers can localize the evader only when the latter is in direct
line of sight, the number of pursuers is O(

√
h+ logn) for n-vertex environment

with h holes [9].
There exists an extensive literature on pursuit-evasion in 3-dimensional en-

vironments and surfaces, but no result appears to be known on the number of
pursuers necessary for capture. Instead, the prior research has focussed on heuris-
tics approaches for capture [10], classification of environments where capture is
achievable [2], or on game-theoretical questions [11,13].

The most relevant work to our research is the cops-and-robbers games in graph
theory, where Aigner and Fromme have shown that 3 cops always suffice against
a robber in any planar graph [1], and �3g/2+3� cops are necessary for graphs of
genus g [15]. However, the continuous-space of polyhedral surfaces requires very
different set of techniques from those used for graphs.

2 Preliminaries and the Lower Bound

The geometric environment for our pursuit-evasion problem is the (closed) sur-
face of a 3-dimensional polyhedron S. We assume that S has n vertices, and
therefore O(n) faces and edges. Without loss of generality, we assume that each
face is a triangle, which is easily achieved by triangulating the faces with four
or more sides. We use the notation p1, p2, . . . to denote the group of pursuers
who wish to track and capture a single (adversarial) evader e. Slightly abusing
the notation, we also use e and pi, respectively, for the current location of the
evader and the ith pursuer.

We make the standard assumption about the game: all the players know the
environment (the surface of the polyhedron S), each player knows the current
positions of all the other players, all players have identical maximum speed, and
the game is played in the discrete-time alternating turn model. By an appro-
priate scaling of the environment, we assume that the maximum speed of the
players is 1, meaning that on its turn a player can move to any position within
geodesic distance one of its current location on the surface. On their turn, all
the pursuers move simultaneously. The pursuers win the game if, on their turn,
some pi reaches the current position of the evader and the evader wins if it can
avoid capture indefinitely.

We use the notation Pa,b for a shortest path between two points a and b on
the surface S, and d(a, b) for the length of this path. (In general, the path Pa,b is
not unique, but its length is.) The path Pa,b is piece-wise linear and its vertices
lie on the edges or vertices of the surfaces. Throughout, we will use the terms
vertices and edges to refer to the graph of the polyhedral surface, and points
and arcs to refer to the geometric objects embedded on the surface such as a
path. We explain specific properties of these shortest paths that are used in our
analysis in Section 3.3. The following theorem establishes the lower bound for
our pursuit game.
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Theorem 1. In the worst-case at least three pursuers are required to capture an
evader on the surface of a polyhedron.

Proof. We start with a dodecahedron D, all of whose edges have length 1 (see
Fig. 1(a). Our polyhedron S is constructed by extending each face of D orthog-
onally (to the face) into a “tower” of height ΔD + 1, where ΔD is geodesic
diameter of the dodecahedron; see Fig. 1(b). S has 12 such towers, one for each
of the 12 pentagonal faces of D. The “walls” of these towers meet along the edges
of D, forming the skeleton graph, which we denote G(D), as shown in Fig. 1(c).
We argue that an evader can indefinitely avoid capture from two pursuers on the
surface of this polyhedron. In particular, the two pursuers, p1 and p2 initially
choose their positions, and then the evader picks its initial position at a vertex of
G(D) to satisfy d(pi, e) > 1, for i = 1, 2. We show that regardless of the pursuers’
strategies, the evader can indefinitely maintain this distance condition (after its
move) by always moving among the vertices of G(D). The evader’s strategy is
reactive: it remains at a vertex until some pursuer is within distance 1. When
one or both pursuers are within distance 1 of the evader, we show that the evader
can move to a safe neighboring vertex and restore its distance condition. Due
to space limitation, we omit the further details and refer the reader to the full
version of the paper.

(a) (b)

u
x

y

z

(c)

Fig. 1. A dodecahedron (a); partial construction with three faces orthogonally ex-
tended (b); and the skeleton graph (c)

3 Catching the Evader with 4 Pursuers

We begin with a high level description of the pursuers’ strategy, and then develop
the necessary technical machinery to prove its correctness.

3.1 Surround-and-Contract Pursuit Strategy

The pursuers’ overall strategy is conceptually quite simple: repeatedly shrink the
region containing the evader while making sure that it cannot escape from this
region, which can be intuitively thought of as a surround-and-contract strategy.
More specifically, at any time, the evader is constrained within a connected
portion Si of the surface S, which is bounded by at most three paths, each
guarded by a pursuer. The fourth pursuer is used to divide Si into two non-empty
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regions (contraction), trapping the evader within one of them. This division is
done in such a way that that at least one of the 3 pursuers bounding Si becomes
free, thus allowing the process to continue until the target region reduces to a
single triangle, and the capture can be completed.

The paths used by the pursuers are shortest paths on the polyhedral sur-
face, restricted to the current region. The computation of shortest paths on a
polyhedral surface is a well-known problem in computational geometry, and we
rely on the following result of [6,14]: given a source point x on the surface of a
polyhedron S of n vertices, one can compute a shortest path map encoding the
shortest paths from x to all other points on S, in O(n2) time using O(n log n)
space. With this map, one can find the shortest path from x to any other point
y in time O(log n+ k) when the path consists of k arcs.

We use phases to monitor the progress of the algorithm: in phase i, the region
containing the evader is denoted Si where Si ⊆ Si−1, for all i. Each time the
pursuers guard a new path dividing Si, the phase transitions, with Si+1 as the
region containing the evader. In addition, each region Si has a rather special
form: it is bounded by either two or three shortest paths. The finite automaton
of Figure 2 shows the simple state diagram of the pursuit: the pursuit transitions
between regions bounded by 2 and 3 paths until it reaches a special terminal
state marked EndGame. For ease of reference, we name the first two states
BiPolar and TriPolar to emphasize that the regions corresponding to these
states are bounded by shortest paths between 2 or 3 points (poles). The region
in the terminal state EndGame is also bounded by 3 paths but contains no
vertices in the interior (only the points of the boundary paths), which simplifies
the search leading to capture. In particular, the three possible states throughout
the pursuit are the following:

BiPolar: Si is bounded by two shortest paths Pa,b and P
′
a,b between two points

(poles) a and b.
TriPolar: Si contains at least one interior vertex, and is bounded by three

shortest paths Pa,b, Pb,c, and Pa,c.
EndGame: Si has no interior vertices and is bounded by three shortest paths
Pa,b, Pb,c, and Pa,c.

Fig. 2. A finite state machine representing
the possible states of the pursuit and tran-
sitions between them

We initialize the pursuit by choos-
ing a triangular face (a, b, c) of the
surface, and assigning one pursuer to
each of the three (single-arc) shortest
paths Pa,b, Pb,c, and Pa,c. If the evader
lies inside the triangle face, we enter
the terminal state EndGame; other-
wise, we are in state TriPolar. The
fourth pursuer shrinks the region Si,
resulting in a smaller TriPolar re-
gion, or forces a transition to a BiPo-

lar region. In each stateBiPolar, at
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least one interior vertex is eliminated from Si. Further, each state consists of a
finite number of phases, which guarantees that the algorithm terminates in the
region EndGame.

In the following, we use ν(Si) to denote the number of interior vertices of
Si; that is, the number of vertices in Si that are not on the boundary paths.
Throughout the pursuit, the following invariant is maintained.

Pursuit Invariant. During the ith phase of the pursuit, (1) Si ⊆ Si−1, (2)
ν(Si) ≤ ν(Si−1), and if phase i−1 is in stateBiPolar, then ν(Si) < ν(Si−1),
and (3) at most 4 paths are guarded, each by a single pursuer at any time.

The first condition ensures that the region containing the evader only shrinks;
the second ensures that at least one interior vertex is removed in state BiPolar;
and the third ensures that 4 pursuers succeed in capturing the evader.

3.2 Guarding Shortest Paths

Our algorithm employs one pursuer to guard a shortest path, ensuring that any
attempt by the evader to cross the shortest path leads to capture. The key idea
behind this strategy is the “projection” of the evader along the shortest path,
defined as follows.

Projection. Given a shortest path Pa,b between two points a and b, and the
current evader location e, a point eπ on Pa,b is called the projection of e if
d(eπ, x) ≤ d(e, x), for all x ∈ Pa,b.

That is, if a pursuer p is positioned at eπ, then it is always closer than evader
to every point of Pa,b, and therefore any move by the evader crossing Pa,b leads to
capture by p on its next move. While multiple projections may exist, the pursuers
will guard a path by maintaining their location at the canonical projection of
the evader, defined as follows.

Canonical Projection. Given a shortest path Pa,b between two points a
and b, and the current evader location e, a point eπ on Pa,b is called the
canonical projection of e if d(a, eπ) = min(d(a, e), d(a, b)).

The following three lemmas establish the technical preliminaries about the
existence, maintainability, and reachability of the canonical projection. Due to
space limitation, we omit the further details and refer the reader to the full
version of the paper. Throughout, a shortest path always means the minimum
length path restricted to the current subsurface Si, and eπ refers to the unique
canonical projection.

Lemma 1. Given any shortest path Pa,b on the polyhedral surface, the canonical
projection eπ is a projection of the evader.
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Lemma 2. Suppose the current position of the evader is e, the pursuer p is
positioned at the canonical projection eπ on the shortest path Pa,b, and the evader
moves to a new position e′. Then, p can reposition itself at the new canonical
projection e′π in one move, or capture the evader if the evader’s move crossed
the path Pa,b.

Lemma 3. Consider a shortest path Pa,b on the polyhedral surface S, and sup-
pose a pursuer p is located at the endpoint a of this path. Then, after at most
L+ 1 moves, p can locate itself at the canonical projection of the evader, where
L is the (Euclidean) length of the Pa,b.

These lemmas together show that a single pursuer is able to guard a shortest
path on the surface. We now describe the pursuers’ strategy for each of the three
states: BiPolar, TriPolar, EndGame.

3.3 Pursuit Strategy for the TriPolar State

In TriPolar state, the current region Si is bounded by three shortest paths,
Pa,b, Pa,c, and Pb,c, between the three poles a, b, c. The pursuers’ strategy is to
force the game either into BiPolar or EndGame state while preserving the
Pursuit Invariant. Towards that goal, we need to introduce some properties of
shortest paths on polyhedral surfaces.

It is well-known that a shortest path is a sequence of line segments (arcs),
whose endpoints lie on the edges of the surface, and that the path crosses any
edge of the surface at most once. Thus, the sequence of edges crossed by a path,
called the edge sequence, consists of at most n edges. Given a source point a
and an edge (b, c), it is also known that (b, c) is partitioned into O(n) closed
intervals of optimality [14], where the shortest path from a to any point d in
an interval follows the same edge sequence. Let us suppose that an edge (b, c)
is partitioned into k intervals of optimality, [d0, d1], [d1, d2], · · · , [dk−1, dk], where
the edge sequence for the interval [di−1, di] is denoted as σi. Since two adjacent
intervals, say [dj−1, dj ] and [dj , dj+1], share a common endpoint dj , there are
two equal length shortest paths from a to dj , following edge sequences σj and
σj+1. Because our algorithm may guard one or both of these shortest paths,
we use a superscript to identify the associated edge sequence. In particular, the
shortest path from x to y under the edge sequence σj is denoted P j

x,y.
The following lemma shows that if the shortest paths Pa,b and Pa,c have the

same edge sequence, and Pb,c is a single arc, then the interior of the region
bounded by these 3 paths has no vertex of the surface, which implies that the
pursuit region has entered the terminal state EndGame.

Lemma 4. Suppose the current region Si is bounded by pairwise shortest paths
between the three points a, b, c, and that Pb,c consists of a single arc. Then, the
paths Pa,b and Pa,c follow the same edge sequence if and only if Si contains no
interior vertices.

Proof. Clearly, if Pa,b and Pa,c have the same edge sequence, then there cannot
be an interior vertex in Si because Pb,c is a single arc. For the converse, if Si has
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no interior vertices and Pb,c is a single arc, then Si can only contain edges that
intersect both Pa,b and Pa,c. These edges do not cross each other, and therefore
they must be crossed by Pa,b and Pa,c in the same order. 	


By the preceding lemma, if Pa,b and Pa,c follow the same edge sequence and Pb,c

consists of a single arc, then we are in the terminal state EndGame. Therefore,
assume that either the edge sequences of Pa,b and Pa,c are unequal or Pb,c consists
of multiple arcs. In both cases, the following lemma shows how to either reduce
Pb,c to a single point, which changes the state to BiPolar, or replace Pa,b and
Pa,c with shortest paths with the same edge sequence, and Pb,c with a single arc,
which changes the state to EndGame.

d0

a

dkdk/2

P 1
a,d0 P k

a,dk

Pd0,dk

P
k/2
a,dk/2

R1 R2

(a)

a

dj dj+1

P j
a,dj

P j
a,dj+1

(b)

a

dj

P j
a,dj P j+1

a,dj

(c)

Fig. 3. Illustration for the proof of Lemma 5

Lemma 5. Suppose Si is in state TriPolar, then we can force a transition
either to state BiPolar or state EndGame.

Proof. Consider the shortest path map with source a, and suppose it partitions
Pb,c into k intervals of optimality (across all of Pb,c’s arcs), [d0, d1], [d1, d2] · · ·,
[dk−1, dk] with corresponding edge sequences σ1, σ2, · · · , σk, where do = b and
dk = c. Relabel Pa,b as P 1

a,d0
, and Pa,c as P k

a,dk
, and order the paths by their

endpoints on Pb,c as follows:

P 1
a,d0

, P 1
a,d1

, P 2
a,d1

, P 2
a,d2

, . . . , P k
a,dk−1

, P k
a,dk

We leave two pursuers to guard (maintain canonical projections on) the paths

Pa,b and Pa,c, and deploy a guard on the center path P
k/2
a,dk/2

(constrained to lie

within the current region); see Figure 3(a). This path splits the original region Si

into two non-empty regions, each containing half the intervals of optimality, and
we recurse the process on the side with the evader, namely, the region Si+1. The
first two conditions of the invariant are trivially satisfied, since the evader region
can only shrink, and the third condition holds because the pursuer associated
with either the path Pa,b or Pa,c is freed up, keeping the total pursuer count
at four.

The recursion terminates when the evader is confined between two succes-
sive paths in the original ordering. In particular, if the evader is trapped be-
tween paths P j

a,dj
and P j

a,dj+1
, then we have state EndGame as shown shown



292 K. Klein and S. Suri

in Fig. 3(b). On the other hand, if the evader is trapped between two paths
P j−1
a,dj

and P j
a,dj

, we have successfully transitioned to state BiPolar, as shown

in Fig. 3(c). It is clear that throughout this search, the evader remains confined
to a subsurface of Si and cannot escape without being captured, and that the
pursuit invariant is maintained. Because the path Pb,c has at most n arcs, with
n intervals of optimality each, we have k ≤ n2. Thus, in O(log n) phases, we can
force a change of state to either BiPolar or EndGame. 	


3.4 Pursuit Strategy for the BiPolar State

a

b
c

Pa,b

R1

R2

P ′
a,b

Pa,c
Pb,c

Fig. 4. An abstract illustration of the two
paths that may be guarded during state
BiPolar

We now describe how to make
progress when the search region is
BiPolar. Without loss of generality,
assume that the current region Si is
bounded by two shortest paths be-
tween points a and b, each guarded
by a pursuer. The algorithm shrinks
the region by removing at least one
vertex from the interior of Si. In par-
ticular, let c be a vertex of the surface
that lies in the interior, and consider
the two shortest paths (constrained to remain inside Si) from c to a and b. The
concatenation of these two paths splits Si into two subregions, say R1 and R2,
both bounded by three paths. (These paths can share a common prefix, starting
at c, but they do not cross each other.) Only one of these regions contains the
evader, and so by guarding Pa,b an Pa,c the state of the search transitions to
either TriPolar or EndGame depending on whether or not this region, which
becomes Si+1, contains an interior vertex. See Figure 4 for illustration. During
this transition the pursuit invariant holds because (1) R1, R2 ⊆ Si, (2) both R1

and R2 contain at least one fewer interior vertex, namely, c, and (3) at most 4
pursers are used. Thus, we have established the following lemma, completing the
discussion of the state BiPolar.

Lemma 6. If the evader lies in a BiPolar region Si, then we can force a
transition to a TriPolar or EndGame region with at least one fewer interior
vertex, and no more than 4 pursuers are used during the pursuit.

3.5 Pursuit Strategy for the EndGame State

We now describe how the pursuers capture the evader when the search region
is EndGame. First, by Lemma 5, the path Pb,c can be reduced to a single arc.
Next, by Lemma 4, since Si has no interior vertices, Pa,b and Pa,c follow the
same edge sequence. Thus, Si consists of a chain of faces, each a triangle or a
quadrilateral. For ease of presentation, we assume that all faces are triangles,
which is easily achieved by adding a diagonal to each quadrilateral. The pursuers
perform a sweep of Si, by repeatedly replacing Pb,c with the previous edge in
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the edge sequence of Pa,b and Pa,c, until the evader is trapped in a triangle each
of whose sides are guarded by a pursuer. For example, in Figure 5(a), the fourth
pursuer guards the edge (b, x1), which either confines the evader to the triangle
b, c, x1 or frees the evader guarding Pb,c.

Lemma 7. Once the evader enters the EndGame state, the 4 pursuers can
shrink the confinement region to a single triangle of Si in O(n) phases.

b

a

c

Pa,b Pa,c

Pb,c

x1x2

x3x4

x5x6

(a)
a

b

d

c

(b)

Fig. 5. Illustrating the algorithm used for capture in state EndGame

Finally, the following lemma completes the capture inside the triangle.

Lemma 8. If Si consists of a single triangle, then in O(ΔS logΔS) moves the
evader can be captured.

Proof. The pursuers progressively “shrink” the triangle containing the evader,
leading to eventual capture, as follows. Pick the midpoint of the arc (b, c), say
d, and deploy a guard on the arc (a, d); see Figure 5(b). This path splits the
original triangle into two non-empty triangles, and we recurse the process on the
triangle containing the evader. Notice that the pursuer associated with either
the path Pa,c or Pa,b is freed up, keeping the total pursuer count at four. After
logΔS applications (b, c) will be replaced with an arc of length at most one, at
which point a pursuer can capture the evader by sweeping the triangle once. At
most O(logΔS) paths of length O(ΔS) are guarded, and so this process takes
at most O(ΔS logΔS) moves. 	


We can now state our main result.

Theorem 2. On a n-vertex genus 0 polyhedral surface S, 4 pursuers can always
capture the evader in O(ΔS(n

2 logn+ logΔS)) moves.

4 Extensions and Generalizations

Our surround-and-contract technique appears to be quite general, and may be
applicable to many other settings where shortest paths are well-behaved and
where the frequency of state transitions between BiPolar and TriPolar can
be combinatorially bounded. In particular, we have the following two results,
whose details can be found in the full version of the paper.
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Theorem 3. On a n-vertex genus g polyhedral surface S, 4g + 4 pursuers can
always capture the evader in O(((gn)2 log(gn) + logΔS) ·ΔS) moves.

Theorem 4. Given a polyhedron S with n vertices, and weighted regions with
min weight ωmin and max weight ωmax, 4 pursuers can capture the evader in
O(ωmax

ωmin
· n6 ·ΔS + log((ωmax

ωmin
) ·ΔS) · ωmax

ωmin
·ΔS) moves.
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Abstract. Let P be a d-dimensional n-point set. A partition T of P is
called a Tverberg partition if the convex hulls of all sets in T intersect in
at least one point. We say T is t-tolerated if it remains a Tverberg parti-
tion after deleting any t points from P . Soberón and Strausz proved that
there is always a t-tolerated Tverberg partition with �n/(d + 1)(t + 1)	
sets. However, so far no nontrivial algorithms for computing or approxi-
mating such partitions have been presented.

For d ≤ 2, we show that the Soberón-Strausz bound can be improved,
and we show how the corresponding partitions can be found in polyno-
mial time. For d ≥ 3, we give the first polynomial-time approximation
algorithm by presenting a reduction to the (untolerated) Tverberg prob-
lem. Finally, we show that it is coNP-complete to determine whether a
given Tverberg partition is t-tolerated.

1 Introduction

Let P ⊂ IRd be a point set of size n. A point c ∈ IRd has (Tukey) depth m
with respect to P if every closed half-space containing c also contains at least m
points from P . A point of depth �n/(d + 1)� is called a centerpoint for P . The
well-known Centerpoint Theorem [10] states that any point set has a centerpoint.
Centerpoints are of great interest as they constitute a natural generalization of
the median to higher-dimensions and since they are invariant under scaling or
translations and robust against outliers.

Chan [1] described a randomized algorithm that finds a d-dimensional cen-
terpoint in expected time O(nd−1). Actually, Chan solves the seemingly harder
problem of finding a point with maximum depth, and he conjectures that his
result is optimal. Since this is infeasible in higher dimensions, approximation
algorithms are of interest. Already in 1993, Clarkson et al. [2] developed a
Monte-Carlo algorithm that finds a point with depth Ω(n/(d + 1)2) in time
O(d2(d logn+log(1/δ))log(d+2)), where δ is the error-probability. Teng [13] proved
that testing whether a given point is a centerpoint is coNP-complete, so we do
not know how to verify efficiently the output of the algorithm by Clarkson et al.
For a subset of centerpoints, Tverberg partitions [14] provide polynomial-time
checkable proofs for the depth: a Tverberg m-partition for a point set P ⊂ IRd is
� This research was supported by the Deutsche Forschungsgemeinschaft within the
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a partition P = T1∪̇T2∪̇ . . . ∪̇Tm of P into m sets such that
⋂m

i=1 conv(Ti) �= ∅.
Each half-space that intersects

⋂m
i=1 conv(Ti) must contain at least one point

from each Ti, so each point in
⋂m

i=1 conv(Ti) has depth at least m. Tverberg’s
theorem states that m = �n/(d+ 1)� is always possible. Thus, there is always a
centerpoint with a corresponding Tverberg partition. Miller and Sheehy [7] de-
veloped a deterministic algorithm that computes a point of depth �n/2(d+1)2�
in time nO(log d) together with a corresponding Tverberg partition. This was
recently improved by Mulzer and Werner [9]. Through recursion on the dimen-
sion, they can find a point of depth �n/4(d+1)3� and a corresponding Tverberg
partition in time dO(log d)n.

Let T be a Tverberg m-partition for P . If any nonempty subset R ⊂ P is
removed from P , we do not longer know if

⋂m
i=1 conv(Ti \R) �= ∅. In the worst-

case, the maximum number of sets in T whose convex hulls still have a nonempty
intersection is m − |R|. This is not always desired. It is therefore of interest to
study Tverberg partitions that guarantee

⋂m
i=1 conv(Ti\R) to be nonempty if the

size of R is not “too big”. We call a Tverberg partition t-tolerated if it remains a
Tverberg partition of P even after removing t arbitrary points from P . In 1972,
Larman [5] proved that every set of size 2d + 3 admits a 1-tolerated Tverberg
2-partition. This was motivated by a problem that was proposed to him by Mc-
Mullen: find the largest number of points that can be brought in convex position
by a permissible projective transformation. Colín [4] generalized Larman’s result,
showing that sets of size (t + 1)(d + 1) + 1 always have a t-tolerated Tverberg
2-partition. Later, Montejano and Oliveros conjectured that every set of size
(t+ 1)(m− 1)(d+ 1) + 1 admits a t-tolerated Tverberg m-partition [8, Conjec-
ture 4.2]. This was proven by Soberón and Strausz [12] who adapted Sarkaria’s
proof of Tverberg’s theorem [11] to the tolerated setting. Soberón and Strausz
also conjectured this bound to be tight [12, Conjecture 1]. Up to now, no ex-
act or approximation algorithms for tolerated Tverberg partitions appear in the
literature.

In this paper, we give new bounds for one- and two-dimensional tolerated
Tverberg partitions, disproving the Soberón-Strausz-conjecture. We also give ef-
ficient algorithms for finding the corresponding partitions. Our bound is tight
for d = 1. For higher dimensions, we describe an approximation preserving re-
duction to the untolerated Tverberg problem. Thus, we can apply existing and
possible future algorithms for the untolerated Tverberg problem in the tolerated
setting. Finally, we show that testing whether a given Tverberg partition has
tolerance t is coNP-complete if the dimension is not fixed.

2 Low Dimensions

We start with an algorithm for the one-dimensional case that yields a tight
bound. This can be bootstrapped to higher dimensions with a lifting approach
similar to [9]. In two dimensions, we also get an improved bound if the size of
the desired partition and the tolerance is large enough.
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2.1 One Dimension

Let P ⊂ IR with |P | = n, and let T = {T1, T2, . . . , Tm} be a t-tolerated Tverberg
m-partition of P . By definition, there is no subset R ⊂ P, |R| = t whose removal
separates the convex hulls of the sets in T . Bounding the size of the sets in T
gives us more insight into the structure.

Lemma 2.1. Let P ⊂ IR with |P | = n and T = {T1, T2, . . . , Tm} a t-tolerated
Tverberg m-partition of P . Then

(i) for i = 1, . . . ,m, we have |Ti| ≥ t+ 1; and
(ii) for i, j = 1, . . . ,m, i �= j, we have |Ti ∪ Tj| ≥ 2t+ 3.

Proof. (i) Suppose |Ti| ≤ t. After removing Ti from P , the intersection of the
convex hulls of the sets in T becomes empty, and T would not be t-tolerated.

(ii) Suppose there are Ti, Tj ∈ T with |Ti ∪ Tj | ≤ 2t + 2. By (i), we have
|Ti| = |Tj | = t+1. Let pmin = min(Ti∪Tj) and assume w.l.o.g. that pmin ∈ Ti
(see Figure 1). Then |Ti \ {pmin}| = t, and removing the set Ti \ {pmin}
separates the convex hulls of Ti and Tj . This again contradicts T being
t-tolerated.

	


Ti

pmin

Tj

Fig. 1. The convex hulls of two sets of size t+1 can be separated by removing t points

Lemma 2.1 immediately implies a lower bound on the size of any point set
that admits a t-tolerated Tverberg m-partition.

Corollary 2.2. Let P ⊂ IR with |P | < m(t+ 2)− 1. Then P has no t-tolerated
Tverberg m-partition.

Now what happens for |P | = m(t+2)− 1? Note that for t > 0 and m > 2, we
have m(t+2)−1 < 2(t+1)(m−1)+1, the bound by Soberón and Strausz. Thus,
proving that a t-tolerated Tverberg m-partition exists for any one-dimensional
point set of size m(t+ 2)− 1 would disprove the Soberón-Strausz conjecture.

Let P ⊂ IR be of size m(t+2)−1. By Lemma 2.1, in any t-tolerated Tverberg
partition of P , one set has to be of size t + 1 and all other sets have to be of
size t + 2. Let T = {T1, . . . , Tm} be a Tverberg m-partition of P such that T1
contains every mth point of P and each other set Ti (i ≥ 2) has one point in
each interval defined by the points of T1; see Fig. 2 for m = 3 and t = 2. Note
that |T1| = t + 1 and |Ti| = t + 2 (i ≥ 2). We will show that T is t-tolerated.
Intuitively, T maximizes the interleaving of the sets, making the convex hulls
more robust to changes.
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T1

p3 p6 p9

T3
T2

Fig. 2. A 2-tolerated Tverberg 3-partition for 11 (= 3(2 + 2)− 1) points

Lemma 2.3. Let P ⊂ IR with |P | = m(t+ 2)− 1, and let T = {T1, . . . , Tm} be
an m-partition of P . Suppose that |T1| = t+1, and write T1 = (p1, p2, . . . , pt+1),
sorted from left to right. Suppose that each interval I ∈ {(−∞, p1), (p1, p2),
. . .,(pt+1,∞)} contains one point from each Ti, for i = 2, . . . ,m. Then T is a
t-tolerated Tverberg m-partition for P .

Proof. Suppose there exist Ti, Tj ∈ T , (i �= j) and a subset R ⊂ P of size t such
that removing R from P separates the convex hulls of Ti and Tj. Let h be a
point that separates conv(Ti \R) and conv(Tj \R). Let T−i = Ti ∩ (−∞, h] and
T+
i = Ti ∩ (h,∞), and define T−j , T

+
j similarly. Figure 3 shows the situation.

Set l = |T−1 | = |T1 ∩ (−∞, h]|. By construction of T , both T−i and T−j contain
exactly l or l+ 1 points.

Since removing R separates the convex hulls of Ti and Tj at h, R must contain
either T−i ∪ T+

j or T−j ∪ T+
i . However, we have

|T−i ∪T+
j | = |T−i |+ |Tj |−|T−j | ≥

{
l + |Tj | − (l + 1) = |Tj | − 1 = t+ 1 if j �= 1
l + |T1| − l = |T1| = t+ 1 if j = 1

and similarly |T−j ∪ T+
i | ≥ t+ 1, a contradiction.

Thus, even after removing t points, the convex hulls of the sets in T intersect
pairwise. Helly’s theorem [6, Theorem 1.3.2] now guarantees that the convex
hulls of all sets in T have a common intersection point. Hence, T is t-tolerated.

	


T−i T+
i

T−j T+
j

h

Fig. 3. The convex hulls of two elements in T are separated after the removal of R.
Crosses mark the removed points (i.e., points in R).

Lemma 2.3 immediately gives a way to compute a t-tolerated Tverberg m-
partition in O(mt logmt) time for |P | = m(t + 2) − 1 by sorting P . However,
it is not necessary to know the order of all of P . Algorithm 1 exploits this fact
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to improve the running time. It repeatedly partitions the point set until it has
selected all points whose ranks are multiples of m. These points form the set T1.
Initially, the set Q contains only the input P (line 4). In lines 6–11, we select
from each set in Q an element whose rank is a multiple of m (line 8) and we
split the set at this element. Here, select(P, k) is a procedure that returns the
element with rank k of P . After termination of both loops in lines 5–11, all
remaining sets in Q correspond to points in P between two consecutive points
in T1. In lines 12–14, the points in the sets in Q are distributed equally among
the elements Ti (i ≥ 2) of the returned partition.

Algorithm 1. 1d-Tolerated-Tverberg
input : P ⊂ IR, size of partition m

1 r ← m;
2 while r ≤ |P |/2 do
3 r ← 2 · r;
4 Q ← {P}; T1, T2, . . . , Tm ← ∅, ∅, . . . , ∅;
5 while r ≥ m do
6 foreach P ′ ∈ Q with |P ′| ≥ r do
7 remove P ′ from Q;
8 pr ← select(P ′, r);
9 Q ← Q ∪ {{p′ ∈ P ′ | p′ < pr}, {p′ ∈ P ′ | p′ > pr}};

10 T1 ← T1 ∪ {pr};
11 r ← r/2;
12 foreach P ′ ∈ Q do
13 foreach j ∈ {2, 3, . . . ,m} do
14 remove any point from P ′ and add it to Tj ;
15 return {T1, T2, . . . , Tm};

Theorem 2.4. Let P ⊂ IR be a set of size m(t + 2) − 1. On input (P,m),
Algorithm 1 returns a t-tolerated Tverberg partition for P in time O(mt log t).

Proof. After each iteration of the outer while-loop (lines 5–11), each element
P ′ ∈ Q has size strictly less than r: initially, Q contains only P and r is strictly
greater than |P |/2. Hence, both new sets added to Q in line 9 are of size strictly
less than r. Since r is halved in each iteration, the invariant is maintained.

We will now check that Lemma 2.3 applies. We only split the sets in Q at
elements whose rank is a multiple of m, so the ranks do not change modulo m. By
the invariant, after the termination of the outer while-loop in lines 5–11, each set
in Q has size strictly less than m. Since the ranks modulo m have not changed,
these sets do not contain any element of P whose rank is a multiple of m. Thus,
T1 contains all these elements and the remaining sets in Q after the termination
of the outer while-loop in lines 5–11 contain exactly the points of P between two
consecutive points of T1. Lines 12–14, distribute the remaining points among
T2, . . . , Tm. Lemma 2.3 now shows the correctness of the algorithm.



300 W. Mulzer and Y. Stein

Let us consider the running time. Finding the initial r requires O(log(|P |/m))
= O(t) time. The split-element in line 8 can be found in time O(|P ′|) [3]. Thus,
since the sets are disjoint, one iteration of the outer while-loop requires O(|P |)
time, for a total of O(log(|P |/m)|P |) = O(log(t)mt). By the same argument,
both for-loops in lines 12–14 require linear time in the size of P . This results in
a total time complexity of O(mt log t) as claimed. 	


2.2 Higher Dimensions

We use a lifting argument [9] to extend Algorithm 1 to higher-dimensional input.
Given a point set P ⊆ IRd of size n, let h be a hyperplane that splits P evenly
(if n is odd, h contains exactly one point of P ). We then partition P into �n/2�
pairs (p−i , p

+
i ), where p−i ∈ h− and p+i ∈ h+. We obtain a (d − 1)-dimensional

point set with �n/2� elements by mapping each pair to the intersection of the
connecting line segment and h.

Let qi = p+i p
−
i ∩h be the mapped point for (p−i , p

+
i ) and T ′ = {T ′1, . . . , T ′m} a t-

tolerated Tverbergm-partition of Q = {q1, . . . , q
n/2�}. We obtain a Tverbergm-
partition T with tolerance t for P by replacing each qi in T ′ by its corresponding
pair (p−i , p

+
i ). Thus, we can repeatedly project the set P until Algorithm 1 is

applicable. Then, we lift the one-dimensional solution back to higher dimensions.
Algorithm 2 follows this approach. For d = 1, Algorithm 1 is applied (lines 1–

2). Otherwise, we take an appropriate hyperplane orthogonal to the xd-axis and
compute the lower-dimensional point set (lines 3–7). Finally, the result for d− 1
dimensions is lifted back to d dimensions (lines 10–11).

Algorithm 2. DimReduct-Tolerated-Tverberg
input : point set P ⊂ IRd, tolerance parameter t, size of partition m
output: t-tolerated Tverberg partition for P of size m

1 if d = 1 then
2 return 1d-Tolerated-Tverberg(P,m)
3 h ← hyperplane that halves P according to the xd-coordinate;
4 foreach i ∈ {1, 2, . . . , |P ∩ h−|} do
5 p−i ← remove any point from P that belongs to P ∩ h−;
6 p+i ← remove any point from P that belongs to P ∩ h+;
7 qi ← first d− 1 coordinates of p−i p

+
i ∩ h;

8 Q ← {q1, q2, . . . , q|P∩h−|};
9 {T ′

1, T
′
2, . . . , T

′
m} ← DimReduct-Tolerated-Tverberg(Q,t,m);

10 foreach j ∈ {1, 2, . . . ,m} do
11 Tj ← {p−i , p+i | qi ∈ T ′

j};
12 return {T1, T2, . . . , Tm};

Proposition 2.5. Given a set P ⊂ IRd of size 2d−1(m(t+ 2)− 1), Algorithm 2
computes a t-tolerated Tverberg m-partition for P in time O(2d−1dmt+mt log t).



Algorithms for Tolerated Tverberg Partitions 301

Proof. Since the size of P halves in each recursion step, 2d−1 points suffice to
ensure that Algorithm 1 can be applied in the base case. Each projection and
lifting step can be performed in linear time, using a median computation. Since
the size of the point set decreases geometrically, the total time for projection
and lifting is thus O(2d−1dmt). Since Algorithm 1 has running time O(mt log t),
the result follows. 	


For d ≥ 3, the bound from Proposition 2.5 is worse than the Soberón-Strausz
bound. However, in two dimensions, we have

22−1(m(t+ 2)− 1) < (2 + 1)(m− 1)(t+ 1) + 1⇔ m/(m− 3) < t

This holds for instance if t ≥ 5 or m ≥ 7 and t ≥ 2. Thus, Algorithm 2 gives
a strict improvement over the Soberón-Strausz bound for large enough m and t.

3 Reduction to the Untolerated Tverberg Problem

We now show how to use any algorithm that computes (untolerated) approximate
Tverberg partitions in order to find tolerated Tverberg partitions. For this, we
must increase the tolerance of a Tverberg partition. In the following, we show
that one can merge elements of several Tverberg partitions for disjoint subsets
of P to obtain a Tverberg partition with higher tolerance for the whole set P .
The following lemma is also implicit in the Ph.D. thesis of Colín [4].

Lemma 3.1. Let T1, . . . , Tk be Tverberg m-partitions for disjoint point sets P1,
. . .,Pk ⊂ IRd. Let Ti,j be the jth element of Ti and ti ≥ 0 the tolerance of Ti.
Then T = {Tj =

⋃k
i=1 Ti,j | j ∈ {1, 2, . . . ,m}} is a Tverberg m-partition of

P =
⋃k

j=1 Pi with tolerance t =
∑k

i=1 ti + k − 1.

Proof. Take R ⊆ P with |R| = t. As t =
∑k

i=1 ti+ k− 1 <
∑k

i=1(ti+1), there is
an i with |Pi ∩R| ≤ ti. Since Ti is ti-tolerated, we have

⋂m
i=j conv(Ti,j \R) �= ∅.

Because each Ti,j is contained in the corresponding Tj of T , the convex hulls of
the elements in T still intersect after the removal of R. 	


This directly implies a simple algorithm: we compute untolerated Tverberg
partitions for disjoint subsets of P and then merge them using Lemma 3.1.

Corollary 3.2. Let P ⊆ IRd and let A be an algorithm that computes an un-
tolerated Tverberg m-partition for any point set of size nA(m) in time TA(m).
Then, a (�|P |/nA(m)� − 1)-tolerated Tverberg m-partition for P can be com-
puted in time O (TA(nA(m)) · |P |/nA(m)).

Proof. We split P into �|P |/nA� disjoint sets and use A to obtain for each subset
an untolerated Tverberg partition. Applying Lemma 3.1, we obtain a (�|P |/nA�−
1)-tolerated Tverberg m-partition. Since the merging step in Lemma 3.1 takes
linear time in |P |, the total running time is O (TA(nA(m)) · |P |/nA(m)) as
claimed. 	
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Table 1. Corollary 3.2 combined with existing approximation algorithms for the un-
tolerated Tverberg problem

Algorithm Tolerance Running time

Corollary 3.2 with Miller-Sheehy �|P |/2m(d + 1)2� − 1 mO(log d)dO(log d)|P |

Corollary 3.2 with Mulzer-Werner �|P |/4m(d + 1)3� − 1 dO(log d)|P |

Table 3 shows specific values for Corollary 3.2 combined with Miller & Sheehy’s
and Mulzer & Werner’s algorithm.

Remark 3.3. Lemma 3.1 gives a quick proof of a slightly weaker version of the
Soberón-Strausz bound: partition P into t+1 disjoint sets of size at least �|P |/(t+
1)�. By Tverberg’s theorem, for each subset there exists an untolerated Tverberg
partition of size ��|P |/(t+1)�/(d+1)�. Using Lemma 3.1, we obtain a t-tolerated
Tverberg partition of size ��|P |/(t+1)�/(d+1)� ≥ �|P |/(t+1)(d+1)�− 1 of P ,
which is at most one less than the Soberón-Strausz bound. This weaker bound
was also stated by Colín [4, Lemma 3.3.13].

4 Hardness of Tolerance Testing

Teng [13, Theorem 8.4] proved that testing whether a given point is a centerpoint
of a given set (TestingCenter) is coNP-complete if the dimension is part of the
input. We show the same for the problem of deciding whether a given Tverberg
m-partition has tolerance t (TestingToleratedTverberg) by a reduction to
TestingCenter. Here, m can be constant.

Lemma 4.1. Let P ⊂ IRd and let c ∈ IRd. Then c has depth t + 1 w.r.t. P if
and only if for all subsets R ⊂ P, |R| ≤ t : c ∈ conv(P \R).

Proof. “⇒” Suppose there is some R ⊂ P, |R| ≤ t with c /∈ conv(P \ R). Then,
there is a half-space h+ that contains c but no points from conv(P \ R). Thus,
c ∈ h+ and |P ∩ h+| ≤ |R| ≤ t, and hence c has depth ≤ t w.r.t. P .

“⇐” Assume c has depth t′ ≤ t w.r.t. P . Let h+ be a half-space that contains
c and t′ points from P . Set R = h+ ∩P . Then, |R| ≤ t and c /∈ conv(P \R). 	


Theorem 4.2. TestingToleratedTverberg is coNP-complete if the dimen-
sion d and the claimed tolerance t are part of the input.

Proof. Since testing whether a given partition is Tverberg is a simple application
of linear programming, the problem lies in coNP.

Let (P ⊂ IRd, c ∈ IRd) be an input to TestingCenter. We embed the vec-
tor space IRd in IRd+1 by identifying it with the hyperplane h : xd+1 = 0. Let �



Algorithms for Tolerated Tverberg Partitions 303

be the line that is orthogonal to h and passes through c. Furthermore, let T−
and T+ be sets of t+ 1 arbitrary points in � ∩ h− and � ∩ h+, respectively. Set
T = T− ∪ T+. We claim that {P, T } is a Tverberg 2-partition for P ∪ T with
tolerance t = �|P |/(d+1)�−1 if and only if c is a centerpoint of P . See Figure 4.

“⇒” Assume {P, T } is a t-tolerated Tverberg 2-partition. By construction of
T , we have conv(P ) ∩ conv(T ) = {c}. Thus, c lies in the intersection of both
convex hulls even if any subset of size at most t is removed. Lemma 4.1 implies
that c has depth t+ 1 = �|P |/(d+ 1)� w.r.t. P , so c is a centerpoint for P .

“⇐” Assume c is a centerpoint for P . By definition, c has depth at least
�|P |/(d+1)� = t+1 w.r.t. P . Lemma 4.1 then implies that c is contained in the
convex hull of P even if any t points from P are removed. Since T contains t+1
points on both sides of a line through c, c is also contained in conv(T ) if any t
points from T are removed. Thus, {P, T } is a t-tolerated Tverberg 2-partition
for P ∪ T . 	


h : xd+1 = 0

�
T+T−

c

Fig. 4. Reduction of TestingCenter to TestingToleratedTverberg

5 Conclusion

We have shown that each set P ⊂ IR of size m(t + 2) − 1 can be partitioned
into a t-tolerated Tverberg partition of size m in time O(mt log t). This is tight,
and it improves the Soberón-Strausz bound in one dimension. Combining this
with a lifting method, we could also get improved bounds in two dimensions and
an efficient algorithm for tolerated Tverberg partitions in any fixed dimension.
However, the running time is exponential in the dimension.

This motivated us to look for a way of reusing the existing technology for the
untolerated Tverberg problem. We have presented a reduction to the untolerated
Tverberg problem that enables us to reuse the approximation algorithms by
Miller & Sheehy and Mulzer & Werner.
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Finally, we proved that testing whether a given Tverberg partition is of some
tolerance t is coNP-complete. Unfortunately, this does not imply anything about
the complexity of finding tolerated Tverberg partitions. It is not even clear
whether computing tolerated Tverberg partitions is harder than computing un-
tolerated Tverberg partitions. However, we have shown that given a set P ⊂
IRd whose size meets the Soberón-Strausz bound, we can obtain in polyno-
mial time a tolerated Tverberg partition from the untolerated Tverberg par-
tition guaranteed by Tverberg’s Theorem of size just one less than stated by the
Soberón-Strausz bound.

It remains open whether the bound by Soberón and Strausz is tight for d > 2.
We believe that our results in one and two dimensions indicate that the bound
can be improved also in general dimension. Another open problem is finding
a pruning strategy for tolerated Tverberg partitions. By this, we mean an al-
gorithm that efficiently reduces the sizes of the sets in a t-tolerated Tverberg
partition without deteriorating the tolerance. Such an algorithm could be used
to improve the quality of our algorithms. In Miller & Sheehy’s and Mulzer &
Werner’s algorithms, Carathéodory’s theorem was used for this task. Unfortu-
nately, this result does not preserve the tolerance of the pruned partitions. Also
the generalized tolerated Carathéodory theorem [8] does not seem to help. It
remains an interesting problem to develop criteria for superfluous points in tol-
erated Tverberg partitions.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful and detailed comments and for pointing out that the algorithm in Corol-
lary 3.2 could be greatly simplified.
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Abstract Voronoi Diagrams

with Disconnected Regions�

Cecilia Bohler and Rolf Klein

University of Bonn, Institute of Computer Science I, D-53113 Bonn, Germany

Abstract. Abstract Voronoi diagrams [15, 16] are based on bisecting
curves enjoying simple combinatorial properties, rather than on the ge-
ometric notions of sites and distance. They serve as a unifying concept.
Once the bisector system of any concrete type of Voronoi diagram is
shown to fulfill the AVD axioms, structural results and efficient algo-
rithms become available without further effort; for example, the first
optimal algorithms for constructing nearest Voronoi diagrams of dis-
joint convex objects, or of line segments under the Hausdorff metric,
have been obtained this way [18]. One of these axioms stated that all
Voronoi regions must be pathwise connected, a property quite useful in
divide&conquer and randomized incremental construction algorithms.
Yet, there are concrete Voronoi diagrams where this axiom fails to hold.
In this paper we consider, for the first time, abstract Voronoi diagrams

with disconnected regions. By combining the randomized incremental
construction technique [18] with trapezoidal decomposition [21] we ob-
tain an algorithm that runs in expected time O(s2n

∑n
j=3 mj/j), where

s is the maximum number of faces a Voronoi region in a subdiagram
of three sites can have, and mj denotes the average number of faces
per region in any subdiagram of j sites. In the connected case, where
s = 1 = mj , this results in the known optimal bound O(n

∑n
j=3 1/j) =

O(n log n).

Keywords: Abstract Voronoi diagrams, computational geometry, dis-
tance problems, trapezoidal decomposition, Voronoi diagrams.

1 Introduction

Voronoi diagrams are useful structures, known in many areas of science. A nice
way to think of concrete Voronoi diagrams is by expanding circles. Suppose that
n local rulers pi send out their troups, to conquer the plane. Each point z of the
plane will belong to that pi whose troups arrive at z first. Points first reached
by two armies simultaneously form Voronoi edges, by three or more, Voronoi
vertices. Alterations of the nature of the pi, the shapes of the circles, individual
speeds and starting times, lead to interesting variations of the resulting partitions
of the plane; see the surveys and monographs [5–7, 9, 13, 20].
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p

q

r

p

q

r

Fig. 1. Two different Voronoi diagrams of three sites. To the right, the different faces
of the Voronoi region of q are shaded.

If troops advance in circular formation at the same speed, starting at the same
time, the classic Voronoi diagram of n points pi with respect to the Euclidean
distance is obtained; see the left drawing in Figure 1. In the right drawing,
circles are expanding at piecewise constant, individual speeds. We observe that
the Voronoi region of q consists of several connected components (faces).

Abstract Voronoi diagrams (AVDs, for short) were introduced in Klein [15].
Here, no sites, circles, or distance measures are given. Instead, one takes un-
bounded curves J(p, q) = J(q, p) as primary objects, together with the open
domains D(p, q) and D(q, p) they separate. Abstract Voronoi regions are defined
by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q)

and the following axioms were required to hold for each subset S′ of S.

(A1) Each curve J(p, q), where p �= q, is unbounded. After stereographic projec-
tion to the sphere, it can be completed to a closed Jordan curve through
the north pole.

(A2) For any two curves J(p, q) and J(r, t), their intersection has only finitely
many connected components.

(A3) Each nearest Voronoi region VR(p, S′) is pathwise connected.
(A4) Each point of the plane belongs to the closure of a Voronoi region VR(p, S′).

It has been shown that the resulting abstract Voronoi diagram V(S)—the plane
minus all Voronoi regions— is a planar graph of complexity O(n). It can be con-
structed, by randomized incremental construction, in O(n log n) many steps [16–
18]. Moreover, the above properties need only be checked for all subsets S′ of size
three [16]. This makes it easier to verify that a concrete Voronoi diagram falls
under the heading of the AVD concept. Examples of such applications can be
found in [1,3,4,8,14,18]. Farthest abstract Voronoi diagrams have been studied
in [19], and, recently, general order-k AVDs in [10].

In this paper we consider, for the first time, abstract Voronoi diagrams with
disconnected regions. Instead of Axiom A3 we will only require
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(A3’) For any p, q, r ∈ S, each Voronoi region in V ({p, q, r}) has at most s
path-connected components.

Axiom A3’ implies that two bisecting curves J(p, q) and J(q, r) sharing a site
q can cross at most O(s) times, whereas arbitrary bisectors J(p, q) and J(r, t)
not sharing a site can have any finite number of intersections. While this axiom
bounds the possible number of faces per region in all AVDs of three sites of S, in
an AVD of n > 3 sites a single region may have as many as Θ(sn2) many faces;
see Lemma 6 below. To capture the complexity of the input system of bisecting
curves we denote by mj the average number of faces per region, over all AVDs
of j sites from S.

Furthermore, to make use of trapezoidal decompositions [21] we will in Sec-
tion 4 require one additional assumption to bound the number of trapezoids in
the decomposition,

(A5) Each bisector J(p, q) has constantly many points of vertical tangency.

This holds e. g. for algebraic functions of constant algebraic degree. Moreover
for simplicity we assume general position in the sense that no two distinct points
of vertical tangency lie on the same vertical line. This is an assumption commonly
made in the design of algorithms for computing arrangements of curves, [22].

In this paper we are proving the following result.

Theorem 1. Given a system of bisecting curves that satisfies Axioms A1, A2,
A3’, A4 and A5. Then its abstract Voronoi diagram V (S) can be constructed in
expected time

O

⎛⎝s2n n∑
j=2

mj

j

⎞⎠ .

Theorem 1 can be seen as a generalization of the optimal bound obtained in [18]
for AVDs with connected regions, because in this case s = 1 = mj hold and∑n

j=3 1/j ∈ O(log n). However, it seems that the standard randomized incre-
mental construction method does not generalize to the disconnected case in a
straightforward way. One difficulty is that more conflict information must be
stored, in order to locate all faces of the region of a new site. But then one can-
not easily bound the outdegree of the history graph. We overcome this difficulty
by maintaining a trapezoidal decomposition [21] of the current AVD during the
incremental construction.

The rest of this paper is organized as follows. In Section 2 we present some
basic facts and complexity results about AVD’s with disconnected regions. In
Section 3 we discuss preliminary observations with respect to an algorithm. We
proceed to studying it in Section 4 and carry out the analysis in Section 5.

2 Preliminaries

In this section we first present some basic facts about abstract Voronoi diagrams
with disconnected regions which are akin to facts about the old AVD’s with
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connected regions and can be proved similarly, see Lemma 5 in [16] resp. Lemma
2.2.4 in [15]. The second part of this section discusses some complexity results
of the Voronoi diagram. Again let our given system of bisecting curves satisfy
axioms A1, A2, A3’ and A4 and let s denote the maximum number of connected
components of a Voronoi region VR(p, S′) where p ∈ S′ ⊆ S, |S′| = 3, |S| = n.

Lemma 1. Let p, q, r ∈ S. Then D(p, q) ∩D(q, r) ⊆ D(p, r).

Lemma 2. The pathwise connected components of a Voronoi region and its clo-
sure are simply connected.

Theorem 2. V(S) is a finite planar graph with O(#faces of V(S)) vertices and
edges.

Because V (S) is a finite planar graph, the following ”piece of pie” lemma can
be shown which compares with Lemma 11 in [16].

Lemma 3. For each point v in the plane there exists an arbitrarily sthemall
neighborhood U of v, whose boundary is a simple closed curve, such that the
following holds for each subset S′ of S. Let v ∈ V(S′). If v is interior point of
some Voronoi edge e of V(S′) separating the Voronoi regions of p and q then
p �= q and U is divided by e in exactly two domains, one contained in VR(p, S),
the other in VR(q, S). Otherwise v is a Voronoi vertex of V(S′), of degree ≥ 3.
After suitably renumbering S′, the Voronoi edges ei adjacent to v separates the
Voronoi regions of pi and pi+1 in clockwise order, where 0 ≤ i ≤ k−1 is counted
mod k. The edges ei−1 and ei together with ∂U , bound a piece of pie contained
in VR(pi, S

′); these pieces are domains with Jordan curve boundaries. The sites
p0, . . . , pk−1 do not have to be pairwise different but p0p1 . . . pk−1 is a Davenport-
Schinzel sequence of order 2 and if pi = pj for i �= j, then the pieces of pie of pi
and pj belong to different faces of the Voronoi region of pi = pj.

The difference from AVDs with connected regions is that several faces of the
same region may be incident to the same vertex, as depicted in Figure 2c.

Lemma 4. V({p, q, r}) has at most 6s − 4 Voronoi vertices, i. e. J(p, q) and
J(p, r) can intersect in at most 6s− 4 points that result in a Voronoi vertex in
V ({p, q, r}). Further this bound is tight.

Let x be a connected component of the intersection of two bisectors J(p, q) ∩
J(r, t). We say that J(p, q) and J(r, t) intersect transversally in x, if J(r, t) ⊂
D(p, q) right before x and ⊂ D(q, p) right after x or vice versa. Because of the
previous Lemma we can in the following assume that each pair of bisectors J(p, q)
and J(p, r) intersect transversally at most 6s − 4 times and each transversal
intersection results in a Voronoi vertex of V({p, q, r}).

In the next lemma we use the notation λs(n) which stands for the maximum
length of a (n, s) Davenport-Schinzel sequence, see [22]. The idea of how to prove
the lower bound in the following lemma is from Agarwal [2].
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Fig. 2. (a) A pqr-vertex v and prqt-edge e with description D(e) = {(rq, q, p, rp),
(up, p, q, uq)}. (b) There can be s different pqr-vertices in V({p, q, r}). (c) Touch points
with respect to t on an edge of V(R \ {t}).

Lemma 5. Let P be a face of V(S). Then P has a complexity of O(λ6s−4(n−1)).
For s ≥ 4, there exists an AVD having a face of complexity Ω(λs−1(n− 1)).

We observe that this lemma does not imply the same complexity bound for a
whole region of a site p, quite in contrary a region with several faces can have
complexity Θ(sn2).

Lemma 6. The number of faces and complexity of a region of V(S) is O(sn2).
This bound is tight.

Lemma 7. The complexity and number of faces of V(S) is O(sn3).

Theorem 3. Let J := {J(p, q) : p �= q ∈ S}, |S| = n, be a curve system fulfilling
axioms A1, A2, A3’ and A4 for all subsets S′ ⊆ S of size 3. Then J fulfills these
axioms for all subsets S′ ⊆ S of size ≥ 3 and each Voronoi region has O(sn2)
faces.

3 Towards an Algorithm

We are presenting a randomized incremental algorithm that computes abstract
Voronoi diagrams with disconnected regions. Let R ⊂ S , t a site of S not
in R, and T = VR(t, R ∪ t) its new Voronoi region. Allowing Voronoi regions
to be disconnected causes some new technical phenomena that did not occur
in the connected case [17]. For example, the intersection of a face of the new
region T with the old Voronoi diagram V(R) need not be connected. Or there
may be so-called “touch points” where different faces of the same region meet
(Figure 2c).

All these difficulties can be dealt with. Fortunately, it is still true that the fate
of an edge e of V(R) upon insertion of site t can be decided locally. Suppose that
in V(R) edge e separates faces of p and q, and that its endpoints are defined
by two more sites r and u. Then e is intersected by the new region of t in
VR(t, R ∪ {t}) if and only if this holds in the Voronoi diagram of the five sites
p, q, r, u and t. Therefore, our algorithm will be built on a basic operation which
is only slightly more complicated than the one used in [17]. Observe that Voronoi
edges e and Voronoi regions VR(p, S) are defined as open sets i. e. e does not
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Fig. 3. (a) The sites p, r, t are inserted in this order, the intersection between the region
of t and the edge e is not found. (b) Trapezoidal Decomposition of a face.

contain its endpoints and VR(p, S) does not contain its boundary. With VR(p, S)
we denote the closure of the Voronoi region.
Basic Operation
Input: A 5-tuple (p, r, q, u, t), such that

(1) V({p, r, q, u}) contains a prqu-edge e, and
(2) t /∈ {p, r, q, u}.
Output: The combinatorial structure of e ∩ VR(t, {p, r, q, u, t}) in the form of:

– Number of connected components of e ∩VR(t, {p, r, q, u, t}),
– The placement of the connected components of e∩VR(t, {p, r, q, u, t}) on e,

a special case is e ⊂ VR(t, {p, r, q, u, t}).
– Touch points with respect to t on e.

The intersection e ∩ VR(t, {p, r, q, u, t}) can have at most O(s) connected
components. Moreover one can show that there can be at most s − 1 touch
points with respect to t on an edge e of V(R). That is why we charge O(s) time
to each call of the Basic Operation.

However, of much greater concern is that the history graph used in [17] for
finding the edges e of V(R) intersected by the region of the new site, t, does
no longer work. In Figure 3a, an example is depicted. Here, the sites p, r, t are
inserted in this order. The edge e emerges after inserting r and is made a succes-
sor of the edges e1, . . . , e5 in the history graph. The region of t intersects edge
e but none of the edges e1, . . . , e5. This can happen because T disconnects the
region of p, implying that we will not be able to find this intersection by walking
through the history graph along the edges intersected by T .

Thus we need a history graph with more information but still with bounded
outdegrees. For this purpose we will maintain a trapezoidal decomposition. To
make sure that the number of trapezoids is bounded we will in the following
require the additional axiom (A5). Furthermore for simplicity we assume that
no two points of vertical tangency lie on the same vertical line.



312 C. Bohler and R. Klein

4 Trapezoidal Decomposition

Let V∗(R) be the vertical decomposition of V(R), i. e. V∗(R) decomposes each
face of V(R) into pseudo-trapezoidal cells, for brevity call them trapezoids, see
Figure 3b. Such decompositions have been introduced by Seidel [21] and they
are also used in [22] to compute arrangements. Again edges e and trapezoids A
of V∗(R) are defined as open sets i. e. e does not contain its endpoints and A
does not contain its boundary.

Definition 1. We say that a site t ∈ S \ R intersects an edge e of V(R) or a
trapezoid A of V ∗(R) if T intersects e or A in more than finitely many points.

There can be edges or trapezoids intersected in only finitely many points by T
and thus not being intersected by t in the sense of our definition. These edges
and trapezoids are taken into account later during the process of inserting T
into V ∗(R). The description DR(A) of a trapezoid A of V∗(R) is defined as
the union of the descriptions of the at most two edges (not vertical lines) of
V(R) bounding it, together with the coordinates of the corners of A making
the descriptions unique, see Figure 2a. In the following we will not distinguish
between a trapezoid A of V∗(R) and its description.

Definition 2. We say that a site t ∈ S \ R is in conflict with an edge e of
V(R) or a trapezoid A of V∗(R) if there is no edge or trapezoid with the same
description in V(R ∪ {t}) resp. V∗(R ∪ {t}).

Now we define the data structure, called history graph, to determine the trape-
zoids of V∗(R) intersected by t. Let Ri = {p1, . . . , pi} be a set of sites inserted in
this order and R = Rj . The history graph H(R) is a DAG with a single source
and vertices

{source} ∪
⋃

3≤i≤j

{DRi(A)|A is a trapezoid of V∗(Ri)}

∪
⋃

4≤i≤j

{DRi(e)|e is an edge on ∂VR(pi, Ri)}.

Let a vertex ofH(R) be called trapezoid-vertex if it refers to a trapezoid and edge-
vertex if it refers to an edge. Further each vertex is linked to its corresponding
trapezoid or edge in V∗(R) and vice versa. To construct H(R) we start with
the diagram of three sites ∞, p, q and make the trapezoids of V∗({∞, p, q}) the
successors of the source. Let t ∈ S \ R be the next site to be inserted and let e
be an edge on the boundary of T . Then e is made a successor of all trapezoids
of V∗(R) intersected by e in their interior. If e does not intersect any trapezoids,
i. e. e runs along edges of V(R), then e is made a successor of those trapezoids A
of V∗(R) intersected by e on their boundary (minus the corners) such that each
ε-neighborhood around e intersects the interior of A which compares with Figure
4. Now let A be a trapezoid of V∗(R ∪ {t}) which has not already been part of



Abstract Voronoi Diagrams with Disconnected Regions 313

A1

B

C1

E
F1

G1

H1

T

e2

e3

e4

e1
C F G H

D1

F2

F3
C1 D1 F1 F2 F3 G1 H1

e2 e3 e4e1I

J
K L

M

N
I J K L M N

History Graph

DA

A1

Fig. 4. Face T ⊆ T is inserted in the trapezoidal decomposition of Figure 3b and the
history graph is updated

V∗(R). If A is contained in a p-region for a p ∈ R, then A is made a successor of all
trapezoids A′ of V∗(R) intersected by A. Note that the trapezoids are defined as
open sets, hence two trapezoids do not intersect if just their boundaries intersect.
Otherwise A is contained in the region of t and is made a successor of the edges
on the boundary of T bordering A. It follows directly that the trapezoids of
V∗(R) are leaves of H(R) which compares with Figure 4. Let

Et := {A trapezoid of V∗(R) : A is intersected by t}
and Et := {A trapezoid of V∗(R) : A is in conflict with t}.

We have Et ⊆ Et, but there can be trapezoids A contained in Et but not in Et.
This can happen e. g. when an edge bounding A is intersected by t but not A,
then there is a trapezoid A′ in V(R ∪ {t}) that has the same coordinates as A
but a different description. Note though that V∗(R)∩T ⊆

⋃
A∈Et

A∩T . Further
let

c :=

j∑
i=3

# trapezoids of V∗(Ri) in conflict with t.

If an edge-vertex of H(Ri) is in conflict with t, then none of its trapezoid suc-
cessors DRi(A), there is at least one, is part of V∗(Ri ∪ {t}), i. e. they are all in
conflict with t. Thus

# edge-vertices of H(R) in conflict with t

≤# trapezoid-vertices of H(R) in conflict with t

implying
# vertices of H(R) in conflict with t ≤ 2c.

As mentioned before we will first compute the set Et. Given Et we will then
be able to efficiently insert T into V∗(R) and determine the full set Et during
the process. To test if a trapezoid A ⊆ VR(p,R) is intersected by t, we use
the Basic Operation to determine if T intersects the edges bounding A in more
than finitely many points. To check if the vertical line segments bounding A
are intersected by T it is enough to look if the bisector J(p, t) intersects the
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vertical line segment and if not whether it lies in D(p, t) or D(t, p). Because
of our assumption a vertical line test takes constant time. We compute Et by
walking through H(R) by breadth-first-search along the vertices intersected by
t. For all trapezoid-vertices A of H(R) that appear for the first time in V∗(Ri),
intersected by t, we also test recursively the at most 4 trapezoids of V∗(R′) which
are adjacent to A by a vertical line segment for intersection with t.

Lemma 8. By walking through H(R) as described above, we will reach all leaves
of H(R) which are intersected by t.

Lemma 9. The outdegree of each trapezoid-vertex of H(R) is O(s).

Lemma 10. The set Et can be computed in time O(s2c).

4.1 Construction of V∗(R ∪ {t}) and H(R ∪ {t})
At first we discuss the vertices that have to be updated to construct V(R ∪ {t})
from V(R). There are new vertices Vnew that need to be added to V(R), vertices
Vchang already existing in V(R) but getting a new adjacency list in V(R ∪ {t})
and vertices Vdel that have to be deleted from V(R). We can define these vertices
as follows

– Vunch := {vertices v of V(R) : v /∈ T }
– Vchang := {vertices v of V(R) : v ∈ ∂T and not all edges incident to v are

clipped at v by t or v is a touch point}
– Vdel := {vertices v of V(R) : all edges incident to v are clipped at v by t and
v is not a touch point}

– Vnew := {endpoints of e− T or touch points with respect to t on e}.

For all trapezoids A ⊆ VR(p,R) in Et we test how the edges and vertical lines
bounding A are intersected by T (using the Basic operation for the edges). To
decide whether a vertex v of V(R) is a touch point with respect to t we have
to look at the bisectors J(t, p1), . . . , J(t, pk) for all pi having a region in V(R)
that contains a trapezoid intersected by t bordering v and test if the region of
pi in an ε-neighborhood around v is intersected by J(t, pi). Thus we have all the
information to directly compute the sets Vunch, Vchang, Vdel and Vnew .

Like in [17] we know how to update the vertices v of V(R∪{t}) along with the
incident edges in their clockwise manner around v. In contrary the intersections
between the region of t and V(R) are not connected, not even for one face of
T . Hence for each face of T we traverse its boundary, which is a closed curve,
through V∗(R). This is done by starting at a trapezoid A ⊆ VR(p,R) intersected
by t and following the bisector J(p, t) through A into an adjacent trapezoid
B ⊂ VR(q, R) and so on until the starting point is reached again.

Lemma 11. If Et is known, then V∗(R∪{t}) and H(R∪{t}) can be constructed
from V∗(R) and H(R) in time O(s2|Et|).
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5 Analysis

The sets Et for all t ∈ S can be computed in time O(s2c), Lemma 10, and
V∗(R ∪ {t}) and H(R ∪ {t}) in time O(s2|Et|), Lemma 11. Thus we need to
estimate c and |Et|. To shed light on the space consumption the size of H(S) is
required. For a given bisector system let mj denote the average number of faces
per region over all AVDs of j sites from S. We use the analysis for randomized
incremental constructions of Clarkson, Mehlhorn, Seidel [12] and apply it to our
history graph based on trapezoids.

Lemma 12. The complexity of V∗(R) lies in O(|V(R)|).

Lemma 13. For R = {r1, . . . , ri}, the expectation of c is O(
∑n

j=2
mj

j ).

Lemma 14. The expected size of H(S) is O(
∑n

j=4mj).

Lemma 15. The expected size of Et is O(mj).

Theorem 4. V(S) can be computed in expected time O(s2n
∑n

j=2
mj

j ) and ex-

pected space O(
∑n

j=4mj).

6 Discussion

One question is how mj affects the performance of our algorithm. There do exist
examples wheremj = j and |V(S)| ∈ O(n2), for a constant s, thus the algorithm
is output sensitive. If though there is one more site p such that V(S) ⊂ D(p, q)
for all q ∈ S then the expected running time is still the same but the size of
V(S ∪ {p}) is constant. For such examples randomization does not help.

Another still open problem is to find a tight upper bound for the size of V(S).
Because of the transitivity, Lemma 1, we can define a total order on S for all
x ∈ R2 by p ≤x q iff x ∈ D(p, q). This leads to the conjecture that the complexity
of V(S) equals the complexity of the lower envelope of surfaces. If each pair of
bisectors J(p, q) and J(r, t) intersect in at most s components and s is constant
this is O(n2+ε), [22]. But axiom (A3’) implies the at most s intersections only
for bisectors sharing a site, whereas other bisectors can intersect in any finite
number of components.
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Abstract. We study the problem of visibility in polyhedral terrains in the pres-
ence of multiple viewpoints. We consider three fundamental visibility structures:
the visibility map, the colored visibility map, and the Voronoi visibility map. We
study the complexity of each structure for both 1.5D and 2.5D terrains, and pro-
vide efficient algorithms to construct them. Our algorithm for the visibility map
in 2.5D terrains improves on the only existing algorithm in this setting.

1 Introduction

Visibility problems or, to be more specific, problems regarding whether two objects are
visible from each other amidst a number of obstacles have been a hot topic in computa-
tional geometry. In this paper we are interested in visibility on terrains. A 2.5D terrain
is an xy-monotone polyhedral surface in R3. We also study 1.5D terrains: x-monotone
polygonal lines in R2. The obstacles we consider are the terrain edges or triangles them-
selves. A fundamental aspect of visibility in terrains is the viewshed of a point (i.e. the
viewpoint): the (maximal) regions of the terrain that the viewpoint can see.

In a 1.5D terrain, the viewshed is almost equivalent to the visibility polygon of a
viewpoint, so well-known linear-time algorithms can be applied. In 2.5D the view-
shed is more complex (see Fig. 1). In an n-vertex terrain, the viewshed of a viewpoint
can have Θ(n2) complexity. The best algorithms known to compute it take O((n +
k) logn log logn) time [13], and O((nα(n) + k) logn) time [9], where k is the size of
the resulting viewshed, and α(n) is the inverse of the Ackermann function.

While the computation of the viewshed from one viewpoint on a terrain has been
thoroughly studied, it is surprising that a natural and important variant has been left
open: What happens if instead of one single viewpoint, one has many, say m > 1,
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Fig. 1. The viewsheds of three viewpoints on a 2.5D terrain
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Fig. 2. The visibility map (a), the colored visibility map (b), and the Voronoi visibility map (c)

different viewpoints on the terrain? The common viewshed, or visibility map can then
be defined as the regions of the terrain that can be seen from at least one viewpoint.
Computing the viewshed from each single viewpoint and then taking the union of the
m viewsheds is a straightforward solution, but it has a high running time that does not
take the final size of the visibility map into account. Obtaining more efficient algorithms
for this and other related problems is the main focus of this paper.

To the best of our knowledge, there are no other studies in computational geometry
on the visibility map of multiple viewpoints. We are not aware of any work for 1.5D
terrains, whereas for 2.5D terrains we can only mention [6], where they essentially
overlay the m individual viewsheds without studying the complexity of the visibility
map. This results in the high running time of O(m2n4). In addition, a few papers deal
with the computation of viewsheds for multiple viewpoints for rasterized terrains [6,11].

We would like to highlight the fact that it is not due to its lack of interest that visibil-
ity from multiple viewpoints has been overlooked up to now. Visibility in 1.5D terrains
has been thoroughly studied from related perspectives, and in particular the problem of
placing a minimum number of viewpoints to cover a terrain has received a lot of atten-
tion (e.g. [2,3,5,7,10]). Their theoretical interest and the fact that 1.5D terrains already
pose a difficult challenge are the main motivation behind our work in that dimension.

Regarding 2.5D, the applications are too numerous to be detailed here, so we only
present a few concrete examples. For instance, evaluating the effectiveness of a set of
fire lookout towers [4], or identifying locations for placing wind turbines so they are not
visible from “sensitive sites” like touristic points [12]. Finally, our results also apply to
other contexts like sensor networks, in which wireless devices have to be placed on a
terrain, and we have to measure the quality of the chosen device placement scheme [14].
The structures we study are particularly interesting within this context.

Problem Statement. A 2.5D terrain T consists of a set V (T ) of n vertices, a set E(T )
of O(n) edges, and a set F (T ) of O(n) faces. A 1.5D terrain T consists of a set V (T )
of n vertices and a set E(T ) of n− 1 edges.

For any point p on the terrain T (either a 2.5D terrain or a 1.5D terrain), the viewshed
of p on T , denoted by VT (p), is the maximal set of points on T that are visible from p.
A point q is visible from p if and only if the line segment pq does not intersect any point
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strictly below the terrain surface (intuitively, this corresponds to placing the viewpoints
some small ε > 0 above the terrain). Note that our definition of visibility is symmetric,
and that viewpoints have unlimited sight. The viewshed VT (P) of a set of viewpoints
P is the set of points visible from at least one viewpoint in P .

Given a set of viewpoints P , we define the Voronoi viewshed WT (p,P) of a view-
point p ∈ P as the set of points in the viewshed of p that are closer to p than to any
other viewpoint that can see them. More precisely, WT (p,P) = VT (p) ∩ {x | x ∈
T ∧ closestT (x,P) = p}, where closestT (x,P) denotes the closest (in terms of the
Euclidean distance) viewpoint in P that can see a point x on T .

We study three fundamental terrain visibility structures regarding multiple view-
points for 1.5D and 2.5D terrains. These structures are illustrated in Fig. 2.

The visibility map Vis(T ,P) is a subdivision of the terrain T into a visible region
RV = VT (P) =

⋃
p∈P VT (p) and an invisible region RI = T \RV .

The colored visibility map ColVis(T ,P) is a subdivision of the terrain T into max-
imally connected regions R, each of which is covered by exactly the same subset of
viewpoints P ′ ⊆ P . Each region R is a (maximally connected) subset of

⋂
p∈P′ VT (p)

and we have that R ∩
⋃

p∈P\P′ VT (p) = ∅.
The Voronoi visibility map VorVis(T ,P) is a subdivision of the terrain T into max-

imally connected regions, each of which is a subset of the Voronoi viewshed WT (p,P)
of a viewpoint p ∈ P .

We denote the size, that is, the total complexity of all its regions, of Vis(T ,P),
ColVis(T ,P), and VorVis(T ,P), by k, kc, and kv, respectively.

For simplicity, we assume that P is a set of m viewpoints placed on terrain vertices,
thus m ≤ n. We consider this a reasonable assumption, since in most applications the
number of terrain vertices is considerably larger than the number of viewpoints.

Results. We present a comprehensive study of the visibility structures defined above.
We analyze the complexity of all the structures and propose algorithms to compute
them. Our results are summarized in Table 1. Regarding 1.5D terrains, all our algo-
rithms avoid computing individual viewsheds. Vis(T ,P) is computed in nearly optimal
running time, while the algorithms for ColVis(T ,P) and VorVis(T ,P) are output-
sensitive. Obtaining the latter algorithm, whose running time depends on kc and kv,
was surprisingly challenging, and required using several subtle geometric properties of
the problem.

Table 1. Complexity and computation time of the three visibility structures

1.5D Terrains 2.5D Terrains
Structure Max. size Computation time Max. size Computation time

Vis Θ(n) O(n log n) O(m3n2) O(m(nα(n) + kc) log n)
ColVis Θ(mn) O(n+ (m2 + kc) log n) O(m3n2) O(m(nα(n) + kc) log n)
VorVis Θ(mn) O(n+ (m2 + kc) log n+

kv(m+ log n logm))
O(m4n2) O(m(nα(n) + kc) log n)
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e

(a) (b)

Fig. 3. (a) Edge e contains one invisible connected portion between two visible ones. (b)
Every other edge has four different regions of ColVis(T ,P) and four different regions of
VorVis(T ,P).

As for 2.5D terrains, we prove with a careful analysis—interesting on its own—that
the maximum complexity of Vis(T ,P) and ColVis(T ,P) is much less than the overlay
of the viewsheds, as implicitly assumed in previous work [6]. Using that, we show how
a combination of well-known algorithms can be used to compute the visibility structures
reasonably fast. Omitted proofs and details are given in the full version of this paper [8].

2 1.5D Terrains

2.1 Complexity of the Visibility Structures

In 1.5D our visibility structures can be seen as subdivisions of the x-axis into intervals.

Theorem 1. Given a 1.5D terrain T : Vis(T ,P) has maximum complexity Θ(n), and
ColVis(T ,P) and VorVis(T ,P) both have maximum complexity Θ(mn).

Proof (Sketch). There are two types of points of T that contribute to the complexity
of Vis(T ,P): vertices of T , and points where the T goes from visible to invisible or
vice versa. There are n points of the first type. The points of the second type amount to
O(n), since it is easy to see that the interior of every edge e ∈ E(T ) contains at most
two such points (see Fig. 3(a) for an example). Consequently, k is Θ(n).

As for ColVis(T ,P), notice that once a viewpoint sees a given point q on an edge
e ∈ E(T ), it must see the whole segment from q to one of its endpoints. Hence, e can
be split into at mostm+1 different regions of ColVis(T ,P). Therefore the complexity
of ColVis(T ,P) is O(mn). The example in Fig. 3(b) shows that this is tight.

Finally, let us focus on VorVis(T ,P). For a given edge e ∈ E(T ), VorVis(T ,P)
restricted to e has at most 4m − 2 regions (Lemma 1 of [8]), thus implying the upper
bound. The lower bound can be achieved by a configuration of viewpoints on a partic-
ular terrain T that can be repeated so that every other edge of T has as many Voronoi
regions as viewpoints, for arbitrary n and m. An example is shown in Fig. 3(b). 	


2.2 Algorithms to Construct the Visibility Structures

Construction of the Visibility Map. To construct the visibility map we first compute
the left- and right-visibility maps, and then merge them. The left(right)-visibility map
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partitions T into two regions: the visible and the invisible portions of the terrain, where
visible means visible from a viewpoint to the left (right) of that point of the terrain

In the following we explain the construction of the left-visibility map (thus, visi-
ble stands for left-visible). The algorithm uses the following property of 1.5D terrains,
which is a consequence of the so-called order claim (See Claim 2.1 in [2]):

Observation 1. Let q ∈ T be a point visible from the left by pi and pj , with pi to the
left of pj . For any r ∈ T to the right of q, if pi does not see r, then pj cannot see r
either.

The algorithm sweeps the terrain from left to right while maintaining the leftmost visi-
ble viewpoint (if any), which we call the active viewpoint. The algorithm also stores a
priority queue of events that comprises the x-coordinates of the vertices (vertex events)
and the points of the terrain where a viewpoint becomes visible (viewpoint events). Ini-
tially we add an event for each terrain vertex and viewpoint, the latter corresponding
to the position of the viewpoint on the terrain. We process the events sorted by their
x-coordinate. When two events have the same x-coordinate, viewpoint events are pro-
cessed first. Let pa be the active viewpoint (if no viewpoint is visible, we set pa = ⊥).

(i) Viewpoint event, for a viewpoint pi. If pa = ⊥, then a new visibility region starts.
If pa = ⊥ or pi is to the left of pa, then pi becomes the active viewpoint.

(ii) Vertex event, for a vertex v. If the active viewpoint pa becomes invisible after v,
we compute where pa becomes visible again by a ray-shooting query, and add a view-
point event there. If there was a viewpoint event at v as well, this viewpoint becomes
the active viewpoint. Otherwise, the current visibility region ends at v.

The correctness of the method follows from Obs. 1, which guarantees that it is
enough to keep track of only the leftmost visible viewpoint. The following theorem
is proved in the full version.

Theorem 2. Given a 1.5D terrain T , the visibility map Vis(T , P ) can be constructed
in O(n log n) time.

Construction of the Colored Visibility Map. The computation of the colored visibility
map is similar to that of Vis(T , P ), with the extra complication of having to maintain all
visible viewpoints during the sweep. We show in the full version that we can still handle
each event in O(log n) time. In principle, the event processing time can be charged to
the output size kc –since each viewpoint is likely to generate a new region when it
reappears. However, it can happen that several viewpoints reappear at exactly the same
point, generating a single region in ColVis. With some analysis we show that the total
number of these situations is O(m2), leading to the following result.

Theorem 3. Given a 1.5D terrain T , the colored visibility map ColVis(T , P ) can be
constructed in O(n + (m2 + kc) logn) time.

Construction of the Voronoi Visibility Map.

Divide and Conquer Approach. A way to construct VorVis(T ,P) consists in dividing
the set of viewpoints into two subsets, computing the Voronoi visibility map of the two
subsets recursively, and merging the two maps. This takes O(mn logm) time.



322 F. Hurtado et al.

An Output-Sensitive Algorithm. Even though VorVis(T ,P) can haveΘ(mn) complex-
ity, it seems unlikely that such high complexity arises often in practical applications. In
the following we present an alternative algorithm that essentially extracts the Voronoi
visibility map from the colored visibility map. Its running time depends on the complex-
ity of the two structures, and avoids the fixed O(mn) term of the previous method.

The algorithm sweeps the terrain from left to right. During this sweep, we maintain
three data structures: (i) a doubly-linked list with the vertices of ColVis(T ,P), ordered
from left to right, (ii) a list P ′ with the currently visible viewpoints, and (iii) for each
pi ∈ P ′, the starting point ai of the last region in which pi is visible encountered so far
in the sweep. We will use T [a, c], for a, c on T and x(a) < x(c), to denote the closed
portion of the terrain between a and c. The algorithm produces VorVis(T ,P) as a list
of interval, viewpoint pairs ([a, c], pi), such that pi is the closest viewpoint to all points
in T [a, c]. If T [a, c] is not visible from any viewpoint, pi is set to ⊥.

Our algorithm uses the following two functions, whose implementation is described
later. ISALWAYSCLOSER([a, c], p1, p2) determines whether p1 is always closer than
p2 in T [a, c], assuming both viewpoints are visible throughout T [a, c]. FIRSTREGION-
CHANGE([a, c], p1,P ′) assumes that p1 is visible throughout T [a, c] and is the closest
visible viewpoint at a; it returns the leftmost point in T [a, c] where p1 stops being the
closest visible viewpoint from P ′ (or the end of the interval, if that never happens).

We process T in a number of iterations. Each iteration starts at the leftmost point u
of a new Voronoi region, with P ′ containing the viewpoints that are visible from u.

If P ′ = ∅, then the region starting at u and ending at the start point v of the next
region in ColVis(T ,P) is not visible from any viewpoint. We report the region [u, v]
with ⊥, and move forward (towards the right) until v, where a new Voronoi region, and
thus a new iteration, starts.

If P ′ �= ∅, we compute the closest visible viewpoint in O(m) time; if there is more
than one, we move infinitesimally to the right of u, and compute the closest visible
viewpoint there. Without loss of generality, we assume that the closest visible viewpoint
is p1. For all viewpoints pi ∈ P ′, we set ai := u. We now start traversing the terrain,
from u towards the right. At a point q, we might find several events from ColVis:

1. A viewpoint pj becomes visible. We update P ′, set aj := q, and continue the
sweep.

2. A viewpoint pj �= p1 becomes invisible. We update P ′ and proceed depending on
two subcases:
(a) ISALWAYSCLOSER([aj , q], p1, pj) = TRUE. Continue traversing the terrain.
(b) ISALWAYSCLOSER([aj , q], p1, pj) = FALSE. There is a point in T [aj , q] at

which pj is closer than p1, so at least one Voronoi region starts between u and q.
We find the leftmost region change v by calling FIRSTREGIONCHANGE([u, q],
p1,P ′), and report [u, v] as a Voronoi region with p1 as closest point. We now
backtrack our sweep, i.e. we traverse the terrain from right to left (updating P ′
as we encounter events), until we reach v, and start a new Voronoi region, and
thus a new iteration of our algorithm at v.

3. Viewpoint p1 becomes invisible. We update P ′, and compute ISALWAYSCLOSER

([ai, q], p1, pi), for all pi ∈ P ′. If the answer is TRUE for all viewpoints in P ′, we
report the region [u, q] with p1 as closest viewpoint, and start a new Voronoi region
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and a new iteration at q. Otherwise, there is at least one Voronoi region that starts
between u and q. We handle this analogously to case 2(b).

After processing the events of type 2 at the rightmost vertex of the terrain, we have
successfully computed VorVis(T ,P). Since we backtrack our sweep in step 2, it may
be the case that we (unnecessarily) visit events from ColVis(T ,P) multiple times. We
can avoid this, by augmenting this step as follows. Consider step 2a. We notice that
there cannot be a Voronoi region of pj between aj and q (since at least p1 is closer and
visible). So we can remove the events of pj becoming visible at aj and invisible at q
from ColVis(T ,P). We remove q in step 2a itself. Event aj is removed if we encounter
it while backtracking in step 2b: at each event of type 1, i.e. a viewpoint pj becoming
visible, we check if pj is in P ′. If not, we must have removed its corresponding endpoint
(i.e. q) from ColVis(T ,P). Thus we can also remove aj .

As for the auxiliary functions, ISALWAYSCLOSER([aj, q], p1, pj) can be implemented
to run in O(log n) time by doing a ray-shooting query, where the ray is the bisector of
p1 and pj . However, it is possible to answer this question faster.

Lemma 1. Consider two points r and t such that all of T [r, t] is visible from two view-
points p1 and p2. We can decide whether there exists some point in T [r, t] that is closer
to p2 than to p1 in O(1) time.

FIRSTREGIONCHANGE([u, q], p1,P ′) can be implemented to run in O(m log n) time
as follows: For every pi ∈ P ′, and using a ray-shooting query, compute the leftmost
point (if any) on T [ai, q] that is closer to pi than to p1. Then keep the leftmost point u′

among all the points encountered. Again, it is possible to do this faster:

Lemma 2. Let [u, q] be an interval such that p1 ∈ P is visible in all T [u, q] and is
the closest visible viewpoint at u. Let P ′ be a set of viewpoints such that for each
pi ∈ P ′, T [ai, q] is visible from pi, for some ai such that x(u) ≤ x(ai). Then in
O(m+logn logm+n′) time we can find the leftmost point u′ ∈ T [u, q] such that at u′

there is a change of region in VorVis(T ,P ′), for n′ the number of vertices in T [u, u′].

The proofs can be found in the full version. We obtain:

Theorem 4. Given a 1.5D terrain T , the Voronoi visibility map VorVis(T ,P) can be
computed in O(n+ (m2 + kc) logn+ kv(m+ logn logm)) time.

3 2.5D Terrains

3.1 Complexity of the Visibility Structures

Proposition 1. The visibility map Vis(T , P ) of a 2.5D terrain T can have complexity
Ω(m2n2).
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Fig. 5. (a) A ray and a vase. (b) The top-down view of a terrain T with a single viewpoint p. The
domain is decomposed in the viewshed Vis(T , p) and a collection of vases. (c) a 3D view of T
and the vases of p.

Proof. We present a terrain that consists of a flat (horizon-
tal) rectangle, the courtyard, surrounded by a thin wall. We
make O(n) (almost) vertical incisions, or windows, in the
northern and western wall. We place half our viewpoints
behind windows in the northern wall, and the other half be-
hind windows in the western wall. Each viewpoint is placed
so that it can see throughO(n) windows into the courtyard,
see Fig. 4. It follows that the visibility map inside the court-
yard forms an O(mn)×O(mn) grid. 	


In order to establish an upper bound on the complexity of
the visibility maps, we start with the most general case, in
which T is actually an arbitrary polyhedron.

Fig. 4. Viewpoints are
shown as white circles and
rays indicate the part of
the terrain visible from the
viewpoint

Let M be a polyhedron, let v be a vertex of M, and let p ∈ P be a viewpoint. We
define the ray of p and v, denoted ↑vp, to be the half line that starts at v and has vector
−→pv. Similarly, let p ∈ P be a point and e = uv be an edge of M. The vase of p and
e, denoted ↑ep, is the region in R3 bounded by e, ↑up , and ↑vp (see Fig. 5(a)). The set of
all vases originating from p is denoted ⇑ (p) = {↑ep| e ∈ E(M)}. Assuming general
position, we have:

Observation 2. Vis(M,P) can have three types of vertices: (1) vertices of M, (2)
intersections between an edge ofM and a vase, and (3) intersections between a triangle
of M and two vases.1

Theorem 5. The visibility map Vis(M,P) of a polyhedron M has complexity
O(m2n3).

Proof. Each vase comes from a viewpoint inP and an edge inE(M). Clearly, |V (M)|,
|E(M)|, |F (M)| ∈ O(n). So, the number of vertices of type (1), (2), and (3) is at most
O(n), O(mn2), and O(m2n3), respectively. 	


Next, we show that if M is a terrain, then the number of vertices of type (3) can only
be O(m3n2). Given any objectB ∈ R3, we denote by B the vertical projection of B to
R2. Furthermore, we define S1⊕S2 to be the overlay of subdivisions S1 and S2. Let ↑es

1 It is worth noting that there is a fourth possible type of vertex: an intersection of three vases.
However, such a vertex does not lie on M, so it does not appear in the visibility map.
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and ↑ft be two vases. The intersection of these two vases is a line segment (or half line),
which we denote by e

s×
f
t . We call this a pyramid ray.

Observation 3. Consider k planar subdivisions S1, S2, . . . , Sk, and let S =
⊕k

i=1 Si

be their overlay. Any line � has at most O(
∑k

i=1 |Si|) intersections with S.

Lemma 3. Let R be the set of pyramid rays created by P on a 2.5D Terrain T . Every
edge e ∈ E(T ) intersects at most O(m3n) rays from R.

Proof. LetX i be the subdivision of R2 that we obtain by vertically projecting the upper
envelope of T and all vases in ⇑ (pi). Fig. 5(b) shows an example. Any pyramid ray
r ∈ R is the intersection of one vase from ⇑ (pi) and one vase from ⇑ (pj), for some
i �= j. This means that r is contained in a cell of X i ⊕Xj . Let X =

⊕m
i=1Xi. Then

each cell in X is contained in at most m different projected vases, hence, it contains at
most

(
m
2

)
(pieces of) projected pyramid rays.

There are O(n) vases in ⇑ (pi), so X i has O(n) vertices. From Obs. 3 it follows
that any line —and therefore any edge e ∈ E(T )— intersects the edges of X at most
O(mn) times. This means e intersects at most O(mn) cells, and therefore also at most
O(m3n) pyramid rays in R. 	


Lemma 4. Vis(T ,P) contains at most O(m3n2) vertices of type (3).

Proof. We split the vertices of Vis(T ,P) of type (3) into two subtypes. Each vertex v
(of type (3)) is associated with one pyramid ray r. Now, v is either of type (3)a, if it is
the highest vertex on r, or of type (3)b otherwise. The number of vertices of type (3)a is
at most O(m2n2), since there is at most one per ray and there are only O(m2n2) rays.
We now show the number of vertices of type (3)b is at most O(m3n2).

Let v be a vertex of Vis(T ,P) of type (3)b. It is the intersection of a ray r and a
triangle t ∈ F (T ). Since v is not the highest vertex on r, there must be another vertex
w on r. Clearly, w cannot lie on t, so w must lie outside t, while v lies inside t. Thus
there must be an edge e ∈ E(P ) such that r crosses e. We charge v to this intersection
between r and e. Clearly, any such intersection gets charged at most once. By Lemma 3,
there are at mostO(m3n2) such intersections in total. Hence, the number of vertices of
type (3)b is also at most O(m3n2). 	


Theorem 6. Vis(T ,P), for T a 2.5D terrain, has complexity O(m3n2).

The visibility map Vis(T ,P) corresponds to the union over P of the viewsheds of the
individual viewpoints. Similarly, the colored visibility map corresponds to the overlay
of the viewsheds of the individual viewpoints in P . Therefore, Obs. 2 also holds for the
vertices of ColVis(T ,P). This implies the following result.

Theorem 7. ColVis(T ,P), for T a 2.5D terrain, has complexity O(m3n2).

Finally, we are interested in the Voronoi visibility map. VorVis(T ,P) can have ad-
ditional types of vertices: intersections of Voronoi edges with terrain triangles. We use
power diagrams: Let C = C1, .., Cm be a set ofm circles in R2, and let ci and ri denote
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the center and radius of Ci, respectively. The (2D) power diagram PD(C) is the subdivi-
sion of R2 into m regions, one for each circle, such that Ri = {x ∈ R2 s. t., for all j ∈
{1, ..,m}, pow(Ci, x) ≤ pow (Cj , x)}, where pow (Ci, x) = d2(ci, x)

2 − r2i (and
d2(·, ·) denotes the Euclidean distance in R2). The (2D) power diagram of m circles
has complexityO(m) and can be computed in O(m logm) time [1].

Let VD(P) denote the 3-dimensional Voronoi diagram of P . We observe that the
restriction of VD(P) to any single plane H in R3 corresponds to a power diagram
PD(CP ) in R2: Assume without loss of generality thatH is a horizontal plane at z = 0,
and let ξ ≥ maxp∈P p

2
z be some large value. Any point a ∈ H is closer to p ∈ P than to

q ∈ P if (and only if) d(a, p) = d3(a, p) ≤ d3(a, q), and hence if d3(a, p)2 ≤ d3(a, q)
2.

Using that az = 0 we can rewrite this to d2(a, p)2 − (ξ − p2z) ≤ d2(a, q) − (ξ − q2z).
So if we introduce a circle Cp in CP for every viewpoint p with center p and radius
rp such that r2p = ξ − p2z then we get that a is closer to p than to q if and only if
pow (Cp, a) ≤ pow (Cq, a). Thus, we can prove:

Theorem 8. VorVis(T ,P), for T a 2.5D terrain, has complexity O(m4n2).

3.2 Algorithms to Construct the Visibility Structures

p2

p1
p3

Fig. 6. Overlay V

Computing the (Colored) Visibility Map. Katz et al. [9] de-
veloped an O((nα(n) + k) logn) time algorithm to com-
pute the viewshed of a single viewpoint, where k is the
output complexity and α(n) is the extremely slowly grow-
ing inverse of the Ackermann function. Coll et al. [6] use
this algorithm to compute the visibility map of a 2.5D ter-
rain in O(m2n4) time and space. Essentially they project
the individual viewsheds onto R2, and construct the overlay
V =

⊕
p∈P VT (p) (see Fig. 6). It is then easy to construct

the (colored) visibility map from V. We use the same approach. However, using our
observations from the previous section, we show that even if the viewsheds have com-
plexity Θ(n2), we can compute the (colored) visibility map in O(m4n2 logn) time.

Lemma 5. Given a 2.5D terrain T with n vertices and a set P of m viewpoints. The
planar subdivision V can be constructed in O(m(nα(n) + kc) logn) time.

Theorem 9. Both the visibility Vis(T ,P) and the colored visibility map ColVis(T ,P),
for T a 2.5D terrain can be computed in O(m(nα(n) + kc) log n) time.

Computing the Voronoi Visibility Map. Let F be a face of the colored visibility map
ColVis(T ,P), and let PF denote the set of viewpoints that can see F . For each such
face F we compute the intersection of F with the VD(PF ). We do this via the power
diagram: i.e. consider the plane H containing F , and compute the power diagram on
H with respect to the the viewpoints in PF . This takes O(kcm logm) time in total,
since ColVis(T ,P) has O(kc) faces, and each power diagram can be computed in
O(m logm) time. Each power diagram is constrained to a single face, so we glue all
of them together and project the result onto R2. This yields a subdivision W of size
O(kcm). We now compute V in O(m(nα(n) + kc) logn) time (as described above),
and overlay it with W in O(kcm+ kc + kv) = O(kcm) time. Hence:
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Theorem 10. The Voronoi visibility map VorVis(T ,P), for T a 2.5D terrain, can be
computed in O(m(nα(n) + kc) logn) time.

4 Final Remarks

We studied visibility with multiple viewpoints on polyhedral terrains for the first time.
Our results show that considering multiple viewpoints converts classical visibility prob-
lems into much more challenging ones, even for 1.5D terrains.

Moreover, our results lead to many intriguing questions. For 1.5D terrains, is there
an efficient algorithm to construct the Voronoi visibility map whose running time does
not depend on kc? In 2.5D, the worst-case complexities are not tight; it would be in-
teresting to close those gaps. Algorithmically, in 2.5D the main challenge is to find an
algorithm to construct the structures directly, avoiding the computation of the individ-
ual viewsheds. Finally, an interesting and realistic extension is when viewpoints have
limited sight (i.e. can only see up to a certain distance). We discuss this extensively in
the full version.
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Abstract. We show that the maximum independent set problem (MIS)
on an n-vertex graph can be solved in 1.2002nnO(1) time and polynomial
space, which is even faster than Robson’s 1.2109nnO(1)-time exponential-
space algorithm published in 1986. We also obtain improved algorithms
for MIS in graphs with maximum degree 6 and 7. Our algorithms are
obtained by effectively using fast algorithms for MIS in low-degree graphs
and making careful analyses for MIS in high-degree graphs.

1 Introduction

Over the last few decades, an extensive research has been done on exact expo-
nential algorithms. Many interesting methods and results have been obtained
in this area, which can be found in a nice survey by Woeginger [14] and a re-
cent monograph by Fomin and Kratsch [5]. In the line of research on worst-case
analysis of exact algorithms for NP-hard problems, the maximum independent
set problem (MIS) is undoubtedly one of the most fundamental problems. The
problem is used to test the efficiency of some new techniques of exact algorithms
and often introduced as the first problem in some textbooks and lecture notes of
exact algorithms. However, despite of a large number of contributions on exact
algorithms and their worst-case analyses for MIS during the last 30 years, no
published algorithm runs faster than the 1.2109nnO(1)-time exponential-space
algorithm by Robson in 1986 [10]. Fomin and Kratsch say that ‘the running
time of current branching algorithms for MIS with more and more detailed anal-
yses seems to converge somewhere near 1.2n’ [5]. Researchers are interesting in
how fast we can exactly solve MIS.

Related Work. The first nontrivial exact algorithm for MIS is back to Tarjan
and Trojanowski’s 2n/3nO(1)-time algorithm in 1977 [12]. Later, Jian obtained a
1.2346nnO(1)-time algorithm [7]. Robson gave a 1.2278nnO(1)-time polynomial-
space algorithm and a 1.2109nnO(1)-time exponential-space algorithm [10]. Rob-
son also claimed better running times in a technical report [11]. Fomin et al. [4]
introduced the “measure-and-conquer” method and got a simple 1.2210nnO(1)-
time polynomial-space algorithm by using this method. Also based on this

� Supported by NFSC of China under the Grant 61370071 and Fundamental Research
Funds for the Central Universities under the Grant ZYGX2012J069.
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method, Kneis et al. [8] and Bourgeois et al. [1] improved the running time
bound to 1.2132nnO(1) and 1.2114nnO(1) respectively, which are the current
fastest polynomial-space algorithms for MIS in published articles. There is also a
large amount of contributions to MIS in degree-bounded graphs [9,6,15,16,17,18].
Now MIS-3 (MIS-i means MIS in graphs with maximum degree i) can be solved
in 1.0836nnO(1) time [16], MIS-4 can be solved in 1.1376nnO(1) time [17], MIS-5
can be solved in 1.1737nnO(1) time [18] and MIS-6 can be solved in 1.2050nnO(1)

time [1], where all of them use only polynomial space. The measure-and-conquer
method is a very powerful tool to design or analyze exact algorithms. Most fast
polynomial-space algorithms for MIS are designed based on the method. By
combining this method with a bottom-up method, Bourgeois et al. [1] got the
1.2114nnO(1)-time polynomial-space algorithm for MIS. Their algorithm is based
on fast algorithms for MIS in low-degree graphs.

Our Contributions. In this paper, we will design an 1.2002nnO(1)-time
polynomial-space algorithm for MIS, which is faster than Robson’s 1.2109nnO(1)-
time exponential-space algorithm [10] obtained in 1986. We also show that MIS-6
and MIS-7 can be solved in 1.1898nnO(1) and 1.1976nnO(1) time, respectively.
Our algorithms use the measure-and-conquer method. But the improvement is
not obtained by studying more cases in previous algorithms. Instead, we will
introduce some new methods to reduce a large number of cases and make the
algorithm and its analysis easy to follow. Our algorithm also needs to use our pre-
vious fast algorithms for MIS in low-degree graphs. The improvement is mainly
obtained by using the following ideas:
1. We introduce a divide-and-conquer method to get improved algorithms for

MIS in high-degree graphs based on fast algorithms for MIS in low-degree
graphs. In the method, we separate the algorithm into two parts. One part is
to deal with the problem in graphs with maximum degree at most i. The other
part is to effectively deal with vertices of degree> i in the graph. We may use
this idea to design fast algorithms for MIS in degree bound graphs. Once an
algorithm for MIS-i is obtained, we design algorithms for MIS-(i + 1) based
on it. Similar bottom-up ideas have been used in some previous algorithms,
such as the algorithm for MIS in [1] and the algorithm for the parameterized
vertex cover problem in [2]. One advantage of our method is that, the divide-
and-conquer method can combine the measure-and-conquer method well to
design exact algorithms. Then we can catch the properties of fast algorithms
for MIS in low-degree graphs and propagates the improvement from instances
of low-degree graphs to instances of high-degree graphs.

2. We also introduce a method to reduce a huge number of case analyses in
the algorithms and then our algorithms become much easier to check the
correctness. This method is based on Lemma 4 in Section 4. It can also be
directly used to reduce a large number of cases in the analysis of previous
algorithms without modifying the algorithms.

3. We introduce a new branching rule, called “branching on edges,” to deal
with vertices of degree > i in some dense local structures, where it may lead
to a bad performance if we just branch on a vertex of maximum degree to
search a solution.
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2 Preliminaries

2.1 Notation System

Let G = (V,E) be a graph and n = |V | be the number of vertices in G. We
will use ni to denote the number vertices of degree i in G, and α(G) to denote
the size of a maximum independent set of G. For a subset X ⊆ V , let N(X)
denote the set of all vertices in V −X that are adjacent to a vertex in X , and
N [X ] = X ∪ N(X). For a vertex v, let δ(v) = |N(v)| denote the degree of a
vertex v, and N2(v) denote the set of vertices with distance exactly 2 from v,
and let N2[v] = N2(v) ∪ N [v]. For a vertex v and its neighbor u ∈ N(v), a
vertex z ∈ N2(v) adjacent to u is called an outer-neighbor of u at v, and the
outer-degree of u at v is the number of outer-neighbors of u at v. For a vertex
v, let fv denote the number of edges between N [v] and N2(v), and let ev denote
the number of edges in the graph G[N(v)] induced by the neighbors of v. Let
kv = (k1, k2, . . . , kd) denote the sequence of the number ki of degree-i neighbors
of a vertex v, where we may denote kv = (k3, k4, k5, k6) when v has no neighbor
of degree i �∈ {3, 4, 5, 6}. For a vertex set X ⊆ V , let G−X be the graph obtained
from G by removing X together with edges incident on any vertex in X , and
G/X denote the graph obtained from G by contracting X into a single vertex
(removing self-loops and parallel edges).

2.2 Branching Algorithms and the Measure-and-Conquer Method

Our algorithms use a branch-and-reduce paradigm. In MIS, a branching rule will
branch on the current instance G into several instances G1, G2, . . . , Gl such that
the measure μi of eachGi is less than the measure μ of G, and a solution to G can
be found in polynomial time if a solution to each of the l instances G1, G2, . . . , Gl

is known. We will use C(μ) to denote the worst-case size of the search tree in
the algorithm when the measure of the instance is at most μ. The above branch
creates the recurrence relation C(μ) ≤

∑l
i=1 C(μ− μ′i), where μ′i = μ− μi. The

largest root of the function f(x) = 1−
∑l

i=1 x
−μ′

i , denoted by τ(μ′1, μ
′
2, . . . , μ

′
l),

is also called the branching factor of the above recurrence relation. Let τ be the
maximum branching factor among all branching factors in the search tree. Then
the size of the search tree C(μ) = O(τμ). More details about the analysis and
how to solve recurrences can be found in the monograph [5].

To reduce the size of the search tree, we may need to design good branching
rules for the algorithm. The selection of the measure is also an important issue
before designing the branching rules. The measure-and-conquer method [4] al-
lows us to define a sophisticated measure. In this method, we set a weight to
each vertex in the graph according to the degree of the vertex and define the
sum of the weights in the graph to be the measure. An important step in this
method is to set a vertex weight. We then need to solve a quasiconvex program
to get a good weight setting. In this paper we also use the branch-and-reduce
paradigm and the measure-and-conquer method to design our algorithm.
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2.3 Reduction Operations

Before applying our branching rules, we may first apply reduction rules to reduce
some local structures. Many nice reduction rules have been developed. In this
paper, we only use three known reduction rules.

Reduction by Removing Unconfined Vertices
A vertex v in an instance G is called removable if α(G) = α(G−v). A sufficient
condition for a vertex to be removable has been studied in [16]. In this paper,
we only use a simple case of the condition. A neighbor u ∈ N(v) of v is called
an extending child of v if u has exactly one outer-neighbor su ∈ N2(v) at v,
where su is also called an extending grandchild of v. Let N∗(v) denote the set
of all extending children u ∈ N(v) of v, and Sv be the set of all extending
grandchildren su (u ∈ N∗(v)) of v together with v itself. We call v unconfined
if there is a neighbor u ∈ N(v) which has no outer-neighbor or Sv \ {v} is not
an independent set (i.e., some two vertices in Sv ∩ N2(v) are adjacent) 1. It is
known in [16] that any unconfined vertex is removable.

Lemma 1. [16] For an unconfined vertex v in graph G, it holds that

α(G) = α(G −v).

A vertex u dominates another vertex v if N [u] ⊆ N [v], where v is called domi-
nated. We see that dominated vertices are unconfined vertices.

Reduction by Folding Complete k-independent Sets
We call a set A = {v1, . . . , vk} of k degree-(k + 1) vertices a complete k-
independent set if they have common neighbors N(v1) = · · · = N(vk).

Lemma 2. [16] For a complete k-independent set A, we have that

α(G) = α(G�) + k,

where G� = G/N [A] if N(A) is an independent set and G� = G−N [A] otherwise.

Folding a complete k-independent set A is to eliminate the set N [A] from an
instance in the above way. In our algorithm, we only fold complete k-independent
set with k ≤ 2, since this operation is good enough for our analysis. Folding a
complete 1-independent set A = {v} consisting of a degree-2 vertex v is also
called folding a degree-2 vertex v.

Reduction by Removing Line Graphs
If a graph H is the line graph of a graph H ′, then a maximum independent set
H can be obtained as the set of vertices that corresponds the set of edges in a
maximum matching in H ′. To reduce a worst case, we need to remove the line
graphs of 4-regular graphs in our algorithm for MIS-6. A graph is the line graph
of a 4-regular graph if and only if the graph has only degree-6 vertices and each
of them is contained in two edge-disjoint cliques of size 4. More characterizations
of line graphs can be found in [13].

1 Unconfined vertices in [16] are defined in a more general way.
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Definition 1. A graph is called a reduced graph, if it contains none of uncon-
fined vertices, complete k-independent sets with k = 1 or 2, and a component of
a line graph of a 4-regular graph .

When a graph is not a reduced graph, we can apply the reduction rules in this
section to reduce the graph. We will simply use s := RG(G) to denote the
processing of all above reduction operations that returns s as the size of the
partial solution found by it.

3 The Divide-and-Conquer Method

We will use a divide-and-conquer method to solve MIS. In this method, we split
MIS into two subproblems according to an integer i > 3, and design algorithms
for the two parts separately. The first part is to design a fast algorithm for
MIS-i and the second part is to design effective branching rules for the graph
with at least one vertex of degree > i. We can combine these two parts to
get an algorithm for MIS in this way: use the branching rules in the second
part to search a solution if the graph has a vertex of degree > i, and call the
algorithm for MIS-i in the first part directly otherwise. However, sometimes it is
not easy to analyze the combined running time, since that the measures used in
the two parts may be different. For example, if we use the measure-and-conquer
method to analyze algorithms (or branching rules), we may set different vertex
weights (and then the measures may be different). We will introduce a method
to effectively deal with this trouble, especially for the case where the measure is
set as the sum of total weight of vertices in the graph.

Let Ai denote an algorithm that solves MIS-i in a graph G of maximum
degree ≤ i in (τi)

μi(G)|G|O(1) time, where τi is a positive number and μi(G) =∑
1≤j≤i w

〈i〉
j nj is the measure of G (recall that nj is the number of degree-j

vertices in G and w
〈i〉
j ≥ 0 is the weight of a degree-j vertex). Let B>i denote a

procedure that branches on a graph G of maximum degree > i with branching

factor τ ′i on measure μi+1(G) =
∑

j≥1 w
〈i+1〉
j nj , where w

〈i+1〉
j ≥ 0 is the weight

of a degree-j vertex in the procedure. We have the following lemma:

Lemma 3. For an integer i ≥ 3, let λ = max{ w
〈i〉
j

w
〈i+1〉
j

| 0 ≤ j ≤ i, w
〈i+1〉
j �= 0}

and τi+1 = max{τ ′i , (τi)λ}. Then MIS can be solved in (τi+1)
μi+1(G)|G|O(1) time.

A proof of Lemma 3 can be found in the full version of this paper.
The above divide-and-conquer method can also be used to design algorithms

for MIS in degree bounded graphs (not only for MIS in general graphs). For
example, to design an algorithm for MIS-(i+1), we can first solve MIS-i and then
consider branching rules for graphs with maximum degree > i. The framework
of the analysis is the same.

Here is an application of Lemma 3. We will show that MIS-8 can be solved in
time 1.2002μ8(G)|G|O(1) time, where μ8(G) = 0.6483n3+ 0.8519n4+ 0.9077n5+
0.9557n6 + 0.9880n7 + n8, and that in a graph with maximum degree at least 9
we can branch with branching factor 1.1975 on the measure μ9(G) =

∑
j nj . In
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Lemma 3, we have τ ′8 = 1.1975, τ8 = 1.2002, and λ = max{0.6483, 0.8519, 0.9077,
0.9557, 0.9880, 1}= 1. Then MIS can be solved in 1.2002nnO(1) time.

In the above method, we let τi+1 = max{τ ′i , (τi)λ}, where τ ′i is decided by
B>i, τi is decided by Ai, and λ is related to the vertex weights in both of B>i

and Ai. So sometimes simple reductions on τ ′i or τi may not lead to improvement
on the algorithm Ai+1. To get more properties and further improvements on the
problem, in our algorithm, we may not design Ai and B>i totally independently.
Instead, we will design B>i based on Ai by considering the result (the values of
τi and vertex weight) of Ai as some constraints to set the vertex weight in B>i.

This divide-and-conquer method provides a way to solve MIS by solving two
subproblems and to design fast algorithms for MIS based on fast algorithms
for MIS in low-degree graphs. We will focus on the subalgorithm B>i. Fast
algorithms Ai for MIS-i with i = 3, 4 and 5 can be found in references [16,17,18].

In this paper, by using this divide-and-conquer method, first, we design an
algorithm for MIS-6 based on fast algorithm for MIS-5 in [18], second, we design
an algorithm for MIS-7 based on the algorithm for MIS-6, third, we design an
algorithm for MIS-8 based on the algorithm for MIS-7, and finally, we design
an algorithm for MIS in general graphs based on the algorithm for MIS-8. Our
results are listed in Table 1.

Table 1. Our algorithms designed by the divide-and-conquer method

Problems Running time The vertex weight

MIS-6 1.1898nnO(1) (w3, w4, w5, w6) = (0.5139, 0.7632, 0.9215, 1)

MIS-7 1.1976nnO(1) (w3, w4, w5, w6, w7) =
(0.5781, 0.7958, 0.8882, 0.9639,1)

MIS-8 1.2002nnO(1) (w3, w4, w5, w6, w7, w8) =
(MIS) (0.6483,0.8519,0.9077,0.9557,0.9880,1)

4 Branching on High-Degree Vertices

We can simply branch on a high-degree vertex v into two branches by including
it to the solution set or not. In the branch where v is included to the solution,
N [v] will be deleted from the graph since the neighbors of v cannot be selected
into the solution anymore. If the degree of v is higher, then the graph can be
reduced more in this branch. We extend the simple branch rule based on this
following observation. For a vertex v, there are only two possible cases: (i) there
is a maximum independent set of the graph which does not contain v; and (ii)
every maximum independent set of the graph contains v. It is shown in [16] that
for Case (ii), Sv is always contained in any maximum independent set of the
graph (recall that Sv is the set of all extending grandchildren of v together with
v itself). We get the following branching rule.

Branching on a vertex v means generating two subinstances by excluding v
from the independent set or including Sv to the independent set. In the first
branch we will delete v from the instance whereas in the second branch we will
delete N [Sv] from the instance.
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Branching on a vertex v of maximum degree d is one of the most fundamental
operations in our algorithm. We analyze this operation. Let Δout(v) and Δin(v)
to denote the decrease of the measure of μ in the branches of excluding v and
including Sv, respectively. We get recurrence C(μ) = C(μ−Δout(v)) + C(μ−
Δin(v)). We give more details about lower bounds on Δout(v) and Δin(v). Let

ki denote the number of degree-i neighbors of v. Then d =
∑d

i=3 ki. For the first
branch, we get

Δout(v) = wd +
d∑

i=3

kiΔwi,

where Δwi = wi − wi−1.
In the second branch, we will delete N [Sv] from the graph. LetΔ(N [v]) denote

the decrease of weight of vertices in V (G) − N [v] by removing N [Sv] from G
together with possibly weight decrease attained by reduction operations applied
to G−N [Sv]. Then we have

Δin(v) ≥ wd +

d∑
i=3

kiwi +Δ(N [v]).

We can branch on a vertex v of degree d with recurrence

C(μ) = C(μ−Δout(v)) + C(μ−Δin(v))

≤ C(μ−(wd +
∑d

i=3 kiΔwi)) + C(μ−(wd +
∑d

i=3 kiwi +Δ(N [v]))).
(1)

In our algorithm, we carefully select a vertex of maximum degree to branch
on so that the branching factor from the worst recurrence (1) becomes as small
as possible. To do so, we need to derive lower bounds on Δ(N [v]) and examine
all possible configurations of {k3, k4, . . . , kd}.

We will discuss how to analyze and improve the lower bounds on Δ(N [v])
later. Now assume that a lower bound of Δ(N [v]) is fixed. In (1), each configu-
ration of {k3, k4, . . . , kd} will create a concrete recurrence. There are (d+ 1)d−3

(the number of integer solutions to the function k3+k4+ · · ·+kd = d) configura-
tions of {k3, k4, . . . , kd}. Then (1) will generate (d+ 1)d−3 concrete recurrences.
We will introduce a lemma to reduce the number of recurrences from (d+1)d−3

to only d− 2.
The following lemma can be used to eliminate redundant recurrences to de-

termine the largest branching factor among a set of systematically generated
recurrences.

Lemma 4. Let C(x) = τx for a positive τ > 1. For any nonnegative p, μ, ai,
bi, i = 1, 2, . . . , � (� ≥ 1), the maximum of

C(μ− (
∑

i=1,2,...,�

kiai+c)) + C(μ− (
∑

i=1,2,...,�

kibi+d))

over all k1, k2, . . . , k� ≥ 0 subject to k1+k2+· · ·+k� = p is equal to the maximum
of

C(μ−(pai+c)) + C(μ− (pbi+d))

over all i = 1, 2, . . . , �.
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Proof. It suffices to show that for nonnegative w, a1, b1, b2, c, d ≥ 0, it holds
C(μ− (a1 + a2+ c)) + C(μ− (b1 + b2+ d)) ≤ max{C(μ− (2a1 + c)) + C(μ−
(2b1+ d)), C(μ− (2a2 + c)) + C(μ− (2b2+ d))}. The lemma can be obtained
by applying this repeatedly. Note that function f(t) = τ−(2a1(1−t)+2a2t+c−μ) +
τ−(2b1(1−t)+2b2t+d−μ) is convex since the second derivative is nonnegative. Hence
f(0.5) ≤ max{f(0), f(1)} holds, as required.

By applying Lemma 4, in (1), we only need to consider d−2 concrete recurrences
with (k3, k4, . . . , kd) = (d, 0, . . . , 0), (0, d, 0, . . . , 0), · · · , (0, . . . , 0, d) respectively.
For example, if d = 6, we can reduce the number of recurrences from 74 = 2401
to only 5. Lemma 4 is introduced to simplify the analysis of recurrences for the
first time. It can be used to reduced thousands of recurrences in the analysis
of previous algorithms for MIS, such as the algorithms in [8] and [1]. Note that
the authors of [8] introduce a computer-added method to create all possible
recurrences in the web page [19]. There are more than 10 thousands recurrences
listed. By using Lemma 4, we can reduce the number of recurrences to less than
50 and it becomes checkable by hand.

5 Branching on Edges

In some cases, Δ(N [v]) in (1) is small and the corresponding recurrences will
become the bottlenecks of the algorithm. To increase Δ(N [v]), we can increase
fv (the number of edges between N(v) and N2(v)). When N∗(v) �= ∅, we can
remove some vertices in N2(v) and then decrease the measure by a large amount
in N [v]. Otherwise, N∗(v) = ∅ and then fv ≥ 2δ(v). To get further improvement
on fv, we introduce a new branching rule to deal with some dense local graphs.

Branching on Edges. Two disjoint independent subsets A and B of vertices
in a graph G are called alternative if |A| = |B| ≥ 1 and there is a maximum
independent set SG of G which satisfies SG ∩ (A ∪B) = A or B. Let G† be the
graph obtained from G by removing A∪B ∪ (N(A)∩N(B)) and adding an edge
ab for every two nonadjacent vertices a ∈ N(A)−N [B] and b ∈ N(B)−N [A].

Lemma 5. [16] For alternative subsets A and B in a graph G, α(G) = α(G†)+
|A|.

Lemma 6. Let vv′ be an edge. Then

α(G) = max{α(G− {v, v′}), α(G†) + 1},

where G† be the graph obtained from G by removing {v, v′}∪ (N(v)∩N(v′)) and
adding an edge ab for every two nonadjacent neighbors a ∈ N(v) − N [v′] and
b ∈ N(v′)−N [v].

Proof. We easily observe that either (i) every maximum independent set SG of
G satisfies SG ∩ {v, v′} = ∅; or (ii) there is a maximum independent set SG of
G such that SG ∩ {v, v′} �= ∅. In (i), we have α(G) = α(G−{v, v′}). In (ii), sets
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A = {v} and B = {v′} are alternative in G, and we have α(G) = α(G†) + 1 by
Lemma 5.
Branching on an edge vv′ means generating two subinstances according to Lemma 6.
This is to either remove {v, v′} from the graph G or construct the graph G†

from G− ({v, v′} ∪ (N(v) ∩N(v′))) by making each pair a ∈ N(v) −N [v′] and
b ∈ N(v′)−N [v] adjacent. Branching on an edge may not always be very effec-
tive. In our algorithms, we will apply it to edges vv′ when N(v)∩N(v′) is large,
which are called “short edges.”

The definitions of “short edges” in different degree-bounded graphs are slightly
different. In a reduced graph of maximum degree 6, an edge vv′ is called short if
δ(v) = 6, δ(v′) ∈ {5, 6} and |N(v)∩N(v′)| ≥ 3. In a reduced graph of maximum
degree i0 (i0 = 7 or 8), an edge vv′ is called short if δ(v) = δ(v′) = i0 and
|N(v)∩N(v′)| ≥ i0− 3. In a graph G of maximum degree 6, 7 or 8, a short edge
is called optimal if |N(v) ∩ N(v′)| − δ(v′) is maximized. In our algorithms, we
only branch on optimal short edges in graphs of maximum degree 6, 7 and 8.

6 The Algorithms

We first give the algorithms for MIS-6, MIS-7 and MIS-8, then we discuss MIS
in general graphs.

6.1 The Algorithms for MIS-6, MIS-7 and MIS-8

After dealing with short edges in a graph G of maximum degree 6, 7 and 8, for
each vertex v of maximum degree in G, we have that fv ≥ 2|δ(v)|+kd (d = δ(v)).
In fact, the worst cases in our algorithms will be the cases of kδ(v) = δ(v), where
fv ≥ 2δ(v) + kδ(v) = 3δ(v). This inequality improves the bound of 2δ(v) (before
dealing with short edges) and leads improvements in our algorithms. We further
avoid the worst case of fv = 3δ(v) by branching on ‘optimal vertices’ of maximum
degree (after branching on all short edges), and then we can get fv ≥ 3δ(v) + 2
(or fv ≥ 3δ(v)+6 for graphs of maximum degree 8) for the cases of kδ(v) = δ(v).
These cases will be the final worst cases in our algorithms.

In a reduced graph of maximum degree 6, a degree-6 vertex v is called optimal
if at least one of the following (i)-(iv) is holds: (i) N∗(v) �= ∅; (ii) the vertex v
has at most four degree-6 neighbors (k6 ≤ 4); (iii) the vertex v has a neighbor of
degree ≤ 4; and (iv) fv + (fv − |N2(v)|) + qv ≥ 8 + 2k6, where qv is the number
of vertices of degree < 6 in N2(v).

In a reduced graph of maximum degree i0 (i0 = 7 or 8), a degree-i0 vertex v
is called optimal if at least one of the following (i)-(iii) is holds: (i) N∗(v) �= ∅;
(ii) the vertex v has at most i0 − 2 degree-i0 neighbors (ki0 ≤ i0 − 2); and (iii)
fv +(fv − |N2(v)|) ≥ 10+ 2ki0 for i0 = 7 and fv +(fv − |N2(v)|) ≥ 14+ 2ki0 for
i0 = 8.

Lemma 7. In a reduced graph G of maximum degree 6, 7 or 8, if G has no
short edges, then G has at least one optimal vertex.
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Input: A graph G.
Output: The size of a maximum independent set in G.

1. Reduce the graph if it not a reduced graph (i.e., (G, s) := RG(G, 0)), and
let d be the maximum degree of G.

2. If {d ≥ (i0 + 1) }, pick up a vertex v of maximum degree d, and return
s+max{MIS i0(G−v), |Sv|+MIS i0(G−N [Sv ])}.

3. Elseif{d = i0 and G has a short edge}, pick up an optimal short edge vv′,
and return s+max{MIS i0(G−{v, v′}), 1 +MIS i0(G

†)}.
4. Elseif {d = i0 (G has no short edges)}, pick up an optimal degree-i0
vertex v, and return s+max{MIS i0(G−v), |Sv |+MIS i0(G−N [Sv])}.

5. Else {G is a degree-(i0 − 1) graph}, use our algorithm for MIS-(i0 − 1) to
solve the instance G and return s+α(G), where the algorithm for MIS-5
is in [18].

Note: With a few modifications, the algorithm can deliver a maximum inde-
pendent set.

Fig. 1. Algorithms MIS i0(G)

A proof of Lemma 7 can be found in the full version of this paper. Our algorithms
for MIS-i0 (i0 = 6, 7 or and 8) are described in Figure 1.

In our algorithms, we set the vertex weight as follows: for 0 ≤ i ≤ 2, wi = 0; for
3 ≤ i ≤ i0, wi is set as that in Table 1; for i ≥ i0+1, wi = wi0+(i−i0)(wi0−wi0−1).
We set vertex weight greater than 1 for vertices of degree > i0 to simplify the
analyses in our algorithms (recall that a vertex of degree > i0 may be created
after applying reduction rules in a graph of maximum degree i0). This setting
will not change the running time bound of our algorithms.

Lemma 8. With the above vertex weight setting, each recurrence generated by
the algorithm MIS 6(G) (resp., MIS 7(G), MIS 8(G)) in Figure 1 has a branch-
ing factor not greater than 1.1898 (resp., 1.1976, 1.2002).

The proof of this analytical lemma can be found in the full version of this paper.
Since the measure μ is not greater than the number n of vertices in the initial
graph in MIS 6(G), MIS 7(G) and MIS 8(G), we get that

Theorem 1. A maximum independent set in a degree-6 graph (resp., degree-
7 graph, degree-8 graph) of n vertices can be found in 1.1898nnO(1) (resp.,
1.1976nnO(1), 1.2002nnO(1)) time.

6.2 MIS in General Graphs

The algorithm for MIS in general graphs in simple. It only contains two steps:
branch on a vertex of maximum degree if the degree of the graph is at least 9,
and call the algorithm for MIS-8 if the maximum degree of the graph is less than
9. In the subalgorithm dealing with vertices of degree ≥ 9, we set the measure
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as the number of vertices in the graph (the weight of each vertices is 1). Then
we can get the following recurrence:

C(μ) ≤ C(μ− 1) + C(μ− 10), (2)

which has branching factor 1.19749, better than 1.20018 for MIS-8. The analysis
in Section 3 shows that MIS in general graphs can be solved in 1.2002nnO(1) time.

Theorem 2. A maximum independent set in an n-vertex graph can be found in
1.2002nnO(1) time and polynomial space.
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Abstract. We reduce (in polynomial time) the enumeration of minimal
dominating sets in interval and permutation graphs to the enumeration
of paths in directed acyclic graphs(DAGs). As a consequence, we can enu-
merate with linear delay, after a polynomial time pre-processing, minimal
dominating sets in interval and permutation graphs. We can also count
them in polynomial time. This improves considerably upon previously
known results on interval graphs, and up to our knowledge no output
polynomial time algorithm for the enumeration of minimal dominating
sets and their counting were known for permutation graphs.

1 Introduction

The Minimum Dominating Set problem is a classic and well-studied graph
optimisation problem. A dominating set in a graph G is a subset D of its set
of vertices such that each vertex is either in D or has a neighbour in D. Com-
puting a minimum dominating set has numerous applications in many areas,
e.g., networks, graph theory (see for instance the book [9]). In this paper we
are interested in the enumeration of (inclusion-wise) minimal dominating sets in
interval and permutation graphs. The Minimum Dominating Set problem is
NP-complete in general, but it is known to be solvable in linear time for these
two classes [4,16].

There are two approaches in enumeration algorithms. The input-sensitive ap-
proach uses classical worst-case running time analysis, i.e., the running time
depends on the length of the input. This approach is usually used in exact ex-
ponential algorithms. One of its uses is to obtain upper bounds on the number
of enumerated objects depending on the input graph. In [7] it is shown that the
number of minimal dominating sets in an n-vertex graph is at most 1.7159n.
The output-sensitive approach measures the time complexity of an enumeration
algorithm in the sum of the sizes of the input and the output. An algorithm
whose running time is bounded by a polynomial depending on the sum of the
sizes of the input and the output is called an output-polynomial time algorithm.
In this paper we deal with the output-sensitive approach.
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The existence of an output-polynomial time algorithm for the enumeration of
minimal dominating sets of graphs is closely related to the well-known Transver-
sal problem in hypergraphs. A transversal (or hitting set) in a hypergraph is a
subset of its ground set that intersects every hyperedge. The Transversal prob-
lem asks for an output-polynomial time algorithm for the enumeration of all
the (inclusion-wise) minimal transversals of hypergraphs. It is a long-standing
open problem whether such an algorithm exists. The question is well-studied
due to applications in several areas [5,6,8,13,15], and output-polynomial time
algorithms are known for various restricted classes of hypergraphs (a summary
of some known tractable cases is given in [10]. It is known that the set of minimal
dominating sets of a graph is the same as the set of minimal transversals of its
closed neighbourhood hypergraph [3]. Therefore, whenever the closed neighbour-
hood hypergraphs of a graph class is in one of the known tractable classes of
hypergraphs, there exists an output-polynomial time algorithm for the enumer-
ation of minimal dominating sets of graphs in this graph class. For example this
is the case for degenerate graphs, line graphs, path-graphs, . . . [10,12]. However,
there are classes of closed neighbourhood hypergraphs for which no output-
polynomial time algorithm of the transversal problem was known, e.g., closed
neighbourhood hypergraphs of split graphs for instance. Moreover, Kanté et al.
[11] have shown that there exists an output-polynomial time algorithm for the
enumeration of minimal transversals in hypergraphs if and only if there exists
one for the enumeration of minimal dominating sets in graphs.

An enumeration algorithm is said to be of linear delay if it performs a polyno-
mial time pre-processing in the size of the input and such that the delay between
two consecutive outputs oi and oi+1 is linear in the size of oi+1. It is clear that
linear delay enumeration algorithms are output-polynomial time algorithms. We
give linear delay algorithms for the enumeration of minimal dominating sets in
interval and permutation graphs, to achieve this we rely on the interval and the
permutation model respectively. This improves considerably upon the known
algorithms on interval graphs (the best known is designed for β-acyclic hyper-
graphs, and has delay between two consecutive outputs polynomial in the size
of the input [5,6]). Moreover there are polynomial time counting algorithms to
compute the number of minimal dominating sets of the input interval and per-
mutation graph, respectively. We are not aware of such counting algorithms prior
to our work. Linear delay is the best we can hope for whenever we want to list
the elements of each minimal dominating set. Our techniques can be summarised
as follows.

1. We first build in polynomial time a directed acyclic graph (DAG for short)
and prove that some paths in this DAG correspond exactly to minimal dom-
inating sets.

2. These paths can be counted in linear time (in the size of the DAG), and can
be listed in linear delay with a classical Depth First Search algorithm.

Let us describe briefly the construction of the DAG in interval graphs. One
first observes that any minimal dominating set in an interval graph is a collection
of paths. Secondly, by using the interval model and by ordering the intervals (say
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their left endpoints from left to right), one can construct any minimal dominating
set. In fact if you take a vertical line and those vertices X whose intervals are
on the left of that vertical line, then for any minimal dominating set D either
D∩X is a dominating set of the graph induced by X , or the vertex in D just on
the right of the vertical line (following the ordering) should be adjacent to those
vertices in X not dominated by D ∩ X . We show, by moving in the right way
such a vertical line, that we can construct any minimal dominating set by only
keeping track of the last two chosen vertices. Following that, we can construct
the DAG, the vertices of which will be those pairs (x, y) (with the left endpoint
of x before the left endpoint of y) such that x and y can be both in a minimal
dominating set, and the arcs are of the form ((x, y), (y, z)) such that

– there is no vertex with its interval between the right endpoint of y and the
left endpoint of z,

– {x, y, z} can belong to a minimal dominating set.

We show that the minimal dominating sets of an interval graph are exactly
those sets {xi1 , . . . , xik+1

} such that there exists a path (v1, . . . , vk) with vj :=
(xij , xij+1 ) with no intervals before the left endpoint of xi1 and after the right
endpoint of xik+1

.
For permutation graphs, the construction is obtained in a similar manner, but

is more complicated. In fact each minimal dominating set can be still constructed
from left to right (by ordering the bottom and top lines from left to right), but
we need to keep track of the last three vertices, and following how their segments
intersect, we need to keep one or two additional vertices. We postpone the details
in Section 4.

Summary. In Section 2 we give some necessary definitions and we deal with
interval graphs in Section 3. Permutation graphs are considered in Section 4.
Some concluding remarks are given in Section 5.

2 Preliminaries

If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The power-set
of a set V is denoted by 2V . The size of a set A is denoted |A|.

We refer to [1] for graph terminology. The vertex set of a (directed) graph G
is denoted by VG and its edge set (or arc set) by EG. We only deal with finite
and simple (directed) graphs. We denote by n the size of the vertex set of a
(directed) graph and by m the size of its edge (or arc) set. An arc from x to y
in a directed graph is denoted by (x, y) and an edge between x and y in a graph
is denoted by xy.

Let G be a graph. For a vertex x, we denote by NG(x) the set {y ∈ VG | xy ∈
EG}, and we let NG[x] be NG(x)∪{x}. ForX ⊆ VG, we write NG[X ] andNG(X)
for respectively

⋃
x∈X

NG[x] and NG[X ] \X . We say that a vertex y is a private

neighbour with respect to D ⊆ VG of x if y ∈ NG[x] \ NG[D \ x]. (When D is
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clear from the context, for convenience we will omit the expression “with respect
to D”.) Note that a private neighbour of a vertex x ∈ D is either x itself, or a
vertex in VG\D, but never a vertex y ∈ D\{x}. The set of private neighbours of
x ∈ D is denoted by PD(x). A subset D of VG is called an irredundant set if for
all x ∈ D, we have PD(x) �= ∅. A subset D of VG is called a minimal dominating
set if it is an irredundant set, and each vertex in VG \D has a neighbour in D.

A graph is an interval graph if it has an intersection model consisting of
intervals on a straight line. A graph is a permutation graph if it has an intersection
model consisting of straight lines between two parallels. We assume without loss
of generality that any interval graph (or permutation graph) is given with its
intersection model. Indeed, the recognition and a construction of an intersection
model can be done in linear time for any interval graph (or permutation graph).
See for instance [2] for interval graphs and [14] for permutation graphs.

Given a graph G and a subset C of 2VG , we say that an algorithm enumerates
C with linear delay if, after a pre-processing that takes time p(n+m) for some
polynomial p, it outputs the elements of C without repetitions, the delay between
two consecutive outputs oi and oi+1 is bounded by O(|oi+1|). It is worth noticing
that an algorithm which enumerates a subset C of 2VG in linear delay outputs

the set C in time O
(
p(n+m) +

∑
C∈C

|C|
)

where p is the polynomial bounding

the pre-processing time.
We finish these preliminaries with the following folklore theorem on the enu-

meration and the counting of maximal paths in directed acyclic graphs.

Theorem 1 (folklore). Given a directed acyclic graph D and two disjoint sub-
sets S and P of vertices of D, the enumeration of paths from vertices in S to
vertices in P can be done in linear delay. Moreover, counting these paths can be
done in linear time in the size of D.

3 Interval Graphs

We may suppose without loss of generality that in an intersection model of an
interval graph all endpoints are pairwise distinct. For an interval graph G, let
us denote its interval model by IG, and for each vertex x of G let IG(x) be
the interval in IG associated with x. We number the endpoints of the intervals
from left to right and we denote by s(x) and e(x) the left and right endpoint of
IG(x) respectively. We can therefore assume that IG(x) := [s(x), e(x)] and will
be viewed as the set of points on the line between s(x) and e(x).

We linearly order the vertices of an interval graph G with the linear order
1 such that x 1 y whenever s(x) ≤ s(y). We can therefore consider that the
vertices of G are enumerated as x1, x2, . . . , xn with xi 1 xj whenever i ≤ j. We
will, in the sequel, consider any subset D of VG as linearly ordered by 1 and
when we write {xi1 , . . . , xik}, then we consider xij 1 xi� whenever j ≤ �. The
proof of the following lemma is straightforward.
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Lemma 2. Let D be an irredundant set of an interval graph G. Then for all
distinct vertices x and y in D, the sets IG(x) \ IG(y) and IG(y) \ IG(x) are non
empty.

The following is an easy corollary of Lemma 2.

Corollary 3. Let D be a minimal dominating set of an interval graph G. Then
for all distinct vertices x and y in D, we have e(x) < e(y) whenever x ≺ y.

For x ∈ VG, we let NC(x) be the set {y ∈ VG | s(y) > e(x)}, and ncs(x) and
nce(x) be respectively min{s(y) | y ∈ NC(x)} and min{e(y) | y ∈ NC(x)}.
Notice that if y is such that s(y) = ncs(x), then we do not have necessarily
e(y) = nce(x), and vice-versa. For D := {xi1 , . . . , xik} a subset of the vertex set
of an interval graph G and j ≤ k, we denote by Dj the subset {xi1 , . . . , xij} of
D, and we let pD(xij ) := min{e(y) | y ∈ PDj (xij )}.
Lemma 4. Let D := {xi1 , . . . , xik} be an irredundant set of an interval graph
G. For j ≤ k, let xpj be such that e(xpj ) = pD(xij ). Then xpj ∈ PD(xij ).

The following characterises minimal dominating sets in interval graphs, and will
be the core of our algorithm.

Proposition 5. A subset D := {xi1 , . . . , xik} of an interval graph G is a mini-
mal dominating set if and only if the following conditions hold.

1. For all � ≤ n, we have s(xi1 ) ≤ e(x�).
2. For all � ≤ n, we have e(xik) ≥ s(x�).
3. For all j ≤ k, we have j = k if NC(xij ) = ∅, otherwise we have e(xij+1 ) ≥
ncs(xij ).

4. For all 1 ≤ j < k, we have pD(xij ) < s(xij+1 ) ≤ nce(xij ).

The following tells us how to compute the private neighbour of a vertex.

Proposition 6. Let D := {xi1 , . . . , xik} be an irredundant set. Then for all
x ∈ NG[xik ], we have x ∈ PD(xik ) if and only if e(xik−1

) < s(x).

