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Preface

This volume contains the papers presented at the Second International Confer-
ence on the Theory and Practice of Natural Computing (TPNC 2013) held in
Cáceres, Spain, during December 3–5, 2013.

The scope of TPNC is rather broad, containing topics of either theoretical,
experimental or applied interest. The topics include but are not limited to:

Nature-inspired models of computation
◦ amorphous computing
◦ cellular automata
◦ chaos and dynamical systems based computing
◦ evolutionary computing
◦ membrane computing
◦ neural computing
◦ optical computing
◦ swarm intelligence

Synthesizing nature by means of computation
◦ artificial chemistry
◦ artificial immune systems
◦ artificial life

Nature-inspired materials
◦ computing with DNA
◦ nanocomputing
◦ physarum computing
◦ quantum computing and quantum information
◦ reaction-diffusion computing

Information processing in nature
◦ developmental systems
◦ fractal geometry
◦ gene assembly in unicellular organisms
◦ rough/fuzzy computing in nature
◦ synthetic biology
◦ systems biology

Applications of natural computing to algorithms, bioinformatics, control,
cryptography, design, economics, graphics, hardware, learning, logistics, op-
timization, pattern recognition, programming, robotics, telecommunications,
etc.

TPNC 2013 received 47 submissions. Each one was reviewed by three Pro-
gram Committee members and there were also several external referees. After a
thorough and vivid discussion phase, the committee decided to accept 18 papers
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(which represents an acceptance rate of 38.30%). The conference program also
included one invited talk and one invited tutorial.

Part of the success in the management of the submissions and reviews is due
to the excellent facilities provided by the EasyChair conference management
system.

We would like to thank all invited speakers and authors for their contribu-
tions, the Program Committee and the external reviewers for their cooperation,
Diputación de Cáceres for the excellent facilities put at our disposal, and Springer
for its very professional publishing work.

September 2013 Adrian-Horia Dediu
Carlos Martín-Vide

Bianca Truthe
Miguel A. Vega-Rodríguez
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Boosting Interactive Evolution Using Human

Computation Markets

Joel Lehman and Risto Miikkulainen

Department of Computer Science, The University of Texas at Austin, USA
{joel,risto}@cs.utexas.edu

Abstract. Interactive evolution, i.e. leveraging human input for selec-
tion in an evolutionary algorithm, is effective when an appropriate fitness
function is hard to quantify yet solution quality is easily recognizable by
humans. However, single-user applications of interactive evolution are
limited by user fatigue: Humans become bored with monotonous evalu-
ations. This paper explores the potential for bypassing such fatigue by
directly purchasing human input from human computation markets. Ex-
periments evolving aesthetic images show that purchased human input
can be leveraged more economically when evolution is first seeded by op-
timizing a purely-computational aesthetic measure. Further experiments
in the same domain validate a system feature, demonstrating how human
computation can help guide interactive evolution system design. Finally,
experiments in an image composition domain show the approach’s po-
tential to make interactive evolution scalable even in tasks that are not
inherently enjoyable. The conclusion is that human computation markets
make it possible to apply a powerful form of selection pressure mechan-
ically in evolutionary algorithms.

1 Introduction

A critical component of any evolutionary computation (EC) experiment is se-
lection, i.e. how the parents of the next generation are chosen from the current
population. In particular, the success of a particular EA in a given domain often
depends upon choosing an appropriate fitness function to guide search. That
is, for an EA to produce a solution, the fitness function that is optimized must
induce a sufficiently smooth gradient of increasing fitness that leads from the
random individuals in the initial population to a solution. However, intuitive
choices for fitness functions may often fail to identify the intermediate steps
that lead to the solution [10,4], and some concepts intuitive to humans remain
difficult to quantify algorithmically [17,19].

For example, creating an algorithmic characterization of aesthetic appeal to
automate evolving aesthetic artifacts is a compelling [11,3,13] yet unfulfilled
endeavor [17,13]. In such cases, one way to bypass this lack of an algorithmic
measure is through interactive evolutionary computation (IEC; [19]), wherein
humans act as a fitness function, actively selecting which solutions to evolve
further. The insight is that humans may be able to evaluate a characteristic
even when it cannot be mechanically recognized or rigorously defined.

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Lehman and R. Miikkulainen

However, a significant problem in IEC is user fatigue: A single user can only
perform so many evaluations before becoming tired or bored [19]. A recent so-
lution to this problem is to create collaborative IEC websites whereby without
financial incentive users cooperate to evolve complex artifacts they could not
have evolved alone [17,2,12]. The idea is that although a single user may be-
come fatigued, if that user publishes their work on the website, other users can
choose to further extend that published work. Over time, the artifacts that are
published can accumulate and form a branching phylogeny of diverse and inter-
esting content [17].

This approach is economical and promising when task domains are inherently
enjoyable, e.g. creative domains like open-ended image, shape, or music evolu-
tion [17,2,12]. However, when attempting to apply the approach to arbitrary
domains there are two significant limitations: (1) sustained evolution for many
generations depends upon the task domain being engaging enough to continually
draw a sufficient volume of volunteer users, and (2) implementing the idea re-
quires creating the non-trivial system architecture that composes a collaborative
evolution website, e.g. architecture that supports creating and handling user ac-
counts, facilitating discovering and rating artifacts, and evolving and publishing
artifacts.

An interesting potential solution to these problems is provided by human
computation markets (HCMs). In these markets it is possible to pay for human
input in arbitrary tasks and thereby keep humans motivated even when the task
is not particularly rewarding itself. This paper explores whether HCMs can be
effectively used for this purpose, through an approach called HCM+IEC that
uses HCMs to perform selection in an interactive evolutionary algorithm.

The paper focuses on three ideas: First, even if the domain to be used with
IEC is itself enjoyable and engaging (e.g. evolving aesthetic images), IEC web-
sites face the bootstrapping problem common to all user-generated content sites.
That is, at such a site’s launch, when attracting users is most important, the
site is least engaging due to lack of content. Thus the first contribution of this
paper is to suggest that markets for human computation can help overcome
this bootstrap problem: Initially users can be paid to generate content. For this
reason, experiments with such an aim apply IEC+HCM in an image evolution
domain representative of those often explored by collaborative IEC websites. The
results show that human computation can be more efficiently leveraged if a com-
putational aesthetic measure [11] first algorithmically generates an interesting
diversity of images upon which humans can further elaborate.

Second, when designing an IECwebsite or a single-user IEC system, oftenmany
design decisions about the underlying algorithm must be made that will signifi-
cantly impact the quality of the system’s output. Problematically however, such
important decisions often are guided only by the preferences and intuitions of
the system designers. The second contribution of this paper is thus to suggest
that IEC+HCM can be applied to conduct controlled experiments that measure
the impact of a design decision on the quality of an IEC system’s products. Ex-
periments in the same image evolution domain show that removing a significant
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feature results in measurably less aesthetically pleasing pictures, thereby demon-
strating the potential for IEC+HCM to facilitate principled IEC system design.

Third, there are EC problems that could benefit from large-scale human se-
lection but for which a collaborative IEC website will not be a feasible solution.
That is, most current IEC websites rely on self-directed users to produce content,
and such content is produced irregularly and only to the extent that volunteer
users enjoy evaluating artifacts in the domain. Thus the third contribution of
this paper is to demonstrate how IEC+HCM can be used instead of a collab-
orative IEC website in one such condition, i.e. when the task domain is not
enjoyable.

The conclusion is that HCMs offer a mechanism for converting money into a
powerful form of selection pressure that may prove a valuable tool for interactive
evolution.

2 Background

In this section, the foundational technologies applied in the experiments in this
paper, including interactive evolution, human computation, and heuristics for
evolving impressive artifacts, are reviewed.

2.1 Interactive Evolution

Applying human judgment to perform selection in an evolutionary algorithm is
called interactive evolutionary computation (IEC; [19]) and is motivated by the
difficulty in quantifying intuitive concepts that are readily recognized by humans
(e.g. aesthetic appeal), and also by the impressive examples of human-directed
breeding (e.g. the wide variety of domesticated dogs or the increased potency
of human-bred agricultural crops). While IEC has been explored in the context
of single-user applications [19], collaborative websites [17,2], and online video
games [6,16], it has only been superficially explored in the context of HCMs
[1], i.e. websites that facilitate paying human users to complete small tasks that
cannot be easily algorithmically automated.

Note that although both combine human intution with evolutionary algo-
rithms, IEC is distinct from Human-Based Genetic Algorithms (HBGAs; [9]).
In HBGAs, humans perform not only selection (as in IEC), but implement all
genetic operators and additionally serve as the substrate for genetic representa-
tion. That is, a human participating in a HBGA might recombine two existing
pictures by drawing a new image that combines high-level features of both, in-
stead of breeding together pictures generated by an underlying computational
genetic system as in IEC. While HBGAs have been previously combined with
HCMs [24,23], they impose the requirement that humans be able to construct
and manipulate the artifacts being evolved. In other words, often recognizing
a promising artifact is easier than creating one. Thus, a potential advantage of
IEC is that one can breed complex artifacts (e.g. neural networks or complex
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pictures) without understanding their construction. In this way, IEC can en-
able humans without expert knowledge to aid in solving difficult computational
problems.

Supporting this idea, previous studies with IEC have demonstrated its promise
for evolving complex structures, e.g. significantly increasing efficiency when evolv-
ing artificial neural networks (ANNs) that control mobile robots [5,22]. Also, in
situations where large numbers of evaluations are impractical, it has been shown
that IEC can make problems more tractable [5].

A representative example of a scalable IEC approach is given by the Picbreeder
website [17], which encourages indirect user collaboration to evolve aesthetic im-
ages. On the site, users can discover, rate, and extend (through further interac-
tive evolution) previously evolved images that are represented by compositional
pattern producing networks (CPPNs; [18]). Note that CPPNs are feed-forward
ANNs with an extended set of activation functions chosen for the regularities
they induce [18]. The success of Picbreeder in evolving a wide variety of inter-
esting and complex images likely stems from combining together an open-ended
genetic encoding, an open-ended domain, and a powerful form of selection pres-
sure (i.e. human judgment). Thus, similarly designed websites may be one path
to large-scale IEC and compelling evolved artifacts.

However, evolution in such websites is typically undirected (i.e. driven by
users’ whims on what to create) and public (i.e. driven by users’ ability to
discover and elaborate upon existing content); for commercial IEC applications
the ability to more directly guide the evolutionary process may be important
and additionally it may be necessary for evolved content to be kept private (i.e.
not stored such that all content is publicly accessible).

These limitations motivate exploring new approaches for large-scale IEC. A
promising resource that can be leveraged for such purposes is human computa-
tion, which is reviewed next.

2.2 Human Computation

While the range of tasks solvable by computers continues to expand, there remain
tasks that are challenging to solve computationally but are trivial for humans to
solve. Examples of such tasks are recognizing written text [21], identifying objects
in images [20], or evaluating aesthetic appeal [13]. This asymmetry motivates
leveraging human computation [21] to automatically integrate human insight
into algorithmic processes. Such human computation can often be made more
scalable by employing crowdsourcing [8,15], whereby many small contributions
from a diffuse group of people (often online) are aggregated.

For example, while CAPTCHAs (Completely Automated Public Turing test
to tell Computers and Humans Apart) separate humans from machines by gen-
erating tasks that are easily solvable by humans but difficult for machines, the
widely-deployed reCAPTCHA system [21] acts as a CAPTCHA while at the
same time leveraging human computation to transcribe words from old books.
That is, part of each word identification task posed by reCAPTCHA to its
users is not machine generated, but is an image of a phrase that algorithmic
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character recognition struggled to classify automatically. Similarly, “games with
a purpose” (GWAP; [20]) are designed such that human enjoyment results from
deriving and verifying solutions to problems that are not yet solvable compu-
tationally; in this way, game players cooperate to create tagged data sets as a
byproduct of an enjoyable experience [20].

ReCAPTCHA and GWAPs show that sometimes users can be enticed to
generate useful computation without economic incentive. However, it is unclear
how to transform an arbitrary human computation task into an enjoyable or
necessary process such that the task’s solution is a byproduct. Additionally,
rather than wrap a task in a cleverly designed game and attempt to attract
volunteers to play it, it may be simpler or cheaper sometimes to simply pay a
human to perform the desired task through a HCM. The most well-known such
marketplace is the Amazon Mechanical Turk (AMT; [7]), which is the system
used in the experiments in this paper.

AMT exposes an interface to programmers that allows them to upload human
intelligence tasks (HITs) which specify a desired task, an interface for humans
to perform it, and the monetary reward for successfully completing the task.
Once a human completes the HIT, the results can be queried and approved so
that the human user can be paid. In this way, markets for human computation
like AMT allow seamless integration of algorithms with arbitrary human input
through economic exchange.

The next section reviews an algorithmic aesthetic measure that seeds evolution
in some experiments in this paper.

2.3 Evolving Impressive Artifacts

One dimension of what humans appreciate as impressive is the perceived amount
of design effort necessary to create an artifact. In other words, it is easy to
recognize how difficult an impressive artifact was to create [11]. For example,
intuitively it is easier to recognize a good novel than it is to write one, and it
is easier to perceive a back-flip than it is to perform one. Supporting such an
idea, artifacts often appear less impressive if they require significant effort to
create but such effort is not readily apparent, e.g. a painting of something trivial
that is entirely indistinguishable from a photograph. Conversely, when tasks are
trivial, the disparity in effort between recognition and creation is much less;
for example, reading a novel composed of random words may take more effort
than actually writing one. Put another way, it is easy to verify the difficulty in
creating an impressive artifact. Interestingly, characterizing impressiveness this
way parallels the idea of NP-completeness: Solutions to NP-complete problems
are easily verified but difficult to derive.

Although a philosophical description of impressiveness may be thought-pro-
voking, its application to computational experiments is limited unless it can be
quantified. Lehman and Stanley [11] introduced two heuristics for estimating
algorithmically the design effort necessary to recreate an artifact: rarity and
recreation effort. That is, because the ability to perform a back-flip is rare, such
rarity may indicate that back-flips are an impressive act. Similarly, the relative
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rarity of a noticeable property or combination of such properties in a wider space
may hint that they are impressive; for example, an image with a symmetric tes-
sellating pattern may be rare and thus potentially impressive. A more rigorous
metric, although more computationally expensive, is recreation effort, i.e. the
amount of effort required to design a similar artifact from scratch. The rarity
heuristic, which is computationally easier to apply, was shown to largely agree
with the recreation effort heuristic, and is therefore used in this paper [11].

While such algorithmic heuristics may not always agree with human intuition
about how impressive an artifact is, they may still provide an automatic means
to generate an interesting diversity of artifacts. This observation motivates ap-
plying the impressiveness metrics in the experiments in this paper in hopes of
seeding search to more economically leverage human input. That is, in some
experiments users from AMT are presented purely computationally-evolved im-
pressive artifacts in the first generation. In particular, such experiments in this
paper explore the same image evolution domain as Lehman and Stanley [11]
although impressiveness metrics could be adapted to other domains, i.e. the
general concepts are not particular to evolving images.

(a) (b) (c) (d) (e) (f)

Fig. 1. Comparing random and impressive images. The images shown in (a),(b),
and (c) are representative of images generated by random genomes in the image evolu-
tion domain, while the images shown in (d),(e), and (f) are examples of images evolved
through the impressiveness metrics. Importantly, the impressive images differ qualita-
tively and are noticeably more complex than the random images.

To facilitate measuring impressiveness in the image evolution domain, Lehman
and Stanley [11] compiled a list of features relevant to human vision, such as
the level of symmetry in an image, an image’s brightness, and how compressible
an image was by different compression algorithms. Next, the rarity of different
settings of simple combinations of these features was measured by sampling a
space of images [17]. Finally, a search process driven to explore combinations
of features was run, and its products screened by the rarity heuristic to cull
the most impressive. The setup is described more exhaustively by Lehman and
Stanley [11]. Note that other automated content-generation methods could have
been substituted; what is most important for the purpose of this paper is that
the impressiveness metrics enable automatic evolution of images that are more
interesting than the random genomes that would otherwise seed evolution. For
comparison, examples of impressive images and those generated from random
genomes are shown in figure 1.
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3 Approach

While previous approaches to IEC are limited by user fatigue or require that a
domain be enjoyable to attract users, the approach in this paper, IEC+HCM,
avoids such issues by paying users for performing IEC evaluations through a
HCM (figure 2). Of course, the trade-off is that with IEC+HCM there is an
explicit economic cost for each evaluation.

The particular HCM applied here is AMT. Recall that AMT provides a com-
putational interface for posting small computational tasks with a set monetary
reward. Importantly, the AMT interface can be applied to automate IEC tasks
(e.g. by presenting a user with an artifact or behavior and querying for evaluation
via a web interface). Thus, tasks can be mechanically created and uploaded to
AMT, results collected, and participants paid, without additional human over-
sight. In this way the methodology can potentially scale to arbitrary limits given
enough money and available users in the HCM, thereby overcoming previous lim-
itations to easily implementing IEC in any domain on a large scale. This paper
evaluates the feasibility of the IEC+HCM approach: The experiments included
726 unique AMT users completing 2, 300 HIT evaluations. If successful, it should
be eventually possible to scale the approach by two to three orders of magnitude.

Importantly, there are many potential ways to combine a HCM with an IEC
algorithm. One design decision is how tasks should be divided. For example,
a task sent to a HCM for completion could consist of evaluating only a single
artifact, evaluating the evolutionary algorithm’s entire population, or guiding
multiple generations of IEC evolution (i.e. evaluating multiple populations in se-
quence). In this paper, tasks were divided into evaluations of a single population
each, similarly to how a user influences a single generation of evolution in most
single-user IEC applications [19].

Another important decision is what type of input should be gathered from
human users; such input could consist of only which artifact in a population
was most preferred, or could require individually rating each artifact. Individual
ratings were gathered in this paper to enable comparisons between generations
and runs, and to encourage greater deliberation during evaluation.

A final aspect of combining IEC with a HCM is how user evaluations of
artifacts guide evolution. For example, if each user independently guides evolu-
tion for many generations, their most-preferred artifacts could seed the initial
population of future tasks, similarly to how sites such as Picbreeder work [17].
However, in the approach in this paper each user evaluates only one genera-
tion at a time, and multiple independent evaluations of the same population
are combined together to allocate offspring for the next generation. To avoid
averaging out individual preferences, children are allocated to artifacts in pro-
portion to how many users rate them most-highly (instead of simply averaging
each artifact’s ratings).

Thus while other approaches to IEC+HCM may also be viable, the approach
described here reasonably combines IEC with HCMs, and its design decisions
form a coherent methodology.
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Fig. 2. The IEC+HCM approach. During each generation of evolution, when eval-
uating the population the EA uploads evaluation tasks to the HCM to be completed by
human users. The results guide which parents reproduce to form the next generation.
In this way, an EA can be driven by the human judgment of many non-experts.

4 Experiments

In following sections, experiments are presented that apply IEC+HCM to two
domains. Results in evolving aesthetic images are first presented as a domain
characteristic of collaborative IEC websites driven by user volunteers [17]. The
second domain evolves only compositions of image layouts (which removes the
potential for engaging novelty) as an exemplar for where economic incentives are
crucial for success.

4.1 General Experimental Setup

For all experiments, human computation was purchased through AMT and a set
price of $0.05 USD was paid per user completion of a task. A standard genetic
algorithm was applied with a small population size (nine individuals) charac-
teristic of many IEC domains [19]. All runs consisted of ten generations, with
one task uploaded per generation, and ten independent runs of each compared
method were performed to enable statistical comparisons.

Tasks uploaded to AMT contained nine images, i.e. the entire population,
and required users to rate each image’s aesthetic appeal on an integer scale from
one to five (where five is the best). Because aesthetic judgment is subjective
and varies between individuals, each task was evaluated by five separate AMT
users to get a more representative sample. In particular, individuals were se-
lected proportionally to how many users (from the five total) rated them most
highly among the nine presented images (i.e. only a user’s highest-rated images
would contribute to selection). Preliminary experiments demonstrated that sim-
ply averaging the ratings was less effective than this approach because many
interesting artifacts were divisive, i.e. they were rated high by some and low
by others, and averaging thereby would have resulted in selection for mediocre
images that received lukewarm ratings from most users.

4.2 Evolving Aesthetic Images with IEC+HCM

The first two experiments explored an image evolution domain that implements
an encoding similar to the Picbreeder collaborative IEC website [17] and explored
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elsewhere in single-user IEC applications [18]. In particular, in these systems
images are represented by ANN-like networks called CPPNs, which are briefly
reviewed in the next paragraph (a more detailed introduction is given by Stanley
[18]).

Importantly for the second experiment in this domain, while each node in a
traditional ANN is typically the same sigmoid activation function, each node in a
CPPN has an activation function selected from a fixed set of such functions; the
motivation for such a set is to enable more interesting visual patterns through
deliberate choice of included functions. For example, sinusoidal functions may be
included to enable repetitive patterns and Gaussian functions may be included
to enable symmetric ones. In this domain, a CPPN is mapped to the image it
represents in the following way: For each pixel in an image, the CPPN’s inputs
are set to its scaled Cartesian coordinates, and the output of the network is
interpreted as a grayscale pixel value. In effect, the CPPN thus represents a
pattern over a coordinate space, which in this case is interpreted as a picture.

The first experiment in this image evolution domain, which is described next,
explores methods for seeding newly-created collaborative IEC websites with
content.

Experiment 1: Bootstrapping Collaborative IEC. The goal of this ex-
periment is to show that IEC+HCM can be applied to evolve aesthetic images
through selection purchased from a diffuse cloud of users. One practical ap-
plication of such a technique is to bootstrap newly launched collaborative IEC
websites with initial content. For example, for a site like Picbreeder to attract
users, it helps to first have a diversity of aesthetic images that users can explore
and interact with. Problematically, such initial content is difficult to produce
automatically, because aesthetic evaluation generally requires human judgment.
On the other hand, it is laborious and uninteresting for humans to generate
because initially random images are of poor quality. Therefore, paid users are
instrumental for generating such initial content with sufficient quality.

However, because IEC+HCM incurs a financial cost for each evaluation, it
becomes important to leverage human input as efficiently as possible. Thus a
promising approach to increase IEC+HCM’s financial viability is to first generate
a diversity of content algorithmically. Such content is more interesting than the
random genomes that would otherwise seed evolution, although still in need of
further human refinement.

Thus, to investigate this idea two versions of IEC+HCM are run: one method
that is first seeded with pre-evolved impressive images, and another that is in-
stead initialized with random genomes. For the unseeded runs, evolution starts
from simple random CPPNs in the same way as most other CPPN-encoded im-
age evolution applications [17,18]. For the seeded runs, the setup of Lehman and
Stanley [11] was applied to first evolve impressive artifacts, of which the most
impressive from 20 separate runs were sampled to seed evolution. Figure 3 shows
the representative products of both methods.
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Initial Unseeded 1 Initial Unseeded 2 Initial Unseeded 3

Final Unseeded 1 Final Unseeded 2 Final Unseeded 3

Initial Seeded 1 Initial Seeded 2 Initial Seeded 3

Final Seeded 1 Final Seeded 2 Final Seeded 3

Fig. 3. Typical Products of the Seeding Experiment. Images from three rep-
resentative runs of the seeded and unseeded methods are shown. The labels indicate
whether the images are the most-preferred images from the initial or the final gen-
eration, and whether they are from the seeded or unseeded method; the number dis-
tinguishes separate runs. The main results are (1) that there is a large difference in
complexity and quality between the unseeded and seeded runs, and (2) that for the
seeded runs there is a noticeable divergence between the initially-preferred seed and
the final most-preferred evolved image.

Because judging aesthetic appeal requires subjective human evaluation, AMT
was also applied to investigate the products of the two methods. In particular,
runs of each method were first arbitrarily paired for comparison. Then, the most
preferred images from the initial and final generations of both methods were
placed in random order and uploaded to the same AMT evaluation task used for
IEC, but with a larger number of separate user evaluations (ten instead of five).

The results of this evaluation process (seen in figure 4) show that the most
preferred “impressive” seed images from the first generation of the seeded runs
are rated significantly more aesthetically pleasing than are the first generation
images from the unseeded runs (Mann-Whitney U-test; p < 0.05), support-
ing their motivation. Furthermore, the champion of the final generation of the
seeded runs (i.e. the most-preferred product of human elaboration of the seed
images) is rated significantly more pleasing than both the initial generation of
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the seeded runs and the final generation of the unseeded runs (p < 0.05). In this
way, the results support the hypotheses that IEC+HCM can be leveraged to
evolve increasingly aesthetically pleasing artifacts and that seeding IEC+HCM
with pre-evolved artifacts can more efficiently leverage human evaluations. Thus
seeded IEC+HCM may prove a viable technique for bootstrapping collaborative
IEC websites.
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Fig. 4. Seeding experiment evaluation. An independent evaluation comparing the
champions of the first and final generations of both the unseeded and seeded methods
is shown. The main result is that the final seeded champions are on average rated
significantly more aesthetically pleasing than both the final unseeded and initial seeded
images.

Experiment 2: Validating Components of an IEC System. The next
experiment is motivated by the desire to make principled design decisions while
creating a collaborative IEC website or single-user IEC application. That is, it
is difficult for a system designer to decide objectively on appropriate parameter
settings or what genetic encoding is best, especially when the quality of such de-
cisions depends upon subjective factors aggregated across all targeted users (e.g.
the aesthetic quality of artifacts evolved under such a decision). The problem is
that the most readily available heuristic for the designer, i.e. his own aesthetic
preferences or those of his team, may not well reflect the broader preferences of
the average target user.

While single-user IEC applications are easy to revise from user feedback even
after they have been first released, launching an IEC website inherently involves a
certain level of commitment to the domain. That is, changing the domain after
the website has launched may invalidate already-evolved content, potentially
alienating users whose creative products are deleted. Additionally, if previous
content cannot be merged into the system after a domain or encoding changes,
then its loss will make the site as a whole less engaging. Therefore it is desirable
to avoid such problems and launch a better initial product.

A potential solution is to run controlled experiments with IEC+HCM to col-
lect empirical evidence of a change’s impact from a representative sample of
potential users. That is, the quality of results from IEC with different parameter
settings or features can be compared, by paying users through AMT to perform
selection and then by paying other users to compare the final results. In this
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way, the particular preferences of the system’s designers need not dominate the
design of the system itself.

As a simple example, the second experiment evaluates the hypothesis that
the additional activation functions of CPPNs improve the aesthetic quality of
CPPN-evolved images beyond the use of simpler ANNs [18,17]. A third version
of the image evolution task was devised with simple ANNs (i.e. standard ANNs
with a single sigmoid activation function) substituted for CPPNs (which have
an extended set of activation functions). Only the activation function set is
varied, all other aspects of the encoding remain unchanged. In this way, the
aesthetic quality of products evolved with CPPNs could be compared to those
evolved with simpler ANNs. Furthermore, taking into account the advantages of
seeded IEC+HCM runs demonstrated in the previous experiment, only a seeded
method with simple ANNs was considered. Note that what is impressive or rare
in a particular genetic space depends upon the encoding; therefore, to accomplish
seeding with these ANNs required evolving impressive artifacts in this different
genetic space. Thus, ten additional IEC+HCM runs were conducted, with ANNs
seeded with impressive ANNs in the same way as in the previous experiment with
CPPNs.

The effect of replacing CPPNs with ANNs on the results of IEC+HCM is
shown in figure 5. As expected, these images differ noticeably from the previous
results with CPPNs shown in figure 3. An empirical investigation of the aesthetic
difference between the seeded IEC+HCM methods with CPPN and ANNs was
then conducted similarly to the previous experiment: AMT users compare the
products from paired runs of this simple ANN method (shown in figure 5) and
the previous IEC+HCM method with CPPNs (i.e. the final seeded images from
figure 3). Figure 6 shows the results: Expanding the set of activation functions
in CPPNs facilitates evolving more aesthetically pleasing images. This result
demonstrates how IEC+HCM enables objective investigations of the impact of
different system features.

4.3 Experiment 3: Evolving Image Layouts with IEC+HCM

The third experiment investigates whether IEC+HCM can expand the range
of domains where large-scale IEC can be effectively applied. While large-scale
IEC is currently applicable only to domains that are sufficiently enjoyable to
attract volunteer users, the IEC+HCM approach can potentially be applied to
any domain regardless of how engaging it is, and can be scaled to the extent
that funds are available to do so.

Interestingly, the previous experiments with evolving images provide tentative
evidence for this hypothesis: The IEC+HCM setup still produced aesthetic im-
provements in evolved images even though it perverts what is typically enjoyable
about such domains, i.e. as a means for expressing personal creativity [19,17].
That is, while in most IEC image evolution systems the user intentionally and
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ANN Initial 1 ANN Initial 2 ANN Initial 3

ANN Final 1 ANN Final 2 ANN Final 3

Fig. 5. Typical Products of the Seeded ANN Runs. Images are shown from
three representative runs of seeded IEC+HCM with ANNs (instead of with CPPNs as
in the previous experiment). The qualitative difference between these images and those
evolved with CPPNs (figure 3) suggests that the added activation functions of CPPNs
impact the kind of images likely to be evolved.

 3
 3.1
 3.2
 3.3
 3.4
 3.5
 3.6
 3.7

ANN Initial ANN Final CPPN Initial CPPN Final

A
ve

ra
ge

 R
at

in
g

Treatment

Fig. 6. Feature Validation Experiment Evaluation. An independent evaluation
comparing the initial generation and final generation champions of seeded runs with
the ANN method (ANN initial and ANN final) with those with of the CPPN method
(CPPN initial and CPPN final) are shown. The main result is that the final generation
CPPN images are judged significantly more aesthetically pleasing than either of the
two classes of ANN images (Mann-Whitney U-test; p < 0.05). The conclusion is that
CPPNs facilitate evolving more aesthetic images than ANNs.

directly drives the creative process through selection, with IEC+HCM a partic-
ular human’s input is only a transient interchangeable part of a larger process,
diluting any overarching influence on evolution. Supporting this idea, of the 620
unique AMT users who contributed to the image evolution IEC+HCM experi-
ments, 419 users completed only one evaluation task (i.e. they interacted with
the system only once and could not have seen any effect of their influence), and
only 65 users contributed more than four evaluations. Thus it is unlikely that
any particular user will receive the satisfaction of seeing their aesthetic influence
realized.
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However, image evolution still offers the potential of novelty between evalu-
ations, which may be interesting for a user even if IEC+HCM does not allow
for directly expressing creativity as in other IEC systems. Thus to more directly
test the hypothesis that IEC+HCM can extend the reach of large-scale IEC to
domains not inherently enjoyable, the third experiment explores an intuitively
less enjoyable task, that of evolving the layout of an image composition. In par-
ticular, the task is to evolve the relative positions of a fixed set of images (seen in
figure 7) to maximize the aesthetic appeal of the composition. Unlike the image
evolution domain, the potential for novelty is limited because the components
of the image are always the same and uninteresting.

The domain and genetic encoding are illustrated by figure 7. Note that the
same IEC+HCM setup as previously described was adapted for this third exper-
iment but with only a single unseeded method. While seeding with impressive
pre-evolved layouts might accelerate progress in this domain, such seeding is not
necessary to verify the hypothesis.

Fig. 7. The Image Layout Domain. The image layout experiment evolves a com-
position of the four shown images through IEC+HCM. The encoding is a simple list of
Cartesian coordinates that specify the offset of each of each image. Initial genomes are
generated such that they cluster the four images near the upper left corner, providing
a predictably poor starting arrangement for human-guided evolution to improve upon.
Mutation perturbs the coordinates of one image out of the four, adding to the x and y
coordinate a separately number chosen uniformly between −50 and 50.

