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Abstract. Map databases usually suffer from obsolete scene details due to 
frequently occurring changes, therefore automatic change detection has become 
vital. Generally, change detection is done by spectral analysis of multi temporal 
images without including elevation information. In this paper, we describe a 
method for urban change detection by fusing high resolution aerial images with 
airborne lidar data which provides elevation information. For dealing with 
radiometric differences, three supervised learning algorithms are introduced 
which reduce the need for radiometric corrections. Three experiments are 
conducted on different training sets for each algorithm, to evaluate their 
performance on change detection and their sensitivity to unbalanced and noisy 
datasets. All algorithms are also compared with the standard PCA method. 
Experimental results demonstrate the capabilities of these methods and a 
detailed theoretical analysis of the achieved results is also presented.   
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1 Introduction 

City mapping and GIS are widely used in many fields and have also become the focus 
of recent research [3]. However, the databases usually suffer from obsolete scene 
details due to frequently occurring changes and require timely updating. Therefore, 
the development of change detection technology is critical. Change detection is the 
process of identifying differences in the state of an object or phenomenon by 
observing it at different times [1]. Traditionally, changes are detected from multi-
temporal images using spectral information alone. Many algorithms have been 
developed for dealing with this problem, such as image difference, PCA and post-
classification comparison [2]. However, with developments in sensor technology, 
high resolution images bring more challenges for those traditional algorithms and 
make their performance unstable. By using images alone, it is difficult to distinguish 
between classes with similar spectral features, or to separate objects made of the same 
material but with different semantic meaning [3].  
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Airborne lidar (Light Detection and Ranging) is an active acquisition system that 
scans the terrain normal to the flight direction by emitting infrared laser pulses at high 
frequency [4]. By exploiting the elevation information provided by lidar, researchers 
have explored change detection by image and lidar data fusion [5-6]. Trinder and 
Salah [4] evaluated the contribution of aerial images and lidar data to pixel level 
change detection using four methods, namely image difference, principal component 
analysis (PCA), minimum noise fraction transformation (MNF) and post-
classification (P-C) comparison. For each method, their results show an improvement 
in terms of best detection accuracy and omission and commission errors when the two 
data sources are fused. By fusing image and airborne lidar data, low contrast and 
shadow effects in images can be compensated for by the more accurately defined 
planes in lidar, and the poorly defined edges in lidar data can be compensated for by 
the accurately defined edges in aerial images [4]. However, the performance of P-C 
comparison is highly reliant on the classification accuracy in each individual image. 
For the other three methods, a thresholding step must to be implemented, which 
usually lacks justification. Besides, the choosing of the most suitable components is 
still problematic when using PCA and MNF methods.   

In this paper, we consider fusion of high resolution aerial images and airborne lidar 
data for urban change detection due to their complementary advantages. In order to 
overcome the drawbacks of traditional methods and make full use of lidar elevation 
data, three supervised learning algorithms are utilized for pixel level change detection, 
namely artificial neural network (ANN) [7], support vector machine (SVM) [8] and 
Logitboost [9]. ANN and SVM are well known off-the-shelf algorithms that can 
handle the nonlinear relationships and noise in the training set. Logitboost has been 
rarely used so far for change detection. It combines the ideas of additive models and 
logistic regression [9] and the performance of the base learner can usually be 
improved by the boosting process. By using supervised learning techniques, changes 
can be predicted directly without using thresholds and the radiometric differences 
between two images can be handled robustly as well.  

In order to demonstrate the capability of these algorithms, we conducted three 
experiments using different training sets. All algorithms were first tested on a dataset 
that contains 8 manually selected sub-images. Then, to address the imbalance in the 
data, we decreased the number of unchanged training instances using random 
sampling. Finally, some patches were hand-selected from those sub-images to create 
the third training set. All the three experiments were repeated 10 times with 10-fold 
cross validation (CV). After that, we further tested the performance of the three 
learning algorithms on all 8 sub-images based on the best model built in each 
experiment.  

The remainder of this paper is organized as follows. A brief overview of the three 
learning algorithms is presented in Section 2. The experiments and results of applying 
those algorithms to change detection are reported in Section 3 followed by detailed 
results discussion. Finally, conclusions are drawn and some perspectives are given in 
Section 4.  
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2 Learning Algorithms 

2.1 Artificial Neural Network 

Artificial neural network (ANN) is an information processing algorithm inspired by 
biological nervous systems [7]. It is composed of a large number of interconnected 
neurons with different weights on the edges. Such a network is able to learn highly 
complex and nonlinear relationships among data. This is achieved by a nonlinear 
transformation of the weighted sum of inputs at each individual unit and then combining 
them together. Among all structures of ANN, the Multi-Layer Perceptron (MLP) with 
back propagation learning algorithm is the best known [7]. The weights in the network 
are initialized to small values randomly and are optimized iteratively by minimizing the 
sum of squared errors. In order to avoid being trapped in local minima, a momentum 
term is added so that the neural network can step over local minima or flat regions 
during the gradient descent process and may achieve better performance.  

