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Abstract. Quantum cryptographic methods increase security over clas-
sical methods. To date, quantum algorithms aim to distribute a secret
key to be used afterwards to encrypt messages. The method described
in this paper does not use an encryption key at all. An array of qubits is
transmitted from the source to the destination with the message encoded
in the phase of the qubit. The secrecy of the message derives from the
nonclonability principle. Our algorithm relies on the common assump-
tion that public information can be authenticated. The alforithm shows
an increased detection rate per qubit, 33%, which is higher than the one
commonly used in literature, namely 25%.

Keywords: Quantum Key Distribution, Quantum Cryptography, In-
truder Detection.

1 Introduction

Quantum cryptography has been mainly concerned with quantum key distri-
bution. The two communicating parties, Alice and Bob, undergo a protocol to
distribute a secret key. Alice and Bob aim to reach a consensus on the value of a
secret key. This key is to be used later to encrypt/decrypt a message. Actually,
a large body of literature considers the quantum key distribution problem to be
in fact a key enhancement [5]. Nevertheless, the opposite opinion, which says
that true key distribution can be achieved with quantum means only, also has
its adepts [3]. Key enhancement means that Alice and Bob share already a small
secret key, possibly obtained via a classical protocol, and then develop a large
secret key. Key distribution starts from public information only and develops a
secret key during the protocol.

In this paper, we distance ourselves from the very idea of using a key for
encryption. We develop a protocol that transmits a message secretly by scram-
bling the order of the bits rather than explicitly encrypting the message with a
key. The scrambled message is transmitted via a quantum channel and therefore
consists of quantum bits (qubits) rather than binary bits.

Our protocol comes with all the advantages of quantum cryptography. An
intruder, Eve, listening to the message being transmitted, destroys the super-
position of the qubits and thus can gain knowledge about it only with a low
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probability. Also, the intruder is detected by Alice and Bob with an arbitrarily
high probability.

Additionally, our protocol is equivalent to a one-time-pad [6] protocol. As
we use no key, information about the scrambling of the message is of the same
length as the message itself. Eavesdropping one message provides no gain to the
intruder for any subsequent messages.

Previous quantum key distribution protocols [1] [2] have a detection rate of
25% per checked qubit. We develop an encoding strategy in three complementary
basis that improves the detection rate per qubit to 33%.

The rest of the paper is organized as follows. Section 2 presents the keyless
protocol that securely transmits a message from a source to a destination. It
also analyzes the protocol’s protection to the intruder’s actions. The analysis
is formalized to measure the intruder’s gain of knowledge for different levels of
attack. Section 3 describes an improvement on the detection rate of the intruder
by using an encoding in three complementary bases. Section 4 concludes the
paper.

2 Keyless Quantum Message Transmission

Using Dirac’s notation, a qubit is q = α|0〉+β|1〉. α and β are complex numbers.
Thus, |α|2 is the probability of the qubit to collapse to 0, and |β|2 to 1. Qubits
are said to be in a balanced superposition if the qubit has an equal chance
50% to collapse to 0 or 1. Quantum protocols use a small set of common gates.
Three such gates are used in our protocols: the controlled-NOT (CNOT) gate.
the Hadamard gate, and the phase-shift gate [4]. All these gates have a control
qubit. If the control qubit is |1〉, the primary qubit is transformed according to
the gate’s definition. If the control qubit is |0〉, the primary qubit passes the gate
undisturbed.

In this section, we describe in detail the inner workings of a protocol that
allows two parties, Alice and Bob, to communicate secretly over an insecure,
public quantum channel. The protocol relies on the fact that a quantum chan-
nel cannot be eavesdropped on without disturbing the quantum information
transmitted over the channel. In addition to the quantum channel, the quantum
protocol also requires an authenticated channel for classical communication and
a quantum memory (i.e. the ability to store the states of a certain number of
qubits for a certain amount of time). The main steps of the protocol are:

Phase I: Communication over the Quantum Channel

Step 1: Alice concatenates the two binary strings, one representing the mes-
sage she intends to send over to Bob and the other representing the
signature bitstring that will be used for eavesdropping.

Step 2: For each bit in the concatenated sequence, Alice uses one of the
two bases, or alphabets (chosen randomly) to encode the value of
the respective bit in the quantum state of the resulting qubit.
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Step 3: Alice scrambles the order of the qubits forming the quantum en-
crypted block obtained in step 2, by choosing an arbitrary permu-
tation of the qubits and then sends them over to Bob through the
insecure, public quantum channel.