The products of this experiment are shown in figure 8. The results were val-
idated similarly to the previous experiments, by presenting them to be rated
by a larger set of AMT users. However, instead of comparing between meth-
ods, evolved artifacts are compared over generations. The idea is to demonstrate
that progress in aesthetic evolution is occurring. The aggregated ratings from
the larger validation evaluation are shown in figure 9. As expected, the most-
preferred layouts from the final generation are rated significantly more pleasing
in appearance than those from the first generation, thus supporting the conclu-
sion that evolutionary progress was facilitated by IEC+HCM in this domain.
Note that while the domain itself is somewhat trivial, the results provide an
existence proof that IEC+HCM can extend large-scale IEC to domains that are
not inherently enjoyable.
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Initial 1 Initial 2 Initial 3

Final 1 Final 2 Final 3

Fig. 8. Typical Products of the Layout Evolution Experiments. Images are
shown from three representative runs of IEC+HCM in the layout evolution domain. In
particular, the most-preferred image from the initial and final generation of the runs
are shown. Over evolution, the images composing the layouts expand to better fill the
space. The conclusion is that IEC+HCM can be successfully applied even in domains
that are not inherently enjoyable.
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Fig. 9. Image Layout Experiment Evaluation. An independent evaluation com-
paring the champions of the first, fifth, and final (tenth) generations from the ten
independent IEC+HCM runs in the image layout domain is shown. The main result
is that the image layout of final champions is judged significantly more aesthetic than
that of the first generation (Mann-Whitney U-test; p < 0.05).

5 Discussion and Future Work

This paper investigated leveraging markets for human computation to support
large-scale IEC in three ways. Exploratory experiments in this paper showcase
how the ability to pay for human computation potentially can bootstrap IEC
websites, inform the design of such websites or single-user IEC systems, and act
as a viable alternative to such websites when the domain is not enjoyable or
engaging.



16 J. Lehman and R. Miikkulainen

In this way, an interesting advantage of the IEC+HCM approach is that it
bypasses the significant problem of user fatigue in IEC [19] through paying users
directly, without constraining the domain. Of course, the trade-off is that pairing
IEC with human computation incurs an explicit financial cost per evaluation.
While such financial costs have always been implicit in strictly computational
EC (e.g. costs to maintain a cluster of computers necessary for large-scale ex-
perimentation) and collaborative IEC websites (e.g. server costs), the price of
human computation does not similarly benefit from Moore’s law. Thus large-
scale IEC+HCM may be most applicable for unengaging domains limited by
difficulty in applying appropriate selection pressure, and also possibly for com-
mercial applications where the cost of IEC+HCM is less than the value of the
evolved artifact.

So while the IEC+HCM mechanism can be leveraged to improve the design
and engagement of single-user IEC systems and collaborative IEC websites, its
most interesting implication may be that exploiting it on a large scale may po-
tentially lead to results exceeding current approaches in evolutionary robotics or
artificial life. That is, to the extent that current approaches are limited by lack of
appropriate selection pressure [25,14,10], and to the extent that human judgment
can remedy such limitations [5,22], human computation may be a technique that
can be exploited to further the state of the art in EC. For example, large-scale
IEC+HCM with a significant budget applied to evolving virtual creatures might
produce creatures with complexity and functionality beyond the reach of current
methods. In this way, an interesting direction for further experimentation is to
apply IEC+HCM to evolve controllers for evolutionary robotics or artificial life
experiments.

6 Conclusion

This paper explored combining interactive evolution with human computation
markets to purchase a powerful form of selection pressure. The promise of the
approach was shown in preliminary experiments evolving aesthetic images and
the layout of image compositions. Applying the same techniques in other do-
mains limited by lack of appropriate selection pressure may enable evolution of
more complex artifacts or behaviors than previously possible. The conclusion
is that human computation markets may be an important tool for supporting
collaborative IEC websites as well as for extending the reach of large-scale IEC
beyond only task domains that are enjoyable.
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Dept. of Computers & Communications Technologies, University of Extremadura
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Abstract. In this paper, we present our version of the MultiObjective
Artificial Bee Colony algorithm (a metaheuristic based on the foraging
behavior of honey bees) to optimize the Location Areas Planning Prob-
lem. This bi-objective problem models one of the most important tasks
in any Public Land Mobile Network: the mobile location management. In
previous works of other authors, this management problem was simpli-
fied by using the linear aggregation of the objective functions. However,
this technique has several drawbacks. That is the reason why we pro-
pose the use of multiobjective optimization. Furthermore, with the aim
of studying a realistic mobile environment, we apply our algorithm to the
mobile network developed by the Stanford University (a mobile network
located in the San Francisco Bay, USA). Experimental results show that
our proposal outperforms other algorithms published in the literature.

Keywords: Location Areas Planning Problem, Mobile Location Man-
agement, Multiobjective Optimization, Stanford University Mobile
Activity Traces, Artificial Bee Colony Algorithm.

1 Introduction

The Public Land Mobile Networks (PLMNs) are the networks that provide mo-
bile communications to the public. For it, the desired coverage area is divided
into several smaller regions (known as network cells) with the aim of providing
service to a huge number of mobile subscribers with few radioelectric resources
[1]. In such networks, the mobile location management is a fundamental task
whereby the mobile network tracks the subscribers’ movement with the goal of
redirecting the incoming calls to the callee users.

Commonly, the mobile location management consists of two main procedures:
the subscriber location update (LU), and the paging (PA) [9]. The LU is initi-
ated by the mobile station (MS, the subscriber terminal) according to a prede-
fined method. There are several LU procedures published in the literature: never
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update, whenever the MS moves to a new cell (or always update), whenever the
MS moves to a new area (location areas), every certain number of visited cells
(distance-based), every certain number of cell crossing (movement-based), etc.
[16]. However, the location update based on location areas highlights as one of
the most popular strategies in current mobile networks, and therefore, this is
the LU procedure studied in this work. On the other hand, the PA procedure is
initiated by the mobile network to know the exact cell in which the callee sub-
scribers are located [13]. For it, several paging messages are broadcast around
the last known location. This last procedure can be classified into two main
groups: simultaneous paging and sequential paging. In the simultaneous paging,
the network cells are simultaneously polled. And in the sequential paging, the
network cells are grouped into paging areas that are sequentially polled. Due to
the time constraint associated with this last procedure, the maximum number
of paging cycles (and hence, the maximum number of paging areas) is restricted
to be lower or equal to three [13].

In this work, we research the mobile location management based on location
areas with the two-cycle sequential paging defined in [15]. This LU strategy
groups the network cells into continuous and non-overlapped logical areas (or
Location Areas, LAs [16]) with the aim of delimiting the signaling load asso-
ciated with the LU and PA procedures. In this way, the mobile station only
updates its location whenever it moves to a new Location Area (LA), and the
paging procedure is only performed within the last updated LA. Therefore, the
proper dimensioning of this location management strategy is an important en-
gineering issue, in which the main goal is to find the configurations of LAs
that simultaneously reduce the number of location updates and the number of
paging messages. That is, the Location Areas Planning Problem (LAPP) is a
multiobjective optimization problem with two objective functions (as we will see
in Section 3).

With the aim of finding the best possible configurations of location areas, we
propose a new version of the MultiObjective Artificial Bee Colony algorithm
(MO-ABC, a swarm intelligence algorithm based on the foraging behavior of
honey bees [14]). Furthermore, in order to study a realistic mobile environment,
we solve the mobile network developed by the Stanford University [11], because
it is well-validated against real data measured in the San Francisco Bay (USA).

The rest of the paper is organized as follows. Section 2 presents the related
works. The Location Areas Planning Problem is defined in Section 3. The main
features of a multiobjective optimization problem, the quality indicators used in
this work, and a detailed explanation of our proposal are shown in Section 4.
Experimental results and comparisons with other works are presented in Section
5. Finally, Section 6 discusses our conclusions and future work.

2 Related Work

The mobile location management based on location areas has been widely re-
searched in the last decade due to the exponential increase in the number of
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mobile subscribers. There are several works in the literature in which differ-
ent metaheuristics have been applied to optimize the Location Areas Planning
Problem. P. R. L. Gondim in [10] was one of the first authors to define the
LAPP as an NP-hard combinatorial optimization problem due to the huge size
of the objective space. In his work, he proposed a Genetic Algorithm (GA) to
find quasi-optimal configurations of Location Areas. P. Demestichas et al. in [8]
proposed three metaheuristics (Simulated Annealing (SA), Tabu Search (TS),
and GA) to study the LAPP in different mobile environments. R. Subrata and
A. Y. Zomaya proposed a dynamic location update procedure based on location
areas [15], which allows reducing the number of location updates, but not the
total signaling load because a personalized configuration of location areas should
be calculated, stored, and transmitted whenever a mobile station moves out of
its current location area. In this work, R. Subrata and A. Y. Zomaya studied
the real-time mobile activity trace developed by the Stanford University [11], a
mobile activity trace that is well-validated against real data measured in the San
Francisco Bay (USA). This mobile activity trace was also studied in [2,3], where
S. M. Almeida-Luz et al. optimized the LAPP with the algorithms: Differential
Evolution (DE, [2]) and Scatter Search (SS, [3]).

In all of these related works, the LAPP was solved by using different
algorithms from the single-objective optimization field. For it, the two objec-
tive functions of the LAPP were linearly combined into a single objective func-
tion. This technique allows simplifying the optimization problem, but has several
drawbacks (see Section 3). That is why our research focuses on optimizing this
problem with different multiobjective metaheuristics. Recently, we have just pub-
lished our versions of two well-known MultiObjective Evolutionary Algorithms
(MOEAs): the Non-dominated Sorting Genetic Algorithm II (NSGAII [5]), and
the Strength Pareto Evolutionary Algorithm 2 (SPEA2 [4]).

3 Location Areas Planning Problem

The location update procedure based on location areas (by definition, a location
area is a continuous and non-overlapped group of network cells) is being widely
used in current Public Land Mobile Networks. In this location update strategy,
a mobile station is free to move inside a given location area without updating its
location, and the paging procedure is only performed in the network cells within
the last updated location area (because the network knows the subscriber lo-
cation at a location area level). Therefore, the main challenge of the location
areas scheme is to find the configurations of location areas that minimize signal-
ing load associated with the location update procedure (LUcost) and the paging
load (PAcost). In this work, we use a two-cycle sequential paging based on the
last known location (last updated cell), the same paging procedure is used in
[15,2,3,5]. Formally, these two objective functions can be expressed as Equation
1 and Equation 2 respectively, where: γt,i is a binary variable that is equal to 1
when the mobile station i moves out of its current location area in the time t,
otherwise γt,i is equal to 0. [Tini, Tfin] is the time interval of the mobile activity
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trace. Nuser is the number of mobile users. ρt,i is a binary variable that is equal
to 1 only when the subscriber i has an incoming call in the time t. αt,i is a binary
variable that is equal to 1 only when the mobile station i is located in its last
updated cell in the time t. NA is a vector that stores the number of network
cells of each location area. And LAt is a vector that stores the location area in
which every mobile subscriber is located in the time t.

f1 = min

⎧⎨
⎩LUcost =

Tfin∑
t=Tini

Nuser∑
i=1

γt,i

⎫⎬
⎭ , (1)

f2 = min

⎧⎨
⎩PAcost =

Tfin∑
t=Tini

Nuser∑
i=1

ρt,i (αt,i + αt,i ·NA [LAt [i]])

⎫⎬
⎭ . (2)

It should be noted that these two objective functions are conflicting. That
is, if we would reduce the signaling load of the location update procedure, we
should increase the size of the location areas, which leads to an increment in the
number of paging messages because a larger number of network cells have to be
polled whenever a subscriber has an incoming call. And, on the other hand, if we
reduce the paging cost with smaller location areas, we will have more location
updates (increasing this other cost).

In previous works from other authors, this optimization problem was simpli-
fied by using the linear aggregation of the objective functions (see Equation 3).
However, this technique has several drawbacks. Firstly, a very accurate knowl-
edge of the problem is required to properly configure the weight coefficients
(α, β ∈ �). Secondly, different states of the signaling network might require of
different values of α and β. And thirdly, a single-objective optimizer must per-
form an independent run for each combination of the weight coefficients. That is
why we propose the use of multiobjective metaheuristics to optimize the LAPP.
Furthermore, a multiobjective optimization algorithm provides a wide range of
solutions among which the network operator could select the one that best ad-
justs to the real state of the signaling network.

fSOA (α, β) = α · f1 + β · f2. (3)

4 Multiobjective Optimization Paradigm

A Multiobjective Optimization Problem (MOP) can be defined as an optimiza-
tion problem in which two or more conflicting objective functions have to be
optimized simultaneously under certain constraints [6] (e.g. the Location Ar-
eas Planning Problem). In the following and without loss of generality, we as-
sume a minimization MOP with two objective functions (as the LAPP). In this
kind of problems, the main challenge consists in finding the best possible set
of solutions, where each solution is related to a specific trade-off among objec-
tives. These solutions are referred as non-dominated solutions, and the set of
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Fig. 1. Hypervolume for a minimization problem with two objectives

non-dominated solutions is commonly known as Pareto Front. For definition,
a solution x1 is said to dominate the solution x2 (denoted as x1 ≺ x2) when
∀i ∈ [1, 2] , fi

(
x1
)
≤ fi

(
x2
)
∧ ∃i ∈ [1, 2] : fi

(
x1
)
< fi

(
x2
)
.

In the literature, there are several indicators to measure the quality of a
Pareto Front in the multiobjective context. The quality indicators used in this
work are presented in Section 4.1 to Section 4.3. Section 4.4 presents a detailed
explanation of our version of the MultiObjective Artificial Bee Colony algorithm.

4.1 Hypervolume: IH (A)

In a bi-objective MOP, the Hypervolume indicator (IH(A)) computes the area
of the objective space that is dominated by the Pareto Front A, and is bounded
by the reference points (points that are calculated by using the maximum and
minimum values of each objective function) [6]. Due to the fact that the main
goal of a multiobjective optimization algorithm is to find a wide range of non-
dominated solutions, the Pareto Front A is said to be better than the Pareto
Front B when IH(A) > IH(B). Fig. 1 shows the IH(A) calculation, which can
be formally described by Equation 4.

IH(A) =

{⋃
i

areai | ai ∈ A

}
. (4)

4.2 Set Coverage: SC (A,B)

The Set Coverage indicator (SC(A,B)) computes the proportion of solutions of
the Pareto Front B that are weakly dominated by the solutions of the Pareto
Front A [6]. For definition, a solution x2 is weakly dominated by another solution
x1 (denoted as x1 
 x2) when ∀i ∈ [1, 2] , fi

(
x1
)
≤ fi

(
x2
)
. This indicator

establishes that the Pareto Front A is better than the Pareto Front B when
SC(A,B) > SC(B,A). The SC(A,B) can be expressed as Equation 5, where
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the operator |·| represents the number of solutions of a Pareto Front, or the
number of solutions that satisfy a given condition.

SC (A,B) =
|{b ∈ B; ∃a ∈ A : a 
 b}|

|B| . (5)

4.3 ε-Indicator: Iε (A,B)

The ε-Indicator (Iε(A,B)) calculates the minimum distance (ε) that the Pareto
Front B must be translated in the objective space to be weakly dominated by the
Pareto Front A [18]. With this indicator, the Pareto Front A will be better than
the Pareto Front B when Iε(A,B) < Iε(B,A). The Iε(A,B) can be formally
represented as Equation 6.

Iε(A,B) = min {ε ∈ �|∀b ∈ B∃a ∈ A : ∀i ∈ [1, 2] , fi (a) ≤ ε · fi (b)} . (6)

4.4 Our Multiobjective Artificial Bee Colony Algorithm

In this work, we propose our version of the MultiObjective Artificial Bee Colony
algorithm to optimize the Location Areas Planning Problem in a realistic mobile
environment. This algorithm was proposed by A. Rubio-Largo et al. in [14] as a
multiobjective adaptation of the original Artificial Bee Colony algorithm (ABC),
which was proposed by D. Karaboga and B. Basturk in [12]. Basically, the MO-
ABC is the original ABC with a MOFitness function (used to know the quality
of a solution in the multiobjective context), and with the fast non-dominated
sorting procedure of the well-known Non-dominated Sorting Genetic Algorithm
II [7] (used to arrange the population at the end of each generation).

The ABC is a swarm intelligence algorithm based on the foraging behavior of
honey bees. In this algorithm, we can distinguish three different entities: the food
sources, the artificial colony, and the artificial hive. Every food source represents
a possible solution of the problem, being its amount of nectar proportional to
the solution quality. The artificial colony (with size N) is constituted by three
kinds of bees: employed, onlooker, and scout bees. The employed bees (the first
half of the artificial colony) search and exploit food sources around the artificial
hive, and then, they share their knowledge (quality of the food sources) with the
onlooker bees (the second half of the artificial colony), which wait in the dance
area of the artificial hive. Subsequently, every onlooker bee selects an employed
bee (with a probability proportional to the quality of its food source), and it
becomes employed bee of such food source. And finally, a bee becomes a scout
bee when its food source is overexploited. This kind of bees performs random
search around the artificial hive in order to find new unexploited food sources.

Fig. 2 shows the task decomposition of our version of the MO-ABC algorithm.
As we can see in this figure, the first step consists in initializing the first pop-
ulation of employed bees. Note that each bee exploits a food source (a possible
solution of the problem), and therefore, a bee can be expressed as an encoded
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Fig. 2. Task decomposition of our version of the MO-ABC algorithm

solution of the problem. After the initialization process, an iterative method is
used to improve this set of initial solutions. In the first step of this iterative
method, for each employed bee (xEB), we perform a local search with the aim
of finding better solutions (xnewEB). Every initial solution is replaced by a new
solution when xnewEB ≺ xEB. In the next step, the fast non-dominated sorting
[7] is applied to arrange the employed bees according to their quality in the
multiobjective context. Subsequently, every onlooker bee selects an employed
bee (probabilistic selection of employed bees, xOB ← xEB) and performs a local
search in order to improve the selected solution. In this case, the selected solution
is replaced by a new solution when (xnewOB ≺ xOB)∨ (xnewOB ≺ xOB ∧xOB ≺
xnewOB). With this last condition, we favor the search of new solutions, and even
in the same front. The replacement criterion is one of the main differences with
the MO-ABC presented in [14], where the MOFitness is used to determine if an
old solution should be replaced by a new solution. With a criterion based on the
dominance concept, we avoid the evaluation of the whole population whenever
the local search process finds a new solution. The other differences are in the
operators used in our MO-ABC version. The ABC algorithm defines a method to
avoid its stagnation. This is done by using the scout bees. For it, every bee has a
counter that is incremented whenever its solution is not improved (or replaced)
after the local search process. In this way, a bee becomes a scout bee when its
counter is higher or equal to a certain number of generations (limit). Every scout
bee initializes its counter to 0. And finally, the last step of this iterative method
consists in selecting the best bees (employed, onlookers, and scouts) as the em-
ployed bees of the next generation. For it, we use the fast non-dominated sorting
to know the quality of every bee (or solution) in the multiobjective context. This
iterative method is executed until the stop condition is reached. In this work we
use the maximum number of generations as stop condition [2,3,5].

Individual Initialization. As mentioned above, a bee is an encoded solution of
the problem. In this work, we use a vector representation in which every position
of the vector is an integer that represents a network cell and stores the Location
Area assigned to that cell. In order to generate the first employed bees, every
vector is filled with a random pattern of 0s and 1s (integer numbers). Afterwards,
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(a) Individual initialization (b) Cell-based local search

(c) LA-based local search (d) Probabilistic selection

Fig. 3. Operators of our MO-ABC version

this random pattern is used to determine the corresponding configuration of LAs.
For it, and according to the definition of Location Area (a continuous and non-
overlapped group of cells), every Location Area will be composed by a continuous
group of network cells with the same value of vector. Fig. 3(a) shows an example
of this procedure.

Local Searches. The local searches are used to explore the neighborhood of
a solution (in the objective space) with the goal of finding new solutions of
greater or equal quality. In this work, we propose two local searches: a cell-based
local search, and a LA-based local search. The cell-based local search consists in
merging a boundary cell (which is randomly selected) with one of its neighboring
LAs. Fig. 3(b) shows an example of this local search. And in the LA-based local
search, we merge a randomly selected LA with one of its neighboring LAs (see
Fig. 3(c)). In these two procedures, we evaluate all the possibilities and then, we
select the one that satisfies the replacement criterion (defined above).

Probabilistic Selection. The probabilistic selection is the method used by the
onlooker bees to select a solution according to its quality in the multiobjective
context. The LAPP has a very important feature, the density of feasible solutions
in the objective space decreases when increasing the size of the Location Areas.
And therefore, the solutions with high LUcost (solutions with a high number
of small location areas) will be selected with higher probability. With the aim
of dealing with such inconvenience, we propose to decompose the normalized
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objective space in three sectors (see Fig. 3(d)). Thus, we can directly control the
number of solutions selected in each sector. In this work, we define three kinds of
onlooker bees, each one specializing in exploiting a specific sector. Furthermore,
in order to cause the least possible impact in the search of the algorithm, the
number of onlooker bees assigned to each sector is equal to the number of solu-
tions (employed bees) in that sector. On the other hand, a solution within a sec-
tor Si is selected with probability p

(
xEB,j

)
= ffit

(
xEB,j

)
/
∑

k⊂Si
ffit

(
xEB,k

)
.

The function ffit(x) is a function that returns a real number, which is equal
to the weighted sum of the Ranking procedure and the Crowding distance [7]
(ffit(x) = 10 · Rank(x) + Crowd(x), only valid for a normalized bi-objective
problem). Note that ffit(x) is proportional to the quality of x in the multiob-
jective context.

Method for Generating the Scout Bees. The scout bees are the mecha-
nism that the MO-ABC algorithm uses to avoid its stagnation. In this work, we
propose the following way to generate a scout bee. Firstly, we select a sector (Si)

with a probability p (Si) = |Si|−1
/
∑

j |Sj|−1
, where |Si| represents the number

of solutions in the sector Si. Note that this probabilistic selection favors the ex-
ploitation of those zones of the objective space with lower number of solutions.
Afterwards, we generate a scout bee (xSB) by using Equation 7 (where Ncell is
the number of cells in the network), i.e. every scout bee is the average solution
of the selected sector.

xSB
j =

1

|Si|
∑
k⊂Si

xk
j , ∀j ∈ [0, Ncell − 1] . (7)

5 Experimental Results

With the aim of checking the quality of our algorithm in a realistic mobile envi-
ronment, we study the real-time mobile activity trace developed by the Stanford
University [11]. This mobile network is defined in Section 5.1. Furthermore, we
compare our proposal with other algorithms published in the literature. This is
shown in Section 5.2.

5.1 Standford University Mobile Activity Traces

The Stanford University Mobile Activity TRAces (SUMATRA) are a set of
test networks that are available via the Internet [11]. In this work, we study
the BALI-2 network, a mobile network with 90 cells and 66,550 subscribers.
The main appeal of this mobile network is that it corresponds with a real-time
mobile activity trace that is well-validated against real data measured in the San
Francisco Bay (USA). And therefore, we will be able to analyze the behavior of
our algorithm in a realistic mobile environment.
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Table 1. Comparison with other works

Algorithm #points median (IH) iqr (IH) best fSOA(10,1)

MO-ABC 958 93.90 3.53e-04 2,616,330
NSGAII[5] 772 93.75 1.79e-03 2,619,839
SPEA2[4] 752 92.79 2.02e-03 2,619,697
DE[2] 1 - - 2,799,289
SS[3] 1 - - 2,756,836
DBLA[15] 1 - - 2,695,282

Table 2. Comparison among MOEAs:
SC (PFA, PFB)

�������PFA

PFB
MO-ABC NSGAII[5] SPEA2[4]

MO-ABC - 66.06 63.43
NSGAII[5] 30.17 - 48.94
SPEA2[4] 26.10 38.21 -

Table 3. Comparison among MOEAs:
Iε (PFA, PFB)

�������PFA

PFB
MO-ABC NSGAII[5] SPEA2[4]

MO-ABC - 1.03 1.01
NSGAII[5] 1.24 - 1.01
SPEA2[4] 1.32 1.33 -

5.2 Comparison with Other Works

In this section we present a comparison with other algorithms published in the
literature [15,2,3,5,4], two of them are our previous multiobjective algorithms
(NSGAII [5], and SPEA2 [4]). In order to perform a fair comparison, we have
implemented the same local searches in all of our multiobjective algorithms.
Furthermore, we use the same population size (300 individuals or bees) and the
same stop condition (1000 generations) as the algorithms proposed in [2,3,5,4].
The other parameters of our MO-ABC algorithm have been configured by means
of a parametric study of 31 independent runs per experiment. We have selected
the parameter configuration that maximizes the IH value: limit = 15, PC−LS =
0.9, and PLA−LS = 0.1, where PC−LS is the probability of performing the cell-
based local search and PLA−LS is the probability of performing the LA-based
local search. In this work, we have defined these two local searches in a way that
a bee must only perform one local search per generation.

Table 1 gathers a summary of our comparative study (of 31 independent runs
per experiment). In this table we compare our multiobjective algorithms by using
statistical data of the IH (median and interquartile range), and the number of
points of the Pareto Front associated with the median IH . In this paper, we use
the same reference points as in [5,4]. This comparative study clarifies that our
MO-ABC algorithm performs better than our previous multiobjective algorithms
because it obtains a higher number of solutions and it achieves a higher IH
value with a lower interquartile range. The same conclusion can be reached if we
compare our algorithms with the Set Coverage (see Table 2) and the ε-Indicator
(see Table 3).

Furthermore, we present a comparison with other approaches published in the
literature, all of them Single-objective Optimization Algorithms (SOAs) in which
the fitness function is Equation 3 with α = 10 and β = 1 [15,2,3]. Regrettably,
the best solution found (of a set of runs) is the only data available in these
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papers, so we cannot perform a statistical comparison. In order to accomplish
this comparison, we have searched in our median Pareto Front the solution that
best meets the objective function used by these SOAs (Equation 3 with α = 10
and β = 1). Table 1 reveals that our MO-ABC is very competitive because it
outperforms the SOAs proposed in [2,3] and the Distance-Based Location Area
(DBLA) algorithm presented in [15], which is far from trivial because these
algorithms [15,2,3] are specializing in finding a single solution.

6 Conclusion and Future Work

In this work, we present our version of the MultiObjective Artificial Bee Colony
algorithm (MO-ABC, an optimization algorithm based on the foraging behavior
of honey bees) to optimize one of the most important planning problems in any
Public Land Mobile Network (PLMN): the Location Areas Planning Problem.
Furthermore, with the aim of checking the quality of our algorithm in a realistic
mobile environment, we study the real-time mobile activity trace developed by
the Stanford University [11]. The main contribution of our MO-ABC algorithm is
the definition of specific local searches and the decomposition of the normalized
objective space in three sectors in order to directly control the probabilistic
selection, and hence the search of the algorithm. Experimental results show that
our proposal is very promising because it outperforms other algorithms published
in the literature.

As a future work, it would be interesting to study the effectiveness of each
operator (cell-based local search, LA-based local search, etc.) independently.
Furthermore, it would be a good challenge to study other multiobjective meta-
heuristics [17] and compare them with our MO-ABC algorithm.

References

1. Agrawal, D., Zeng, Q.: Introduction to Wireless and Mobile Systems. Cengage
Learning (2010)
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Abstract. The staged Tile Assembly Model has been introduced by De-
maine et al. 2008 as an enhancement of the previous tile self-assembly
model of Winfree. In this framework, the assembly is allowed to be per-
formed in parallel in different test-tubes, and the obtained products are
stored and mixed in subsequent assembly stages. Using elegant combi-
natorial constructions, in has been shown that staged assembly systems
possess remarkable advantage in comparison to their abstract counter-
parts. Because of their parallel nature, one can choose from a multitude
of staged assembly strategies for assembling a given target structure. In
the current work we analyze these assembly variations from a kinetic
perspective, in order to determine and possibly maximize, their final as-
sembly yield. As a pre-requirement for this task, we provide a procedure
for associating an analytically tractable mathematical model to a given
staged assembly experiment, based on which we can predict the yield
concentration of the final assembly product. As a case study, we con-
sider various assembly strategies as well as optimized and non-optimized
assembly protocols for generating a size-10 tile assembly.

Keywords: Tile Assembly Model, staged assembly, numerical modelling,
yield optimization.

1 Introduction

The abstract Tile Assembly Model (aTAM) has been introduced by Winfree [9]
as a custom-made generalization of Wang tile systems, designed for the study of
DNA tile self-assembly. The basic components of the aTAM are non-rotatable
unit square tiles, uniquely defined by the sets of four glues placed on top of
their edges. The glues are part of a finite alphabet and each pair of glues is
associated a strength value, determining the stability of the link between two
tiles having these glues on the abutting edges. The assembly process starts from
a single nucleation point, the seed, and it continues by sequential attachments
of tiles until no more tiles can be added to the assembly. All the individual tiles
are placed inside a unique assembly “pot”, and the assembly process progresses
with no external interactions.

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 31–44, 2013.
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In order to improve the efficiency of these systems, with respect to assembling
more complex structures from a fewer initial number of distinct tile-types1, De-
main et al. introduced the staged Tile Assembly Model (sTAM) [2]. In this
framework, the assembly is performed in stages and in different test-tubes (or
bins). Each test-tube is initialized with one or several non-interacting tile-types,
and in each stage, one or several test-tubes are mixed together according to a
predefined scheme. Different tile-types are thus mixed into the same compart-
ment and start interacting. No seed structures are defined in this framework,
and thus the reactions are implemented population-wise. The external observer
allows the reaction to progress for some time, after which the content of the test-
tubes is filtered and only the generated reaction products are used in subsequent
stages.

Using elegant combinatorial designs, Demain et al. [2,3] demonstrated how
various structures can be assembled efficiently, both in terms of the total num-
ber of different tile-types used, and in terms of the tile-interaction complexity,
i.e., using only temperature-1 systems2. For example, one requires only 3 tile-
types and log(n) stages for constructing an n-size ribbon of contiguous tiles,
while a similar structure assembled in a “one pot” system, i.e. classical aTAM,
requires n distinct tile-types. Similarly, using a constant number of tile-types and
only log(n) stages, one can assemble a full n× n square, whereas in the aTAM
framework O(log n/ log log n) tile-types are required to assemble an analogous
structure.

Because of the parallel design feature, one can choose from a multitude of
staged assembly strategies for assembling a given target structure. Moreover,
this freedom of choosing between several assembly variants remains valid even
when one restricts to those strategies employing a minimum number of assembly
stages. In the current work we analyze these assembly variations, as well as possi-
ble different implementations of the same assembly strategy, all in terms of their
predicted final yield. Our objective is to study possible yield optimization proto-
cols for the target assembly of these system. Considering assembly systems with
an abundance of inter-molecular interaction (as is the case of DNA self-assembly
systems), putting together larger concentrations of reactants and allowing them
more time to react will always generate better yields. Thus, in order to perform a
fair comparison between various assembly strategies, we require the total initial
reactant concentrations, volume, as well as total time allowed for the reactions,
to be constant in all of the compared strategies.

The particular aspects we want to investigate are:

– the yield variations in between different staged assembly schemes (generating
the same final structures); and

– the yield variations within the same assembly scheme, when modifying pa-
rameters, such as: i) the time allocation for each of the assembly stages (while

1 A tile-type is a population of identical copies of the same tile.
2 Temperature-1 systems are highly advantageous as they can be made very resistent
to errors, compared to temperature 2 systems [1]. Such systems can be implemented
using e.g. DNA-origami techniques [8].
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the total time for the experiment remains constant); or ii) the ratio in which
certain assemblies are mixed inside the test-tubes (with total volumes of the
reactants kept constant).

The first criterion can be seen as a design optimization level, while the second as
a protocol optimization level. Moreover, we ask whether there exists a correlation
between the two levels. Namely, would a design scheme performing particularly
well on some assembly protocol generally generate better yields (than other
assembly schemes) independent of the employed protocols?

In order to be able to address such questions, we first provide a methodol-
ogy of assigning to every staged tile assembly system (sTAS) a numerical model
describing the time-evolution of all its components. The employed modelling
methodology is based on the principle of mass-action kinetics [5,6] and is imple-
mented using the formulation given by ordinary differential equations (ODE).
The modeling methodology is different from the one considered in the kTAM
models, [12], as in this case we do not follow the assembly of only one partic-
ular structure (starting from a seed tile), but we keep track of all the species
available in solution(s). While such an approach is usually untractable for “one
pot” systems, we show that it becomes applicable in the case of sTAS. We use
the above modelling methodology and, as a case study, we consider the assem-
bly (and yield optimization process) of a size-10 tile assembly structure. For
numerical modelling and optimization we have used the open source software
COPASI [7].

