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Abstract. The staged Tile Assembly Model has been introduced by De-
maine et al. 2008 as an enhancement of the previous tile self-assembly
model of Winfree. In this framework, the assembly is allowed to be per-
formed in parallel in different test-tubes, and the obtained products are
stored and mixed in subsequent assembly stages. Using elegant combi-
natorial constructions, in has been shown that staged assembly systems
possess remarkable advantage in comparison to their abstract counter-
parts. Because of their parallel nature, one can choose from a multitude
of staged assembly strategies for assembling a given target structure. In
the current work we analyze these assembly variations from a kinetic
perspective, in order to determine and possibly maximize, their final as-
sembly yield. As a pre-requirement for this task, we provide a procedure
for associating an analytically tractable mathematical model to a given
staged assembly experiment, based on which we can predict the yield
concentration of the final assembly product. As a case study, we con-
sider various assembly strategies as well as optimized and non-optimized
assembly protocols for generating a size-10 tile assembly.

Keywords: Tile Assembly Model, staged assembly, numerical modelling,
yield optimization.

1 Introduction

The abstract Tile Assembly Model (aTAM) has been introduced by Winfree [9]
as a custom-made generalization of Wang tile systems, designed for the study of
DNA tile self-assembly. The basic components of the aTAM are non-rotatable
unit square tiles, uniquely defined by the sets of four glues placed on top of
their edges. The glues are part of a finite alphabet and each pair of glues is
associated a strength value, determining the stability of the link between two
tiles having these glues on the abutting edges. The assembly process starts from
a single nucleation point, the seed, and it continues by sequential attachments
of tiles until no more tiles can be added to the assembly. All the individual tiles
are placed inside a unique assembly “pot”, and the assembly process progresses
with no external interactions.
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In order to improve the efficiency of these systems, with respect to assembling
more complex structures from a fewer initial number of distinct tile-types1, De-
main et al. introduced the staged Tile Assembly Model (sTAM) [2]. In this
framework, the assembly is performed in stages and in different test-tubes (or
bins). Each test-tube is initialized with one or several non-interacting tile-types,
and in each stage, one or several test-tubes are mixed together according to a
predefined scheme. Different tile-types are thus mixed into the same compart-
ment and start interacting. No seed structures are defined in this framework,
and thus the reactions are implemented population-wise. The external observer
allows the reaction to progress for some time, after which the content of the test-
tubes is filtered and only the generated reaction products are used in subsequent
stages.

Using elegant combinatorial designs, Demain et al. [2,3] demonstrated how
various structures can be assembled efficiently, both in terms of the total num-
ber of different tile-types used, and in terms of the tile-interaction complexity,
i.e., using only temperature-1 systems2. For example, one requires only 3 tile-
types and log(n) stages for constructing an n-size ribbon of contiguous tiles,
while a similar structure assembled in a “one pot” system, i.e. classical aTAM,
requires n distinct tile-types. Similarly, using a constant number of tile-types and
only log(n) stages, one can assemble a full n× n square, whereas in the aTAM
framework O(log n/ log log n) tile-types are required to assemble an analogous
structure.

Because of the parallel design feature, one can choose from a multitude of
staged assembly strategies for assembling a given target structure. Moreover,
this freedom of choosing between several assembly variants remains valid even
when one restricts to those strategies employing a minimum number of assembly
stages. In the current work we analyze these assembly variations, as well as possi-
ble different implementations of the same assembly strategy, all in terms of their
predicted final yield. Our objective is to study possible yield optimization proto-
cols for the target assembly of these system. Considering assembly systems with
an abundance of inter-molecular interaction (as is the case of DNA self-assembly
systems), putting together larger concentrations of reactants and allowing them
more time to react will always generate better yields. Thus, in order to perform a
fair comparison between various assembly strategies, we require the total initial
reactant concentrations, volume, as well as total time allowed for the reactions,
to be constant in all of the compared strategies.

The particular aspects we want to investigate are:

– the yield variations in between different staged assembly schemes (generating
the same final structures); and

– the yield variations within the same assembly scheme, when modifying pa-
rameters, such as: i) the time allocation for each of the assembly stages (while

1 A tile-type is a population of identical copies of the same tile.
2 Temperature-1 systems are highly advantageous as they can be made very resistent
to errors, compared to temperature 2 systems [1]. Such systems can be implemented
using e.g. DNA-origami techniques [8].
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the total time for the experiment remains constant); or ii) the ratio in which
certain assemblies are mixed inside the test-tubes (with total volumes of the
reactants kept constant).