Step 4: Bob applies the necessary procedures to safely store the qubits re-
ceived from Alice until the second phase of the protocol, when he
will gain knowledge about each qubit’s encoding basis and position
in the original qubit sequence. The position, or index of the qubit
in the original sequence is called the qubit’s rank.

Phase II: Communication over the Classical Channel

Step 1: Alice discloses to Bob which of the qubits transmitted are part of
the signature string and the encoding base of each.

Step 2: Following Alice’s instructions, Bob reconstructs the signature bit-
string.

Step 3: Alice and Bob proceed to verify, bit by bit, whether the signature
bitstring was untampered with, during the transmission.

Step 4: If the discrepancy between Alice and Bob is discovered in the val-
ues of the signature bits, the presence of an eavesdropper is inferred
and the protocol is abandoned.
Otherwise, Alice informs Bob about the correct position (rank) of
each qubit in the original message and the encoding alphabet em-
ployed to obtain each qubit.

Step 5: Bob decodes and re-arranges the qubits he still has in storage in
order to obtain the plain message sent to him by Alice.

Having presented the structure of the protocol, a few clarifications and an
analysis of it are perhaps appropriate at this point. Generally, the length of
the signature bitstring reflects the intended level of security for the transmitted
message. As the analysis below clearly shows, a longer signature bitstring re-
sults in higher chances of detecting a potential eavesdropper. Consequently, the
signature length can be varied according to the importance of the message.

The protocol above is described in general terms, abstracted away from any
particular physical realizations for a qubit. Moreover, any two alphabets, i.e. en-
coding bases, can be used, as long as they are complementary. Complementary
bases means that they correspond to conjugate quantum variables. In this sit-
uation, trying to measure (decode) a qubit using the other basis, and not the
one used for encoding, will maximize the uncertainty over the value of the cor-
responding bit: equal chances to obtain 0 or 1. From a mathematical point of
view, the simplest example to achieve complementarity would probably be the
use of the regular computational basis {|0〉, |1〉} together with the “Hadamard

basis” {H |0〉 = |0〉√
2
+ |1〉√

2
, H |1〉 = |0〉√

2
− |1〉√

2
}. We note in passing that the BB84

protocol [1], which uses photon polarization as qubit embodiment, achieves com-
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Fig. 1. Opaque eavesdropping. Eve wrongly measures in the Hadamard basis a qubit
sent by Alice in the computational basis.

plementarity by choosing randomly between rectilinear polarization {| →〉, | ↑〉}
and diagonal polarization {| ↗〉, | ↖〉} as the two possible encoding bases. In
general, the precise meaning or interpretation of a certain basis depends entirely
on the physical realization chosen for the qubit. To keep our discussion as gen-
eral as possible, while still referring to a concrete pair of complementary bases,
we assume henceforth that the two encoding alphabets are the computational
basis and the Hadamard basis, as specified above. This basically means that
Alice will create a |0〉 qubit for each 0 bit in the message and a |1〉 qubit for
each 1 bit in the message, with a random choice to apply a Hadamard gate on
the resulting qubit. What can Eve, the prototypical eavesdropper do, in order to
elicit as much information as possible about the transmitted message, while the
qubits are in transit from Alice to Bob? The two main possible eavesdropping
strategies are discussed next.

2.1 Opaque Eavesdropping

Opaque eavesdropping refers to Eve’s attempt to gain knowledge about the trans-
mitted message by measuring each qubit passing through the quantum channel
in one of the two possible bases. Eve knows the two bases that Eve has used:
computational and Hadamard. Yet, for any specific qubit, Eve does not know
the basis used, as Alice chooses the basis randomly. If Eve is lucky and chooses
the same basis, she will be able to read the binary value of the qubit and will
leave no trace of her interference. Nevertheless, if Eve chooses the wrong basis,
she gains no knowledge about the binary value of the qubit, and also may disturb
the correct measurement for Bob. There are two cases with similar results. First,
Alice may send the qubit simply in the computational basis, see fig. 1. If Eve
mistakenly applies a Hadamard gate prior to her own measurement, she will get
either 0 or 1 with equal probability, regardless of Alice’s original value. Therefore,
Bob may measure the wrong value with a 50% chance. If this is a qubit that
Alice and Bob check, again they have a 50% chance to catch Eve. Secondly, Alice
may send a qubit in the Hadamard basis. If Eve mistakenly measures the qubit
directly she again produces a qubit on which she may be caught with a chance
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of 50%. Therefore, on each qubit that Eve wrongly disturbs, she is caught 50%
of the times. As she is disturbing half the qubits on average, Eve is caught with
a probability of 25% on each qubit she chooses to observe. Or else, on each qubit
that Eve decides to observe and Bob decides to check, Eve remains undetected
with a probability of 75% = 3