In order to enumerate in linear delay, and count in polynomial time, the set of
minimal dominating sets of an interval graph G, we associate with it a DAG,
denoted by DagI(G), where the paths from a subset of the sources to a subset
of the sinks correspond exactly to minimal dominating sets of G. Let G be an
interval graph. The graph DagI(G) has vertex set the pairs (xi, xj) such that

(V.1) xi 1 xj ,

(V.2) p{xi}(xi) < s(xj) ≤ nce(xi),

(V.3) NC(xi) �= ∅ and e(xj) ≥ ncs(xi),

and it has as arc set the set of pairs ((xi, xj), (xj , xk)) such that

(E.1) p{xi,xj}(xj) < s(xk) ≤ nce(xj).

A vertex (xi, xj) of DagI(G) is called an initial vertex if s(xi) ≤ e(x�) for all
1 ≤ � ≤ n. A vertex (xi, xj) of DagI(G) is called a final vertex if e(xj) ≥ s(x�)
for all 1 ≤ � ≤ n, and then NC(xj) = ∅.
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Lemma 7. For every interval graph G, we have the following.

1. DagI(G) is a DAG.
2. If a vertex (xi, xj) of DagI(G) is an initial vertex (resp. a final vertex), then

it is a source (resp. a sink) of DagI(G).
3. DagI(G) can be constructed in time O(n3).

Proposition 8. Let G be an interval graph and let v1 and vk be respectively an
initial vertex and a final vertex of DagI(G). Then (v1, v2, . . . , vk) is a path of
DagI(G) if and only if {xi1 , . . . , xik+1

} is a minimal dominating set of G of size
greater than or equal to 2 with vj := (xij , xij+1 ).

We can now state the main theorem of the section.

Theorem 9. Let G be an interval graph. Then, after a pre-processing in time
O(n3), one can enumerate in linear delay the minimal dominating sets of G.
One can moreover count them in time O(n3).

Proof. By Lemma 7 the DAG DagI(G) can be constructed in time O(n3). By
Proposition 8, there is a bijection between paths from initial vertices to final
vertices in DagI(G) and minimal dominating sets of G of size at least 2.

It remains to deal now with minimal dominating sets of size 1. For each
x, we can determine in time O(n) if {x} is a minimal dominating set. So, let
S := {x ∈ VG | {x} is a minimal dominating set of G}. The set S can be
constructed at the same time as DagI(G). We let G′ be the DAG obtained from
DagI(G) by adding new vertices vx to DagI(G), with in-degree and out-degree
0, for each x ∈ S. Therefore, each such new vertex vx is a source and a sink at
the same time. We define the following subsets of VG′ .

S := {vx | x ∈ S} ∪ {v ∈ VDagI (G) | v is an initial vertex},
T := {vx | x ∈ S} ∪ {v ∈ VDagI (G) | v is a final vertex}.

It is clear now that paths from S to T in G′ are in bijection with all the minimal
dominating sets of G. Since, paths from S to T in DAGs can be listed in linear
delay, and be counted in linear time (see Theorem 1), we are done. 	


4 Permutation Graphs

For a permutation graph G let us denote its permutation model by LG, and
for each vertex x of G let LG(x) be the segment in LG corresponding to x. We
number the endpoints of segments from left to right and we denote by b(x) and
t(x) the endpoints of LG(x) on the bottom line and top line respectively. All
endpoints are assumed to be different without loss of generality. We order the
vertices of G by their bottom line endpoints, and then the vertices of G are
assumed to be enumerated as x1, . . . , xn where b(xi) ≤ b(xj) whenever i ≤ j. As
in the interval case, we will also consider any subset D of VG as linearly ordered,
and when we write {xi1 , . . . , xik}, then we consider i1 < ... < ik and hence
b(xi1) < · · · < b(xik). For two vertices x and y of G, we say that LG(x) < LG(y)
whenever b(x) < b(y) and t(x) < t(y).
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Lemma 10. Let D be an irredundant set of a permutation graph G. Then G[D]
contains neither triangles nor claws. Therefore, for each x ∈ D, dG[D](x) ≤ 2.

For a subset D := {xi1 , . . . , xik+1
} of G, if k ≥ 4, we let xD be the vertex xir ∈ D

such that t(xir ) := max{t(xi�) | xi� ∈ D and � < k − 2}, i.e. xD is the top right
most vertex of D when we remove the four greatest vertices of D. If k ≥ 3, we
let A(D) be the set formed by the four greatest vertices of D and xD if it exists,
i.e. for k ≥ 3,

A(D) :=

{
D if k = 3,

{xD, xik−2
, xik−1

, xik , xik+1
} if k ≥ 4.

Lemma 11. Let D′ := {xi1 , xi2 , ..., xik+1
} with k ≥ 4 be a subset of the vertex

set of a permutation graph G such that D := {xi1 , xi2 , ..., xik} and A(D′) are
irredundant sets of G. Then for all l ≤ ik−3, NG[xik+1

] ∩ PD(xil) = ∅.

In the next lemmas we show how to construct irredundant sets of a permutation
graph G from left to right. Indeed, we characterise exactly the situations where
an irredundant set D := {xi1 , . . . , xik} can be extended to an irredundant set
D′ := D ∪ {xik+1

}, and we show that for deciding the extension we only need
to know xik−2

, xik−1
, xik , and following the intersections of LG(xik−2

), LG(xik−1
)

and LG(xik ) we need to know also either xD′ or the vertex xs such that t(xs) :=
min{t(z) | z ∈ PD(y)} with y such that t(y) = min{t(xik−2

), t(xik−1
), t(xik )},

or both. The cases summarising the intersections of LG(xik−2
), LG(xik−1

) and
LG(xik ) are depicted in Fig. 1.

1 2 3
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Fig. 1. Different cases following the intersections of LG(xik−2), LG(xik−1) and LG(xik)

Lemma 12 (Case 1). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (1) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) is an irredundant set of G,
2. t(xik+1

) > min{t(y) | y ∈ PD(xik−2
)}.
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Lemma 13 (Case 2). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (2) of Fig. 1.

Then D′ is an irredundant set of G if and only if A(D′) is an irredundant
set of G.

Lemma 14 (Case 3). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (3) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) is an irredundant set of G,
2. t(xik+1

) > min{t(y) | y ∈ PD(xik−1
)}.

Lemma 15 (Case 4). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (4) of Fig. 1.

Then D′ is an irredundant set of G if and only if A(D′) is an irredundant
set of G.

Lemma 16 (Case 5). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (5) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) \ xD′ is an irredundant set of G,
2. t(xik+1

) > min{t(v) | v ∈ PD(xik)}.

The next proposition shows that minimal dominating sets are exactly those
irredundant sets {xi1 , . . . , xik} with no segments smaller than LG(xi1 ) (greater
than LG(xik )), and for each 2 ≤ l < k, all vertices y with LG(xil−2

) < LG(y)
are in NG[Dl+1].

Proposition 17. Let D := {xi1 , xi2 , . . . , xik} be an irredundant set of a per-
mutation graph G. Then D is a minimal dominating set of G if and only if the
following conditions are fulfilled

1. for each l, t(xl) ≥ min (t(xi1 ), t(xi2 ), t(xi3 )) or b(xl) ≥ b(x1),
2. {y | LG(xik−2

) < LG(y) and y /∈ NG[D]} = ∅,
3. for all 2 ≤ l < k, if LG(xil) does not intersect LG(xil−1

) then {y | LG(xil−2
)

< LG(y) < LG(xil−1
) and y /∈ NG[Dl+1]} = ∅. Furthermore, {y | LG(xil−1

)
< LG(y), t(y) < t(xil+1

), and b(y) < b(xil) and y /∈ NG[Dl+1]} = ∅ if
LG(xil+1

) intersects LG(xil ).

Proposition 18. Let D := {xi1 , xi2 , . . . , xik , xik+1
} be a subset of the vertex set

of a permutation graph G and let x ∈ {y | LG(xik−2
) < LG(y)}. Then x ∈ NG[D]

if and only if x ∈ NG[A(D)].
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Let G be a permutation graph and let ⊥ be a non vertex of G. Thanks to
Lemmas 12-16, and Propositions 17 and 18, the DAG to which some paths
correspond to the minimal dominating sets of G will have as vertices those
quintuple (xi1 , xi2 , xi3 , xi4 , xi5) in (VG∪ ⊥)5 that correspond to Cases (1)-(5)
of Fig. 1, and the arcs describe the construction of minimal dominating sets
from left to right (and thanks to Proposition 18 the arcs can be constructed in
polynomial time).

We denote by Initial(G) those quintuples (xi, xj , xk,⊥, xs) ∈ (VG∪ ⊥)5
such that A := {xi, xj , xk} is an irredundant set of G, and one of the following
conditions hold

(I.1) t(xs) := min{t(y) | y ∈ PA(xi)} if A corresponds to Case (1) of Fig. 1 and
{y | LG(y) < LG(xi)} = ∅.

(I.2) xs =⊥ if A corresponds to Case (2) of Fig. 1 and {y | t(y) < t(xk), b(y) <
b(xj), and y /∈ NG[A]} = ∅.

(I.3) t(xs) := min{t(y) | y ∈ PA(xj)} if A corresponds to Case (3) of Fig. 1 and
{y | t(y) < t(xj) and b(y) < b(xi)} = ∅.

(I.4) xs =⊥ if A corresponds to Case (4) of Fig. 1 and {y | t(y) < t(xj), b(y) <
b(xi), and y /∈ NG[A]} = ∅.

(I.5) t(xs) := min{t(y) | y ∈ PA(xk)} if A corresponds to Case (5) of Fig. 1 and
{y | t(y) < t(xk) and b(y) < b(xi)} = ∅.

We denote by Regular(G) those quintuples (xi, xj , xk, xr, xs) ∈ (VG∪ ⊥)5
such that A := {xi, xj , xk} is an irredundant set of G, and one of the following
conditions hold

(R.1) r < i and xs =⊥ if A corresponds to Case (2) or (4) of Fig. 1.
(R.2) r < i and xs ∈ NG[xi] \ NG[{xr, xj , xk}] if A corresponds to Case (1) of

Fig. 1.
(R.3) r < i and xs ∈ NG[xj ] \ NG[{xr, xi, xk}] if A corresponds to Case (3) of

Fig. 1.
(R.4) xr =⊥ and xs ∈ NG[xk] \NG[{xr, xi, xj}] if A corresponds to Case (5) of

Fig. 1.

For v := (xi, xj , xk, xr, xs) in Initial(G) ∪Regular(G) we let

A(v) :=

{
{xr, xi, xj , xk} if xr �=⊥,
{xi, xj , xk} otherwise.

We let DagP (G) be the DAG with vertex set Initial(G) ∪ Regular(G)
and such that there is an arc (v1, v2) with v1 := (xi, xj , xk, xr , xs) and v2 :=
(xj , xk, xl, xr′ , xs′) if the following conditions are satisfied.

(A.1) If xr′ �=⊥, then t(xr′) = max(t(xr), t(xi)) if xr �=⊥, otherwise t(xr′) = xi.
(A.2) A := A(v1) ∪ {xl} is an irredundant set of G.
(A.3) t(xl) > t(xs) if xs �=⊥.
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(A.4) If LG(xk) does not intersect LG(xj) then {y | LG(xi) < LG(y) < LG(xj)
and y /∈ NG[A]} = ∅. Furthermore, {y | LG(xj) < LG(y), t(y) < t(xl),
and b(y) < b(xk) and y /∈ NG[A]} = ∅ if LG(xl) intersects LG(xk).

(A.5) If xs′ �=⊥ then
(A.5.1) xs = xs′ if xs �=⊥ and min{t(xi), t(xj), t(xk)} = min{t(xj), t(xk), t(xl)}.
(A.5.2) t(xs′ ) = min{t(x) | x ∈ PA(y)} where y is the vertex such that t(y) =

min{t(xj), t(xk), t(xl)} otherwise.

A vertex v of DagP (G) is called an initial vertex if it belongs to Initial(G)
and it is called a final vertex if {y | LG(xi) < LG(y) and y /∈ NG[A(v)]} = ∅.
The set of final vertices is denoted by Final(G).

Proposition 19. Let G a be permutation graph. A subset D := {xi1 , xi2 , ...,
xik+2

} of VG is a minimal dominating set of G of size greater than or equal
to three, if and only if there exists a path (v1, ..., vk) of DagP (G) where vj :=
(xij , xij+1 , xij+2 , xrj , xsj ), and v1 ∈ Initial(G) and vk ∈ Final(G).

Theorem 20. Let G be a permutation graph. Then, after a pre-processing in
time O(n8), one can enumerate in linear delay the minimal dominating sets of
G. One can moreover count them in time O(n8).

5 Conclusion

If we want to list a subset C ⊆ 2VG of a graph G by outputting each element
of each C ∈ C, then the size of C defined as

∑
C∈C

|C| is a lower bound. We have

proposed linear delay algorithms for the enumeration of minimal dominating sets
in interval and permutation graphs the running times of which match the above
lower bound. Our techniques allow also a polynomial time algorithm (in the sizes
of the graphs) for counting minimal dominating sets. The results presented here
may be extended to trapezoid graphs, but the proofs are more tricky. It is not
known whether one can enumerate minimal dominating sets in circle graphs.
Can we adapt some of our techniques to them?
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Abstract. We introduce and study the problem MUTUAL PLANAR DUALITY,
which asks for planar graphs G1 and G2 whether G1 can be embedded such that
its dual is isomorphic to G2. We show NP-completeness for general graphs and
give a linear-time algorithm for biconnected graphs.

We consider the common dual relation ∼, where G1 ∼ G2 if and only they
admit embeddings that result in the same dual graph. We show that ∼ is an equiv-
alence relation on the set of biconnected graphs and devise a succinct, SPQR-
tree-like representation of its equivalence classes. To solve MUTUAL PLANAR

DUALITY for biconnected graphs, we show how to do isomorphism testing for
two such representations in linear time.

A special case of MUTUAL PLANAR DUALITY is testing whether a graph is
self-dual. Our algorithm can handle the case of biconnected graphs in linear time
and our NP-hardness proof extends to self-duality and also to map self-duality
testing (which additionally requires to preserve the embedding).

1 Introduction

Let G be a planar graph with embedding G and let F be the set of faces of G. The dual
of G with respect to G is the graph G� = (F,E�) with E� = {e� | e ∈ E}. The
dual edge e� of e connects the two faces incident to e in G. Thus, G� models the adja-
cencies of faces of G with respect to G. We consider the problem MUTUAL PLANAR

DUALITY. Given two planar graphs G1 and G2, is there an embedding G1 of G1 such
that the dual G�

1 of G1 with respect to G1 is isomorphic to G2? All graphs we consider
are implicitly allowed to have multiple edges and loops. If G1 is triconnected, it has a
fixed planar embedding [13] and thus MUTUAL PLANAR DUALITY reduces to testing
graph isomorphism for planar graphs, which is linear-time solvable due to Hopcroft and
Wong [8]. Observe that bi- and triconnectivity of a planar graph is invariant under dual-
ization [12]. For non-triconnected planar graphs MUTUAL PLANAR DUALITY is more
complicated, since changing the embedding of G1 influences the structure of its dual
graph. In fact, we show that MUTUAL PLANAR DUALITY is NP-complete in general.

On the other hand, for biconnected planar graphs we provide a linear-time algorithm
solving MUTUAL PLANAR DUALITY that is based on the definition of a new data struc-
ture that we call dual SPQR-tree in analogy with the SPQR-tree [5]. The dual SPQR-
trees, together with a newly-defined set of operations, allows to succinctly represents and
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efficiently handle all the dual graphs of a biconnected planar graph. This data structure
has an interesting implication on the structure of the dual graphs of a biconnected planar
graph. Namely, consider the common dual relation ∼, where G1 ∼ G2 if and only if
they have a common dual graph. We show that∼ is not transitive on the set of connected
planar graphs. However, it follows from the dual SPQR-tree that ∼ is an equivalence
relation on the set of biconnected planar graphs. In particular, the graphs represented by
a dual SPQR-tree form an equivalence class. Thus, testing MUTUAL PLANAR DUALITY

reduces to testing whether two dual SPQR-trees represent the same equivalence class. It
is not hard to see that two biconnected graphs are related via the common dual relation
if and only if they have the same graphic matroid (which again does not hold for general
planar graphs). With this insight, one can use the one-to-many reduction from graphic
matroid isomorphism testing to graph isomorphism testing by Rao and Sarma [9] to solve
MUTUAL PLANAR DUALITY for biconnected planar graphs in polynomial time. We give
a one-to-one reduction leading to a linear-time algorithm.

We note that the common-dual relation is closely related to 2-isomorphisms, studied
by Whitney [14]. Two graphs are 2-isomorphic if and only if their cycle matroids are
isomorphic. On biconnected graphs, the notions coincide, and our algorithm implies a
linear-time isomorphism testing algorithm for graphic matroids of planar graphs.

We believe that the new data structure of dual SPQR-trees can be used to efficiently
solve other related problems. In many applications it is desirable to find an embedding
of a given planar graph that optimizes certain criteria, which can often be naturally
described in terms of the dual graph with respect to the chosen embedding. For example,
Bienstock and Monma [4], and Angelini et al. [1] seek an embedding of a planar graph
minimizing the largest distance of internal faces to the external face. In terms of the dual
graph this corresponds to minimizing the largest distance of a vertex to all other vertices.
For problems of this kind it can be useful to work directly with a representation of all
dual graphs, instead of taking the detour over a representation of all planar embeddings.

We finally remark that MUTUAL PLANAR DUALITY is a generalization of the self-
duality of planar graphs [10]. A graph G is graph self-dual if it admits an embedding
such that its dual G� is isomorphic to G. We call the corresponding decision problem
GRAPH SELF-DUALITY. A stronger form of self-duality is defined as follows. A graph
G is map self-dual [11] if and only if G has an embedding G such that there exists an
isomorphism fromG to its dual graphG� that preserves embedding G. The correspond-
ing decision problem is called MAP SELF-DUALITY. Since triconnected planar graphs
have a unique planar embedding, GRAPH SELF-DUALITY and MAP SELF-DUALITY

are equivalent for them. Servatius and Servatius [11] show the existence of biconnected
planar graphs that are graph self-dual but not map self-dual. Servatius and Christo-
pher [10] show how to construct self-dual graphs from given planar graphs. Archdea-
con and Richter [3] give a set of constructions for triconnected self-dual graphs and
show that every such graph can be constructed in this way. To the best of our knowl-
edge the computational complexity of testing MAP or GRAPH SELF-DUALITY is open.
Since GRAPH SELF-DUALITY is a special case of MUTUAL PLANAR DUALITY, our
algorithm can be used to solve GRAPH SELF-DUALITY in linear time when G is bi-
connected. Moreover, our NP-hardness proof for general instances extends to MAP and
GRAPH SELF-DUALITY.
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Outline. In Section 2 we show that MUTUAL PLANAR DUALITY is NP-complete, even
if both input graphs are required to be simple. The proof can be extended to show that
MAP SELF-DUALITY and GRAPH SELF-DUALITY are NP-complete in general. To
solve MUTUAL PLANAR DUALITY efficiently for biconnected graphs, we first describe
decomposition trees as a generalization of SPQR-trees in Section 3. In Section 4 we
describe the dual SPQR-tree and show that it succinctly represents all dual graphs of
a biconnected planar graph. We consider the common dual relation in Section 5 and
show that ∼ is not transitive on the set of connected planar graphs. On the other hand,
we show that it follows from the dual SPQR-tree that ∼ is an equivalence relation
on the set of biconnected planar graphs. This implies that solving MUTUAL PLANAR

DUALITY is equivalent to testing whether two dual SPQR-trees represent the same
equivalence class. In Section 6 we show that this reduces to testing graph isomorphism
of two planar graphs, which leads to a linear-time algorithm for MUTUAL PLANAR

DUALITY, including GRAPH SELF-DUALITY as a special case. Omitted proofs can be
found in the full version of this paper[2].

2 Complexity

In this section we first show that MUTUAL PLANAR DUALITY is NP-complete by a
reduction from 3-PARTITION. Then we show that the resulting instances of MUTUAL

PLANAR DUALITY can be further reduced to equivalent instances of MAP and GRAPH

SELF-DUALITY. An instance (A,B) of 3-PARTITION consists of a positive integer B
and a set A = {a1, . . . , a3m} of 3m integers with B/4 < ai < B/2 for i = 1, . . . , 3m.
The question is whether A admits a partition A into a set of triplets such that for each
triplet X ∈ A we have

∑
x∈X x = B. The problem 3-PARTITION is strongly NP-

hard [6], i.e., it remains NP-hard even if B is bounded by a polynomial in m.

Theorem 1. MUTUAL PLANAR DUALITY is NP-complete, even for simple graphs.

Proof. Clearly, MUTUAL PLANAR DUALITY is in NP, as we can guess an embedding
for graph G1 and then check in polynomial time whether G�

1 is isomorphic to G2.
To show NP-hardness we give a reduction from 3-PARTITION. Our construction

first contains loops, later we show how to get rid of them. Let (A,B) be an instance
of 3-PARTITION with |A| = 3m. The graph G1 contains a wheel of size m, i.e., a
cycle v1, . . . , vm together with a center u connected to each vi. Additionally, for each
element ai ∈ A we create a star Ti with ai − 1 leaves and connect its center to u; see
Figure 1(a). The graph G2 is a wheel of size m along with B loops at every vertex
except for the center; see Figure 1(b). We claim thatG1 andG2 form a YES-instance of
MUTUAL PLANAR DUALITY if and only if (A,B) is a YES-instance of 3-PARTITION.

Suppose that there exists a partition A of A. The embedding of the wheel in G1

is fixed and it has exactly m faces incident to the center u. The remaining degree of
freedom is to decide the embedding of the trees Ti into these m faces. For each triplet
X = {ai, aj , ak} ∈ A we pick a distinct such face and embed Ti, Tj and Tk into
it. Call the resulting embedding G1 and consider the dual G�

1 with respect to G1. The
wheel ofG1 determines a wheel of sizem inG�

1. Consider a tree Ti that is embedded in
a face f . Since Ti contains ai bridges, which are all embedded in f , the corresponding
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u
T1 T3m

. . .
T2

. . .v1 vm

u

vi vi+1(a) (b) (c) (d)

→

Fig. 1. The graphs G1 (a) and G2 (b) of the reduction from 3-PARTITION. (c) Embedding a tree Ti

inside a face f creates ai loops at the corresponding dual vertex. (d) Bridges and corresponding
loops can be replaced by small graphs.

vertex of G�
1 has ai loops; see Figure 1(c). Due to the construction each face contains

exactly three trees with a total of B bridges. Thus, G�
1 is isomorphic to G2.

Conversely, assume to have embeddings G1 and G2 such that the dual G�
1 of G1 is

isomorphic to G2. Again, the wheel in G1 formsm faces incident to u, and since G�
1 is

isomorphic to G2, the trees must be embedded such that each face contains exactly B
bridges. Since embedding Ti inside a face f places ai bridges into f and since B/4 <
ai < B/2, each face contains exactly three trees. Thus, the set of triplets determined by
trees that are embedded in the same face form a solution to 3-PARTITION.

Clearly, the transformation can be computed in polynomial time, and thus MUTUAL

PLANAR DUALITY is NP-hard. Moreover, the graph G2 can be made simple (G1 is
already simple) by replacing each bridge in G1 and each loop in G2 with a 4-wheel as
shown in Figure 1(d). The resulting graphsG′1 and G′2 are obviously dual to each other
if and only if G1 and G2 are dual to each other. Moreover,G′1 and G′2 are simple. 	


In the following we show how the above construction can be used to show NP-
completeness for MAP and GRAPH SELF-DUALITY. To this end, we use the adhesion
operation introduced by Servatius and Christopher [10]. Let v be a vertex of G incident
to a face f . Then the adhesion ofG and its dualG� (with respect to v and f ) is obtained
by identifying v in G and f� in G�. Servatius and Christopher [10] show that the adhe-
sion of a plane graph and its dual is graph self-dual. Moreover, although not explicitly
mentioned, they show that this adhesion is even map self-dual. To show the following
theorem we essentially transform the instance of MUTUAL PLANAR DUALITY consist-
ing of the two graphsG1 andG2 described in the proof of Theorem 1 into an equivalent
instance of MAP and GRAPH SELF-DUALITY by forming the adhesion of G1 and G2.

Theorem 2. GRAPH SELF-DUALITY and MAP SELF-DUALITY are NP-complete.

Sketch of Proof. Both problems are in NP. LetG1 andG2 form an instance of MUTUAL

PLANAR DUALITY obtained from an instance of 3-PARTITION as in the proof of The-
orem 1. Let G be the graph obtained by identifying a vertex that is not the center of the
wheel in G2 with the vertex u in G1. The theorem is implied by the following claims.
Claim 1. If G is a YES-instance of MAP SELF-DUALITY, it is a YES-instance of
GRAPH SELF-DUALITY.
Claim 2. If G1 and G2 form a YES-instance of MUTUAL PLANAR DUALITY, then G
is a YES-instance of MAP SELF-DUALITY.
Claim 3. If G is a YES-instance of GRAPH SELF-DUALITY, then G1 and G2 form a
YES-instance of MUTUAL PLANAR DUALITY. 	
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3 Decomposition Trees and the SPQR-Tree

A graph is connected if there exists a path between any pair of vertices. A separating
k-set is a set of k vertices whose removal disconnects the graph. Separating 1-sets and 2-
sets are cutvertices and separation pairs, respectively. A connected graph is biconnected
if it does not have a cut vertex and triconnected if it does not have a separation pair. The
maximal biconnected components of a graph are called blocks.

In the following we consider decomposition trees of biconnected planar graphs.
SPQR-trees [5], which can be computed in linear time [7], are a special case of de-
composition trees. Let G be a planar biconnected graph and let {s, t} be a split pair,
that is either a separation pair or a pair of adjacent vertices. Let further H1 and H2 be
two subgraphs ofG such thatH1∪H2 = G andH1∩H2 = {s, t}. Consider the tree T
consisting of two nodes μ1 and μ2 associated with the graphsH1+(s, t) andH2+(s, t),
respectively. For each node μi, the graph Hi + (s, t) associated with it is the skeleton
of μi, denoted by skel(μi), and the special directed edge (s, t) is called virtual edge.
The edge connecting the nodes μ1 and μ2 in T associates the virtual edge ε1 = (s, t)
in skel(μ1) with the virtual edge ε2 = (s, t) in skel(μ2); we say that ε1 is the twin of
ε2 and vice versa. Moreover, we say that ε1 in skel(μ1) corresponds to the neighbor μ2
of μ1. This can be expressed as a bijective map corrμ : E(skel(μ)) → N(μ) for each
node μ, where E(skel(μ)) and N(μ) denote the set of edges in skel(μ) and the set of
neighbors of μ in T , respectively. In the example above we have corr(ε1) = μ2 and
corr(ε2) = μ1 (the subscript of corr is omitted as it is clear from the context).

The above-described procedure is called decomposition and can be applied further
to the skeletons of the nodes of T , leading to a larger tree with smaller skeletons. The
decomposition can be undone by contracting an edge in T . Let {μ, μ′} be an edge in
T and let ε be the virtual edge in skel(μ) with corr(ε) = μ′ having ε′ in skel(μ′) as
twin. The contraction of {μ, μ′} collapses μ and μ′ into a single node with the following
skeleton. The skeletons of μ and μ′ are glued together at the twins ε and ε′ according to
their orientation, i.e., the sources and targets of ε and ε′ are identified with each other,
respectively. The resulting virtual edge is removed. Iteratively applying the contraction
in T leads to a tree consisting of a single node μ, whose skeleton is independent from
the contraction order. The graph represented by T is skel(μ).

A reversed decomposition tree is defined as a decomposition tree with the only dif-
ference that in the decomposition step one of the two twin edges is reversed and in the
contraction step they are glued together oppositely. Note that a reversed decomposition
tree can be transformed into an equivalent normal decomposition tree representing the
same graph by reversing one virtual edge in each pair of twin edges.

A special decomposition tree is the SPQR-tree. A decomposition tree is an SPQR-
tree if each inner node is either an S-, a P-, or an R-node whose skeletons contain only
virtual edges forming a cycle, a bunch of at least three parallel edges or a triconnected
planar graph, respectively, such that no two S-nodes and no two P-nodes are adjacent.
Each leaf is a Q-node whose skeleton consists of two vertices connected by one virtual
and one normal edge. The SPQR-tree of a biconnected planar graph is unique up to
reversal of twins. We assume that all virtual edges in P-node skeletons are oriented in
the same direction and those in S-node skeletons form a directed cycle.
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There is a bijection between the embeddings of a biconnected graph G and the set
of all combinations of embeddings of the skeletons in its SPQR-tree T . The embed-
ding choices for the skeletons consist of reordering the parallel edges in a P-node and
flipping the skeleton of an R-node. Fixing the embeddings of skeletons in an arbitrary
decomposition tree T also determines a planar embedding of the represented graph G.
However, there may be planar embeddings that are not represented by T .

We assume the skeletons of the SPQR-tree of a graph to be embedded graphs if and
only if the graph itself is embedded.

4 Succinct Representation of all Duals of a Biconnected Graph

Let G be a biconnected graph with SPQR-tree T and planar embedding G. In the fol-
lowing we study the effects of changing the embedding of G on its dual graph G�. To
this end, we do not consider the graphs themselves but their SPQR-trees. We first show
how the SPQR-tree of G� can be directly obtained from the SPQR-tree of G.

We first define the dual decomposition tree T � of a decomposition tree T represent-
ing G (with respect to a fixed embedding G of G represented by T ). Essentially, T � is
obtained from T by replacing each skeleton with its directed dual and interpreting the
resulting tree as a reversed decomposition tree. More precisely, for each node μ in T ,
the dual decomposition tree T � contains a dual node μ� having the dual of skel(μ) as
skeleton. An edge ε� in skel(μ�) dual to a virtual edge ε in skel(μ) is again virtual
and oriented from right to left with respect to the orientation of ε. Two virtual edges
in T � are twins if and only if their primal edges are twins. This has the effect that
corr(ε)� = corr(ε�) holds. In case T is the SPQR-tree of G, the dual of a triconnected
skeleton is triconnected, the dual of a (directed) cycle is a bunch of parallel edges (all
directed in the same direction), and the dual of a normal edge with a parallel virtual
edge is a normal edge with a parallel virtual edge. Thus, if a node μ in T is an S-, P-,
Q-, or R-node, its dual node μ� in T � is a P-, S-, Q-, or R-node, respectively. Thus, the
dual SPQR-tree is again an SPQR-tree and not just an arbitrary decomposition tree.

Lemma 1. Let G be a biconnected planar graph with SPQR-tree T and embedding G.
The dual SPQR-tree T � with respect to G is the reversed SPQR-tree of the dual G�.

Sketch of Proof. We show the claim for general decomposition trees. As illustrated in
Figure 2, first contracting an edge {μ, μ′} in a decomposition tree T and then taking
the dual decomposition tree is equivalent to first taking the dual decomposition tree
T � and then contracting {μ�, μ′�}. Applying this operation iteratively until the trees T
and T � consist of single nodes directly shows that the reversed decomposition tree T �

represents the graph G� dual to the graphG represented by T . 	

In the following we consider how the dual SPQR-tree changes when the embedding of
skeletons in the SPQR-tree change. Flipping the skeleton of an R-node and reordering
the virtual edges in a P-node give rise to the following two operations: reversal of
R-nodes and restacking of S-nodes. A reversal applied on an R-node μ reverses the
direction of all edges in skel(μ). Note that this only affects how skel(μ) is glued to the
skeletons of its adjacent nodes. Let μ be an S-node with virtual edges ε1, . . . , εk. A
restacking of μ picks an arbitrary ordering of ε1, . . . , εk and glues their end-points such
that they create a directed cycle C in that order. Then, skel(μ) is replaced by C.



356 P. Angelini, T. Bläsius, and I. Rutter

H

H�

ε

ε�

u

v

f�

fr

H ′

H ′�ε′

ε′�

u′

v′

f ′r

f ′�

H

H�

u/u′

v/v′

f�

fr/f
′
�

H ′

H ′�

f ′r

H

H�

f�/f
′
r

fr/f
′
�

H ′

H ′�

u/u′

v/v′
(a) (b) (c) (d)

Fig. 2. (a)–(c) Glueing the virtual edge ε and ε′. (d) Removing the resulting edge.

Lemma 2. Let T and T � be the SPQR-trees of an embedded biconnected planar graph
and of its dual, respectively. Flipping an R-node and reordering a P-node in T corre-
sponds to reversing its dual R-node and restacking its dual S-node, respectively.

Proof. Due to Lemma 1 we can work with the dual SPQR-tree instead of the SPQR-tree
of the dual. Obviously, flipping an R-node μ in T exchanges left and right in skel(μ)
and thus reverses the orientation of each virtual edge in skel(μ�), where μ� is the node
in T � dual to μ. Thus, flipping μ corresponds to a reversal of μ�. Similarly, reordering
the virtual edges in the skeleton of a P-node μ has the effect that the virtual edges in
its dual S-node μ� are restacked, yielding a different cycle. Note that this cycle is again
directed since the virtual edges in μ are still all oriented in the same direction. 	


This shows that the SPQR-tree of the dual graph with respect to a fixed embedding
can be used to represent the dual graphs with respect to all possible planar embeddings
by allowing reversal and restacking operations. We say that an SPQR-tree represents a
dual graph if it can be obtained by applying reversal and restacking operations.

Theorem 3. The dual SPQR-tree of a biconnected planar graph G represents exactly
the dual graphs of G.

When we are not interested in the embedding of the dual graph but only in its struc-
ture, we may also allow the usual SPQR-tree operations, that is flipping R-nodes and
reordering the edges in P-nodes. Note that the reversal operation applied to P-nodes
only changes the embedding of the graph and not its structure. Moreover, reversing a
Q-node does not change anything and the reversal of an S-node can be seen as a special
way of restacking it. This observation can be used to show the following lemma.

Lemma 3. Let G be a biconnected planar graph with embedding G and let G� be its
dual graph with SPQR-tree T �. Let T �

ε be the SPQR-tree obtained from T � by reversing
the orientation of the virtual edge ε in T � and let G�

ε be the graph it represents. There
exists an embedding Gε of G such that G�

ε is the dual graph of G with respect to Gε.

Sketch of Proof. Let μ be the node in T � containing the virtual edge ε and let corr(ε) =
μ′ be the neighbor of μ corresponding to ε. Removing the edge {μ, μ′} splits T � into
two subtrees T �

μ and T �
μ′ . One can show that the reversal of all nodes in one of these

subtrees (no matter which one) yields an SPQR-tree T �
μμ′ representing G�

ε . Then it
follows by Lemma 2 and the observation above, that G�

ε is a dual graph of G. 	

Lemma 2 and Lemma 3 together yield the following theorem.
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Theorem 4. For two SPQR-trees T1 and T2, the following three statements are equiv-
alent. 1. T1 and T2 represent the same set of dual graphs. 2. T1 and T2 can be trans-
formed into each other using reversal and restacking operations. 3. T1 and T2 can be
transformed one into the other by choosing orientations for the virtual edges and by
restacking S-node skeletons.

5 Equivalence Relation

We define the relation ∼ on the set of planar graphs as follows. Two graphsG1 and G2

are related, i.e., G1 ∼ G2, if and only if G1 and G2 can be embedded such that they
have the same dual graph G�

1 = G�
2. We call ∼ the common dual relation.

Theorem 5. The common dual relation ∼ is an equivalence relation on the set of bi-
connected planar graphs. For a biconnected planar graph G, the set of dual graphs of
G is an equivalence class with respect to ∼.

Proof. Clearly, ∼ is symmetric and reflexive. For the transitivity let G1, G2 and G3 be
three biconnected planar graphs such that G1 ∼ G2 and G2 ∼ G3. Let further T �

1 , T �
2

and T �
3 be the dual SPQR-trees representing all duals of G1, G2 and G3, respectively.

Due to G1 ∼ G2 there exists a graph G that is represented by T �
1 and T �

2 . Thus, T �
1

and T �
2 can both be transformed into the SPQR-tree representing G using reversal and

restacking operations, which shows that they represent the same set of duals (Theo-
rem 4). The same argument shows that G2 and G3 have the same set of dual graphs.
Thus, also G1 and G3 have exactly the same set of dual graphs, which yieldsG1 ∼ G3.

For the second statement, letC� be the set of dual graphs ofG. Clearly, forG�
1, G

�
2 ∈

C� the graph G is a common dual, thus G�
1 ∼ G�

2. On the other hand, let G�
1 ∈ C� and

G�
1 ∼ G�

2. By the above argument, G�
1 and G�

2 have the same set of dual graphs. Thus
G is a dual graph of G�

2 yielding G�
2 ∈ C�. 	


Theorem 5 shows that the equivalence class C of a biconnected planar graph G with
respect to the common dual relation is exactly the set of dual graphs that is represented
by the SPQR-tree T of G. The dual SPQR-tree T � of G also represents a set of dual
graphs forming the equivalence class C�. We say that C� is the dual equivalence class
of C. Given an arbitrary graph G ∈ C and an arbitrary graph G� ∈ C�, graphs G and
G� can be embedded such that they are dual to each other, since C� contains exactly
the graphs that are dual to G. The problems MUTUAL PLANAR DUALITY and GRAPH

SELF-DUALITY can be reformulated in terms of the equivalence classes of the common
dual relation. Two biconnected planar graphs are a YES-instance of MUTUAL PLANAR

DUALITY if and only if their equivalence classes are dual to each other. A biconnected
planar graph is graph self-dual if and only if its equivalence class is dual to itself. This in
particular means that either each or no graph in an equivalence class is graph self-dual.

Although it might seem quite natural that the common dual relation is an equivalence
relation, this is not true for general planar graphs, see Figure 3.

Theorem 6. The common dual relation ∼ is not transitive on the set of planar graphs.
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G1 G2 G2 G3

(a) (b) (c) (d)

Fig. 3. The graphs G1 (a) and G2 (b) have a common dual and the graphs G2 (c) and G3 (d) have
a common dual. The graphs G1 and G3 do not have a common dual.

6 Solving MUTUAL PLANAR DUALITY for Biconnected Graphs

The problem MUTUAL PLANAR DUALITY can be rephrased as follows.

Corollary 1. Two biconnected planar graphs G1 and G2 with SPQR-trees T1 and T2
form a YES-instance of MUTUAL PLANAR DUALITY if and only if T2 and the dual
SPQR-tree T �

1 represent the same dual graphs.

In the following we show that two SPQR-trees represent the same set of dual graphs if
and only if they are dual isomorphic (we define this in a moment). Then we show that
testing the existence of such an isomorphism reduces to testing graph isomorphism for
planar graphs. Figure 4(a) sketches this strategy.

For two graphsG andG′ with vertices V (G) and V (G′) and edgesE(G) andE(G′),
respectively, a map ϕ : V (G) → V (G′) is a graph isomorphism if it is bijective and
{u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(G′) (for directed graphs, the direction
of the edges is disregarded). A graph isomorphism ϕ induces a bijection betweenE(G)
and E(G′) and we use ϕ(e) for e ∈ E(G) to express this bijection. As we consider
undirected edges, fixing ϕ(·) only for the edges is not sufficient. A dual SPQR-tree
isomorphism between two SPQR-trees T and T ′ consists of several maps. First, a map
ϕ : V (T ) −→ V (T ′) such that

(I) ϕ is a graph isomorphism between T and T ′; and
(II) for each node μ ∈ V (T ), the node ϕ(μ) ∈ V (T ′) is of the same type.

Second, a map ϕμ : V (skel(μ)) −→ V (skel(ϕ(μ))) for every R-node μ in T such that
(III) ϕμ is a graph isomorphism between skel(μ) and skel(ϕ(μ)); and
(IV) corr(ϕμ(ε)) = ϕ(corr(ε)) holds for every virtual edge ε in skel(μ).

isomorphic?GT �
1

G1

T1G�
1

T �
1

SPQRdual

dualSPQR
same duals?

dual isomorphic?

G2

T2

SPQR

dual?

⇐
⇒

⇔

skeleton graph

GT2

skeleton graph

⇔

≡
Lem

. 1 Cor. 1

Lem. 4

Lem. 6

(a) (b)

ε

twin(ε)
twin(ϕμ(ε))

ϕμ(ε)

corr(ε)

corr corr

μ ϕ(μ)

ϕ(corr(ε)) =
corr(ϕμ(ε))

ϕμ

ϕ

≡
Prop

. IV

Fig. 4. (a) Overview of our strategy. (b) Commutative diagram illustrating Property IV
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(s) (p) (q) (r)

Fig. 5. The subgraphs Hμ of the skeleton graph depending on the type of the node μ. The small
black vertices are the attachment vertices.

If there is a dual SPQR-tree isomorphism between T and T ′, then we say that T and
T ′ are dual isomorphic. Note that Property IV (illustrated in Figure 4(b)) is a natural
requirement and one would usually require it also for S-nodes (for P-nodes it does not
make sense since every permutation is an isomorphism on its skeleton). However, not
requiring it for S-nodes implicitly allows restacking their skeletons. As the graph iso-
morphisms ϕμ(·) do not care about the orientation of virtual edges, it is also implicitly
allowed to reverse them. We get the following lemma showing that this definition of
dual SPQR-tree isomorphism is well suited for our purpose.

Lemma 4. Two SPQR-trees represent the same set of dual graphs if and only if they
are dual isomorphic.

We reduce dual SPQR-tree isomorphism testing to graph isomorphism testing for planar
graphs, which can be solved in linear time [8]. We define the skeleton graph GT of an
SPQR-tree T as follows. For each node μ in T there is a subgraph Hμ in GT and for
each edge {μ, μ′} in T there is an edge connecting Hμ and Hμ′ . In the following we
describe the subgraphs Hμ for the cases that μ is an S-, P-, Q-, or R-node and define
attachment vertices that are incident to the edges connectingHμ to other subgraphs.

If μ is an S- or P-node, the subgraphHμ contains only one attachment vertex vμ and
all subgraphs representing neighbors of μ are attached to vμ. To distinguish between S-
and P-nodes, small non-isomorphic subgraphs called tags are attached to vμ, see Fig-
ure 5(s) and (p). If μ is a Q-node, thenHμ is a single attachment vertex, see Figure 5(q).
Note that μ is a leaf in T and thus Hμ is also a leaf in GT . If μ is an R-node, Hμ is
the skeleton skel(μ), where additionally every virtual edge ε is subdivided by an attach-
ment vertex vε, see Figure 5(r) for an example. The subgraph Hcorr(ε) stemming from
the neighbor corr(ε) of μ is attached to Hμ over the attachment vertex vε.

Lemma 5. The skeleton graph is planar and can be computed in linear time.

Lemma 6. Two SPQR-trees are dual isomorphic if and only if their skeleton graphs
are isomorphic.

Sketch of Proof. Let ϕ together with ϕμ1 , . . . , ϕμk
be a dual SPQR-tree isomorphism

between the SPQR-trees T and T ′. We show how this induces a graph isomorphism ϕG

between the skeleton graphs GT and GT ′ . If μ is an S-, P- or Q-node, then its corre-
sponding subgraph in Hμ only contains a single attachment vertex vμ. Since ϕ(μ) is of
the same type (Property II), the subgraphHϕ(μ) also contains a single attachment vertex
vϕ(μ) and we set ϕG(vμ) = vϕ(μ). For S- and P-nodes we additionally map their tags to
each other. If μ is an R-node, the map ϕμ is a graph isomorphism between skel(μ) and
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skel(ϕ(μ)) (Property III). Thus, it induces a graph isomorphism betweenHμ andHϕ(μ)

since these subgraphs are obtained from skel(μ) and skel(ϕ(μ)), respectively, by sub-
dividing each virtual edge. Finally, ϕG respects the edges between attachment vertices
of different subgraphs, since ϕmaps adjacent nodes to each other (Property I) and since
these edges connect the correct attachment vertices of the subgraphs (Property IV).

We only sketch the opposite direction. Assume ϕG is a graph isomorphism between
GT and GT ′ . As bridges are mapped to bridges, we directly get an isomorphism ϕ
between the trees T and T ′. As leaves have to be mapped to leaves, Q-nodes are mapped
to Q-nodes. Moreover, the tags ensure that other nodes are mapped to nodes of the same
type. Thus, Properties I and II are satisfied. Moreover, for every R-node μ in T , ϕG

induces an isomorphism ϕμ between μ and ϕ(μ) satisfying Properties III and IV. 	

Following the outline given in Fig. 4(a) thus reduces MUTUAL PLANAR DUALITY for
biconnected graphs to planarity testing for planar graph, which is linear-time solvable [8].

Theorem 7. MUTUAL PLANAR DUALITY is linear-time solvable for biconnected
graphs.

Corollary 2. GRAPH SELF-DUALITY is linear-time solvable for biconnected graphs.
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Abstract. The NP-hard Subset Interconnection Design problem
is motivated by applications in designing vacuum systems and scalable
overlay networks. It has as input a set V and a collection of subsets
V1, V2, . . . , Vm, and asks for a minimum-cardinality edge set E such that
for the graph G = (V,E) all induced subgraphs G[V1], G[V2], . . . , G[Vm]
are connected. It has also been studied under the nameMinimum Topic-

Connected Overlay. We study Subset Interconnection Design

in the context of polynomial-time data reduction rules that preserve
optimality. Our contribution is threefold: First, we point out flaws in
earlier polynomial-time data reduction rules. Second, we provide a fixed-
parameter tractability result for small subset sizes and tree-like output
graphs. Third, we show linear-time solvability in case of a constant num-
ber m of subsets, implying fixed-parameter tractability for the param-
eter m. To achieve our results, we elaborate on polynomial-time data
reduction rules (partly “repairing” previous flawed ones) which also may
be of practical use in solving Subset Interconnection Design.

1 Introduction

We study relevant tractable cases of the following NP-complete decision problem:

Subset Interconnection Design (SID)
Input: A hypergraph H = (V,F), k ∈ N.
Question: Is there a graph G = (V,E) such that |E| ≤ k and for
each F ∈ F the induced subgraph G[F ] is connected?

Throughout this work, we refer to graphs G in which G[F ] is connected for
each F ∈ F as solutions. Solutions with a minimum number of edges are called
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optimal. Although we present our results for the decision version of the problem,
our positive algorithmic results can be easily adapted to its optimization version.

SID has applications in the design of vacuum systems [5, 6], in the design of
scalable overlay networks [2, 11, 14], in the design of reconfigurable interconnec-
tion networks [7, 8], and in inferring a most likely social network [1]. Indeed, the
respective research communities seemed largely unaware of each other’s work, for
instance leading to multiple NP-hardness proofs. Du [4] seemed to be the first to
have formally defined the problem and claimed NP-hardness; to the best of our
knowledge, the first published NP-hardness proof is due to Du and Miller [6]. SID
has been independently studied under the name Minimum Topic-Connected

Overlay by the “scalable overlay networks community” [2, 11, 14] and under
the name Interconnection Graph Problem by the “reconfigurable inter-
connection systems community” [7, 8]. Moreover, the “social network inference
community” [1], who additionally imposes edge costs, refers to this more general
problem as Network Inference. The term “topic-connected” in Minimum

Topic-Connected Overlay refers to the desired property of overlay networks
that agents interested in some particular topic should be able to inform each
other about updates concerning this topic without involving other agents [14].

Our main focus is on the problem-specific parameters “size d := maxF∈F |F |
of the largest hyperedge” and “number m of hyperedges” in the given hyper-
graph H . We perform a parameterized complexity analysis with respect to these
parameters. Notably, we always have d ≤ k + 1, where k is the number of edges
of the constructed solution. In particular, our core working machinery is the de-
velopment of numerous polynomial-time data reduction rules, thereby extending
and improving some previous work. We use n to denote the number |V | of ver-
tices in the input hypergraph and |H | to denote

∑
F∈F |F |.

Previous Results. As mentioned before, SID has been independently studied
in different communities. Several NP-hardness proofs have appeared [2, 6, 7].1

NP-hardness even holds for hypergraphs with d = 3 [8, 11], while d ≤ 2 al-
lows for polynomial-time solvability [11]. There also has been intense study of
the polynomial-time approximability, providing various logarithmic-factor ap-
proximation algorithms [1, 2, 11] and inapproximability results (implying that
logarithmic-factor approximation algorithms are optimal) [1, 11]. The currently
best exact algorithm for SID has a running time of O(n2k/4k + n2) [11]. In
addition, in a series of papers it has been shown that SID can be solved in
polynomial time if 2 ≤ m ≤ 4 [4, 15, 16]. A variant of SID where the edges
incur costs and where the solution is restricted to be a tree has been studied
in the context of communication network design; three variations of this tree-
construction problem have been shown polynomial-time solvable [12]. Finally,
we mention in passing that in the context of overlay networks it is of specific

1 The reduction in [2] actually only shows NP-hardness of the problem aiming to
minimize the maximum degree of a solution.
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interest to search for solutions with small maximum and small average vertex
degree [2, 14]; the latter is achieved by SID.

Our Contributions. We start by revealing a serious bug in “plausible” data re-
duction rules (two very similar rules) used in previous work [8, 11], constructing
a counterexample showing their incorrectness. Based on this, we provide refined
and completely new data reduction rules, assuring their correctness and effec-
tiveness. Almost all of our data reduction rules work in a parameter-independent
fashion. Making decisive use of the developed data reduction rules, we show that
SID can be solved in dO(df) · poly(|H |) time, where f denotes the size of a mini-
mum feedback edge set of an optimal solution G, that is, the minimum number
of edges whose removal makes G acyclic. Our result shows that SID becomes
tractable if the solution is required to be almost a tree (compare this with the
tree requirement in related work [12]). Furthermore, a simple calculation shows
that whenever f ≤ (n− 1)/9d the exponential term in our algorithm is smaller
than the one in the O(n2k/4k + n2)-time algorithm given by Hosoda et al. [11].
In case that d ≤ 4 we further show that SID can be reduced in polynomial time
to an equivalent instance of O(f) vertices, known as “polynomial-size problem
kernel” in parameterized algorithmics. Finally, improving and generalizing pre-
vious work [4, 15, 16], we show that SID can be solved in linear time if the input
hypergraph contains only a constant number of hyperedges. This implies that
SID is fixed-parameter tractable with respect to the parameter m. Due to lack
of space, most proofs are deferred to a full version of the paper.

2 Preliminaries

The concept of parameterized complexity was pioneered by Downey and Fel-
lows [3] (see also [9, 13]). A parameterized problem is a language L ⊆ Σ∗ ×Σ∗,
where Σ is an alphabet. The second component is called the parameter of the
problem. Typically, the parameter or the “combined” ones are non-negative in-
tegers. A parameterized problem L is fixed-parameter tractable (fpt) if there is
an algorithm that decides whether (x, k) ∈ L in g(k) · |x|O(1) time, where g is
an arbitrary computable function depending only on k. A core tool in the devel-
opment of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction [10]. Here, the goal is to transform a given problem instance (x, k) in
polynomial time into an equivalent instance (x′, k′) with parameter k′ ≤ k such
that the size of (x′, k′) is upper-bounded by some function g only depending on k.
If this is the case, we call the instance (x′, k′) a (problem) kernel of size g(k).

The data reduction is usually presented as a series of reduction rules, that
is, polynomial-time algorithms that take as input an instance of some decision
problem and also produces one as output. A reduction rule is correct if for each
input instance I, the corresponding output instance of the rule is a yes-instance
if and only if I is a yes-instance. Search tree algorithms can be described by
branching rules that reduce one instance of a problem to several instances of the
same problem; a branching rule is correct if the original instance is a yes-instance
if and only if at least one of the constructed instances is a yes-instance.
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Let V be a set and F be a family of subsets of V . We call H = (V,F) a
hypergraph with vertex set V and hyperedge set F . Unless stated otherwise, we
assume all hypergraphs to not contain singleton hyperedges, empty hyperedges
or multiple copies of the same hyperedge since they are not meaningful for SID,
and searching for and removing them can be done without increasing our running
times. We call v ∈ V and F ∈ F incident if v ∈ F . We denote by F(v) the set
of all hyperedges that are incident with v. If u, v ∈ V and F(v) ⊆ F(u) then we
say that u covers v. Vertices that cover each other are called twins ; a maximal
set of twins is called twin class. The subhypergraph induced by V ′ is the hyper-
graph H [V ′] := (V ′,F ′) where F ′ = {F ∈ F | F ⊆ V ′}. By removing a vertex v
fromH , we mean taking the hypergraphH ′ = (V \{v}, {F \{v} | F ∈ F}). A hy-
perwalk is an alternating sequence of vertices and hyperedges starting and ending
with a vertex and such that succeeding elements are incident with each other. A
hypergraph is connected if there is a hyperwalk between every pair of vertices.

For graphs G = (V,E) with vertex set V and edge set E, we use E(G) to
denote the edge set E of graph G. We denote by G[V ′] the subgraph of G induced
by V ′. We also use G−V ′ as a shorthand for G[V \V ′]. The feedback edge set of
a graph G is a minimum-size set of edges whose removal makes G a forest. If G
is connected, then the size of a feedback edge set is |E| − |V |+ 1.

3 Fundamental Observations

In this section, we show that a previously proposed data reduction rule for SID
is incorrect. We also show some properties of SID and some data reduction rules
that are used in our algorithms.

A very natural approach to identify edges of optimal solutions is to look for
vertices u and v such that u covers v, that is, F(v) ⊆ F(u). The following shows
that degree-one vertices of the solution are adjacent to vertices that cover them.

Observation 1. If the hypergraph H = (V,F) has a solution G such that
some u ∈ V has only one neighbor v in G, then v covers u.

It is thus tempting to devise a reduction rule that adds an edge between such
vertices: creating a degree-one vertex should be optimal since every vertex needs
at least one incident edge. Indeed, such a reduction rule was proposed for vertex
pairs u, v that are twins, that is, they are in the same hyperedges [8], or where
one covers the other [11]. The variant of these reduction rules that is applicable
less often reads as follows.

Rule 1. If vertices u and v are twins, that is F(u) = F(v), then remove u
from H and decrease k by one.

Unfortunately, this rule is not correct, as a counterexample shows.

Lemma 1. There is a yes-instance (H = (V,F), k) containing twins u and v
such that Rule 1 applied to u and v yields a no-instance.
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Proof. Let f ≥ 3 be an arbitrary integer. Consider the hypergraph H = (V,F),
with vertex set V = {u, v, a1, . . . , af , b1, . . . , bf} and hyperedge set F which is
the union of the following sets of hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , f}}, F2 = {{u, v, ai, bi} | i ∈ {1, . . . , f}},
F3 = {{u, v, ai, bi, aj} | i, j ∈ {1, . . . , f}, i �= j}, and
F4 = {{u, v, ai, bi, bj} | i, j ∈ {1, . . . , f}, i �= j}.

Note that the graph G = (V,E) with E := F1 ∪ {{ai, u}, {bi, v} | i ∈ {1, . . . , f}}
is a solution for H containing 3f edges. Hence, (H, 3f) is a yes-instance.

Now, let (H ′ = (V ′,F ′), 3f−1) be an instance that results from (H, 3f) by ap-
plying Rule 1 to u and v, that is, removing u from H and decreasing the solution
size by one. Then, V ′ = V \ {u} and F ′ consists of the following hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , f}}, F ′2 = {{v, ai, bi} | i ∈ {1, . . . , f}},
F ′3 = {{v, ai, bi, aj} | i, j ∈ {1, . . . , f}, i �= j}, and
F ′4 = {{v, ai, bi, bj} | i, j ∈ {1, . . . , f}, i �= j}.

We show that every solution forH ′ has at least 3f edges and, thus, (H ′, 3f−1)
is a no-instance. First, every solution for H ′ contains the f edges corresponding
to the size-two hyperedges of F1. Furthermore, due to the hyperedges in F ′2, for
each i ∈ {1, . . . , f}, either {v, ai} or {v, bi} is in any solution. By the symmetry
between ai and bi in the created hypergraph, assume without loss of generality
that an optimal solution contains the edge {v, bi} for all i ∈ {1, . . . , f}. Now,
let G′ = (V ′, E′) be such a solution for H ′ and let A1 = {ai | {v, ai} /∈ E′} be
the set of ais that are not adjacent to v in G′ and let A2 denote the remain-
ing ais. Now if A1 = ∅, then G′ contains at least 3f edges. We show that in case
A1 �= ∅ the graph G′ also has at least 3f edges. Assume that G′ is optimal and
that every optimal solution has at least g > 0 vertices in A1. For every hyper-
edge F = {v, ai, bi, aj} with aj ∈ A1 and i ∈ {1, . . . , f} \ {j}, G′ has an edge
between aj and {v, ai, bi} since G′[F ] is connected. Note that if G′ contains the
edge {bi, aj}, then we can replace this edge by {v, aj}: The hyperedge F is the
only hyperedge that contains {bi, aj} and does not already induce a connected
subgraph. Clearly, G′[F ] can also be made connected by adding {v, aj} instead.
This implies an optimal solution with g − 1 vertices in A1, contradicting our
choice of g. Hence, G′ contains no edges {bi, aj} with i �= j. Consequently, in
order to make each {v, ai, bi, aj} ∈ F ′4 with aj ∈ A1 connected, there is an edge
between ai and aj .

Hence, G′ has g · (f −g) edges between A1 and A2,
(
g
2

)
edges between vertices

in A1 and another f − g edges between v and A2. Altogether the total number
of edges in G′ is thus at least 2f + g · (f − g) +

(
g
2

)
+ f − g ≥ 3f . This implies

that (H ′, 3f − 1) is a no-instance. 	


With some additional conditions, rules similar to Rule 1 are correct (Rules 2
to 4, 6, and 8 below). First, if a vertex u is adjacent to some vertex v covering u
in an optimal solution, then there is an optimal solution that shifts some or all
other edges incident with u to v.
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Lemma 2. Let u, v be two vertices in a hypergraph H with v covering u. If H
has an optimal solution G containing the edge {u, v}, then H also has an optimal
solution with u being adjacent only to v.

The above lemma immediately implies the following reduction rule.

Rule 2. If hypergraph H contains vertices u, v such that v covers u and there
is an optimal solution G containing the edge {u, v}, then remove u from H and
decrease k by one.

Note that the correctness of Rule 2 together with Lemma 1 implies that there
are instances in which twins or vertices that cover each other are not adjacent
in any optimal solution.

In the counterexample to Rule 1, there are only two twins and they are con-
tained in hyperedges of size five, that is, the size-five hyperedges containing these
two vertices have three other “unrelated” vertices. In the following, we show that
this is tight, that is, if in each hyperedge that contains some u, all except two
unrelated vertices cover u, then the reduction rule is correct.

Rule 3. If there are vertices u and v1, . . . , vq such that F(u) ⊆ F(vi) for every
i ∈ {1, . . . , q} and for each hyperedge F ∈ F(u) we have |F | ≤ q + 3, then
remove u from H and decrease k by one.

Lemma 3. Rule 3 is correct and can be applied exhaustively in O(n · |H |) time.

Proof (Sketch). Let Q = {v1, . . . , vq} and N the set of neighbors of u in an
optimal solution G. If N ∩ Q �= ∅ then the correctness follows from Rule 2.
Otherwise, if N contains a neighbor w of some v ∈ Q in G, then removing {u,w}
and adding {u, v} yields another optimal solution and we can apply Rule 2. If
N contains no neighbor of any v ∈ Q we obtain |F ∩ N | ≤ 1 for all F ∈ F(u)
because of the size bound on F . Hence, removing all edges incident with u and
adding to u a single edge to a vertex in Q does not disconnect any F ∈ F(u).

The running time proof is deferred to a full version of the paper. 	


As a corollary of Lemma 3, we also obtain correctness of the following rule since
it is a special case of Rule 3. This rule will be useful in the next section.

Rule 4. If there are two vertices u and v such that F(u) ⊆ F(v) and |F | ≤ 4
for each hyperedge F ∈ F(u), then remove u from H and decrease k by one.

Note that the condition |F | ≤ 4 in Rule 4 is also tight in the sense that if u is
incident with hyperedges of size at least five, this rule is not correct (Lemma 1).

4 Data Reduction Rules for Sparse Solutions

In this section, we present a set of reduction rules whose aim is to remove parts
of the instance where optimal solutions can be identified in polynomial time. In
particular, we aim at finding structures that either produce tree-like parts or
long degree-two paths in the solution. We stress that our data reduction rules
are applicable regardless of the structure of an optimal solution. We merely use
the size of its feedback edge set to provide formal performance guarantees.
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4.1 Problem Kernel for f and d ≤ 4

We now describe how we can remove all but O(f) vertices from a SID instance
with d ≤ 4 in O(n ·m3) time by using Rule 4 and an additional reduction rule.
Basically, the parameter f upper-bounds the number of vertices that are in cycles
and have degree at least three, while Rule 4 ensures that there are no degree-one
vertices in solutions. To get an upper bound on the number of vertices, we also
have to deal with long paths. This is the purpose of Rule 5, which is also needed
in Section 4.2 to deal with larger hyperedges. Hence, this rule is more general
than needed for d ≤ 4.

Rule 5. Let (H = (V,F), k) be an instance of SID. If H contains a vertex set
P := {p0, . . . , p2d} with incident hyperedge set F ′ :=

⋃
p∈P F(p) such that

1. no pi ∈ P covers any pj ∈ P with j �= i,
2. for each F ∈ F ′ we have F ∩ P = {pi, . . . , pj} for some 0 ≤ i ≤ j ≤ 2d,
3. for each F ∈ F ′ with F ∩{p0, p2d} = ∅, and for every vertex v ∈ F \P , there

is a vertex p ∈ P that covers v, and
4. there is no hyperedge F ∈ F such that F ∩ P = {pi} for any 0 < i < 2d,
then for every F ∈ F ′ with F ∩{p0, p2d} = ∅, remove all vertices in F \P from H
and decrease k by their number. Furthermore, remove the vertices p2, . . . , p2d−2

from H and decrease k by 2d− 2.

Intuitively, Conditions 1 and 2 indicate that a solution for such a hypergraph
contains a long path and Condition 3 ensures that all vertices not in the path
can be attached to it in a simple way.

Next, we give two observations that we need in the correctness proof and in
the analysis of the running time of Rule 5. The first observation is about the
structure of the hyperedges along the presumed path containing P .

Observation 2. Let H be a hypergraph and P ⊆ V as in Rule 5. For every 0 <
i < 2d there is a hyperedge F+

i such that pi−1 /∈ F+
i and {pi, pi+1} ⊆ F+

i and
also a hyperedge F−i such that {pi−1, pi} ⊆ F−i and pi+1 /∈ F−i . Moreover,
there is a hyperedge F−0 such that F−0 ∩ P = {p0} and a hyperedge F+

2d such
that F+

2d ∩ P = {p2d}.

The second observation provides a lower bound for the number of edges in solu-
tions for connected subhypergraphs.

Observation 3. Let H = (V,F) be a hypergraph and let G be a solution for H .
If the subhypergraph H [V ′] induced by a vertex subset V ′ ⊆ V is connected,
then |E(G[V ′])| ≥ |V ′| − 1.

Using these observations we can prove the correctness of Rule 5.

Lemma 4. Rule 5 is correct and it is possible to find an application of Rule 5
or to decide that it does not apply to the hypergraph in O(m3d3) time.

We now derive an upper bound on the number of vertices in reduced instances.
As mentioned before, we use Rule 5 in Section 4.2, where we also need a similar
upper bound on the number of vertices. However, the preconditions of Rule 5
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will be satisfied here by Rule 4 and later by a different rule. Hence, we introduce
a “cleared”-notion for hypergraphs that will be ensured by these rules. To state
our results conveniently, we first introduce another definition.

Definition 1. The 2-core of a graph G is the uniquely defined induced subgraph
of G with maximum number of vertices and minimum vertex-degree two.

Definition 2. We say that a hypergraph H = (V,F) is cleared if there is an
optimal solution G for H such that each vertex of degree at least two is in the
2-core of G and, furthermore, for each P := {p0, . . . , p2d} with P ⊆ V and
F ′ :=

⋃
p∈P F(p) that satisfy Conditions 1, 2, and 3 of Rule 5, it holds that H

and P also satisfy Condition 4.

It turns out that Rule 4 “clears hypergraphs”:

Lemma 5. Let H = (V,F) be a hypergraph with d ≤ 4 that is reduced with
respect to Rule 4. Then, H is cleared.

We now bound the size of reduced instances. We also use this bound in Section 4.2
and, hence, prove it in a slightly more general form than needed for d ≤ 4.

Lemma 6. Let (H, k) be a yes-instance of SID such that H is connected,
cleared, and reduced with respect to Rule 5. Then, there is a solution G = (V,E)
for (H, k) such that the 2-core of G has at most (9d − 1)(f − 1) vertices and,
hence, at most 9d · f edges.

Using Lemmas 5 and 6, and combining them with the observation that hyper-
graphs that are reduced with Rule 4 have solutions without degree-one vertices,
we now obtain that exhaustively applying Rules 4 and 5 yields a polynomial-size
problem kernel for SID parameterized by the parameter f , when d ≤ 4.

Theorem 1. An instance of SID with d ≤ 4 can be reduced to an equivalent
one with at most 35(f − 1) vertices in O(n ·m3) time.

4.2 A Fixed-Parameter Algorithm for f and d

Our polynomial-time data reduction in the last section does not generalize easily
to arbitrary d, but, using an additional reduction rule, we can obtain the same
vertex-bound of the 2-core of a solution. However, many degree-one vertices may
still remain and it seems unclear how to remove them for d ≥ 5.

Nevertheless, using the bounded 2-core in solutions, we obtain a branching
algorithmwith running time O(dO(d·f)·m2+n·m3·d3). The algorithm first applies
Rule 5 and Rule 6 (below) to simplify the structure of the solution that we are
looking for. Then, we apply a branching rule that branches into O(d2) cases and
finds at least one of the edges in the 2-core of a solution. If the branching rule
does not apply, then an optimal solution can be found in polynomial time.

First, to obtain the bound on the 2-core, we replace Rule 4 with Rule 6 to
clear the input hypergraph and to make Lemma 6 applicable.
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Rule 6. Let H = (V,F) be a hypergraph and {u, u1, . . . , u�} ∈ F such that u
covers each ui. Then, remove the vertices u1, . . . , u� from H and decrease k by �.

We use Rule 6 to replace Rule 4 in clearing hypergraphs.

Lemma 7. Let H = (V,F) be a hypergraph that is reduced with respect to
Rule 6. Then, H is cleared.

Now, Lemma 6 is applicable to hypergraphs that are reduced with respect to
Rule 6 giving us that there is a solution with at most 9d · f edges in the 2-core.
Based on this lemma, we devise a branching algorithm for the parameter (d, f).
This algorithm creates a search tree where at each node of the search tree the
current instance consists of a hypergraph H , a partial solution G, and an in-
teger k′. The task is to find a solution G′ such that G′ is a supergraph of G,
all edges of G are within the 2-core of G′, and the 2-core of G′ has at most k′

edges more than G. In order to obtain a search tree whose size depends only
on d and f , we ensure that the search tree has depth at most 9d · f and that the
algorithm branches into at most

(
d
2

)
cases in each step.

In the following, we assume that G and H are reduced with respect to Rule 6.

Branching Rule 1. Let F be a hyperedge of H such that G[F ] is disconnected
and let F0 ⊆ F denote the vertices in F that have degree zero in G. Furthermore,
G[F ] cannot be made connected by adding for each u ∈ F0 an edge between u
and some vertex v ∈ F \ F0 that covers u. Then, branch into all possibilities to
add an edge to G[F ], decreasing k by one.

Next, we show that, if Branching Rule 1 does not apply to any vertex, then we
can solve the instance by greedily assigning the remaining vertices.

Lemma 8. Let H be a hypergraph and let G be a graph such that there is a
solution for H that is a supergraph of G and Branching Rule 1 does not apply
to H and G. Then, an optimal solution for H can be computed in O(n ·m) time.

Combining all of the above, we arrive at the main result of this section.

Theorem 2. SID can be solved in O(dO(d·f) ·m2 + n ·m3 · d3) time.

5 Data Reduction for Instances with Few Hyperedges

In this section, we show that SID is fixed-parameter tractable with respect to
the number m of hyperedges. A previous fixed-parameter tractability result for
this parameter relied on Rule 1 [11, Theorem 8] and is therefore incorrect. In or-
der to restore this result, we need a slightly more involved rule whose correctness
proof makes use of the following upper bound on the number of edges needed in
the solution.

Lemma 9. Every instance with k ≥
(
2m

2

)
+ n is a yes-instance.
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The upper bound provided by Lemma 9 grows exponentially in the number of
hyperedges. For many purposes, it would be practical to replace this exponential
dependence by a polynomial function. However, we note that there are instances
that require a solution with at least n+ 2Ω(m) edges (proof deferred).

Lemma 9 directly yields the following reduction rule.

Rule 7. If k ≥
(
2m

2

)
+ n, then answer “yes”.

The following rule removes vertices from large twin classes.

Rule 8. Let H be an instance that is reduced with respect to Rule 7. If there
is a twin class T in H with |T | > 4m + 7 · 2m + 1, then remove an arbitrary
vertex v ∈ T from H and decrease k by one.

To prove the correctness of Rule 8, we need to show that there is a solution G
that has the following property concerning its low-degree vertices.

Lemma 10. Let H = (V,F) be a hypergraph. There is a solution G = (V,E)
such that for each twin class T of H the graph G has
1. at most one vertex t ∈ T that has degree-one neighbors, and
2. at most one degree-two vertex t′ ∈ T .
Now, the main idea for the proof of correctness of Rule 8 is to show that a
solution G with k <

(
2m

2

)
+ n edges for a hypergraph H cannot contain too

many vertices of degree at least three. As a consequence, at least one vertex of T
has degree one in G and can be removed safely.

Exhaustive application of Rule 7 and Rule 8 yields a problem kernel for SID
parameterized by the number m of hyperedges. Moreover, this kernel can be
computed in linear time.

Theorem 3. An instance of SID can be reduced to an equivalent one of size at
most O(8m ·m) in O(|H |) time.

6 Conclusion

Our work leads to a number of interesting tasks for future research: We left
open the existence of a polynomial-size problem kernel for Subset Intercon-

nection Design parameterized by the number m of hyperedges; we conjecture
that there is none, however. Further, we did not resolve whether SID is fixed-
parameter tractable with respect to the feedback edge set size of the solution
alone. It would also be interesting to significantly improve on the straightfor-
ward exponential upper bound 2O(n2) when solving Subset Interconnection

Design parameterized by the number n of vertices. It seems also promising to
consider data reduction for the variant of Subset Interconnection Design

that asks to minimize the maximum degree instead of the average degree (see
Onus and Richa [14]). It is furthermore of practical interest to deal with edge
weights for the constructed network [12]; our methods only cover the unweighted
case. Given the numerous applications, an in-depth investigation of all relevant
parameters motivated by real-world instances, that is, performing a parame-
ter analysis for real-world instances, is promising from a practical and from a
theoretical side.
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Abstract. We introduce a method of applying Myhill-Nerode methods
from formal language theory to hypergraphs and show how this method
can be used to obtain the following parameterized complexity results.

– Hypergraph Cutwidth (deciding whether a hypergraph on n ver-
tices has cutwidth at most k) is linear-time solvable for constant k.

– For hypergraphs of constant incidence treewidth (treewidth of the
incidence graph), Hypertree Width and variants cannot be solved
by simple finite tree automata. The proof leads us to conjecture that
Hypertree Width is W[1]-hard for this parameter.

1 Introduction

This work extends the graph-theoretic analog [8] of the Myhill-Nerode charac-
terization of regular languages to colored graphs and hypergraphs. Thus, we
provide a method to derive linear-time algorithms (or to obtain evidence for
intractability) for hypergraph problems on instances with bounded incidence
treewidth (treewidth of the incidence graph). From a parameterized complexity
point of view [7], incidence treewidth is an interesting parameter, since it can be
bounded from above by canonical hypergraph width measures, like the treewidth
of the primal graph [14] and the treewidth of the dual graph [18].

Applying Myhill-Nerode methods to hypergraphs, we obtain various param-
eterized complexity results, which we summarize in the following. Besides these
results for hypergraph problems, our extension of the Myhill-Nerode theorem
to colored graphs likely applies to other problems, since colored or annotated
graphs allow for more realism in problem modeling and often arise as subprob-
lems when solving pure graph problems. It is also straightforward to use our
methods for annotated hypergraphs.

Hypergraph Cutwidth. We first apply our Myhill-Nerode approach to Hyper-

graph Cutwidth (see Section 3 for a formal definition)—a natural generaliza-
tion of the NP-complete [11] and fixed-parameter tractable [7] Graph

Cutwidth problem, for which several fixed-parameter algorithms are known
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[1, 4, 9, 10, 19]. Cahoon and Sahni [5] designed algorithms for Hypergraph

Cutwidth with k ≤ 2, with running time O(n) for k = 1 and running time
O(n3) for k = 2, where n is the number of vertices. For arbitrary k, Miller and

Sudborough [16] designed an algorithm with running time O(nk
2+3k+3). We sus-

pect that the framework of Nagamochi [17] applies to Hypergraph Cutwidth,
giving an nO(k) time algorithm. The algorithm we present here has running time
O(n +m) for constant k, thus showing Hypergraph Cutwidth to be fixed-
parameter linear for the parameter k.

In the context of VLSI design, the Hypergraph Cutwidth problem is
known as Board Permutation, and it is related to the gate matrix layout
problem and several graph problems; see [16] and references therein.

Hypertree Width. The original Myhill-Nerode theorem can be used both posi-
tively and negatively: to show that a language is regular, and to show that a lan-
guage is not regular. Using our hypergraph Myhill-Nerode analog negatively, we
obtain evidence that the problems Hypertree Width, Generalized Hyper-

tree Width, and Fractional Hypertree Width are not fixed-parameter
tractable with respect to the parameter incidence treewidth t, that is, we con-
jecture that there are no algorithms for these problems running in time f(t) ·nc,
where n is the input size, c is a constant, and f is a computable function. It is
already known that these problems are unlikely to be fixed-parameter tractable
for their standard parameterizations [12, 13, 15]. Our result hints that even if
the incidence width is constant, these other width measures cannot be computed
efficiently.

Due to space constraints, we defer the proofs to a full version of this article [2].

Preliminaries. We use the standard graph-theoretic notions of Diestel [6].

Graph Decompositions. A tree decomposition of a graph G = (V,E) is a
pair ({Xi : i ∈ I}, T ) where Xi ⊆ V , i ∈ I, are called bags and T is a tree with
elements of I as nodes such that:

– for each edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
– for each vertex v ∈ V , T [{i ∈ I : v ∈ Xi}] is a non-empty connected tree.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of G is the
minimum width taken over all tree decompositions of G. The notions of path
decomposition and pathwidth of G are defined the same way, except that T is
restricted to be a path.

Hypergraphs. A hypergraph H is a pair (V,E), where V is a set of vertices
and E a multiset of hyperedges such that e ⊆ V for each e ∈ E. Let H = (V,E)
be a hypergraph. The primal graph of H , denoted G(H), is the graph with vertex
set V that has an edge {u, v} if there exists a hyperedge in H incident to both u
and v. It is sometimes called the Gaifman graph of H . The incidence graph of H ,
denoted I(H), is the bipartite graph (V ′, E′) with vertex set V ′ = V ∪ E and
for v ∈ V and e ∈ E, there is an edge {v, e} ∈ E′ if v ∈ e.
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Hypergraph Decompositions. Let H be a hypergraph. Generalized hyper-
tree width is defined with respect to tree decompositions of G(H), however, the
width of the tree decompositions is measured differently. Suppose H has no iso-
lated vertices (otherwise, remove them). A cover of a bag is a set of hyperedges
such that each vertex in the bag is contained in at least one of these hyperedges.
The cover width of a bag is the minimum number of hyperedges covering it. The
cover width of a tree decomposition is the maximum cover width of any bag in
the decomposition. The generalized hypertree width of H is the minimum cover
width over all tree decompositions of G(H).

The hypertree width of H is defined in a similar way, except that, additionally,
the tree of the decomposition is rooted and a hyperedge e can only be used in
the cover of a bag Xi if Xi contains all vertices of e that occur in bags of the
subtree rooted at the node i.

The fractional hypertree width of H is defined in a similar way as the general-
ized hypertree width, except that it uses fractional covers: in a fractional cover
of a bag, each hyperedge is assigned a non-negative weight, and for each vertex
in the bag, the sum of the weights of the hyperedges incident to it is at least 1.
The fractional cover width of the bag is the minimum total sum of all hyperedges
of a fractional cover.

2 Myhill-Nerode for Colored Graphs and Hypergraphs

The aim of this section is first to generalize the Myhill-Nerode analog for graphs
[8] to colored graphs. From this, we obtain a Myhill-Nerode analog for hy-
pergraphs, since every hypergraph can be represented as its incidence graph
with two vertex types: those representing hyperedges and those representing
hypergraph-vertices.

In the last part of the section, we finally describe how our Myhill-Nerode
analog yields linear-time algorithms for hypergraph problems. We follow and
adapt the notation used by Downey and Fellows [7, Section 6.4].

2.1 Colored Graphs

We now develop an analog of the Myhill-Nerode theorem for colored graphs. The
original Myhill-Nerode theorem is stated for languages in terms of concatenations
of words. Hence, we clarify what concatenating colored graphs means.

Definition 1. A t-boundaried graph G is a graph with t distinguished vertices
that are labeled from 1 to t. These labeled vertices are called boundary vertices.
The boundary, ∂(G), denotes the set of boundary vertices of G.

Let G1 and G2 be t-boundaried graphs whose vertices are colored with colors
from {1, . . . , cmax}. We say that G1 and G2 are color-compatible if the vertices
with the same labels in ∂(G1) and ∂(G2) have the same color.

For two color-compatible t-boundaried graphs, we denote by G1⊕cG2 the col-
ored graph obtained by taking the disjoint union of G1 and G2 and identifying
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1 2

3

(a) A 2-colored 3-boundaried graph G.

1 2

3

(b) A 2-colored 3-boundaried graph H .

1 2

3

(c) The glued graph G⊕c H .

Fig. 1. Two color-compatible 3-boundaried graphs G and H and their glued graph,
where the boundary vertices are marked by their label

each vertex of ∂(G1) with the vertex of ∂(G2) with the same label, wherein vertex
colors are inherited from G1 and G2.

Let U large
t,cmax

be the universe of {1, . . . , cmax}-colored t-boundaried graphs and

F ⊆ U large
t,cmax

. We define the canonical right congruence ∼F for F as follows:

for G1, G2 ∈ U large
t,cmax

, G1 ∼F G2 if and only if G1 and G2 are color-compatible

and for all color-compatible H ∈ U large
t,cmax

, G1⊕cH ∈ F ⇐⇒ G2⊕cH ∈ F .
The index of ∼F is its number of equivalence classes.

Definition 1 is illustrated in Figure 1. Before we can state our analog of the
Myhill-Nerode theorem for colored graphs, we show that every {1, . . . , cmax}-
colored graph of treewidth at most t can be generated using a constant number
of graph operations. To this end, we use the following set of operators. For gen-
erating graphs of only one color, the given operators coincide with those given
by Downey and Fellows [7, Section 6.4].

Definition 2. The size-(t+1) parsing operators for {1, . . . , cmax}-colored graphs
are:

i) {∅n1,...,ncmax
:
∑cmax

i=1 ni = t+1} is a family of nullary operators that creates
boundary vertices 1, . . . , t+ 1, of which the first n1 vertices get color 1, the
next n2 vertices get color 2, and so on.

ii) γ is a unary operator that cyclically shifts the boundary. That is, γ moves
label j to the vertex with label j + 1 (mod t+ 1).

iii) i is a unary operator that assigns the label 1 to the vertex currently labeled
2 and label 2 to the vertex with label 1.

iv) e is a unary operator that adds an edge between the vertices labeled 1 and 2.
v) {u� : 1 ≤ � ≤ cmax} is a family of unary operators that add a new vertex of

color � and label it 1, unlabeling the vertex previously labeled 1.
vi) ⊕c is our gluing operator from Definition 1.
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For a constant number of colors cmax, the set of size-(t+1) parsing operators is
finite. Adapting the proof of Downey and Fellows [7, Theorem 6.72], we verify
that the graphs generated by the operators in Definition 2 have treewidth at
most t. The same proof shows how, from a width-t tree decomposition of a
colored graph G with at least t+1 vertices, a linear-size parse tree over the above
operators can be obtained in linear time that generates a graph isomorphic to G.

Definition 3. The set Usmall
t,cmax

is the set of {1, . . . , cmax}-colored t-boundaried
graphs that can be generated by the operators in Definition 2.

Theorem 1. Let F ⊆ Usmall
t,cmax

be a family of graphs. The following statements
are equivalent:

i) The parse trees corresponding to graphs in F are recognizable by a finite tree
automaton.

ii) The canonical right congruence ∼F has finite index over Usmall
t,cmax

.

2.2 Lifting to Hypergraphs

To make the method accessible to hypergraph problems, we lift the Myhill-
Nerode theorem for colored graphs of the previous subsection to hypergraphs.

Definition 4. A t-boundaried hypergraph G has t distinguished vertices and hy-
peredges labeled from 1 to t. Two t-boundaried hypergraphs are gluable if no
vertex of one hypergraph has the label of a hyperedge of the other hypergraph.

Let G1 and G2 be gluable t-boundaried hypergraphs. We denote by G1⊕hG2

the t-boundaried hypergraph obtained by taking the disjoint union of G1 and G2,
identifying each labeled vertex of G1 with the vertex of G2 with the same label,
and replacing the hyperedges with label � by the union of these hyperedges.

Let Hlarge
t be the universe of t-boundaried hypergraphs and F ⊆ Hlarge

t . We

define the canonical right congruence ∼F for F as follows: for G1, G2 ∈ Hlarge
t ,

G1 ∼F G2 if and only if G1 and G2 are gluable and for all H ∈ Hlarge
t that are

gluable to G1 and G2, G1⊕hH ∈ F ⇐⇒ G2⊕hH ∈ F .

To prove a Myhill-Nerode theorem for hypergraphs, we still need a way to cre-
ate hypergraphs from parsing operators, as we did using the operators from
Definition 2 for colored graphs. To this end, we indeed simply use the operators
from Definition 2, observing that every bipartite graph can be interpreted as the
incidence graph of a hypergraph. Moreover, if the two disjoint independent sets
of a two-colored bipartite graph have distinct colors, then we can interpret this
bipartite graph as a hypergraph in a unique way.

Definition 5. A well-colored t-boundaried graph is a {1, 2}-colored t-boundaried
graphG = (U )W,E), where the vertices in U have color 1, the vertices inW have
color 2, and where U andW are independent sets.

For a well-colored t-boundaried graph G = (U )W,E), we denote by H(G) the
t-boundaried hypergraph with the vertex set U and the edge set {N(w) : w ∈ W}.
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1 2

3

(a) A 3-boundaried hypergraph H(G).

1 2

3

(b) A 3-boundaried hypergraph H(H).

1 2

3

(c) The glued hypergraph H(G)⊕h H(H) = H(G⊕c H).

Fig. 2. The two hypergraphs represented by the well-colored 3-boundaried graphs G
and H in Figure 1 and the glued hypergraph H(G)⊕h H(H) = H(G⊕c H)

Moreover, vertices of H(G) inherit their label from G and edges e = N(w), w ∈
W of H(G) inherit the label of w. For a set U ⊆ U large

t,2 , we denote H(U) :=

{H ∈ Hlarge
t | H = H(G), G ∈ U}.

The incidence graph of H(G) is G and the incidence treewidth of H(G) is
the treewidth of G.

Obviously, every H ∈ Hlarge
t is H(G) for some G ∈ U large

t,2 . Also, every set F ⊆
Hlarge

t is F = H(F ) for some F ⊆ U large
t,2 . Figure 2 illustrates Definitions 4 and 5.

Theorem 2. Let F ⊆ Usmall
t,2 be a set of well-colored t-boundaried graphs. The

following statements are equivalent:

i) The parse trees corresponding to graphs in F are recognizable by a finite tree
automaton.

ii) The canonical right congruence ∼H(F ) has finite index over H(Usmall
t,2 ).

We can use Theorem 2 to constructively derive algorithms for deciding prop-
erties of hypergraphs of incidence treewidth at most t: assume that we have
a family of t-boundaried hypergraphs F ⊆ Hlarge

t with incidence treewidth at

most t such that ∼F has finite index over Hlarge
t . There is a set F ⊆ U large

t,2 for
which F = H(F ).

We can decide in linear time whether a given hypergraph H ∈ Hlarge
t is iso-

morphic to a hypergraph in F : compute the incidence graph G of H , that is,
H(G) = H . Since the graph G has treewidth at most t, we can compute a tree
decomposition for G in linear time [3]. In the same way as shown by Downey
and Fellows [7, Theorem 6.72], this tree decomposition can be converted in lin-
ear time into a parse tree T over the operators in Definition 2 that generates
a graph isomorphic to G. By Theorem 2, a finite tree automaton can check
whether T generates a graph G′ isomorphic to a graph in F , which is the case if
and only if H(G′) is isomorphic to some graph in F . The finite tree automaton
can be constructed from the equivalence classes of ∼F in constant time, since
each equivalence class has a constant-size representative.
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3 Hypergraph Cutwidth is Fixed-Parameter Tractable

In this section we show that Hypergraph Cutwidth is fixed-parameter linear.
We first formally define the problem.

LetH = (V,E) be a hypergraph.A linear layout ofH is an injectivemap l : V →
R of vertices onto the real line. The cut at position i ∈ R with respect to l, de-
noted θl,H(i), is the set of hyperedges that contain at least two vertices v, w such
that l(v) < i < l(w). The cutwidth of the layout l is maxi∈R |θl,H(i)|. The cutwidth
of the hypergraphH is the minimum cutwidth over all the linear layouts ofH . The
Hypergraph Cutwidth problem is then defined as follows.

Hypergraph Cutwidth

Input: A hypergraph H = (V,E) and a natural number k.
Question: Does H have cutwidth at most k?

Now, to solve Hypergraph Cutwidth using our Myhill-Nerode analog, in the
remainder of this section we consider a constant k and the class k-HCW of
all hypergraphs with cutwidth at most k. We use Theorem 2 to show that the
parse trees for graphs in k-HCW can be recognized by a finite tree automaton.
To make Theorem 2 applicable, we first show that, for the hypergraphs in k-
HCW, we can find a constant upper bound t on their incidence treewidth. This
implies that isomorphic graphs can be generated by linear-size parse trees over
the operator set in Definition 2 or, in terms of Theorem 2, that the graphs in
k-HCW are isomorphic to the graphs in a subset of H(U small

t,2 ).

Lemma 1. Let H = (V,E) be a hypergraph. If H has cutwidth at most k, then
H has incidence treewidth at most max{k, 1}.

It remains to prove that the canonical right congruence ∼k-HCW of k-HCW has
finite index. This finally shows that k-HCW can be recognized in linear time
and, therefore, that Hypergraph Cutwidth is fixed-parameter linear.

To show that ∼k-HCW has finite index, we show that, given a t-boundaried
hypergraph G, only a finite number of bits of information about a t-boundaried
hypergraph H is needed in order to decide whether G⊕hH ∈ k-HCW. To this
end, we employ the Method of Test Sets [7]: let T be a set of objects called tests
(for the moment, it is not important what exactly a test is). A t-boundaried
graph can pass a test. For t-boundaried hypergraphs G1 and G2, let G1 ∼T G2

if and only if G1 and G2 pass the same subset of tests in T . Obviously, ∼T
is an equivalence relation. Our aim is to find a set T of tests such that ∼T
refines ∼k-HCW (that is, if G1 ∼T G2, then G1∼k-HCWG2). This implies that if
∼T has finite index, so has ∼k-HCW. To show that ∼T has finite index, we show
that we can find a finite set T such that ∼T refines ∼k-HCW.

Intuitively, in our case, a hypergraph G will pass a test T if it has a restricted
linear layout, where each of its boundary vertices gets mapped to predefined
integer values and each of the remaining vertices “lands” within one of a set of
given “landing zones” between the integer values of the real line. This restricted
linear layout will impose the same restrictions on an optimal cutwidth layout
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Fig. 3. Construction of the H-test illustrated using the glued hypergraph
H(G)⊕h H(H) from Figure 2

for G that are also imposed by an optimal cutwidth layout of G⊕hH for some
hypergraph H that corresponds to T .

Definition 6. A landing zone is a tuple in {0, . . . , k} × 2{1,...,t}. A test T =
(π, S) consists of a map π : {1, . . . , t} → {1, . . . , n} and a sequence S = (S0, S1,
. . . , Sn) of landing zones. The size of T is n.

Now, let G and H be t-boundaried hypergraphs such that G⊕hH ∈ k-HCW.
Let n be the number of vertices of G⊕hH and let vi denote the vertex that
is mapped to position i in an optimal cutwidth layout of G⊕hH that maps to
integer values. We define an H-test T = (π, S) of size n as follows: for each
vertex vi ∈ ∂(H), set π(�) := i, where � is the label of vi. For i ∈ {0, . . . , n},
Si := (wi, Ei), where

1. wi is the number of hyperedges in H that contain vertices in {v1, . . . , vi} ∩
V (H) and {vi+1, . . . , vn} ∩ V (H).

2. Ei is the set of labels of hyperedges in H containing vertices in {v1, . . . , vi}∩
V (H) and {vi+1, . . . , vn} ∩ V (H).

Figure 3 illustrates this definition. We now formally define what it means to pass
a test. Intuitively, if a graph G passes an H-test, then G⊕hH ∈ k-HCW.

Definition 7. Let G = (V,E) be a t-boundaried hypergraph and T = (π, S) be
an H-test for some t-boundaried hypergraph H, where S = (S0, . . . , Sn) and
Si = (wi, Ei).

A T -compatible layout for G is an injective function f : V → R such that each
vertex v ∈ ∂(G) with label � is mapped to π(�) and such that every vertex v ∈
V \ ∂(G) is mapped into some open interval (i, i+ 1) for 0 ≤ i ≤ n.

The weighted cutwidth of f is maxi∈R(|θf (i)| + w
i�), where θf (i) is the set
of hyperedges containing two vertices v and w with f(v) < i < f(w) and that do
not have a label in E
i�.

Finally, G passes the test T if there is a T -compatible layout f for G whose
weighted cutwidth is at most k.
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Lemma 2. For T being the set of all tests, the equivalence relation ∼T re-
fines ∼k-HCW.

Proof (Sketch). We show that if two t-boundaried hypergraphs G1, G2 pass the
same subset of tests of T , then, for all t-boundaried hypergraphs H , G1⊕hH ∈
k-HCW if and only if G2⊕hH ∈ k-HCW. We exploit the following two claims.

1. If G1⊕hH ∈ k-HCW, then G1 passes the H-test.
2. If G2 passes the H-test, then G2⊕hH ∈ k-HCW.

Let H be a t-boundaried hypergraph such that G1⊕hH ∈ k-HCW, and let T
be an H-test. By (1), G1 passes T . Since G1 and G2 pass the same tests, also
G2 passes T . By (2), it follows that G2⊕hH ∈ k-HCW. The reverse direction
is proved symmetrically. 	


Lemma 2 shows a set of tests T such that ∼T refines ∼k-HCW. However, the
set T is infinite and, therefore, does not yet yield that ∼k-HCW has finite index.
However, we can obtain a finite set of tests using the following lemma.

Lemma 3. Let G and H be t-boundaried hypergraphs. For every H-test T1, there
is a test T2 of size 2t(2k + 2) such that G passes T1 if and only if it passes T2.

Now the following theorem is easy to prove.

Theorem 3. Hypergraph Cutwidth is fixed-parameter linear.

Proof. Lemma 1 shows that graphs in k-HCW have constant treewidth at most t,
and therefore, that all such hypergraphs can be linear-time transformed into linear-
size parse trees for t-boundaried hypergraphs. Using Theorem 2, we show that
parse trees corresponding to hypergraphs in k-HCW are recognizable by a fi-
nite tree automaton: let T be the set of all tests and T ′ be the set of all tests of
size 2t(2k+2). Lemma 3 shows that ∼T ′ refines∼T . Lemma 2 shows that ∼T re-
fines∼k-HCW. Therefore,∼k-HCW has at most as many equivalence classes as∼T ′ .
Since k and t are constant, T ′ is finite, implying finite index for ∼T ′ and, conse-
quently, for ∼k-HCW. 	


4 Hypertree Width and Variants

In this section we sketch a negative application of our hypergraph Myhill-Nerode
analog to Generalized Hypertree Width [13]. The problem is, given a hy-
pergraph H and an integer k as input, to decide whether H has generalized
hypertree width at most k. Since Generalized Hypertree Width is NP-
hard for k = 3 [13], it would be nice to find parameters for which the problem is
fixed-parameter tractable. However, we can show that Generalized Hyper-

tree Width does not have finite index.

Theorem 4. Let k ≥ 0. Let k-GHTW be the family of all incidence graphs G
such that H(G) has generalized hypertree width at most k. The canonical right
congruence ∼H(k-GHTW) does not have finite index over H(Usmall

t,2 ).
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Moreover, the construction we use in the proof leads us to conjecture the problem
to be W[1]-hard with respect to the parameter incidence treewidth. The proof
also applies to the problem variants Hypertree Width and Fractional Hy-

pertree Width, which are unlikely to be fixed-parameter tractable with re-
spect to their standard parameterization [12, 15].

Conjecture 1. Generalized Hypertree Width is W[1]-hard with respect to
the parameter incidence treewidth.

5 Conclusion

We have extended the graph analog of the Myhill-Nerode theorem to colored
graphs and hypergraphs, making the methodology more widely applicable. Our
positive application shows that Hypergraph Cutwidth is fixed-parameter
linear. As a negative application, we showed that Hypertree Width, Gen-

eralized Hypertree Width, and Fractional Hypertree Width do not
have finite index, and therefore the parse trees associated to Yes-instances of
bounded incidence treewidth cannot be recognized by finite tree automata.
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Abstract. We study the problem of augmenting a weighted graph by inserting
edges of bounded total cost while minimizing the diameter of the augmented
graph. Our main result is an FPT 4-approximation algorithm for the problem.

1 Introduction
We study the problem of minimizing the diameter of a weighted graph by the inser-
tion of edges of bounded total cost. This problem arises in practical applications [2,4]
such as telecommunications networks, information networks, flight scheduling, protein
interactions, and it has also received considerable attention from the graph theory com-
munity, see for example [1,7,11].

We introduce some terminology. Let G = (V,E) be an undirected weighted graph.
Let [V ]2 be the set of all possible edges on the vertex set V . A non-edge of G is an
element of [V ]2 \ E. The weight of a path in G is the sum of its edge weights. For any
u, v ∈ V , the shortest u-v path in G is the path connecting u and v in G with minimum
weight. The weight of this path is said to be the distance between u and v in G. Finally,
the diameter of G is the largest distance between any two vertices in G. The problem
we study in this paper is formally defined as follows.

PROBLEM: Bounded Cost Minimum Diameter Edge Addition (BCMD)
INPUT: An undirected graph G = (V,E), a weight function w : [V ]2 → N,

a cost function c : [V ]2 → N∗, and an integer B.
GOAL: A set F of non-edges with

∑
e∈F c(e) ≤ B such that the diameter

of the graphGB = (V,E∪F ) with weight functionw is minimized.
We say that GB is a B-augmentation of G.

The main result of this paper is a fixed parameter tractable (FPT) 4-approximation
algorithm for BCMD with parameterB. FPT approximation algorithms are surveyed by
Marx [14]. For background on parameterized complexity we refer to [6,8,15] and for
background on approximation algorithms to [17].

Several papers in the literature already dealt with the BCMD problem. However, most
of them focused on restricted versions of the problem, namely the one in which all costs

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 383–393, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and all weights are identical [3,5,12,13], and the one in which all the edges have unit
costs and the weights of the non-edges are all identical [2,4].

The BCMD problem can be seen as a bicriteria optimization problem where the two
optimization criteria are: (1) the cost of the edges added to the graph and (2) the diam-
eter of the augmented graph. As is standard in the literature, we say that an algorithm
is an (α, β)-approximation algorithm for the BCMD problem, with α, β ≥ 1, if it com-
putes a set F of non-edges of G of total cost at most α · B such that the diameter
of G′ = (V,E ∪ F ) is at most β · DB

opt, where DB
opt is the diameter of an optimal

B-augmentation of G.
We survey some known results about the BCMD problem. Note that all the algorithms

discussed below run in polynomial time.

Unit Weights and Unit Costs. The restriction of BCMD to unit costs and unit weights
was first shown to be NP-hard in 1987 by Schoone et al. [16]; see also the paper by Li
et al. [13]. Bilò et al. [2] showed that, as a consequence of the results in [3,5,13], there
exists no (c logn, δ < 1 + 1/DB

opt)-approximation algorithm for BCMD if DB
opt ≥ 2,

unless P=NP. For the case in which DB
opt ≥ 6, they proved a stronger lower bound,

namely that there exists no (c logn, δ < 5
3 −

7−(DB
opt+1) mod 3

3DB
opt

)-approximation algo-

rithm, unless P=NP.
Dodis and Khanna [5] gave an (O(log n), 2+2/DB

opt)-approximation algorithm (see
also [12]). Li et al. [13] showed a (1, 4+2/DB

opt)-approximation algorithm. The analy-
sis of the latter algorithm was later improved by Bilò et al. [2], who showed that it gives
a (1, 2 + 2/DB

opt)-approximation. In the same paper they also gave a (O(log n), 1)-
approximation algorithm.

Unit Costs and Restricted Weights. Some of the results from the unweighted setting
have been extended to a restricted version of the weighted case, namely the one in which
the edges of G have arbitrary non-negative integer weights, however all the non-edges
of G have cost 1 and uniform weight ω ≥ 0.

Bilò et al. [2] showed how two of their algorithms can be adapted to this restricted
weighted case. In fact, they gave a (1, 2 + 2ω/DB

opt)-approximation algorithm and a
(2 − 1/B, 2)-approximation algorithm. Similar results were obtained by Demaine and
Zadimoghaddam in [4].

Bilò et al. [2] also showed that, for every DB
opt ≥ 2ω and for some constant c, there

is no (c logn, δ < 2 − 3ω/DB
opt)-approximation algorithm for this restriction of the

BCMD problem, unless P=NP.

Arbitrary Costs and Weights. To the best of our knowledge, only one theory paper
considered the general BCMD problem. In 1999, Dodis and Khanna [5] presented an
O(n logDB

opt, 1)-approximation algorithm, assuming that all weights are polynomially
bounded. Their result is based on a multicommodity flow formulation of the problem.

Our Results. In this paper we study the BCMD problem with arbitrary integer costs
and weights. Our main result is a (1, 4)-approximation algorithm with running time
O((3BB3 + n + log(Bn))Bn2). We also prove that, considering B as a parameter, it
is W [2]-hard to compute a (1 + c/B, 3/2− ε)-approximation, for any constants c and
ε > 0. Further, we present polynomial-time ((k + 1)2, 3)-, (k, 4)-, and (1, 3k + 2)-
approximation algorithms for the unit-cost restriction of the BCMD problem.
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2 Shortest Paths with Bounded Cost
Let (G = (V,E), w, c, B) be an instance of the BCMD problem and let K denote the
complete graph on the vertex set V . The edges of K have the same weights and costs
as they have in G (observe that an edge e of K is either an edge or a non-edge of G).
For technical reasons, we add self-loops with weight 0 and cost 1 at each vertex of K .

For any 0 ≤ β ≤ B, a path in K is said to be a β-bounded-cost path if it uses non-
edges of G of total cost at most β. We consider the problem of computing, for every
integer 0 ≤ β ≤ B and for every two vertices u, v ∈ V , a β-bounded-cost shortest path
connecting u and v, if such a path exists. We call this problem the All-Pairs B-Shortest
Paths (APSPB) problem. We will prove the following.

Theorem 1. The APSPB problem can be solved inO(Bn3+Bn2 log(Bn)) time using
O(Bn2) space.

In order to prove Theorem 1, we construct a directed graph H = (U, F ) as follows.
First, consider G as a directed graph, i.e., replace every undirected edge {u, v} with
two arcs (u, v) and (v, u) with the same weight and cost as the edge {u, v}. Then,
H = (U, F ) contains B + 1 copies of G, denoted by G0, . . . , GB . For any 0 ≤ i ≤ B,
we denote by (v, i) the copy of vertex v ∈ V in Gi = (Vi, Ei). The arc set F contains
the union of E′ and F ′, where E′ =

⋃
0≤i≤k Ei, and

F ′ =
{(

(u, i), (v, i+ c({u, v}))
)
: 0 ≤ i ≤ B − c({u, v}), {u, v} ∈ [V ]2 \ E

}
.

For each ((u, i), (v, j)) ∈ F ′, the weight and the cost of ((u, i), (v, j)) are w({u, v})
and c({u, v}) = j − i, respectively.

Observation 1 The number of vertices in U is (B + 1)n and the number of arcs in F
is O(Bn2).

We will use directed graph H to efficiently compute β-bounded-cost shortest paths in
K . This is possible due to the following two lemmata.

Lemma 1. Suppose that H contains a directed path PH with weight W connecting
vertices (u, i) and (v, j), for some j ≥ i. Then, there exists a (j− i)-bounded-cost path
PK in K with weight W connecting u and v.

Lemma 2. Suppose that there exists a β-bounded-cost path PK in K with weight W
connecting vertices u and v. Then, there exists a directed path PH in H with weightW
connecting vertices (u, 0) and (v, β).

We have the following.

Corollary 1. There is a β-bounded-cost path connecting vertices u and v in K with
weight W if and only if there is a directed path in H connecting vertices (u, 0) and
(v, β) with weight W .

We are now ready to prove Theorem 1. Consider any vertex u inK . We first mark every
vertex that can be reached from (u, 0) in H with the weight of its shortest path from
(u, 0). By Observation 1, H has O(Bn) vertices and O(Bn2) edges, hence this can be
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done in O(Bn2 + Bn log(Bn)) time [9]. For every 0 ≤ β ≤ B and for every vertex
v �= u, by Corollary 1 the weight of a β-bounded cost shortest path in K is the same as
the weight of a shortest directed path from (u, 0) to (v, β) in H . Hence, for every 0 ≤
β ≤ B and for every vertex v �= u, we can determine in total O(Bn2 + Bn log(Bn))
time the weight of a β-bounded cost shortest path in K connecting u and v. Thus, for
every 0 ≤ β ≤ B and for every pair of vertices u and v in K , we can determine in
total O(Bn3 + Bn2 log(Bn)) time the weight of a β-bounded cost shortest path in K
connecting u and v. This concludes the proof of Theorem 1.

3 Arbitrary Costs and Weights
Our algorithms, as many afore-mentioned approximation algorithms for the BCMD

problem, use a clustering approach as a first phase to find a setC ofB+1 cluster centers.
The idea of the algorithm is to create a minimum height rooted tree T = (U ⊆ V,D),
so that C ⊆ U , by adding a set of edges of total cost at most B to G. We will prove that
such a tree approximates an optimal B-augmentation.

3.1 Clustering

We start by defining the clustering approach used to generate the B +1 cluster centers.
Whereas a costly binary search is used in [4] to guess the radius of the clusters, we
adapt the approach of [2] to our more general setting.

For two vertices u, v, we denote by distG(u, v) the distance between u and v in G.
For a vertex u and a set of vertices S, we denote by distG(u, S) the minimum distance
between u and any vertex from S in G, i.e., distG(u, S) = minv∈S{distG(u, v)}. For
a set of vertices S, we denote by distG(S) the minimum distance between any two
distinct vertices from S in G, i.e., distG(S) = minu∈S{distG(u, S \ {u})}.

The clustering phase computes a set C = {c1, . . . , cB+1} of B + 1 cluster centers
as follows. Vertex c1 is an arbitrary vertex in V ; for 2 ≤ i ≤ B + 1, vertex ci is chosen
so that distG(ci, {c1, . . . , ci−1}) is maximized. Ties are broken arbitrarily.

Lemma 3. The clustering phase computes in O(Bn2) time a set C ⊆ V of size B + 1
such that distG(v, C) ≤ DB

opt for every vertex v ∈ V .

Proof. First, note that the above described algorithm can easily be implemented in
O(Bn2) time using B iterations of Dijkstra’s algorithm with Fibonacci heaps [9]. Let
cB+2 denote a vertex maximizing distG(cB+2, C), and denote this distance by R. By
definition, distG(v, C) ≤ R for every v ∈ V . To prove the lemma it remains to show
that R ≤ DB

opt. For the sake of contradiction, assume DB
opt < R. Then, C ∪ {cB+2}

is a set of B + 2 vertices with pairwise distance larger than DB
opt in G. We prove the

following claim.

Claim 1. Let G′ be a weighted graph and let C′ be a set of vertices in G′ such that
distG′(C′) > D. Then, for every graph G′′ obtained from G′ by adding a single non-
edge of G′ with non-negative weight, there is a set C′′ ⊂ C′ with |C′′| = |C′| − 1 and
with distG′′(C′′) > D.

Now, since C ∪ {cB+2} is a set of B + 2 vertices with pairwise distance larger than
DB

opt in G, by iteratively using the claim we have that in any B-augmentation GB of
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u
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cx

cy

Fig. 1. Illustrating the path defined in the proof of Lemma 5

G, we have a set of B + 2− |F | ≥ 2 vertices with pairwise distance greater than DB
opt,

thus contradicting the definition of DB
opt. This concludes the proof of the lemma. �

3.2 A Minimum Height Tree

Let C be a set of B + 1 cluster centers such that the B + 1 clusters with centers at
C = {c0, . . . , cB} and radius DB

opt cover the vertices of G. This set can be computed
as described in the previous section.

Definition 1. Let G = (V,E) be a graph together with a weight function w : [V ]2 →
N. LetC ⊆ V and let u be a vertex in V . A Shortest Path Tree ofG,C, and u, denoted by
SPT(G,C, u), is a tree T rooted at u, spanningC, whose vertices and edges belong to V
andE, respectively, and such that, for every vertex c ∈ C, it holds dT (u, c) = dG(u, c).

The height of a weighted rooted tree T , which is denoted by �(T ), is the maximum
weight of a path from the root to a leaf.

Definition 2. LetG = (V,E) be a graph together with a weight functionw : [V ]2 → N
and a cost function c : [V ]2 → N∗. Let C ⊆ V , let u be a vertex in V , and let B ≥ 0
be an integer. A Minimum HeightB SPT of G, C, and u, denoted by MHBSPT (G, c, u),
is a SPT(GB , C, u) of minimum height over all B-augmentationsGB of G.

Let GB be a B-augmentation of G with diameter DB
opt.

Lemma 4. The height of a MHBSPT (G,C, u) is at most DB
opt.

Proof. By definition, we have (A) �(MHBSPT(G,C, u)) ≤ �(SPT(GB , C, u)). Since
GB is a B-augmentation of G with diameter DB

opt, we have (B) �(SPT(GB , C, u)) ≤
DB

opt. Inequalities (A) and (B) together prove the lemma. �
We now present a relationship between the BCMD problem and the problem of comput-
ing a MHBSPT (G,C, u).

Lemma 5. Let G′B be a B-augmentation of G such that it holds �(SPT(G′B, C, u)) =
�(MHBSPT(G,C, u)), for any u ∈ V . Then, the diameter of G′B is at most 4 ·DB

opt.

Proof. Consider two vertices x and y in V , see Fig. 1. Let cx and cy be centers of the
clusters x and y belong to, respectively. Then, we have distG′

B
(x, y) ≤ distG(x, cx) +

distG′
B
(cx, u)+distG′

B
(u, cy)+distG(cy, y). By Lemma 3, distG(x, cx), distG(cy, y)

≤ DB
opt. Since �(SPT(G′B, C, u)) = �(MHBSPT(G,C, u)) and by Lemma 4, it holds

distG′
B
(cx, u), distG′

B
(u, cy) ≤ DB

opt. Hence, distG′
B
(x, y) ≤ 4 ·DB

opt. �
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u
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S \ {u′}
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Fig. 2. Illustration for the proof of Lemma 6

3.3 Constructing a Minimum Height Tree

In this section, we show an algorithm to compute a MHBSPT (G,C, c1).
We introduce some notation and terminology. Let C′ = C \ {c1}. Observe that a

MHBSPT (G,C′, c1) is also a MHBSPT (G,C, c1), given that a MHBSPT (G,C′, c1)
contains c1 as its root. Denote by djK(u, v) the minimum weight of a j-bounded cost
path connecting u and v in K . For any u ∈ V , for any S ⊆ C′, and for any 0 ≤ j ≤ B,
let γ(u, S, j) denote the height of a MHjSPT (G,S, u). Hence, the height of a MHBSPT

(G,C′, c1) is γ(c1, C′, B). The following main lemma gives a dynamic programming
recurrence for computing γ(c1, C′, B).

Lemma 6. For any u ∈ V , any S ⊆ C′, and any 0 ≤ j ≤ B, the following hold: If
|S| = 1, then γ(u, S, j) = djK(u, ci) where S = {ci}. If |S| > 1, then

γ(u, S, j) = min
v∈V
S′�S

j=j1+j2+j3

dj1K(u, v) + max{γ(v, S′, j2), γ(v, S \ S′, j3)}.

Proof. If |S| = {ci}, then MHjSPT (G, {ci}, u) is a minimum-weight path connecting
u and ci and having total cost at most j. Hence, γ(u, S, j) = djK(u, ci). In particular,
notice that, if u = ci, then γ(u, {u}, j) = djK(u, u) = 0.

If |S| = m > 1, then suppose that the lemma holds for each γ(u′, S′, j′) with |S′| ≤
m−1 by induction. Denote by T any MHjSPT (G,S, u). Denote by P (v, w) the unique
path in T connecting two vertices v and w of T . We distinguish three cases, based on
the structure of T . In Case (a), the degree of u in T is at least two (see Fig. 2(a)). In
Case (b), the degree of u in T is one and there exists a vertex u′ ∈ S such that every
internal vertex of P (u, u′) has degree 2 in T and does not belong to S (see Fig. 2(b)).
Finally, in Case (c), the degree of u in T is one and there exists a vertex u′ /∈ S such
that every internal vertex of P (u, u′) has degree 2 in T and does not belong to S, and
such that the degree of u′ is greater than two (see Fig. 2(c)).

First, we prove that one of the three cases always applies. If the degree of u in T is
at least two, then Case (a) applies. Otherwise, the degree of u is 1. Traverse T from u
until a vertex v′ is found such that v′ ∈ S or the degree of v′ is at least 3. If v′ ∈ S,
then every internal vertex of P (u, u′) has degree 2 in T and does not belong to S, hence
Case (b) applies. If v′ /∈ S, then the degree of v′ is at least 3, and every internal vertex
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of P (u, u′) has degree 2 in T and does not belong to S, hence Case (c) applies. We now
discuss the three cases.

In Case (a), T is composed of two subtrees MHxSPT (G,Sa, u) and MHySPT (G,S \
Sa, u), only sharing vertex u, with ∅ � Sa � S. The height of T is the maximum
of the heights of MHxSPT (G,Sa, u) and MHySPT (G,S \ Sa, u); also the cost of
T is at most x + y. By induction, the heights of MHxSPT (G,Sa, u) and MHySPT

(G,S \ Sa, u) are γ(u, Sa, x) and γ(u, S \ Sa, y)), respectively. Thus, the height of T
is max{γ(v, Sa, x), γ(v, S \Sa, y)} and hence γ(u, S, j) = max{γ(u, Sa, x), γ(u, S \
Sa, y)}. Such a value is found by the recursive definition of γ(u, S, j) with v = u,
S′ = Sa, j1 = 0, j2 = x, and j3 = y.

In Case (b), T is composed of a path from u to u′ with cost x and weight dxK(u, u′),
and of a MHySPT (G,S \ {u′}, u′). The height of T is the sum of dxK(u, u′) and the
height of MHySPT (G,S \ {u′}, u′); also the cost of T is at most x + y. By induction,
the height of MHySPT (G,S \ {u′}, u′) is γ(u′, S \ {u′}, y). Thus, the height of T is
dxK(u, u′) + γ(u′, S \ {u′}, y) and hence γ(u, S, j) = dxK(u, u′) + γ(u′, S \ {u′}, y).
Such a value is found by the recursive definition of γ(u, S, j) with v = u′, S′ =
S \ {u′}, j1 = x, j2 = y, and j3 = 0.

In Case (c), T is composed of a path from u to u′ with cost x and weight dxK(u, u′), of
a MHySPT (G,Sa, u

′), and of a MHzSPT (G,S\Sa, u
′) with ∅ � Sa � S. The height of

T is the sum of dxK(u, u′) and the maximum between the heights of MHySPT (G,Sa, u
′)

and MHzSPT (G,S \ Sa, u
′); also the cost of T is at most x+ y + z. By induction, the

heights of MHySPT (G,Sa, u
′) and MHzSPT (G,S\Sa, u

′) are γ(u′, Sa, y) and γ(u′, S\
Sa, z), respectively. Thus, the height of T is dxK(u, u′) + max{γ(u′, Sa, y), γ(u

′, S \
Sa, z)} and hence γ(u, S, j) = dxK(u, u′) + max{γ(u′, Sa, y), γ(u

′, S \ Sa, z)}. Such
a value is found by the recursive definition of γ(u, S, j) with v = u′, S′ = Sa, j1 = x,
j2 = y, and j3 = z.

This concludes the induction and hence the proof of the lemma. �
Lemma 6 yields the following.

Theorem 2. There exists a (1, 4)-approximation algorithm for the BCMD problem with
O((3BB3 + n+ log(Bn))Bn2) running time.

4 Unit Costs and Arbitrary Weights
For the special case in which each edge has unit cost and arbitrary weight, our tech-
niques lead to several results, that are described in the following. Observe that, in
this case we are allowed to insert in G exactly k non-edges of G, where k = B =
O(n2). We remark that Theorem 2 gives a (1, 4)-approximation algorithm running in
O((3kk3 + n)kn2) time for this special case.

In the following, we denote by C a clustering with k + 1 clusters constructed as
described in Subsection 3.1. We first show a ((k + 1)2, 3)-approximation algorithm.

Theorem 3. Given an instance of the BCMD problem with unit costs, there exists a
((k + 1)2, 3)-approximation algorithm with O(kn3) running time.

Proof. For every pair of cluster centers ci, cj ∈ C compute a shortest path in K be-
tween ci and cj that contains at most k non-edges of G. Add those edges to F and let
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G′ = (V,E ∪ F ). By Theorem 1 and since k = O(n2), G′ can be constructed in
O(kn3) time. Observe that, for each pair of cluster centers, the algorithm adds at most
k non-edges of G to F , thus at most k(k + 1)2 non-edges in total. We prove that, for
every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose weight is at most
3 ·Dk

opt. Denote by ci and cj the centers of the clusters vi and vj belong to, respectively.
We have distG′(vi, vj) ≤ distG′(vi, ci)+distG′(ci, cj)+distG′(cj , vj). By Lemma 3,
distG′(vi, ci), distG′(vj , cj) ≤ Dk

opt; also, by construction, distG′(ci, cj) ≤ Dk
opt, and

the theorem follows. �
Next, we give a (k, 4)-approximation algorithm.

Theorem 4. Given an instance of the BCMD problem with unit costs, there exists a
(k, 4)-approximation algorithm with O(kn2) running time.

Proof. Pick an arbitrary cluster center, say c1. For every cluster center cj ∈ C \ {c1},
compute a shortest path between c1 and cj in K containing at most k non-edges of
G. Add those edges to F and let G′ = (V,E ∪ F ). By Corollary 1, a shortest path
between c1 and cj in K containing at most k non-edges of G corresponds to a shortest
path between (c1, 0) and (cj , k) in digraphH . By Observation 1, H hasO(kn) vertices
and O(kn2) edges. Hence, Dijkstra’s algorithm with Fibonacci heaps [9] computes
all the shortest paths between (c1, 0) and (cj , k), for every cj ∈ C \ {c1}, in total
O(kn2) time. Observe that, for each cluster different from c1, the algorithm adds at
most k non-edges of G to F , thus at most k2 non-edges in total. We prove that, for
every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose weight is at
most 4 · Dk

opt. Denote by ci and cj the centers of the clusters vi and vj belong to,
respectively. We have distG′(vi, vj) ≤ distG′(vi, ci)+distG′(ci, c1)+distG′(c1, cj)+
distG′(cj , vj). By Lemma 3, distG′(vi, ci), distG′(vj , cj) ≤ Dk

opt; by construction,
distG′(ci, c1), distG′(c1, cj) ≤ Dk

opt, and the theorem follows. �
Finally, we present a (1, 3k + 2)-approximation algorithm.

Theorem 5. Given an instance of the BCMD problem with unit costs, there exists a
(1, 3k + 2)-approximation algorithm with O(n2 + k2) running time.

Proof. For every pair of clusters Ci and Cj , with 1 ≤ i < j ≤ k + 1, let eij be
the edge of minimum weight connecting a vertex in Ci with a vertex in Cj . We de-
note by F ′ the set of these edges. For a subset F of F ′, we say that F spans C if the
graph representing the adjacencies between clusters via the edges of F is connected.
Let F be a minimum-weight set of k edges from F ′ spanning C. Let G′ = (V,E ∪F ).
The set F ′, and hence the graph G′, can be constructed in O(n2 + k2) time as fol-
lows. Consider all the edges of K and keep, for each pair of clusters, the edge with
smallest weight. This can be done in O(n2) time. Finally, compute in O(k2) time a
minimum spanning tree of the resulting graph [10], that has O(k) vertices and O(k2)
edges. Observe that the algorithm adds at most k non-edges of G to F . We prove
that, for every vi, vj ∈ V , there exists a path in G′ connecting vi and vj whose
weight is at most (3k + 2)Dk

opt. Denote by PC the (unique) subset of F connect-
ing the clusters vi and vj belong to. Let (x1, y1), (x2, y2), . . . , (xm, ym) be the edges
of PC in order from vi to vj . Then, distG′(vi, vj) ≤ distG(vi, x1) + w(x1, y1) +
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distG(y1, x2) + . . . + w(xm, ym) + distG(ym, vj). By Lemma 3, distG(yi, xi+1) ≤
2Dk

opt, and distG(vi, x1), distG(ym, vj) ≤ Dk
opt. Also, w((xi, yi)) ≤ Dk

opt, and the
theorem follows. �

5 Hardness Results
The main theorem of this section provides a parameterized intractability result for
BCMD with unit weights and unit costs, and some related problems. The U-BCMD prob-
lem has as input an unweighted graph G = (V,E) and two integers k and d, and the
question is whether there is a set F ⊆ [V ]2 \ E, with |F | ≤ k, such that the graph
(V,E ∪ F ) has diameter at most d. The parameter is k. We will show that U-BCMD

is W [2]-hard. We will also provide refinements to the minimum conditions required
for intractability, namely U-BCMD remains NP-complete for graphs of diameter 3 with
target diameter d = 2. We note that although Dodis and Kanna [5] provide an inap-
proximability reduction from SET COVER, they begin with a disconnected graph, and
expand the instance with a series of size 2 sets, which does not preserve the size of the
optimal solution, and therefore their reduction cannot be used to show parameterized
complexity lower bounds.

Theorem 6. SET COVER is polynomial-time reducible to U-BCMD. Moreover, the re-
duction is parameter preserving and creates an instance with diameter 3 and target
diameter 2.

Proof. Let (X,S, k) be an instance of SET COVER where S is the base set and X ⊂
P(S) is the set from which we must pick the set cover of S with size at most k. We
construct an instance (G = (V,E), k, d) of U-BCMD as follows.

Let m = |X | · k. The vertex set V is the disjoint union of 5 sets:
– a set Y corresponding to the set X where for each x ∈ X we have a vertex y ∈ Y ,
– a set T =

⊎
i∈[m] Ti corresponding to S where, for each s ∈ S and i ∈ [m], we

have a vertex ti ∈ Ti (i.e., we have m copies of a set of vertices corresponding
to S),

– a set U with
(
m
2

)
vertices uij , one for each pair of disjoint subsets Ti, Tj of T

(where i �= j),
– the set {a}, and
– the set {b}.

The edge set E consists of the following edges:

– ab,
– by for each vertex y ∈ Y ,
– buij for each vertex uij ∈ U ,
– yy′ for each pair of vertices y, y′ ∈ Y ,
– yti for each pair of vertices y ∈ Y and ti ∈ Ti for each i ∈ [m] where the

corresponding element s ∈ S is in the corresponding set x ∈ X in the SET COVER

instance,
– tiujl for each pair of vertices ti ∈ Ti and ujl ∈ U such that i ∈ {j, l}, and
– uijulp for each pair of vertices uij , ulp ∈ U .



392 F. Frati et al.

Fig. 3. Sketch of the construction for the SET COVER to U-BCMD reduction. The edge sets rep-
resented in gray are complete, the edge sets represented in light green correspond to the set
membership from the SET COVER instance. The vertex sets Y and U are cliques. The vertex sets
Ti are independent sets for all i ∈ [m].

We set d = 2. Note that k in the U-BCMD instance is the same k as for the SET COVER

instance. The construction is sketched in Fig. 3.

Claim 2. For all v, v′ ∈ V \ {a} we have dist(v, v′) ≤ 2.

Claim 3. For all v ∈ V we have dist(a, v) ≤ 3. Moreover, dist(a, v) = 3 if and only
if v ∈ T .

Thus we are concerned only with reducing the distance between a and the vertices of
T .

Claim 4. (X,S, k) is a YES-instance of SET COVER if and only if (G, k, d) is a YES-
instance of U-BCMD.

We note that the reduction is obviously polynomial-time computable, and the parameter
k is preserved. The theorem now follows from the previous claims. �

Corollary 2. U-BCMD is NP-complete even for graphs of diameter three with target
diameter two.

As SET COVER is W [2]-hard with parameter k, combined with Corollary 2 we also
have the following result.

Corollary 3. U-BCMD is W [2]-hard even for graphs of diameter three with target di-
ameter two.

We note additionally that as the initial graph has diameter 3 and the target diameter is 2,
it is even NP-hard and W[2]-hard to decide if there is a set of k new edges that improves
the diameter by one. Furthermore by taking a as source vertex, the results transfer im-
mediately to the single-source version as discussed by Demaine & Zadimoghaddam [4].
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The construction of Theorem 6 can even be extended to give a parameterized inap-
proximability result for U-BCMD.

Theorem 7. It is W [2]-hard to compute a (1 + c
k ,

3
2 − ε)-approximation for U-BCMD

for any constants c and ε > 0.
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7. Erdős, P., Rényi, A., Sós, V.T.: On a problem of graph theory. Studia Sci. Math. Hungar. 1,
215–235 (1966)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory, Texts in Theoretical Computer Sci-
ence. An EATCS Series, vol. XIV. Springer, Berlin (2006)

9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. Journal of the ACM 34(3), 596–615 (1987)

10. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Journal of Computer and System Sciences 48(3), 533–551 (1994)

11. Grigorescu, E.: Decreasing the diameter of cycles. Journal of Graph Theory 43(4), 299–303
(2003)

12. Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory of Com-
puting Systems 41(4), 779–794 (2007)

13. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-bounded-
diameter and the bounded-cardinality-minimum-diameter edge addition problems. Opera-
tions Research Letters 11(5), 303–308 (1992)

14. Marx, D.: Parameterized complexity and approximation algorithms. The Computer Jour-
nal 51(1), 60–78 (2008)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, Oxford (2006)

16. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge dele-
tion. Journal of Graph Theory 11, 409–427 (1997)

17. Vazirani, V.V.: Approximation algorithms. Springer (2001)



Top-k Document Retrieval

in Compact Space and Near-Optimal Time

Gonzalo Navarro1,� and Sharma V. Thankachan2,��

1 Dept. of Computer Science, University of Chile, Chile
gnavarro@dcc.uchile.cl

2 Dept. of Computer Science, Louisiana State University, USA
thanks@csc.lsu.edu

Abstract. Let D={d1, d2, ...dD} be a given set of D string documents
of total length n. Our task is to index D such that the k most relevant
documents for an online query pattern P of length p can be retrieved
efficiently. There exist linear space data structures of O(n) words for an-
swering such queries in optimal O(p+k) time. In this paper, we describe
a compact index of size |CSA|+n lgD+ o(n lgD) bits with near optimal
time, O(p+k lg∗ n), for the basic relevance metric term-frequency, where
|CSA| is the size (in bits) of a compressed full-text index of D, and lg∗ n
is the iterated logarithm of n.

1 Introduction and Related Work

Top-k document retrieval is the problem of preprocessing a text collection so that,
given a search pattern P [1..p] and a threshold k, we retrieve the k documents
most “relevant” to P , for some definition of relevance. This is the basic problem
of search engines and forms the core of the Information Retrieval (IR) field [5].
In this paper we focus on the popular term frequency as the relevance measure,
that is, the number of times P appears in a document.

The inverted index successfully solves top-k queries in various IR scenarios.
However, it applies to text collections that can be segmented into “words”, so
that only whole words can be queried. This excludes East Asian languages such
as Chinese and Korean, where automatic segmenting is an open problem, and is
troublesome even in languages such as German and Finnish. A simple solution
for those cases is to treat the text as a plain sequence of symbols and look for any
substring in those sequences. This string model is also appealing in applications
like bioinformatics and software repositories. Supporting document retrieval on
those general string collections has proved much more challenging.

Sufix trees [29] and arrays [15] are useful tools to search string collections.
These structures solve the pattern matching problem, that is, count or list all
the occ individual occurrences of P in the collection. Obtaining the k most
relevant documents from that set requires time Ω(occ), usually much higher
than k. Only recently [13,9,12,18,26] was the top-k problem solved satisfactorily,
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finally reaching the optimal time O(p + k). Those solutions, like suffix trees,
have the drawback of requiring O(n lg n) bits of space on a collection of length
n, whereas the collection itself would require no more than n lg σ bits, where σ is
the alphabet size. This renders these indexes impractical on large text collections.

Compressed Suffix Arrays (CSAs) satisfactorily solve the pattern matching
problem within the size of the compressed text collection, under some entropy
model [17]. They can in addition retrieve any substring of any document, and
hence replace the collection with a compressed version that in addition supports
queries. We call their space |CSA| ≤ n lg σ(1 + o(1)), which can be thought of as
the minimum space in which the text collection can be represented.

A similar result for top-k queries has been sought. Various solutions use
2|CSA|+ o(n) bits [24,12,7,3], culminating with the fastest solution so far in this
family, O(p+k lg k lg1+ε n) time by Hon et al. [11]. Recently, asymptotically opti-
mal space |CSA|+o(n) bits was obtained as well [27], being O(p+k lg2 k lg1+ε n)
the best time achieved so far [20].

In all those solutions there is a significant time factor per element returned,
of at least lg k lg1+ε n. It seems unlikely that this factor can disappear in this
type of solutions. Experimental comparisons [6,19] show that these schemes are
impractically slow compared to those that use n lgD + o(n lgD) bits to store a
so-called document array [16,28]. We call compact the solutions that use |CSA|+
n lgD + o(n lgD) bits. The best practical results to date [6,21,3,14] are nearly
compact. Their space requirement, 1–3 times the collection size (and including
it), while not optimal, is affordable in many practical situations.

It is therefore relevant to ask which is the best time performance that can be
achieved within compact space. The time-optimal result of Navarro and Nekrich
[18], O(p + k) time, requires O(n(lgD + lg σ)) bits. While of the same order
of compact solutions, the constants are still way too large in practice. There
have been some attempts to achieve truly compact solutions. Hon et al. [10]
obtained O(p+ (lg lg n)6 + k(lg σ lg lgn)1+ε) time, for any constant ε > 0, using
compact space. Alternatively, they obtain time O(p+ (lg lgn)4 + k lg lg n) using
|CSA| + 2n lgD + o(n lgD) bits. Konow and Navarro [14] achieved time O(p +
(lg lgn)2+k lg lgn) using |CSA|+n(lgD+4 lg lgn)(1+ o(1)) bits, but the result
holds only on typical texts, not in the worst case.

In this paper we show that it is possible to get very close to optimal time
within compact space. We prove the following result, where we remark that the
top-k results are not returned in sorted order of relevance.

Theorem 1. There exists a compact index of |CSA|+n lgD+o(n lgD) bits and
near-optimal O(p + k lg∗ n) query time time, for the (unsorted) top-k frequent
document retrieval problem, where lg∗ n is the iterated logarithm of n.

In Section 5 we achieve O(p + k lg∗ k) time, using o(n lg σ) further bits.

2 The Data Structure

Three main components of our structure are a generalized suffix tree (GST), the
document array, and some precomputed answer lists. These are described next.
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Generalized Suffix Tree (GST): Let T = d1d2d3...dD be the text (of length
n) obtained by concatenating all the documents in D. The last character of
each document is $, a special symbol that does not appear anywhere else in T .
Each substring T [i..n], with i ∈ [1..n], is called a suffix of T . The suffix tree
for T (or, equivalently, the generalized suffix tree (GST) of D) is a lexicographic
arrangement of all these n suffixes in a compact trie structure, where the ith
leftmost leaf represents the ith lexicographically smallest suffix. Each edge in
the suffix tree is labeled by a string, and path(x) of a node x (node x refers to
the node with preorder rank x) is the concatenation of edge labels along the
path from the root of GST to node x. Let �i for i ∈ [1..n] represent the (pre-
order rank of) the ith leftmost leaf in GST . Then path(�i) represents the ith
lexicographically smallest suffix of T . A node x is called the locus of a pattern
P , if it is the node closest to the root with path(x) prefixed by P .

The suffix array SA[1..n] is an array of length n, where SA[i] is the starting
position (in T ) of the ith lexicographically smallest suffix of T . An important
property of SA is that the starting positions of all the suffixes with the same
prefix are always stored in a contiguous region of SA. Based on this property,
we define the suffix range of P in SA to be the maximal range [sp, ep] such that
for all i ∈ [sp, ep], SA[i] is the starting point of a suffix of T prefixed by P .

A compressed representation of suffix array is called a Compressed Suffix Ar-
ray (CSA). We will use a recent CSA [1], which obtains high-order entropy com-
pression and can compute the suffix range [sp, ep] of any given pattern P [1..p] in
O(p) time. We also maintain the tree topology of GST in (at most) 4n+o(n) bits
[25], with constant-time support of the operations parent(x) (the parent of node
x), lca(x, y) (the lowest common ancestor of nodes x and y), left-leaf(x)/right-
leaf(x) (the leftmost/rightmost leaf in the subtree rooted at node x), and leaf(i)
(the ith leftmost leaf), and mapping from nodes to their preorder ranks and
back. The total space of this component is |CSA|+O(n) bits.

Document Array (DA): Define a bit-vector B[1..n], such that B[i] = 1 iff
T [i] = $. Then suffix T [i, n] belongs to document dr if r = 1 + rankB(i), where
rankB(i) is the number of 1s in B[1, i]. The document array DA[1..n] is defined
as DA[j] = r if the suffix SA[j] belongs to document dr. Moreover, we say that
the corresponding leaf node �j is marked with document dr. Now,

– rankDA(r, i) returns the number of occurrences of r in DA[1, i];
– selectDA(r, j) returns i where DA[i] = r and rankDA(r, i) = j; and
– accessDA(i) returns DA[i];

Then we have use the following representation for DA [2].

Lemma 1. The document array DA can be stored in n lgD+ o(n lgD) bits and
support queries rankDA, selectDA and accessDA in times O(lg lg n), O(f(n,D))
and O(1) respectively, where f(n,D) = ω(1) is any non-constant function.

The so-called partial rank query can be added to this repertoire [3].

Lemma 2. Operation rankDA(DA[i], i) can be supported in constant time by
storing O(n lg lgD) = o(n lgD) additional bits on top of the DA.
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Thus the total space of this component is n lgD + o(n lgD) bits.

Precomputed Answer Lists: We start with the following definitions:

– L(x) is the set of leaves in the subtree of node x in GST .
– L(x\y) = L(x) \ L(y), the leaves in the subtree of x, but not in that of y.
– score(r, x) is the number of leaves in L(x) marked with document dr (i.e.,
|{�i ∈ L(x),DA[i] = r}|).

We use the following scheme to identify a subset Sg of marked nodes in GST
[12,21]: Let g be a parameter called grouping factor, then mark every gth left-
most leaf in GST , and then mark the lowest common ancestor (LCA) of every
consecutive pair of marked leaves. Then, we have the following lemma [12,21].

Lemma 3. The above marking scheme ensures the following properties:

1. The number of marked nodes is |Sg| = Θ(n/g).
2. If it exists, the closest marked descendant node y of any unmarked node x is

unique, and |L(x\y)| < 2g.
3. If there exists no marked node in the subtree of x, then |L(x)| < 2g.

Let F (x, k) represent the list (or set) of top-k documents dr, along with
score(r, x), corresponding to a pattern with locus node x in GST . Clearly we
cannot afford to maintain F (x, k) for all possible x’s and k’s. Rather, we will
maintain the lists F (x, z) only for marked nodes x’s (for various g values) and
for k’s that are powers of 2. Then F (x, k) for any x and k will be efficiently
computed using that sampled data. The next section describes how we store and
retrieve the sampled lists.

3 Storing and Retrieving the Lists F (x, z)

The following is a key result in our scheme.

Lemma 4. Let gh = z(lg(h) n)2 for any 1 ≤ h < lg∗ n, where lg(1) n = lgn,

lg(h) n = lg(lg(h−1) n), and lg(lg
∗ n) n ≤ 1. Then F (x, z) for all x ∈ Sgh can be

encoded in sh = sh−1+O(n/ lg
(h) n) bits, and F (x, z) for any given x ∈ Sgh can

be decoded in time th = th−1 +O(z), where s1 = O(n/ lg n) and t1 = O(z).

Proof. We use induction. Consider the base case h = 1. For every x ∈ Sg1 , we
maintain the list F (x, z) explicitly (using O(lg n) bits per element), along with
a pointer to the location where it is stored, in s1 = O(|Sg1 |z lg n) = O(n/ lg n)
bits. Thus the list F (x, z), for any x ∈ Sg1 , can be decoded in time t1 = O(z).

Now consider the grouping factor is gh for h ≥ 2. As we cannot afford to
use Θ(lg n) bits per element, we introduce encoding schemes that reduce it to

O(lg(h) n) bits. Thus the overall space for maintaining F (x, z) (in encoded form)

for all x ∈ Sgh can be bounded by O(|Sgh |z lg(h) n) = O(n/ lg(h) n) bits. Instead
of using pointers as in the base case, we mark in a bitmap Bh[1..2n] the node
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preorders of GST that belong to Sgh . Therefore the list F (x, z) of a node x ∈ Sgh

is stored in an array at offset rankBh [x]. Since we will only compute rank on
positions x where Bh[x] = 1, an “indexed dictionary” is sufficient [23], which

requires O((n/gh) lg gh + lg lgn) = o(n/ lg(h) n) bits and computes rank in time

O(1). We now show how to encode the list F (x, z), for x ∈ Sgh , in O(lg(h) n)
bits per element, and how to decode it in th−1 +O(z) time.