The paper is organized as follows. The next section contain background infor-
mation regarding the aTAM and sTAM models. In Section 3 we introduce our ki-
netic modelling methodology for sTAS and provide a series of pre-normalization
requirements for our models. In Section 4 we introduce several yield optimiza-
tion strategies applicable to staged assembly systems, and as a case study in the
next section we consider the staged assembly and yield optimization protocols
employed in obtaining size-10 horizontal ribbons of tiles. In the last section we
discuss our results and provide some future research directions.

2 Background

In the following, we provide a very brief introduction of the (abstract) Tile
Assembly Model, aTAM, and its staged counterpart, sTAM. For a more detailed
presentation of these models we refer to [9,2] as well as the recent survey [4].

Let Σ be a finite set of glues, and let s : Σ × Σ → N be a glue strength
function, i.e., s(σ1, σ2) = s(σ2, σ1) for all σ1, σ2 ∈ Σ. A tile (or tile-type) t is a
unit square structure with glues on its four edges; we assume that the tiles can
not be either rotated or reflected. Thus, we can represent a tile as the ordered
4-tuple of glues t = (tN , tE , tS , tW ) ∈ Σ4 where the N,S,E, and W subscripts
point to the corresponding edge positioning. An assembly A is a partial mapping
A : Z2 → Σ4 assigning tiles to locations in the two-dimensional grid, such that
the defined structure is connected. A tile assembly system (TAS) T = (T,S, s, τ)
consists of a finite set T of tile-types, an assembly S called the seed assembly,
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a glue strength function s and a temperature τ ∈ Z
+. By definition, we assume

that the seed assembly S is stable and cannot be disassembled3.
Given a TAS T = (T,S, s, τ) and an assembly A (such as the seed S), a new

tile can be added to A if it shares a common boundary with tiles that bind
it into place with total strength at least τ ; we call such a process a successful
tile addition. We say that a TAS T produces an assembly A if this assembly is
formed by a sequence of successful tile additions starting from the seed assembly
S. Moreover, if no other tiles can be further attached to A, we say that the
assembly is terminal.

The model of staged assembly differs from the classical aTAM by allowing
partial assemblies to be formed in parallel in different test-tubes before merging
them together. The notion of successful addition is extended from the previous
case by allowing the merging of any two assemblies, as long as the sum of the
strength of glues placed along the common boundary of the two assemblies is
at least the temperature τ of the system. Thus, in this setting, single tiles are
seen just as (elementary) assemblies. The above requirement for an assembly
is known as partial connectivity4, see [2], as it does not enforce tiles in the
assembly to have matching edges with all the neighboring tiles, as long as the
matching which bound them into place exceed or are equal with the temperature
τ . For the remaining of this paper we assume working in this partial connectivity
requirement for assemblies.

Another difference from aTAM comes from the fact that the assembly process
is allowed to be performed in parallel in different test-tubes (or bins) and across
several assembly stages. Each tile-type is placed initially in an isolated test-tube;
we call these initial test-tubes. When the content of two (or several) test-tubes is
mixed in a separate bin, the assemblies start interacting and bind to each-other
according to their glue interactions. The process is allowed to progress for some
time, after which the mixed solution is filtered and only the reaction products,
i.e., the terminal assemblies, are stored for further mixing, while the remaining
reactants are discarded. The test-tubes are further mixed synchronously during
several assembly stages, until the final product is assembled in the unique test-
tube of the last assembly stage.

A staged tile assembly system (sTAS) T s = (T, s, τ, G) is defined by the set
T of starting tile-types ti, each placed in marked initial test-tubes T 0

ti , a glue
strength function s, a temperature parameter τ ,and an assembly graph G (or
mix graph). The assembly graph is a direct acyclic graph (DAG) describing the
different test-tubes and the way these tubes are mixed along a synchronous
succession of assembly stages. The nodes of the graph are the various test-tubes
(including the initial ones), while a directed edge between two nodes T si and
T sj symbolizes that the assembly product of test-tube T si (or the corresponding
tile-type in case of an initial test-tube) is transferred (either completely if T si

has no other out-edges or just a fraction of it otherwise) to test-tube T sj . The

3 On some experimental implementations of the TAM, the seed assembly is imple-
mented using e.g., DNA origami [10,11]

4 As opposed to the full connectivity requirement.
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Fig. 1. The annotated assembly graph of an sTAS assembling a size-10 ribbon

final assembly of the sTAS is the assembly product collected at the end of the
experiment from the unique test-tube of the last assembly stage.

As an example, in the following we provide an sTAS assembling a size-10
horizontal ribbon of tiles. Since this is a 1D structure, only the glues of the East
and West sides of a tile-type are relevant for the assembly process. Thus, a tile
is denoted as the pair (x, y) of its West and East glues, respectively. Moreover,
a 1D assembly containing k > 1 tiles will be denoted as xky, where x (resp.
y) is the West (East) glue of the left-most (right-most) tile in the assembly.
The temperature τ of the system is 1, and the strength function s is given
by s(x, y) is 1 if x = y and 0 otherwise. The sTAM contains 3 initial test-
tubes T 0

(ab), T
0
(bc), T

0
(ca) for the tile-types (a, b), (b, c), and (c, a), respectively, and

employs 4 assembling stages. The assembly-graph from Figure 1 fully describes
the design of the sTAS; for ease of understanding we have annotated the graph by
providing also the description of the assembly product in each of the test-tubes.

Various 2D assembly structures can be efficiently5 assembled by appropriate
staged assembly systems, even at temperature τ = 1 and using only two reactants
per test-tube6, see e.g. [2]. Although the results of our current research apply
to both 1D and 2D assembled structures, in order to simplify the considered
mix graph designs and exemplify the applicability of our approach, are going to
concentrate over the assembly of 1D ribbons of tiles. Indeed, if more complex 2D
assemblies are investigated, the only change comes in the design of the mixing
graph. However, the dynamics of the system is preserved, as mixing a size-p
assembly (i.e., containing p tiles) with a size-q assembly, always generates a
size-(p+ q) assembly, assuming the two components are indeed reacting.

Thus, from now on, we represent the tiles as the pairs of glues placed on their
West and East edges, respectively, we assume working always at temperature 1,
and we use the strength function given by s(x, y) = 1 if x = y and 0 otherwise.

5 Here, we measure the efficiency in terms of the number of different tile-types used
6 In most of the staged assembly designs from the literature, only two reactants are
placed inside a test-tube.
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3 Modeling of Staged Tile Assembly Systems

In order to be able to address questions regarding yield optimization of sTAS
we need appropriate quantitative tools for estimating and analyzing the corre-
sponding yields. In this section we introduce an adequate mathematical model of
the staged assembly process. Using this methodology, for any particular target
structure, one can numerically determine the best assembly strategy for it, as
well as numerically optimize the parameters of the chosen assembly strategy.

The modelling paradigm that we choose to use is that of ODE, while the
formulation of the models is based on the principle of mass-action kinetics. The
principle of mass-action, introduced in [5,6], says that the rate of each reaction
is proportional to the concentration of reactants. Moreover, this reaction rate
gives the measure on which the reactants are consumed and the products are
generated. To exemplify, consider the simple reaction A + B → A : B when an
assembly A joins an assembly B and forms an assembly A : B. If we denote by
[A](t), [B](t), and [A : B](t) the concentrations these assemblies at time t, and
by k the kinetic rate constant of the reaction, then the combined measure of
consuming and producing each of the reactants is given by the system:

d[A]

dt
= −k[A] · [B]

d[B]

dt
= −k[A] · [B]

d[A :B]

dt
= k[A] · [B]

We are going to assume (without loss of generality, but with some possible loss
of design efficiency) that in each stage of the assembly, we allow to mix the
contents of only two test-tubes at a time; most of the sTAS in the literature
are nevertheless designed in this way. Moreover, before the mixing procedure,
the content of each test-tube is filtered and only the product of the assembly is
preserved. Thus, in each test-tube we have only two reactants. As a consequence
of this, the chemical reaction system corresponding to each of the test-tubes
(each test-tube generates an isolated system) obeys two conservation reactions.
Namely, at any time point t we have that

[A](t) + [A :B](t) = C1 and [B](t) + [A :B](t) = C2,

for two constants C1 and C2, such that C1 = [A](0) + [A : B](0) and C2 =
[B](0) + [A : B](0)7. Thus, at any time point t, the concentration of the [A]
and [B] species can be derived from the concentration of the [A :B] species. By
substituting these into the third differential equation we obtain:

d[A :B]

dt
= k(C1 − [A :B])(C2 − [A :B]) (1)

In most cases, such ODE systems derived from corresponding chemical reaction
systems are analytically intractable. However, since in the case of sTAS we have
that in each test-tube there exist only two reactants interacting and forming a

7 We denoted by [A](0), [B](0), and [A :B](0) the initial concentration of the species
A, B, and A : B, respectively, at time t0 = 0.
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product (a larger complex), the derived ODE systems can be solved analytically.
Namely, equation (1) has the solution:

[A :B](t) =
−C1C2 + [A :B](0)C1 + C1C2e

tk(C1−C2) − [A :B](0)etk(C1−C2)

C1etk(C1−C2) − [A :B](0)etk(C1−C2) − C2 + [A :B](0)
(2)

Another particularity of sTAS is that none of the [A :B] structures exist before
mixing assemblies A and B, that is [A :B](0) = 0. Thus, equation (2) becomes:

[A :B]t =
−C1C2 + C1C2e

tk(C1−C2)

C1etk(C1−C2) − C2
=

C1C2(e
tk(C1−C2) − 1)

C1etk(C1−C2) − C2
, (3)

where C1 = [A](0) and C2 = [B](0). Moreover, if one also assumes that [A](0) =
[B](0) = C , i.e., the systems is symmetric, then equation (2) becomes

[A :B]t =
ktC2

1 + Ckt
. (4)

Because at each stage of the assembly the initial concentrations for the reactants
depend on the concentrations of the products at prior stages, and since equa-
tion (1) describing the time-evolution of the product assembly in each test-tube
admits an analytic solution, we can provide an analytic formula for the entire
system.

An important observation regarding the dynamics of sTAS is that the prod-
ucts obtained in prior stages of the assembly are not further concentrated before
mixing them in subsequent stages. Thus, in each stage, the volume of the solu-
tion increases, and hence we have to update the concentration of the reactants
accordingly (i.e., to decrease these concentrations).

For example, assume the reactants R1 and R2 of test-tube T from some stage
of the assembly are taken to be fractions of the products P1 and P2 of test-tubes
T 1 and T 2, respectively (from some previous stages). Namely, let

V olP1
trans = rTT1 · V olT1 and V olP2

trans = rTT2 · V olT2

be the volumes of the fraction of products P1 and P2 transferred from T 1 and
T 2 respectively, to T , where V olT1 (resp. V olT2) and rTT1 (resp. rTT2) denote
the volume of test-tube T 1 (resp. T 2) and the ratio from this volume which is
transferred into T . Then, the initial concentration of reactants R1 and R2 in
test-tube T is given by

[R1](0) =
[P1] · V olP1

trans

V olP1
trans + V olP2

trans

; and [R2](0) =
[P2] · V olP2

trans

V olP1
trans + V olP2

trans

, (5)

where [P1] (resp. [P2]) is the concentration of the product P1 (resp. P2) at the
end of the corresponding stage, and V olP1

trans + V olP2
trans = V olT is the volume

of the test-tube T .
Thus, by keeping track of the volumes of each test-tube and knowing the ratio

in which a particular product is split, we can determine the analytic formula of
each intermediary (or final) species in the system.
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Once such a computational model is derived, it can be estimated numerically
for various sets of parameters, e.g., equal time-splits for all stages and/or equal
(or proportional) volume-splits of various products. Moreover, the above param-
eters can be optimized in order to maximize the yield (i.e., concentration) of the
final product. Also, using such models, we can compare two or several strategies
in determining which provides a better yield, if experiments are performed in
similar conditions, i.e., same total time and initial tile concentration.

In order to compare two (or several) assembly strategies we can further sim-
plify the models by making a synchronous pre-normalization of the data. Thus,
we are going to assume from now on that the kinetic rate constant of all assem-
bly reactions is equal to 1, and that the concentration of all tile-types in their
initial test-tubes, [mon], is also normalized to [mon] = 100. Because of the above
pre-normalization of the data, the time parameter presents a highly altered be-
haviour; thus, from now on, we use the notion of time unit (t.u.) for referring to
time variables. Consider for example a system of only two reactants (tile-types)
a1b and b1c, each having concentration 100 in their initial test-tubes. Assuming
these reactants are mixed in equal quantities, their initial concentration in the
(mixing) test-tube becomes 50. In these conditions, we observe that the assem-
bly reaction is completed in proportions of approx. 50%, 75%, and 90% only
after 0.02, 0.06, and 0.2 t.u., respectively. Thus, our in-silico experiments and
numerical analysis will be performed for a total time interval of 0.14–0.25 t.u.
per stage, that is 0.42 t.u. for the 3-staged assembly of size-5 ribbons (in Section
4), and 0.9 t.u. for the 4-staged assembly of size-10 ribbons (in Section 5).

4 Yield Optimization Strategies for sTAM

Optimizations at the Assembly Strategy Level. The sTAM framework
allows for several assembly strategies to be employed in achieving the same final
structure. Moreover, in some cases, each of these strategies, although different
in themselves, are all optimal in terms of number of distinct test-tubes or stages
they employ. Consider for example the staged assembly process needed for as-
sembling a size-5 ribbon. According to the assembly designs introduced in [2] for
constructing size-k 1D ribbons of tiles in optimally possible number of stages,
there are four different (staged) assembly strategies for the construction of size-5
ribbons, each employing 3 stages. The assembly graphs of two of these strate-
gies are provided in Figure 2, while the remaining two strategies are symmetric.
However, does each of these strategies produce the same amount of final yield
(assuming that the initial quantity of resources is proportionally equal in each
of the situations)?

In order to compare the previous two strategies, besides the common total time
for the experiment (Ttotal = t1+t2+t3 = 0.42 t.u.) and the similar concentration
([mon] = 100) of all tile-types in their initial test-tubes, in both scenarios we are
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Fig. 2. Two distinct assembly strategies for the same size-5 ribbon, each using only 3
assembling stages

going to use a similar procedure of setting the time- and volume-split parameters,
as follows:

– All assembly stages are performed in equal time intervals: t1 = t2 = t3 =
0.14;

– Whenever a tile-type (monomer) is a reactant in a test-tube, the introduced
quantity of this reactant in the test-tube is exactly one unit volume.

By numerically estimating the associated mathematical models we obtain the
concentration of the final product, [a5c], in the assembly scenarios from Figure 2
a) and b) as 54.4% and 56.2% respectively, where 100% would represent the
all-maximal value possible for this assembly, e.g. obtained if time would allow
the reactions to be fully completed8.

From the above example, it can be confirmed our initial assumption that
different assembly strategies may generate different final yields, despite using
the same amount of time and substance resources.

Optimizations at the Experimental Setting Level. Consider now we have
chosen a particular assembly strategy, say e.g., assembling the previous 5-tile
structure by the scenario in Figure 2 a). A subsequent question concerns the
way of allocating the total pool of resources, i.e., substance volume in each test-
tube, time allocation for each of the assembly stages, etc., such as to maximize
the outcome of the experiment. For example, in the case of the previous example,
what would be the best split of the total time of the experiment into three time-
periods for the corresponding assembly stages, such as to obtain a maximum
amount of 5-tile structures at the end of the final stage? Also, what would be
the best way of splitting the amount of tile (bc) in between T s1

1 and T s3
1 , or

similarly the splitting of the amount of tile (ab)? Also, for the cases when an
intermediary assembly is used in several reactions from some later stages, what
is the optimal way of splitting this product, i.e., its total volume, in between
these test-tubes? The above time- and volume-splitting ratios can be subjected
to targeted optimization protocols.

8 In the case of 5-tile ribbons, 100% corresponds to a concentration of 20.
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Until now, as suggested by the definition of the sTAM, we have assumed
that the entire volume of an intermediate product is transferred to the subse-
quent stages.However, as suggested by actual lab procedures, we examine also
the setting in which only a fraction of the reaction products are re-introduced as
reactants. Namely, we force that in every test-tube, the volume of the two reac-
tants sum up to exactly one. In this setting, it becomes even more clear that the
ratio in which the two reactants are mixed (each coming into the reaction with
possible different initial concentrations) becomes very important in determining
a maximum concentration of the product.

5 Case Study: Assembling Size-10 Ribbons

As an yield optimization case study, we are going to consider the process of
assembling (in a staged assembly fashion) a size-10 1D horizontal ribbon of tiles.
As previously explained, restricting to this 1D structure is not a considerable
limitation, since even in the case of assembling 2D complexes, once the mixing
graph is designed, the modeling and optimization procedures remain the same.

Since the available pool of possible assembly strategies for a size-10 horizontal
line is considerably large, even for the case where we impose using only four
stages, we are going to compare only four particular such strategies9. We present
these strategies (a.k.a. the corresponding mixing graphs) in Figure 3.

Fig. 3. Four distinct assembly strategies for a size-10 ribbon, each using only 4 assem-
bling stages

In order to illustrate the possible differences between different assembly sce-
narios as well as between optimized vs. non-optimized assembly protocols, we
do not restrict to computing only the optimum values, but provide for compar-
ison a larger pool of parameter setups. Thus, we are comparing all these four
assembly strategies, by subjecting each of them to five different setups regarding
their time-split and volume-split parameters. Three of these setups are based
on combinatorial heuristics, while in two of them we numerically optimize the
parameters for maximizing the final yield concentration. In order to compare all
of these strategies and setups, we impose some general constraints as follows:

9 These strategies have been chosen almost at random from the available ones, without
a prior knowledge on their behaviour during the optimization process.



Yield Optimization Strategies for Staged TAS 41

i) The total time of the experiment is Ttotal = 0.9 t.u.

ii) The concentration of all tile-types in their initial test-tubes is [mon] = 100.

iii) (only for three of the setups) The cumulative volume of all tile-types intro-
duced in the various initial test-tubes is 10 unit volumes, where the volume
of each tile-type is proportional to the number of times it appears in the
final size-10 assembly.

The five setups can be partitioned into two groups:

Group 1: Combinatorially designed setups:

Setup 1: Equal time-splits and proportional volume-splits.

– Equal time intervals for the stages, that is, t1 = t2 = t3 = t4 = 0.225;

– The volume of any species who needs to be partitioned into two or several
test-tubes will be done so proportionally to how much the product of these
latter test-tubes will contribute to the final assembly.

A combinatorial observation regarding staged assembly systems is that on
average the concentration of the reactants is reduced al least by half in each
stage. By inspecting equation (3), we observe that if the concentration of both
reactants is reduced by half, we obtain the same product-reactant ratio only if
we double the time allocated to this stage. Thus, as a possible procedure for
improving the overall yield, the time-split parameters from the next setup are
in geometric progression.

Setup 2: Time-splits in geometric progression and proportional volume-splits.

– The time intervals are (t1; t2; t3; t4) = (0.06; 0.12; 0.24; 0.48);

– The volume of products is partitioned proportionally into subsequent test-
tubes (as in the case of Setup 1).

Setup 3: Equal time-splits and equal half unit-volumes for all reactants

– Equal time intervals: t1 = t2 = t3 = t4 = 0.225;

– The volume of each of the reactants in a test-tube is set to half unit volume.

This represents a rather “lazy” (or automated) instance of the setting in which
the volume of the test-tubes is limited to one unit.

Group 2: Numerically optimized setups:

Setup 4: Optimized time- and volume-splits while using the entire volume of
substance. As in the case of Setup 1 and 2, we assume here that we completely
use the entire volumes of all intermediary assemblies and of all single tiles.
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Table 1. The concentration [a10b] of the size-10 ribbon structure generated in the final
stage of the assembly; the results are expressed in their percentage form, where 100%
represents the absolute maximal value possible for this assembly, namely 10

Assembly Group 1 Group 2
strategy Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Strategy 1 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 2 41.4% 34.7% 25.0% 44.5% 53.5%
Strategy 3 42.6% 42.0% 30.5% 46.9% 49.0%
Strategy 4 42.4% 39.8% 37.3% 49.3% 48.6%

Setup 5: Optimized time- and volume-splits while enforcing unit volumes for all
test-tubes As in the case of Setup 3, we enforce that each test-tube contains
exactly one unit of mixed reactants.

All four assembly scenarios are subjected to the above setups, and the results
are summarized in Table 1. As it can be seen from the selected assembly scenar-
ios, in most cases the differences are relative small. However, there exist both
particularly bad and particularly good cases. Namely, the average value of the
produced yield is 41.3%, the sample standard deviation is 8.2, the worst case
scenario gives a yield percentage of 25%, while the best case scenario provides
a yield percentage of 53.5%. It is very interesting to observe that both the best
and the worst case scenarios are due to the same assembly strategy, but from
different, i.e., non-optimized vs. optimized, parameter setups. Also, it can be
observed that for each of the setups, the yield percentage are closed from one
assembly scenario to the other, thus suggesting a possible ranking of how good
each of these individual setups are. Namely, we are able to say that the worst
parameter setting is performed in Setup 3 while if instead of just placing the
previous default values we numerically optimize them to maximize the yield,
i.e., Setup 5, then we obtain the best possible results from all the considered
parameter setups.

6 Conclusions, Discussions, and Further Work

We have investigated yield optimization techniques for staged self-assembly sys-
tems. As a first step, we associated (for the first time) a computational model
to the staged tile assembly formalism, whose implementation through ODE sys-
tems differs considerably from the kinetic counterpart of the regular TAM. This
change of modelling methodology can be explained as follows. While in case
of abstract TAM the assembly is initiated from a seed structure, and one can
thus concentrate over a single assembly product, in case of sTAM the assembly
reactions are implemented population wise.

Another important aspect was to determine the possible optimization strate-
gies for our target, the final assembly yield. We were able to identify two levels
on which to implement adequate optimization protocols: at the assembly scheme
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design level, and at the implementation level. Considering the first level, several
assembly strategies are plausible for the same final structure, and some of these
assembly schemes may have plausible better chances of maximizing the concen-
tration of the final product. We concentrate here only on those assembly schemes
which ensure a minimal number of assembly stages. We conjecture at this level
that the best assembly protocols are those in which we minimize the number
of mixing of test-tubes from the same stages. The intuition here is that the
more advance a stage is, the less concentrated its product, and thus by mixing
a test-tube with another one from a lower stage, the concentration of the latter
is higher and thus it improves the result of the reaction.

The second optimization level is at the implementation phase, once a par-
ticular assembly strategy has been chosen. At this level, the parameters which
can be optimized are the time intervals allocated to each of the assembly stages
(assuming the total available time is constant) and the proportions in which cer-
tain products are split and further mixed in subsequent stages. We believe that
equal time-splits are not an optimal choice (unless the experiment involves a low
number of stages), but the considered case-study showed that time-splits in ge-
ometric progression are also not appropriate (i.e., Setup 2 in Table 1). Although
the case study seems to indicates that the optimal time-split parameters are close
to an arithmetic progression (Setup 4 and 5 in Table 1, data on time-splits not
shown), we believe that further studies are required for providing more intuition
regarding a possible combinatorial design approaching the absolute optimum
choice.

Regarding volume splits, an undiscriminating equal partitioning seem to be
the worst possible choice (Setup 3 in Table 1). On the opposite direction, those
partitions of assembly products which take into considerations the amount (or
concentration) of substance in each test-tube, and how the product of these
test-tubes are further going to be split, tend to have better yields.

Considering the case-study, one particular assembly strategy has generated
good outcomes, namely that of requiring the volume of each test-tube to be
exactly one. For the future, we plan to concentrate particularly on this strat-
egy, both because it seem to provide the best results, and because it seem to
be more tractable from an analytic point of view. Our aims are to provide con-
crete descriptions of combinatorial parameter-setups and mix-graph designs for
which we could provide numeric arguments as why the results of these strategies
approach the optimum solutions.
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Abstract. This paper addresses a principal problem of in vivo evolu-
tion of modular multi-cellular robots. To evolve robot morphologies and
controllers in real-space and real-time we need a generic learning mech-
anism that enables arbitrary modular shapes to obtain a suitable gait
quickly after ‘birth’. In this study we investigate a reinforcement learning
method and conduct simulation experiments using robot morphologies
with different size and complexity. The experiments give insights into
the online dynamics of gait learning, the distribution of lucky / unlucky
runs and their dependence on the size and complexity of the modular
robotic organisms.

Keywords: embodied artificial evolution, modular robots, artificial life,
online gait learning, reinforcement learning.

1 Introduction

The work described in this paper forms a stepping stone towards the grand
vision of embodied artificial evolution (EAE) as outlined in [6]. The essence
of this vision is to construct physical systems that undergo evolution ‘in the
wild’, i.e. not in a virtual world inside a computer. There are various possible
approaches towards this goal including chemical and biological ones. The one
behind this study is based on using a mechatronical substrate, that is, robots.

In general, there are two principal forces behind evolution: selection and re-
production. Selection –at least environmental, objective-free selection– is ‘for
free’ in the real world. Therefore, the main challenge for EAE is reproduction,
i.e., the creation of tangible physical artifacts with the ability to reproduce.
In our case, this means the need for self-reproducing robots. The approach we
follow to this end is based on modular robotics with robotic building blocks
capable of autonomous locomotion and aggregation into complex ‘multicellular’
structures in 3D. This approach has several advantages. Firstly, it offers a high
level of control because the basic modules or cells are robots themselves that
can be predesigned and preprogrammed according to the preferences of the ex-
perimenter. Here one can choose a homogeneous system with identical building
blocks or a heterogeneous one with several kinds of modules. Secondly, modular
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robotics offers a high level of flexibility, because the number of different com-
binations, that is, different aggregated 3D structures, is huge. This means that
the design space of all possible aggregated robotic organisms is rich enough to
accommodate interesting evolutionary processes.

It is important to note that the morphology of the basic robot modules is
fixed by design and cannot change during the operational / experimental pe-
riod. Hence, evolution will not take place in the morphological space of these
pre-engineered modules, but in the morphological space of the multicellular or-
ganisms. From the perspective of the multicellular robot bodies the basic robots
are merely raw material whose physical properties do not change over time.1

Recently these ideas have been put on a more solid footing by presenting
a conceptual framework for systems where robot morphologies and controllers
can evolve in real-time and real-space [5]. This framework, dubbed the Triangle
of Life, describes a life cycle that does not run from birth to death, but from
conception (being conceived) to conception (conceiving one or more children)
and it is repeated over and over again, thus creating consecutive generations of
‘robot children’. The Triangle of Life consists of 3 stages, Birth, Infancy, and
Mature Life.

1 

Fig. 1. The Triangle of Life. The pivotal moments that span the triangle and separate
the 3 stages are: 1) Conception: A new genome is activated, construction of a new or-
ganism starts. 2) Delivery: Construction of the new organism is completed. 3) Fertility:
The organism becomes ready to conceive offspring.

In this paper we address a fundamental problem in the Infancy stage. This
stage starts when the morphogenesis of a new robot organism is completed and
the ‘baby robot’ is delivered. As explained in [5], the body (morphological struc-
ture) and the mind (controller) of such a new organism will unlikely fit each
other well. Even if the parents had well matching bodies and minds, recombina-
tion and mutation can easily result in a child where this is not the case. Hence,
the new organism needs some fine tuning; not unlike a newborn calf the ‘baby
robot’ needs to learn how to control its own body. This problem –the Control

1 Nevertheless, evolving the controllers of these elementary robot modules during the
operational period is possible.
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Your Own Body (CYOB) problem– is inherent to evolutionary ALife systems
where both bodies and minds undergo changes during reproduction.

The work described here addresses the general CYOB problem in a simpli-
fied form, by reducing it to gait learning. In the modular robots approach the
challenge is to find a method that can learn gaits for all different morphologies
that can be created with the given modules and can do this quickly. The prob-
lem is highly nontrivial, since a modular robot organism has many degrees of
freedom, which leads to a very large search space of possible gaits. Furthermore,
this learning process must take place on-the-fly, during the real operational pe-
riod of the robot organisms. The off-line approach, where a good controller is
developed (evolved, learned, hand-coded, ...) before the robot is deployed is not
applicable here, because the life cycle of the Triangle is running in a hands-free
mode without being paused for intervention by the experimenter.

The mechanism we employ here to solve the CYOB problem is reinforcement
learning, in particular, the PoWER algorithm described by Kober and Peters
[14]. Note, that this learning mechanism is not evolutionary itself. Evolution
takes place on the level of multicellular robot organisms (as it is these organisms
that reproduce and get selected in the Triangle of Life framework), whereas the
PoWER algorithm is applied inside one organism to discover a good controller
that induces a good gait. The grand evolutionary process is not investigated
here; it only forms the background context that raises the CYOB problem. The
specific research questions our experiments will try to answer are the following:

1. How is the run-time dynamics of the learning process? That is, how quickly
can a multi-cellular robot organism learn to walk?

2. How reliable is the learning process? That is, how often do we see lucky
(unlucky) runs resulting in fast walking (immobilized) robot organisms?

3. How do the above features depend on the size and complexity of the robot
morphologies?

2 Related Work

The design of locomotion for modular robotics is a difficult problem. As explained
by Spröwitz: Locomotion requires the creation of rhythmic patterns which satisfy
multiple constraints: generating forward motion, without falling over, with low
energy, possibly coping with different environments, hardware failures, changes in
the environment and/or of the organism [18]. In the literature there are several
approaches, based on various types of controllers and algorithms for creating
these rhythmic patterns.

One of the earliest types is gait control tables as in, for instance, [1] and [19].
A gait control table consist of rows of actuator commands with one column for
each actuator, each row also has a condition for the transition to the next row,
in essence this implements a very simple cyclic finite state machine. A second
major avenue of research is that of neural networks (NN). In particular for loco-
motion of robot organisms HyperNEAT is used extensively. HyperNEAT is an
indirect encoding for a neural network. The genome is a compositional pattern
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producing network (CPPN), these networks are directed graphs in which each
node is a mathematical function like sine, cosine or a Gaussian [4]. CPPN’s are
used to set the weights of a fixed size neural network called a substrate. Several
studies have shown that HyperNEAT is capable of creating efficient gaits for
robots [4,20,9]. Another successful approach that has received much attention is
based on Central Pattern Generators (CPG). CPGs model neural circuitry found
in vertebrates which output cyclic patterns without requiring a cyclic input [11].
Each actuator in a robot organism is controlled by the output of a CPG, fur-
thermore the CPGs are connected through certain variables which allows them
to synchronise and maintain a certain phase difference pattern. Although sen-
sory input is not strictly needed for CPG’s, it can be incorporated to shape
the locomotion pattern to allow for turning and modulating the speed. This
technique has been shown to produce well performing and stable gaits on both
non-modular robots [18,2] and modular multi-robot organisms [13,12]. Last, a
technique based on artificial hormones has been investigated for the locomotion
of modular robot organisms. In this technique artificial hormones are created
within robot modules as a response to sensory inputs. These hormones can in-
teract with each other, diffuse to neighbouring modules and act upon output
hormones. These output hormones are then used to drive the actuators [10,17].
Furthermore, some techniques in the field of gait learning employ reinforcement
learning algorithms, the specific approaches used can range from Temporal Dif-
ference Learning (TDL) to Expectation-Maximization (EM). In TDL one seeks
to minimize an error function between estimated and empirical results of a con-
troller, in EM controller parameters are estimated in order to maximize the
reward gained using it. These algorithms have been used on modular, e.g. [3]
and non modular robots, e.g. [16].

Although there is extensive previous work on this issue, we must stress that,
of the techniques described above, only the techniques described in [3], [12] and
[18] were actually tested on multiple shapes.