4 .
Suppose, there are n qubits in the signature string. They are observed by

Eve and checked by Bob. Eve remains undetected with a probability of (34 )
n.

Therefore Bob’s detection rate over n qubits is given by the formula rate =
1− (

3
4

)n
.

Nevertheless, if Eve gets lucky enough to remain undetected, then she will
gain access to the rank and encoding basis of each bit in the message. This
means that she can put the bits in the correct order, but she can only be certain
about their value for half of them, the ones for which she correctly guessed the
encoding basis. For example, if Eve listens to n qubits, she is certain of the value
of n

2 qubits. Thus, her information gain is 50% = 1
2 .

Note that the probability for Eve to remain undetected may be very low; for
example, if the signature string is 25 bits long, Eve remains undetected with a
probability of about 0.075%.

2.2 Translucent Eavesdropping

Alternatively, Eve could try a more insidious eavesdropping strategy, avoiding a
direct measurement on the qubits in transit through the quantum channel. This
can be achieved by making a copy of each qubit or entangling each qubit to
one of her own, before sending the original further on to Bob. Since the two en-
coding bases are complementary, no quantum circuit exists that can accurately
duplicate all four base vectors (no-cloning theorem). For example, the Controlled-
NOT (CNOT) gate acts as a cloning gate for qubits encoded in the computa-
tional basis, but creates as entangled pair 1√

2
(|00〉 ± |11〉) whenever we push a

quantum state like 1√
2
(|0〉 ± |1〉) through it. Consequently, each qubit originally

encoded by Alice in the Hadamard basis, will arrive at Bob entangled with a cor-
responding qubit in Eve’s possession. Now when Bob applies a Hadamard gate
on his half of the entanglement, in order to decode the qubit, he effectively trans-

forms the state of the Bob-Eve ensemble as follows: H ⊗ I
(

1√
2
|00〉+ 1√

2
|11〉

)
=

1
2 (|00〉+ |01〉+ |10〉 − |11〉), and H ⊗ I

(
1√
2
|00〉 − 1√

2
|11〉

)
=

1
2 (|00〉 − |01〉+ |10〉+ |11〉).

When any of the two quantum states above is measured by Bob in the normal
computational basis, the entanglement will collapse to one of the four basis
vectors { |00〉, |01〉, |10〉, |11〉 } and Bob will have a 50% chance to obtain
the correct bit value, the one originally encoded by Alice. Consequently, the
detection rate for translucent eavesdropping is the same as the one derived for
opaque eavesdropping.
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2.3 Lower Levels of Eavesdropping

The above analysis for eavesdropping consequences is based on the assumption
that Eve tampers with all qubits transmitted through the quantum channel.
Here, tampering with a qubit means either measuring or trying to clone it. If
Eve is caught, she gains no knowledge whatsoever about the content of the
message. This happens because whenever Eve is caught in Step 4 of Phase II of
the protocol, see section 2, the protocol is abandoned. Alice does not reveal the
correct order of the qubits and the scrambled message is meaningless both to
Eve and Bob.

Consequently, Eve could settle for a more discrete strategy, according to the
plan that partial information is better than no information at all. If Eve decides
to eavesdrop on a fraction x for the qubits in the quantum encrypted block
transmitted, then the detection rate varies with x and with the signature length
n as follows:rate = 1 − (

3
4

)x·n
,, where 0 ≤ x ≤ 1 and n is the length of the

signature, for example n = 16 bits long.

Fig. 2. The graph shows the detection rate together with Eve’s information gain. The
Ox axis represents x, the percentage of the signature read by Eve. The Oy axis shows
both the detection rate and the information gain.

In the eventuality that she remains undetected, the percentage of the message
that Eve is certain she has correctly decoded is 50%. Thus the information gain
on a fraction x is x

2 A graph depicting the variation of the detection rate and
information gain for various levels of eavesdropping is presented in fig. 2. The
graph assumes a constant signature length of 16 bits. A longer signature will, of
course, push the detection rates asymptotically closer to the 100% limit.