2.2 Support Vector Machine 

Support vector machine (SVM) is a statistical learning algorithm aimed at finding a 
linear separating hyperplane between two classes [8]. This hyperplane can be 
described using the function: 

( ) ( , )f x sign w x b= < > +  (1) 

SVM searches for the best hyperplane among all candidates by maximizing the 
geometric margins. This results in a classifier that separates training instances of 
different classes with the largest gap. SVM handles nonlinear relationships by 
adopting the kernel trick. It maps the feature vector into a higher dimensional space 
using a nonlinear function and then creates the hyperplane for separation, which 
corresponds to a nonlinear decision surface in the original feature space. When 
considering potential outliers in the dataset, a regularization term is added into the 
target function and the optimal plane is the one that provides the best trade-off 
between training errors and complexity of the decision surface.  

2.3 Logitboost 

Logitboost algorithm was introduced by Friedman et al. [9] and combines the ideas of 
additive model and logistic regression [9]. Logitboost fits its model by maximizing 
the binomial log-likelihood using a generalized backfitting algorithm called “Local 
Scoring”. Instead of using a weighted linear combination of input attributes, the 
posterior class probability is estimated based on a sum of smooth functions in the 
following form: 
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Similar to Boosting, in each loop, a separate Logistic regression model is built based 
on a reweighted training set and is added into the ensemble classifier for maximizing 
the probability in (2). Cross validation is used in this process to avoid overfitting.  

3 Experiments and Results 

3.1 General Introduction 

In order to demonstrate the capabilities of the three supervised learning algorithms on 
change detection, bi-temporal high resolution aerial images of Coffs Harbour in NSW 
Australia and corresponding airborne lidar datasets were used (provided by NSW 
Department of Land and Property Information). Data information is summarized in 
Table 1.  

Table 1. Dataset information 

First set of aerial images Resolution 
Time 

50cm 
9/2009 

Second set of aerial images Resolution 
Time 

10cm 
12/2009 

Two date aerial lidar data Density 
Time 

1.5pts/m2 

9/2009 & 12/2009 

 
This dataset covers an urban area that includes buildings, roads, trees, water and 

ground. Due to the short time interval of 3 months between the bi-temporal data 
acquisition, newly constructed buildings are the main changes estimated by visual 
interpretation. Hence, the change detection problem can be simplified to a binary 
classification task. Firstly, a digital surface model (DSM) was generated from the first 
return lidar data using nearest neighbor interpolation to avoid creating new height 
values and keeping the well-defined planes. This step results in a lidar image in which 
pixel values denote ground surface heights (see Fig. 1). After resampling the second 
aerial image to 50cm resolution with bilinear interpolation, the two images were 
registered to each other and matched against their corresponding lidar DSM by using 
a projection transformation.  

In this paper, we used a feature vector that consists of 8 attributes for each pixel. 
The first 3 attributes are the original pixel values (3 colour image bands) in the first 
aerial image and the fourth attribute is its height information in the DSM. The 
remaining 4 attributes were derived from the second aerial image and DSM in the 
same order. As can be seen in Fig. 1, due to the different seasons and sun angle, the 
radiometric characteristics and shadows are different in the images. Instead of using 
any pre-processing technique, we aim to overcome these confusing factors by using             
lidar elevation information and the flexibility of the learning algorithms. 
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  (a)                                          (b) 

             
    (c)                 (d) 

Fig. 1. Sample sub-image (a) The old aerial image; (b) The new aerial image; (c) The old Lidar 
DSM; (d) The new Lidar DSM 

3.2 Experimental Design 

Three experiments were conducted for each algorithm based on different training sets. 
We used 10 times 10-fold CV in all three experiments. For the first experiment, 8 sub-
images were selected manually from the whole dataset and combined together as the 
training set. Among them were 5 sub-images with both changed and unchanged 
contents, and 3 other sub-images without changes. No sampling process was used in 
this part. Therefore, the training set in Experiment 1 is highly unbalanced. Many more 
unchanged instances were found in the dataset due to the small time interval between 
the acquisition of two images. This makes the classifier more likely to label a test 
instance as the majority class in the training set [10]. To address this problem, random 
sampling was used in Experiment 2 to decrease the size of the unchanged class. Due 
to the relatively small number of changed instances, all pixels belonging to this class 
were retained. The unchanged class was randomly sampled to obtain twice the 
number of samples of the changed class, in order to tradeoff between the imbalance 
and representativeness of the training data. In Experiment 3, we manually selected 
some patches from the 8 sub-images to create the training set. Changed patches were 
selected from all 5 sub-images that contain changes, and unchanged patches were 
selected from 7 of them. Those instances with outlier values were removed in this 
step. For further testing of the performance of the three algorithms, all methods were 
tested on all 8 original sub-images using the best models built in each experiment.  