3 Experimental Setup

As mentioned in Section 1 our primary goal is to determine if a reinforcement
learning (RL) approach can be suitable for online gait learning. To this end,
we tested an RL algorithm in various organism morphologies (with different
sizes and complexity) set in a simple environment. All these tests were done in
simulation with the Webots system of Cyberbotics, using the YaMoR module as
building block for the organisms [15]. A YaMoR module is made of a static body
and a joint on its front that has a single degree of freedom and an operating
range of

[
−π

2 ,+
π
2

]
. It also has two connectors, one on the joint and one in the

back of the body, which allow to connect modules at arbitrary angles. For the
current investigation we applied three changes to the original YaMoR model.
We added two extra connectors on the remaining sides of the body in a central
position, allowing the construction of complex structures. We reduced the width
of the joint to avoid its lateral protrusion, thereby eliminating the possibility of
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collisions with the modules connected to the sides. Last, we added a GPS device
to a centrally located module to measure displacement.

Nine different robot organisms with different sizes and complexity were defined
so as to examine the algorithm generality and scalability. Size and complexity are
measured by the number of modules and by the number of extremities, respec-
tively. The experiments were conducted with three complexity levels: organisms
with two extremities (I-shape), three extremities (T-shape), and four extremities
(H-shape). Each shape was then replicated in three sizes: 7, 11 and 15 modules.
A screenshot of their initial state can be seen in Figure 2.

(a) Organism I-7 (b) Organism T-7 (c) Organism H-7

(d) Organism I-11 (e) Organism T-11 (f) Organism H-11

(g) Organism I-15 (h) Organism T-15 (i) Organism H-15

Fig. 2. Robot Organisms

The environment chosen for the experiments is an infinite plane free of obsta-
cles so to avoid any extra complexity and the need of supervision. Each experi-
ment starts with the organism lying completely flat at the plane origin.

The controller of each organism defines an open-loop gait. Because we use
reinforcement learning to acquire a good gait, we refer to our controllers as poli-
cies. In our implementation, a policy is a set of cyclic spline functions where
each spline specifies the angular positions of an actuator over time. A cyclic
spline is a mathematical function that can be defined using a set of n control
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points. Each control point is defined by (ti, αi) where ti represents time and αi

the corresponding value. ti ∈ [0, 1] is defined as

ti =
i

n− 1
, ∀i = 0, . . . , (n− 1) (1)

and αi ∈ [0, 1] is freely defined, except that the last value is enforced to be equal
to the first, i.e. α0 = αn. These control points are then used for cyclic spline
interpolation using GSL [7] dedicated C functions. Using GSL it is possible to
query a spline for a different number of points than it was defined with, enabling
comparison between splines defined with a different number of parameters.

The problem is then to find a set of splines, that maximizes some measure
of performance. For this we use the RL algorithm called PoWER described by
Kober and Peters [14]. The use of the set of cyclic spline functions as the repre-
sentation was taken from [16]. This RL algorithm is based on an Expectation-
Maximization approach to estimate the parameters α̂ of a policy π in order to
maximize the reward gained by using that policy. The algorithm starts by creat-
ing the initial policy π0 with as many splines as there are robots (actuators). The
algorithm initialises these splines with n values of 0.5 and then adding Gaus-
sian noise. This initial policy is then evaluated after which it is adapted. This
adapted controller is evaluated and adapted again until the stopping condition
is reached.

Adaptation is done in two steps which are always applied: Exploitation and
Exploration. In the exploitation step, the current splines α̂ are optimized based
on the outcome of previous controllers, this generates a new set of splines.

α̂i+1 = α̂i +

∑k
j=1 Δ̂αi,jRj∑k

j=1 Rj

(2)

where Δ̂αi,j represents the difference between the parameters of the i-th policy
and j-th policy belonging to a ranking of the best k policies seen so far and Rj

its reward. In the exploration phase policies are adapted by applying Gaussian
perturbation to the newly generated policy.

α̂′
i+1 = α̂i+1 + ε̂i+1, ε̂i+1 ∼ N

(
0, σ2

)
(3)

where α̂i+1 are the parameters after the exploitation step, α̂′
i+1 the parameters

after the exploration step and ε̂i+1 values drawn from a Gaussian distribution
with mean 0 and variance σ2. Over the course of evaluations, the variance σ2 is
diminished which decreases exploration and increases exploitation.

To carry out the actual evaluation each policy is queried for its parameters
at a rate proportional to the actuators’ angular speed. These are then appropri-
ately scaled depending on actuators’ operating range and used cyclically during
the evaluation. Each controller is evaluated for 96 seconds (6,000 time steps)
after being used for a recovery period of 3.2 seconds (200 time steps) in order
to reduce evaluation noisiness as in [8]. This is a rather long evaluation time
for locomotion, but was chosen to be conservative and allow for a reasonably
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Table 1. Experiment Parameters

Parameter Value Description

Variance 0.008 The initial variance

Variance Decay 0.98 The variance decay factor

Ranking Size 10 Number of best policies to compare against

Start Parameters 2 Starting number of parameters of a spline

End Parameters 100 Ending number of parameters of a spline

Evaluation Steps 6,000 Number of time steps for evaluations

Recovery Steps 200 Number of time steps for recovery

Evaluations 1,000 Number of evaluations

accurate measurement of performance. The reward R awarded to a controller i
is calculated as follows:

Ri =

⎛
⎝100

√
Δ2

x +Δ2
y

Δt

⎞
⎠

6

(4)

where Δx and Δy is the displacement over the x and y axes measured in meters
and Δt the time spent in evaluation, as in [16].

The algorithm operating parameters used for the variance and its decay factor
are the same as in [16] whereas the others were chosen by hand, without further
tuning. The experiment was repeated for 30 times for each organism, with dif-
ferent random seeds. An overview of all the parameters used in each experiment
are described in Table 1.

4 Experimental Results

The performance of the algorithm is shown in Fig. 3, the graphs show the mean
fitness of the controllers over 30 runs. We assess the algorithms’ behaviour by
the time it needs to converge and by the quality of the learned controllers. In
Fig. 3 we can see that the algorithm converges after roughly 400 evaluations,
regardless of the organisms shape or size. We also note that after convergence,
the performance of the gait is very stable.

To reach this performance, a complete run took about 27 hours of simulated
time, or just over 1 full day. In light of current hardware, where an operating
time of over 4 hours is rare, this is still too long to be feasible in real hardware.
However, as the algorithm converges in approximately one third of this time we
can imagine reducing this time immensely. For instance, as mentioned in Section
3 the choice of evaluation length was conservative, it should therefore be safe to
assume it is possible to reduce the evaluation time without affecting the results
significantly.

The blue curves shown in Fig. 3 display that some runs are very bad. In
such runs the average speed of the organism increases until it suddenly drops
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(a) Organism I-7
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(b) Organism T-7
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(c) Organism H-7
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(d) Organism I-11
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(e) Organism T-11

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Evaluations

S
pe

ed
 (

m
/s

)

(f) Organism H-11
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(g) Organism I-15
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(h) Organism T-15
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(i) Organism H-15

Fig. 3. Online dynamics of the learning process. The x axis represents time measured
by the number of evaluations whereas the y axis represents evaluation performance
measured by the average speed attained (m/s). The top (red) and bottom (blue) curves
exhibit the best and worst single run out of the 30, respectively. The middle curves
(green) show the average speed over 30 runs with the black bars representing the
confidence interval.

below the 0.05m/s mark. The reason for this huge drop is that a particular
gait during the learning process made the organism lose its balance and flip on
its side (I-shape), head (T-shape) or altogether (H-shape). From that point on
the learning process was unable to find a good set of parameters for the now
completely changed situation.

This behaviour can have two causes. First, the on-line approach used implies
that between each evaluation the organism’s stance or position is not reset to a
default stable one. Consequently, each controller’s performance is affected by the
state the organism was left in by the previous one, meaning that a good move
in one stance may lead to disastrous behaviour in another stance. Second, some
organism morphologies may be more prone than others to lose their balance
due to detrimental gaits. In [16] such detrimental gaits are filtered out based on
knowledge of the organism shape and size, however, as our approach is meant
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(c) Organism H-7
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(f) Organism H-11
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(g) Organism I-15
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(h) Organism T-15
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(i) Organism H-15

Fig. 4. Reliability of the learning process. The histograms show the number of runs
(out of 30) terminating with a speed in a given range.

for on-line adaptation for arbitrary shapes and sizes, it is not possible to filter
such gaits as we do not have knowledge of the size and shape beforehand.

All of these reasons, combined with the decreasing exploration, may have led
to such bad runs. In the Triangle of Life, however, bad runs should not be a big
problem, shapes which are prone to bad runs will not be able to reproduce and
hence these shapes disappear over time. On the other hand, shapes that are well
suited for balanced locomotion will be able to prevail.

The histograms in Fig. 4 show the distribution of runs based on the perfor-
mance of the last controller, the black vertical bar represents the mean. The dis-
tribution of runs allows us to determine the reliability of the learning process by
the number of bad runs for each organism. These histograms show quite clearly
for each organism the number of runs of which the outcome is a controller with
a very low average speed (below 0.05m/s). Over the different experiments there
is a minimum of 1 bad run and a maximum of 7 bad runs, which corresponds to
a percentage between 3.3% and 23.3%.



54 M. D’Angelo, B. Weel, and A.E. Eiben

Table 2. T-Test Results - Size. The table show the results of the independent samples
T-Tests comparing the performance of the last controller on organisms with same com-
plexity but different size. NS means the T-test showed the difference is not significant,
the corresponding p values are included.

I T H

7 - 11 NS, p = 0.710 NS, p = 0.300 NS, p = 0.531
7 - 15 NS, p = 0.210 NS, p = 0.718 NS, p = 0.188
11 - 15 NS, p = 0.094 NS, p = 0.423 NS, p = 0.537

Table 3. T-Test Results - Complexity. The tables show the results of the indepen-
dent samples T-Tests comparing the performance of the last controller on organisms
with same size but different complexity. NS means the T-test showed the difference
is not significant, S means the difference is significant, the corresponding p values are
included.

7 11 15

I - T S, p = 1.602× 10−05 S, p = 1.821× 10−05 S, p = 2.873× 10−04

I - H S, p = 7.959× 10−08 S, p = 5.472× 10−09 S, p = 1.119× 10−07

H - T NS, p = 0.217 S, p = 0.005 S, p = 0.004

The number of bad runs seems to be quite constant among organisms of the
same complexity with different sizes, the I shape for instance has very few bad
runs regardless of whether its size is 7 or 15 modules. On the other hand across
complexity there does seem to be an influence on the number of bad runs: the T
and H shapes have relatively more bad runs than the I shape. More experiments
need to be carried out in order to assess if this relationship between the number
of bad runs and organism complexity holds more generally. Going back to the
performance of the organisms, Fig. 3 shows that organisms with same complexity
but different size are very similar in performance. Organisms with the same size
but different complexity, however, show a very large difference in performance.
To see if these differences are statistically significant T-Tests with a significance
level of (p < 0.01) were conducted using the performance of the last controller
of each run. The results are shown in Tables 2 and 3. There we can see that
indeed the difference in performance between organisms of the same complexity,
but with different sizes is not significant. The difference in performance between
organisms of the same size, but different complexity is significant in most cases.
This strengthens our belief that the design space for robot organisms consisting
of modular robots is an interesting one.

5 Conclusions

In this paper we addressed a principal problem of in vivo evolution of modu-
lar multi-cellular robots. The Control Your Own Body problem arises because
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newborn robot organisms are likely to have bodies and controllers that do not
fit well. Therefore, every ‘baby robot’ needs to learn to control its own body.
Furthermore, it needs to learn this quickly and on-the-fly by an online learning
method, because Life goes on in the Triangle of Life, without a grace period. In
this study we reduced this to a gait learning problem and investigated a solution
by applying reinforcement learning. We conducted simulation experiments using
robot morphologies of different size and complexity.

The main finding of our research is that the RL PoWER algorithm can suc-
cessfully perform this learning task. Its success seems to depend more on the
shape than on the size of the organisms, while its speed proved rather indepen-
dent from either of these factors. The differences between morphologies can be
quite substantial: The I shape had very few bad runs where the organism fails to
move at all, whereas the the failure rate for the H shape can be up to 20%. These
failures are due to very bad gaits that cause the organism to lose its balance and
flip on its side or back.

Regarding the speed of the learning process we found that the learning algo-
rithm converges to the best gait after around 400 evaluations for all shapes and
sizes we tested here. In terms of time, our experiments completed in roughly 27
simulated hours for 1,000 evaluations, where each evaluation ran for 96 seconds.
However, we expect that the evaluations could be made shorter without losing
much performance as the evaluation time of 96 seconds is rather long compared
to other gait learning algorithms. Using shorter evaluations and stopping the
learning process after 400 evaluations we could reduce the learning period to
approximately 2 hours simulated time.

Further work will be carried out along three lines. First of all, we want to
improve the RL PoWER algorithm by tuning its parameters. Furthermore, we
are interested in comparing this method to other methods, for instance Hyper-
NEAT. Last but not least, we want to validate our results by replicating these
experiments using real hardware.
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15. Möckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Ijspeert, A.: YaMoR
and Bluemove – an autonomous modular robot with Bluetooth interface for ex-
ploring adaptive locomotion. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds.)
Proceedings of the 8th International Conference on Climbing and Walking Robots,
CLAWAR 2005, pp. 685–692. Springer (2006)

16. Shen, H., Yosinski, J., Kormushev, P., Caldwell, D.G., Lipson, H.: Learning fast
quadruped robot gaits with the RL PoWER spline parameterization. Cybernetics
and Information Technologies 12(3), 66–75 (2012)

17. Shen, W.-M., Salemi, B., Will, P.: Hormones for self-reconfigurable robots.
In: Pagello, E., Groen, F., Arai, T., Dillman, R., Stentz, A. (eds.) Proceedings
of the 6th International Conference on Intelligent Autonomous Systems (IAS-6),
pp. 918–925. IOS Press (2000)
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Abstract. In this paper we present new results related to our research work for 
building an accurate performance speaker independent recognizer for Classical 
Arabic, particularly Quran recitation; it is a part of the "Computerized Teaching 
of the Holy Quran" project funded by King Abdulaziz City for Sciences and 
Technology (www.kacst.edu.sa). In an early stage of this project, our efforts 
have been directed to propose a new labeling scheme covering all the Arabic 
sounds and their phonological variations. Since annotated speech corpus of the 
Classical Arabic sounds was not available yet, we next focused on building a 
well-designed sound database from Quranic recitations. Ten reciters have been 
recorded in an appropriate environment memorizing a part of the Quran result-
ing in almost nine hours of speech. We then concentrated on its manual seg-
mentation and labeling on three levels: word, phoneme, and allophone in order 
to be accurate as much as possible due to the specificity of the Classical Arabic 
pronunciation and particularly the holy Quran recitation. This paper describes 
the development of a recognizer for the allophonic sounds of Classical Arabic 
(language of the holy Quran) based on Quranic recitations. This recognizer is 
built using the Cambridge HTK tools. Each allophonic sound is modeled by an 
acoustic Hidden Markov Model (HMM) with 3-emitting states. A continues 
probability distribution using 16 Gaussian mixture distributions is used for each 
emitting state. Results show that recognition rates reached a good level of accu-
racy (88% average) without using any specific language model, which is very 
promising and encouraging. 

Keywords: speech recognition, HMM, Arabic, speech corpus, Quran, Arabic 
pronunciation, Quran recitation.  

1 Introduction 

Many research efforts have been deployed to tackle the problem of Automatic Speech 
Recognition (ASR) using different techniques. An enormous progress has been 
achieved over the past decades by the use of statistical approach, namely Hidden 
Markov Models (HMM) [1-4]. 
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The success of using HMM for ASR has induced the development of ASR engines 
to help manipulating HMMs efficiently and to accelerate the development process. 
Hidden Markov model Tool Kit (HTK)1 and Sphinx2 are the famous ASR engines 
used by the scientific committee in this domain. HTK is a portable toolkit developed 
at Cambridge University for building and manipulating hidden Markov models to 
develop speech recognition systems [5, 6]; it consists of a library modules and a set of 
more than 20 tools. Sphinx is a speech recognition engine built for HHM-based Large 
Vocabulary Continuous Speech Recognizers (LVCSR); it is developed at Carnegie 
Mellon University [7, 8]. 

The success achieved by HMM-based ASR and the availability of recognition en-
gines have encouraged the development of many kinds of applications that use speech 
as input or output modules for different languages. These applications cover wide 
range of areas, such as remote control applications, handicap applications, Authenti-
cation, entrainment, indexing, speech translation, language learning, etc. 

One important and distinguished application of general Arabic Speech recognition 
is the automation of learning the holy Quran. Although recited Quran is not used in 
communication, it is extremely important in teaching the pronunciation of Classical 
Arabic sounds (language of the holy Quran). Moreover, teaching how to pronounce 
Quranic sounds is indispensable for correct reading of the holy Quran, either for me-
morizing it or for reciting it in Islamic worshiping such as prayers. 

In this paper, we present the development of an HMM-based recognizer for allo-
phonic sounds of the Classical Arabic based on Quarnic recitations. This will consider 
a good background and open the door for a mint of applications for teaching different 
aspects in the Classical Arabic, either for the old Arabic poetry or for the available 
religious heritage. 

2 An In-house Developed Sound Database: Overview 

The first stage of the "Computerized Teaching of the Holy Quran" project [9] were 
devoted to the development of a well designed database for Quranic sounds. We 
started proposing a new labeling scheme covering both the Classical Arabic (language 
of the Quran and old poetry) as well as the Modern Standard Arabic (used nowadays 
in official communications and news media) [10]. Table 1 gives an extract of the 
Classical Arabic allophones of the single phonemes (not geminate). The first number 
of the code is always 1 to represent the single allophones. However, it can be 2 to 
represent the geminate consonants and vowels or 4, 7 or 8 to represent the longer 
vowel duration (called in Arabic mudoud). The second number is always 1 or higher 
to cover the allophones, not only in the Classical Arabic but also Modern Standard 
Arabic.  

A phoneme is an abstract concept that can be manifest in different allophones. For 
example, the phoneme /a:/ is a long low vowel which its length varies according to its 
position in a word and the adjacent phonemes. /a:/ is almost double the duration of 

                                                           
1 http://htk.eng.cam.ac.uk 
2 http://www.speech.cs.cmu.edu/sphinx/Sphinx.html 
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that of  its short counterpart /a/ [11] in words such as: /sa:d/ "dominated" and /sadd/ 
"dam", respectively. However, the same vowel, /a:/  is produced even longer in a 
word such as /ma:?/ "water" where some reciter might have it four or six times longer 
than its short counterpart /a/. These variations in pronouncing the same phoneme are 
called allophones. Some of Arabic sounds may have the same place of articulation but 
different manner of articulation. Sounds that are produced at the alveolar ridge can be 
plain stops similar to the English /t, d/, emphatic stops where the back of the tongue is 
retracted upwards and backwards, velarized where the tongue is drawn upwards, or 
nasalized where the air escapes through the nose.  

In the second stage, we collected Quranic recitations from ten chosen reciters who 
read verses from Quran. The recording was done in a soundproof chamber at King 
Abdulaziz City for Sciences and Technology (KACST). This was resulted in almost 
nine hours of speech with an average of around 50 minutes per reciter. A total number 
of 5935 sound files were obtained with an average of about 594 files per reciter. 
Sound files are coded on the form SSS_XXX_YYY_ZZ, where SSS represents initial 
letters of the reciter's name, XXX represents sourah (Quranic chapter), YYY 
represents ayah (verse of a Quranic chapter), and ZZ represents pause numbers made  
 

Table 1. Extract of some Arabic phonemes, their symbols in International Phonetic Alphabet 
(IPA), the used labels for allophonic variations and their phonetic description  [10]  

Arabic Character IPA Labels Phonetic Description 

 a َــ

as11 Plain 
as12 emphatic 
as13 velarized 
as16 centralized 

 u ُــ
us11 Plain 
us12 emphatic 
us13 velarized 

 i ِــ
is11 Plain 
is12 emphatic 
is13 velarized 

 hz11 Plain - ء

 b ب
bs11 Plain 
bs15 released with a schwa 

 t ت
ts11 Plain 
ts14 nasalized 
ts15 aspirated 

 < ث
vs11 Plain 
vs14 nasalized 

 C$ ج
jb11 Plain 
jb14 nasalized 
jb15 released with a schwa 
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by the reciters within an ayah. Text files of the spoken counterparts were created and 
named in the same manner. Preliminary versions in Arabic of the corpus were  
described in [12, 13]; a full version in English is currently under publication process 
by the Language Resources and Evaluation Journal3. 

Having building the sound database, we focused on its manual segmentation and 
labeling on three levels: word, phoneme, and allophone using the Praat tools4 (see 
figure 1). Labels of words are composed of sourah number, ayah number, and word 
number joined by underscores. The transcription files are extracted from PRAAT and 
kept in their original format as "txtgrids" files to allow an easy manipulation at further 
stages.  Each sound file has now a corresponding file that represents its transcription 
(.textgrid) in addition to the text file containing the corresponding text. 

 
 

 

Fig. 1. Example of the segmentation and labeling on three levels: word, phoneme,  
allophone 

 

                                                           
3  http://www.springer.com/education+%26+language/ 
linguistics/journal/10579 

4  http://www.fon.hum.uva.nl/praat/ 
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3 Development of the Recognizer 

3.1 Dictionary of Pronunciation (lexicon) and List of Allophonic Sounds 

We have used transcription files to extract all reciters pronunciations of words as 
occurred in the sound files (see table 2 for an extract). It is worth to mention that, at 
the best of our knowledge, there is no available dictionary which can be used to ob-
tain Arabic words pronunciation (especially the Classical one and thus Quranic 
words) as it is for other languages such as English for example [14]. 

The number of unique words in the textual part of our corpus (last part of the Qu-
ran) was 1377 for which we added a silence (SIL) as special word to represent the 
start and the end of ayahs at the word level; with repetition, this number reaches 2348. 
The total number of words for all reciters is 35353, from which 11873 represent the 
silence, and the remaining 23480 represent the real words (2348 words for each one 
of the 10 reciters). The statistics show that the majority of reciters have almost the 
same number of pronunciations, which reaches 2260, giving an average of about 1.7 
pronunciations per word. From that, we can see in Table 2 that almost all words have 
between one and two pronunciations; a few words have three pronunciations. 

Table 2. Extract from the pronunciation dictionary 

 hz11 as11 hz11 is11 vb11 as21َئِذَا 
  hz11 as11 hz11 is11 ns21 as21أَئِنَّا 

 hz11 as11 hz11 as11 ns21 ts14 us11 ms11أَأَنْتُمْ 
 hz11 as11 bs11 as21 bs11 is41 ls11أَبَابِيلَ 
  bs15 ts11 is11 gs11 as42 hz11 as11ابْتِغَاءَ 

 bs15 ts11 is11 gs11 as61 hz11 as11        
      bs15 ts11 is11 gs11 as62 hz11 as11 

 bs15 ts11 as11 ls11 as21 hs11 us11ابْتَلَاهُ 
  hz11 as11 bs11 as11 ds11 as21أَبَدًا 

 hz11 is11 bs15 rs12 as22 hs11 is21 ms11إِبْرَاهِيمَ 
as11 

 hz11 as11 bs15 sb11 as12 rs12 us12أَبْصَارُهَا 
hs11 as21 

 hz11 as11 bs15 ws11 as21 bs11 as21أَبْوَابًا  
  hz11 as11 bs11 is21أَبِي 
  hz11 as11 ts11 as21 ks11 as11أَتَاكَ 

 hz11 as11 ts15 rs12 as22 bs11 as41أَتْرَابًا 
     Hz11 as11 ts15 rs12 as22 bs11 as21 

 cs11 as11 ys11 ns11 us11 ns21عَيْنٌ 
 cs11 as11 ys11 ns11 is11 ns11عَيْنٍ 
 cs11 as11 ys11 ns11 as11عَيْنَ 
 cs11 as11 ys11 ns11 as11 ys24عَيْنًا 
     cs11 as11 ys11 ns11 as11 ys21 

 gs11 as12 bs11 as11 rs11 as12غَبَرَةٌ 
hs11 

 gs11 us11 vs11 as61 hz11 as11غُثَاءً 
ns11 

      gs11 us11 vs11 as41 hz11 as11 
ns11 

 gs11 as12 rs12 qs11 as22غَرْقًا 
      gs11 as11 rs11 qs11 as21 

 gs11 as12 rs22 as12 ks11 as11غَرَّكَ 
 gs11 as12 ys11 rs11 us11غَيْرُ 

 gs11 as12 ys11 rs12 us12  

 

From the transcription files, we also extracted the list of unique allophonic sounds 
(see table 3 for a part of them). They count 109 plus the silence unit (sil) which is 
counted as normal allophone to represent short pauses during the recitations as well as 
the start and the end of ayahs. 
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Table 3. List of the Allophones from sound files 

as11 bs21 ds21 is11 jb15 ls12 qs15 sil ts15 vb14 ys11 

as12 bs25 fs11 is12 jb21 ls21 qs21 ss11 ts21 vb21 ys14 

as21 cs11 fs14 is21 js11 ls22 qs25 ss14 us11 vs11 ys21 

as22 cs21 fs21 is22 js14 ms11 rs11 ss21 us12 vs14 ys24 

as41 db11 gs11 is41 js21 ms21 rs12 tb11 us21 vs21 zb11 

as42 db14 hb11 is42 ks11 ms24 rs21 tb14 us22 ws11 zb14 

as61 db21 hs11 is61 ks14 ns11 rs22 tb15 us41 ws21 zb21 

as62 ds11 hs21 is62 ks15 ns21 sb11 tb21 us42 ws24 zs11 

bs11 ds14 hz10 jb11 ks21 qs11 sb14 ts11 us61 xs11 zs14 

bs15 ds15 hz11 jb14 ls11 qs14 sb21 ts14 vb11 xs21 zs21 

3.2 Acoustic Modeling and Features Extraction 

We used Hidden Markov Models [15] to represent allophonic sounds of the Classical 
Arabic. Recent studies indicate that an HMM with three emitting states (correspond-
ing to the transition-in, steady state, and transition-out regions of the phone) is gener-
ally enough to capture the acoustic properties of a particular sound [4]. Figure 2 
shows a typical 3-emitting state HMM architecture (taken from [4]), which we 
adopted for our allophonic sounds. 

 

 

Fig. 2. Adopted HMM architecture for allophonic sounds 

A Gaussian Mixture Models (GMM) will be associated to each state of the indi-
cated HMM acoustic model to identify the characteristics of the sound portion at this 
state. 

Once the architecture of acoustic model is defined, the structure of feature vectors 
has to be specified. This means that an input wave-form is transformed to a sequence 
of feature vectors, each of them representing the signal in a small time window; usual-
ly Hamming window with size 10 to 30 ms. Among the different possible parameteri-
zations of signal, MFCC (Mel Frequency Cepstral Coefficients) is the most known 
and popularly used for speech processing. Current ASR systems limit the number  
of MFCC coefficients considered to the first twelve ones representing the static fea-
tures of the signal portion, for which the first and second derivatives (velocity and 
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acceleration) are added to capture the dynamic features. Energy of the signal portion 
and its derivatives are also considered, and thus a feature vector of 39 coefficients is 
obtained. Figure 3 shows the standard MFCC extraction steps taken from [4]. 

 

 

 

 

 

 

 
Fig. 3. Feature extraction process 

Our sound corpus was recorded with high sampling rate (44100 Hz and 16 bits) to 
be useful for a variety of applications other than speech recognition, which generally 
necessitate no more than 20000 Hz. We have sampled-down a version of it, using 
appropriate software, to be used in the development of the current recognizer. We 
used the library HCopy of the HTK tool-kit [6] to extract feature vectors from our 
speech signals at a rate of 8 ms within a Hamming window of size 16 ms. Thus, a 
vector of 39 coefficients (as previously described) is generated every 8 ms. 

3.3 Training 

The training phase aims to inject sound features in the parameters of underlying 
acoustic models with the goal of becoming able to recognize them at a later stage. 
Training can be done in isolated-unit or embedded-unit mode depending on the type 
of recognition task. Isolated-unit training is usually employed for separated unit-
models or at least with clear speech-boundaries as in a word-based modeling task for 
example; while the embedded-unit training is typically used for sub-word (e.g. phone) 
modeling in a continuous speech recognition task. Isolated-unit training might be 
important for embedded-unit training if we have enough boundaries-marked data. 
However, having a boundaries-marked of huge amount of data (usually required for 
VLCSR systems) is not always obvious and might not be practically feasible. 

In the HTK, isolated-unit and embedded-unit training are respectively performed us-
ing HInit followed by HRest, and HCompV followed by HERest. HInit and HCompV 
are used to initialize models respectively in the isolated-unit mode (where models are 
separated or with known boundaries) and embedded-unit training mode (where boun-
daries might not be clear). HRest and HERest are used to perform the proper training 
using the Baum-Welch procedure. In the case of sub-word modeling with marked-
boundaries, HInit and HRest can be used for initialization in the embedded-unit train-
ing and thus might be regarded as a bootstrap operation. In our case, we will start using 
isolated-unit training as our sound database is manually segmented and labeled at dif-
ferent levels, among them the allophonic level. Embedded-unit training will then be 
conducted to ensure a uniform training. Moreover, we will test different possible com-
binations of the above HTK training tools to select the best appropriate one. 
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3.4 Language Modeling 

In this work, we used a flat language model on the level of allophones to allow all 
possible combination of pronounced sounds. A specific language model may impose 
or guide the recognizer to predict some allophones, and thus to consider them correct-
ly pronounced. Table 4 gives the simple language model we used. 

Table 4. Language Model for Allophonic Sounds 

$All =  sil | hz11 | as11 | cs11 | us21 | vb11 | us11 | bs11 | is11 | ls21 | as21 | hs11 | 
ms11 | ns11 | js21 | ys11 | tb11 | as22 | rs22 | jb11 | is21 | ss11 | as12 | hb11 | ls11 | 
ds11 | rs12 | bs21 | is41 | ks11 | ws11 | ds21 | ys21 | ts11 | sb21 | is12 | qs11 | is42 | 
sb11 | gs11 | rs11 | db11 | us22 | db21 | as62 | ms21 | as41 | us41 | ns21 | zb11 | is22 | 
fs11 | xs11 | vs11 | jb15 | ts15 | qs15 | zs11 | js11 | bs15 | js14  | ws24 | hs21 | zs14 | 
as61 | vs14 | jb21 | … ;  

( < $All > ) 
 

The HTK tool called HParse is used to transform this language model to an internal 
format called Standard Lattice Format (SLF) to be used in the recognition phase by 
the tool HVite, which is based on the library HRec. 

3.5 Experimentations 

The sound database is divided into ten groups of training and testing sets; all of them 
are used in our main experimentations one at a time and then a global average is com-
puted. For each group, we consider a particular reciter to construct the testing set by 
extracting the first ayah of each sourah from it; the remaining ayahs of this reciter as 
well as all ayahs of the other reciters are used for training. Since our sound database 
contains 38 sourahs and 572 ayahs, so in each group the training and testing sets are 
respectively composed of 534 and 38 ayahs. This means that in each group, about 
93% of the corpus is used for training and 7% is used for testing. 

Different kinds of experimentations were conducted. The first type was to select 
the best combination of HTK training tools to ensure a good training of the models. 
We start using HInit + HRest and then HCompV + HERest; we noticed that the best 
results were obtained from the first combination. This is somehow expected as our 
manual segmentation was done with an acceptable level of accuracy. So, guided by 
this inspiration that HInit gives a good initialization and thus could be considered as 
starting point, we conducted two other experimentations, one using HInit + HERest, 
and another one using HInit + HRest + HERest. And we finally got the best results 
with the last combination. So, all the following experimentations will be conducted 
using this combination (HInit + HRest + HERest) for training. The second type of 
experimentations was focused on the combination of GMMs to determine the optimal 
number appropriate for our sound database. We conducted a lot of experimentations 
varying the number of GMMs from 1 to more than 16 on the previously mentioned  
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groups of training & testing sets (more than 160 experimentations). We report in the 
table 5, the results from 1 to 16 GMMs as the higher numbers did not show significant 
recognition rates. These results are plotted in the figure 4.. 