The first criterion can be seen as a design optimization level, while the second as
a protocol optimization level. Moreover, we ask whether there exists a correlation
between the two levels. Namely, would a design scheme performing particularly
well on some assembly protocol generally generate better yields (than other
assembly schemes) independent of the employed protocols?

In order to be able to address such questions, we first provide a methodol-
ogy of assigning to every staged tile assembly system (sTAS) a numerical model
describing the time-evolution of all its components. The employed modelling
methodology is based on the principle of mass-action kinetics [5,6] and is imple-
mented using the formulation given by ordinary differential equations (ODE).
The modeling methodology is different from the one considered in the kTAM
models, [12], as in this case we do not follow the assembly of only one partic-
ular structure (starting from a seed tile), but we keep track of all the species
available in solution(s). While such an approach is usually untractable for “one
pot” systems, we show that it becomes applicable in the case of sTAS. We use
the above modelling methodology and, as a case study, we consider the assem-
bly (and yield optimization process) of a size-10 tile assembly structure. For
numerical modelling and optimization we have used the open source software
COPASI [7].

The paper is organized as follows. The next section contain background infor-
mation regarding the aTAM and sTAM models. In Section 3 we introduce our ki-
netic modelling methodology for sTAS and provide a series of pre-normalization
requirements for our models. In Section 4 we introduce several yield optimiza-
tion strategies applicable to staged assembly systems, and as a case study in the
next section we consider the staged assembly and yield optimization protocols
employed in obtaining size-10 horizontal ribbons of tiles. In the last section we
discuss our results and provide some future research directions.

2 Background

In the following, we provide a very brief introduction of the (abstract) Tile
Assembly Model, aTAM, and its staged counterpart, sTAM. For a more detailed
presentation of these models we refer to [9,2] as well as the recent survey [4].

Let Σ be a finite set of glues, and let s : Σ × Σ → N be a glue strength
function, i.e., s(σ1, σ2) = s(σ2, σ1) for all σ1, σ2 ∈ Σ. A tile (or tile-type) t is a
unit square structure with glues on its four edges; we assume that the tiles can
not be either rotated or reflected. Thus, we can represent a tile as the ordered
4-tuple of glues t = (tN , tE , tS , tW ) ∈ Σ4 where the N,S,E, and W subscripts
point to the corresponding edge positioning. An assembly A is a partial mapping
A : Z2 → Σ4 assigning tiles to locations in the two-dimensional grid, such that
the defined structure is connected. A tile assembly system (TAS) T = (T,S, s, τ)
consists of a finite set T of tile-types, an assembly S called the seed assembly,
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a glue strength function s and a temperature τ ∈ Z
+. By definition, we assume

that the seed assembly S is stable and cannot be disassembled3.
Given a TAS T = (T,S, s, τ) and an assembly A (such as the seed S), a new

tile can be added to A if it shares a common boundary with tiles that bind
it into place with total strength at least τ ; we call such a process a successful
tile addition. We say that a TAS T produces an assembly A if this assembly is
formed by a sequence of successful tile additions starting from the seed assembly
S. Moreover, if no other tiles can be further attached to A, we say that the
assembly is terminal.

The model of staged assembly differs from the classical aTAM by allowing
partial assemblies to be formed in parallel in different test-tubes before merging
them together. The notion of successful addition is extended from the previous
case by allowing the merging of any two assemblies, as long as the sum of the
strength of glues placed along the common boundary of the two assemblies is
at least the temperature τ of the system. Thus, in this setting, single tiles are
seen just as (elementary) assemblies. The above requirement for an assembly
is known as partial connectivity4, see [2], as it does not enforce tiles in the
assembly to have matching edges with all the neighboring tiles, as long as the
matching which bound them into place exceed or are equal with the temperature
τ . For the remaining of this paper we assume working in this partial connectivity
requirement for assemblies.