For the neural network, the learning rate was set to 0.01 and momentum was 0.1 in 
all experiments. Only one hidden layer was constructed with the number of hidden 
units equals to the average of the number of input and output units. Two output units 
were used to represent changed and unchanged classes. Weights in the network were 
updated based on the back propagation algorithm. The second method was SVM, 
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implemented in the “libsvm” package [11]. All attributes were scaled into the range 
between -1 and 1 before feeding into the classifier. A polynomial kernel function was 
chosen for nonlinear mapping and the penalty term was also considered. The best 
parameter values of degree d and coefficient C in the optimization function were 
determined based on grid search and 5-fold cross-validation. For Logitboost 
algorithm, the only parameter that needs to be defined is the maximum iteration 
number for boosting, which was set to 500 in all experiments. Cross validation was 
used for choosing the best stopping point and avoiding overfitting. All detection 
results are compared against the manually created ground truth map and numerical 
comparisons are carried out based on the confusion matrix (see Table 2). The 
following criteria (derived from confusion matrix) are used in each experiment, 
namely the overall accuracy, true negative (TN) rate, false negative (FN) rate, 
completeness and false alarm rate, and their definitions are listed below.  

Table 2. Confusion matrix 

 Predicted Class 
Actual Class Changed Unchanged 

Changed True positive (TP) False negative (FN) 

Unchanged False positive (FP) True negative (TN) 
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(3) 

3.3 Results and Analysis 

The averaged results of different learning algorithms in the three experiments are 
listed in Tables 3, 4 and 5 and the averaged results of testing the best models of all 
three methods on the 8 original sub-images are summarized in Tables 6, 7 and 8.  

Table 3. Averaged performance of three learning algorithms in Experiment 1 using 10 times 
10-fold CV  

Method ANN SVM Logitboost 
Overall Accuracy 0.9913 0.9914 0.972 

Completeness 0.9048 0.9 0.5844 
FN rate 0.0952 0.1 0.4156 
TN rate 0.996 0.996 0.992 

False alarm rate 0.004 0.004 0.008 
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Table 4. Averaged performance of three learning algorithms in Experiment 2 using 10 times 
10-fold CV  

Method ANN SVM Logitboost 
Overall Accuracy 0.9771 0.9758 0.94 

Completeness 0.9614 0.9588 0.8939 
FN rate 0.0386 0.0412 0.1061 
TN rate 0.985 0.9843 0.9631 

False alarm rate 0.015 0.0157 0.0369 

Table 5. Averaged performance of three learning algorithms in Experiment 3 using 10 times 
10-fold CV  

Method ANN SVM Logitboost 
Overall Accuracy 0.9997 0.9996 0.9991 

Completeness 0.9988 0.998 0.9942 
FN rate 0.0012 0.002 0.0058 
TN rate 1 1 1 

False alarm rate 0 0 0 

Table 6. Averaged test results of three learning algorithms using their corresponding best 
models built in Experiment 1  

Method ANN SVM Logitboost 
Overall Accuracy 0.9921 0.9925 0.9752 

Completeness 0.8206 0.795 0.3706 
FN rate 0.1794 0.205 0.6294 
TN rate 0.9956 0.9966 0.9925 

False alarm rate 0.0044 0.0034 0.0075 

Table 7. Averaged test results of three learning algorithms using their corresponding best 
models built in Experiment 2 

Method ANN SVM Logitboost 
Overall Accuracy 0.9843 0.9848 0.9623 

Completeness 0.9228 0.9094 0.7854 
FN rate 0.0772 0.0906 0.2146 
TN rate 0.9852 0.986 0.965 

False alarm rate 0.0147 0.014 0.035 

Table 8. Averaged test results of three learning algorithms using their corresponding best 
models built in Experiment 3 

Method ANN SVM Logitboost 
Overall Accuracy 0.9421 0.939 0.9424 

Completeness 0.9214 0.93 0.8978 
FN rate 0.0786 0.07 0.1022 
TN rate 0.941 0.939 0.9418 

False alarm rate 0.059 0.061 0.0583 
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From Table 3 one can see that both ANN and SVM achieved good detection results 
with overall accuracy of 99.13% and 99.14% respectively. More than 90% of changes 
(completeness) can be detected using either method. In contrast, although Logitboost 
achieved 97.2% overall accuracy, only 58.44% of real change was detected; this 
shows that overall accuracy by itself is not a good performance evaluation criterion 
for unbalanced datasets. When testing the best model of the three algorithms built in 
Experiment 1 on all sub-images (see Table 6), all the overall accuracies were higher 
than 97%. However, the completeness decreased to 82.06%, 79.5% and 37.06% when 
using ANN, SVM and Logitboost respectively.  