Table 5. (%) of Recognition Rates for 1 to 16 GMMs 

G
M

M
 

All the ten Reciters (letters are the initials of their names) 

AAH AAS AMS  ANS BAN  FFA HSS MAS MAZ SKG 

1 71.35 78.51 66.59 76.03 72.18 71.35 73.52 76.03 69.37 72.18 

2 77.05 81.94 74.57 81.39 77.65 76.14 80.71 80.25 77.03 78.11 

3 79.91 82.4 77.08 83.45 81.53 79 82.88 80.02 81.14 81.3 

4 79.79 87.09 77.99 85.27 82.67 81.62 83.79 81.85 83.09 81.19 

5 82.65 89.03 79.02 87.33 85.06 83.79 85.84 83.79 83.09 83.92 

6 83.33 88.34 81.87 87.67 85.63 83.11 87.56 82.76 84 84.72 

7 86.19 89.26 81.87 86.64 88.48 83.45 86.99 85.84 84.34 84.61 

8 86.07 90.17 80.16 86.64 87 83.11 86.53 85.05 85.37 85.29 

9 87.44 90.74 82.21 86.99 88.26 84.59 88.81 86.07 85.71 86.55 

10 86.42 90.17 83.81 88.01 88.03 84.82 88.13 86.3 84.8 87.23 

16 87.79 89.14 86.43 87.33 88.6 85.05 88.81 88.47 86.51 87 

 
 

 

Fig. 4. % of Recognition Rates for different GMMs 
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4 Results Discussion  

The first thing to be noted is that the recognition rates are not bad as the poorest one is 
about 67% for the reciter AMS with 1 GMM and the average is 73%, which is an 
acceptable rate. The second remark is the neat improvement of recognition rates ob-
tained when increasing the number of GMMs, as the lowest recognition rate reached 
85% and the average is 88%, which represent a global enhancement of about 21%. 
This improvement varies from reciter to another depending on both training & testing 
groups and the number of GMMs. Thus, it was 12% for the reciter ANS and 20% for 
the reciter MAZ. The reciter AMS, which held previously the lowest score, is now 
gained the best improvement 20%; this could be explained by the fact that sound files 
of this reciter may be were not so clean, but with the increment of GMMs, sounds 
become distinguishable and thus being neutralized. The third remark is that almost the 
best results are obtained by the first ten GMMs and that beyond this number no signif-
icant improvements was noted. This seems to be very logical as our data is clean (at a 
great level) and thus ten GMMs were good enough to represent the variability of ten 
reciters. An in-depth analysis conducted on the confusion matrix show that allophonic 
variations of some sounds were confused with others, especially the lengthening  
degrees (mudoud). 

5 Conclusions and Future Directions 

In this paper, we presented the development of a recognizer for allophonic sounds 
related to the Classical Arabic pronunciation. These sounds are extracted from Quran-
ic recitations as it is the general medium actually representing Classical Arabic. This 
recognizer is based on a well designed sound database composed of recitations of a 
part of the holy Quran recorded from ten chosen reciters. Speech signals were ma-
nually segmented and labeled on three levels, words, phonemes, allophones, with a 
good precision and accuracy. 

HTK was used to build the recognizer and several experimentations were con-
ducted to tune its performance. The results highlight the importance of the approach 
developed and show good recognition rates. However, we still think that the obtained 
recognition rates could be improved by working on different directions, such as for 
examples: 1) modeling the context between allophones by introducing triphones; 2) 
looking for a more specialized HMM architectures for allophonic sounds with the aim 
to distinguish between them; 3) limit the recognizer to the level of phonemes (their 
number is about 60) and in a post processing phase use specific characteristics of 
sounds (e.g. duration) to distinguish allophonic variations. This last trend is currently 
being developed and might be very promising as some allophonic variations of  
Quranic sounds tend to be very close from each other and seems difficult to be distin-
guished by a typical approach with HTK. 
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Abstract. Although the design of DNA tiles has been optimised for
efficient and specific self-assembly, assembly errors occur so often that
applications for molecular computation remain limited. We propose the
use of an enveloped tile consisting of a DX- base tile that carries a protec-
tor tile to suppress erroneous tile assembly. The design of the enveloped
tile promotes the dissociation of the protector tile from the base tile
through a self-triggered activation process, which keeps the outputs of
the base tile stay protected until both base tile inputs have bonded cor-
rectly to the assembly. The enveloped tile design, the self-triggered acti-
vation that removes the protector tile and preliminary modelling results
are presented.

Keywords: Enveloped Tile, Self-assembly, DNA tile, Molecular compu-
tation, Protector Tile.

1 Introduction and Motivation

DNA tile self-assembly [9] — the emergence of assemblies through physicochem-
ical interactions between basic building blocks termed DNA tiles, provides a po-
tential technology for programmable computation at the molecular scale. DNA
tiles are abstract representations of DNA molecules, e.g. DNA double crossover
(DX) molecule [11], with certain number of protruding sticky ends of single
stranded DNAs (ssDNAs). DNA tiles may be designed with combinatorial DNA
sticky ends that can bind together by canonical base pairing (A-T and G-C
binding), and thereby tiles may self-assemble. However, the DNA tile assembly
process is challenged by a high level of assembly errors.

There are three basic types of assembly errors: growth errors [10], facet nu-
cleation errors [3], and spontaneous nucleation errors [8]. The first two types
of errors both result from erroneous tile trapping. Growth errors occur when a
tile gets trapped at a vacant site of a growing assembly despite one of its sticky

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 68–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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ends failing to match correctly. Facet nucleation errors appear when an incor-
rectly attached tile at a growing surface fails to detach quickly and eventually
gets fixed. Spontaneous nucleation errors are attributed to spurious assemblies
growing without a seed.

Tile designs for error prevention and correction include: redundant tile sets
[5,10], protected tiles [4,6] and morphological encoding [2,12]. In redundant tile
sets, each tile is replaced by a kxk tile set e.g. proofreading tiles [10] and snake
proofreading tiles [5]. However, the improved error resilience requires k2 times
more tiles. Such a solution is not only disadvantaged by the increase in the
necessary resource but further designing larger tile sets with orthogonal sticky
ends imposes practical challenges.

The protected tile approach avoids such resource increases e.g. Protected and
Layered Tiles [4] and “Activatable” Tiles [6]. However, the Protected and Lay-
ered tiles are not fully protected on their outputs — only three bases in the best
case and leaving 11 bases vulnerable for spurious binding. On the other hand,
the inputs and outputs of the Activatable tiles are fully protected. However,
the approach requires the support of biological enzymes, which poses practical
limitation.

The third approach uses morphological encoding to enhance specificity of
binding i.e. correct binding between two tiles requires a match of both the bind-
ing patterns and the geometry of the involved inputs and outputs [2,12]. However,
such morphological encoding poses a further design challenge due to the need
for more than one sticky end at each of the inputs and outputs.

In this work, the Base Tile design remains similar to that of the well estab-
lished DX-tile [11]. The assembly error resilience is thus achieved through the
new Protector Tile in combination with the Base Tile termed Enveloped Tile.
In particular, the design of the Protector Tile controls the self-triggered activa-
tion process resulting in either the correct attachment of the Base Tile to the
assembly or release of it (if erroneous) and thus ensures directional growth of
the assembly.

The remainder of the article is structured as follows: background of DNA tile
self-assembly and its modelling are described in section 2. Section 3 presents
proposed Enveloped Tile, and further describes design of Base Tiles and Protec-
tor Tiles for Sierpinski Triangle assembly [10]. In Section 4, self-assembly steps
involving association of Enveloped Tile and self-triggered dissociation of Protec-
tor Tile has been discussed. Further, in section 5, error prevention performance
of Enveloped Tile assembly has been analysed by a physically realistic kinetic
model and preliminary results are documented. Section 6, concludes the article.

2 Background

In order to assemble uniquely defined structures or to perform a computation
step using DNA tile self-assembly, a certain tile set with properly designed sticky
ends is required. The tile set often consists of a seed tile, boundary tiles and rule
tiles [10]. Binding strengths of sticky ends of these tiles depend on their respective
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ssDNAs. Two such tiles may join together if their sticky ends are complementary
and of the same length. However, such binding is a reversible chemical process,
and an assembled tile is stable only if its associated total binding strength is
sufficient to prevent its dissociation under local physical conditions.

The kinetic Tile Assembly Model (kTAM) [10] provides a way for mathe-
matical modelling of the proposed tile solution. The kTAM considers each tile
self-assembly step as a reversible process governed by the tile concentration, lo-
cal reaction temperature and the length of the tile’s sticky ends. Furthermore, it
assumes that a) the tile concentration is constant for each tile type and b) only
one tile can attach/detach from the growing aggregate at a time. The model en-
ables analysis of the assembly errors and growth rate for a given tile set. Further,
the tile design itself may be optimised through parameter adjustment.

Reversible kinetics of tile assembly leading to association or dissociation from
a vacant site of the growing aggregate can be represented by equivalent forward
and reverse reaction rates, respectively. The rate of tile attachment at a bind-
ing site of an aggregate is directly proportional to the tile concentration. The
concentration of each type of tile (except the seed tile) can be given by e−Gmc ,
where Gmc is the decrease in entropy when a tile binds at a vacant site. There-
fore, the forward reaction rate (rf ) can be given by rf = kf e

−Gmc where kf is
the reaction rate constant. Similarly, the tile detachment process is controlled
by the energy required to break any single tile-aggregate bond and denoted by
Gse. The value of Gse depends on the sticky end length (s) and the temperature
(T ), where Gse ≈ (4000/T − 11)s. The tile reverse reaction rate involving b tile
bonds is given by rr,b = kf e

−bGse.
A larger value of Gmc thus implies a lower tile concentration and consequently

a slower forward reaction rate (or vice versa). Similarly, a larger value of Gse

results in a slower detachment rate. The optimum growth rate with low error
rates happens near thermodynamic equilibrium (Gmc ≈ 2Gse) [10], and may be
given by rg ≈ rf−rr,2

2 and ε ≈ e−Gse, respectively. Therefore, a relation between
optimum growth rate and minimum error rate may be given by rg ≈ βε2 where
β = 105 /M/sec. Thus, any effort to reduce the error rate (ε) by tuning physical
parameters (Gmc and Gse) would result in a quadratic reduction of the growth
rate. However, error reduction without significant fall off in assembly growth
rate has been achieved by adding redundant tiles [10,5] and by protecting tile’s
inputs and outputs [4,6].

3 Proposed Enveloped Tile Design

The Base Tile (BT) of the Enveloped Tile (ET) is designed based on the DNA
double crossover Anti-parallel molecule with Odd spacing (DAO molecule) [11]
— an accepted building block for DNA tile self-assembly. A Protector Tile (PT)
provides the unique tile design, assembling with the BT and thus protecting
the BT’s inputs and outputs whilst leaving protruding DNA toeholds for self-
triggered activation of BT.
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3.1 Enveloped Tile

The centerpiece of the proposed design is the Protector Tile — illustrated in
Figure 1(a), involving four ssDNAs (DS-1, DS-2, DS-3 and DS-4). DS-1 and DS-
2 serve as protection for the BT’s input and output sticky ends, respectively, and
are clamped together by DS-3 and DS-4. The double stranded DNA (dsDNA)
sections on both sides of the central clamp act as distal clamps, linking the
proofreading events at the input side to the strand displacement events at the
output side.

(a)

(c)

central clamp

DS-1

DS-2DS-3

DS-4

*
1te

*
1c

*
2c

*
2te

*
1ot

*
2ot

c1
c2

1te

2te

(b)

1it

2it 2ot

1ot

distal clamps

1te

2te

Fig. 1. (a) Protector Tile (PT) (b) Base Tile (BT) and (c) Enveloped Tile(ET)

Each dsDNA section (depicted by vertical dashed lines) is 10 nucleotides (nt)
long and formed by two anti-parallel ssDNAs. One side of each ssDNA is marked
by an arrowhead representing its 3’ end, the other side of it is the 5’ end. The
7 nt sticky ends of DS-1 (e∗t1, c∗1 and e∗t2, c∗2) are complementary to the 7 nt
sections (et1, c1 and et2, c2), respectively. The input sticky ends of the PT ((e∗t1,
c∗1 and e∗t2, c

∗
2) of DS-1) are also complementary to the 7 nt of the input sticky

ends of the BT — see Figure 1(c). Similarly, 7nt of the output sticky ends of the
PT ( t∗o1 and t∗2 of DS-2) are complementary to the output sticky ends of the
BT.

The central clamp in the PT keeps its complementary input and output free
ends apart. Based on the physics of stiffness and coiling of dsDNA [1], it is
assumed that the stiffness of a 10 nt dsDNA clamp will favour PT binding with
the BT when the PT and the BT are allowed to bond. Such bonding occurs prior
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to the ET being made available for the assembly process. Another important
aspect of this clamp is that it will be twisted (coiled) by one turn when the PT
is bound with the BT due to the 3’ and 5’ orientation of its input sticky ends,
shown in Figure 1(c).

The two distal clamps play an important role in the case where only one side
of the PT gets dissociated i.e. an erroneous tile, and by using this process no
erroneous tile Assembly happens. The clamps hold the dissociated input ends
close to their binding sites (emulating a locally elevated concentration of these
binding sites). This in turn prevents the inputs of the PT from engaging with its
outputs. The clamps, therefore, reinforce the reverse branch migration so that
a partially displaced PT can return to its original structure when released from
the assembly.

The Base Tile (DAO molecule) — see Figure 1(b), has 10 nt sticky ends (ti1,
ti1, to1 and to2). Ten nt was selected so as to provide sufficient strength for
PT binding whilst leaving 3 nt toeholds on the input side. The crossover points
within the BT are separated by 16 nt (3 half-turns).

3.2 Enveloped Tile Set for the Sierpinski Triangle

Figure 2 illustrates a Sierpinski tile set design using Enveloped Tiles. As shown
in (a), each Sierpinski Rule Tile (SRT-00, SRT-11, SRT-01 and SRT-10) has a
different combination of input and output sticky ends (complementary sticky
ends are marked by *). The BTs are shown in (b) and the PTs are shown in
(c). The Input and output sticky ends of the BTs and TEs are represented

by (Sjk
bi1, Sjk

bi2),(S
jk
bo1, Sjk

bo2), and (Sjk
ei1, Sjk

ei2), (Sjk
eo1, Sjk

eo2) respectively, where
jk = 00, 11, 01, 10 represents the type of Rule tile.

There are three requirements for complementary DNA sequences among these
sticky end sequences — between the BT’s inputs and outputs; between the BTs’
and PTs’ inputs and outputs and between the PTs’ inputs and outputs. Thus
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Fig. 2. Enveloped Tile Set for Sierpinski Triangle: (a) Rule Tiles, (b)Base Tiles used
for Sierpinski Enveloped Tile set (c) Corresponding Protector Tiles



Reliable Self-assembly by Self-triggered Activation of Enveloped DNA Tiles 73

Table 1. BTs Sticky Ends

Name DNA sequence

S00
bi1 5’-TCCTAGGACT-3’

S00
bi2 3’-CTGTGTCAGG-5’

S00
bo1 3’-AGGTACCTGA-5’

S00
bo2 5’-GACCAAGTCC-3’

S11
bi1 5’-CGTTAGGACT-3’

S11
bi2 3’-GTTTGTCAGG-5’

S11
bo1 3’-AGGTACCTGA-5’

S11
bo2 5’-GACCAAGTCC-3’

S01
bi1 5’-CGTTAGGACT-3’

S01
bi2 3’-CTGGTTCAGG-5’

S01
bo1 3’-GCAATCCTGA-5’

S01
bo2 5’-CAGACAGTCC-3’

S10
bi1 5’-TCCTAGGACT-3’

S10
bi2 3’-GTCTGTCAGG-5’

S10
bo1 3’-GCAATCCTGA-5’

S10
bo2 5’-CAGACAGTCC-3’

Table 2. PTs Sticky Ends

Name DNA sequence

S00
ei1 3’-ACAGTCC-5’

S00
ei2 5’-ATCCTGA-3’

S00
eo1 5’-TCCATGGACTGT-3’

S00
eo2 3’-CTGGTTCAGGAT-5’

S11
ei1 3’-ATCCTGA-5’

S11
ei2 5’-ACAGTCC-3’

S11
eo1 5’-TCCATGGACTGT-3’

S11
eo2 3’-CTGGTTCAGGAT-5’

S01
ei1 3’-ATCCTGA-5’

S01
ei2 5’-CAAGTCC-3’

S01
eo1 5’-CGTTAGGACTTG-3’

S01
eo2 3’-GTCTGTCAGGAT-5’

S10
ei1 3’-ATCCTGA-5’

S10
ei2 5’-CAAGTCC-3’

S10
eo1 5’-CGTTAGGACTTG-3’

S10
eo2 3’-GTCTGTCAGGAT-5’

the input and output sequences of the PTs are constrained to have a certain
sequence of common bases c1, c2, shown in Figure 1(a).

The design of the length of the sticky ends of the PT has to take into account
a number of factors. These ends must both be able to protect the rule tile’s
outputs and upon disengaging from the input sides to bond with their input
protector counterparts. Therefore, the overhangs have been designed such that
the protective helix on the rule tile outputs measures 9 base pairs. Together with
the toeholds, the same strands are able to form 7 nt bonds internally so as to
let the PT dissociate from BT. The DNA sequences c1 and c2 are common for
all the PTs needed for a Sierpinski tile set. Furthermore, the DNA sequences
(c1+et1, c2+et2) are 7 nt long, therefore adding 3 bases for protruding toeholds
on the output side of ETs.

The DNA Design MATLAB scripts [11], were applied to optimise the DNA
sequences for BTs and corresponding PTs for the Sierpinski tile set shown in
tables 1 and 2. Due to space constraints, only the sticky end sequences of the
BTs and PTs are given.

4 Self-assembly Guided by Enveloped Tiles

As illustrated in Figure 3, when a tile approaches a vacant site (I) on the tile
assembly, proofreading of the inputs of its BT occurs. Such proofreading results
in either a match or no match, between the incoming tile and the vacant site.
In case of a match, there are 2 potential cases: case 1 — both inputs match
correctly (left half of Figure 3) or case 2 — only one input matches correctly
(right half of Figure 3).
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Enveloped Tile
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Fig. 3. self-assembly step states: (left) both inputs match, (right) only one input
matches

In case 1, the first state – proofreading of the inputs, C(I) consists of toehold
binding followed by branch migration of 7 nt of the inputs of the PT, C(II),
that were bound with a Rule Tile’s sticky ends. A stable binding of the Rule
Tile to the assembly has thus occurred. At this stage the Rule Tile no longer
needs to be protected by the PT. As the PT is released from its input side it will
result in uncoiling of the clamp, C(III), which primes a configuration in which
the left part of the PT is free to swivel back towards its outputs where it is still
protecting the output sticky ends of the BT. The released inputs start ‘sniffing’
the protruding toeholds at the outputs of the PT, C(IV). The resulting toehold
binding, followed by a further branch migration, C(V), of the respective 4 nt
will create a single thermodynamic component to disengage the PT and expose
the BT’s output sticky ends, C(VI). The next incoming, matching Rule Tile,
provides additional thermodynamic impetus to further support migration of the
PT away from the growing assembly.

The first stage of Case 2 is as in Case 1, except that only one of the toeholds
binds, E(I), and initiates branch migration at that input. All other sticky ends of
the BT will remain protected, E(II). As this will only occur on one of the input
sides all other sticky ends of the non-matching tile will remain protected by the
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PT and thus remain unbound to the assembly. Although the branch migration of
E(II), may or may not proceed to completion, the otherwise fully protected tile
will eventually disengage from the lattice due to the inherently unstable nature
of binding through a single input, E(III). The uniqueness of this approach lies
in the strategy applied to protect BT’s output. The protection comes not just in
the form of the binding the outputs but further the distal clamps design protects
the outputs from unbinding unless the tile is a correct tile.

5 Performance Analysis

Figure 4 illustrates a continuous time Markov state model of the enveloped tile
assembly process. The sequences of states (MSc0,MSc1,MSc2,MSc3,MSc4) and
(MSe0,MSe1,MSe2) represent the assembly process of a correct tile and erroneous
tile, respectively. These states are equivalent to the assembly steps (C(I), C(II),

C(IV ), C(V ), C(V I)) and (E(I), E(II), E(III)), respectively, as shown in Figure 3.
The states TC and TE represent the final states of the corresponding Markov
chains where either a correct or an erroneous tile gets trapped.

The state transition (V S → MSc0) represents binding between two 3 nt long
DNA toeholds of a correctly matching ET with a vacant site. This has been
modelled as a reversible process having forward kinetic rate (rfi = kfh e

−Gmc)

and reverse kinetic rate (rr,tti2 = kfh e
− 2×3

10 Gse) where kfh = 4 × 106/M/s2 [9]
is a kinetic rate constant for DNA hybridisation. In the case of ET having sin-
gle toehold matching with a vacant site, the state transition (V S → MSe0), two
such tiles can engage with the vacant site simultaneously. Thus giving an equiv-
alent forward and reverse rate of 2rfi = 2kfh e

−Gmc and rr,tti1 = kfh e
− 3

10Gse,
respectively.

The next step involves branch migration of the PT’s inputs, where the PT dis-
engages from the BT’s input side (MSc0 →MSc1). In the case of single toehold
matching, branch migration may still start at this input of PT but it is not ther-
modynamically favourable due to the stiffness of the distal clamps reinforcing
the PT’s return to its bind state (MSe0 →MSe1). The aforementioned branch
migration step has been modelled as a reversible process [7] where a ‘breaking-
forming’ base pairing process ideally has no preferred direction. The time re-
quired is ≈ 10μS/ base-pair, which gives an equivalent kinetic rate kbmi ≈ 103/s
in both directions. However, to include a bias in the branch migration processes
involving correct and erroneous tiles, two additional dimensionless parameters
Edc and Ede (Edc =

Ede

10 ) have been introduced. The new reverse kinetic rates
(not shown in Figure 4) are kbmie

−Edc and kbmie
Ede , reflecting a correct tile

and erroneous tile, respectively. Therefore, a larger value of Edc would facilitate
release of PT from its input side when a correct ET binds however in the case of
erroneous ET binding it would resist the release of PT resulting in better error
prevention. For simulation purposes, Edc = 10 is chosen.

The next step in the addition of a correct tile (MSc1 →MSc2) represents the
binding between the toeholds on the output sides of a PT and its own input sticky
ends that have just been released. As described above, following the release of
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Fig. 4. Kinetic flow graph of Enveloped Tile assembly

the inputs and prior to engaging with its own output strands, the PT undergoes
a conformational change by swivelling around its central clamp. It seems likely
to assume that this happens instantaneously because the dimensions of a PT
are in the range of 10 nm. Therefore, this step has been modelled as a reversible
process of DNA hybridisation having a forward rate (rfo = kfh e

−Gmc) and a

reverse rate (rr,tto2 = kfh e
− 2×3

10 Gse).
The following step (MSc2 →MSc3) represents the branch migration of com-

plementary sections following toeholds on the output ends of the PT. This has
been modelled as an unbiased reversible process with kinetic rates of Kbmo =
103/s. Finally, the PT dissociates from its BT (MSc3 → MSc4), modelled
as having a unidirectional kinetic rate of dissociation ket

kfh
rr,bpc where rr,bpc =

kfhe
−bpcGse and bpc = 1. The bpc represents the total strength with which a PT

remains still attached with the BT after its input ends and output ends bind
together. The ket represents the effective kinetic rate of localisation of the PT
within a BT, which together occupy a volume of 103 nm3 and therefore, gives an
‘effective concentration’ Ct =

1
103 nm3 M. Therefore ket = kfhCt ≈ 6× 104. The

PT dissociation step in the case of an erroneous tile (MSe1 →MSe2) has param-
eters similar to a correct tile except that rr,bpe = kfhe

−bpeGse and bpe = 27/10,
which would lead to very slow rates of dissociation under given experimental con-
ditions. The kinetic rate rg of the final steps (MSc4 → TC and MSe2 → TE)
represents equivalent kinetic rate of tile trapping.

If pi(t) denotes the probability of the aggregate-tile complex being in state(i)
at a time t then the self-assembly kinetic rate flow graph of Figure 4 can be
written in the form of a Matrix differential equation ˙p(t) = Mp(t) where p(t)
is a 11× 1 matrix having pi(t) (i represents corresponding Markov state) as its
elements and
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The above matrix differential equation has standard solution as p(t) = eMtp(0)

where p(0)=
[
1 0 0 0 0 0 0 0 0 0 0

]T
, and another observation that every tile would

get fixed either correctly or erroneously if self-assembly is allowed to continue

for longer time, gives ṗ(∞) =
[
1 0 0 0 0 0 0 0 0 pTE(∞) pTC(∞)

]T
. The terms

pTC(∞) and pTE(∞) refer to the states TC and TE, respectively, when (t→∞).

The growth rate (rg) can be given by the net transition rate from V S to MSc4

of the Markov chain shown in Figure 4.

rg =
1

1/(rfi−rr,ti2)+2/(kbmi)+1/(kdc−ket)+1/(rrfo−rr,to2)
− rr,2

4

The error rate vs. growth rate for the enveloped tile assembly has been calcu-
lated applying above derivations. Figure 5 provides an analysis of the error rate
vs. growth rate for the enveloped tile, the original tile set and the 2x2 proof-
reading tile set (data from [10]). The original tile and 2x2 tile are represented
by two curves corresponding to Gse = 6.5, 8.5 and Gse = 6.5, 7.5, respectively.
The Gmc for these plots vary according to the relation (Gmc= 2 Gse - ε) while
keeping Gse constant. For the enveloped tile simulations, two curves represent
Gse = 7.5 and Gse = 8.5, respectively.

The optimum performance (error rate vs. growth rate) of each tile type is

achieved along their respective slope d[log(error rate)
d(log(growth rate) lines. Further, these slopes

may be used to derive relations between growth rate (rg) and error rate(ε). For
enveloped tile, this relation is rg ≈ βetε

0.7 where βet ≈ 8.25 × 104/M/sec.
Error rate and growth rate relations for original tile, 2x2 tile, and Layered
and Protected tiles of [4] are: Original Tile: rg ≈ βoriginalε

2 (βoriginal ≈ 1 ×
104/M/sec); 2x2 Tile: rg ≈ β2x2tileε

1.4 (β2x2tile ≈ 1 × 104/M/sec); Protected
Tile: rg ≈ βPTMε1.4 (βPTM ≈ 4.4 × 102/M/sec); Layered Tile: rg ≈ βLTMε0.7

(βLayeredTile ≈ 3.6 × 102/M/sec). Thus, the enveloped tile are more robust
against errors than the original tile and 2x2 tiles whilst comparable to the
Layered Tile.
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6 Conclusion and Future Work

A new Enveloped Tile approach for reliable tile assembly has been presented,
together with an analysis of the involved association and dissociation processes
necessary for correct tile assembly. The design of a complete Enveloped Tile
set for the Siepinski Triangle assembly was presented, as an example of an ap-
plication of the new approach. Error resilience of the enveloped tile assembly
has been analysed using a physically realistic kinetic trapping model. Error rate
vs. growth rate assessment revealed that the enveloped tile’s error prevention
capability is equivalent to (if not better than) the best case of the Layered tile.

It is anticipated that the fully protected output of Enveloped Tiles may in ad-
dition provide better prevention of other errors, i.e. facet nucleation and sponta-
neous nucleation errors, which warrants thorough analysis in further work. Other
features that remain to be investigated include the impact of coiling, stiffness
and swivelling of the central clamp of the PT in order to achieve a more accurate
modelling of enveloped tile-mediated self-assembly.

The self-triggered activation principle aimed to guide an error-free tile assem-
bly process may provide a general approach to designing molecular systems for
DNA computing, synthetic biology and nanotechnology, where different compo-
nents are often required to co-exist in order to allow conditional interactions and
therefore be able to interact also illegitimately.
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Abstract. This paper presents a new approach in machine learning, es-
pecially, in supervised classification and reasoning under uncertainty. For
many classification problems, uncertainty is often inherent in modeling
applications and should be treated carefully and not rejected in order
to make better decisions. Artificial Immune Recognition System (AIRS)
is a well known classifier that has provided good results in the certain
context. However, this method is not able to cope with uncertainty. In
order to overcome this limitation, we propose a new classification ap-
proach combining the AIRS and possibility theory. The new approach
is allowing to deal with uncertain attribute values of training instances.
The uncertainty is expressed via possibility distributions. Experimenta-
tions on real data sets from the U.C.I machine learning repository show
good performances of the proposed approach.

Keywords: Artificial immune recognition system, Possibility theory,
Classification under uncertainty.

1 Introduction

Classification techniques are among the well known machine learning methods.
They work under a supervised mode where data are labeled with pre-defined
classes and new unlabeled data will be classified into these a priori known classes.
The artificial immune recognition system (AIRS) has shown to be a good com-
petitor when compared to well established classifiers [13]. AIRS is an immune-
inspired supervised learning technique based on clonal selection theory of natural
immune systems. It has proven its performance in several areas such as medical
diagnosis problems [15, 18, 19], software fault prediction problems [2], intrusion
detection problems [19], etc.

Despite the AIRS works very well in an environment characterized by certain
and precise data, it does not deal with uncertain data. In fact, uncertainty in
data sometimes exists due to noise, residual variation, unreliable sensors, etc.
Handling uncertain data using uncertainty theories has attracted a lot of atten-
tion. The uncertainty can affect the class labels as well as the attributes values
of training objects [1, 7]. Ignoring this uncertainty can influence the results and
makes it in some cases, inaccurate. However, dealing with this kind of imperfec-
tion can be of great importance and give us information that can help in better

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 80–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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decision making. So, dealing with datasets containing uncertain attribute values
is very important due to the fact that this kind of datasets is inevitable in real
world data mining applications. Historically, the probabilistic method is consid-
ered to be the first framework handling all kinds of imperfection. However, this
theory is not an appropriate tool when facing to the case of total ignorance. That
is why many other uncertain tools have appeared to overcome this limitation.
Among the panoply of theories, possibility theory is an uncertainty theory of-
fering a flexible tool for modeling imperfect information, it has been successefly
combined with classification techniques such that the possibilistic decision tree,
where authors in [1] handle uncertain attributes values in the training set also in
[11] they deal with uncertainty in class values and the naive possibilistic network
classifier [7] which deals with imprecise data, etc.

Thus, the aim of this work is to develop a new version of AIRS in an un-
certain environment. We combine possibility theory and the artificial immune
recognition system classifier to deal with uncertain attribute values. The pro-
posed approach is called the possibilistic AIRS (PAIRS).

This paper is organized as follows. Section 2 describes some basics of the arti-
ficial immune recognition system and presents an overview of the research done
on AIRS under uncertainty. Section 3 gives necessary background on possibility
theory. Then, in Section 4, we detail our approach. Section 5, presents and an-
alyzes experimental results carried out on modified versions of commonly used
data sets from the U.C.I repository [14]. Finally, Section 6 concludes the paper.

2 The Artificial Immune Recognition System

Artificial Immune Recognition System (AIRS) is a resource limited supervised
learning algorithm inspired by immune metaphors [22]. It is composed of four
focal steps which are (1) initialization, (2) memory cell identification and ARB
generation, (3) competition for resources and a development of a candidate mem-
ory cell and lastly (4) memory cell introduction. In this paper, we will focus on
the second version of AIRS. The second version AIRS2 has been proposed as
a revision of the first one [21]. AIRS2 offers simplicity of implementation, more
data reduction and minimizes the processing time. In other words, AIR2 has
lower complexity, higher data reduction and it has shown high accuracy results.

2.1 AIRS2 Algorithm

In this section, we briefly present the AIRS2 algorithm. We start by the first pro-
cedure which represents the learning procedure then we move to the classification
procedure which uses the k nearest neighbor approach.

The Learning Procedure: This procedure represents the main step in the
AIRS algorithm. It aims to produce a reduced data set (memory cell pool MC)
on which a k-nearest neighbor classifier (in the classification step) will be based to
predict the class label of an unseen instance given values of its attributes. Input
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of the learning step is the training set T where each instance of the training data
is considered as an antigen which follows the same representation as an antibody
[22].