We will maintain a structure STRh, using sh bits, for each grouping factor gh,
and will decode F (x, z) for x ∈ Sgh recursively, using O(z) time in addition to
the time needed to decode F (y, z) for some y ∈ Sgh−1

, as suggested in Lemma 4.
As we cannot afford to sort the documents within the targeted query time, it
is important to assume a fixed arrangement of documents within any particular
decoded list F (·, ·). That is, each time we decode a specific list, the decoding
algorithm must return the elements in the same order.

Let x be a node in Sgh and y (if it exists) be its highest descendant node in
Sgh−1

. We show how to encode and decode F (x, z). To decode F (x, z), we first
decode the list F (y, z) using STRh−1 in time th−1. From now onwards we have
constant-time access to any element the list F (y, z). The the list F (x, z) will be
partitioned into the following two disjoint lists:

(i) Dold, the documents that are common to F (x, z) and F (y, z).
(ii) Dnew, the documents that are present in F (x, z), but not in F (y, z).

Encoding and decoding document identifers in Dold. We maintain a bit vector
B′[1..z], where B′[i] = 1 iff the ith document in F (y, z) is present in F (x, z).
Therefore Dold can be decoded by listing those elements in F (y, z) (in the same
order as they appear) at positions i where B′[i] = 1. Thus space for maintaining
the encoded information is z bits and the time for decoding is O(z).

Encoding and decoding document identifers in Dnew. For each document dr ∈
Dnew, there exists at least one leaf in L(x\y) that is marked with dr (otherwise
score(r, x) = score(r, y) and dr could not be in F (x, z) and not in F (y, z)).
Therefore, instead of explicitly storing r, it is sufficient to refer to such a leaf.
For this we shall store a bit vector B′′[1..|L(x\y)|] with all its bits in 0, except for
|Dnew| 1’s: for every document dr ∈ Dnew, we set one bit, say B′′[i] = 1, where
the ith leaf in L(x\y) is marked with dr. Since |B′′| = |L(x\y)| < 2gh−1 and the

number of 1’s is at most z, B′′ can be encoded in O(z lg(gh−1/z)) = O(z lg(h) n)
bits with constant time select support [22] (selectB′′(j) is the position of the j-th
1 in B′′). Now, given B′′, the documents in Dnew can be identified in O(z) time
as follows: Find all those (at most z) increasing positions i where B′′[i] = 1 using
select queries. Then, for each such i, find the ith leaf �i′ ∈ L(x\y) in constant
time using the tree operations1. Finally, report dDA[i′] as a document in Dnew

for each such i′ using a constant-time access operation on the document array.
As mentioned before, it is important for our (recursive) encoding/decoding

algorithm to assume a fixed permutation of elements within any list F (·, ·). We

1 Compute the leftmost leaves �ix and �iy , respectively, of x and y, then �i′ is �ix+i−1,
if ix + i− 1 < iy , and �jy+i−(iy−ix) otherwise, where �jy is the rightmost leaf of y.
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use the convention that, in F (x, z), the documents in Dold come before the
documents in Dnew. Moreover the documents within Dold and Dnew are in the
same order as the decoding algorithm identified them. In conclusion, the list
of identifiers of documents in F (x, z) can be encoded in O(z lg(h) n) bits and
decoded in O(z) time, assuming constant-time access to any element in F (y, z).
If node y does not exist, we proceed as if F (y, z) = ∅ and F (x, z) = Dnew. We
now consider how to encode the score’s associated with the elements in F (x, z)
(i.e., score(r, x) for all dr ∈ F (x, z)).

Encoding and decoding of scores. Let dri , for i ∈ [1..z], be the ith document in
F (x, z), and fi = score(ri, x). Then, define δi = fi − f ′i ≥ 0, where

f ′i =

{
score(ri, y) if i ≤ |Dold| (i.e., if ri ∈ Dold),
τ = min{score(r, y), r ∈ F (y, z)} if i > |Dold| (i.e., if ri ∈ Dnew).

The following is an important observation: The number of leaves in L(x\y)
marked with document dri is score(ri, x) − score(ri, y), which is same as δi for
i ≤ |Dold|. For i > |Dold|, score(ri, x)−score(ri, y) ≥ δi, otherwise score(ri, y) >
τ and dri would have qualified as a top-z document in F (y, z) (which is a con-
tradiction as dri ∈ Dnew). By combining with the fact that each leaf node is
marked with a unique document, we have the inequality

∑z
i=1 δi ≤ |L(x\y)| <

2gh−1. Therefore, δi for all i ∈ [1..z] can be encoded using a bit vector B′′′ =
10δ110δ210δ3 . . . 10δz of length at most 2gh−1+z with z 1’s, in O(z lg(gh−1/z)) =

O(z lg(h) n) bits with constant-time select support [22].
The decoding algorithm is described as follows: compute the f ′i ’s for i =

1 . . . z in the ascending order of i. For i ≤ |Dold|, f ′i is given by score associated
with the (selectB′ [i])th document (which is same as dri) in F (y, z). This takes
only O(z) time as the number of constant-time select operations is O(z), and
we have constant-time access to any element and score in F (y, z). Next, τ =
min{score(r, y), r ∈ F (y, z)} can be obtained by scanning the list F (y, z) once.
Thus all the f ′i ’s are computed in O(z) time. Next we decode each δi and add
it to f ′i to obtain fi, for i = 1 . . . z in O(z) time, where δi = selectB′′′(i) −
selectB′′′(i − 1) − 1 is computed in O(1) time. Thus the space for maintaining

the scores is O(z lg(h) n) bits and the time for decoding them is O(z).

Adding over the h levels, the total space is sh = sh−1 + O(n/ lg(h) n) =

O(n/ lg(h) n) bits and the total decoding time is th = th−1+O(z) = O(zh) (note
that s1 = O(n/ lgn) and t1 = O(z)). This completes the proof. 	


4 Completing the Picture

Let π ∈ [1.. lg∗ n) be an integer such that lg(π−1) n ≥
√
lg∗ n > lg(π) n, then

lg(π) n = ω(1) (note that π = lg∗ n− lg∗
√
lg∗ n = Θ(lg∗ n)). Then, by choosing

gπ as the grouping factor, the space sπ is O(n/ lg(π) n) = o(n) bits. We maintain
lgD such structures corresponding to z = 1, 2, 4, 8, ..., 2
lgD�, in o(n lgD) bits
total space. By combining the space bounds of all the components, we obtain
the following lemma.
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Lemma 5. The total space requirement of our data structure is |CSA|+n lgD+
o(n lgD) bits.

The next lemma gives the total time to extract the sampled results and hints
how we will use them.

Lemma 6. Given any node q in GST and an integer k, our data structure can
report the list F (q′, k) in O(k lg∗ n) time, where q′ is a node in the subtree of q

with |L(q\q′)| = O(k
√

lg∗ n).

Proof. As the first step, round k to z = 2�lg k�, which is the next highest power
of 2. Then identify the highest node q′, in the subtree of q, that is marked with
respect to the grouping factor gπ: Let �i and �j be the leftmost and rightmost
leaves of q in GST , then q′ = lca(�i′ , �j′) where i

′ = gπ ·�i/gπ� and j′ = gπ ·�j/gπ�
(there is no q′ if i′ ≥ j′). This takes constant time on our representation of the
GST topology.

Since gπ = z lg(π) n < z
√
lg∗ n, from Lemma 3 it holds |L(q\q′)| = O(gπ) =

O(z lg(π) n) = O(k
√

lg∗ n). As q′ ∈ Sgπ , the list F (q′, z) can be decoded in time
tπ = O(zπ) = O(z lg∗ n) from the precomputed lists (from Lemma 4). The final
F (q′, k) can be obtained by filtering those documents in F (q′, z) with score at
least θ by a single scan of the list, where θ is the kth highest score in F (q′, z)
(which can be computed in O(z) = O(k) time using the linear-time selection
algorithm [4]). In case q′ does not exist, we report F (q′, k) = ∅, and even in such
a case the inequality condition |L(q)| < 2gπ is guaranteed (from Lemma 3). 	


4.1 Query Answering

The query answering algorithm consists of the following steps:

1. Find the locus node q of the input pattern P in GST by first obtaining the
suffix range [sp, ep] of P using CSA in O(p) time, and then computing the
lowest common ancestor of �sp and �ep in O(1) time.

2. Using Lemma 6, find the node q′ in the subtree of q, where |L(q\q′)| =
O(k

√
lg∗ n) and retrieve the list F (q′, k) in O(k lg∗ n) time.

3. Every document dr in the final output F (q, k) must either belong to F (q′, k),
or it must be that r = DA[i] for some leaf �i ∈ L(q\q′). Let us call Scand the
union of both sets of candidate documents. Then we compute score(r, q) of
each document dr ∈ Scand.

4. Report k documents in Scand with the highest score(r, q) value. In this step,
we first compute the kth highest score θ using the selection algorithm, and
then use θ as a threshold for a document to be an output (more precisely,
we report the k′ < k documents dr ∈ Scand with score(r, q) < θ in a first
pass, and then report the first k − k′ documents dr ∈ Scand we find with
score(r, q) = θ in a second pass). The time is O(|Scand|) = O(k

√
lg∗ n).

The overall time for Steps 1, 2, and 4 is O(p + k lg∗ n). In the remaining part
of this section we show how to handle Step 3 efficiently as well, for the documents
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r = DA[i] we find in L(q\q′). Note that score(r, q) can be computed as rankDA

(r, ep)−rankDA(r, sp−1) using two rank queries on the document array, but those
rank queries are expensive. Instead, weuse amore sophisticated schemewhere only
the faster select , access , and partial rank queries are used. This is described next.

4.2 Computing Scores Online

Firstly, we construct a supporting structure, SUP , in O(k lg∗ n) time and oc-
cupying o(n lgD) + O(z lgn) bits, capable of answering the following query in
O(lg lg∗ n) time: for any given r, return score(r, q′) if r ∈ F (q′, k), otherwise
return −1. Let Δ = Θ(lg∗ n), then structure SUP is a forest of D/Δ balanced
binary search trees T1, T2, . . . , TD/Δ. Initially each Ti is empty, hence the initial
space is O(lg n) bits per tree (for maintaining a pointer to the location where
it is stored), adding up to O((D/Δ) lg n) = o(n lgD) bits, which we consider
a part of index. Next we shall insert each document dr ∈ F (q′, k), along with
its associated score, into tree T�r/Δ� of SUP . The size of each search tree can
grow up to Δ, hence the total insertion time is O(k lgΔ). These insertions will
increase the space of SUP by O(k lg n) bits, which can be justified as it is the
size of the output. Now we can search for any dr in Tr/Δ and, if dr ∈ F (q′, k),
we will retrieve score(r, q′) in O(lgΔ) time. Once we finish Step 3, these binary
search trees can be set back to their initial empty state by visiting each docu-
ment dr ∈ F (q′, k) and deleting it from the corresponding tree in total O(k lgΔ)
time. This does not impact the total asymptotic query processing time.

An outline of Step 3 follows: We scan each leaf �i ∈ L(q\q′), and compute
score(·, q) of the corresponding document dDA[i]. Note that there can be many
leaves in L(q\q′) marked with the same document, but we compute score(·, q) of
a document only once (i.e., when we encounter it for the first time). After this,
we also scan the documents dr ∈ F (q′, k) and compute score(r, q) if we have
not considered this document in the previous step. However, the scanning of
leaves is performed in a carefully chosen order. Let �sp′ and �ep′ be the leftmost
and rightmost leaves in the subtree of q′, and B[1..D] be a bit vector initialized
to all 0’s (its size is D bits and can be considered a part of index). A detailed
description of Step 3 follows:

3.1 Start scanning the leaves �i for i = sp, sp + 1, . . . , sp′ − 1, in the ascend-
ing order of i, then for i = ep, ep − 1, . . . , ep′ + 1, in the descending or-
der of i, and do the following: if B[DA[i]] = 0, then set it to 1, compute
score(DA[i], q), and store the result (DA[i], score(DA[i], q)) for Step 4. Note
that each time we compute score(DA[i], q), i is either the first or the last
occurrence ofDA[i] in DA[sp, ep]. Assume it is the first (the other case is sym-
metric). We use a constant-time partial rank query, x = rankDA(DA[i], i).
Then, by performing successive selectDA(DA[i], j) queries for j = x+1, x+
2, . . . , y, where selectDA(DA[i], y) > ep ≥ selectDA(DA[i], y−1), we compute
score(DA[i], q) = y − x. The number of select queries required is precisely
y − x = score(DA[i], q), which can be further reduced as follows:
– If dDA[i] ∈ F (q′, k), retrieve score(DA[i], q′) from SUP in timeO(lg lg∗ n).

As we know that score(DA[i], q′) ≤ score(DA[i], q), we start select queries
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from j = x+ score(DA[i], q′), so the number of select queries used to find
y is reduced to score(DA[i], q)−score(DA[i], q′) = score(DA[i], L(q\q′)),
that is, the number of leaves in L(q\q′) marked with dDA[i].

– If dDA[i] �∈ F (q′, k), compute x′ = selectDA(DA[i], x+ τ − 1), where we
remind that τ = min{score(r, q′), r ∈ F (q′, k)}. If x′ > ep, we conclude
that score(DA[i], q) < τ , and hence dDA[i] can be discarded from being
a candidate for the final output. On the other hand, if x′ ≤ ep, the
select queries can be started from j = x+ τ , which reduces the number
of select queries to score(DA[i], q) − τ ≤ score(DA[i], L(q\q′)) (since
dDA[i] /∈ F (q′, k), it holds score(DA[i], q′) ≤ τ).

The query time for executing this step can be analyzed as follows: for each i,
we perform a query on SUP . The computation of score(DA[i], q) requires at
most score(DA[i], L(q\q′)) select queries. As we do this computation only
once per distinct document, the total number of select queries is at most∑

r score(r, L(q\q′)) = |L(q\q′)|. By choosing the cost f(n,D) =
√
lg∗ n for

select queries, the total time is O(|L(q\q′)|(f(n,D)+ lg lg∗ n)) = O(k lg∗ n).
3.2 Now scan the documents dr ∈ F (q′, k). If B[r] = 0, then there exists no

leaf in L(q\q′) marked with dr. Thus score(r, q) = score(r, q′) and the pair
(r, score(r, q′)) is stored for Step 4. If B[r] = 1 then dr has already been
dealt with in the previous pass. The time for accessing score(r, q′) using
SUP is O(lg lg∗ n), hence this step takes O(k lg lg∗ n) time.

3.3 Reset B to its initial state (all bits set to 0) for supporting queries in future.
By revisiting the leaves in L(q\q′) and the list F (q′, k), we can exactly find
out those locations in B where the corresponding bit is 1. The time for this
step can be bounded by O(|L(q\q′)|+ k) = O(k

√
lg∗ n).

Thus the time for Step 3 is O(k lg∗ n), and the result follows.

5 Reducing the Time to O(p + k lg∗ k)

Note that, when p or k is at least lg lg n, it already holds O(p+ k lg∗ n) = O(p+
k lg∗ k). Therefore, we now concentrate on the case when max(p, k) < lg lgn. We
use the following result [8].

Lemma 7. Givenafixedκ, anarrayA[1..n]ofn indices can be indexed inO(n lg2 κ)
bits for answering the following query inO(k) time, without accessingA and for any
1 ≤ k ≤ κ: given i, j, and k, output the positions of the k highest elements inA[i, j].

Let Sδ be the set of nodes in GST with node depth equal to δ. We start with
the description of an O(n lg2 κ)-bit structure for a fixed κ = lg lgn and a fixed
δ < lg lg n, for answering top-k queries for any 1 ≤ k ≤ κ and those patterns with
their locus node belonging to Sδ. First, we construct an array A[1..n] (with all
its elements initialized to zero) as follows: For i = 1 . . . n, if the first occurrence
of document DA[i] in DA[a, b] is at position i, where [a, b] is the suffix range
corresponding to a unique node u ∈ Sδ, then set A[i] = score(DA[i], u). We
do not store this array explicitly, instead we maintain the structure of Lemma 7
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over it, requiring O(n lg2 κ) bits space. Now the list of documents F (u, k) for any
locus node u ∈ Sδ can be reported in O(k) time as follows: First perform a top-k
query on the structure of Lemma 7 with the suffix range [sp, ep]. The output will
be a set of k locations j1, j2, . . . , jk ∈ [sp, ep], and then the identifiers of the top-k
documents are DA[j1],DA[j2], . . . ,DA[jk]. By maintaining similar structures for
all the δ ∈ [1, lg lgn), any such top-k query with p < lg lgn can be answered
in O(p+ k) time. The additional space required is o(n(lg lg n)3) bits, which can
be bounded by o(n lg σ) bits if, say, lg σ ≥

√
lgn. Otherwise, we shall explicitly

maintain the top-κ documents corresponding to all patterns of length at most
lg lg n, in decreasing frequency order, using a table of O(σlg lgn lg lg n lgD) =
o(n) bits. The query time in this case is just O(k).

Thus, by combining the cases, we achieve O(p+ k lg∗ k) query time.

Theorem 2. There exists a compact index of |CSA|+n lgD+ o(n(lg σ+ lgD))
bits and near-optimal O(p + k lg∗ k) query time time, for the (unsorted) top-k
frequent document retrieval problem.

6 Conclusions

We have shown that it is possible to obtain almost optimal time for top-k docu-
ment retrieval, O(p+k lg∗ n), using compact space, |CSA|+n lgD+o(n lgD) bits.
By adding o(n lg σ) bits, the time decreases to O(p+k lg∗ k). This is an important
step towards answering the question of which is the minimum space that is nec-
essary to obtain the optimal time, O(p+ k). The other important open question
is which is the minimum time that can be obtained by using the asymptotically
optimal space, |CSA| + o(n) bits. Right now this time is O(p + k lg2 k lg1+ε n)
[20], and it is not clear which is the lower bound.
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Abstract. Starting with Munro and Paterson (1980), the selection or
median-finding problem has been extensively studied in the read-only
memory model and in streaming models. Munro and Paterson’s deter-
ministic algorithm and its subsequent refinements require at least poly-
logarithmic or logarithmic space, whereas the algorithms by Munro and
Raman (1996) and Raman and Ramnath (1999) can be made to use just
O(1) storage cells but take O(n1+ε) time for an arbitrarily small constant
ε > 0.
In this paper, we show that faster selection algorithms in read-only

memory are possible if the input is a sequence of integers. For example,
one algorithm uses O(1) storage cells and takes O(n lgU) time where
U is the universe size. Another algorithm uses O(1) storage cells and
takes O(n lg n lg lgU) time. We also describe an O(n)-time algorithm for
finding an approximate median using O(lgε U) storage cells.
All our algorithms are simple and deterministic. Interestingly, one of

our algorithms is inspired by ‘centroids’ of binary trees and finds an
approximate median by repeatedly invoking a textbook algorithm for
the ‘majority’ problem. This technique could be of independent interest.

1 Introduction

The topic of this paper is the classical selection problem, where we want to
find the k-th smallest element of an input sequence of n elements for a given
number k. (The median corresponds to the k = �n/2� case.) Specifically, we are
interested in space-efficient algorithms in the read-only memory model, where
the input is a read-only array and we want to minimize the amount of extra
space needed in addition to the input array.

Selection in read-only memory has been studied since Munro and Paterson’s
pioneering work on streaming algorithms [13]. Their deterministic algorithm runs
in O(n lgs n + n lg s) time using O(s) storage cells, for any given s = Ω(lg2 n).
Frederickson [9] refined the running time to O(n lgs n+n lg

∗ s). (This bound has
been recently improved [8] slightly in the extreme end when s approaches n/ lgn.)
All these algorithms work by finding an ‘approximate median’ in one pass, which

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 405–412, 2013.
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is used to find the exact median or the k-th smallest element over several passes.
The space of one-pass streaming algorithms for approximate medians has been
improved to O(lg n) cells by Greenwald and Khanna [11]; this could potentially
extend the range of allowed values for s to Ω(lg n).

However, for small, sublogarithmic space, the best time bound increases dra-
matically. Munro and Raman [14] gave an O(2ssn1+1/s)-time algorithm, and this
was improved to O(sn1+1/s lgn) by Raman and Ramnath [15], for any s from 1
to lg n.

If randomization is allowed, much better results are possible. Chan [6] pro-
vided a matching upper and lower bound ofΘ(n lg lgs n) on the expected running
time for all s from 1 to n. Our focus here, however, will be on deterministic al-
gorithms only.

All the above results are in the comparison model. In this paper, we study
the selection problem in the setting where the input elements are integers in
[U ] := {1, 2, . . . , U}. Our model of computation is the word RAM model where
standard (arithmetic, shift and bitwise logical) word operations can be performed
in constant time. We assume that each word is w bits long, and w is at least lg n
and lgU , so that a pointer or input integer can fit in a word. We assume that
each memory cell can store a word.

The case of integer input is standard when studying general lower bounds,
for example, for sorting in the read-only memory model [1,3], and randomized
selection in the streaming model [5]; these lower bounds often match or nearly
match their corresponding upper bounds in the comparison model. In contrast,
we show that the integer assumption makes a big difference for the deterministic
selection problem in read-only memory with small space. Our results are the
following:

1. a selection algorithm using O(n lgs U) time and O(s) words of space for any
s from 1 to n;

2. a selection algorithm using O(n lg n lgs lgU) time and O(s) words of space
for any s from 1 to lgU .

The first algorithm, presented in Section 2, is very simple and works well
when the universe size U is polynomially bounded. For example, for s = 1 and
U = nO(1), the running time is O(n lg n), which is significantly faster than those
of Munro and Raman or Raman and Ramnath for constant s. For s = lgε n and
U = nO(1), the running time is O(n lg n/ lg lg n), where ε denotes an arbitrarily
small positive constant. For s = nε and U = nO(1), we get linear running time,
eliminating the iterated logarithmic factor from Frederickson’s result.

The second algorithm, presented in Section 3, is less sensitive to U and beats
previous algorithms for a wider range of universe sizes. On our way to obtaining
this second result, we also give

3. an approximate median algorithm using O(n lgs lgU) time and O(s) words
of space for any s from 1 to lgU .

For s = 1, the time bound is O(n lg lgU). For s = lgε U , it is linear. The
algorithm makes a clever use of a well-known algorithm, first published in [4]
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(discovered in 1980) to find the majority of a sequence of bits. To speed up this
algorithm, we give a procedure to find the majority at several prefix lengths
of the given sequence simultaneously in linear time. The resulting linear-time
algorithm for approximate median is relatively simple and self-contained, and
immediately implies a new deterministic linear-time algorithm for selection in
the traditional, non-space-efficient setting, when the input elements are integers.
This may be of independent interest, as the standard deterministic linear-time
algorithm for selection [2] requires a doubly recursive structure, which the new
algorithm manages to avoid.

When the two algorithms are combined, it is possible to obtain, for example,
a selection algorithm that uses O(1) words of space and whose running time is
guaranteed to be at most O(n lg1+ε n) regardless of the universe size U . This
consequence is noted in Section 4.

We should mention that at least one prior work on approximate medians has
also addressed upper bounds for the integer case: Shrivastava et al. [16] gave one-
pass streaming algorithms for maintaining approximate quantiles using O(lgU)
words of space. There are some similarities, but our approach is simpler, besides
being more space-efficient (they maintained information about the trie induced
by the binary representations of the numbers, whereas we maintain just one path
in the trie, since we do not need all approximate quantiles). Like many other
works in streaming algorithms, they were less interested in analyzing the total
running time. It is conceivable that some of the previous streaming algorithms
on approximate medians could be sped up in the integer case by using advanced
data structures such as the fusion tree [10]. Our algorithms however do not
require such complicated data structures.

2 An O(n lgs U)-Time Algorithm

We assume that the input integers are in the range [U ], and the aim is to find
the k-th smallest element in the sequence of n integers. We give a very simple
selection algorithm in read-only memory that takes O(n lgU) time using O(1)
space.

The algorithm goes through lgU stages where in stage i, we determine the
i-th bit of the solution. At the first stage, we simply count the number of input
integers with leading bit 0 and leading bit 1 and based on k, we determine the
first bit of the answer, and update k to be the new rank of the element to be
found among those input integers with the leading bit same as that of the answer.

We repeat the same procedure in the i-th stage, for i > 1 (having computed the
i− 1 bits of the answer) by counting how many integers, among those matching
the first i− 1 bits of the answer, have the i-th bit 0 and how many have the i-th
bit 1, updating k and recursing appropriately. Thus we immediately obtain the
following result:

Theorem 1. Given a sequence of n integers in the range [U ], we can find the
k-th smallest element of the sequence using O(lgU) passes, in O(n lgU) time
using O(1) words of space, in read-only memory.
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If we have s = 2b extra cells available, then we can read b bits of the input
in each pass counting the number of inputs with each b-bit value using the 2b

counters, and finding b bits of the answer at each stage. The number of stages
is thus reduced to O((lgU)/b). To ensure O(n) run time for each pass, we limit
the number of counters s to n. This results in the following theorem.

Theorem 2. Given a sequence of n integers in the range [U ], we can find the
k-th smallest element of the sequence using O(lgs U) passes in O(n lgs U) time
using O(s) words of space, in read-only memory for any s ≤ n.

3 An O(n lgn lgs lgU)-Time Algorithm

Our next approach solves the selection problem by designing better algorithms
for finding an approximate median—specifically, an element whose rank is be-
tween n/4 and 3n/4. The connection between exact selection and approximate
median is well known. Given an algorithm for the latter problem, we can apply
it to find an approximate median m for the subsequence of all input elements
inside a current interval [�, r] that contains the answer; we can then compute the
rank of m in one additional pass, and then shrink [�, r] to either [�,m] or [m, r],
depending on whether the rank ofm is greater or less than k. After about lg4/3 n
iterations, the interval will be shrunk to a single point. If the given approximate
median algorithm makes P passes over the input, has running time proportional
to the cost of the P linear scans, and uses O(s) space, then the overall algorithm
has running time O(nP lgn) and uses O(s) space.

We first present a simple algorithm to find an approximate median using
O(lg lgU) passes and O(1) space. Our idea is inspired by the standard con-
struction of a ‘centroid’ of a binary tree (namely, the trie formed by the binary
representations of the input integers).

Theorem 3. An approximate median from a range of [U ] can be found in
O(lg lgU) passes and O(n lg lgU) time in read-only memory using O(1) words
of space. Hence the k-th smallest element can be found in O(n lg n lg lgU) time
in read-only memory using O(1) words of space.

Proof. The idea is to find the longest prefix p such that the number of integers
in the input sequence whose binary representations starts with p is more than
n/2. Let m0 and m1 be the smallest input integer with prefix p0 and prefix p1
respectively, and let m2 be the largest input integer with prefix p1. Let r0, r1, r2
be the ranks of m0,m1,m2 respectively. As r1 − r0 ≤ n/2, r2 − r1 ≤ n/2, and
r2−r0 ≥ n/2 (due to the choice of p), it is easy to see that at least one of r0, r1, r2
must lie in [n/4, 3n/4]. So, we can report one of m0,m1,m2 as an approximate
median.

Now, to find this longest prefix p, we use a standard binary-search over the
lengths. We maintain an interval containing the desired prefix length (which is
the entire length of lgU to start with). We take the midpoint of the interval, and
if we find that this length has no element that occurs more than n/2 times (i.e.,
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has no majority element), then we replace the interval with its lower half, else we
replace the interval with its upper half. The number of iterations is O(lg lgU).

At each prefix length, we need to decide whether a majority element exists in
of a list of n elements. There is a well-known ‘textbook’ algorithm that solves
the majority problem in O(n) time, in two passes. We include a brief description,
as it will be useful later. In the first pass, the pseudocode below finds a possible
candidate p for the majority of A[1], . . . , A[n]:

1. initialize c = 0
2. for t = 1, . . . , n:
3. if c = 0 then set p = A[t]
4. if A[t] = p then increment c else decrement c

The claim is that after each iteration t,

(∗) if the majority of A[1], . . . , A[t] exists, then it must be p.

This can be seen from the following invariants: Let t′ be the last value such
that c = 0 at the end of iteration t′. Then

(a) A[1], . . . , A[t′] do not have a majority; and
(b) c = [# of times p occurs in A[t′ + 1], . . . , A[t]] −

[# of times p does not occur in A[t′ + 1], . . . , A[t]] ≥ 0.

By (b), the majority of A[t′+1], . . . , A[t] is p if c > 0, and does not exist if c = 0.
Together with (a), this implies that (∗), because of the following property: the
majority of the concatenation of two lists, if it exists, must be the majority of
one of the two lists.

After computing the candidate majority p, we can in a second pass compute its
frequency and then check whether it is more than n/2. Once we find the longest
prefix p, we find m0,m1 and m2 and their ranks r0, r1 and r2 respectively in two
additional passes in O(n) time. 	


We show how to speed up the preceding algorithm when we allow a little more
space:

Theorem 4. An approximate median can be found in O(n lgs lgU) time using
O(s) words of space in read-only memory for any s ≤ lgU . Hence the k-th
smallest element can be found in O(n lg n lgs lgU) time using O(s) words of
space in read-only memory.

Proof. We speed up the preceding binary search with an ‘s-ary search’, which
reduces the number of iterations to O(lgs lgU). This requires extending the
majority algorithm to compute majority candidates for s length values simulta-
neously, in two passes. More precisely, let A[1], . . . , A[n] be the input array, let
�1, . . . , �s be s given lengths in increasing order, and let πi(p) denote the length-
�i prefix of the binary representation of p. We want to compute a candidate for
the majority of πi(A[1]), . . . , πi(A[n]) for every i = 1, . . . , s.

The pseudocode for the modified majority algorithm is given below. The key
is to observe that we can make the s majority candidates to be prefixes of
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one common string p. This requires one subtle twist in the algorithm, where a
counter may in one particular case stay at zero without being incremented or
decremented:

0. initialize c1, . . . , cs to 0, p to 0
1. for t = 1, . . . , n:
2. find the smallest j with πj(A[t]) �= πj(p)
3. if cj = 0 (or j does not exist) then
4. set p = A[t] and increment c1, . . . , cs
5. else increment c1, . . . , cj−1

6. decrement the nonzero entries of cj, . . . , cs

Correctness. The claim is that after each iteration t, for each i,

(∗) if the majority of πi(A[1]), . . . , πi(A[t]) exists, then it is πi(p), and ci �= 0.

Let ti be the last value such that ci = 0 at the end of iteration ti. Then the
following three invariants are true:

(a) πi(A[1]), . . . , πi(A[ti]) do not have a majority;
(b) ci = [# of times πi(p) occurs in πi(A[ti + 1]), . . . , πi(A[t])] −

[# of times πi(p) does not occur in πi(A[ti + 1]), . . . , πi(A[t])] ≥ 0;
(c) c1 ≥ c2 ≥ · · · ≥ cs.

First we argue that (∗) follows from the three invariants. By (b), the majority of
πi(A[ti+1]), . . . , πi(A[t]) is πi(p) if ci > 0, and does not exist if ci = 0. Together
with (a), this implies (∗).

It is straightforward to verify that the invariants are preserved in the case
when lines 3–4 are executed (here, cj = · · · = cb = 0 by (c)). So consider the cj �=
0 case instead when lines 5–6 are executed. It is straightforward to see that the
invariants are preserved for any index i where ci is incremented or decremented.
The remaining subcase is when i > j and ci is zero, and is not decremented, but
stays at zero. Then a majority of πi(A[1]), . . . , πi(A[t − 1]) does not exist. To
maintain (a), we need to confirm that a majority of πi(A[1]), . . . , πi(A[t]) does
not exist. Assume otherwise. Then this majority must be πi(A[t]). This would
imply that the majority of πj(A[1]), . . . , πj(A[t]) is πj(A[t]), but this majority
can only be πj(p): a contradiction with πj(A[t]) �= πj(p).

Implementation. Line 2 can be performed in O(1) time by taking the exclusive-or
of A[t] and p and identifying the most significant 1-bit (a commonly encountered
operation, which is known to be reducible to O(1) standard word operations [10]).
Lines 4, 5, and 6 require increment/decrement operations on length-s vectors,
which can be done using a known data structure for dynamic counting by Di-
etz [7]. Because s is small, however, the data structure can be greatly simplified
and we can give a short description.

The idea is to express (cs, . . . , c1) as a sum (c′s, . . . , c
′
1)+(δs, . . . , δ1), where the

first vector does not change often and the second vector is kept small. Specifically,
after a round of s−1 iterations, we reset c′i = max{ci−s, 0} and δi = ci−c′i ≥ 0;
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the amortized cost of the reset is O(1). During a round, updates are applied to
the δi’s. Then δi < 2s at all times, so (δs, . . . , δ1) can be packed in one word
provided that s lg s = o(lgU). If s lg s = Ω(lgU), we can change s to

√
lgU , for

example, and the result is the same because O(n lgs lgU) is the same as O(n).
Testing whether ci = 0 is equivalent to testing whether δi = 0. Line 4 corresponds
to adding a constant (1, . . . , 1) to (δs, . . . , δ1) and lines 5–6 correspond to adding
a vector of the form (0, . . . , 0, 1, . . . , 1) and subtracting a vector of the form
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0). These reduce to O(1) standard arithmetic operations
on words. Before we decrement, we need to identify the smallest i with δi = 0;
this reduces to finding the most significant 1-bit in (δs, . . . , δ1).

Thus, the algorithm can be implemented to run in O(n) time. It uses O(s)
words of space for storing p and (cs, . . . , c1).

After computing the candidate majorities πi(p), we can in a second pass com-
pute their frequencies fi: initialize f1, . . . , fs to 0, and for each t = 1, . . . , n, find
the smallest j with πj(A[t]) �= πj(p) and increment f1, . . . , fj−1. By the same
approach, the second pass takes O(n) time as well. We can then check which of
the frequencies are more than n/2. 	


4 Final Remarks

We have shown that the selection problem for integers in read-only memory can
be solved deterministically in O(min{n�lgs U�, n lgn�lgs lgU�) time with O(s)
storage cells. Actually in all our algorithms, all but a constant number of cells in
the extra memory store O(lg n)-bit pointers or counters rather than O(lgU)-bit
integers. Thus, the space used in bits is O(lgU + s lgn).

For example, we can set s = lgU/ lgn to ensure O(lgU) bits of space, and a

time bound of O(min
{
n lgU

lg(lgU/ lgn) , n lg n
lg lgU

lg(lgU/ lgn)

}
). Notice that the second

term is O(n lg n) when lgU ≥ lg1+ε n. On the other hand, when lgU ≤ lg1+ε n,
the first term is at most O(n lg1+ε n). So, a combination of our two approaches
yields an algorithm that uses O(1) words of space and always runs in at most
O(n lg1+ε n) time—a bound independent of U .

A remaining question is whether there is a deterministic selection algorithm
for integers in read-only memory that uses O(1) words of space and runs in
O(n lg n) time (or better) for all U . Another question is to what extent can
our approximate median algorithm be improved; for example, is there a deter-
ministic linear-time algorithm using O(1) words of space in read-only memory?
Also, in the comparison model, the best deterministic algorithm with O(1) space
currently requires O(n1+ε) time in read-only memory [14,15]. Can one prove a
matching lower bound? This question appears difficult.

Finally, as was mentioned in the introduction, if randomization is allowed,
Θ(n lg lgs n) expected time algorithm is possible using O(s) storage cells for
general input. Can one extend the Ω(n lg lgs n) lower bound proof [6] to a non-
comparison model in the case when the input is a sequence of integers?
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Abstract. In this paper we introduce trajectory-based labeling, a new variant
of dynamic map labeling where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range maximiza-
tion problem in this model. The problem is NP-complete and W[1]-hard. In the
restricted, yet practically relevant case that no more than k labels can be active at
any time, we give polynomial-time algorithms. For the general case we present a
practical ILP formulation with an experimental evaluation as well as approxima-
tion algorithms.

1 Introduction

In contrast to traditional static maps, dynamic digital maps support continuous move-
ment of the map viewport based on panning, rotation, or zooming. Creating smooth
visualizations under such map dynamics induces challenging geometric problems, e.g.,
continuous generalization [12] or dynamic map labeling [2]. In this paper, we focus
on map labeling and take a trajectory-based view on it. In many applications, e.g., car
navigation, a movement trajectory is known in advance and it becomes interesting to
optimize the visualization of the map locally along this trajectory.

Selecting and placing a maximum number of non-overlapping labels for various map
features is an important cartographic problem. Labels are usually modeled as rectangles
and a typical objective in a static map is to find a maximum (possibly weighted) inde-
pendent set of labels. This is known to be NP-complete [6]. There are several approxi-
mation algorithms and PTAS’s in different labeling models [1, 5], as well as practically
useful heuristics [13, 14].

With the increasing popularity of interactive dynamic maps, e.g., as digital globes
or on mobile devices, the static labeling problem has been translated into a dynamic
setting. Due to the temporal dimension of the animations occurring during map move-
ment, it is necessary to define a notion of temporal consistency or coherence for map
labeling as to avoid distracting effects such as jumping or flickering labels [2]. Previ-
ously, consistent labeling has been studied from a global perspective under continuous
zooming [3] and continuous rotation [8]. In practice, however, an individual map user
with a mobile device, e.g., a tourist or a car driver, is typically interested only in a spe-
cific part of a map and it is thus often more important to optimize the labeling locally
for a certain trajectory of the map viewport than globally for the whole map.

We introduce a versatile trajectory-based model for dynamic map labeling, and de-
fine three label activity models that guarantee consistency. We apply this model to point
feature labeling for a viewport that moves and rotates along a differentiable trajectory
in a fixed-scale base map in a forward-facing way. Although we present our approach in

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 413–423, 2013.
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R

T (t)
R

0

1

T (t)

α(t)

Fig. 1. Illustration of the viewport moving along a trajectory. Left the user’s view and right a
general view of the map and the viewport.

a very specific problem setting, our model is very general. Our approach can be applied
for every dynamic labeling problem that can be expressed as a set of label availability
intervals over time and a set of conflict intervals over time for pairs of labels. The exact
algorithms hold for the general model, the approximation algorithm itself is also appli-
cable, but the analysis of the approximation ratio requires problem-specific geometric
arguments, which must be adjusted to the specific setting.

Contribution. For our specific problem, we show that maximizing the number of vis-
ible labels integrated over time in our model is NP-complete; in fact it is even W [1]-
hard and thus it is unlikely that a fixed-parameter tractable algorithm exists. We present
an integer linear programming (ILP) formulation for the general unrestricted case,
which is supported by a short experimental evaluation. For the special case of unit-
square labels we give an efficient approximation algorithm with different approximation
ratios depending on the actual label activity model. Moreover, we present polynomial-
time algorithms for the restricted case that no more than k labels are active at any time
for some constant k. We note that limiting the number of simultaneously active labels is
of practical interest as to avoid overly dense labelings, in particular for dynamic maps
on small-screen devices such as in car navigation systems. Due to space constraints we
omitted some proofs, which can be found in the full version [7] of the paper.

2 Trajectory-Based Labeling Model

LetM be a labeled north-facing, fixed-scale map, i.e., a set of pointsP = {p1, . . . , pN}
in the plane together with a corresponding set L = {�1, . . . , �N} of labels. Each label �i
is represented by an axis-aligned rectangle of individual width and height. We call the
point pi the anchor of the label �i. Here we assume that each label has an arbitrary but
fixed position relative to its anchor, e.g., with its lower left corner coinciding with the
anchor. The viewport R is an arbitrarily oriented rectangle of fixed size that defines the
currently visible part of M on the map screen. The viewport follows a trajectory that
is given by a continuous differentiable function T : [0, 1] → R2. For an example see
Fig. 1. More precisely, we describe the viewport by a function V : [0, 1]→ R2× [0, 2π].
The interpretation of V (t) = (c, α) is that at time t the center of the rectangle R is
located at c and R is rotated clockwise by the angle α relatively to a north base line of
the map. Since R moves along T we define V (t) = (T (t), α(t)), where α(t) denotes
the direction of T at time t. For simplicity, we sometimes refer toR at time t as V (t). To
ensure good readability, we require that the labels are always aligned with the viewport
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axes as the viewport changes its orientation, i.e., they rotate around their anchors by the
same angle α(t), see Fig. 1. We denote the rotated label rectangle of � at time t by �(t).

We say that a label � is present at time t, if V (t) ∩ �(t) �= ∅. As we consider the
rectangles �(t) and V (t) to be closed, we can describe the points in time for which �
is present by closed intervals. We define for each label � the set Ψ� that describes all
disjoint subintervals of [0, 1] for which � is present, thus Ψ� = {[a, b] | [a, b] ⊆ [0, 1] is
maximal so that � is present at all t ∈ [a, b]}. Further, we define the disjoint union Ψ =
{([a, b], �) | [a, b] ∈ Ψ� and � ∈ L} of all Ψ�. We abbreviate ([a, b], �) ∈ Ψ by [a, b]�
and call [a, b]� ∈ Ψ a presence interval of �. In the remainder of this paper we denote
the number of presence intervals by n.

Two labels � and �′ are in conflict with each other at time t if �(t) ∩ �′(t) �= ∅.
If �(t) ∩ �′(t) ∩ V (t) �= ∅ we say that the conflict is present at time t. As in [8] we can
describe the occurrences of conflicts between two labels �, �′ ∈ L by a set of closed
intervals: C�,�′ = {[a, b] ⊆ [0, 1] | [a, b] is maximal and � and �′ are in conflict at
all t ∈ [a, b]}. We define the disjoint union C = {([a, b], �, �′) | [a, b] ∈ C�,�′ and
�, �′ ∈ L} of all C�,�′ . We abbreviate ([a, b], �, �′) ∈ C as [a, b]�,�′ and call it a conflict
interval of � and �′. Two presence intervals [a, b]� and [c, d]�′ are in conflict if there is a
conflict [f, g]�,�′ ∈ C s.t. the intersection of the intervals [f, g]�,�′ ∩ [a, b]�∩ [c, d]�′ �= ∅.

The tuple (P,L, Ψ, C) is called an instance of trajectory-based labeling. Note that the
essential information of T is implicitly given by Ψ and C and that for each label � ∈ L
there can be several presence intervals. In this paper we assume that Ψ andC is given as
input. In practice, however, we usually first need to computeΨ andC given a continuous
and differentiable trajectory T . An interesting special case is that T is a continuous,
differentiable chain of m circular arcs (possibly of infinite radius), e.g., obtained by
approximating a polygonal route in a road network. Niedermann [11] showed that in
this case the set Ψ can be computed inO(m ·N) time and the set C in O(m ·N2) time.
His main observation was that for each arc of T the viewport can in fact be treated as a
huge label and that “conflicts” with the viewport correspond to presence intervals. We
refer to [11, Chapter 15] for details.

Next we define the activity of labels, i.e., when to actually display which of the
present labels on screen. We restrict ourselves to closed and disjoint intervals describing
the activity of a label � and define the set Φ� = {[a, b] ⊆ [0, 1] | [a, b] is maximal such
that � is active at all t ∈ [a, b]}, as well as the disjoint unionΦ = {([a, b], �) | [a, b] ∈ Φ�

and � ∈ L} of all Φ�. We abbreviate ([a, b], �) ∈ Φ with [a, b]� and call [a, b]� ∈ Φ an
active interval of �.

It remains to define an activity model restricting Φ in order to obtain a reasonable
labeling. Here we propose three activity models AM1, AM2, AM3 with increasing
flexibility. All three activity models exclude overlaps of displayed labels and guarantee
consistency criteria introduced by Been et al. [2], i.e., labels must not flicker or jump.
To that end they share the following properties (A) a label � can only be active at time t
if it is present at time t, (B) to avoid flickering and jumping each presence interval of �
contains at most one active interval of �, and (C) if two labels are in conflict at a time t,
then at most one of them may be active at t to avoid overlapping labels.

What distinguishes the three models are the possible points in time when labels can
become active or inactive. The first and most restrictive activity model AM1 demands
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that each activity interval [a, b]� of a label � must coincide with a presence interval of �.
The second activity model AM2 allows an active interval of a label � to end earlier than
the corresponding presence interval if there is a witness label �′ for that, i.e., an active
interval for � may end at time c if there is a starting conflict interval [c, d]�,�′ and the
conflicting label �′ is active at c. However, AM2 still requires every active interval to
begin with the corresponding presence interval. The third activity model AM3 extends
AM2 by also relaxing the restriction regarding the start of active intervals. An active
interval for a label � may start at time c if a present conflict [a, c]�,�′ involving � and an
active witness label �′ ends at time c. In this model active intervals may begin later and
end earlier than their corresponding presence intervals if there is a visible reason for the
map user to do so, namely the start or end of a conflict with an active witness label.

A common objective in both static and dynamic map labeling is to maximize the
number of labeled points. Often, however, certain labels are more important than oth-
ers. To account for this, each label � can be assigned a weight W� that corresponds
to its significance. Then we define the weight of an interval [a, b]� ∈ Φ as w([a, b]�) =
(b−a)·W�. Given an instance (P,L, Ψ, C), then with respect to one of the three activity
models we want to find an activity Φ that maximizes

∑
[a,b]�∈Φw([a, b]�); we call this

optimization problem GENERALMAXTOTAL. If we require that at any time t at most k
labels are active for some k, we call the problem k-RESTRICTEDMAXTOTAL. In par-
ticular the latter problem is interesting for small-screen devices, e.g., car navigation
systems, that should not overwhelm the user with additional information.

3 Solving GENERALMAXTOTAL

We first prove that GENERALMAXTOTAL is NP -complete. The membership of GEN-
ERALMAXTOTAL in NP follows from the fact that the start and the end of an active
interval must coincide with the start or end of a presence interval or a conflict interval.
Thus, there is a finite number of candidates for the endpoints of the active intervals so
that a solution L can be guessed. Verifying that L is valid in one of the three models and
that its value exceeds a given threshold can obviously be checked in polynomial time.

For the NP -hardness we apply a straight-forward reduction from theNP-complete
maximum independent set of rectangles problem [6]. We simply interpret the set of
rectangles as a set of labels with unit weight, choose a short vertical trajectory T and a
viewport R that contains all labels at any point of T . Since the conflicts do no change
over time, the reduction can be used for all three activity models. By means of the
same reduction and Marx’ result [10] that finding an independent set for a given set of
axis-parallel unit squares is W [1]-hard we derive the next theorem.

Theorem 1. GENERALMAXTOTAL is NP-complete and W [1]-hard for all activity
models AM1–AM3.

As a consequence, GENERALMAXTOTAL is not fixed-parameter tractable unless
W [1] = FPT . Note that this also means that for k-RestrictedMaxTotal we cannot
expect to find an algorithm that runs in O(p(n) · C(k)) time, where p(n) is a poly-
nomial that depends only on the number n of presence intervals and the computable
function C(k) depends only on the parameter k.
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3.1 Integer Linear Programming for GENERALMAXTOTAL

Since we are still interested in finding an optimal solution for GENERALMAXTOTAL

we have developed integer linear programming (ILP) formulations for all three activity
models. We present the formulation for the most involved model AM3 and then argue
how to adapt it to the simpler models AM1 and AM2.

�1

1 2 3 4 5 6 8 9 11

�2
�3
E 12

c�1,�2

c�2,�3

13 1410

Fig. 2. Depiction of presence intervals (light
gray), active intervals (hatched), and con-
flicts (dark gray)

We define E to be the totally ordered set
of the endpoints of all presence and all con-
flict intervals and include 0 and 1; see Fig. 2.
We call each interval [c, d] between two con-
secutive elements c and d in E an atomic seg-
ment and denote the i-th atomic segment ofE
by E(i). Further, let X(�, i) be the set of la-
bels that are in conflict with � duringE(i−1),
but not during E(i), i.e., the conflicts end
with E(i−1). Analogously, let Y (�, i) be the
set of labels that are in conflict with � during
E(i + 1), but not during E(i), i.e., the conflicts begin with E(i + 1). For each label �
we introduce three binary variables bi, xi, ei ∈ {0, 1} and the following constraints.

b�i = x�
i = e�i = 0 ∀1 ≤ i ≤ |E| s.t. ∀[c, d] ∈ Ψ� : E(i) ∩ [c, d] = ∅ (1)∑

j∈J

b�j ≤ 1 and
∑
j∈J

e�j ≤ 1 ∀[c, d] ∈ Ψ� where J = {j | E(j) ⊆ [c, d]} (2)

x�
i + x�′

i ≤ 1 ∀1 ≤ i ≤ |E| ∀[c, d]�,�′ ∈ C : E(i) ⊆ [c, d] (3)

x�
i−1 + b�i = x�

i + e�i−1 ∀1 ≤ i ≤ |E| (set x0 = e0 = 0) (4)

b�j ≤
∑

�′∈X(�,j)

x�′
j−1 ∀[c, d]� ∈ Ψ ∀E(j) ⊂ [c, d]� with c �∈ E(j) (5)

e�j ≤
∑

�′∈Y (�,j)

x�′
j+1 ∀[c, d]� ∈ Ψ ∀E(j) ⊂ [c, d]� with d �∈ E(j) (6)

Subject to these constraints we maximize
∑

�∈L
∑|E|−1

i=1 x�i · w(E(i)). The intended
meaning of the variables is that x�i = 1 if � is active during E(i) and otherwise x�i = 0.
Variable b�i = 1 if and only if E(i) is the first atomic segment of an active interval
of �, and analogously e�i = 1 if and only if E(i) is the last atomic segment of an
active interval of �. Recall the properties of the activity models as defined in Section 2.
Constraints (1)–(3) immediately ensure properties (A)–(C), respectively. Constraint (4)
means that if � is active during E(i − 1) (x�i−1 = 1), then it must either stay active
during E(i) (x�i = 1) or the active interval ends with E(i − 1) (e�i−1 = 1), and if �
is active during E(i) (x�i = 1) then it must be active during E(i − 1) (x�i−1 = 1)
or the active interval begins with E(i) (b�i = 1). Constraint (5) enforces that for � to
become active with E(j) at least one witness label ofX(�, j) is active duringE(j−1).
Analogously, constraint (6) enforces that for � to become inactive with E(j) at least
one witness label of Y (�, j) is active during E(j + 1). Note that without the explicit
constraints (5) and (6) two conflicting labels could switch activity at any point during
the conflict interval rather than only at the endpoints.
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Theorem 2. Given an instance I = (P,L, Ψ, C), the ILP (1)–(6) computes an optimal
solution Φ of GENERALMAXTOTAL in AM3. It uses O(N · (|Ψ |+ |C|)) variables and
constraints.

We can adapt the above ILP to AM1 and AM2 as follows. For AM2 we replace
the right hand side of constraint (5) by 0, and for AM1 we also replace the right hand
side of constraint (6) by 0. This excludes exactly the start- and endpoints of the activity
intervals that are forbidden in AM1 or AM2. It is easy to see that these ILP formulations
can be modified further to solve k-RESTRICTEDMAXTOTAL by adding the constraint∑

�∈L x
�
i ≤ k for each atomic segment E(i).

Corollary 1. Given an instance I = (P,L, Ψ, C), GENERALMAXTOTAL and k-RE-
STRICTEDMAXTOTAL can be solved in AM1, AM2, and AM3 by an ILP that uses
O(N · (|Ψ |+ |C|)) variables and constraints.

Experiments. We have evaluated the ILP in all three models using Open Street Map
data of the city center of Karlsruhe (Germany) which contains more than 2,000 labels.
To this end we generated 1,000 shortest paths on the road network of Karlsruhe by
selecting source and target vertices uniformly at random and transformed those shortest
paths into trajectories consisting of circular arcs. The experimental evaluation in the full
version [7] indicates that the ILP formulations are indeed applicable in practice.

3.2 Approximation of GENERALMAXTOTAL

In this section we describe a simple greedy algorithm for GENERALMAXTOTAL in all
three activity models assuming that all labels are unit squares anchored at their lower-
left corner. Further, we assume that the weight of each presence interval [a, b]� is its
length w([a, b]�) = b− a.

Starting with an empty solution Φ, our algorithm GREEDYMAXTOTAL removes the
longest interval I from Ψ and adds it to Φ, i.e., I is set active. Then, depending on the
activity model, it updates all presence intervals that have a conflict with I in Ψ and
continues until the set Ψ is empty.

For AM1 the update process simply removes all presence intervals from Ψ that are
in conflict with the newly selected interval I . For AM2 and AM3 let Ij ∈ Ψ and
let I1j , . . . , I

k
j be the longest disjoint sub-intervals of Ij that are not in conflict with the

selected interval I . We assume that I1j , . . . , I
k
j are sorted by their left endpoint. The up-

date operation for AM2 replaces every interval Ij ∈ Ψ that is in conflict with I with I1j .
In AM3 we replace Ij by I1j , if I1j is not fully contained in I . Otherwise, Ij is replaced
by Ikj . Note that this discards some candidate intervals, but the chosen replacement of
Ij is enough to prove the approximation factor. Note that after each update all intervals
in Ψ are valid choices according to the specific model. Hence, we can conclude that the
result Φ of GREEDYMAXTOTAL is also valid in that model.

In the following we analyze the approximation quality of GREEDYMAXTOTAL. To
that end we first introduce a purely geometric packing lemma. Similar packing lemmas
have been introduced before, but to the best of our knowledge for none of them it is
sufficient that only one prescribed corner of the packed objects lies within the container.
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Lemma 1. Let C be a circle of radius
√
2 in the plane and let Q be a set of non-

intersecting closed and axis-parallel unit squares with their bottom-left corner in C.
Then Q cannot contain more than eight squares.

Based on Lemma 1 we now show that for any label with anchor p there is no point
of time t ∈ [0, 1] for which there can be more than eight active labels whose anchors
are within distance

√
2 of p. We call a set X ⊆ Ψ conflict-free if it contains no pair of

presence intervals that are in conflict. Further, we say that X is in conflict with I ∈ Ψ if
every element of X is in conflict with I , and we say that X contains t ∈ [0, 1] if every
element of X contains t.

Lemma 2. For every t ∈ [0, 1] and every I ∈ Ψ any maximum cardinality conflict-free
set XI(t) ⊆ Ψ that is in conflict with I and contains t satisfies |XI(t)| ≤ 8.

With this lemma we can finally obtain the approximation guarantees for GREEDY-
MAXTOTAL for all activity models.

Theorem 3. Assuming that all labels are unit squares andw([a, b]) = b−a, GREEDY-
MAXTOTAL is a 1/24-, 1/16-, 1/8-approximation for AM1–AM3, respectively, and needs
O(n log n) time for AM1 and O(n2) time for AM2 and AM3.

Proof. To show the approximation ratios, we consider an arbitrary step of GREEDY-
MAXTOTAL in which the presence interval I = [a, b]� is selected from Ψ . Let CI

� be
the set of presence intervals in Ψ that are in conflict with I .

Consider the model AM1. Since I is the longest interval in Ψ when it is chosen, the
intervals in CI

� must be completely contained in J = [a − w(I), b + w(I)]. As CI
�

contains all presence intervals that are in conflict with I it is sufficient to consider J to
bound the effect of selecting I . Obviously, the interval J is three times as long as I . By
Lemma 2 we know that for any XI(t) it holds that |XI(t)| ≤ 8 for all t ∈ J . Hence, in
an optimal solution there can be at most eight active labels at each point t ∈ J that are
discarded when [a, b]� is selected. Thus, the cost of selecting [a, b]� is at most 3·8·w(I).

For AM2 we apply the same arguments, but restrict the interval J to J = [a, b +
w(I)], which is only twice as long as I . To see that consider for an interval [c, d]�′ ∈ CI

�

the prefix [c, a] if it exists. If [c, a] does not exist (because a < c), removing [c, d]�′

from Ψ changes Ψ only in the range of J . If [c, a] exists, then again Ψ is only changed
in the range of I , because by definition [c, d]�′ is shortened to an interval that at least
contains [c, a] and is still contained in Ψ . Thus, the cost of selecting I is at most 2·8w(I).

Analogously, for AM3 we can argue that it is sufficient to consider the interval J =
[a, b]. By definition of the update operation of GREEDYMAXTOTAL at least the prefix
or suffix subinterval of each [c, d]�′ ∈ CI

� remains in Ψ that extends beyond I (if such
an interval exists). Thus, selecting I influences only the interval J and its cost is at most
8w(I). The approximation bounds of 1/24, 1/16, and 1/8 follow immediately.

We use a heap to achieve the time complexity O(n log n) of GREEDYMAXTOTAL

for AM1 since each interval is inserted and removed exactly once. For AM2 and AM3
we use a linear sweep to identify the longest interval contained in Ψ . In each step we
need O(n) time to update all intervals in Ψ , and we need a total of O(n) steps. Thus,
GREEDYMAXTOTAL needs O(n2) time in total for AM2 and AM3. 	
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4 Solving k-RESTRICTEDMAXTOTAL

Corollary 1 showed that k-RESTRICTEDMAXTOTAL can be solved by integer linear
programming in all activity models. In this section we prove that unlike GENERAL-
MAXTOTAL the problem k-RESTRICTEDMAXTOTAL can actually be solved in poly-
nomial time. We give a detailed description of our algorithm for AM1, and then show
how it can be extended to AM2. Note that solving k-RESTRICTEDMAXTOTAL is re-
lated to finding a maximum cardinality k-colorable subset of n intervals in interval
graphs. This can be done in polynomial time in both n and k [4]. However, we have to
consider additional constraints due to conflicts between labels, which makes our prob-
lem more difficult. First, we discuss how to solve the case for k = 1, then give an
algorithm that solves k-RESTRICTEDMAXTOTAL for k = 2, and finally extend this
result recursively to any constant k > 2.

4.1 An Algorithm for 2-RESTRICTEDMAXTOTAL

We start with some definitions before giving the actual algorithm. We assume that the
intervals of Ψ = {I1, . . . , In} are sorted in non-decreasing order by their left endpoints;
ties are broken arbitrarily. First note that for the case that at most one label can be active
at any given point in time (k = 1), conflicts between labels do not matter. Thus, it is
sufficient to find an independent subset of Ψ of maximum weight. This is equivalent
to finding a maximum weight independent set on interval graphs, which can be done
in O(n) time using dynamic programming given n sorted intervals [9]. We denote this
algorithm by A1. Let L1[Ij ] be the set of intervals that lie completely to the left of the
left endpoint of Ij . AlgorithmA1 basically computes a table T1 indexed by the intervals
in Ψ , where an entry T1[Ij ] stores the value of a maximum weight independent set Q of
L1[Ij ] and a pointer to the rightmost interval in Q.

We call a pair of presence intervals (Ii, Ij), i < j, a separating pair if Ii and Ij
overlap and are not in conflict with each other. Further, a separating pair v = (Ip, Iq)
is smaller than another separating pair w = (Ii, Ij) if and only if p < i or p = i and
q < j. This induces a total order and we denote the ordered set of all separating pairs by
S2={v1, . . . ,vz}. The weight of a separating pair v is defined as w(v) =

∑
I∈v w(I).

We observe that a separating pair v = (Ii, Ij) contained in a solution of 2-RE-
STRICTEDMAXTOTAL splits the set of presence intervals into two independent subsets.
Specifically, a left (right) subset L2[v] (R2[v]) that contains only intervals which lie
completely to the left (right) of the intersection of Ii and Ij and are neither in conflict
with Ii nor Ij ; see Fig. 3.

We are now ready to describe our dynamic programming algorithm A2. For ease of
notation we add two dummy separating pairs to S2. One pair v0 with presence inter-
vals strictly to the left of 0 and one pair vz+1 with presence intervals strictly to the
right of 1. Since all original presence intervals are completely contained in [0, 1] every
optimal solution contains both dummy separating pairs. Our algorithm computes a one-
dimensional table T2, where for each separating pair v there is an entry T2[v] that stores
the value of the optimal solution for L2[v]. We compute T2 from left to right starting
with the dummy separating pair v0 and initialize T2[v0] = 0. Then, we recursively de-
fine T2[vj ] for every vj ∈ S2 as T2[vj] = maxi<j{T2[vi]+w(vi)+A1(vi,vj) | vi ∈
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Ii

Ij

Ip

Iq

Fig. 3. Illustration of presence intervals. Intervals that are in conflict are connected by a dotted
line. Both (Ii, Ij) and (Ip, Iq) are separating pairs. The intervals of L2[i, j] (R2[p, q]) are marked
by a left (right) arrow.

S2, vi ⊆ L2[vj ], vj ⊆ R2[vi]}. Additionally, we store a backtracking pointer to the
predecessor pair that yields the maximum value. In other words, for computing T2[vj ]
we consider all possible direct predecessors vi ∈ S2 with i < j, vi ∩ vj = ∅, and no
conflict with vj . Each such vi induces a candidate solution whose value is composed
of T2[vi], w(vi), and the value of an optimal solution of algorithm A1 for the intervals
between vi and vj with vi and vj active.

Since by construction L2[vz+1] = Ψ ∪ v0, the optimal solution to 2-RESTRIC-
TEDMAXTOTAL is stored in T2[vz+1] once v0 is removed. To compute a single entry
T2[vj] our algorithm needs to consider all possible separating pairs preceding vj , and
for each of them obtain the optimal solution from algorithm A1 under some additional
constraints. For the call A1(vi,vj) in the recursive equation above, we distinguish two
cases. If the rightmost endpoint of vi is to the left of the leftmost endpoint of vj then we
run algorithmA1 on the set of intervalsL2[vj ]∩R2[vi] and obtain the valueA1(vi,vj).
Otherwise, there is an overlap between an interval Ia of vi and an interval Ib of vj .
Since for k = 2 no other interval can cross this overlap, we actually make two calls
to A1, once on the set R2[vi] ∩ L2[(Ia, Ib)] and once on the set R2[(Ia, Ib)] ∩ L2[vj ].
We add both values to obtain A1(vi,vj). Since we run algorithm A1 for each of O(z)
separating pairs, the time complexity to compute a single entry of T2 is O(nz). To
compute the whole table the algorithm repeats this step O(z) times, which yields a total
time complexity of O(nz2). Note that the number of separating pairs z is in O(n2).

We prove the correctness of the algorithm by contradiction. Assume that there exists
an instance for which our algorithm does not compute an optimal solution and let OPT
be an optimal solution. This means, that there is a smallest separating pair vj for which
the entry in T2[vj ] is less than the value of OPT for L2[vj ]. Note that vj cannot be
the dummy separating pair v0 since T2[v0] is trivially correct. Let vi be the rightmost
separating pair in OPT that precedes vj and is disjoint from it (possibly vi = v0). Since
there is no other disjoint separating pair between vi and vj in OPT, all intervals in OPT
between vi and vj form a subset of R2[vi] ∩ L2[vj ] that is a valid configuration for
k = 1. We can obtain an optimal solution for k = 1 of the intervals inR2[vi]∩L2[vj ] by
computingA1(vi,vj) as described above. Since, by assumption, T2[vi] is optimal, A1

is correct [9], and our algorithm explicitly considers all possible preceding separating
pairs including vi, the entry T2[vj ] must be at least as good as OPT for L[vj ]. This is a
contradiction and the correctness of A2 follows.

Theorem 4. AlgorithmA2 solves 2-RESTRICTEDMAXTOTAL in AM1 in O(nz2) time
and O(z) space, where z is the number of separating pairs in the input instance.
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4.2 An Algorithm for k-RESTRICTEDMAXTOTAL

In the following we extend the dynamic programming algorithm A2 to a general algo-
rithm Ak for the case k > 2. To this end, we extend the definition of separating pairs to
separating k-tuples. A separating k-tuple v is a set of k presence intervals that are not
in conflict with each other and that have a non-empty intersection Yv =

⋂
I∈v I . We

say a separating k-tuple v is smaller than a separating k-tuple w if Yv begins to the left
of Yw. Ties are broken arbitrarily. This lets us define the ordered set Sk = {v1, . . . ,vz}
of all separating k-tuples of a given set of presence intervals. We say a set C of pres-
ence intervals is k-compatible if no more than k intervals in C intersect at any point
and there are no conflicts in C. Two separating k-tuples v and w are k-compatible
if they are disjoint and v ∪ w is k-compatible. The definitions of the sets R2[v] and
L2[v] extend naturally to the sets Rk[v] and Lk[v] of all intervals completely to the
right (left) of Yv and not in conflict with any interval in v. Now, we recursively de-
fine the algorithm Ak that solves k-RESTRICTEDMAXTOTAL given a pair of active
k-compatible boundary k-tuples. Note that in the recursive definition these boundary
tuples may remain k-dimensional even in Ak′ for k′ < k. For Ak we define as bound-
ary tuples two k-compatible dummy separating k-tuples v0 and vz+1 with all presence
intervals strictly to the left of 0 and to the right of 1, respectively. The algorithm fills a
one-dimensional table Tk . Similarly to the case k = 2, each entry Tk[v] stores the value
of the optimal solution for Lk[v], i.e., the final solution can again be obtained from
Tk[vz+1]. We initialize Tk[v0] = 0. Then, the remaining entries of Tk can be obtained
by computing Tk[vj ] = maxi<j{Tk[vi] + w(vi) + Ak−1(ṽi, ṽj) | vi ∈ Sk, vi ⊆
Lk[vj ] ∪ v0, vj ⊆ Rk[vi] ∪ vz+1, v0 ∪ vz+1 ∪ vi ∪ vj is k-compatible}, which uses
the algorithm Ak−1 recursively on a suitable subset of presence intervals between the
boundary tuples ṽi and ṽj . Here ṽi is defined as the union of the tuple vi and all inter-
vals in v0 ∪ vz+1 that intersect the right endpoint of Yvi ; analogously ṽj is defined as
the union of the tuple vj and all intervals in v0 ∪ vz+1 that intersect the left endpoint
of Yvi

. This makes sure that in each subinstance all active intervals that are relevant for
that particular subinstance are known. Note that by the k-compatibility condition ṽi and
ṽj contain at most k elements each. In fact, Ak−1(ṽi, ṽj) uses ṽi and ṽj as boundary
k-tuples (and thus does not create dummy boundary tuples) and the set Rk[vi]∩Lk[vj ]
as the set of presence intervals from which separating (k − 1)-tuples can be formed.

Theorem 5. AlgorithmAk solves k-RESTRICTEDMAXTOTAL in AM1 inO(nk
2+k−1)

time and O(nk) space.

It is natural to ask whether it is possible to extend the dynamic program described
above to the models AM2 and AM3. With some modifications and at the expense of
another polynomial factor in the running time we can extend algorithm Ak to the ac-
tivity model AM2. The important difference between AM1 and AM2 is that presence
intervals can be truncated at their right side if there is an active conflicting witness label
causing the truncation. Hence, we need to add for each presence interval, all possible
subintervals to Ψ that might be contained in an optimal solution. Moreover special care
needs to be taken to ensure the witness condition of AM2 for all truncated intervals. A
more detailed discussion of this extension can be found in the full version [7].
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Theorem 6. k-RESTRICTEDMAXTOTAL in AM2 can be solved in polynomial time.

It remains open whether k-RESTRICTEDMAXTOTAL can be solved in polynomial
time in AM3. Another extension of the dynamic programming algorithm is unlikely,
since in AM3 the left and right subinstances created by a separating k-tuple v may
have dependencies and thus cannot be solved independently any more. This is because
a single original presence interval I can have subintervals both in Lk[v] and Rk[v],
which cannot simultaneously be active.

Since the running time of our algorithms are, even for small k, prohibitively ex-
pensive in practice, we propose an approximation algorithm for k-RESTRICTEDMAX-
TOTAL based on GREEDYMAXTOTAL, which can be found in the full version [7].

Theorem 7. There exists an O(n2)-time approximation algorithm for for k-RESTRIC-
TEDMAXTOTAL with unit squares for AM1–AM3 with approximation ratios 1/min{3+
3k, 27}, 1/min{3 + 2k, 19}, 1/min{3 + k, 11}, respectively.
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Abstract. We perform a thorough study of various characteristics of the
asynchronous push-pull protocol for spreading a rumor on Erdős-Rényi
random graphs Gn,p, for any p > c ln(n)/n, c > 1. In particular, we prove
tight bounds for the total time that is needed until the information has
spread to all nodes. Moreover, we quantify precisely the robustness of
the protocol with respect to transmission and node failures.

1 Introduction

Rumor spreading protocols have become fundamental mechanisms for designing
efficient and fault-tolerant algorithms that disseminate information in large and
complex networks. In the classical setting the algorithm that we will consider
proceeds in synchronous rounds. Initially, some arbitrary node receives a piece of
information. In each subsequent round, every node that knows the information
transmits it to a randomly selected neighbor in the network. This operation is
denoted as a push. Moreover, every node that does not possess the information
tries to learn it from a randomly selected neighbor; this operation is denoted
as a pull. Equivalently, we can say that in every round, every node contacts a
randomly chosen neighbor and exchanges the information with it.

Rumor spreading was first introduced in [9], where the problem of distributing
updates consistently in replicated databases was considered. Subsequently it has
found many other applications, such as the detection of failures in a distributed
environment [22], sampling of peers [16] and averaging in networks that consist
of many sensors in a distributed fashion [3].

In this work we consider a variation of the classical push-pull algorithm that
was introduced in [4]. In that paper, striving for a more realistic setting, the
authors modified the algorithm by dropping the assumption that all nodes are
able to act in synchrony. In the asynchronous version that we consider here,
nodes do not contact other nodes simultaneously in synchronized rounds, but
do so in times that arrive according to independent rate 1 Poisson processes at
each node. In [4] this is suggested as a possible solution if a centralized entity
for facilitating time synchronization is not existent or has failed in the networks
that we consider.
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1.1 Results

In this paper we present a thorough study of various characteristics of the asyn-
chronous push-pull algorithm. We will assume that the underlying network is an
Erdős-Renyi random graph Gn,p, where each edge is included independently of
all other edges with probability p. For any p > c ln(n)/n, c > 1, we show almost
optimal bounds for the time that is needed until the information has spread to
all nodes. We also precisely quantify the robustness of the algorithm with respect
to transmission and node failures.

Let us introduce some basic notation first. For a graph G with n nodes we
assume that its node set is [n], where [n] denotes the set {1, . . . , n}. For v ∈ [n]
we write NG(v) for the neighborhood of v and dG(v) = |NG(v)|. For any S ⊆
[n] we abbreviate NG(S) = ∪v∈SNG(v). Moreover, we denote by eG(S,R) the
number of edges between S,R ⊆ [n] and abbreviate this quantity by eG(S) if
S = R. If G is clearly given from the context we may drop the subscript G in our
notation. Finally, we let T (G) denote the (random) time that the asynchronous
push-pull protocol needs to spread a rumor to all nodes in that graph. Note
that when studying rumor spreading on random graphs, we effectively have two
probability spaces - one for the random graph and one for rumor spreading.1

Our first result addresses the performance of the algorithm on random graphs
with an edge probability that is significantly above the connectivity threshold.

Theorem 1. Let p = α(n) ln(n)/n for some α(n) = ω(1). Then w.h.p.

E[T (Gn,p)] =
(
1±

√
34/α(n)

)
Hn−1 +O (ln(n)/n) and

T (Gn,p) = E[T (Gn,p)] +O(α(n)−1/2 ln(n) + 1).

Some remarks are in place. First of all, note that if p ≥ ln3(n)/n, then the
theorem states that w.h.p. E[T (Gn,p)] = Hn−1 + O(1), and further that w.h.p.
T (Gn,p) = E[T (Gn,p)] + O(1). This is a very tight result, and indeed it is best
possible, since just the time until the second node is informed has a variance
of Ω(1). For almost no other rumor spreading protocol such a precise result for
the total time is known (see Section 1.2 for a discussion). On the other hand,
this result might not be completely unexpected: It is not very difficult to see
that for the complete graph Kn, T (Kn) = Hn−1 + O(1) w.h.p. However, for
p = ω(ln(n)/n), the edges of Gn,p are spread very uniformly, in the sense that
between any two sets of nodes, the number of edges is close to the expected
value. So, the dynamics of the information spreading process are not affected
crucially by the fact that the graph does not contain all edges.

For p closer to the connectivity threshold the edges are not distributed as
uniformly as in the former case and a different behavior might be expected.

1 Some additional notation will be used as well: We write Hn for
∑n

j=1
1
j
, ln(n) for the

natural logarithm and logb(n) = ln(n)/ ln(b) for any b > 1. For any a, b ∈ R we write
a± b for the interval (a− b, a+ b) and abbreviate X = a± b for X ∈ (a− b, a+ b).
W.h.p. abbreviates “with high probability” and means that an event (dependent on
n) occurs with probability 1− o(1) as n → ∞.
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Indeed it has been observed for many rumor spreading protocols that these
fluctuations may have a significant impact on the time needed to inform all nodes
(see Section 1.2 for a discussion). Our second result, however, shows that the time
required by the asynchronous push-pull protocol is asymptotically unaffected by
the average degree of the graph.

Theorem 2. Let p = c ln(n)/n for some c > 1. Then w.h.p.

E[T (Gn,p)] = ln(n) +O(ln3/4(n)) and T (Gn,p) = E[T (Gn,p)] +O(ln3/4(n)).

This result quantifies an important property of the asynchronous push-pull al-
gorithm that has not been studied so precisely in previous works: the robustness
of the algorithm with respect to the distribution of the edges and the average
degree of the underlying networks. Indeed, for random graphs the total time
needed is asymptotically not affected at all by these parameters.

We also study the robustness of the algorithm with respect to other param-
eters. First, suppose that every time a node contacts some other node the con-
nection is dropped independently of other connections with probability 1 − q,
where 0 < q ≤ 1, before any information can be exchanged. Let Tq(G) be the
time until all nodes receive the information. Our next result quantifies the effect
of the “success probability” q on the total time.

Theorem 3. Let p > ln(n)/n. Then w.h.p. E[Tq(Gn,p)] = 1/q E[T (Gn,p)].
Moreover, T (Gn,p) is bounded around its expected value asymptotically as ac-
curate as in Theorem 1 and 2.

Note, that 1/q is exactly the expected number of connection attempts that have
to be made until the connection is not dropped for the first time. Therefore, this
result also demonstrates the robustness and the adaptivity of the asynchronous
push-pull algorithm that essentially slows down at the least possible rate. In
many other rumor spreading protocols the effect of q on the total time is larger.

Finally, we study the robustness with respect to node failures. Suppose that in
the given network a random subset B of nodes is declared “faulty” in the sense
that even if they receive the rumor, they will neither perform any push operation,
nor will they respond to any pull request. Let TB(G) denote the time until the
information has spread to all nodes. Our next result states that TB(Gn,p) is
asymptotically equal to T (Gn,p), provided that B is not linear in n.

Theorem 4. Let p be as in Theorem 1 or 2, and suppose that B = o(n). Then
w.h.p. TB(Gn,p) = (1 + o(1))E[T (Gn,p)].

1.2 Related Work

There are many theoretical studies that are concerned with the performance
of the synchronous push-pull algorithm [5,6,10,13,15,17]. For example, the per-
formance of rumor spreading on general graph topologies was made explicit in
[5,6,15], where the number of rounds necessary to spread a rumor was related to
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the conductance of the graph. In particular, the upper bound O(ϕ−1 ln(n)) was
shown, where ϕ is the conductance of the graph.

Very accurate analyses exist also for the synchronous push protocol, i.e., where
only push transmissions are allowed [12,14,20,21]. In [21] it was shown that a
rumor spreads in log2(n) + ln(n) + O(1) rounds w.h.p. on the complete graph.
However, in contrast to what we prove in this work, tight bounds on the spreading
times are not even known for dense random graphs. In [12] it was shown that for
Gn,p with p = ω(ln(n)/n) a rumor spreads w.h.p. in log2(n) + ln(n) + o(ln(n))
rounds. Furthermore, it was shown in [20] that for Gn,p with p = c ln(n)/n,
c > 1, the spreading time increases significantly to log2(n)+γ(c) ln(n)+o(ln(n))
w.h.p., where γ(c) = c ln(c/(c − 1)). This means in particular that the edge
probability has a direct impact on the spreading time, which is in contrast to
the asynchronous push-pull algorithm that is robust with respect to variations
in the average degree, cf. Theorem 2.

The effect of transmission failures that occur independently for each contact
at some constant rate 1−q was investigated in [12] for the synchronous push pro-
tocol on dense random graphs. There, it was shown that the total time increases
over-proportionally, namely by a factor larger than q−1.

For the asynchronous push-pull protocol there existsmuch less literature [11,13],
mostly devoted to models for social networks. In [11] it was shown that on prefer-
ential attachment graphs [2] a rumor needs a time of O(

√
ln(n)) w.h.p. to spread

to almost all nodes. On power-law Chung-Lu random graphs [7] (for 2 < β < 3) it
was shown in [13] that a rumor initially locatedwithin the giant component spreads
w.h.p. even in constant time to almost all nodes.

2 Analysis of the Protocol

In this section we describe a general strategy for analyzing the spreading time
on arbitrary graphs. We will apply this strategy to Gn,p in the section hereafter.
Let G be any connected graph with n nodes. Towards studying the distribution
of T (G) we divide the rumor spreading process into n states, where in state
1 ≤ j ≤ n, j nodes are informed. We denote the set of informed nodes in state j
by Ij = Ij(G) and the set of uninformed nodes in state j by Uj = Uj(G) =
[n] \ Ij(G). We denote by tj = tj(G) the (random) time that the protocol needs

to move from state j to j + 1, where 1 ≤ j < n. Clearly T (G) =
∑n−1

j=1 tj .
Assume that 1 ≤ j < n nodes are informed. We provide a master lemma that

determines the distribution of tj for an arbitrary set of informed nodes.

Lemma 1. Let 1 ≤ j < n. Then tj is exponentially distributed with parameter

Qj :=
∑
v∈Ij

|N(v) ∩ Uj |/d(v) +
∑
w∈Uj

|N(w) ∩ Ij |/d(w).

Moreover, conditional on Ij the time tj is independent of t1, . . . tj−1.

Proof. We assume that the times t1, . . . , tj−1 and Ij are known and determine
the distribution of tj . In particular, we show that tj is independent of the
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times t1, . . . , tj−1. For technical reasons we will align the Poisson processes at
certain points in the proof. We note that the memorylessness property of the
exponential distribution allows to restart all Poisson processes all over again at
any time.

Assume that the Poisson process of v ∈ Ij has ticked. Then the probability
that v informs an uninformed node is |N(v) ∩ Uj |/d(v). Similarly, if the Poisson
process of w ∈ Uj has ticked, the probability that w pulls the message from an
informed node equals |N(w) ∩ Ij |/d(w). Since all nodes are equipped with rate 1
Poisson processes it is equally possible for any Poisson process to tick for the first
(next) time. Therefore at any tick the probability that an uninformed node gets
informed is: qj = 1/n

(∑
v∈Ij |N(v) ∩ Uj |/d(v) +

∑
w∈Uj

|N(w) ∩ Ij |/d(w)
)
. It

follows that the number of ticks σ until an uninformed node gets the message is
geometrically distributed with parameter qj , and it is independent of the actual
times between any two consecutive ticks.

Let {τ�}∞�=1 be the time between any two consecutive ticks. If we restart all
Poisson processes after we observed a tick, then clearly τ� is the minimum of
the individual waiting times of the Poisson processes. These waiting times are
independently and exponentially distributed with parameter 1. Since the mini-
mum of independently and exponentially distributed random variables is again
exponentially distributed with the sum of the individual parameters we get that
τ� ∼ Exp(n). Moreover, {τ�}∞�=1 are independent because the properties of the
Poisson processes guarantee that the waiting times after a restart are indepen-
dent from the waiting times prior to a restart and have the same distribution.
Using these considerations we may write tj =

∑σ
�=1 τ�, where σ ∼ Geo(qj),

τ� ∼ Exp(n) and all these random variables are independent. To complete the
proof it is therefore sufficient to argue that tj is exponentially distributed with
parameter nqj . To this end we consider the characteristic function of tj and
make use of the well known one to one correspondence between characteristic
functions and cumulative distribution functions (discussed e.g. in [18]). We get
E
[
eixtj

]
= nqj/(nqj − ix), which is the characteristic function of an exponen-

tially distributed random variable with parameter Qj = nqj . 	


3 The Expected Spreading Time on Random Graphs

Here we apply the results of the previous section to Gn,p. In particular, we
determine the expected value of T (Gn,p) thus proving the first statements of
Theorem 1 and 2 respectively.

3.1 The Case p = ω(ln(n)/n)

Our goal is to compute the expectation of T (Gn,p) for p = α(n) ln(n)/n, α(n) =
ω(1). We will actually show a stronger result, namely that the conclusion of
Theorem 1 remains valid even when we replace Gn,p with any graph G that
satisfies the following property: for all S ⊆ [n]

e(S, [n] \ S) =
(
1±

√
8/α(n)

)
|S| (n− |S|) p. (1)
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Note that for p = ω(ln(n)/n), Gn,p satisfies this property w.h.p.2 In words, this
means that the edges of Gn,p are w.h.p. distributed very “uniformly”, in the
sense that between any S ⊆ [n] and its complement the number e(S, [n] \ S) is
very close to its expected value |S|(n− |S|)p. We first specify the distribution of
tj(G) by applying Lemma 1.

Corollary 1. Let G satisfy (1) for all S ⊆ [n]. If n is sufficiently large, then for
any Ij, the distribution of tj(G) conditional on Ij is an exponential distribution
with parameter (

1±
√
33/α(n)

)
2j(n− j)/(n− 1). (2)

Proof. Let Ij be any (connected) set with j nodes. For any node v in G, by

using (1) with S = {v} we infer that d(v) =
(
1±

√
8/α(n)

)
(n−1)p. Moreover, we

have
∑

v∈Ij |N(v)∩Uj | = e(Ij , Uj). By applying (1) for a second time we obtain

that
∑

v∈Ij |N(v)∩Uj |/d(v) =
(
1±

√
8/α(n)

)
/
(
1∓

√
8/α(n)

)
j(n− j)/(n− 1)

and simple algebraic transformations imply that we can bound this expression
for sufficiently large n by

(
1±

√
33/α(n)

)
j(n− j)/(n− 1). We repeat the above

calculation with Ij and Uj interchanged. Finally, we plug this into Qj of Lemma
1 and the statement is shown. 	


We have now everything together to calculate the expectation of T (G). Note
that the first statement of Theorem 1 follows immediately from Lemma 2.

Lemma 2. Let G be as in Corollary 1. Then

E[T (G)] =
(
1±

√
34/α(n)

)
Hn−1 +O (ln(n)/n) .

Proof. Using Corollary 1 we obtain that E[T (G)] equals

n−1∑
j=1

E[tj ] =
n−1∑
j=1

E[E[tj | Ij ]] =
(
1±

√
33/α(n)

)−1
n−1∑
j=1

(n− 1)/(2j(n− j)).

In additionally making use of the bound (1 ±
√
33/α(n))−1 = 1 ±

√
34/α(n)

for sufficiently large n and using the identity 1/j(n − j) = 1/jn + 1/n(n − j)

we obtain that E[T (G)] =
(
1±

√
34/α(n)

)
(Hn−1 − Hn−1/n). Together with

Hn = ln(n) +O(1) we finally arrive at the claimed bound. 	


3.2 The Case p = c ln(n)/n, c > 1

We will again show a stronger result and replace Gn,p by some graph G satisfying
certain properties that hold w.h.p. However, for the case that p = c ln(n)/n,
where c > 1, the property that (1) holds for all S ⊆ [n] is w.h.p. false; actually,
there are significant fluctuations in the quantity e(S, [n]\S) for different sets S of

2 A proof can be found e.g. in [12].
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the same size. Instead we will exploit the properties described in (3),(4),(5),(7)
and (10) below. 3

We begin with determining the distribution of tj(G); here the bounds are not
as tight as in Corollary 1 for all j, but they will suffice for our purposes.

Corollary 2. Let c > 1 and G be some graph satisfying (3),(4),(5),(7) and (10)
below. Then there are C′(c) > C(c) > 0 such that for any Ij the distribution of
tj(G) conditional on Ij is an exponential distribution with parameter

i) in (Cmin{j, n− j}, C′min{j, n− j}) for 1 ≤ j, n− j ≤ ln(n),

ii) in
(
1± C ln−1/4(n)

)
2min{j, n− j} for ln(n) ≤ j, n− j ≤ n/ ln3(n),

iii) in (Cmin{j, n− j}, C′min{j, n− j}) for n/ ln3(n) ≤ j ≤ n− n/ ln3(n).

Proof. Let Ij be some connected subset of [n] with j elements. We apply Lemma
1 and determine Qj . Let us begin with the case j ≤ ln(n). We assume the
following two properties for G:

for any v ∈ [n], d(v) =Θ(ln(n)), (3)

for any |S| ≤ n/2, e(S, [n] \ S) =Θ(|S| ln(n)). (4)

These two properties together imply that Qj equals

Θ
(( ∑

v∈Ij

|N(v) ∩ Uj|+
∑
w∈Uj

|N(w) ∩ Ij |
)/

ln(n)
)
= Θ (e(Ij , Uj)/ ln(n)) = Θ(j).

Next we consider the case ln(n) ≤ j ≤ n/ ln3(n), where we bound Qj more
accurately. We begin with the first sum in the expression for Qj . Using (3) we
obtain

∑
v∈Ij |N(v)∩Uj |/d(v) = j−

∑
v∈Ij |N(v)∩Ij |/d(v) = j−Θ (e(Ij)/ ln(n)).

To estimate e(Ij) we assume the following for G:

For any S ⊆ [n] with |S| ≤ n/ ln(n), e(S) ≤ |S| ln ln(n). (5)

This then implies that

j −Θ (e(S)/ ln(n)) = (1−O (ln ln(n)/ ln(n))) j. (6)

We move on with the second sum of Qj. We split this sum into three parts,
namely into {w ∈ N ′(Ij)}, {w ∈ N(Ij) \ N ′(Ij)} and {w ∈ Uj \N(Ij)}, where
we define N ′(S) to be the set containing all nodes that are outside of S but

belong to the neighborhood of S and have a degree in c ln(n)± ln3/4(n), where
c ln(n) = pn. The reason for doing so is that we may assume the following: For

any v ∈ [n] we let N ′(v) := {w ∈ N(v) : d(w) = c ln(n)± ln3/4(n)}. Then

for any v ∈ [n], |N(v) \N ′(v)| ≤ ln3/4(n). (7)

3 Due to space limitations we omit the proofs that Gn,p for p = c ln(n)/n, c > 1,
w.h.p. satisfies properties (3), (7) and (10). Proofs that (4) and (5) hold w.h.p. can
be found e.g. in [8] (Property 3 and its proof).
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Among the three sums, the latter sum equals zero so that∑
w∈Uj

|N(w) ∩ Ij |/d(w) =
∑

v∈N′(Ij),
w∈N(Ij)\N′(Ij )

|N(v) ∩ Ij |/d(v) + |N(w) ∩ Ij |/d(w).

Using (3) and the definition of N ′(Ij) we infer that this is

e(Ij , N
′(Ij))/(pn± ln3/4(n)) + e(Ij , N(Ij) \N ′(Ij))/Θ(ln(n)). (8)

Thus we need to consider e(Ij , N
′(Ij)) and e(Ij , N(Ij) \ N ′(Ij)). By applying

(7) we have that

e(Ij , N(Ij) \N ′(Ij)) ≤
∑
v∈Ij

|N(v) \N ′(v)| ≤ j ln3/4(n). (9)

To estimate e(Ij , N
′(Ij)) we assume a further property: for any connected S ⊆ [n]

with ln(n) ≤ |S| ≤ n/2 we assume that

e(S, [n] \ S) = (1 ± ε(n)) |S|(n− |S|)p, (10)

where ε(n) = (24 ln ln(n)/ ln(n))
1/2

. Note that Ij is necessarily a connected set
in G, as any node gets the rumor from one of its neighbors. Thus applying (9)

and (10) we obtain that e(Ij , N
′(Ij)) =

(
1 − O(ln−1/4(n))

)
j(n − j)p. Together

with (6), (8) and (9) this implies Qj =
(
1−O(ln−1/4(n))

)
2j.

Next we consider the case n/ ln3(n) ≤ j ≤ n − n/ ln3(n). Again using that
d(v) = Θ(ln(n)), and that e(Ij , Uj) = Θ(min{j, n − j} ln(n)) we obtain that
Qj = Θ (e(Ij , Uj)/ ln(n)) = Θ(min{j, n− j}). This shows the statement also for
the case n/ ln3(n) ≤ j ≤ n− n/ ln3(n). Finally, the claims for 1 ≤ n− j ≤ ln(n)
and ln(n) ≤ n − j ≤ n/ ln3(n) follow analogously by interchanging the roles of
Ij and Uj in the above steps. 	


We are now able to compute the expectation of T (G). Note that the first
statement of Theorem 2 follows immediately from Lemma 3. The proof goes
similarly as for Lemma 2 and is omitted due to space limitations.

Lemma 3. Let c > 1 and let G be any graph satisfying (3),(4),(5),(7) and (10).

Then E[T (G)] = ln(n) +O(ln3/4(n)).

4 The Actual Spreading Time on Random Graphs

In this section we will complete the proofs of Theorem 1 and 2 in Corollary 3
and 4 respectively. As in the previous section we prove a stronger statement in
replacingGn,p by any graphG that satisfies the assumptions made in Corollary 1
or 2. The proof of Corollary 4 goes analogously as for Corollary 3 and is omitted
here.
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Corollary 3. Let G be any graph satisfying the assumption of Corollary 1. Then
for any λ ∈ (0, 2) we have for n large enough and any t > 0 that

Pr [|T (G)− E[T (G)]| > t] ≤ exp
{
4
√
34/α(n) ln(n)− λt+O (1)

}
.

Proof. We prove the statement separately for the upper tail and the lower tail.
We begin with the upper tail. Here, Markov’s inequality for the monotonically
increasing function eλx, λ > 0 implies

Pr [T (G) > E[T (G)] + t] ≤ E
[
eλT (G)

]
e−λE[T (G)]−λt. (11)

Using Corollary 1 we can verify that a sequence {t+j }n−1
j=1 of independent ran-

dom variables, where t+j ∼ Exp
((
1 −

√
33/α(n)

)
2j(n − j)/(n − 1)

)
, dominates

stochastically {tj}n−1
j=1 . Letting T

+(G) :=
∑n−1

j=1 t
+
j we can thus bound the above

expression by

E
[
eλT (G)

]
≤ E

[
eλT

+(G)
]
≤ E

[
eλT

+(G)+O(1)
]
= exp

{
λE[T+(G)] +O(1)

}
.

We omit the proof of the second inequality due to space limitations here. Note
that λ has to be restricted to the interval

(
0, 2

(
1 −

√
33/α(n)

))
. Plugging this

into (11) and using that λ < 2 and Hn = ln(n) +O(1) we arrive at the bound

Pr [T (G) > E[T (G)] + t] ≤ exp
{
4
√
34/α(n) ln(n)− λt+O(1)

}
. (12)

For the lower tail we also apply Markov’s inequality for eλx, λ > 0 and obtain
Pr (T (G) < E[T (G)]− t) ≤ E

[
e−λT (G)

]
exp {λE[T (G)]− λt}. To bound this ex-

pression we use that a sequence {t−j }n−1
j=1 of independent random variables, where

t−j ∼ Exp
((
1 +

√
33/α(n)

)
2j(n − j)/(n − 1)

)
, is stochastically dominated by

{tj}n−1
j=1 . After the same steps as for the upper tail we deduce that for λ < 2 we

get the same bound as in (12). 	


Corollary 4. Let G be any graph satisfying the assumptions of Corollary 2 and
take C′ > 0 from there. Then for any λ ∈ (0, C′) we have for n large enough

and any t > 0 that Pr
[
|T (G)− E[T (G)]| > t

]
≤ exp

{
− λt+O

(
ln3/4(n)

)}
.

5 Variations of the Asynchronous Push-Pull Protocol

5.1 The Effect of Transmission Failures – Theorem 3

In this section we consider a more general version of the asynchronous push-pull
protocol, in which nodes succeed to push or pull the rumor with probability
q ∈ (0, 1] and fail to do so with probability 1 − q independently of any other
contacts established between any two nodes. Our aim is to give a statement in
the spirit of Lemma 1 for this “faulty” version. We get the following quantitative
statement.
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Lemma 4. Let 1 ≤ j < n. Then tj is exponentially distributed with parameter
q · Qj, where Qj is given in Lemma 1. Moreover, conditional on Ij the time tj
is independent of t1, . . . tj−1.

Proof. We only highlight the differences to the prove of Lemma 1. If the Poisson
process of an informed node v ∈ Ij has ticked, the probability that v informs
an uninformed node is q|N(v) ∩ Uj |/d(v). Similarly, if the Poisson process of
an uninformed node w ∈ Uj has ticked, the probability that w pulls the rumor
from an informed node is q|N(w) ∩ Ij |/d(v). As in the proof of Lemma 1 we
infer that at any tick the probability that an uninformed node gets informed

is qj(q) = q/n
(∑

v∈Ij |N(v) ∩ Uj |/d(v) +
∑

w∈Uj
|N(w) ∩ Ij |/d(w)

)
. The rest

of the proof is exactly the same as the proof of Lemma 1, where we replace all
occurrences of qj by qj(q). 	


With this statement at hand we can repeat all steps performed in Section 3
and 4 to study the effect of the success probability q on the time that is required
to spread the rumor to all nodes of Gn,p. The steps are literally the same, with
the only difference being that the parameters in all involved geometric distribu-
tions are multiplied by an additional factor of q. For example, in Corollary 1,

Equation (2) is replaced by
(
1±

√
33/α(n)

)
2qj(n− j)/(n−1) and similarly, in

the conclusions i), iii) and ii) of Lemma 2 we get the bounds Θ(qmin{j, n− j})
and (1 + O(ln−1/4(n)))2qmin{j, n − j}. In consequence, in the conclusions of
Lemmas 2 and 3 the expected values are multiplied by q−1. The proofs in Sec-
tion 4 are adapted accordingly to obtain asymptotically the same bounds as in
Theorem 1 and 2.

5.2 The Effect of Faulty Nodes – Theorem 4

Suppose that before the rumor is spread by the asynchronous push-pull protocol,
a random subset of the nodes of Gn,p is declared “faulty”, in the sense that even
if they receive the rumor, they will neither perform any push operation, nor
will they respond to any pull request. Note that if the subset of faulty nodes is
of size o(n) and p ≥ (1 + ε) ln(n)/n for some ε > 0, then the subgraph of Gn,p

induced by the non-faulty nodes is distributed like Gn′,p′ , where n′ = (1−o(1))n
and p′ ≥ (1 + ε− o(1)) ln(n)n . Thus, if the initially informed node does not fault,
then the results in the previous sections apply also in this case, where we replace
n and p by n′ and p′ respectively.
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Abstract. In this paper, we study unit cost buyback problem, i.e., the
buyback problem with fixed cancellation cost for each cancelled item. The
input is a sequence of elements e1, e2, . . . , en, each of which has a weight
w(ei). We assume that weights have an upper and a lower bound, i.e.,
l ≤ w(ei) ≤ u for any i. Given the ith element ei, we either accept ei or
reject it with no cost, subject to some constraint on the set of accepted
elements. In order to accept a new element ei, we could cancel some
previous selected elements at a cost which is proportional to the number
of elements canceled. Our goal is to maximize the profit, i.e., the sum
of the weights of elements accepted (and not canceled) minus the total
cancellation cost occurred. We construct optimal online algorithms and
prove that they are the best possible, when the constraint is a matroid
constraint or the unweighted knapsack constraint.

1 Introduction

In this paper, we study unit cost buyback problem, i.e., the buyback problem
with fixed cancellation cost for each cancelled item. The buyback problem was
first defined and studied in [3, 6] as a model of selling advertisement online
with a buyback option. The input for the problem is a sequence of elements
e1, e2, . . . , en, each of which has a weight w(ei). Given the ith element ei, we
either accept ei or reject it with no cost, subject to some constraint on the set
of accepted elements. When we accept an element ei, we could cancel some of
the previously accepted elements at a cost. Our goal is to maximize the profit,
i.e., the sum of the weights of elements accepted (and not canceled) minus the
total cancellation cost occurred.

Examples of cancellation costs are compensatory payment, paperwork cost,
and shipping charge. Compensatory payment is usually constant rate of value of
cancelled items. On the other hand, paperwork cost and shipping charge usually
do not depend on item value but on the number of items. In this paper, we
consider the latter case.

Related Works

The buyback problem with proportional cost was studied in [1, 2, 3, 4, 5, 6, 7].
In this model, the cancellation cost of each element ei is proportional to its

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 435–445, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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weight, i.e., it is f · w(ei), where f > 0 is a fixed constant called buyback
factor. Babaioff et al. [3] and Constantin et al. [6] showed that the problem is
(1 + 2f + 2

√
f(1 + f))-competitive when the constraint is the single element

constraint. Babaioff et al. [3] also showed that the problem has a competitive

ratio
(
1 + 2f + 2

√
f(1 + f)

)
when the constraint is a matroid constraint.

Ashwinkumar [1] extended their results and showed that the buyback problem

with the constraint of k matroid intersection is k(1 + f)(1 +
√
1− 1

k(1+f) )
2-

competitive. Babaioff et al. [3, 4] also studied the buyback problem with the
weighted knapsack constraint. They showed that if the largest element is of size
at most γ, where 0 < γ < 1, then the competitive ratio is 1 + 2f + 2

√
f(1 + f)

with respect to the optimum solution for the knapsack problem with capacity (1−
2γ). Han et al. [7] studied the buyback problem with the unweighted knapsack
constraint, where knapsack problem is called unweighted if the value of each

item is equal to its size. They proved this problem is max{2, 1+f+
√

f2+2f+5

2 }-
competitive.

Unit cost buyback problem was introduced by Han et al. [7]. In their model,
the cancellation cost of each element is a fixed constant c > 0. They showed tight
competitive ratio for unweighted knapsack constraint case with the assumption
that every element has a weight at least c, since in many applications, the can-
cellation cost is not higher than its value. On the other hand, in this paper, we
consider a general case even when an element can have a value smaller than the
cancellation cost c.

Iwama and Taketomi [11] studied the online removal knapsack problem, which
can be seen as the buyback problem without cancellation cost. They obtained

a 1+
√
5

2 ≈ 1.618-competitive algorithm for the online knapsack when (i) the
removable condition is allowed and (ii) the value of each element is equal to the
weight, and showed that this is the best possible by providing a lower bound
1.618 for the case. We remark that the problem has unbounded competitive
ratio, if at least one of the conditions (i) and (ii) is not satisfied [11, 12]. For
other models of online knapsack problem such as minimum knapsack problem
and knapsack problem with limited cuts, refer to papers in [8, 9, 10, 13].

Our Results

In this paper, we study the worst case analysis of buyback problem with unit
cancellation cost, when the constraint is a matroid constraint, or the unweighted
knapsack constraint. Let c > 0 be the cancellation cost of each element.

For a matroid constraint case, let u > l > 0 be an upper and lower bound of
weight of each element. We show that the buyback problem with unit cancellation
cost has the competitive ratio λ(l, u, c) as defined below when the constraint is
a matroid constraint. Let vρ(n) satisfy a recurrence relation{

vρ(1) = l,

vρ(n+ 1) = ρ(vρ(n)− (n− 1)c) (n = 1, 2, . . . )
(1)
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and

vρ(n) =
cρ

ρ− 1
n−

(
cρ

(ρ− 1)2
− l

)
ρn−1 − cρ(ρ− 2)

(ρ− 1)2
.

Then λ(l, u, c) is the unique value ρ ≥ 1 which satisfies maxn vρ(n) = u (the
uniqueness is shown in Section 3). For example, the competitive ratios λ(l, u, c)
for (l, u) = (0.5, 1.0) and (u, c) = (1.0, 0.05) are given in Figure 1.
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Fig. 1. The competitive ratio λ(l, u, c) for (l, u) = (0.5, 1.0) and (u, c) = (1.0, 0.05)

For the unweighted knapsack constraint case, let 1 > l > 0 be a lower bound
of weight of each element. This problem is a generalization of the problem dealt
by Han et al. [7], since their problem is a special case when l = c. We show
that the online unweighted knapsack problem with unit cancellation cost has
the competitive ratio μ(l, c) in (2). Namely, we construct μ(l, c)-competitive
algorithms for the problem and prove that they are the best possible. Let Sk =

{(l, c) | k ≤ (1−l)2

l+c−lc < k + 1} (k = 1, 2, . . . ) and Sk,1, Sk,2, Sk,3, Sk,4 (Sk =⋃4
i=1 Sk,i) be

Sk,1 =
{
(l, c) ∈ Sk | c < min

{
2k−1

2k(2k+1) , 2l−
1

2(k+1)

}}
,

Sk,2 =
{
(l, c) ∈ Sk | c ≥ 2k−1

2k(2k+1) , η(k) > ξ(k + 1), l+ c < 1
k+1

}
∪
{
(l, c) ∈ Sk | c ≥ 2k−1

2k(2k+1) , η(k) >
1

(k+1)l , l + c ≥ 1
k+1

}
,

Sk,3 =
{
(l, c) ∈ Sk | 1

(k+1)l ≥ η(k), l + c ≥ 1
k+1

}
,

Sk,4 =
{
(l, c) ∈ Sk | c ≥ 2k−1

2k(2k+1) , ξ(k + 1) ≥ η(k), l+ c < 1
k+1

}
(see Figures 2, 3) where

η(k) =
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
and ξ(k) =

kc+
√
k2c2 + 4kl

2kl
.

Points Pk, Qk in Figure 3 are

Pk =

(√
k

k + 1
− k

k + 1
, 1−

√
k

k + 1

)
, Qk =

(
4k2 + 2k − 1

4k(k + 1)(2k + 1)
,

2k − 1
2k(2k + 1)

)
.
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Let S0,1 = {(l, c) | (1−l)2

l+c−lc < 1, l < 1
2 , c < 2l− 1

2}, and let S0,4 = {(l, c) | (1−l)2

l+c−lc <

1, l + c < 1, c ≥ 2l − 1
2}.

Fig. 2. The areas of the competitive ratio
μ(l, c)

Fig. 3. The areas Sk,1, Sk,2, Sk,3, Sk,4

Then μ(l, c) is defined as

μ(l, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
l (l + c ≥ 1),

λ(l, 1, c) (l > 1
2 , l + c < 1),

2c+
√
4c2−4c+2
1−2c (l = 1/2, 1/8 > c > 0),

2 (l = 1
2 ,

1
8 ≤ c < 1

2 ),

2 ((l, c) ∈ Sk,1, k = 0, 1, 2, . . . ),

η(k) ((l, c) ∈ Sk,2, k = 1, 2, 3, . . . ),
1

(k+1)l ((l, c) ∈ Sk,3, k = 1, 2, 3, . . . ),

ξ(k + 1) ((l, c) ∈ Sk,4, k = 0, 1, 2, . . . ).

(2)

For example, the competitive ratios μ(l, c) for l = 1/2 and l = c are given in
Figure 4. The result for l = c coincides with the result in [7].

The rest of the paper is organized as follows. In Section 2 we formally de-
fine unit cost buyback problem. In Section 3 we consider a matroid constraint
case with an upper and lower bound of weights, and in Section 4 we consider
the knapsack constraint case with lower bound of weights. Due to the space
limitation, some of the proofs are omitted.

2 Preliminaries

In this section, we formally define unit cost buyback problem. Let (E, I) be an
independence system, i.e., E is a finite set and I is a family of subsets of E,
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Fig. 4. The competitive ratio μ(l, c) for l = 1/2 and l = c

and J ⊆ I ∈ I ⇒ J ∈ I. Elements from E = {e1, . . . , en} are presented to an
algorithm in a sequential manner, and when an element ek is presented, it must
be accepted or rejected immediately. Each element ei is associated with a weight
w(ei). When ek is accepted, the algorithm could cancel some of the previously
accepted elements.

Let Bk be the set of selected elements at the end of kth round. Then Bk ⊆
Bk−1 ∪ {ek} and Bk ∈ I. The algorithm must run based only on the weights
w(ei) (1 ≤ i ≤ k) and the feasibility of subsets T ⊆ {e1, . . . , ek}. The utility
of the algorithm is the total weight of the accepted elements minus the penalty
paid to the canceled elements. All the canceled elements are paid a penalty c.

Let the final set held by the algorithm be B = Bn and the set of elements
canceled be R = (

⋃
iBi) \ B. Then the utility of the algorithm is defined as∑

e∈B w(e)− |R| · c.

3 Matroid Constraint Case with an Upper and Lower
Bound of Weights

In this section, we consider a matroid constraint case with an upper and a lower
bound of weights, where the constraint I is an arbitrary independence family
of matroid and each element ei has weight l ≤ w(ei) ≤ u. We assume that
0 < l < u <∞.

We first show some properties about vρ(n) in (1), and the uniqueness of
λ(l, u, c).

Proposition 1. If ρ ≥ 1+ c+
√
c2+4lc
2l , then vρ(n) approaches infinity as n→∞.

Proposition 2. maxn vρ(n) is continuous and strictly monotone increasing for

1 ≤ ρ < 1 + c+
√
c2+4lc
2l .

Proposition 3. The value ρ ≥ 1 which satisfies maxn vρ(n) = u is unique.

Proof. By Propositions 1 and 2, maxn vρ(n) = u is unique for ρ. 	
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We define v(n) as vλ(l,u,c)(n) and n
∗ = min{n | v(n) ≥ v(n+ 1)}.

Remark 1. For any positive number t, we have λ(l, u, c) = λ(l/t, u/t, c/t).

Remark 2. For the case without upper bound of weights, we have λ(l,∞, c) =

limu→∞ λ(l, u, c) = 1 + c+
√
c2+4lc
2l .

3.1 Upper Bound

In this subsection, we show Algorithm 1 is λ(l, u, c)-competitive for the problem.
Let ei be the element given in the ith round. Define by Bi the set of selected
elements at the end of ith round, and by w(Bi) the total weight in Bi.

We partition the range [l, u] into the intervals

I1 = [v(1), v(2)], I2 = (v(2), v(3)], . . . , In∗−1 = (v(n∗−1), v(n∗)],
and let ind(e) be the index of the interval e belongs to, i.e., w(e) ∈ Iind(e).

Algorithm 1. matroid constraint case

1: B0 ← ∅
2: for all elements ei, in order of arrival, do
3: if Bi−1 ∪ {ei} ∈ I then Bi ← Bi−1 ∪ {ei}
4: else let e′i be the element of smallest value such that Bi−1 ∪ {ei} \ {e′i} ∈ I
5: if ind(ei) > ind(e′i) then Bi ← Bi−1 ∪ {ei} \ {e′i}
6: else Bi ← Bi−1

7: end for

Theorem 1. The online Algorithm 1 is λ(l, u, c)-competitive for the unit cost
buyback problem with a matroid constraint.

Proof. Let OPT be an optimal (offline) solution for a matroid (E, I), where
E = {e1, . . . , en}. It is easy to see, OPT and Bn are bases of the matroid (E, I).
Moreover, if each element ei has a weight v(ind(ei)), Bn is a maximum-weight
basis of the matroid (E, I) with respect to weight w′ : ei !→ v(ind(ei)) since
Algorithm 1 is a matroid greedy algorithm that maximize the weight w′. There-
fore, there is a perfect matching {(b∗i , bi)}i=1,...,h such that ind(b∗i ) = ind(bi)
(i = 1, 2, . . . , h) for OPT = {b∗1, b∗2, . . . , b∗h} and Bn = {b1, b2, . . . , bh}.

For each i, let ki be ind(bi). Then, w(b
∗
i ) ≤ v(ki + 1), w(bi) ≥ v(ki), and the

algorithm cancels at most
∑h

i=1(ki − 1) elements. Therefore, the competitive
ratio is at most

w(OPT )

w(Bn)−
∑h

i=1(ki − 1)c
=

∑h
i=1 w(b

∗
i )∑h

i=1(w(bi)− (ki − 1)c)
≤ max

i

w(b∗i )

w(bi)− (ki − 1)c

≤ max
i

v(ki + 1)

v(ki)− (ki − 1)c
= λ(l, u, c).

	

Remark 3. If l and u are not known to the algorithm in advance, we can get
λ(l,∞, c)-competitive algorithm by modifying the definition of ind(e) to parti-
tion the range [minj≤i w(ej),∞].
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3.2 Lower Bound

In this subsection, we show λ(l, u, c) is also a lower bound for the competitive
ratio of the problem for the single element case. This lower bound is applicable
for the general matroid case since the single element case is a special case of it,
i.e., the uniform matroid of rank 1.

Theorem 2. There exists no online algorithm with competitive ratio less than
λ(l, u, c) for the unit cost buyback problem with the single element constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. Our adversary re-
quests the sequence of elements whose weights are

v(1), v(2), . . . , v(n∗), (3)

until A rejects some element in (3).
If A rejects the element with weight v(1), then the competitive ratio of

A becomes infinite. On the other hand, if A rejects the element with weight
v(k + 1) for some k ≥ 1, A cancels k − 1 elements and the competitive ratio

is v(k+1)
v(k)−(k−1)c = λ(l, u, c). Finally, if A accepts all the elements in (3), then the

competitive ratio is at least

v(n∗)

v(n∗)− (n∗ − 1)c
=

v(n∗)

v(n∗ + 1)
· λ(l, u, c) ≥ λ(l, u, c).

	


4 Unweighted Knapsack Case with Lower Bound of
Weights

In this section, we consider the unweighted knapsack constraint of capacity 1
case with an upper and a lower bound of weight, where the constraint I = {I |∑

i∈I w(ei) ≤ 1} and each element ei has weight l ≤ w(ei) ≤ 1. We show the
competitive ratio for this problem is μ(l, c) in (2). Due to the space limitation,
the proof for lower bound of the competitive ratio is omitted.

Theorem 3. There exists no online algorithm with a competitive ratio less than
μ(l, c) for the unit cost buyback problem with the unweighted knapsack constraint.

We start with several definitions and propositions needed later.

Definition 1. We define xk, yk as follows:

xk =
k + 2− kc−

√
k2(1− c)2 + 4k

2
, yk =

kc+
√
k2c2 + 4kl

2
.

Proposition 4. We have,

1

1− xk − kc
=

1− xk
kxk

= η(k),
1

yk − kc
=
yk
kl

= ξ(k).
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Proof. We can get the results by simple calculations. 	


Proposition 5. Let k = � (1−l)2

l+c−lc� and l, c satisfies l < 1
2 , l + c < 1. Then we

have μ(l, c) > 1
(k+2)l .

Proof. If l+ c ≥ 1
k+1 , then μ(l, c) ≥

1
(k+1)l ≥

1
(k+2)l . Otherwise, l+ c < 1

k+1 , we

have μ(l, c) ≥ ξ(k + 1) = yk+1

(k+1)l ≥
1−l

(k+1)l = max
{

1−l
(k+1)l ,

l
l

}
> 1

(k+2)l . 	


Proposition 6. Let k = � (1−l)2

l+c−lc� ≥ 1. Then we have

max{ max
α∈{1,2,...,k}

η(α), 2} = max{η(k), 2}.

Proposition 7. Let k = � (1−l)2

l+c−lc� ≥ 1. Then for any natural number α ∈
{1, 2, . . . , k} and real x ∈ (0, 1− αc), it holds that

min

{
1

1− x− αc
,
1− x

αx

}
≤ η(α) ≤ μ(l, c).

Proof. Since 1
1−x−αc and 1−x

αx are respectively monotone increasing and decreas-
ing in x, the first inequality holds by Proposition 4. The second inequality is
obtained by Proposition 6 and the definition of μ(l, c). 	


Proposition 8. Let k = � (1−l)2

l+c−lc� ≥ 1 and l, c satisfies l + c < 1
k+1 . Then for

any real y ∈ ((k + 1)c, 1], it holds that

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ μ(l, c).

Proof. Since 1
y−(k+1)c and y

(k+1)c are respectively monotone decreasing and in-

creasing in y, the first inequality holds by Proposition 4. The second inequality
follows from the definition of μ(l, c). 	


4.1 Upper Bounds

In this subsection, we show that μ(l, c) is an upper bound for the competitive ratio
of the problem. We consider 4 cases; the case l + c ≥ 1 or l = 1/2 and c ≥ 1/8 in
Theorem 4, the case l > 1/2 in Theorem 5, the case l = 1/2 and 1/8 > c > 0 in
Theorem 6, and the remaining case l + c < 1 and l < 1/2 in Theorem 7.

Theorem 4. There exists at most 1/l-competitive algorithm for the unit cost
buyback problem with the unweighted knapsack constraint.

Proof. Consider an online algorithm which takes the first element e1 and rejects
the remaining elements. Since w(e1) ≥ l and the optimal value of the offline
problem is at most 1, the competitive ratio is at most 1/l. 	

Theorem 5. There exists at most λ(l, 1, c)-competitive algorithm for the unit
cost buyback problem with the unweighted knapsack constraint if l > 1/2.

Proof. This follows from Theorem 1 since we can hold only one element in the
knapsack. 	
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Algorithm 2. removal at most twice

1: B0 ← ∅
2: for all elements ei, in order of arrival, do

3: if w(Bi−1)+w(ei) ≤ 1 then Bi ← Bi−1∪{ei} and if w(Bi) ≥
√

4c2−4c+2

2
then

STOP

4: else if w(ei) ≥ c+

√
4c2−4c+2

2
then Bi ← {ei} and STOP

5: else if w(ei) = 1/2 then Bi ← {ei}
6: else Bi ← Bi−1

7: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Theorem 6. The online Algorithm 2 is 2c+
√
4c2−4c+2
1−2c -competitive for the unit

cost buyback problem with the unweighted knapsack constraint if l = 1/2 and
1/8 > c > 0.

In the rest of this subsection, we would like to show the following Algorithm 3
is μ(l, c)-competitive for l+ c < 1 and l < 1/2. The main ideas of the algorithm
are: i) it rejects elements (with no cost) many times, but in at most one round, it
removes some elements from the knapsack. ii) some elements are removed from
the knapsack, only when the total value in the resulting knapsack gets high
enough to guarantee the optimal competitive ratio.

Algorithm 3. removal at most once

1: B0 ← ∅, l0 ← 1/2
2: for all elements ei, in order of arrival, do
3: if w(e1) ≥ 1/2 then Bi ← {e1} and STOP
4: li ← min{w(ei), li−1}
5: if w(Bi−1) + w(ei) ≤ 1 then Bi ← Bi−1 ∪ {ei} and if w(Bi) ≥ 1/μ(li, c) then

STOP
6: else if ∃B′

i−1 ⊆ Bi−1 s.t.
1

μ(li,c)
+ |Bi−1 \ B′

i−1|c ≤ w(B′
i−1) + w(ei) ≤ 1 then

Bi ← B′
i−1 ∪ {ei} and STOP

7: else Bi ← Bi−1

8: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Lemma 1. If w(Bi−1) + w(ei) > 1 and some B′i−1 ⊆ Bi−1 satisfies μ(li, c) ·
w(Bi−1) < w(B′i−1)+w(ei) ≤ 1, then the sixth line is executed in the ith round.

Proof. We assume that B′i−1 is maximal for w(B′i−1) + w(ei) ≤ 1. Let k =

� (1−li)
2

li+c−lic
� and

α = |Bi−1 \B′i−1|, 1− x = y = w(B′i−1) + w(ei).

As μ(li, c) · w(Bi−1) < w(B′i−1) + w(ei) ≤ 1, we have

μ(li, c) <
w(B′i−1) + w(ei)

w(Bi−1)
=

w(B′i−1) + w(ei)

w(B′i−1) + w(Bi−1 \B′i−1)
≤
w(B′i−1) + w(ei)

w(Bi−1 \B′i−1)
.
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Since w(Bi−1 \ B′i−1) ≥ αli and w(Bi−1 \ B′i−1) ≥ αx as B′i−1 is maximal, we
have μ(li, c) <

1−x
αx and μ(li, c) <

y
αli

.
For the cardinality of Bi−1, we have |Bi−1| ≤ k+1 since |Bi−1| ≥ k+2 implies
1

w(Bi−1)
≤ 1

(k+2)li
≤ μ(li, c) by Proposition 5.

If α ≤ k, then we have 1
w(B′

i−1)+w(ei)−α·c = 1
1−x−α·c ≤ η(α) ≤ μ(li, c) by

Proposition 7 and μ(li, c) <
1−x
αx . On the other hand, if α = k + 1, then we have

|Bi−1| = k + 1 and we can assume that li + c < 1
k+1 since li + c ≥ 1

k+1 im-

plies 1
w(Bi−1)

≤ 1
(k+1)li

≤ μ(li, c) which contradicts the assumption. Therefore,

we obtain 1
w(B′

i−1)+w(ei)−α·c = 1
y−α·c ≤ ξ(k + 1) ≤ μ(li, c) by Proposition 8 and

μ(li, c) <
y
αli

. 	


Let OPT i denote an optimal solution whose input sequence is e1, . . . , ei.

Lemma 2. If w(Bi) < 1/μ(li, c) then we have |OPT i \Bi| ≤ 1.

Proof. Bi contains all the elements smaller than 1/2, since w(Bi) < 1/μ(li, c) ≤
1/2. Any element e ∈ OPT i \ Bi has weight greater than 1 − 1/μ(li, c) ≥ 1/2.
Therefore, |OPT i \Bi| ≤ 1 holds by w(OPT i) ≤ 1. 	


Theorem 7. The online Algorithm 3 is μ(l, c)-competitive for the unit cost buy-
back problem with the unweighted knapsack constraint if l < 1/2.

Proof. If w(e1) ≥ 1/2, then w(Bi) = w(e1) ≥ 1/2, and the competitive ratio is
at most 1/w(Bi) ≤ 2 ≤ μ(l, c). Thus, we assume that w(e1) < 1/2.

Suppose that the sixth line is executed in round k. Then it holds that 1
μ(lk,c)

+

|Bk−1 \B′k−1|c ≤ w(B′k−1) +w(ek) = w(Bk). Since w(Bi) = w(Bk) holds for all
i ≥ k, we have

w(OPT i)

w(Bi)− |Bk−1 \B′k−1|c
≤ 1

w(B′k−1)+w(ek)−|Bk−1 \B′k−1|c
<μ(lk, c) ≤ μ(l, c).

We next assume that the sixth line has never been executed. If w(Bi) ≥
1/μ(li, c), we have the competitive ratio w(OPT i)/w(Bi) ≤ 1/w(Bi) ≤ μ(li, c) ≤
μ(l, c). On the other hand, if w(Bi) < 1/μ(li, c), |OPT \ Bi| = 0 or 1 holds by
Lemma 2. If |OPT i \ Bi| = 0, we obtain the competitive ratio 1. Otherwise,
i.e., OPT i \ Bi = {ek} for some k, Lemma 1 implies that μ(lk, c) · w(Bk−1) ≥
w(B′k−1) + w(ek) for B

′
k−1 = OPT i ∩Bk−1. Therefore we obtain,

w(OPT i)

w(Bi)
≤ w(Bk−1 ∩OPT i) + w(ek) + w(Bi \Bk−1)

w(Bk−1) + w(Bi \Bk−1)

≤ max

{
w(Bk−1 ∩OPT i) + w(ek)

w(Bk−1)
, 1

}
=
w(B′k−1) + w(ek)

w(Bk−1)
≤ μ(lk, c) ≤ μ(l, c).
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Remark 4. We can almost always get μ(l, c)-competitive algorithm even if l is
not known in advance. If w(e1) ≥ 1/2, Algorithm 1 for l = w(e1) and u = 1
is λ(l, 1, c)-competitive for l > 1/2 and 2-competitive for l ≤ 1/2. Note that,
μ(l, c) = λ(l, 1, c) for l > 1/2 and μ(l, c) ≥ 2 for l < 1/2. If w(e1) < 1/2,
Algorithm 3 is μ(l, c)-competitive.
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Abstract. We consider the random phone call model introduced by
Demers et al. [8], which is a well-studied model for information dissem-
ination on networks. One basic protocol in this model is the so-called
Push protocol which proceeds in synchronous rounds. Starting with a
single node which knows of a rumor, every informed node calls a ran-
dom neighbor and informs it of the rumor in each round. The Push-Pull
protocol works similarly, but additionally every uninformed node calls a
random neighbor and may learn the rumor from that neighbor.
While it is well-known that both protocols need Θ(log n) rounds to

spread a rumor on a complete network with n nodes, we are interested by
how much we can speed up the spread of the rumor by enabling nodes
to make more than one call in each round. We propose a new model
where the number of calls of a node u is chosen independently according
to a probability distribution R with bounded mean determined at the
beginning of the process. We provide both lower and upper bounds on
the rumor spreading time depending on statistical properties of R such
as the mean or the variance. If R follows a power law distribution with
exponent ∈ (2, 3), we show that the Push-Pull protocol spreads a rumor
in Θ(log log n) rounds.

1 Introduction

Rumor spreading is an important primitive for information dissemination in
networks. The goal is to spread a piece of information, the so-called rumor, from
an arbitrary node to all the other nodes. The random phone call model is based
on the simple idea that every node picks a random neighbor and these two nodes
are able to exchange information in that round. This paradigm ensures that the
protocol is local, scalable and robust against network failures (cf. [11]). Therefore
these protocols have been successfully applied in other contexts such as replicated
databases [8], failure detection [23], resource discovery [17], load balancing [3],
data aggregation [19], and analysis of the spread of computer viruses [2].

A basic protocol for spreading a rumor in the phone call model is the Push
protocol. At the beginning, there is a single node who knows of some rumor. Then
in each of the following rounds every informed node calls a random neighbor
chosen independently and uniformly at random and informs it of the rumor.
The Pull protocol is symmetric, here every uninformed node calls a random
neighbor chosen independently and uniformly at random, and if that neighbor

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 446–456, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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happens to be informed the node becomes informed. The Push-Pull protocol is
simply the combination of both protocols. Most studies in randomized rumor
spreading concern the runtime of these protocols which is the number of rounds
required until a rumor initiated by a single node reaches all other nodes.

In one of the first papers in this area, Frieze and Grimmett [14] proved that
if the underlying graph is a complete graph with n nodes, then the runtime of
the Push protocol is log2 n + logn ± o(log n) with high probability1, where log
denotes the natural logarithm. This result was later strengthened by Pittel [22].
For the standard Push-Pull protocol, Karp et al. [18] proved a runtime bound
of log3 n + O(log logn). In order to overcome the large number of Θ(n log n)
calls, Karp et al. also presented an extension of the Push-Pull protocol together
with a termination mechanism that spreads a rumor in O(log n) rounds using
only O(n log logn) messages. More recently Doerr and Fouz [9] proposed a new
protocol using only Push calls with runtime (1+o(1)) log2 n using only O(n·f(n))
calls (and messages), where f(n) is an arbitrarily slow growing function.

Besides the complete graph, the randomized rumor spreading protocols men-
tioned above have been shown to be efficient also on other topologies. In particu-
lar, their runtime is at most logarithmic in the number of nodes n for topologies
ranging from basic networks, such as random graphs [11,12] and hypercubes [11],
random regular graphs [1], graphs with constant conductance [20,5,15], constant
weak conductance [4] or constant vertex expansion [16], to more complex struc-
tures including preferential attachment graphs modeling social networks [10,13].
In particular, recent studies establishing a sub-logarithmic runtime on certain
social network models [10,13] raise the question whether it is possible to achieve
a sub-logarithmic runtime also on complete graphs. In addition to analyses on
static graphs, there are also studies on mobile geometric graphs, e.g., [7,21], that
have deal with strong correlations as nodes are moving according to a random
walk.

Since the Push protocol, the Pull protocol and the Push-Pull protocol all re-
quire Θ(log n) rounds to spread the rumor on a complete graph, we equip nodes
with the possibility of calling more than one node in each round. Specifically,
we assume that the power of each node u, denoted by Cu is determined by a
probability distribution R on the positive integers which is independent of u. In
order to keep the overall communication cost small, we focus on distributions R
satisfying

∑
u∈V Cu = O(n) with high probability – in particular,R has bounded

mean. While being a natural extension from a theoretical perspective, different
Cu values could arise due to varying battery capacities, processor speeds or clock
synchronizations. Our aim is to understand the impact of the distribution R on
the runtime of randomized rumor spreading. In particular, we seek for conditions
on R which are necessary (or sufficient) for a sublogarithmic runtime.

Our first result concerns the Push protocol for the case where R has bounded
mean and bounded variance. As this is the most basic setting, our runtime bound

1 By with high probability we refer to an event which holds with probability 1− o(1)
as n → ∞. For simplicity, we sometimes omit the “with high probability” in the
introduction.
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is even tight up to low-order terms. To this end, let Tn = min{t | Pr [It = n] �
1 − g(n)} be the first round in which all nodes are informed with probability
1 − g(n), where g(n) is a function tending to zero as n goes to infinity (for
simplicity we do not specify g(n)).

Theorem 1.1. Consider the Push protocol and letR be a distribution withE [R]=
O(1) and Var [R]=O(1). Then |Tn − (log1+E[R] n+ logeE[R] n)|=o(log n).

Note that by putting R ≡ 1, we retain the classic result by Frieze and Grim-
mett for the standard Push protocol. If we drop the assumption on the variance,
then the theorem below provides a lower bound of Ω(log n). Although this result
is less precise than Theorem 1.1, it demonstrates that it is necessary to consider
the Push-Pull protocol in order to achieve a sub-logarithmic runtime.

Theorem 1.2. Assume that R is any distribution with E [R] = O(1). Then
with prob. 1− o(1), the Push protocol needs Ω(logn) rounds to inform all nodes.

We point out that the lower bound in Theorem 1.2 is tight up to constant factors,
as the results in [14,22] for the standard Push-Pull protocol already imply an
upper bound of O(log n) rounds. Next we consider the Push-Pull protocol and
extend the lower bound of Ω(log n) from Theorem 1.1.

Theorem 1.3. Assume thatR is anydistributionwithE [R] = O(1)andVar [R] =
O(1). Then for any constant ε > 0, with probability 1−ε thePush-Pull protocol needs
at least Ω(log n) rounds to inform all nodes.

Theorem 1.3 establishes that an unbounded variance is necessary to break
the Ω(log n) lower bound. An important distribution with bounded mean but
unbounded variance is the power law distribution with exponent β < 3, i.e., there
are constants 0 < c1 � c2 such that c1z

1−β � Pr [R � z] � c2z
1−β for any z � 1,

and Pr [R � 1] = 1. We are especially interested in power law distributions,
because they are scale invariant and have been observed in a variety of settings
in real life. Our main result below shows that this natural distribution achieves
a sublogarithmic runtime.

Theorem 1.4. Assume that R is a power law distribution with 2 < β < 3. Then
the Push-Pull protocol informs all nodes in Θ(log logn) rounds with prob. 1−o(1).

Notice that if R is a power law distribution with β > 3, then Theorem 1.3 ap-
plies because the variance of R is bounded. Hence our results reveal a dichotomy
in terms of the exponent β: if 2 < β < 3, then the Push-Pull protocol finishes in
O(log logn) rounds, whereas for β > 3 the Push-Pull protocol finishes in Θ(log n)
rounds 2. While a very similar dichotomy was shown in [13] for random graphs
with a power law degree distribution, our result here concerns the spread of the
rumor from one to all nodes (and not only to a constant fraction as in [13]).

2 We do not consider the case β � 2, since then there exists at least one node with
degree Ω(n) and the rumor is spread in constant time (additionally, E [R] is no
longer bounded). The analysis of the case β = 3 is an interesting open problem.
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In addition, the distribution of the edges used throughout the execution of the
Push-Pull protocol is different from the distribution of the edges in a power law
random graph, as the latter is proportional to the product of the two nodes
weights. Therefore it seems difficult to apply the previous techniques for power
law random graphs used for the average distance [6] and rumor spreading [13].

Besides the power law distribution, one may also consider a simple two point
distribution, where for instance, R = n with probability n−1 and R = 1 other-
wise. It is then straightforward to see that with constant probability, the Push-
Pull protocol informs all nodes in O(1) rounds. The same result also holds if
R = nε with probability n−ε and R = 1 otherwise. However, the power law
distribution is arguably a more natural distribution which occurs in a variety of
instances in practice.

Finally, we also show that it is crucial that the Cu’s do not change over time.
Instead, suppose we generate a new variable Ct

u according to the distribution R
for the number of calls made by node u in each round t. Then one can prove a
lower bound of Ω(logn) for the Push-Pull protocol for any distribution R with
bounded mean. Based on this lower bound it seems crucial to have a fixed set of
powerful nodes (i.e. nodes u with large Cu) in order to obtain a sublogarithmic
rumor spreading time.

2 Definitions and Notations

We now provide additional definitions and notations (note that the classic Push,
Pull and Push-Pull protocols have already been defined before). Here we gener-
alize the classic Push, Pull and Push-Pull to the following statistical model on a
complete graph with n nodes.

Before the protocol starts, every node u generates a random integer Cu � 1
according to a distribution R. Then, the rumor is placed on a randomly chosen
node3. Our generalized Push, Pull and Push-Pull protocol proceed like the classic
ones except that every (un)informed node u calls Cu node(s) chosen indepen-
dently and uniformly at random and sends (request) the rumor.

Let It be the set of all informed nodes in round t (which means after the
execution of round t) and Ut be the complement of It, i.e., the set of uninformed
nodes. The size of It and Ut are denoted by It and Ut. We indicate the set of
newly informed nodes in round t + 1 by Nt and its size is denoted by Nt. Let
St be the number of Push calls in round t + 1, so St =

∑
u∈It Cu � It. Let

us define N Pull
t and N Push

t to be the set of newly informed nodes by Pull and
Push calls in round t+ 1, respectively. The size of N Pull

t and N Push
t are denoted

by NPull
t and NPush

t . The size of every set divided by n will be denoted by the

3 This is equivalent to saying that the initial node which knows the rumor has to be
chosen without knowing the sequence Cu, u ∈ V. We make this assumption through-
out the paper, as it is frequently needed for lower bounding the runtime, e.g., the
lower bound in Theorem 1.2 may not hold if the rumor initiates from the node with
the largest Cu.
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corresponding small letter, so it, nt and st are used to denote It/n, Nt/n, and
St/n, respectively. Further, we define the set

L(z) := {u ∈ V : Cu � z}.

The size of L(z) is denoted by L(z). We define Δ to be maxu∈V Cu.

3 Push Protocol

3.1 Push Protocol with Bounded Variance (Thm. 1.1)

In this subsection we assume that the random numbers Cu’s are generated ac-
cording to some distribution R with bounded mean and variance. Recall that
Tn := min{t | Pr [It = n] � 1 − o(1)}, i.e., the first round in which all nodes
are informed with probability 1 − o(1). In Theorem 1.1 we show that if R is a
distribution with E [R] = O(1) and Var [R] = O(1), then |Tn − (log1+E[R] n +
logeE[R] n)| = o(log n).

To prove this result, we study the protocol in three consecutive phases. In the
following we give a brief overview of the proof.

– The Preliminary Phase. This phase starts with one informed node and
ends when It � log5 n and St � logO(1) n. Similar to the Birthday Paradox
we show that in each round every Push call informs a different uninformed
node and thus the number of informed nodes increases by St � It. Hence
after O(log logn) rounds there are at least log5 n informed nodes. Further,

since E [R] = O(1), after O(log logn) rounds we also have St � logO(1) n.

– The Middle Phase. This phase starts when log5 n � It � St � logO(1) n
and ends when It � n

log log n . First we show that the number of Push calls

St increases by a factor of approximately 1+E [R] as long as the number of
informed nodes is o(n). Then we prove that the number of newly informed
nodes in round t + 1 is roughly the same as St. Therefore an inductive
argument shows that it takes log1+E[R] n± o(log n) rounds to reach n

log logn
informed nodes.

– The Final Phase. This phase starts when It � n
log logn and ends when all

nodes are informed with high probability. In this phase, we first prove that
after o(log n) rounds the number of uninformed nodes decreases to n

log5 n
.

Then we show the probability that an arbitrary uninformed node remains

uninformed is e−E[R]±o( 1
log n ), so Ut decreases by this probability. Finally, an

inductive argument establishes that it takes logeE[R] n±o(logn) rounds until
every node is informed.

3.2 Push Protocol with Arbitrary Variance (Thm. 1.2)

We prove that if R is any distribution with E [R] = O(1), then with probability
1 − o(1) the Push protocol needs at least Ω(logn) rounds to inform all nodes.
In the Push protocol, in round t + 1, at most St randomly chosen uninformed
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nodes are informed. Hence the total contribution of newly informed nodes to
E [St+1] is at most E [R] · St. Applying the law of total expectation shows that
E [St+1] � (1 + E [R])t E [R] which implies that Ω(logn) rounds are necessary
to inform all nodes.

4 Push-Pull Protocol

4.1 Push-Pull Protocol with Bounded Variance (Thm 1.3)

In this part we consider the case where R is a distribution with bounded mean
and bounded variance. We prove that with probability at least 1− ε, the Push-
Pull protocol needs at least Ω(log n) rounds to inform all nodes. One interesting
example for a distribution R with bounded mean and bounded variance is a
power law distribution with parameter β > 3.

The crucial ingredient of the proof is to bound the Cu’s of the nodes that
become informed by using Pull, i.e., the Cu’s of uninformed nodes that call an
informed node. Note that the contribution of an uninformed node u ∈ Ut to
E [St+1] is Cu times the probability that it gets informed, which is at most
Cu · (It/n) � Cu · (St/n). Hence the contribution of u ∈ Ut is at most C2

u ·
(St/n). Now using the assumption that R has bounded variance, we have that∑

u∈V C
2
u = O(n) which implies that St increases only exponentially in t.

4.2 Push-Pull Protocol with Power Law Distr. 2 < β < 3 (Thm. 1.4)

In this section we analyze the Push-Pull protocol where R is a power law distri-
bution with 2 < β < 3 and show that it only takes Θ(log logn) rounds to inform
all with probability 1− o(1).

To prove the upper bound of O(log logn), we study the protocol in three
consecutive phases and show each phase takes only O(log logn) rounds. The
proof of the lower bound is ommitted in this extended abstract.

Proof of the Upper Bound. The following lemmas about Push will be used
throughout this section.

Lemma 4.1. Consider the Push protocol and suppose that St � logc n, where

c > 0 is any constant. Then with probability 1−O( log
2c n
n ) we have It+1 = It+St.