From Eve’s point of view, probably the most pertinent question is: What is the
optimal level of eavesdropping such that the probability of escaping detection and the
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knowledge gained about the message are both maximized? In order to answer this
question, we need to find the maximum of a benefit function that quantifies both
these quantities. A suitable function is fbenefit : [0, 1] → [0, 1], fbenefit(x) =
x
2

(
3
4

)x·n
.

This function was obtained by multiplying the two quantities, probability of
escaping detection and the fraction of the message correctly decoded, normalized
to the interval [0, 1]. As it can be seen from fig. 3, this function reaches its
maximum for a level of eavesdropping of about 22%, if the signature string
consists of 16 bits. This maximum drops to 14% for a 24-bit signature and to
around 11% for a 32-bit signature. These data suggest that the best strategy
for Eve is to decrease the level of eavesdropping as the size of the signature
increases. However, the length of the signature string is disclosed only during
the second phase of the protocol, so Eve cannot use this information in planning
her eavesdropping strategy.

Fig. 3. The benefit of eavesdropping versus the detection rate

3 Encoding in Three Bases

We have discussed an algorithm that reveals the presence of Eve whenever the
signature test fails. For each bit of the signature, Eve can be detected with
a probability of 25%. This detection rate per qubit is common to all classical
key distribution protocols [1] [2]. We hereby propose an encoding scheme that
improves the detection rate per qubit to 33%. The improved detection rate comes
from encoding each qubit in three complementary bases. While this may seem
to increase the complexity in manipulating each qubit, yet the gates used for
encoding are common and simple.

The three bases used for encoding are the computational basis, the Hadamard
basis, and the phase-shift- Hadamard basis. The phase-shift- Hadamard basis has
two gates applied to a qubit: a Hadamard gate and then a Rπ

2
rotation.

When Alice wants to send a binary digit 0 or 1, she first prepares a qubit in
the computational basis |0〉 or |1〉. Then Alice chooses randomly one of the three
bases to encode her qubit:
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1. The computational basis |0〉 and |1〉.
2. The Hadamard basis, 1√

2
(|0〉+ |1〉 for 0 and 1√

2
(|0〉 − |1〉 for 1.

3. The Rπ
2
-Hadamard basis, 1√

2
(|0〉+ i|1〉 for 0 and 1√

2
(|0〉 − i|1〉 for 1.

If Alice chooses the computational basis, she simply sends the qubit to Bob. If
Alice chooses the Hadamard basis, then Alice applies a Hadamard gate first and
then sends the transformed qubit to Bob. If Alice chooses the Rπ

2
-Hadamard

basis, Alice applies a Hadamard gate then a π
2 phase shift gate, and then sends

the doubly transformed qubit to Bob.

Fig. 4. Encoding of a qubit in three orthogonal bases. The random values of the control
qubits 1 and 2 define the actual encoding basis.

As Alice has three options, the choice can be made by two control bits that
are set on arbitrary values. Fig. 4 shows the quantum circuit that Alice uses to
encode each qubit. The table below shows the encoding basis as given by the
values of the two control bits.

Control 1 Control 2 Encoding Basis

0 0 computational basis
0 1 not used
1 0 Hadamard basis
1 1 phase-shift Hadamard basis

According to the protocol, when Bob receives a qubit from Alice, he waits
to be informed on the classical channel what encoding basis was used. Then he
applies the necessary gates in reverse order: the phase-shift gate first and then
the Hadamard gate.

3.1 What Eve Can Do

The eavesdropper can be supposed to know the mechanism of encryption, while
not knowing the values of the random control bits.

In opaque eavesdropping, Eve will try to measure the qubit intercepted from
Alice and then will further transmit either the measured qubit or a qubit of her
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Fig. 5. Alice encodes her qubit in the phase-shift-Hadamard basis. Eve guesses the
computational basis. Bob catches Eve with a 50% chance.

choice to Bob. Eve guesses one of the three encoding bases and treats the qubit
intercepted from Alice accordingly.