1. Initialization Step: This stage is considered as the pre-processing stage.
All continuous attributes in the training set are normalized to ensure that
the Euclidean distance (Edist) between two data points lies in the interval
[0,1]. The normalized Euclidean Distance serves also as the affinity measure
between two cells.

affinity(x, y) = Edist(x, y) =

√√√√ m∑
i=1

(xi − yi)2 (1)

Where x and y are the two attribute vectors representing two instances (cells)
and m represents the number of attributes in the training set.

After the normalization of continuous attributes, the affinity threshold
which represents the mean affinity between all antigens in the training set
should be calculated according to the following equation:

affinity_threshold =

∑n
i=1

∑n
j=i+1 affinity(agi, agj)

n∗(n−1)
2

(2)

Where n is the number of antigens in the training data. agi and agj are the
ith and jth training antigens, and affinity (agi, agj) returns the Euclidean
distance (or any other adequate distance) between the two antigens’ attribute
vectors. The value of affinity_threshold will be used in next stages.

The final step is the initialization of the memory cell pool (MC). This
is done by randomly choosing 0 or more antigens from the set of training
instances to be added to the set of memory cells.

2. Memory Cell Identification and ARBs Generation:
The AIRS algorithm is a single-shot algorithm that is, only one antigen goes
through the training process at a time [23]. In this stage, the algorithm
begins to iterate for each training antigen.
– Clonal Expansion: For each element mc of MC, determine its

affinity to the antigenic pattern ag, which has the same class
(MCag.c)(Stim(ag,mc) = 1− affinity(ag,mc)). The memory cell (mc)
with the highest stimulation is then selected as the best match memory
cell (mc_match) that will be used in the affinity maturation process. If
there is no mc in the memory cell pool having the same class as the
training antigen, then this antigen will be added to the set of memory
cells.

– Affinity Maturation: The selected memory cell (mc_match) as well as a
number of mutated clones of this latter are created according to mutation
process and added to the ARB pool AB which contains the mutated
clones of mc_match. The number of clones is computed by:
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(mc_match.Num_Clones =

ClonalRate ∗HyperClonalRate ∗ Stim(ag,mc_match))

where stim is the calculated stimulation value and ClonalRate and
HyperClonalRate are user-defined parameters.

The mutation process is done randomly. A random value, between
0 and 1, will be generated for each feature value. If this value is lower
than the MutationRate (a pre-defined parameter) then mutation will
take place. Only the attribute values are allowed to be mutated.

3. Competition for Resources and Development of a Candidate Mem-
ory Cell Step: At this level, the ARB pool (AB) contains mc_match and
mutated clones of mc_match. The purpose of this stage is to develop a candi-
date memory cell (mc_candidate) which better recognizes the actual antigen
ag. This is ensured by the following steps:
– Each ARB in the population AB is presented with the antigen ag

to determine the ARB’s stimulation level. This stimulation is then
normalized.

– Each ARB in AB is allocated a finite number of resources using the
following formula:

(ARB.resources = ClonalRate ∗ Stim_normalized(ag,ARB))

– When the total number of resources allocated to all the ARBs exceeds
the allowed limit (a user defined-parameter), the surplus resources are
removed from the weakest ARBs until the number of resources is equal
to the allowed number of resources. Then ARBs left with zero resources
will be removed from the system. Once resources are allocated to the
different ARBs, we proceed to test if the stopping criterion is met.
That is we must test if the average stimulation value for all the exist-
ing ARBs with the antigen exceeds a user predefined parameter namely
stimulation_threshold. The stopping criterion is met when the average
stimulation value for all ARBs exceeds Stimulation_threshold.

If the average stimulation value is lower than the stimulation_
threshold, the ARBs will be mutated and the new mutated clones will
be added to the ARB pool. Survived ARBs produce new ARBs through
clonal expansion and mutation until average stimulation of all classes ex-
ceed the stimulation_threshold. Here the number of clones is computed
by:(ARB.Num_Clones = Stim(ag,ARB) ∗ ClonalRate)

– Mc_candidate Identification:
After the total stimulation value of ARBs reaches stimulation threshold, the
best ARB is taken as a candidate memory cell (mc_candidate). Here best
means having the highest stimulation.

4. Memory Cell Introduction Step: This step consists in updating the MC
pool. That is, the selected mc_candidate will be added to the MC pool and
will become a long-lived memory cell if its affinity for the training antigen
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is greater than the affinity of the original memory cell (mc_match). Fur-
thermore, if the affinity between the mc_candidate and the mc_match is
less than the product of Affinity_threshold and Affinity_threshold_scalar
(where Affinity_threshold is the affinity threshold calculated in the initializa-
tion stage and Affinity_threshold_scalar is a user defined parameter) than
the original memory cell mc_match will be removed from the memory cell
pool MC.

The ARB pool is cleared after each new antigenic presentation.
The algorithm continues until all the training antigens have been pre-

sented and trained.

Classification Procedure: When the training process is completed, the mem-
ory cell pool (MC) becomes the core of the AIRS classifier. The classification is
performed using the k-nearest neighbors (K-nn) approach, the classification of a
test data is accomplished by majority vote of the k nearest memory cells to the
presented test antigen to be classified.

2.2 Background Research on AIRS Under Uncertainty

Many researches have been conducted to improve the accuracy of AIRS and to
identify the significant components of AIRS that could empower it for better
performance. Some of these researches have been done to adapt AIRS, in an en-
vironnement characterized by uncertainty. In classical AIRS, resource allocation
is done linearly with affinities. This linearity requires excess resource usage in
the system, which results in long classification time and high number of mem-
ory cells. That is why authors in [15] proposed to replace the linear resource
allocation by fuzzy resource allocation in order to increase its classification per-
formance in terms of classification time and number of memory cells. The effect
of the fuzzy resource allocation method on the accuracy of AIRS was evaluated
by Golzari et al. [5] from a statistical point of view. They found that the fuzzy
allocation increases the accuracy of AIRS in majority of data sets. However, the
increase is significant in minority of data set.

The same authors incorporated an adapted real world tournament selection
method into the resource competition phase of AIRS [6]. Also, Polat and his
coauthor in [16] proposed before the application of AIRS, a fuzzy weighted pre-
processing procedure based on sample means of each feature values. Two mem-
bership functions are defined known as input and output membership functions
which are allowed to assign a new feature value for each feature according to
its old value. In [17], authors proposed a new weighting preprocessing procedure
based on the k nearest neighbor where each attribute value is replaced by the
mean of the k-nearest attribute values to the initial attribute among all sample
data which improve the classification results.

Most recently in [3], a fuzzy k nearest neighbor was combined with AIRS2
in order to identify the diabetes diseases. The use of fuzzy K-NN increased the
accuracy of the classifier. In [19], a rought set theory was coupled with AIRS.
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This combination was applied to reduce false alarm rate in the intrusion detection
problem.

The existing works and available approaches of AIRS have not explicitly dealt
with the uncertainty of the input data. They deal with training data sets con-
taining only certain information. However, data in many real-world applications
may be uncertain.

3 Possibility Theory: An Overview

Possibility theory is a simple mathematical tool offering a natural and simple
model to deal with incomplete information. It is introduced at first by Zadeh
[24] and developed later by several researchers mainly Dubois and Prade [4]. In
this section, we will give a brief recalling on possibility theory.

3.1 Possibility Distribution

Given a universe of discourse Ω = {ω1, ω2, .., ωn}, a possibility distribution is
considered as one of the fundamental concepts of possibility theory. It is denoted
by π and it assigns to each element ωi of the universe of discourse Ω a value
from a bounded linearly ordered scale L. This value is called possibility degree: it
encodes our knowledge on the real world. The possibilistic scale L can be defined
by [0,1] in the numerical scale where values of the possibility distribution make
sense.

By covention π(ωi) = 0 means that ωi is cannot be the real world, π(ωi) = 1
means that it is fully possible that ωi is the real world. Moreover, a possibility
distribution is said to be normalized if there exists at least one state ωi which
is totally possible (max π(ωi) = 1). In this paper, we only deal with normalized
possibility distributions.

Given a possibility distribution π, extreme cases of knowledge can be defined
as the complete knowledge (∃ω0, π(ω0) = 1 and π(ω) = 0∀ω = ω0 ) and the total
ignorance (∀ω ∈ Ω, π(ω) = 1).

3.2 Similarity and Dissimilarity Measures in Possibility Theory

The choice of the similarity measure is dependent on the representation of ob-
jects (single value, vector of individual values, sets of values, sets of vectors,
etc.) in addition to the domain value of that objects (real values, symbolic val-
ues, strings, etc.). In possibility theory, possibilistic similaity measures aim at
computing the similarity (or dissimilarity) degree between two possibility distri-
butions. Possibilistic similarity measures are charaterized by several properties
[12]. Three well-known similarity measures are the most utilized namely the in-
formation closeness [8] (G(π1, π2) = g(π1, π1 ∪π2)+ g(π2, π1 ∪π2) where g is the
difference between the uncertainty of two possibility distributions) 1, Sanguesa
1 g(πi, πj)= |U(πj) − U(πi)|. ∪ is taken as the maximum operator and U(π) =∑n

i=1[(π(ω(i))− π(ω(i+1)))log2i] + (1− π(1))log2n corresponds to the non specificity
measure where π(ω(n+1))= 0 and n = |Ω|.



86 R. Hentech, I. Jenhani, and Z. Elouedi

et al. distance [20] (distance (π1, π2) = U(|π1−π2|)) and the information affinity
[9, 10, 12] (Aff(π1, π2) = 1− [D(π1, π2) + Inc(π1, π2)/2])2.

4 The Possibilistic AIRS Method

As mentioned previously, AIRS2 is considered as one of the most powerful tech-
niques of machine learning due to its efficiency in the classification area. It is
widely applied to a variety of problems in artificial intelligence. AIRS2 has shown
high accuracy when we deal with training sets characterized by certain training
objects where their attributes values are supposed to be known with certainty.

Uncertainty in data always exists owing to intentionally errors and lack of in-
formation. Handling data sets containing uncertain attribute values has a great
importance due to its existence in several data mining fields. Ignoring this uncer-
tainty could have a negative impact on the result and makes it in same situations
erroneous.

From these issues, we develop a possibilistic AIRS method, a new classification
technique based on the AIRS method within the possibility theory for handling
uncertain attribute values. Our proposed approach aims at learning objects with
either certain or uncertain attribute values. In our proposed possibilistic method,
we only deal with objects described by categorical attributes.

4.1 Notations

We define the notations that will be used in our work:

– T is the set of n objects such that T=(X1, X2, ..., Xn).
– Xi = (xi1, xi2, ..., xim) is the object described by m categorical attributes.
– Aj = (aj1, aj2, ..., ajt) is the set of t values of the attribute j with 1≤j≤m.
– πij is the possibility distribution defined for the attribute Aj related to the

object Xi.

We will use also the notations provided in Section 2 and Section 3.

4.2 The Possibilistic AIRS Algorithm

To work under uncertain framework using possibility theory, our method requires
the definition of new parameters based on the new structure of the training set,
the computation of the possibilistic similarity measure between an antigen and
an antibody and the mutation process.

The Structure of the Training Set: In our possibilistic AIRS, we will deal
with training antigens whose attributes are described by a possibility distribution.
More formally, a possibility degree will be assigned to each possible attribute

2 D(π1, π2)= 1
n

*
∑n

i=1 |π1(ωi) − π2(ωi)| ; ∀ωi ∈ Ω={ω1, ω2, .., ωn} and n=|Ω|.
Inc(π1,π2)= 1-maxω (π1(ω) ∩ π2(ω)) with ∩ is chosen as the minimum operator.
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value. These possibility degrees generally given by an expert (or a sensor), rep-
resent the opinions of this expert about the real values of the attributes for each
object in the training set.

In fact, the new structure of the training set represents also special cases of
total ignorance and complete knowledge [4].

The Possibilistic Similarity Measure: We need to use a possibilistic simi-
larity measure suitable to the possibilistic AIRS method in order to handle un-
certain attribute values. The similarity measure can influence the classification
result. That is why choosing the appropriate measure which computes efficiently
the similarity between two uncertain tuples, is fundamental. The selection of
such similarity measure is based on its capacity to satisfy some properties which
are mentionned in [12]. The information affinity satisfies all basic properties, it
is expected to give the most accurate results, for these reasons we find it as
the most adequate to our possibilistic AIRS approach which represents both the
stimulation and the affinity between an antigen and an antibody. To determine
the similarity degree between an antigen ag1 and an antibody ab, we have to
define the affinity using this formula:

affinity(ag1, ab) =

∑m
j=1 Aff(π1j , π2j)

m
(3)

where m corresponds to the number of attributes, π1j the possibility distribution
of the attribute j of ag1 and π2j the possibility distribution of the attribute j of
ab. The less the value Aff is, the more the information are dissimilar.

The Mutation Process: The new mutated clones have an impact on the choice
of the mc_candidate and consequently on the final result of the AIRS algorithm
(in certain or uncertain environment). In order to obtain a good result, we focus
on the good generation of new clones.

In our mutation algorithm, we will use the notion of wrapper possibility dis-
tribution which is defined in [12] as follows:

Wrapper possibility distributions are binary possibility distributions (i.e., ∀ω ∈
Ω , π(ω) ∈ {0, 1}) representing special cases of complete knowledge, partial
ignorance and total ignorance representing the set of reference distributions.

Given the training set T containing n instances and given the set of attributes,
let us denote by πij the possibility distribution that defines the attribute Aj of
the instance Xi in T and t represents the number of values of the attribute Aj .
We define a degree of imprecision dimp ∈ {1, ..., t} which will allow us to
determine the set of WD to be used.

Here, we suppose that we are dealing with an attribute with t=3. The set of
wrapper distributions relative to this attribute is defined as follows:

✦ If dimp = 1 (First-Level Wrapper Distributions), we will only consider wrapper
possibility distribution corresponding to complete knowledge, i.e., WD = [1, 0,
0], [0, 1, 0], [0, 0, 1].
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✦ If dimp = 2 (Second-Level Wrapper Distributions), we will also consider partial
ignorance, i.e., WD = [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1].
✦ If dimp = 3 (Third-Level Wrapper Distributions), we will also consider total
ignorance, i.e., WD = [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1,
1, 1].

After specifying the set of WD, relative to this attribute, we will assign the
most similar wrapper distribution WDk such that

k = argmaxna
k=1{Aff(πij ,WDk)}

to this attribute, where na is the total number of wrapper distributions and
Aff corresponds to the information affinity. During this phase, new clones
will be generated by the mutation process. This process ensures the diversifica-
tion of the population. Therefore, generating new ARB may help to obtain the
mc_candidate which is more similar to the antigen than mc_match. Our aim
is to increase the affinity between the antigen and the clones of mc_match. In
order to adapt this process to our possibilistic framework, the wrapper distribu-
tion is defined by fixing the most stimulated wrapper to reach. This mechanism
allows us to obtain good clones which affect the final results.

The mutation process is reported as follows: first, we calculate for each πij of
the training antigen the affinity with the wrapper distributions. Then, the most
similar wrapper distribution will be selected and denoted by WDrep. After that,
we mutate πij of the mc_match, and then new distribution of this feature will
be generated.

The similarity between the new distribution and the wrapper distributions is
computed. The most similar wrapper possibility WDpd will be chosen. If the two
selected wrapper distributions are equal, then we move to the next feature and
perform the same process. Otherwise, we repeat the mutation process until the
stopping criterion is met.

5 Experimental Results

5.1 The Framework

We have performed several tests and simulations on possibilistic versions of real
datasets obtained from the U.C.I. repository [14]. We have used seven data sets
namely Hayes-roth (H), Congression voting records (V), Balance-scale (B), Tic-
Tac-Toe Endgramme (T), Solar-Flar (S), Car Evaluation (C) and Nursery (N).

5.2 Artificial Uncertainty Creation in the Training Set

Possibility degrees are created artificially. The pre-treatment procedure of the
UCI databases is described as follows:
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Algorithm 1. Possibilistic AIRS Mutation Algorithm
Data: ab, ag, Mutation_Rate, mc_match.Num_Clones , m, num_itr
Result: AB

1 begin
/* Initialization */

2 mutate(ab) ← false ;
3 AB ← ∅ ;
4 for j= 1 to mc_match.Num_Clones do
5 for i= 1 to m do

/* ab.f(i) represents the attribute i of the antibody ab
*/

6 ab.f(i).change ← drandom;
7 if drandom ≺ mutation_Rate then
8 max ← 0;
9 count ← 0;

10 rep ← 0;
11 pd ← 0;
12 repeat
13 for k= 1 to t do

/* attribute random values to each possibility
degree of the feature i */

14 ab.f(i).πji (k) ← drandom1;
15 if max ≺ ab.f(i).πji (k) then
16 max ← ab.f(i).πji (k);

17 for k= 1 to t do
18 ab.f(i).πji (k) ← (ab.f(i).πji (k))/max;

/* Select the WDl having the highest affinity with
ag.f(i) */

19 rep= arg maxna
l=1 Aff (ag.f(i).πji, WDl);

20 pd= arg maxna
l=1 Aff (ab.f(i).πji, WDl);

21 if WDrep= WDpd then
22 mutate(ab) ← true ;

23 count ← count + 1 ;
24 until ((WDrep= WDpd) or (count > num_itr));

25 AB.add(ab);
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– In the case of certain attribute values, a possibility degree 1 is assigned to
the true attribute value ajt. However, we assign a possibility degree 0 to the
remaining attribute values (<> ajt).

– In the case of uncertain attribute values, the true attribute value ajt takes
the possibility degree 1. Then, we allow random possibility degrees from [0,
1] to the remaining attribute values (<> ajt ).

5.3 Evaluation Criteria

The evaluation of our possibilistic AIRS classifier was performed based mainly
on three evaluation criteria, namely, the classification accuracy, expressed by the
percentage of correct classification (PCC), the running time (t) for training phase
and the percentage of data reduction (reduct) which provides the percentage
of reduced data among the total number of training instances (a summarized
version of the original data set that can be used for the classification step).

In our simulations, in order to obtain an unbiased estimation of the PCC, we
have used a certain number of tests and after that we will calculate the final
PCC as the average of all obtained ones. This strategy is called cross validation.

Results for the Certain Case: In the following, we compare the PCC, the
execution time and the percentage of data reduction criteria of AIRS with
PAIRS based on the different similarity measures (the information affinity
(PAIRSAff ), the information closeness (PAIRSinfoclos) and Sanguesa et al.
distance (PAIRSsang)).

Table 1. The PCC (%) of the AIRS2 vs PAIRS with k=1

Databases H V B T S C N
AIRS 66.2 92 75.64 51.3 80.11 66.8 57.9

PAIRSAff 79.1 79.2 78.71 63.9 81.3 74.8 62.4
PAIRSinfoclos 76 70.3 76.02 57.8 80.71 69.2 59.1
PAIRSsang 78.2 76.1 76.5 60 83.1 70.9 60.2

Table 2. The PCC (%) of the AIRS2 vs PAIRS with k=5

Databases H V B T S C N
AIRS 62.8 93.3 72.45 56.7 74.34 70.2 62.2

PAIRSAff 76.7 82.3 76.12 59.9 83.7 79.6 70.1
PAIRSinfoclos 71.5 77.6 74.15 57.7 76.45 71.1 62.9
PAIRSsang 74.2 81.2 75.97 57.9 79.23 76.8 66.9

Looking at Table 1 and Table 2, generally, the PAIRS outperforms AIRS. For
example for the dataset S with k=5, the PCC reaches 74.34% with AIRS however
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it reaches respectively 83.7% with PAIRSaff , 76.45% with PAIRSinfoclos and
79.23% with PAIRSsang. Only for the database V, AIRS gives a better accuracy
than our possibilistic approach. For example for k=5, the PCC of the dataset V
reaches 93.3% with AIRS however it reaches 82.3% with the PAIRSAff , 77.6%
with the PAIRSinfoclos, 81.2% with the PAIRSsang. We can note that, for this
database, the simple matching measure leads to obtain better results.

For both k=1 and k=5, the PAIRSAff gives better results in term of PCC.

Table 3. The running time (seconds) and the percentage of data reduction of the
AIRS2 vs PAIRS

Databases H V B T S C N
AIRS

t (s) 0.752 27.45 38.22 44.17 98.45 173.4 5125
Reduct (%) 42.21 50.08 55.06 5.11 40.6 35.76 78.22

PAIRSAff

t (s) 0.835 39.77 32.55 51.20 125.17 163.5 5314
Reduct (%) 44.5 49.89 58.4 7.34 42.87 40.38 81.95

PAIRSinfoclos

t (s) 0.849 44.674 37.14 60.45 136.72 171.9 5341.5
Reduct (%) 37.43 43.71 49.5 4.69 35.3 31.82 72.55

PAIRSsang

t (s) 0.841 40.84 35.75 54.70 132.48 166.22 5327.89
Reduct (%) 40.22 47.88 52.9 5.32 37.8 35.70 75.67

Table 3 illustrates the execution time and the percentage of data reduction of
the AIRS2 vs PAIRS. From Table 3, in some datasets the execution time in AIRS
is lower than the PAIRS. For datasets having many attributes, the new approach
needs more time due to the use of the wrapper possibility distribution in the
mutation algorithm. For example, for the dataset Hayes which has 54 attributes,
the execution time reaches 0.752 with AIRS. However, with PAIRSAff the
running time is 0.835 and respectively 0.849 and 0.841 with PAIRSinfoclos and
PAIRSsang.

In terms of execution time, the PCC and the percentage of data reduction,
we can note that PAIRSAff outperforms the PAIRSinfoclos, PAIRSsang and
AIRS.

Results for the Uncertain Case: Let P be the percentage of uncertain at-
tributes and g is the range of the possibility degree defined for the different values
of a given attribute. P and g are useful to test the behavior of our classifier and
its robustness in dealing with many uncertain attributes with different range of
possibility degree.

Tables 4 and 5 present a comparison between the PCC of the three possibilistic
approaches (AIRSAff , AIRSinfoclos and AIRSsang) based on different values
of both P and g.
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Table 4. The PCC (%) of the PAIRS with k=1

Databases H V B T S C N
P ≺ 50%

0 ≤ g ≺ 0.5
PAIRSAff 81.3 84.2 77.15 58.9 80.2 78.1 72.1

PAIRSinfoclos 66.3 72.3 72.2 54 73.5 69.5 65.5
PAIRSsang 75.1 74.21 74.21 54.2 77.71 74.1 69.6

0.5 ≤ g ≤ 1
PAIRSAff 78.2 82.1 82.5 57 83.2 80.3 73.2

PAIRSinfoclos 69.9 75.1 73.9 51.3 76.81 70.3 69.4
PAIRSsang 74.1 79.5 76.21 55.2 79.6 76.4 71.5

P ≥ 50%

0 ≤ g ≺ 0.5
PAIRSAff 83.3 82.3 81.01 57.1 83.3 81.9 76.4

PAIRSinfoclos 75.5 76.5 79.43 50.7 75.30 72.1 70.9
PAIRSsang 79.9 80.1 80.5 54.8 81.76 77.2 73.2

0.5 ≤ g ≤ 1
PAIRSAff 83.4 86.5 84.67 60.3 87.29 84.1 78.4

PAIRSinfoclos 78.5 79.5 78.3 54.1 76.30 77.3 71.1
PAIRSsang 81.2 83.1 81.5 58.2 78.34 83.9 74.6

Table 5. The PCC (%) of the PAIRS with k=5

Databases H V B T S C N
P ≺ 50%

0 ≺ g ≺ 0.5
PAIRSAff 80.3 78.9 80.9 55.4 80.14 77.1 71.4

PAIRSinfoclos 75.3 74.5 69.56 50 74.12 66.3 65.5
PAIRSsang 78.2 78.13 75.37 52.3 77.63 74.9 70.1

0.5 ≤ g ≤ 1
PAIRSAff 83.3 82.9 81.3 59.4 84.21 76.1 69.1

PAIRSinfoclos 70.3 76.5 76.62 52.9 79.64 70.1 62.5
PAIRSsang 79.2 81.1 80.3 57.3 83.17 75.3 67

P ≥ 50%

0 ≺ g ≺ 0.5
PAIRSAff 81.9 84.3 79.63 53.4 81.63 78 75.1

PAIRSinfoclos 77.9 80.5 72.67 50 76.34 70.5 65.2
PAIRSsang 79.3 81.5 75.23 53.2 79.4 76.4 71.1

0.5 ≤ g ≤ 1
PAIRSAff 84.3 85.7 83.67 56.5 86.52 85.3 78.2

PAIRSinfoclos 78.1 78.3 77 50.9 78.41 77.5 68.5
PAIRSsang 80.3 81.1 81.96 54.5 82.16 82.3 71.3
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From Tables 4 and 5, we can conclude that, for the uncertain case with k=5
and P ≥ 50%, the difference between the three versions of PAIRS, in term of
PCC, is noticeable when 0.5 ≤ g ≤ 1. The PCC of the PAIRSAff is higher than
that of both the PAIRSinfoclos and the PAIRSsang.

In the most datasets, from all listed tables, we can see that our approach
achieves encouraging percentage of PCC when P � 0.5 and g ∈ [0.5, 1]. It is clear
that even the degree of uncertainty is very high, our approach achieves accurate
results. These encouraging results are improved by the use of the information
affinity as a similarity measure which deals efficiently with uncertainty.

Table 6. The running time of the PAIRS (seconds)

Databases H V B T S C N
PAIRSAff 0.543 26.213 45.36 51.867 116.45 165.863 4276.12

PAIRSinfoclos 0.641 39.674 54.6 58.423 125.8 173.135 4365.9
PAIRSsang 0.591 35.137 49.12 53.274 119.6 169.33 4310.65

Table 6 illustrates the comparison between the three versions of PAIRS in
term of processing time.

We note, for example for the database V, using the information affinity mea-
sure, the running time is 26.213s. However, by the use of the sanguesa et al.
distance, the processing time is 35.137s. It is clearly that, for all the datasets,
the PAIRSAff outperforms both the PAIRSinfoclos and the PAIRSsang due to
the use of the manhattan distance and the inconsistency measure which produce
results very fast.

Table 7. The pourcentage of data reduction of the PAIRS

Databases H V B T S C N
PAIRSAff 48.34 55.12 59.43 9.87 48.10 45.19 77.45

PAIRSinfoclos 41.7 49.99 52.7 6.31 37.89 38.76 68.93
PAIRSsang 43.71 51.14 53.67 7.46 42.14 42.85 73.03

Furthermore, the percentages of data reduction, shown in Table 7, confirm
that using the information affinity measure may leads to a more reduced set of
memory cells. It is due to its effectiveness in measuring similarity between an
antigen and an antibody.

6 Conclusion

This paper presents a new classification approach adapted to an uncertain frame-
work called the possibilistic AIRS method. This approach is based on the AIRS2
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method within the possibility theory to deal with uncertainty existing in the
training set, especially in instances’ attribute values. Based on the PCC, the ex-
ecution time and the percentage of data reduction, PAIRS performs better than
AIRS2 for most datasets in the certain case and our PAIRS gives important
results in the uncertain context for different degrees of uncertainty and for all
datasets. Moreover, we have tested our PAIRS with three different measures of
similarity; it has shown that PAIRS gives better results by applying the infor-
mation affinity as a similarity measure than using the information closeness and
Sanguesa et al. distance.

Finally, some future works have to be mentioned. Since PAIRS deals only with
categorical attributes, we aim at extending the application of this algorithm with
mixed numeric and categorical attributes. Moreover, we can extend our approach
in order to handle the uncertainty in both attribute values and class values which
are always an open line of research.
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Abstract. In the context of tissue morphogenesis study, in silico simula-
tions can be seen as experiments in a virtual lab bench. Such simulations
can facilitate the comprehension of a system, the test of hypotheses or the
incremental refining of a model and its parameters. In silico simulations
must be efficient and provide the possibility to simulate large tissues,
containing thousands of cells. We propose to study tissue morphogene-
sis at the cellular level using our virtual biomechanical cell model. This
model is based on a mass/spring system and coupled to a multi-agent
system. We validated the relevance of our model through a case study: a
cell sorting. Moreover, we took advantage of the large parallelism offered
by graphics processing units (GPU), which contain up to thousands of
cores: we implemented our model with the OpenCL framework. We ran
large scale simulations, with up to 106 of our virtual cells. We studied the
performance of our system on a CPU Intel Core i7 860, and two GPUs:
a NVidia GeForce GT440 and a Nvidia GeForce GTX 690. The absence
of synchronization in our implementation allowed the full benefits of the
parallelism of these hardwares.

Keywords: virtual cell, multi-agent systems, virtual biology, tissue
morphogenesis, OpenCL, high-performance simulation.

1 Introduction

The study of tissue morphogenesis requires the consideration of different tempo-
ral and spatial scales: spatial scales range from 10−9m (gene/protein) to 100m
(organism); temporal scales range from 10−3s (molecular interactions) to 109s
(lifetime). Numerical simulation cannot take all these scales into account, but
two major approaches help their modeling: the top-down approach, in which
individuals are considered as population, and the bottom-up approach, in which
individuals are explicitly modeled and whose interactions give rise to emergent
behaviors. Between these two approaches, cell centered models seem appropri-
ate models to simulate cellular tissue [21]: between microscopic and macroscopic
scales, the biological cell can on one hand modulate genes expression and, on
the other hand, constitute tissues when considered as group.

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 96–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Biomechanical Cell Model to Simulate Tissue Morphogenesis 97

Emergent approaches have the advantage of allowing modelers to be in the
shoes of experimentators. The simulation thus becomes a virtual lab bench,
making easier for modelers to refine their models and their parameters, to test
some hypothesis: this is the exploratory aspect of emergent approaches. Besides,
the cost of in silico experiments is much more attractive than this of in vitro or
in vivo experiments. This is especially true with the use of architectures such
as GPUs (Graphics Processing Units): not only are they powerfull enough to
simulate large scale multi-agent systems thanks to the large number of compute
units they contain; but they also are very affordable compared to other parallel
architectures like computer clusters.

The main contribution of this paper is to present an efficient biomechanical
cell model to study tissue morphogenesis. We implemented this model on GPU
with the OpenCL framework, allowing us to run large scale simulations. This
parallel implementation was rather straightforward, thanks to the structure of
our model.

The paper is organized as follows: section 2 gives an overview of existing cell
models and their applications. Section 3 details our virtual cell model and its
coupling to a multi-agent system while section 4 details the parallel implementa-
tion of our model. Section 5 gives some validation elements of our model through
a case study: a cell sorting. A performance study shows the good performance
of our implementation. Finally, section 6 draws conclusion about this work and
gives some work perspectives.

2 Related Works

Although various cell models exist, they were not necessarily built to simulate
large groups of cell, but rather cell internal dynamics: for instance, Virtual Cell
[13] intends to simulate cell biological processes, such as membrane diffusion.
The E-Cell software [20] simulates cells biochemical and genetic processes: it
allows user to describe protein functions, protein-protein interactions, protein-
DNA interactions, etc. ChemCell [14] is used to study spatial effects of proteins
in the biological cell. However accurate, these models are too complex and are
not made to simulate tissue.