Another difference from aTAM comes from the fact that the assembly process
is allowed to be performed in parallel in different test-tubes (or bins) and across
several assembly stages. Each tile-type is placed initially in an isolated test-tube;
we call these initial test-tubes. When the content of two (or several) test-tubes is
mixed in a separate bin, the assemblies start interacting and bind to each-other
according to their glue interactions. The process is allowed to progress for some
time, after which the mixed solution is filtered and only the reaction products,
i.e., the terminal assemblies, are stored for further mixing, while the remaining
reactants are discarded. The test-tubes are further mixed synchronously during
several assembly stages, until the final product is assembled in the unique test-
tube of the last assembly stage.

A staged tile assembly system (sTAS) T s = (T, s, τ, G) is defined by the set
T of starting tile-types ti, each placed in marked initial test-tubes T 0

ti , a glue
strength function s, a temperature parameter τ ,and an assembly graph G (or
mix graph). The assembly graph is a direct acyclic graph (DAG) describing the
different test-tubes and the way these tubes are mixed along a synchronous
succession of assembly stages. The nodes of the graph are the various test-tubes
(including the initial ones), while a directed edge between two nodes T si and
T sj symbolizes that the assembly product of test-tube T si (or the corresponding
tile-type in case of an initial test-tube) is transferred (either completely if T si

has no other out-edges or just a fraction of it otherwise) to test-tube T sj . The

3 On some experimental implementations of the TAM, the seed assembly is imple-
mented using e.g., DNA origami [10,11]

4 As opposed to the full connectivity requirement.



Yield Optimization Strategies for Staged TAS 35

Fig. 1. The annotated assembly graph of an sTAS assembling a size-10 ribbon

final assembly of the sTAS is the assembly product collected at the end of the
experiment from the unique test-tube of the last assembly stage.

As an example, in the following we provide an sTAS assembling a size-10
horizontal ribbon of tiles. Since this is a 1D structure, only the glues of the East
and West sides of a tile-type are relevant for the assembly process. Thus, a tile
is denoted as the pair (x, y) of its West and East glues, respectively. Moreover,
a 1D assembly containing k > 1 tiles will be denoted as xky, where x (resp.
y) is the West (East) glue of the left-most (right-most) tile in the assembly.
The temperature τ of the system is 1, and the strength function s is given
by s(x, y) is 1 if x = y and 0 otherwise. The sTAM contains 3 initial test-
tubes T 0

(ab), T
0
(bc), T

0
(ca) for the tile-types (a, b), (b, c), and (c, a), respectively, and

employs 4 assembling stages. The assembly-graph from Figure 1 fully describes
the design of the sTAS; for ease of understanding we have annotated the graph by
providing also the description of the assembly product in each of the test-tubes.

Various 2D assembly structures can be efficiently5 assembled by appropriate
staged assembly systems, even at temperature τ = 1 and using only two reactants
per test-tube6, see e.g. [2]. Although the results of our current research apply
to both 1D and 2D assembled structures, in order to simplify the considered
mix graph designs and exemplify the applicability of our approach, are going to
concentrate over the assembly of 1D ribbons of tiles. Indeed, if more complex 2D
assemblies are investigated, the only change comes in the design of the mixing
graph. However, the dynamics of the system is preserved, as mixing a size-p
assembly (i.e., containing p tiles) with a size-q assembly, always generates a
size-(p+ q) assembly, assuming the two components are indeed reacting.

Thus, from now on, we represent the tiles as the pairs of glues placed on their
West and East edges, respectively, we assume working always at temperature 1,
and we use the strength function given by s(x, y) = 1 if x = y and 0 otherwise.

5 Here, we measure the efficiency in terms of the number of different tile-types used
6 In most of the staged assembly designs from the literature, only two reactants are
placed inside a test-tube.
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3 Modeling of Staged Tile Assembly Systems

In order to be able to address questions regarding yield optimization of sTAS
we need appropriate quantitative tools for estimating and analyzing the corre-
sponding yields. In this section we introduce an adequate mathematical model of
the staged assembly process. Using this methodology, for any particular target
structure, one can numerically determine the best assembly strategy for it, as
well as numerically optimize the parameters of the chosen assembly strategy.