Lemma 4.2. Consider the Push protocol.Then with probability 1 − o( 1
log n ) we

have that st − 2s2t − 2
√

st log logn
n � nt � st.

We will also use the following fact about Power law distributions.

Lemma 4.3. Let {Cu : u ∈ V} be a set of n independent random variables and
assume that each Cu is generated according to a power law distribution with

exponent β > 2. Then for every z = O(n
1

β−1 / logn), it holds with probability
1− o( 1n )

n · c1 · z1−β

2
� L(z) � 3 · n · c2 · z1−β

2
.
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The Preliminary Phase. This phase starts with just one informed node and

ends when It � n
1

β−1 /(2 logn). Let T1 be the number of rounds needed so that

the number of informed nodes exceeds n
1

β−1 /(2 logn). We will show that with
probability 1− o(1), T1 = O(log logn). At first we prove the following lemma.

Lemma 4.4. Let c > 0 be any constant. Then with probability 1 − o(1), the
number of rounds needed to inform logc n nodes is bounded by O(log logn).

Proof. In order to prove our lemma we only consider Push calls and apply Lemma

4.1 which states that as long as St � logc n, with probability 1−O( log
2c n
n ),

It+1 = It + St � 2It.

Thus as long as St � logc n, in each round the number of informed nodes is at
least doubled. So we conclude that with probability 1−o(1), O(log logn) rounds
are sufficient to inform logc n nodes. 	


Lemma 4.5. With probability 1− o(1), T1 = O(log logn).

Proof. Let T0 be the first round when IT0 � log
2

3−β n. Let us define the constant
γ := 3−β

2(β−2) > 0. Let T be the first round such that

I
(1+γ)
T−1 � n

1
β−1 / logn < I

(1+γ)
T .

Now for any T0 � t � T , we can apply Lemma 4.3 and conclude that with
probability 1− o( 1

n ),

∑
u∈L(I1+γ

t )

Cu � L(I1+γ
t ) · I1+γ

t � n · c1 · I(1+γ)(2−β)
t

2
.

So,

It
n

∑
u∈L(I1+γ

t )

Cu � c1 · I1+(1+γ)(2−β)
t

2
=
c1 · I3−β+γ(2−β)

t

2
.

We will bound the probability that none of u ∈ L(I1+γ
t ) gets informed by Pull

calls in round t+ 1 as follows,

∏
u∈L(I1+γ

t )

(
1− It

n

)Cu

=

(
1− It

n

)∑
u∈L(I

1+γ
t )

Cu

� e−c1·I3−β+γ(2−β)
t = e−c1·I

3−β
2

t .

Since for any t � T0, It � log
2

3−β n, we have that with probability at least
1−n−c1 , at least one node in L(I1+γ

t ) gets informed by Pull in round t+1. Hence
we have that St+1 � I1+γ

t . Let us now consider the Push calls in round t + 2.
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By applying Lemma 4.1 we know that as long as St+1 = o(n) with probability
1− o( 1

log n ), St+1(1− o(1)) � Nt+1. Thus,

It+2 � It+1 + St+1(1− o(1)) >
I1+γ
t

2
.

An inductive argument shows that for any integer k � 1 as long as I1+γ
T0+2k−2 �

n
1

β−1 / logn, with probability 1− o( k
logn )

IT0+2k >

(
1

2

)∑k−1
i=0 (1+γ)i

I
(1+γ)k

T0
=

(
IT0

2γ

)(1+γ)k

· 21/γ >
(
log

2
3−β n

C′

)(1+γ)k

,

where C′ = 2γ = O(1). So we conclude that after T0 + 2k rounds, where k =

o(log1+γ logn), there are two cases: either IT0+2k � n
1

β−1 /(2 logn) which means
T1 � T0 + 2k = O(log logn) and we are done, or

IT0+2k < n
1

β−1 /(2 logn) < n
1

β−1 / logn < I1+γ
T0+2k.

In the latter case, we change the value γ to γ′ which satisfies I1+γ′
T0+2k = n

1
β−1 / logn

and a similar argument shows that

IT0+2k+2 � n
1

β−1 /(2 logn).

	


The Middle Phase. This phase starts with at least n
1

β−1 /(2 logn) informed nodes
and ends when It � n

logn . Let T2 be the first round in which n
log n nodes are in-

formed. We will show that T2−T1 = O(log logn). In contrast to the Preliminary
Phase where we focus only on an informed node with maximal Cu, we now con-
sider the number of informed nodes u with a Cu above a certain threshold Zt+1

which is inversely proportional to It.

Lemma 4.6. Suppose that It � n
1

β−1 /(2 logn) for some round t. Let Zt+1 :=
n log log n

It
. Then with probability 1− o( 1

n ),

|L(Zt+1) ∩ It+1| �
1

4
L(Zt+1).

Proof. We consider two cases. If at least 1
4 of the nodes in L(Zt+1) are already

informed (before round t+1), then the statement of the lemma is true. Otherwise
|L(Zt+1) ∩ Ut+1| > 3

4L(Zt+1). In the latter case, we define

L′(Zt+1) := L(Zt+1) ∩ Ut+1.

Let Xu be an indicator random variable for every u ∈ L′(Zt+1) so that Xu = 1
if u gets informed by Pull in round t+ 1 and Xu = 0 otherwise.
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Then we define a random variable X to be X :=
∑

u∈L′(Zt+1)
Xu. Since for

every u ∈ L′(Zt+1), Cu � Zt+1 = n log logn
It

, it follows that

Pr [Xu = 1] = 1−
(
1− It

n

)Cu

� 1−
(
1− It

n

)Zt+1

= 1− e−Ω(log log n) = 1− o(1).

Thus Pr [Xu = 1] > 3
4 and E [X ] =

∑
u∈L′(Zt+1)

Pr [Xu = 1] > 3
4 |L′(Zt+1)|.

Since |L′(Zt+1)| = |L(Zt+1) ∩ Ut+1| > 3
4L(Zt+1), E [X ] � 9

16L(Zt+1). We know

that It � n
1

β−1 /(2 logn) and also It is a non-decreasing function in t, so

Zt+1 =
n log logn

It
� 2 · n

β−2
β−1 log n log logn < n

1
β−1 /logn,

where the last inequality holds because β < 3. Now we can apply Lemma 4.3
(see appendix) to infer that with probability 1− o( 1

n ),

L(Zt+1) �
n · c1 · Z1−β

t+1

2
� c1 · logβ−1 n

2
.

Therefore, E [X ] � 9·c1·logβ−1 n
32 . Then applying a Chernoff bound results into

Pr

[
X <

E [X ]

2

]
� Pr

[
|X −E [X ] | � E [X ]

2

]
< 2e−

E[X]
10 � 2e−Ω(logβ−1 n).

So with probability 1− o( 1n ), we have that

|L(Zt+1) ∩ It+1| � X � E [X ]

2
>

3|L′(Zt+1)|
8

� 1

4
L(Zt+1),

where the last inequality holds because |L′(Zt+1)| > 3
4L(Zt+1). 	


Lemma 4.7. With probability 1− o(1), T2 − T1 = O(log logn).

Proof. Since It � n
1

β−1 /(2 logn), Zt+1 = n log logn
It

< n
1

β−1 / logn, using Lemma

4.6 results into a lower bound for |L(Zt+1)∩It+1|. So with probability 1− o( 1n ),

St+1 =
∑

u∈It+1

Cu � |L(Zt+1 ∩ It+1)| · Zt+1 � 1

4
L(Zt+1) · Zt+1.

By applying Lemma 4.3, we conclude that with probability 1− o( 1
n ), L(Zt+1) �

n·c1·Z1−β
t+1

2 . Therefore, with probability 1 − o( 1
n ), St+1 � n·c1·Z2−β

t+1

8 . As long as
St+1 = o(n), we can apply Lemma 4.2 for the Push protocol to round t + 2
implying that with probability 1− o( 1

logn ),

It+2 = It+1 +Nt � It+1 + St+1(1− o(1)).
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Thus,

It+2 >
St+1

2
� c1

16
n · Z2−β

t+1 =
c1
16

· n3−β · log log2−β n · Iβ−2
t .

By an inductive argument, we obtain that for any integer k � 1 with St+k = o(n),
it holds with probability 1− o( k

logn ),

It+2k >
( c

16
n3−β · log log2−β n

)∑k−1
i=0 (β−2)i

I
(β−2)k

t

=
( c

16
n3−β · log log2−β n

) 1−(β−2)k

3−β

I
(β−2)k

t .

Therefore there exists k = O(log 1
β−2

logn) such that

It+2k �
( c

16
n3−β · log log2−β n

) 1−O(1/ log n)
3−β

I
1/ logn
t

= Ω

(
n1−O(1/ logn)

( c

16
· log log2−β n

) 1−O(1/ log n)
3−β

)
= Ω

(
n

log logδ n

)
,

where δ = β−2
3−β (1 − O(1/ logn)) > 0. Hence T2 � T1 + 2k = T1 + O(log logn)

with probability 1− o(1). 	


The Final Phase. This phase starts with at least n
log n informed nodes. Since

the runtime of our Push-Pull protocol is stochastically smaller than the runtime
of the standard Push-Pull protocol (i.e. Cu = 1 for every u ∈ V ), we simply
use the result by Karp et. al in [18, Theorem 2.1] for the standard Push-Pull
protocol which states that once It � n

logn , additional O(log logn) rounds are

with probability 1− o(1) sufficient to inform all n nodes.
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ing. In: Proc. 41st Symp. Foundations of Computer Science (FOCS), pp. 565–574
(2000)

19. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. 44th Symp. Foundations of Computer Science (FOCS), pp. 482–491
(2003)

20. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable
functions. IEEE Transactions on Information Theory 54(7), 2997–3007 (2008)

21. Peres, Y., Sinclair, A., Sousi, P., Stauffer, A.: Mobile geometric graphs: Detection,
coverage and percolation. In: Proc. 22nd Symp. Discrete Algorithms (SODA), pp.
412–428 (2011)

22. Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1),
213–223 (1987)

23. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service.
In: Proceedings of the 15th IFIP International Conference on Distributed Systems
Platforms, Middleware 1998, pp. 55–70 (1998)



Approximating the Value of a Concurrent

Reachability Game in the Polynomial Time
Hierarchy�

Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen

Aarhus University

Abstract. We show that the value of a finite-state concurrent reach-
ability game can be approximated to arbitrary precision in TFNP[NP],
that is, in the polynomial time hierarchy. Previously, no better bound
than PSPACE was known for this problem. The proof is based on formu-
lating a variant of the state reduction algorithm for Markov chains using
arbitrary precision floating point arithmetic and giving a rigorous error
analysis of the algorithm.

1 Introduction

A concurrent reachability game (e.g., [3,1,8,7])G is a finitely presented two-player
game of potentially infinite duration, played between Player 1, the reachability
player, and Player 2, the safety player. The arena of the game consists of a finite
set of positions 0, 1, 2, . . . , N . When play begins, a pebble rests at position 1, the
“start position”. At each stage of play, with the pebble resting at a particular
“current” position k, Player 1 chooses an action i ∈ {1, 2, . . . ,m} while Player 2
concurrently, and without knowledge of the choice of Player 1 similarly chooses
an action j ∈ {1, 2, . . . ,m}. A fixed and commonly known transition function
π : {1, 2, . . . , N}×{1, 2, . . . ,m}2 → {0, 1, 2, . . . , N} determines the next position
of the pebble, namely π(k, i, j). If the pebble ever reaches 0 (the“goal position”),
play ends, and Player 1 wins the game. If the pebble never reaches goal, Player
2 wins.

A stationary strategy for a player is a family of probability distribution on his
actions, one for each state of the game. Everett [5] showed that every concurrent
reachability game has a value which is a real number v ∈ [0, 1] with the following
properties [5,12,9]:

– For every ε > 0, the reachability player has a stationary strategy for playing
the game that guarantees that the pebble eventually reaches position 0 with
probability at least v − ε, no matter what the safety player does; such a
strategy is called ε-optimal.
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– The safety player has a stationary strategy for playing the game that guar-
antees that the pebble will never reach goal with probability at least 1−v, no
matter what the reachability player does; such a strategy is called optimal.

The present paper concerns the computation of v, given an explicit represen-
tation of the game (by its transition function). More precisely, as v can be an
irrational number, we consider finding an approximation to v within an additive
error of ε > 0, when the transition function and ε (in standard fixed point binary
representation, e.g., 0.00001) are given as input. This problem has an interesting
history: Chatterjee et al. [2] claimed that the problem is in NP∩coNP. Their sug-
gested nondeterministic algorithm supposedly establishing this result was based
on guessing stationary strategies for the two players. Etessami and Yannakakis
[4] pointed out that the correctness proof of the algorithm of Chatterjee et al.
is not correct, and that the best known upper bound on the complexity of the
problem remained to be PSPACE, a bound that follows from a reduction to the
decision problem for first order theory of the real numbers. The crucial flaw in
the argument of Chatterjee et al. was its failure to establish correctly that the
length of the standard fixed point bit representation of the numbers associated
with the stationary strategies to be guessed is polynomially bounded in the size
of the input. Hansen, Koucky and Miltersen [8] subsequently established that
some games actually require strategies whose standard fixed point bit represen-
tations have superpolynomial size. That is, not only was the correctness proof
of Chatterjee et al. incorrect, but so was the algorithm itself.

The main result of the present paper is the first “complexity class upper
bound” better than PSPACE on the computational complexity of the problem
of approximating the value of a concurrent reachability game. More specifically,
consider the search problem APPROX-CRG-VALUE which on input 〈G, 1k〉
finds an approximation to the value of the finite state concurrent reachability
game G within additive error 2−k. Then, our main theorem is the following.

Theorem 1. APPROX-CRG-VALUE can be solved in TFNP[NP]

The classTFNP[NP] (”total functions fromNPwith an oracle forNP”) was defined
by Megiddo and Papadimitriou [10]. A total search problem can be solved in this
class if there is a nondeterministic Turing machine M with an oracle for an NP
language, so thatM runs in polynomial time and on all computation paths either
outputs fail or a correct solution to the input (in this case, a value approximation),
and on at least one computation path does the latter. For readers unfamiliar with
(multi-valued) search problem classes, we point out that by a standard argument,
the fact that APPROX-CRG-VALUE is in TFNP[NP] implies that there is a lan-
guageL inΔp

3 = P[NP[NP]] encoding a (single-valued) function f , so that f(G, 1k)
approximates the value of G within additive error 2−k.

Interestingly, the main key to establishing our result is to work with floating
point rather with fixed point representation of the real numbers involved in the
computation. We are not aware of any previous case where this distinction has
been important for establishing membership in a complexity class. Nevertheless,
it is natural that this distinction turns out to be important in the context of con-
current reachability games as good strategies in those are known to involve real
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numbers of very different magnitude (such as 2−1 and 2−10000000), by the exam-
ples of Hansen, Koucky and Miltersen. As the main technical tool, we adapt the
state reduction algorithm for analyzing Markov chains due to Sheskin [13] and
Grassman et al. [6]. This algorithm was shown to have very good numerical sta-
bility by O’Cinneide [11] in contrast to the standard ways of analyzing Markov
chains using matrix inversion. Our adapted finite precision algorithm computes
absorption probabilites rather than steady state probabilities and the numerical
stability argument of O’Cinneide is adapted so that a formal statement con-
cerning polytime Turing machine computations on arbitrary precision floating
point numbers, with numbers of widely different orders of magintude appearing
in a single computation, is obtained (Theorem 4 below). We emphasize that the
adaptation is standard in the context of numerical analysis – in particular, the
error analysis is an instance of the backward error analysis paradigm due to
Wilkinson [15] – but to the best of our knowledge, the bridge to formal models
of computation and complexity classes was not previously built.

2 Preliminaries

Relative Distance and Closeness

For non-negative real numbers x, x̃, we define the relative distance between x̃ and

x to be δ(x, x̃) = max(x,x̃)
min(x,x̃) − 1 with the convention that 0/0 = 1 and c/0 = +∞

for c > 0. We shall say that a non-negative real x is (u, j)-close to a non-negative
real x̃ where u and j are non-negative integers if δ(x, x̃) ≤ ( 1

1−2−u+1 )
j − 1. We

omit the proofs of the following straightforward lemmas.

Lemma 1. If x is (u, i)-close to y and y is (u, j)-close to z, then x is (u, i+ j)-
close to z.

Lemma 2. Let x, x̃, y, ỹ be non-negative real numbers so that x is (u, i)-close to
x̃ and y is (u, j)-close to ỹ. Then, x + y is (u,max(i, j))-close to x̃ + ỹ, xy is
(u, i+ j)-close to x̃ỹ and x/y is (u, i+ j)-close to x̃/ỹ.

Floating Point Numbers

Let D(u) denote the set of non-negative dyadic rationals with a u-bit mantissa,
i.e.

D(u) = {0} ∪ {x2−i|x ∈ {2u−1, 2u−1 + 1, . . . , 2u − 1}, i ∈ Z}

The u-bit floating point representation of an element x2−i ∈ D(u) is 〈1u, b(x), b(i)〉,
where b denotes the map taking an integer to its binary representation. Note that
the representation is unique (for fixed u). The exponent of x2−i ∈ D(u) is the
number −i; note that this is well-defined. The u-bit floating point representation
of 0 is 〈1u, 0〉. For convenience of expression, we shall blur the distinction between
an element of D(u) and its floating point representation. Let ⊕u,4u,⊗u denote
the finite precision analogoues of the arithmetic operations +, /, ∗. All these
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operations map D(u)2 to D(u) and are defined by truncating (rounding down)
the result of the corresponding exact arithmetic operation to u digits.

The following lemma is straightforward.

Lemma 3. Let x be a non-negative real number and let u be a positive integer.
There is a number x̃ ∈ D(u), which is (u, 1)-close to x.

Lemma 4. Let x̃, ỹ ∈ D(u) with x̃ being (u, i)-close to a non-negative real num-
ber x and ỹ being (u, j)-close to a non-negative real number y. Then x̃ ⊕u ỹ is
(u,max(i, j) + 1)-close to x + y, x̃ ⊗u ỹ is (u, i+ j + 1)-close to xy and x̃ 4u ỹ
is (u, i+ j + 1)-close to x/y.

Proof. The statement follows from combining Lemma 2 and Lemma 1 and noting
that we have that (a + b)(1 − 2−u+1) ≤ a ⊕u b ≤ a + b, and similarly for the
other operations.

For technical reasons, we want to be able to represent probability distributions
in floating point representation, i.e., as finite strings, in such a way that the se-
mantics of each string is some exact, well-defined, actual probability distribution
that we can refer to. Simply representing each probability in floating point will
not work for us, as we would not be able to ensure the numbers summing up to
exactly one. Therefore we adopt the following definition: We let P(u) denote the
set of finite probability density functions (p1, p2, . . . , pk) for some finite k with
the property that there exists numbers p′1, . . . , p

′
k ∈ D(u), so that pi = p′i/

∑
j p
′
j

for i = 1, .., k and so that
∑

j p
′
j is (u, k)-close to 1. We also refer to the vector

(p′1, p
′
2, . . . , p

′
k) as an approximately normalized representation of (p1, p2, . . . , pk).

As an example, ( 1
1+2−100 ,

2−100

1+2−100 ) is in P(64), and has an approximately normal-
ized 64-bit floating point representation being the concatenation of the 64-bit
floating point representations of the numbers 1 and 2−100 . On the other hand,
(1 − 2−100, 2−100) is not in P(u) for any u ≤ 2100. The following lemma sim-
ply expresses that one can generate an approximately normalized floating point
approximation of any unnormalized distribution by normalizing it numerically.

Lemma 5. Let a1, a2, . . . , ak ∈ D(u) and let p̃i = ai 4u
(⊕u

j=1...k aj

)
. Also, let

pi = p̃i/
∑

j=1..k p̃j. Then (p1, . . . , pk) ∈ P(u) and (p̃1, p̃2, . . . , p̃k) is an approxi-
mately normalized representation of this distribution. Also, pi is (u, 2k)-close to
ai/

∑
j aj.

Proof. By repeated use of Lemma 4, for each i, ai/
∑

j aj is (u, k)-close to p̃i.
Therefore, by Lemma 2, we have that 1 is (u, k)-close to

∑
i p̃i. Therefore,

(p̃1, p̃2, . . . , p̃k) satisfies the condition for being an approximately normalized
representation. Also pi = p̃i/

∑
j p̃j is (u, k)-close to p̃i = p̃i/1 by Lemma 2.

Then, by Lemma 1, pi is (u, 2k) close to ai/
∑

j aj .

The following lemma expresses that every probability density function is well-
approximated by an element of P(u).

Lemma 6. Let q = (q1, q2, . . . , qk) be a probability density function. There exists
p = (p1, p2, . . . , pk) in P(u) so that for all i, pi and qi are (u, 2k + 2)-close.
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Proof. For i = 1, . . . , k, let ai be a number in D(u) which is (u, 1)-close to qi,
as guaranteed by Lemma 3. By Lemma 2,

∑
i ai is (u, 1)-close to

∑
i qi = 1.

Therefore, ai/
∑

j aj is (u, 2)-close to qi, again by Lemma 2. Now let pi be the
distribution in P(u) defined by applying Lemma 5 to (ai). The statement of the
lemma gives us that pi is (u, 2k)-close to ai/

∑
j aj which is (u, 2)-close to qi, so

by Lemma 1, pi is (u, 2k + 2)-close to qi.

Absorbing Markov Chains and Concurrent Reachability Games

An absorbing Markov chain is given by a finite set of transient states {1, . . . , N}
and a finite set of absorbing states {N+1, . . . , N+S} and transition probabilities
pij , i ∈ {1, . . . , N}, j ∈ {1, . . . , N + S} with the property that for each transient
state k0, there are states k1, k2, . . . , kl so that pkiki+1 > 0 for all i and so that kl
is absorbing. We say that the chain is loop-free if pii = 0 for all i ∈ {1, . . . , N}.
Given an absorbing Markov chain, the absorption probability aij where i is tran-
sient and j is absorbing, is the probability that the chain is eventually absorbed
in state j, given that it is started in state i.

We shall use the following theorem of Solan [14, Theorem 6] stating that the
absorption probabilities of a Markov chain only change slightly when transition
probabilities are perturbed (Solan’s theorem is actually much more general; the
statement below is its specialization to absorbing Markov chains).

Theorem 2. Let M and M̃ be absorbing Markov chains with identical sets of
transient states {1, 2, . . . , N} and absorbing states {N +1, . . . , N +S} and tran-
sition probabilities pkl, p̃kl respectively. Assume that for all k, l ∈ {1, . . . , N} we
have δ(pkl, p̃kl) ≤ ε. Let akl, ãkl denote the absorption probabilities in the two
chains. Then, for each k ∈ {1, . . . , N} and each l ∈ {N +1, . . . , N +S}, we have
|akl − ãkl| ≤ 4Nε.

The formalities concerning concurrent reachability games were given in the in-
troduction. We shall use the following theorem of Hansen, Koucky and Miltersen
[8, Theorem 4].

Theorem 3. For any concurrent reachability games with a total number of A ≥
10 actions in the entire game (collecting actions in all positions belonging to both
players), and any 0 < ε < 1

2 , Player 1 has an ε-optimal stationary strategy with

all non-zero probabilities involved being at least ε2
30A

.

3 The State Reduction Algorithm

In this section, we present an adaptation of the state reduction algorithm of
Sheskin [13] and Grassman et al. [6] for computing steady-state probabilities in
Markov chains. The algorithm is (straightforwardly) adapted to compute ab-
sorption probabilities instead of steady-state probabilities. Also, we adapt an
analysis due to O’Cinneide [11] for the finite precision version of the algorithm.
The adaptation is presented as a ”theory of computation” flavored statement as
Theorem 4.
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Lemma 7. There is a polynomial time algorithm MAKE-LOOP-FREE that

– takes as input the transition probability matrix of an absorbing Markov chain
M with N transient states {1, 2, .., N} and S absorbing states {N+1, .., N+
S}, with each transition probability distribution of M being in P(u) and be-
ing given by an approximately normalized representation using u-bit floating
point numbers, for an arbitrary u ≥ 1000(N + S)2,

– outputs the transition probability matrix of an absorbing loop-free Markov
chain M ′ with N transient states {1, .., N} and S absorbing states {N +
1, .., N + S} and with each transition probability distribution of M ′ being in
P(u) and being represented by an approximately normalized representation
using u-bit floating point numbers,

– with the smallest (negative) exponent among all floating point numbers in
the output being at most one smaller than the smallest (negative) exponent
among all floating point numbers in the input,

– and with the property that each absorption probability aij of M (for i =
2 . . .N, j = N +1 . . .N + S) differs from the corresponding absorption prob-
ability a′ij of M ′ by at most 20(N + S)32−u.

Proof. We assume N ≥ 1 and S ≥ 2, otherwise the problem is trivial. Let
the transition probabilities of the chain M be denoted pij . From each outcome
of M seen as a sequence of states, consider removing all repeated occurrences
of states (e.g., ”2 2 6 6 6 5 5 ..” becomes ”2 6 5..”). This induces a probability
distribution on sequences which is easily seen to be the distribution generated by
a loop-free Markov chain M̄ with transition probabilities qij for i = 1, . . . , N, j =
1, . . . S+N, i �= j, with qij = pij/qi where qi =

∑
k =i pik. Clearly, M̄ has the same

absorption probabilities as M . The algorithm MAKE-LOOP-FREE constructs
an approximation M ′ to M̄ as indicated by the pseudocode.

By Lemma 5, the output is a family of approximately normalized floating
point representations of probability distributions q′ij = q̃ij/

∑
k q̃ik. Let M

′ be
the Markov chainM ′ with transition probabilities q′ij . We need to show thatM ′

has absorption probabilities close to the absorption probabilties of the chainM .
For this, we need to bound the relative distance between q′ij and qij . For this,
note that:

– (i) Each p̃ij is (u,N +S)-close to pij by definition of approximately normal-
ized representation.

– (ii) Each q̃i is (u, 2N +2S − 2)-close to qi by (i) and N + S − 2 applications
of Lemma 4.

– (iii) Each q̃ij is (u, 2(N + S)(N + S − 1))-close to qij by (ii) and Lemma 4.
– (iv) Each q′ij is (u,N + S − 1)-close to q̃ij by Lemma 5 and the definition of

approximately normalized representation.
– (v) Each q′ij is (u, 2(N + S)(N + S − 1) + N + S − 1)-close to qij by (iii),

(iv) and Lemma 1, i.e. at least (u, 2(N + S)2)-close.

Theorem 2 now implies that the absorption probabilities of M ′ differ from
the corresponding absorption probabilities of M by at most 4Nε where ε =
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Algorithm 1. MAKE-LOOP-FREE

Input: (p̃ij)i∈{1,...,N},j∈{1,...,N+S}, where for each i = 1, . . . , N , (p̃ij)j∈{1,...,N} is
an approximately normalized u-bit floating point representation of a probability
distribution pi.
for i = 1→ N do

q̃i ←
⊕u

l∈{1,...,N+S}\{i} p̃il
for j = 1→ N + S do

if i = j then
q̃ij ← 0

else
q̃ij ← p̃ij �u q̃i

end if
end for

end for
return (q̃ij)i∈{1,...,N},j∈{1,...,N+S}

( 1
1−2−u+1 )

2(N+2)2 − 1. Since u ≥ 1000(N + S)2, we have ( 1
1−2−u+1 )

2(N+S)2 ≤
1 + 5(N + S)22−u, so ε ≤ 5(N + S)22−u, and 4Nε ≤ 20(N + S)32−u. Finally,
to show that the exponents in the output are at most one smaller than the ex-
ponents in the input, note that we actually have that qij ≥ pij . Since q̃ij closely
approximates qij and p̃ij closely approximates pij , it is not possible for q̃ij to be
smaller than q̃ij by a factor of more than two, from which the claim follows.

Lemma 8. There is a polynomial time algorithm APPROX-STATE-RED that

– takes as input the transition probability matrix of an absorbing loop-free
Markov chain M with N transient states {1, 2, .., N} and S absorbing states
{N+1, .., N+S}, with each transition probability distribution of M being in
P(u) and being given by an approximately normalized representation using
u-bit floating point numbers, for an arbitrary u ≥ 1000(N + S + 1)2,

– outputs the transition probability matrix of an absorbing loop-free Markov
chain M ′ with N − 1 transient states {2, .., N} and S absorbing states {N +
1, .., N + S} and with each transition probability distribution of M ′ being in
P(u) and being represented by an approximately normalized representation
using u-bit floating point numbers,

– with the smallest (negative) exponent among all floating point numbers in
the output being at most one smaller than the smallest (negative) exponent
among all floating point numbers in the input,

– and with the property that each absorption probability aij of M (for i =
2 . . .N, j = N +1 . . .N + S) differs from the corresponding absorption prob-
ability a′ij of M ′ by at most 80(N + S)32−u.

Proof. Let the transition probabilities of the chain M be denoted pij . From
each outcome of M as a sequence of states, consider removing all occurrences of
the state 1. This induces a probability distribution on sequences which is easily
seen (recalling thatM is loop free) to be the distribution generated by a Markov
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chain M̃ with transition probabilities qij , for i, j = 2, .., N with qij = pij+pi1p1j .

Clearly, M̃ has the same absorption probabilities asM . From each outcome of M̃
since as a sequence of states, consider removing all repeated occurrences of states
(e.g., ”2 2 6 6 6 5 5 ..” becomes ”2 6 5..”). This induces a probability distribution
on sequences which is easily seen to be the distribution generated by a loop-free
Markov chain M̄ with transition probabilities rij for i, j = 2, . . . , N, i �= j,
with rij = qij/qi where qi =

∑
k =i qik. Clearly, M̄ has the same absorption

probabilities as M̃ , and hence as M . The algorithm APPROX-STATE-RED
constructs an approximation M ′ to M̄ as indicated by the pseudocode.

Algorithm 2. APPROX-STATE-RED

Input: (p̃ij)i∈{1,...,N},j∈{1,...,N+S}, where for each i = 1, . . . , N , (p̃ij)j∈{1,...,N} is
an approximately normalized u-bit floating point representation of a probability
distribution pi, and p̃ii = 0.
for i, j = 2→ N do

if i = j then
q̃ij ← 0

else
q̃ij ← p̃ij ⊕u (p̃i,1 ⊗u p̃1,j)

end if
end for
for i = 2→ N do

q̃i ←
⊕u

l∈{2,...,N+S}\{i} q̃il
for j = 2→ N + S do

if i = j then
r̃ij ← 0

else
r̃ij ← q̃ij �u q̃i

end if
end for

end for
return (r̃ij)i∈{1,...,N}\{1},j∈{1,...,N+S}\{1}

By Lemma 5, the output is a family of approximately normalized floating
point representations of probability distributions r′ij = r̃ij/

∑
k r̃ik. Let M

′ be
the Markov chainM ′ with transition probabilities r′ij . We need to show thatM ′

has absorption probabilities close to the absorption probabilties of the chainM .
For this, we need to bound the relative distance between r′ij and rij . For this,
note that:

– (i) Each p̃ij is (u,N +S)-close to pij by definition of approximately normal-
ized representation.

– (ii) Each q̃ij is (u, 2(N + S) + 2)-close to qij by (i) and two applications of
Lemma 4.

– (iii) Each q̃i is (u, 3(N+S)−1)-close to qi by (ii) and N+S−3 applications
of Lemma 4.
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– (iv) Each r̃ij is (u, 8(N + S)2)-close to rij by (iii) and Lemma 4.
– (v) Each r′ij is (u,N + S − 1)-close to r̃ij by Lemma 5 and the definition of

approximately normalized representation.
– (vi) Each r′ij is (u, 9(N + S)2)-close to rij by (iv), (v) and Lemma 1.

Theorem 2 now implies that the absorption probabilities of M ′ differ from
the corresponding absorption probabilities of M by at most 4Nε where ε =
( 1
1−2−u+1 )

9(N+S)2 − 1. Since u ≥ 1000(N +S+1)2, we have ( 1
1−2−u+1 )

9(N+S)2 ≤
1+20(N +S)22−u, so ε ≤ 20(N +S)2 ·2−u, and 4Nε ≤ 80(N +S)32−u. Finally,
to show that the exponents in the output are at most one smaller than the ex-
ponents in the input, note that we actually have that rij ≥ pij . Since r̃ij closely
approximates rij and p̃ij closely approximates pij , it is not possible for r̃ij to be
smaller than p̃ij by a factor of more than two, from which the claim follows.

Theorem 4. There is a polynomial time algorithm APPROX-ABSORPTION
that takes as input the transition probability matrix of an absorbing Markov
chain M with n states, with each transition probability distribution of M being
in P(u) and being given by an approximately normalized representation using u-
bit floating point numbers for some u ≥ 1000n2, and outputs for each transient
state i and each absorbing state j, an approximation to the absorption probability
aij given in u-bit floating point notation and with additive error at most 80n42−u.

Proof. For each absorption probability to be estimated, relabel states so that
transient states are labeled 1,2,..N , with the transient state of interest being
N . Then apply MAKE-LOOP-FREE of Lemma 7 once, and then APPROX-
STATE-RED of Lemma 8 N − 1 times, eliminating all transient states but the
one of interests. As the final Markov chain is loop-free and has only one transient
state, its absorption probabilities are equal to its transition probabilities and are
approximations with the desired accuracies to the absorption probabilities of the
orginal chain by the two lemmas.

4 Approximating Values in the Polynomial Time
Hierarchy

In this section, we prove our main result, Theorem 1. Let L1 be the language
of tuples 〈M, 1u, α〉, where M is an absorbing Markov chain with two absorb-
ing states goal and trap and a distinguished start state start, the parameter
u satisfies the conditions of Theorem 4, α is the standard fixed point binary
notation of a number between 0 and 1 (which we will also call α), and when
APPROX-ABSORPTION of Theorem 4 is applied to M , the approximation re-
turned for the probability of being absorbed in goal when the chain is started in
start is at least α. Then, since APPROX-ABSORPTION is a polynomial time
algorithm, we have that L1 ∈ P. Given a concurrent reachability game G, if
Player 1’s strategy is fixed to x and Player 2’s strategy is fixed to y, we get
a Markov chain. If we collapse all states in this Markov chain from which the
goal position 0 will be reached with probability 0 into a single state -1, we get
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an absorbing Markov chain with two absorbing states, 0 (goal) and -1 (trap).
Let this Markov chain be denoted M(G, x, y). Let L2 be the language of tuples
〈G, 1u, i, x, α〉, so that G is a concurrent reachability game, i is either 1 or 2, x
is a stationary strategy for Player i with each involved probability distribution
being represented approximately normalized using u-bit floating point notation,
and α is the standard fixed point binary representation of a number between 0
and 1, so that for all pure strategies y of Player 3 − i, we have that if i = 1
then 〈M(G, x, y), 1u, α〉 ∈ L1 and if i = 2, then 〈M(G, y, x), 1u, α〉 ∈ L1. Then,
by construction, and since a pure strategy y has a bit representation bounded
in size by the bit representation of the game, L2 ∈ coNP.

We are now ready to show that APPROX-CRG-VALUE can be solved in
TFNP[NP] by presenting an appropriate Turing machine M . The machine M
uses the language L2 (or its complement, a language in NP) as its oracle and
does the following on input 〈G, 1k〉: Let N be the number of non-terminal po-
sitions of G and m the largest number of actions for a player in any state. Let
u∗ = 1000km(N+2)3 and let e∗ = (k+4)230A+1, where A is the maximum of 10
and the total number of actions in G, collecting in each state all actions of both
players. The machine nondeterministically guesses an integer j between 0 and
2k+1 and a strategy profile (x, y) for the two players with each involved probabil-
ity distribution being in P(u∗) and with probabilities having exponents at least
−e∗ (note that e∗ has polynomially many bits in the standard binary represen-
tation, so it is possible for M to do this). If 〈G, 1u∗

, 1, x, (j− 1)2−k−1〉 ∈ L2 and
〈G, 1u∗

, 2, y, (j + 1)2−k−1〉 ∈ L2 the machine outputs j2−k−1, otherwise it out-
puts fail. We argue thatM does the job correctly: SupposeM outputs a number
j2−k−1. In this case,M has guessed a strategy x for Player 1 and a strategy y for
Player 2, so that 〈G, 1u∗

, 1, x, (j−1)2−k−1〉 ∈ L2 and 〈G, 1u
∗
, 2, y, (j+1)2−k+1〉 ∈

L2. Such a strategy x guarantees that goal is reached with probability at least
(j − 1)2−k−1 minus the additive error of the estimate provided by APPROX-
ABSORPTION, that is, with probability larger that (j−2)2−k−1. Similarly, the
strategy y guarantees that goal is reached with probability at most (j+2)2−k−1.
So the value of the game is in the interval [(j − 2)2−k−1, (j + 2)2−k−1] and the
approximation j2−k−1 is indeed 2−k-accurate. Finally, we show thatM does not
output fail on all computation paths. Consider a path whereM guesses j, where
j is a number so that the value v of the game is in [(2j−1)2−k−2, (2j+1)2−k−2].
Let x∗ be an 2−k−4-optimal stationary strategy for Player 1 with all non-zero

probabilities involved being bigger than 2−(k+4)230A , as guaranteed by Theorem
3. Let x be the stationary strategy that in each state is given by the probability
distribution from P(u∗) obtained by applying Lemma 6 to the distribution in
each state of x∗. The relative distance between probabilities according to x and
probabilities according to x∗ is at most γ = 1/(1− 2−u∗

)2m+2, by that lemma.
The exponents involved in an approximately normalized representation of x′ are
all at least −e∗, by x′ closely approximating x∗. For each pure reply y of Player
2, Theorem 2 yields that the probability of the process being absorbed in goal in
the chain M(x′, y) is at least v − 2−k−4 − 4Nγ ≥ v − 2−k−3. When APPROX-
ABSORPTION is applied to M(x, y), its estimate for this probability has error
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much smaller than 2−k−3, that is, its estimate is larger than v − 2−k−2. That
is, 〈G, 1u∗

, 1, x, (j − 1)2−k−1〉 ∈ L2. A similar construction yields a y so that
〈G, 1u∗

, 2, y, (j + 1)2−k−1〉 ∈ L2. If M guesses j, x, y, it does not output fail.
This completes the proof.
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Abstract. We address the problem of computing a Walrasian equilib-
rium price in an ascending auction with gross substitutes valuations. In
particular, an auction market is considered where there are multiple dif-
ferentiated items and each item may have multiple units. Although the
ascending auction is known to find an equilibrium price vector in finite
time, little is known about its time complexity. The main aim of this pa-
per is to analyze the time complexity of the ascending auction globally
and locally, by utilizing the theory of discrete convex analysis. An exact
bound on the number of iterations is given in terms of the �∞ distance
between the initial price vector and an equilibrium, and an efficient algo-
rithm to update a price vector is designed based on a min-max theorem
for submodular function minimization.

1 Introduction

We study an ascending auction, where given a set of discrete (or indivisible)
items, the auctioneer aims to find an efficient allocation of items to bidders as
well as market clearing prices of the items (see [5,6] for surveys). In recent years,
there has been a growing use of iterative auctions for items such as spectrum
licenses in telecommunication, electrical power, landing slots at airports, etc. In
this paper, we consider the setting where there are multiple indivisible items for
sale and each item may have multiple units; this is more general than the single-
unit setting used extensively in the literature. A fundamental concept in auctions
is the Walrasian equilibrium (or competitive equilibrium), which is a pair of a
price vector and an allocation of items satisfying a certain property (see below
for the precise definition). The main aim of this paper is to analyze the problem
of computing a Walrasian equilibrium with respect to the time complexity, by
utilizing the theory of discrete convex analysis.

Multi-item Auction and Walrasian Equilibrium. The auction market
model is formulated as follows. In the market, there are n types of items or goods,
denoted by N = {1, 2, . . . , n}, and m bidders, denoted by M = {1, 2, . . . ,m}.
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We have u(i) ∈ Z+ units available for each item i ∈ N . The case with u(i) = 1
(i ∈ N) is referred to as the single-unit auction in this paper. We denote the
integer interval as [0, u]Z = {x ∈ Zn | 0 ≤ x ≤ u}; note that [0,1]Z = {0, 1}n.
Each vector x ∈ [0, u]Z is often called a bundle; a bundle x corresponds to a
(multi)-set of items, where x(i) represents the multiplicity of item i ∈ N . Each
bidder j ∈M has his valuation function fj : [0, u]Z → R; the value fj(x) repre-
sents the degree of satisfaction for a bundle x. An allocation of items is defined
as a set of bundles x1, x2, . . . , xm ∈ [0, u]Z satisfying

∑m
j=1 xj = u.

In an auction, we want to find an efficient allocation and market clearing
prices. Given a price vector p ∈ Rn, each bidder j ∈ M wants to have a bundle
x which maximizes the value fj(x)− p�x. For j ∈M and p ∈ Rn, define

Vj(p) = max{fj(x)− p�x | x ∈ [0, u]Z}, (1)

Dj(p) = argmax{fj(x) − p�x | x ∈ [0, u]Z}. (2)

We call the function Vj : Rn → R and the set Dj(p) ⊆ [0, u]Z an indirect utility
function and a demand set, respectively. On the other hand, the auctioneer wants
to find a price vector under which all items are sold. Hence, all of the auctioneer
and bidders are happy if we can find a pair of a price vector p∗ and an allocation
x∗1, x

∗
2, . . . , x

∗
m satisfying the condition that x∗j ∈ Dj(p

∗) for j ∈ M . Such a
pair is called a Walrasian equilibrium; p∗ is a Walrasian equilibrium price vector
(see, e.g., [5,6]). In this paper, we consider the problem of finding a Walrasian
equilibrium in a multi-unit auction.

Although the Walrasian equilibrium possesses a variety of desirable properties,
it does not always exist. It is known that a Walrasian equilibrium does exist in
single-unit auctions under a natural assumption on bidder’s valuation functions,
called gross substitutes condition.

Gross Substitutes Condition and Discrete Concavity. We say that func-
tion fj satisfies gross substitutes (GS) condition if it satisfies the following:

(GS) ∀p, q ∈ Rn
+ with p ≤ q, ∀x ∈ Dj(p), ∃y ∈ Dj(q)

such that x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)).

This condition means that a bidder still wants to get items that do not change
in price after the prices of other items increase. The concept of GS condition is
introduced in Kelso and Crawford [12] for a fairly general two-sided job matching
model. Since then, this condition has been widely used in various models such as
matching, housing, and labor markets (see, e.g., [2,4,5,6,8,9,14]). In particular,
Gul and Stacchetti [9] show the existence of a Walrasian equilibrium in a single-
unit auction if bidders’ valuation functions satisfy the GS condition; they also
show that the GS condition is an “almost” necessary condition for the existence
of an equilibrium in a single-unit auction.

Various characterizations of GS condition are given in the literature of discrete
convex analysis and auction theory [2,8,9]. Among others, Fujishige and Yang
[8] revealed the relationship between GS condition and discrete concavity called
M�-concavity. A valuation function fj : [0, u]Z → R is said to be M�-concave
(read “M-natural-concave”) if it satisfies the following:
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(M�-EXC) ∀x, y ∈ [0, u]Z, ∀i ∈ supp+(x− y), ∃k ∈ supp+(x− y)∪ {0}:
fj(x) + fj(y) ≤ fj(x − χi + χk) + fj(y + χi − χk).

Here, we denote supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0}
for a vector x ∈ Rn, χi ∈ {0, 1}n is the characteristic vector of i ∈ N , and
χ0 = 0 = (0, 0, . . . , 0).

The concept of M�-concave function is introduced by Murota and Shioura [18]
as a class of discrete concave functions (independently of GS condition). It is
an extension of the concept of M-concave function introduced by Murota [16].
The concepts of M�-concavity/M-concavity play primary roles in the theory of
discrete convex analysis [17].

It is shown by Fujishige and Yang [8] that GS condition and M�-concavity are
equivalent in the case of single-unit auctions.

Theorem 1.1. A valuation function f : {0, 1}n → R defined on 0-1 vectors
satisfies the GS condition if and only if it is an M�-concave function.

This result initiated a strong interaction between discrete convex analysis and
auction theory; the results obtained in discrete convex analysis are used in auc-
tion theory ([4,14], etc.), while auction theory provides discrete convex analysis
with interesting applications (see, e.g., [19]).

The GS condition, however, is not sufficient for the existence of an equilibrium
in a multi-unit setting. In the last decade, several researchers independently
tried to derive conditions for valuation functions to guarantee the existence of
an equilibrium in a multi-unit setting (see, e.g., [15,19]). Murota and Tamura
[19] derive a stronger version of GS condition by using the relationship with M�-
concavity, and prove the existence of an equilibrium in a more general setting
(see also [17, Ch. 11]). In this paper, we use the following alternative condition
given in [15], which is obtained by adding to (GS) an extra inequality:

(SGS) ∀p, q ∈ Rn
+ with p ≤ q, ∀x ∈ Dj(p), ∃y ∈ Dj(q) such that

x(i) ≤ y(i) (∀i ∈ N with p(i) = q(i)) and
∑

i∈N x(i) ≥
∑

i∈N y(i).

The extra inequality
∑

i∈N x(i) ≥
∑

i∈N y(i) means that if prices are increased,
then a bidder wants less items than before. This condition turns out to be es-
sentially equivalent to M�-concavity (see Theorem 1.4 below), and also to the
condition in [19]. Note that for valuation functions on {0, 1}n, the SGS condition
is equivalent to the GS condition (see [15]).

Throughout this paper we assume the following conditions for all bidders’
valuation functions fj (j = 1, . . . ,m):

(A0) fj is monotone nondecreasing,
(A1) fj satisfies the SGS condition,
(A2) fj is concave-extensible,
(A3) fj takes integer values.

The concave-extensibility (A2) is a natural condition for valuation functions
[15,19]; a valuation function f : [0, u]Z → Z is said to be concave-extensible
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if there exists a concave function f̄ defined on {x ∈ Rn | 0 ≤ x ≤ u} such
that f̄(x) = f(x) for every x ∈ [0, u]Z. The assumption (A3) can be removed
if we want to compute an ε-approximate equilibrium price vector instead of an
“exact” one; for ε > 0, an ε-approximate equilibrium price vector p is defined as
a vector such that ‖p−p∗‖∞ < ε for some equilibrium price vector p∗. For such a
problem, all results in this paper can be easily adapted with slight modifications.

Iterative Auctions and Ascending Auctions. The main theme of this paper
is the computation of a Walrasian equilibrium in an ascending auction. We focus
on an equilibrium price vector p∗ since an allocation in the equilibrium can be
computed efficiently once we obtain p∗. In the computation, we assume that
bidders’ valuation functions fj are given implicitly by so-called demand oracles,
i.e., we can get the information about demand set Dj(p) for a price vector p,
but no information is available about the function values of fj . This assumption
is very plausible, since bidders want to preserve their privacy about valuation
functions and disclose only the information that is really needed.

In the auction literature an algorithm called the iterative auction (or dynamic
auction, Walrasian auction, Walrasian tâtonnement process, etc.) is often used
to find an equilibrium [5,6]. An iterative auction computes an equilibrium price
vector by iteratively updating a current price vector p by using the information
on demand sets Dj(p). The most natural and popular iterative auction is the
ascending auction, in which the current price vector is increased monotonically.
The ascending auction is a natural generalization of the classical English auction
for a single item, and known to have various nice properties (see, e.g., [5,6]); in
particular, it is quite natural from the economic point of view, and easy to
understand and implement.

In this paper, we consider the ascending auction1 presented in Ausubel [1].
This algorithm can be seen as a simplified version of the one in Gul and Stacchetti
[10], where the Lyapunov function defined by

L(p) =
∑m

j=1 Vj(p) + u�p (p ∈ Rn) (3)

is used. It is known (see [1,21]) that p∗ is an equilibrium price vector if and only
if it is a minimizer of the Lyapunov function and that there exists an integral
minimizer p∗ ∈ Zn of the Lyapunov function. Based on this fact, the ascending
auction in [1] tries to find a minimizer of the Lyapunov function. For X ⊆ N ,
we denote by χX ∈ {0, 1}n the characteristic vector of X .

Algorithm Ascend

Step0: Set p := p◦, where p◦ ∈ Zn is a lower bound of some p∗ ∈ argminL
(e.g., p◦ = 0).

Step1: Find X ⊆ N that minimizes L(p+ χX).

1 Our Ascend is slightly different from “Ascending Tâtonnement Algorithm” in [1]
in the choice of X in Step 1; X is a minimal minimizer of L(p + χX) in [1], while
it can be any minimizer in ours, which is easier to find than a minimal minimizer
and does not increase the number of iterations. This is an additional merit of our
algorithm.
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Step2: If L(p+ χX) = L(p), then output p and stop.
Step3: Set p := p+ χX and go to Step 1.

It can be shown (cf. [1]) that this algorithm outputs an equilibrium price
vector in a finite number of iterations. While the ascending auction has various
nice properties (see, e.g., [5,6]), it has a disadvantage that the initial price vector
must be a lower bound of some equilibrium vector. Taking this into consideration,
Ausubel [1] also propose an alternative iterative auction, which allows us to start
with an arbitrary price vector, but has a drawback that the change of the price
vector is not monotone.

Our Contribution. The main aim of this paper is to theoretically analyze
the ascending auction and other iterative auctions with respect to their time
complexity. While computational experiments are often used to evaluate the
practical performance of iterative auctions (see [3,20]), there is no theoretical
analysis of the time complexity, even in the case of the single-unit auction,
except for the termination in finite time. This paper gives the first theoretical
analysis in the case of multi-unit auctions.

The results in this paper consist of the following two:

(i) Tight bounds on the number of iterations of iterative auctions,
(ii) An efficient algorithm for the update of a price vector.

Our first result is the analysis of the number of iterations required by the
algorithm Ascend. The upper bound established in this paper is useful in prac-
tice by providing bidders with an a priori guarantee for the time period of the
auction process. The exact bound for the number of iterations in Ascend is
given in terms of the distance between the initial price vector and a minimizer
of the Lyapunov function L. For the analysis, we define

μ̂(p) = min{‖p∗ − p‖∞ | p∗ ∈ argminL, p∗ ≥ p} (p ∈ Zn).

The value μ̂(p) remains the same or decreases by one in each iteration of the
algorithm. Hence, if p◦ is the initial vector, then μ̂(p◦) + 1 is a lower bound for
the number of iterations. We show that this bound is also an upper bound.

Theorem 1.2. Suppose that the initial vector p◦ ∈ Zn in the algorithm Ascend

is a lower bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates exactly in μ̂(p◦)+1 iterations.

This result shows that the trajectory of a price vector generated by Ascend is
the “shortest” path between the initial vector and a minimizer of the Lyapunov
function. This reveals an additional advantage of the ascending auction. We also
propose some other iterative auctions in this paper and derive tight bounds for
the number of iterations in these algorithms.

Our second result is concerned with the update of a price vector. The algo-
rithm Ascend and other iterative auctions considered in this paper update the
price vector by using an optimal solution of the problem minX⊆N L(p + χX)
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or minX⊆N L(p− χX). It is known that these problems can be reduced to sub-
modular function minimization (SFM, for short). Although polynomial-time al-
gorithms are available for SFM [7,17], they are quite slow and complicated.

We show that the SFM problems appearing in iterative auctions can be solved
more efficiently than by a straightforward application of the existing SFM algo-
rithms. We denote U = ‖u‖∞.

Theorem 1.3. For every integral vector p ∈ Zn, the problems minX⊆N L(p +
χX) and minX⊆N L(p− χX) can be solved in O(mn4 logU log(mnU)) time.

This improvement is achieved by exploiting the fact that valuation functions are
given by demand sets and the submodular functions to be minimized can be
represented in terms of demand sets as follows. For x ∈ Rn and Y ⊆ N , we
denote x(Y ) =

∑
i∈Y x(i).

Proposition 1.1 (cf. [1,17]). For p ∈ Zn and X ⊆ N , we have

L(p+ χX)− L(p) = −
∑
j∈M

min{y(X) | y ∈ Dj(p)}+ u(X),

L(p− χX)− L(p) =
∑
j∈M

max{y(X) | y ∈ Dj(p)} − u(X).

The problem setting of SFM in terms of demand sets is interesting in its own
right.

Proofs of the results in this paper are based on the following equivalence
between the SGS condition and M�-concavity.

Theorem 1.4. Let f : [0, u]Z → Z be a concave-extensible function. Then, f
satisfies the SGS condition if and only if it is an M�-concave function.

We also point out in Corollary 2.1 that the Lyapunov function has a discrete
convexity called L�-convexity. The concepts of M�-concavity and L�-convexity
play primary roles in the theory of discrete convex analysis [17]. On the basis of
these facts, we can make full use of rich results from discrete convex analysis to
prove Theorems 1.2 and 1.3.

2 Property of Indirect Utility Functions

In this section, we show that the indirect utility function Vj : Rn → R given by
(1) is an L�-convex function. Function g : Rn → R is said to be L�-convex [17] if
for every p, q ∈ Rn and every nonnegative λ ∈ R+, it holds that

g(p) + g(q) ≥ g((p+ λ1) ∧ q) + g(p ∨ (q − λ1)),

where 1 = (1, 1, . . . , 1) and for p, q ∈ Rn the vectors p ∧ q and p ∨ q denote,
respectively, the vectors obtained by component-wise minimum and maximum
of p and q. It is easy to see that an L�-convex function is a submodular function
on Rn, i.e., it satisfies g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ Rn).
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Theorem 2.1. The indirect utility function Vj : Rn → R is an L�-convex func-
tion.

Proof. The assumptions (A1) and (A2) imply the M�-concavity of valuation
function fj by Theorem 1.4. Hence, the indirect utility function Vj is L�-convex
by the conjugacy theorem in discrete convex analysis [17, Ch. 8]. 	


From this property we obtain the L�-convexity of the Lyapunov function L
given by (3) since any linear function is also an L�-convex function and L�-
convexity is closed under the addition of functions.

Corollary 2.1. The Lyapunov function L : Rn → R is an L�-convex function.
In particular, L is a submodular function.

It follows from Corollary 2.1 and the integrality assumption (A3) for valuation
functions fj that argminL is an integral polyhedron by the results in discrete
convex analysis [17]. Since argminL is exactly the same as the set of equilibrium
price vectors [1,21], this observation implies the known fact that there exists an
integral equilibrium price vector.

3 Analysis for Number of Iterations in Iterative Auctions

In this section, we consider the algorithm Ascend and several other iterative
auction algorithms for finding an integral equilibrium price vector, and analyze
the number of iterations.

We first show that there exists an integral equilibrium price vector in the
finite interval [0, p̄]Z, where p̄ ∈ Zn

+ is given by p̄(i) = maxj∈M{fj(χi)− fj(0)}.
Note that p̄ can be easily computed from bidders’ valuation functions.

Proposition 3.1. There exists an equilibrium price vector p∗ with p∗ ∈ [0, p̄]Z.

Hence, the number of iterations of the algorithmAscend is at most
∑

i∈N p̄(i).
We will see below that the bounds for the number of iterations in Ascend and
other iterative auction algorithms are much smaller than

∑
i∈N p̄(i).

As stated in Theorem 1.2, the number of iterations in Ascend is μ̂(p◦) + 1.
Its proof is quite nontrivial and can be done with the aid of some known results
in discrete convex analysis. Note that any algorithm requires at least μ̂(p◦) + 1
iterations if it increases the price vector by a 0-1 vector in each iteration. Hence,
the algorithmAscend is the fastest among all iterative auction algorithms of this
type, and the trajectory of the price vector is a “shortest” path from the initial
vector to an equilibrium. In addition, since μ̂(p◦) ≤ maxi∈N{p̄(i) − p◦(i)}, we
can guarantee that the algorithm terminates in at most maxi∈N{p̄(i)−p◦(i)}+1
iterations; note that this bound can be computed in advance before executing
the algorithm.

Similarly to Ascend, we can consider an algorithm Descend as in [1], where
the price vector is decreased by a vector χX ∈ {0, 1}n which is a minimizer of
L(p−χX). It is easy to see that algorithm Descend enjoys similar properties as
Ascend. We define μ̌(p) = min{‖p∗− p‖∞ | p∗ ∈ argminL, p∗ ≤ p} for p ∈ Zn.
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Theorem 3.1. Suppose that the initial vector p◦∈Zn in the algorithm Descend

is a upper bound of some minimizer of the Lyapunov function L. Then, the
algorithm outputs a minimizer of L and terminates exactly in μ̌(p◦)+1 iterations.

An advantage of algorithms Ascend and Descend is that a price vector is
updated monotonically, which is an important property from the viewpoint of
auctions. They, however, have a drawback that the initial price vector should be
a lower or upper bound for some minimizer of Lyapunov function L. In contrast,
the following two algorithms can start from any initial price vector and find an
equilibrium. Therefore, the number of iterations can be small if we can choose
an initial vector that is close to some minimizer of L.

The next algorithmTwoPhase can be seen as an application ofAscend with
an arbitrary initial vector, followed by Descend. The algorithm has a merit that
the price vector is updated “almost” monotonically.

Step 0: Set p := p◦, where p◦ ∈ Zn is a vector with p◦ ∈ [0, p̄]Z.
Go to Ascending Phase.

Ascending Phase:
Step A1: Find X ⊆ N that minimizes L(p+ χX)− L(p).
Step A2: If L(p+ χX) = L(p), then go to Descending Phase.
Step A3: Set p := p+ χX and go to Step A1.
Descending Phase:
Step D1: Find X ⊆ N that minimizes L(p− χX)− L(p).
Step D2: If L(p− χX) = L(p), then output p and stop.
Step D3: Set p := p− χX and go to Step D1.

A version of this algorithm specialized to valuation functions defined on
{0, 1}n coincides with the one in [21]. Another algorithm called “Global Wal-
rasian tâtonnement algorithm” in [1] repeats ascending and descending phases
until a minimizer of L is found; our analysis shows that this algorithm terminates
after only one ascending phase and only one descending phase.

To analyze the number of iterations required by TwoPhase, we define

μ(p) = min{‖p∗ − p‖+∞ + ‖p∗ − p‖−∞ | p∗ ∈ argminL} (p ∈ Zn),

‖p∗ − p‖+∞ = max
i∈N

max(0, p∗(i)− p(i)), ‖p∗ − p‖−∞ = max
i∈N

max(0,−p∗(i) + p(i)).

The value μ(p) can be regarded as the “distance” between the vector p and a
minimizer of L. By definition, μ(p) remains the same or decreases by one if p is
updated by adding or subtracting a 0-1 vector. Hence, the algorithmTwoPhase

requires at least μ(p◦) + 1 iterations. In the following, we show that the number
of iterations is bounded by 3μ(p◦) + 2.

Theorem 3.2. The algorithm TwoPhase outputs an equilibrium price vector
in at most 3μ(p◦)+2 iterations; more precisely, the ascending (resp., descending)
phase terminates in at most μ(p◦) + 1 iterations (resp. 2μ(p◦) + 1 iterations).

We finally consider the algorithm Greedy, which can be seen as the steepest
descent (or greedy) algorithm for the minimization of the Lyapunov function.
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Step 0: Set p := p◦, where p◦ ∈ Zn is a vector with p◦ ∈ [0, p̄]Z.
Step 1: Find ε ∈ {+1,−1} and X ⊆ N that minimize L(p+ εχX).
Step 2: If L(p+ εχX) = L(p), then output p and stop.
Step 3: Set p := p+ εχX and go to Step 1.

This can be seen as an application of the steepest descent algorithm for L�-
convex function minimization (see [17]), for which the number of iterations is
analyzed in [13]. We give a refined analysis of this algorithm in terms of the
“distance” between the initial vector and a minimizer of L.

Theorem 3.3. The algorithm Greedy outputs an equilibrium price vector and
terminates exactly in μ(p◦) + 1 iterations.

As mentioned above, any iterative auction algorithm of this type requires at
least μ(p◦)+ 1 iterations. Theorem 3.3 shows that Greedy is the fastest among
all iterative auction algorithms of this type, and the trajectory of a price vector
is a “shortest” path from the initial vector to an equilibrium. Although Greedy

has such merits in the choice of the initial vector and in the number of iterations,
it also has a drawback that it may repeat the increment and decrement of the
price vector many times, which is not a desirable behavior from the viewpoint
of auction.

It should be noted that the algorithms as well as their analysis in this section
can be applied not only to the Lyapunov function but also to any general L�-
convex function since our proofs do not rely on any special structure of the
Lyapunov function. In particular, the key property used in our proofs is the
following property of L�-convex functions.

Proposition 3.2 ([17, Theorem 7.7]). Let g : Rn → R be an L�-convex
function. For every integral p, q ∈ Zn with supp+(p − q) �= ∅, it holds that
g(p) + g(q) ≥ g(p− χX) + g(q + χX), where X = argmaxi∈N{p(i)− q(i)}.

Finally, we point out that in all of the iterative auction algorithms considered
in this paper we use linear and anonymous pricing rule, meaning that the price
of any bundle x of goods is equal to p�x and is the same for all bidders. In this
case, we need to impose conditions on the valuation of bidders to guarantee that
iterative auction algorithms work. On the other hand, so-called combinatorial
auction algorithms use nonlinear and discriminatory pricing rule, i.e., the price
p(x, i) of a bundle x of goods depends on x and bidder i and is not linear. In this
case, iterative auction algorithms work with more general valuation functions,
although auction algorithms of this type are difficult to use in practice.

4 Efficient Update of Price Vector

For an update of the price vector in the ascending auction and other iterative
auctions, we repeatedly solve the local optimization problems minX⊆N L(p+χX)
and minX⊆N L(p−χX) for some integral p ∈ Zn, both of which can be reduced to
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submodular function minimization (SFM, for short). Indeed, the former problem
can be reduced to the minimization of a set function given by

ρL(X) = L(p+ χX)− L(p) (X ⊆ N), (4)

which is submodular since the Lyapunov function L is submodular by Corollary
2.1. The latter problem can also be reduced to SFM. In this section, we show
that by using demand sets Dj(p) obtained from bidders, these problems can be
solved faster than a straightforward application of SFM algorithms.

In the following, we consider minimization of ρL given by (4). Throughout
this section, we assume that for a given integral vector p ∈ Zn and j ∈ M ,
a vector x◦j ∈ Dj(p) is available and the membership test in Dj(p) can be
done in constant time. This means that the evaluation of ρL(X) requires solving
optimization problems on Dj(p), which can be done in O(mn2 logU) time, where
U = ‖u‖∞. Recall that SFM is solvable in polynomial time [7,17], provided the
function value can be evaluated in polynomial time.

Almost all “combinatorial” polynomial-time algorithms for SFM are based
on the following min-max formula (see, e.g., [7,17]). For a submodular function
ρ : 2N → Z, we define a set

B(ρ) = {x ∈ Zn | x(Y ) ≤ ρ(Y ) (∀Y ⊆ N), x(N) = ρ(N)},

which is called the base polyhedron associated with ρ.

Proposition 4.1. For an integer-valued submodular function ρ : 2N → Z,

min{ρ(X) | X ⊆ N} = max
{∑

i∈N min{0, x(i)}
∣∣ x ∈ B(ρ)

}
(5)

holds. Moreover, if x∗ ∈ B(ρ) is an optimal solution of the maximization problem
on the right-hand side of (5), then a set X∗ ⊆ N is a minimizer of ρ if and only
if {i ∈ N | x∗(i) < 0} ⊆ X∗ ⊆ {i ∈ N | x∗(i) ≤ 0} and ρ(X∗) = x∗(X∗).

Solving the maximization problem in (5) requires the membership test in
B(ρ). For the efficient membership test in B(ρ), the existing polynomial-time
algorithms use a technique to represent a vector x as a convex combination of
extreme points in B(ρ), which makes the algorithms slow and complicated. The
fastest (weakly-)polynomial algorithm runs in O((n4EO + n5) logΓ ) time [11],
where Γ is an upper bound on |ρ(X)| and EO denotes the time for function
evaluation; Γ = mnU and EO= O(mn2 logU) in our case.

We show that the minimization of ρL can be solved faster by using a repre-
sentation of the base polyhedron B(ρL) in terms of demand sets Dj(p).

Proposition 4.2. It holds that B(ρL) = {u−
∑

j∈M xj | xj ∈ D̃j(p) (j ∈M)},
where D̃j(p) is the set of minimal vectors in Dj(p) for j ∈M .

This formula can be proven by using the representation of L(p+ χX)− L(p) in

Proposition 1.1. Note that D̃j(p) is a base polyhedron. By Propositions 4.1 and
4.2, the minimization of ρL is equivalent to the problem

max
{∑

i∈N min{0, x(i)}
∣∣ x = u−

∑
j∈M xj , xj ∈ D̃j(p) (j ∈M)

}
.
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Based on this observation, we can prove Theorem 1.3. The established bound
O(mn4 logU log(mnU)) is smaller than the bound O(mn6 logU log(mnU)) ob-
tained by a straightforward application of the SFM algorithm in [11].
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Abstract. We study the online pricing problem where there are m
identical items on sale and a sequence of users u1, u2, . . . arrive one by
one. Each ui has a non-increasing acceptable price function ϕi(·) where
ϕi(x) is the highest unit price ui is willing to pay for x items. Upon the
arrival of a user, the seller needs to decide the number of items to be
sold to the user and at what price. The goal is to maximize the revenue
of the seller, which is the sum of money paid by all users.
For the case when the items are divisible and can be sold frac-

tionally, we improve the results of Zhang et al. [19]. We design a new
deterministic algorithm Dp-div and prove that it has competitive ratio
O(

∏log∗ h−1
j=1 log(j) h) where h is the highest unit price a user is willing

to pay; our algorithm is substantially better than the O(h3 log
−1/2
2 h) -

competitive algorithm of Zhang et al.We also prove that no randomized
algorithm can do better than Ω(log h)-competitive.
For the case when items are indivisible, there is no known result.

We show in this paper that any deterministic algorithm for this case
must have competitive ratio at least Ω(h)-competitive. Then, we give
the first competitive randomized algorithm Rp-indiv with competitive
ratio O(

∏log∗ h−1
j=1 log(j) h). If h is known ahead of time, we can reduce

the competitive ratio to O(log h). Besides, we prove that no randomized
algorithm can do better than Ω(log h)-competitive.

1 Introduction

The pricing problem, as well as its many variants, have been studied extensively
in recent years and have found important applications in economics [1, 4, 10, 12,
14, 15]. This paper studies an online version of the problem, in which there is
a sequence of users who want to buy goods from one seller. These users are
arriving one by one at different times, and each user would specify how much
she is willing to pay for a bundle of goods. Upon the arrival of a user, the seller
needs to determine immediately the number of goods to be sold to the user
and the price he would charge her. His goal is to maximize the sum of money
paid by users. An example of such setting is the bandwidth allocation on a
communication link where the total demand for bandwidth exceeds the link’s
capacity. Requests for bandwidth arrive at different times and each request needs
an immediate answer about the allocation and the price of bandwidth. Similar
applications can be found in the allocation of valuable resources such as CPU
time or cache space.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 479–490, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The online pricing problem was first studied by Zhang et al. [17]. They focused
on a special version of the problem, namely the online pricing for divisible goods
problem, in which all goods are divisible and can be sold fractionally. They gave

a deterministic algorithm for the problem with competitive ratio O(h3 log
−1/2
2 h)

where h is the highest unit price (i.e., the price for one unit of item) that at
least some user is willing to pay. Note that in general, h is only known when all
users have arrived. However, if h is known before any user arrives, they showed
that their algorithm can be improved to O(log h)-competitive. In [19], Zhang
et al. proved that any deterministic algorithm for the online pricing for divisible
goods problem must have competitive ratio at least 1

2�log2 h�.
We note that there is yet no known result for the other version of the problem,

namely the online pricing for indivisible goods problem, in which all goods are
indivisible.

Our Results. In this paper, we tackle both versions of the online pricing
problems. For the online pricing for indivisible goods problem, we show that
any deterministic algorithm for the problem must have competitive ratio Ω(h).
Then, we give the first competitive randomized algorithm Rp-indiv for this
problem. The algorithm is surprisingly simple and uses very little power of
randomization; when it starts, it picks randomly a unit price p according to
some fixed probability distribution, and whenever a new user arrives, it simply
sells her the largest number of goods that she is willing to buy under this unit
price p. The difficult part is to choose the right probability distribution. Also,
the competitive analysis is not easy. By using a good probability distribution, we
prove that Rp-indiv has a competitive ratio O((log h)1+ε) where ε > 0 is a very
small number. By using a more elaborate probability distribution, we achieves
a competitive ratio of O(log h log(2) h . . . log(Δ) h) where Δ = log∗ h− 1. Here,

log(1) h = log h, log(j) h = log(log(j−1) h) for j ≥ 2, and log∗ h is the iterated
logarithm of h, which is the number of times the logarithm function must be
iteratively applied before the result is less than or equal to 1. Furthermore, we
show that if h is known ahead of time, we can choose an even better distribution,
which would reduce the competitive ratio of Rp-indiv to O(log h). Finally, we
prove that any randomized algorithm for the problem must have competitive
ratio Ω(log h).

For the online pricing for divisible goods problem, our major contribution is to
improve the result of Zhang et al. [17,19]. We give a new deterministic algorithm
Dp-div, which uses a more refined pricing structure and a more elaborate
selling strategy than those proposed in [17, 19]. Our strategy is inspired by
our randomized algorithm Rp-indiv and we prove that Dp-div has competitive

ratio O(
∏log∗ h−1

j=1 log(j) h), which is a significant improvement of Zhang et al.’s

O(h3 log
−1/2
2 h)-competitive algorithm. Recall that every deterministic algorithm

for the online pricing for divisible goods problem must have competitive ratio at
least 1

2�log h� [19]. We show in this paper that we cannot do much better even
if randomization is allowed; we prove that any randomized algorithm must have
competitive ratio Ω(log h). We note that our randomized algorithmRp-indiv for
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Table 1. Summary of results on the competitive ratios (all of our lower bound results
hold even for the case when h is known before any user arrives)

Our results

deter-
ministic Ω(h)

Ω(log h)

random O(
∏log∗ h−1

j=1 log(j) h)

O(log h) if h known

Pricing for indivisible goods
(No previous result)

Previous results Our results

deter-
Ω(log h) -

ministic O
(
h

3√
log2 h

)
O(

∏log∗ h−1
j=1 log(j) h)

random
- Ω(log h)

- O(log h) if h known

Pricing for divisible goods

indivisible goods can also be applied directly to solve this problem for divisible
goods, and we can prove that this gives us a competitive ratio O(log h) when h
is known. Table 1 summarizes all results.

Related Works. The offline pricing problem was firstly introduced by Gu-
ruswami et al. [12]. Guruswami et al. gave an approximation algorithm for the
pricing problem with unlimited supplies of m different types of items and n
single-minded users (i.e., each user is only interested in a particular set of items);
their algorithm achieves expected revenue within an O(log n+logm) factor of the
total social welfare. This approximation ratio was proved to be tight by Briest [5]
and Chalermsook et al. [7]. For the case when each single-minded bidder wants at
most k types of items, Briest et al. [6] gave an O(k2)-approximation algorithm,
and later Belcan et al. [2] improved the approximation ratio to O(k). For the
case when the m types of items on sale have limited supply and users are unit-
demanded (i.e., each user would like to buy at most one item), Guruswami
et al. [12] gave an O(logm)-approximation algorithm.

In offline settings, the pricing problem can be viewed as combinatorial
auctions, which have been studied extensively [4, 8, 10, 11, 13]. One direction
studied in combinatorial auctions is envy-freeness, which means that given the
pricing, no user would prefer to be assigned a different bundle of items [8,11,13].
Another direction about combinatorial auctions is incentive compatibility, where
rational bidders are always motivated to bid their true valuations [4, 10, 14].

For online pricing, Zhang et al. [18] have also considered a variant of the online
pricing problem called online pricing for multi-type of items, in which the seller
has k types of items, each type hasm copies, and users arrive online. Each user is
single-minded. The seller must decide the unit price and the number of bundles
sold to a user when she arrives. Bundles can be sold fractionally. Zhang et al.
showed that any deterministic algorithm for this problem must have competitive
ratio at least Ω(log h+ log k), where h is the highest unit price, and under the
assumption that h is known ahead of time, they gave an O(

√
k · log h log k)-

competitive deterministic algorithm for the problem.
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Balcan et al. [3] also considered the problem of pricing n types of items to
maximize revenue when faced with a series of unknown users arriving online.
Compared with the models in [17–19], Balcan et al.’s model assumes that for
each type of item, the user only demands one copy instead of many copies. In
the unlimited supply setting, they showed that a random single price achieves
expected revenue within a logarithmic factor of the total social welfare. In the
limited supply setting, they showed that a random single price achieves revenue
within a factor of 2O(

√
logn log logn) of the total social welfare. Cole et al. [9]

considered an online problem where one of m identical items is offered for sale
at each time unit, users arrive and depart dynamically and each user is interested
in winning one item; the goal is to maximize the sum of the utilities of winning
bidders and they gave a constant-competitive algorithm.

2 Problem Definitions

The online pricing for indivisible goods problem is defined formally by Zhang et al.
[17] as follows: There is a seller with m identical items, and a sequence of users
u1, u2, . . . come one by one. When a user arrives, the seller must determine the
number of items to be sold to the user, as well as the unit price for selling these
items. Each item is indivisible and can be sold to only one user. Every user ui
has a non-increasing acceptable price function ϕi(·) where ϕi(x) is the highest
unit price ui is willing to pay for buying x items 1 . Let h = maxi,x ϕi(x) be the
highest value among all ϕi(x). Suppose that a user ui arrives, and that the seller
decides that he can sell mi items to ui with a unit price of pi. If pi > ϕi(mi),
user ui cannot accept the price and will not buy any item; otherwise, user ui
will accept the price, pay mi · pi to the seller and get mi items. The objective
is to maximize the revenue of the seller, which is the sum of money paid by all
users. The online pricing for divisible goods problem is defined very similarly;
the only difference is that each item is divisible and can be sold fractionally.

Let A be a deterministic algorithm for the online pricing problem (either
for indivisible or divisible goods). Given m items and a user sequence σ, let
ALG(m,σ) and OPT (m,σ) denote the total revenue of A and that of an
optimal offline algorithm, respectively. The competitive ratio of A is defined

to be cA = supm,σ
OPT (m,σ)
ALG(m,σ) . Now suppose that A is a randomized algorithm.

Let ALG(m,σ, δ) denote the total revenue of A based on the random choice δ.
Let the expected revenue be Eδ(ALG(m,σ, δ)). Then the competitive ratio of A

is defined to be cA = supm,σ
OPT (m,σ)

Eδ(ALG(m,σ,δ)) .

The rest of the paper is structured as follows: In Section 3, we discuss the
online pricing for indivisible goods and present the competitive randomized
algorithm Rp-indiv. In Section 4, we discuss the online pricing for divisible
goods and give the competitive deterministic algorithm Dp-div.

1 To simplify the analysis, we assume without loss of generality that the seller would
only sell items at unit price no less than 1.
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3 Online Pricing for Indivisible Goods

In this section, we consider online pricing for indivisible goods. We prove that
no deterministic algorithm can do better than h-competitive. A randomized

algorithm Rp-indiv is presented and it is proved to be O(
∏log∗ h−1

j=1 log(j) h)-
competitive when h is unknown. If h is known ahead of time, the competitive
ratio can be decreased to 2�log2 h�+2. We also prove that the competitive ratio

of any randomized algorithm is at least �log2(h+1)�+1
2 .

We show a lower bound for deterministic algorithms first:

Theorem 1. No deterministic algorithm for the online pricing for indivisible
goods problem can have a competitive ratio less than h.

Proof. Suppose that there is only m = 1 item on sale. First, user u1 arrives and
is willing to pay 1 for each item. Consider two cases: (1) If u1 is assigned the
item by the seller, we send another user u2 who is willing to pay h for each item,
and stop. The revenue returned by the online algorithm is 1, while the optimal
revenue is h by assigning the item to u2 at a unit price of h. (2) If u1 is not
assigned the item, then we stop; in such case, the revenue returned by the online
algorithm is 0, while the optimal revenue is 1. In both cases, the ratios between
the optimal revenue and the revenue of the algorithm are no less than h.

3.1 A Competitive Randomized Algorithm: Rp-indiv

Rp-indiv is shown below. We choose a non-negative integer κ randomly and set
τ = 2κ as the unit price for all users. We will specify the probability distribution
Pr[κ = i] = qi later. When a new user arrives, we try to allocate her the largest
number that she is willing to buy given the unit price τ .

1 Choose an integer κ randomly from the set N = {0, 1, 2, . . . } with probability
Pr[κ = i] = qi;

2 Set τ = 2κ;
3 x := m; // x is the number of the remaining available items

4 while a new user uj arrives do
5 Let y be the largest number that the user is willing to buy given the unit

price τ , i.e., the largest y with ϕj(y) ≥ τ ;
6 Set unit price to be pj = τ ;
7 Assign mj = min{y, x} items to the user;
8 x := x−mj ;

9 end
Algorithm 1. Rp-indiv

Note that in the algorithm, all the variables x, y, mj will be integers. We now
prove some useful properties on Rp-indiv before analyzing its competitive ratio.
Let ALG be the random variable which denotes the the total revenue returned
by Rp-indiv. For any i ≥ 0, let ALG≥2i be the revenue returned by Rp-indiv
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if the unit price τ is 2i, or equivalently, when κ = i. We are interested in the
expected value of ALG, which is defined to be

E(ALG) =
∑

0≤i≤∞ ALG≥2i Pr(κ = i) =
∑

0≤i≤∞ALG≥2i qi. (1)

Assume that each bidder j is assigned m′j items at unit price p′j in the optimal
offline algorithm. Let O be the set of users assigned m′j > 0 items in the optimal

offline algorithm. Define O[2i,2i+1) =
{
j ∈ O | p′j ∈ [2i, 2i+1)

}
to be the users in

O whose unit prices are in the interval [2i, 2i+1). Use OPT[2i,2i+1) to denote the
revenue from users in O[2i,2i+1) in optimal offline algorithm.

Lemma 1. For any i ≥ 0, ALG≥2i ≥ 1
2OPT[2i,2i+1).

Proof. In Rp-indiv, the unit price for all users is τ = 2i. Assume each user j
is willing to buy at most yj items at unit price 2i. When new user j arrives,
Rp-indiv will try to assign yj items to j until all the m items are sold out. So:

ALG≥2i = min{
∑

j yj ,m} 2i ≥ min{
∑

j∈O[2i,2i+1)
yj ,m} 2i.

For user j ∈ O[2i,2i+1), as ϕj(·) is non-increasing, we have m′j ≤ yj . Thus:

ALG≥2i ≥ min{
∑

j∈O[2i,2i+1)
m′j ,m} 2i =

∑
j∈O[2i,2i+1)

m′j 2
i

≥ 1
2

∑
j∈O[2i,2i+1)

m′j p
′
j =

1
2OPT[2i,2i+1).

We are now ready to describe how to choose the random unit price τ to make
Rp-indiv competitive. Consider the case when h is unknown first. Consider any
fixed number ε > 0. Let α =

∑
0≤i≤∞

1
(1+i)1+ε . The following lemma will give the

competitive ratio of Rp-indiv under the probability distribution qi =
1

α(1+i)1+ε .

(Note that
∑

i≥0 qi is just equal to 1.)

Lemma 2. If h is unknown, by setting qi =
1

α(i+1)1+ε , Rp-indiv has competitive

ratio O((log2 h)
1+ε).

Proof. Since h is the highest price, ALG≥2i and OPT[2i,2i+1) are 0 for all i ≥
�log2 h�+ 1. Then by Equation (1) and Lemma 1,

E(ALG) =
∑

0≤i≤
log2 h�ALG≥2i qi ≥
1
2

∑
0≤i≤
log2 h�OPT[2i,2i+1)

1
α(i+1)1+ε ≥ 1

2α(
log2 h�+1)1+εOPT

, the theorem follows.

Consider a more elaborate probability distribution now: qi = 1
α′f(i+1) where

f(x) = x ·
∏log∗

2(x)−1
j=1 log

(j)
2 x and α′ =

∑
0≤i≤∞

1
f(i+1) . Note that the sum∑

0≤i≤∞
1

f(i+1) converges as the integral
∫∞
1

dx
f(x) converges. 2 Then we have the

following theorem:

2 Details can be found in the full version of this paper
(http://www.cs.hku.hk/~xzxiang/papers/OnlinePricing.pdf).

http://www.cs.hku.hk/~xzxiang/papers/OnlinePricing.pdf
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Theorem 2. If h is unknown, by setting qi = 1

α′·(i+1)
∏log∗(i+1)−1

j=1 log(j)(i+1)
,

Rp-indiv has competitive ratio O(
∏log∗(h)−1

j=1 log(j) h).

Proof. Similar to the proof of Lemma 2.

The following theorem shows that if h is known ahead of time, then selecting a
random κ uniformly will make Rp-indiv more competitive.

Theorem 3. If h is known ahead of time, let g = �log2 h� + 1. By choosing
κ ∈ {0, 1, . . . , g − 1} uniformly, i.e., set qi = 1/g for every 0 ≤ i ≤ g − 1, and
qi = 0 for all other i, Rp-indiv achieves a competitive ratio of 2�log2 h�+ 2.

Proof. Since g = �log2 h� + 1 and the highest price is h, we have that OPT =∑
0≤i≤g−1OPT[2i,2i+1). Then, by Equation (1) and Lemma 1,

E(ALG) =
∑

0≤i≤g−1ALG≥2iqi ≥ 1
2

∑
0≤i≤g−1OPT[2i,2i+1)

1
g = 1

2gOPT

, the theorem follows.

3.2 Lower Bound for Randomized Algorithms

Consider any randomized algorithm A for the online pricing for indivisible goods
problem. Now we derive a lower bound on its competitive ratio, using a technique
inspired by Yao’s lemma [16].

First, we construct the input as follows: Let g = �log2(h + 1)�. There are m
indivisible items on sale and g users, u0, u1, . . . , ug−1. For each 0 ≤ i ≤ g − 1,
the user ui is willing to pay 2i for each item.

Now, we consider the following input distribution I = {I0, I1, . . . , Ig−1} where
Ii is the input in which the adversary stops giving any user after the sequence
of users u0, u1, . . . , ui have arrived. The probability of having Ii is:

– For any 0 ≤ i ≤ g − 2, the input is Ii with probability qi =
1

2i+1 .
– The input is Ig−1 with probability qg−1 = 1

2g−1 .

For any Ii ∈ I, let OPTIi be the revenue returned by the offline optimal
algorithm on input Ii, and ALGIi,δ is the one returned by A on input Ii and
random choice δ.

Theorem 4. Let c be the competitive ratio of any randomized algorithm A, then

c ≥ �log2(h+1)�+1
2 .

Proof. Since OPTIi ≤ c ·Eδ[ALGIi,δ] for any Ii ∈ I,

EIi [OPTIi ] ≤ EIi [c ·Eδ[ALGIi,δ]] ≤ c ·Eδ[EIi [ALGIi,δ]] ≤ c ·maxδ EIi [ALGIi,δ].
(2)

Note that

EIi [OPTIi ] =
∑

0≤i≤g−1 qi·m·2i =
∑

0≤i≤g−2
1

2i+1 ·m·2i+ 1
2g−1 ·m·2g−1 = (g+1)·m

2 .
(3)
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Below, we prove that for any fixed δ, EIi [ALGIi,δ] ≤ m. Then by (2) and (3),
we conclude that c ≥ g+1

2 and the theorem follows.
Consider any deterministic algorithm D. Let DIi be the revenue returned

by D on input Ii. Suppose that Ig−1 is given to D as input. Assume that in
D, mj items are assigned to user uj at unit price no more than 2j for each
0 ≤ j ≤ g − 1. By the deterministic nature of D, we conclude that when the
input is Ii, for 0 ≤ j ≤ i, user uj is still assigned mj items at the same unit price
as before. Thus

EIi [DIi ] ≤
∑

0≤i≤g−1 qi ·
∑

0≤j≤i 2
jmj =

∑
0≤j≤g−1 2

jmj

∑
j≤i≤g−1 qi

=
∑

0≤j≤g−1 2
jmj

1
2j =

∑
0≤j≤g−1mj ≤ m.

Therefore, we conclude, EIi(DIi) ≤ m. Note that when δ is fixed, A is essentially
a deterministic algorithm and therefore EIi [ALGIi,δ] ≤ m, as required.

4 Online Pricing for Divisible Goods

In this section, we consider online pricing for divisible goods. We present a deter-

ministic algorithm Dp-div which is O(
∏log∗(h)−1

j=1 log(j) h)-competitive when h is
unknown. If h is known, the competitive ratio can be decreased to 4�log2 h� + 6.

We also show that no randomized algorithm can do better than
�log2(h+1)�+1

2 -
competitive.The randomizedalgorithmRp-indivcanbeapplied to solve this prob-
lemand achieves the same asymptotic competitive ratios asDp-div. Because of the
page limits, we move results about randomized algorithms into the full version of
this paper (http://www.cs.hku.hk/~xzxiang/papers/OnlinePricing.pdf).

4.1 A Deterministic Algorithm: Dp-div

Recall that users are arriving online. Consider a scenario that the first user u1
is willing to pay a unit price of 1 for any number of items. If the seller assigns
all items to u1, the second user u2 may arrive and is willing to pay a unit price
of h; if the seller assigns no item to u1, maybe no user comes anymore and the
revenue is 0. Both strategies have poor performance. This example shows that
the seller should bound the number of items when selling them at low prices.

Our algorithmDp-div is shown in Algorithm 2. We will specify the parameters
qi’s later. In Dp-div, we set the unit price for each user to 2 to the power of a
non-negative integer, i.e., 2i (i ∈ {0, 1, . . .}). Associate m · qi items to the price
level 2i (note that

∑
i≥0 qi = 1). For items in price level 2i, they must be sold at

unit price no less than 2i. If all items in price level 2i are assigned to some users,
the seller may use the remaining quota from lower price levels to satisfy the user
with unit price 2i. When using the remaining quota from lower price levels, the
order must be strictly decreasing, i.e., first try price level 2i−1, then 2i−2, . . . In
Dp-div, we use xi to denote the current maximum number of items which can be
used by users with unit price 2i. Note that in the initial step, xi =

∑
0≤j≤imqi.

http://www.cs.hku.hk/~xzxiang/papers/OnlinePricing.pdf
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For example, the current maximum numbers of items available for price levels
are: x0 = 1, x1 = 3, x2 = 5 and x3 = 10. Now we sell 3 items to some user at unit
price 22. Note that there are x2−x1 = 2 unused items in level 22 and x1−x0 = 2
unused items in level 21. Then 2 items in level 22 and 1 item in level 21 will be
used. The updated numbers will be: x0 = 1, x1 = 2, x2 = 2 and x3 = 7.

1 Initialize parameters q0, q1, . . . such that
∑

i≥0 qi = 1 and q0 ≥ q1 ≥ . . . ;

2 Associate m · qi items to price layer 2i (i = 0, 1, . . . );
3 Set xi :=

∑
0≤j≤i m · qj (i = 0, 1, . . . );

4 while a new user arrives do
5 For each j ≥ 0, let yj be the largest number that the user is willing to buy

given price 2j and satisfying yj ≤ m;
6 Let t be the minimum value such that xt > 0. If there exists no such t, exit;

7 Let κ = argmaxj≥t yj · 2j ;
8 Set unit price to be pi = 2

κ;
9 Assign mi = min{xκ, yκ} items to the user at unit price pi;

// Modify Available Numbers of Items

10 if mi == xκ then
11 xj := 0 for 0 ≤ j ≤ κ;
12 else
13 Let � be the maximum value such that xκ − x� ≥ yκ;
14 for j = �+ 1 to κ do
15 xj := xκ − yκ;
16 end

17 end
18 for j > κ do
19 xj := xj −mi;
20 end

21 end
Algorithm 2. Dp-div

We begin to analyze the performance of Dp-div. We say the price level 2i is
full if xi = 0, in other words, all items in price levels from 20 to 2i are used up.
After running Dp-div, if all xj are 0, set k = �log2 h�; otherwise, let k be the
highest value such that xk = 0, i.e., all price levels from 20 to 2k are full while
price level 2k+1 is not full. As the highest price is h, k ≤ �log2 h� is always true.

Use ALG to denote the revenue returned by Dp-div, OPT to denote that
returned by the optimal offline algorithm. Partition OPT into two parts: OPT 1
and OPT 2. OPT 1 is the revenue for users with assigned price less than 2k+1 by
the optimal offline algorithm. OPT 2 is the revenue for all the other users.

Lemma 3. OPT 1 ≤ 2
qk
· ALG

Proof. OPT 1 is less than m · 2k+1 as the unit prices of each items are less than
2k+1 and there are at most m items. In Dp-div, the unit price for any item in
price level 2i is at least 2i. Since the price levels from 20 to 2k are full,

ALG ≥
∑k

i=0(m · qi) · 2i ≥ m · qk · 2k = qk
2 · (m · 2k+1) ≥ qk

2 · OPT 1
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Lemma 4. OPT 2 ≤ (2 + 2/qk) ·ALG

Proof. Recall that OPT 2 is the revenue for all the users with assigned price no
less than 2k+1 by the optimal offline algorithm. We consider two cases:

– User ui is assigned with unit price p′ ≥ 2k+1 by the optimal offline algorithm
and with unit price 2p > 2k by Dp-div.
Assume that in the optimal offline algorithm, ui is assigned m′ items. Let
2o ≤ p′ < 2o+1. yo and yp are the largest number of items ui would like to
buy at unit price 2o and 2p. As p′ ≥ 2o and ϕi(·) is non-increasing, m′ ≤ yo.
The revenue in optimal algorithm is: m′ ·p′ ≤ yo ·2o+1 = 2 ·yo ·2o. Recall that
in Line 7 of Dp-div, we choose the price level 2j which maximizes yj · 2j; as
price level 2p is chosen now, we get that yp · 2p ≥ yo · 2o.
Since the price level 2p is not full at the end, ui is assigned yp items at unit
price 2p by Dp-div. His revenue is at least half of that in optimal algorithm
as yp · 2p ≥ yo · 2o ≥ 1

2 ·m′ · p′.
– User ui is assigned with unit price p′ ≥ 2k+1 by the optimal offline algorithm

and with unit price 2p ≤ 2k by Dp-div.
Similarly, we assume that in optimal algorithm, ui is assigned m′ items at
unit price 2o ≤ p′ < 2o+1. yo and yp are the largest number of items ui would
like to buy at unit price 2o and 2p. We still have: yp ·2p ≥ yo ·2o ≥ 1

2 ·m′ ·p′.
If all the yp items are assigned to ui, his revenue is at least half of that in
optimal algorithm. Otherwise, Dp-div assigns xp < yp items to ui (as shown
in Line 9 of Dp-div). After that, the price level 2p is full. The total revenue
of all items in that level 2p is at least:

(m · qp) · 2p ≥ qp · yp · 2p ≥ 1
2 · qp ·m′ · p′ ≥

qk
2 · (m′ · p′) (4)

The last inequality is true as q0 ≥ · · · ≥ qk. For each level 2p ≤ 2k, there is
at most one user with assigned number xp < yp by Dp-div.

We partition OPT 2 into two parts further: OPT 21 and OPT 22. OPT 21 is the
revenue of users who are assigned yp items by Dp-div while OPT 22 is that of
users who are assigned xp < yp items by Dp-div. We have shown that ALG ≥
1
2 · OPT 21. As for OPT 22, there is at most one user with assigned number
xp < yp in each level by Dp-div. By (4), we get: ALG ≥ qk

2 · OPT 22. Thus,
OPT 2 = OPT 21 +OPT 22 ≤ (2 + 2/qk) ·ALG
Lemma 5. OPT ≤ (4/q
log2 h� + 2) · ALG.

Proof. By Lemma 3 and 4, we have OPT = OPT 1+OPT 2 ≤ (4/qk +2) ·ALG.
As k ≤ �log2 h�, the lemma follows.

We are now ready to specify how to choose the parameter qi to make Dp-div
competitive. Consider the case when h is unknown. Consider any fixed number
ε > 0. Let α =

∑
0≤i≤∞

1
(1+i)1+ε . The following theorem gives the competitive

ratio of Dp-div under the setting qi =
1

α(1+i)1+ε . (Note that
∑

i≥0 qi = 1.)

Lemma 6. If h is unknown, by setting qi =
1

α(i+1)1+ε , Dp-div has competitive

ratio O((log2 h)
1+ε).
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Proof. By Lemma 5, OPT/ALG ≤ 4/q
log2 h� + 2 ≤ 4α(�log2 h�+ 1)1+ε + 2.

Consider the setting qi =
1

α′f(i+1) where f(x) = x ·
∏log∗

2(x)−1
j=1 log

(j)
2 x and α′ =∑

0≤i≤∞
1

f(i+1) . Then we have the following theorem:

Theorem 5. If h is unknown, by setting qi = 1

α′(i+1)
∏log∗(i+1)−1

j=1 log(j)(i+1)
,

Rp-indiv has competitive ratio O(
∏log∗(h)−1

j=1 log(j) h).

Proof. Similar to the proof of Lemma 6.

The following theorem considers the case when h is known ahead of time.

Theorem 6. If h is known ahead of time, by setting qi =
1


log2 h�+1 for every

0 ≤ i ≤ �log2 h�, and qi = 0 for all other i, Dp-div achieves a competitive ratio
of 4�log2 h�+ 6.

Proof. By Lemma 5, OPT/ALG ≤ 4/q
log2 h� + 2 ≤ 4�log2 h�+ 6.
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Abstract. In recent years a large number of problems have been consid-
ered in external memory models of computation, where the complexity
measure is the number of blocks of data that are moved between slow
external memory and fast internal memory (also called I/Os). In prac-
tice, however, internal memory time often dominates the total running
time once I/O-efficiency has been obtained. In this paper we study al-
gorithms for fundamental problems that are simultaneously I/O-efficient
and internal memory efficient in the RAM model of computation.

1 Introduction

In the last two decades a large number of problems have been considered in
the external memory model of computation, where the complexity measure is
the number of blocks of elements that are moved between external and internal
memory. Such movements are also called I/Os. The motivation behind the model
is that random access to external memory, such as disks, often is many orders of
magnitude slower than random access to internal memory; on the other hand, if
external memory is accessed sequentially in large enough blocks, then the cost
per element is small. In fact, disk systems are often constructed such that the
time spent on a block access is comparable to the time needed to access each
element in a block in internal memory.

Although the goal of external memory algorithms is to minimize the number
of costly blocked accesses to external memory when processing massive datasets,
it is also clear from the above that if the internal processing time per element in
a block is large, then the practical running time of an I/O-efficient algorithm is
dominated by internal processing time. Often I/O-efficient algorithms are in fact
not only efficient in terms of I/Os, but can also be shown to be internal memory
efficient in the comparison model. Still, in many cases the practical running time
of I/O-efficient algorithms is dominated by the internal computation time. Thus
both from a practical and a theoretical point of view it is interesting to investigate
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how internal-memory efficient algorithms can be obtained while simultaneously
ensuring that they are I/O-efficient. In this paper we consider algorithms that
are both I/O-efficient and efficient in the RAM model in internal memory.

Previous results. We will be working in the standard external memory model
of computation, where M is the number of elements that fit in main memory
and an I/O is the process of moving a block of B consecutive elements between
external and internal memory [1]. We assume thatN ≥ 2M ,M ≥ 2B and B ≥ 2.
Computation can only be performed on elements in main memory, and we will
assume that each element consists of one word. We will sometime assume the
comparison model in internal memory, that is, that the only computation we can
do on elements are comparisons. However, most of the time we will assume the
RAM model in internal memory. In particular, we will assume that we can use
elements for addressing, e.g. trivially implementing permuting in linear time. Our
algorithms will respect the standard so-called indivisibility assumption, which
states that at any given time during an algorithm the original N input elements
are stored somewhere in external or internal memory. Our internal memory time
measure is simply the number of performed operations; note that this includes
the number of elements transferred between internal and external memory.

Aggarwal and Vitter [1] described sorting algorithms using O(NB logM/B
N
B )

I/Os. One of these algorithms, external merge-sort, is based on Θ(M/B)-way
merging. FirstO(N/M) sorted runs are formed by repeatedly sortingM elements
in main memory, and then these runs are merged together Θ(M/B) at a time
to form longer runs. The process continues for O(logM/B

N
M ) phases until one is

left with one sorted list. Since the initial run formation and each phase can be
performed in O(N/B) I/Os, the algorithm uses O(NB logM/B

N
B ) I/Os. Another

algorithm, external distribution-sort, is based on Θ(
√
M/B)-way splitting. The

N input elements are first split into Θ(
√
M/B) sets of roughly equal size, such

that the elements in the first set are all smaller than the elements in the second
set, and so on. Each of the sets are then split recursively. After O(log√

M/B
N
M ) =

O(logM/B
N
M ) split phases each set can be sorted in internal memory. Although

performing the split is somewhat complicated, each phase can still be performed
in O(N/B) I/Os. Thus also this algorithm uses O(NB logM/B

N
B ) I/Os.

Aggarwal and Vitter [1] proved that external merge- and distribution-sort are
I/O-optimal when the comparison model is used in internal memory, and in the
following we will use sortE(N) to denote the number of I/Os per block of ele-
ments of these optimal algorithms, that is, sortE(N) = O(logM/B

N
B ) and exter-

nal comparison model sort takes Θ(NB sortE(N)) I/Os. (As described below, the
I/O-efficient algorithms we design will move O(N · sortE(N)) elements between
internal and external memory, so O(sortE(N)) will also be the per element in-
ternal memory cost of obtaining external efficiency.) When no assumptions other
than the indivisibility assumption are made about internal memory computation
(i.e. covering our definition of the use of the RAM model in internal memory),
Aggarwal and Vitter [1] proved that permuting N elements according to a given
permutation requires Ω(min{N, NB sortE(N)}) I/Os. Thus this is also a lower
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bound for RAM model sorting. For all practical values of N ,M and B the bound
is Ω(NB sortE(N)). Subsequently, a large number of I/O-efficient algorithms have
been developed. Of particular relevance for this paper, several priority queues
have been developed where insert and deletemin operations can be performed
in O( 1

B sortE(N)) I/Os amortized [2,4,8]. The structure by Arge [2] is based on
the so-called buffer-tree technique, which uses O(M/B)-way splitting, whereas
the other structures also use O(M/B)-way merging.

In the RAM model the best known sorting algorithm uses O(N log logN)
time [6]. Similar to the I/O-case, we use sortI(N) = O(log logN) to denote the
per element cost of the best known sorting algorithm. If randomization is allowed
then this can be improved to O(

√
log logn) expected time [7]. A priority queue

can also be implemented so that the cost per operation is O(sortI (N)) [9].

Our results. In Section 2 we first discuss how both external merge-sort and
external distribution-sort can be implemented to use optimal O(N logN) time
if the comparison model is used in internal memory, by using an O(N logN)
sorting algorithm and (in the merge-sort case) an O(logN) priority queue. We
also show how these algorithms can relatively easily be modified to use

O(N · (sortI(N) + sortI(M/B) · sortE(N))) and

O(N · (sortI(N) + sortI(M) · sortE(N)))

time, respectively, if the RAM model is used in internal memory, by using an
O(N · sortI(N)) sorting algorithm and an O(sortI (N)) priority queue.

The question is of course if the above RAM model sorting algorithms can be
improved. In Section 2 we discuss how it seems hard to improve the running time
of the merge-sort algorithm, since it uses a priority queue in the merging step. By
using a linear-time internal-memory splitting algorithm, however, rather than an
O(N · sortI(N)) sorting algorithm, we manage to improve the running time of
external distribution-sort to

O(N · (sortI(N) + sortE(N))).

Our new split-sort algorithm still uses O(NB sortE(N)) I/Os. Note that for small
values ofM/B the N ·sortE(N)-term, that is, the time spent on moving elements
between internal and external memory, dominates the internal time. Given the
conventional wisdom that merging is superior to splitting in external memory, it
is also surprising that a distribution algorithm outperforms a merging algorithm.

In Section 3 we develop an I/O-efficient RAM model priority queue by modi-
fying the buffer-tree based structure of Arge [2]. The main modification consists
of removing the need for sorting of O(M) elements every time a so-called buffer-
emptying process is performed. The structure supports insert and deletemin op-
erations in O( 1

B sortE(N)) I/Os and O(sortI (N) + sortE(N)) time. Thus it can

be used to develop anotherO(NB sortE(N)) I/O andO(N ·(sortI (N)+sortE(N)))
time sorting algorithm.

Finally, in Section 4 we show that when N
B sortE(N) = o(N) (and our sorting

algorithms are I/O-optimal), any I/O-optimal sorting algorithm must transfer
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a number of elements between internal and external memory equal to Θ(B)
times the number of I/Os it performs, that is, it must transfer Ω(N · sortE(N))
elements and thus also use Ω(N · sortE(N)) internal time. In fact, we show
a lower bound on the number of I/Os needed by an algorithm that transfers
b ≤ B elements on the average per I/O, significantly extending the lower bound
of Aggarwal and Vitter [1]. The result implies that (in the practically realistic
case) when our split-sort and priority queue sorting algorithms are I/O-optimal,
they are in fact also CPU optimal in the sense that their running time is the
sum of an unavoidable term and the time used by the best known RAM sorting
algorithm. As mentioned above, the lower bound also means that the time spent
on moving elements between internal and external memory resulting from the
fact that we are considering I/O-efficient algorithms can dominate the internal
computation time, that is, considering I/O-efficient algorithms implies that less
internal-memory efficient algorithms can be obtained than if not considering
I/O-efficiency. Furthermore, we show that when B ≤ M1−ε for some constant
ε > 0 (the tall cache assumption) the same Ω(N ·sortE(N)) number of transfers
are needed for any algorithm using less than εN/4 I/Os (even if it is not I/O-
optimal).

To summarize our contributions, we open up a new area of algorithms that
are both RAM-efficient and I/O-efficient. The area is interesting from both a
theoretical and practical point of view. We illustrate that existing algorithms,
in particular multiway merging based algorithms, are not RAM-efficient, and
develop a new sorting algorithm that is both efficient in terms of I/O and RAM
time, as well as a priority queue that can be used in such an efficient algo-
rithm. We prove a lower bound that shows that our algorithms are both I/O
and internal-memory RAM model optimal. The lower bound significantly ex-
tends the Aggarwal and Vitter lower bound [1], and shows that considering
I/O-efficient algorithms influences how efficient internal-memory algorithms can
be obtained.

2 Sorting

External merge-sort. In external merge-sortΘ(N/M) sorted runs are first formed
by repeatedly loading M elements into main memory, sorting them, and writing
them back to external memory. In the first merge phase these runs are merged
together Θ(M/B) at a time to form longer runs. The merging is continued for
O(logM/B

N
M ) = O(sortE(N)) merge phases until one is left with one sorted

run. It is easy to realize that M/B runs can be merged together in O(N/B)
I/Os: We simply load the first block of each of the runs into main memory,
find and output the B smallest elements, and continue this process while load-
ing a new block from the relevant run every time all elements in main mem-
ory from that particular run have been output. Thus external merge-sort uses
O(NB logM/B

N
M ) = O(NB sortE(N)) I/Os.

In terms of internal computation time, the initial run formation can trivially
be performed inO(N/M ·M logM) = O(N logM) time using any O(N logN) in-
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ternal sorting algorithm. Using an O(log(M/B)) priority queue to hold the mini-
mal element from each of theM/B runs during a merge, each of theO(logM/B

N
M )

merge phases can be performed in O(N log M
B ) time. Thus external merge-sort

can be implemented to use O(N logM + logM/B
N
M · N log M

B ) = O(N logM +

N log N
M ) = O(N logN) time, which is optimal in the comparison model.

When the RAM model is used in internal memory, we can improve the in-
ternal time by using a RAM-efficient O(M · sortI(M)) algorithm in the run
formation phase and by replacing the O(log(M/B)) priority queue with an
O(sortI (M/B)) time priority queue [9]. This leads to an O(N · (sortI(M) +
sortI(M/B) · sortE(N)) algorithm. There seems no way of avoiding the extra
sortI(M/B)-term, since that would require an O(1) priority queue.

External distribution-sort. In external distribution-sort the input set of N el-
ements is first split into

√
M/B sets X0, X1, . . . , X√M/B−1

defined by s =√
M/B − 1 split elements x1 < x2 < . . . < xs, such that all elements in X0 are

smaller than x1, all elements in X√
M/B−1

are larger than or equal to xs, and

such that for 1 ≤ i ≤
√
M/B − 2 all elements in Xi are larger than or equal

to xi and smaller than xi+1. Each of these sets is recursively split until each
set is smaller than M (and larger than M/(M/B) = B) and can be sorted in
internal memory. If the s split elements are chosen such that |Xi| = O(N/s) then
there are O(logs

N
B ) = O(logM/B

N
B ) = O(sortE(N)) split phases. Aggarwal and

Vitter [1] showed how to compute a set of s split elements with this property in
O(N/B) I/Os. Since the actual split of the elements according to the split ele-
ments can also be performed in O(N/B) I/Os (just like merging of M/B sorted
runs), the total number of I/Os needed by distribution-sort is O(NB sortE(N)).

Ignoring the split element computation it is easy to implement external
distribution-sort to use O(N logN) internal time in the comparison model: Dur-
ing a split we simply hold the split elements in main memory and perform a
binary search among them with each input element to determine to which set
Xi the element should go. Thus each of the O(logM/B

N
B ) split phases uses

O(N log
√
M/B) time. Similarly, at the end of the recursion we sort O(N/M)

memory loads using O(N logM) time in total. The split element computation
algorithm of Aggarwal and Vitter [1], or rather its analysis, is somewhat com-
plicated. Still it is easy to realize that it also works in O(N logM) time as
required to obtain an O(N logN) time algorithm in total. The algorithm works
by loading the N elements a memory load at a time, sorting them and pick-
ing every

√
M/B/4’th element in the sorted order. This obviously requires

O(N/M ·M logM) = O(N logM) time and results in a set of 4N/
√
M/B el-

ements. Finally, a linear I/O and time algorithm is used
√
M/B times on this

set of elements to obtain the split elements, thus using O(N) additional time.
If we use a RAM sorting algorithm to sort the memory loads at the end of

the split recursion, the running time of this part of the algorithm is reduced to
O(N · sortI(M)). Similarly, we can use the RAM sorting algorithm in the split
element computation algorithm, resulting in an O(N · sortI(M)) algorithm and
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consequently a sortI(M)-term in the total running time. Finally, in order to
avoid the binary search over

√
M/B split elements in the actual split algorithm,

we can modify it to use sorting instead: To split N elements among s splitting
elements stored in s/B blocks in main memory, we allocate a buffer of one block
in main memory for each of the s + 1 output sets. Thus in total we require
s/B+(s+1)B < M/2 of the main memory for split elements and buffers. Next
we repeatedly bringM/2 elements onto main memory, sort them, and distribute
them to the s + 1 buffers, while outputting the B elements in a buffer when it
runs full. Thus this process requires O(N ·sortI(M)) time and O(N/B) I/Os like
the split element finding algorithm. Overall this leads to an O(N · (sortI(M) +
sortI(M) · sortE(N))) time algorithm.

Split-sort. While it seems hard to improve the RAM running time of the external
merge-sort algorithm, we can actually modify the external distribution-sort algo-
rithm further and obtain an algorithm that in most cases is optimal both in terms
of I/O and time. This split-sort algorithm basically works like the distribution-
sort algorithm with the split algorithm modification described above. However,
we need to modify the algorithm further in order to avoid the sortI(M)-term in
the time bound that appears due to the repeated sorting of O(M) elements in
the split element finding algorithm, as well as in the actual split algorithm.

First of all, instead of sorting each batch ofM/2 elements in the split algorithm
to split them over s =

√
M/B − 1 <

√
M/2 split elements, we use a previous

result that shows that we can actually perform the split in linear time.

Lemma 1 (Han and Thorup [7]). In the RAM model N elements can be
split over N1−ε split elements in linear time and space for any constant ε > 0.

Secondly, in order to avoid the sorting in the split element finding algorithm of
Aggarwal and Vitter [1], we design a new algorithm that finds the split elements
on-line as part of the actual split algorithm, that is, we start the splitting with
no split elements at all and gradually add at most s =

√
M/B−1 split elements

one at a time. An online split strategy was previously used by Frigo et al [5] in a
cache-oblivious algorithm setting. More precisely, our algorithm works as follows.
To split N input elements we, as previously, repeatedly bring M/2 elements
onto main memory, distribute them to buffers using the current split elements
and Lemma 1, while outputting the B elements in a buffer when it runs full.
However, during the process we keep track of how many elements are output to
each subset. If the number of elements in a subset Xi becomes 2N/s we pause
the split algorithm, compute the median of Xi and add it to the set of splitters,
and split Xi at the median element into two sets of size N/s. Then we continue
the splitting algorithm.

It is easy to see that the above splitting process results in at most s+1 subsets
containing between N/s and 2N/s− 1 elements each, since a set is split when it
has 2N/s elements and each new set (defined by a new split element) contains
at least N/s elements. The actual median computation and the split of Xi can
be performed in O(|Xi|) = O(N/s) time and O(|Xi|/B) = O(N/sB) I/Os [1].
Thus if we charge this cost to the at least N/s elements that were inserted in Xi
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since it was created, each element is charged O(1) time and O(1/B) I/Os. Thus
each distribution phase is performed in linear time and O(N/B) I/Os, leading
to an O(N · (sortI (M) + sortE(N))) time algorithm.

Theorem 1. The split-sort algorithm can be used to sort N elements in O(N ·
(sortI(M) + sortE(N))) time and O(NB sortE(N)) I/Os.

Remarks. Since sortI(M) + sortE(N) ≥ sortI(N) our split-sort algorithm uses
Ω(N · sortI(N)) time. In Section 4 we prove that the algorithm in some sense
is optimal both in terms of I/O and time. Furthermore, we believe that the
algorithm is simple enough to be of practical interest.

3 Priority Queue

In this section we discuss how to implement an I/O- and RAM-efficient priority
queue by modifying the I/O-efficient buffer tree priority queue [2].

Structure. Our external priority queues consists of a fanout
√
M/B B-tree [3] T

over O(N/M) leaves containing between M/2 and M elements each. In such a
tree, all leaves are on the same level and each node (except the root) has fan-out
between 1

2

√
M/B and

√
M/B and contains at most

√
M/B splitting elements

defining the element ranges of its children. Thus T has height O(log√
M/B

N
M ) =

O(sortE(N)). To support insertions efficiently in a “lazy” manner, each internal
node is augmented with a buffer of sizeM and an insertion buffer of size at most
B is maintained in internal memory. To support deletemin operations efficiently,
a RAM-efficient priority queue [9] supporting both deletemin and deletemax,1

called the mini-queue, is maintained in main memory containing the up to M/2
smallest elements in the priority queue.

Insertion. To perform an insertion we first check if the element to be inserted
is smaller than the maximal element in the mini-queue, in which case we insert
the new element in the mini-queue and continue the insertion process with the
currently maximal element in the mini-queue. Next we insert the element to
be inserted in the insertion buffer. When we have collected B elements in the
insertion buffer we insert them in the buffer of the root. If this buffer now contains
more than M/2 elements we perform a buffer-emptying process on it, “pushing”
elements in the buffer one level down to buffers on the next level of T : We load
the M/2 oldest elements into main memory along with the less than

√
M/B

splitting elements, distribute the elements among the splitting elements, and
finally output them to the buffers of the relevant children. Since the splitting and
buffer elements fit in memory and the buffer elements are distributed to

√
M/B

buffers one level down, the buffer-emptying process is performed in O(M/B)
I/Os. Since we distribute M/2 elements using

√
M/B splitters the process can

1 A priority queue supporting both deletemin and deletemax can easily be obtained
using two priority queues supporting deletemin and delete as the one by Thorup [9].
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be performed in O(M) time (Lemma 1). After emptying the buffer of the root
some of the nodes on the next level may contain more than M/2 elements. If
they do we perform recursive buffer-emptying processes on these nodes. Note
that this way buffers will never contain more than M elements. When (between
1 and M/2) elements are pushed down to a leaf (when performing a buffer-
emptying process on its parent) resulting in the leaf containing more than M
(and less than 3M/2) elements we split it into two leaves containing between
M/2 and 3M/4 elements each. We can easily do so in O(M/B) I/Os and O(M)
time [1]. As a result of the split the parent node v gains a child, that is, a new leaf
is inserted. If needed, T is then balanced using node splits as a normal B-tree,
that is, if the parent node now has

√
M/B children it is split into two nodes

with 1/2
√
M/B children each, while also distributing the elements in v’s buffer

among the two new nodes. This can easily be accomplished in O(M/B) I/Os and
M time. The rebalancing may propagate up along the path to the root (when
the root splits a new root with two children is constructed).

During buffer-emptying processes we push Θ(M) elements one level down the
tree using O(M/B) I/Os and O(M) time. Thus each element inserted in the
root buffer pays O(1/B) I/Os and O(1) time amortized, or O( 1

B logM/B
N
B ) =

O( 1
B sortE(N)) I/Os andO(logM/B

N
B ) = O(sortE(N)) time amortized on buffer-

emptying processes on a root-leaf path. When a leaf splits we may use O(M/B)
I/Os and O(M) time in each node of a leaf-root path of length O(sortE(N)).
Amortizing among the at leastM/4 elements that were inserted in the leaf since
it was created, each element is charged and additional O( 1

B sortE(N)) I/Os and
O(sortE(N)) time on insertion in the root buffer. Since insertion of an element
in the root buffer is always triggered by an insertion operation, we can charge
the O( 1

B sortE(N)) I/Os and O(sortE(N)) time cost to the insertion operation.

Deletemin. To perform a deletemin operation we first check if the mini-queue
contains any elements. If it does we simply perform a deletemin operation on it
and return the retrieved element usingO(sortI (M)) time and no I/Os. Otherwise
we perform buffer-emptying processes on all nodes on the leftmost path in T
starting at the root and moving towards the leftmost leaf. After this the buffers
on the leftmost path are all empty and the smallest elements in the structure
are stored in the leftmost leaf. We load the between M/2 and M elements in
the leaf into main memory, sort them and remove the smallest M/2 elements
and insert them in the mini-queue in internal memory. If this results in the leaf
having less than M/2 elements we insert the elements in a sibling and delete the
leaf. If the sibling now has more than M elements we split it. As a result of this
the parent node v may lose a child. If needed T is then rebalanced using node
fusions as a normal B-tree, that is, if v now has 1/2

√
M/B children it is fused

with its sibling (possibly followed by a split). As with splits after insertion of a
new leaf, the rebalancing may propagate up along the path to the root (when
the root only has one leaf left it is removed). Note that no buffer merging is
needed since the buffers on the leftmost path are all empty.
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If buffer-emptying processes are needed during a deletemin operation we
spend O(MB logM/B

N
B ) = O(MB sortE(N)) I/Os and O(M logM/B

N
B ) = O(M ·

sortE(N)) time on such processes that are not paid by buffers running full
(containing more than M/2 elements). We also use O(M/B) I/Os and O(M ·
sortI(M)) time to load and sort the leftmost leaf, and another O(M · sortI(M))
time is used to insert the M/2 smallest elements in the mini-queue. Then we
may spend (M/B) I/Os and O(M) time on each of at most O(logM/B

N
B ) nodes

on the leftmost path that need to be fused or split. Altogether the filling up of
the mini-queue requires O(MB sortE(N)) I/Os and O(M ·(sortI(M)+sortE(N)))
time. Since we only fill up the mini-queue when M/2 deletemin operations have
been performed since the last fill up, we can amortize this cost over these M/2
deletemin operations such that each deletemin is charged O( 1

B sortE(N)) I/Os
and O(sortE(N) + sortI(M)) time.

Theorem 2. There exists a priority queue supporting an insert operation in
O( 1

B sortE(N)) I/Os and O(sortE(N)) time amortized and a deletemin opera-
tion in O( 1

B sortE(N)) I/Os and O(sortI (M) + sortE(N)) time amortized.

Remarks. Our priority queue obviously can be used in a simple O(NB sortE(N))
I/O and O(N · (sortI (M) + sortE(N))) time sorting algorithm. Note that it is
essential that a buffer-emptying process does not require sorting of the elements
in the buffer. In normal buffer-trees [2] such a sorting is indeed performed, mainly
to be able to support deletions and (batched) rangesearch operations efficiently.
Using a more elaborate buffer-emptying process we can also support deletions
without the need for sorting of buffer elements.

4 Lower Bound

Assume that N
B sortE(N) = o(N) and for simplicity also that B divides N .

Recall that under the indivisibility assumption we assume the RAM model in
internal memory but require that at any time during an algorithm the original
N elements are stored somewhere in memory; we allow copying of the original
elements. The internal memory contains at most M elements and the external
memory is divided into N blocks of B elements each; we only need to consider
N blocks, since we are considering algorithms doing less than N I/Os. During
an algorithm, we let X denote the set of original elements (including copies) in
internal memory and Yi the set of original elements (including copies) in the i’th
block; an I/O transfers up to B elements between an Yi and X . Note that in
terms of CPU time, an I/O can cost anywhere between 1 and B (transfers).

In the external memory permuting problem, we are given N elements in the
first N/B blocks and want to rearrange them according to a given permutation;
since we can always rearrange the elements within the N/B blocks in O(N/B)
I/Os, a permutation is simply given as an assignment of elements to blocks
(i.e. we ignore the order of the elements within a block). In other words, we
start with a distribution of N elements in X,Y1, Y2, . . . YN such that |Y1| =
|Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅,
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and should produce another given distribution of the same elements such that
|Y1| = |Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅.

To show that any permutation algorithm that performs O(NB sortE(N)) I/Os
has to transfer Ω(N ·sortE(N)) elements between internal and external memory,
we first note that at any given time during a permutation algorithm we can
identify a distribution (or more) of the original N elements (or copies of them)
in X,Y1, Y2, . . . YN . We then first want to bound the number of distributions
that can be created using T I/Os, given that bi, 1 ≤ i ≤ T , is the number of
elements transferred in the i’th I/O; any correct permutation algorithm needs
to be able to create at least N !

B!N/B = Ω((N/B)N ) distributions.
Consider the i’th I/O. There are at most N possible choices for the block Yj

involved in the I/O; the I/O either transfers bi ≤ B elements from X to Yj or

from Yj to X . In the first case there are at most
(
M
bi

)
ways of choosing the bi

elements, and each element is either moved or copied. In the second case there
are at most most

(
B
bi

)
ways of choosing the elements to move or copy. Thus the

I/O can at most increase the number of distributions that can be created by a
factor of

N ·
((

M

bi

)
+

(
B

bi

))
· 2bi < N(2eM/bi)

2bi .

Now the T I/Os can thus at most create
∏T

i=1N(2eM/bi)
2bi distributions. That

this number is bounded by
(
N(2eM/b)2b

)T
, where b is the average of the bi’s,

can be seen by just considering two values b1 and b2 with average b. In this case
we have

N(2eM/b1)
2b1 ·N(2eM/b2)

2b2 ≤ N2(2eM)2(b1+b2)

b2(b1+b2)
≤
(
N(2eM/b)2b

)2
.

Next we consider the number of distributions that can be created using T
I/Os for all possible values of bi, 1 ≤ i ≤ T , with a given average b. This
can trivially be bounded by multiplying the above bound by BT (since this is a
bound on the total number of possible sequences b1, b2, . . . , bT ). Thus the number

of distributions is bounded by BT
(
N(2eM/b)2b

)T
= ((BN)(2eM/b)2b)T . Since

any permutation algorithm needs to be able to create Ω((N/B)N ) distributions,
we get the following lower bound on the number of I/Os T (b) needed by an
algorithm that transfers b ≤ B elements on the average per I/O:

T (b) = Ω

(
N log(N/B)

logN + b log(M/b)

)
.

Now T (B) = Ω(min{N, NB sortE(N)}) corresponds to the lower bound proved

by Aggarwal and Vitter [1]. Thus when N
B sortE(N) = o(N) we get T (B) =

Ω(NB sortE(N)) = Ω
(

N log(N/B)
B log(M/B)

)
. Since 1 ≤ b ≤ B ≤ M/2, we have T (b) =

ω(T (B)) for b = o(B). Thus any algorithm performing optimal O(NB sortE(N))
I/Os must transfer Ω(N · sortE(N)) elements between internal and external
memory.
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Reconsider the above analysis under the tall cache assumption B ≤M1−ε for
some constant ε > 0. In this case, we have that the number of distributions any
permutation algorithm needs to be able to create is Ω((N/B)N ) = Ω(NεN ).
Above we proved that with T I/Os transferring an average number of b keys
an algorithm can create at most (BN(2eM/b)2b)T < N2TM2bT distributions.
Thus we have M2bT ≥ NεN−2T . For T < εN/4, we get M2bT ≥ NεN/2 and
thus that the number of transferred elements bT is Ω(N logM N). Since the tall
cache assumption implies that log(N/B) = Θ(logN) and log(M/B) = Θ(logM)
we have that N logM N = Θ(N logM/B(N/B)) = Θ(N · sortE(N)). Thus any
algorithm using less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements
between internal and external memory.

Theorem 3. When B ≤ 1
2M and N

B sortE(N) = o(N), any I/O-optimal per-
muting algorithm must transfer Ω(N · sortE(N)) elements between internal and
external memory under the indivisibility assumption.

When B ≤ M1−ε for some constant ε > 0 any, permuting algorithm using
less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements between internal
and external memory under the indivisibility assumption.

Remark. The above means that in practice where N
B sortE(N) = o(N) our

O(NB sortE(N)) I/O and O(N · (sortI(N) + sortE(N)) time split-sort and prior-
ity queue sort algorithms are not only I/O-optimal but also CPU optimal in the
sense that their running time is the sum of an unavoidable term and the time
used by the best known RAM sorting algorithm.
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Abstract. Given a partition of an n element set into equivalence classes,
we consider time-space tradeoffs for representing it to support the query
that asks whether two given elements are in the same equivalence class.
This has various applications including for testing whether two vertices
are in the same connected component in an undirected graph or in the
same strongly connected component in a directed graph.

We consider the problem in several models.

– Concerning labeling schemes where we assign labels to elements and
the query is to be answered just by examining the labels of the
queried elements (without any extra space): if each vertex is required
to have a unique label, then we show that a label space of

∑n
i=1�

n
i
�

is necessary and sufficient. In other words, lg n+lg lg n+O(1) bits of
space are necessary and sufficient for representing each of the labels.
This slightly strengthens the known lower bound and is in contrast
to the known necessary and sufficient bound of �lg n	 for the label
length, if each vertex need not get a unique label.

– Concerning succinct data structures for the problem when the n ele-
ments are to be uniquely assigned labels from label set {1, . . . , n}, we
first show that Θ(

√
n) bits are necessary and sufficient to represent

the equivalence class information. This space includes the space for
implicitly encoding the vertex labels. We can support the query in
such a structure in O(lg n) time in the standard word RAM model.

We then develop structures where the queries can be answered

• in O(lg lg n) time using O(
√
n lgn/ lg lgn) bits, and

• in O(1) time using O(
√
n lgn) bits of space.

We also develop a dynamic structure that uses O(
√
n lg n) bits to sup-

port equivalence queries and unions in O(lg n/ lg lgn) worst case time or
O(α(n)) expected amortized time where α(n) is the inverse Ackermann
function.
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1 Introduction and Motivation

We look at the following problem. Given a partition of an n element set into
equivalence classes, preprocess it, assigning a unique label to each element, to
obtain a data structure with minimum space to support the following query:
given two elements, determine whether they are in the same equivalence class.
We call the query an ‘equivalence query’. This is a fundamental data structure
problem that has various applications including for testing whether two vertices
are in the same connected (or strongly connected) component in an undirected
(or directed) graph. We study the problem in the context of succinct data
structures. Designing succinct (or space efficient) data structures has been an
area of interest in theory and practice motivated by the need to store large
amount of data. See [4,11,19,21,8] for succinct representations of dictionaries,
trees, arbitrary graphs and partially ordered sets.

We address the time-space tradeoff for representing an equivalence class and
answering the equivalence query in a couple of models. Katz, Katz, Korman and
Peleg [18] introduced the notion of labeling schemes whereby every node of the
graph is assigned a (not necessarily distinct) label and the required query is to be
answered by just looking at the labels of the query elements. They showed that
Ω(k lg n) 1 is a lower bound of the length of the label to answer ‘k-connectivity
queries’, for k up to polylogarithmic in n. For k = 1 (which is the case for the
problem in this paper), this lower bound is �lg n� and hence the scheme that
simply assigns all elements of an equivalence class a single label that is distinct
from the labels of other equivalence classes, is optimal in this model. However, in
some situations (for example when one wants to support other graph operations
including adjacency relations) we may want to give unique labels to each vertex.
Our first result is that in this case, we need a label space of

∑n
i=1�n/i�, and

we show that this number of labels is also sufficient. We also give an encoding
scheme that uses the optimal lgn+lg lgn+O(1) bits for the labels. The encoding
scheme is similar to the one in [2], but our lower bound is stronger, and more
importantly we establish an exact tight bound for the label space. This result
is discussed in Section 2.

Then, in Section 3, we give succinct data structures for the problem in the
model where the labels can be freely reassigned (but need to be unique and in
the range 1 to n), and the query can be answered by looking at a small space
data structure. We first observe that the information theoretic lower bound
to represent the equivalence class information is Ω(

√
n) bits, and we provide a

scheme using O(
√
n) bits in which the query can be answered in O(lg n) time.

In the rest of the section, we develop a data structure where the query can be
answered in constant time albeit using O(

√
n lgn) bits of space. In Section 4, we

develop methods that also support merge operation on the equivalence classes
using asymptotically the same space, as fast as other known non-space efficient
structures.

1 We use lgn to denote log2 n
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These structures operate in the standard word RAM model with a word size
of w = Ω(lg n) [16] where multiplication and shifts can be performed in constant
time. Furthermore, our succinct structures modify the initial labels of the ele-
ments to an implicit labeling scheme. We discuss applications and limitations
of this approach in Section 5.

2 Labeling Scheme with Unique Labels for Elements

In the problem, which we call the direct equivalence queries problem, each ele-
ment is to be given a unique label, and the equivalence query is to be answered
by computing directly from the two labels. It is known [2] that lg n+Θ(lg lg n)
bits of space are necessary and sufficient to represent the labels. We strengthen
the bound to lgn + lg lgn + Θ(1). The encoding that achieves this bound is
similar to the one in [2], we provide it for completeness, but our lower bound es-
tablishes a tight bound on the label space. We first prove the following theorem.

Theorem 1. Let a partition of an n element set into equivalence classes be
given as input to the direct equivalence queries problem. Then a label space of∑n

i=1�n/i� is necessary and sufficient.

Proof. Our key observation for the sufficiency is that the i-th largest equivalence
class contains at most �n/i� elements. For the upper bound, we simply assign

labels from the set of integers in the range [
∑i−1

j=1(�n/j�) + 1,
∑i

j=1�n/j�] for
the i-th largest equivalence class, for i > 1, and integers in the range [1, n] for
the largest equivalence class.

To show that this many labels are necessary, consider a labeling scheme for
a direct equivalence queries problem. It reserves a set of labels for each equiv-
alence class to ensure that the query is answered correctly by looking only at
the labels (without knowing the equivalence classes themselves). Consider the
labels assigned by such a scheme for any of the following collection of n equiva-
lence relations (partitions of an n element set). The collection Ci contains i sets
(equivalence classes) each containing �n/i� or �n/i� elements. In particular if s
and t are the sizes of two of these classes, then |s− t| ≤ 1.

Note that the labels assigned to the relation C1 can be assigned to at most one
class of each of Ci, i = 2 to n. This happens because every pair of elements are
in the same equivalence class in C1, and hence we will have a conflict (to answer
the equivalence query looking only at the labels) if these labels are assigned to
more than one class of Ci, i = 2 to n. Now remove C1, and all classes from
Ci, i = 2 to n that have been assigned the same labels as of C1. Now the proof
follows by repeating the above argument with the labels assigned to the elements
of (the remaining classes of) C2, C3 up to Cn in that order. 	


To answer the equivalence query in the above labeling scheme, given an integer
label x, we need to find the largest i such that

∑i−1
j=1�n/j� < x. In order to

support this query in constant time, we modify the labeling scheme slightly
(and use space slightly suboptimal, up to lower order terms). We first order the
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equivalence classes in non-increasing order of their sizes. We give them labels, say
1 to c where c is the number of classes. Within each class, we give an arbitrary
ordering of the elements. Then the label for an element x is given by a pair (i, j)
where i is the label of the class to which the element belongs, and j is its ‘rank’
in the class numbered i. As the i-th largest equivalence class contains at most
�n/i� elements, the label j can be represented using �lg�n/i�� bits of space. The
label i is represented using �lg i� bits. As the size of the representation of i is
not fixed, we need to store information to find the ‘break point’ between i and
j. Hence we ‘prefix’ the label (i, j) by storing the length of i in binary, using
�lg�lg n�� bits. The equivalence query can easily be answered by looking at the
first component (i) of the label in constant time. The number of bits used for a
label is �lg�lgn��+ �lg i�+ �lg�n/i�� which is at most lg n+ lg lgn+ 2.

From Theorem 1, �lg
∑n

i=1�n/i�� = �lg(n lnn−O(n))� bits are necessary for
the label length. Thus we have

Theorem 2. Given a partition of an n element set into equivalence classes, we
can assign to each of the elements a label of lgn+ lg lg n+ 2 bits such that the
equivalence query can be answered in constant time by looking only at the labels.
In this model, lg n+ lg lgn−Θ(1) bits are necessary to represent the labels.

3 Succinct Data Structures

Now we move on to designing data structures, where the labels of the n elements
can be freely reassigned, but they need to be unique and in the range 1 to n.
The queries can be answered by looking at an augmented data structure. We are
interested in time and space efficient data structures. We first assign an implicit
ordering of the elements. Each element gets a label according to this ordering,
and the queries are answered by looking at these labels and an augmented data
structure.

First, we address the question of how much space is required to capture the
given equivalence class information. The information theory lower bound for
the representation is given by the number of partitions of an n element set into
equivalence classes, which is the same as the number of partions of n, which by

the Hardy-Ramanujan formula [17] is asymptotically 1
4n
√
3
e(π
√

2n
3 ). Hence the

information theoretic lower bound for space to represent the equivalence class
information is given by π

√
2n/3 lg e − lgn+O(1) which is Θ(

√
n).

Now, to design space efficient data structures, let c be the number of classes,
si, i = 1 to k be the distinct sizes of the classes, and let ni be the number of
classes of size si in the given equivalence class. Key to our structure is ordering
the classes in non-decreasing order of γi = sini. I.e. sini ≤ si+1ni+1, for i = 1
to k − 1. We first make the simple observations that

k∑
i=1

sini = n,
k∑

i=1

ni = c and sini ≥ i for i = 1 to k (1)

The last inequality follows as the i-th smallest si value is at least i. It follows
from these observations that that k ≤ c and k ≤

√
2n.
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3.1 Structure Using O(
√
n) Bits

Here, we design a structure that uses O(
√
n) bits of space to represent the

equivalence class information, and can support equivalence query in O(lg n) time.
Our primary structure consists of two sequences:

– the sequence s that consists of δi = sini − si−1ni−1, i = 1 to k, where s0n0
is defined to be 0 and

– the sequence m that consists of ni, i = 1 to k.

Each element in these sequences is represented in binary (using respectively
1 + �lg(δi + 1)� and 1 + �lg(ni + 1)� bits). As the lengths of each element in
the sequence vary, we store two other sequences that ‘shadow’ the two primary
sequences. The first one ψ has a 1 at the starting point of each element in the
sequence s and 0 at other positions. Similarly, the second one ρ stores a 1 at the
starting point of elements of the sequence m, and 0 at other positions. We also
store a select structure (see for example [21,14]) on these two sequences ψ and
ρ to identify the 1s quickly. The space occupied by each of these two sequences
is clearly the same as that occupied by the two primary sequences, plus lower
order terms.

The first sequence gives an implicit ordering of the elements, i.e. the elements
in the first n1 classes are assigned label values 1 to s1n1, the elements of the
next n2 classes are assigned the next s2n2 label values and so on.

We first claim that the space occupied by these four sequences is O(
√
n) bits.

We first show the following Lemma. If any δj = 0, then we account for 1 bit for
its representation and as k is O(

√
n), this doesn’t affect the claimed bound; so

assume that δj ≥ 1 for all j in the sum below.

Lemma 1.
∑k

j=1 lg δj is O(
√
n) where each δj (as defined above) is at least 1.

Proof. We use the following claim to achieve the desired bound.

Claim: For an integer 1 ≤ i ≤ n, the number of j’s such that δj ≥ i is at most√
2n/i.

Proof of claim: Let δjt ≥ i, for some t = 1 to b. Then sjtnjt ≥ ti, and hence

b∑
t=1

ti ≤
b∑

t=1

sjtnjt ≤ n

from which it follows that b(b + 1)/2 ≤ n/i or b ≤
√
2n/i which proves the

claim. 	

From the claim, it follows that (by breaking the δ values into ranges of powers
of two – i.e. those between 2p−1 and 2p for various values of p)

k∑
j=1

lg δj ≤
�lg n�∑
p=1

(
√

2n/2(p−1))p = 2
√
n

�lg n�∑
p=1

p

2p/2

which is O(
√
n). 	
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A similar proof shows that
∑k

j=1 lgnj is O(
√
n). This is because if nj = i

for some j, then sjnj ≥ ji, and a claim as above follows for the number of j’s
with nj = i as well. Thus we have a structure to represent the equivalence class
information that uses O(

√
n) bits.

Implementing the Equivalence Query. Now, given an element labeled x,
the equivalence class it belongs to is determined by first finding the predecessor
p(x) of x, which is max{j|

∑j
i=1 sini < x}. Given two elements x and y, if p(x)

and p(y) are not the same, then x and y are not in the same equivalence class.
If p(x) and p(y) are the same, then we know that x and y are in classes

that have the same sizes, but it is still not clear whether they are in the
same equivalence class. They are in the same equivalence class if and only

if �(x−
∑p(x)

i=1 sini)/np(x)+1� and �(y −
∑p(y)

i=1 sini)/np(y)+1� are the same. To
compute the ni value for some i, we simply look for the i-th and (i+ 1)-st 1 in
the sequence ρ (using the select data structure on ρ) which gives the starting
position and the length of the representation of ni in the sequence m.

Now in order to support the predecessor queries in a reasonable amount of
time, we store more: we simply store the

∑i
j=1 sjnj for every value of i which

is a multiple of lg n. This takes O(
√
n) bits.