Tissue simulation does not necessarily require a detailed description of intra-
cellular processes. In particular, multi-agent systems are well suited to model
cellular tissues and morphogenesis. The agents do not take internal dynamics into
account, but rather describe cell behaviors (such as mitosis, cell differentiation,
etc.) at a higher level. Cell2Organ [4], for example, is a cell-centered model used
to generate artificial creatures from a single cell. Cells contain sensors in order to
measure substrate concentration in the environment. These substrates are issued
from an artificial chemistry integrated in the environment. The implementation
is multi-threaded: each cell is ran by a thread and an additionnal thread manages
the diffusion system. The authors of [3] propose a biomechanical cell model. The
cells are built using two types of grains: the first one models the intracellular
structure of cells: while in contact, they do not adhere with each other; the
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second one models the membrane: those grains are linked together with elastic
links. Cell growth is achieved by adding grains in the internal structure, meaning
that the number of grains interacting in each cell increases as the cell grows, also
increasing the computation time. The model has been partially parallelized using
OpenMP. CellSys [9] is a software used for multi-cellular systems simulation. It
implements a cell model that consists of an elastic sphere, which can migrate,
divide and grow. These behaviors are modeled by equations that are solved
using a multi-threaded equation solver. The authors of [5] propose a parallel
platform for agent-based simulation. In this case, their cell model takes intra-
cellular processes into account through a third party software and the simulations
are executed on a computer cluster. FlameGPU [15] is a parallel version of
the generalist framework Flame, used to simulate multi-agent systems. They
simulated tissue growth based on this framework. However they focus on the
underlying generalist structure of their agent rather than on a accurate model
to study tissue morphogenesis. The Cellular Potts Model (CPM) [8] has been
widely used in order to model and study morphogenesis processes. For instance,
in [11], a CPM is used to study Dictyostelium discoideum self organization.
CPM’s dynamics is mainly based on the computation of surface, volume and
contact energy. Finally, there are also a few models that focus on the study
of mechanotransduction during morphogenesis. We can cite the work presented
in [19], whose authors have studied in silico plant morphogenesis based on a
mechanical model. The authors of [17] also studied plant morphogenesis through
their model, in which cells can take mechanical signals into account. However,
concerning the last two models, no insight were provided regarding the ability
of these models to simulate important groups of cells (thousands of cells).

In our work, we focus on multi-agent systems (MAS), which allow fine grained
description of the system and lead to complex emergent behaviors. Moreover,
MAS are distributed system and are thus adapted to a parallel implementation.
The agents of our system are biomechanical cells which are modeled with a
mass/spring system; we do not model intra-cellular processes in order to simplify
the model, but rather describe cell behaviors at a higher level. We implemented
our model on GPU hardware, considering that they are the most powerfull kind
of parallel platform available regarding their price and that they are handier
than computer clusters.

3 Our Virtual Cell Model

Basic biological cell behaviors comprise: motility, adhesion, differentiation, mole-
cules production/consumption, mitosis and apoptosis. In this article however,
and given the case study we present, we focus only on cell motility and adhesion.
Our cell model is based on the deformable cell model proposed in [1]. They
successfully simulated cell migration on an adhesive substrate. We extended and
improved this model in order to study large multi-cellular tissue morphogenesis
thanks to the coupling of the cell model with a multi-agent system. The virtual
cells are the agents of our system. The physics of the cells is described in the
next subsection.
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3.1 Cell Physics

Our virtual cell is a mass/spring system composed of seven nodes: one central
node C and n = 6 nodes Ni, 0 ≤ i < n, on the membrane. These nodes are
linked together into three main structures (Fig. 1a):

– the cytoskeleton (black links in Fig. 1a) is the set of links C ↔ Ni where C
is the central node and Ni, 0 ≤ i < n, are the membrane nodes;

– the cortex (orange links in Fig. 1a) is the set of links Ni ↔ N(i+2)%n

– the membrane is the set of links Ni ↔ N(i+1)%n (green dashed links in
Fig. 1a).

These structures are a simplified representation of biological cells that allow
cell deformations such as cell compression or stretching, as illustrated in Fig. 1b.
The virtual cell structure also helps preserving the physical integrity of the cell
during simulations.

A restoring force is applied between the links of the cell’s structure. Each
link is a spring of stiffness k with an equilibrium length l0. On each spring, the
following restoring force is applied: F r = k(l − l0)u = kΔlu. The unit vector u
denotes the direction of the force. The virtual cell also interacts with both the
environment and its neighboring cells.

Environmental Interactions. So far, we modeled only one force issued by the
environment: a Langevin force F l = Iu where I is the intensity of the force,
applied on every node.

Cell-cell Interactions. Cell-cell interactions consist of two different forces: first
a repulsive force is applied on a cell if an other cell is too close: if the distance
l between the two cells’ centers is less than a distance dmin, a spring is created
between the two nodes, allowing the cells to repulse each other. The force caused
by the spring is F rep = k(l − dmin)u.

Then an adhesive force F a = k(l−dmax)u allows the cells to adhere together
given the adhesive coefficient between them. Here again, a spring allows the
modeling of an adhesive force. If the distance between a selected membrane
node and the center node is less than dmax (dmax is the sum of the adhesive
coefficient and the cell radius), a restoring force is applied in order to bring the
cells closer. If this distance is to large, the link breaks. If the distance is to small,
a repulsion takes place. This way, we make sure that the cell’s centers keep a
minimal distance between them.
We select the nodes for adhesion in the following manner: springs are created
between some membrane nodes of a first cell Cell1 and the center node of the
second cell Cell2: let C1 (resp. C2) be the center of Cell1 (resp. Cell2). Given that
N1

i (0 ≤ i < n) are the nodes of Cell1, we define bi = C1N
1
i and a = C1C2.

The nodes of Cell1 selected for the adhesion are such that the dot product a · bi
is greater than 0, as illustrated on Fig. 1c. Thanks to this method, that does not
require either much computation time nor memory (as opposed to searching the
adequates nodes and memorizing them), only Cell1’s closest nodes to Cell2’s
center are taken into account to adhere to Cell2.
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Fig. 1. (a) The virtual cell is made of seven nodes which are linked together into three
structures: the cytoskeleton (black links), the cortex (orange links), and the membrane
(green dashed links). (b) Example of cell deformation: cells are compressed against each
other and against the edge of the environment. (c) Selection of nodes for the adhesion
between cells: if a · bi > 0, the node is selected for the adhesion

Numerical Integration. Once we computed all the forces applied on each node,
these forces are integrated using the Euler method: we cope with the drawbacks
of this method by 1) considering the environment as overdamped, in order to
limit numerical instability; 2) chosing a time step that is small enough to stay in
the domain of validity of the function to approximate. By limiting the drawbacks
of this method, we take advantage of its light computation time, allowing more
efficient simulations. Given the second Newton’s law, ΣF = F l + F r + F rep +
F a = mẍ, where m is the mass of one node (all nodes have the same mass), the
integration allows the computation of the next position of a node n of a cell k:

xk,n(t+ 1) =
F k,n

m
Δt2 + ẋk,n(t) + xk,n(t) (1)

Given that the environment is overdamped – we consider that ẋk,n(t) = 0 – the
equation becomes:

xk,n(t+ 1) =
F k,n

m
Δt2 + xk,n(t) (2)

Table 1 presents the parameters of our system.

Table 1. Mass/spring system parameters [12]

Springs stiffness k 1 to 3 μN.μm−1

Cytoskeleton’s springs equilibrium length l0 5 μm
Node mass m 1 pg

Integration step Δt 0.3 s
dmin 10 μm
dmax variable given the adhesive

coefficients between cell types
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The model as we built it allows an efficient parallel implementation: this
implementation is presented in the next section, after a short introduction to
the OpenCL framework.

4 Parallel Implementation of the Virtual Cells

Multi-agent systems are well suited for parallel implementations given their dis-
tributed nature. We choose to take advantage of the computational power of
GPU (Graphics Processing Units). GPUs can be considered as the most afford-
able parallel architecture today. Frameworks such as CUDA or OpenCL are
dedicated to their programing. We use the framework OpenCL because unlike
CUDA, it allows the programing of a large range of devices: CPU (Intel, AMD,
ARM), GPU (both ATI’s and NVIDIA’s chips), IBM’s Cell processor and even
FPGAs. OpenCL programs are thus portable, and can be executed on various
architectures.

The OpenCL Framework. OpenCL programs are made of 1) a host program,
managing the parallel computation (mainly by choosing a compatible device,
allocating memory and scheduling parallel code) and 2) the parallel code itself,
whose functions are called kernels, and are programed using a dedicated langage,
based on C. The OpenCL execution model is made of a grid organized in groups
(called “work-groups”) that contain instances of kernels (called “work-items”):
one instance is a thread and in our case, each thread contains the behavior of
one agent.

Software Architecture for Parallel MAS Implementation. Most of the host code
is redundant from a model implementation to another. That is why we use a gen-
eralist software architecture we have concieved for parallel multi-agent systems
simulation with OpenCL (Fig. 2) [10]. This architecture helps dealing with GPU
and OpenCL constraints, such as memory accesses or the absence of dynamical
memory allocation.

Virtual Cell Implementation. Each agent of the system has a unique identifier,
and is represented by a kernel instance on the parallel device. Information about
the agents are stored into structures of arrays. They are adapted data struc-
ture for GPU since they ensure coalescing access (consecutive threads access
consecutive memory positions). Each agent accesses its own data only, it should
not modify an other agent’s data. Agent’s data are the position of their nodes,
the forces to be applied on each nodes and its type (in this article, the type is
only a color), see Fig. 3. Agents are located in the environment, which is a two
dimensional matrix: the identifier of the agent is stored in this matrix at the
position of the central node. This allows an easy scan of the local environment
of an agent in order to detect neighboring agents instead of having to build the
list of neighbors with costly algorithms.

We built our model in such a way that so far, we did not use synchronization
mechanisms such as atomic operations thanks to the mass/spring systems which
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Fig. 2. UML graph of our software architecture. A simulation inherits general param-
eters from the AbstractSimulation class and instantiates modules specifically imple-
mented for the simulation. The render module uses OpenGL primitives to display 2D
or 3D graphics (OpenCL and OpenGL can share buffers on the device chosen for execu-
tion, meaning that no data are transfered between the rendering and the computation);
the module “RunModel” is the OpenCL implementation of the model and the coordi-
nating host code. Finally, the module “ExportData” allows data recording during the
simulation in order to make qualitative analysis

struct data{
ushort s t a t e [NB AGENTS ] ;
ushort type [NB AGENTS ] ;
ulong4 random [NB AGENTS ] ;

} ;

struct nodes{
f loat4 c en t e r s [NB AGENTS ] ;
f loat4 nodes0 [NB AGENTS ] ;
f loat4 nodes1 [NB AGENTS ] ;
f loat4 nodes2 [NB AGENTS ] ;
f loat4 nodes3 [NB AGENTS ] ;
f loat4 nodes4 [NB AGENTS ] ;
f loat4 nodes5 [NB AGENTS ] ;

} ;

Fig. 3. Architecture’s C data structure adapted for our virtual cell model. Data types
are built-in OpenCL data types. In particular, typeN are vector types, kind of equiva-
lent to type data[N]. NB AGENTS is the maximum number of agents to simulate. The
structure struct data stores general information about agents. The fields state and
type are default information; the field random is used as seeds for random number gen-
eration. The strucure nodes stores the cells’ nodes position in the environment. This
structure is also used to store the forces applied on each node

prevents two cells from being in the same environment location at the same time.
Agent’s behaviors are implemented in OpenCL kernels, which are scheduled and
launched by the host program: cell’s behavior consists of two kernels: one kernel
computes the forces applied on the cell’s nodes; the second one integrates the
forces with the Euler method (see section 3.1).

5 Case Study: Cell Sorting Due to Differential Adhesion

Cell sorting is a phenomenon occurring during tissue formation. One of the main
hypothesis explaining cell sorting is the differential adhesion hypothesis (DAH),
proposed in [18]. DAH states that cells rearrange themselves according to the
adhesion between the different types of cell. For example, in the case of hydra
tissue morphogenesis, such as studied in [16], an external layer of ectodermic
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cells surrounds an aggregate of endodermic cells: it means that endodermic cells
are more cohesive than ectodermic cells. Different works have studied the re-
arrangement of cells from random aggregates. Most computational simulations
were made with a Cellular Potts Model (CPM). In [8], an extended CPM is used
to simulate cell sorting. The authors of [22] also used a CPM to investigate cell
sorting parameters of their model, in particular the expression of cadherin, the
molecule responsible for cell-cell adhesion, and the motility of the cells. Other
authors investigate cell sorting based on chemotaxis, such as in [6]. However,
simulations such as Graner and Glazier’s have shown that random motility cou-
pled to DAH is sufficient for a random aggregate to sort. The authors of [2]
proposed a self-propelled particle model to study cell motility and differential
adhesion during cell sorting.

5.1 Implementation

The motility of cells is modeled by a Langevin force (taking into account both
the movements of cells and their collisions with environmental molecules) whose
intensity vary between 1 and 10μN . Table 2 summarizes the adhesion between
the two types of cell. Given that adtype1,type2 is the adhesion between two cells
of type type1 and type2, respectively, these values respect the following rule:
adblue,blue < adblue,green = adgreen,blue < adgreen,green.

In practice, these values are the minimal distance, in μm at which the cells
adhere. The longer the distance, the stronger is the adhesion between two cells.

Table 2. Differential adhesions between the two types of cell

Green Blue

Green 2.5 2.1
Blue 2.1 1.4

Initially, the cells form a group in which types are randomly attributed, with
approximatively the following proportions: green 40% and blue 60%. What is
expected during a simulation is that green cells regroup together and that blue
cells surround the green aggregates. Some results are discussed below.

5.2 Results and Discussion

Figure 4 is an example of cell sorting simulation. Figures from (a) to (c) are
extracted from one of our simulations, in which 700 cells where simulated. In
Fig. 4b, we show the integration of two small clusters (see Fig. 4a) to a larger one.
In Fig. 4c, we see large solid clusters, but also, on the right, that small groups
of cells can escape a cluster: this shows the difficulties in setting the parameters
of the MAS (the intensity of the Langevin force and the adhesion). We also
show hydra’s cellular aggregates, taken from [16], to illustrate the likeness of
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Fig. 4. Example of a cell sorting simulation. Images of the first row are extracted from
the simulation of 700 cells. From (a) to (c): along the simulation, clusters are formed
thanks to differential adhesion and cell motility. Images of the second row are real
cellular aggregates taken from [16]. From (d) to (f), one observes cluster formation:
endodermal cells (dark cells) aggregates and are slowly surrounded by ectodermal cells
(light cells)

our simulation with a real system. Our green cells are the equivalent of the
endodermal cells. As the simulation runs, these cells form solid clusters. Blue
cells are the equivalent of the ectodermal cells.

During simulation, we observe the sorting of cells thanks to their motility and
the DAH. However, there is some comments to make about the model as it is so
far, mainly about the tissue consistency: instead of having a whole tight group
of cells, we can see that cells tend to form separate groups. This is due to the
delicate balance between the intensity of the Langevin force and the adhesive
rate of cells. Adding some adhesitivity for the blue cell will cause cell groups to be
too solid to be “broken” in order to rearrange the group. Automatic parameters
exploration may be usefull to tune the parameters of the MAS, and quantifying
the degree of cell sorting would help the design of a fitness function of a genetic
algorithm in order to converge towards cell sorting.

5.3 Performance

In order to study the scalability of our system, we ran some sets of experiments.
We used three devices: an CPU (Intel Core i7 860) and two GPU: a NVidia
GeForce GT 440, which is a low-end GPU and a NVidia GeForce GTX 690
which is a high-end GPU. The GTX 690 is actually a bi-GPU; however we use
only one of the two devices in our experiments. The main characteristics of these
three devices are summarized in Table 3.

Results. We measured the average execution time of the OpenCL code over
1000 simulation steps. For that, we use OpenCL events coupled with the func-
tion clGetEventProfilingInfo in order to measure the kernels execution time.
There were no memory transfer between the host and the device during the
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Table 3. Main characteristics of the devices used to measure the performance of the
system as provided by the devices’ respective datasheets

Intel Core i7 860 NVidia GT 440 NVidia GTX 690

Frequency 2.80 GHz 1600 MHz 900 - 1000 MHz

Processing elements 8 96 1536 per GPU
(4 compute units) (2 compute units) (8 compute units)

Shared memory 32KB up to 48KB up to 48KB
size configurations

computation (except before the execution started, in order to load the data on
the device). We ran several simulations, varying the number of simulated cells:
Fig. 5a illustrates the global performance of our system on the three devices: as
expected, the GTX 690 shows good performance: it does 5.66 times better than
the GT 440 to simulate 5.105 cells. Up to 2.105 cells, the CPU performs similarly
as the GT 440. The GTX 690 is the only device that could simulate over one
million cells: the CPU could not execute more than 2.105 cells and the GT 440
could not execute more than 5.105 cells: our model has an important memory
footprint. The hardware, along with its OpenCL implementation may prevent
us from allocating as much memory as we need for very large systems (here, we
are talking about around 5.105 cells). However, we cope with that limit given
that for now, we are more focused on refining our model than on increasing the
number of cells we can simulate.

Figure 5b shows the same data than Fig. 5a, but it only shows the execution of
1000 cells and less. It shows the good performance of the CPU for a number of cells
that does not exceed 700: this is due to the conditional branches in the OpenCL
code. However, when the number of simulated cells increases, the parallelism of
the device becomes more important than its ability to execute conditional code.

These examples show that our system has a large scalability: we simulated up
to 106 cell, and the use of a high performance GPU allows very interesting com-
putation time, although in practice the overall computation time also depends

Fig. 5. (a) Average execution times of a simulation step for the Intel Core i7 860 (blue
curve), the NVidia GT 440 (red curve) and the NVidia GTX 690 (green curve). (b)
Average execution time of a simulation step for less than 1000 simulated cells, showing
the excellent performance of the Core i7 compared to the two GPUs
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1) on the host device, which has to be able to perform a quick scheduling of the
kernels or may have some data to process between two kernel calls and 2) on the
fact that we do or we do not transfer data from and back the device to the host
during the computation. Generally speaking, SIMD architecture such as GPU
are well suited to run reactive agent-based simulations, given the distributed
nature of these systems. So far, our cell model does not require synchronization,
allowing the full benefits of the parallelism and resulting in good performance in
execution. The CPU Intel Core i7 860 performs better than the two GPUs for
less than 700 simulated cell. The NVidia GeForce GT 440 performs quite poorly
compared to the NVidia GeForce GTX 690, which could simulate 106 cells. The
use of OpenCL allowed us to execute simulations on various devices.

6 Conclusion

In this paper, we have presented our virtual biomechanical cell model designed
to investigate in silico tissue morphogenesis: this model is based on a mass/spring
systemand coupled to amulti-agent system. Simulating tissues requires important
computing ressources, this is why we implemented our model in a MAS dedicated
software architecture that uses OpenCL. This implementation allows us to take
advantage of parallel hardware.We studied the performance of our system on three
devices: an Intel Core i7 860, a NVidia GeForce GT 440 and a NVidia GeForce
GTX 690. The model does not require synchronization mechanism, allowing the
full benefits of parallelism: we simulated tissues containing up to 106 cells.

As a first step, we tested the relevance of our system using a cell sorting simula-
tion. Although the result could have beenmore convincing (especially compared to
Cellular Potts Model’s cell sorting simulations), we observed that cell aggregates
were formed thanks to cell-cell adhesion and random cell motility. Fine param-
eters tuning is difficult when it comes to multi-agent system, and a perspective
of work would be to design an algorithm that would allow automatic parameters
exploration of the system. Nevertheless, our major perpective is to complete our
model by 1) defining other fundamental cell behaviors: mitosis, differentiation,
molecules consumption and production, and 2) making the cells respond to me-
chanical stress such as compression, streching and shearing in order to study the
influence of mechanotransduction during tissue morphogenesis [7].
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Abstract. Transposable elements (TEs) are DNA sequences that can
either move or copy themselves to new positions within a genome. They
constitute approximately 45% of the human genome. Knowing the evo-
lution of TEs is helpful in understanding the activities of these ele-
ments and their impacts on genomes. In this paper, we devise a formal
model providing notations/definitions that are compatible with biologi-
cal nomenclature, while still providing a suitable formal foundation for
computational analysis. We define sequential interruptions between TEs
that occur in a genomic sequence to estimate how often TEs interrupt
other TEs, useful in predicting their ages. We also define the recursive in-
terruption context-free grammar to capture the recursive nature in which
TEs nest themselves into other TEs. We then associate probabilities to
convert the context-free grammar into a stochastic context-free gram-
mar, and discuss how to use the CYK algorithm to find a most likely
parse tree predicting TE nesting.

Keywords: transposable elements, stochastic context-free grammars,
interruptional analysis, formal modelling.

1 Introduction

In humans, coding sequences comprise less than 5% of the genome, whereas
repeat sequences account for at least 50% and probably much more [11], the
majority of which are transposable elements (TEs), or transposons, first discov-
ered by McClintock in 1949 in Zea mays. TEs are interspersed DNA sequences
that can move or transpose themselves to new positions within the genome.
They are found in nearly all species (both prokaryotes and eukaryotes, such
as bacteria, fungi, plants and animals) that have been studied and constitute
a large fraction of some genomes [5]. The human genome is particularly rich
in TEs, at about 45% of the genome [12]. Human transposable elements have
been reported to cause human diseases, including several types of cancer, such
as breast cancer, colon cancer, retinoblastoma, neurofibromatosis, hepatoma,
etc., through insertional mutagenesis of genes critical for preventing or driving
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malignant transformation [2]. Non-LTR retrotransposons are the predominant
source of TE-related mutagenesis in the human genome. Thus, it is meaningful
to understand the activities and evolution of TEs.

According to their mechanism of transposition, TEs are traditionally classified
into two major classes: Class I elements are those that transpose via an RNA
intermediate using a “copy-and-paste” mechanism, referred to as “retrotrans-
posons”; Class II elements, which are DNA-mediated using a “cut-and-paste”
mechanism, are often called “DNA transposons”.

TEs are also described as being autonomous or non-autonomous based on
whether or not they encode their own genes for transposition. Those trans-
posons that possess a complete set of transposition protein domains are called
autonomous. However, the term autonomous does not imply that an element
is active or functional. Transposons that clearly lack an intact set of mobility-
associated genes are called non-autonomous, whose transposition requires par-
ticipation of one or more proteins encoded by an autonomous element. Within
each of these classes, TEs can be further subdivided into several types on the
basis of the structural features of their sequences. In general, the information of
each type of TE is shown in Table 1 (information from [11]).

Table 1. The information of each type of transposable elements in the human genome

TE Type TE Class Mode of Trans-
position

Length
Copy
Number

Frac. of
Genome

LINEs Retrotransposons Autonomous 6-8 kb 850,000 21%

SINEs Retrotransposons Non-autonomous 100-300 bp 1,500,000 13%

LTR
Retrotransposons

Autonomous 6-11 kb
450,000 8%

retrotransposons Non-autonomous 1.5-3 kb

DNA
DNA transposons

Autonomous 2-3 kb
300,000 3%

transposons Non-autonomous 80-3,000 bp

Each TE has had a distinct period of transpositional activity when it is ac-
tive, in which it has spread through the genome, followed by inactivation and
accumulation of mutations (they can also mutate while active). The result of
the transpositional activities, over eons, can be described by (summarized from
[4]): (1) older TEs are heavily interrupted by younger TEs, but have not in-
serted into younger elements; (2) younger TEs, with a relatively recent period
of activity, have inserted into older elements that were present in the genome,
but are not interrupted by older elements; (3) elements of intermediate age have
both inserted into older elements and been themselves fragmented by younger
elements. In addition, younger TEs interrupt not only older TEs, but also the
fragmented TEs that had been previously interrupted, which makes the inter-
ruptions in the sequence even more complex. That is, interruptions are nested
together recursively [10].

A novel method was introduced in [4] to estimate TE ages in mammalian
genomes based on the frequency with which TEs have inserted themselves into
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other TEs. The resultant ordering obtained from a positional distribution agreed
reasonably with published chronologies. This is in contrast to the more common
divergence-based methods [9,1,13] to estimate TE ages.

In this paper, we will create a formal model capturing TE types and fragments
within genomic sequences. Our model consists of initial definitions of TEs, the
set of TEs, and the set of TE fragments. The model does not attempt to simu-
late or capture the molecular operations of TE movement (copying/cutting and
pasting throughout a genome), which would create clear non-context-free pat-
terns, making algorithmic analysis difficult. Rather, the model only describes
the order and distance between TE fragments in genomic sequences by grouping
homologous TEs together. At this level of abstraction, the model can be used
to capture and calculate interruptions and their frequencies in a general way.
In addition, we provide a stochastic context-free grammar to capture recursive
TE nesting, allowing standard polynomial time parsing to be used to calculate
a prediction of the nesting.

We attempt to make the model formal yet realistic and compatible with the
biological literature on TEs. For this reason, the definitions are quite lengthy and
make up a significant portion of this paper. However, we feel that it is necessary
to contribute a suitable foundation for future computational analysis.

2 Formal Model of TE Fragments and Pruned Sequences

The purpose of this section is to develop a formal model of TEs and fragments of
TEs in order to describe the biological concepts and problems clearly. We assume
knowledge with context-free grammars [6] and parse trees, as well as common
bioinformatics algorithms [7], such as pairwise and multiple alignments, and
consensus sequences.

As a large part of research on bioinformatics is based on the analysis of DNA
or amino-acid sequences, we will first briefly define a general sequence/string
and other mathematical preliminaries in Definition 1.

Definition 1. We define several terms and notations: An alphabet Σ is an
abstract and finite set of symbols. A string is any finite sequence of characters
over an alphabet. The length of a string s, denoted by |s|, is the number of
characters in the string. The empty word is denoted by λ and is of length 0.
The set of all strings (including the empty word) over Σ is denoted by Σ∗. Let
Σ be an alphabet and s = s1s2 . . . sn be a string, si ∈ Σ, 1 ≤ i ≤ n, and j, k
satisfy 1 ≤ j ≤ k ≤ n, then s(j, k) = sjsj+1 . . . sk. Moreover, s(j) = sj, is the

jth character alone. Let s ∈ Σ∗, then frag(s) is the set of all possible fragments
(substrings) of s. That is frag(s) = {x(p, q) | 1 ≤ p ≤ q ≤ |s|} ∪ {ε}. We extend
this to sets of strings S ⊆ Σ∗ by frag(S) =

⋃
s∈S frag(s). Given a set X, then

|X | is the number of elements in X.

When talking about a transposable element, life scientists usually are referring
to a set of similar sequences that evolved from a single TE sequence. Therefore,
we define a transposable element to itself be a set of strings (usually these strings
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will be similar to each other). We also define a set of TEs, an instance of a TE
and the consensus TE in Definition 2.

Definition 2. A transposable element (TE) X is a finite set of strings with
X ⊆ Σ∗. An instance of a TE X is an element x ∈ X. A consensus TE is a
consensus sequence of the elements of X. A set of TEs χ is a finite set of TEs.
That is, χ ⊆ 2Σ

∗
, χ is finite and each element of χ is finite.

Most representative eukaryotic repetitive sequences have been compiled and
reconstructed in a database called Repbase Update [8], which is a comprehensive
database of the consensus sequences of repetitive elements (not only TEs, but
also other repeats), that are present in diverse eukaryotic organisms.

Because of different biological contexts, it is also possible to interpret the set
of TEs, χ, in multiple ways depending on the purpose. For example, we could use
as χ the set of all TEs and TE instances that are present in a single genome, or
as the set of sequences collected in Repbase Update, or any set of sequences that
are all similar to the consensus sequences in Repbase Update within a threshold.

Knowing that one transposable element contains a number of instances, and
each instance itself is a string, now we will define a TE fragments set. We ex-
pect to see many such fragments scattered throughout genomes as TEs become
fragmented within a genome as they become interrupted by other TEs.

Definition 3. Let χ be a finite set of TEs. Then we call χ̄ ⊆ 2Σ
∗
a TE fragments

set if each element X̄ ∈ χ̄ is a subset of frag(X), for some X ∈ χ.

Thus, after picking a set of TEs, a TE fragments set is any set where each
element consists of only fragments of one transposable element. Then in principle,
we can pick any number of fragment sets for one set of TEs.

Although we defined TE fragments sets in a general way, we would also like to
create a restriction to transposable elements that occur in present-day sequences.
RepeatMasker [14] is the predominant library-based tool used in repeat identifi-
cation, which has become a standard tool for any search of repeats in genomes.
It is a sophisticated program that uses precompiled repeat libraries to find copies
of known repeats represented in the libraries. The program performs a similarity
search on both the “+” and “-” DNA strands based on local alignments, then
outputs masked genomic DNA and provides a tabular summary of repeat con-
tent detected in both DNA strands. We now can restrict Definition 3 with the
aid of RepeatMasker as follows:

Definition 4. Let s be a string representing some genomic sequence and χs be

the set of TEs existing in s, then χ̄(s
RM←−→ χs) is a RepeatMasker TE fragments

set, running the program with a set of consensus TEs, χs, against the genomic
sequence s.

In other words, each element of χ̄(s
RM←−→ χs) is a subset of some element of

χ̄, where only TE fragments detected by the RepeatMasker program are selected.

For each TE fragment z in some X̄ ∈ χ̄(s
RM←−→ χs), we associate a tuple

in Definition 5, whose attributes are referred to in our model, which is also
consistent with the output of the RepeatMasker program.
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Definition 5. Given a genomic sequence s and a set of TEs χs, each TE frag-

ment z in each X̄ ∈ χ̄(s
RM←−→ χs) is a tuple:

info(z) =(genoName, genoStart, genoEnd, genoLeft, strand,

TEName, TEClass, TEStart, TEEnd, TELeft).
(1)

We use the operator “.” to access the attributes, for example, z.TEname is
the name of the TE to which fragment z belongs. The definition of each attribute
is summarized in the list as follows (from [14]), and described in Example 1.
genoName: The name of genomic sequence.
genoStart: Start in genomic sequence.
genoEnd: End in genomic sequence.
genoLeft: Opposite number of bases after the matched alignment in genomic

sequence.
strand: Relative orientation “+” or “-”.
TEName: Name of the TE.
TEClass: Class of the TE.
TEStart: Start in TE sequence, if strand is “+”; or opposite number of bases

after the matched alignment in TE sequence, if strand is “-”.
TEEnd: End in TE sequence.
TELeft: Opposite number of bases after the matched alignment in TE se-

quence, if strand is “+”; or start in TE sequence, if strand is “-”.

Then, two TE fragments in the same set X̄ ∈ χ̄(s
RM←−→ χs) have the same

name. Also, a TE fragment can be present in either “+” or “-” strand, however,
in both cases, we use the “+” strand coordinate to represent the location where
it occurs. The orientations of the TE fragment are distinguished by the TEStart
or TELeft attributes. For example, if a fragment z is in the “+” strand, then
z.TEStart ≥ 0 and z.TELeft ≤ 0, otherwise, z.TEStart ≤ 0 and z.TELeft ≥
0. In general, no matter in which strand a TE fragment occurs, our notations
in the formal model are consistent. Example 1 picks two TE fragments showing
the meanings of their attributes visually with respect to a genomic sequence and
TE consensus sequences.

Example 1. Given two TE fragments taken from the output of RepeatMasker
comparing the Human Genome1 against the library of human transposable ele-
ments in Repbase Update, as listed in Table 2 with their detailed attributes.

Table 2. An example of two TE fragments in human chromosome 1

genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

chr1 430182 430604 -248820017 - MER4E1 LTR 0 781 334
chr1 101403 101690 -249148931 + AluJr SINE 18 298 -14

Fig. 1 (a) illustrates a fragment of the transposon MER4E1, which was de-
tected in the “-” strand of chromosome 1, and Fig. 1 (b) shows a fragment of the

1 hg19, the Feb. 2009 assembly of the human genome.
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Fig. 1. The conceptual visualization of the two TE fragments (in blue shadow) in Ta-
ble 2. Note that the lengths of the visualized sequences in the figure are not proportional
to their actual lengths.

transposon AluJr, which was detected in the “+” strand of chromosome 1. Since
the two fragments are detected in different strands, they are oriented oppositely.

Most of the present-day copies of transposable elements are detected by locally
aligning the consensus TE sequences against a DNA sequence, thus the DNA
sequence is fragmented into segments by the matched local alignments. Some
segments are detected as fragments of those TEs, while some are non-transposon
DNA sequence. We then prune this sequence to present only the TE segments.
This process is defined in Definition 6.