The modelling paradigm that we choose to use is that of ODE, while the
formulation of the models is based on the principle of mass-action kinetics. The
principle of mass-action, introduced in [5,6], says that the rate of each reaction
is proportional to the concentration of reactants. Moreover, this reaction rate
gives the measure on which the reactants are consumed and the products are
generated. To exemplify, consider the simple reaction A + B → A : B when an
assembly A joins an assembly B and forms an assembly A : B. If we denote by
[A](t), [B](t), and [A : B](t) the concentrations these assemblies at time t, and
by k the kinetic rate constant of the reaction, then the combined measure of
consuming and producing each of the reactants is given by the system:

d[A]

dt
= −k[A] · [B]

d[B]

dt
= −k[A] · [B]

d[A :B]

dt
= k[A] · [B]

We are going to assume (without loss of generality, but with some possible loss
of design efficiency) that in each stage of the assembly, we allow to mix the
contents of only two test-tubes at a time; most of the sTAS in the literature
are nevertheless designed in this way. Moreover, before the mixing procedure,
the content of each test-tube is filtered and only the product of the assembly is
preserved. Thus, in each test-tube we have only two reactants. As a consequence
of this, the chemical reaction system corresponding to each of the test-tubes
(each test-tube generates an isolated system) obeys two conservation reactions.
Namely, at any time point t we have that

[A](t) + [A :B](t) = C1 and [B](t) + [A :B](t) = C2,

for two constants C1 and C2, such that C1 = [A](0) + [A : B](0) and C2 =
[B](0) + [A : B](0)7. Thus, at any time point t, the concentration of the [A]
and [B] species can be derived from the concentration of the [A :B] species. By
substituting these into the third differential equation we obtain:

d[A :B]

dt
= k(C1 − [A :B])(C2 − [A :B]) (1)

In most cases, such ODE systems derived from corresponding chemical reaction
systems are analytically intractable. However, since in the case of sTAS we have
that in each test-tube there exist only two reactants interacting and forming a

7 We denoted by [A](0), [B](0), and [A :B](0) the initial concentration of the species
A, B, and A : B, respectively, at time t0 = 0.
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product (a larger complex), the derived ODE systems can be solved analytically.
Namely, equation (1) has the solution:

[A :B](t) =
−C1C2 + [A :B](0)C1 + C1C2e

tk(C1−C2) − [A :B](0)etk(C1−C2)

C1etk(C1−C2) − [A :B](0)etk(C1−C2) − C2 + [A :B](0)
(2)

Another particularity of sTAS is that none of the [A :B] structures exist before
mixing assemblies A and B, that is [A :B](0) = 0. Thus, equation (2) becomes:

[A :B]t =
−C1C2 + C1C2e

tk(C1−C2)

C1etk(C1−C2) − C2
=

C1C2(e
tk(C1−C2) − 1)

C1etk(C1−C2) − C2
, (3)

where C1 = [A](0) and C2 = [B](0). Moreover, if one also assumes that [A](0) =
[B](0) = C , i.e., the systems is symmetric, then equation (2) becomes

[A :B]t =
ktC2

1 + Ckt
. (4)

Because at each stage of the assembly the initial concentrations for the reactants
depend on the concentrations of the products at prior stages, and since equa-
tion (1) describing the time-evolution of the product assembly in each test-tube
admits an analytic solution, we can provide an analytic formula for the entire
system.

An important observation regarding the dynamics of sTAS is that the prod-
ucts obtained in prior stages of the assembly are not further concentrated before
mixing them in subsequent stages. Thus, in each stage, the volume of the solu-
tion increases, and hence we have to update the concentration of the reactants
accordingly (i.e., to decrease these concentrations).

For example, assume the reactants R1 and R2 of test-tube T from some stage
of the assembly are taken to be fractions of the products P1 and P2 of test-tubes
T 1 and T 2, respectively (from some previous stages). Namely, let

V olP1
trans = rTT1 · V olT1 and V olP2

trans = rTT2 · V olT2

be the volumes of the fraction of products P1 and P2 transferred from T 1 and
T 2 respectively, to T , where V olT1 (resp. V olT2) and rTT1 (resp. rTT2) denote
the volume of test-tube T 1 (resp. T 2) and the ratio from this volume which is
transferred into T . Then, the initial concentration of reactants R1 and R2 in
test-tube T is given by

[R1](0) =
[P1] · V olP1

trans

V olP1
trans + V olP2

trans

; and [R2](0) =
[P2] · V olP2

trans

V olP1
trans + V olP2

trans

, (5)

where [P1] (resp. [P2]) is the concentration of the product P1 (resp. P2) at the
end of the corresponding stage, and V olP1

trans + V olP2
trans = V olT is the volume

of the test-tube T .
Thus, by keeping track of the volumes of each test-tube and knowing the ratio

in which a particular product is split, we can determine the analytic formula of
each intermediary (or final) species in the system.
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Once such a computational model is derived, it can be estimated numerically
for various sets of parameters, e.g., equal time-splits for all stages and/or equal
(or proportional) volume-splits of various products. Moreover, the above param-
eters can be optimized in order to maximize the yield (i.e., concentration) of the
final product. Also, using such models, we can compare two or several strategies
in determining which provides a better yield, if experiments are performed in
similar conditions, i.e., same total time and initial tile concentration.