Now p(x) can be obtained by doing a binary search for x on these partial sum

values
∑i

j=1 sjnj for every value of i which is a multiple of lgn. Once an O(lg n)
range of the predecessor is found, the actual predecessor value is found by doing
a linear search on the delta values in this range. As before, the lengths and the
starting positions of the δ values can be found using the select substructure on
the sequence ψ. Thus we have

Theorem 3. Given a partition of an n element set into equivalence classes, it
can be stored using O(

√
n) bits such that the equivalence query can be answered

in O(lg n) time. Furthermore, Ω(
√
n) is the minimum number of bits necessary

to store the equivalence class information on an n element set.

We remark that due to Lemma 1, any gap-style encoding [7,15,9] of the δi
and the ni values can reduce the space by a constant factor without increasing
the time.

3.2 Faster, Space-Efficient Methods

Here we develop a data structure where the equivalence query can be answered
in constant time albeit using O(

√
n lgn) bits of space.

Our initial representation consists of storing

– the sequence
∑i

j=1 sjnj , i = 1 to k, and
– the sequence ni, i = 1 to k,

where each number in each sequence is represented in binary using �lg n� bits.
As before, the first sequence gives an implicit ordering of the elements. That
is, the s1n1 elements of the first n1 classes form the first s1n1 elements and
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so on. The total space used by the four sequences is at most 2
√
2n�lgn� bits.

As discussed earlier, to answer the equivalence queries, we essentially have to
support predecessor queries in the sequence

∑i
j=1 sjnj , i = 1 to k.

A simple binary search can support the predecessor query in O(lg k) time. A
y-fast trie [23] can support the predecessor query in O(lg lgn) time. As in the
scheme of the previous subsection, we could store the complete partial sums and
a y-fast trie structure storing every lg lgn-th element in the partial sum sequence
and store the δ values for the remaining elements of the sequence. This will help
us find a range of lg lg n for the predecessor in O(lg lgn) time. Within the range,
we can do a sequential search for the predecessor using the δ values. As the
delta values require only O(

√
n) bits of space, we have

Theorem 4. Given a partition of an n element set into equivalence classes, it
can be stored using O(

√
n lgn/ lg lg n) bits such that the equivalence query can

be answered in O(lg lg n) time.

A fully indexable dictionary [21] with the improved redundancy of [14] can

support the predecessor query in constant time albeit using O(
√
n
1+ε

) bits of
space. However, we argue below that the predecessor can be supported in con-
stant time using an additional O(

√
n lgn) bits using the fact that our sequence

satisfies the last inequality in equation (1) and hence is special. In addition
to the two sequences above, we store an array A of �

√
2n� pointers, where

A[i] = max{j|
∑j

t=1 stnt ≤ i(i+ 1)/2}, for i = 1 to �
√
2n�. Now, we claim

Lemma 2. The predecessor p(x) of an integer x (1 ≤ x ≤ n) in the sequence∑i
t=1 stnt, i = 1 to k is A[�

√
2x� − 1] or A[�

√
2x� − 1]− 1 or A[�

√
2x� − 1] + 1.

Proof. Let i = �
√
2x� − 1, then

x− (
√
x)/2 ≤ i(i+ 1)/2 < x+ (

√
x)/2,

and
x+ (

√
x)/2 ≤ (i+ 1)(i+ 2)/2 < x+ 3(

√
x)/2.

For j = A[i] + 1,
∑j

t=1 stnt > i(i+1)/2 (by definition of A[i]). Hence sjnj ≥
(i + 1) and hence sj+1nj+1 ≥ (i + 2) hence

∑j+1
t=1 stnt > i(i + 1)/2 + i + 2 > x

and hence p(x) ≤ j = A[i] + 1.

Let l = p(x). Then
∑l+1

t=1 stnt > x and hence sl+1nl+1 ≥ �
√
2x� − 1. Hence∑l+2

t=1 stnt ≥ x + �(
√
2x)� > i(i + 1)/2. Hence A[i] ≤ l + 1 = p(x) + 1 which

implies that A[i] + 1 ≥ p(x) ≥ A[i]− 1. 	


The actual value of p(x) can be computed by looking at the sum up to each
of these three values.

Computing Square Roots. Note that computing �
√
x� is not a constant time

operation in the standard word RAM model. The standard Newton’s iterative
method uses Θ(lg lgn) operations. We describe a space efficient method that
avoids explicit computation of square roots (for the range we are interested in)
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by using a look up to precomputed tables. See [20] for a similar look up table
method to compute the integer closer to the square roots of integers.

Our method uses two tables, one when the number of digits of x (up to its
most significant 1) is odd, denoted by O, and one when the number of digits
is even, denoted by E. It turns out that O[i] and E[i] are quite close in value,
where E[i] is roughly a

√
2 factor larger than O[i].

For i = 1 to �
√
2n�, we precompute and store in E[i], the value of

�
√
i2(�lg(i+1)�)/2� and in O[i], the value of �

√
i2(�lg(i+1)�)/2−1�. This takes

O(
√
n lgn) bits. Now, given an integer i, 1 ≤ i ≤ 2n, we compute �

√
i� as

follows. Let i = ai2
�(lg i)/2� + bi where bi < 2�(lg i)/2�. Then,

Lemma 3. �
√
i� = E[ai] or E[ai+1] if the number of digits in i (up to its most

significant 1) is even, and is O[ai] or O[ai + 1] otherwise.

Proof. As i = ai2
�(lg i)/2)� + bi, ai2

�(lg i)/2� ≤ i < (ai + 1)2�(lg i)/2�, and hence

�
√
ai2�(lg i)/2�� ≤ �

√
i� ≤ �

√
(ai + 1)2�(lg i)/2�� which is what we wanted to

show. 	

The actual value of �

√
i� can be computed by squaring the values in the table

and comparing them with i. Note that for i ≤ 2n, ai ≤ �
√
2n�, and it can be

obtained as follows: find the most significant bit, say bit r, mask the lower r bits
to keep only the higher half of them, i.e. � r2� of the bits (without the leading
zeroes), and finally shifting them to the right by � r2�. The most significant bit
can be found in constant time with the standard RAM operations, see [13]. Thus
we have

Lemma 4. For 1 ≤ i ≤ n, �
√
i� can be computed in constant time (for each i)

using a precomputed table of O(
√
n lg n) bits.

Indeed using this approach to provide a seed for Newton iteration, one can
compute �

√
i�, for i = 1 to n in time O(lg(1/ε)) using a table of O((nε lgn)/ε)

bits, for any positive constant ε < 1. To summarize, we have

Theorem 5. Given a partition of an n element set into equivalence classes, the
partition can be represented using O(

√
n lgn) bits such that the equivalence query

can be answered in constant time.

4 Supporting Unions

Finally we discuss space efficient structures that can support merging of two
classes in an equivalence relation and still support equivalence queries. The
merge operation takes two classes of the equivalence relation and merges them
to obtain a new class destroying both the old ones. We show

Theorem 6. Given a partition of an n element set into equivalence classes,
it can be represented using O(

√
n lg n) bits such that the equivalence query and

merge queries can be supported in O(lg n/ lg lgn) worst case time. In fact, using
the same space, equivalence query can be supported in O(α(n)) amortized time
and merge queries can be supported in O(α(n)) expected amortized time, where
α(n) is the inverse Ackermann function.
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Proof. (sketch) The primary structure we maintain is the one as in the proof
of Theorem 5. To support merge operations, we maintain an auxiliary structure
that captures the merges that have happened until O(

√
n) sets have merged.

During this time, the original labeling of the elements is maintained. After
O(
√
n) merges have happened, the entire data structure is reconstructed with

relabeling of the elements using standard tricks and analysis.
The auxiliary structure needs to support insert, membership and union-find

queries. By using a fusion tree [13,3] for the insert-membership structure and the
union-find data structure of [1,6,22] we achieve the worst case bounds. By using
a dynamic perfect hashing scheme [10] for insert-membership, the amortized
bounds of the theorem follow.

Due to space limitations, we omit the details of the proof. 	


We remark that as we change the labels of the original elements in our structure,
the time and space bounds are better than related space efficient structures
developed before (for example [5]). We discuss this issue in Conclusions.

5 Conclusions

We have discussed time-space tradeoffs for the fundamential problem of sup-
porting equivalence queries. Our first result is an establishment of a tight bound
for the label space required for the elements to answer equivalence query by just
looking at the labels.

Then we showed that one can represent an equivalence relation on n elements
using O(

√
n) bits of space, which is a constant factor of the information theoret-

ically optimum number of bits required. Our scheme allows an implicit labeling
of elements and supports equivalence queries in O(lg n) time. Improving this to
constant time is an interesting open problem, though we could achieve constant
time using O(

√
n logn) bits.

We also developed a space efficient dynamic structure where the merge opera-
tion can also be supported as fast as the standard (non-space-efficient) union-find
structures using O(

√
n lgn) bits. Our main contribution is on the time-space

tradeoffs for representing equivalence queries using clever use of several known
structures.

Not withstanding our claim in Theorem 6 that we can support unions and
finds on an n element set using O(

√
n lgn) bits and at the same asymptotic time

as the best known (not so space efficient) structures, we don’t know of a direct
way to apply them for supporting static or (incremental) dynamic connectivity
queries on graphs. This is because the original labels of the elements are modified
to obtain our space efficient structure. Hence to support the user queries, we
need to store the permutation that maps the user labels to our labels or update
the user of the labelling (in the latter case, the user herself can answer the
connectivity query). This is particularly important in our dynamic structure
that supports union, as every so often, the labels are recomputed.

An example setting where our structures can be applicable is as follows. Con-
sider a distributed environment where multiple processors are performing some
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intensive computation. These processors are space constrained, and each proces-
sor receives a request with a label from two different processors to perform some
computation. Assume that the application requires the processor receiving this
request to first determine whether the two labels are in the same equivalence
class to perform the computation. So it does that using our small space union-
find structure. In the case of dynamic (merge) queries, all processors must be
aware of all the merges happening at any of the processors to perform their own
local computation in case the labels get changed. Alternatively we can assume
synchrony and communicate the relabelling after every change.

One useful query in this scenario that can be supported easily by our structure
is the following. Each of the processors may have a small subset of labels about
which they are particularly interested in. When a request for an equivalence
query comes in, the processor may also want to know whether there is any
element in its interest set that is in the same equivalence class as the query
element. This can be supported in constant time by maintaining a succinct
membership structure (as in [8]) for the classes in which the elements in its
interest set belongs to, in addition to our succinct union-find structure.

Finally, given that union-find is a fundamental structure for representing
equivalence classes, we feel that our structure and approach will find appli-
cations in other scenarios we haven’t imagined.

Acknowledgement. The second author gratefully acknowledges the discus-
sions he had with Tetsuo Asano which initiated work on the problem.
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Abstract. A Bloom filter is a method for reducing the space (memory)
required for representing a set by allowing a small error probability. In
this paper we consider a Sliding Bloom Filter: a data structure that, given
a stream of elements, supports membership queries of the set of the last
n elements (a sliding window), while allowing a small error probability
and a slackness parameter. The problem of sliding Bloom filters has
appeared in the literature in several communities, but this work is the
first theoretical investigation of it.
We formally define the data structure and its relevant parameters and

analyze the time and memory requirements needed to achieve them. We
give a low space construction that runs in O(1) time per update with high
probability (that is, for all sequences with high probability all operations
take constant time) and provide an almost matching lower bound on
the space that shows that our construction has the best possible space
consumption up to an additive lower order term.

1 Introduction

Given a stream of elements, we consider the task of determining whether an
element has appeared in the last n elements of the stream. To accomplish this
task, one must maintain a representation of the last n elements at each step.
One issue, is that the memory required to represent them might be too large
and hence an approximation is used. We formally define this approximation and
completely characterize the space and time complexity needed for the task.

In 1970 Bloom [Blo70] suggested an efficient data structure, known as the
‘Bloom filter ’, for reducing the space required for representing a set S by allowing
a small error probability on membership queries. The problem is also known as
the approximate membership problem (however, we refer to any solution simply
as a ‘Bloom filter’). A solution is allowed an error probability of ε for elements
not in S (false positives), but no errors for members of S. In this paper, we
consider the task of efficiently maintaining a Bloom filter of the last n elements
(called ‘the sliding window’) of a stream of elements.

We define an (n,m, ε)-Sliding Bloom Filter as the task of maintaining a Bloom
filter over the last n elements. The answer on these elements must always be ‘Yes’,
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the m elements that appear prior to them have no restrictions (m is a slackness
parameter) and for any other element the answers must be ‘Yes’ with probability
at most ε. In case m is infinite, all elements prior to the current window have
no restrictions, and we write for short (n, ε)-Sliding Bloom Filter.

The problem was studied in several communities and various solutions were
suggested. In this work, we focus on a theoretical analysis of the problem and
provide a rigorous analysis of the space and time needed for solving the task.
We construct a Sliding Bloom Filter with O(1) query and update time, where
the running time is worst case with high probability (see the theorems in Sec-
tion 1.2 for precise definitions) and has near optimal space consumption. We
prove a matching space lower bound that is tight with our construction up
to an additive lower order term. Roughly speaking, our main result is figur-
ing out the first two terms of the space required by a Sliding Bloom Filter:
n log 1

ε + n ·max
{
log log 1

ε , log
n
m

}
A simple solution to the task is to partition the window into blocks of size

m and for each block maintain its own Bloom filter. This results in maintaining⌈
n
m + 1

⌉
Bloom filters. To determine if an element appeared or not we query

all the Bloom filters and answer ‘Yes’ if any of them answered positively. There
are immediate drawbacks of this solution, even assuming the Bloom filters are
optimal in space and time:

– Slow query time:
⌈
n
m + 1

⌉
Bloom filter lookups.

– High error probability: since an error can occur on each block, to achieve an
effective error probability of ε we need to set each Bloom filter to have error
ε′ = εm

n+m , which means that the total space used has to grow (relative to a

simple Bloom filter) by roughly n log n+m
m bits (see Section 1.3).

– Sub-optimal space consumption for large m: the first two drawbacks are
acute for small m, but when m is large, say n = m, then each block is
large which results in a large portion of the memory being ‘wasted’ on old
elements.

We overcome all of the above drawbacks: the query time is always constant and
for any m the space consumption is nearly optimal.

Sliding BloomFilters can be used in a wide range of applications and we discuss
two settings where they are applicable and have been suggested. In one setting,
Bloom filters are used to quickly determine whether an element is in a local web
cache [FCAB00], instead of querying the cache which may be slow. Since the cache
has limited size, it usually stores the least recently used items (LRU policy). A
Sliding Bloom Filter is used to represent the last n elements used and thus, main-
tain a representation of the cache’s contents at any point in time.

Another setting consists of the task of identifying duplicates in streams. In
many cases, we consider the stream to be unbounded, which makes it impractical
to store the entire data set and answer queries precisely and quickly. Instead, it
may suffice to find duplicates over a sliding window while allowing some errors.
In this case, a Sliding Bloom Filter (with m set to infinity) suffices and in fact,
we completely characterize the space complexity needed for this problem.
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1.1 Problem Definition

Given a stream of elements σ = x1, x2, ... from a finite universe U of size u,
parameters n, m and ε, such that n < εu, we want to approximately represent a
sliding window of the n most recent elements of the stream. An algorithm A is
given the elements of the stream one by one, and does not have access to previous
elements that were not stored explicitly. Let σt = x1, . . . , xt be the first t elements
of the stream σ and let σt(k) = xmax (0,t−k+1), . . . , xt be the last k elements of
the stream σt. At any step t the current window is σt(n) and the m elements
before them are σt−n(m). If m =∞ then define σt−n(m) = x1, . . . , xt−n. Denote
A(σt, x) ∈ {‘Yes’, ‘No’} the result of the algorithm on input x given the stream
σt. We call A an (n,m, ε)-Sliding Bloom Filter if for any t ≥ 1 the following two
conditions hold:

1. For any x ∈ σt(n): Pr[A(x) = ‘Yes’] = 1
2. For any x /∈ σt(n+m) : Pr[A(x) = ‘Yes’] ≤ ε

where the probability is taken over the internal randomness of the algorithm A.
Notice that for an element x ∈ σt−n(m) the algorithm may answer arbitrarily
(no restrictions). See Figure 1.

          

 

 

 

Fig. 1. The sliding window of the last n and n+m elements

An algorithm A for solving the problem is measured by its memory consump-
tion, the time it takes to process each element and answer a query. We denote by
|A| the maximum number of bits used by A at any step. The model we consider
is the unit cost RAM model in which the elements are taken from a universe
of size u, and each element can be stored in a single word of length w = log u
bits. Any operation in the standard instruction set can be executed in constant
time on w-bit operands. This includes addition, subtraction, bitwise Boolean
operations, left and right bit shifts by an arbitrarily number of positions, and
multiplication. The unit cost RAM model is considered the standard model for
the analysis of the efficiency of data structures.

According to the above definition we are not assured that there are no ‘bad’
points in time where the data structure accepts many false positives. We call the
desired property that throughout the lifetime of the data structure at all points
in the time the number of elements in the universe on which a false positive is
returned to be ε · u the absolute false positive assumption. The absolute false
positive assumption is a very desirable property from a Sliding Bloom Filter and
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reasonable constructions enjoy it. We use it in the proof in Section 3, and in
the full version [NY13] we show how to get the same lower bound without it.
An example of a Sliding Bloom Filter for which the assumption does not hold
can be obtained by taking any (n, ε)-Sliding Bloom Filter and modifying it such
that it chooses a random index k ∈ [1, n] and at step k of the stream it always
answers ‘Yes’. This results in an (n, ε + 1

n )-Sliding Bloom Filter in which there
will always be some step at which the false positive rate is high (it is 1).

1.2 Our Contributions

We provide tight upper and lower bounds to the (n,m, ε)-problem. In fact, we
achieve space optimality up to the second term. Our first contribution is a con-
struction of an efficient Sliding Bloom Filter: it has query time O(1) worst case
and update time O(1) worst case with high probability, for the entire sequence.
For ε = o(1) the space consumption is near optimal: the two leading terms are
optimal in constants.

Theorem 1. For any m > 0, and sufficiently large n there exists an (n,m, ε)-
Sliding Bloom Filter having the following space and time complexity on a unit
cost RAM:

Time: Query time is O(1) worst case. For any polynomial p(n) and sequence of
at most p(n) operations, with probability at least 1−1/p(n), over the internal
randomness of the data structure, all insertions are performed in time O(1)
worst case.

Space: the space consumption is: (1+o(1))
(
n log 1

ε + n ·max
{
log n

m , log log
1
ε

})
.

In particular, for constant error ε we get that the space consumption is:

n log
(
n
m

)
+O(n). Otherwise, for sub-constant ε that satisfies ε = 2−O(log1/3 n)

we get that:
1. Ifm ≥ εn then the space consumption is:n log 1

ε+n·max
{
log n

m , log log
1
ε

}
+

O(n)
2. If m < εn then the space consumption is: n log 1

ε + (1 + o(1))n log n
m

The challenge we face is achieving constant time operations while space con-
sumption remains very tight. In designing our algorithm we assemble ideas from
several previous works along with new ones. The basic skeleton of the algorithm
shares ideas with the work of Zhang and Guan [ZG08], however, their algorithm
is based on the traditional Bloom filter and has immediate drawbacks: running
time is super-constant and the space is far from optimal. To get an error proba-
bility of ε they useM = O(n logn log 1

ε ) bits, and moreover this is assuming the
availability of truly random hash functions.

Thorup [Tho11] considered a similar data structure of hash tables with time-
outs based on linear probing. He did not allow any error probability nor any
slackness (i.e. ε = 0 and m = 0 in our terminology). The query time, as is
general for linear probing, is only constant in expectation, and the space is only
optimal within a constant factor.
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Pagh, Pagh and Rao [PPR05] showed that the traditional construction of a
Bloom filter can be replaced with a construction that is based on dictionaries.
The dictionary based Bloom filter has the advantage that its running time and
space consumption are completely determined by the dictionary itself, and it
does not assume availability of truly random functions. Given the developments
in succinct dictionaries, using this alternative has become more appealing.

Our algorithm is conceptually similar to the work of Zhang and Guan. How-
ever, we replace the traditional implementation of the Bloom filter with a dic-
tionary based one. As the underlying dictionary, we use the state of the art
dictionary given by Arbitman, Naor and Segev [ANS10], known as Backyard
Cuckoo Hashing. Then we apply a similar method of lazy deletions as used by
Thorup on the Backyard Cuckoo Hashing dictionary. Moreover, we introduce a
slackness parameter m and instead of storing the exact index of each element
we show a trade-off parameter c between the accuracy of the index stored and
the number of elements we store in the dictionary. Optimizing c along with the
combined methods described gives us the desired result: constant running time,
space consumption of nearly n log 1

ε +n ·max
{
log log 1

ε , log
n
m

}
which is optimal

in both leading constants and no assumption on the availability of truly random
functions. We inherit the implementation complexity of the dictionary, and given
an implementation of one, it is relatively simple to complete the algorithm’s im-
plementation.

Our second contribution, and technically the more involved one, is a matching
space lower bound. We prove that if ε = o(1) then any Sliding Bloom Filter
must use space that is within an additive low order term of the space of our
construction, regardless of its running time. For simplicity, we first assume that
the Sliding Bloom Filter has the desired property that throughout the lifetime
of the data structure at all points the number of false positives is not too large
(recall that we denote this the absolute false positive assumption). In the full
version [NY13] we prove the same result without this assumption.

Theorem 2. Let A be an (n,m, ε)-Sliding Bloom Filter where n < εu, then

1. If m > 0 then |A| ≥ n log 1
ε + n ·max

{
log n

m , log log
1
ε

}
−O(n)

2. If m =∞ then |A| ≥ n log 1
ε + n log log 1

ε −O(n)

From Theorems 1 and 2 we conclude that making m larger than n/ log 1
ε does

not make sense: one gets the same result for any value in [n/ log 1
ε ,∞). When

m is small (less than εn), then the dominant expression in both the upper and
lower bounds is n log

(
n
m

)
.

The lower bound is proved by an encoding argument which is a common way
of showing lower bounds in this area (see for example [PSW13]). Specifically, the
idea of the proof is to use A to encode a set S and a permutation π on the set
corresponding to the order of the elements in the set. We consider the number
of steps from the point an element is inserted to A to the first point where A
answers ‘No’ on it, and we define λ to be the sum of n such lengths. If λ is large,
then there is a point where A represents a large portion of S, which benefits
in the encoding of S. If λ is small, then A can be used as an approximation of
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π, thus encoding π precisely requires a small amount of bits. In either case, the
encoding must be larger than the entropy lower bound1 which yields a bound on
the size of A. The optimal value of the trade-off between representing a larger
set or representing a more accurate ordering is achieved by our construction. In
this sense, our upper bound and lower bound match not only by ‘value’ but also
by ‘structure’.

1.3 Related Work and Background

The data structure for the approximate set membership as suggested by Bloom
in 1970 [Blo70] is relatively simple: it consists of a bit array which is initiated to
‘0’ and k random hash functions. Each element is mapped to k locations in the
bit array using the hash functions. To insert an element set all k locations to 1.
On lookup return ‘Yes’ if all k locations are 1. To achieve an error probability of ε
for a set of size n Bloom showed that if k = log 1

ε then the length of the bit array
should be roughly 1.44n log 1

ε (where the 1.44 is an approximation of log2(e)).
Since its introduction Bloom filters have been investigated extensively and many
variants, implementations and applications have been suggested. We call any
data structure that implements the approximate set membership a ‘Bloom filter’.
A comprehensive survey (for its time) is Broder and Mitzenmacher [BM02].

A lot of attention was devoted for determining the exact space and time re-
quirements of the approximate set membership problem. Carter et al. [CFG+78]
proved an entropy lower bound of n log 1

ε , when the universe U is large. They
also provided a reduction from approximate membership to exact membership,
which we use in our construction. The retrieval problem associates additional
data with each element of the set. In the static setting, where the elements are
fixed and given in advance, Dietzfelbinger and Pagh propose a reduction from
the retrieval problem to approximate membership [DP08]. Their construction
gets arbitrarily close to the entropy lower bound.

In the dynamic case, Lovett and Porat [LP10] proved that the entropy lower
bound cannot be achieved for any constant error rate. They show a lower bound of
C(ε)·n log 1

ε whereC(ε) > 1 depends only on ε. Pagh, Segev andWieder [PSW13]
showed that if the size n is not known in advance then at least (1− o(1))n log 1

ε +
Ω(n log logn) bits of space must be used. The Sliding Bloom Filter is in particular
also a Bloom Filter in a dynamic setting, thus the [LP10] and [PSW13] bounds are
applicable.

As discussed, Pagh, Pagh and Rao [PPR05] suggested an alternative construc-
tion for the Bloom filter. They used the reduction of Carter et al. to improve the
traditional Bloom filter in several ways: Lookup time becomes O(1) independent
of ε, has succinct space consumption, uses explicit hash functions and supports
deletion. In the dynamic setting for a constant ε we do not know what is the
leading term in the memory needed, however, for any sub-constant ε we know
that the leading term is n log 1

ε : Arbitman, Naor and Segev present a solution,

1 The entropy lower bound is base 2 logarithm of the size of the set of all possible
inputs. In our case, all possible pairs (S, π).
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called ‘Backyard Cuckoo Hashing’, which is optimal up to an additive lower or-
der term (i.e., it is a succinct representation) [ANS10]. Thus, in this work we
focus on sub-constant ε.

The model of sliding windows was first introduced by Datar et al. [DGIM02].
They consider maintaining an approximation of a statistic over a sliding window.
They provide an efficient algorithm along with a matching lower bound.

Data structures for problems similar to the Sliding Bloom Filters have been
studied in the literature quite extensively over the past years. The simple solution
usingm = n consists of two large Bloom filters which are used alternatively. This
method known as double buffering was proposed for classifying packets caches
[CFL04]. Yoon [Yoo10] improved this method by using the two buffers simulta-
neously to increase the capacity of the data structure. Deng and Rafiei [DR06]
introduced the Stable Bloom filter and used it to approximately detect dupli-
cates in stream. Instead of a bit array they use an array of counters and to
insert an element they set all associated counters to the maximal value. At each
step, they randomly choose counters to decrease and hence older element have
higher probability of being decreased and eventually evicted over time. Metwally
et al. [MAA05] showed how to use Bloom filters to identify duplicates in click
streams. They considered three models: Sliding Windows, Landmark Windows
and Jumping Windows and discuss their relations. A comprehensive survey in-
cluding many variations is given by Tarkoma et al. [TRL12]. However, as far as
we can tell, no formal definition of a Sliding Bloom Filter as well as a rigorous
analysis of its space and time complexity, appeared before.

2 The Construction of a Succinct Sliding Bloom Filter

Our algorithm uses a combination of transforming the approximate member-
ship problem to the exact membership problem plus a solution to the retrieval
problem. On an input x, we store h(x), for some hash function h, in a dynamic
dictionary and in addition store some information on the last time where x ap-
peared. We consider the stream to be divided into generations of size n/c each,
where c is a parameter is optimized at the end. At each step, we maintain a
set S that represents the last c+ 1 generations and count the generations mod
(c + 1). In addition to storing h(x), we associate s = log (c+ 1) bits indicating
the generation of x. Then, on query x we check if h(x) is in the dictionary and
that its associated generation is not more than c+ 1 generations old. Addition-
ally, we need to delete old elements, before they interfere the other operations.
The full details of the construction and proof of its correctness are in the full
version of this paper [NY13].

3 A Tight Space Lower Bound

In this section we present a matching space lower bound to our construction. For
simplicity, we use the false positive assumption and in the full version [NY13]
we show how to get the same result without it.
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Theorem 3. Let A be an (n,m, ε)-Sliding Bloom Filter where n < εu. If for any
stream σ it holds that Pr[∃i ≤ 3n : |{x ∈ U : A(σi, x) = ‘Y es′}| ≥ n+ 2εu] ≤ 1

2
then

1. If m > 0 then |A| ≥ n log 1
ε + n ·max

{
log n

m , log log
1
ε

}
−O(n)

2. If m =∞ then |A| ≥ n log 1
ε + n log log 1

ε −O(n)

Proof. Let A be an algorithm satisfying the requirements in the statement of
the theorem. The main idea of the proof is to use A to encode and decode a
set S ⊂ U and a permutation π on the set (i.e. an ordered set). Giving S to A
as a stream, ordered by π, creates an encoding of an approximation of S and
π: S is approximated by the set of all the elements for which A answers ‘Yes’
(denoted by μA(S)), and π is approximated by the number of elements needed
to be added to the stream in order for A to ”release” each of the elements in
S (that is, to answer ‘No’ on it). Then, to get an exact encoding, we encode
only the elements of S from within the set μA(S). To get an exact encoding of
π we encode only the difference between the location i of each element and the
actual location it has been released. The key is to find the point where A best
approximates S and π simultaneously.

Denote by Ar the algorithm with fixed random string r and let μAr (σ) = {x :
Ar(σ, x) = ‘Yes’}. We show that w.l.o.g. we can consider A to be deterministic.
Let V = {σ : |σ| = 2n} be the set of all sequences of 2n distinct elements, and let
V (r) ⊆ V be the subset of inputs such that |μAr (σi)| ≤ n+2εu for all 1 ≤ i ≤ 3n.
Since we assumed that for any σ we have that Prr[∃i ≤ 3n : |μAr (σi)| ≥ n +
2εu] ≤ 1

2 then there must exist an r∗ such that |V (r∗)| ≥ |V |/2. Thus, we can
assume that A is deterministic and encode only sequences from V (r∗). Then the
encoding lower bound changes from log |V | to log (|V |/2) = log |V |−1. This loss
of 1 bit is captured by the lower order term O(n) in the lower bound, and hence
can be ignored.

Notice that r∗ need not be explicitly specified in the encoding since the de-
coder can compute it using the description of the algorithm A (which may be
part of its fixed program). From now on, we assume that A is deterministic
(and remove the Ar notation) and assume that for any σ ∈ V (r∗) we have that
μA(σ) ≤ n+ 2εu ≤ 3εu.

We now make an important definition:

�(σ, x) = min {argmin
k
{∃y1, . . . , yk ∈ U : A(σy1 · · · yk, x) = 0}, n,m}

�(σ, x) is the minimum number of elements needed to be added to σ such that A
answers ‘No’ on x. Notice that �(σ, ·) can be computed for any set S given the
representation of A(σ).

We encode any set S of size 2n and a permutation π : [2n] → [2n] using A.
After encoding S we compare the encoding length to the entropy lower bound
of B(u, 2n) + log ((2n)!). Consider applying π on (some canonical order of) the
elements of S and let x1, . . . , x2n be the resulting elements of S ordered by π. For
any i > 2n let xi = xi−2n, then for any k ≥ 1 define the sequence σk = x1, . . . , xk.
Let φ(σk) = μ(σk)∩S and define Δ(σk, i) = �(σk, xi) + (k− n)− i. Notice that,
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given A(σk), Δ(σk, i), k and n one can compute the position i of the element xi.
Define

λk =

k∑
i=k−n+1

Δ(σk, i), and λ = max
n≤k≤n

λk

If m ≥ n (or m =∞) then 0 ≤ λ ≤ n2, otherwise 0 ≤ λ ≤ nm

Lemma 1. Let k ∈ [n, 2n] then
∑k+n−1

j=k |φ(σj)| ≥ n2 + λk.

Proof. Instead of summing over φ(σj), we sum over xi and count the number of
φ(σj) such that xi ∈ φ(σj). For k − n+ 1 ≤ i ≤ k we know that xi ∈ σk(n) and
by the definition of �(σk, xi) we get that xi ∈ φ(σk), . . . , φ(σk+�(σk ,xi)−1). For
k + 1 ≤ i ≤ k + n− 1 we know that xi ∈ φ(σi), . . . , φ(σk+n−1). Therefore:

k+n−1∑
j=k

|φ(σj)| ≥
k∑

i=k−n+1

�(σk, xi) +
k+n−1∑
i=k+1

(k + n− i)

=
k∑

i=k−n+1

Δ(σk, i) + n2 = λk + n2

By averaging, we get that for any k there exist some j ∈ [k, k+n−1] such that

|φ(σj)| ≥ n+
λj

n . Let k∗ be such that λ = λk∗ , then we know that there exist some

j∗ ∈ [k∗, k∗+n−1] such that |φ(σj)| ≥ n+ λ
n . Note that n ≤ j∗ ≤ k∗+n−1 ≤ 3n

which is in the range of indices of the false positive assumption.
We include the memory representation of A(σj∗ ) in the encoding. The decoder

uses this to compute the set μ(σj∗ ), which by the absolute false positive definition
we know that |μ(σj∗)| ≤ 3εu. Since |φ(σj∗ )| ≥ n+ λ

n , we need only B(3εu, n+ λ
n )

bits to encode n+ λ
n elements of S out of them. The remaining n− λ

n elements

are encoded explicitly using B(u, n− λ
n ) bits. This completes the encoding of S.

To encode π we need the decoder to be able to extract i for each xi. For
any xi ∈ σj∗(n) the decoder uses A(σj∗ ) and computes �(σj∗ , xi). Now, in order
for the decoder to exactly decode i we need to encode all the Δ(σj∗ ,i )’s. Since

j∗∑
i=j∗−n+1

Δ(σj∗ ,i ) = λj∗ ≤ λ we can encode all the Δ(σj∗ ,i )’s using log
(
n+λ
n

)
bits (balls and sticks method), and the remaining elements’ positions will be
explicitly encoded using n logn bits. Denote by |A| the number of bits used by
A. Comparing the encoding length to the entropy lower bound we get

|A|+log

(
3εu

n+ λ
n

)
+log

(
u

n− λ
n

)
+log

(
λ+ n

n

)
+n logn ≥ log

(
u

2n

)
+log ((2n)!)

and therefore

|A| ≥ (n+
λ

n
) log

1

ε
+ (n+

λ

n
) logn+ (n− λ

n
) log (n− λ

n
)− n log (λ+ n)−O(n)
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Consider two possible cases for λ. If λ ≤ 0.9n2 then we get

|A| ≥ (n+
λ

n
) log

1

ε
+ 2n logn− n log (λ+ n)−O(n)

The minimum of this expression, as a function of λ, is achieved at λ = n2

log 1
ε

−n.
If m ≥ n

log 1
ε

− 1 then the minimum can be achieved and we get that

|A| ≥ n log
1

ε
+ n log log

1

ε
−O(n).

Otherwise, if m < n
log 1

ε

− 1 then λ ≤ mn ≤ n2

log 1
ε

− n and minimum value will

be achieved at λ = nm which yields the required lower bound:

|A| ≥ n log
1

ε
+ n log

n

m
−O(n).

If 0.9n2 < λ ≤ n2 then m ≥ 0.9n ≥ n
log 1

ε

. Thus, we get that

|A| ≥ (n+
λ

n
) log

1

ε
− (n− λ

n
) logn+ (n− λ

n
) log (n− λ

n
)−O(n)

the minimum of this expression, as a function of λ between the given range is
achieved at λ = 0.9n2 which yields the desired bound:

|A| ≥ n log
1

ε
+ n log log

1

ε
−O(n).
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Abstract. Let G denote an n-vertex two-directional orthogonal ray
graph. A bicolored 2D representation of G requires only O(n) space,
regardless of the number of edges in G. Given such a compact represen-
tation ofG, and a (possibly negative) weight for each vertex, we show how
to compute a maximum weight matching of G in O(n log2 n) time. The
classic problem of scheduling weighted unit tasks with release times and
deadlines is a special case of this problem, and we obtain an O(n log n)
time bound for this special case. As an application of our more general
result, we obtain an O(n log2 n)-time algorithm for computing the VCG
outcome of a sealed-bid unit-demand auction in which each item has two
associated numerical parameters (e.g., third-party “quality” and “seller
reliability” scores) and each bid specifies the amount an agent is will-
ing to pay for any item meeting specified lower bound constraints with
respect to these two parameters.

1 Introduction

Certain natural classes of graphs can be represented using a constant number of
words of storage for each vertex, and no additional storage for each edge, since
the edges are represented implicitly: Given the representation of two vertices
u and v, it is possible to determine in constant time whether there is an edge
between u and v. For example, consider the class of bipartite graphs where
each “left vertex” corresponds to a unit job (i.e., a job requiring one unit of
processing time) with a specified integer release time and deadline, each “right
vertex” corresponds to a unit-time slot on a shared resource with a specified
integer timestamp, and there is an edge between left vertex u and right vertex
v if and only if the timestamp of the slot associated with v lies in the interval
specified by the release time and deadline of the job associated with u. Such a
bipartite graph is said to be “convex”.

For such “compactly representable” classes of graphs, it is interesting to re-
visit the complexity of fundamental graph problems. By working directly with
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the compact representation, we seek to outperform traditional algorithms de-
signed for the standard adjacency list representation. In this paper, we revisit
the complexity of vertex-weighted matching problems on certain compactly rep-
resentable classes of bipartite graphs. All of the algorithms that we develop have
time complexity that is quasilinear (i.e., within a polylogarithmic factor of linear)
in the number of vertices.

Matching algorithms for convex bipartite graphs have received significant at-
tention in the literature. In the following discussion, U denotes the set of left
vertices, and V denotes the set of right vertices, of a given convex bipartite
graph. Glover presented a simple greedy algorithm [8] for maximum-cardinality
convex bipartite matching that admits an O(|V | + |U | log |U |)-time implemen-
tation using an elementary priority queue data structure. Later, van Emde
Boas used a fast priority queue to obtain an O(|V | + |U | log log |U |)-time im-
plementation of Glover’s algorithm [21]. Lipski and Preparata [10] used Tarjan’s
fast union-find data structure [20] to devise a different algorithm running in
time O(|U | + |V |α(|V |)), where α is a functional inverse of Ackermann’s al-
gorithm. Gabow and Tarjan [6] show that this application of union-find falls
into a category admitting a linear-time implementation, thereby reducing the
Lipski-Preparata time bound to O(|U | + |V |). Another line of work focused on
eliminating the dependence of the running time on |V | [7,15], at the expense of
introducing a mild technical assumption regarding the input representation. This
research culminated in the O(|U |)-time algorithm of Steiner and Yeomans [19].

In terms of vertex-weighted matching algorithms for convex bipartite graphs,
most prior research has focused on the “left-weighted” special case in which all
of the right vertices have zero weight, which corresponds to the classic problem
of scheduling weighted unit jobs with release times and deadlines. (In the no-
tation of Section 2, this corresponds to the LMWM and LMWMCM problems,
which are essentially equivalent.) Dekel and Sahni [5] present a parallel algo-
rithm for left-weighted convex bipartite matching that uses O(|U |2) processors
and O(log2 |U |) time, and which is based on a sequential algorithm with O(|U |2)
complexity. Brodal et al. [2] present a data structure based on the Dekel-Sahni
algorithm for the problem of maintaining a maximum cardinality matching in
a dynamic convex bipartite graph. Lipski and Preparata [10] use the matroid
greedy framework to develop a left-weighted convex bipartite matching algo-
rithm with time complexity O(|U |2 + |U | · |V |). Plaxton [13] discusses a similar
algorithm based on the matroid greedy framework, and shows how to implement
this algorithm in O(|U | log |U |+|V | log2 |V |) time using a data structure based on
augmented trees. With additional preprocessing, and making the same technical
assumption regarding the input representation as in Steiner and Yeomans [19],
Plaxton improves this bound to O(|U | + k log2 k), where k ≤ min{|U |, |V |} de-
notes the size of a maximum cardinality matching.

Katriel [9] presents anO(|E|+|V | log |U |)-time algorithm for the right-weighted
special case of vertex-weighted matching in convex bipartite graphs. (Here E de-
notes the edge set of the graph.) Katriel obtains the same time bound algorithm
for the general vertex-weighted matching problem in convex bipartite graphs,
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under the restriction that the input graph G = (U, V,E) admits a matching
of size |U |. Since the input size is Θ(|U | + |V |), and |E| could be as large as
Θ(|U | · |V |), these algorithms have quadratic complexity.

In this paper, we present quasilinear vertex-weighted matching algorithms for
a class of bipartite graphs that properly contains the class of convex bipartite
graphs. The bipartite graphs that we study admit a representation in which each
vertex (left or right) has an x-value and a y-value, and there is an edge from a
left vertex u to a right vertex v if and only if the x-value of u is at most the x-
value of v and the y-value of u is at most the y-value of v. Such a bipartite graph
is called a two-dimensional orthogonal ray graph, or 2DORG (see Section 4 for
a more formal definition). It is easy to see how to represent a convex bipartite
graph as a 2DORG: Using the job-slot terminology introduced earlier, we can set
the x-value (resp., y-value) of each left vertex to the release time (resp., negation
of the deadline) of the associated job, and we can set the x-value (resp., y-value)
of each right vertex to the timestamp (resp., negation of the timestamp) of the
associated slot. On the other hand, the class of 2DORGs is substantially richer
than the class of convex bipartite graphs. For example, it is known that the
class of 2DORGs properly contains the class of interval bigraphs, which in turn
properly contains the class of convex bipartite graphs [16].

We now discuss the key techniques underlying our results. A starting point
for our work is the elegant linear-time algorithm of Chang [3] for computing a
maximum cardinality matching (MCM) of a chordal bipartite graph. The class
of chordal bipartite graphs properly contains the class of 2DORGs [16]. Chang’s
algorithm runs in O(m + n) time on an input graph with m edges and n ver-
tices. Recall that in the present work we are seeking running times that are
quasilinear in n. We obtain an O(n log n)-time implementation of Chang’s al-
gorithm by making use of a suitably augmented binary search tree (BST). Our
augmented BST data structure may be viewed as a special case of the priority
search tree data structure of McCreight [11]. (For a good introduction to the
topic of augmented BST data structures, see Cormen et al. [4, Chapter 14].)

Most of the technical work in our paper is geared towards leveraging the afore-
mentionedO(n log n)-time MCM algorithm for 2DORGs to obtain anO(n log2 n)-
time vertex-weighted matching algorithms for 2DORGs. Here we exploit the
vertex-weighted matching framework of Spencer and Mayr [18]. This is a divide-
and-conquer framework for reducing vertex-weighted matching to unweighted
matching. The framework is valid for general (bipartite or nonbipartite) graphs.
As in the case of Chang’s algorithm discussed in the previous paragraph, the
original Spencer-Mayr framework is not geared towards obtaining running times
that are quasilinear in the number of vertices. Rather, the original framework
seeks fast running times for general graphs; these bounds depend onm and n and
are not quasilinear in n, even for sparse graphs. We identify a small number of
basic primitives that suffice to support the Spencer-Mayr framework, and show
how to implement each of these primitives in O(n logn) time on 2DORGs. One
such primitive is the O(n logn)-time MCM algorithm discussed in the previous
paragraph. Given a current matching, another key primitive identifies all of the
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vertices that can be reached from some unmatched left vertex via an alternating
path of unmatched and matched edges. As in the case of our MCM algorithm for
2DORGs, our O(n logn)-time 2DORG implementation of the latter primitive is
based on augmented BSTs. Once we establish that all of the primitives associ-
ated with the Spencer-Mayr framework admit O(n log n)-time implementations
on 2DORGs, we find that the resulting divide-and-conquer recurrence solves
to give an overall running time of O(n log2 n) for vertex-weighted matching in
2DORGs.

A practical motivation for the work of the present paper is to better under-
stand the class of sealed-bid unit-demand auctions for which it is possible to
compute a suitable outcome in time that is quasilinear in the number of ver-
tices. In certain real-time applications of combinatorial auctions, it is crucial
to employ mechanisms with low time complexity. For example, in the realm of
sponsored search auctions, each search query triggers a combinatorial auction
in which a (potentially large) number of bidders vie for a collection of ad slots;
such an auction needs to be resolved rapidly so that the search results can be
provided in a timely manner. We use our vertex-weighted matching algorithm
for 2DORGs to compute a VCG allocation for a certain class of sealed-bid unit-
demand auctions in O(n log2 n) time, and we show how to compute the VCG
prices in O(n logn) additional time.

The remainder of the paper is organized as follows. Section 2 provides some ba-
sic definitions and lemmas. Section 3 introduces ordered and elimination-ordered
representation schemes. Section 4 presents our main result, an O(n log2 n)-time
algorithm to compute a maximum weight matching of any n-vertex 2DORG. Due
to space limitations, some details are omitted from this conference version. The
companion technical report [14] includes all of the material in the present ver-
sion plus four appendices. Appendix A of [14] reviews the relevant aspects of the
Spencer-Mayr vertex-weighted matching framework, and adapts this framework
to our setting. Appendix B of [14] presents an O(n logn)-time algorithm for the
special case of left-weighted matching on convex bipartite graphs. Appendix C of
[14] presents several useful lemmas. Appendix D of [14] describes an O(n log2 n)-
time algorithm for computing the VCG outcome of a 2DORG-related class of
sealed-bid unit-demand auctions.

2 Preliminaries

A matching of a graph G = (V,E) is a subset E′ of E such that the 2|E′|
endpoints of the edges in E′ are all distinct. A maximum cardinality matching
(MCM) of G is a matchingM of G such that |M | ≥ |M ′| for all matchingsM ′ of
G. If each edge of G has an associated weight, we define the weight of a matching
M , denoted w(M), as the sum of the weights of its associated edges. A maximum
weight matching (MWM) of G is a matching M of G such that w(M) ≥ w(M ′)
for all matchings M ′ of G. A maximum weight MCM (MWMCM) of G is an
MCM M of G such that w(M) ≥ w(M ′) for all MCMs M ′ of G.

This paper addresses matching problems on vertex-weighted graphs. The ver-
tex weights induce edge weights; we are primarily interested in the case where
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the weight of an edge between a vertex u and a vertex v is taken to be the sum
of the weights of u and v. A matchingM of a vertex-weighted graph is an MWM
(resp., MWMCM ) of G if it is an MWM (resp., MWMCM) of the corresponding
edge-weighted graph.

A graph G is bipartite if the vertex set of G can be partitioned into two sets
U and V such that every edge of G has one endpoint in U and one endpoint
in V . In the present paper, we address bipartite graph problems where a par-
ticular bipartition of the vertices is specified as part of the input. Throughout
the remainder of the paper, we use the term bipartite graph to refer to a triple
(U, V,E) where U is a set of “left” vertices, V is a set of “right” vertices, and
every edge in E has one endpoint in U and one endpoint in V .

The primary goal of this paper is to develop fast MWM algorithms for certain
classes of vertex-weighted bipartite graphs. We analyze our algorithms in the
RAM model, and we assume that each vertex weight can be represented using a
constant number of machine words. It will prove to be useful to first develop fast
algorithms for simpler problems in which the weights of either the left vertices,
or the right vertices, are effectively zeroed out. With this in mind, we define an
LMWM (resp., RMWM ) of a vertex-weighted bipartite graph G as an MWM
of the corresponding edge-weighted graph where the weight of an edge between
a left vertex u and a right vertex v is given by the weight of u (resp., v). The
terms LMWMCM and RMWMCM are defined analogously.

It is easy to see that we can compute an LMWM of a given bipartite graph
G = (U, V,E) by first deleting all of the negative-weight left vertices, and then
computing an LMWM of the resulting bipartite graph.

Given a matchingM of a bipartite graph G that is not an MCM of G, Berge’s
lemma [1, Theorem 1] implies the existence of a matching M ′ of G such that
|M ′| = |M | + 1 and the set of vertices matched in M is properly contained in
the set of vertices matched in M ′. Applying this idea repeatedly, we find that if
M is a matching of a bipartite graph G = (U, V,E), there is an MCM M ′ of G
that matches all of the vertices matched inM . It follows that if every left vertex
has nonnegative weight, then any LMWMCM is an LMWM.

Combining the observations of the two preceding paragraphs, we see that an
LMWM of a given bipartite graph G = (U, V,E) can be obtained by deleting all
of the negative-weight left vertices, and then computing an LMWMCM of the
resulting bipartite graph. Thus the LMWM and LMWMCM problems are essen-
tially the same. In the remainder of the paper, we discuss only the LMWMCM
problem. Symmetric remarks hold for the RMWM and RMWMCM problems.

Spencer and Mayr [18] attribute the following lemma, which is straightforward
to prove, to Mendelsohn and Dulmage [12]; Spencer and Mayr also provide a
proof.

Lemma 1. Let M and M ′ be two MCMs of a bipartite graph G = (U, V,E).
Then there is an MCM of G that matches the set of left vertices matched in M
to the set of right vertices matched in M ′.

Lemma 1 plays an important role in the Spencer-Mayr vertex-weighted match-
ing framework discussed in Appendix A of [14], since it yields a reduction from



Vertex-Weighted Matching in 2DORGs 529

the problem of vertex-weighted bipartite matching to the restricted case in which
only the vertices on one side of the bipartition have nonzero weight. This reduc-
tion is restated below using the terminology of the present paper.

Lemma 2. Let M be an LMWMCM of a vertex-weighted bipartite graph G =
(U, V,E), let U ′ be the set of left vertices of G that are matched in M , and let
G′ be the subgraph of G induced by U ′ ∪ V . Then any RMWMCM of G′ is an
MWMCM of G.

Proof. Immediate from Lemma 1. 	


For any class C of graphs, and any integers m and n, we let Cm,n denote the
set of all graphs in C with at most m edges and at most n vertices.

A representation scheme ξ for a class C of graphs specifies a set reps(ξ,G) of
possible representations for any given graph G in the class.

Let ξ denote a representation scheme for a class C of graphs. Scheme ξ is
said to have space complexity at most f(m,n) if, for any graph G in Cm,n,
the space used by any representation in reps(ξ,G) is at most f(m,n). Thus, for
example, the standard adjacency list representation scheme has space complexity
O(m + n). Scheme ξ is said to have MCM complexity at most f(m,n) if there
is an f(m,n)-time algorithm which, given any representation in reps(ξ,G) of
a graph G in Cm,n, computes an MCM of G. The MWM (resp., LMWMCM,
RMWMCM, MWMCM ) complexity of ξ is defined similarly, except that the
input to the f(m,n)-time algorithm also specifies the vertex weights.

We say that a class C of graphs is hereditary if any induced subgraph of a
graph in C also belongs to C. A representation scheme for a hereditary class
C of graphs has induced subgraph complexity at most f(m,n) if there is an
f(m,n)-time algorithm which, given any representation in reps(ξ,G) of a graph
G = (V,E) in Cm,n, and any specified subset V ′ of V , computes a representation
in reps(ξ,G′) where G′ denotes the subgraph of G induced by V ′.

Lemma 3. Let ξ denote a representation scheme for a hereditary class of bipar-
tite graphs. If ξ has induced subgraph, LMWMCM, and RMWMCM complexity
at most f(m,n), then ξ has MWMCM complexity O(f(m,n)).

Proof. Immediate from Lemma 2. 	


Let ξ be a representation scheme for a class C of bipartite graphs. Scheme
ξ is said to have left-to-right search complexity at most f(m,n) if there exists
an f(m,n)-time algorithm which, given any representation in reps(ξ,G) of a
graph G in Cm,n, and any matching M of G, computes the set of all vertices
that are reachable from some unmatched left vertex via an alternating path
of unmatched and matched edges. The right-to-left search complexity of ξ is
defined symmetrically. The search complexity of ξ is at most f(m,n) if the left-
to-right search complexity and right-to-left search complexity of ξ are each at
most f(m,n).
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3 Ordered Representation Schemes

An ordering of a bipartite graph G specifies a total order over the set of left
vertices of G, and a total order over the set of right vertices of G.

A representation of a bipartite graph G is ordered if it specifies an ordering
of G, and allows the relative order of any two left (resp., right) vertices to be
determined in constant time. A representation scheme ξ for a class C of bipartite
graphs is ordered if for everyG in C, every representation in reps(ξ,G) is ordered.

Let ξ be an ordered representation scheme for a hereditary class C of bipartite
graphs. We say that ξ has left-to-right delete-min complexity f(n) if there exists
an f(n)-time algorithm A which, given a representation R in reps(ξ,G) for some
graph G in C with at most n vertices, and a left vertex u of G, performs the
following operation, which we denote delete-min(u): (1) if u has one or more
incident edges, then letting v denote the least right vertex adjacent to u (with
respect to the total order defined over the right vertices), and letting G′ denote
G with right vertex v removed, A returns v and modifies R to obtain a repre-
sentation in reps(ξ,G′); (2) if u has no incident edges, then A returns nil and
leaves R unchanged. The right-to-left delete-min complexity of ξ is defined sym-
metrically, along with the associated operation delete-min(v). The delete-min
complexity of ξ is at most f(n) if the left-to-right and right-to-left delete-min
complexity of ξ are each at most f(n). The following lemma is straightforward.

Lemma 4. Let ξ be an ordered representation scheme for a hereditary class of
bipartite graphs. If ξ has left-to-right (resp., right-to-left) delete-min complexity
f(n), then ξ has left-to-right (resp., right-to-left) search complexity O(nf(n)).
Thus if ξ has delete-min complexity at most f(n), then ξ has search complexity
O(nf(n).

A bipartite graph is chordal bipartite if each cycle of length at least six has a
chord. (Remark: A chordal bipartite graph need not be chordal because chordless
cycles of length four are permitted.) The class of chordal bipartite graphs has
been extensively studied, and various alternative characterizations are known.
One such characterization is that a bipartite graph G is chordal bipartite if and

only if G is

[
1 1
1 0

]
-free, which means that G admits an ordering such that for

any pair of left vertices u and u′ such that u < u′, and any pair of right vertices
v and v′ such that v < v′, if u is adjacent to v, u is adjacent to v′, and u′ is
adjacent to v, then u′ is adjacent to v′. In the present paper, we refer to such an
ordering as an elimination ordering.

A representation of a chordal bipartite graph G is elimination-ordered if it
specifies an elimination ordering of G. A representation scheme ξ for a class C of
chordal bipartite graphs is elimination-ordered if for every graph G in C, each
representation in reps(ξ,G) is elimination-ordered.

Three lemmas related to elimination-ordered representation schemes are stated
and proven in Appendix C of [14]. Lemma 11 of [14] is based on the MCM al-
gorithm of Chang [3]. Lemmas 12 and 13 of [14] are useful for dealing with
negative vertex weights.
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4 Two-Directional Orthogonal Ray Graphs

A bipartite graph G = (U, V,E) is called an orthogonal ray graph (ORG) if there
exists a horizontal ray (i.e., a closed half-line parallel to the x-axis) corresponding
to each left vertex, and a vertical ray (i.e., a closed half-line parallel to the y-
axis) corresponding to each right vertex, such that a left vertex u is adjacent
to a right vertex v if and only if the two corresponding rays intersect. If all of
the horizontal rays go in the same direction (e.g., to the right), and all of the
vertical rays go in the same direction (e.g., down), then we say that the ORG is
a two-directional ORG (2DORG)

Various equivalent characterizations of the class of 2DORGs are known.
Shrestha, Tayu, and Ueno [16] show that a graph is a 2DORG if and only if

G admits a biadjacency matrix that is

[
∗ 1
1 0

]
-free. In the notation of the present

paper, this is equivalent to saying that G admits an ordering for which, for all
pairs of left vertices u and u′ such that u < u′, and all pairs of right vertices v
and v′ such that v < v′, if u is adjacent to v′ and u′ is adjacent to v, then u′

is adjacent to v′. Notice that such an ordering is an elimination ordering, and
hence every 2DORG is chordal bipartite. On the other hand, not every chordal
bipartite graph is a 2DORG [17, Lemma 3.4.11].

Soto [17, Lemma 3.4.9] notes that a bipartite graph is a 2DORG if and only if
it is a bicolored 2D-graph, that is, there exists a red point in the plane for each
left vertex, and a blue point in the plane for each right vertex, such that there
is an edge from left vertex u to right vertex v if and only if each component
of the red point associated with u is at most the corresponding component
of the blue point associated with v. This characterization suggests a natural
bicolored 2D representation of a 2DORG in which each vertex is represented
by a red or blue point in the x-y plane. (The original definition also suggests
such a representation, where the point corresponding to a vertex is given by the
endpoint of the corresponding ray.)

Soto [17, Lemma 3.4.1] also points out that every bicolored 2D-graph admits
a bicolored rook representation, that is, a bicolored 2D representation satisfying
the following additional constraints, where n denotes the number of vertices in
the graph: (1) no two of the n points share a common x-value, or a common
y-value; (2) the points are all drawn from the set [n]2, where n denotes the
number of vertices and [n] denotes {i | 0 ≤ i < n}. Furthermore, as shown by
Soto, such a bicolored rook representation can be obtained from any bicolored
2D representation in O(n logn) time using a straightforward sorting procedure.

We now define a useful elimination-ordered representation scheme, denoted
ξ∗, for the class of 2DORGs. Under scheme ξ∗, our representation of an n-vertex
2DORG G consists of a bicolored 2D representation plus two additional data
structures. Like a bicolored rook representation, we require the bicolored 2D
representation of G to satisfy the constraint that no two of the n points share
a common x-value, or a common y-value. However, we do not require all of the
points to be drawn from [n]2; instead, we enforce the relaxed requirement that
each coordinate is an integer that can be stored in a constant number of machine
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words. Before describing the two additional data structures associated with our
representation, we define an ordering of G and prove that it is an elimination
ordering. We define a total order < over the set of left vertices as follows: u < u′

if and only if y(u′) < y(u). We define a total order < over the set of right vertices
as follows: v < v′ if and only if x(v) < x(v′). The following lemma establishes
that this ordering is an elimination ordering.

Lemma 5. Let G = (U, V,E) be a 2DORG, and let R belong to reps(ξ∗, G). If
u < u′, v < v′, (u, v′) belongs to E, and (u′, v) belongs to E, then (u′, v′) belongs
to E.

Proof. We need to prove that x(u′) ≤ x(v′) and y(u′) ≤ y(v′).
Since (u′, v) belongs to E, we have x(u′) ≤ x(v). Since v < v′, we have

x(v) < x(v′). Hence x(u′) < x(v′).
Since (u, v′) belongs to E, we have y(u) ≤ y(v′). Since u < u′, we have

y(u′) < y(u). Hence y(u′) < y(v′). 	


We now describe the two additional data structures associated with our repre-
sentation of G under scheme ξ∗. These data structures may be viewed as special
cases of the priority search tree data structure of McCreight [11]. The first is a
red-black tree that stores all of the left vertices in increasing order with respect
to the total order <. This red-black tree is augmented (see [4, Chapter 14] for an
introduction to augmented binary search trees) by maintaining, at each node α,
an integer “min” field equal to the minimum, over all left vertices u stored in the
subtree rooted at node α, of x(u). It is straightforward to maintain the min field
while supporting the standard dictionary operations in logarithmic time. This
data structure allows us to support the delete-min(v) operation in logarithmic
time, where v is an arbitrary right vertex.

The second data structure is a similar red-black tree that stores all of the right
vertices in increasing order with respect to the total order <. This red-black tree
is augmented by maintaining, at each node α, an integer “max” field equal to
the maximum, over all right vertices v stored in the subtree rooted at node α, of
y(v). As in the case of the first data structure, it is straightforward to maintain
the max field supporting the standard dictionary operations in logarithmic time.
This second data structure allows us to support the delete-min(u) operation in
logarithmic time, where u is an arbitrary left vertex.

Lemma 6. The representation scheme ξ∗ for the class of 2DORGs has space
and induced subgraph complexity O(n), delete-min complexity O(log n), search
and MCM complexity O(n log n), and LMWMCM, RMWMCM, MWMCM, and
MWM complexity O(n log2 n).

Proof. The O(n) bound on space complexity is immediate from the definition
of ξ∗. For the O(n) bound on induced subgraph complexity, notice that we can
form each of the two augmented red-black tree data structures associated with a
specified induced subgraph as follows: (1) traverse the corresponding red-black
tree for the original graph to extract the desired sorted sequence of vertices; (2)
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arrange this sorted sequence of vertices into a perfectly balanced red-black tree
structure (e.g., the same structure as is achieved in a binary heap); (3) fill in the
values of the auxiliary fields in a bottom-up manner.

As indicated in our description of ξ∗, the two augmented red-black tree struc-
tures allow us to support arbitrary delete-min(u) and delete-min(v) operations
in logarithmic time. Thus the delete-min complexity of ξ∗ is O(log n).

Lemma 4 implies that the search complexity of ξ∗ is O(n log n), and Lemma 11
of [14, Appendix C] implies that the MCM complexity of ξ∗ is O(n log n).

Applying Lemma 8 of [14, Appendix A] with f(m,n) = O(n logn), we find
that the LMWMCM and RMWMCM complexity of ξ∗ is O(n log2 n). Applying
Lemma 3 with f(m,n) = O(n log2 n), we find that the MWMCM complexity of
ξ∗ is O(n log2 n).

It remains to bound the MWM complexity of ξ∗. Let C denote the class of all
2DORGs, and let C′ denote the class of all graphsG′ of the form extend(G,U ′, V ′)
where G = (U, V,E) belongs to C, U ′ is a subset of U , and V ′ is a subset of V .
By applying Lemma 13 of [14, Appendix C] with f0(m,n) = f1(m,n) = O(n),
f2(m,n) = f3(m,n) = O(n logn), and f4(n) = f5(n) = O(log n), we find
that there is an elimination-ordered representation scheme with dummies ξ′

for C′ with space and induced subgraph complexity O(n), search complexity
O(n log n), and delete-min complexity O(log n). Thus, reasoning in the same
manner as we did above for ξ∗, we find that ξ′ has MCM complexity O(n log n),
and LMWMCM, RMWMCM, and MWMCM complexity O(n log2 n).

Lemma 13 of [14] also implies that if we are given a representation in reps(ξ∗, G)
of a graph G = (U, V,E) in C, a subset U ′ of U , and a subset V ′ of V , then we
can compute a representation in reps(ξ′, G′) where G′ = extend(G,U ′, V ′) in
O(n) time. Since ξ′ has MWMCM complexity O(n log2 n), Lemma 9 of [14,
Appendix A] implies that ξ∗ has MWM complexity O(n log2 n). 	


Theorem 1. Assume that we are given a bicolored 2D-graph representation of
an n-vertex, vertex-weighted 2DORG G such that each x-value, y-value, or weight
is an O(1)-word integer. Then an MWM of G can be computed in O(n log2 n)
time.

Proof. Since any two O(1)-word integers can be compared in constant time, we
can construct a representation in reps(ξ∗, G) in O(n logn) time. Since represen-
tation scheme ξ∗ has MWM complexity O(n log2 n) by Lemma 6, the claim of
the theorem follows. 	
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Abstract. Klav́ık et al. [arXiv:1207.6960] recently introduced a gener-
alization of recognition called the bounded representation problem which
we study for the classes of interval and proper interval graphs. The input
gives a graph G and in addition for each vertex v two intervals Lv and Rv

called bounds. We ask whether there exists a bounded representation in
which each interval Iv has its left endpoint in Lv and its right endpoint
in Rv. We show that the problem can be solved in linear time for interval
graphs and in quadratic time for proper interval graphs.
Robert’s Theorem states that the classes of proper interval graphs

and unit interval graphs are equal. Surprisingly, the bounded represen-
tation problem is polynomially solvable for proper interval graphs and
NP-complete for unit interval graphs [Klav́ık et al., arxiv:1207.6960]. So
unless P = NP, the proper and unit interval representations behave very
differently.
The bounded representation problem belongs to a wider class of re-

stricted representation problems. These problems are generalizations of
the well-understood recognition problem, and they ask whether there
exists a representation of G satisfying some additional constraints. The
bounded representation problems generalize many of these problems.

1 Introduction

In the recent data-filled world, visualization and graph drawing is becoming an
increasingly more important topic. One is frequently asked to work with a huge
object and to understand its structure. In some cases, it is useful to visualize the
object in a way which reveals its structure. A prime example of this is the class
of interval graphs which is one of the oldest and best-understood graph classes.
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An interval graph G can contain many edges, so a standard drawing is not very
understandable. But it has an interval representation R which is a collection of
closed intervals {Iv : v ∈ V (G)} representing the vertices of the graph such that
Iu ∩ Iv �= ∅ if and only if uv ∈ E(G). This representation nicely describes the
structure of the edges. We denote the class of interval graphs by INT.

Interval graphs were first introduced by Hajós [10] in 1957. They caught
quickly an attention of many researchers, for instance Benzer [1] used them in
his experimental study of the DNA structure. The first polynomial-time recog-
nition algorithms were given already in 1960’s [9,8]. After a decade, Booth and
Lueker [3] finally described a linear-time recognition algorithm based on a new
tree-structure called PQ-trees, applicable also to other problems such as pla-
narity. Nowadays, there are over several hundred papers dealing with many as-
pects of interval graphs.

An interval representation is called proper if Iu ⊆ Iv implies Iu = Iv, i.e.,
no interval is a proper subset of another interval. And it is called unit if all
intervals are of unit length. We consider two important subclasses of interval
graphs: proper interval graphs (PROPER INT) are graphs which admit proper
interval representations, and similarly for unit interval graphs (UNIT INT). The
well-known theorem of Roberts [19] states that PROPER INT = UNIT INT.

1.1 The Bounded Representation Problem

Several recent papers study restricted representation problems in which we ask
whether there exists, say, an interval representation of an input graph G satisfy-
ing some additional constraints; see for example [2,11,12,16,17,18]. In this paper,
we study for the classes INT and PROPER INT one such problem called bounded
representation, recently introduced by Klav́ık et al. [13]. This problem is related
to many other restricted representation problems; see Section 1.2 for details.

For an arbitrary interval I, we denote its left endpoint by �(I) and its right
endpoint by r(I). Let Lv and Rv be two intervals defined for each v ∈ V (G). A
representation R is called a bounded representation if �(Iv) ∈ Lv and r(Iv) ∈ Rv

for each v ∈ V (G). The bounded representation problem is the following decision
problem:

Problem: The Bounded Representation Problem – BoundRep(C)
Input: A graph G and two intervals Lv and Rv for each v ∈ V (G).

Output: Is there a bounded representation R of the class C?
In the further text, we refer to the intervals Lv as left bounds and to the intervals
Rv as right bounds, or just simply bounds. See Fig. 1a for an example of an
BoundRep instance. It is easy to see that the bounded representation problem
generalizes recognition; if all the bounds are set to (−∞,+∞), they pose no
restriction at all. We also allow trivial bounds consisting of single points.

1.2 Other Restricted Representation Problems

We review other restricted representation problems and discuss their relation to
the bounded representation problem. The problems were considered for different
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BoundRep

Fig. 1. (a) A bounded representation R of the class INT is given for a graph K3. There
exists no bounded proper interval representation since Iw is always a proper subset of
Iu and Iv. (b) The Hasse diagram for different restricted representation problems. If
P ≤ P ′, then the problem P can be solved using the problem P ′.

intersection classes of graphs which we do not define formally; see the references
for details. We note that all these problems generalize the recognition problem
(Recog). See Fig. 1b for the relations between the problems.

Partial Representation Extension. This problem denoted by RepExt was
introduced by Klav́ık et al. [16]. The input prescribes together with G an in-
tersection representation R′ of an induced subgraph G′. The goal is to find a
representation R of the entire G which extends R′, i.e., it assigns the same sets
to the vertices of G′ as R′. The problem can be solved in polynomial time for
interval graphs [2,15,16], proper and unit interval graphs [13], function and per-
mutation graphs [12] and circle graphs [4]. For chordal graphs in the setting of
subtree-in-a-tree graphs, several versions of the problem were considered in [14],
and almost all of them are NP-complete. It is known that planar graphs have
several intersection representations (contact representations of discs, etc.), but
extending these representations is NP-hard [7].

The bounded representation problem generalizes partial representation ex-
tension, since one can prescribe singleton bounds for the intervals of G′ and
(−∞,+∞) for the remaining bounds. (We note that the bounded representa-
tion problem can be considered also for many other classes of graphs.)

Inclusion Restrictions. Function graphs are intersection graphs of continuous
functions defined on [0, 1]. In [12], the following problem was considered and
proved to be NP-complete. The input prescribes some functions partially, i.e.,
on partial domains [a, b] ⊆ [0, 1]. The goal is to extend them to the full domain
[0, 1].

We consider more generally three different problems Inclusion, SubSet, and
SuperSet for interval graphs. In all problems, the input gives two intervals Av

and Bv for each vertex v ∈ V (G). The goal is to construct a representation such
that Av ⊆ Iv ⊆ Bv. Further for SubSet, we put all Av = ∅, and for SuperSet,
we put all Bv = (−∞,∞). It is easy to see that these problems can be reduced
to the bounded representation problems, and Inclusion can solve RepExt.

Simultaneous Representations. This problem denoted by Sim was intro-
duced and solved for several classes by Jampani et al. [11]. The input consists
of two graphs G1 and G2 with some common vertices. The goal is to construct
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their representations R1 and R2 such that the common vertices are represented
the same. Bläsius et al. [2] reduce RepExt(INT) to Sim(INT), and thus solve the
first problem in linear time. On the other hand, when the problem is generalized
to k input graphs, the best known result for many classes is an FPT algorithm
in the number of common vertices based on the partial representation exten-
sion [16,4]. We are not aware of any relation of the simultaneous representations
problem to the other considered problems.

Motivation. There are two very good motivations for studying the restricted
representation problems. The first motivation is that they might be applicable.
For instance, one might want to construct some specific representation of the
given graph G. Using these restrictions, one can force the representation to be
constructed in this way. The other motivation is that to solve these problems
much better structural understanding is required. For classes like interval graphs,
the structure of all representations is well understood and one can just use PQ-
trees to solve the problems. For other classes like unit interval graphs [13] or circle
graphs [4], the new structural results were developed which might be fruitful also
for other purposes. In mathematics, it is generally desirable to have problems
which force one to get better understanding of the objects.

1.3 Our Results

In this paper, we prove the following two theorems. Many details are omitted
and for the full version see [arXiv:1309.1248]. For BoundRep(INT), we assume
that the endpoints of the bounds are sorted from left to right, so we can work
with the bounds efficiently. Otherwise, we need extra time O(n logn) in the
beginning.

Theorem 1. The problem BoundRep(INT) with sorted endpoints of the bounds
can be solved in time O(n +m) where n is the number of vertices and m is the
number of edges.

The algorithm of Theorem 1 is almost the same as the algorithm for
RepExt(INT) of [15,16]. So the techniques developed for the partial represen-
tation extension problem can be directly applied to more general problems.

Theorem 2. The problem BoundRep(PROPER INT) can be solved in time
O(n2) where n is the number of vertices.

We note that it was already observed in [16] that the classes of proper and unit
interval graphs behave differently with respect to the partial representation prob-
lem; unit interval graphs put additional restrictions is the form of precise rational
positions. In [13], the problem RepExt(UNIT INT) was solved in quadratic time
by linear programming. So it seemed that this difference is only in some addi-
tional numerical problems posed by unit intervals. Theorem 2 shows together
with the result of [13, Proposition 2] that this understanding is fundamentally
wrong (unless P = NP, of course):
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Theorem 3 (Klav́ık et al. [13]). The problem BoundRep(UNIT INT) is NP-
complete.

The problem is reduced from 3-partition and the hard part is to derive a
correct ordering � of the components from left to right; if the ordering is pre-
scribed, one can solve the problem in quadratic time. The main difference for
proper interval graphs is Proposition 2 which allows us to derive this ordering
�. The remainder of the algorithm works similarly as in [13], only some places
are more technical since we have to deal with both left and right bounds; in the
case of unit interval graphs, we can work only with left bounds since the position
�(Iv) determines the position r(Iv).

2 Preliminaries

For a graph G, we denote by V (G) the set of its vertices and by E(G) the
set of its edges. We use N [u] for the closed neighborhood of the vertex u, i.e,
N [u] = {v ∈ V (G) : uv ∈ E(G)} ∪ {u}.

A (partial) ordering is a transitive, reflexive and antisymmetric relation. A
pre-ordering is just a transitive and reflexive relation, so several elements can
be equal in a pre-ordering. An ordering/pre-ordering is called linear if every two
elements are comparable.

For an arbitrary subset S of the real line, we define �(S) = inf{x : x ∈ S} and
r = sup{x : x ∈ S}. By �, we denote the subset ordering where S � T for two
subsets S and T if and only if r(S) ≤ �(T ); in other words S is completely on
the left of T .

Endpoint Pre-orderings. There are two very natural ways how one can work
with intervals and interval representations. The first option is to assign to each
interval I two rational numbers �(I) and r(I). The second option, which we prefer
in this paper, is just to consider the ordering < of the endpoints as they appear
from left to right. The reason is that this ordering contains all information about
intersections of intervals; precise rational positions are not needed, we can just
work with a topology of the representation. We note that this is not the case
of unit interval representations, for which one has to consider precise rational
number positions.

In the case of general interval graphs, one can assume that no two endpoints
share their positions. For bounded representations, this is not true anymore since
the bounds might force shared positions. In this case, ≤ is a linear pre-ordering,
with some sets of endpoints being equal in it. We say that an endpoint z is in
between of x and y if x ≤ z ≤ y. If two endpoints x and y share position, we
denote it by x = y, and by x < y we denote that x is strictly on the left of y. It
is important to state that if x < y, then one can add in between of x and y an
arbitrary number of endpoints in any pre-ordering. If x = y, then only endpoints
sharing the position with x and y can be added in between.

If we work with representations just as with left-to-right pre-orderings of the
endpoints, then how can we decide whether the endpoints lie in the bounds?
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Our assumption on the input is that we are given a linear pre-ordering of the
endpoints of the bounds Lv and Rv. The solution gives a bounded representation
R in the form of a joined pre-ordering ≤ of the endpoints of the bounds and
the intervals. The bounds constraints just say that �(Lv) ≤ �(Iv) ≤ r(Lv) and
�(Rv) ≤ r(Iv) ≤ r(Rv).

Simplifying Bounds. For each interval Iv, we want �(Iv) ≤ r(Iv). So we assume
each pair Lv and Rv satisfies �(Lv) ≤ �(Rv) and r(Lv) ≤ r(Rv). Otherwise we
modify the instance by putting �(Rv) := �(Lv), resp. r(Lv) := r(Rv).

3 Bounded Representations of Interval Graphs

In this section we establish Theorem 1 which states that the problem
BoundRep(INT) can be solved in time O(n + m) (given the pre-ordering of
the endpoints of the bounds). First, we give a characterization of bounds for which
the bounded representation exists. Then we describe the algorithm which checks
this characterization, and since it is constructive, it can construct the bounded
representation if it exists. We note that our approach is very similar to [15].

3.1 Characterization of Fulkerson and Gross

Fulkerson and Gross [8] gave the following characterization:

Lemma 1 (Fulkerson and Gross). A graph G is an interval graph if and
only if there exists a linear ordering < of the maximal cliques of G such that for
every vertex v ∈ V (G) the cliques containing v appear consecutively in <.

Proof (Sketch). We sketch this proof since it is important to understand the
characterization. Let R be an interval representation. For each maximal clique
C, we consider

⋂
v∈C Iv, and according to Helly’s theorem this intersection is

non-empty. We pick an arbitrary point from this intersection, and we call it a
clique-point and denote it by cp(C). Since these intersections are for different
maximal cliques pairwise distinct, the clique-points are linearly ordered from left
to right. It is routine to check that this is the ordering < from Lemma 1.

On the other hand, given an ordering < of the maximal cliques, we place
clique-points arbitrarily in this ordering. Then for each vertex v, we put

�(Iv) = min{cp(C) : v ∈ C}, and r(Iv) = max{cp(C) : v ∈ C}, (1)

i.e., we place Iv on top of the clique-points of cliques containing v. We obtain a
correct interval representation of G. 	


3.2 Orderings of Maximal Cliques Compatible with the Bounds

We want to construct a bounded representation in a similar manner, first by
placing the clique-points from left to right and then by constructing the intervals
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using (1). But to ensure that the resulting representation is bounded, we cannot
place the clique-points arbitrarily. For a maximal clique C, we denote by JC
the set of possible positions where cp(C) can be placed; see the full version
[arXiv:1309.1248] of this paper for the precise definition.

But now if JC � J ′C , we know that cp(C) has to be always placed on the left
of cp(C′); so � on the sets JC gives the partial ordering of the cliques from left
to right which we denote � as well.

Proposition 1. There exists a bounded representation R if and only if there is
an ordering < of the maximal cliques which is consecutive in every vertex v and
extends �.

Proof (Sketch). The constraints are necessary. We place the clique-points greed-
ily from left to right according to the ordering <. When we place cp(C), we place
it on the right of the previously placed clique-point and in JC . For contradiction
suppose that no such point of JC . We obtain a contradiction with the consecu-
tivity property or the ordering �. 	


3.3 The Algorithm

To solve BoundRep(INT), we proceed in the following main steps.

(1) We find maximal cliques of G, using the algorithm of Rose et al. [20] in time
O(n+m).

(2) We compute the sets JC . This can be done by a single sweep from left to
right in time O(n + m). This gives us the partial ordering � of maximal
cliques according to which the clique-points have to appear on the real line.

(3) Test whether there is a linear ordering < of the maximal cliques which ex-
tends � and for each vertex the maximal cliques containing it appear con-
secutively. This can be done using [15, Section 2].

(4) If there is a suitable reordering < of �, then we place the clique-points as
in the proof of Proposition 1. Using (1) we construct a correct bounded
representation R of G.

Note that if we only want to decide BoundRep(INT) without constructing a
representation, then the last step can be omitted. For the first step, the input
graph has to be chordal and then the total size of all cliques is O(n+m).

The constructed representationwith cp(C) ∈ JC is correct sincewe have �(Iv) ∈
Lv and r(Iv) ∈ Rv for each v ∈ V (G). MoreoverR is an interval representation of
G, since every clique-point lies exactly in the intervals representing the vertices of
the corresponding maximal clique. Thus we can summarize the results.

Proof (Theorem 1). The proof follows the steps described in the beginning of
the section. The correctness of the algorithm is ensured by Proposition 1. We
already observed that for a given pre-ordering ≤ of the endpoints of the bounds
from left to right, the construction of the reordering < of � can be done in
time O(m + n). Since the representation R can be also constructed in linear
time with respect to the size of G, we see that the whole algorithm runs in time
O(m+ n). 	
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4 Bounded Representations of Proper Interval Graphs

In this section, we establish Theorem 2 which states that the bounded represen-
tation problem of proper interval graphs can be solved in time O(n2). Proper
interval representations give two important orderings: the ordering � of the
components, and the ordering � of the intervals of the components. We first
describe them in details and then we show how they can be used in solving of
the BoundRep(PROPER INT) problem.

4.1 Component Orderings �
Let R be any representation of G and let C be a connected component. Then⋃

v∈C Iv is a closed interval of the real line. Since the intervals corresponding to
the components are pairwise disjoint, the components are ordered as C1 � · · · �
Cc. Notice that for different representations we may get different orderings �,
and when no restriction is posed on the representation, we can use each of the
c! possible orderings.

Suppose that uv /∈ E(G). We ask what conditions the bounds have to satisfy
to determine that Iu�Iv in any bounded representation of G. Since the intervals
Iu and Iv do not intersect, it is sufficient to prove that �(Iu) is always to the left
of r(Iv). This is clearly satisfied if and only if Lu �Rv.

For a given instance of the bounded representation problem, our goal is to
determine some ordering � in which a bounded representation exists. To do so,
we derive a relation �′ such that the ordering � of every bounded representation
R has to extend �′. Let C and C′ be two distinct components of G. We put
C �′ C′ if there exists a pair u ∈ C and v ∈ C′ such that Lu �Rv.

The following proposition states that respecting the ordering �′ is already
sufficient for solving the bounded representation problem:

Proposition 2. A bounded representation of G in an ordering � extending �′
exists if and only if there exists a bounded representation of G.

Proof (Sketch). We argue only the non-obvious direction. Suppose that C and
C′ are two components incomparable in �′. In such a case, their bounds have
to be hugely overlapping. There are two cases one has to deal with:

– All bounds of C and C′ are pairwise intersecting. Then due to Helly’s theo-
rem, we can represent C and C′ in any ordering in this intersection.

– Only bounds of, say, C are pairwise intersecting. But then due to Helly’s
theorem, we can represent C either on the left of the left-most bound of C′,
or on the right of the right-most bound of C. We still leave enough space for
C′ to be represented.

Then we repeatedly apply this local reordering of incomparable components till
we modify the given bounded representation in the prescribed ordering � which
extends �′. 	


We note that a similar proposition is not correct for unit interval graphs. The
problem is that a component has some minimal size which it requires in every



Bounded Representations of Interval Graphs 543

representation, so it cannot be placed in this arbitrary small common intersection
of the bounds. Actually Klav́ık et al. [13, Theorem 1] proved that finding the cor-
rect ordering � is the NP-complete part of the problem BoundRep(UNIT INT).
For a prescribed ordering �, one can solve the bounded representation problem
of unit interval graphs in quadratic time.

4.2 Vertex Orderings 	

Two vertices u and v are called indistinguishable if N [u] = N [v]. So being
indistinguishable defines an equivalence relation on V (G), and the classes of this
equivalence are called groups of indistinguishable vertices. For every intersection
representation, the vertices of each group can be represented the same, and so
indistinguishable vertices are not very interesting from the structural point of
view. This is not the case for the bounded representation problem (or any other
problem of restricted representation), in which indistinguishable vertices can be
given distinct bounds and thus are forced to be represented differently.

Vertex Orderings. Let R be any proper interval representation, and assume
for a second that no two intervals of R are the same. Then the intervals are
ordered from left to right, and we denote this ordering by �. The ordering �
is the ordering of the left endpoints, and at the same time the ordering of the
right endpoints. In �, each group of indistinguishable vertices has to appear
consecutively. Deng et al. [6] characterize possible orderings � for connected
proper interval graphs:

Lemma 2 (Deng et al.). For a connected proper interval graph, the ordering
� is uniquely determined up to local reordering of the groups of indistinguishable
vertices and the complete reversal.

In other words, there exists a partial ordering < in which exactly the pairs of
indistinguishable vertices are incomparable. Then each � is a linear extension
of < or its reversal. Corneil et al. [5] describe a simple linear-time algorithm for
computing <.

Now we allow having several same intervals in the representation R since the
bounds might force this situation. The representation R then gives a linear pre-
ordering 	. When we construct bounded representations, we place intervals as
the same if and only if this is forced by the bounds. It is easy to observe that if
Iu = Iv, then the vertices u and v are indistinguishable.

Constraints Given by Bounds. In the case of bounded representations, the
order of some pairs of the indistinguishable vertices can be prescribed by the
bounds. Suppose that we restrict ourself to just a single component C of the
input graph G and ignore the rest. Similarly to above, we produce a relation �′
of the vertices of C.

Let u and v be two indistinguishable vertices of C. We put u 	′ v if and only
if Lu �Lv or Ru�Rv; so 	′ is a union of the subset order �� of the left bounds
and the subset order �r of the right bounds. Notice that the pre-ordering 	′
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does not have to be a partial ordering and that u 	′ v implies u 	 v for any
representation R.

Now, since we do not want to work with pre-ordering 	, we construct a
reduced graph C′ with modified bounds. The following proposition states that
this construction does not change solution of the problem.

Proposition 3. There exists a bounded representation of C with an ordering
extending < if and only if there exists a bounded representation of C′ in an
ordering � which extends both < and �′.

Proof (Sketch). The construction of C′ is done in two steps. First, we consider
strongly connected components defined by 	′, and they have to be represented
by the same intervals. Therefore, we unify the bounds of their intervals to force
this. To prove the correctness, we reorder groups in C according to �. For each
group, we apply a similar greedy procedure as in Proposition 1. 	


4.3 The Algorithm

The algorithm works as follows:

(1) We compute the ordering �′ of components, and construct a linear ordering
� extending �′.

(2) We proceed the components according to � from left to right: C1 � · · · � Cc.

(3) When processing the component Ci:

– Compute the partial ordering <, using [5].

– For < and its reversal do the following: for each group Γ of indistin-
guishable vertices, compute �′, its strongly connected components, the
reduced graph C′i and its ordering �.

– Place the endpoints according to � from left to right, on the right side
of the representation of Ci−1 greedily as far to the left as possible.

– Construct a representation of Ci, by copying the intervals ISi .

It remains to argue details concerning specific implementation and correctness
which is easily implied by Proposition 2 and Proposition 3. See the full version
[arXiv:1309.1248] for details.

5 Conclusions

In this paper, we give a polynomial time algorithm for the classes of interval
and proper interval graphs for a recently introduced problem BoundRep. The
main result of this paper is a rather surprising discovery that the bounded rep-
resentation problem distinguishes the classes of proper and unit interval graphs:
BoundRep(PROPER INT) is polynomially solvable but BoundRep(UNIT INT)
is NP-complete [13]. We believe that is a very interesting problem to further
investigate differences between the structures of proper and unit interval repre-
sentations; this paper gives a good reason to do so.

Open Problems. We conclude with two open problems.
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Problem 1. Is it possible to solve BoundRep(PROPER INT) in time O(n+m)
(with a given left-to-right ordering of the bounds)?

The current bottleneck of our algorithm is the computation of 	 from 	′
which is the only step requiring time O(n2).

Problem 2. What is the complexity of the BoundRep problem for other classes
such as circular-arc graphs, circle graphs?

Currently, the only known results are for the classes INT, PROPER INT, and
UNIT INT. Even attacking some simpler problems for these classes might be very
interesting. For instance, solving the partial representation extension problem for
circular-arc graphs could be a major advancement in the area of the restricted
representation problems.
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Abstract. We study the induced subgraph isomorphism problem and the general
subgraph isomorphism problem for small pattern graphs.

We present a new general method for detecting induced subgraphs of a host
graph isomorphic to a fixed pattern graph by reduction to polynomial testing for
non-identity with zero over a field of finite characteristic. It yields new upper
time bounds for several pattern graphs on five vertices and provides an alterna-
tive combinatorial method for the majority of pattern graphs on four and three
vertices. Since our method avoids the large overhead of fast matrix multiplica-
tion, it can be of practical interest even for larger pattern graphs.

Next, we derive new upper time bounds on counting the number of isomor-
phisms between a fixed pattern graph with an independent set of size s and a
subgraph of the host graph. We also consider a weighted version of the counting
problem, when one counts the number of isomorphisms between the pattern graph
and lightest subgraphs, providing a slightly slower combinatorial algorithm.

1 Introduction

The problems of detecting subgraphs or induced subgraphs of a graph that are isomor-
phic to another given graph are classical in algorithmics. They are generally termed
as subgraph isomorphism and induced subgraph isomorphism problems, respectively.
In particular, they include special cases such as well-known NP-hard problems as the
independent set, clique, Hamiltonian cycle or Hamiltonian path problems.

Recently, the detection and/or counting variants of subgraph isomorphism and/or in-
duced subgraph isomorphism have found several applications, e.g., in bio-molecular
networks [1], social networks [18], automatic design of processor systems and network
security [10]. In these applications pattern graphs are typically of fixed size which al-
lows for polynomial-time solutions.

The fastest known general algorithms for the detection and counting variants of sub-
graph isomorphism and induced subgraph isomorphism, where the pattern graph has
k vertices while the host graph has n vertices, run in time O(nω(
k/3�,�(k−1)/3�,�k/3�)
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[7,12,16], where ω(p, q, r) denotes the exponent of fast matrix multiplication for rect-
angular matrices of size np×nq and nq×nr, respectively [15]. For special graph classes
faster algorithms are known (e.g., see [9,13,22]).

In the first part of our paper (Section 3), we study the detection variant of the induced
subgraph isomorphism problem for pattern graphs of fixed size k, while in the second
part (Section 4), we study counting variants of the general subgraph isomorphism prob-
lem for such pattern graphs. We denote the number of vertices and edges in the host
graph by n and m.

Detection of Small Induced Subgraphs: In the literature, besides the naive O(nk)-
time method for the induced subgraph isomorphism, the method reducing the prob-
lem to triangle detection, or counting, respectively, is known when the pattern graph
is an arbitrary fixed graph on k vertices. The underlying triangle problem can be
solved by fast (rectangular) matrix multiplication which yields the upper bound of
O(nω(
k/3�,�(k−1)/3�,�k/3�) for the induced subgraph isomorphism [7,12,16]. Because
fast matrix multiplication algorithms rely on algebra, the aforementioned method can
be classified as non-combinatorial. Since fast matrix multiplication algorithms involve
large overheads, the method is not very practical. The other drawback is that it is not
sensitive to the topology of the pattern graph and yields the same upper bound for any
k-vertex pattern graph (e.g., Kk, i.e., the k-clique).

There are a few known examples of pattern graphs of fixed size k for which one
succeeded to design specific algorithms for induced subgraph isomorphism yielding
asymptotic time upper bounds in terms of n lower than those offered by the aforemen-
tioned triangle based method. The oldest and most striking example is P4, a path on
four vertices, which can be detected in O(n +m) time [3]. The other is P3, the path
on three vertices which can be also detected in O(n+m) time [21], the third example
is the diamond, obtained by removing a single edge from K4, which can be detected
in O(n + m3/2) time [7] (cf. [12] ). The fourth example is a paw which is a triangle
connected to the fourth vertex by an edge, i.e., K3 + e. It can be detected in O(n2.373)
time [17,20]. (Analogous upper bounds hold for the pattern graphs that are the comple-
ment to one of the aforementioned pattern graphs.) Furthermore, an induced subgraph
isomorphic to the generalized diamond Kk − e, i.e., Kk with a single edge removed,
as well as an induced subgraph isomorphic to the path on k vertices, Pk, can be de-
tected in O(nk−1) time [11,21] which improves the triangle based bound from [7] for
k ≤ 5. For recent relative hardness results on detection of specific pattern graphs (e.g.,
Pk, Kp,q, Kk−1 + e, Kk − e, C4) in the induced setting, see [8].

The triangle based method was refined by the use of fast rectangular matrix multipli-
cation in [7] a decade ago. Since then no new general approaches to induced subgraph
isomorphism for fixed pattern graphs have been presented.

We present a new framework for detecting an induced subgraph of fixed size k in
a host graph on n vertices (Section 3). We associate a multivariate polynomial to a
family of pattern graphs on k vertices that share both a subgraph on l vertices and
the edges between the common subgraph and the remaining k − l vertices outside the
subgraph. The monomials of the polynomial are in one-to-one correspondence with
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the pattern graphs in the family and their coefficients are computed on the basis of
the corresponding pattern graphs. If all the coefficients but one share a prime factor p,
we can detect the pattern graph corresponding to the monomial whose coefficient is
not divisible by p, by verifying the polynomial for non-identity with zero over a field
of characteristic p. The crucial part of our proof is showing that the polynomial can
be evaluated in O(nl+1) time, which enables us to use the DeMillo-Lipton-Schwartz-
Zippel lemma for the verification of the polynomial.

By applying our method, we can list eighteen pattern graphs on five vertices that can
be detected in O(n4) time. With the exception of P5 [11] and K5 − e [21], our upper
bounds of O(n4) are new and in particular improve the bounds yielded by the triangle
based method (Corollary 1). We can obtain also the upper time bound of O(nk−1) for
plenty of pattern graphs on k > 5 vertices. Although for so large pattern graphs, we
cannot improve the upper bounds yielded by the triangle based method, the application
of our combinatorial method not relying on fast matrix multiplication can be still be of
practical interest.

For all graphs on four vertices except K4, K1,3 and C4, and their complements,
our method yields the upper bound of O(n3), which is better than that yielded by the
triangle based method. Although our upper bounds for pattern graphs on four vertices
do not improve the known bounds based on different specific methods [7,12,17], they
have the advantage of not relying on the fast matrix multiplication algorithms and of
being sensitive to the topology of the pattern graph. Similarly, for pattern graphs on
three vertices, our method yields the upper bound of O(n2) in all the cases for which
an upper time bound lower than that yielded by the triangle based method is known.

Our main technical contribution in the first part of our paper is as follows.
Let Hk denote the family of single representatives of all isomorphism classes of

undirected graphs on k vertices, and let Hk(l) stand for its subfamily comprised of all
graphs in Hk having an independent set of size at least k − l. Consider H ∈ Hk(l) and
an induced subgraph Hsub of H on l vertices such that the k − l vertices in H \Hsub

form an independent set. Let Hk(Hsub, H) stand for the family of all supergraphs H ′

of H (includingH) such that H ′ has the same vertex set as H , Hsub is also an induced
subgraph of H ′, and the set of edges with endpoints in both Hsub and H ′ \Hsub is the
same as that with endpoints in both Hsub and H \Hsub, see Fig 1.

3v

subH

(a)

1v
v2

H

v3

Hsub

v1 2

(b)

v

H’

Fig. 1. (a) An example of a graph H composed of the induced subgraph Hsub and the vertex set
{v1, v2, v3} that forms an independent set in H . (b) An example of a supergraph H ′ of Hsub in
Hk(Hsub,H).

Finally, for each H ′ ∈ Hk(Hsub, H), let B(Hsub, H,H
′) denote the number of

isomorphisms between Hsub and an induced subgraph of H ′, say Hf
sub, that can be

extended to an isomorphism between H and the subgraph of H ′ consisting of Hf
sub,
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all edges of H ′ incident to Hf
sub and all the remaining vertices of H ′. We obtain the

following result (Theorems 3, 4).

Let F ∈ Hk(Hsub, H), where k = O(1). Suppose that there is a prime number p that
is a factor of B(Hsub, H,H

′) for all H ′ ∈ Hk(Hsub, H), except for H ′ = F. There
is a randomized algorithm that detects if a graph on n vertices contains an induced
subgraph isomorphic to F, with one-sided error probability polynomially small in n
(i.e., O(n−α) for α > 1), in O(nl+1) time. Importantly, for k − l = 2, Hk(Hsub, H)
contains two graphs and it is sufficient to require that p is a prime factor of the number
of automorphisms for the other graph inHk(Hsub, H) but it is not a prime factor of the
number of automorphisms of F.

The idea of associating a polynomial over a finite field to the sought structure has
been already used by Edmonds to detect a perfect matching [6]. It appears in several
recent papers that exploit also the idea of monomial cancellation [2,14].

Counting Subgraph Isomorphisms for Fixed Pattern Graphs: Vassilevska and
Williams studied the counting variant of subgraph isomorphism under the assump-
tion that the k-vertex pattern graph has an independent set of size s [22]. They de-
signed combinatorial algorithms (i.e., not relying on fast matrix multiplication) for this
counting problem running in time O(f(s)nk−s+2) where f is an exponential or super-
exponential function depending only on s. Subsequently, Kowaluk et al. [13] designed
an algorithm for the corresponding detection problem using fast rectangular matrix
multiplication and running in time O(nω(�(k−s)/2�,1,
(k−s)/2�)) ≤ O(nk−s+1) when
k = O(1). They also established an analogous upper bound for the counting variant
when the size s of the independent set is 2.

By a subgraph isomorphism between the pattern graph and the host graph, we shall
mean a one-to-one mapping of vertices in the pattern graph into vertices of the host
graph that preserves vertex adjacency.

In the second part of our paper (Section 4), we present an algorithm for counting
subgraph isomorphisms between a pattern graph with k vertices and an independent set
of cardinality s and a host graph with n vertices. It runs in time
O(nω(�(k−s)/2�,1,
(k−s)/2�)) which matches the upper bound for detection from [13]
and largely extends that for counting showed only for s ≤ 2 in [13]. Our algorithm
relies on a solution to the so called (k − s)-neighborhood problem from [13], which in
turn relies on fast rectangular matrix multiplication.

We also consider a weighted version of the counting problem, where real weights
are assigned to the edges and/or vertices of the host graph, and the task is to count the
number of subgraph isomorphisms between the pattern graph with k vertices containing
an independent set of cardinality s and the host graph with n vertices that minimize the
total weight of the images of the pattern graph. For this more general counting problem
we design a slightly slower combinatorial algorithm running in O(nk−s+1 logn) time
when k = O(1).

In the literature, various weighted versions of the counting variants of subgraph
isomorphisms have been studied solely in terms of the sizes of the pattern and host
graphs, and without any explicit assumption on the size of independent set in the pattern
graph [4,22].
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2 Preliminaries

An isomorphism between two graphsF andG is a one-to-one mapping f of the vertices
of F onto vertices of G such that {u, v} is an edge of F iff {f(u), f(v)} is an edge of
G. If F = G then an isomorphism between F and G is called an automorphism of F.
F is isomorphic to G if there is an isomorphism between F and G.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. Such a subgraphG′ of G is induced if E′ = (V ′ × V ′) ∩ E.

A subgraph isomorphism between two graphs F and G is an isomorphism between
F and a subgraph of G.

The detection version (or equivalently, the decision version) of the subgraph isomor-
phism problem is to decide for a host graph and a pattern graph if the host graph has
a subgraph isomorphic to the pattern graph. The counting version of subgraph isomor-
phism asks for reporting the total number of subgraphs of the host graph isomorphic
to the pattern graph or just the total number of subgraph isomorphisms between these
two graphs. The corresponding versions of induced subgraph isomorphism are defined
analogously by replacing “subgraph” with “induced subgraph”.

Let S be a subgraph of G with an order on its l vertices, or just an ordered subset of
l vertices of G. The S-neighborhood type of a vertex of G is a binary vector b with l
coordinates such that b(i) = 1 iff v is adjacent to the i-th vertex of S for i = 1, ..., l.

The l-neighborhood problem is to determine, for each ordered l-tuple α of vertices
of G and each binary vector b with l coordinates, the number of vertices v in G outside
α whose α-neighborhood type is b.

Fact 1 [13]. The l-neighborhood problem for a graph on n vertices can be solved in
O(n) time for l = 1 and in O(2lnω(�l/2�,1,
l/2�)) time for l ≥ 2.

3 A New Method of Detecting Small Induced Subgraphs

Let H be a pattern graph on k vertices in Hk(l) (see the introduction) and let Hsub be
an induced subgraph of H on l vertices such that the k − l vertices in H \Hsub form
an independent set. Recall the definition of the family Hk(Hsub, H) of supergraphs of
H and the definition of the quantities B(Hsub, H,H

′), for H ′ ∈ Hk(Hsub, H), given
in the introduction. Let SHk(Hsub, H) stand for the family of single representatives of
all isomorphism classes in Hk(Hsub, H), i.e., one graph from each isomorphism class.

Finally, for a pattern graph H and a host graph G, let SI(H,G) be the set of all
subsets of V (G) on |H | vertices that induce a subgraph of G isomorphic to H. Next,
let PI(H,G) denote the multivariate polynomial

∑
S∈SI(H,G)

∏
v∈S xv, and let

P (Hsub, H,G) =
∑

H′∈SHk(Hsub,H)

B(Hsub, H,H
′)PI(H ′, G).

To state our key lemma, for a prime number p, H ∈ Hk(l) and Hsub ∈ Hl, we
define the subset Hp

k(Hsub, H) of Hk(Hsub, H) as the set of all H ′ ∈ Hk(Hsub, H)
for whichB(Hsub, H,H

′) is divisible by p. Also, recall that the characteristic of a ring
or a field is the minimum number of 1 in a sum of ones that yields 0.
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Lemma 1. Let H ∈ Hk(l) and let Hsub be an induced subgraph of H on l vertices
such that the k− l vertices inH \Hsub form an independent set. For a prime number p,
a host graphG contains an induced subgraph isomorphic to a graph in Hk(Hsub, H)\
Hp

k(Hsub, H) iff the polynomial P (Hsub, H,G) is not identical to zero over a field of
characteristic p.

Proof. All the monomials with coefficients B(Hsub, H,H
′), where

H ′ ∈ Hp
k(Hsub, H), vanish over any field of characteristic p. On the other hand, those

with the coefficient B(Hsub, H,H
′), where H ′ ∈ Hk(Hsub, H) \ Hp

k(Hsub, H), (if
any) remain with a non-zero coefficient equal to B(Hsub, H,H

′) mod p. It follows
from the definition of the polynomial P (Hsub, H,G) that it is not identical to zero iff
G contains an induced subgraph isomorphic to a graph inHk(Hsub, H)\Hp

k(Hsub, H).
	


The following lemma on polynomial identity testing has been shown independently
by DeMillo and Lipton, Schwartz, and Zippel.

Lemma 2. [5,19] Let Q(x1, x2, ..., xm) be a nonzero polynomial of degree d over a
field of size r. Then, for f1, f2, ...,fm chosen independently and uniformly at random
from the field, the probability thatQ(f1, f2, ..., fm) is not equal to zero is at least 1− d

r .

The second part of Section 3 is devoted to the proof of the following key theorem.

Theorem 1. Let p be a fixed prime number. For H ∈ Hk(l) and an induced subgraph
Hsub of H on l vertices such that the k − l vertices in H \Hsub form an independent
set, the polynomial P (Hsub, H,G) can be evaluated for a given assignment of values
over a field FpO(log n) of characteristic p in O(nl+1) time.

By combining Lemmata 1, 2, and Theorem 1, we obtain our first main result.

Theorem 2. Let H ∈ Hk(l), let Hsub be an induced subgraph of H on l vertices such
that the k − l vertices in H \Hsub form an independent set, and let p be a fixed prime
number. There is a randomized algorithm that detects if a graph on n vertices contains
an induced subgraph isomorphic to a graph inHk(Hsub, H)\Hp

k(Hsub, H), with one-
sided error probability polynomially small in n, in O(nl+1) time.

Proof. By Lemma 1, it is sufficient to show how to test if the polynomial
P (Hsub, H,G) is not identical to zero, with one-sided error probability polynomially
small in n, in O(nl+1) time.

Note that the polynomial P (Hsub, H,G) is of degree k. We can use Lemma 2
with a field Fpc log n of characteristic p to obtain a randomized test of the polynomial
P (Hsub, H,G) for not being identical to zero with one side error probability not larger
than k

pc log n . For sufficiently large constant c, the error probability is not larger than 1
nα ,

α > 1.
By Theorem 1, the test can be performed in O(nl+1) time. 	


Theorem 3. Let H ∈ Hk(l), let Hsub be an induced subgraph of H on l vertices such
that the k− l vertices in H \Hsub form an independent set, and let F ∈ Hk(Hsub, H),
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where k = O(1). Suppose that there is a prime number p that is a factor of
B(Hsub, H,H

′) for allH ′ ∈ Hk(Hsub, H), except forH ′ = F. There is a randomized
algorithm that detects if a graph on n vertices contains an induced subgraph isomor-
phic to F, with one-sided error probability polynomially small in n, in O(nl+1) time.

Note that in Theorem 3, if k − l = 2 then Hk(Hsub, H) contains two graphs.

Theorem 4. Let H ∈ Hk(k − 2), let Hsub be an induced subgraph of H on k − 2
vertices such that the two vertices in H \ Hsub form an independent set, and let F ∈
Hk(Hsub, H), where k = O(1). Suppose that there is a prime number p that is a factor
of the number of automorphisms of the other H ′ ∈ Hk(Hsub, H) and that is not a
prime factor of the number of automorphisms of F. There is a randomized algorithm
that detects if a graph on n vertices contains an induced subgraph isomorphic to F,
with one-sided error probability polynomially small in n, in O(nk−1) time.

Proof. Let H ′ ∈ Hk(Hsub, H), and let F be the set of all isomorphisms f between
Hsub and an induced subgraph of H ′ satisfying the requirements from the definition of
B(Hsub, H,H

′).
Consider an extension f ′ of f ∈ F to an isomorphism between H and the subgraph

ofH ′ composed of Hf
sub, all edges ofH ′ incident to Hf

sub, and all other vertices ofH ′.
If H ′ = H then f ′ is an automorphism of H ′. Otherwise, H ′ is the other member of
Hk(Hsub, H) obtained by adding the edge between the two independent vertices of H
outside Hsub. Then, f ′ is also an automorphism of H ′ since the only edge in H ′ not
incident toHf

sub has to connect the images by f ′ of the aforementioned two independent
vertices in H.

It follows that each f ∈ F can be identified with the class of all automorphisms of
H ′ that are equal to each other on Hsub. Conversely, each such class yields a distinct
member in F .

We conclude that B(Hsub, H,H
′) is equal to the number of automorphisms of H ′

divided by the number of automorphisms of H ′ that are identity on Hsub. It remains to
observe that the latter number is the same for both members in Hk(Hsub, H). Simply,
for each H ′ ∈ Hk(Hsub, H), the set of automorphisms of H ′ that are identity on Hsub

contains either only the identity automorphism or also the automorphism that switches
the two vertices of H ′ outside Hsub in case their Hsub-neighborhoods types are equal.

	


Efficient Evaluation of P (Hsub, H,G): We shall define a polynomial equivalent with
P (Hsub, H,G) (more precisely, a different decomposition ofP (Hsub, H,G)) and show
that it can be efficiently evaluated. To begin with, we need the following notation and
lemma.

Let α be a fixed ordered l-tuple of vertices of the graph H that induces the sub-
graph Hsub and for any b ∈ {0, 1}l, let ηα,H(b) be the number of vertices of the α-
neighborhood type b in H. By the definition of Hk(Hsub, H), we obtain the following
lemma.

Lemma 3. Let f be an isomorphism between a graph H ′ ∈ Hk(Hsub, H) and a sub-
graph of G induced by a set S of k vertices in V (G) and let αf = (f(α1), ..., f(αl)).
The number of vertices of the αf -neighborhood type b in S equals ηα,H(b).
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For an ordered l-tuple γ of l different vertices in V (G) and for b ∈ {0, 1}l, let
V (γ, b) be the set of all vertices of the γ-neighborhood type b in V (G) \ γ. The poly-
nomialQ(γ,H,G) is defined by

l∏
i=1

xγi

∏
b∈{0,1}l&ηα,H (b) =0

⎛⎝ ∑
U⊆V (γ,b)∧|U|=ηγ,H(b)

∏
v∈U

xv

⎞⎠ .

Lemma 4. Let γ be an ordered l-tuple of vertices in V (G) inducing a subgraph of G
isomorphic to Hsub, and let S be a set of k vertices in V (G). The monomial

∏
v∈S xv

occurs (exactly once) in Q(γ,H,G) iff S includes the vertices of γ and there is an
isomorphism between a graph in Hk(Hsub, H) and the subgraph of G induced by S
that maps the i-th vertex of the l-tuple α on the i-th vertex of the l-tuple γ.

Proof. To begin with, observe that each monomial ofQ(γ,H,G) is unique. If
∏

v∈S xv
occurs in Q(γ,H,G) then S has to include the vertices of γ by the definition of
Q(γ,H,G). Specify a mapping g : V (H) → S such that g(αi) = γi for i = 1, ..., l,
and for each b ∈ {0, 1}l, g maps the j-th vertex of the α-neighborhood type b in V (H)
onto the j-th vertex of the γ-neighborhood type b in S for j = 1, .., ηα,H(b) (for any
orderings of the vertices of the respective type b). Now, observe that g defines an iso-
morphism between some graph in Hk(Hsub, H) and that induced by S in G.

Conversely, if there is an isomorphism f between some graph in Hk(Hsub, H) and
the subgraph ofG induced by S that maps αi on γi for i = 1, .., l, then the l-tuple αf in
Lemma 3 equals γ and hence by this lemma and the definition ofQ(γ,H,G),

∏
v∈S xv

occurs in Q(γ,H,G). 	


Let L be the set of all l-tuples γ of different l vertices such that there is an iso-
morphism between Hsub and the subgraph of G induced by γ that maps αi on γi for
i = 1, ..., l. Next, let Q(Hsub, H,G) =

∑
γ∈LQ(γ,H,G).

The idea behind the following key lemma is as follows. Consider a monomial that
corresponds to a subgraph G′ of G isomorphic to H ′ ∈ Hk(Hsub, H) and occurs
with the coefficient B(Hsub, H,H

′) in P (Hsub, H,G). It occurs once in each of the
Q(β,H,G) forming Q(Hsub, H,G), where there is an extension of the function map-
ping the i-th vertex of α on the i-th vertex of β to a subgraph isomorphism between H
and G′, satisfying the requirements from the definition of B(Hsub, H,H

′). Hence, the
number of such β is B(Hsub, H,H

′).

Lemma 5. The equality P (Hsub, H,G) = Q(Hsub, H,G) holds.

Proof. By the definition of P (Hsub, H,G), if
∏

v∈S xv is a monomial of this polyno-
mial then there is an isomorphism f between a graph in SHk(Hsub, H) and the sub-
graph of G induced by S. Let αf = (f(α1), ..., f(αl)). Then,

∏
v∈S xv is a monomial

in Q(αf , H,G) and hence also in Q(Hsub, H,G).
Conversely, if

∏
v∈S xv is a monomial in Q(Hsub, H,G), i.e., a monomial in

Q(γ,H,G) for some γ ∈ L, then it follows from Lemma 4 that the subgraph of G
induced by S is isomorphic to a graph H ′ in SHk(Hsub, H). Hence, it is also a mono-
mial in P (Hsub, H,G). To show the equality, it remains to show that the monomial
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occurs B(Hsub, H,H
′) times in Q(Hsub, H,G), i.e., that there are B(Hsub, H,H

′)
l-tuples β such that

∏
v∈S xv is a monomial in Q(β,H,G).

An occurrence of
∏

v∈S xv as a monomial inQ(β,H,G) is in one-to-one correspon-
dence with the class of all subgraph isomorphisms between H and the subgraph G′ of
G induced by S that map αi on βi for i = 1, ..., l. It follows from the definition of
B(Hsub, H,H

′) that the number of such l-tuples β is equal to B(Hsub, H,H
′). 	


Proof of Theorem 1. By Lemma 5, it is sufficient to show that Q(Hsub, H,G) can be
evaluated over the field in the claimed time.

The set L of all ordered l-tuples γ of different l vertices such that there is an iso-
morphism between Hsub and the subgraph of G induced by γ that maps αi on γi for
i = 1, ..., l, can be easily computed in O(l2l!nl) = O(nl) time.

For all γ ∈ L, and all b ∈ {0, 1}l, we can compute the sets V (γ, b) of vertices v ∈ V
that have γ-neighborhood of type b in O(2llnl+1) = O(nl+1) time in total.

By the definition of Q(Hsub, H,G), it is sufficient to show that for an arbitrary γ ∈
L, the polynomial Q(γ,H,G) can be evaluated in O(n) time (recall that k = O(1)).
This in turn by l = O(1) reduces to showing that for an arbitrary b ∈ {0, 1}l, the poly-
nomial

∏l
i=1 xγi

∑
U⊆V (γ,b)∧|U|=ηα,H(b)

∏
v∈U xv, can be evaluated in O(n) time.

For i = 1, ..., n, let Xi be the set of variables x1, ..., xi. Next, for a positive in-
teger q, let Cq(Xi) denote the elementary symmetric polynomial of degree q, i.e.,∑

T⊆Xi∧|T |=q

∏
xj∈T xj . For convention, we let C0(Xi) to be 1 in the field. Cq(Xn)

can be evaluated for a given assignment of values over the field by the recurrence
Cq(Xi+1) = xi+1C

q−1(Xi) + Cq(Xi).
For q = O(1), we can evaluate all Cq(Xi) using this recurrence by dynamic pro-

gramming in lexicographic order of (q, i) in O(n) time. It follows from ηα,H(b) =
O(1) that the polynomial∏l

i=1 xγi

∑
U⊆V (γ,b)∧|U|=ηα,H(b)

∏
v∈U xv can be evaluated in O(n) time. 	


To formulate our corollary on applications of Theorem 4 to pattern graphs on five
vertices, we need to introduce the following notation.

A graph on five vertices consisting of P4 and a vertex adjacent to exactly one interior
vertex of the P4 is called a chair. Next, a graph consisting of C4 and a vertex adjacent
to exactly one vertex of the C4 is called a 4-pan.

Corollary 1. The method of Theorem 4 can be used to detect K2 + 3K1, 2K2 +K1,
P3 +2K1, K3 + e+K1, chair, 4− pan, K4− e+K1, P5, P3 +P2 and their respec-
tive complements, as induced subgraphs, with one-sided error probability polynomially
small in n, in O(n4) time.

With the exception of P5 [11] and K5 − e [21], our upper bounds of O(n4) are new.
For the applications of our method to pattern graphs on at most four vertices or on six
vertices the reader is referred to the full version.

4 Counting Subgraph Isomorphisms

Our first method for counting subgraph isomorphisms relies on Fact 1, see Prel.
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Theorem 5. The number of subgraph isomorphisms between a fixed pattern graph with
k vertices and with an independent set on s vertices and a host graph on n vertices can
be computed in time O(nω(�(k−s)/2�,1,
(k−s)/2�)).

Proof. sketch. Let H be the pattern graph on k vertices with an independent set I on
s vertices. Next, let Hsub be the subgraph of H induced by all its l = k − s vertices
outside I . For a vertex v ∈ I, let b(v) denote the Hsub-neighborhood type of v. For
w ∈ {0, 1}l, let tw be the number of vertices v in I for which b(v) = w.

Let G = (V,E) be the host graph on n vertices. Consider an ordered l-tuple α of
vertices in G such that the function fα mapping the i-th vertex of Hsub onto the i-th
vertex of α is a subgraph isomorphism between Hsub and G.

We shall count the number of different subgraph isomorphisms between H and G
that are extensions of the subgraph isomorphism fα between Hsub and G.

For this purpose, we denote the α-neighborhood type of a vertex u in G by bα(u).
For w ∈ {0, 1}l, let nw(α) be the number of vertices u in G outside α for which
bα(u) = w. Also, for two vectors c, d ∈ {0, 1}l, we say that d dominates c if for
i = 1, ..., l, ci ≤ di. For a vector c ∈ {0, 1}l, the vector directly following c in the
lexicographic order (if any) is denoted by suc(c).

Observe that by our definitions, the number of extensions of the subgraph isomor-
phism fα betweenHsub andG to a subgraph isomorphism betweenH andG is equal to
the number of ways we can choose for each w ∈ {0, 1}l an ordered tuple of tw vertices
u inG such that bα(u) dominatesw. It is sufficient to consider solely those w for which
tw �= 0, i.e., there are vertices in H \Hsub whose Hsub-neighborhood type is w.

The extensions can be counted by a straightforward recursive algorithm provided that
the numbers tw and nb(α) are known. If H has O(1) vertices then the algorithm runs
in O(1) time. See the full version for details. Also, the numbers tw can be computed in
O(1) time if H has O(1) vertices.

Note that for two such distinct l-tuples α, the subgraph isomorphisms fα between
Hsub and G are different and thus their extensions to a subgraph isomorphism between
H andG have to be different too. Thus, it is sufficient to sum the numbers of extensions
over such l-tuples α.

We can list all such l-tuples α where the function fα mapping the i-th vertex of
Hsub on the i-th vertex of α is a subgraph isomorphism between Hsub and G in O(nl)
time if l = O(1). Finally, all the numbers nw(α) can be obtained by solving the l-
neighborhood problem in time O(2lnω(�l/2�,1,
l/2�)) by Fact 1. 	


Suppose that the edges and/or vertices of the host graph G have some real weights.
For the problem of counting lightest subgraph isomorphisms between the pattern graph
H and G, i.e., the isomorphisms between H and lightest subgraphs isomorphic to H,
we obtain the following theorem whose proof is given in the full version.

Theorem 6. Let H be a pattern graph on k vertices with an independent set on s
vertices, and let G be a host graph on n vertices with vertex and/or edge real weights.
If k = O(1) then the number of lightest subgraph isomorphisms between H and G can
be computed by a combinatorial algorithm in O(nk−s+1 logn) time.



Detecting and Counting Small Pattern Graphs 557

References

1. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network
motif counting and discovery by color coding. Bioinformatics (ISMB 2008) 24(13), 241–249
(2008)

2. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: Proc. of FOCS 2010, pp.
173–182 (2010)

3. Corneil, D.G., Perl, Y., Stewart, L.K.: A Linear Recognition Algorithm for Cographs. SIAM
J. Comput. 14(4), 926–934 (1985)

4. Czumaj, A., Lingas, A.: Finding a Heaviest Vertex-Weighted Triangle is not Harder than
Matrix Multiplication. SIAM J. Comput. 39(2), 431–444 (2009)

5. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Informa-
tion Processing Letters 7, 193–195 (1978)

6. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stan-
dards Sect. B 7B1, 241–245 (1967)

7. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating
set. Theoretical Computer Science 326(1:3), 57–67 (2004)

8. Floderus, P., Kowaluk, M., Lingas, A., Lundell, E.-M.: Induced subgraph isomorphism: Are
some patterns substantially easier than others? In: Gudmundsson, J., Mestre, J., Viglas, T.
(eds.) COCOON 2012. LNCS, vol. 7434, pp. 37–48. Springer, Heidelberg (2012)

9. Fomin, F.V., Lokshtanov, D., Raman, V., Rao, B.V.R., Saurabh, S.: Faster Algorithms for
Finding and Counting Subgraphs. J. Comput. and Syst. Sci. 78(3), 698–706 (2012)

10. Gelbord, B.: Graphical techniques in intrusion detection systems. In: Proceedings 15th Inter-
national Conference on Information Networks, pp. 253–258 (2001)

11. Hoang, C.T., Kaminski, M., Sawada, J., Sritharan, R.: Finding and listing induced paths and
cycles. Discrete Applied Mathematics 161(4-5), 633–641 (2013)

12. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently.
Information Processing Letters 74(3-4), 115–121 (2000)

13. Kowaluk, M., Lingas, A., Lundell, E.M.: Counting and detecting small subgraphs via equa-
tions and matrix multiplication. SIAM J. Discrete Math. 27(2), 892–909 (2013)

14. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameterized Prob-
lems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

15. Le Gall, F.: Faster Algorithms for Rectangular Matrix Multiplication. In: Proc. of FOCS, pp.
514–523 (2012)
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Abstract. Say that an edge of a graph G dominates itself and every
other edge sharing a vertex of it. An edge dominating set of a graph
G = (V,E) is a subset of edges E′ ⊆ E which dominates all edges of
G. In particular, if every edge of G is dominated by exactly one edge
of E′ then E′ is a dominating induced matching. It is known that not
every graph admits a dominating induced matching, while the problem
to decide if it does admit it is NP-complete. In this paper we consider the
problems of finding a minimum weighted dominating induced matching,
if any, and counting the number of dominating induced matchings of a
graph with weighted edges. We describe an exact algorithm for general
graphs that runs in O∗(1.1939n) time and polynomial (linear) space, for
solving these problems. This improves over the existing exact algorithms
for the problems in consideration.

Keywords: exact algorithms, dominating induced matchings, branch &
reduce.

1 Introduction

Under the widely accepted assumption that P �= NP there are several problems
with important applications for which no polynomial algorithm exists. The need
to get an exact solution for many of those problems has lead to a growing in-
terest in the area of design and analysis of exact exponential time algorithms
for NP-Hard problems [14,25]. Even a slight improvement of the base of the
exponential running time may increase the size of the instances being tractable.
There has been many new and promising advances in recent years towards this
direction [1,2].
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In this paper we give an exact algorithm for the weighted and counting ver-
sions of the problem Dominating Induced Matching (also known as DIM or Effi-
cient Edge Domination) which has been extensively studied [3,4,5,7,8,17,9,20,21].
Further notes about this problem and some applications related to encoding the-
ory, network routing and resource allocation can be found in [15,19].

The unweighted version of the DIM problem is known to be NP-complete [15],
even for planar bipartite graphs of maximum degree 3 [3] or regular graphs [9].
There are polynomial time algorithms for some classes, such as chordal graphs
[20], generalized series-parallel graphs [20] (both for the weighted problem),
claw-free graphs [7], graphs with bounded clique-width [7], hole-free graphs [3],
convex graphs [17], dually-chordal graphs [4], P7-free graphs [5], bipartite per-
mutation graphs [21], AT-free graphs [4], interval-filament graphs [4], weakly
chordal graphs [4]. See also [6].

If P �= NP it is not possible to solve this problem in polynomial time, hence
it becomes important to improve the exponential algorithm in order to identify
instances that can be solved within reasonable time.

A straightforward brute-force algorithm using an alternative definition of the
problem explained later to solve the weighted DIM requires O∗(2n) time and
polynomial space.

The paper [18] describes an algorithm for solving the weighted DIM problem
in O∗(1.7818n), time while requiring O(n + m) time, if the graph contains a
vertex dominating set of fixed size. In the same work another approach based
on enumerating maximal independent sets allows to solve both DIM problems
(minimum weighted problem and counting problem) in O∗(1.4423n) time. There
is also an O∗(1.5849n) algorithm from [16].

The minimum weighted DIM problem can be expressed as an instance of the
maximum weighted independent set (MWIS) problem on the square of the line
graph L(G) of G, and also as an instance of the minimum weighted dominating
set problem on L(G), by slightly adjusting the models [4,22] for the unweighted
DIM problem. The MWIS problem can be solved in O∗(1.2377n) time [24] (how
one obtains an algorithm for MWIS from an algorithm for weighted 2-Sat is
described in [10]). On the other hand, the minimum weighted dominating set
problem can be solved in time O∗(1.5535n) [12], and the special case where the
weights are polynomially bounded in time O∗(1.5048n) [23]. Hence the minimum
weighted DIM problem for a graphG can be solved by using the L2(G) algorithm
in O∗(1.2377m) time using the MWIS algorithm and in O∗(1.5048m) time using
the minimum weighted dominating set algorithm.

For the counting problem, there exist algorithms such as [11] which can be used
to count the number ofMWIS’s inO∗(1.3247n) time, leading anO∗(1.3247m) time
algorithm to count the numbers of DIM’s.

In this paper, we propose an algorithm for solving the problems of finding the
minimum weighted DIM and that of counting the DIM’s in O(m · 1.1939n) ∈
O∗(1.1939n) time and O(m) space in general graphs, which improves over the
existing algorithms. We employ techniques described in [14] for the analysis of
our algorithm, and as such we use their terminology. The proposed algorithm
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was designed using the branch & reduce paradigm. More information about this
design technique as well as the running time analysis for this kind of algorithms
can be found in [14].

2 Preliminaries

By G(V,E) we denote a simple undirected graph with vertex set V and edge set
E, n = |V | and m = |E|. We consider G as a weighted graph, that is, one in
which there is a non-negative real value, denoted weight(vw) assigned to each
edge vw of G. If v ∈ V and V ′ ⊆ V , then denote by N(v), the set of vertices
adjacent (neighbors) to v, denote d(v) = |N(v)| the degree of the vertex, denote
by G[V ′] the subgraph of G induced by V ′, and write NV ′(v) = N(v)∩V ′. Some
special graphs or vertices are of interest for our purposes. A graph formed by
two triangles having a common edge is called a diamond. By removing an edge
incident to a vertex of degree 2 of a diamond, we obtain a paw. Finally, a vertex
of degree 1 is called pendant.

Given an edge e ∈ E, say that e dominates itself and every edge sharing a
vertex with e. Subset E′ ⊆ E is an induced matching of G if each edge of G is
dominated by at most one edge in E′. A dominating induced matching (DIM) of
G is a subset of edges which is both dominating and an induced matching. Not
every graph admits a DIM, and the problem of determining whether a graph
admits it is also known in the literature as efficient edge domination problem.
The weighted version of DIM problem is to find a DIM such that the sum of the
weights of its edges is minimum among all DIM’s, if any. The counting version of
the problem consists on counting the number of DIM’s of the graph. We assume
the weights to be non-negative. However, the methods can be easily extended to
the case of negative weights, without increasing the complexity of the algorithms.

It is not hard to see that every DIM is a maximum induced matching, and
hence the number of edges of every DIM in G is the same. Therefore it is straight-
forward to modify the graph in order to solve the problem with non-negative
weights and then transform it back to the original graph.

We assume the graph G to be connected, otherwise, the DIM of G is the
union of the DIM’s of its connected components, and so we can restrict to the
connected case.

We will use an alternative definition [8] of the problem of finding a dominating
induced matching. It asks to determine if the vertex set of a graph G admits a
partition into two subsets. The vertices of the first subset are called white and
induce an independent set of the graph, while those of the second subset are
named black and induce an 1-regular graph.

A straightforward brute-force algorithm for finding the DIM of a graph G
consists in finding all bipartitions of V (G), color one of the parts as white, the
other as black, and checking if the result is a valid DIM. The complexity of this
algorithm is O(2n ·m) ∈ O∗(2n).
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3 Extensions of Colorings

Assigning one of the two possible colors, white or black, to vertices of G is called
a coloring of G. A coloring is partial if only part of the vertices of G have been
assigned colors, otherwise it is total. A black vertex is single if it has no black
neighbor, and is paired if it has exactly one black neighbor. Each coloring, partial
or total, can be valid or invalid.

Next, we describe the natural conditions for determining if a coloring is valid
or invalid.

Definition 1. RULES FOR VALIDATING COLORINGS:

A partial coloring is valid whenever:

(V1). No two white vertices are adjacent, and
(V2). Each black vertex is either single or paired. Each single vertex has some

uncolored neighbor.

A total coloring is valid whenever:

(V3). No two white vertices are adjacent, and
(V4). Each black vertex is paired.

Lemma 1. There is a one-to-one correspondence between total valid colorings
and dominating induced matchings of a graph.

Proof: It follows from the definitions. �

For a coloring C of the vertices of G, denote by C−1(white) and C−1(black),
the subsets of vertices colored white and black. A coloring C′ is an extension of
a C if C−1(black) ⊆ C′−1(black) and C−1(white) ⊆ C′−1(white). For V ′, V ′′ ⊂
V (G) if C′ is obtained from C by adding to it the vertices of V ′ with the color
black and those of V ′′ with the color white then write C = C′ ∪BLACK(V ′)∪
WHITE(V ′′).

Given a partial coloring C, the basic idea of the algorithm is to iteratively
find extensions C′ of C, until eventually a total valid coloring is reached. It
follows from the validation rules that if C is invalid, so is C′. Therefore, the al-
gorithm keeps checking for validation, and would discard an extension whenever
it becomes invalid.

Basically, there are two different ways of possibly extending a coloring, using
propagation rules and branching rules. At the beginning, there are partial col-
orings C which force the colors of some of the so far uncolored vertices, leading
to an extension C′ of C. In this case, say that C′ has been obtained from C by
propagation. The following is a convenient set of rules, whose application may
extend C, in the above described way.
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Lemma 2. RULES FOR PROPAGATING COLORS:
The following are forced colorings for the extensions of a partial coloring of G.

(P1). The degree-3 vertices of a diamond must be black and the remaining ones
must be white

(P2). The neighbor of a pendant vertex must be black
(P3). Each neighbor of a white vertex must be black
(P4). Except for its pair, the neighbors of a paired (black) vertex must be white
(P5). Each vertex with two black neighbors must be white
(P6). If a single black vertex has exactly one uncolored neighbor then this neigh-

bor must be black
(P7). In an induced paw, the two odd-degree vertices must have different colors
(P8). In an induced C4, adjacent vertices must have different colors
(P9) If ∀v ∈ NU (s), N [v] ⊆ N [s] where s is a single (black vertex) then an

uncolored neighbor v of s minimizing weight(sv) must be black. Break ties
arbitrarily. We require rules (P1). and (P8). to be applied before (P9).

Lemma 3. [3] If G contains a K4 then G has no DIM.

Say that a coloring C is empty if all vertices are uncolored. Let C be a valid
coloring and C′ an extension of it, obtained by the application of the propagation
rules. If C = C′ then C is called stable. On the other hand, if C �= C′ then C′ is
not necessarily valid. Therefore, after applying iteratively the propagation rules,
we reach an extension which is either invalid or stable. In order to possibly extend
a stable coloring C, we apply branching rules. Any coloring directly obtained
by these rules is not forced. Instead, in each of the these rules, there are two
possibly conflicting alternatives leading to distinct extensions C′1, C

′
2 of C. Each

of C′1 or C
′
2 may be independently valid or invalid. The next lemma describes the

branching rules. We remark that there exist simpler branching rules. However,
using the rules below we obtain a sufficient number of vertices that get forced
colorings, through the propagation which follow the application of any branching
rule, so as to guarantee a decrease of the overall complexity of the algorithm.
The complexity obtained relies heavily on this fact.
In general, we adopt the following notation. If C is a stable coloring then S
denotes the set of single vertices of it , U is the set of uncolored vertices and
T = U \ ∪s∈SNU (s).

Lemma 4. BRANCHING RULES
Let C be a partial (valid) stable coloring of a graph G. At least one of the following
alternatives can be applied to define extensions C′1, C

′
2 of C.

(B1) If C is an empty coloring: choose an arbitrary vertex v then
C′1 := C ∪BLACK({v}) and C′2 := C ∪WHITE({v})

(B2) If ∃ edge vw s.t. v ∈ NU (s) and w ∈ NU (s
′), for some s, s′ ∈ S, s �= s′

then C′1 := C ∪BLACK({v}) and C′2 := C ∪WHITE({v})
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(B3) For some s ∈ S, if ∃v ∈ NU (s) s.t. ∃w ∈ NT (v):

B3(a) If |NU (s)| �= 3∨d(w) �= 3∨|NT (v)| ≥ 2 then C′1 := C∪BLACK({v})
and C′2 := C ∪WHITE({v}).

B3(b) If |NU (s)| = 3 ∧ d(w) = 3 ∧NT (v) = {w}, let NU (s) = {v, v′, v′′}.

B3(b).i If NU (v
′) = NU (v

′′) = ∅ then C′1 := C ∪ BLACK({v}) and
C′2 := C ∪WHITE({v})

B3(b).ii If NU (v
′) �= ∅, let w′ ∈ NT (v

′), with w′ �= w. If
|N(w) ∪ N(w′)| > 5 or ww′ /∈ E(G) then C′1 := C ∪ BLACK({v})
and C′2 := C ∪WHITE({v})

B3(b).iii If NU (v
′) �= ∅, let w′ ∈ NT (v

′), with w′ �= w. If ww′ ∈ E(G)
and z ∈ N(w) ∩ N(w′) then C′1 := C ∪ BLACK({v′′}), while
if weight(sv) + weight(w′z) ≤ weight(sv′) + weight(wz) then
C′2 := C ∪BLACK({v}), otherwise C′2 := C ∪BLACK({v′})

Each rule is applied after the previous rule, that is, if the condition of the
previous case is not verified in the entire graph. Note that this applies to subitems
of case (B3).

4 The Algorithm

The lemmas described in the last section lead to an exact algorithm for finding
a minimum weight DIM of a graph G, if any.

In the initial step of the algorithm, we find the set K4 containing the K4’s
of G. If K4 �= ∅, by Lemma 3, G does not have DIM’s, and terminate the
algorithm. Otherwise, define the set COLORINGS to contain through the pro-
cess the candidates colorings to be examined and eventually extended. Next,
include in COLORINGS an empty coloring. In the general step, we choose any
coloring C from COLORINGS and remove it from this set. Then iteratively
propagate the coloring by Lemma 2 into an extension C′ of it, and validate the
extension by Definition 1 The iterations are repeated until one of the following
situations is reached: C′ is invalid, C′ is a total valid coloring, or a partial stable
(valid) coloring. In the first alternative, C′ is discarded and a new coloring from
COLORINGS is chosen. If C′ is a a total valid coloring, find its weight and if
smaller than the least weight so far obtained, it becomes the current candidate
for the minimum weight of a DIM of G. Finally, when C′ is stable we extended
it by branching rules: choose the first rule of Lemma 4 satisfying C′, compute
the extensions C′ and C′′, insert them in COLORINGS, select a new coloring
from COLORINGS and repeat the process.

The formulation below describes the details. The propagation and vali-
dation of a coloring C are performed by the procedure PROPAGATE −
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V ALIDATE(C,RESULT ). At the end, the returned coloring corresponds to
the extension C′ of C, after iteratively applying propagation. The variable
RESULT indicates the outcome of the validation analysis. If C′ is invalid then
RESULT is ‘invalid’; if C′ is a valid total coloring then it contains ‘total’,
and otherwise RESULT equals ‘partial’. Finally, BIFURCATE(C,C′1, C

′
2)

computes the extensions C′1 and C′2 of C.

Algorithm Minimum Weighted DIM / Counting DIM

1. Find the subset K4
if K4 �= ∅ then terminate the algorithm: G has no DIM

SOLUTION := NODIM
2. COLORINGS := {C}, where C is an empty coloring
3. while COLORINGS �= ∅ do

a. choose C ∈ COLORINGS and remove it from COLORINGS
b. PROPAGATE − V ALIDATE(C,RESULT )
c. if RESULT = ‘total’ and weight(C) < SOLUTION then

SOLUTION := weight(C)
else if RESULT = ‘partial’ then

Set C′1 and C′2 according to branching RULES on C
COLORINGS := COLORINGS ∪ {C′1, C′2}

end if

4. Output SOLUTION

procedure PROPAGATE − V ALIDATE(C,RESULT )

Comment Phase 1: Propagation
1. C′ := C
2. repeat

C := C′

C′ := extension of C obtained by the PROPAGATION RULES until
C = C′

Comment Phase 2: Validation
3. Using the VALIDATION RULES 1 do as follows:

if C is an invalid coloring then return (C, ‘invalid’)
else if C is a partial coloring then return (C,‘partial’)
else return (C, ‘total’)

5 Correctness and Complexity

It is easy to see that our algorithm fits the branch & reduce paradigm [14]. The
propagation rules can be mapped into reduction rules.

Theorem 1. The algorithm described in the previous section correctly computes
the minimum weight of a dominating induced matching of a graph G.

Proof: The correctness of the algorithm follows from the fact that the al-
gorithm considers all colorings that represent a DIM that can have minimum



An O∗(1.1939n) Time Algorithm for Minimum Weighted DIM 565

weight. Lemmas 2 and 4 are applied to extend partial colorings. Invalid colorings
are discarded, while valid colorings are further extended, except if some other
valid coloring representing a better DIM (with less weight) appeared before.

For proving the worst-case running time upperbound for the algorithm we
will use the following useful definition and theorem.

Definition 2. [14] Let b a branching rule and n the size of the instance. Suppose
rule b branches the current instance into r ≥ 2 instances of sizes respectively at
most n−t1, n−t2, . . . , n−tr, for all instances of size n ≥ max{ti : i = 1, 2, . . . , r}.
Then we call b = (t1, t2, . . . , tr) the branching vector of branching rule b.

The branching vector b = (t1, t2, . . . , tr) implies the linear recurrence T (n) ≤
T (n− t1) + T (n− t2) + . . . , T (n− tr).

Theorem 2. [14] Let b be a branching rule corresponding to the branching vec-
tor (t1, t2, . . . , tr). Then the running time of the branching algorithm using only
branching rule b is O∗(αn), where α is the unique positive real root of

xn − xn−t1 − xn−t2 − . . .− xn−tr = 0

The unique positive real root α is the branching factor of the branching vector
b. We denote the branching factor of (t1, t2, . . . , tr) by τ(t1, t2, . . . , tr).