The detection results using a randomly sampled training set are shown in Table 4. 
From Tables 3 and 4, one can claim that random sampling of training instances 
improves the completeness markedly, while the TN rate drops just a little. When 
testing on sub-images with the best model built on a randomly sampled training set 
(see Table 7), both ANN and SVM detected more than 90% of changes and the 
completeness of Logitboost is 78.54%, which is an improvement by more than 40% 
compared with the 37.06% in Table 6. This is because the imbalance in the training 
dataset was reduced during the sampling process, and the performance of all three 
algorithms improved.  

In Experiment 3, we manually selected some patches for creating the training 
dataset. This can be viewed as a kind of spatial sampling. As can be seen from Tables 
7 and 8, compared with using a randomly sampled dataset, the completeness for SVM 
and Logitboost were further enhanced by 2.1% and 11.2% respectively, while 
remaining the same for neural network. This improvement is due to the data cleaning 
during the manual selection process. On the patch based training set (see Table 8), 
SVM outperformed the other two methods in terms of completeness, although its 
overall accuracy and TN rate were lower.  

For comparison purposes, traditional PCA method was tested on the same datasets. 
Bi-temporal datasets were stacked together (with 8 attributes for each pixel) followed 
by PCA transformation to detect changed parts. The component with the best contrast 
was selected manually and changes were separated from the background using 
thresholds. The averaged results of PCA are listed in Table 9. The testing results of 
the three algorithms using their best model built in each experiment on the sub-image 
shown in Fig. 1 are listed in Fig. 2 (a) ~ (i) and the result using traditional PCA 
method is shown in Fig. 2 (j).  

Table 9. Averaged detection results of PCA method 

Method Overall Accuracy Completeness FN rate TN rate False alarm rate 
PCA 0.8753 0.7742 0.2258 0.8838 0.1162 

 
To sum up, both ANN and SVM outperform Logitboost, but it is difficult to choose 

between ANN and SVM. Moreover, Logitboost is more sensitive to the unbalanced 
and noisy datasets compared with ANN and SVM. When fusing high resolution 
images with lidar data, both ANN and SVM exceed PCA even on highly unbalanced 
and noisy datasets and Logitboost can also outperform PCA as long as the dataset is 
relatively clean and balanced. This may be explained by the underlying mechanism of  
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Fig. 1. Testing results of three algorithms using the best model built in each experiment on the 
sub-image shown in Fig. 1  

each method. SVM is designed to maximize the separation margin between two 
classes, and is thus robust to noise, and the global optimum solution is found by 
solving the quadratic programming problem. A nonlinear boundary is achieved using 
the kernel trick and performance is further improved after adding a regularization 
term. For ANN, as a nonlinear mapping function is used in the network, it has the 
ability to model complex relationships. Although it cannot guarantee convergence to 
the global optima, it still works well on many real problems, and this drawback can be 
partially solved by adding a momentum term. Benefitting from the boosting process, 
Logitboost is able to model the nonlinear mapping even using a single linear base 
learner. However, since AdaBoost is sensitive to noise, Logitboost reveals weaker 
robustness compared with ANN and SVM. In contrast, PCA is based on a linear 
transformation and cannot handle nonlinear models well. Besides, covariance matrix 
estimation in PCA is based on the whole image and the noise in the process is known 
to have impacts. All of these factors together determine the better performance of the 
supervised learning algorithms. 



 Machine Learning Based Urban Change Detection 531 

 

4 Conclusions 

In this paper, the capabilities of three supervised learning algorithms for urban change 
detection were evaluated. Experimental results illustrate that the performance of all 
algorithms can be enhanced using random sampling to improve the imbalance in 
training instances. Moreover, when spatial sampling of training samples is employed, 
both SVM and Logitboost algorithms work even better. Logitboost shows more 
sensitivity to imbalance and noise and is not as robust as the other two supervised 
methods. When compared with PCA, substantial improvements can be found and 
results can be interpreted from a theoretical point of view. In future, other kinds of 
features can be considered and cost-sensitive methods for handling unbalanced 
datasets (e.g. cost-sensitive SVM) can be developed as well. Besides, although the TP 
rate of changed class increases after sampling, more pseudo detections also appeared 
(see Fig. 2). This problem should be addressed in future to further improve the result. 
Finally, due to the success of spatial sampling, we will move from pixel to region 
based recognition in future research.  
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