In order to compare two (or several) assembly strategies we can further sim-
plify the models by making a synchronous pre-normalization of the data. Thus,
we are going to assume from now on that the kinetic rate constant of all assem-
bly reactions is equal to 1, and that the concentration of all tile-types in their
initial test-tubes, [mon], is also normalized to [mon] = 100. Because of the above
pre-normalization of the data, the time parameter presents a highly altered be-
haviour; thus, from now on, we use the notion of time unit (t.u.) for referring to
time variables. Consider for example a system of only two reactants (tile-types)
a1b and b1c, each having concentration 100 in their initial test-tubes. Assuming
these reactants are mixed in equal quantities, their initial concentration in the
(mixing) test-tube becomes 50. In these conditions, we observe that the assem-
bly reaction is completed in proportions of approx. 50%, 75%, and 90% only
after 0.02, 0.06, and 0.2 t.u., respectively. Thus, our in-silico experiments and
numerical analysis will be performed for a total time interval of 0.14–0.25 t.u.
per stage, that is 0.42 t.u. for the 3-staged assembly of size-5 ribbons (in Section
4), and 0.9 t.u. for the 4-staged assembly of size-10 ribbons (in Section 5).

4 Yield Optimization Strategies for sTAM

Optimizations at the Assembly Strategy Level. The sTAM framework
allows for several assembly strategies to be employed in achieving the same final
structure. Moreover, in some cases, each of these strategies, although different
in themselves, are all optimal in terms of number of distinct test-tubes or stages
they employ. Consider for example the staged assembly process needed for as-
sembling a size-5 ribbon. According to the assembly designs introduced in [2] for
constructing size-k 1D ribbons of tiles in optimally possible number of stages,
there are four different (staged) assembly strategies for the construction of size-5
ribbons, each employing 3 stages. The assembly graphs of two of these strate-
gies are provided in Figure 2, while the remaining two strategies are symmetric.
However, does each of these strategies produce the same amount of final yield
(assuming that the initial quantity of resources is proportionally equal in each
of the situations)?

In order to compare the previous two strategies, besides the common total time
for the experiment (Ttotal = t1+t2+t3 = 0.42 t.u.) and the similar concentration
([mon] = 100) of all tile-types in their initial test-tubes, in both scenarios we are
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Fig. 2. Two distinct assembly strategies for the same size-5 ribbon, each using only 3
assembling stages

going to use a similar procedure of setting the time- and volume-split parameters,
as follows:

– All assembly stages are performed in equal time intervals: t1 = t2 = t3 =
0.14;

– Whenever a tile-type (monomer) is a reactant in a test-tube, the introduced
quantity of this reactant in the test-tube is exactly one unit volume.

By numerically estimating the associated mathematical models we obtain the
concentration of the final product, [a5c], in the assembly scenarios from Figure 2
a) and b) as 54.4% and 56.2% respectively, where 100% would represent the
all-maximal value possible for this assembly, e.g. obtained if time would allow
the reactions to be fully completed8.

From the above example, it can be confirmed our initial assumption that
different assembly strategies may generate different final yields, despite using
the same amount of time and substance resources.

Optimizations at the Experimental Setting Level. Consider now we have
chosen a particular assembly strategy, say e.g., assembling the previous 5-tile
structure by the scenario in Figure 2 a). A subsequent question concerns the
way of allocating the total pool of resources, i.e., substance volume in each test-
tube, time allocation for each of the assembly stages, etc., such as to maximize
the outcome of the experiment. For example, in the case of the previous example,
what would be the best split of the total time of the experiment into three time-
periods for the corresponding assembly stages, such as to obtain a maximum
amount of 5-tile structures at the end of the final stage? Also, what would be
the best way of splitting the amount of tile (bc) in between T s1

1 and T s3
1 , or

similarly the splitting of the amount of tile (ab)? Also, for the cases when an
intermediary assembly is used in several reactions from some later stages, what
is the optimal way of splitting this product, i.e., its total volume, in between
these test-tubes? The above time- and volume-splitting ratios can be subjected
to targeted optimization protocols.