Therefore for analyzing the running time of a branching algorithm we can
compute the factor αi for every branch rule bi, and an upper bound of the
running time of the branching algorithm is obtained by taking α = maxiαi and
the result is an upper bound for the running time of O∗(αn).

The upper bound is obtained by counting the leaves of the search tree given by
the algorithm, using the fact that each leaf can be executed in polynomial time.
The complexity of the algorithm without hiding the polynomial factor depends
on the time for the execution of each branch in the search tree.

Further notes on this topic can be found in [14]

Theorem 3. The algorithm above described requires O∗(1.1939n) time and
O(n+m) space for completion.

6 Counting the Number of DIM’s

The previous algorithm can be easily adapted to count the number of DIM’s.
Given a coloring C we define TV C(C) the number of total valid colorings that
can be extended from C. If we apply any propagation rule to coloring C we
obtain a coloring C ′. Clearly TV C(C) = TV C(C′), except for rule (P9). In the
latter case TV C(C) = TV C(C′) · |NU (s)| where s is the single vertex chosen to
apply the rule.

If we apply any branching rule to coloring C we obtain two extended colorings
C′1 and C′2. Clearly TV C(C) = TV C(C′1) + TV C(C′2), except for rule B3(b).iii.
In the latter case TV C(C) = TV C(C′1) + 2 · TV C(C′2).

Using the above facts it is trivial to modify the algorithm to solve the counting
problem.
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Abstract. In this paper, we study the approximability of the metric
Traveling Salesman Problem (TSP) and prove new explicit inapprox-
imability bounds for that problem. The best up to now known hardness
of approximation bounds were 185/184 for the symmetric case (due to
Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and
Vempala). We construct here two new bounded occurrence CSP reduc-
tions which improve these bounds to 123/122 and 75/74, respectively.
The latter bound is the first improvement in more than a decade for the
case of the asymmetric TSP. One of our main tools, which may be of
independent interest, is a new construction of a bounded degree wheel
amplifier used in the proof of our results.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best known and most
fundamental problems in combinatorial optimization. Determining how well it
can be approximated in polynomial time is therefore a major open problem, al-
beit one for which the solution still seems elusive. On the algorithmic side, the
best known efficient approximation algorithm for the symmetric case is still a
35-year old algorithm due to Christofides [9] which achieves an approximation
ratio of 3/2. However, recently there has been a string of improved results for the
interesting special case of Graphic TSP, improving the ratio to 7/5 [18,16,17,21].
For the asymmetric case (ATSP), it is not yet known if a constant-factor ap-
proximation is even possible, with the best known algorithm achieving a ratio
of O(log n/ log logn) [2].
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Unfortunately, there is still a huge gap between the algorithmic results men-
tioned above and the best currently known hardness of approximation results
for TSP and ATSP. For both problems, the known inapproximability thresh-
olds are small constants (185/184 and 117/116 (cf. [15,19]), respectively). In
this paper, we try to improve this situation somehow by giving modular hard-
ness reductions that slightly improve the hardness bounds for both problems to
123/122 and 75/74, respectively. The latter bound is the first, for more than
a decade now, improvement of Papadimitriou and Vempala bound [19] for the
ATSP. The method of our solution differs essentially from that of [19] and uses
some new paradigms of the bounded occurrence optimization which could be
also of independent interest in other applications. Similarly to [15], the hope
is that the modularity of our construction, which goes through an intermedi-
ate stage of a bounded-occurrence Constraint Satisfaction Problem (CSP), will
allow an easier analysis and simplify future improvements. Indeed, one of the
main new ideas we rely on is a certain new variation of the wheel amplifiers
first defined by Berman and Karpinski [4] to establish inapproximability for 3-
regular CSPs. This construction, which may be of independent interest, allows
us to establish inapproximability for a 3-regular CSP with a special structure.
This special structure then makes it possible to simulate many of the constraints
in the produced graph essentially “for free”, without using gadgets to represent
them. Thus, even though for the remaining constraints we mostly reuse gad-
gets which have already appeared in the literature, we are still able to obtain
improved bounds.

Let us now recall some of the previous work on the hardness of approximation
of TSP and ATSP. Papadimitriou and Yannakakis [20] were the first to construct
a reduction that, combined with the PCP Theorem [1], gave a constant inap-
proximability threshold, though the constant was not more than 1+10−6 for the
TSP with distances either one or two. Engebretsen [10] gave the first explicit ap-
proximation lower bound of 5381/5380 for the problem. The inapproximability
factor was improved to 3813/3812 by Böckenhauer and Seibert [8], who studied
the restricted version of the TSP with distances one, two and three. Papadim-
itriou and Vempala [19] proved that it is NP -hard to approximate the TSP
with a factor better than 220/219. Presently, the best known approximation
lower bound is 185/184 due to Lampis [15].

The important restriction of the TSP, in which we consider instances with
distances between cities being values in {1, . . . , B}, is often referred to as the
(1, B)-TSP. The best known efficient approximation algorithm for the (1, 2)-TSP
has an approximation ratio 8/7 and is due to Berman and Karpinski [6]. As for
lower bounds, Engebretsen and Karpinski [11] gave inapproximability thresh-
olds for the (1, B)-TSP problem of 741/740 for B = 2 and 389/388 for B = 8.
More recently, Karpinski and Schmied [13,14] obtained improved inapproxima-
bility factors for the (1, 2)-TSP and the (1, 4)-TSP of 535/534 and 337/336,
respectively.

For ATSP the currently best known approximation lower bound was 117/116
due to Papadimitriou and Vempala [19]. When we restrict the problem to dis-
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tances with values in {1, . . . , B}, there is a simple approximation algorithm with
approximation ratio B that constructs an arbitrary tour as solution. Bläser [7]
gave an efficient approximation algorithm for the (1, 2)-ATSP with approxima-
tion ratio 5/4. Karpinski and Schmied [13,14] proved that it is NP -hard to
approximate the (1, 2)-ATSP and the (1, 4)-ATSP within any factor less than
207/206 and 141/140, respectively. For the case B = 8, Engebretsen and Karpin-
ski [11] gave an inapproximability bound of 135/134.

Overview: In this paper we give a hardness proof which proceeds in two steps.
First, we start from the MAX-E3-LIN2 problem, in which we are given a system
of linear equations mod 2 with exactly three variables in each equation and we
want to find an assignment such as to maximize the number of satisfied equations.
Optimal inapproximability results for this problem were shown by H̊astad [12].
We reduce this problem to a special case where variables appear exactly 3 times
and the linear equations have a particular structure. The main tool here is a new
variant of the wheel amplifier graphs of Berman and Karpinski [4].

In the second step, we reduce this 3-regular CSP to TSP and ATSP. The
general construction is similar in both cases, though of course we use different
gadgets for the two problems. The gadgets we use are mostly variations of gadgets
which have already appeared in previous reductions. Nevertheless, we manage to
obtain an improvement by exploiting the special properties of the 3-regular CSP.
In particular, we show that it is only necessary to construct gadgets for roughly
one third of the constraints of the CSP instance, while the remaining constraints
are simulated without additional cost using the consistency properties of our
gadgets. This idea may be useful in improving the efficiency of approximation-
hardness reductions for other problems.

Thus, overall we follow an approach unlike that of [19], where the reduction
is performed in one step, and closer to [15]. The improvement over [15] comes
mainly from the idea mentioned above, which is made possible using the new
wheel amplifiers, as well as several other tweaks. The end result is a more eco-
nomical reduction which improves the bounds for both TSP and ATSP. An
interesting question may be whether our techniques can also be used to de-
rive improved inapproximability results for variants of the ATSP and TSP (cf.
[11],[14] and [13]) or other graph problems, such as the Steiner Tree problem.

2 Preliminaries

In the following, we give some definitions concerning directed (multi-)graphs and
omit the corresponding definitions for undirected (multi-)graphs if they follow
from the directed case. Given a directed graphG = (V (G), E(G)) andE′ ⊆ E(G),
for e = (x, y) ∈ E(G), we define V (e) = {x, y} and V (E′) =

⋃
e∈E′ V (e). For

convenience, we abbreviate a sequence of edges (x1, x2), (x2, x3), . . . , (xn−1, xn)
by x1 → x2 → x3 → . . .→ xn−1 → xn. In the undirected case, we use sometimes
x1−x2−x3−. . .−xn−1−xn instead of {x1, x2}, {x2, x3}, . . . , {xn−1, xn}. Given a
directed (multi-)graphG, an Eulerian cycle in G is a directed cycle that traverses
all edges of G exactly once. We refer to G as Eulerian, if there exists an Eulerian
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cycle in G. For a multiset ET of directed edges and v ∈ V (ET ), we define the
outdegree (indegree) of v with respect to ET , denoted by outdT (v) (indT (v)), to
be the number of edges in ET that are outgoing of (incoming to) v. The balance
of a vertex v with respect to ET is defined as balT (v) = indT (v) − outdT (v). In
the case of a multiset ET of undirected edges, we define the balance balT (v) of a
vertex v ∈ V (ET ) to be one if the number of incident edges in ET is odd and zero
otherwise. We refer to vertices v ∈ V (ET ) with balT (v) = 0 as balanced with re-
spect to ET . It is well known that a (directed) (multi-)graph G = (V (G), E(G))
is Eulerian if and only if all edges are in the same (weakly) connected component
and all vertices v ∈ V (G) are balanced with respect to E(G).

Given a multiset of edges ET , we denote by conT the number of (weakly) con-
nected components in the graph induced by ET . A quasi-tour ET in a (directed)
graph G is a multiset of edges from E(G) such that all vertices are balanced
with respect to ET and V (ET ) = V (G). We refer to a quasi-tour ET in G as a
tour if conT = 1. Given a cost function w : E(G)→ R+, the cost of a quasi-tour
ET in G is defined by

∑
e∈ET

w(e) + 2(conT − 1).
In the Asymmetric Traveling Salesman problem (ATSP), we are given a di-

rected graph G = (V (G), E(G)) with positive weights on edges and we want
to find an ordering v1, . . . , vn of the vertices such as to minimize dG(vn, v1) +∑

i∈[n−1] dG(vi, vi+1), where dG denotes the shortest path distance in G.
In this paper, we will use the following equivalent reformulation of the ATSP:

Given a directed graph G with weights on edges, we want to find a tour ET in
G, that is, a spanning connected multi-set of edges that balances all vertices,
with minimum cost.

The metric Traveling Salesman problem (TSP) is the special case of the ATSP,
in which instances are undirected graphs with positive weights on edges.

3 Bi-Wheel Amplifiers

In this section, we define the bi-wheel amplifier graphs which will be our main
tool for proving hardness of approximation for a bounded occurrence CSP with
some special properties. Bi-wheel amplifiers are a simple variation of the wheel
amplifier graphs given in [4]. Let us first recall some definitions (see also [5]).

If G is an undirected graph and X ⊂ V (G) a set of vertices, we say that G is
a Δ-regular amplifier for X if the following two conditions hold:

(i) All vertices of X have degree Δ−1 and all vertices of V (G)\X have degree
Δ.

(ii) For every non-empty subset U ⊂ V (G), we have the condition that
|E(U, V (G)\U)| ≥ min{ |U ∩X |, |(V (G)\U)∩X | }, where E(U, V (G)\U) = {e ∈
E(G) | 1 = |U ∩ e|}.
We refer to the set X as the set of contact vertices and to V (G)\X as the set
of checker vertices. Amplifier graphs are useful in proving inapproximability for
CSPs, in which every variable appears a bounded number of times. Here, we will
rely on 3-regular amplifiers. A probabilistic argument for the existence of such
graphs was given in [4], with the definition of wheel amplifiers.
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A wheel amplifier with 2n contact vertices is constructed as follows: first
construct a cycle on 14n vertices. Number the vertices 1, 2 . . . , 14n and select
uniformly at random a perfect matching of the vertices whose number is not a
multiple of 7. The matched vertices will be our checker vertices, and the rest our
contacts. It is easy to see that the degree requirements are satisfied.

Berman and Karpinski [4] gave a probabilistic argument to prove that with
high probability the above construction indeed produces an amplifier graph, that
is, all partitions of the sets of vertices give large cuts. Here, we will use a slight
variation of this construction, called a bi-wheel.

A bi-wheel amplifier with 2n contact vertices is constructed as follows: first
construct two disjoint cycles, each on 7n vertices and number the vertices of each
1, 2 . . . , 7n. The contacts will again be the vertices whose number is a multiple
of 7, while the remaining vertices will be checkers. To complete the construction,
select uniformly at random a perfect matching from the checkers of one cycle to
the checkers of the other.

Intuitively, the reason that amplifiers are a suitable tool here is that, given a
CSP instance, we can use a wheel amplifier to replace a variable that appears 2n
times with 14n new variables (one for each wheel vertex) each of which appears
3 times. Each appearance of the original variable is represented by a contact
vertex and for each edge of the wheel we add an equality constraint between the
corresponding variables. We can then use the property that all partitions give
large cuts to argue that in an optimal assignment all the new vertices take the
same value.

Before we apply the construction, we have to prove that the bi-wheel amplifiers
still have the desired amplification properties. The proof of the following theorem
is given in the full version of this paper.

Theorem 1. With high probability, bi-wheels are 3-regular amplifiers.

4 Hybrid Problem

By using the bi-wheel amplifier from the previous section, we are going to prove
hardness of approximation for a bounded occurrence CSP with very special
properties. This particular CSP will be well-suited for constructing a reduction
to the TSP given in the next section.

As the starting point of our reduction, we make use of the inapproximability
result due to H̊astad [12] for the MAX-E3LIN2 problem, which is defined as
follows: Given a system I1 of linear equations mod 2, in which each equation is
of the form xi⊕xj ⊕xk = bijk with bijk ∈ {0, 1}, we want to find an assignment
to the variables of I1 such as to maximize the number of satisfied equations.

Let I1 be an instance of the MAX-E3LIN2 problem and {xi}νi=1 the set of
variables, that appear in I1. We denote by d(i) the number of appearances of xi
in I1.
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Theorem 2 (H̊astad [12])
For every ε > 0, there exists a constant Bε such that given an instance I1 of

the MAX-E3LIN2 problem with m equations and maxi∈[ν] d(i) ≤ Bε, it is NP -
hard to decide whether there is an assignment that leaves at most ε ·m equations
unsatisfied, or all assignment leave at least (0.5− ε)m equations unsatisfied.

Similarly to the work by Berman and Karpinski [3] (see also [4] and [5]), we
will reduce the number of occurrences of each variable to 3. For this, we will
use our amplifier construction to create special instances of the Hybrid problem,
which is defined as follows: Given a system I2 of linear equations mod 2 with
either three or two variables in each equation, we want to find an assignment
such as to maximize the number of satisfied equations.

In particular, we will use the following theorem, whose proof appears in the
full version of this paper.

Theorem 3. For every constant ε > 0 and b ∈ {0, 1}, there exist instances
of the Hybrid problem with 31m equations such that: (i) Each variable occurs
exactly three times. (ii) 21m equations are of the form x⊕ y = 0, 9m equations
are of the form x⊕ y = 1 and m equations are of the form x⊕ y⊕ z = b. (iii) It
is NP -hard to decide whether there is an assignment to the variables that leaves
at most ε ·m equations unsatisfied, or every assignment to the variables leaves
at least (0.5− ε)m equations unsatisfied.

5 TSP

This section is devoted to the proof of the following theorem.

Theorem 4. It is NP -hard to approximate the TSP to within any constant
approximation ratio less than 123/122.

Let us first sketch the high-level idea of the construction. Starting with an
instance of the Hybrid problem, we will construct a graph, where gadgets repre-
sent the equations. We will design gadgets for equations of size three (Figure 1)
and for equations of size two corresponding to matching edges of the bi-wheel
(Figure 2). We will not construct gadgets for the cycle edges of the bi-wheel;
instead, the connections between the matching edge gadgets will be sufficient to
encode these extra constraints. This may seem counter-intuitive at first, but the
idea here is that if the gadgets for the matching edges are used in a consistent
way (that is, the tour enters and exits in the intended way) then it follows that
the tour is using all edges corresponding to one wheel and none from the other.
Thus, if we prove consistency for the matching edge gadgets, we implicitly get
the cycle edges “for free”. This observation, along with an improved gadget for
size-three equations and the elimination of the variable part of the graph, are
the main sources of improvement over the construction of [15].

The Construction: In order to ensure that some edges are to be used at least
once in any valid tour, we apply the following simple trick that was already used
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in the work by Lampis [15]: Let e be an edge with weight w that we want to
be traversed by every tour. We remove e and replace it with a path of L edges
and L − 1 newly created vertices each of degree two, where we think of L as
a large constant. Each of the L edges has weight w/L and any tour that fails
to traverse at least two newly created edges is not connected. Any tour that
traverses all but one of those edges can be extended by adding two copies of
the unused edge increasing the cost of the underlying tour by a negligible value.
In summary, we may assume that our construction contains forced edges that
need to be traversed at least once by any tour. If x and y are vertices, which are
connected by a forced edge e, we write {x, y}F or simply x−F y. In the following,
we refer to unforced edges e with w(e) = 1 as simple. All unforced edges in our
construction will be simple.
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Fig. 1. Gadgets simulating equations with three variables in the symmetric case (a)
and in the asymmetric case (b). Dotted and straight lines represent forced and simple
edges, respectively.

Description of the corresponding graph GS : For each bi-wheel Wp, we con-
struct the subgraph Gp of GS . For each vertex of the bi-wheel, we create a vertex
in Gp and for each cycle equation x ⊕ y = 0, we create a simple edge {x, y}.
Given a matching equation xui ⊕ xnj = 1, we connect the vertices xui and xnj
via two forced edges {xui , xnj }1F and {xui , xnj }2F with w({xui , xnj }iF ) = 2 for each
i ∈ {1, 2}. Additionally, we create a central vertex s that is connected to gadgets
simulating equations with three variables. Due to Theorem 3, we may assume
that equations with three variables in I2 are all of the form x⊕y⊕z = 0. For the
j-th equation with three variables in I2, we now create the graph G3S

j displayed
in Figure 1 (a), where the (contact) vertices for x, y, z have already been con-
structed in the cycles. The edges {γα, γ}F with α ∈ {r, l} and γ ∈ {x, z, y} are all
forced edges with w({γα, γ}F ) = 1.5. Furthermore, we have w({eαj , s}F ) = 0.5

for all α ∈ {r, l}. {erj , s}F and {elj, s}F are both forced edges, whereas all re-

maining edges of G3S
j are simple.
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Tour from Assignment: Given an instance I2 of the Hybrid problem and an
assignment φ, we need to construct a tour in GS according to φ. The proof of
the following lemma is given in the full version of the paper.

Lemma 1. If there is an assignment to the variables of a given instance I2 of
the Hybrid problem with 31m equations and ν bi-wheels, that leaves k equations
unsatisfied, then, there exists a tour in GS with cost at most 61m+ 2ν + k + 2.

(a)

xui−1 xui xui+1

xnj−1 xnj xnj+1 (b) xuu(j−1)

xnj+1

xui+1xnj

xuixnn(i−1)

Fig. 2. Gadget simulating equation with two variables in symmetric case (a) and in
the asymmetric case (b). Dotted and straight lines represent forced and simple edges,
respectively.

Assignment from Tour: We now need to prove the other direction of our
reduction. Given a tour in GS , we must define an assignment to the variables of
the associated instance of the Hybrid problem and prove the following lemma.

Lemma 2. If there is a tour in GS with cost 61m + k − 2, then, there is an
assignment to the variables of the corresponding instance of the Hybrid problem
that leaves at most k equations unsatisfied.

The proof of Lemma 2 is given in the full version of this paper. The proof of
Theorem 4 follows from Lemmata 1, 2. Details are given in the full version of
this paper.

6 ATSP

In this section, we prove the following theorem.

Theorem 5. It is NP -hard to approximate the ATSP to within any constant
approximation ratio less than 75/74.

Construction: Let us describe the construction that encodes an instance I2 of
the Hybrid problem into the instance GA of the ATSP. Again, it will be useful
to have the ability to force some edges to be used, that is, we would like to have
bidirected forced edges. A bidirected forced edge between two vertices will be
created in a similar way as undirected forced edges in the previous section. With-
out loss of generality, we may assume that bidirected forced edges are used in at
least one direction, though we should note that the direction is not prescribed.
In the remainder, we denote a directed forced edge consisting of vertices x and
y by (x, y)F , or x→F y.
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Let I2 consist of the collection {Wi}νi=1 of bi-wheels. Recall that the bi-
wheel consists of two cycles and a perfect matching between their checkers. Let
{xui , xni }zi=1 be the associated set of variables of Wp. We write u(i) to denote
the function which, given the index of a checker variable xui returns the index
j of the checker variable xnj to which it is matched (that is, the function u is
a permutation function encoding the matching). We write n(i) to denote the
inverse function u−1(i).

Now, for each bi-wheel Wp, we are going to construct the corresponding di-
rected graph Gp

A as follows. First, construct a vertex for each checker variable
of the wheel. For each matching equation xui ⊕ xnj = 1, we create a bidirected
forced edge {xui , xnj }F with w({xui , xnj }F ) = 2.

For each contact variable xk, we create two corresponding vertices xrk and xlk,
which are joined by the bidirected forced edge {xrk, xlk}F with w({xrk, xlk}F ) = 1.

Next, we will construct two directed cycles Cp
u and Cp

n. Note that we are doing
arithmetic on the cycle indices here, so the index z + 1 should be read as equal
to 1. For Cp

u, for any two consecutive checker vertices xui , x
u
i+1 on the un-negated

side of the bi-wheel, we add a simple directed edge xnu(i) → xui+1. If the checker x
u
i

is followed by a contact xui+1 in the cycle, then we add two simple directed edges
xnu(i) → xuri+1 and xuli+1 → xui+2. Observe that by traversing the simple edges we
have just added, the forced matching edges in the direction xui →F xnu(i) and

the forced contact edges for the un-negated part in the direction xuri →F xuli ,
we obtain a cycle that covers all checkers and all the contacts of the un-negated
part.

We now add simple edges to create a second cycle Cp
n. This cycle will re-

quire using the forced matching edges in the opposite direction and, thus, truth
assignments will be encoded by the direction of traversal of these edges. First,
for any two consecutive checker vertices xni , x

n
i+1 on the un-negated side of the

bi-wheel, we add the simple directed edge xun(i) → xni+1. Then, if the checker xni
is followed by a contact xni+1 in the cycle then we add the simple directed edges
xun(i) → xnri+1 and xnli+1 → xni+2. Now by traversing the edges we have just added,
the forced matching edges in the direction xni →F xun(i) and the forced contact

edges for the negated part in the direction xnri →F xnli , we obtain a cycle that
covers all checkers and all the contacts of the negated part, that is, a cycle of
direction opposite to Cp

u.
What is left is to encode the equations of size three. Again, we have a central

vertex s that is connected to gadgets simulating equations with three variables.
For each equation, we create the gadget displayed in Figure 1 (b), which is a
variant of the gadget used in [19]. Let x ⊕ y ⊕ z = 1 be the j-th equation
with three variables in I2. This equation is simulated by G3A

j . The vertices used
are the contact vertices in Cj = {γα | γ ∈ {x, y, z}, α ∈ {r, l}}, which we
have already introduced, as well as the vertices in Hj = {sj, tj , eij | i ∈ [3]}.
For notational simplicity, we define V 3A

j = Cj ∪ Hj . All directed non-forced
edges are simple. The vertices sj and tj are connected to s by forced edges with
w((s, sj)F ) = w((tj , s)F ) = λ, where λ > 0 is a small fixed constant.
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Assignment to Tour: We need to construct a tour in GA given an assignment
to the variables of I2 and prove the following lemma. The proof appears in the
fulle version of this paper.

Lemma 3. Given an instance I2 of the Hybrid problem with ν bi-wheels and an
assignment that leaves k equations in I2 unsatisfied, then, there exists a tour in
GA with cost at most 37m+ 5ν + 2mλ+ 2νλ+ k.

Tour to Assignment: For the other direction of the reduction we need the
following lemma.

Lemma 4. If there is a tour with cost 37 · m + k + 2λ · m, then, there is an
assignment that leaves at most k equations unsatisfied.

The proof of Lemma 4 and of Theorem 5 are given in the full version of this
paper.

7 Concluding Remarks

In this paper, we proved that it is hard to approximate the ATSP and the TSP
within any constant factor less than 75/74 and 123/122, respectively. The proof
method required essentially new ideas and constructions from the ones used
before in that context. Since the best known upper bound on the approximability
is O(log n/ log logn) for ATSP and 3/2 for TSP, there is certainly room for
improvements. Especially, in the asymmetric version of the TSP, there is a large
gap between the approximation lower and upper bound, and it remains a major
open problem on the existence of an efficient constant factor approximation
algorithm for that problem. Furthermore, it would be nice to investigate if some
of the ideas of this paper, and in particular the bi-wheel amplifiers, can be used
to offer improved hardness results for other optimization problems, such as the
Steiner Tree problem.
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Abstract. The 2-opt heuristic is a very simple local search heuristic for
the traveling salesman problem. While it usually converges quickly in
practice, its running-time can be exponential in the worst case.
In order to explain the performance of 2-opt, Englert, Röglin, and

Vöcking (Algorithmica, to appear) provided a smoothed analysis in the
so-called one-step model on d-dimensional Euclidean instances. How-
ever, translating their results to the classical model of smoothed analysis,
where points are perturbed by Gaussian distributions with standard de-
viation σ, yields a bound that is only polynomial in n and 1/σd.
We prove bounds that are polynomial in n and 1/σ for the smoothed

running-time with Gaussian perturbations. In particular our analysis for
Euclidean distances is much simpler than the existing smoothed analysis.

1 2-Opt and Smoothed Analysis

The traveling salesman problem (TSP) is one of the classical combinatorial
optimization problems. Euclidean TSP is the following variant: given points
X ⊆ [0, 1]d, find the shortest Hamiltonian cycle that visits all points in X (also
called a tour). Even this restricted variant is NP-hard for d ≥ 2 [16]. We consider
Euclidean TSP with Manhattan and Euclidean distances as well as squared Eu-
clidean distances to measure the distances between points. For the former two,
there exist polynomial-time approximation schemes (PTAS) [1, 14]. The latter,
which has applications in power assignment problems for wireless networks [8],
admits a PTAS for d = 2 and is APX-hard for d ≥ 3 [15].

As it is unlikely that there are efficient algorithms for solving Euclidean TSP
optimally, heuristics have been developed in order to find near-optimal solutions
quickly. One very simple and popular heuristic is 2-opt: starting from an initial
tour, we iteratively replace two edges by two other edges to obtain a shorter tour
until we have found a local optimum. Experiments indicate that 2-opt converges
to near-optimal solutions quite quickly [9, 10], but its worst-case performance
is bad: the worst-case running-time is exponential even for d = 2 [7] and the
approximation ratio can be Ω(log n/ log logn) for Euclidean instances [5].

An alternative to worst-case analysis is average-case analysis, where the ex-
pected performance with respect to some probability distribution is measured.
The average-case running-time for Euclidean instances and the average-case ap-
proximation ratio for non-metric instances of 2-opt were analyzed [4–6,11]. How-
ever, while worst-case analysis is often too pessimistic because it is dominated by
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artificial instances that are rarely encountered in practice, average-case analysis
is dominated by random instances, which have often very special properties with
high probability that they do not share with typical instances.

In order to overcome the drawbacks of both worst-case and average-case
analysis and to explain the performance of the simplex method, Spielman and
Teng invented smoothed analysis [17]: an adversary specifies an instance, and
then this instance is slightly randomly perturbed. The smoothed performance
is the expected performance, where the expected value is taken over the ran-
dom perturbation. The underlying assumption is that real-world instances are
often subjected to a small amount of random noise, which can, e.g., come from
measurement or rounding errors. Smoothed analysis often allows more realis-
tic conclusions about the performance than worst-case or average-case analysis.
Since its invention, it has been applied successfully to explain the performance
of a variety of algorithms [12, 18].

Englert, Röglin, and Vöcking [7] provided a smoothed analysis of 2-opt in or-
der to explain its performance. They used the one-step model : an adversary spec-
ifies n density functions f1, . . . , fn : [0, 1]d → [0, φ]. Then the n points x1, . . . , xn
are drawn independently according to the densities f1, . . . , fn, respectively. Here,
φ is the perturbation parameter. If φ = 1, then the only possibility is the uni-
form distribution on [0, 1]d, and we obtain an average-case analysis. The larger
φ, the more powerful the adversary. Englert et al. [7] proved that the expected

running-time of 2-opt is O(n4φ logn) and O(n4+
1
3φ

8
3 log2(nφ)) for Manhattan

and Euclidean distances, respectively. These bounds can be improved slightly
by choosing the initial tour with an insertion heuristic. However, if we transfer
these bounds to the classical model of points perturbed by Gaussian distribu-
tions of standard deviation σ, we obtain bounds that are polynomial in n and
1/σd. This is because the maximum density of a d-dimensional Gaussian with
standard deviation σ is Θ(σ−d). While this is polynomial for any fixed d, it is
unsatisfactory that the degree of the polynomial depends on d.

Our Contribution. We provide a smoothed analysis of the running-time of 2-
opt in the classical model, where points in [0, 1]d are perturbed by independent
Gaussian distributions of standard deviation σ. The bounds that we prove for
Gaussian perturbations are polynomial in n and 1/σ, and the degree of the
polynomial is independent of d. As distance measures, we consider Manhattan
(Section 3), Euclidean (Section 5), and squared Euclidean distances (Section 4).

The analysis for Manhattan distances is a straightforward adaptation of the
existing analysis by Englert et al. However, while the degree of the polynomial
in n is independent of d in our bound, we still have a factor in the bound that
is exponential in d.

Our analysis for Euclidean distances is considerably simpler than the one by
Englert et al., which is rather technical and takes more than 20 pages [7].

The analysis for squared Euclidean distances is, to our knowledge, not pre-
ceded by a smoothed analysis in the one-step model. Because of the nice prop-
erties of squared Euclidean distances and Gaussian perturbations, this smoothed
analysis is relatively compact and elegant: the only concept needed for
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Theorem 4.3 is pairs of linked 2-changes (Section 2.1), and we can even get
rid of this at the price of a slightly worse bound (Remark 4.4). This might be
of independent interest, as smoothed analysis of local search heuristics is often
rather technical [2, 3, 7, 13].

We did not try to optimize our bounds, but rather tried to keep the analysis
simple. We believe that much stronger bounds hold for Euclidean and squared
Euclidean distances (see also Section 6).

2 Notation, Preliminaries and Outline

Throughout the rest of this paper, X denotes a set of n points in Rd, where each
point is drawn according to an independent d-dimensional Gaussian distribution
with mean in [0, 1]d and standard deviation σ. The dimension d is considered to
be constant. We discuss the dependence of our bounds on d in Section 6.

We assume that σ ≤ 1. This is justified by two reasons. First, small σ are
actually the interesting case, i.e., when the order of magnitude of the perturba-
tion is relatively small. Second, the smoothed number of iterations that 2-opt
needs is a monotonically decreasing function of σ: if we have σ > 1, then this is
equivalent to adversarial instances in [0, 1/σ]d that are perturbed with standard
deviation 1. This in turn is dominated by adversarial instances in [0, 1]d that are
perturbed with standard deviation 1, as [0, 1/σ]d ⊆ [0, 1]d. Thus, any bound for
σ = 1 holds also for larger σ. Sometimes we even assume σ = O(1/

√
n logn) to

simplify the analysis.

2.1 2-Opt State Graph and Linked 2-Changes

Given a tour H that visits all points in X , a 2-change replaces two edges
{x1, x2} and {x3, x4} of H by two new edges {x1, x3} and {x2, x4}, provided
that this yields again a tour (this is the case if x1, x2, x3, x4 appear in this or-
der in the tour) and that this decreases the length of the tour, i.e., d(x1, x2) +
d(x3, x4) − d(x1, x3) − d(x2, x4) > 0, where d(a, b) = ‖a − b‖2 (Euclidean dis-
tances), d(a, b) = ‖a− b‖1 (Manhattan distances), or d(a, b) = ‖a− b‖22 (squared
Euclidean distances). The 2-opt heuristic iteratively improves an initial tour by
applying 2-changes until it reaches a local optimum.

The number of iterations that 2-opt needs depends of course heavily on the
initial tour and on which 2-change is chosen in each iteration. We do not make
any assumptions about the initial tour and about which 2-change is chosen.
Following Englert et al. [7], we consider the 2-opt state graph: we have a node
for every tour and a directed edge from tour H to tour H ′ if H ′ can be obtained
by one 2-change. The 2-opt state graph is a directed acyclic graph, and the
length of the longest path in the 2-opt state graph is an upper bound for the
number of iterations that 2-opt needs.

In order to improve the bounds (for Manhattan distances) or to allow bounds
on the expected number of iterations in the first place (for Euclidean and squared
Euclidean distances), we also consider pairs of linked 2-changes [7]. Two 2-
changes form a pair of linked 2-changes if there is one edge added in one 2-change
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and removed in the other 2-change. Formally, one 2-change replaces {x1, x2}
and {x3, x4} by {x1, x3} and {x2, x4} and the other 2-change replaces {x1, x3}
and {x5, x6} by {x1, x5} and {x2, x6}. It can be that {x2, x4} and {x5, x6}
intersect. Englert et al. [7] called a pair of linked 2-changes a type i pair if
|{x2, x4} ∩ {x5, x6}| = i. As type 2 pairs, which involve in fact only four nodes,
are difficult to analyze because of dependencies, we ignore them. Fortunately, the
following lemma states that we will find enough disjoint pairs of linked 2-changes
of type 0 and 1 in any sufficiently long sequence of 2-changes.

Lemma 2.1 (Englert et al. [7]). Every sequence of t consecutive 2-changes
contains at least t/6− 7n(n− 1)/24 disjoint pairs of linked 2-changes of type 0
or type 1.

2.2 Technical Lemmas

In order to get an upper bound for the length of the initial tour, we need an upper
bound for the diameter of the point set X . Such an upper bound is also necessary
for the analysis of 2-changes with Euclidean distances (Section 5). We choose
Dmax such that X ⊆ [−Dmax, Dmax]

d with a probability of at least 1− 1/n!. For
fixed d and σ ≤ 1, we can choose Dmax = Θ(1 + σ

√
n logn) according to the

following lemma. For σ = O(1/
√
n logn), we have Dmax = Θ(1).

Lemma 2.2. Let c > 0 be a sufficiently large constant, and let Dmax = c ·
(σ
√
n logn+ 1). Then P(X �⊆ [−Dmax, Dmax]

d) ≤ 1/n!.

We need the following simple fact a few times.

Lemma 2.3 (Arthur et al. [2, Fact 2.1]). Let p ∈ [0, 1] be a probability, and
let a, c, b, d, and e be non-negative real numbers with c ≥ 1 and e ≥ d. If
p ≤ a+ c · be, then p ≤ a+ c · bd.

For x, y ∈ Rd with x �= y, let L(x, y) = {ξ · (y − x) + x | ξ ∈ R} denote the
straight line through x and y.

Lemma 2.4. Let a, b ∈ Rd be arbitrary with a �= b. Let c ∈ Rd be drawn accord-
ing to a d-dimensional Gaussian distribution with standard deviation σ. Then
the probability that c is ε-close to L(a, b), i.e., minc�∈L(a,b) ‖c − c�‖2 ≤ ε, is

bounded from above by (ε/σ)d−1.

Let δclose = mina,b∈X,a =b ‖a− b‖2 be the minimum distance of points in X .

Lemma 2.5. For any ε > 0, we have P(δclose ≤ ε) ≤ n2 · (ε/σ)d.

We need the following lemma in Section 5.

Lemma 2.6. Let f : R → R be a differentiable function whose derivative is
bounded from above by B, let c be distributed according to Gaussian distribution
with standard deviation σ. Let I be an interval of size ε, and let f(I) = {f(x) |
x ∈ I} be the image of I. Then P(c ∈ f(I)) = O(Bε/σ).
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2.3 Outline

The main idea in the proofs by Englert et al. [7] and in our proofs is to bound
the minimal improvement of any 2-change or, for pairs of linked 2-changes, the
minimal improvement of any pair of linked 2-changes. We denote the smallest
improvement of any linked 2-change by Δmin and the smallest improvement of
any pair of linked 2-changes by Δlink

min. It will be clear from the context which
distance measure is used for Δmin and Δlink

min. Suppose that the initial tour has a
length of at most L, then 2-opt cannot run for more than L/Δmin iterations and
not for more than Θ(L/Δlink

min) iterations. The following lemma formalizes this.

Lemma 2.7. Suppose that, with a probability of at least 1− 1/n!, any tour has
a length of at most L. Let γ > 1. Then

1. If P(Δmin ≤ ε) = O(Pε), then the expected length of the longest path in the
2-opt state graph is bounded from above by O(PLn logn).

2. If P(Δmin ≤ ε) = O(Pεγ), then the expected length of the longest path in the
2-opt state graph is bounded from above by O(P 1/γL).

3. The same bounds hold if we replace Δmin by Δlink
min, provided that PL = Ω(n2)

for Case 1 and P 1/γL = Ω(n2) for Case 2.

For Euclidean and squared Euclidean distances, it turns out to be useful to
study Δa,b(c) = d(c, a) − d(c, b) for points a, b, c ∈ X . By abusing notation,
we sometimes write Δi,j(k) instead of Δxi,xj(xk) for short. A 2-change that
replaces {x1, x2} and {x3, x4} by {x1, x3} and {x2, x4} improves the tour length
by Δ1,4(2)−Δ1,4(3) = Δ2,3(1)−Δ2,3(4).

3 Manhattan Distances

The analysis for Manhattan distances is a straightforward adaptation of the
analysis in the one-step model. We obtain a bound of O(n4Dmax/σ). The term
Dmax in the bound comes from the bound of the initial tour.

Lemma 3.1. P(Δlink
min ≤ ε) = O(n6ε2/σ2).

Theorem 3.2. The expected length of the longest path in the 2-opt state graph
corresponding to d-dimensional instances with Manhattan distances is at most
O(n4Dmax/σ).

4 Squared Euclidean Distances

In this section, we have Δa,b(c) = ‖c− a‖22 − ‖c− b‖22 for a, b, c ∈ Rd.

Lemma 4.1. Let a, b ∈ Rd, a �= b, and let c be drawn according to a Gaussian
distribution with standard deviation σ. Let I ⊆ R be an interval of length ε.
Then P

(
Δa,b(c) ∈ I

)
≤ ε

4σ·‖a−b‖2 .
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Proof. Since Gaussian distributions are rotationally symmetric, we can assume
without loss of generality that a = (0, . . . , 0) and b = (δ, 0, . . . , 0). We have
δ = ‖a − b‖2. Let c = (c1, . . . , cd). Then Δa,b(c) = c21 − (c1 − δ)2 = 2c1δ + δ2.
Thus, Δa,b(c) falls into I if and only if c1 falls into an interval of length ε

2δ . Since
c1 is a 1-dimensional Gaussian random variable with a standard deviation of σ,
the probability for this is bounded from above by ε

4δσ . 	

We analyze Δlink

min since it seems to be difficult to obtain bounds for the ex-
pected value using Δmin.

Lemma 4.2. For d ≥ 2, we have P(Δlink
min ≤ ε) = O(n6εσ−2).

Proof. Consider a pair of linked 2-changes where {x1, x2} and {x3, x4} are re-
placed by {x1, x3} and {x2, x4} and then {x1, x3} and {x5, x6} by {x1, x5} and
{x3, x6}. We assume that x2 /∈ {x5, x6} and x5 /∈ {x2, x4}. The other cases are
identical.

If the pair yields an improvement of at most ε then Δ1,3(2) falls into some
interval of length at most ε and Δ1,6(5) falls into some interval of length at most
ε. We have ‖x1 − x3‖2 ≤

√
ε or ‖x1 − x6‖2 ≤

√
ε only if δclose ≤

√
ε, which

happens with a probability of at most n2(
√
ε/σ)d ≤ n2εσ−2 by Lemmas 2.5

and 2.3 since d ≥ 2. From now on, we assume that ‖x1− x3‖2, ‖x1− x6‖2 ≥
√
ε.

By independence of x2 and x5 and Lemma 4.1, the probability that both Δ1,3(2)
and Δ1,6(5) fall into their “bad” interval of length ε is thus bounded from above

by
(√ε
4σ

)2
= O(εσ−2).

The lemma follows now by a union bound over all O(n6) pairs of linked 2-
changes and the fact that we do not have to apply the union bound to the
probability that δclose is small. 	

Theorem 4.3. For d ≥ 2, the expected length of the longest path in the 2-
opt state graph corresponding to d-dimensional instances with squared Euclidean
distances is at most O(n8 logn ·D2

max/σ
2).

Proof. The theorem follows by using Lemma 2.7 with Lemma 4.2 and the obser-
vation that the initial tour has a length of at most O(D2

maxn) with a probability
of at least 1− 1/n! by Lemma 2.2. 	

Remark 4.4. The proof of Theorem 4.3 can be simplified by getting rid of the
pairs of linked 2-changes (Lemma 2.1) and slightly worsening the bound to
O(n10 logn · D2

max/σ
2): we observe that two consecutive 2-changes involve be-

tween five and eight nodes as they cannot involve the same four points. Thus,
there is always one node that is only involved in the first of the two and one
node that is only involved in the second of the two. This is sufficient but worsens
the bound of Lemma 4.2 as we have to take a union bound over O(n8) choices
for the two 2-changes instead of O(n6) choices for pairs of linked 2-changes.

5 Euclidean Distances

In this section, we have Δa,b(c) = ‖c− a‖2− ‖c− b‖2 for a, b, c ∈ Rd. Analyzing
‖c−a‖2−‖c−b‖2 turns out to be more difficult than analyzing ‖c−a‖22−‖c−b‖22



Smoothed Analysis of the 2-Opt Heuristic for the TSP 585

in the previous section. In particular the case when ‖c− a‖2 − ‖c− b‖2 is close
to the maximal possible value of ‖a− b‖2 requires special attention.

5.1 Difference of Euclidean Distances

As for squared Euclidean distances, we analyze the probability that a pair of
linked 2-changes yields a small improvement. Assume that a, b, and c are already
drawn. Then the 2-change that replaces {z, a} and {b, c} by {z, b} and {a, c}
yields an improvement of at most ε only if η = ‖z − a‖2 − ‖z − b‖2 = Δa,b(z)
falls in a particular interval of length ε. For this analysis, it does not matter
which of the four points involved in the 2-change is chosen as z.

We observe that η is essentially 2-dimensional: it depends only on the distance
of z from L(a, b) (this is x in the following lemma) and on the position of the
projection z to L(a, b) (this is y in the following lemma). Furthermore, it depends
on the distance ‖a− b‖2 between a and b (this is δ in the following lemma). The
following lemma makes the connection between x and y explicit for a given η.

Lemma 5.1. Let z = (x, y) ∈ R2, x ≥ 0, y ≥ 0. Let a = (0,−δ/2) and b =
(0, δ/2) be two points at a distance of δ. Let η = ‖z − a‖2 − ‖z − b‖2. Then we
have

y2 =
η2δ2 + 4η2x2 − η4

4δ2 − 4η2
=
η2

4
+

η2x2

δ2 − η2
(1)

for 0 ≤ η < δ and

x2 =
y2 ·

(
4δ2 − 4η2) + η4 − η2δ2

4η2
=
y2 ·

(
δ2 − η2)

η2
− δ2 − η2

4
. (2)

for δ ≥ η > 0. Furthermore, η > δ is impossible.

In order to apply Lemma 2.6, we need the following upper bound on the
derivative of y with respect to η, given that x is fixed.

Lemma 5.2. For x, y ≥ 0, let y =
√

η2

4 + η2x2

δ2−η2 . Assume that 0 ≤ η ≤ δ − κ

and κ > 0. Then the derivative of y with respect to η is bounded by O
(
δ2+x2

κ2

)
.

If δ and x are bounded by O(Dmax), then the derivative of y with respect to η
is bounded by O(D2

max/κ
2).

We stress that Lemma 5.2 provides a rather bad upper bound on the deriva-
tive: We use an upper bound of Dmax for x in the numerator, while x ≈ Dmax

would lead to a much larger denominator and, thus, to a better bound. However,
we try to keep the analysis simple, and it seems difficult to get a better compact
upper bound for the derivative without case distinctions.

Using Lemmas 5.2 and 2.6, we can bound the probability thatΔa,b(z) assumes
a value in an interval of size ε.

Lemma 5.3. Let a, b ∈ [−Dmax, Dmax]
d be arbitrary, a �= b, and let z be drawn

according to a Gaussian distribution with standard deviation σ. Let δ = ‖a −
b‖2 = O(Dmax). Let I be an interval of length ε with I ⊆ [0, δ − κ]. Then

P
(
Δa,b(z) ∈ I and z ∈ [−Dmax, Dmax]

d
)
= O(εD2

maxκ
−2σ−1).
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5.2 Bad Events

Lemma 5.2 and, thus, Lemma 5.3 become quite weak if κ is small. This is the
case if Δa,b(z) is close to its maximal possible value of ‖a− b‖2. In this case, z
must be very close to L(a, b). The following lemma states that this is unlikely.

Lemma 5.4. For d ≥ 2 and 0 < α < β < 1, let Eε,α,β be the event that at least
one of the following bad events occur:

1. X �⊆ [−Dmax, Dmax]
d.

2. δclose ≤ εα.
3. There exist four different points a, b, c, c′ ∈ X with |Δa,b(c)| ≥ ‖a− b‖2 − εβ

and |Δa,b(c
′)| ≥ ‖a− b‖2 − 2εβ.

Then, for all ε ≤ ε0 for some ε0 that depends on α and β, we have

P(Eε,α,β) ≤
1

n!
+ n2 ·

(
εα

σ

)d

+ n4 ·
(
8εβ−αD2

max

σ2

)d−1

Proof (sketch). The three terms of the bound correspond to the three parts of
the bad events. The first two are immediate consequences of Lemmas 2.2 and 2.5.

For the last term and Item 3, we observe that, because X ⊆ [−Dmax, Dmax]
d,

the eventΔa,b(c) ≥ ‖a−b‖2−εβ can only occur if c is within a distance of at most

2
√
εα−βDmax of L(a, b). The probability that this happens can be bounded using

Lemma 2.4. In the same way, the probability of the eventΔa,b(c
′) ≥ ‖a−b‖2−2εβ

can be bounded from above. 	


5.3 Smallest Improvement of a Pair of Linked 2-Changes

In this section, we analyze the probability that there exists a pair of linked 2-
changes that yields an improvement of at most ε. Simple 2-changes do not seem
sufficient to yield a bound on the expected number of iterations.

Lemma 5.5. Fix α and β, and let ε > 0 be sufficiently small as in Lemma 5.4.
Then

P
(
Δlink

min < ε and not Eε,α,β

)
= O

(
n6ε2−4βD4

maxσ
−2
)
.

Proof. We analyze a fixed pair of linked 2-changes as described in Section 2.1.
Then the lemma follows by a union bound over the O(n6) possible pairs. We
assume that δclose ≥ εα. Otherwise, we would have event Eε,α,β (Lemma 5.4,
Item 2).

Suppose that |Δ1,4(3)| ≥ ‖x1−x3‖−εβ. Then, because we do not have Eε,α,β

(Lemma 5.4, Item 3), we have |Δ1,4(2)| ≤ ‖x1 − x3‖− 2εβ. The improvement of
the first 2-change of the linked pair is |Δ1,4(2)−Δ1,4(3)| ≥ εβ ≥ ε or it is not a 2-
change as there is no improvement. In the same way, if |Δ1,4(2)| ≥ ‖x1−x3‖−εβ
or Δ1,6(3) ≥ ‖x1− x6‖− εβ or Δ1,6(5) ≥ ‖x1 − x6‖− εβ, at least one of the two
2-changes yields an improvement of at least εβ ≥ ε. Thus, we can ignore these
cases from now on and apply Lemma 5.3 with κ = εβ .
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We first draw all but two of the five or six points (depending on which type
of linked pair we have) such that one of the two remaining points (xi with
i ∈ {2, 4}) is only involved in the first 2-change and the other point (xj with
j ∈ {5, 6}) is only involved in the second 2-change. We only consider the case
i = 2 and j = 5, the other cases are identical.

The first 2-change yields an improvement of at most ε only if Δ1,4(2) falls
into an interval of size at most ε. According to Lemma 5.3, the probability for
this is at most O(ε1−2βD2

maxσ
−1), as we have already ruled out the case that

X �⊆ [−Dmax, Dmax]
d. Analogously, the probability that Δ1,6(5) falls into an

interval of length at most ε is at most O(ε1−2βD2
maxσ

−1), and this is necessary
for the second 2-change to yield an improvement of at most ε. By independence of
x2 and x5, the probability that none of the two 2-changes yields an improvement
of at least ε and that we do not have event Eε,α,β is bounded from above by
O(ε2−4βD4

maxσ
−2). 	


The following lemma is an immediate consequence of Lemmas 5.4 and 5.5.

Lemma 5.6. For any 0 < α < β < 1, we have

P
(
Δlink

min ≤ ε and X ⊆ [−Dmax, Dmax]
d
)

= O

(
n6 · ε

2−4βD4
max

σ2
+ n2 ·

(
εα

σ

)d

+ n4 ·
(
εβ−αD2

max

σ2

)d−1
)
.

Now we choose β = 0.247 and α = 0.12. Then, for d ≥ 9, this yields 2− 4β >
1.01, αd > 1.08, and (β − α) · (d − 1) > 1.01. Using Lemma 2.3, this allows
us to remove the d from the exponent, and we obtain the following simplified
version of Lemma 5.6. We assume that σ = O(1/

√
n logn) for simplicity. Thus,

Dmax = O(1).

Lemma 5.7. For d ≥ 9 and σ = O(1/
√
n logn), we have P

(
Δlink

min ≤ ε and X ⊆
[−Dmax, Dmax]

d
)
= O(ε1.01n4σ−16).

Using this lemma, we can prove the main result of this section.

Theorem 5.8. For d ≥ 9 and σ = O(1/
√
n logn), the expected length of the

longest path in the 2-opt state graph corresponding to d-dimensional instances
with Euclidean distances is at most O(n5/σ16).

6 Concluding Remarks

Improving the bounds. Our smoothed analysis for Euclidean instances works only
for d ≥ 9 and the dependence of the bound on σ is bad. With the same analysis,
we can get a better bound – in particular with respect to σ – for larger values
of d by adjusting Lemma 5.7. While our goal was to keep the analysis simple,
we believe that a much better bound holds, also for smaller d, by exploiting
techniques of Englert et al. [7] for Euclidean distances.

Similarly, we can obtain an improved bound for squared Euclidean distances
by considering d ≥ 3 and adapting Lemma 4.2.
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Polynomial bound for Euclidean distances for all d. For d ≤ 8, the bound proved
by Englert et al. [7] for Euclidean distances is O(n4+

1
3 log(n/σ)σ−21.4). By com-

bining this with our bound, we obtain a smoothed polynomial number of itera-
tions for all d and without d in the exponent.

Initial tour. One reason that we obtain worse bounds is that our upper bound
for the length of the initial tour is worse because we do not truncate the Gaus-
sian distributions. This effect is even stronger for Euclidean distances, where
the maximum distance between points plays a role also in the analysis of the
2-changes (Lemmas 5.3 and 5.4). Only for σ = O(1/

√
n logn), this effect is

negligible, as then Dmax = O(1).
In the same way as Englert et al. [7], we can slightly improve the smoothed

number of iterations by using an insertion heuristic to choose the initial tour.
We save a factor of n1/d for Manhattan and Euclidean distances and a factor
of n2/d for squared Euclidean distances. The reason is that there always exist
tours of length O(Dmaxn

1− 1
d ) for n points in [−Dmax, Dmax]

d for Euclidean

and Manhattan distances and of length O(D2
maxn

1− 2
d ) for squared Euclidean

distances for d ≥ 2 [19].

Dependence on d. For Manhattan distances, the term hidden in the O depends
exponentially on d. For Euclidean distances, the dependence is polynomially on
d. For squared Euclidean distances, the term depends only linearly on d.

We conjecture that also for Manhattan distances, a bound that avoids expo-
nential dependence on d can be proved.

Approximation ratio. Using the fact that any local optimum of 2-opt yields a
tour of length at most O(Dmaxn

1− 1
d ) [5] and that the optimal tour has a length

of Ω(n1−
1
d σ) [7], we obtain a smoothed approximation ratio of O(Dmax/σ).

This, however, is worse than the worst-case ratio of O(log n) [5] as Dmax/σ =
Ω(

√
n/ logn). The reason for this bound is that the upper bound for the local

optimum involves Dmax.
We conjecture an approximation ratio of O(1/σ), which is what we would

obtain if plugging σ = Θ(φ−d) into the bound of Englert et al. [7] were allowed.
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2. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method.
Journal of the ACM 58(5) (2011)

3. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algo-
rithm, with an application to the k-means method. SIAM Journal on Comput-
ing 39(2), 766–782 (2009)

4. Bringmann, K., Engels, C., Manthey, B., Rao, B.V.R.: Random shortest paths:
Non-euclidean instances for metric optimization problems. In: Chatterjee, K., Sgall,
J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 219–230. Springer, Heidelberg (2013)



Smoothed Analysis of the 2-Opt Heuristic for the TSP 589

5. Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the
traveling salesman problem. SIAM Journal on Computing 28(6), 1998–2029 (1999)

6. Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm
for the TSP. Operations Research Letters 37(2), 83–84 (2009)

7. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. Algorithmica (to appear)

8. Funke, S., Laue, S., Lotker, Z., Naujoks, R.: Power assignment problems in wire-
less communication: Covering points by disks, reaching few receivers quickly, and
energy-efficient travelling salesman tours. Ad Hoc Networks 9(6), 1028–1035 (2011)

9. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study. In:
Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, ch. 8.
John Wiley & Sons (1997)

10. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Vari-
ations, ch. 9. Kluwer Academic Publishers (2002)

11. Kern, W.: A probabilistic analysis of the switching algorithm for the TSP. Math-
ematical Programming 44(2), 213–219 (1989)
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Abstract. Given a set of points Q in the plane, define the r
2

-Disk Graph, Q(r),
as a generalized version of the Unit Disk Graph: the vertices of the graph is Q
and there is an edge between two points in Q iff the distance between them is
at most r. In this paper, motivated by applications in wireless sensor networks,
we study the following geometric problem of color-spanning sets: given n points
with m colors in the plane, choosing m points P with distinct colors such that
the r

2
-Disk Graph, P (r), is connected and r is minimized. When at most two

points are of the same color ci (or, equivalently, when a color ci spans at most
two points), we prove that the problem is NP-hard to approximate within a factor
3 − ε. And we present a tight factor-3 approximation for this problem. For the
more general case when each color spans at most k points, we present a factor-
(2k-1) approximation. Our solutions are based on the applications of the famous
Hall’s Marriage Theorem on bipartite graphs, which could be useful for other
problems.

1 Introduction

In a wireless sensor network (WSN), the typical objective is to use a set of sensors
(modelled as unit disks) to cover a region (or a set of objects) completely. However, in
many situations this is either impossible or too costly to achieve, like in a battlefield or
in a vast rural area. Hence, recently partial covers are proposed to cover a region (or a
set of objects) with a decent quality guarantee [18, 27]. (It is well-known that in WSNs
the communication range is greater than the sensing range and if the former is at least
twice the latter then a complete coverage implies a communication connectivity [26].)
Certainly, in partial covers the sensors are usually disconnected (within their sensing
range), so we need to increase the communication range (radius) to make the whole
WSN connected — which certainly takes energy.

In Figure 1, we show a partial cover with three connected components/clusters A, B
and C. To save energy, we just need to select three leaders a, b, c respectively so that by
increasing the communication range of these leaders they can communicate with each

� This research is partially funded by the International Science and Technology Cooperation
Program of China (2010DFA92720-08-1) and NSF of China under project 11271351.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 590–600, 2013.
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other and possibly relay some important sensing data from each cluster. In fact, in a
more general and slightly different setting, say, in a social network where the members
in each group can communicate in different ways, the clusters could even be interleaved
and might be inseparable geometrically.

This is often referred to as the color-spanning problem in computational geometry,
usually to handle imprecise data. In this model, each imprecise point is modelled as a
set T of discrete points which can all be painted by one distinct color ci (we also say
that the color ci spans T ). The causes of imprecise data can be various, for example, the
uncertain properties of a moving object [5], measurement error, sampling error, network
latency [20,21], location privacy protection [3,6,12], etc. Any or a combination of these
factors could be leading to imprecision of the data, hence such a new model makes sense
for many applications.

In the database area, a similar framework under a different name “uncertain data”
has also been used. An imprecise point is called an uncertain object and the different
positions with the same color are regarded as the different possible instances of an
uncertain object. Pei et al. have performed some research that pertains to geometric
problems in this framework [4, 19, 24].

In general, the color-spanning problem is to select exactly one point from each col-
ored point set such that certain properties (e.g. area, distance, perimeter, etc) of some
underlying geometric structures (e.g. convex hulls, minimum spanning trees, etc) based
on the selected points with different colors are minimized or maximized. We give a
brief review for some works in computational geometry below.

In the following review, we assume that there are n points with m colors for the sake
of notation consistency. Zhang et al. [25] proposed a brute force algorithm to address the
minimum diameter color-spanning set problem (MDCS). The running time is O(nm).
Fleischer and Xu [11] showed that the MDCS problem can be solved in polynomial time
for the L1 and L∞ metrics, while it is NP-hard for all otherLp metrics (even for p = 2).
They also gave an efficient algorithm to compute a constant factor approximation.

A

B

C
a

b

c

Fig. 1. Three connected components A,B and C for a partial cover. a, b and c can be selected to
use the minimum energy to make them connected via communication.

Abellanas et al. [1] showed that the Farthest Color Voronoi Diagram (FCVD) is of
complexity Θ(nm) if m ≤ n/2. Then they proposed algorithms to construct FCVD,
the smallest color-spanning circle based on FCVD, the smallest color-spanning rectan-
gle and the narrowest color-spanning strip of arbitrary orientation. In [2], Abellanas et
al. also proposed an O(min{n(n−m)2, nm(n−m)}) time algorithm for computing
the smallest perimeter axis-parallel rectangle enclosing at least one point of each color.
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In [9], Das et al. proposed an algorithm for identifying the smallest color-spanning cor-
ridor in O(n2 logn) time and O(n) space and an algorithm for identifying the smallest
color-spanning rectangle of arbitrary orientation with anO(n3 logm) running time and
O(n) space.

Ju et al. [16] recently studied several other color-spanning problems. They gave an
efficient randomized algorithm to compute a maximum diameter color-spanning set,
and they showed it is NP-hard to compute a largest closest pair color-spanning set and
a planar minimum color-spanning tree.

Given a set of pointsQ in the plane, define the r
2 -Disk Graph,Q(r), as a generalized

version of the Unit Disk Graph as follows: the vertex set of the graph is Q and there is
an edge between two points in Q iff the distance between them is at most r. For a Unit
Disk Graph, we have r = 2.

In this paper, we study the following color-spanning set problem: The input is a
set S of n points with m colors in the plane. We want to choose m points P from S
with m distinct colors such that the r

2 -Disk Graph on P , P (r), is connected and r is
minimized. We call this problem the minimum connected color-spanning set problem,
abbreviated as MCCS. When each color spans at most k points, the problem is denoted
as MCCS(k).

While this problem is new, it resembles some of the previous research on “Minimum
Spanning Tree with Neighborhoods”, etc. Interested readers are referred to [10, 23].

We summarize our results as follows.

1. MCCS(2) is NP-hard to approximate within a factor 3− ε, for some ε > 0.
2. For MCCS(2), we obtain a tight factor-3 approximation.
3. For MCCS(k), we obtain a factor-(2k-1) approximation.

We discuss the hardness and approximation algorithms for these problems in the
following two sections and then conclude the paper in the last section.

2 Hardness of the MCCS Problem

In this section we prove that MCCS is NP-hard even when each color spans at most two
points. We prove the NP-hardness of MCCS(2) by a reduction from Planar 3SAT [17],
see Figure 2. The Planar 3SAT problem is equivalent to the 3SAT problem restricted to
planar formulae.

Theorem 1. MCCS(2) is NP-hard.

Proof. We prove the hardness of MCCS(2) by a reduction from Planar 3SAT. Let φ be a
Boolean formula in conjunctive normal form with n variables x1, . . . , xn in m clauses
φ1, . . . , φm, each of size at most three. Given the planar embedding of φ, we take the
following steps to construct a set of points S for of MCCS(2).

For each Boolean variable xi in φ, let k+i and k−i be the number of times xi and xi
appears in φ respectively, and ki = max{k+i , k−i }. We use ki chains labeled with +
and ki chains labeled with−. (If k−i < ki = k+i , then we just make sure ki−k−i chains
labeled with − do not connect to any clause; and vice versa. For convenience, we call
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Fig. 2. An instance of planar 3SAT. The circles represent variables, the rectangles represent
clauses, the +,− on xi denote the clause connects to literal xi or xi respectively.

such a chain ‘dummy’ chain as it does not affect the truth assignment.) These (non-
dummy) chains are connected to some fixed points, each of a distinct color (which only
appears once and must be selected). These fixed points, denoted by the empty circles
in Figure 3, form a variable gadget. Note that the neighboring fixed points have a fixed
distance of d0. See Figure 3.

+

+

1

_

dummy_

_

+

1

2

2 3

3

44

6

5

6

5

xi

chain+
1chain−

1

chain−
2

chain+
2 chain−

3

chain+
3

Fig. 3. The variable gadget where each number represents a color

Let the chains labeled with + (−) around a variable xi be sorted in counterclockwise
order and let them be chain+1 , chain

+
2 , ..., chain

+
ki

and chain−1 , chain
−
2 , ..., chain

−
ki

respectively. Then, we use 2ki points with ki colors (each color spans two points). For
each of these ki colors, we put one point of the j-th color on chain+i and the other
point of the j-th color on chain−i . Each of these points is the first point of 2ki chains
respectively. This process is repeated until j = ki. In Figure 3, these points correspond
to the points labeled with 1, 2 and 3.

We use another 2ki points with ki colors where each color spans two points. For
these ki colors, we put one point of the j-th color on chain+i and the other point of the
j-th color on chain−i+1 (we take chain−1 = chain−ki+1). This process is repeated until
j = ki. Each of these points is the second point of 2ki chains respectively. The distance
between the first two adjacent points on any of these 2ki chains is set to be exactly d0.
In Figure 3, these points correspond to the points labeled with 4, 5 and 6.



594 C. Fan, J. Luo, and B. Zhu

For the other points on the chains, the sequence is not important. For any color, we
just put one point on a chain with label + and the other on a chain with label−, as long
as there are not two points of the same color on a chain. Starting from the third point on
each chain, the adjacent points might have a distance less than or equal to d0. This will
allow us to construct chains of different lengths. Of course, right before a chain reaches
a clause, we need to perform something similar to the first two points on each chain.
This will be discussed when we cover the clause gadget next.

The idea is that if we need to choose one point for each color to construct the variable
xi, all these points chosen need to be connected (via a communication range of d0/2)
to the fixed point of xi. We either choose the point set on the chains with label +, or
the point set on the chains with label −. The points in different variables have totally
different colors. All the fixed points of variables are connected by adding some fixed
points, see the dashed line in Figure 3.

For each clause φp = (xi ∨ xj ∨ xk) in φ, we add one fixed (clause) point and
six points with three colors, two for each color. We try to connect the three chains
(corresponding to the three literals in φp) to the fixed point as follows. We put two
points with different colors at the end of each chain such that the three points next to
the fixed (clause) point have different colors (e.g., 1,2 and 3 in Figure 4) and they are
at distance d0 to the fixed clause point. Then we connect three chains (in this example,
chains with label + for xi and xj and with label − for xk) by using three points in
a permutation of these three colors such that the last two points on each chain are of
different colors and the distance between them is d0. See Figure 4. The unique design
of the clause gadget makes sure that the fixed point of φp can only connect to exactly
one variable of xi, xj , xk.

Recall that for two intermediate points on a chain, their distance could be less than
d0. For two points p, q from two different chains, we make d(p, q) > 2d0 to ensure that
there are no edges between points from different chains.

As the fixed (clause) point for φp has to connect one of the fixed (variable) point of
xi, xj , xk, it is only possible when xi is true, or xj is true, or xk is false. In fact, the
clause point φp can only connect to one variable of xi, xj , xk even if there are more
than one literals making φp true.

Let S be the set of points hence constructed. We finally prove that the planar 3SAT
instance φ is satisfiable if and only if there is a connected color-spanning d0

2 -Disk Graph
of S.

“→”: If the planar 3SAT instance φ is satisfied, then each clause could connect to
one variable. For each variable xi, we either choose all the points on the chains labeled
with +, or choose choose all the points on the chains labeled with −, which means we
choose one point for each color. Let M be the points selected. All the variable points
are connected through fixed points, then the d0

2 -Disk Graph on M is connected.
“←”: If there is a connected color-spanning d0

2 -Disk Graph on a subset of points of
S, first notice that in our design of variable and clause gadgets, all the points chosen
on the chains between variable xi and the clause containing xi or xi must connect to
the fixed point of variable xi. Otherwise, the d0

2 -Disk Graph on the chosen points is not
connected. According to the configuration of a variable gadget, we either choose the
points on chain+1 , chain

+
2 , ..., chain

+
ki

or the points on chain−1 , chain
−
2 , ..., chain

−
ki

.
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Fig. 4. Clause gadget for φp = (xi ∨ xj ∨ xk). Different numbers mean different colors.

For the 4ki points to construct the first two points for all the variables, we either choose
the points on the chains labeled + or the points on the chains labeled−. Then we either
choose all the immediate points connecting the chains labeled+ or the immediate points
connecting the chains labeled−. (Otherwise, either a clause cannot be connected to any
variable it contains, or the subset of points we choose does not span all the colors.) The
first case represents the value True for this variable, and the second case represents the
value False. As the fixed point of each clause connects to at least one variable, which
means at least one literal in that clause is true, the instance φ is hence satisfied.

Therefore, the planar 3SAT instance φ is satisfiable if and only if there is a connected
color-spanning d0

2 -Disk Graph of S. 	


With our construction, we have in fact proved that MCCS(2) is NP-hard to approx-
imate with a factor of 2 − ε. We can strengthen the result by proving that MCCS(2) is
NP-hard to approximate within a factor of 3 − ε. We briefly summarize the necessary
changes in the next theorem.

Theorem 2. MCCS(2) is NP-hard to approximate within a factor of 3 − ε, for some
ε > 0.

Proof. Omitted due to space limitation. 	


In the next section, we present approximation algorithms for MCCS(2) and MCCS(k).

3 Approximation Algorithms for MCCS(k)

As a warm-up, we first discuss a special 2SAT instance which will be the basis of our
approximation algorithm for MCCS(2). As we will see a bit later, it is a special case
of bipartite graphs which always admit a perfect matching following Hall’s Marriage
Theorem [14]. But the 2SAT formulation is straightforward and is easier for implemen-
tation purpose.

Lemma 1. Let 2SAT(1) be a special instance of 2SAT where a variable xi and its nega-
tion xi each appears at most once in the instance. Then 2SAT(1) always has a truth
assignment.
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Proof. Let φ be a 2SAT(1) instance and the clauses are φ1, φ2, · · · . Each clause is
composed of two literals, e.g., φj = (xj ∨ yj). (xj ∨ yj) is equivalent to xj → yj and
yj → xj . So we have a directed graph D(φ) on all the literals. If φ is not satisfiable,
then suppose there is a path xi → x2 → · · ·x� → xi in D(φ) which does not contain
nodes xk and xk between xi and xi (otherwise, we take a proof for xk). Then, the
clause corresponding to the path is (xi ∨ x2) ∧ · · · ∧ (x� ∨ xi). Hence, either the literal
xi appears twice in φ (a contradiction) or x� = x2. If x� = x2, then there is a path from
x2 to x2 between xi and xi, again a contradiction to the assumption. 	


3.1 Approximation Algorithm for MCCS(2)

Given an r
2 -Disk Graph G with n points and m colors, each node of G is painted with

one color, we want to choose a set T of m nodes (one node for each color) from G.
We define a graph H =< T,E′ >, where there is an edge (u, v) ∈ E′ for two nodes
u, v ∈ T if there is a path between u and v of length at most k in G. If H is connected
for some value k, we say that H is a (k − 1)-hop color-spanning subgraph of G. In
Figure 5, if we select H as node 1 and the remaining doubly labeled nodes from 2 to 6,
then H is a 1-hop color-spanning subgraph of G. We now prove the following lemma
regarding MCCS(2).

Lemma 2. Given an r
2 -Disk Graph G with m colors and each color spans at most two

points, if there exists a connected component of G which contains all them colors, then
there is a 2-hop color-spanning subgraph H of G.

Proof. If this connected component only contains exactly one point z of certain color,
then we say z is a fixed point. Obviously, a fixed point must be selected to form any
color-spanning subgraph. We also do some preprocessing by removing any edge be-
tween two nodes of the same color — as such an edge cannot be in any optimal solution.
As there exists a connected component of G whose nodes contain all the m colors, we
perform a depth-first search on this connected component from a fixed node (point) of
G and if there is no fixed point then start with any node. In the searching process, we
build a disjoint set of groups, each containing an edge of G, as follows. Let a be the
current node which has not been completely explored (see [8]) and let b a neighbor of a
in G. If both a and b are not fixed points, and neither a nor b is already in some group,
then we build a new group {a, b}.

Suppose that there are a total ofm1 groups and each group has two points of different
colors, hence there are m2 colors in the m1 groups with m2 ≥ m1. See Figure 5. In the
m1 groups, if a color paints only one point, then we simply choose that point for H . If
a color spans two points in them1 groups, we need to choose one forH . We use xi and
xi to denote the two points of color ci respectively, and each group Gt (1 ≤ t ≤ m1)
containing two points of color ci and cj can be expressed as a clause like (xi ∨ xj)).
xi (resp. xj) is assigned true when the point of color ci (resp. cj) in the group Gt is
chosen. Then, the m1 groups can be expressed as an instance I of 2SAT(1).

By Lemma 1, the above 2SAT(1) instance always has a truth assignment. The truth
assignment gives us the selection of the corresponding points for H . If a color spans
two points in the connected component but these points never appear in the m1 groups,
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then just choose any one of the points for H . Recall that if a color contains only one
point in the connected component, we choose that fixed point at the first place for H .
Hence we choose m points H from G to have m distinct colors.

Within this connected component of G which contains m distinct colors, from the
above construction, it can be seen that between two groups there can be either an edge
connecting two nodes from the two groups, or the two groups are connected by a se-
quence of fixed points. Let these two groups be Gi = {ai, bi} and Gj = {aj , bj}
respectively. In the worst case, we select one point each from them (say, ai and bj) for
H , leaving the other two as hops to maintain connectivity inG; i.e., ai → bi→ aj → bj .
Hence, there are at most three edges (or two hops) in G connecting points in H whose
corresponding groups are adjacent.

For any non-fixed point p selected for H which does not belong to any group, p is
either adjacent to some fixed point or is adjacent to a point in some groupGt. Otherwise
p and one of its neighbors would be forming a new group. Hence, there are at most two
edges (or one hop) between p and its nearest point in H .

In summary, if there exists a connected component of G which contains all the m
colors, then there is a 2-hop color-spanning subgraphH of G. 	


1

2

3

5

4

2

6

3

4

65

Fig. 5. A connected component of graph G which is divide into groups by DFS and each group
has just two points.

The above lemma implies that for nodes in H , if we increase their communication
range to 3r

2 , then H will be connected even if all other nodes in G−H are deleted.

Theorem 3. There is a factor-3 approximation for MCCS(2).

Proof. It is easy to see that the optimal solution value r∗ must be the distance between
a pair of points of S which are of different colors. We sort the distances between all
pairs of n points of S, and let d1, d2, d3, ..., dq be the sorted sequence. We try each of
di as r, for i = 1, 2, ..., q, and build the corresponding r

2 -Disk Graph G(r). Suppose
that G(r) contains a connected component which contains of all the m colors the first
time when the value of r is increased to dj , then the optimal solution value r∗ satisfies
r∗ ≥ dj . The reason is that if it is not the case, the number of colors of any connected
component of G(r), r < dj , is less than m; hence, there are at least two colors whose
corresponding points belong to two different components (which is at least dj distance
away). Therefore, when r < dj , it is impossible to find a color-spanning subgraph of
G(r) which is connected.
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Following Lemma 2, we can compute a 2-hop color-spanning subgraph H(dj) of
G(dj). In other words, distance between two adjacent points in H(dj) is at most 3dj ,
as dj is the maximum length of any edge in a connect component of G(dj) which
contains m colors. This means that we obtain an approximation whose solution value
APP satisfies

APP ≤ 3dj ≤ 3r∗.

We finally analyze the time complexity of the algorithm. Computing and sorting
O(n2) distances takes O(n2 logn) time. Each time the value of r is increased from r′,
we either add an edge into a connected component ofG(r′) (which takesO(1) time) or
merge two connected components of G(r′) into one (which takes O(α(n)) on average
— if we use the standard union-find data structure as some auxiliary structure to test
whether two elements lie in the same connected component [8,22].) As there areO(n2)
edges and O(n) merges, the total cost is O(n2). A connected component contains m
colors only when there are at least m points in it, that means the graph G(dj) has at
most two connected components satisfying this condition. Hence the time to decide if
a connected component contains m = Θ(n) colors takes O(n) time. When we have
a connected component satisfying the condition, the depth-first search, and solving the
resulting 2SAT(1) instance takes O(n) time.

Hence the total time complexity is O(n2 logn), and the space complexity is O(n2).
	


3.2 Approximation Algorithm for MCCS(k)

For the more general case when each color spans at most k points, we use a similar
method as in the previous section until the first time we obtain a dj

2 -Disk Graph G(dj)
such that it contains a connected component which contains all the m colors. On any
such connected component, we can use the depth-first search (or other method, say a
spanning tree) to divide the component into (connected) groups, each containing exactly
k points. Then, we choose at least one point from each group (which is proven to be
always possible in the next lemma), to form the color-spanning subgraph H . Since
in the worst case two points selected are from two neighboring groups, which could
be 2(k-1) hops away (or, 2k-1 edges away), we can give each point selected for H a
communication radius of (2k-1)dj to make H connected. Hence, we obtain a factor-
(2k-1) approximation for MCCS(k).

Lemma 3. In a connected component ofG(dj) which contain all the m colors, if there
are g groups of points containing the m colors (g ≤ m), each group has exactly k
points, and each color spans at most k points, then we can always choose one point for
each color such that each group has at least one point chosen.

Proof. We construct a bipartite graph (U, V,E): U denotes the g groups {G1, G2, ....,
Gg}, V denotes them colors {c1, c2, ..., cm}, and there is an edge betweenGi and cj iff
the groupGi contains at least one point of color cj . Following Hall’s Marriage Theorem
[14], which, in this setting, states that there is a perfect matching for the bipartite graphs
(U, V,E) iff the degree of nodes in U ’s are at leastm, there is a perfect matching where
all nodes in U (or groups) will be in a matching. Then, the lemma follows immediately.
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We comment that the 2SAT(1) instance we covered previously is a special case of
the bipartite graph we have just discussed. Combined with the previous discussions,
it is easily seen that this is gives us a polynomial time approximation. In addition,
as the maximum matching algorithm takes O(n5/2) time [15] but can be improved
to O(n2 log k) = O(n2) time for regular bipartite graphs [7], so the overall running
time of this algorithm remains to be O(n2 logn). (We comment that with a randomized
solution the perfect matching can be computed in O(n logn) time [13], but it will not
change the overall running time of our algorithm.)

Theorem 4. There is a factor-(2k-1) approximation for MCCS(k).

4 Concluding Remarks

We give tight approximation bounds for the Minimum Connected Color-Spanning Set
problem, which arises in wireless sensor networks. When k is big, the 2k-1 factor for
MCCS(k) might not be efficient enough. So an interesting question is whether a con-
stant factor approximation can be obtained for MCCS.
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Abstract. In this paper, we study the train delivery problem which is
a generalization of the bin packing problem, and is also equivalent to a
one dimensional version of the vehicle routing problem with unsplittable
demands. We give an APTAS for the general problem with time com-

plexity O(nO(ε−4)), which is better than the previous one O(n( 1
ε
)
O( 1

ε
)

),
where n is the number of input elements.

1 Introduction

The train delivery problem was first studied by Das, Mathieu and Mozes in
2010, and has many applications in the real world [3]. In the problem, there are
trains with capacity W and a set of products, which are called customers, each
customer is associated with (s, p), where s is the size and p is the position. A
set of products with a total size at most W can be shipped together, however
the cost of the shipment is dominated by the largest position value of products
in the train. We are asked to ship all the products and minimize the total cost
occurred. If all the positions are equal to one, the problem is degenerated to one
dimensional bin packing problem [1].

Formally, the train delivery problem(TDP) is defined as below: given a positive
capacityW (positive real number) and a set S = {(s1, p1), (s2, p2), ..., (sn, pn)} of
n customers, where all si and pi are positive numbers, we are asked to partition
S into subsets {Sj}(train tours) to minimize∑

j

max
i∈Sj

pi subject to ∀j
∑
i∈Sj

si ≤ W.

Related Work: Das, Mathieu and Mozes [3] first mentioned that the problem
does not admit a polynomial time approximation algorithm with an approxima-
tion factor strictly less than 1.5, then designed an asymptotic polynomial time
approximation scheme (APTAS), under the condition: the largest position is
arbitrarily small compared with the optimal value, finally they purposed a poly-
nomial time approximation scheme (PTAS) for the case where W is polynomial
in the input size n.

Our Contribution: In this paper, we improve the time complexities of schemes
by Das, Mathieu and Mozes [3]. In details,

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 601–611, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1. if maxi pi = O(ε)OPT , we give APTAS in time O(nO(ε−4)), which is better

than the one O(n(
1
ε )

O( 1
ε
)

).
2. If W is polynomial in n, the time complexity of the PTAS given in [3] is

improved from O(W eO( 1
ε
)

) +O(n(
1
ε )

O( 1
ε
)

) to O(W eO( 1
ε
)

) +O(nO(ε−4)).

Compared with one dimensional bin packing problem, the difficulty in our
problem is that: customers with small sizes cannot be ignored, since they may
have big positions. Das, Mathieu and Mozes [3] also mentioned that the ap-
proaches for bin packing problem cannot be applied to the TDP directly.

To design an APTAS, Das, Mathieu and Mozes [3] partition customers into
disjoint regions based on their positions, each region has only a constant number
of locations containing customers. For each location the customers are grouped
into constant different sets, each set has a distinct size, so there are at most a
constant number of different sizes in one region. Then they use an exhaustive
enumeration of all solutions of the large customers. Finally, for each solution
they insert small elements greedily to it.

In our paper, combining the techniques in layered graph scheme given by
[11](for scheduling problem), also used in [10] (for generalized cost variable sized
bin packing), we design a layered graph with a source vertex s and a terminal
vertex t for a rounded instance, such that any path from s to t corresponds
a feasible solution of packing products into trains, and each edge (u, v) in the
graph corresponds to a pattern of one train, so the length of (u, v) is equal to the
cost by the train, and vertex u contains the information of unpacked products. If
there are only large products in the input, then the problem is done, since finding
the shortest path is enough. The problem is that: how to pack small products
in the train? To attack the problem, in each train, we keep some space for small
products, and there are constant distinct possibilities for the space. Sometimes
we are allowed that the train is overflowed, i.e., the total size in the train is
larger than W due to accepting small customers. In the graph we constructed,
we make sure there are enough space for the small customerss, but we do not
give a packing solution for small customers. To obtain APTAS, we first find a
shortest path in the graph, which is the lower bound of optimal solution, since
we allowed a train to be overflowed by the space prepared for small customers.
We first make sure all small customers can be packed into the space prepared
for them, then we take the small customers out the trains that overflowed and
pack them greedily into some extra trains. We find the cost by extra trains is
at most O(ε)OPT + O(pmax), where pmax is the maximum position of all the
customers. This approach leads to an APTAS, which is different from the one
in [3]. Throughout this paper we denote by ε a fixed positive constant such that
ε < 1

100 and 1
ε is an integer.

2 Rounding Up Positions and Sizes

To design an APTAS, the first step is to round the input such that the input
is structured and the lost by rounding is not much significant. In this section
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we first round positions of products up to pmax

(1+ε)i for some i, where pmax is

the maximum position of all the products. And we guarantee that we enlarge
the optimal solution within a factor (1 + ε). Then we round up large sizes of
products into a constant number of different sizes by the techniques used in
bin packing problem, and also guarantee that the rounding does not affect the
optimal solution too much.

2.1 Rounding Up Positions

We sort the customers(customer i be denoted as (si, pi), with size si and position
pi) by their positions, such that p1 ≥ p2 ≥ ... ≥ pn > 0, let pn+1 = 0. We traverse
the input from p1 to pn and round up pi to p̄i for i ≥ 1, such that:

p̄i =
p1

(1 + ε)k
,

where k is the maximum integer such that:

p1
(1 + ε)k+1

< pi ≤
p1

(1 + ε)k
.

Lemma 1. Let L be an input list, and L′ be the list generated by rounding up
as described above, then OPT (L′) ≤ (1 + ε) · OPT (L), where OPT (L′) is the
optimum cost of L′ and OPT (L) is the optimum cost of L.

The proof is left in the full version.

2.2 Grouping Large Elements

Definition 1. A customer of size sj is large if sj ≥ εW , else it is small.

Let L be the input after rounding up positions. Let T = {P1,P2, ...,Pr} be the
set of positions from L, where P1 ≤ P2 ≤ ... ≤ Pr.

Then r = |T | denotes the number of different positions in L, we have r ≤ n.
Next we partition input list L into subsets according to sizes of the customers.

Definition 2. Let Lk be the set of large customers with position Pk . If |Lk| < 1
ε2

we call Lk as a thin class, else if |Lk| ≥ 1
ε2 we call it as a fat class.

Given a class Lk we want to group Lk into 1
ε2 sub-groups, assume that 1

ε is
an integer. We have two cases.

Case 1: If Lk is a thin class, that is |Lk| < 1
ε2 . We sort the customers of

Lk by their sizes(by decreasing order) and partition them into |Lk| parts, each
part has one customer, that is |Sk

1 | = 1, |Sk
2 | = 1, ..., |Sk

|Lk|| = 1, |S|Lk|+1| = 0,

..., and the size of the customer of Sk
i is larger than or equal to the size of the

customer of Sk
j (if exists) for i < j.

Case 2: If Lk is a fat class, that is |Lk| ≥ 1
ε2 . Let |Lk| = nk. We sort

the customers ck1 , c
k
2 , ..., c

k
nk

of Lk according to their sizes. Denote the size of the
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customer ckj by skj , and without loss of generality we assume that sk1 ≥ sk2 ≥ ... ≥
sknk

. We partition Lk into 1
ε2 subsets denoted by Sk

1 , S
k
2 , ..., S

k
1/ε2 . The partition

is defined by the following two conditions: i) |Sk
p |= �nkε2� or �nkε2�, ii) and for

all p, q ≥ 1, if p < q then |Sk
p | ≥ |Sk

q |(note that |Sk
1 |= �nkε2�), i.e., we partition

Lk to approximately equal size sets, refer to Fig. 1.

...

...

...

...
S̄ k
1

S k
1

S k
2 S k

3 S k
1

S̄ k
2 S̄ k

3 S̄ k
1

¯
¯

S k
1 1

¯
S k
1 1

2

2
2

2

Fig. 1. An example of grouping fat class, in this case �nkε
2	 = 4, �nkε

2� = 3

Set Sk
j contains the largest elements from Lk\(Sk

1∪Sk
2 ∪ ... ∪ Sk

j−1). For all k

and j ≥ 2, we round up the size of all customers in Sk
j to the size of the largest

element in Sk
j , the set of these rounded customers is denoted by S̄k

j , and define

S̄k
1 = Sk

1 . We have the following lemma, and its proof is in the full version.

Lemma 2. Let S1 = ∪Lk:fatS
k
1 , the total cost of assigning each customer of S1

into a dedicated train is at most 2ε·OPT , where OPT is the cost of an optimum
solution.

3 An Asymptotic Polynomial Time Approximation
Scheme

Our scheme is based on construction of a layered graph, the path in this graph
only have large elements actually packed, and there are slots of size εW prepared
for packing back small elements in the path, we designed an algorithm( algorithm
1) to packing back the small elements, which we proved can assure the additional
cost is within O(ε) times the cost of the path. We modified an optimal small
expanse solution which is defined below, and showed that there is a corresponding
path in our graph, then we find the shortest path in the graph, whose cost is
definitely smaller than this path of the modified solution, and the results of
applying algorithm 1 on the shortest path is a 1 + O(ε) solution of the TDL
problem.

Definition 3. We say that a solution is small expanse: if in the solution for
every pair of a train of cost pi and a set of customers S packed in the train we
have either sj ≤ εW or pj ≥ εpi for ∀j ∈ S.
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In a small expanse solution, a customer in the train has small size or the position of
the customer differs from the cost of the train by a constant factor. Then we focus
on analyzing small expanse solutions and have the following lemma (its proof is
left in the full version).

Lemma 3. There exists a small expanse solutionwith cost atmost (1+2ε)OPT (L),
where OPT (L) is the optimal solution of input L.

3.1 Patterns in One Stage

Given an input L, after rounding up positions and large sizes, we have r distinct
positions in L, denoted by T = {P1,P2, ...,Pr}. Then our layered directed graph
G = (V,E) is composed of r+1 stages, and each stage is formed by a consecutive
set of n+1 layers, in each layer there are a set of vertices, which will be defined
later. The i-th stage corresponds to decisions regarding the covering(packing)
of customers by trains of cost Pi. Each edge connects a vertex of one layer to a
vertex of the consecutive layer, where the layers are ordered so that first there
are n+1 layers of stage r+1, then the layers of stage r, and so on up to the layers
of stage 1. We add to G one additional vertex denoted by t, which is defined to
be the final vertex.

For stage i, we define

Bi = {k : Pk ∈ [εPi,Pi]}.

A pattern of stage i corresponds to a packing of a train of cost Pi with elements
in ∪k∈Bi,j≥1S̄

k
j . In a pattern we keep ε ·W · n̂slot space for small elements, where

n̂slot is an integer. Formally, a pattern of stage i is defined as below:

(n̂slot, (n̂
k
j )k∈Bi,j≥1),

subject to

W ≥ ∑
k∈Bi,j≥1 n̂

k
j · s̄kj ,

(1 + ε)W ≥ ∑
k∈Bi,j≥1 n̂

k
j · s̄kj + εW · n̂slot,

where n̂kj is the number of elements from S̄k
j (S̄

k
j = Sk

j if Lk is a thin class), s̄kj
is the size of S̄k

j . Since elements from S̄k
1 of fat class are not considered in the

pattern, we set n̂k1 = 0. Note that the total size in a pattern may overflow to
W + ε ·W . Actually, when we pack the real small customers back into the train,
if it is overflowed, we use extra trains to handle the overflowed small customers.
We have following lemma, its proof is left in the full version.

Lemma 4. The number of possible patterns of stage i is O((1ε +1)
log1+ε

1
ε
+1

ε2
+2).
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3.2 Constructing Vertices of the Graph

Next we construct vertices of stage i in the graph. Each layer in the same stage
has the same set of vertices. Roughly speaking, a vertex corresponds to ele-
ments unpacked so far. Each vertex u of stage i in the graph is associated with
information tag which contains three parts:

tag =< Bi, nslot(u), n
k
j (u) >,

where k ∈ Bi, j ≥ 1. The first part of the information tag is the set Bi.
The second part indicates that the total size of small elements unpacked at

this stage is at most nslot(u) · εW , where nslot(u) is an integer in [0, n].
The third part contains information on the number nkj (u) of elements from

S̄k
j that still needs to be packed. If Lk is a fat class, we set nk1(u) = 0.

Lemma 5. The number of vertices in the graph is at most 2 log1+ε
1
ε+1 · (n +

1)
log1+ε

1
ε
+1

ε2
+3, that is polynomial in the input size.

Proof. We first analyze the maximum number of vertices that each stage can
have. Consider stage i, let Gi be the set of all possibilities of information tag of
vertex of stage i:

Gi = {g|g: an information tag of stage i }. (1)

We consider the possible values of the information tag of vertices. Set Bi is
identical for all of the vertices in this stage, the second part nslot(u) of the vertex
information tag is an integer in the range [0, n], thus the number of possible values
of nslot(u) is at most n+ 1,

and nkj (u) is an integer in the range [0, ni], which are at most n+1 possibilities.

For the pairs of indices k and j, by definition Pk ∈ [εPi,Pi] and j = 2, 3, ..., 1
ε2 ,

and by Lemma 1 there at most 1 + log1+ε
1
ε values that k can have. For j = 1,

nk1(u) is an integer in the range [0, 1], i.e., there are only 2 possibilities. Therefore,
the number of possibilities for the third part of the information tag is at most

2 log1+ε
1
ε +1 · (n+ 1)

log1+ε
1
ε
+1

ε2 .
Therefore the maximum number of vertices of each stage is at most (n+ 1) ·

2 log1+ε
1
ε +1 · (n+1)

log1+ε
1
ε
+1

ε2 , the number of veritecs in the graph is therefore at

most (r+1)·(n+1)2·2 log1+ε
1
ε +1·(n+1)

log1+ε
1
ε
+1

ε2 ≤ 2 log1+ε
1
ε+1 ·(n+1)

log1+ε
1
ε
+1

ε2
+3.
	


As showed in the proof of lemma 5, there is a finite set Gi of information tag
for each stage i, we construct each layer to have a vertex for each tag in Gi, the
number of vertices of the layer is thus |Gi|.

First there is a vertex s of stage r + 1, then we construct the n+ 1 layers of
stage r as above, and so on until the n+ 1 layers of stage 1 and finally we add
one final vertex t.
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3.3 Connecting Feasible Edges between Vertices

There are four types of edges. The first two types of edges connect two vertices
of two consecutive layers in the same stage. The last two types of edges connect
vertices from two consecutive stages.

1. The first type of an edge connects two vertices from two consecutive layers
in stage i. It corresponds to a pattern of stage i.

Let u and v be vertices in stage i, and v is in the consecutive layer of u, then
there is a edge of type one between u and v if the following conditions hold:

0 ≤ n̂slot = nslot(u)− nslot(v), (2)

0 ≤ n̂k
j = nk

j (u)− nk
j (v), k ∈ Bi, j ≥ 1, (3)

0 ≤ W −
∑

k∈Bi,j≥1

n̂k
j · s̄kj , (4)

n̂slot ≤ �W−
∑

k∈Bi,j≥1 n̂k
j ·s̄

k
j

εW
	, (5)

where s̄kj be the size of elements in S̄k
j . That is if the difference of information

tags of u and v forms a feasible pattern then there is a edge of type one.
2. The second type of an edge connects two vertices in consecutive layers in

the same stage with equal information tag. Such an edge has a zero cost. Such
an edge corresponds to skip a layer(train).

3. The third type of an edge is about the connection of two consecutive stages.
First let Vi+1 denote the set of all vertices of the last layer of stage i+1. A vertex
u ∈ Vi+1 is called nice if it satisfies the following condition: for all k ∈ Bi+1\Bi,
nkj (u) = 0, j = 1, ..., 1

ε2 . The third type of an edge connects only nice vertices of
the last layer of a stage i+ 1 to the vertices of the first layer of the consecutive
stage i. Let (u, v) be such an edge where u is nice. Then vertex v of stage i

satisfies the following conditions: i) nslot(v) = �nslot(u)·εW+Di

εW �, where Di is the
total size of small elements of position Pi; ii) for all k ∈ Bi+1 ∩ Bi, we have
nkj (v) = nkj (u) for all j = 1, ..., 1

ε2 ; iii) for all k ∈ Bi\Bi+1(Bi\Bi+1 = {i}), we
have nkj (v) = |S̄k

j | for all j = 1, ..., 1
ε2 ; if Lk is a fat class, we set nk1(v) = 0.

...

...

...

...

u

v
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>< + + 1 ,1 1
)( ),( , jBk

k
jsloti i
ununB

∈ ≥

∈ ≥ >< 1 ,)( ),( , jBk
k
jsloti i
vnvnB

.1  ,\for 

 )( entries all remove

1+ jBBk
un

ii

k
j

 )(  )( remaining vnun k
j

k
jiD+

 ....  ),( ,0)(

)( entries new add

21 vnvn

vn
ii

i
j

=

→

∈ ≥

1+i

i

class   : fatLi

Fig. 2. Edge (u, v) of type 3 where the class of i is fat
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The cost of the edge (u, v) is
∑

k∈Bi+1\Bi,Lk: fat |S̄
k
1 | ·Pk, this cost reflects the

cost of assigning each element of S̄k
1 (Lk is a fat class) to a dedicated train of

cost Pk. We charge this cost to an edge of type 3 or type 4, at the time when k
stops appearing in the first part of the information tag.

4. The last type of edge connects vertex u of the last layer of stage 1 to
t. If nkj (u) = 0 and nslot(u) = 0 for all j, k. The cost of such an edge is∑

k∈B1,Lk:fat
|S̄k

1 | · Pk.

3.4 Constucting a Feasible Solution from a Path of the Graph

In our scheme we first finds the minimum cost route(we use the word route
synonymous with path) R from s to t. Then we construct a feasible solution
based on the path found by the procedure as below.

If the path uses an edge connecting (u, v) where both of them belong to a
common stage i,

then this edge corresponds to a pattern (n̂slot, (n̂
k
j )k∈Bi,j≥1), where n̂slot =

nslot(u)−nslot(v) and n̂kj = nkj (u)−nkj (v), k ∈ Bi, j ≥ 1. We use a train of cost

Pi to allocate it with exactly n̂kj elements of S̄k
j for all k ∈ Bi and j ≥ 1, reserve

a space of size n̂slot · εW for small items. We apply this for all edges of the first
type that R uses. The second type of edges in R do not affect the solution.

Next assume that R uses an edge (u, v) of the third type where u belongs to
the (i+ 1)-th stage and v belongs to stage i.

For all k ∈ Bi+1\Bi, Lk is fat, we open |S̄k
1 | trains of cost Pk and allocate

them each with one element of S̄k
1 . Consider the edge of the last type that R

uses. For all k ∈ B1, Lk is fat, we use |S̄k
1 | trains of cost Pk and allocate them

each with one element of S̄k
1 .

The total cost of trains that we used is exactly the cost of R. We next consider
the non-allocated small elements(for which the path R reserves space by n̂slot).
We sort these elements in a non-increasing order of positions.

For each edge that contains at least one slot for small elements, we give one
additional slot εW for it, the total size of large element packed in a train plus
the space of slots may overflow to at most W + 2εW . We pack small elements
into the space denote by slots of εW , we will show in next chapter that all the
elements can be packed, and then we take a total size of at most 3εW of small
elements outside overflowed trains and use additional trains to pack them. We
will use an algorithm(algorithm 1) to allocate these elements, which is described
in next chapter, we also prove that the algorithm assures all these customers are
packed and the additional cost is at most 4ε · c(R) + P1, where c(R) is the cost
of path R and P1 is the largest position of all customers.

As the time complexity of our scheme, we have the following lemma, its proof
is in the full version.

Lemma 6. The time complexity of our scheme is nO(ε−4).
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4 The Analysis of Correctness

We then analyze the layered graph, and show how to transfer an optimal small
expanse solution into a corresponding path in the graph. In a path in the graph
from the start vertex s to the terminal vertex t we pack large elements there,
and keep space in the form of slots of size εW for small elements. We then packs
small elements back into the path using these slots as well as one additional slot

we can make sure all the small elements can be packed into these space, and
the content of a train may overflow to at most W + 2εW . We then take small
elements with a total size at most 3εW from the overflowed train, and pack them
into additional trains, finally analyze the cost of additional trains and give the
bound of our solution.

4.1 Transfer an Optimal Small Expanse Solution to a Corresponding
Path in the Graph

We first bound the cost of path R. To do so, we present a path from s to t in the
graph G whose cost is (1 + 2ε)OPTn, where OPTn is an optimal small expanse
solution. The proof is left in the full version.

Lemma 7. There exists a path R̃ from s to t whose cost c(R̃) is at most (1 +
2ε)OPTn.

4.2 Packing Backing Small Elements in a Path

Consider a path R. Focus on stage i, let μi be the number of slots for small
elements in stage i as implied by the sum of values n̂slot in patterns(a pattern
is equal to an edge of type one), therefore the space εW · μi will be larger than
the actual total size of small elements. Let Mi be the number of edges of type
one inside stage that contain at least one slot for small elements, and Ni be
the total number of edges of type one of stage i(total number of trains of this
stage used by the path). We have a total size of εW · μi space for packing back
the small customers of stage i. For each edge that contains at least one slot for
small elements, we give one additional slot εW for it, then there are μi +Mi

slots for packing small elements whose total size is at most εW · μi. We pack
the real small customers greedily into the space provided by these slots(μi +Mi

slots), if we have customers left and there no space available for them, at least
a total size of εW (μi + Mi) − εWMi of customers are already in the trains,
which contradicted with the fact that the total size of all small customers is at
most εW · μi. Therefore these μi +Mi slots are enough to allocate all the small
customers. However some trains may overflow to W + 2εW . Next we show how
to transform it into a feasible solution.

Let C be the content of a overflowed train as described above, we take the
small customer out of C one at time, we keep doing this until we take one small
element si out of C and the content of C becomes at mostW . This operation will
take out small customers with total size at most 3εW , since if not the total size
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of elements before taking out si is at most 2εW and si is larger than εW , which
makes a contradiction. We then pack all these customers taken from overflowed
trains with new trains by algorithm 1, which makes sure all these customers are
packed and the additional cost is at most 4ε · c(R) + P1, where c(R) is the cost
path R, P1 is the largest position of all customers.

Let Ci be the set of small customers that are taken from the overflowed trains
of stage i as described above. Let list Lc be formed of the small customers of Ci

followed by small customers of Ci+1 for 1 ≤ i ≤ r. We will pack the elements of
Lc by algorithm 1.

Algorithm 1. packing overflowed small customers with additional trains
INPUT: Lc.

k = 0.
while Lc �= ∅

k = k + 1.
Assume the first element in Lc is of position Pj .
Open a new train of cost Pj .
Cost[k] = Pj .
while the first element of Lc can be put into this train
Take out the first element from list Lc and put it into the train.

end while
end while

OUTPUT: k trains packing Lc.

Lemma 8. The total cost of additional trains for packing small elements is at
most 4ε · c(R) + P1(the proof is left in the full version).

By Lemmas 6, 7, and 8, we have the following result:

Theorem 1. The scheme described above is an APTAS for TDP.

5 Conclusion

In order to get an APTAS for the train delivery problem, we first applying round-
ing techniques on positions and sizes by Lemmas 1 and 3. We partition input
elements into sets by their positions which we called classes. We apply linear
grouping on these classes so that each class has a constant number of different
positions, then we construct layered graph on these adapted input elements and
find a feasible solution which we prove is a near optimal solution to the original
input.
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Abstract. The (distance) k-sector is a generalization of the concept of
bisectors proposed by Asano, Matoušek and Tokuyama. We prove the
uniqueness of the 4-sector of two points in the Euclidean plane. De-
spite the simplicity of the unique 4-sector (which consists of a line and
two parabolas), our proof is quite non-trivial. We begin by establish-
ing uniqueness in a small region of the plane, which we show may be
perpetually expanded afterward.

Keywords: distance k-sector, Tarski fixed point, uniqueness.

1 Introduction

The bisector of two nonempty sets X and Y in R2 is defined as

bisect(X,Y ) = { z ∈ R2 : dist(z,X) = dist(z, Y ) }, (1)

where dist(z,X) = infx∈X dist(z, x) denotes the Euclidean distance of z from a
set X . For any integer k ≥ 2, a distance k-sector (or simply k-sector) of distinct
points p, q ∈ R2 is a (k − 1)-tuple (C1, . . . , Ck−1) of nonempty subsets of R2

such that

Ci = bisect(Ci−1, Ci+1), i = 1, . . . , k − 1, (2)

where C0 = {p} and Ck = {q}.
For example, there is a 4-sector of two points that consists of a line and two

parabolas (Fig. 1). We will prove that this is the only one:

Theorem 1. The 4-sector between two points in the Euclidean plane is unique.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 612–622, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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q

p

C3

C2

C1

Fig. 1. A 4-sector (C1, C2, C3) of p and q (whose uniqueness we will prove). If p =
(0,−1) and q = (0, 1), these curves are the graphs of y = ±(x2 + 1)/2 and y = 0.

The notion of distance k-sectors was introduced by Asano and Tokuyama [4] in
2004, motivated by a question about circuit board design. Asano, Matoušek and
Tokuyama [3] showed the existence and uniqueness of the 3-sector (trisector).
Despite the simple definition, k-sectors (with the exception of k = 2, 4) do
not seem to be easy to construct (note that bisecting between the curves in
Fig. 1 does not give an 8-sector). In particular, the 3-sector is not algebraic, as
conjectured in [3] and recently proved by Monterde and Ongay [8].

Although the original proof in [3] of the existence and uniqueness of the 3-
sector was rather involved, it turned out later that k-sectors exist in a fairly
general setting and for a relatively simple reason: Reem and Reich [9] used the
Tarski fixed point theorem to prove the existence of a closely related object called
double zone diagrams. Applying this idea, Imai et al. [6] proved the existence of
a k-sector for any k on any sets P , Q (instead of {p}, {q}), and for a general
class of metric spaces. The existence proofs sometimes suggest an algorithm to
compute (draw on a screen approximately) k-sectors, but its efficiency is unclear.
Some issues in computing k-sectors and double zone diagrams are discussed in
[6,10] (of course, such issues are trivial in our setting of 4-secting two points,
once we show that the only 4-sector is the one explicitly given in Fig. 1).

Uniqueness is harder to prove. The uniqueness of the 3-sector was extended
to the case where one of P , Q is a line segment instead of a point [5], and then
to the general case where P , Q can be any disjoint nonempty closed sets [7]
(in fact, they proved the uniqueness of the zone diagram [2], a generalization of
3-sectors where we start with many sets instead of just two sets P , Q). Unlike
existence, uniqueness relies on the properties of the Euclidean norm, and indeed
fails for, say, the l1 norm [1,7]. It remains open [6, Conjecture] whether k-sectors,
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for k ≥ 4, are unique even in the Euclidean plane. Theorem 1 answers this for
k = 4 (and points p, q).

Proof idea. Roughly speaking, the central part of our proof (Lemma 3) is based
on the following ideas. Suppose that there are two different k-sectors (Ci)i and
(Ĉi)i (here and in the sequel, the subscript i always ranges over 1, . . . , k− 1, so
that (Ci)i means (C1, . . . , Ck−1)). Then there is a gap somewhere between the
curves Ci and Ĉi. Since they both satisfy equation (2), we must have another gap
somewhere between Ci−1 and Ĉi−1 or between Ci+1 and Ĉi+1, which is not too
small compared to the original gap. From some observations about the size and
location of the new gap, we derive contradiction by arguing that this process
of finding a new gap cannot go on forever because it causes the gap to grow
too big to fit where it must be. This rough intuition is common to the proof of
3-sector uniqueness in [7], but there is a lot of room for creativity as to how we
define the size of the gap between two curves at a point. The proof in [7] used a
clever way to measure the gap under which the gap always grows bigger, but this
measure of the gaps only makes sense for 3-sectors. We measure the gap much
more simply, by the difference between the y-coordinates of the two curves at
a common x-coordinate. The downside is that under this measure, the gap gets
bigger only when the involved parts of the curves lie in certain configuration.
This necessitates some detailed argument that certain part of 4-sector indeed
has this configuration (Lemma 6) and that the uniqueness of this part of the
4-sector can then be extended gradually to other parts (Lemmas 4 and 5).

2 Preliminaries: Gradations

In the definition of k-sectors above, the components Ci are sets satisfying certain
equations, and we did not even say that they are curves. It is not entirely obvious,
although it is true, that each of them divides the plane into two regions, one
containing p and the other containing q. Imai et al. [6] made this claim precise (as
Lemma 1 below) by introducing k-gradations. We briefly review their definition,
as we also find k-gradations easier to reason with than k-sectors.

For nonempty X , Y ⊆ R2, we define the dominance region of X over Y by

dom(X,Y ) = { z ∈ R2 : dist(z,X) ≤ dist(z, Y ) }. (3)

It is not hard to see [6, Lemma 6] that, if X and Y are disjoint closed sets,
bisect(X,Y ) is the boundary of dom(X,Y ). A k-gradation between points p,
q ∈ R2 is a (k − 1)-tuple (Ri, Si)i of pairs of subsets of R2 satisfying

Ri = dom(Ri−1, Si+1), Si = dom(Si+1, Ri−1), i = 1, . . . , k − 1, (4)

where R0 = {p} and Sk = {q}. It is easy to see that this implies Ri ∪ Si = R2,
{p} = R0 ⊆ R1 ⊆ · · · ⊆ Rk−1 and S1 ⊇ S2 ⊇ · · · ⊇ Sk = {q}.

By the following lemma (a special case of [6, Proposition 2]), a k-sector (Ci)i
can be identified with a k-gradation (Ri, Si)i:



Uniqueness of the 4-Sector 615

Lemma 1 ([6]). A (k − 1)-tuple (Ci)i of sets is a k-sector of points p, q ∈ R2

if and only if

Ci = Ri ∩ Si, i = 1, . . . , k − 1 (5)

for some k-gradation (Ri, Si)i between p, q.

Imai et al. [6, Proposition 1] established the existence of a k-sector by proving
the existence of a k-gradation:

Lemma 2 ([6]). There exists a k-gradation between two distinct points in R2.
In fact, there are the greatest and the least k-gradations under the order defined
by: (Ri, Si)i ≤ (R′i, S

′
i)i if Ri ⊆ R′i and Si ⊇ S′i for all i = 1, . . . , k − 1.

In what follows, we will primarily deal with k-gradations as opposed to k-
sectors, as their use allows the proofs to be simpler and cleaner.

3 Proof of Theorem 1

For the rest of the paper, we fix p = (0,−1) and q = (0,+1) and consider the
4-sectors and 4-gradations between them. As explained above (Lemma 1), each
4-sector (Ci)i corresponds to a 4-gradation (Ri, Si)i. We will prove that this
4-gradation agrees with (R̂i, Ŝi)i, the trivial 4-gradation corresponding to the
trivial 4-sector (Ĉi)i described in Fig. 1.

Define the (closed) regions Iβ and Jβ , for β > 0, as follows (Fig. 2), using the

trivial 4-sector (Ĉi)i. Consider the normal lines to the parabolas Ĉ1 and Ĉ3 at
x = ±β. The closed, finite region of the plane (containing the origin) defined by
these lines is Iβ . The region Jβ contains Iβ , as well as all points lying above the

upper envelope of the normal lines to Ĉ1 and all points lying below the lower
envelope of the normal lines to Ĉ3. Calculation shows that the four vertices of
Iβ are (±(3 + β2)β/2, 0) and (0,±(3 + β2)/2).

We prove Theorem 1 using the following three lemmas. Note that the number
0.5774 in the lemmas is slightly greater than 1/

√
3, so that the boundary halflines

of J0.5774 make angle slightly less than π/3 with the x-axis.

Lemma 3. Let (Ri, Si)i be a 4-gradation. Then R2 and S2 agree with the trivial
4-gradation on J ′ := J0.5774∩ (R× [−4, 4]), i.e., R2∩J ′ = R̂2∩J ′ and S2 ∩J ′ =
Ŝ2 ∩ J ′.

Lemma 4. Let β ≥ 0.5774. Let (Ri, Si)i be a 4-gradation. Suppose that R2

and S2 agree with the trivial 4-gradation on Jβ, i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and

S2 ∩ Jβ = Ŝ2 ∩ Jβ. Then R1, S1, R3, S3 agree with the trivial 4-gradation on a
region Iβ′ , for some β′ ≥ 1.00001β. Moreover, for β = 0.5774, this holds with
Jβ replaced by the J ′ defined in Lemma 3.

Lemma 5. Let β > 0. Let (Ri, Si)i be a 4-gradation. Suppose that R1, S1,
R3, S3 agree with the trivial 4-gradation on Iβ , i.e., Ri ∩ Iβ = R̂i ∩ Iβ and

Si∩Iβ = Ŝi∩Iβ for each i = 1, 3. Then R2, S2 agree with the trivial 4-gradation

on Jβ, i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and S2 ∩ Jβ = Ŝ2 ∩ Jβ.
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β−β

R̂3

R̂2

R̂1

Ŝ3

Ŝ2

Ŝ1

p

q

Fig. 2. Closed regions Iβ (dark grey) and Jβ (light grey plus dark grey), defined from
the trivial 4-gradation (R̂i, Ŝi)i

Lemma 3 is the central part of our proof: it says that the middle component
(R2, S2) of the 4-gradation is uniquely determined (and agrees with the trivial
one) up to a certain point (i.e., in the region J ′). Lemma 4 says that if (R2, S2)
is uniquely determined up to some point, then it uniquely determines (R1, S1)
and (R3, S3) up to some point. Lemma 5 works the other way, stating that a
certain part of (R2, S2) is determined by certain parts of (R1, S1) and (R3, S3).

To prove Theorem 1, we use Lemma 3 followed by the last sentence (the
“moreover” part) of Lemma 4, and then apply Lemmas 5 and 4 alternately,
extending step by step the region on which the considered 4-gradation agrees
with the trivial one. This proves the uniqueness of the 4-gradation, and thus, by
Lemma 1, of the 4-sector.

The proofs of the lemmas require a number of additional properties, and so
their presentation is delayed to Sections 3.2 and 3.3.

3.1 Properties of a 4-Gradation

Before proving the lemmas, we need to get some rough estimates about what a
4-gradation must look like. Let B(w, r) (resp. B◦(w, r)) denote the closed (resp.
open) ball with centre w and radius r.

Lemma 6. Let (Ri, Si)i be a 4-gradation. Then
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1. R1 and S3 are convex.
2. dist(Ri, Si+1) ≥ 1/2 for each i = 0, 1, 2, 3.
3. B(p, i/2) ⊆ Ri and B(q, i/2) ⊆ S4−i for each i = 0, 1, 2, 3, 4.
4. R1 ⊆ R× (−∞,−1/2] and S3 ⊆ R× [1/2,∞).
5. Let w = (a, b) be a point with a ≥ 0 and b ≤ 0. Let v = (a′, b′) be a closest

point to w in S3. Then,
(a) 0 ≤ a′ ≤ a.
(b) If |a| ≤ 1.16, then b′ ∈ [1/2, 0.82].
Likewise for S3 and b ≤ 0 replaced by R1 and b ≥ 0, respectively.

6. For each t > 0, let L±t = { (x, y) ∈ R2 : ±y ≤ x2/t }, respectively. Then
R2 ⊆ L+

4 and S2 ⊆ L−4 .

Proof. 1. R1 = dom(p, S2) =
⋂

s∈S2
dom(p, s), and the right-hand side is an

intersection of halfspaces. Similarly for S3.
2. Otherwise, there exists an i such that dist(xi, xi+1) < 1/2 for some xi ∈
Ri and xi+1 ∈ Si+1. By redefining xi and xi+1 on the segment xixi+1 if
necessary, we have xi ∈ Ri ∩ Si and xi+1 ∈ Ri+1 ∩ Si+1. Starting from this,
we can inductively obtain a point xj ∈ Rj ∩Sj with dist(xj , xj+1) < 1/2 for
each j = i−1, i−2, . . . , 0; and a point xj ∈ Rj∩Sj with dist(xj−1, xj) < 1/2
for each j = i + 2, i + 3, . . . , 4. Thus p and q are connected by a path
x0x1x2x3x4 of length less than 4× 1/2, a contradiction.

3. We prove the first claim by induction on i (the second claim is analogous).
By part 2 and the induction hypothesis, Si+1 ⊆ R2 \ B◦(p, (i + 1)/2). By
this and Ri+1 ∪ Si+1 = R2, we have Ri+1 ⊇ B◦(p, (i + 1)/2). Since Ri+1 is
closed, Ri+1 ⊇ B(p, (i + 1)/2).

4. Since (0, 0) ∈ S2 by part 3, we have R1 = dom({p}, S2) ⊆ dom({p}, (0, 0)) =
R× (−∞,−1/2]. Similarly for S3.

5. Since S3 is convex by part 1, it is contained in the (closed) halfplane Hw

defined as the opposite side from w across the perpendicular of vw at v.
Since Hw contains B(q, 1/2) by part 3, and the point v on its boundary is
in R× [1/2,∞) by part 4, it must be the case that 0 ≤ a′ ≤ a.
We will prove the other claim, b′ ≤ 0.82. It suffices to show this for the
case where w is the upper-right-most point w0 = (1.16, 0). To see why, let
v0 = (a′0, b

′
0) be a closest point in S3 to w0, and define the halfplane Hw0 in

the same way as Hw from w0 and v0. Since Hw0 contains w and Hw contains
w0, they must coincide. So v must be at the same relative position from v0
as w is from w0, and thus must lie below, i.e., b′ ≤ b′0.
Thus our goal now is to show b′0 ≤ 0.82. Recall that Hw0 contains B(q, 1/2).
The line tangent to the lower half of the ball B(q, 1/2) at the point with
x-coordinate x0 is described as

y =
x0√

1/4− x20
x+

√
1/4− x20 − 1/4√

1/4− x20
. (6)

Similarly, the line perpendicular to this tangent and passing through w0 is

y = −
√
1/4− x20
x0

x+
1.16

√
1/4− x20
x0

. (7)
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These lines intersect at

x =
1.16/4 + x0/4− 1.16x20 − x0

√
1/4− x20

1/4 + x20
. (8)

Using substitution and a numerical calculation we get that the maximum
y-value achieved by this intersection point over the domain x0 ∈ (0, 1/2) is
0.819534 . . . < 0.82 at x0 = 0.243934 . . . . This value bounds b′0 from above.

6. By parts 3 and 4, R2 = dom(R1, S3) ⊆ dom(R × (−∞,−1/2],B(q, 1/2)) =
dom(R× (−∞,−1]), {q}) = L+

4 . Similarly for S2. 	


In the rest of this paper, part x of Lemma 6 is referred to as Lemma 6.x.

3.2 Proof of Lemma 3: Uniqueness Near the Origin

We now prove Lemma 3. Recall the statement:

Lemma 3. Let (Ri, Si)i be a 4-gradation. Then R2 and S2 agree with the
trivial 4-gradation on J ′ := J0.5774 ∩ (R × [−4, 4]), i.e., R2 ∩ J ′ = R̂2 ∩ J ′ and
S2 ∩ J ′ = Ŝ2 ∩ J ′.

Proof. We may assume that (Ri, Si)i is the greatest 4-gradation in the sense of
Lemma 2 (the same argument works for the least gradation by symmetry, and
proves that the greatest and least gradations, and hence all gradations, coincide
on J ′). This implies that Ri ⊇ R̂i and Si ⊆ Ŝi for each i. It suffices to prove that
R2 ∩ J ′ ⊆ R̂2 ∩ J ′. Suppose otherwise, i.e., that R2 ∩ J ′ contains a point above
the x-axis. Then the set of t > 0 with L+

t ⊇ R2 ∩ J ′ (see Lemma 6.6 for the
definition of L+

t ) is bounded from above. This set is closed, and contains 4 by
Lemma 6.6, so it has a maximum, which we call t from now on. By the maximality
of t, there is a point w = (a, ε) in (R2 ∩ J ′) \ {(0, 0)} on the boundary of L+

t .
This point w is on the boundary of R2. We assume without loss of generality
that a > 0. Calculation shows that the right uppermost point of J ′ ∩ L+

4 is
(1.15487 . . . , 0.33343 . . .), so a < 1.16 and ε < 0.34. Let ŵ := (a, 0).

Thus, we are looking at the point w ∈ R2 ∩ J ′ that lies on the boundary of
L+
t . Below, we will split into two cases, and argue that in either case we can find

another point u ∈ R2 ∩J ′ that does not belong to L+
t , contradicting the way we

defined t. Let l := dist(w,R1) = dist(w, S3) and l̂ := dist(ŵ, R̂1) = dist(ŵ, Ŝ3).

Case 1: l ≤ l̂. Define v to be the closest point to w in R1, and let v̂ := v− (0, ε)

(Fig. 3). Since dist(ŵ, v̂) = dist(w, v) = l, we have v̂ ∈ B(ŵ, l) ⊆ B(ŵ, l̂) ⊆ Ŝ1.

Let h := dist(v, S2) and ĥ := dist(v̂, Ŝ2). Since v ∈ R × [−0.82, 0.82] by
Lemma 6.5b, and ε < 0.34, we have h = dist(v, p) > dist(v̂, p) ≥ ĥ.

Define û to be the closest point to v̂ in Ŝ2 and let u := û + (0, ε) = (a′, ε).

Thus, u and û are vertically aligned with v̂. Since dist(v, u) = dist(v̂, û) = ĥ < h,
the point u belongs to R2 and is different from w (because dist(v, w) ≥ h). By
Lemma 6.5a, it lies on the left of w, which was in J ′ and on the boundary of
L+
t . Hence, u ∈ J ′ \ L+

t , contradicting R2 ∩ J ′ ⊆ L+
t .
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p

ŵ

w
ε

ε
v

v̂

l

Ŝ1 ∩R1

Ŝ2 ∩R2

û

ĥ

u
ε

Fig. 3. Illustration of Case 1 from the proof of Lemma 3

q

ŵ

w
ε

ε
v

v̂

l̂

Ŝ3 ∩R3

Ŝ2 ∩R2

û

u
ε

h

Fig. 4. Illustration of Case 2 from the proof of Lemma 3

Case 2: l ≥ l̂. Define v̂ to be the closest point to ŵ in Ŝ3, and let v := v̂+ (0, ε)

(Fig. 4). Since dist(w, v) = dist(ŵ, v̂) = l̂, we have v ∈ B(w, l̂) ⊆ B(w, l) ⊆ R3.

Let h := dist(v,R2) and ĥ := dist(v̂, R̂2). Since v̂ ∈ R × [−0.82, 0.82] by
Lemma 6.5b, and ε < 0.34, we have h ≤ dist(v, q) < dist(v̂, q) = ĥ.

Define u to be the closest point (or one of the closest points) to v in R2, and
let û = u−(0, ε). Since w ∈ J ′∩R2 ⊆ J ′∩L+

4 by Lemma 6.6, the point v is in the
region V in Fig. 5. Calculation shows that V does not intersect dom(R2\J ′, {q}).
In particular, dist(v,R2 \ J ′) > dist(v, q) ≥ h = dist(v, u). Hence u ∈ J ′.

Again, our goal is to prove u /∈ L+
t , thus contradicting R2 ∩ J ′ ⊆ L+

t . Note

that u ∈ B(v, l̂), because u is a closest point to v in R2, and hence closer than w.

Note also that u ∈ R× (ε,∞), because û lies in the interior of B(v̂, ĥ) ⊆ Ŝ2 by

dist(v̂, û) = dist(v, u) = h < ĥ. Thus, it suffices to prove that the three regions

L+
t , B(v, l̂) and R× (ε,∞) do not intersect. We argue as follows.
Notice that the boundaries of these three regions all pass through w. At this

point w, the boundary of B(v, l̂) has slope b, where b is the x-coordinate of v̂ and
v, and the boundary of L+

t has slope 2a/t, which is smaller than b because a =
(3+b2)b/2 < 2b and t ≥ 4. And also on the right of w, the slope of the boundary

of B(v, l̂) continues to be greater than that of L+
t , because the curvature of the

former is greater than that of the latter by l̂ ≤ dist((1.16, 0), Ŝ3) = 0.874 . . . < 1.

Hence, the boundaries of B(v, l̂) and L+
t never meet on the right of w, so the

intersection B(v, l̂) ∩ L+
t lies entirely below w, and thus misses R× (ε,∞). 	
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R̂3

R̂2

R̂1

Ŝ3

Ŝ2

Ŝ1

p

q
L+
4

J ′

V

W0.5774

Fig. 5. The light-shaded region is J ′. Since the point w is in the regionW = L+
4 ∩Ŝ2∩J ′,

the point v (obtained from w by way of ŵ and v̂ as described in Case 2 of the proof of
Lemma 3) is in the region V (defined by suitable algebraic curves).

3.3 Proof of Lemmas 4 and 5: Extending Uniqueness

We define an additional closed region Kβ. The boundaries of Kβ are line seg-
ments which are positioned at angles of ±π/3 with respect to the x-axis and
intersect the boundary of Iβ on the x-axis, so the vertices bounding Kβ are
(±(3 + β2)β/2, 0) and (0,±(3 + β2)

√
3β/2). Note Iβ ⊂ Kβ when β > 1/

√
3.

Recall Lemma 4:

Lemma 4. Let β ≥ 0.5774. Let (Ri, Si)i be a 4-gradation. Suppose that R2

and S2 agree with the trivial 4-gradation on Jβ , i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and

S2 ∩ Jβ = Ŝ2 ∩ Jβ . Then R1, S1, R3, S3 agree with the trivial 4-gradation on a
region Iβ′ , for some β′ ≥ 1.00001β. Moreover, for β = 0.5774, this holds with Jβ
replaced by the J ′ defined in Lemma 3.

Proof. Let z ∈ Kβ. We demonstrate that Kβ ∩R1 = Kβ ∩ R̂1; the argument is
similar for S1, R3, S3. The condition β ≥ 0.5774 > 1/

√
3 ensures that the lines

delimiting Jβ have slope smaller (in absolute value) than
√
3, so that any point

in Kβ is closer to Ŝ2 ∩ Jβ (which coincides with S2 ∩ Jβ) than to R2 \ Jβ . So the
nearest point to z in S2 is in Jβ . Hence

dist(z, S2) = dist(z, S2 ∩ Jβ) = dist(z, Ŝ2 ∩ Jβ) = dist(z, Ŝ2). (9)

So z ∈ R1 if and only if z ∈ R̂1. Since z was an arbitrary element of Kβ, we have

Kβ ∩R1 = Kβ ∩ R̂1.
Define β′ to be the absolute value of the x-coordinate of an intersection point

of R1 (or equivalently R̂1) with the boundary ofKβ . Since R1 is convex, it cannot

contain a point in Iβ′ \Kβ, and thus Iβ′ ∩R1 = Iβ′ ∩ R̂1.
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It remains to prove β′ ≥ 1.00001β. To express β′ in terms of β, it suffices to
equate the expressions for C1 and the boundary of Kβ and solve for the roots:

β′ = −
√
3 +

√
2 +

√
3β3 + 3

√
3β. (10)

Finally, it may be shown that σ′ ≥ 1.00001σ for σ′ :=
√
3 β′ and σ :=

√
3β ≥

0.5774
√
3 ≥ 1.000018. Calculation shows that

σ′ = −3 +
√
6 + 9σ + σ3 ≥ −3 + (3 + σ9/8) = σ1/8 · σ ≥ 1.00001σ, (11)

where the first inequality holds because (6+ 9σ+ σ3)− (3+ σ9/8)2 = 3(σ− 1)+
σ(σ10/8 + σ11/8 + σ12/8 + σ13/8 + σ14/8 + σ15/8 − 6)(σ1/8 − 1) ≥ 0.

For the final statement of the lemma (the “moreover” part), note that if
β = 0.5774, then (3 + β2)

√
3 β/2 < 1.66. Thus, K0.5774 ⊂ R× [−1.66, 1.66], and

so points in J0.5774 \ J ′ are irrelevant. 	


Finally, we prove Lemma 5. Recall its statement:

Lemma 5. Let β > 0. Let (Ri, Si)i be a 4-gradation. Suppose that R1, S1,
R3, S3 agree with the trivial 4-gradation on Iβ , i.e., Ri ∩ Iβ = R̂i ∩ Iβ and

Si∩Iβ = Ŝi∩Iβ for each i = 1, 3. Then R2, S2 agree with the trivial 4-gradation

on Jβ , i.e., R2 ∩ Jβ = R̂2 ∩ Jβ and S2 ∩ Jβ = Ŝ2 ∩ Jβ .

Proof. Let z ∈ Jβ . Because R1 is convex (Lemma 6.1) and agrees with R̂1 on
Iβ , the nearest point to z in R1 is in Iβ . Hence

dist(z,R1) = dist(z,R1 ∩ Iβ) = dist(z, R̂1 ∩ Iβ) = dist(z, R̂1), (12)

and likewise

dist(z, S3) = dist(z, S3 ∩ Iβ) = dist(z, Ŝ3 ∩ Iβ) = dist(z, Ŝ3). (13)

So z ∈ S2 if and only if z ∈ Ŝ2. Since z was an arbitrary element of Jβ , we have

Jβ ∩ S2 = Jβ ∩ Ŝ2. Similarly for R2. 	


This completes the proof of Theorem 1.

4 Conclusions

We have shown that the 4-sector of two points is unique. Although we tried
our best to simplify our proof, we still find it frustrating (and intriguing) that
the uniqueness of such a seemingly basic object needed several pages to prove.
As mentioned in the introduction, the main idea was to argue that if there are
two k-sectors that differ at some point, there must be another point where they
differ “more”, in terms of some measure of the difference. But to implement this
idea, we had to resort to calculation that relied heavily on the special setting of
k = 4 and P , Q being points. It would be nice if this tedious calculation could be
replaced by a conceptually simpler argument that works in more general settings.
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2. Asano, T., Matoušek, J., Tokuyama, T.: Zone diagrams: Existence, uniqueness,
and algorithmic challenge. SIAM Journal on Computing 37(4), 1182–1198 (2007)
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Abstract. Given a polyhedron, the number of its unfolding is obtained
by the Matrix-Tree Theorem. For example, a cube has 384 ways of unfold-
ing (i.e., cutting edges). By omitting mutually isomorphic unfoldings, we
have 11 essentially different (i.e., nonisomorphic) unfoldings. In this pa-
per, we address how to count the number of nonisomorphic unfoldings for
any (i.e., including nonconvex) polyhedron.By applying this technique, we
also give the numbers of nonisomorphic unfoldings of all regular-faced con-
vex polyhedra (i.e., Platonic solids, Archimedean solids, Johnson-Zalgaller
solids, Archimedean prisms, and antiprisms), Catalan solids, bipyramids
and trapezohedra. For example, while a truncated icosahedron (a Buck-
minsterfullerene, or a soccer ball fullerene) has 375,291,866,372,898,816,
000 (approximately 3.75 × 1020) ways of unfolding, it has 3,127,432,220,
939,473,920 (approximately 3.13 × 1018) nonisomorphic unfoldings. A
truncated icosidodecahedron has 21,789,262,703,685,125,511,464,767,107,
171,876,864,000 (approximately 2.18 × 1040) ways of unfolding, and has
181,577,189,197,376, 045,928,994,520,239,942,164,480 (approximately
1.82 × 1038) nonisomorphic unfoldings.

1 Introduction

An unfolding (also called an edge unfolding, a net or a development) of a polyhe-
dron is a simple polygon obtained by cutting along the edges of the polyhedron
and unfolding it into a plane. The cut edges of an edge unfolding of a poly-
hedron form a spanning tree of the 1-skeleton (i.e., the graph formed by the
vertices and the edges) of the polyhedron (See, e.g., [11, Lemma 22.1.1]), and
vice versa. Since Kirchhoff’s matrix-tree theorem gives the number of spanning
trees for any graph, we can obtain the number of unfoldings for any polyhedron.
For example, a cube has 384 unfoldings (i.e., 384 ways of cut edges).

Different cut edges, however, may have isomorphic unfoldings. In Fig. 1, (a)
and (b) have different cut edges (depicted in bold lines), while their unfoldings
have the same shape depicted in (c). In actual, 24 unfoldings of a cube are iso-
morphic to Fig. 1(c). Later in this paper, we consider two cases for counting the

� A preliminary version was presented at EuroCG2013.

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 623–633, 2013.
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number of unfoldings. (1) The number of labeled unfoldings: edges have labels
and we distinguish unfoldings according to their cut edges. (2) The number of
nonisomorphic unfoldings: we identify isomorphic unfoldings even if they have
different edge labels. (We identify mirror images as isomorphic.) The 384 labeled
unfoldings of a cube are classified into 11 essentially different (i.e., nonisomor-
phic) unfoldings.

As mentioned later in related work, the number of unfoldings are of great
interest for their wide area of applications. As for the counting for concrete
polyhedra, most of the results are on the numbers of labeled unfoldings, since
they are obtained by the matrix-tree theorem. On the other hand, few are on
the numbers of nonisomorphic unfoldings (e.g., those of Platonic solids [4,13,15],
and Archimedean n-gonal prism with n = 3 to 14 [19]), while they also have rich
store of mathematical knowledge.

Our Contribution. In this paper, we address how to count the number of
nonisomorphic unfoldings for any polyhedron. The naive way for counting non-
isomorphic unfoldings is to enumerate all labeled unfoldings and to omit iso-
morphic unfoldings. Unfortunately, a dodecahedron and an icosahedron have
5,184,000 labeled unfoldings, respectively, and the test for the isomorphism is
tough. (The test may be required

(
5,184,000

2

)
times.) We here note that unfoldings

in this paper may have overlaps. (In [14], some overlapping unfoldings of some
Archimedean solids are given.) Similar story happened on Platonic solids: When
the numbers of their nonisomorphic unfoldings were first obtained in about 40
years ago [4,13,15], we could not distinguish whether they are overlapping or
not. In quite recent years, by enumerating all unfoldings, it is proved that any
edge unfolding of Platonic solids is a flat nonoverlapping simple polygon [14,18].

For counting the number of nonisomorphic unfoldings, we follow the basic idea
in [13,15], that is, to use Burnside’s lemma [8]: given a polyhedron P , the number
of nonisomorphic unfoldings is obtained by u(Γ ) = 1

|AutΓ |
∑

g∈AutΓ |{T ∈ T |
T = gT }|, where Γ is the 1-skeleton of P , u(Γ ) is the number of nonisomorphic
spanning trees of Γ , AutΓ is the automorphism group of Γ , g is a permutation
in AutΓ , and T is the set of spanning trees of Γ . Although we can compute this
equation by checking T = gT (i.e., T has the same structure with the permuted
tree gT ) for every g ∈ AutΓ and T ∈ T, it is impractical for large T (e.g.,
|T | 7 2.18× 1040 for a truncated icosidodecahedron).

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

(c)(a) (b)

Fig. 1. Different cut edges (a) and (b) have isomorphic unfoldings
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To overcome this situation, we follow the second idea given in [7], that is, to
use a quotient graph. A quotient graphQ(Γ, g) is intuitively obtained by iterative
contraction of two vertices u and v in Γ satisfying u = g(v) (the edges are also
contracted in the similar manner). By analyzing the structure of Q(Γ, g), we can
obtain |{T ∈ T | T = gT }| without checking T = gT for each T ∈ T. In [7], they
analyzed three cases which is necessary to obtain the number of nonisomorphic
unfoldings of the five Platonic solids (in 3-dimensions) and the six regular convex
polytopes in 4-dimensions. In this paper, we extend the technique so that we can
apply it to any polyhedron.

Another contribution of this paper is the numbers of nonisomorphic unfold-
ings of all regular-faced convex polyhedra (i.e., Platonic solids, Archimedean
solids, Johnson-Zalgaller solids, Archimedean prisms, and antiprisms). Further-
more, the numbers of nonisomorphic unfoldings of Catalan solids, bipyramids
and trapezohedra are obtained, since they are the duals of Archimedean solids,
prisms and antiprisms. For example, while a truncated icosahedron (and also a
pentakis dodecahedron) has 375,291,866,372,898,816,000 (approximately 3.75×
1020) labeled unfoldings, it has 3,127,432,220,939,473,920 (approximately 3.13×
1018) nonisomorphic unfoldings. A truncated icosidodecahedron (and also a
disdyakis triacontahedron) has 21,789,262,703,685,125,511,464,767,107,171,876,
864,000 (approximately 2.18× 1040) labeled unfolding, and has 181,577,189,197,
376,045,928,994,520,239,942,164,480 (approximately 1.82× 1038) nonisomorphic
unfoldings.

RelatedWork.Table 1 gives the number of unfoldings of Platonic solids [4,13,15].
In computational chemistry, fullerenes are of interest. Buckminsterfullerene (also
known as icosahedral C60, soccerballene, or truncated icosahedron) has
375,291,866,372,898,816,000 labeled unfoldings [5]. The numbers of labeled un-
foldings of Handballene (also know as truncated dodecahedral C60, or trun-
cated dodecahedron) and Archimedean (also known as truncated icosidodecahe-
dral C120, or truncated icosidodecahedron) are given in [6]. In [18], the number
of nonisomorphic unfoldings of a truncated octahedron is estimated to be ap-
proximately 2,300,000. Akiyama et al. [1] are interested in the tessellation by
unfoldings of polyhedra with regular polygonal faces, and the number of labeled
unfoldings are investigated in their first step. [1] gives the number of labeled
unfoldings of a cubotahedron, a truncated tetrahedron, and 17 out of 92 Johnson-
Zalgaller solids. Archimedean prisms and Archimedean antiprisms are also of in-

Table 1. The number of unfoldings of Platonic solids

Name #(Labeledunfoldings) #(
Nonisomorphic
unfoldings )

Tetrahedron 16 2

Cube 384 11

Octahedron 384 11

Dodecahedron 5,184,000 43,380

Icosahedron 5,184,000 43,380
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1, 3, 8

4, 6

2, 7, 5

1 2

34

5 6

78

g = (1, 3, 8) (2, 7, 5)  

Q(Γ, g)

Fig. 2. Quotient graph Q(Γ, g) for a rotation g = (1, 3, 8)(2, 7, 5)

terest. n-gonal prism and n-gonal antiprism has n
2 {(2+

√
3)n+(2−

√
3)n−2} [3]

and 2n
5 {(2 +

√
3)n + (2−

√
3)n − 2} [16] labeled unfoldings, respectively. As for

the number of their nonisomorphic unfoldings, only the cases for n-gonal prism
with n = 3 to 14 are known [19].