Suppose Eve tries the computational basis. If Alice’s qubit is encoded in the
computational basis, Eve reads the correct value and remains undetected. If
Alice’s qubit is encoded in the Hadamard basis, Eve wrongly pushes Alice’s
qubit through a Hadamard gate and will be detected by Bob in 50% of the cases.
This situation was represented in fig. 1. If Alice’s qubit was encoded in the phase-
shift -Hadamard basis and Eve measures the qubit in the computational basis,
Eve destroys the balanced superposition. As in the previous case, Bob can catch
Eve with a 50% chance. Fig. 5 shows an example of Alice encoding a binary 0
in the phase-shift-Hadamard basis. Bob, by applying the same steps that Alice
did in reverse order will retrieve the initial 0 only 50% of the times. As Alice
encodes a qubit randomly in one of the three bases, and Eve reads the stolen
qubit in the computational basis, Eve will be caught in two situations with a
chance of 50%. This yields an overall probability of 1

3 (
1
2 +

1
2 ) = 33%. This chance

is considerably higher than 25% offered by two bases encoding.
We supposed that Eve decides to measure the intercepted qubit in the com-

putational basis. If Eve chooses to measure in any other of the three bases, a
similar result can be deducted. The detection probability is 33% no matter what
basis Eve chooses.

If eavesdropping is tested on a larger signature, the detection rate increases
sharply with the length of the signature n: rate = 1− (

2
3

)n
.

Fig. 6 shows a comparison on the detection rate for the case of two encoding
and three encoding bases respectively. The graph shows that for short signa-
tures, the detection rate for three encoding bases is measurably larger, whereas
signatures large than 25 qubits do not benefit from three encoding bases.

Lower Levels of Eavesdropping. Let us study the optimal level of eavesdrop-
ping on the three bases encoding scheme. Under the assumption that Eve is not
caught, Eve gains the value of the qubits that she has luckily measured in the
same basis as Bob. As there are three possible bases, Eve reads correctly 1

3 of
the qubits she intercepts.
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Fig. 6. The graph shows the detection rate versus the signature length for three en-
coding bases. The Ox axis represents the length of the signature string. The Oy axis
shows the probability for Eve to be detected.

Fig. 7. The graph shows the detection rate together with Eve’s information gain. The
Ox axis represents the percentage of the signature read by Eve. The Oy axis shows
both the detection rate and the information gain.
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Suppose Eve does not listen to the entire qubit block, but eavesdrops a fraction
x. Therefore, she will disturb a fraction x of the signature of length n. The
detection rate varies with x according to the following formula rate = 1−(

2
3

)x·n
.

Also, x affects the information gain, which will be the fraction x
3 of the message.

Fig. 7 represents both the detection rate and the information gain for the three
bases encoding scheme, computed on a signature of 16 bits. The graphs for a
two bases encoding are also shown for comparison in the figure, with a thin line.
It can be seen that the three base protocol improves over the two base protocol,
both in terms of detection rate as well as information gain.

Fig. 8. The benefit of eavesdropping versus the detection rate

In section 2.3, we defined a benefit function that Eve uses to find the opti-
mal level of eavesdropping. For the three bases encoding, the function becomes
fbenefit : [0, 1] → [0, 1], fbenefit(x) =

x
3

(
2
3

)x·n
.

Fig. 8 shows the graph of this function juxtaposed with the graph for the two
bases encoding defined in section 2.3. By comparison, we see that the optimal
level of eavesdropping is approximately the same, about 22%. Nevertheless, for
a three bases encoding scheme the benefit is considerably lower .

4 Conclusion

We have shown that secret communication does not need an encryption key. The
previous section contains a protocol that transmits a secret message without en-
coding the message with a key. The secrecy of the message ensues from randomly
scrambling the order of the bits in the message. As the bits are sent in random
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order, the scrambled message does not reveal anything about the content of the
message. The correct order of the qubits is revealed publicly after the absence
of an intruder is checked.

The protocol benefits from the capability of detecting an intruder. This is
a major characteristic of all quantum key distribution protocols. The intruder,
Eve, leaves an unmistakable mark on the qubits she read: she changes the in-
tended value of the qubit with a certain probability. Our paper has an improved
detection rate of Eve from 25% to 33% per intercepted qubit. This is achieved by
using three orthogonal encoding bases. Eve’s presence is searched on a signature,
as in all other protocols.

Our paper gives an extensive analysis on what Eve can do: opaque and translu-
cent eavesdropping, and also low levels of eavesdropping. It studies the advan-
tages of Eve and the maximum benefit Eve can get from a certain signature
length.
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