8 In the case of 5-tile ribbons, 100% corresponds to a concentration of 20.
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Until now, as suggested by the definition of the sTAM, we have assumed
that the entire volume of an intermediate product is transferred to the subse-
quent stages.However, as suggested by actual lab procedures, we examine also
the setting in which only a fraction of the reaction products are re-introduced as
reactants. Namely, we force that in every test-tube, the volume of the two reac-
tants sum up to exactly one. In this setting, it becomes even more clear that the
ratio in which the two reactants are mixed (each coming into the reaction with
possible different initial concentrations) becomes very important in determining
a maximum concentration of the product.

5 Case Study: Assembling Size-10 Ribbons

As an yield optimization case study, we are going to consider the process of
assembling (in a staged assembly fashion) a size-10 1D horizontal ribbon of tiles.
As previously explained, restricting to this 1D structure is not a considerable
limitation, since even in the case of assembling 2D complexes, once the mixing
graph is designed, the modeling and optimization procedures remain the same.

Since the available pool of possible assembly strategies for a size-10 horizontal
line is considerably large, even for the case where we impose using only four
stages, we are going to compare only four particular such strategies9. We present
these strategies (a.k.a. the corresponding mixing graphs) in Figure 3.

Fig. 3. Four distinct assembly strategies for a size-10 ribbon, each using only 4 assem-
bling stages

In order to illustrate the possible differences between different assembly sce-
narios as well as between optimized vs. non-optimized assembly protocols, we
do not restrict to computing only the optimum values, but provide for compar-
ison a larger pool of parameter setups. Thus, we are comparing all these four
assembly strategies, by subjecting each of them to five different setups regarding
their time-split and volume-split parameters. Three of these setups are based
on combinatorial heuristics, while in two of them we numerically optimize the
parameters for maximizing the final yield concentration. In order to compare all
of these strategies and setups, we impose some general constraints as follows:

9 These strategies have been chosen almost at random from the available ones, without
a prior knowledge on their behaviour during the optimization process.



Yield Optimization Strategies for Staged TAS 41

i) The total time of the experiment is Ttotal = 0.9 t.u.

ii) The concentration of all tile-types in their initial test-tubes is [mon] = 100.

iii) (only for three of the setups) The cumulative volume of all tile-types intro-
duced in the various initial test-tubes is 10 unit volumes, where the volume
of each tile-type is proportional to the number of times it appears in the
final size-10 assembly.

The five setups can be partitioned into two groups:

Group 1: Combinatorially designed setups:

Setup 1: Equal time-splits and proportional volume-splits.

– Equal time intervals for the stages, that is, t1 = t2 = t3 = t4 = 0.225;

– The volume of any species who needs to be partitioned into two or several
test-tubes will be done so proportionally to how much the product of these
latter test-tubes will contribute to the final assembly.

A combinatorial observation regarding staged assembly systems is that on
average the concentration of the reactants is reduced al least by half in each
stage. By inspecting equation (3), we observe that if the concentration of both
reactants is reduced by half, we obtain the same product-reactant ratio only if
we double the time allocated to this stage. Thus, as a possible procedure for
improving the overall yield, the time-split parameters from the next setup are
in geometric progression.

Setup 2: Time-splits in geometric progression and proportional volume-splits.

– The time intervals are (t1; t2; t3; t4) = (0.06; 0.12; 0.24; 0.48);

– The volume of products is partitioned proportionally into subsequent test-
tubes (as in the case of Setup 1).

Setup 3: Equal time-splits and equal half unit-volumes for all reactants

– Equal time intervals: t1 = t2 = t3 = t4 = 0.225;

– The volume of each of the reactants in a test-tube is set to half unit volume.

This represents a rather “lazy” (or automated) instance of the setting in which
the volume of the test-tubes is limited to one unit.