2 Preliminaries

Let Γ , V (Γ ), E(Γ ), AutΓ , T (Γ ) (or T in short) and Tg for g ∈ AutΓ , respec-
tively, denote the 1-skeleton of a given polyhedron P , the set of vertices of Γ , the
set of edges of Γ , the (symmetry) automorphism group of Γ , the set of spanning
trees of Γ , and {T ∈ T | T = gT }. Given a permutation g ∈ AutΓ , Fix g is the
subgraph of Γ on which g acts as the identity. In other words, the edges and
vertices of Fix g is defined as V (Fix g) = {v ∈ V (Γ ) | g(v) = v} and E(Fix g) =
{(u, v) ∈ E(Γ ) | u, v ∈ V (Fix g)}. If g has no fixed point, i.e., V (Fix g) = ∅, we
use notation Fix g = ∅. Let α(g) denote the number of g-invariant edges in Γ ,
i.e., |{(u, v) ∈ E(Γ ) | (u, v) = (g(u), g(v)) or (u, v) = (g(v), g(u))}|.

The quotient graph Q(Γ, g) is defined as follows. The orbit θv of vertex v ∈
V (Γ ) is the set of vertices {u ∈ V (Γ ) | u = gn(v), n ∈ Z}. Let Ω be the set of
orbits of length > 1. Then, the set U of vertices of Q(Γ, g) is defined as U = Ω
if Fix g = ∅ holds, otherwise U = Ω ∪{V (Fix g)}. Let π : V → U be the natural
projection defined as π(v) = V (Fix g) if v ∈ V (Fix g), otherwise π(v) = θv. Let
E′ denote the set {(u, v) ∈ E(Γ ) | π(u) �= π(v)}. The projection π induces a
map: π̃ : E′ → F : (u, v) → (π(u), π(v)). The quotient graph Q(Γ, g) is defined
as multigraph (U,F), in which all edges in the same orbit of E′ corresponds to
an edge in F .

Fig. 2 illustrates the quotient graph Q(Γ, g) for a rotation g = (1, 3, 8)(2, 7, 5).
The order of g is 3. We can observe that V (Fix g) = {4, 6}, E(Fix g) = ∅. Since
we have two orbits {1, 3, 8} and {2, 7, 5}, the set of vertices of Q(Γ, g) is U =
{{1, 3, 8}, {2, 7, 5}, {4, 6}}. Since we have two orbits of edges {(1, 2), (3, 7), (8, 5)}
and {(1, 5), (3, 2), (8, 7)}, Q(Γ, g) has two edges between {1, 3, 8} and {2, 7, 5}.
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In [7], in order to obtain |Tg | for any g of regular convex polytopes in dimen-
sion ≤ 4, the following three facts are used:

Theorem 1 ([7])
(1) Let g be of prime order p and let Fix g �= ∅. Then, |Tg | = |T (Fix g)| ·

|T (Q(Γ, g))|.
(2) Let g be of order 2 with Fix g = ∅. Then, |Tg | = |T (Q(Γ, g))| · α(g).
(3) If Fix g �= ∅ and Fix g is not connected, |Tg | = 0 holds.

3 The Number of Nonisomorphic Unfoldings

We restrict Theorem 1 in 3-dimensions, and then extend it so as to obtain |Tg |
for any g of any polyhedron. We first extend Theorem 1 by extending the notion
of the quotient graph. Then, we discuss the (symmetry) automorphism groups of
polyhedra. Our extended theorem consists of the following four facts. The first
one is a straightforward extension of Theorem 1(1) in 3-d (note that if g is of
prime order p then all vertices not in V (Fix g) have orbits of length p), and the
fourth one is new. We also note here that Theorem 1 itself does not assume the
convexity of a given polyhedron, neither does Theorem 2.

Theorem 2
(1) Let Fix g �= ∅ and all vertices not in V (Fix g) have orbits of the same length.

Then, |Tg | = |T (Fix g)| · |T (Q(Γ, g))|.
(2) Let g be of order 2 with Fix g = ∅. Then, |Tg | = |T (Q(Γ, g))| · α(g).
(3) If Fix g �= ∅ and Fix g is not connected, |Tg | = 0 holds.
(4) If Fix g = ∅ and α(g) = 0, |Tg | = 0 holds.

The proof of Theorem 2 starts with the following lemmas concerning the
cardinality of the orbits.

Lemma 1. Let T be a spanning tree in Tg, and three vertices u, v, v′ (∈ V (T ))
satisfy u, v, v′ �∈ V (Fix g), θu �= θv, |θu| = |θv| and θv = θv′ . Then, two edges
(u, v) and (u, v′) cannot be in E(T ) at the same time.

Proof. Suppose that (u, v) and (u, v′) are included in T ∈ Tg. Let k, � be integers
satisfying gk(v) = v′ and gk�(v) = v, respectively, and g′ denote gk. Then, we
have a path v, u, g′(v) in T . By applying g′i to the path (i = 1, 2, . . . � − 1), we
have another path g′i(v), g′i(u), g′i+1(v) in T . The concatenation of those paths
is a cycle, which contradicts the definition of spanning tree T . �

Lemma 2. Let T be a spanning tree in Tg, and two vertices u, v (∈ V (T ))
satisfy |θu| mod |θv| �= 0 and |θv| mod |θu| �= 0. Then, (u, v) �∈ E(T ) holds.

Lemma 3. Let T be a spanning tree in Tg, and three vertices u, v, v′ (∈ V (T ))
satisfy u, v, v′ �∈ V (Fix g), θu �= θv and θv = θv′ . If two edges (u, v0) and (u, v1)
are in E(T ), then |θv| > |θu| holds.
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The following lemma gives the converse of Lemma 3

Lemma 4. Let T be a spanning tree in Tg, and two vertices u, v (∈ V (T ))
satisfy (u, v) ∈ E(T ) and |θu| < |θv|. Then, for any u′ in θu, there exist two
vertices v′, v′′ ∈ θv satisfying that two edges (u′, v′) and (u′, v′′) are in T .

Next, we consider a path in Γ , whose length is at least 2. Let p(v0, vk) denote
a path v0, v1, . . . , vk. Then, we have the following lemmas.

Lemma 5. Let p(v0, vk) be a path satisfying |θv0 | < |θv1 | ≤ |θv2 | ≤ · · · ≤
|θvk−1

| > |θvk |, where k ≥ 2. Then, p(v0, vk) can not be included in any T ∈ Tg.
Proof. Suppose that p(v0, vk) is in some T . From Lemma 4, |θv0 | < |θv1 | implies
that any vertex in θv0 has at least two edges in T connecting with some vertices in
θv1 . Similarly, any vertex in θvk has at least two edges in T connecting with some
vertices in θvk−1

. Any vertex in θvi (1 ≤ i < k) has an edge in T connecting with
a vertex in θvi−1 and an edge connecting with a vertex in θvi+1 . This observation
implies that T has a cycle, which is a contradiction. �
Lemma 6. Let g satisfy α(g) = 0, and two vertices u and v have the same orbit,
i.e., θu = θv. Then, edge (u, v) can not be included in any T ∈ Tg.
Proof. Suppose that (u, v) is in some T . α(g) = 0 implies |θu| > 2. Let k, � be
integers satisfying gk(v) = u and gk�(v) = v, respectively, and g′ denote gk. By
applying g′i (i = 1, 2, . . . , �− 1) to edge (v, g′(v)), we have edge (g′i(v), g′i+1(v))
in T ∈ Tg, which implies T has a cycle of length �. �
Lemma 7. Let p(v0, vk) be a path of length at least 2 (k ≥ 2), and the quotient
graph Q(Γ, g) satisfy π(v0) = π(vk) and π(v1) �= π(vk−1). Then, p(v0, vk) can
not be included in any T ∈ Tg.
Proof. Suppose that p(v0, vk) is in some T . π(v0) = π(vk) implies the following
two cases. Case (1): Both v0 and vk are fixed. π(v1) �= π(vk−1) implies that at
least one of v1 and vk−1 is not fixed. W.l.o.g., we suppose v1 is not fixed. Then,
|θv1 | > 1 = |θv0 | = |θvk | holds. Thus, there exists the minimum k′ (1 ≤ k′ < k)
satisfying |θvk′ | > |θvk′+1

|, which implies |θv0 | < |θv1 | ≤ · · · ≤ |θvk′ | > |θvk′+1
|.

Subpath p(v0, vk′+1) in T contradicts Lemma 5. Case (2): Neither v0 nor vk is
fixed. We have θv0 = θvk and thus have a cycle in T . �
Proof of Theorem 2. Suppose that there exists a g-invariant spanning tree
T ∈ Tg. Let two vertices u0 and v0 have the same orbit, i.e., θu0 = θv0 . (Other-
wise, all vertices are in V (Fix g).) In T , path p(u0, v0) is uniquely determined.
From Lemma 6, the length of the path is at least 2.

Now, we relabel the vertices in p(u0, v0). Let u = (u0, u1, . . . , uk) (respectively,
v = (v0, v1, . . . , vk)) denote the sequence of the vertices visited from u0 to v0 =
uk (respectively, from v0 to u0 = vk), where k ≥ 2. Let su = (θu0 , θu1 , . . . , θuk

)
and sv = (θv0 , θv1 , . . . , θvk) denote the sequences of the orbits of u and v, re-
spectively. Then, we have the following two cases.

Case (1): su �= sv. Let i be the minimum integer satisfying θui = θvi and
θui+1 �= θvi+1 . From Lemma 7, subpath p(ui, vi) cannot be in T , which contra-
dicts the definition of p(u0, v0).
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Case (2): su = sv. If k is odd, su = sv implies θu�k/2	 = θv�k/2	 . Since v
k/2� =
u�k/2�, edge (u
k/2�, v
k/2�) is in T , which contradicts Lemma 6. Thus, k is even,
and uk/2 = vk/2 holds. Since T has edges (uk/2, uk/2−1), θuk/2−1

�= θuk/2
holds

from Lemma 6. Since T has two edges (uk/2, uk/2−1), and θuk/2−1
= θuk/2+1

holds, we have |θuk/2−1
| > |θuk/2

| from Lemma 3. If |θui | < |θui+1 | ≤ . . . ≤
|θuk/2−1

| > |θuk/2
| holds for some i (0 ≤ i < k/2 − 1), subpath p(ui, uk/2) in T

contradicts Lemma 5. Thus, we have |θu0 | ≥ |θu1 | ≥ · · · ≥ |θuk/2−1
| > |θuk/2|.

Here, uk/2 is not fixed since Fix g = ∅, which implies that θuk/2
has another

vertex w. We regard uk/2 and w as new u0 and v0, and recursively apply the
above argument to the new vertices. |θu0 | monotonically decreases during the
recursion, and the recursion continues while |θu0 | ≥ 2. Since the number of
vertices are finite, the recursion terminates with |θu0 | = 1, which contradicts
Fix g = ∅. Thus, we have the lemma. �

In the rest of this section, we show that |Tg | can be obtained by any permuta-
tion in the symmetry group AutΓ of any (i.e., including nonconvex) polyhedra.

Theorem 3. Let P be a polyhedron, and AutΓ be the symmetry group of P .
Then, for any permutation g ∈ AutΓ , either of the four cases in Theorem 2
holds.

Before the proof of the above theorem, we introduce two important lemmas.

Lemma 8 (see e.g., [9], p.312). A polyhedron can have one of the following
17 types of symmetry1: C1, Ci, Cs, Cn, Cnv, Cnh, Dn, Dnh, Dnv (also known as
Dnd), Sn, T, Td, Th, O, Oh, I, Ih.

Lemma 9 ([2]). A symmetry group of a polyhedron is one of the above 17 types,
and consists of the following permutations: (1) Identity: E. (2) Rotation: Cj

n.
(3) Reflection: σh, σv, σd, σ. (4) Rotation-reflection: Sj

n. (5) Inversion: i.

For example, if a polyhedron has the identity symmetry, but no other sym-
metries, its corresponding AutΓ is C1, i.e., AutΓ = {E}. As for a truncated
dodecahedron, its corresponding AutΓ is Ih, which consists of the identity, 59
rotations, 59 rotation-reflections, and the inversion.

Proof of Theorem 3. Now, we confirm that we can apply Theorem 2 to those
five types of permutations. Case (1): if g is the identity, all vertices are fixed,
and thus |Tg | is equivalent to T (Γ ), i.e., the number of spanning trees of Γ .
Case (2): if g is a rotation Cj

n, all vertices v not in Fix g are rotated by 360j/n
degrees around the rotation-axis. The orbits of such vertices are of the same
length. If Fix g �= ∅, we can apply Theorem 2(1). Otherwise, since there are no
g-invariant edges, we can apply Theorem 2(2). Case (3): if g is a reflection, by
a similar argument with Case (2), we can apply Theorem 2(1) or (2).

Case (4): Rotation-reflection is a combination of a rotation with a reflection
through a plane perpendicular to the rotation-axis. By the rotation, all vertices

1 The prismatic types are discussed in the next section.
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and edges not on the rotation-axis cannot remain in their original positions.
Since the reflection-plane perpendicular to the rotation-axis, by the reflection,
those cannot back to their original positions. Similarly, all vertices and edges on
the rotation-axis cannot keep their original positions. Thus, we have Fix g = ∅
and α(g) = 0, which implies we can apply Theorem 2.

Case (5): If g is the inversion, all vertices cannot remain in their original
positions, which implies Fix g = ∅. By the inversion, no edges are g-invariant.
(Otherwise, the edges go through the center of the polyhedron.) Thus, we can
apply Theorem 2. �

4 Regular-Faced Convex Polyhedra

In this section, we apply the proposed method to all regular-faced convex
polyhedra, i.e., the 5 Platonic solids, the 13 Archimedean solids, the 92 Johnson-
Zalgaller solids, n-gonal Archimedean prisms, and n-gonal Archimedean an-
tiprisms. We can also obtain the numbers of nonisomorphic unfoldings of Catalan
solids, bipyramids and trapezohedra, since they are the duals of Archimedean
solids, prisms, antiprisms. The adjacency matrices of regular-faced convex poly-
hedra are obtained from [17].

As for the Platonic solids, we have the same result with Table 1. The results
for the Archimedean solids and the Johnson-Zalgaller solids are listed in Tables 2
and 3. In the tables, the entries without citation are newly obtained in this paper.
A truncated icosahedron (and also a pentakis dodecahedron) has approximately
3.75×1040 labeled unfoldings, and has approximately 3.13×1038 nonisomorphic
unfoldings (see Table 2 for their exact numbers). A truncated icosidodecahedron
(and also a disdyakis triacontahedron) has approximately 2.18 × 1040 labeled
unfolding, and has approximately 1.82×1038 nonisomorphic unfoldings. We also
note here that the number of nonisomorphic unfoldings of a truncated octahe-
dron is estimated to be approximately 2,300,000 [18], and the actual number is
2,108,512. Thus, the estimation is a good approximation.

Now, we consider an n-gonal Archimedean prism. For a cube (i.e., n = 4), we
adopt u(Γ ) = 11. For other prisms, we have the following theorem. (We have 4n
permutations including the identity. For the identity, we can use T (Γ ) in [3].)

Theorem 4. The number of nonisomorphic unfoldings of an n-gonal Archi-
medean prism is

u(Γ ) =

⎧⎪⎪⎨⎪⎪⎩
1

8
√
3

{
2
√
3n+

√
3(2 +

√
3)n + (2 +

√
3)


n
2 �(4 + 2

√
3)

+ (2−
√
3)


n
2 �(2

√
3− 4) +

√
3((2−

√
3)n − 2)

}
(n is odd),

1
24

{
6n+ 3(2 +

√
3)n + 4

√
3(2 +

√
3)

n
2

− 4
√
3(2−

√
3)

n
2 + 3(2−

√
3)n − 6

}
(n is even).

By a similar argument as above, we can also obtain the number of noniso-
morphic unfoldings of an n-gonal Archimedean antiprism. For an octahedron
(i.e., n = 3), we adopt u(Γ ) = 11. For other antiprisms, we have the following
theorem. (We have 4n permutations. For the identity, we can use T (Γ ) in [16].)
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Theorem 5. The number of nonisomorphic unfoldings of an n-gonal Archi-
medean antiprism is

u(Γ ) = 1
10

{
(1+

√
5

2 )4n + (1+
√
5

2 )−4n − 2
}
+ (3+

√
5)n−(3−

√
5)n

2n+1
√
5 .
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Computing the Smallest Color-Spanning

Axis-Parallel Square
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Abstract. For a given set of n colored points with k colors in the plane,
we study the problem of computing the smallest color-spanning axis-
parallel square. First, for a dynamic set of colored points on the real
line, we propose a dynamic structure with O(log2 n) update time per in-
sertion and deletion for maintaining the smallest color-spanning interval.
Next, we use this result to compute the smallest color-spanning square.
Although we show there could be Ω(kn) minimal color-spanning squares,
our algorithm runs in O(n log2 n) time and O(n) space.

Keywords: Computational Geometry, Algorithm, Color-Spanning
Objects.

1 Introduction

Background. Suppose there are k different types of facilities like banks, police
offices, etc. and we are given n facilities of these types. A basic problem arising
here is to find a region in which there is at least one representative from each type
of facilities. This suggests the problems of computing the smallest area/perimeter
color-spanning objects. A region is said to be color-spanning if it contains at least
one point from each color. Another motivation comes from discrete imprecise
data. In this context, each imprecise point is defined with a set of discrete possible
locations. So, for a given k imprecise points we have a set of n points with k
colors, where n is the number of possible locations for all imprecise points. The
basic problem on a set of imprecise points is to locate each imprecise point within
its defining set in which a measure becomes optimized [9]. This is equivalent to
choose exactly k points with different colors in which a property e.g. diameter,
closest pair, bounding box, etc. gets minimized or maximized. Beside these two
applications, this problem has other applications in statistical clustering, pattern
recognition and generalized range searching [7,10,12].

Related Works. There are several works on colored points. Motivated from
imprecise data, Fan et al. [5] showed some results on hardness of the largest
closest pair and the minimum planar spanning tree. Fan et al. [6] also proposed
an O(n2 logn) time algorithm to compute the expected area of convex hulls of

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 634–643, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the color-spanning sets. In addition, Consuegra et al. [3] considered the same
setting and solved several other problems.

In the view of location problems, for a given set of n colored points with k
colors in the plane, one of the most studied problems is to find the smallest color-
spanning rectangle. For the axis-parallel case, Abellanas et al. [1] showed there
are Θ

(
(n−k)2

)
minimal rectangles in the worst case and proposed an algorithm

of O
(
(n − k)2 log2 k

)
running time and O(n) space to solve the problem. The

algorithm has been recently improved to O(n2 logn) time by Das et al. [4]. For
arbitrary oriented case, Das et al. [4] proposed an algorithm in O(n3 log k) time
and O(n) space. Furthermore, they solved the problem of computing the smallest
color-spanning strip in O(n2 logn) time and O(n) space using the dual of the
given points. The results are near efficient with respect to testing all minimal
objects. A minimal color-spanning object contains at least one point from each
color and any sub-region of it does not contain all colors.

For the problem of computing the smallest color-spanning circle,
Abellanas et al. [2] proposed an algorithm with O

(
n2α(k) log k

)
time using far-

thest colored Voronoi diagram (FCVD). For a given set of colored points with
k colors in the plane, the FCVD is a subdivision of the plane in which for any
region R there is a unique site p such that any color-spanning circle centered at
a point in R contains p. Indeed, a vertex of the FCVD which is adjacent to three
regions with different colors of their sites, is a candidate of being the center of
the smallest color-spanning circle. Therefore, a simple algorithm is to compute
the FCVD and test circles centered at the vertices of FCVD. The other approach
mentioned by Abellanas et al. [1] is to obtain the smallest color-spanning cir-
cle and the smallest color-spanning axis-parallel square in O(kn log n) time and
O(n) space using the upper envelope of Voronoi surfaces [8].

Our Results. In this paper, first we consider the problem of maintaining the
smallest color-spanning interval for a dynamic set of colored points with k colors
on the real line. We propose a data structure which spends O(log2 n) update
time per insertion and deletion using the structure designed by Overmars and
van Leeuwen [11]. Next, we concentrate on the problem of computing the small-
est color-spanning axis-parallel square. The algorithm sweeps the points and
keeps the smallest color-spanning interval for the projection of the points on the
sweep line when insertion or deletion occurs. We use the mentioned dynamic
structure for maintaining the smallest color-spanning interval to solve the prob-
lem. Our algorithm runs in O(n log2 n) time and O(n) space. The algorithm does
not test every minimal candidates (in fact, we show that there may be Θ(kn)
minimal color-spanning axis-parallel squares in the worst case). So, this result is
an improvement to the result proposed by Abellanas et al. [1] using the upper
envelope of Voronoi surfaces [8].

This paper is organized as follows. In Section 2 we show how to maintain the
smallest color-spanning interval for a dynamic set of colored points on the real
line. Next, in Section 3 we propose an algorithm to compute the smallest color-
spanning square using the results of Section 2. Finally we conclude in Section 4.
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2 Dynamic Maintenance of Minimal Color-Spanning
Intervals

In this section, we concentrate on color-spanning intervals for a set of colored
points with k colors on the real line. For ease of the presentation, we assume that
points are in general position which means point coordinates are different. We
first show some properties of color-spanning intervals for a static set of colored
points on the real line. Next, we consider the problem of maintaining the smallest
color-spanning interval for dynamic points in which the points are permitted to
be inserted or deleted.

2.1 Minimal Color-Spanning Intervals for Static Points

A minimal color-spanning interval for a set of colored points on the real line
is an interval containing all colors and any sub-interval of it does not contain
all colors. As a simple observation, the endpoints of a minimal color-spanning
interval have different colors and their colors are unique in the interval.

Suppose we are given a set P of n colored points with k colors on the real line.
It is easy to show that the number of minimal color-spanning intervals is linear
and they can be found with a simple algorithm in linear time and space apart
from sorting. The algorithm sweeps the points from left to right with two sweep
lines which stop at the endpoints of an interval. It uses an array for keeping
the number of points from each color and a variable for the number of different
colors between the two sweep lines. Since the sweep lines never go back, the
algorithm takes O(n) time and space. We omit the details due to the simplicity
and conclude the following theorem.

Theorem 1. For a given set of n points with k colors on the real line, the
smallest color-spanning interval can be computed in O(n) time and space apart
from sorting.

In the following, we show a new view of minimal color-spanning intervals.
Gupta et al. [7] use a transformation to perform generalized range
reporting/counting for a given set of colored points on the real line. Indeed,
they map the original given points on the real line to points in the transformed
plane and perform the standard known 3-sided range reporting/counting in the
transformed plane. We exploit the same transformation to give a new view of
minimal color-spanning intervals. Let P = {p1, p2, · · · , pn} be a given set of col-
ored points with k colors on the real line. For each color c, first we sort the points
with color c (c-colored points, for short) in an increasing order. Then, for an ar-
bitrary point pi with color c, let pred(pi) be the previous point of pi in the list of
the ordered c-colored points. In addition, we set pred(pj) = −∞ if pj is the left-
most point with color c. Moreover, we insert k additional points from each color
at +∞—see Figure 1. A point pi is mapped to the point p∗i =

(
pi, pred(pi)

)
in

the transformed plane. Let P∗ = {p∗1, p∗2, · · · , p∗n+k} be the transformed points—
Figure 3 shows the transformed points of Figure 1. Furthermore, an interval
I = [l, r] on the real line is mapped to the point I∗ = (r, l). This transformation
has several interesting properties.
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Fig. 1. The ordered lists of c-colored points for each color c

Consider an arbitrary point p in the plane. The vertical and the horizontal
lines passing through p divide the plane into four quadrants. Let σ(p) be the
right-bottom quadrant; precisely σ(p) = {q ∈ R2|px ≤ qx, py ≥ qy}. In the
following we give some related definitions.

Definition 1. For a set of points Q = {q1, · · · , qn} and a point q in the plane,
σ(q) is empty with respect to Q if there is no point qi ∈ Q in the interior of
σ(q).

Definition 2. For a set Q of points in the plane, a point q ∈ R2 is maximal
with respect to Q if σ(q) is empty and there is no other empty σ(p) for some
point p ∈ R2 such that σ(q) ⊂ σ(p).

Definition 3. For a set of points Q in the plane, a point qi ∈ Q is a skyline
point if σ(qi) is empty.

In order to see how the maximal points in the plane are related to the minimal
color-spanning intervals, we present the following lemma.

Lemma 1. For a given set P of colored points on the real line, I = [l, r] is a
minimal color-spanning interval if and only if the point I∗ = (r, l) is maximal
with respect to the points P∗ in the transformed plane.

Proof. First, suppose I = [l, r] is a minimal color-spanning interval. For the sake
of contradiction, assume I∗ = (r, l) is not maximal. We distinguish two cases:
(1) σ(I∗) is not empty, (2) σ(I∗) is empty but it is not maximal. In case (1)
assume point

(
pi, pred(pi)

)
is inside σ(I∗) where both pi and pred(pi) have

color c—see Figure 2. This gives us l > pred(pi) and r < pi which means [l, r]
is a proper subinterval of

[
pred(pi), pi

]
. Therefore, [l, r] does not contain any

point of color c which is a contradiction. Now, consider case (2). In this case,
there is a point q∗ = (r′, l′) such that σ(I∗) ⊂ σ(q∗). This means there is a
smaller color-spanning interval q = [l′, r′] contained in I = [l, r] which is a
contradiction. Moreover, additional points at infinity makes any minimal color-
spanning interval covered by maximal points in the transformed plane. The
converse implication can be proved in a similar way. 	
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Fig. 2. A not color-spanning interval I = [l, r] where σ(I∗) is not empty

To summarize, a minimal color-spanning interval I is a maximal point in the
transformed plane. In fact, vertical and horizontal rays extending to +y and −x
directions starting at skyline points define the maximal points—see Figure 3 for
more illustration. Consider I∗ as a maximal point between two consecutive sky-
line points p∗ci =

(
pci , pci−1) and p

∗
c′j

=
(
pc′j , pc′j−1

) in the transformed plane. The

minimal color-spanning interval defined by I∗ is I = [pc′j−1
, pci]. Furthermore,

the length of an interval is the vertical distance of its transformed point to the
line y = x. The smallest color-spanning interval is the minimum maximal point
in the transformed plane—see Figure 3.

Fig. 3. The smallest color-spanning interval on the staircase of maximal points

2.2 Minimal Color-Spanning Intervals for Dynamic Points

In this section, we assume the colored points on the real line are dynamic, i.e.,
they can be inserted or deleted. Our goal here is to maintain the minimal color-
spanning intervals and, specifically, the smallest color-spanning interval. This is
the main ingredient of our algorithm to compute the smallest color-spanning
square for a set of colored points in the plane.
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In the previous section, we showed the minimal color-spanning intervals for
a set of colored points on the real line can be considered as the maximal points
in the transformed plane. Therefore, maintaining the minimal color-spanning
intervals reduces to maintaining the skyline points in the transformed plane.
Overmars and van Leeuwen [11] proposed a data structure for maintaining the
skyline. In the following we briefly go over their data structure.

Let Q be a set of n points in the plane. Overmars and van Leeuwen [11]
used a binary search tree T which stores all points in its leaves in the sorted
order by their y-coordinates. Moreover, an internal node v is augmented with
a concatenable tree, e.g. a 2-3 tree, which stores the skyline of points in the
subtree rooted at v that are not contained in the skyline of points in the subtree
rooted at v’s parent. The skyline of all points in Q is augmented in the root of
T . In addition, the cut point where the skyline split is stored in v.

If a point p is inserted, a procedure Down(T, p) goes down the tree to locate p
and construct the skyline of points for subtrees of children of each internal node
u on the path. Suppose Down(T, p) is running and the skyline of u’s subtree has
been computed in u’s parent in the previous step. Then, from the cut point of
u’s children, it is possible to split the u’s skyline at that point and to merge split
parts with the lists stored in augmented trees of u’s children. After inserting
point p to a leaf of tree T , the other procedure Up(T, p) goes up the tree to the
root of T and reconstruct the augmented trees and cut points for children of
each internal node placed on the path. If a point is deleted, the procedures work
similarly. These procedures split or merge two concatenable queues in O(log n)
time in each internal node on the path from root to inserted or deleted leaf and
totally needs O(log2 n) time. In addition, they showed their data structure and
algorithms use linear space [11].

We use the described structure to maintain the smallest color-spanning inter-
val which is the maximal point with the minimum distance to the line y = x
(the minimum maximal point) in the transformed plane. Furthermore, we define
some pointers to maintain the minimum maximal point per insertion and dele-
tion. For each internal node v in augmented trees, we set two pointers p∗m1 and
p∗m2 to the leaves corresponding to the consecutive skyline points which together
define the minimum maximal point in the subtree rooted at v. In fact, p∗m1 and
p∗m2 indicate the endpoints of the smallest color-spanning interval for the points
in the subtree rooted at v. Moreover, let p∗l and p∗r be pointers respectively to
the leftmost and the rightmost leaves in the subtree rooted at v. We use the
above pointers to update the data structure in O(log2 n) time and maintaining
the minimum maximal point. We omit the details due to the space constraint.

Theorem 2. For a given set of n points with k colors on the real line, the
smallest color-spanning interval can be maintained in O(log2 n) update time per
insertion and deletion and O(n) space.

Proof. When a new point p with color c is inserted between the points pci−1

and pci in the c-colored list, the point p∗ci = (pci , pci−1) should be deleted from
the transformed plane and two new points p∗ci = (pci , p) and p

∗ = (p, pci−1) are
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inserted. Deletion of a point similarly needs a constant number of insertions and
deletions in the transformed plane. 	


We showed how we can maintain the smallest color-spanning interval for dy-
namic points on the real line. This is an important tool which helps us in the
next section to compute the smallest color-spanning square for a given set of
colored points in the plane.

3 The Smallest Color-Spanning Square

In this section, we focus on computing the smallest area/perimeter color-spanning
axis-parallel square. Suppose we are given a set of n points with k colors in the
plane. The smallest color-spanning square is an axis-parallel square which con-
tains all colors and its area/perimeter is minimum.

Recall that this problem can be solved using the upper envelope of Voronoi
surfaces [8] in O(kn logn) time. In fact, all the previously used methods for
computing the smallest color-spanning objects such as rectangle, circle, etc. gen-
erally test all the minimal objects. We show that there are Ω(kn) minimal color-
spanning squares in the worst case. This indicates that any algorithm testing
all minimal color-spanning squares runs in Ω(kn) time. Next, we present an al-
gorithm running in O(n log2 n) time that computes the smallest color-spanning
square without testing all minimal color-spanning squares.

We first explain how a minimal color-spanning square can be represented.
As illustrated in Figure 4, a minimal color-spanning square is defined with two,
three or four points with different colors on its edges under the assumption that
point coordinates are different (recall that this assumption is just for the ease
of the presentation). In all cases the minimal color-spanning square is bounded
by two points on opposite sides. So, it suffices to consider the minimal color-
spanning squares of case 1 instead of all. Moreover, we are interested in counting
the minimal color-spanning squares with different contained points. We first give
a lower bound for the number of minimal color-spanning squares.

Lemma 2. There is a configuration of n points with k colors in the plane in
which there are Ω(kn) minimal color-spanning squares.

Proof. Let’s place a set of 2k points with k colors in the configuration shown in
Figure 5. In this pattern, we have to fix the left and the right edges in a way that
they span the half of the colors (1 to k

2 ). So, there are k
2 + 1 choices for fixing

the right and the left edges. Similarly, for a pair of fixed left and right edges, it
is possible to obtain k

2 + 1 pairs to be the top and the bottom sides. Therefore,
there are Ω(k2) minimal color-spanning squares in the pattern of Figure 5 using
2k points. By repeating this pattern n

2k times, we achieve Ω(kn) minimal color-
spanning squares for a set of n points with k colors. 	


Now, we start describing the steps of our main algorithm. Suppose the points
are sorted in a descending order according to their y coordinates. The algorithm
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Fig. 4. The cases of a minimal color-spanning square

Fig. 5. Ω(k2) minimal color-spanning squares with 2k points

sweeps the points with two lines Lb and Lt from top to bottom and variable d de-
notes the vertical distance of the sweep lines—see Figure 6 for more illustration.
In fact, the lines Lb and Lt, respectively, define the bottom and the top edges
of the desired square. At the beginning, Lb and Lt pass through the topmost
point. We move down the sweep lines as follows:

– Move down the line Lt to the next point if there exist at least one color-
spanning square in the strip bounded by Lb and Lt—see Figure 6(a).

– Move down the line Lb to the next point if there is no color-spanning square
in the strip bounded by Lb and Lt—see Figure 6(b).

Now, it remains to show how we can find out if there is a minimal-color-
spanning square in the strip of lines Lb and Lt. Suppose the points in the strip
are projected onto the real line; let P be the union of this set of projected points
and the additional points from each color at infinity as defined in the previous
section. The following simple but important observation describes the necessary
and sufficient conditions that a minimal color-spanning square exists inside the
strip bounded by Lb and Lt.

Observation 1. There is a minimal color-spanning square in the strip of lines
Lb and Lt if and only if for the points in P the length of the smallest color-
spanning interval is at most d.
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Fig. 6. Sweeping the points with two lines Lb and Lt

According to this observation, the algorithm only considers the projected
points P . Indeed, when Lb reaches a new point or a point goes out of the strip
when Lt moves down, we insert or respectively delete a point from the dynamic
structure of maintaining the smallest color-spanning interval that we described
in the previous section. In addition, while Lt is moving down, at the time the
smallest color-spanning interval becomes greater than d, the solution should be
updated. We give the following theorem.

Theorem 3. For a given set of n points with k colors in the plane, the smallest
color-spanning axis-parallel square can be computed in O(n log2 n) time and O(n)
space.

Proof. Let s be the smallest color-spanning square which its top and bottom
sides are defined with points pt and pb respectively. Suppose t1 is the time Lb

reaches pb and t2 is the time Lt stops at point pt. There are two possibilities
here. The case t1 < t2 means Lb is at point pb while Lt is above the point pt.
Since there is at least one color-spanning square between the sweep lines, Lt

moves down until it reaches point pt. When Lt leaves out pt, the length of the
smallest color-spanning interval becomes greater than d and s has been visited.
Otherwise s is not the solution which is a contradiction. Similarly, if t1 > t2, Lt

stops at point pt while Lb moves down until it reaches to the point pb. Since s
is the solution, Lb must stop at point pb. Therefore, we visit the smallest color-
spanning square in both cases. To analyse the running time of our algorithm,
we noted that each point p enters the strip and is eliminated from it once when
Lb and respectively Lt reach it. Therefore, in total we have O(n) insertions and
deletions and by Theorem 2 each operation spends O(log2 n) time to maintain
the smallest color-spanning interval for the points in P . So, the algorithm runs
in O(n log2 n) time and O(n) space. 	


4 Conclusion

For a set of colored points in the plane, the problem of computing the small-
est color-spanning axis-parallel square was studied in this paper. The previous
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methods for the smallest color-spanning objects test all minimal candidates. We
showed although there could be Ω(kn) minimal color-spanning squares, there
exists an algorithm that compute the smallest color-spanning square without
testing all minimal ones. As the main ingredient of our algorithm, we first pre-
sented a dynamic data structure to maintain the smallest color-spanning interval
for dynamic points on the real line. Then we used this dynamic structure to run
our algorithm in O(n log2 n) time and O(n) space for computing the smallest
color-spanning axis-parallel square. Our algorithm is independent from number
of colors and faster than the algorithm mentioned by Abellanas et al.[1]

(
running

in O(kn log n) time
)
which is based on computing the upper envelope of Voronoi

surfaces [8].
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Euclidean Traveling Salesman Tours

through Stochastic Neighborhoods
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Abstract. We consider the problem of planning a shortest tour through
a collection of neighborhoods in the plane, where each neighborhood is
a disk whose radius is an i.i.d. random variable drawn from a known
probability distribution. This is a stochastic version of the classic travel-
ing salesman problem with neighborhoods (TSPN). Planning such tours
under uncertainty, a fundamental problem in its own right, is motivated
by a number of applications including the following data gathering prob-
lem in sensor networks: a robotic data mule needs to collect data from
n geographically distributed wireless sensor nodes whose communication
range r is a random variable influenced by environmental factors.
We propose a polynomial-time algorithm that achieves a factor

O(log log n) approximation of the expected length of an optimal tour.
In data mule applications, the problem has an additional complexity:
the radii of the disks are only revealed when the robot reaches the disk
boundary (transmission success). For this online version of the stochas-
tic TSPN, we achieve an approximation ratio of O(log n). In the special
case, where the disks with their mean radii are disjoint, we achieve an
O(1) approximation even for the online case.

1 Introduction

Planning under uncertainty is a central problem in many domains. In this paper,
we consider a variant of the classical TSP problem under a stochastic scenario.
Our setting requires planning an optimal tour that visits each of the n regions
in the plane, called neighborhoods, under the Euclidean metric. The regions in
our problem are disks Di = (ci, ri), where ci is the (fixed) center and ri denotes
the (random) radius of disk Di. The disk radii are random variables drawn inde-
pendently and identically from some probability distribution, and so a random
instance of the problem involves an arbitrary set of disks, with varying radii and
an arbitrary overlap pattern. Our problem is to minimize the expected length
of the tour visiting these disks; the problem is clearly NP -hard because it sub-
sumes the classical Euclidean TSP by setting the mean and the variance of the
probability distribution to zero.

The TSP with stochastic neighborhoods is motivated by natural applications
where the target sites can be “visited” from afar—for instance, inspecting an as-
set or transferring data over wireless channels. One can imagine that a “visibility-
based”monitoring of a set of distributed assets leads to a stochastic neighborhood
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problem since many unpredictable factors may influence the “lighting”, changing
the range of visual inspection. In distributed sensor networks, the use of “robotic
data mules” is growing in acceptance due to energy constraints and the difficulty
of transporting data overmultiple hops [5,28]. However, the wireless range of radio
transceivers exhibits significant fluctuations and randomness [24], which naturally
leads to a stochastic version of the TSP with connected neighborhoods. Indeed,
these type of applications entail another source of complexity: the precise value
of the disk radius (communication range) is only revealed when the tour reaches
the site. Thus, the problem involves both the stochastic and the online element.
In this paper, we will consider both the offline and the online versions of the
TSP with stochastic neighborhood. We begin with some notation and an infor-
mal definition of the problem.

Let D = {D1, D2, . . . , Dn} be a set of n random disks in the plane, where
each disk Di = (ci, ri) has a fixed center ci, but its radius ri is a random
variable drawn independently and identically from a probability distribution
with mean μ. The probability distribution can be arbitrary subject only to the
following weak constraints: (1) its domain is the positive reals, (2) it attains its
maximum at μ and decays monotonically on either side of the mean, and (3) the
probability of observing a radius r decreases quickly as r goes from μ to 0. In
particular, if F (x) is the cumulative probability function, then we require that
F (μ/α) ≤ O(e−α). (See Section 2 for more details on the distribution.) Given
such a collection of disks, let L∗ be the length of an optimal tour of D, which is
a random variable, and let E [L∗ ] be the expected value of this random variable
over all realizations of the disk neighborhoods D. In the offline case, we assume
that the algorithm knows the input instance at the start of the tour, while in
the online case the radii of the disks are revealed only when the tour reaches
each disk. We prove the following three results in this paper:

1. We can compute a TSP tour through n stochastic disks whose expected
length is within factor O(log logn) of E [L∗ ] in polynomial time.

2. If the radii of the stochastic disks are revealed online, our algorithm achieves
an O(log n) approximation of E [L∗ ].

3. If the disks are disjoint when they all appear with radius μ, then the ap-
proximation factor improves to O(1) in both offline and online cases.

Related Work

There is a long history of research on probabilistic or stochastic traveling sales-
man problems. For instance, the celebrated result of Bearwood et al. [3] shows
that (in the limit) the optimal TSP through n i.i.d. random points in [0, 1]2 has
length Θ(

√
n). Bertsimas and Jaillet [4,19] consider a setting where each point in

a given set has an (independent) activation probability. They compute a single
a priori tour, and on any random instance the tour is simply short-cut, visiting
only the active points. Their objective is to find the a priori tour minimizing the
expected cost over all random instances. Recent work on the a priori TSP and
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a related universal TSP includes [14,17,25,26]. Another interesting thread in-
cludes 2-stage stochastic optimization [16,27], where a part of the input (partial
distribution) is revealed in the first stage, when the resources can be acquired
more cheaply; the rest of the input is revealed in the second stage, when the re-
sources are more expensive. The goal is to optimize the expected cost of building
a network structure [8,13,18,20].

The research most relevant to our work concerns the TSP problem with neigh-
borhoods (TSPN), first introduced by Arkin and Hassin [1]. The problem is
known to be APX-hard when the neighborhoods are general overlapping poly-
gons [7,15], and hence the approximation algorithms have focused on either
disjoint or “fat” neighborhoods. In particular, if the regions are disjoint disks of
identical size, then there exists a PTAS [9]. If the regions are disjoint, fat poly-
gons of comparable size, there also exists a PTAS [12]. Other results include a
quasipolynomial-time approximation scheme (QPTAS), in any fixed dimension,
when the regions are fat and disjoint [6]; an O(1)-approximation for disjoint,
convex, and fat regions of arbitrary diameters [7], a PTAS under the assumption
of bounded overlap [22], and an O(1)-approximation for disjoint neighborhoods
of any size and shape [23]. Without the assumption of disjointness, the approx-
imation results have tended to assume regions with comparable diameters. In
particular, the best results include a constant factor approximation when the
regions are connected polygons [9], convex and fat [10,11], or it is required to
visit each neighborhood at one of a finite subset of points.

When the regions are neither disjoint nor of roughly the same size, the best
approximation ratio known is O(log n) [10,21]. In our setting, the stochastic
disks can have arbitrarily large radii and overlap in arbitrary ways, and so the
prior work does not give an approximation ratio better than O(log n). When the
radii are revealed online, no prior work seems to be known. In our stochastic
setting, instead of comparing the performance of the algorithm for every single
realization, we are interested in the expected performance over all the realizations.

2 Technical Preliminaries for the Stochastic TSP

Let D = {D1, D2, . . . , Dn} be a set of n random disks in the plane, where each
disk Di = (ci, ri) has a fixed center ci and a random radius ri drawn from a
probability distribution φ with mean μ (we highlight that the disk radii are
identically distributed). Our analysis relies on a few assumptions about φ. In
particular, we assume that (1) the domain of φ is the positive reals, and (2)
φ attains its maximum at μ and then decays monotonically on either side of
the mean. Finally, a reasonable probability distribution for the radius must be
scale invariant : the probability of observing r should depend only on the ratio
μ/r, independent of the distance scale. Thus, instead of a bound on the variance
of φ, we assume that the cumulative probability function satisfies F (μ/α) ≤
O(e−α), for α > 1. In other words, we require that the ratio μ/r follow a light-
tailed distribution [2]: Normal, exponential, and many other natural distribution
are light-tailed. We do not require the distribution to be symmetric, and the
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radii can assume arbitrarily large values above the mean μ. (The assumption of
a light-tailed distribution also conforms with the empirical observation of the
transmission range in wireless sensors, where the probability of transmission
failure drops quickly within the reference distance from the sensor [24].)

With the disk centers fixed, we may view the set D as an n-dimensional
random vector R = (r1, r2, . . . , rn). Let IR denote the set of all the possible
instances (realizations) of the vector R. Each I ∈ IR uniquely identifies a partic-
ular instance of our TSP with neighborhoods. The probability distribution of R,
denoted φR, can be obtained from the marginal distributions of the radii. That
is, for an instance I = (x1, x2, . . . , xn), we have φR(I) = φR(x1, x2, . . . , xn) =∏n

i=1 φ(xi), where
∫
x1
· · ·

∫
xn
φ(x1) · · ·φ(xn) dx1 · · · dxn = 1 .

The expected value of R is the vector μ(n), where each of the n disks has the
radius equal to the mean value μ. This particular instance plays an important
enough role in our analysis that we reserve a special symbolM for it. The optimal
TSPN tour for the instance M is called Opt(M).

Let the random variable L∗ measure the length of the shortest tour over the
sample space D. The expected value of L∗ can be computed as follows:

E [L∗ ] =

∫ ∞

0

· · ·
∫ ∞

0

L∗(x1, . . . , xn) · φR(x1, . . . , xn) dx1 . . . dxn,

where L∗(I) denotes the value of L∗ for instance I.
Given any polygonal path or cycle T , we use |T | to denote its Euclidean

length, i.e., the sum of the lengths of its segments. To simplify our presentation,
we also assume a fixed start point s0 for the tour that lies at least 2μ away from
all the disk centers. This technical assumption, which does not affect the general
validity of our results, helps us ignore some special cases, such as when all disks
have a common intersection in the instance M , causing |T (M)| = 0.

2.1 Bounding the Expected Optimal

We begin with a theorem establishing the importance of the instance M , where
all disks occur with mean radii. It basically shows that optimal of the mean is a
good lower bound on the mean of the optimal. Due to the page limit, this along
with other proofs are omitted in this extended abstract.

Theorem 1. |Opt(M)| ≤ 2E [L∗ ].

2.2 The High Level Strategy and a Partial Order of Disks

All of our stochastic TSP algorithms employ the following three-step strategy:
first, we compute an O(1) approximation T (M) for the mean-radius instance
M—that is, |T (M)| = O(|Opt(M)|); second, we subdivide T (M) into several
blocks and assign a subset of the disks to each block; finally, for a random instance
I, we construct a tour by visiting disks in the block order given by T (M). (We
note that following the same path as T (M) does not necessarily visit all the
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disks, since their radii in I could be smaller than the mean value. So, the block
order is just a high-level clue about how “subsets” of disks should be visited.)

In the rest of this section, we describe the first (and simplest) of these three
steps, while the other steps are the focus of next section. Our algorithm for
approximating the TSP for instance M is based on some classical ideas for
approximating the TSP of disks. In particular, if the neighborhoods are convex
regions of equal diameter in the plane, then a polynomial algorithm is known for
a constant factor approximation of the TSP visiting all the neighborhoods [1,9].
The approximation algorithm works by choosing a representative point in each
convex region and finding an almost optimal tour of these points.

In this spirit, consider the instance M , which has n (possibly intersecting)
disks, each of radius μ. We call a set of vertical lines a line cover, if each disk is
intersected by at least one of these lines. A line cover with the minimum number
of lines is easily computed by a simple greedy scan: the first line is chosen to pass
through the rightmost point of the leftmost disk; remove all the disks intersected
by this line, and repeat until all the disks are covered. We can make two simple
observations: first, each disk is intersected by precisely one line in the cover,
which we call the covering line of this disk; and second, two adjacent lines of
the cover are at least 2μ apart. See Figure 1(a). For each disk Di, the point
where the covering line of Di meets its horizontal diameter is selected as its
unique representative point. Following the algorithm of [1,9], we then compute
a (1 + ε)-approximate tour of these representative points. Call this tour T (M).
Then, by Theorem 1, we have the important result that T (M) = O(E [L∗ ]).

Unfortunately, by itself, T (M) is not a good tour for a random instance I—in
fact, it may not even visit some of the disks whose radius in I is smaller than μ.
However, we show that it provides a good high-level clue about the rough order in
which to visit the disks in any random instance. Let us fix an orientation of T (M),
say clockwise, and let A = {a1, . . . , an} denote the sequence of representative
points of disks inM in the order they are visited by T (M), starting with the first
disk visited following the initial point s0. Recall that all the n representatives lie
on the covering lines, which have a minimum separation of 2μ. We now partition
the sequence A into chunks of consecutive points A1, A2, . . . , Am, such that each
chunk contains points that belong to the same covering line and are consecutive
along the tour T (M). W.l.o.g., let A0 consist of the singleton initial point s0.
We note that the representative points of a covering line may be partitioned into
more than one such chunk. See Figure 1(b) for an example.

Let �i, for i = 1, 2, . . . ,m, be the line segment joining the lowest and the
highest (by y-coordinate) point in Ai. Clearly, �i covers all the points in Ai, and
thus visits the mean radius disks associated with them. We will use these chunks
Ai to divide T (M) into m blocks B1, . . . , Bm, where Bi is the portion of T (M)
visiting the points in Ai together with the line segment connecting the last point
in Ai−1 to the first point in Ai. That is, Bi is the part of T (M) starting after
its last contact with �i−1 and ending right after its last contact with �i. See
Figure 1(c). Since the minimum distance between �i and �i+1 is 2μ, we can lower
bound the length of the Bi by 2μ+ |�i|; the initial block |B1|, being an exception,
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Fig. 1. (a) A set of covering lines; (b) a possible structure of T (M) (c) a block Bi and
rectangle Ri

is lower bounded by μ + |�1|, since s0 is at least μ away from its closest disk.
From Theorem 1 and the fact that |T (M)| =

∑m
i=1 |Bi|, we have

Observation 1.
∑m

i=1 |Bi| = O(E [L∗ ]).

We say that all the disks covered by �i are assigned to the block Bi, and these
blocks form the desired partial order on our input disks: all disks assigned to
block i precede any disk assigned to block j if i < j. By construction, the centers
of all the disks assigned to block Bi lie within the rectangle Ri of dimensions
|�i|×2μ, with vertical axis �i (see Figure 1(c)). We will argue that for any random
instance, by visiting all the disks of each block in the partial order imposed by
blocks, we obtain a tour that achieves a O(log logn) factor approximation of
the expected optimum. Before discussing the strategy to visit the disks in each
block, we note a simple geometric property of the optimal disk tour. The proof
is simple: the optimal tour must be polygonal, has at most one vertex per disk,
and cannot self-intersect—otherwise it can be shortcut, violating optimality.

Lemma 1. The optimal TSPN tour of any instance I is a polygonal cycle with
at most n vertices that does not self-intersect.

W

P

OPT

Fig. 2. The portion ofOpt

contained in W

Suppose Opt is an optimal tour of n disks in the
plane, and consider an axis-aligned square W , called
a window, entirely inside the minimum bounding box
of the disks. Focus on tour fragment P = Opt ∩W ,
namely, the portion of Opt contained in W , which
may be composed of multiple disconnected pieces, as
shown in Figure 2. Then P must visit all the disks
completely contained in W . The following lemma
shows that P together with the boundary of W is
lower bounded by the shortest tour that visits all the
disks contained inW , up to a constant. In particular,
suppose Opt

′ is the optimal tour for the subset of disks contained completely
inside W .

Lemma 2. |Opt
′| ≤ 2(|P |+ |W |), where |W | is the perimeter of W .
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Our discussion so far applies to the general stochastic TSPN problem: com-
puting the approximately optimal tour for the mean instance M , the partial
ordering of disks and the block partition all only require knowledge of the mean
radius and the disk centers. However, the last key step that computes a good
approximation tour for each block Bi crucially depends on whether we know the
radii of the random instance beforehand or not. Therefore, the following discus-
sion now separately considers the offline and the online versions of the problem:
in the former, the radii of the random instances are known to the algorithm at
the beginning, while in the latter the algorithm only learns the radius of a disk
Di when the tour reaches the boundary of Di.

3 Stochastic Offline Tour

In this section, we describe an algorithm for visiting the stochastic disks in the
offline setting: the salesman knows the disk radii of the given instance before
starting the tour. We show how to construct a tour whose expected length is
within factor O(log logn) of the expected optimal.

In light of the discussion of the previous section, we only need to focus on
constructing approximately optimal tours for each block Bi, for i = 1, . . . ,m,
because their concatenation leads to an overall tour with length close to E [L∗ ].
We first recall that the centers of all the disks assigned to Bi lie within the
(closed) rectangle Ri with dimensions |�i| × 2μ, and centered at the midpoint of
�i. We partition Ri into 2μ× 2μ squares; (the last “square” may be a rectangle
of width 2μ and height smaller than 2μ). We construct the tour separately for
each of these squares, visiting the disks whose centers lie in the square. The
concatenation of these subtours gives the final tour. With this preamble, the
next subsection considers the following key problem: given n disks whose centers
lie inside a square of side length 2μ, construct a tour visiting them. We then
explain and analyze the algorithm to combine these subtours in subsection 3.2.

3.1 Constructing a Subtour within a Square

Let D = {D1, . . . , Dn} be a random instance of the stochastic TSPN problem
where the centers of all the disks lie inside a square R of dimensions 2μ × 2μ,
where μ is the mean radius of the disks. We show how to construct a tour visiting
these disks with expected length O(log logn) times the expected optimal. We
begin with an idea used in the work of Elbassioni et. al. [10] for the deterministic
TSPN problem on intersecting neighborhoods.

First, let Din ⊆ D denote the set of disks contained in the interior of R. If
Din = ∅, then the boundary of R visits all the disks, and this is an easy case.
Otherwise, Din �= ∅, and we proceed as follows. We let N2(Di) ⊆ D denote the
2-neighborhood of disk Di = (ci, ri), which is the set of disks in D within distance
2ri of ci. That is, N2(Di) is the set of disks that intersect a disk of radius 2ri cen-
tered at ci. We call the disk Di the core of N2(Di). We use the 2-neighborhoods
to form a disjoint cover of Din, by the following iterative algorithm.
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Initially, N = ∅. Choose the disk Di ∈ D with the smallest radius, and add
the 2-neighborhood N2(Di) to N , with Di as its core. Remove all the disks of
N2(Di) from D, and iterate until D is empty. Clearly, each disk Dj ∈ Din is
assigned to N at some point, and we identify it with the core disk Di whose 2-
neighborhood addedDj toN . Without loss of generality, supposeD1, D2, . . . , Dk

are the core disks selected by the covering algorithm in this order. Clearly, by
the disk selection rule, any two core disks are disjoint, that is, Di ∩Dj = ∅, for
1 ≤ i, j ≤ k, and the radii are in increasing order, namely, r1 ≤ r2 ≤ · · · ≤ rk.

Lemma 3. Let N ′(Di) ⊆ N2(Di) be the set of disks added to N when Di is
chosen as core. Then there is a tour of length at most O(ri) visiting all the disks
of N ′(Di).

Let Opt
′ denote an optimal tour that visits all the disks of Din. The following

key lemma gives a lower bound on |Opt
′| for any instance of the problem in

terms of just the radii of core disks. An analogue of this Lemma can also be
found in [10] (and also in [22], in a slightly more general form).

Lemma 4. Let {D1, . . . , Dk}, for k ≥ 2, be the set of core disks whose

2-neighborhoods form thedisjoint partitionofDin .Then, |Opt
′| ≥

∑k−1
i=1

(
ri

�log k�

)
.

Remark: The lower bound of the preceding lemma is tight in the worst-case.
We can construct a set of core disks for which the optimal tour is at most 1/ log k
times the sum of radii. In [22] a similar lower bound is presented for fat regions.

Lemma 5. The number of disks selected as a core in a disjoint partition of Din

whose radius exceeds μ/ logn is at most O(log2 n).

Lemma 6. In any random instance I ∈ IR, the expected number of disks Di ∈
Din with radius smaller than μ/ logn is a constant.

The next theorem shows how to construct a tour of D using the tour of Din.
Please see the appendix for the proof.

Theorem 2. In polynomial time, we can compute a tour T (D) visiting all the
disks of D such that E [ |T (D)| ] ≤ μ + O(log logn E [ |Opt

′| ]), where Opt
′

denotes the optimal tour on Din.

3.2 Combining the Subtours

We now stitch together these subtours spanning the disks whose centers lie in
2μ× 2μ size squares to construct the final tour. See Figure 3 for illustration. In
particular, suppose Si = {Ri1, Ri2, . . .} is the partition of the rectangle Ri into
these 2μ × 2μ squares, and let Tij be the O(log logn)-optimal tour (obtained
using Theorem 2) for the disks whose centers lie in Rij , where Rij ∈ Si. Let Ti
be the path obtained by concatenating the tours Tij, for {j : Rij ∈ Si}, where
i = 1, . . . ,m, adding at most O(|�i|+μ) to the length. Finally, combine the paths
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2μ

�i �i+1

2μ

�i �i+1

Bi

Bi+1

Ri Ri+1

Fig. 3. Two blocks Bi and Bi+1, and the paths replacing them

Ti, for i = 1, . . . ,m, to obtain a tour over D, by connecting the boundary of Ri

with the boundary of Ri+1. These connections add at most
∑m

i=1O(Bi) to the
tour length. (Figure 3 illustrates this construction for blocks Bi and Bi+1.) It
is easy to modify the resulting walk into a traveling salesman tour by doubling
and shortcutting. Let T (D) denote the resulting tour. The following theorem
establishes the main result of this section.

Theorem 3. In polynomial time, we can compute a tour T (D) visiting the set
D of stochastic disks, such that E [ |T (D)| ] = O(log logn) · E [L∗ ].

4 Stochastic Online Tour

We now consider the online version of the TSP with stochastic disks, where the
salesman learns the radius of each stochastic disk only on arriving at the bound-
ary of the disk—in the data gather application, the disk radius is revealed when
the robot is able to communicate with the sensor node. We propose an O(log n)-
approximation algorithm for the online version. In the special case where the
mean radii disks are nearly disjoint, we achieve an O(1)-approximation, both for
the online and the offline setting. (In practice, this is the more likely case.)

Our online algorithm also follows the same outline as the offline case, but uses
a different (and simpler) scheme to visit all the disks inside each rectangle Ri. In
particular, recall that the centers of the disks assigned to a block Bi lie inside or
on the boundary of the rectangle Ri with dimensions 2μ× |�i|. We divide each
Ri, for i = 1, . . . ,m, into �logn · |�i|/μ� horizontal strips of height (at most)
μ/ logn. See Figure 4(a). We now replace each segment �i of the mean radius
tour T (M) with a path that traverses the horizontal line segments of length 2μ
in the middle of the strips one by one. Consider a disk Di = (ci, ri) whose center
lies inside the current strip, and is not visited by the path so far. The tour expects
to intersect that disk when it reaches the point with the same x-coordinate as
ci; if it fails to reach it, then it makes a detour towards ci until it reaches the
boundary of Di and immediately returns to its position before the detour. We
now analyze the expected length of this tour.

Let Ti be the path that replaces the block Bi. Figure 4(b) shows this path,
which starts at the last point ofBi−1 and ends at the first point ofBi+1, assuming
an orientation of the tour T (M).
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2μ

μ

logn

�i

�i−1 �i+1

(a) (b)

μ

logn

�
|�i|

Fig. 4. (a) Partition of rectangle Ri into strips; (b) the path replacing Bi

Lemma 7. E [Ti ] = O( log n ) · |Bi|.

Theorem 4. If the radii of the set D of random disks are revealed online, we can
compute in polynomial time a tour T (D), where E [ |T (D)| ] = O(log n) · E [L∗ ].

Proof. Let T (D) be the union of the paths Ti, for i = 1, . . . ,m, where Ti ends at
the point where Ti+1 begins. The tour T visits all the disks, and by Theorem 1
and Observation 1, we have the following, which completes the proof.

E [ |T (D)| ] =
m∑
i=1

E [ |Ti| ] = O(log n) ·
m∑
i=1

|Bi| = O(log n) · |T (M)| = O(log n) · E [L∗ ].

Almost Disjoint Mean Radius Disks. Finally, if the disks are not “too overlap-
ping” in the instance M , we can obtain a simple O(1)-approximate tour of D.
We say that the set D has depth c if no point lies in the common intersection of
more than c disks, as they appear inM . We note that even with this assumption,
a random instance of the problem may still have arbitrarily large intersection
depths. Nevertheless, we can prove the following result.

Theorem 5. If the stochastic set D has a constant depth, then we can compute
in polynomial time a tour T (D) such that E [ |T (D)| ] = O(1) · E [L∗ ].
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Abstract. We study the problem of finding and characterizing sub-
graphs with small bipartiteness ratio. We give a bicriteria approximation
algorithm SwpDB such that if there exists a subset S of volume at most
k and bipartiteness ratio θ, then for any 0 < ε < 1/2, it finds a set S′ of
volume at most 2k1+ε and bipartiteness ratio at most 4

√
θ/ε. By com-

bining a truncation operation, we give a local algorithm LocDB, which
has asymptotically the same approximation guarantee as the algorithm
SwpDB on both the volume and bipartiteness ratio of the output set, and
runs in time O(ε2θ−2k1+ε ln3 k), independent of the size of the graph.
Finally, we give a spectral characterization of the small dense bipartite-
like subgraphs by using the kth largest eigenvalue of the Laplacian of the
graph.

1 Introduction

We study the problem of finding subgraphs with small bipartiteness ratio. Let
G = (V,E) be an undirected graph. Let L,R be two disjoint vertex subsets and
U := L ∪R. The bipartiteness ratio of L,R is defined as

β(L,R) =
2e(L) + 2e(R) + e(U, Ū)

vol(U)
, (1)

where e(L), e(U, Ū) denote the number of edges in L and the number of edges
leaving from U to the rest of the graph, respectively; and vol(U), called the
volume of U , is defined to be the sum of degrees of vertices in U . The concept of
bipartiteness ratio was recently introduced and used as a subroutine to designing
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approximation algorithms for Max Cut problem by Trevisan [33]. In particular,
Trevisan showed that this combinatorial object has close relation to the largest
eigenvalue of the Laplacian of G, the Goemans-Williamson Relaxation and graph
sparsification.

Another motivation of studying bipartiteness ratio is that it can be consid-
ered as a quality of dense bipartite-like subgraphs, which in turn characterize
the communities (or clusters) in Web graphs [26,15]. More specifically, a dense
bipartite-like subgraph is a pair of disjoint vertex subsets L,R such that ‘most’
of the edges involving the vertices in L∪R lie between L and R. Equivalently, we
say that L,R form a dense bipartite subgraph if ‘few’ edges lie totally in L or R,
or leaving L∪R to the rest of the graph. The latter formulation turns out to be
well captured by the bipartiteness ratio measure of L,R, as in Definition (1), the
numerator involves all the edges that are not between L and R, and the domi-
nator involves all the edges incident to L∪R. It is intuitive that the smaller the
bipartiteness, the more likely it behaves like a dense bipartite subgraph. In real
applications, we suggest first detecting sets with small bipartiteness ratio (using
the algorithms below) and then combining some heuristic algorithms (such as
the prune-filter technique used in [15]) to process the found sets and to better
exploit the community structure of the Web graph.

Thus, we will use the bipartiteness ratio (abbreviated as B-ratio) as a mea-
sure of a set being dense bipartite-like. We want to extract subgraphs with
small B-ratio, which corresponds to good cyber-communities. Furthermore, we
are interested in finding small communities, which generally contains more in-
teresting information than large communities and may be more substantial in
large scale networks. For example, Leskovec et al. investigate the community
structure of many real networks by the conductance measure [18,19], and they
argue that large networks may have a core-periphery structure, where the pe-
riphery is composed of easily separable small communities and the nodes in the
expander-like core are so intermingled that it is much harder to extract large
communities (if exist) from it.

In order to make our algorithm practical, we would like to design a local
algorithm to extract subgraphs with small B-ratio. A local algorithm, introduced
by Spielman and Teng [29], is one that given as input a vertex, it only explores
a small portion of the graph and finds a subgraph with good property, which
has found applications in graph sparsificasion, solving linear equations [31], and
designing near-linear time algorithms [32]. Local algorithms have also shown to
be both effective and efficient on real network data (e.g, [18,20]).

1.1 Our Results

We give approximation, local algorithms and spectral characterization of finding
the small subgraphs with small B-ratio, as we argued above, with the goal of
extracting small cyber-communities. In the following, we will use the terminology
of small dense bipartite-like subgraphs to indicate small subgraphs with small
B-ratio.
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We first give a bicriteria approximation algorithm for finding the small dense
bipartite-like subgraph.

Theorem 1. Assume that G has a set U = (L,R) such that β(L,R) ≤ θ and
vol(U) ≤ k, where θ < 1/4 and k > 4, then for any 0 < ε < 1/2, there exists an
algorithm SwpDB(G, k, θ, ε) that runs in polynomial time and finds a set (X,Y )
such that vol(X ∪ Y ) ≤ 2k1+ε, and β(X,Y ) ≤ 4

√
θ/ε.

Note that the approximation ratio does not depend on the size of the graph,
since the algorithm is based on a spectral characterization of the B-ratio of the
graph given by Trevisan [33] (see Lemma 1), which is analogous to the Cheeger’s
inequality for conductance (see more discussions below).

By incorporating a truncation operation we are able to give a local algorithm
for the dense bipartite subgraphs.

Theorem 2. If there is a subset U = (L,R) of volume vol(U) ≤ k and B-ratio
β(L,R) ≤ θ, where θ < 1/12 and k > 2560000,then there exists a subgraph
Uθ ⊆ U satisfying that vol(Uθ) ≥ vol(U)/2 and that if v ∈ Uθ, then for any
0 < ε < 1/2, there exists a local algorithm LocDB(G, v, k, θ, ε) finds a subgraph
(X,Y ) of volume O(k1+ε) and B-ratio O(

√
θ/ε). Furthermore, the running time

of LocDB is O(ε2θ−2k1+ε ln3 k).

We remark that in both theorems, we can give alternative tradeoff on the
bounds of parameters k and θ. For example, in Theorem 2, we can require
θ < 0.03 and k > 11000 instead (see the proof of the theorem).

Note that the local algorithm runs in time independent of the size of the graph
and is sublinear time (in the size of the input graph, denoted as n) when the size
of the optimal set is sufficiently smaller than n and the approximation ratio of the
algorithm is almost optimal in that it almost matches the guarantee of Trevisan’s
spectral inequality for the B-ratio. This algorithm also improves the work of the
second author [26], who gave a local algorithm for B-ratio guaranteeing that the
output set has volume at most O(k2) and B-ratio at most O(

√
θ).

Finally, as an application of the algorithm SwpDB, we give a spectral char-
acterization of the small dense bipartite subgraph by relating the kth largest
eigenvalue of the Laplacian of G to the B-ratio of some subsets with volume
at most O(2|E|/k1−ε). More specifically, if we let λ0 ≤ λ1 ≤ · · · ≤ λn−1 be
the eigenvalues of the Laplacian matrix L of the graph G, and define the dense
bipartite profile of the graph as β(k) := minL,R:L∩R=∅

vol(L∪R)≤k

β(L,R), then our spectral

characterization implies that

β(vol(G)/k1−ε) ≤ O(
√

(2− λn−k) logk n). (2)

1.2 Our Techniques

Our approximation algorithm is based on Trevisan’s spectral characterization
of the B-ratio β(G) of the graph, which is the minimum B-ratio of all possible
disjoint vertex subsets L,R, that is, β(G) = β(vol(G)). Recall that λ0 ≤ λ1 ≤
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· · · ≤ λn−1 are the eigenvalues of L. Instead of working directly on L, we study
a closely related matrix M , which we call the quasi-Laplacian, that has the
same spectra as L. Let v0,v1, · · · ,vn−1 be the corresponding eigenvectors of
M . Trevisan showed that if λn−1 ≥ 2− 2θ, then by a simple sweep process over
the largest eigenvector vn−1, we can find a pair of subsets X,Y with B-ratio at
most 2

√
θ. On the other hand, it is well known that the largest eigenvector vn−1

can be computed fast by the power method, which starts with a “good” vector
q0 and iteratively multiplies it by M to obtain qt, and outputs qT by choosing
proper T . Hence, the power method combined with the sweep process can find
a subset with B-ratio close to β(G). However, such a method does not give a
useful volume bound on the output set.

In order to find small dense bipartite subgraphs, we sweep each of the vector
qt and characterize qt in terms of the minimum of B-ratio of all the small sweep
sets (the sets found in the sweep process) encountered in all the T iterations. This
is done by a potential function J(p, x), which has a nice convergence property
that for general vector p and some x, J(pM,x) can be bounded by a function
of J(p, x′) and the B-ratio of the some sweep set (see Lemma 2). Using this
property, we show inductively that if we choose q0 = χv for some vertex v ∈ V ,
J(qt, x) can be upper bounded by a function in t,K and the minimum B-ratio
of all the sweep sets of volume at most K for all t ≤ T (see Lemma 3). On
the other hand, if the graph contains a small dense bipartite subgraph L,R of
volume at most k, we prove that the potential function also increases quickly in
terms of t and β(L,R) (see Lemma 4), which will lead to the conclusion that at
least one of the sweep set with volume at most K has B-ratio “close” to β(L,R)
by choosing proper K in terms of k and the starting vertex v.

To give local algorithms that run in time independent of the size of the graph,
we need to keep the support size of the vectors qt small in each iteration. This
is done by a truncation operation of a vector that only keeps the elements with
large absolute vector value. Let q̃0 = χv and iteratively define q̃t to be the
truncation vector of q̃t−1M . We show that both upper bound and lower bound
on J(qt, x) still approximately holds for J(q̃t, x), and thus prove the correctness
of our local algorithm which sweeps all the vectors q̃t instead of qt.

Finally, we use a simple trace lower bound to serve as the lower bound for
J(qt, x) and obtain the spectral characterization of the dense bipartite profile.

1.3 Related Works

Our work is closely related to a line of research on the conductance of a set S,

which is defined as φ(S) = e(S,S̄)
min{vol(S),vol(S̄)} . Kannan, Vempala and Veta [13] sug-

gest using the conductance as a measure of a set being a general community (in
contrast of cyber-communities), since the smaller the conductance it, the more
likely that the set is a community with dense intra-connections and sparse inter-
connections. Spielman and Teng give the first local clustering algorithm to find
subgraphs with small conductance by using the truncated random walk [29,30].
Anderson, Chung and Lang [5], Anderson and Peres [6], Kwok and Lau [16] and
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Oveis Gharan and Trevisan [25] then give local algorithms for conductance with
better approximation ratio or running time. All their local algorithms are based
on the Cheeger’s inequality that relates the second smallest eigenvalue of L to
the conductance [2,1,28], similar to our algorithms which depend on Trevisan’s
spectral inequality that relates the largest eigenvalue of L to the B-ratio.

Some works studied the small set expander, that is, to find small set with
small conductance. This problem is of interest not only for the reason that
it has applications in finding small communities in social networks, but also
that it is closely related to the unique games conjecture [27]. Arora, Barak and
Steurer [7], Louis, Raghavendra, Tetali and Vempala [21], Lee, Oveis Gharan and
Trevisan[17], Kwok and Lau [16], Oveis Gharan and Trevisan [25] and O’Donnell
and Witmer [24] have given spectra based approximation algorithms and char-
acterizations of this problem. The latter three works have recently shown that
for any 0 < ε < 1,

φ(vol(G)/k1−ε) ≤ O(
√
λk logk n),

whereφ(k) is the expansionprofile ofGand is definedasφ(k) := minS:vol(S)≤k φ(S).
Their spectral characterization of the expansion profile as well as the Cheeger’s
inequality all use the first k smallest eigenvalues of L, which is comparable to
our characterization of the dense bipartite profile by the kth largest eigenvalue
of L as given in inequality (2).

Feige, Kortsarz and Peleg [12], and Bhaskara et al. [10] give non-local algo-
rithms for the densest k-subgraphs. Charikar [11], Andersen [3], Andersen and
Chellapilla [4], Khuller and Saha[14] studied approximation (or local) algorithms
for dense subgraphs based on other measures. Arora et al. [8] and Balcan et al. [9]
investigate the problem of finding overlapping communities in networks.

All the proofs in the paper can be found in the arxiv version.

2 Preliminaries

Let G = (V,E) be an undirected weighted graph and let n := |V | and m := |E|.
Let d(v) denote the weighted degree of vertex v. For any vertex subset S ⊆ V ,
let S̄ := V \S denote the complementary of S. Let e(S) be the number of edges
in S and define the volume of S to be the sum of degree of vertices in S, that is
vol(S) :=

∑
v∈S d(v). Let vol(G) := vol(V ) = 2m. For any two subsets L,R ⊆ V ,

let e(L,R) denote the number of edges between L and R. For two disjoint subsets
L,R, that is, L ∩R = ∅, we will use U = (L,R) to denote subgraph induced on
L and R, which is also called the pair subgraph. We will also use U to denote
L ∪R. Given U = (L,R), the bipartiteness ratio (or B-ratio) of U is defined as

β(L,R) :=
2e(L) + 2e(R) + e(U, Ū)

vol(U)
.

The B-ratio of a set S is defined to be the minimum value of β(L,R) over all
the possible partitions L,R of S, that is, β(S) := min(L,R) partition of S β(L,R).

The B-ratio of the graph G is defined as β(G) := minS⊆V β(S).
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We are interested in finding small subgraphs with small B-ratio. In the fol-
lowing, we use lower bold letters to denote vectors. Unless otherwise specified, a
vector p is considered to be a row vector, and pT is its transpose. For a vector
p on vertices, let supp(p) denote the support of p, that is, the set of vertices on
which the p value is nonzero. Let ‖p‖1 and ‖p‖2 denote the L1 and L2 norm
of p, respectively. Let |p| denotes its absolute vector, that is, |p|(v) := |p(v)|.
For a vector p and a vertex subset S, let p(S) :=

∑
v∈S p(v). For L,R, let

p(L,−R) :=
∑

v∈L p(v) −
∑

v∈R p(v). One useful observation is that for any
partition (L,R) of S, p(L,−R) ≤ |p|(S). Also note that there exists a partition
(L0, R0) of S such that p(L0,−R0) = |p|(S). Actually, L0 is the set of ver-
tices with positive p value and R0 is the set of the remaining vertices, that is,
L0 = {v ∈ S : p(v) > 0} and R0 = {v ∈ S : p(v) ≤ 0}.

For any vertex v, let χv denote the indicator vector on v. Now let A denote
the adjacency matrix of the graph such that Auv is the weight of edge u ∼ v.
Let D denote the diagonal degree matrix. Define the random walk matrix W ,
the (normalized) Laplacian matrix L and the quasi-Laplacian matrix M of the
graph G as W := D−1A,L := I − D−1/2AD−1/2,M := I − D−1A. It is well
known that these three matrices are closely related. In particular, for regular
graphs, L and M are the same; and if we let λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the
eigenvalues of L, then {1 − λi}0≤i≤n−1 and {λi}0≤i≤n−1 are the eigenvalues of
W and M , respectively. Note that for general graphs, though the eigenvalues of
L andM are the same, the corresponding eigenvectors might be different. In this
paper, we will mainly use the quasi-Laplacian M to give both algorithms and
spectral characterization for the small dense bipartite subgraph problem. If we
let v0,v1, · · · ,vn−1 be the corresponding left eigenvectors of M , then we have
the following spectral inequality given by Trevisan [33] (see also [26] as Trevisan
did not explicitly state his result in terms of the matrix M).

Lemma 1 ([33]). Let β(G), λn−1 and vn−1 defined as above. We have that
β(G) ≤

√
2(2− λn−1). Furthermore, a pair subgraph (X,Y ) with B-ratio at

most
√
2(2− λn−1) can be found by a sweep process over vn−1.

The sweep process mentioned above is defined as follows.

Definition 1. (Sweep process) Given a vector p, the sweep (process) over p is
defined by performing the following operations:

1. Order the vertices so that |p(v1)|d(v1)
≥ |p(v2)|

d(v2)
≥ · · · ≥ |p(vn)|

d(vn)
.

2. For each i ≤ n, let Li(p) := {vj : p(vj) > 0 and j ≤ i}, Ri(p) := {vj :
p(vj) ≤ 0 and j ≤ i} and Si(p) := (Li(p), Ri(p)), which we call the sweep
set of the first i vertices. Compute the B-ratio of Si(p).

In Trevisan’s inequality, to find the subgraph with small B-ratio, we just need
to output the sweep set with the minimum B-ratio over the all the sweep sets.
Trevisan also showed the tightness (within constant factors) of this inequality in
the sense that there exist graphs such that the two quantities in both hands of
the inequality in Lemma 1 are asymptotically the same. The sweep process as
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well as Trevisan’s inequality are the bases of our algorithms for the small dense
bipartite-like subgraphs.

We will use the following truncation operator to design local algorithms.

Definition 2. (Truncation operator) Given a vector p and a nonnegative real
number ξ, we define the ξ-truncated vector of p to be:

[p]ξ(u) =

{
p(u) if |p(u)| ≥ ξd(u),
0 otherwise.

3 Approximation Algorithm for the Small Dense
Bipartite-Like Subgraphs

In this section, we first give the description of our approximation algorithm
for the small dense bipartite-like subgraph, the main subroutine of which is
the sweep process over a set of vectors χvM

t. We then introduce a potential
function J(p, x) and give both upper bound and lower bound of the potential
function J(χvM

t, x) under certain conditions, using which we are able to show
the correctness of our algorithm and thus prove Theorem 1.

Now we describe our algorithm SwpDB (short for “sweep for dense bipartite”)
for finding the small dense bipartite-like subgraphs.

SwpDB(G, k, θ, ε)
Input: A graph G, a target volume k > 4, a target B-ratio θ, an error parameter
0 < ε < 1/2.
Output: A subgraph (X,Y ).

1. Let T = ε ln 2k
2θ . Let K = 2k1+ε.

2. Sweep over all vectors χvM
t, for each vertex v ∈ V and t ≤ T , to obtain a

family F of sweep sets with volume at most K.
3. Output the subgraph (X,Y ) with the smallest B-ratio ratio among all sets

in F .

3.1 A Potential Function

We define a potential function J : [0, 2m]→ R+:

J(p, x) := max
w∈[0,1]n∑

v∈V w(v)d(v)=x

∑
v∈V

|p(v)|w(v).

Note that our potential function is similar to a potential function for bounding
the convergence of p( I+W

2 )t in terms of the conductance given by Lovász and
Simonovits [22,23]. Here we will use J(p, x) to bound the convergence of qM t

in terms of the B-ratio of the sweep sets.
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There are two useful ways to see this potential function.

1. We view each edge u ∼ v ∈ E as two directed edges u → v and v → u.

For each directed edge e = u → v, let p(e) = p(u)
d(u) . Order the edges so

that|p(e1)| ≥ |p(e2)| ≥ · · · ≥ |p(e2m)|.
Now we can see that for an integer x, J(p, x) =

∑x
j=1 |p(ej)|. For other

fractional x = �x�+ r, J(p, x) = (1− r)J(p, �x�) + rJ(p, �x�).
Also it is easy to see that for any directed edge set F , |p|(F ) :=

∑
e∈F |p|(e) ≤

J(p, |F |), since the former is a sum of |p| values of one specific set of edges with
|F | edges and the latter is the maximum over all such possible edge sets.

2. Another way to view the potential function is to use the sweep process over
p as in Definition 1. By the definitions of the potential function and the
sweep process, we have the following observations.
(a) For x = vol(Si(p)), J(p, x) =

∑i
j=1 |p(vj)| = |p|(Si(p)) = p(Li(p),−

Ri(p)). And J(p, x) is linear in other values of x.
(b) For any set S, |p|(S) ≤ J(p, vol(S)), since the former is the sum of

|p(v)|/d(v) values of vertices in S and the latter is the maximum sum
over all sets with |S| vertices;

From both views, we can easily see that the potential function is a non-
decreasing and concave function of x.

3.2 An Upper Bound for the Potential Function

Now we upper bound J(pM,x) in terms of J(p, x′) and the B-ratio of the sweep
set of pM .

Lemma 2 (Convergence Lemma). For an arbitrary vector p on vertices,
if β(Li(p), Ri(p)) ≥ Θ, then for x = vol(Si(p)), we have J(pM,x) ≤ J(p, x +
Θx) + J(p, x−Θx).

We remark that the proof heavily depends on the definition and combinatorial
property of the B-ratio of a set. Though the form is similar to the corresponding
characterization of conductance given by Lovász and Simonovits, the two proofs
are very different.

Now we can use the convergence lemma to upper bound J(χvM
t, x).

Lemma 3. For any vertex v ∈ V , let qt = χvM
t, if for all t ≤ T and all

sweep sets Si(qt) = (Li(qt), Ri(qt)) of volume at most K have B-ratio at least
Θ, that is, β(Li(qt), Ri(qt)) ≥ Θ, then for any t ≤ T , we have J(qt, x) ≤
2tx
K +

√
x

d(v)

(
2− Θ2

4

)t

.

3.3 A Lower Bound for the Potential Function

We show that if the graph contains a pair subgraph with small B-ratio, then
we can have a good lower bound on J(χvM

t) for some vertex v. The following
lemma is similar to the upper bounds on the escaping probability of random
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walks given by Oveis Gharan and Trevisan [25]. Our proof uses a new spectral
analysis by using the H-norm of a vector and may be modified to give a different
proof for the corresponding results in [25].

Lemma 4. If U = (L,R) has B-ratio β(L,R) ≤ θ, then for any integer t > 0,

1. there exists a vertex v ∈ U such that |qt|(U) ≥ (2− 2θ)t, where qt = χvM
t;

2. there exists a subset U t ⊆ U with vol(U t) ≥ vol(U)/2 satisfying that for any
v ∈ U t and qt = χvM

t, J(qt, vol(U)) ≥ |qt|(U) ≥ 1
400 (2 − 6θ)t, where we

have assumed that θ < 1/3.

Now Theorem 1 can be proved by combining the Lemma 3 and 4.
By using a simple trace bound, we can obtain the following corollary that

gives a spectral characterization of the small dense bipartite-like subgraphs and
thus establish inequality (2).

Corollary 1. If λn−k ≥ 2− 2η, then there is a polynomial time algorithm such
that for any 0 < ε < 1, it finds a subset (X,Y ) of volume at most O(vol(G)/k1−ε)
and B-ratio O(

√
16(η/ε) logk n).

4 A Local Algorithm for Dense Bipartite-Like Subgraphs

We will use the truncated operation to give our local algorithm LocDB (short
for “local algorithm for dense bipartite subgraph”).

LocDB(G, v, k, θ, ε)
Input: A graph G, a vertex v, a target volume k > 2560000, a target B-ratio
θ < 1/3 and an error parameter 0 < ε < 1/2.
Output: A subgraph (X,Y ).

1. Let T = ε ln 1600k
6θ . Let ξ0 = k−1−ε

800T , ξt = ξ02
t. Let q̃0 := χv, r0 := [q̃0]ξ0 . Let

F = ∅.
2. For each time 1 ≤ t ≤ T :

(a) Compute q̃t := rt−1M , rt := [q̃t]ξt ;
(b) Sweep over the support of q̃t and add to F all the sweep sets.

3. Output the subgraph (X,Y ) with the smallest B-ratio ratio among all sets
in F .

Note that in the algorithm we just sweep the support of a given vector, which
is important for the computation to be local.

Inspired by the proof of the correctness of SwpDB, we will use the upper bound
and lower bound of the potential function J(q̃t, x) to show the correctness of
the local algorithm. Such bounds can be obtained by combining the following
properties of the truncation operations in the algorithm.

Proposition 1. For any vertex v, if qt = χvM
t and q̃t, rt are as defined in

the algorithm LocDB, then for any t ≥ 0,

1. ‖q̃t‖1 ≤ 2t;
2. |rt − qt| ≤ ξ0t2

td, where d is the degree vector.
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Note that the second part of Proposition 1 directly implies a lower bound on
J(q̃t, x). More specifically, we have the following corollary.

Corollary 2. For any set U , |q̃t|(U) ≥ |rt|(U) ≥ |qt|(U)− ξ0t2
tvol(U).

We can also give an upper bound on J(q̃t, x).

Lemma 5. For any vertex v, T > 0, Θ < 1, if for any t ≤ T , the sweep sets
Si(q̃t) of volume at most K have B-ratio at least Θ, then for any 0 ≤ t ≤ T and
0 ≤ x ≤ 2m,

J(q̃t, x) ≤
2tx

K
+

√
x

d(v)

(
2− Θ2

4

)t

.

Now by using Corollary 2 and Lemma 5, we can show the correctness of the
algorithm LocDB and thus prove Theorem 2.
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Abstract. Čech complexes reveal valuable topological information about
point sets at a certain scale in arbitrary dimensions, but the sheer size
of these complexes limits their practical impact. While recent work in-
troduced approximation techniques for filtrations of (Vietoris-)Rips com-
plexes, a coarser version of Čech complexes, we propose the approximation
of Čech filtrations directly.

For fixed dimensional point set S, we present an approximation of the
Čech filtration of S by a sequence of complexes of size linear in the num-
ber of points. We generalize well-separated pair decompositions (WSPD)
to well-separated simplicial decomposition (WSSD) in which every sim-
plex defined on S is covered by some element of WSSD. We give an
efficient algorithm to compute a linear-sized WSSD in fixed dimensional
spaces. Using a WSSD, we then present a linear-sized approximation of
the filtration of Čech complex of S.

We also present a generalization of the known fact that the Rips com-
plex approximates the Čech complex by a factor of

√
2. We define a

class of complexes that interpolate between Čech and Rips complexes
and that, given any parameter ε > 0, approximate the Čech complex by
a factor (1+ε). Our complex can be represented by O(n�1/2ε�) simplices,
up to purely combinatorial operations, without any hidden dependence
on the ambient dimension of the point set. Our results are based on an
interesting link between Čech complex and coresets for minimum enclos-
ing ball of high-dimensional point sets. As a consequence of our analysis,
we show improved bounds on coresets that approximate the radius of
the minimum enclosing ball.

1 Introduction

Motivation. A common theme in topological data analysis is the analysis of point
cloud data representing an unknown manifold. Although the ambient space can
be high-dimensional, the manifold itself is usually of relatively low dimension.
Manifold learning techniques try to infer properties of the manifold, like its
dimension or its homological properties, from the point sample.
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An early step in this pipeline is to construct a cell complex from the point
sample which shares similarities with the hidden manifold. The Čech complex
at scale α (with α ≥ 0) captures the intersection structure of balls of radius α
centered at the input points. More precisely, it is the nerve of these balls, and
is therefore homotopically equivalent to their union. Increasing α from 0 to ∞
yields a filtration, a sequence of nested Čech complexes, which can serve as the
basis of multi-scale approaches for topological data analysis.

A notorious problemwith Čech complexes is their representation: Its k-skeleton
can consist of up to O(nk) simplices, where n is the number of input points. More-
over, its construction requires the computation ofminimum enclosing balls of point
sets; we will make this relation explicit in Section 2. A common workaround is
to replace the Čech complex by the (Vietoris-)Rips complex at the same scale
α. Its definition only depends on the diameter of point sets and can therefore be
computed by only looking at the pairwise distances (therefore, unlike the Čech
complex, it is defined for arbitrary metrics). Although Rips complexes permit a
sparser representation, they do not resolve the issue that the final complex can
consist of a large number of simplices; Sheehy [20] and Dey et al. [8] have recently
addressed this problem by defining an approximate Rips filtration whose size is
only linear in the input size. On the other hand, efficient methods for approximat-
ing minimum enclosing balls have been established, even for high-dimensional
problems, whereas the diameter of point sets appears to be a significantly harder
problem in an approximate context. This suggests that Čech complexes might be
more suitable objects than Rips complexes in an approximate context, at least
when the point set is embedded in Euclidean space.

Contribution. We give two different approaches to approximate filtrations of
Čech complexes, both connecting the problem to well-known concepts in dis-
crete geometry: The first approach yields, for a fixed constant dimension, a
sequence of complexes, each of linear size in the number of input points, that
approximate the Čech filtration. By approximate, we mean that the persistence
modules induced by exact and approximate Čech filtration are (1+ε)-interleaved
(see Section 2). To achieve this result, we generalize the famous well-separated
pair decomposition (WSPD) to a higher-dimensional analogue, that we call the
well-separated simplicial decomposition (WSSD). Intuitively, a WSSD decom-
poses a point set S into a linear number of tuples with respect to the number of
points. A k-tuple in the WSSD can be viewed as k clusters of points of S with
the property that whenever a ball contains at least one point of each cluster,
a small expansion of the ball contains all points in all clusters. Furthermore,
these tuples cover every simplex with vertices in S, i.e., given any k-simplex σ,
there is a k+1-tuple of clusters such that each cluster contains one vertex of σ.
We consider the introduction of WSSDs to be of independent interest: given the
numerous applications of WSPD, we hope that its generalization will find fur-
ther applications in approximate computational topology. We finally remark that
the constant in the size of our filtration depends exponentially on the dimension
of the ambient space, which restricts the applicability to low-dimensional spaces;
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this is a major difference to related work on the Rips filtration [20,8] which
depends only on the doubling dimension of the point set.

As our second contribution, we prove a generalized version of the well-known
Vietoris-Rips lemma [10, p.62] which states that the Čech complex at scale α is
contained in the Rips complex at scale

√
2α. We define a family of complexes,

called completion complexes such that for any ε, the Čech complex at scale
α is contained in a completion complex at scale (1 + ε)α. These completions
complexes are parametrized by an integer k; the k-completion is completely
determined by its k-skeleton, consisting of up to O(nk) complexes, in the sense
that higher-dimensional simplices can be obtained by combinatorial operations
only. To achieve (1+ε)-closeness to the Čech complex, we need to set k ≈ 1/(2ε)
(see Theorem 4 for the precise statement); in particular, there is no dependence
on the ambient dimension to approximate the Čech complex arbitrarily closely.

For proving this result, we use coresets for minimum enclosing ball (meb) [3]:
the meb of a set of points can be approximated by selecting only a small subset
of the input which is called a coreset ; here approximation means that an ε-
expansion of the meb of the coreset contains all input points. The size of the
smallest coreset is at most �1/ε�, independent of the number of points and the
ambient dimension, and this bound is tight [3]. To obtain our result, we relax
the definition of coreset for minimum enclosing balls. We only require the radius
of the meb to be approximated, not the meb itself. We prove that even smaller
coresets of size roughly �1/(2ε)� always exist for approximating the radius of the
meb. Again, we consider this coreset result to be of independent interest.

Related Work. Sparse representation of complexes based on point cloud data are
a popular subject in current research. Standard techniques are the alpha com-
plex [11,12] which contains all Delaunay simplices up to a certain circumradius
(and their faces), simplex collapses which remove a pair of simplices from the
complex without changing the homotopy type (see [1,17,21] for modern refer-
ences), and witness approaches which construct the complex only on a small
subset of landmark points and use the other points as witnesses [7,2,9]. A more
extensive treatment of some of these techniques can be found in [10, Ch.III]. An-
other very recent approach [19] constructs Rips complexes at several scales and
connects them using zigzag persistence [5], an extension to standard persistence
which allows insertions and deletions in the filtration. The aforementioned work
by Sheehy [20] combines this theory with net-trees [14], a variant of hierarchical
metric spanners, to get an approximate linear-size zigzag-filtration of the Rips
complex in a first step and finally shows that the deletions in the zigzag can be
ignored. Dey et al. [8] arrive at the same result more directly by constructing an
hierarchical ε-net, defining a filtration from it where the elements are connected
by simplicial maps instead of inclusions, and finally showing that this filtration
is interleaved with the Rips-filtration in the sense of [6].

Outline. We introduce basic topological concepts in Section 2. Then we discuss
WSSDs, our generalization of WSPDs and give an algorithm to compute them
in Section 3. We show how to use WSSDs to approximates the persistence di-



Approximate Cech complexes 669

agram of the Čech complex in Section 4. The existence of small coresets for
approximating the radius of meb and the generalized Vietoris-Rips Lemma are
presented in Section 5.

Due to space restrictions, we had to remove most of the proofs and some
further explanations. We refer to [16] for the full version of the paper.

2 Preliminaries

Simplicial Complexes. Let S denote a finite set of universal elements, called
vertices1. A (simplicial) complex C is a collection of subsets of S, called simplices,
with the property that whenever a simplex σ is in C, all its (non-empty) subsets
are in C as well. These non-empty subsets are called the faces of σ; a proper
face is a face that is not equal to σ. Setting k := ‖σ‖ − 1, where ‖ · ‖ stands for
the number of elements considered as a subset, we call σ a k-simplex. Observe
a k-simplex σ corresponds to a (k + 1)-subset (v0, . . . , vk) of S; these (k + 1)
vertices are called the boundary vertices of k-simplex, and we will frequently
identify the simplex and its boundary vertices. The k-skeleton of a complex C
is the set of all �-simplices in C with � ≤ k. Let K and K ′ be two simplicial
complexes with vertex sets V and V ′ and consider a map f : V → V ′. If for
any simplex (v0, . . . , vk) of K, (f(v0), . . . f(vk)) yields a simplex in K ′, then f
extends to a map from K to K ′ which we will also denote by f ; in this case, f
is called a simplicial map.

For a finite point set P and α > 0, the Čech complex Cα(P ) is the nerve of
the set of (closed) balls of radius α centered at the points in P , which means
that every ball is represented by a vertex, and a k-simplex is in Cα(P ) if the cor-
responding balls have a common intersection. Note that a k-simplex of the Čech
complex can be identified with (k+1) points p0, . . . , pk in P . Let meb(p0, . . . , pk)
denote the minimum enclosing ball of P , that is, the ball with minimal radius
that contains each pi. Then, a k-simplex {p0, . . . , pk} is in Cα(P ) if and only if
the radius of meb(p0, . . . , pk) is at most α.

A widely used approximation of Cech complexes is the (Vietoris)-Rips complex
Rα(P ). We define it inductively in dimension: It has the same 1-skeleton as
the Cech complex, and a k-simplex is in Rα if all its faces are in Rα. The
Rips complex is an example of a clique complex (also known as flag complex or
Whitney complex ). That means, it is completely determined by its 1-skeleton
which in turn only depends on the pairwise distance between the input points.
For k + 1 points p0, . . . , pk in P , let the diameter diam(p0, . . . , pk) denote the
maximal pairwise distance between any two points pi and pj with 0 ≤ i ≤ j ≤ k.
Then, a k-simplex {p0, . . . , pk} is Rα(P ) if and only if diam(p0, . . . , pk) is at
most α. For notational convenience, we will often omit the P from the notation
and write Cα and Rα when P is clear from context.

1 The finiteness of S is assumed for the sake of simplicity, but not necessary for most
definitions.
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Persistence Modules. For A ⊂ R, a persistent module is a family (Fα)α∈A of
vector spaces with homomorphisms fα

′
α : Fα → Fα′ for any α ≤ α′ such that

fα
′′

α′ ◦ fα
′

α = fα
′′

α and fαα is the identity function.2. The most common class are
modules induced by a filtration, that is, a family of complexes (Cα)α∈A such that
Cα ⊆ Cα′ for α ≤ α′. For some fixed dimension p, set Hα := Hp(Cα), where
Hp(K) denotes the p-th homology group of the complex K; see [10] or [18] for
a full treatment of this concept. The inclusion map from Cα to Cα′ induces an
homomorphism f̂α

′
α : Hα → Hα′ and turns (Hα)α∈R into a persistence module.

Example of such filtrations and their induced modules are the Cech filtration
(Cα)α≥0 and the Rips filtration (Rα)α≥0. However, we will also consider persis-
tence modules which are not induced by filtrations. We will frequently denote
filtrations and modules by F∗ instead of (Fα)α∈A if there is no confusion about A.

An ε-interleaving between two persistence modules (Fα)α≥0 and (Gα)α≥0 is
given by two families of homomorphisms {φ : Fα → Gcα}α≥0 and {ψ : Gα →
Fcα}α≥0 such that all the following diagrams commute for any c ≥ 1 and α, α′ ≥
0:

Fα
c

��

���
��

��
��

Fcα′ Fcα
�� Fcα′

Gα
�� Gα′

����������
Gα

��

����������
Gα′

����������

Fα
�� Fα′

���
��

��
��

� Fα
��

���
��

��
��

� Fα′

���
��

��
��

�

Gα
c

��

����������
Gcα′ Gcα

�� Gcα′

Interleavings define a similarity measure between modules in the following
sense: Every persistence module can be fully described by its persistence
diagram which tracks the creation and destruction of homological features when
increasing the scale parameter of the module. An ε-interleaving between two
modules implies that their persistence diagrams are approximations of each
other; see [6][10] for more details. In the case of modules induced by filtrations
(Aα)α≥0 and (Bα)α≥0, if c > 1 is such that Aα

c
⊂ Bα ⊂ Acα for any α ≥ 0, the

induced persistence modules are c-interleaved [20].

3 Well-Separated Simplicial Decompositions

In this section, we introduce the notion of Well-separated simplicial decompo-
sition (WSSD) of point sets. WSSD can be seen as a generalization of well-
separated pair decomposition of a point set. We first revisit the definition of
WSPD and then generalize it to WSSD.

2 This is not the most general definition of a persistent module; see [6]
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Notations. Let S ⊂ Rd be a fixed point set with minimal distance 1/
√
d between

two points and such that all points are contained in a axis-parallel hypercube q
with side length 2L. We consider a quadtree Q of q where each node represents
a hypercube; the root represents q, and when an internal node represents a
hypercube q′, its children represent the hypercubes obtained by splitting q′ into
2d congruent hypercubes. From now on, we will usually identify a quadtree node
and the hypercube that it represents. We call a node of Q empty if it does not
contain any point of S. For any internal node q′, the height of q′ in Q is i if the
side length of q′ is 2i; the construction ends at height 0; by construction, each
leaf contains at most one point of S.3 The nodes of Q at height i induce a grid
Gi where the side length of every cell of Gi is 2i. For e > 0 and a ball B with
center c and radius r, we let eB denote the ball with center c and radius e · r.
Finally, we assume the parameter ε to be in (0, 1) from now.

Well-Separated Pair Decomposition. LetQ be a quadtree for S. A pair of quadtree
cells (q, q′) is called ε-well separated if max(diam(q), diam(q′)) ≤ εd(q, q′); here
diam(q) is the diameter of a quadtree cell (which equals 2h

√
d if h is the height of q)

and d(q, q′) is the closest distance between cells q and q′. For a pair (p, p′) ∈ S×S
we say that a pair of quadtree cells (q, q′) covers (p, p′) if p ∈ q and p′ ∈ q′, or
p ∈ q′ and p′ ∈ q. An ε-well separated pair decomposition (ε-WSPD) of S is
a set of pairs Γ = ((q1, q

′
1), (q2, q

′
2), . . . , (qm, q

′
m)) such that all pairs are ε-well

separated and every edge in S × S is covered by some pair in Γ . A WSPD of
size O(n/εd) can be computed in O(n log n + n/εd) time as proved first in [4];
see also [13, §3] for a modern treatment:

Well-Separated Simplicial decomposition. We generalize the construction of
WSPD to higher dimensions: Let S and Q be as above. We call a (k + 1)-
tuple (q0, . . . , qk) of quadtree cells an ε-well separated tuple (ε-WST), if for any
ball B that contains at least one point of each q�, we have that

q0 ∪ q1 ∪ . . . qk ⊆ (1 + ε)B. (3.1)

Moreover, we say that (q0, . . . , qk) covers a k-simplex σ = (p0, . . . , pk), p0, . . . , pk
∈ S if there is a permutation π of (0, . . . , k) such that pπ(�) ∈ q� for all 0 ≤ � ≤ k.

Definition 1. A set of (k+1)-tuples Γ = {γ1, . . . , γm} is a (ε, k)-well separated
simplicial decomposition ((ε, k)-WSSD), if each γ� is a ε-well separated tuple and
each k-simplex of S is covered by some γ�. An ε-WSSD is the union of (ε, k)-
WSSDs over all 1 ≤ k ≤ d.

Our Algorithm. We present a recursive algorithm for computing an (ε, k)-WSSD.
If k = 1, we use the algorithm from [13, Fig. 3.3] to compute an ε

2 -WSPD, which
is an (ε, 1)-WSSD. If k > 1, we recursively compute an (ε, k−1)-WSSD Γk−1 and

3 This “construction” is only conceptual; in an actual implementation, only non-empty
would be stored. Moreover, the quadtree should be represented in compressed form
to avoid dependence on the spread of the point set; see [13, §2] for details.



672 M. Kerber and R. Sharathkumar

construct an (ε, k)-WSSD Γk as follows: We initialize Γk as the empty set and
iterate over the elements in Γk−1. For an ε-WST γ = (q0, q1, . . . qk−1) ∈ Γk−1,
let Bγ = meb(q0 ∪ q1 ∪ . . . qk−1), and let r denote its radius. Consider the grid
Gh formed by all quadtree cells of height h such that 2h ≤ εr

2
√
d
≤ 2h+1. We

compute the set of non-empty quadtree cells in Gh that intersect the ball 2 ·Bγ .
For each such cell q′, we add the (k + 1)-tuple (q0, . . . , qk−1, q

′) to Γk.

Correctness. In order to prove the correctness of our construction procedure, we
need to show that the generated tuples indeed form a (ε, k)-WSSD.

First, we show that every tuple added by our procedure is an ε-WST. We
do induction on k, noting that for k = 1, the statement is true because an
ε
2 -WSPD is an (ε, 1)-WSSD. For k ≥ 2, assume that our algorithm creates
a k-tuple (q0, . . . , qk−1, q

′) by adding the cell q′ while considering the ε-WST
(q0, . . . , qk−1). Let B be a ball that contains at least one point from each of
the cells (q0, . . . , qk−1, q

′). We have to argue that (1 + ε)B contains the cells
q0, . . . , qk−1, q

′; by induction hypothesis, it is clear that q0∪ . . .∪qk−1 ⊆ (1+ε)B
and moreover, r = rad(q0, . . . , qk−1) ≤ (1 + ε)rad(B). By construction,

diam(q′) ≤
√
dεr

2
√
d
≤ ε(1 + ε)rad(B)

2
≤ ε · rad(B).

It follows that q′ ⊆ (1 + ε)B.
Second, we show that the set of (k+1)-tuples Γk generated by our procedure

covers all k-simplices over S. Again, we do induction on k. For the base case
k = 1, by definition, all pairs of points in S × S are covered by some pair
(q, q′) in an ε

2 -WSPD. Assume that the computed (ε, k − 1)-WSSD covers all
(k − 1)-simplices and consider any k-simplex σ = (p0, . . . , pk). There exists a
point among the pi, say p0, such that p0 ∈ 2meb(σ′) [3], where σ′ = (p1, . . . , pk).
By induction hypothesis, there exists a ε-WST t = (q1, . . . , qk) that covers σ′.
Clearly, p0 ∈ 2meb(t) as well. Let q be the cell of Gh that contains p0. By
construction, our algorithm adds (q1, . . . , qk, q) to Γk, and this tuple covers σ.

Analysis. The size of the (ε, k)-WSSD generated by our algorithm is bounded by
n(d/ε)O(dk), as one can show quite easily by induction on k, bounding the number
of grid cells considered in the induction step by a simple packing argument. The
running time is proportional to the number of cells visited. This yields a running
time of O(|Γk−1|(d/ε)d) = O(n(d/ε)O(dk)) for computing Γk from Γk−1, and a
total running time of O(n log n+ n(d/ε)O(dk)) It follows that the total running
time for computing Γ1, . . . , Γk is bounded by O(n log n + n(d/ε)O(dk)), taking
the WSPD construction time into account.

Doubling Dimension. Similar as in the WSPD case, we believe that the (expo-
nential) dependance of WSSD on the ambient dimension can be improved to
the doubling dimension of the finite metric space induced by the point set, by
replacing the quadtree-based construction by an approach using net-trees [14].
However, several non-trivial adaptations are needed for this improvement, and
we postpone a thorough discussion to an extended version of the paper.
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4 Čech Approximations of Linear Size

In this section, wewill define a persistencemodulewhich is a (1+ε)-approximation
of the Čech module in the sense of Section 2. Due to space restrictions, we will only
outline the construction, omitting any proofs and additional remarks; we again re-
fer to the arxiv version [16] for more details.

For a finite point set S ⊂ Rd, consider a quadtree Q and an ε
5 -WSSD defined

over cells of Q, computed with the algorithm from Section 3. Having a WST
t = (q0, . . . , qk) of that WSSD, we write rad(t) for the radius of the minimum
enclosing ball of q0 ∪ . . . ∪ qk. For a non-empty quadtree cell q, we choose a
representative rep(q) in S with the property that if q is internal, its representative
is chosen among the representatives of its children. Moreover, for any quadtree
cell q of height i or less, we define qcell(q, i) for its (unique) ancestor at level i.

We fix the following additional parameters: Set θ� := (1 + ε)� for any integer
�. Let Δα denote the integer such that

θΔα ≤ α < θΔα+1.

Furthermore, we define hα as the integer such that

2hα ≤ 2εθΔα

5
√
d
< 2hα+1.

When there is no ambiguity about α, we will just write Δ := Δα and h := hα.

The Approximation Complex. Recall that G� denotes the set of all quadtree cells
at height �. We construct a simplicial complex Aα over the vertex set Gh (with
h := hα) in the following way: For any WST t′ = (q0, . . . , qk) with all qi at height
h or less, let t = (qcell(q0, h), . . . , qcell(qk, h)). If rad(t) ≤ (1 + 2

3ε)θΔ, we add
the simplex t to Aα. Note that some of the qcell(q�, h) can be the same, so that
the resulting simplex might be of dimension less than k. We can show that Aα

is indeed a simplicial complex. It is clear by construction and by the analysis of
the previous section that Aα consists of at most n(d/ε)O(d2) simplices,

We define maps between the Aα next: Consider two scales α1 < α2. We set
h1 := hα1 and define h2, Δ1, and Δ2 accordingly. Since h1 ≤ h2, there is a
natural map gα2

α1
: Gh1 → Gh2 , mapping a quadtree cell at height h1 to its

ancestor at height h2. This naturally extends to a map gα2
α1

: Aα1 → Aα2 , by
mapping a simplex σ = (v0, . . . , vk) to g

α2
α1
(σ) := (gα2

α1
(v0), . . . , g

α2
α1
(vk)). We can

show that gα2
α1

is a simplicial map, that gα
′′

α′ ◦ gα
′

α = gα
′′

α and gαα = id.
Next, we investigate the cross-map φ : C α

1+ε
→ Aα. To define it for a vertex

v ∈ C α
1+ε

(which is a point of S), set φ(v) = q, where q is the quadtree cell

at level h that contains v. For a simplex (v0, . . . , vk), define φ(v0, . . . , vk) =
(φ(v0), . . . , φ(vk)). In the other direction, we have a map ψ : Aα → C(1+ε)α

defined by mapping a quadtree cell q at level h to its representative rep(q). We
can show that ψ and φ are simplicial.

We fix some integer p ≥ 0 and consider the persistence modules

(Ĉα)α≥0 := (Hp(Cα))α≥0, (Âα)α≥0 := (Hp(Aα))α≥0,
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where Hp(·) is the p-th homology group over an arbitrary base field, with the

induced homomorphisms f̂α2
α1

(induced by inclusion) and ĝα2
α1
, respectively. The

cross-maps φ̂, ψ̂ commute with the module maps f̂ , ĝ in the sense that the four
diagrams from Section 2 all commute. This shows our approximation result:

Theorem 1. The persistence module Â∗ and Ĉ∗ are (1 + ε)-interleaved.

5 Coresets for Minimal Enclosing Ball Radii and a
Generalized Vietoris-Rips Lemma

Recall that for a point set P = {p1, . . . , pn} ⊂ Rd, we denote by meb(P ) the min-
imum enclosing ball of P . Let center(P ) ∈ Rd denote the center and rad(P ) ≥ 0
the radius of meb(P ). Fixing ε > 0, we call a subset C ⊆ P a meb-coreset for
P if the ball centered at center(C) and with radius (1 + ε)rad(C) contains P .
We call C ⊆ P a radius-coreset for P if rad(P ) ≤ (1 + ε)rad(C). Informally,
a radius-coreset approximates only the radius of the minimum enclosing ball,
whereas the meb-coreset approximates the ball itself.

It is straight-forward to verify that a meb-coreset is also a radius-coreset by
definition, but the opposite is not always the case: for instance, in an equilateral
triangle in the plane, one subset of 2 points forms a radius coreset for ε = 0.5,
but the subset cannot be a meb-coreset for the same ε-value.

Obviously, a point set is a coreset of itself, so coresets exist for any point set.
We are interested in the coresets of small sizes. For the meb-coreset, this ques-
tion is answered by Bădoiu and Clarkson [3]: For ε > 0, and any (finite) point
set, there exists a meb-coreset of size � 1ε�, and there exist point sets where any
meb-coreset has size at least � 1ε�. Note that the size of the coreset is indepen-
dent of both the number of points in P and the ambient dimension. However,
since radius-coresets are a relaxed version of meb-coresets, we can hope for even
smaller coresets. We define

δ := � 1

2ε+ ε2
+ 1�

Theorem 2. There is a point set such that any radius-coreset has size at least δ.

Proof. Consider the standard simplex in d dimensions (with d to be fixed later),
that is, P is the point set given by the d unit vectors in Rd. By elementary

calculations, it can be verified that center(P ) = ( 1d , . . . ,
1
d ) and rad(P ) =

√
d−1
d .

Fixing a subset C ⊆ P of size k, its points span a standard simplex in Rk and

therefore, rad(C) =
√

k−1
k by the same argument. Hence, C is a radius-coreset of

P if and only if
√

d−1
d ≤ (1+ε)

√
k−1
k . Isolating k yields the equivalent condition

that

k ≥ � (1 + ε)2

(1 + ε)2 − d−1
d

� = �1 + 1
d

d−1(2ε+ ε2 + 1
d )
�.
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The last expression is monotonously increasing in d, and converges to δ for
d→∞. It follows that, for d large enough, any radius-coreset has size at least δ.

We will show next that any point set has a radius coreset of size δ. For a
point set P in Rd and 1 ≤ k ≤ d, let rk(P ) denote the maximal radius of a meb
among all subsets of P of cardinality k. We can assume that P contains at least
d + 1 points; otherwise it is contained in a lower-dimensional Euclidean space.
On the other hand, if P contains at least d + 1 points, there exists a subset P ′

of P containing exactly d+ 1 points such that the meb of P ′ equals the meb of
P , which implies that rd+1(P ) = rad(P ).

Theorem 3. For ε > 0, any finite point set P has a radius-coreset of size δ.

Proof. We use a theorem by Henk [15, Thm.1] which proves that for 2 ≤ j ≤
i ≤ d + 1, it holds that ri(P ) ≤

√
j(i−1)
i(j−1)rj(P ). Applying this result to the case

that i = d+ 1 and j = δ yields

rad(P ) = rd+1(P ) ≤
√

δ · d
(d+ 1)(δ − 1)

rδ(P ) =

√
d

d+ 1︸ ︷︷ ︸
≤1

√
δ

δ − 1
rδ(P ).

Furthermore, since δ ≥ 1
2ε+ε2 + 1, it follows that δ

δ−1 = 1 + 1
δ−1 ≤ (1 + ε)2.

So, letting C be a subset of cardinality δ with radius rδ(P ), we obtain that
rad(P ) ≤ (1 + ε)rad(C), which means that C is a radius-coreset.

We next define the following generalization of a flag-complex: The i-completion
Mi(K) of a simplicial complex K, is the maximal complex whose i-skeleton
equals the i-skeleton of K. With that notation, we have that Rα = M1(Cα).
Moreover, we have that Cα = Md(Cα) as an immediate consequence of Helly’s
Theorem [10]. We can show the following result as a consequence of Theorem 3.

Theorem 4. For δ = �1/(2ε+ ε2) + 1�, Cα ⊆Mδ−1(Cα) ⊆ C(1+ε)α.

Proof. The first inclusion is clear. Now, consider a simplex σ in Mδ−1(Cα). The
second inclusion is trivial if dimσ ≤ δ− 1, so let its dimension be at least δ. By
Theorem 3, the boundary vertices of σ have a coreset of size at most δ. Let τ
denote the simplex spanned by such a coreset. As τ is a face of σ, it is contained
in Mδ−1(Cα), and because it is of dimension δ − 1, it is in particular contained
in C(α). By the property of coresets, the minimal enclosing ball of σ has radius
at most (1 + ε)α which implies that σ ∈ C(1+ε)α.

For ε =
√
2− 1, we get δ = 2, and Theorem 4 yields the Vietoris-Rips Lemma

as stated in [10, p.62]. Moreover, Theorem 4 asserts that the persistence module
of Mδ−1(C∗) is (1 + ε)-interleaved with the persistence diagram of C∗.
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12. Edelsbrunner, H., Mücke, E.: Three-dimensional alpha shapes. ACM Trans. Graph-
ics 13, 43–72 (1994)

13. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical So-
ciety (2011)

14. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics
and their applications. Siam J. on Computing 35, 1148–1184 (2006)

15. Henk, M.: A generalization of Jung’s theorem. Geometriae Dedicata 42, 235–240
(1992)

16. Kerber, M., Sharathkumar, R.: Approximate cech complexes in low and high di-
mensions. arxiv:1307.3272 (2013)

17. Mrozek, M., Pilarczyk, P., Zelazna, N.: Homology algorithm based on acyclic sub-
space. Computer and Mathematics with Applications 55, 2395–2412 (2008)

18. Munkres, J.R.: Elements of algebraic topology. Westview Press (1984)
19. Oudot, S., Sheehy, D.: Zigzag zoology: Rips zigzags for homology inference. In:

Proc. 29th ACM Symp. on Comp. Geom. (2013)
20. Sheehy, D.: Linear-size approximation to the Vietoris-Rips filtration. In: Proc. 2012

ACM Symp. on Comp. Geom., pp. 239–248 (2012)
21. Zomorodian, A.: The tidy set: A minimal simplicial set for computing homology of

clique complexes. In: Proc. 26th ACM Symp. on Comp. Geom., pp. 257–266 (2010)



Model Counting for Formulas

of Bounded Clique-Width�
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Abstract. We show that #SAT is polynomial-time tractable for classes
of CNF formulas whose incidence graphs have bounded symmetric
clique-width (or bounded clique-width, or bounded rank-width). This
result strictly generalizes polynomial-time tractability results for classes
of formulas with signed incidence graphs of bounded clique-width and
classes of formulas with incidence graphs of bounded modular treewidth,
which were the most general results of this kind known so far.

1 Introduction

Propositional model counting (#SAT) is the problem of computing the number
of satisfying truth assignments for a given CNF formula. It is a well-studied
problem with applications in Artificial Intelligence, such as probabilistic in-
ference [1, 16]. It is also a notoriously hard problem: #SAT is #P-complete
in general [18] and remains #P-hard even for monotone 2CNF formulas and
Horn 2CNF formulas [14]. It is NP-hard to approximate the number of satis-

fying truth assignments of a formula with n variables to within 2n
1−ε

for any
ε > 0. As in the exact case, this hardness result even holds for monotone
2CNF formulas and Horn 2CNF formulas [14]. While these syntactic restric-
tions do not make the problem easier, #SAT becomes tractable under cer-
tain structural restrictions [6, 8, 9, 11–13, 15, 17]. Structural restriction are
obtained by bounding parameters of (hyper)graphs associated with formulas.
We extend this line of research and study #SAT for classes of formulas whose
incidence graphs (that is, the bipartite graph whose vertex classes consist of
variables and clauses, with variables adjacent to clauses they occur in) have
bounded symmetric clique-width [4]. Symmetric clique-width is a parameter
that is closely related to clique-width, rank-width, and Boolean-width: a class
of graphs has bounded symmetric clique-width iff it has bounded clique-width
iff it has bounded rank-width iff it has bounded Boolean-width. For a graph
class C, let #SAT(C) be the restriction of #SAT to instances F with incidence
graph I(F ) ∈ C. We prove:

Theorem 1. #SAT(C) is polynomial-time tractable for any graph class C of
bounded symmetric clique-width.

� This research was supported by the ERC (COMPLEX REASON, 239962).

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 677–687, 2013.
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symmetric incidence clique-width [this paper]

modular incidence treewidth [13]signed incidence clique-width [6]

incidence treewidth [6, 15, 17]

primal treewidth [15]

Fig. 1. A hierarchy of structural parameters. An arc from a parameter p to a parameter
q reads as “for any class of formulas, q is bounded whenever p is bounded.” Bold
type is used to indicate parameters that render #SAT polynomial-time tractable when
bounded by a constant.

This result generalizes polynomial-time tractability results for classes of formulas
with signed incidence graphs of bounded clique-width [6] and classes of formu-
las with incidence graphs of bounded modular treewidth [13]. The situation is
illustrated in Figure 1 (for a survey of results for width-based parameters, see
[12, 13]). Our result is obtained through a combination of dynamic program-
ming on a decomposition tree with the representation of truth assignments by
projections (i.e., sets of clauses satisfied by these assignments). This extends
the techniques used to prove polynomial-tractability of #SAT for classes of for-
mulas with incidence graphs of bounded modular treewidth [13]; there, partial
assignments are partitioned into equivalence classes by an equivalence relation
roughly defined as follows: two assignments are equivalent whenever they sat-
isfy the same set of clauses of a certain formula induced by a subtree of the
decomposition. To make bottom-up dynamic programming work, it is enough
to record the number of assignments in each equivalence class. This approach
does not carry over to the case of bounded symmetric clique-width for principal
reasons: the number of equivalence classes of such a relation can be exponential
in the size of the (sub)formula.

To deal with this, our algorithm uses the technique of taking into account
an “expectation from the outside” [2, 7, 8]. The underlying idea is that the
information one has to record for any particular partial solution can be reduced
significantly if one includes an “expectation” about what this partial solution
will be combined with to form a complete solution. This trick allows us to bound
the number of records required for dynamic programming by a polynomial in
the number of clauses of the input formula.

For all parameters considered in Figure 1, propositional model counting is
polynomial-time tractable if the parameter is bounded by a constant, but some
of them even admit so-called FPT algorithms. The runtime of an FPT algorithm
is bounded by a function of the form f(k)p(l), where f is an arbitrary computable
function and p is a polynomial with order independent of the parameter k. As
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we will see, the order of the polynomial bounding the runtime in Theorem 1
is dependent on the parameter. One may wonder whether this can be avoided,
that is, whether the problem admits an FPT algorithm. The following result
shows that this is not possible, subject to an assumption from parameterized
complexity.

Theorem 2 ([12]). SAT, parameterized by the symmetric clique-width of the
incidence graph of the input formula, is W[1]-hard.

To be precise, the result proven in [12] is stated in terms of clique-width. How-
ever, since the symmetric clique-width of a graph with clique-width k is at most
2k (see [4]), the result carries over to symmetric clique-width.

2 Preliminaries

Let f : X → Y be a function andX ′ ⊆ X . We let f(X ′) = { f(x) ∈ Y : x ∈ X ′ }.
Let X∗ and Y ∗ be sets, and let g : X∗ → Y ∗ be a function with g(x) = f(x)
for all x ∈ X ∩X∗. Then the function f ∪ g : X ∪ X∗ → Y ∪ Y ∗ is defined as
(f ∪ g)(x) = f(x) if x ∈ X and (f ∪ g)(x) = g(x) if x ∈ X∗ \X .

Graphs. The graphs considered in this paper are loopless, simple, and undi-
rected. If G is a graph and v is a vertex of G, we let N(v) denote the set of
all neighbors of v in G. For a tree T we write L(T ) to denote the set of leaves
of T . Let C be a class of graphs and let f be a mapping (invariant under iso-
morphisms) that associates each graph G with a non-negative real number. We
say C has bounded f if there is a c such that f(G) ≤ c for every G ∈ C.

Formulas. We assume an infinite supply of propositional variables. A literal is
a variable x or a negated variable x; we put var(x) = var(x) = x; if y = x is a
literal, then we write y = x. For a set S of literals we write S = { x : x ∈ S }; S
is tautological if S ∩ S �= ∅. A clause is a finite non-tautological set of literals.
A finite set of clauses is a CNF formula (or formula, for short). The length
of a formula F is given by

∑
C∈F |C|. A variable x occurs in a clause C if

x ∈ C ∪ C. We let var(C) denote the set of variables that occur in C. A
variable x occurs in a formula F if it occurs in at least one of its clauses, and
we let var(F ) =

⋃
C∈F var(C). If F is a formula and X a set of variables, we

let F |X = {C ∈ F : X ⊆ var(C) }. The incidence graph of a formula F is the
bipartite graph I(F ) with vertex set var(F ) ∪ F and edge set {Cx : C ∈ F and
x ∈ var(C) }.

Let F be a formula. A truth assignment is a mapping τ : X → {0, 1} defined
on some set of variables X ⊆ var(F ). We call τ total if X = var(F ) and partial
otherwise. For x ∈ X , we define τ(x) = 1− τ(x). A truth assignment τ satisfies
a clause C if C contains some literal � with τ(�) = 1. If τ satisfies all clauses
of F , then τ satisfies F ; in that case we call F satisfiable. The Satisfiability
(SAT) problem is that of testing whether a given formula is satisfiable. The
propositional model counting (#SAT) problem is a generalization of SAT that
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asks for the number of satisfying total truth assignments of a given formula. For
a graph class C, we let #SAT(C) be the restriction of #SAT to instances F with
I(F ) ∈ C.

Decomposition Trees. We review decomposition trees following the presentation
in [3]. Let G = (V,E) be a graph. A decomposition tree for G is a pair (T, δ),
where T is a rooted binary tree and δ : L(T ) → V is a bijection. For a subset
X ⊆ V let X = V \ X . We associate every edge e ∈ E(T ) with a bipartition
Pe of V obtained as follows. If T1 and T2 are the components obtained by
removing e from T , we let Pe = (L(T1), L(T2)). Note that L(T2) = X for
X = L(T1). A function f : 2V → R is symmetric if f(X) = f(X) for all X ⊆ V .
Let f : 2V → R be a symmetric function. The f -width of (T, δ) is the maximum
of f(X) = f(X) taken over the bipartitions Pe = (X,X) for all e ∈ E(T ). The
f -width of G is the minimum of the f -widths of the decomposition trees of G.

Let A(G) stand for the adjacency matrix of G, that is, the V × V matrix
A(G) = (avw)v∈V,w∈V such that avw = 1 if vw ∈ E and avw = 0 otherwise.
For X,Y ⊆ V , let A(G)[X,Y ] denote the X × Y submatrix (avw)v∈X,w∈Y . The
cut-rank function ρG : 2V → R of G is defined as

ρG(X) = rank(A(G)[X,V \X ]),

where rank is the rank function of matrices over Z2. The row and column ranks
of any matrix are equivalent, so this function is symmetric. The rank-width of
a decomposition tree (T, δ) of G, denoted rankw(T, δ), is the ρG-width of (T, δ),
and the rank-width of G, denoted rankw (G), is the ρG-width of G.

Let X be a proper nonempty subset of V . We define an equivalence rela-
tion ≡X on X as

x ≡X y iff, for every z ∈ V \X , xz ∈ E ⇔ yz ∈ E.

The index of X in G is the cardinality of X/≡X, that is, the number of equiv-
alence classes of ≡X . We let indexG : 2V → R be the function that maps each
proper nonempty subset X of V to its index in G. We now define the function
ιG : 2V → R as

ιG(X) = max(indexG(X), indexG(V \X)).

This function is trivially symmetric. The index of a decomposition tree
(T, δ) of G, denoted index (T, δ), is the ιG-width of (T, δ). The symmetric
clique-width [4] of G, denoted scw(G), is the ιG-width of G.

Symmetric clique-width and rank-width are closely related graph parame-
ters. In fact, the index of a decomposition tree can be bounded in terms of its
rank-width.

Lemma 3. For every graph G and decomposition tree (T, δ) of G, rankw(T, δ) ≤
index (T, δ) ≤ 2rankw(T,δ).

Corollary 4. For every graph G, rankw(G) ≤ scw(G) ≤ 2rankw(G).



Model Counting for Formulas of Bounded Clique-Width 681

Runtime bounds for the dynamic programming algorithm presented below are
more naturally stated in terms the index of the underlying decomposition tree
than in terms of its rank-width. However, to the best of our knowledge, there
is no polynomial-time algorithm for computing decomposition trees of minimum
index directly – instead, we will use the following result to compute decomposi-
tion trees of minimum rank-width.

Theorem 5 ([5]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G,
we can output a decomposition tree of rank-width at most k or confirm that the
rank-width of G is larger than k in time O(n3).

Projections. Let F be a set of clauses andX a set of variables. For an assignment
σ ∈ 2X we write F (σ) to denote the set of clauses of F satisfied by σ, and
call F (σ) a projection of F . We write proj(F,X) = {F (σ) : σ ∈ 2X } for the set
of projections of F with respect to a set X of variables.

Proposition 6. Let F be a formula with m clauses and let X ⊆ var(F ) be a set
of variables. We have |proj(F |X , X)| ≤ m + 1. Moreover, the set proj(F |X , X)
can be computed in time polynomial in l, where l is the length of F .

Proof. Let ∼X be the relation on clauses defined as C ∼X C′ if { � ∈ C : var(�) ∈
X } = { � ∈ C′ : var(�) ∈ X }. Clearly ∼X is an equivalence relation. Let
C1, . . . , Cl be the equivalence classes of ∼X on F |X . Recall that every clause C
in F |X contains all variables in X . As a consequence, an assignment τ ∈ 2X

either satisfies all clauses in F |X or it satisfies all clauses in F |X except those in a
unique class Ci for i ∈ {1, . . . , l}, in which case F |X(τ) = F |X\Ci. Since F |X ⊆ F
we get l ≤ m, and thus |proj(F |X , X)| ≤ m + 1. Computing proj(F |X , X) boils
down to computing C1, . . . , Cl and in turn F |X \ Ci for each i ∈ {1, . . . , l}, which
can be done in time polynomial in the length of F . The set F |X is contained in
proj(F |X , X) if and only if l < 2|X|, which can be checked in polynomial time as
well. 	


3 An Algorithm for #SAT

In this section, we will describe an algorithm for #SAT via dynamic program-
ming on a decomposition tree. Due to space constraints, several proofs are
placed in the appendix. To simplify the statements of intermediate results, we
fix a formula F with |F | = m clauses and a decomposition tree (T, δ) of I(F )
with index (T, δ) = k. For a node z ∈ V (T ), let Tz denote the maximal sub-
tree of T rooted at z. We write varz for the set of variables var(F ) ∩ δ(L(Tz))
and Fz for the set of clauses F ∩ δ(L(Tz)). Moreover, we let Fz = F \ Fz and
varz = var(F ) \ varz.

Our algorithm combines techniques from [13] with dynamic programming us-
ing “expectations” [2, 7, 8]. We briefly describe the information maintained
for each node z ∈ V (T ) of the decomposition. Classes of truth assignments
σ ∈ 2varz will be represented by two sets of clauses. The first set (typically de-
noted out ) corresponds to the projection Fz(σ), that is, the set of clauses outside
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the current subtree that is satisfied by σ. The second set is a projection Fz(τ)
for some τ ∈ 2varz so that the combined assignment σ ∪ τ satisfies Fz . This set
of clauses (typically denoted in ) is “expected” to be satisfied from outside the
current subtree by an “incoming” assignment. Adopting the terminology of [8],
we call these pairs of sets shapes.

Definition 7 (Shape). Let z ∈ V (T ), let outz ⊆ Fz, and let inz ⊆ Fz. We
call the pair (outz , inz) a shape (for z), and say an assignment τ ∈ 2varz is of
shape (outz, inz) if it satisfies the following conditions.

(i) Fz(τ) = outz.

(ii) For each clause C ∈ Fz, the assignment τ satisfies C or C ∈ inz.

If outz ∈ proj(Fz , varz) and inz ∈ proj(Fz , varz) then the shape (outz, inz) is
proper. We denote the set of shapes for z ∈ V (T ) by shapes(z) and write Nz(s)
to denote the set of assignments in 2varz of shape s ∈ shapes(z). Moreover, we
let nz(s) = |Nz(s)|.

Note that an assignment can have multiple shapes, so shapes do not partition
assignments into equivalence classes.

Lemma 8. A truth assignment τ ∈ 2var(F ) satisfies F if and only if it has
shape (∅, ∅). Moreover, the shape (∅, ∅) is proper.

This tells us that nr((∅, ∅)) is equal to the number of satisfying truth assignments
of F . Let x, y, z ∈ V (T ) such that x and y are the children of z, and let sx, sy, sz
be shapes for x, y, z, respectively. The assignments in Nx(sx) and Ny(sy) con-
tribute to Nz(sz) if certain conditions are met. These are captured by the
following definition.

Definition 9. Let x, y, z ∈ V (T ) such that x and y are the children of z. We
say two shapes (outx, inx) ∈ shapes(x) and (outy, iny) ∈ shapes(y) generate the
shape (outz , inz) ∈ shapes(z) whenever the following conditions are satisfied.

(1) outz = (outx ∪ outy) ∩ Fz

(2) inx = (inz ∪ outy) ∩ Fx

(3) iny = (inz ∪ outx) ∩ Fy

We write generatorsz(s) for the set of pairs in shapes(x)×shapes(y) that generate
s ∈ shapes(z).

Lemma 10. Let x, y, z ∈ V (T ) such that x and y are the children of z,
and let τx ∈ 2varx be of shape (outx, inx) ∈ shapes(x) and τy ∈ 2vary be of
shape (outy, iny) ∈ shapes(y). If (outx, inx) and (outy, iny) generate the shape
(outz, inz) ∈ shapes(z), then τ = τx ∪ τy is of shape (outz, inz). Moreover, if
(outz, inz) is proper then (outx, inx) and (outy, iny) are proper.
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Proof. Suppose (outx, inx) and (outy, iny) generate (outz, inz). To see that τ
satisfies condition (i), note that a clause is satisfied by τ if and only if it is satisfied
by τx or τy, so Fz(τz) = Fz(τx) ∪ Fz(τy) = (outx ∩ Fz) ∪ (outy ∩ Fz) = outz .
For condition (ii), let C ∈ Fz = Fx ∪ Fy. Without loss of generality assume
that C ∈ Fx. Suppose τ does not satisfy C. Then τx does not satisfy C, so we
must have C ∈ inx because τx is of shape (outx, inx). But τy does not satisfy C
either, so C /∈ outy. Combining these statements, we get C ∈ inx\outy. Because
(outx, inx) and (outy, iny) generate (outz , inz) we have inx = (inz ∪ outy) ∩ Fx

by condition (2). It follows that C ∈ inz .
The assignments τx and τy are of shapes (outx, inx) and (outy, iny) so outx ∈

proj(Fx, varx) and outy ∈ proj(Fy, vary) by condition (i). Suppose (outz, inz) is
proper. Then there is an assignment ρ ∈ 2varz such that inz = Fz(ρ). The shapes
(outx, inx) and (outy, iny) generate (outz, inz), so inx = (inz∪outy)∩Fx. Thus
inx = (Fz(ρ)∪Fy(τy))∩Fx. Equivalently, inx = (Fz(ρ)∩Fx)∪(Fy(τy)∩Fx). Since
Fx ⊆ Fz and Fx ⊆ Fy this can be rewritten once more as inx = Fx(ρ) ∪ Fx(τy).
The domains varz of ρ and vary of τy are disjoint, so Fx(ρ)∪Fx(τy) = Fx(ρ∪τy).
Because varz∪vary = varx it follows that inx ∈ proj(Fx, varx) and so (outx, inx)
is proper. A symmetric argument shows that (outy, iny) is proper. 	


Corollary 11. Let x, y, z ∈ V (T ) such that x and y are the children of z in T ,
and let s ∈ shapes(z) be proper. Suppose sx ∈ shapes(x) and sy ∈ shapes(y)
generate s and both Nx(sx) and Ny(sy) are nonempty. Then sx and sy are
proper.

Lemma 12. Let x, y, z ∈ V (T ) such that x and y are the children of z, and
let τ ∈ 2varz be a truth assignment of shape (outz, inz) ∈ shapes(z). Let
τx = τ |varx and τy = τ |vary . There are unique shapes (outx, inx) ∈ shapes(x)
and (outy, iny) ∈ shapes(y) generating (outz , inz) such that τx has shape
(outx, inx) and τy has shape (outy, iny).

Proof. We define outx = Fx(τx), outy = Fy(τy) and let inx = (inz∩Fx)∪Fx(τy),
iny = (inz ∩ Fy) ∪ Fy(τx). We prove that (outx, inx) and (outy, iny) generate
(outz, inz). Since τ has shape (outz, inz) by condition (i) we have outz = Fz(τ).
We further have Fz(τ) = Fz(τx) ∪ Fz(τy) by choice of τx and τy . Because
Fz ⊆ Fx and Fz ⊆ Fy we get Fz(τ) = (Fx(τx) ∩ Fz) ∪ (Fy(τy) ∩ Fz) and thus
Fz(τ) = (outx∪outy)∩Fz. That is, condition (1) is satisfied. From Fx ⊆ Fy and
Fy ⊆ Fx it follows that Fx(τy) = Fy(τy) ∩ Fx and Fy(τx) = Fx(τx) ∩ Fy. Thus
Fx(τy) = outy∩Fx and Fy(τx) = outx∩Fy by construction of outx and outy. By
inserting in the definitions of inx and iny we get inx = (inz ∩ Fx) ∪ (outy ∩ Fx)
and iny = (inz ∩ Fy) ∪ (outx ∩ Fy), so conditions (2) and (3) are satisfied. We
conclude that (outx, inx) and (outy, iny) generate (outz, inz).

We proceed to showing that τx is of shape (outx, inx). Condition (i) is satisfied
by construction. To see that condition (ii) holds, pick any C ∈ Fx not satisfied
by τx. If τy satisfies C, then C ∈ Fx(τy) ⊆ inx. Otherwise, τ = τx ∪ τy does
not satisfy C. Since τ of shape (outz, inz) this implies C ∈ inz. Again we get
C ∈ inx as inz∩Fx ⊆ inx. The proof that τy has shape (outy, iny) is symmetric.
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To show uniqueness, let (out ′x, in
′
x) ∈ shapes(x) and (out ′y, in

′
y) ∈ shapes(y)

generate (outz, inz), and suppose τx has shape (out ′x, in
′
x) and τy has shape

(out ′y, in
′
y). From condition (i) we immediately get out ′x = Fx(τx) = outx and

out ′y = Fy(τy) = outy. Since the pairs (out ′x, in
′
x),(out

′
y, in

′
y) and (outx, inx),

(outy, iny) both generate (outz , inz), it follows from condition (2) that in ′x = inx

and in ′y = iny. 	


Lemma 13. Let x, y, z ∈ V (T ) such that x and y are the children of z in T ,
and let s ∈ shapes(z). The following equality holds.

nz(s) =
∑

(sx,sy)∈generatorsz(s)
nx(sx) ny(sy) (1)

Corollary 14. Let x, y, z ∈ V (T ) such that x and y are the children of z in T ,
and let s ∈ shapes(z) be proper. Let P = { (sx, sy) ∈ generatorsz(s) : sx and sy
are proper }. The following equality holds.

nz(s) =
∑

(sx,sy)∈P
nx(sx) ny(sy) (2)

Proof. By Corollary 11 the product nx(sx)ny(sy) is nonzero only if sx and sy
are proper, for any pair (sx, sy) ∈ generatorsz(s). In combination with (1) this
implies (2). 	


Corollary 14 in combination with Lemma 8 implies that, for each z ∈ V (T ), it is
enough to compute the values nz(s) for proper shapes s ∈ shapes(z). To turn this
insight into a polynomial time dynamic programming algorithm, we still have
to show that the number of proper shapes in shapes(z) can be polynomially
bounded, and that the set of such shapes can be computed in polynomial time.
We will achieve this by specifying a subset of shapes(z) for each z ∈ V (T ) that
contains all proper shapes and can be computed in polynomial time.

We define families Xz and Xz of sets of variables for each node z ∈ V (T ), as
follows.

Xz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }
Xz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }

The next lemma follows from the definition of a decomposition tree’s index.

Lemma 15. For every node z ∈ V (T ), max(|Xz |, |Xz|) ≤ k.

Let z ∈ V (T ) and let f be a function with domain Xz that maps every set X to
some projection f(X) ∈ proj(Fz |X , X). We denote the set of such functions by
outfunctions(z). Symmetrically, we let infunctions(z) denote the set of functions g
that map every set Y ∈Xz to some projection g(Y ) ∈ proj(Fz|Y , Y ).

Lemma 16. For every z ∈ V (T ), |outfunctions(z)| ≤ (m + 1)k as well as
|infunctions(z)| ≤ (m+ 1)k.
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Proof. By Proposition 6 that the cardinality of proj(Fz |X , X) is bounded bym+1
for everyX ∈Xz . In combination with Lemma 15 this yields |outfunctions(z)| ≤
(m+ 1)k. The proof of |infunctions(z)| ≤ (m+ 1)k is symmetric. 	


Let union(f) denote
⋃

X∈dom(f) f(X), where dom(f) is the domain of f . We

define the set of restricted shapes for z ∈ V (T ) as follows.

rshapes(z) = { (out , in) ∈ shapes(z) : ∃f ∈ outfunctions(z) s.t. out = union(f)

∧∃g ∈ infunctions(z) s.t. in = union(g) }

Every pair (f, g) ∈ outfunctions(z)× infunctions(z) uniquely determines a shape
in rshapes(z). Accordingly, Lemma 16 allows us to bound the cardinality of
rshapes(z) as follows.

Corollary 17. For any z ∈ V (T ), |rshapes(z)| ≤ (m+ 1)2k.

Lemma 18. Let z ∈ V (T ) and let s ∈ shapes(z) be proper. Then s ∈ rshapes(z).

This shows that if we can determine the values nz(s) for every z ∈ V (T ) and
s ∈ rshapes(z), we can determine the values nz(s

′) for every proper shape
s′ ∈ shapes(z). More specifically, as long as we can determine lower bounds
for nz(s) for every s ∈ rshapes(z) and the exact values of nz(s) for proper s, we
can compute the correct values for all proper shapes for every tree node.

Definition 19. For z ∈ V (T ), a lower bounding function (for z) associates
with each s ∈ rshapes(z) a value lz(s) such that lz(s) ≤ nz(s) and lz(s) = nz(s)
if s is proper.

Let x, y, z ∈ V (T ) such that x and y are the children of z. For each s ∈ shapes(z)
we write restricedgenz(s) = generatorsz(s) ∩ (rshapes(x) × rshapes(y)).

Lemma 20. Let x, y, z ∈ V (T ) such that x and y are the children of z. Let lx
and ly be lower bounding functions for x and y. Let lz be the function defined
as follows. For each s ∈ rshapes(z), we let

lz(s) =
∑

(sx,sy)∈restricedgenz(s)
lx(sx) ly(sy). (3)

Then lz is a lower bounding function for z.

Proposition 21. There is a polynomial p and an algorithm A such that A, given
a CNF formula F and a decomposition tree (T, δ) of I(F ), computes the number
of satisfying total truth assignments of F in time m6kp(l). Here, m denotes the
number of clauses of F , l denotes the length of F , and k = index (T, δ).

Proof (Sketch). We compute lower bounding functions for every node of T . It
follows from Corollary 17 that each such function can be represented in poly-
nomial space for fixed k. Computing lower bounding functions for leaf nodes
is straightforward. For an inner node z with children x and y, we proceed as
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follows. Assume that lower bounding functions lx and ly for x and y have al-
ready been computed. We first compute the set rshapes(z) and set lz(sz) := 0
for each sz ∈ rshapes(z). We then run through all triples (sx, sy, sz) with
sx ∈ rshapes(x), sy ∈ rshapes(y), sz ∈ rshapes(z) and check whether sx and sy
generate sz (each check can be done in polynomial time). If that is the case,
we set lz(sz) := lz(sz) + lx(sx)ly(sy). By Lemma 20, the resulting lz will be a
lower bounding function. There are at most (m+1)6k such triples for each inner
node, so this can be done in time m6kp(l) for all nodes of T , where p is a suitable
polynomial independent of F . Having computed a lower bounding function lr
for the root r of T , we output lr((∅, ∅)), which corresponds to the number of
satisfying total truth assignments of F . 	

Proof (of Theorem 1). Let C be a graph class of bounded symmetric clique-width
and F a CNF formula of length l with m clauses such that I(F ) ∈ C. Let k be an
upper bound for the symmetric clique-width of any graph in C. We compute a de-
composition tree (T, δ) of I(F ) such that rankw(T, δ) = rankw(I(F )) as follows.
Initially, we set k′ := 1. We then repeatedly run the algorithm of Theorem 5 and
increment k′ by one until we find a decomposition of rank-width k′. This will be
the case after at most k steps since rankw(I(F )) ≤ scw (I(F )) by Corollary 4.
Since C is fixed, we can consider k (and every k′ ≤ k) a constant, so (T, δ) can
be obtained in time O(|V (I(F ))|3) by Theorem 5. Because 2l is an upper bound
on the number of vertices of I(F ), this is in lO(1) (assuming that l ≥ 2). By
Lemma 3, index (T, δ) ≤ 2rankw(I(F )) and thus index (T, δ) ≤ 2scw(I(F )) ≤ 2k.
By Proposition 21, the number of satisfying total truth assignments of F can
be computed in time m6 index(T,δ)p(l) for some polynomial p independent of F ,

that is, in time mO(2k)p(l). Since k is a constant, this is in lO(1), as is the total
runtime. 	


4 Conclusion

We have shown that #SAT is polynomial-time tractable for classes of for-
mulas with incidence graphs of bounded symmetric clique-width (or bounded
clique-width, or bounded rank-width). It would be interesting to know whether
this problem is tractable under even weaker structural restrictions. For instance,
it is currently open whether #SAT is polynomial-time tractable for classes of
formulas of bounded β-hypertree width [10] (if a corresponding decomposition
is given).

Acknowledgements. The authors would like to thank an anonymous referee
for suggesting to state the main results in terms of symmetric clique-width in-
stead of Boolean-width.
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7. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discr. Appl. Math. 158(7), 851–867 (2010)
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Abstract. This work concerns two kinds of spatial equilibria. Given a
multiset of n points in Euclidean space equipped with the �2-norm, we
call a location a plurality point if it is closer to at least as many given
points as any other location. A location is called a Condorcet point if
there exists no other location which is closer to an absolute majority
of the given points. In d-dimensional Euclidean space Rd, we show that
the plurality points and the Condorcet points are equivalent. When the
given points are not collinear, the Condorcet point (which is also the
plurality point) is unique in Rd if such a point exists. To the best of
our knowledge, no efficient algorithm has been proposed for finding the
point if the dimension is higher than one. In this paper, we present an
O(nd−1 log n)-time algorithm for any fixed dimension d ≥ 2.

1 Introduction

In this paper, we search for the most “popular” facility locations in Euclidean
space regarding the voting system, in which the spatial equilibrium is measured
by two election criteria in the voting theory, the plurality [2, 10, 18] and the
Condorcet winner [2,9,10]. We are given a multiset of points, regarded as voters,
in Euclidean space equipped with the �2-norm. A plurality point is a location
which is closer to at least as many voters as any other location [2]. A Condorcet
point is a location such that there is no other location closer to a strict majority
of voters, i.e., no other location is closer to more than a half of the voters than
the Condorcet point.

1.1 Motivation

Determining the best locations to place facilities by voting is essential in the
construction of public infrastructures. Another important application arises in
the process of election. The electoral process can be reduced to a multidimen-
sional model of spatial competition [6, 19], i.e., the political spectrum. In the
one-dimensional case, each side of the real line represents the left or right wing
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with respect to a certain issue. Suppose that there are several citizens and two
issues: one is environmental and the other is economic. Each issue corresponds
to a dimension of R2. The coordinate of each citizen is his or her most preferred
position in the issue space, where their preferences of both issue are quantified.
To help analyzing the trend of events, the equilibrium can be found by comput-
ing plurality points or Condorcet points. The model can be extended to Rd for
multidimensional situations when there are even more issues.

Most previous works appeared mainly in the literature of economics, politics
and operations research [9,13,19]. Although some good properties of these spatial
equilibria have been discovered, they are not specific for algorithmic usage. To
the best of our knowledge, no efficient algorithm has been proposed in Euclidean
space.

1.2 Related Work

Facility location problems in computational geometry have been studied for
decades. Motivated by different applications, various measurements are consid-
ered. Among those interesting criteria with different applications, searching for a
point in the plane which minimizes the sum of distances to a given set of points
is one of the most well-investigated problems; such a point is often known as the
geometric median or the Fermat-Weber point [11].

Under certain circumstances, Condorcet points and median points coincide.
The nature of this property is intuitive on a real line. Chepoi and Dragan [4]
showed that Condorcet and median points of a simple rectilinear polygon coin-
cide, and the set can be found in O(N+n logN) time, where N is the number of
vertices and n is the number of voters. Bandelt [2] characterized the conditions
where Condorcet points and Fermat-Weber points coincide on a graph and gave
a polynomial-time algorithm which decides whether a given graph has Condorcet
points. The comparison between Condorcet points and Fermat-Weber points was
discussed by Hansen and Thisse [9], and a polynomial-time algorithm to deter-
mine the set of Condorcet points of a graph was provided in [8]. Condorcet points
on a graph were also investigated by Labbé [12] and Vohra [17].

The criterion of plurality was proposed mainly in the theory of spatial com-
petition [19]. By considering it as the equilibrium point of social decisions under
majority rule, some researchers proposed new perspectives in two-dimensional
space, as well as on a graph [18, 19]. There were also some prior results dis-
cussing the relationship between plurality points and Condorcet points on dif-
ferent normed spaces [7, 13].

The rest of this paper is organized as follows. First, we formally define the
problems and summarize some basic properties of plurality and Condorcet points
in Section 2. The equivalence of the two criteria in Euclidean space is also shown.
In Section 3, we give an O(n log n)-time algorithm to compute plurality points
in R2. In Sections 4, we further show how to compute the point in higher-
dimensional space by extending the result in R2 to Rd. Finally, Section 5 con-
cludes this paper by summarizing the main results and future work. Due to the
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space limitation, some proofs and the algorithm for the higher-dimensional case
are omitted and will be given in the journal version.

2 Preliminaries

2.1 Problem Definition

Suppose that there is a multiset of voters V = {v1, v2, . . . , vn}, where vi is a point
in Rd. We assume that n is finite. For each voter vi, we let (v

(1)
i , v

(2)
i , . . . , v

(d)
i )

denote the coordinate of vi. The distance d(u, v) between two points u and v in Rd

is measured by the �2-norm, i.e. d(u, v) =
√∑d

i=1(u
(i) − v(i))2. As in [19], a point

θ is said to be a multidimensional median of V if |{v ∈ V : v(j) ≤ θ(j)}| ≥ n/2
and |{v ∈ V : v(j) ≥ θ(j)}| ≥ n/2, for all j such that 1 ≤ j ≤ d. Let M be the
set of all multidimensional medians of V .

For two arbitrary points θ1 ∈ Rd and θ2 ∈ Rd, we say that voter vi prefers θ1
to θ2 if d(vi, θ1) < d(vi, θ2). Define [θ1 # θ2] = {vi ∈ V : d(vi, θ1) < d(vi, θ2)}
and [θ1 ∼ θ2] = V \ ([θ1 # θ2] ∪ [θ2 # θ1]). A point θ ∈ Rd is called a plurality
point if and only if |[θ∗ # θ]| ≤ |[θ # θ∗]| holds for each θ∗ ∈ Rd. A point θ ∈ Rd

is called a Condorcet point if and only if |[θ∗ # θ]| ≤ n/2 holds for each θ∗ ∈ Rd.
Formal definitions of the problems are given below.

Problem 1 (The d-Dimensional Plurality-Points Problem). Given a multiset V
consisting of n points in Rd, the d-dimensional plurality-points problem is to
find the set of all plurality points of V .

Problem 2 (The d-Dimensional Condorcet-Points Problem). Given a multiset V
consisting of n points in Rd, the d-dimensional Condorcet-points problem is to
find the set of all Condorcet points of V .

2.2 The Equivalence of Plurality Points and Condorcet Points in Rd

Both plurality points and Condorcet points are often used to represent the equi-
libria in a space under majority rules. Relationships between plurality points
and Condorcet points under different assumptions were discussed in [2, 13]. In
Lemma 1, we show that a plurality point is a Condorcet point in Rd with �2-norm
metric, and vice versa.

Lemma 1. In Rd, θ is a plurality point if and only if θ is a Condorcet point.

Proof. By definition, a plurality point is a Condorcet point. It remains to show
that a Condorcet point is a plurality point. Suppose on the contrary that x is a
Condorcet point but not a plurality point. Since x is not a plurality point, there
is a point y satisfying |[x # y]| < |[y # x]|. Let z be the midpoint of xy. For
each c ∈ [y # x] ∪ [x ∼ y], d(c, z) < d(c, x). Thus, |[z # x]| > n/2, which is a
contradiction. 	
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Since we have shown the equivalence of plurality points and Condorcet points
in Euclidean space, the answers of Problem 1 and Problem 2 must be the same.
In the rest of this paper, a solution to Problem 1 will be introduced, and it can
be used to solve Problem 2 as well.

3 The Two-Dimensional Plurality-Points Problem

Let us first consider the special case where all voters are collinear. We denote
�V as the set consisting of all the plurality points of voters V .

Lemma 2. Let V be a multiset of voters in R2. If all voters in V are collinear,
then

(i) �V =M;
(ii) |�V | ≥ 1.

Proof. For (i), it has been shown that M equals the set of all Condorcet points
in R2 when all voters are collinear [9]. Together with Lemma 1, �V =M.

For (ii), by the definition of a multidimensional median, M �= ∅. Notice that
|M| > 1 may happen when |V | is even. Thus, |�V | = |M| ≥ 1. 	


Because �V = M when all voters are collinear, methods for finding the
multidimensional medians of collinear voters can be used to solve the special
case of Problem 1 and will be introduced later in this section. The non-collinear
case is handled as follows. The two-dimensional space is partitioned by any
given line L into L+∪L−∪L, where L+ and L− are the sets of points belonging
to different sides of L, respectively. Formally, let L be a line with equation
y = mx+ b, where m is the slope and b is the y-intercept. We define L+ = {x ∈
R2 : mx(1) − x(2) + b > 0}, L− = {x ∈ R2 : mx(1) − x(2) + b < 0}, and L = {x ∈
R2 : mx(1)−x(2)+b = 0}. The sets V ∩L+, V ∩L−, and V ∩L are denoted by V +

L ,
V −L , and VL, and their cardinalities are denoted by n+L , n

−
L , and nL, respectively.

Define V↗L,� = {v ∈ VL : v(1) >
(1)} ∪ {v ∈ VL : v(1) =
(1) and v(2) >
(2)}, and
V↙L,� = {v ∈ VL : v(1) <
(1)}∪{v ∈ VL : v(1) =
(1) and v(2) <
(2)}. Besides, let
n↗L,� and n↙L,� be the cardinalities of V↗L,� and V↙L,�, respectively. In addition,

the function dL : R2 → R is defined to be the distance from a point to the line
L.

Lemma 3. In R2, 
 is a plurality point if and only if for any line L passing
through 
, n+L ≤ n/2 and n−L ≤ n/2.

Proof. For necessity, we prove by contradiction. Without loss of generality, we
assume that there is a line L passing through 
 such that n+L > n/2. Let L‖ be
a line passing through v+ parallel to L, where v+ ∈ argminv∈V +

L
dL(v), and let

L⊥ be a line passing through 
 perpendicular to L. Pick 
′ as the intersection
of L‖ and L⊥. Clearly, for each point v in V +

L , v prefers 
′ to 
. Since n+L > n/2,
it follows that |[
#
′]| < |[
′#
]|, which contradicts that 
 is a plurality point.
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For sufficiency, let 
′ be an arbitrary point other than 
, and let L be the
line passing through both 
′ and 
. For the line L⊥ perpendicular to L at 
,
we may assume without loss of generality that 
′∈ L+

⊥. Evidently, for each voter
v in V −L⊥ ∪ VL⊥ , v prefers 
 to 
′. Because of the assumption that n+L⊥ ≤ n/2,

we have that n/2 ≤ n−L⊥ + nL⊥ , and thus |[
′#
]| ≤ |[
#
′]|. 	


The equivalence condition given in Lemma 3 can be applied to verify if a given
point 
 is a plurality point. Notice that all lines passing through 
 have to be
examined, even for those containing no voter. Let L� be the set of lines passing
through 
. For a line L ∈ L�, if n+L ≤ n/2 and n−L ≤ n/2, then each of the two
closed halfspaces separated by L contains at least n/2 voters, and vice versa.
Thus, we have that

min
L∈L�

{|V ∩ γ| : γ is a closed halfspace separated by L} ≥ n/2.

The number minL∈L�{|V ∩γ| : γ is a closed halfspace separated by L} is defined
as the Tukey depth of 
 relative to V [16]. To compute the Tukey depth of a
point relative to n points in R2, an O(n log n)-time algorithm was proposed by
Rousseeuw and Struyf [15]. Thus, in R2 one may verify if a given point is a
plurality point in O(n log n) time. For any set of points S, the set S∩�V can be
computed by iteratively applying the above steps, and the procedure is denoted
as VerifyCandidates(S, V, 2), where the third cell stands for the dimension of
the space. The procedure is of time complexity O(|S| · n logn).

Lemma 4. Let V be a multiset of voters in R2. If not all the voters are collinear,
then

(i) �V ⊆M;
(ii) either |�V | = 1 or |�V | = 0.

Proof. For (i), suppose that 
 is a plurality point. Let L1 and L2 be two
lines passing through 
 parallel to the y-axis and the x-axis, respectively. By
Lemma 3, n/2 ≤ n+L1

, n/2 ≤ n−L1
, n/2 ≤ n+L2

, and n/2 ≤ n−L2
, and thus

n+L1
+ nL1 ≥ n/2, n−L1

+ nL1 ≥ n/2, n+L2
+ nL2 ≥ n/2, and n−L2

+ nL2 ≥ n/2.
These entail that 
 is a multidimensional median.

For (ii), suppose on the contrary that |�V | ≥ 2, and 
1 and 
2 are two
distinct plurality points. Let a be the midpoint of 
1
2, and let v ∈ V be a
point that is not on

←−−→
1
2. Let L1 and L2 be two lines parallel to ←→va through 
1

and 
2, respectively. Without loss of generality, assume that 
2∈ L+
1 . It follows

that c ∈ L+
1 for each voter c ∈ L+

2 ∪ L2 ∪ {v}. Therefore,

n/2 ≤ n+L2
+ nL2 < n+L2

+ nL2 + 1 = |L+
2 ∪ L2 ∪ {v}| ≤ n+L1

,

where the first inequality follows from Lemma 3. Again, by Lemma 3, there is a
contradiction that 
1 is a plurality point. 	


Lemma 4 demonstrates that a plurality point must be a multidimensional me-
dian, but a multidimensional median may not be a plurality point. For example,
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if not all the voters are collinear and n is even, the number of multidimensional
medians can be infinite, yet the number of plurality points is at most one. In such
circumstances, there must be a multidimensional median that is not a plurality
point. Moreover, notice that the case where |�V | = 0 may happen if not all the
voters are collinear. An example is given in Figure 1. Let V = {v1, v2, v3}, and
the voters are not collinear. For each point θ1 outside triangle v1v2v3, there is
always an edge e passing through two voters satisfying that θ1 and the third
voter are on the different sides of e. Draw a line passing through θ1 perpendic-
ular to e at a point θ3. It can be derived that all three voters prefer θ3 to θ1.
Similarly, for each point θ2 inside triangle v1v2v3, there is a point θ3 preferred
by at least two voters. Lastly, for each point θ on an edge of triangle v1v2v3, let
e be an edge which does not go through θ, and let θ4 be a perpendicular point

of
←→
θθ4 on e. Apparently, θ4 is preferred by at least two voters.

v1 v2

v3

θ2

θ1

θ3

θ4

Fig. 1. An illustration showing that a plurality point may not exist

In addition, Lemma 4 gives two necessary conditions of a plurality point when
the voters are not collinear. It indicates that one of the multidimensional medians
may be the unique plurality point. Nevertheless, the number of multidimensional
medians may still be infinite. To futher shrink the search space, we need more
clues. In the following four lemmas, properties of two different cases where 
∈ V
and 
/∈ V are discussed separately. With these properties, it suffices to verify
only O(1) points in R2.

Let V (i) = {v(i)1 , v
(i)
2 , . . . , v

(i)
n }, for i = 1, 2, . . . , d. Denote x

(i)
h and x

(i)
l as the

�(n+1)/2�-th and �n/2�-th smallest numbers in V (i). It is not difficult to show

that for each multidimensional median q ∈ M, x
(i)
l ≤ q(i) ≤ x

(i)
h . We further

denote the set C = {(x(1)t1 , x
(2)
t2 , . . . , x

(d)
td

) : t1, t2, . . . , td ∈ {l, h}}, which collects

all the corners of M. Clearly, |C| ≤ 2d.

Lemma 5. Let V be a multiset of voters in Rd and 
 be a plurality point of V .
If 
∈ V , then 
∈ C, and |V ∩ C| ≤ 2d.

Proof. By Lemma 2 and Lemma 4, 
∈ �V ⊆M. According to the definition of
C, V ∩M ⊆ C. Therefore, we have that 
∈ C if 
∈ V . Since |C| ≤ 2d, |V ∩C| ≤ 2d

holds. 	


Lemma 6. Let V be a multiset of voters and 
 be a point in R2. If 
 �∈ V , then
the following statements are equivalent:

(i) 
 is a plurality point;
(ii) n+L = n−L for each line L passing through 
.
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Proof. We prove the equivalence by showing that (ii)⇒(i) and (i)⇒(ii).

– (ii)⇒ (i):
Since for each line L passing through 
, n+L = n−L and n+L + n−L ≤ n, by
Lemma 3, 
 is a plurality point.

– (i)⇒ (ii):
Let L be a line passing through 
. If VL = ∅, n+L + n−L = n. Together with
Lemma 3, we have that n+L = n−L = n/2. Otherwise, let m be the slope of L.
Because of its similarity, we consider only the case wherem > 0 and m <∞.
Let L1 and L2 be two lines resulting from slightly rotating L around 
 such
that the slopes of L1 and L2 are positive and

• VL1 = ∅, V +
L1

= V +
L ∪ V↙L,�, and V

−
L1

= V −L ∪ V↗L,�.

• VL2 = ∅, V +
L2

= V +
L ∪ V↗L,�, and V

−
L2

= V −L ∪ V↙L,�.

L1 and L2 must exist because n is finite and 
/∈ V . Since VL1 = ∅, n+L1
+

n−L1
= n. Together with Lemma 3, we have that

n−L + n↗L,� = n−L1
= n/2 = n+L1

= n+L + n↙L,�. (1)

Similarly,
n−L + n↙L,� = n−L2

= n/2 = n+L2
= n+L + n↗L,�. (2)

By (1)+(2), we have that n−L = n+L and n↗L,� = n↙L,�.
	


For the case where 
/∈ V , Lemma 7 and Lemma 8 can be utilized to dramat-
ically reduce the cardinality of the search space.

Lemma 7. Let V be a multiset of voters. If 
/∈ V is a plurality point and
|C| > 1, then 
/∈ C.

Lemma 8. Let V be a multiset of voters in R2, 
 be a plurality point of V , and
L be a line passing through 
 with nL = 0. If not all voters are collinear and

 �∈ V , then 
 is the intersection of the common internal tangent lines of Ha

and Hb, where Ha and Hb are the convex hulls of V +
L and V −L , respectively.

Proof. V +
L and V −L are disjoint, and they have a separating line L. Since not

all voters are collinear and 
/∈ V is a plurality point, we have that n ≥ 4.
Together with Lemma 6 and that nL = 0, n+L = n−L = n/2 ≥ 2. Therefore,
the intersection 
′ of the common internal tangent lines exists and is unique.
Suppose on the contrary that 
 �=
′. Let L1 be a common internal tangent line
which does not include 
, and L2 be a line passing through 
 parallel to L1.
Without loss of generality, assume that V +

L ⊆ VL1 ∪ V +
L1

and VL1 ⊆ V +
L2
. It

follows that V +
L ⊆ VL1 ∪ V +

L1
⊆ V +

L2
. Since L1 is a common internal tangent line

of Ha and Hb, there exists a tangent point v such that v ∈ V −L and v ∈ V +
L2
.

Thus, we have n+L2
≥ nL1 + n+L1

> n/2, which contradicts the assumption that

 is a plurality point according to Lemma 3. 	
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(a) (b)

Fig. 2. Reducing the cardinality of the search space from ∞ to 1, where 
/∈ V . (a)
The hollow points are voters, and the shaded region is the search space, which is M.
(b) The solid point is the intersection of the two common internal tangent lines of two
convex hulls. It is the only candidate for being a plurality point.

An illustration of Lemma 8 is given in Figure 2. We now give an algorithm,
named PluralityPoint2D, for solving the two-dimensional plurality-points
problem. This algorithm computes the set of all plurality points. Its pseudocode
is given in Algorithm 1.

By Lemma 2, if all voters are collinear, lines 1–2 compute the plurality points.
Otherwise, we compute the unique plurality point according to the cardinality
of the set of the corners of multidimensional medians of V , which is determined
in lines 4–8. If |C| = 1, M = C. By Lemma 4, the single point in C is the only
candidate that can be the plurality point and is tested by VerifyCandidates

(line 10). For |C| > 1, if a plurality point 
 exists, either 
∈ V or 
/∈ V . If

∈ V , by Lemma 5, 
∈ V ∩C, and 
 is returned in line 12. If 
/∈ V , 
∈ M−C
according to Lemma 4 and Lemma 7. Since 
∈M−C and 
/∈ V , there is always
a line L passing through 
 parallel to one of the axes with nL = 0. Lines 14–19
compute V +

L and V −L . By Lemma 8, the plurality point is the intersection of the
common internal tangents of the convex hulls of Va and Vb. The intersection is
obtained in lines 20–21, and is lastly verified in line 22.

Theorem 1. The two-dimensional plurality-points problem can be solved in
O(n log n) time.

Proof. The correctness of PluralityPoint2D has been justified above, and it
remains to show that PluralityPoint2D runs in O(n log n) time.

By going through all voters in V and checking all the slopes of v1vi where
2 ≤ i ≤ n, line 1 can be done in linear time. By using the famous selection
algorithm in [5], it takes linear time to finish line 2 and lines 4 to 8. Because |C|
and |V ∩ C| are both constant, the running time of lines 9 to 12 is O(n log n).
Since CommonInternalTangents(Va, Vb) can be done by linear programming
in R2, the running time is O(n) [14], and thus lines 13 to 22 takes O(n) time.
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Algorithm 1. PluralityPoint2D(V ={v1, v2, . . . , vn})
1 if all voters are collinear then
2 P := the multidimensional medians of V ;

3 else
/* Select(S,k) returns the k-th smallest number in S. */

4 xh :=Select(V
(1), �(n+ 1)/2	);

5 xl :=Select(V
(1), �n/2	);

6 yh :=Select(V
(2), �(n+ 1)/2	);

7 yl :=Select(V
(2), �n/2	);

8 C:={(xh, yh), (xh, yl), (xl, yh), (xl, yl)};
9 if |C| = 1 then

10 P := VerifyCandidates(C);
11 else

/* the case where 
∈ V */

12 P := VerifyCandidates(V ∩ C);
13 if P = ∅ then

/* the case where 
/∈ V */

14 if xh = xl then

15 Va:={v ∈ V : v(2) ≥ yh};
16 Vb:={v ∈ V : v(2) ≤ yl};
17 else

18 Va:={v ∈ V : v(1) ≥ xh};
19 Vb:={v ∈ V : v(1) ≤ xl};
20 (La, Lb):= CommonInternalTangents(Va, Vb);
21 p := the intersection of La and Lb;
22 P := VerifyCandidates({p});
23 return P ;

To sum up, the two-dimensional plurality-points problem can be solved by Plu-

ralityPoint2D in O(n log n) time. 	


4 The Higher-Dimensional Plurality-Points Problem

In this section, we consider the plurality-points problem with d ≥ 3. Lemmas 3,
4, 6, 7, and 8 are extended to Lemmas 9, 10, 11, 12, and 13. Based on these
lemmas, we propose the algorithm PluralityPoint for the higher-dimensional
case.

The distance from a point p to a subspace S ⊆ Rd is denoted by dS(p). Given
a hyperplane E, the space Rd is partitioned into E+ ∪ E− ∪ E, where E+ and
E− are two open halfspaces separated by E. Let V +

E = V ∩E+, V −E = V ∩E−,
and VE = V ∩E. We denote their cardinalities by n+E , n

−
E , and nE , respectively.

Lemma 9. In Rd, 
 is a plurality point if and only if for any hyperplane E
passing through 
, n+E ≤ n/2 and n−E ≤ n/2.
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Lemma 10. Let V be a multiset of voters in Rd. If not all the voters are
collinear, then

(i) �V ⊆M;
(ii) either |�V | = 1 or |�V | = 0.

Lemma 11. Let V be a multiset of voters and 
 be a point in Rd. If 
 �∈ V ,
then the following statements are equivalent:

(i) 
 is a plurality point;
(ii) n+E = n−E for each hyperplane E passing through 
.

Lemma 12. Let V be a multiset of voters in Rd. If 
/∈ V is a plurality point
and |C| > 1, then 
/∈ C.

Lemma 13. Let V be a multiset of voters in Rd, 
 be a plurality point of V ,
and E be a hyperplane passing through 
 with nE = 0. If not all voters are
coplanar and 
 �∈ V , then 
 is the intersection of d common internal tangent
hyperplanes of Ha and Hb, where Ha and Hb are the convex hulls of V +

E and
V −E , respectively.

Theorem 2. The plurality-points problem in Rd can be solved in O(nd−1 logn)
time for any fixed d.

5 Concluding Remarks

In Euclidean space, we show that plurality points and Condorcet points are
equivalent. We provide an O(nd−1 logn)-time algorithm to find them in Rd for
any fixed dimension d. All steps take O(n) time except VerifyCandidate.

We note here that a plurality point in Euclidean space is precisely a Tukey
median with depth �n/2�, where a Tukey median is a point with the largest
Tukey depth. The fact is derived since the largest Tukey depth is, by definition,
upper bounded by �n/2�, and by Lemma 9, we have that the Tukey depth of a
plurality point is greater than or equal to n/2. As a result, computing a plurality
point can be reduced to computing a Tukey median and determining if its Tukey
depth is �n/2�. Nevertheless, most results on computing the Tukey median are
in low dimensions, as surveyed in [3], and the current best time complexities
are asymptotically worse than those of the algorithms proposed in this paper
(e.g., O(n log3 n) to O(n log n) in the 2-dimensional space, and O(n2polylog n)
to O(n2 logn) in the 3-dimensional space). For higher-dimensional cases, only
randomized algorithms have been proposed for computing the Tukey median [1,
3]. It remains open to clarify the gap between computing a Tukey median and a
plurality point.
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Abstract. Patterned self-assembly tile set synthesis (PATS) aims at
finding a minimum tile set to uniquely self-assemble a given rectangular
pattern. For k ≥ 1, k-PATS is a variant of PATS that restricts input
patterns to those with at most k colors. We prove the NP-hardness of
29-PATS, where the best known is that of 60-PATS.

1 Introduction

Pattern painting is one of the main goals of research on DNA self-assembly. Var-
ious patterns of practical significance were exhibited to self-assemble from DNA
tiles, including the Sierpinski triangle [6] and binary counter [2]. As illustrated
in Fig. 1, tiles of blue tile types B1, B2 and red tile types R1, R2 implement a
half-subtractor and self-assemble a reverse binary counter.

Patterned Self-Assembly Tile Set Synthesis. (PATS) [4] aims at finding
a minimum tile type set with which a rectilinear tile assembly system uniquely
self-assembles a given pattern. For k ≥ 1, k-PATS is a PATS subproblem of
practical significance in which inputs are restricted to patterns with at most k
colors. Seki proved that 60-PATS is NP-hard [8]. He designed a set T of 84
tile types such that for an evaluator circuit pattern P (φ) reduced from a given
3SAT instance φ, T self-assembles P (φ) from a seed if and only if φ is satisfiable.
Subpatterns of P (φ) imply that any set with fewer tile types than T can not
assemble P (φ), for any φ. Tile types in T implement OR, AND, and NOT gates to
evaluate φ, and the unique minimality of T for P (φ) required 60 colors.

In this paper we employ SUBSET SUM rather than 3SAT, which can be
evaluated using the half-subtractor of Brun [3], and prove a stronger result.

Theorem 1. 29-PATS is NP-hard.
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Fig. 1.We use 4 tile types, 2 colored Red and Blue each, to implement a half-subtractor.
For each tile type with glues named (n,s,e,w), we see that its glues perform the operation
“west minus south,” then pass the output to the east and the carryout to the north.
Interpreting Red types as 1 bits and Blue types as 0 bits, with MSBs at the top, we
see that the seed’s north glues in row 0 interact with this tile type set to successively
subtract 1 from one column to the next.

Because of space constraints, most graphics and proofs needed for lower
bounds and glue scheme enforcement appear only in the web version of the
paper, which is also in full color.1

2 The Model and Preliminaries

We begin our sufficient description of Rectilinear Tile Assembly System (RTAS)
with a proxy for DNA proteins and their “roles,” and a method of “attachment.”
For a formal and excellent introduction, see [7].

A (tile) type is a unit-square with five parameters: four glues gn, gs, ge, gw
associated with each edge north, south, east, and west; and a color c. A tile is
an instance of a tile type. We assume tiles cannot be rotated or reflected. By
inclusion of a particular tile type in a set, we assume that we have access to
infinitely many tiles of the type. A color is an attribute of a type that can be
shared by multiple types within a set- from a certain DNA perspective, it makes
tile types indistinguishable and “serve the same role.” A glue is an attribute of
a type that is possibly equal to the glues of other types in a set, in which case
the glues match- glues will tell us how we can “stick together” tiles.

A (rectangular) assembly (of width w and height h) is a function from a
“rectangular” subset {1, ..., w} × {1, ..., h} ⊂ Z2

+ to types such that for any pair
of adjacent inputs that share an “edge,” the output types’ glues on the shared
edge are the same. A (rectangular) color pattern (of width w and height h)
is a function from a rectangle {1, ..., w} × {1, ..., h} ⊂ Z2

+ to colors.
Our model for DNA self-assembly does not take place in a vacuum- we assume

the preexistence of an L-shaped seed. We assume that our assembly function

1 The full version of the paper is available at http://arxiv.org/
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maps indexes in the 0-row and 0-column to seed types, which then have exposed
north glues and east glues respectively. The seed tiles are colored Slate Gray in
all of our graphics. The natural way to understand an assembly is to start with
a seed, then the glues work to allow tiles to be attached as follows: A tile can
attach at an index (i, j) if and only if its west glue matches the east glue of
a tile already placed at (i − 1, j) and its south glue matches the north glue of
a tile placed at (i, j − 1). Therefore an assembly builds up from south-west to
north-east. If an assembly reaches a state such that no more tiles can attach,
then it is a terminal assembly.

A Rectilinear TAS is a pair T = (T, σL) consisting of a tile type set T and
an L-shaped seed σL. Its size is the cardinality of T . We will use and refer to the
requirement that every two tile types must have distinct (south,west) glue-tuples
as uniqueness. Two types that violate uniqueness are said to clash.

For RTASs satisfying uniqueness, we see by induction that fixing the exposed
seed glues means that a tile placed at an empty index has necessarily determin-
istic type, and leads to a deterministic terminal assembly. As we care mostly for
colors, we will also say it uniquely assembles a color pattern.

As illustrated in Fig. 1, we see that a blue tile B2 uniquely attaches at index
(1, 1) given the exposed seed glues. The three tiles above it are successive copies
of red tile type R2 and, attaching in turn, none could be replaced by tiles of any
other type. The assembly as shown is terminal.

The Pattern self-assembly tile set synthesis (PATS) problem was pro-
posed by Ma and Lombardi [4,5]. It asks the question, “given a rectangular
color pattern P , what is a RTAS of minimum size that uniquely assembles the
pattern?”

Definition 1. k-colored Pats (k-Pats)
Input: a k-colored pattern P;
Output: a smallest RTAS which uniquely self-assembles P.

60-PATS was shown to be NP-hard by Seki [8]. We endeavor to show that
29-PATS is NP-hard by a polynomial reduction from Subset Sum2 to the size
variant of 29-PATS: given a pattern in 29 colors, what is the minimum size of
any RTAS that uniquely self-assembles the given pattern.
For the rest of this paper, we assume we have a black box capable of solving the
size variant of 29-PATS.

3 The Circuit

We reduce an instance SS = (S, n) of Subset Sum to a pattern in 29-colors
PATTERN such that

1. There exists a RTAS (T, σ∗) with |T | = 46 that uniquely assembles PATTERN
if and only if SS is solvable;

2 We use the variant of Subset Sum that restricts all elements of a set S to be positive
integers, and asks if any subset S∗ ⊆ S sums to some target n ∈ N.
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Fig. 2. These are the 26 tiles types in 9 colors that currently make up the critical set
T ; they are sufficient to assemble CIRCUIT if an S∗ solving SS exists.

2. There does not exist any tile type set T ′ �= T (ignoring isomorphism over glue
names) of size 46 or less such that a RTAS (T ′, σ′) can uniquely self-assemble
PATTERN.

In this section, we verify (1) for a sub-pattern of PATTERN called CIRCUIT using
26 of the 46 tile types of T .3 Specifically, we introduce a subset of the critical
tile type set T in Fig. 2. An example of the reduction to CIRCUIT is given in
Fig. 3. For solvable SS, T can uniquely assemble CIRCUIT, i.e., T is sufficient ;
therefore, |T | is an upper bound on the output of the black box in these cases.
The reduction works as follows:

We determine the height of the circuit to be max(�log2(n+Σall)�, 21), where
Σall is the sum of all elements in S.4 Then 2row# is greater than both n and
Σall. The width of CIRCUIT will be determined online. Then:

– The target number n from SS is encoded in binary- MSB at the top- as
colors of tiles in the first column, Black for 0 and White for 1. Unique tile
types of these colors in T imply that equivalently, n is also encoded in the
east glues of this column.

3 The other 20 tile types will be necessary and sufficient regardless of the instance SS.
4 Later we add a sub-pattern which requires height of at least 21.
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Fig. 3. For space considerations, and WLOG here, we draw this example with height
of 7 rather than 21. SS = (S = {11, 25, 37, 39} , n = 75), the same example as Brun
[3] for easy comparison of the tile type sets. S∗ = {11, 25, 39} so we see the seed north
glue 1* in columns 2, 10 and 26; and the seed north glue 1x in column 18.

– Using (1 + row#) columns each, we similarly encode elements of S in suc-
cession, MSBs on the right. A 0 bit is encoded by a column of colors RAB,
UAB, and el-Black; a 1 bit by RAW, UAW, and el-White.

– Given our reduction and tile type set T , there are only two colors appearing
next to seed tiles in row 1 or column 1 such that the seed has a choice in
glues: tile types of colors RAB and RAW have varying south glues. Compare
this to the south glues of UAB for example, whose tile types all have south
glue 0vp.

– Then given T , the set of feasible seeds can only vary in their choice of glues
in the first column of the encoding of each element of S; the choice of seed
is equivalently the choice to “tag” the glue ‘*’ to mean we should subtract
the current element, or ‘x’ to mean we should not.



704 A.C. Johnsen, M.-Y. Kao, and S. Seki

– The RA and UA tile types cooperate to transfer the subtraction ON/OFF
signal through an element’s columns until it runs off the top.

– Subtraction of a bit takes place in the RA squares. Tile types below them
preserve bit information of the element vertically. If subtraction is ON, the
RA tile type works as a half-subtractor (like in Fig. 1): it receives a “running
total” bit from the west, subtracts from it the south bit, outputs to the east
and “carries” to the north. If subtraction is OFF, the RA tile type preserves
bit information horizontally (passes it through) and carries 0.

– All indexes above the squares colored RAB and RAW are required to be
color Carry Blue. These tile types are half-subtractors again, to complete
the carry operation correctly.

– Below the RA colors, subtraction has already taken place so bit information
is preserved horizontally for use by the next element of S to the right.

– The last column of CIRCUIT is all Black. We started with t, we subtracted
some subset of elements of S, and for an instance of SS for which S∗ exists,
we should finish with all-Black 0.

Proposition 2. Given an SS and our tile type set T , the RTAS (T, σ∗) with
|T | = 26 uniquely assembles CIRCUIT if and only if SS is solvable.

Proof. The reduction correctly encodes n and the elements of S, and correctly
does subtraction or not. The proof is in the previous analysis, for further justi-
fication see Brun [3].

Then our choice over feasible seed glues is exactly equivalent to choices over
subsets S′ ⊆ S of elements to subtract from n to try to obtain 0. 	


4 Minimum Tile Complexity

In the last section, we described a tile type set T and showed that it is suffi-
cient to self-assemble the color pattern CIRCUIT that results from reducing any
satisfiable instance of Subset Sum, given an appropriate seed σ∗.

At this point, the size of T is an upper bound on what the black box can return
on a satisfiable input CIRCUIT. But in a trivial example in which the elements
of S sum to n exactly, we have no use for any tile types utilizing the glues 0x or
1x so output will be less. Worse, it is possible that given an unsolvable instance,
the black box outputs 26 or less using some other T ′, making it indistinguishable
from a solvable instance.

So we have a need to establish a lower bound on outputs from the black box.
To do this, we add the tile types in Fig. 4 to T .

We will join CIRCUIT with auxiliary patterns into the full input PATTERN; then
for each color c that appears in PATTERN, we will prove that the number of tile
types colored c needed by any set T ′ that uniquely assembles PATTERN must be
at least the number used by T of color c. Finally, summing over types will give
us our lower bound- the black box cannot output less than 46.

Auxiliary patterns must meet the following constraints: they must assemble
using T , i.e., be consistent; they must also “splice” together using T . Failing
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Fig. 4. We add these 20 tile types to our set T . While they are not necessary to
uniquely assemble CIRCUIT, adding them does not affect the sufficiency of T , now of
size 46; they will be used in auxiliary patterns that will be attached to CIRCUIT such
that all 46 tiles are necessary.

either, we lose the sufficiency of T . However, these constraints endow a benefit:
because T is sufficient to assemble CIRCUIT and all auxiliary patterns for reduc-
tions from satisfiable instances of Subset Sum, we know for these cases that the
black box need not consider tile type sets larger than 46.

So the goal of this section and the next is to design auxiliary sub-patterns such
that, including them in PATTERN, the tile set T will be necessary. Sub-patterns
in this section are named LB# for Lower Bound. We claim that T is sufficient for
all auxiliary patterns in Sections 4 and 5 without proof. The strategy for joining
together the various sub-patterns is given as part of correctness in Section 6.

We take it as a given that the 29 colors described in T will be used in some
sub-pattern of PATTERN. There are 22 colors in PATTERN with just one tile type
of their color in T .5 Each trivially requires one type, so we have finished 22 of
our 29 necessary lower bound proofs, leaving 17 tiles unassigned, or free.

Sub-pattern LB1 is given in Fig. 5 and is used in the next result. For space
considerations, we provide this one result and jump to conclude Section 4.

Proposition 3. If LB1 appears as a sub-pattern of PATTERN, then in any mini-
mum tile type set solving PATTERN, either there must be at least 2 tile types with
distinct east glues of each color el-Black, el-White, and Carry Blue as we suggest
in T ; or the black box must find a minimum tile type set larger than 46.

Proof. By symmetry, we only need to prove the case for el-Black. We assume
that the black box can find a solution using at most 46 tile types.

5 Colors Black and White from Fig. 2, and all 20 colors from Fig. 4.
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Fig. 5. LB1 is presented sideways for space considerations. The Slate seed tiles should
be interpreted as being the 0-row, then it is the rows that are numbered up to its
height of 21. LB1 guarantees that there are at least 2 tile types colored each of el-Black,
el-White, and Carry Blue.

By contradiction, assume there is only one tile type el-Black. Then there is
only one glue east of column 2, call it e. The Black types can have at most
18 unique north glues in column 3, so by the 19th north glue, they must cycle
(because the west glue is a constant). But this requires a Black tile at (3, 20),
not White. 	


Proposition 4. If LB1 through LB118 appear as sub-patterns of PATTERN, then
for any minimum tile type set solving PATTERN, it must have total size at least
46, with the desired lower bounds holding for each color, as we suggest in T .

Proof. See the full version of the paper for intermediate results and final proof.

5 Glue Interpretations

In this section, we show that if T has size 46, then the glues of some tile types
in T must be isomorphic to the names we give to them in Fig. 2. It is sufficient
for our purposes to only prove the glue scheme for tile types used in CIRCUIT6

because then it is clear that for unsolvable SS, T cannot assemble CIRCUIT in
26 tile types. For convenience, and WLOG, we use the type-naming and glue-
naming schemes in T . New patterns are named GE#, for Glue Enforcement.

We present LB42 in Fig. 6 for the next two propositions. For space consider-
ations, we present these two results and jump to conclude Section 5.

Proposition 5. If LB1 through LB118 appear as sub-patterns of PATTERN (and
establish a minimum tile type set size of 46), then in any minimum tile type set
solving PATTERN, either the glues of the Black and White tile types are as we
suggest in T ; or the black box must find a minimum tile set larger than 46.

6 Though we do prove glues for the Green tile types to facilitate later results.
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Fig. 6. Blue Carry tiles act as half-subtractors, an entire column of them can subtract
0 or 1. It is straightforward to force the glues for Black, White, and Carry tile types.

Proof. We assume that the black box can find a solution using at most 46 tile
types. Then there must be exactly 1 type of each color Black and White, as we
exhaust 46 tile types to satisfy all lower bounds established in Section 4.

Now we see in LB42 that BLACK self-stacks both vertically and horizontally,
therefore we know that it has the same north and south glues, call it #, and the
same east and west glues, call it 0h.7 WHITE stacks both above and below BLACK,
so its vertical glues are the same.

WHITE also self-stacks horizontally, so it also has its east glue equal to its west
glue, call it 1h. However by uniqueness, the glues 1h and 0h must be distinct,
because of the common # south glues of the tile types. 	


Proposition 6. If LB1 through LB118 appear as sub-patterns of PATTERN, then
in any minimum tile type set solving PATTERN, either the glues of the Carry Blue
tile types are as we suggest in T ; or the black box must find a minimum tile set
larger than 46.

Proof. We assume that the black box can find a solution using at most 46 tile
types. Then there must be exactly 4 tile types of color Blue, as we exhaust 46
tile types to satisfy all lower bounds established in the last section.

Now using Proposition 5 we see in LB42 that four Blue tile types necessarily
have (east,west) glue tuples known to be distinct. For example, tiles placed at
indexes (2, 2), (7, 2), (2, 3), and (7, 3) require their glues to be (0h,0h), (0h,1h),
(1h,1h), and (1h,0h) respectively. This nicely exhausts the Blue types available.
Name the distinct types that end up at these indexes CA1 through CA4 in order.

We notice that CA1 stacks with itself at (2, 1) and (2, 2) (because we have
shown that Carry tile types are identifiable by their (west,east) glue tuples),
and CA3 stacks with itself at (2, 3) and (2, 4), and they stack both above and
below each other. Therefore the north and south glues of both types must all be

7 We use “h” for horizontal; and soon “v” for vertical.
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equal, call it 0vc.8 Note that this glue 0vc must also be present between (7, 3)
and (7, 4), so it is also the north glue of CA4.

Now we look at CA2 and notice that it stacks with itself at (7, 1) and (7, 2).
Therefore its north and south glues must be equal; and additionally they must
be the same as the south glue of CA4. However, they cannot be 0vc, otherwise
the CA2 tile attaching at (7, 2) would not do so uniquely (it would clash with
CA1 at (3, 2)). So this second group of glue assignments must be distinct, call it
1vc. Neither 0vc nor 1vc can be the same as #, by uniqueness. 	


Proposition 7. If GE1 through GE12 appear as sub-patterns of PATTERN, along
with LB1 through LB118, then in any minimum tile type set solving PATTERN,
the glues of all tile types that can be used in CIRCUIT must be the same as we
suggest in T , up to isomorphic symmetry; or the black box must find a minimum
tile type set larger than 46.

Proof. See the full version of the paper for intermediate results and final proof.

6 Integration and Correctness

In this Section we prove that 29-PATS is NP-hard. We start by addressing a
minor concern in the design- the possibility that the black box might choose a
set of elements to subtract such that the running total “becomes negative” after
subtracting some element; then it might keep subtracting elements and reach 0,
though this subset does not actually sum to the original target n.

Our design precludes this possibility by requiring the height of the pattern,
equal to max(�log2(n + Σall)�, 21), to be sufficiently large: if the running total
ever “goes negative,” then even by subtracting every remaining element of S, we
cannot possibly make it back down to 0 again.

When an element is subtracted from the running total, the operation that
we are actually performing is subtraction-mod-2row#, and we use this idea to
join together sub-patterns. We can verify that every color sub-pattern begins
and ends with a column of squares colored by Black and White, or their copies.
Then every east glue and every west glue of every sub-pattern is either 0h or 1h.
Taking the italicized text as an invariant gives us the needed result.

Proposition 8. Given 2 sub-patterns P1 and P2 of the same height row# such
that all of the east glues of P1 and all of the west glues of P2 are 0h or 1h, we
can join them together into one sub-pattern P ∗ using the tile types of T .

Proof. As just explained, our sub-pattern that represents the subtraction of one
element from a number “written” vertically is actually subtraction-mod-2row#.
Then we are free to think of both the east glues of P1 and the west glues of P2

as respectively input and output numbers mod 2row#, and we can design the
needed subtraction-mod-2row# to take place in between them. 	

8 Along with “v” for vertical, we use “c” for carry; and soon “p” for passthrough.
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We finally have a full description of PATTERN. It is the result of listing CIRCUIT,
LB1 through LB118, and GE1 through GE12 in order and then joining successively
listed sub-patterns together as described in Proposition 8.

Theorem 9. For any instance of Subset Sum SS, if we reduce it to the 29-color
pattern PATTERN and input it to our black box, the size of a minimum tile type
set that we receive as output will be equal to 46 if and only if SS is satisfiable.

Proof. From Proposition 4 we know that the minimum tile set must have size
at least 46; and from Proposition 7 we know that if a tile set has size 46 and
assembles the reduction, then it must be isomorphic to T , i.e., T is necessary.

From Proposition 2, we know that T is sufficient for any solvable SS. Necessity
and sufficiency of T for solvable SS completes the “if” direction of our result.
Now we show that T is not sufficient if SS is not solvable.

We start by analyzing the extent of the ability of the black box to actually
make decisions about seed glue choice for the sub-pattern CIRCUIT, if it intends
to use only 46 tiles. From our discussion in Section 3, we know that it is only
for the southern glues of RAB and RAW tiles in the first row that the black box
actually gets to make a choice. For RAB tiles it can choose 0* or 0x; for RAW it
can choose 1* or 1x. Again by Proposition 2 these choices correctly and exactly
correspond to subtracting an element or not.

By the assumption that we are working with an instance SS that is unsolvable,
there is no sequence of seed glue choices for RAB and RAW tiles such that the
east glues of the second-to-last column in CIRCUIT are all 0h, to match the
uniformly 0h west glues required by CIRCUIT’s last column’s Black squares.

But T is forced when we are restricted to at most 46 tile types; it must be
the case that for inputs PATTERN that result from reducing unsolvable instances
of SS, the black box finds a minimum tile set of size strictly larger than 46. 	


The statement of Theorem 9 combines the goals given at the beginning of Section
3. It directly implies Theorem 1 because an instance of Subset Sum SS is solvable
if and only if the black box outputs a minimum RTAS size of 46 for an input of
PATTERN, completing the reduction.

Corollary 10. The original PATS problem cannot be approximated to within a
47/46 ratio.

Corollary 11. k-PATS is not in PTAS for any k ≥ 29.
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Abstract. Kademlia [3] is currently the most widely used searching
algorithm in p2p (peer-to-peer) networks. This work studies an essential
question about Kademlia from a mathematical perspective: how long
does it take to locate a node in the network? To answer it, we introduce
a random graph K and study how many steps are needed to locate a
given vertex in K using Kademlia’s algorithm, which we call the routing
time. Two slightly different versions of K are studied. In the first one,
vertices of K are labeled with fixed ids. In the second one, vertices are
assumed to have randomly selected ids. In both cases, we show that
the routing time is about c log n, where n is the number of nodes in the
network and c is an explicitly described constant.

1 Introduction to Kademlia

A p2p (peer-to-peer) network [4] is a computer network which allows sharing
of resources like storage, bandwidth and computing power. Unlike traditional
client-server architectures, in p2p networks, a participating computer (a node)
is not only a consumer but also a supplier of resources. Nowadays, major p2p

services in the internet often have millions of users. For an overview of p2p

networks, see Steinmetz [5].
The huge size of p2p networks raises one challenge—among millions of nodes,

how can a node find another one efficiently? To address this, a group of algo-
rithms called dht (Distributed Hash Table) [6] was invented in the early 2000s,
including Pastry [7], can [8], Chord [9], Tapestry [10], and Kademlia [3]. Cre-
ated by Maymounkov and Mazières in 2002, Kademlia has become the de facto
standard searching algorithm for p2p services. It is used by BitTorrent [11] and
the Kad network [12], both of which have more than a million nodes.

Kademlia assigns each node an id chosen uniformly at random from {0, 1}d,
the d-dimension hypercube, where d is usually 128 [12] or 160 [11]. Thus we
always refer to a node by its id. Given two ids x = (x1, . . . , xd) and y =
(y1, . . . , yd), Kademlia defines their xor distance by

δ(x, y) =

d∑
i=1

(xi ⊕ yi)× 2d−i,
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L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 711–721, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



712 X.S. Cai and L. Devroye

where ⊕ denotes the xor operation

u⊕ v =

{
1 if u �= v,

0 otherwise.

Note that distance and closeness always mean xor distances between ids in this
work.

Since it is almost impossible for a node to know where all other nodes are
located, in Kademlia a node, say x, is only responsible for maintaining a table
(a routing table) for a small number of other nodes (x’s neighbors). Roughly
speaking, {0, 1}d is partitioned into d subsets, such that nodes in the same subset
have similar distances to x. Within each subset, up to k nodes’ information is
recorded in a list (a k-bucket), where k is a constant which usually equals 8 [11],
10 [12] or 20 [13]. All of x’s k-buckets form x’s routing table.

When x needs to locate node y which is not in its routing table, x sends queries
to α of its neighbors which are closest to y, where α is a constant, sometimes
chosen as 3 [14] or 10 [13]. A recipient of x’s message returns locations of k of
its own neighbors with shortest distance to y. With this information, x again
contacts α nodes that are closest to y. This approach (routing) repeats until no
one closer to y can be found. The efficiency of routing is critical for the overall
performance of Kademlia. Its analysis is the topic of this work.

2 Our Model

Consider a Kademlia network of n nodes X1, . . . , Xn. Writing ids as strings con-
sisting of zeros and ones, from higher bits to lower bits, we can completely rep-
resent X1, . . . , Xn in a binary trie, as depicted in Fig. 1. A trie is an ordered tree
data structure invented by Fredkin [15]. For more on tries, see Szpankowski [16].
Paths are associated with bit strings—0 corresponds to a left child, and 1 to a
right child. The bits encountered on a path of length d to a leaf is the id, or
value, of the leaf. In this manner, the binary trie, has height d, and precisely n
leaves of distance d from the root.

Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two ids (leaves) in the trie. Let
�(x, y) be the length of the path from the root to x and y’s lowest common
ancestor, i.e., the length of x and y’s common prefix. We have

�(x, y) = max{i : x1 = y1, . . . , xi = yi} .

It is easy to verify that �(x, y) bounds the distance of x and y by

2d−�(x,y)−1 ≤ δ(x, y) < 2d−�(x,y) .

Thus if we partition {0, 1}d \ {x} according to distances to x as follows

Di(x) = {y : 2i−1 ≤ δ(x, y) < 2i}, i = 1, . . . , d,
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then Di(x) is equivalent to a subtree in the trie, in which each node shares a
common prefix of length i with x. Therefore, we have the equivalent definition

Di(x) = {y : �(x, y) = d− i}, i = 1, . . . , d .

Let Bi(x) be the set of ids in the k-bucket of x corresponding to Di(x). In
our model, we assume that if |Di(x)| ≤ k, then Bi(x) = Di(x). Otherwise, for
all A ⊂ Di(x) with |A| = k, we have

P {Bi(x) = A} =
(
|Di(x)|
k

)−1

.

In other words, we fill up each k-bucket uniformly at random without replace-
ment.

0

0

0

1

0

x

0 1

0

0 1

1

1

D3(x) D2(x)D1(x)

B1(x)

B2(x)

B3(x)

k-buckets of x

Fig. 1. An example of Kademlia id trie and k-buckets. Given an id x = (1, 0, 0), the
trie is partitioned into subtrees D1(x),D2(x),D3(x). Node x maintains a k-bucket for
each of these subtrees containing the information of up to k nodes in the subtree, which
we denote by B1(x),B2(x),B3(x) respectively.

Consider a directed graph K with vertex set V = {X1, . . . , Xn}. Let its edge
set be

E = {(u, v) : u, v ∈ V , v ∈ ∪d
i=1Bi(u)} .

Put differently, we add a directed edge (u, v) in K if and only if v is in one of
u’s k-buckets. When α = 1, only one node is queried at each step of routing, the
search process starting at x for y can be seen as a path ρxy in K (the routing
path). It starts from vertex x, then jumps to the vertex that is closest to y among
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all x’s neighbors. From there, it again jumps to the adjacent vertex that is closest
to y. Let y∗ be the unique vertex with the shortest distance to y in K. Since the
distance between the current vertex and y∗ decreases at each step until zero, ρxy
has no loop and always ends at y∗. In fact, K is always strongly connected.

Let Txy be the path length of ρxy. Since Txy equals the number of rounds of
messages x needs to send before routing ends, we call it the routing time. Our first
main result assumes that X1 = x1, . . . , Xn = xn, where x1, . . . , xn are all fixed
d-bit vectors, which we call the deterministic id model. The randomness thus
comes only from the filling of the k-buckets. We always assume that d ≥ log2 n,
and we let n → ∞ (and thus d → ∞) in our asymptotic results. (Note that in
this work logn denotes the natural logarithm of n.)

Theorem 1. In the deterministic id model, we have

sup
x1,...,xn

sup
x

sup
y

E [Txy] ≤ (ck + o(1))logn,

sup
x1,...,xn

sup
x

E

[
sup
y
Txy

]
≤ (c′k + o(1))logn,

sup
x1,...,xn

E

[
sup
x

sup
y
Txy

]
≤ (c∗k + o(1))logn,

where ck, c
′
k, c

∗
k are constants depending only on k. In particular, we have ck =

1/Hk, where Hk =
∑k

i=1 1/i, also known as the k-th harmonic number.

The first inequality in this theorem gives an upper bound over the expected
routing time between two fixed nodes. Since ck ≤ c1 ≤ 1/ log 2, the first bound
is better than the �log2 n� bound described by Maymounkov and Mazières in
the original Kademlia paper [3]. The second inequality considers the expectation
of the maximal routing time when the starting node is fixed, and a look-up is
performed for each of the n destinations. The third one considers the expectation
of the maximal routing time in the whole network if all n nodes were to look up
all n destinations.

Our second main result considers the situation when X1, . . . , Xn are selected
uniformly at random from {0, 1}d without replacement (the random id model).
Given an id x, let x̂ denote the id that is farthest away from x (x’s polar opposite).
Since by symmetry TX1X̂1

, TX2X̂2
, . . . TXnX̂n

are identically distributed, we only

need to study TX1X̂1
, which we denote by T̂ .

Theorem 2 ([17]). In the random id model, we have

T̂

logn
→ 1

g(k)
in probability,

as n→∞, where g(k) = Hk +O(1) is a function of k.

Since T̂ = TX1X̂1
, we see that

1

g(k)
≤ 1

Hk
.
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However, we have almost identical behavior because g(k) = Hk + O(1) as
k → ∞. Let d = d(n) ≥ log2 n. By the probabilistic method, Theorem 2 im-
plies that for every ε > 0, there exists for every n a non-repetitive sequence
(x1(n), . . . , xn(n)) ∈ ({0, 1}d)n of deterministic ids such that with probability
going to one,

TX1X̂1
≥
(

1

g(k)
− ε

)
logn .

In view of g(k) = Hk + O(1), we thus see that the first bound of Theorem 1 is
almost tight.

Recall that y∗ denotes the node that is closest to id y. If we look at the lowest
common ancestor of y∗ and each hop of ρxy, then searching y from x can be seen
as travelling downwards along the path from the root to the leaf y∗ in the trie,
with the distance of each hop being random. In the random id model, when n is
large, we can approximate this process in a full binary trie with infinite depth.
In Sect. 4, we sketch the proof of Theorem 2 which uses this method. This does
not work in the deterministic id model as the structure of the id trie can be
unbalanced. But in Sect. 3, we show that there is another way to bound the
routing time.

Due to its success, Kademlia has aroused great interest among researchers.
But this is the first time that it is studied from a mathematical perspective.
Our results point out one important reason for the success of Kademlia — its
routing algorithm, while being extremely simple, works surprisingly well. This
work also shows that probabilistic methods together with the right choice of a
data structure, a trie in our case, could significantly simplify the analysis of a
problem which was previously considered too troublesome to analyze rigorously.

3 The Deterministic ID Model

In this section, we assume that X1 = x1, . . . , Xn = xn, where x1, . . . , xn are
fixed d-bits vectors. Note that the distribution of Txy is decided only by dis-
tances between vertices and the distance between x and y. Thus, by rotating
the hypercube, we can always assume y to be a specific id, which we choose
1̄ = (1, 1, . . . , 1).

Figure 2 depicts the first hop of ρx1̄ as jumping from one leaf to another in
the id trie. It is easy to see that if we always arrange branches representing 1
to the right hand side, which we take as a convention, then the closer a leaf is
to the right, the closer it is to 1̄. Thus the rightmost leaf in the trie, which we
always denote by y′, is closest to 1̄ and is thus the end point of ρx1̄.

Write ρx1̄ = (z0, z1, . . .) where z0 = x. Let i = d − �(z0, 1̄). We can see from
Fig. 2 that z1, the first hop, must belong to Di(z0), the highest subtree on the
right hand side of z0, which we denote by S0. Since being z0’s neighbor implies
membership in one of z0’s k-buckets, we have z1 ∈ Bi(z0) ⊆ S0. Recalling how
Bi(z0) is decided, we can think of the first hop as selecting up to k leaves from S0

uniformly at random and choosing the rightmost one as z1. Thus we can define
of ρx1̄ recursively as follows:
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00
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1
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S0 = D4(z0)

�(z0, y
′) = 1

Fig. 2. An example of the first hop of ρx1̄ with d = 5, k = 2. Since d − �(z0, y
′) = 4,

z1 must be in subtree S0 = D4(z0), which is the highest subtree to the right of z0. We
choose up to k leaves from S0 uniformly at random without replacement, and let z1 be
the rightmost one.

– Let z0 = x. Repeat the following step.
– Given zt and t ≥ 0, let St be highest subtree on the right hand side of zt.

If St = ∅, terminate. Otherwise select up to k leaves from St uniformly at
random without replacement, and let the rightmost one be zt+1.

Since S0 ⊃ S1 ⊃ · · · ⊃ STx1̄
= ∅, by studying how quickly the sequence

(|St|)t≥0 decreases to 0, we can bound how big Tx1̄ could be. Although it is
difficult to write the distribution of (|St|)t≥0, we can approximate it with another
sequence (Wt)t≥0. Let B(k) be the minimum of k independent uniform [0, 1]
random variables. Let (Bt)t≥0 be a sequence of i.i.d. random variables with

distribution B(k). We define Wt = |S0| ×
∏t

s=1 Bs.
Given two random variables A and B, we say A is stochastically smaller than

B, denoted by A 1 B, if and only if

P {A ≥ r} ≤ P {B ≥ r} for all r ∈ R,

where R is the set of real numbers. The random variable Wt is stochastically
larger than |St|, as there is a “trimming” effect at each hop. For example, the
number of leaves between z1 and y′ has a distribution similar to �W1�. But some
of these leaves might not belong to S1.

Lemma 1. For all t ≥ 1, we have |St| 1Wt.

Lemma 2. For all t ∈ N, we have:

(i) sup
x1,...,xn

sup
x

sup
y

P {Txy ≥ t} ≤ P {nB1 . . . Bt ≥ 1} ,

(ii) sup
x1,...,xn

sup
x

P

{
sup
y
Txy ≥ t

}
≤ n× P {nB1 . . . Bt ≥ 1} ,

(iii) sup
x1,...,xn

P

{
sup
x

sup
y
Txy ≥ t

}
≤ n2 × P {nB1 . . . Bt ≥ 1} .
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Fig. 3. The “trimming” effect

A beta random variable B(a, b) has probability density function

f(x) =
Γ (a+ b)

Γ (a)Γ (b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1,

where Γ (z) is the gamma function Γ (z) =
∫∞
0
e−ttz−1 dt. In order statistics

theory, a basic result [18, chap.2.3] is that the r-th smallest of m i.i.d. uniform
random variables has beta distribution B(r,m+1−r). Plugging in r = 1,m = k,

we have Bt
L
=B(k)

L
=B(1, k) for all t ∈ N. (For more about beta distribution,

see [19, chap.25].) It is easy to check that for all r > 0 and t ∈ N, we have

E [(B1 · · ·Bt)
r
] = E [Br

1 ]
t
= E [B(1, k)r]

t
=

(
k!∏k

i=1(r + i)

)t

. (1)

By applying this moment bound, we have the following theorem:

Theorem 3. There exist constants ck, c
′
k and c∗k such that:

(i) for all c > ck,

sup
x1,...,xn

sup
x

sup
y

P {Txy ≥ c logn} → 0 as n→∞;

(ii) for all c > c′k,

sup
x1,...,xn

sup
x

P

{
sup
y
Txy ≥ c logn

}
→ 0 as n→∞;

(iii) for all c > c∗k,

sup
x1,...,xn

P

{
sup
x,y

Txy ≥ c logn

}
→ 0 as n→∞ .

In particular, we have ck = 1/Hk where Hk is the k-th harmonic number.
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It is easy to check that c′1 = e, since (r + 1)/log(1 + r) takes minimum value
e when r = e − 1. But unlike ck, we do not have closed forms for c′k and c∗k.
Table 1 shows the numerical values of ck, c

′
k, c

∗
k for k = 1, . . . , 10.

Table 1. The numerical values of ck, c
′
k, c

∗
k for k = 1, . . . , 10

k ck c′k c∗k

1 1 2.718281828 3.591121477
2 0.6666666667 1.673805050 2.170961287
3 0.5454545455 1.302556173 1.668389781
4 0.4800000000 1.105969343 1.403318015
5 0.4379562044 0.9817977138 1.236481558
6 0.4081632653 0.8950813294 1.120340102
7 0.3856749311 0.8304602569 1.034040176
8 0.3679369251 0.7800681679 0.9669189101
9 0.3534857624 0.7394331755 0.9129238915
10 0.3414171521 0.7058123636 0.8683482160

Lemma 3. We have

lim
k→∞

ck log k = lim
k→∞

c′k log k = lim
k→∞

c∗k log k = 1 .

Remark 1. We are not providing precise inequalities with matching lower bounds.
This can be done, but in that case, one could have to distinguish between many
choices for d. We have already noted that d ≥ log2 n. We always have

Txy ≤ d .

Therefore, for d very large, there is a danger of having routing times that are
super-logarithmic in n. Our analysis shows that this is not the case. However,
the precise behavior of Txy, uniformly over all x,y and d, requires additional
analysis. The behavior for d near log2 n, d = Θ(log n), and d/ logn→∞ is quite
different.

Remark 2. The performance bounds of this section are of the form ck logn with
ck = 1/Hk. Although formulated for fixed k, they remain valid if k is allowed to
depend upon n. For example, if k = logn—that is, the routing table size grows
as d× log n—the expected routing time is bounded by

(1 + o(1))
log n

log k
∼ (1 + o(1))

logn

log logn
.

Even more important is the possibility of having O(1) routing time. With k ∼ nθ

for θ ∈ (0, 1), the routing table size for one computer grows as d× nθ, and

E

[
sup
x

sup
y
Txy

]
≤ 1

θ
+ o(1) .

The parameter θ can be tweaked to obtain an acceptable compromise between
storage and routing time.
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4 The Random ID Model

In this section, we assume that X1, . . . , Xn are chosen uniformly at random from
{0, 1}d without replacement. Recall that X̂1 denotes the id that is farthest from

X1. We sketch the proof that the distribution of T̂
def
= TX1X̂1

has concentrated
mass.

Since rotating the hypercube does not change the distribution of the routing
time, we can always assume that X1 = 0̄ and X̂1 = 1̄, where b̄ denotes the all-b
vector (b, b, . . . , b).

Write the routing path ρX1X̂1
= (z0, z1, . . .). Let at be the lowest common

ancestor of zt and y′, i.e., the rightmost leaf in the trie and the destination
of routing. Then the sequence (a0, a1, . . .) can be seen as travelling downwards
along the path from the root to y′, i.e., the rightmost branch of the trie, with
the distance of each hop being random.

This sequence can be defined equivalently as follows. Let a0 be the root of
the id trie. Let z0 = 0̄. From the right subtree of node at, select up to k paths
to the bottom uniformly at random without replacement. (This is equivalent to
the choice of k nodes to fill one k-bucket of zt, the t-th hop in the search.) If
that right subtree is empty, then the search terminates at at. Let zt+1 be the
leaf corresponding to the rightmost one of these selected paths. Let at+1 be the
lowest common ancestor of zt+1 and y′. Let Lt+1 be the distance from a0 to
at+1. Let Rt+1 = Lt+1−Lt, i.e., the distance of the (t+1)-th hop, which is also

the distance between at and at+1. Note that T̂ = t if and only if
∑t

i=1Ri = d.

Therefore, we can bound T̂ by studying the properties of (Rt)t≥1.
Now instead of the id trie of depth d, consider a full binary trie with infinite

depth. Definite (a′0, a
′
1, . . .), the counterpart of (a0, a1, . . .) in this infinite trie,

as follows. Let a′0 be the root of the infinite trie. From the right subtree of
node a′t, select exactly k infinite downwards paths uniformly at random. (Since
the probability of selecting the same path more than once is zero, “without
replacement” is not necessary anymore.) Let z′t+1 be the rightmost of these
selected paths. Let a′t+1 be the lowest common node of z′t+1 and 1̄. Let L′t+1 be
the distance from a′0 to a

′
t+1. Let Gt+1 = L′t+1−L′t, i.e., the distance of (t+1)-th

hop, which is also the distance between a′t and a
′
t+1.

When n is large (and thus d is large), the behavior of (Rt)t≥1 and (Gt)t≥1

are very similar. But it is easy to see that, since each subtree of the infinite trie
has exactly the same structure, (Gt)t≥1 is a sequence of i.i.d. random variables
with distribution

P {G1 ≤ i} =
(
1− 1

2i

)k

for all i ∈ N. (2)

In other words, (Gt)t≥1 is much easier to analyze. (Note that when k = 1, G1

is simply the geometric distribution.) And it is possible to couple the random
variables Gt and Rt.

When the downwards travel reaches the depth of log2 n, the routing can not
last much longer. In fact, in the id trie, a subtree whose root has depth at least
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log2 n has only o(log n) leaves with high probability [17]. Therefore, we define

Tn = min

{
t : t ≥ 1,

t∑
i=1

Gi ≥ log2 n

}
.

Lemma 4. We have

E

[
Tn
logn

]
→ 1

log(2)× E [G1]
,

as n→∞, and also

Tn
logn

→ 1

log(2)× E [G1]
in probability,

as n→∞.

Then, by coupling, we can show Lemma 5:

Lemma 5. We have

T̂ − Tn
logn

→ 0 in probability,

as n→∞.

We omit the proof of these two lemmas due to space limitations. For details,
see [17]. For other proofs, see the appendix of this paper at
http://xingshicai.ca/kad.pdf .
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Approximating the Generalized Minimum Manhattan
Network Problem�
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Abstract. We consider the generalized minimum Manhattan network problem
(GMMN). The input to this problem is a set R of n pairs of terminals, which
are points in R2. The goal is to find a minimum-length rectilinear network that
connects every pair in R by a Manhattan path, that is, a path of axis-parallel line
segments whose total length equals the pair’s Manhattan distance. This problem
is a natural generalization of the extensively studied minimum Manhattan net-
work problem (MMN) in which R consists of all possible pairs of terminals. An-
other important special case is the well-known rectilinear Steiner arborescence
problem (RSA). As a generalization of these problems, GMMN is NP-hard. No
approximation algorithms are known for general GMMN.

We obtain an O(log n)-approximation algorithm for GMMN. Our solution
is based on a stabbing technique, a novel way of attacking Manhattan network
problems. Some parts of our algorithm generalize to higher dimensions, yielding
a simple O(logd+1 n)-approximation algorithm for the problem in arbitrary fixed
dimension d. As a corollary, we obtain an exponential improvement upon the
previously best O(nε)-ratio for MMN in d dimensions [ESA’11]. En route, we
show that an existing O(log n)-approximation algorithm for 2D-RSA generalizes
to higher dimensions.

1 Introduction

c
b

a

e

d

f

(a) an MMN for
{a, b, c, d, e, f}

c
b

a

e

d

f

(b) a GMMN for
{(a,b), (c,d), (e,f)}

Fig. 1: MMN versus GMMN

Given a set of terminals, which are points in
R2, the minimum Manhattan network prob-
lem (MMN) asks for a minimum-length rec-
tilinear network that connects every pair of
terminals by a Manhattan path (M-path, for
short), i.e., a path consisting of axis-parallel
segments whose total length equals the pair’s
M-distance. Put differently, every pair is to be
connected by a shortest path in the L1-norm
(M-path). See Fig. 1a for an example.

In the generalized minimum Manhattan
network problem (GMMN), we are given a set R of n unordered terminal pairs, and
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the goal is to find a minimum-length rectilinear network such that every pair in R is M-
connected, that is, connected by an M-path. GMMN is a generalization of MMN since
R may contain all possible pairs of terminals. Figure 1b depicts such a network.

We remark that, in this paper, we define n to be the number of terminal pairs of a
GMMN instance, previous works on MMN defined n to be the number of terminals.
Moreover, we identify each terminal pair with a rectangle, namely the bounding box of
this pair. This is a natural convention as every M-path for this terminal pair lies within
the bounding box.

MMN naturally arises in VLSI circuit layout [8], where a set of terminals (such as
gates or transistors) needs to be interconnected by rectilinear paths (wires). Minimizing
the cost of the network (which means minimizing the total wire length) is desirable in
terms of energy consumption and signal interference. The additional requirement that
the terminal pairs are connected by shortest rectilinear paths aims at decreasing the in-
terconnection delay (see Cong et al. [4] for a discussion in the context of rectilinear
Steiner arborescences, which have the same additional requirement; see definition be-
low). Manhattan networks also arise in the area of geometric spanner networks. Specif-
ically, a minimum Manhattan network can be thought of as the cheapest spanner under
the L1-norm for a given set of points (allowing Steiner points). Spanners, in turn, have
numerous applications in network design, distributed algorithms, and approximation
algorithms, see, e.g., the book [14] and the survey [9].

MMN requires a Manhattan path between every terminal pair. This assumption is,
however, not always reasonable. For example, in VLSI design a wire connection is
necessary only for an, often comparatively small, subset of terminal pairs, which may
allow for substantially cheaper circuit layouts. In this scenario, GMMN appears to be a
more realistic model than MMN.

Previous Work and Related Problems. MMN was introduced by Gudmundsson et al. [8]
who gave 4- and 8-approximation algorithms for MMN running inO(n3) andO(n logn)
time, respectively. The currently best known approximation algorithms for MMN have
ratio 2; they were obtained independently by Chepoi et al. [2] using an LP-based method,
by Nouioua [16] using a primal-dual scheme, and by Guo et al. [10] using a greedy ap-
proach. The complexity of MMN was settled only recently by Chin et al. [3]; they proved
the problem NP-hard. It is not known whether MMN is APX-hard. Gudmundsson et al.
[7] consider a variant of MMN where the goal is to minimize the number of (Steiner)
nodes and edges. Using divide-and-conquer they show that there is always a Manhattan
network with O(n log n) nodes and edges. Knauer and Spillner [11] show that MMN is
fixed-parameter tractable. More specifically, they show that there is an exact algorithm
for MMN taking O∗(214h) time, where h is the number of horizontal lines that contain
all terminals and the O∗-notation neglects factors polynomial in n.

Recently, there has been an increased interest in MMN for higher dimensions. Muñoz
et al. [13] proved that 3D-MMN is NP-hard to approximate within a factor of 1.00002.
They also gave a constant-factor approximation algorithm for a (rather restricted) spe-
cial case of 3D-MMN. Das et al. [6] described the first approximation algorithm for
MMN in arbitrary, fixed dimension. Their algorithm recursively computes a grid and
attaches the terminals within a grid cell to grid vertices using RSA as a subroutine. Its
ratio is O(nε) for any ε > 0.



724 A. Das et al.

GMMN was defined by Chepoi et al. [2] who posed the question whether it admits
an O(1)-approximation. Suprisingly, only special cases of GMMN such as MMN have
been considered so far—despite the fact that the problem is very natural and relevant
for practical applications.

Another special case of GMMN that has received significant attention in the past
is the rectilinear Steiner arborescence problem (RSA). Here, one is given a set of n
terminals in the first quadrant, and the goal is to find a minimum-length rectilinear net-
work that M-connects every terminal to the origin o. Hence, RSA is the special case
of GMMN where o is considered a (new) terminal and the set of terminal pairs con-
tains, for each terminal t �= o, only the pair (o, t). Note that RSA is very different from
MMN. Although every RSA solution is connected (via the origin), terminals are not
necessarily M-connected to each other. RSA was introduced by Nastansky et al. [15].
RSA is NP-hard [18]. Rao et al. [17] gave a 2-approximation algorithm for RSA. They
also provided a conceptually simpler O(log n)-approximation algorithm based on rec-
tilinear Steiner trees. In the full version of this paper [5], we generalize this algorithm
to dimensions d > 2. Lu et al. [12] and, independently, Zachariasen [19] described
polynomial-time approximation schemes (PTAS) for RSA, both based on Arora’s tech-
nique [1]. Zachariasen pointed out that his PTAS can be generalized to the all-quadrant
version of RSA but that it seems difficult to extend the approach to higher dimensions.

Our Contribution. Our main result is the first approximation algorithm for GMMN.
Its ratio is O(log n) (see Section 3). Our algorithm is based on two ideas. First, we
use a simple (yet powerful) divide-and-conquer scheme to reduce the problem to RSA.
This yields a ratio of O(log2 n). To bring down the ratio to O(log n) we develop a new
stabbing technique, which is a novel way to approach Manhattan network problems and
constitutes the main technical contribution of this paper.

We also consider higher dimensions. More specifically, we generalize an existing
O(log n)-approximation algorithm for RSA to arbitrary dimensions (see the full ver-
sion [5]). Combining this with our divide-and-conquer scheme yields an O(logd+1 n)-
approximation algorithm for d-dimensional GMMN (see Section 4). For the special
case of d-dimensional MMN, this constitutes an exponential improvement upon the
O(nε)-approximation algorithm of Das et al. [6]. Another advantage of our algorithm
is that it is significantly simpler and easier to analyze than that algorithm.

Our result is a first step towards answering the open question of Chepoi et al. [2].
In the full version [5] we give indications that it may be difficult to obtain an O(1)-
approximation algorithm since the problem can be viewed as a geometric rectangle
covering problem. There we also argue why existing techniques for MMN seem to fail,
which underlines the relevance of our techniques.

2 Divide-And-Conquer Scheme

As a warm-up, we start with a simple O(log2 n)-approximation algorithm illustrating
our divide-and-conquer scheme. This is the basis for (a) an improved O(log n)-appro-
ximation algorithm that uses our stabbing technique (see Section 3) and (b) a divide-
and-conquer scheme for GMMN in arbitrary dimensions (Section 4). We prove the
following.
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Theorem 1. GMMN admits an O(log2 n)-approximation algorithm running in
O(n log3 n) time.

Our algorithm consists of a main algorithm that recursively subdivides the input in-
stance into instances of so-called x-separated GMMN; see Section 2.1. We prove that
the instances of x-separated GMMN can be solved independently by paying a factor of
O(log n) in the overall approximation ratio. Then we solve each x-separated GMMN
instance within factor O(log n); see Section 2.2. This yields an overall approximation
ratio of O(log2 n). Our analysis is tight; see the full version [5]. Our presentation fol-
lows this natural top-down approach; as a consequence, we will make some forward
references to results that we prove later.

2.1 Main Algorithm

Our algorithm is based on divide and conquer. LetR be the set of terminal pairs that are
to be M-connected. Recall that we identify each terminal pair with its bounding box.
As a consequence of this, we consider R, a set of rectangles. Let mx be the median in
the multiset of the x-coordinates of terminals where a terminal occurs as often as the
number of pairs it is involved in. We identify mx with the vertical line at x = mx.

Now we partition R into three subsets Rleft, Rmid, and Rright. Rleft consists of all
rectangles that lie completely to the left of the vertical linemx. Similarly,Rright consists
of all rectangle that lie completely to the right of mx. Rmid consists of all rectangles
that intersect mx.

We consider the setsRleft,Rmid, andRright as separate instances of GMMN. We ap-
ply the main algorithm recursively to Rleft to get a rectilinear network that M-connects
terminal pairs in Rleft and do the same for Rright.

It remains to M-connect the pairs inRmid. We call a GMMN instance (such asRmid)
x-separated if there is a vertical line (in our case mx) that intersects every rectangle.
We exploit this property to design a simple O(log n)-approximation algorithm for x-
separated GMMN; see Section 2.2. In Section 3, we improve upon this and describe an
O(1)-approximation algorithm for x-separated GMMN.

In the following lemma we analyze the performance of the main algorithm, in terms
of ρx(n), our approximation ratio for x-separated instances with n terminal pairs.

Lemma 1. Let ρx(n) be a non-decreasing function. Then, if x-separated GMMN ad-
mits a ρx(n)-approximation algorithm, GMMN admits a (ρx(n) · log n)-approximation
algorithm.

Proof. We determine an upper bound ρ(n) on the main algorithm’s approximation ratio
for instances with n terminal pairs. Let Nopt be an optimum solution to an instance R
of size n and let OPT be the cost of Nopt. Let Nopt

left and Nopt
right be the parts of Nopt to

the left and to the right ofmx, respectively. (We split horizontal segments that crossmx

and ignore vertical segments on mx.)
Due to the choice of mx, at most n terminals lie to the left of mx. Therefore, Rleft

contains at most n/2 terminal pairs. Since Nopt
left is a feasible solution to Rleft, we con-

clude (by induction) that the cost of the solution to Rleft computed by our algorithm
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is bounded by ρ(n/2) · ‖Nopt
left‖, where ‖ · ‖ measures the length of a network. Analo-

gously, the cost of the solution computed for Rright is bounded by ρ(n/2) · ‖Nopt
right‖.

SinceNopt is also a feasible solution to the x-separated instanceRmid, we can compute
a solution of cost ρx(n) ·OPT for Rmid.

As the networks Nopt
left and Nopt

right are separated by line mx, they are edge disjoint

and hence ‖Nopt
left ‖ + ‖Nopt

right‖ ≤ OPT. Therefore, we can bound the total cost of our
algorithm’s solution N to R by

ρ(n/2) · (‖Nopt
left‖+ ‖Nopt

right‖) + ρx(n) ·OPT ≤ (ρ(n/2) + ρx(n)) ·OPT .

This yields the recurrence ρ(n) = ρ(n/2) + ρx(n), which resolves to ρ(n) ≤ logn ·
ρx(n). 	


Lemma 1 together with the results of Section 2.2 allow us to prove Theorem 1.

Proof (of Theorem 1). By Lemma 1, our main algorithm has performance ρx(n) · log n,
where ρx(n) denotes the ratio of an approximation algorithm for x-separated GMMN.
In Lemma 2 (Section 2.2), we will show that there is an algorithm for x-separated
GMMN with ratio ρx(n) = O(log n). Thus overall, the main algorithm yields an
O(log2 n)-approximation for GMMN. See the full version [5] for the running time anal-
ysis. 	


2.2 Approximating x-Separated and xy-Separated Instances

We describe a simple algorithm for approximating x-separated GMMN with a ratio
of O(log n). Let R be an x-separated instance, that is, all rectangles in R intersect a
common vertical line.

The algorithm works as follows. Analogously to the main algorithm we subdivide
the x-separated input instance, but this time using the line y = my , where my is the
median of the multiset of y-coordinates of terminals in R. This yields sets Rtop, R′mid,
and Rbottom, defined analogously to the sets Rleft, Rmid, and Rright of the main algo-
rithm, using my instead of mx. We apply our x-separated algorithm to Rtop and then
to Rbottom to solve them recursively. The instance R′mid is a y-separated sub-instance
with all its rectangles intersecting the line my . Moreover, R′mid (as a subset of R) is
already x-separated, thus we call R′mid an xy-separated instance. Below, we describe
a specialized algorithm to approximate xy-separated instances within a constant factor.
Assuming this for now, we prove the following.

Lemma 2. x-separated GMMN admits an O(log n)-approximation algorithm.

Proof. Let ρx(n) be the ratio of our algorithm for approximating x-separated GMMN
instances and let ρxy(n) be the ratio of our algorithm for approximating xy-separated
GMMN instances. In Lemma 3, we show that ρxy(n) = O(1).

Following the proof of Lemma 1 (exchanging x- and y-coordinates and using
Rtop, R′mid, Rbottom in place of Rleft, Rmid, Rright), yields ρx(n) = logn · ρxy(n)
= O(log n). 	
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It remains to show that xy-separated GMMN can be approximated within a constant
ratio. Let R be an instance of xy-separated GMMN. We assume, w.l.o.g., that it is the
x- and the y-axes that intersect all rectangles in R, that is, all rectangles contain the
origin o. To solveR, we compute an RSA network thatM -connects the set of terminals
in R to o. Clearly, we obtain a feasible GMMN solution to R. In the full version [5] we
prove that this is a constant-factor approximation algorithm.

Lemma 3. xy-separated GMMN admits a constant-factor approximation algorithm.

3 An O(logn)-Approximation Algorithm via Stabbing

In this section, we present an O(log n)-approximation algorithm for GMMN, which is
the main result of our paper. Our algorithm relies on an O(1)-approximation algorithm
for x-separated instances and is based on a novel stabbing technique that computes a
cheap set of horizontal line segments that stabs all rectangles. Our algorithm connects
these line segments with a suitable RSA solution to ensure feasibility and approximation
ratio. We show the following (noting that our analysis is tight up to a constant factor;
see the full version [5]).

Theorem 2. For any ε > 0, GMMN admits a ((6+ε) · logn)-approximation algorithm
running in O(n1/ε log2 n) time.

Proof. Using our new subroutine for the x-separated case given in Lemma 7 below,
along with Lemma 1 yields the result. See the full version [5] for the run-time analysis.

	


We begin with an overview of our improved algorithm for x-separated GMMN. Let R
be the set of terminal pairs of an x-separated instance of GMMN. We assume, w.l.o.g.,
that each terminal pair (t, t′) ∈ R is separated by the y-axis, that is, x(t) ≤ 0 ≤ x(t′)
or x(t′) ≤ 0 ≤ x(t). Let Nopt be an optimum solution to R. Let OPTver and OPThor

be the total costs of the vertical and horizontal segments in Nopt, respectively. Hence,
OPT = OPTver + OPThor. We first compute a set S of horizontal line segments of
total cost O(OPThor) such that each rectangle in R is stabbed by some line segment
in S; see Sections 3.1 and 3.2. Then we M-connect the terminals to the y-axis so that
the resulting network, along with S, forms a feasible solution to R of cost O(OPT);
see Section 3.3.

3.1 Stabbing the Right Part

We say that a horizontal line segment h stabs an axis-aligned rectangle r if the inter-
section of r and h equals the intersection of r and the supporting line of h. A set of
horizontal line segments is a stabbing of a set of axis-aligned rectangles if each rectan-
gle is stabbed by some line segment. For any geometric object, let its right part be its
intersection with the closed half plane to the right of the y-axis. For a set of objects, let
its right part be the set of the right parts of the objects. Let R+ be the right part of R,
let N+ be the right part of Nopt, and let N+

hor be the set of horizontal line segments
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in N+. In this section, we show how to construct a stabbing of R+ of cost at most
2 · ‖N+

hor‖.
For x′ ≥ 0, let �x′ be the vertical line at x = x′. Our algorithm performs a left-to-

right sweep starting with �0. For x ≥ 0, let Ix = {r ∩ �x | r ∈ R+} be the “traces” of
the rectangles in R+ on �x. The elements of Ix are vertical line segments; we refer to
them as intervals. A set Px of points on �x constitutes a piercing for Ix, if every interval
in Ix contains a point in Px.

Our algorithm continuously moves the line �x from left to right starting with x = 0.
In doing so, we maintain an inclusion-wise minimal piercing Px of Ix in the following
way: At x = 0, we start with an arbitrary minimal piercing P0. (Note that we can even
compute an optimum piercing.) We update Px whenever Ix changes. Observe that with
increasing x, the set Ix can only inclusion-wise decrease as all rectangles in R+ touch
the y-axis. Therefore, it suffices to update the piercing Px only at event points; x is an
event point if and only if x is the x-coordinate of a right edge of a rectangle in R+.
Let x′ and x′′ be consecutive event points. Let x be such that x′ < x ≤ x′′. Note that
Px′ is a piercing for Ix since Ix ⊂ Ix′ . The piercing Px′ is, however, not necessarily
minimal w.r.t. Ix. When the sweep line passes x′, we therefore have to drop some of the
points in Px′ in order to obtain a new minimal piercing. This can be done by iteratively
removing points from Px′ such that the resulting set still pierces Ix. We stop at the last
event point (afterwards, Ix = ∅) and output the traces of the piercing points in Px for
x ≥ 0 as our stabbing.

Note that with increasing x, our algorithm only removes points from Px but never
add points. Thus, the traces of Px form horizontal line segments that touch the y-axis.
These line segments form a stabbing ofR+; see the thick solid line segments in Fig. 2a.
The following lemma is crucial to prove the overall cost of the stabbing.

Lemma 4. For any x ≥ 0, it holds that |Px| ≤ 2 · |�x ∩N+
hor|.

Proof. Since Px is a minimal piercing, there exists, for every p ∈ Px, a witness Ip ∈
Ix that is pierced by p but not by Px \ {p}. Otherwise we could remove p from Px,
contradicting the minimality of Px.

Now we show that an arbitrary point q on �x is contained in the witnesses of at
most two points in Px. Assume, for the sake of contradiction, that q is contained in the
witnesses of points p, p′, p′′ ∈ Px with strictly increasing y-coordinates. Suppose that q
lies above p′. Then the witness Ip of p, which contains p and q, must also contain p′,
contradicting the definition of Ip. The case q below p′ is symmetric.

Observe that �x ∩ N+
hor is a piercing of Ix and, hence, of the |Px| many witnesses.

Since every point in �x ∩N+
hor pierces at most two witnesses, the lemma follows. 	


Next, we analyze the overall cost of the stabbing.

Lemma 5. Given a set R of rectangles intersecting the y-axis, we can compute a set of
horizontal line segments of cost at most 2 ·OPThor that stabs R+.

Proof. Observe that ‖N+
hor‖ =

∫
|�x ∩N+

hor| dx. The cost of our stabbing is
∫
|Px| dx.

By Lemma 4, this can be bounded by
∫
|Px| dx ≤

∫
2 · |�x∩N+

hor| dx = 2 ·‖N+
hor‖. 	
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(S−) stab R+ (R−). The dotted seg-
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bot(I)l

h

I

π

(c) Nopt ∪ {I} is fea-
sible for RSA instances
(L, top(I)), (H,bot(I)).

Fig. 2: The improved algorithm for x-separated GMMN

3.2 Stabbing the Right and Left Parts

We now detail how we construct a stabbing of R. To this end we apply Lemma 5 to
compute a stabbing S− of cost at most 2 · ‖N−hor‖ for the left part R− of R and a
stabbing S+ of cost at most 2 · ‖N+

hor‖ for the right part R+. Note that S− ∪ S+ is
not necessarily a stabbing of R since there can be rectangles that are not completely
stabbed by one segment (even if we start with the same piercing on the y-axis in the
sweeps to the left and to the right). To overcome this difficulty, we mirror S− and S+ to
the respective other side of the y-axis; see Fig. 2a. Let S denote the union of S− ∪ S+

and the mirror image of S− ∪ S+.

Lemma 6. Given a set R of rectangles intersecting the y-axis, we can compute a set of
horizontal line segments of cost at most 4 ·OPThor that stabs R.

Proof. Let S be the set of horizontal line segments described above. The total cost of S
is at most 4(‖N−hor‖ + ‖N+

hor‖) = 4 · OPThor. The set S stabs R since, for every
rectangle r ∈ R, the larger among its two (left and right) parts is stabbed by some
segment s and the smaller part is stabbed by the mirror image s′ of s. Hence, r is
stabbed by the line segment s ∪ s′. 	


3.3 Connecting Terminals and Stabbing

We assume that the union of the rectangles in R is connected. Otherwise we apply our
algorithm separately to each subset of R that induces a connected component of

⋃
R.

Let I be the line segment that is the intersection of the y-axis with
⋃
R. Let top(I)

and bot(I) be the top and bottom endpoints of I , respectively. Let L ⊆ T be the
set containing every terminal t with (t, t′) ∈ R and y(t) ≤ y(t′) for some t′ ∈ T .
Symmetrically, let H ⊆ T be the set containing every terminal t with (t, t′) ∈ R and
y(t) ≥ y(t′) for some t′ ∈ T . Note that, in general, L and H are not disjoint.

Using a PTAS for RSA [12,19], we compute a near-optimal RSA network Aup con-
necting the terminals in L to top(I) and a near-optimal RSA networkAdown connecting
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the terminals inH to bot(I). Then we return the networkN = Aup∪Adown∪S, where
S is the stabbing computed by the algorithm in Section 3.2.

We prove in the following lemma that the resulting network is a feasible solution
to R, with cost at most constant times OPT.

Lemma 7. x-separated GMMN admits, for any ε > 0, a (6 + ε)-approximation
algorithm.

Proof. First we argue that the solution is feasible. Let (l, h) ∈ R. W.l.o.g., y(l) ≤ y(h)
and thus l ∈ L and h ∈ H . Hence,Aup contains a path πl from l to top(I), see Fig. 2b.
This path starts inside the rectangle (l, h). Before leaving (l, h), the path intersects a
line segment s in S that stabs (l, h). The segment s is also intersected by the path πh
in Adown that connects h to bot(I). Hence, walking along πl, s, and πh brings us in a
monotone fashion from l to h.

Now, let us analyze the cost of N . Clearly, the projection of (the vertical line seg-
ments of) Nopt onto the y-axis yields the line segment I . Hence, ‖I‖ ≤ OPTver.
Observe that Nopt ∪ {I} constitutes a solution to the RSA instance (L, top(I)) con-
necting all terminals in L to top(I) and to the RSA instance (H, bot(I)) connecting all
terminals in H to bot(I). This holds since, for each terminal pair, its M-path π in Nopt

crosses the y-axis in I; see Fig. 2c. Since Aup and Adown are near-optimal solutions to
these RSA instances, we obtain, for any δ > 0, that ‖Aup‖ ≤ (1 + δ) · ‖Nopt ∪ I‖ ≤
(1+δ)·(OPT+OPTver) and, analogously, that ‖Adown‖ ≤ (1+δ)·(OPT+OPTver).

By Lemma 6, we have ‖S‖ ≤ 4 ·OPThor. Assuming δ ≤ 1, this yields

‖N‖ = ‖Aup‖+ ‖Adown‖+ ‖S‖ ≤ (2 + 2δ) · (OPT+OPTver) + 4 ·OPThor

≤ (2 + 2δ) ·OPT+ 4 · (OPTver +OPThor) = (6 + 2δ) ·OPT .

Setting δ = ε/2 yields the desired approximation factor. 	


4 Generalization to Higher Dimensions

In this section, we describe an O(logd+1 n)-approximation algorithm for GMMN in d
dimensions and prove the following result (see below for the proof). In the full ver-
sion [5] we show that the analysis of the algorithm is essentially tight (up to one log-
factor).

Theorem 3. In any fixed dimension d, GMMN admits an O(logd+1 n)-approximation
algorithm running in O(n2 logd+1 n) time.

In Section 2 we reduced GMMN to x-separated GMMN and then x-separated GMMN
to xy-separated GMMN. Each of the two reductions increased the approximation ra-
tio by a factor of O(log n). The special case of xy-separated GMMN was approxi-
mated within a constant factor by solving a related RSA problem. This gave an overall
O(log2 n)-approximation algorithm for GMMN. We generalize this approach to higher
dimensions.

An instance R of d-dimensional GMMN is called j-separated for some j ≤ d if
there exist values s1, . . . , sj such that, for each terminal pair (t, t′) ∈ R and for each
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dimension i ≤ j, we have that si separates the i-th coordinates xi(t) of t and xi(t′)
of t′ (meaning that either xi(t) ≤ si ≤ xi(t

′) or xi(t′) ≤ si ≤ xi(t)). Under this
terminology, an arbitrary instance of d-dimensional GMMN is always 0-separated.

The following lemma reduces j-separated GMMN to (j − 1)-separated GMMN at
the expense of a (logn)-factor in the approximation ratio. The proof is similar to the
2D case; see the full version [5].

Lemma 8. Let 1 ≤ j ≤ d. If j-separated GMMN admits a ρj(n)-approximation algo-
rithm, then (j−1)-separated GMMN admits a (ρj(n)·log n)-approximation algorithm.

Analogously to dimension two we can approximate instances of d-separated GMMN by
reducing the problem to RSA. Rao et al. [17] presented an O(log |T |)-approximation
algorithm for 2D-RSA, which generalizes to d-dimensional RSA as we show in the full
version [5]. Using this, we derive there the following result.

Lemma 9. d-separated GMMN admits an O(log n)-approximation algorithm for any
fixed dimension d.

We are now ready to give the proof of Theorem 3.

Proof (Proof of Theorem 3). Combining Lemmata 8 and 9 and applying them induc-
tively to arbitrary (that is, 0-separated) GMMN instances yields the claim. See the full
version [5] for the run-time analysis. 	


As a byproduct of Theorem 3, we obtain an O(logd+1 n)-approximation algorithm for
MMN where n denotes the number of terminals. This holds since any MMN instance
with n terminals can be considered an instance of GMMN with O(n2) terminal pairs.

Corollary 1. In any fixed dimension d, MMN admits an O(logd+1 n)-approximation
algorithm running in O(n4 logd+1 n) time, where n denotes the number of terminals.

5 Conclusions

In 2D, there is quite a large gap between the currently best approximation ratios for
MMN and GMMN. Whereas we have presented an O(log n)-approximation algorithm
for GMMN, MMN admits 2-approximation algorithms [2,10,16]. In the full version [5],
we give indications that this gap might not only be a shortcoming of our algorithm. It
would be interesting to derive some non-approximability result for GMMN. So far, the
only such result is the APX-hardness of 3D-MMN [13].

Concerning the positive side, for d ≥ 3, a constant-factor approximation algorithm
for d-dimensional RSA would shave off a factor ofO(log n) from the current ratio for d-
dimensional GMMN. This may be in reach since 2D-RSA admits even a PTAS [12,19].
Alternatively, a constant-factor approximation algorithm for (d− k)-separated GMMN
for some k ≤ d would shave off a factor of O(logk n) from the current ratio for d-
dimensional GMMN.
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Abstract. Let P be an undirected path graph of n vertices. Each edge
of P has a positive length and a constant capacity. Every vertex has a
nonnegative supply, which is an unknown value but is known to be in a
given interval. The goal is to find a point on P to build a facility and
move all vertex supplies to the facility such that the maximum regret is
minimized. The previous best algorithm solves the problem inO(n log2 n)
time and O(n log n) space. In this paper, we present an O(n log n) time
andO(n) space algorithm, and our approach is based on new observations
and algorithmic techniques.

1 Introduction

Facility location problems on networks have received considerable attention over
a few decades. The problems are normally concerned with networks where the
information (e.g., the vertex and the edge weights) are known precisely. However,
data in practice often involve uncertainty and may change with the time. Re-
cently facility locations problems in uncertain environments have been studied,
e.g., [1–11, 13, 16, 17]. One approach that is often used to model the uncertainty
is the worst-case analysis in which one is looking for a solution that performs
reasonably well for all possible scenarios (where a scenario is a specific realiza-
tion of all uncertain parameters of the problem). There are many optimization
criteria in the worst-case analysis. In particular, the minmax regret optimization
aims at obtaining a solution that minimizes the maximum deviation, over all
possible scenarios, between the value of the solution and the optimal value of
the corresponding scenario, e.g., [2, 4, 6–8, 10, 13, 17]. In other words, the min-
max regret optimization seeks to minimize the worst-case loss in the objective
function value that may occur because the solution is chosen without knowing
which scenario will take place.

In this paper, we consider the minmax regret 1-facility location problem on un-
certain path networks where the vertex weights are uncertain. The problem was
proposed recently by Cheng et al. [10] and an O(n log2 n) time and O(n log n)
space algorithm was given in [10]. By discovering more observations, we present
an O(n logn) time and O(n) space algorithm. As discussed in [10], the problem
is motivated by an earthquake evacuation problem due to the Tohoku-Pacific

L. Cai, S.-W. Cheng, and T.-W. Lam (Eds.): ISAAC2013, LNCS 8283, pp. 733–743, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Ocean Earthquake that happened in Japan on March 11st, 2011. For example,
suppose we have a highway that connects many cities and we want to find a
location on the highway to build an evacuation facility such that when earth-
quake happens we can evacuate people in all these cities to the facility as soon
as possible. The number of people in each city is uncertain due to different time
(e.g., weekdays, weekends, days, nights, holidays). We formally introduce the
problem below, and some notations are borrowed from [10].

1.1 Problem Definitions

Let P = (V,E) be a path graph, with the vertex set V = {v1, . . . , vn} and
the edge set E = {e1, . . . , en−1}, such that ei connects vi and vi+1 for each
1 ≤ i ≤ n − 1. Each edge e ∈ E has a positive weight l(e). Each vertex vi ∈ V
has a weight wi (e.g., the number of evacuees), which is unknown but is known
in a given interval [w−i , w

+
i ] with 0 ≤ w−i ≤ w+

i . Let c be a constant representing
the capacity of each edge, which is the maximum number of evacuees passing
any point in any unit time. Let τ be a positive constant representing the time
required for traversing a unit distance of every evacuee. Let Σ be the Cartesian
product of all intervals [w−i , w

+
i ] for 1 ≤ i ≤ n. Every element s ∈ Σ is called

a scenario that is a feasible assignment of weights to the vertices of P . For any
scenario s ∈ Σ, for each 1 ≤ i ≤ n, we denote by wi(s) the weight of the vertex
vi in the scenario s, and w−i ≤ wi(s) ≤ w+

i .
As in [10], we embed the path P on a real line L (e.g., the x-axis) such that

each vertex vi ∈ V is associated with the coordinate xi = x1 +
∑i−1

j=1 l(ej) for
each 2 ≤ i ≤ n. For each point x ∈ L, with a little abuse of notation, we use
x to denote the coordinate of the point. We also use P to denote the set of
points x on L with x1 ≤ x ≤ xn. For any point x ∈ P , let PL(x) = {t ∈
P | t < x} and PR(x) = {t ∈ P | t > x}. Suppose we build a facility at a
location x ∈ P . Consider any scenario s ∈ Σ. We use TL(x, s) to denote the
minimum time for the evacuees on PL(x) to move to x; similarly, let TR(x, s)
denote the minimum time for the evacuees on PR(x) to move to x. Note that
if x is at a vertex vi ∈ V , then we assume the evacuees at vi can complete
evacuation in no time. As discussed in [10], by [12], TL(x, s) and TR(x, s) can

be expressed as: TL(x, s) = maxvi∈PL(x){(x − xi) · τ + � 1c ·
∑i

j=1 wj(s)� − 1},
and TR(x, s) = maxvi∈PR(x){(xi − x) · τ + � 1c ·

∑n
j=i wj(s)� − 1}. Note that if

PL(x) = ∅, TL(x, s) = 0, and if PR(x) = ∅, TR(x, s) = 0.
As in [10], we only need to consider the special case c = 1 since the general case

can be treated in the similar way, and also, we can omit −1 from the formulas
above when designing the algorithm. Hence, as in [10], we can simply use the

following definitions: TL(x, s) = maxvi∈PL(x){(x − xi) · τ +
∑i

j=1 wj(s)}, and
TR(x, s) = maxvi∈PR(x){(xi − x) · τ +

∑n
j=i wj(s)}.

As in [10], for convenience of discussion, for each 1 ≤ i ≤ n, we define a
function f iL(x, s) on x > xi and a function f iR(s, x) on x < xi as follows:

f iL(x, s) = (x−xi)·τ+
∑i

j=1 wj(s) and f
i
R(x, s) = (xi−x)·τ+

∑n
j=i wj(s). Hence,

we have TL(x, s) = maxvi∈PL(x) f
i
L(x, s) and TR(x, s) = maxvi∈PR(x) f

i
R(x, s).
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Let T (x, s) to denote the minimum time for all evacuees on P to move to
x. Thus, T (x, s) = max{TL(x, s), TR(x, s)}. Denote by xopt(s) a point on P
such that T (x, s) is minimized when x = xopt(s), and one may consider xopt(s)
as an optimal location for the scenario s. For any point x on L, let R(x, s) =
T (x, s) − T (xopt(s), s), and we call R(x, s) the regret of x in the scenario s.
Intuitively, R(x, s) is the regret (i.e., the opportunity loss) caused by choosing
the location x instead of the optimal location xopt(s). Finally, the maximum
regret of x is defined as Rmax(x) = maxs∈Σ R(x, s). In other words, Rmax(x) is
the worst-case opportunity loss for choosing the location x.

Our minmax regret problem is to choose a location x on L such that the
maximum regret Rmax(x) is minimized, and the minimized Rmax(x) is called
the minmax regret.

1.2 Our Results

We present an algorithm of O(n log n) time and O(n) space for the problem,
which improves the O(n log2 n) time and O(n logn) space algorithm [10].

Our algorithm makes use of the critical observation given in [10] that there
are a set S of 2n scenarios such that for any point x on L, the “worst-case”
scenario for Rmax(x) must be in S. This implies that instead of considering the
infinitely many scenarios of Σ for computing Rmax(x), we only need to consider
the scenarios in S. The algorithm has two main steps. The first step is to compute
the optimal positions for all scenarios in S. The second step is to compute the
minmax regret. Algorithms of O(n log2 n) time are given in [10] for each step. By
discovering more observations, we solve each step in O(n log n) time (and O(n)
space) by even simpler algorithms. In particular, the high level scheme of our
approach for the second step is binary search, whose efficiency hinges on solving
the following sub-problem in linear time: Given any point x on L, compute the
values TL(x, s) and TR(x, s) for all scenarios s ∈ S. A straightforward method
can compute TL(x, s) and TR(x, s) in O(n) time for each scenario s, and thus
solves the sub-problem in O(n2) time. We present an O(n) time algorithm for
the sub-problem, and it should be noted that our algorithm itself is very simple
but it is more challenging to observe the crucial properties behind the scene.

We discuss basic observations in Section 2. In Section 3, we compute the
optimal locations for all scenarios in S. Section 4 computes the minmax regret.

2 Preliminaries

We discuss some basic observations. Most of them have been discovered in [10]
and we sketch them in this section for completeness of this paper.

Our goal is to find a location x to minimize the maximum regret Rmax(x) =
maxs∈Σ R(x, s). Consider any point x on P and any scenario s ∈ Σ. To compute
R(x, s), we need to known xopt(s) first. Recall that xopt(s) is the value such that
T (x, s) = max{TL(x, s), TR(x, s)} is minimized when x = xopt(s). To determine
xopt(s), we discuss some properties of TL(x, s) and TR(x, s).
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x1 xi

fL
1(x,s)

x

fL(x,s)i

Fig. 1. Illustrating the functions f i
L(x, s).

TL(x, s) is the upper envelope of them,
shown with red color.

x1 xnx*=xopt(s) x

Fig. 2. Illustrating the function T (x, s)
shown with thick segments and the opti-
mal location xopt(s)

Recall that TL(x, s) = maxvi∈PL(x) f
i
L(x, s). For each 1 ≤ i ≤ n, the function

f iL(x, s) defines in the plane an open half-line of slope τ with (but excluding) the

(left) endpoint (xi,
∑i

j=1 wj(s)) (e.g., see Fig. 1). TL(x, s) is the upper envelope

of the n half-lines defined by the functions f iL(x, s) for i = 1, . . . , n. Since τ > 0,
TL(x, s) is a strictly increasing function of x (e.g., see Fig. 1). Similarly, each
f iR(x, s) defines an open half-line of slope −τ with (but excluding) the (right)
endpoint (xi,

∑n
j=i wj(s)), and TR(x, s) is the corresponding upper envelope,

which is strictly decreasing. Since T (x, s) = max{TL(x, s), TR(x, s)}, T (x, s) is
convex and there exists a value x∗ such that T (x, s) is strictly decreasing on
(−∞, x∗] and increasing on [x∗,+∞) (e.g., see Fig. 2). Note that the above x∗

is xopt(s). These properties are already given in [10]. The above discussion also
shows that for any scenario s ∈ Σ, T (x, s) is the upper envelope of the functions
f iL(x, s) and f

i
R(x, s) for i = 1, . . . , n.

For any point x, to compute the maximum regret Rmax(x), a straightfor-
ward approach is the enumerate all scenarios in Σ to compute R(x, s) for every
scenario s ∈ Σ. However, since there are infinitely many scenarios in Σ, the
approach does not work. Below, we use a difference approach.

A scenario s is the worst-case scenario for the location x if Rmax(x) = R(x, s),
and we denote it by s(x). Clearly, if we know s(x), then we can compute
Rmax(x) = R(x, s(x)). Cheng et al. [10] provided a way to determine a set
S of at most 2n scenarios such that s(x) must be in S for any x, as follows.

For each 1 ≤ i ≤ n, let siL be the scenario where the weight wj(s
i
L) of the

vertex vj is w+
j for each j with 1 ≤ j ≤ i, and wj(s

i
L) = w−j for each j with

i+ 1 ≤ j ≤ n if i < n. Symmetrically, for each 1 ≤ i ≤ n, let siR be the scenario
where wj(s

i
R) = w−j for each j with 1 ≤ j ≤ i, and wj(s

i
R) = w+

j for each j with

i + 1 ≤ j ≤ n if i < n. Let SL = {siL | 1 ≤ i ≤ n} and SR = {siR | 1 ≤ i ≤ n}.
Let S = SL ∪ SR. The following lemma has been proved in [10].

Lemma 1. [10] For any point x on L, there exists a worst-case scenario for x
in S.

In light of Lemma 1, we have Rmax(x) = maxs∈S R(x, s). Hence, to compute
Rmax(x), instead of considering all scenarios of Σ, we only need to consider
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xi xi+1

sL
i(   )xopt

sL
i+1xopt(      )

x

Fig. 3. Illustrating TL(s
i
L), TR(s

i
L), TL(s

i+1
L ), and TR(s

i+1
L ). TL(s

i+1
L ) (resp., TR(s

i+1
L ))

can be obtained by shifting a portion of TL(s
i
L) (resp., TR(s

i
L)) on the right (resp., left)

of xi+1 upwards for w
+
i+1 − w−

i+1

the 2n scenarios in S. For each s ∈ S, to compute R(x, s), we need to know
the optimal location xopt(s). Cheng et al. [10] presented an O(n log2 n) time
algorithm for computing xopt(s) for all scenarios s ∈ S, and in Section 3 we
describe an O(n log n) time algorithm.

3 The Optimal Solutions for the Scenarios of S

In this section, we present an O(n logn) time and O(n) space algorithm for
computing xopt(s) for all scenarios s ∈ S, which improves the O(n log2 n) time
algorithm in [10]. Our improvement is due in a large part to certain monotone
properties of the values xopt(s) given in the following lemma.

Lemma 2. For any two scenarios siL and si+1
L of SL with 1 ≤ i ≤ n − 1,

if xi+1 ≤ xopt(s
i
L), then xi+1 ≤ xopt(s

i+1
L ) ≤ xopt(s

i
L); otherwise, xopt(s

i
L) ≤

xopt(s
i+1
L ) ≤ xi+1.

Proof. We only prove the case where xi+1 ≤ xopt(s
i
L) since the proof for the

other case where xi+1 > xopt(s
i
L) is very similar.

According to the definitions of the two scenarios siL and si+1
L , for each vertex

vj , if j �= i+ 1, the weights of vj in the two scenarios are the same, but for the
vertex vi+1, wi+1(s

i
L) = w−i+1 and wi+1(s

i+1
L ) = w+

i+1. By Corollary 1 in [10],

xi+1 ≤ xopt(s
i+1
L ) holds. Below, we prove xopt(s

i+1
L ) ≤ xopt(s

i
L). To this end, it

is sufficient to show that TL(x, s
i+1
L ) > TR(x, s

i+1
L ) for any x > xopt(s

i
L). The

details are given below.
Consider any value x > xopt(s

i
L). Since TL(x, s) is strictly monotone increasing

and TR(x, s) is strictly monotone decreasing for any scenario s, according to the
definition of xopt(s

i
L), we have TL(x, s

i
L) > TR(x, s

i
L).

According to the definitions of siL and si+1
L , f jL(t, s

i+1
L ) ≥ f jL(t, s

i
L) for any

j ≥ i+1 and any t > xj (more precisely, f jL(t, s
i+1
L ) = f jL(t, s

i
L) +w+

i+1 −w−i+1),

and f jL(t, s
i+1
L ) = f jL(t, s

i
L) for any j ≤ i and any t > xj (e.g., see Fig. 3). Due

to x > xopt(s
i
L) ≥ xi+1, we obtain TL(x, s

i+1
L ) ≥ TL(x, s

i
L).



738 H. Wang

Similarly, f jR(t, s
i+1
L ) ≥ f jR(t, s

i
L) for any j ≤ i + 1 and any t < xj , and

f jR(t, s
i+1
L ) = f jR(t, s

i
L) for any j ≥ i+ 2 and any t < xj (e.g., see Fig. 3). Since

x > xopt(s
i
L) ≥ xi+1, none of the functions f jR(t, s

i+1
L ) for j ≤ i+1 is defined on

t = x. Therefore, we obtain TR(x, s
i+1
L ) = TR(x, s

i
L).

The above shows that TL(x, s
i
L) > TR(x, s

i
L), TL(x, s

i+1
L ) ≥ TL(x, s

i
L), and

TR(x, s
i+1
L ) = TR(x, s

i
L). Hence, we conclude that TL(x, s

i+1
L ) > TR(x, s

i+1
L ).

Lemma 2 implies the following monotone property of xopt(s
i
L). Suppose initially

x2 ≤ xopt(s
1
L); as the index i increases, xopt(x

i
L) moves monotonically “back-

ward” to the left until at some moment xi+1 > xopt(x
i
L) happens, after which

xopt(x
i
L) moves monotonically “forward” to the right. This monotone property

turns out to be quite useful to our algorithm. Similarly, we have Lemma 3 for
SR, which implies a monotone property of xopt(s

i
R). The proof of Lemma 3 is

symmetric to that for Lemma 2, and we omit it.

Lemma 3. For any two scenarios siR and si+1
R of SR with 1 ≤ i ≤ n − 1, if

xi+1 ≤ xopt(s
i
R), then xi+1 ≤ xopt(s

i
R) ≤ xopt(s

i+1
R ); otherwise, xopt(s

i+1
R ) ≤

xopt(s
i
R) ≤ xi+1.

Based on Lemmas 2 and 3, we present our algorithm for computing xopt(s) for
all s ∈ S as follows. We first compute xopt(s) for all s ∈ SL, using Lemma 2.

We will compute xopt(s
i
L) in the index order i = 1, 2, . . . , n. We assume we al-

ready have a data structure D that can compute the values TL(x, s) and TR(x, s)
whenever needed for any x and s ∈ SL. Initially, to determine xopt(s

1
L), we com-

pute the values TL(x, s
1
L) and TR(x, s

1
L) for x = x1, x2, . . . in the (forward) order

to find the smallest index i1 such that TL(xi1 , s
1
L) ≥ TR(xi1 , s

1
L). As discussed

in [10], xopt(s
1
L) ∈ [xi1−1, xi1 ] and can be determined in constant time. Next,

we compute xopt(x
2
L). Assume x2 ≤ xopt(x

2
L). By Lemma 2, x2 ≤ xopt(x

2
L) ≤

xopt(x
1
L), we only need to search the portions of TL(x, s

2
L) and TR(x, s

2
L) for

x2 ≤ x ≤ xopt(s
1
L). To this end, we compute the values TL(x, s

2
L) and TR(x, s

2
L)

by using D for x = xi1 , xi1−1, . . . in the (backward) order to find the first index
i2 such that TL(xi2 , s

2
L) ≥ TR(xi2 , s

2
L) and TL(xi2−1, s

2
L) < TR(xi2−1, s

2
L). As

discussed in [10], xopt(s
2
L) ∈ [xi2−1, xi2 ] and can be determined in constant time.

In general, assume xopt(s
j
L) has been computed and xj+1 ≤ xopt(s

j
L). Further,

assume xopt(s
j
L) is known in the interval [xij−1, xij ]. To compute xopt(s

j+1
L ),

by Lemma 2, we have xj+1 ≤ xopt(s
j+1
L ) ≤ xopt(s

j
L). We compute the values

TL(x, s
j+1
L ) and TR(x, s

j+1
L ) by D for x = xij , xij−1, . . . in the (backward) or-

der to find the first index ij+1 such that TL(xij+1 , s
j+1
L ) ≥ TR(xij+1 , s

j+1
L ) and

TL(xij+1−1, s
j+1
L ) < TR(xij+1−1, s

j+1
L ). Again, xopt(s

j+1
L ) ∈ [xij+1−1, xij+1 ] and

can be determined in constant time.
We continue the same procedure until the first time we have computed xopt(s

k
L)

with xopt(x
k
L) < xk+1 for an index k. We also have the interval [xik−1, xik ] that

contains xopt(s
k
L). By Lemma 2, xopt(s

k
L) ≤ xopt(s

k+1
L ) ≤ xk+1. Hence, to com-

pute xopt(s
k+1
L ), we need to search the portions of TL(x, s

k+1
L ) and TR(x, s

k+1
L ) for

xopt(s
k
L) ≤ x. To this end, we compute the valuesTL(x, s

k+1
L ) andTR(x, s

k+1
L ) byD

for x = xik−1, xik , . . . in the (forward) order to find the first index ik+1 such that
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TL(xik+1
, sk+1

L ) ≥ TR(xik+1
, sk+1

L ) and TL(xik+1−1, s
k+1
L ) < TR(xik+1−1, s

k+1
L ).

Again,xopt(s
k+1
L ) ∈ [xik+1−1, xik+1

] and can be determined in constant time.Next,

we compute xopt(s
k+2
L ). We have the following observation.

Observation 1. xopt(s
k+1
L ) < xk+2 holds.

Proof. By Lemma 2, we have xopt(s
k
L) ≤ xopt(s

k+1
L ) ≤ xk+1. Due to xk+1 <

xk+2, the observation simply follows.

Due to the above observation, we can compute xopt(s
k+2
L ) in the similar way

as xopt(s
k+1
L ). We continue this procedure to compute xopt(s

j
L) for j = k +

2, k+3, . . . , n. Note that similar observation as Observation 1 always holds (i.e.,
xopt(s

j
L) < xj+1 for any j with k + 1 ≤ j ≤ n − 1). The algorithm stops when

xopt(s
n
L) is computed.

To analyze the running time, suppose any needed values TL(x, s) and TR(x, s)
in the above algorithm can be computed in O(TD) time by using the data struc-
ture D; then we have the following lemma.

Lemma 4. The values xopt(s) for all scenarios s ∈ SL can be computed in
O(n · TD) time.

Proof. It is sufficient to show that the number of calls to D is O(n) in the entire
algorithm. We still use k to denote the smallest index with xopt(s

k
L) < xk+1.

By the monotone property in Lemma 2, xopt(s
i
L) is moving monotonically to

the left for i = 1, 2, . . . , k, and xopt(s
i
L) is moving monotonically to the right for

i = k+1, k+2, . . . , n. When we compute xopt(s
i
L) for i = 1, . . . , k, the x values for

computing TL(x, s
i
L) and TR(x, s

i
L) are monotone decreasing. Therefore, when

computing the values xopt(s
i
L)’s for i = 1, . . . , k, the total number of calls on D

is O(n). Analogously, when computing the values xopt(s
i
L)’s for i = k+1, . . . , n,

the total number of calls on D is also O(n). The lemma thus follows.

It remains to design the data structure D, which is given in Lemma 5. We
should point out that our algorithm has a property that makes the design of our
data structure in Lemma 5 easier. Specifically, in our algorithm for computing
xopt(s) for all s ∈ SL, when we are computing xopt(s

i
L), for any 1 ≤ i ≤ n, we

need to compute TL(x, s
i
L) and TR(x, s

i
L) for certain values of x. After xopt(s

i
L)

is computed, we will never need to compute TL(x, s
i
L) and TR(x, s

i
L) for the

scenario siL again. Note that the corresponding algorithm in [10] does not have
such a property. Due to the space limit, the proof of Lemma 5 is omitted.

Lemma 5. In O(n) time and O(n) space, we can build a data structure D
that can compute in O(log n) time (i.e., TD = O(log n)) any value TL(x, s) or
TR(x, s) needed in our algorithm for computing xopt(s) for all s ∈ SL.

Combining Lemmas 4 and 5, the values xopt(s) for all scenarios s ∈ SL can be
computed in O(n log n) time. Using the similar algorithm and Lemma 3, we can
also compute the values xopt(s) for all scenarios s ∈ SR in O(n log n) time.

In summary, the values xopt(s) and T (xopt(s), s) for all scenarios s ∈ S =
SL ∪ SR can be computed in O(n logn) time and O(n) space.
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4 Computing the Minmax Regret

Our goal is to find an optimal location x∗ such that Rmax(x) = maxs∈Σ R(x, s) is
minimized at x = x∗, where R(x, s) = T (x, s)− T (xopt(s), s). Again, by Lemma
1, Rmax(x) = maxs∈S R(x, s), which also implies that Rmax(x) is the upper
envelope of the functions R(x, s) for all s ∈ S.

Consider any scenario s. Since T (xopt(s), s) is a constant value and T (x, s)
is a convex function, R(x, s) is also convex. Therefore, Rmax(x) is the upper
envelope of a set of convex functions, which is also convex. To determine an
optimal solution x∗, it is sufficient to determine the lowest point of the convex
function Rmax(x). Due to the convex property of Rmax(x), we will use binary
search to find its lowest point. Since T (x, s) is the upper envelope of TL(x, s) and
TR(x, s), Rmax(x) is the upper envelope of TL(x, s) and TR(x, s) for all s ∈ S.

The high-level of our algorithm for finding x∗ is a binary search scheme on
the values x1, x2, . . . , xn. For each value xk considered in the binary search, we
compute the value Rmax(xk). To this end, we present an O(n) time algorithm
in Section 4.1 that can compute the values TL(x

′, s) and TR(x
′, s) for all s ∈ S,

for any x′, after which we can determine the value Rmax(x
′) in additional O(n)

time since we already know the values T (xopt, s) for all s ∈ S in Section 3.
Based on the function that gives the value Rmax(xk), we can also determine
which direction to do binary search in a standard way [14, 15]. The binary
search will end up with either x∗ = xi for some xi or an interval (xi, xi+1) such
that x∗ ∈ (xi, xi+1). In the latter case, we finally determine x∗ in additional
O(n) time by linear programming [14, 15] as follows. Note that for any scenario
s, the value TL(x, s) for x ∈ (xi, xi+1) are given by the same function f jL(x, s)
for some j, and similar observation holds for TR(x, s). We find the functions
giving the values in the interval (xi, xi+1) for TL(x, s

i
L), TR(x, s

i
L), TL(x, s

i
R),

and TR(x, s
i
R), for i = 1, . . . , n. This can be done in O(n) time by the same

algorithm in Section 4.1. Denote by F the O(n) functions computed above.
Hence, x∗ is the x-coordinate of the lowest point p∗ of the upper envelope of the
functions in F . Note that every function of F defines a half-line that spans the
interval (xi, xi+1). Hence, although each function of F is a half-line, p∗ is also
the lowest point of the upper envelope of the lines that contain the half-lines of
F , and thus p∗ can be computed in O(n) time by linear programming [14, 15].

4.1 A Linear Time Algorithm for Computing T (x′, s) for all s ∈ S

In this section, we present an O(n) time algorithm for computing T (x′, s) for all
s ∈ S, for any x′. In other words, our goal is to compute the values TL(x

′, siL),
TR(x

′, siL), TL(x
′, siR), and TR(x

′, siR), for i = 1, . . . , n. We only discuss our
algorithm for computing TL(x

′, siL) for i = 1, . . . , n since the algorithms for the
other three cases are quite similar. Further, for each 1 ≤ i ≤ n, the function
f jL(x

′, siL) that gives the value TL(x
′, siL) is also determined by the algorithm.

For any 1 ≤ i ≤ j ≤ n, we define α(i, j) =
∑j

k=i(w
+
k − w−k ). After O(n) time

preprocessing, given any i and j with 1 ≤ i ≤ j ≤ n, we can obtain the value
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α(i, j) in constant time. We omit the preprocessing details and below we assume
we have done the preprocessing. For convenience, we let α(i, j) = 0 if i > j.

Let x′ be any value with x1 ≤ x′ ≤ xn. We first determine the index i such
that xi−1 < x′ ≤ xi. Thus, for any scenario s, only functions f tL(x

′, s) with
1 ≤ t ≤ i − 1 are defined on x = x′, and any function f tL(x, s) with i ≤ t ≤ n
does not define on x = x′. We compute the value TL(x, s

1
L), which can be done

in O(n) time, e.g., by computing f jL(x
′, s1L) for each j with 1 ≤ j ≤ i− 1.

Let k be the index such that TL(x
′, s1L) is given by the function fkL(x

′, s1L),
e.g., TL(x

′, s1L) = fkL(x
′, s1L). Hence, k ≤ i− 1. Lemma 6 will be useful later.

Lemma 6. Consider a function f tL(x, s) and a scenario sjL. If 1 ≤ t, j ≤
i − 1, then f tL(x

′, sjL) = f tL(x
′, s1L) + α(2,m) with m = min{t, j}. This implies

f tL(x
′, stL) = f tL(x

′, sjL) if t ≤ j ≤ i− 1.

Proof. Consider any t and j with 1 ≤ t, j ≤ i−1. First of all, since xi−1 < x′ ≤ xi,
t ≤ i − 1, and j ≤ i − 1, both functions f tL(x, s

1
L) and f tL(x, s

j
L) are defined

on x = x′. Comparing with the scenario s1L, the weight of each vertex vh for

2 ≤ h ≤ j increase by w+
h − w−h in the scenario sjL, and the weights of all other

vertices are the same as before. According to their definitions, we obtain that
f tL(x

′, s1L) = f tL(x
′, sjL) + α(2, t) if t ≤ j, and f tL(x

′, s1L) = f tL(x
′, sjL) + α(2, j) if

t ≥ j. The lemma thus follows.

With the value TL(x
′, s1L), Lemma 7 computes TL(x

′, sjL) for 2 ≤ j ≤ k.

Lemma 7. If k ≥ 2, for any scenario sjL with 2 ≤ j ≤ k, TL(x
′, sjL) =

TL(x
′, s1L) + α(2, j).

Proof. Assume k ≥ 2. Consider any scenario sjL with 2 ≤ j ≤ k. We first prove

a claim that fkL(x
′, sjL) ≥ f tL(x

′, sjL) for any 1 ≤ t ≤ i− 1.
Due to TL(x

′, s1L) = fkL(x
′, s1L), it holds that fkL(x

′, s1L) ≥ f tL(x
′, s1L) for any

1 ≤ t ≤ i − 1. Consider any t with 1 ≤ t ≤ i − 1. By Lemma 6, we have
f tL(x

′, sjL) = f tL(x
′, s1L)+α(2,m), wherem = min{j, t}. Since j ≤ k, fkL(x

′, sjL) =
fkL(x

′, s1L) + α(2, j) holds by Lemma 6. Clearly, α(2, j) ≥ α(2,m) ≥ 0 due to

m ≤ j. Therefore, we obtain that fkL(x
′, sjL) ≥ f tL(x

′, sjL).

The above claim implies TL(x
′, sjL) = fkL(x

′, sjL). Since f
k
L(x

′, sjL) = fkL(x
′, s1L)

+ α(2, j) by Lemma 6 and TL(x
′, s1L) = fkL(x

′, s1L), the lemma follows.

Suppose the value TL(x
′, si−1

L ) has already been computed; Lemma 8 shows how

to obtain TL(x
′, sjL) for i ≤ j ≤ n. The proof of Lemma 8 is omitted.

Lemma 8. For any scenario sjL with i ≤ j ≤ n, TL(x
′, sjL) = TL(x

′, si−1
L ).

Based on the preceding two lemmas, we can easily compute TL(x
′, sjL) for j =

2, . . . , k in O(n) time, and compute TL(x
′, sjL) for j = i, . . . , n in O(n) time

provided that we know the value TL(x
′, si−1

L ).
It remains to compute TL(x

′, stL) for t = k+1, . . . , i− 1, for which we present
an O(n) time algorithm below. Note that our algorithm itself is simple, but it
is not easy to discover the observations behind the scene. Our algorithm will
compute a solution index list K = {k1, k2, . . . , kd} with the following properties:
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Property (1) k1 = k and k1 ≤ k2 ≤ · · · ≤ kd ≤ i− 1.

Property (2) For any j with 1 ≤ j ≤ d− 1, f
kj

L (x′, s
kj

L ) < f
kj+1

L (x′, s
kj+1

L ) and

f
kj

L (x′, s1L) ≥ f
kj+1

L (x′, s1L).
Property (3) For any j with 1 ≤ j ≤ d − 1, for any t with kj ≤ t < kj+1,

either f tL(x
′, stL) ≤ f

kj

L (x′, s
kj

L ) or f tL(x
′, s1L) < f

kj+1

L (x′, s1L). If kd �= i − 1,

then for any t with kd ≤ t ≤ i− 1, f tL(x
′, stL) ≤ fkd

L (x′, skd

L ).

If we already have such a solution index list K, Lemma 9 provides a way to
compute the values TL(x

′, stL) for k + 1 ≤ t ≤ i − 1 in O(n) time. The proof of
Lemma 9 is omitted.

Lemma 9. For any scenario stL with k+1 ≤ t ≤ i−1, if kj < t ≤ kj+1 for some

1 ≤ j ≤ d − 1, then TL(x
′, stL) = max{fkj

L (x′, stL), f
kj+1

L (x′, stL)}; if kd �= i − 1

and kd < t, then TL(x
′, stL) = fkd

L (x′, stL).

Suppose we have a solution index list K. After we compute the values f
kj

L (x′, s1L)
for j = 1, . . . , d inO(n) time, by Lemma 9we can compute TL(x

′, stL) for all k+1 ≤
t ≤ i− 1 in O(n) time (with the help of Lemma 6).

It remains to compute the solution index list K, for which we present a simple
linear time algorithm as follows.We assume the values f tL(x

′, s1L) for t = 1, . . . , i−
1 have been computed in O(n) time.

Our algorithmwill consider the indices incrementally from t = k+1 to t = i−1.
A stack A is maintained during the algorithm to store a sequence of indices.
Initially A contains only one index k, and after the algorithm finishes the index
list in A from bottom to top is exactly K. For each t with k+1 ≤ t ≤ i− 1, the
algorithm proceeds as follows. Let kj be the index on the top of the current stack

A. We first compare the two values f tL(x
′, s1L) and f

kj

L (x′, s1L). Note that both

values have been computed. If f tL(x
′, s1L) > f

kj

L (x′, s1L), then we pop kj out of A
and consider the next top index on A (this is consistent with Property (3) of K
and we ignore the detailed discussion on this). We claim that the stack A will
never be empty because the index k is at the bottom of A. Indeed, recall that
TL(x

′, s1L) = fkL(x
′, s1L) by the definition of k. Hence, fkL(x

′, s1L) ≥ fmL (x′, s1L) for
any 1 ≤ m ≤ i − 1, and in particular, f tL(x

′, s1L) ≤ fkL(x
′, s1L). Therefore, k will

never be popped out of A. If f tL(x
′, s1L) ≤ f

kj

L (x′, s1L), we further compare the two

values f tL(x
′, stL) and f

kj

L (x′, s
kj

L ). By Lemma 6, f tL(x
′, stL) = f tL(x

′, s1L) +α(2, t)

and f
kj

L (x′, s
kj

L ) = f
kj

L (x′, s1L) + α(2, kj). Hence, both f
t
L(x

′, stL) and f
kj

L (x′, s
kj

L )

can be computed in constant time. If f tL(x
′, stL) > f

kj

L (x′, s
kj

L ), then we push t
on the top of A and set kj+1 = t (this is consistent with Property (2) of K);
otherwise, we ignore t (this is consistent with Property (3) of K) and proceed on
t+1. After t = i−1 is considered, we terminate the algorithm and the index list
in the stack A is our solution index list K. The running time of the algorithm
is O(n) because once an index is popped out of A it will never be considered
again. We conclude this section with the following theorem.

Theorem 1. The optimal position x∗ for the minmax regret problem and the
maximum regret Rmax(x

∗) can be computed in O(n log n) time and O(n) space.
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Löffler, Maarten 317
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