Group 2: Numerically optimized setups:

Setup 4: Optimized time- and volume-splits while using the entire volume of
substance. As in the case of Setup 1 and 2, we assume here that we completely
use the entire volumes of all intermediary assemblies and of all single tiles.
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Table 1. The concentration [a10b] of the size-10 ribbon structure generated in the final
stage of the assembly; the results are expressed in their percentage form, where 100%
represents the absolute maximal value possible for this assembly, namely 10

Assembly Group 1 Group 2
strategy Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Strategy 1 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 2 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 3 42.6% 42.0% 30.5% 46.9% 49.0%
Strategy 4 42.4% 39.8% 37.3% 49.3% 48.6%

Setup 5: Optimized time- and volume-splits while enforcing unit volumes for all
test-tubes As in the case of Setup 3, we enforce that each test-tube contains
exactly one unit of mixed reactants.

All four assembly scenarios are subjected to the above setups, and the results
are summarized in Table 1. As it can be seen from the selected assembly scenar-
ios, in most cases the differences are relative small. However, there exist both
particularly bad and particularly good cases. Namely, the average value of the
produced yield is 41.3%, the sample standard deviation is 8.2, the worst case
scenario gives a yield percentage of 25%, while the best case scenario provides
a yield percentage of 53.5%. It is very interesting to observe that both the best
and the worst case scenarios are due to the same assembly strategy, but from
different, i.e., non-optimized vs. optimized, parameter setups. Also, it can be
observed that for each of the setups, the yield percentage are closed from one
assembly scenario to the other, thus suggesting a possible ranking of how good
each of these individual setups are. Namely, we are able to say that the worst
parameter setting is performed in Setup 3 while if instead of just placing the
previous default values we numerically optimize them to maximize the yield,
i.e., Setup 5, then we obtain the best possible results from all the considered
parameter setups.

6 Conclusions, Discussions, and Further Work

We have investigated yield optimization techniques for staged self-assembly sys-
tems. As a first step, we associated (for the first time) a computational model
to the staged tile assembly formalism, whose implementation through ODE sys-
tems differs considerably from the kinetic counterpart of the regular TAM. This
change of modelling methodology can be explained as follows. While in case
of abstract TAM the assembly is initiated from a seed structure, and one can
thus concentrate over a single assembly product, in case of sTAM the assembly
reactions are implemented population wise.

Another important aspect was to determine the possible optimization strate-
gies for our target, the final assembly yield. We were able to identify two levels
on which to implement adequate optimization protocols: at the assembly scheme
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design level, and at the implementation level. Considering the first level, several
assembly strategies are plausible for the same final structure, and some of these
assembly schemes may have plausible better chances of maximizing the concen-
tration of the final product. We concentrate here only on those assembly schemes
which ensure a minimal number of assembly stages. We conjecture at this level
that the best assembly protocols are those in which we minimize the number
of mixing of test-tubes from the same stages. The intuition here is that the
more advance a stage is, the less concentrated its product, and thus by mixing
a test-tube with another one from a lower stage, the concentration of the latter
is higher and thus it improves the result of the reaction.

The second optimization level is at the implementation phase, once a par-
ticular assembly strategy has been chosen. At this level, the parameters which
can be optimized are the time intervals allocated to each of the assembly stages
(assuming the total available time is constant) and the proportions in which cer-
tain products are split and further mixed in subsequent stages. We believe that
equal time-splits are not an optimal choice (unless the experiment involves a low
number of stages), but the considered case-study showed that time-splits in ge-
ometric progression are also not appropriate (i.e., Setup 2 in Table 1). Although
the case study seems to indicates that the optimal time-split parameters are close
to an arithmetic progression (Setup 4 and 5 in Table 1, data on time-splits not
shown), we believe that further studies are required for providing more intuition
regarding a possible combinatorial design approaching the absolute optimum
choice.

Regarding volume splits, an undiscriminating equal partitioning seem to be
the worst possible choice (Setup 3 in Table 1). On the opposite direction, those
partitions of assembly products which take into considerations the amount (or
concentration) of substance in each test-tube, and how the product of these
test-tubes are further going to be split, tend to have better yields.

Considering the case-study, one particular assembly strategy has generated
good outcomes, namely that of requiring the volume of each test-tube to be
exactly one. For the future, we plan to concentrate particularly on this strat-
egy, both because it seem to provide the best results, and because it seem to
be more tractable from an analytic point of view. Our aims are to provide con-
crete descriptions of combinatorial parameter-setups and mix-graph designs for
which we could provide numeric arguments as why the results of these strategies
approach the optimum solutions.
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