Definition 6. Let s be a genomic sequence, χs = {X1, . . . , Xm} a fixed or-
dering of the set of TEs in s, and χ̄s a set of TE fragments. Assume s =
w0z1w1z2 . . . zkwk, with z1, . . . , zk in sets in χ̄s, and no fragment of w0, . . . , wk

in sets in χ̄s. Then a pruned sequence s̄ of s with respect to χ̄s is

s̄ = β0z1β1z2β2 . . . zkβk, where βi = |wi|, 0 ≤ i ≤ k. (2)

That is, in a pruned sequence, we replace all non-TE fragments with their length.
In addition, from s̄ and χs, we define an order pruned sequence s̄o of s̄ as the

string over {1, . . . ,m}∗,

s̄o = j1j2 . . . jk, where zi ∈ Xji , for all i, 1 ≤ i ≤ k. (3)

We can also extend a pruned sequence to a set of pruned sequences. Let S =
{s1, . . . , sN}, then the set of pruned sequences of S is S̄ = {s̄1, . . . , s̄N}.

So far, we have defined some fundamental concepts associated with key bi-
ological terms, such as a transposable element, a TE fragment, and a pruned
sequence, and also extended them to sets. In the next section, we will move the
emphasis to the dynamic interruptional activities between different TEs.

3 Sequential Interruptions

As discussed in Section 1, newer TEs tend to interrupt older TEs, thereby frag-
menting older TEs within the single linear sequence. By analyzing that sequence,
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we are able to predict where the insertional and transpositional activities oc-
curred with the frequencies of the interruptions, and also predict an order that
those activities occurred, and further infer the ages of these TEs. This is es-
sentially the same approach created in [4] when calculating the interruptional
matrix that counts the number of interruptions between each pair of TEs. They
then predict relative ages of TEs by permuting the rows and columns of the ma-
trix that achieves a lowest sum of upper triangles of the matrix, corresponding
to reordering, from those that get interrupted most while interrupting least, to
those that interrupt most while getting interrupted least. We can similarly cap-
ture this with our model as well. We will describe this matrix, as well as discuss
other applications of our model throughout this section and Section 4.

To analyze interruptional patterns, we are only interested in TE fragments and
their relative positions in a genomic sequence. In [4], they classify an interruption
as occurring when one TE fragment is within a certain distance from a fragment
on the left and a fragment on the right, where both are from the same TE,
and the two fragments are “close to” continuous within the TE. This can be
calculated from pruned sequences in Definition 6, and can provide all that is
necessary to calculate our interruptional matrix. Before defining a sequential
interruption in Definition 8, we will define continuous TE fragments.

Definition 7. Let s be a genomic sequence with a set of TEs χs, TE fragment

set χ̄(s
RM←−→ χs) and pruned sequence s̄ = β0z1β1z2 . . . zkβk as in Equation (2).

Then two TE fragments zi and zj (i < j) are continuous TE fragments, zi
ε,E∼ zj,

with threshold ε ∈ N and distance E ∈ N, if they satisfy the following conditions:

1. they belong to the same transposable element: zi.TEName = zj .TEName;
2. they are detected in the same DNA strand: zi.strand = zj.strand;
3. they are either separated or overlap 2 with less than or equal to a threshold,

ε, with respect to the TE consensus sequence to which they belong:{
abs(zj.TEStart− zi.TEEnd) ≤ ε, if zi and zj occur in the “+” strand.
abs(zi.TEStart− zj.TEEnd) ≤ ε, if zi and zj occur in the “-” strand.

4. They are in the genomic sequence within a distance, E, of non-transposon
DNA sequence:

∑j−1
r=i βr ≤ E.

Notice that continuous TE fragments are not necessarily beside each other
in the genomic sequence, as there can be a distance of E between them. Some
continuous TE fragments appear to have a duplication of a portion of the trans-
poson. This is because RepeatMasker often extends the homology match of both
fragments to the TE consensus sequence by several base pairs.

Definition 8. Given a genomic sequence s, a set of TEs with a fixed ordering
on its elements χs = {X1, X2, . . . , Xm}, a threshold ε ∈ N in TE consensus
sequence, a distance E ∈ N in genomic sequence, and a pruned sequence s̄ =

2 We calculate the amount that separate them or the amount they overlap using the
abs() function to get the absolute value.
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β0z1β1z2 . . . zkβk, as in as in Equation (2). We define sequential interruptions
of Xj by Xi as

Ξε,E
s (Xi, Xj) = {k | zk ∈ X̄i, zk−η1 , zk+η2 ∈ X̄j , zk−η1

ε,E∼ zk+η2 ,and η1, η2 ∈ N}.
(4)

Thus Xi is called interrupter, and Xj is called interruptee.

The frequencies with which the interruptions between different TEs occur in
the sequence can also infer the activities of these TEs. Therefore, we also define
the abundance of interruptions to capture the frequencies of interruptions.

Definition 9. Given a genomic sequence s, a set of TEs with a fixed ordering
on its elements χs = {X1, X2, . . . , Xm}, the abundance that Xi interrupts Xj

in s, 1 ≤ i ≤ m, 1 ≤ j ≤ m, is defined as the total number of times that Xi

interrupts Xj. The abundance is equal to |Ξε,E
s (Xi, Xj)|.

For the genome S that has chromosomes s1, s2, . . . , sN , we then add up the
abundance that Xi interrupts Xj for all chromosomes, which is |Ξε,E

S (Xi, Xj)| =∑N
n=1 |Ξε,E

sn (Xi, Xj)|. The interruption array of Xi on S, for 1 ≤ i ≤ m, is the

array M(i) = [|Ξε,E
S (Xi, Xj)|]j=1,...,m. The interruption matrix on S is an m×m

matrix defined by M = [|Ξε,E
S (Xi, Xj)|]i=1,...,m

j=1,...,m
.

The interruption array and matrix are different ways to structure the abun-
dance by using the ordering on the elements in χs. In Example 2, we illustrate
how to apply our formal model in a real situation to find sequential interruptions,
and the interruptional matrix.

Example 2. Table 3 is a list of five TE fragments from chromosome 1 position
448062 to 449273 taken from the output of RepeatMasker of Example 1. The
five fragments belong to three TEs: X1, X2 and X3, where the TE names of
X1, X2, X3 are L1MD3, AluYc, AluSq.

Table 3. An example of sequential interruptions in chromosome 1

genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

chr1 448062 448139 -248802482 + L1MD3 LINE 6988 7068 -814
chr1 448150 448328 -248802293 + AluYc SINE 122 299 0
chr1 448332 448403 -248802218 + L1MD3 LINE 7068 7148 -847
chr1 448403 448710 -248801911 + AluSq SINE 1 313 0
chr1 448710 449273 -248801348 + L1MD3 LINE 7149 7753 -242

Suppose the sequence of chromosome 1 is s, and the set of human TEs is χs.
The pruned sequence is s̄ = β0z1β1z2β2z3β3z4β4z5β5, where β0, . . . , β5 ∈ N, and

z1, z3, z5 ∈ X̄1, z2 ∈ X̄2, z4 ∈ X̄3, X̄1, X̄2, X̄3 ∈ χ̄(s
RM←−→ χs), z1

ε,E∼ z3, z3
ε,E∼ z5.

It is possible to see that there are two potential interruptions in s: an instance
of X1 is present in the sequence, then an instance of X2 and an instance of
X3 potentially inserted themselves into the instance of X1 to break it into three
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segments z1, z3 and z5; that is, |Ξε,E
s (X2, X1)| = 1 and |Ξε,E

s (X3, X1)| = 1.
Given a fixed order of the set of TEs as χs = {. . . , X1, . . . , X2, . . . , X3 . . .}, the
interruption matrix showing only the rows and columns of these TEs is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
. . . 0 . . . 0 . . . 0 . . .

...
...

...
. . . 1 . . . 0 . . . 0 . . .

...
...

...
. . . 1 . . . 0 . . . 0 . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

From these sequential interruptions, using the approach from we can predict
that the age of L1MD3 might be older than both AluYc and AluSq, but this
provides no clue as to which one of AluYc and AluSq is older, because we do not
know which of the two interruptions occurred first. By using the approach of [4]
to rearrange this matrix, we can predict the TE ages.

Our notions in this section transformed the interruptional matrix construction
described in prose in [4] into a formal model, which is more clear, and is easy to
recreate.

4 Recursive Interruptions

When many insertions occurred throughout the evolution of a genomic sequence,
the interruptions nest in a recursive pattern [10], which cannot be represented
accurately with the interruptional matrix that only counts the abundance with-
out storing the hierarchical relationships of interruptions. Indeed, Example 3
shows some nested TEs in real data.

Example 3. Table 4 is a list of TE fragments taken from the output of Repeat-
Masker of Example 1. There are seven TE fragments starts from chromosome
X position 53437061 to 53438226 that belong to four TEs: X1, X2, X3 and X4,
where the TE names of X1, X2, X3, X4 are MIR, AluJb, AluSx, AluSq2.

Table 4. An example of recursive interruptions in chromosome X

genoName genoStart genoEnd genoLeft strand TEName TEClass TEStart TEEnd TELeft

chrX 53437061 53437143 -101833417 + MIR SINE 3 88 -174
chrX 53437143 53437277 -101833283 + AluJb SINE 1 132 -170
chrX 53437277 53437448 -101833112 + AluSx SINE 39 192 -120
chrX 53437448 53437761 -101832799 + AluSq2 SINE 1 312 0
chrX 53437761 53437887 -101832673 + AluSx SINE 193 312 0
chrX 53437887 53438055 -101832505 + AluJb SINE 133 293 -9
chrX 53438055 53438226 -101832334 + MIR SINE 89 261 -1
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Suppose the sequence of chromosome X is s, and the set of human TEs
is χs. The pruned sequence is s̄ = β0z1β1z2β2z3β3z4β4z5β5z6β6z7β7, where
β0, . . . , β7 ∈ N, z1, z7 ∈ X̄1, z2, z6 ∈ X̄2, z3, z5 ∈ X̄3, z4 ∈ X̄4, X̄1, X̄2, X̄3, X̄4 ∈
χ̄(s

RM←−→ χs) z1
ε,E∼ z7, z2

ε,E∼ z6, z3
ε,E∼ z5. It is possible to see a potential process

of nested interruptions described as: at first, an instance of AluJb inserted itself
into an instance of MIR to break it into z1 and z7; then an instance of AluSx
inserted itself into the instance of AluJb that has already presented in the se-
quence, to break it into z2 and z6; at the most recent time, an instance of AluSq2
(z4) inserted itself into the presented AluSx instance to break it into z3 and z5.

We can predict from the recursive interruptions that the age order of these
three TEs from oldest to youngest might be: MIR, AluJb, AluSx, AluSq2.

The nested nature of the interruptions in Example 3 is not captured by the
interruptional matrix, as the recursive nesting can “push” fragments so that they
are no longer continuous. In this section we will first define a recursive inter-
ruption context-free grammar to model the generation of recursive interruptions,
then discuss algorithms that calculate a parse tree of the grammar generating a
given order pruned sequence, which shows a prediction of the hierarchical struc-
ture of TE insertions.

Definition 10. Given a set of TEs with a fixed order on its elements, χ =
{X1, X2, . . . , Xm}, the recursive interruption context-free grammar is a grammar
G = (V, T, δ, S), where V = {S,X1, X2, . . . , Xm}, T = {1, 2, . . . ,m}, and δ
contains the following productions:

S → XiS, 1 ≤ i ≤ m, (1)

S → Xi, 1 ≤ i ≤ m, (2)

Xi → XiXjXi, 1 ≤ i ≤ m, 1 ≤ j ≤ m, (3)

Xi → i, 1 ≤ i ≤ m. (4)

This grammar is used to generate strings over {1, . . . ,m}∗ corresponding to
TE orders. Intuitively, productions of type (3) correspond to an instance of Xj

inserting itself throughout evolution into an instance of Xi, as shown in Fig. 2,
leaving a fragment from i, then j, then i. In a sentential form, XiXjXi can
either derive iji (using productions of type (4)) corresponding to that order of
TEs, or any of them can be further interrupted (using productions of type (3)).
Productions of type (1) correspond to independent positions of the sequence
where a TE can insert itself (not a nested insertion, and can only be produced
continuously from the root along the rightmost path of a parse tree). Productions
of type (2) correspond to the final independent position of a TE insertion.

This context-free grammar is ambiguous. Indeed, it is clear that any string
over T+ can be generated by G by using only productions of types (1), (2) and
(4). This would require the application of 2k productions to generate a string of
length k. However, if there are l productions of type (3) applied, the total number
of productions needed to generate a string of length k decreases to 2(k − l).
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Fig. 2. A diagram showing an insertion of an instance of Xj inserting itself throughout
evolution into an instance of Xi

Since each production of type (1), (2), or (3) corresponds to one biological
transposition, we are interested in parse trees which maximize the application
of productions of type (3), or minimize the total number of productions applied.
This would correspond to minimizing the number of transpositions that occurred
throughout evolution.

Example 4 shows how nested interruptions in a sequence are generated by
the grammar as the yield of its one possible parse tree that maximized the
application of productions of type (3).

Example 4. Given a genomic sequence s and a set of TEs with a fixed order
on its elements χs = {X1, X2, . . . , X10}, and assume s = w0z1w1 . . . z13w13, as
in Equation (2) with z1, z4, z6 ∈ X̄2, z2, z8, z10, z12 ∈ X̄3, z5 ∈ X̄4, z11, z13 ∈ X̄5,
z3, z7 ∈ X̄6, z9 ∈ X̄10. Then an order pruned sequence s̄o = 2 3 6 2 4 2 6 3 10 3 5 3 5
is the yield of the parse tree shown in Fig. 3.

Fig. 3. A parse tree of G from Definition 10 that yields s̄o

The recursive interruption context-free grammar is a very simple and general
way of capturing the recursive nature of TE interruptions. However, the order
pruned sequence generated by the grammar only contains the TEs (names) to
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which the detected TE fragments belong. It does not take into account where
each fragment lies within a TE, and there is neither a way to determine the actual
distance where the two fragments lie with respect to the genomic sequence. We
leave this direction as future work.

As discussed, given an order pruned sequence, we are interested in finding
a parse tree of the grammar that maximizes the applications of productions
of type (3), or minimizes the overall productions applied to generate this se-
quence. A stochastic context-free grammar is a context-free grammar, where
every production has an associated probability value between 0 and 1, such that
the probability for all productions on a nonterminal adds to 1. The probability
associated with a parse tree is the product of the probabilities of the production
instances applied to produce it.

Considering the grammar in Definition 10, since all probabilities are between
0 and 1, trees that use fewer productions will tend to have a higher probability.
A most likely parse tree, defined as a parse tree with the highest probability,
corresponds to the parse tree that has the most productions of type (3) applied
in the recursive interruption context-free grammar. For this grammar, if we give
all productions for each nonterminal equal weight (for each production of Xi,
the probability is 1/(m + 1), and for each production of S, the probability is
1/(2m)), the CYK algorithm [3] can find a most likely parse tree that has a
given sequence as yield. In our case, starting with the order pruned sequence, it
can predict a most likely parse tree with it as the yield.

The complexity of CYK algorithm is O(L3M3) [3], where L is the length of the
order pruned sequence (corresponding to the number of TE fragments detected
in a genomic sequence), and M is the number of nonterminals in the grammar
(corresponding to the total number of transposons of that organism in Repbase
Update plus one), which will be very lengthy in practice. We leave as future
work an investigation of algorithms that can be faster while taking additional
positional information into account in generating the most likely parse tree.

In the future, we will work on algorithms for detecting the sequential and re-
cursive interruptions, which will be potentially used to analyze the interruptional
patterns of a given genomic sequence and generate the interruption matrix about
TE interruptions, whose results are useful in further modelling and analysis. We
will also work on the algorithms generating a most likely parse tree by taking
extra information into account, and using heuristics for speedups.
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Abstract. Swarm robotics is a branch of collective robotics that out-
performs many other systems due to its large number of robots. It allows
for performing several tasks that are beyond the capability of a single or
multi robot systems. Its global behaviour emerges from the local rules
implemented on the level of its individual robots. Thus, estimating the
obtained performance in a self-organized manner represents one of the
main challenges, especially under complex dynamics like spatial inter-
ferences. In this paper, we exploit the central limit theorem (CLT) to
analyse and estimate the swarm performance over long-term deadlines
and under potential spatial interferences. The developed model is tested
on the well-known foraging task, however, it can be generalized to be
applied on any constrictive robotic task.

Keywords: Swarm robotics, Time-constrained tasks, Central limit
theorem.

1 Introduction

Swarm robotics is a high density multi-robot system, where the global behaviour
emerges from local rules implemented on the level of individual robots. These
systems are characterized by a set of advantages including: redundancy, scala-
bility and flexibility which introduce them as a promising approach for a large
spectrum of tasks.

Spatial interferences, on the other hand, affect significantly the performance
of the single robot and consequently the collective performance of the swarm.
A well-studied example is the foraging, where robots are exploited to retrieve
scattered objects to a special area called ”nest”. As noted in [5,10], the increment
of the robots’ number in a task like foraging, decreases the performance of a
single robot which represents the number of retrieved objects per time unit.
In the case of swarm performance, it may increase by adding robots up to an
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optimal number and after that it starts to decrease affected by the interferences
among robots. Although the influence of spatial interferences among robots has
been studied on a limited number of swarm scenarios, mainly on foraging, the
observations do not appear to be surprising. Increasing the number of robots,
increases the time required by the single robot to accomplish individual parts of
the task because of the concurrence among robots. This decreases in turn, the
number of parts that could be accomplished by single robots within a specific
time period. From the swarm point of view, the obtained performance keeps
increasing as long as the benefit of parallelising the work is still larger than
the time penalty paid because of the interferences. Swarm robotic systems are
prone to intensive spatial interferences and as robotic missions are generally
characterized by their long-term durations, providing the ability to estimate the
swarm performance for long-term tasks and under the spatial interferences is of
a significant importance. However, performing this estimation by running real
experiments or computer simulations is intensive time and resource consuming.
Consequently, alternative tools are required to perform such kind of estimations.
In this paper, we investigate the use of the Central Limit Theorem (CLT) as a
tool for approximating the swarm performance and analysing it probabilistically
over long-term deadlines and under robots spatial interferences. Central limit
theorem, in its classic version, states that the mean of a sufficiently large set
of independent and identically distributed random variables each with a finite
mean and variance tends to be distributed normally. How large the set of i.i.d.
should be, is based on their distribution parameters.

The rest of the paper is organized as following: Section 2 lists a set of related
work. Section 3 formulates the problem of the swarm performance estimation
over long-term deadlines. In Section 4 The central limited theorem is introduced
and the proposed estimator model for the swarm performance is illustrated.
Section 5 presented a foraging scenario to verify the proposed estimation strategy
and Section 6 concludes the paper.

2 Related Work

Swarm robotic performance is influenced by the interferences among participat-
ing robots [2]. Most of the performed studies were focusing on characterizing how
the amount of work accomplished within a specific time unit, changes by chang-
ing the number of working robots. The studies were mostly accomplished on
well-known swarm tasks like foraging and the conclusions were similar, namely,
that increasing the number of robots decreases the performance of individual
robots. After characterizing the relation between the swarm size and perfor-
mance, several studies were performed to improve the swarm performance by
reducing the density of spatial interferences. In [1] several types of interferences
in multi-robot systems have been defined and it presented the interactions among
robots working together in a common area, like the nest, as the main type of
robots interactions. The authors have proposed two techniques to arbitrate the
impact of interactions. First, by making sure that robots are working in different
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areas and second, by scheduling the occupation of shared areas. The first pro-
posal was further investigated under the term bucket-brigade like in [15], [16] and
[10], in addition to [4], where the approach was extended to consider adaptive
working areas. Task partitioning represents another technique, which is used to
improve the swarm performance under spatial interferences. In [12] a task parti-
tioning technique was proposed, in which the shared area was divided into two
areas and the robots select their area using a threshold mechanism. In [13], the
authors studied the role of task partitioning in reducing the concurrent access
to the nest area in a harvesting task.

On the other hand, characterizing swarm performance by means of real experi-
ments is not always possible and is an expensive solution from both time and hard-
ware points of view. In addition, computer simulations are very time consuming
especially when tasks are associated with long-term deadlines. In such cases, the
mathematical modelling represents one of the best approaches. A mathematical
model has been introduced in[5], which characterizes the performance of the single
robot and the swarm under spatial interferences. In [9] a list of the various mathe-
matical models which can be applied in swarm systems, is reported. Most of these
mathematical studies were focusing on specific swarm scenarios like foraging in [7]
or collaborative distributed manipulation in [8]. To our best knowledge no study
was focusing on the mathematical analysis of the collective swarm performance
within specific deadlines. In addition, the probability analysis of swarm robotics
was not considered intensively and only few studies were performed in that field
like in [6]. The central limit theorem [14], is a wide-applied theorem in many fields
related to measurement approximations and hypothesis testing. However, it is not
investigated yet within the context of swarm robotics. This important theorem is
exploited, here, to develop swarmperformance estimators which allow for a proba-
bilistic characterizationof swarmperformance over long-termdeadlines and under
the dynamics of spatial interferences.

3 Problem Formulation

We consider constructive tasks where the total contribution on the task within
a particular time period is the sum of the individual contributions of robots
over that time period. Each of the considered tasks can be characterized by its
long-term deadline, that represents the time point after which the robots should
stop to work on the task.

In swarm robotic systems the contribution of a single robot on any task is a
random variable which can belong to the discrete, as well as, to the continuous
space based on the type of the task. In a task like pushing a box, the robot per-
formance is a continuous random variable represents the distance the box travels
within a specific time unit. However, in a foraging task the robot performance
represents the number of retrieved objects and belongs to the discrete space. In
this paper, we focus on the discrete space of robot performance where the task
consists of discrete parts to be accomplished.

Let us assume a task Ti with the deadline Di and a homogeneous swarm
of N simple robots. Each of these robots is able to accomplish one part of Ti
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at a time. We use βij(Di) to denote the discrete random variable associated
with the number of parts can be accomplished by the robot Rj on task Ti

up to its deadline of Di, under the influence of spatial interferences. The swarm
performance on task Ti up to the deadline Di is denoted by ωi(Di). Thus, ωi(Di)
is the total number of parts accomplished by the swarm within the time of
Di under the spatial interferences and is calculated as the sum of the robots’
individual contributions:

ωi(Di) = βi1(Di) + βi2(Di) + . . .+ βiN (Di) (1)

=
N∑
j=1

βij(Di)

We divide the time period between the start of the execution t = 0 and the task
deadline Di into equal and non-overlapping time-windows each with the length
τ . The length τ of the time-window is selected under the following constraints:
It should be equal to or greater than the average time required by a single robot
to accomplish one part on task Ti, The task deadline Di should be a multiplier
of τ and τ should be significantly smaller than the task deadline: τ � Di.

The swarm performance at deadline Di is the sum of the swarm contribu-
tions over all the time-windows included within the deadline Di. Hence, we can
calculate the swarm performance at the deadline Di as in following:

ωi(Di) = ωi(τ1) + ωi(τ2) + . . .+ ωi(τK) (2)

=

K∑
j=1

ωi(τj)

where K is the number of time-windows included in deadline Di.
On the other hand, the swarm performance at deadline Di is the sum of

the individual robots’ contributions over all the time-windows included in the
deadline Di. Using Equation (1) the swarm performance can be calculated in
terms of the individual robots’ contributions as in following:

ωi(Di) = (βi1(τ1) + βi2(τ1) + . . .+ βiN (τ1)) (3)

+ . . .

+ (βi1(τK) + βi2(τK) + . . .+ βiN (τK))

=
K∑
j=1

N∑
l=1

βil(τj)

The goal is to estimate the performance which can be obtained by a swarm of N
robot at the deadline Di and under the influence of spatial interferences. We aim
to perform this estimation with the minimum time and resources consumption by
launching short-time real experiments or computer simulations. The estimation
is carried out in a probabilistic manner, where we derive the probability density
function (PDF) in addition to the cumulative distribution function (CDF) of
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the random variable that is associated with the swarm performance. Such a
probabilistic analysis helps us to answer questions like: ”What is the probability
of achieving a specific swarm performance Si within the deadline Di under the
influence of spatial interferences?”.

Pr(ωi(Di) � Si) (4)

4 Probabilistic Analysis of Swarm Performance under
Spatial Interferences

In this section, we investigate the well-known central limit theorem in performing
a probabilistic analysis of the swarm performance at long-term deadlines under
the influence of spatial interferences. Central limit theorem is a wide-applied the-
orem specially in fields of hypothesis testing, cancelling of communication noise
and statistic [3]. Let us have a set of n independent and identically distributed
random variables {X1, X2, . . . , Xn}, sampled from a distribution with a specific
mean μ and a variance σ2. The central limit theorem (CLT) in its classic version
states that for sufficiently large n, the sum of the n random variables is normally
distributed and can be characterized with the following mean and variance:

μn = nμ (5) σ2
n = nσ2 (6)

The swarm contribution ωi(τj) over the time-window τj , is the random num-
ber of parts accomplished by the swarm on task Ti within the time-window τj .
Concurrently, the single robot contribution βil(τj) is the random number of parts
accomplished by a single robot on task Ti within the time-window τj . The mean
and the variance associated with these two random variables are influenced di-
rectly by the number of robots working on the task in addition to the work den-
sity available on this task. The work density here refers to the number of parts
available on the task and need to be accomplished by the robots. Swarm systems
are generally characterized by their large sizes, thus the failure of a few robots or
the addition of another few, will not apply a considerable change on the average
performance of the swarm or of the single robot. In addition applying the central
limit theorem is constrained by having a sufficiently large n, where n represents
the number of robots in case the swarm performance is defined based on Equation
(3). Hence, a small change in the number of robots will not change significantly
the total performance of the swarm. On the other hand, the assumption of having
a constant work density is associated with a large set of real-world applications.
Examples to these tasks could be recycling systems where the robots are responsi-
ble to retrieve objects excreted continuously at specific locations to some recycling
destination. Another example could be a production-transport system, where ob-
jects are assumed to be produced continuously at different locations and require
to be transported to specific delivery points.

Based on the above discussion we can describe the two conditions of having
a constant average of robots number and a constant work density as realistic
assumptions. Let us denote the mean and the standard deviation of the random
variable associated with the swarm performance ωi(τ) on task Ti within the
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time-window τ respectively by: μωi(τ) and σωi(τ). Based on the central limit
theorem the long-term swarm performance will be normally distributed:

ωi(Di) ∼ Norm(Kμωi(τ),Kσ2
ωi(τ)

) (7)

On the other hand, we denote the mean and the standard deviation of the random
variable associated with the single robot performance βij(τ) respectively by:
μβij(τ) and σβij(τ). According to the central limit theorem, the long-term swarm
performance will be also normally distributed:

ωi(Di) ∼ Norm(KNμβij(τ),KNσ2
βij(τ)

) (8)

Consequently, the swarm performance can be characterized probabilistically by
using the cumulative distributed function (CDF) of the normal distribution,
which for the mean μ and the variance σ2, is defined as in following:

Pr(X � x) =
1

2
+

1

2
erf(

x− μ

2σ2
) (9)

We substitute the random variable X by the swarm performance ωi(Di) and the
value of small x by a desired performance Si, that represents the number of parts
to accomplish up to the task deadline Di. The probability we are interested to
calculate is the one in Equation (4): Pr(ωi(Di) � Si), which can be expressed
using the CDF of the normal distribution (9):

Pr(ωi(Di) � Si) = Pr(ωi(Di) > (Si − 1)) (10)

= 1− Pr(ωi(Di) � (Si − 1))

Consequently, the central limit theorem (CLT) can be applied to estimate the
long-term performance of swarm robotics, efficiently, in both following contexts:

– Swarm performance over short experiments: the swarm performance at dead-
line Di is the sum of the swarm contributions over all time-windows included
within the deadline Di. We map each of these swarm contributions to a ran-
dom variable with the mean μωi(τ) and the variance σ2

ωi(τ)
which are mea-

sured over one experiment of the length τ . Consequently, the central limit
theorem can be applied to approximate the swarm performance at Di as the
sum of these random variables, like in Equation (2).

– Single robot performance over short experiments: the swarm performance at
deadline Di can be calculated as the sum of the individual robots’ contribu-
tions over all time-windows included within the deadline Di. As the single
robot performance over one time-window experiment can be measured by
the robot itself, this estimation technique represents a ”self-organized” one.
The robot works on the task for one time-window to estimate the mean and
the standard deviation of the random time required to accomplish one part
of that task. After that, the central limit theorem is applied to approximate
the swarm performance at Di using Equation (3).
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5 Scenario and Evaluation

We consider the foraging scenario, where a large number of objects are scattered
uniformly over an object-area and need to be retrieved by a swarm of robots to
some nest-area. During the experiment, each robot can be in one of the following
states: exploring or retrieving. A robot being in the exploring state searches for
objects to retrieve and as soon as an object is found, the robot changes its state to
retrieving and starts to move towards the nest-area. It is assumed that new objects
are popping up in the arena and the objects density remains constant throughout
the whole experiment. The ARGoS1simulator [11] is used to calculate an average
performance function via repeated high-level simulations in order to characterize
the effect of the spatial interferences on the performance of the single robot as
well as on the swarm. The simulations are repeated for 125 times. Figure 1 shows
how the mean of the single robot performance decreases by increasing the number
of robots in addition to the standard deviation of this performance for different
swarm sizes. Figure 2 shows the change in the mean of the swarm performance and
its standard deviation while applying the same increment in the swarm size. We
consider the foraging scenario illustrated in Section 5, where it is carried out by a
swarm of 30 robots within the deadline Di = 12 · 103 seconds. The time-window
length is set to τ = 100. Figure 3 shows the mean μ in addition to the 3 × σ of
the random number associated with the retrieved objects over all time-windows
up to theDi = 12 ·103 seconds. Figure 4 shows the time it takes the average of the
system performance to stabilize. This time is referred to as start-up time. At the
beginning of the foraging task all robots are free to search for objects and to re-
trieve them as soon as they find any. Thus, the number of objects retrieved at the
beginning is higher than the number will be retrieved later on, when the robots are
divided between robots which are searching and free to retrieve and robots which
are retrieving. This is the reason behind the existence of such a start-up time after
which the system performance stabilizes. The accuracy of the CLT estimation of
the swarm performance is influenced by including the system performance dur-
ing the start-up time or excluding it. This influence varies based on the relative
relation between the length of both: the deadline Di and the start-up time. The
swarm performance will be estimated within the two contexts mentioned above.
First by using the swarm contributions and second using the individual robot’s
contribution both measured over short experiments.

– Swarm performance over short experiments:
We use the swarm contribution achieved by the whole swarm within one
time-window τ = 100 second. We substitute it in Equation (2), where the
deadline of Di = 12 ·103 includes 120 time-window of the length 100 seconds:

ωi(Di) =

K∑
j=1

ωi(τj) ⇒ ωi(12 · 103) =
120∑
j=1

ωi(100) (11)

1 ARGoS is a discrete-time physics-based simulation framework developed within the
Swarmanoid project. It can simulate various robots at different levels of details, as
well as a large set of sensors and actuators.
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Fig. 1. Single robot performance under
spatial interferences during 1 second
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Fig. 3. μ and 3 × σ of the number of
objects retrieved during 12·103 seconds
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According to the central limit theorem, the r.v. associated with the number
of retrieved objects at the deadline 12 · 103 is normally distributed with the
mean and the standard deviation as in following:

μωi(12·103) = 120μωi(100) (12) σωi(12·103) =
√
120σωi(100) (13)

Figures 5 and 6 illustrate the mean and the standard deviation of the number
of objects retrieved within the deadline Di = 2 · 103, compared to the mean
and standard deviation predicted by CLT using 12 and 13.

Theprobability of retrievingmore thanSi objectswithin thedeadlineDi can
be derived using the CDF of the normal distribution using in Equation (9):

Pr(ωi(2 · 103) � Si) = 1− [
1

2
+

1

2
erf(

(Si − 1)− μωi(2·103)√
2σωi(2·103)

)]

= 1− [
1

2
+

1

2
erf(

(Si − 1)− 120 μωi(100)√
2
√
120 σωi(100)

)] (14)

By performing 125 ARGoS simulations, Figures 7 and 8 show the probability
density function (PDF) associated with the number of objects retrieved by
the swarm at deadline Di = 2 · 103. In Figure 7 using the mean μωi(100) =
10.3411 and standard deviation σωi(100) = 2.7931 measured after the system
stabilizes and in Figure 8 using the the mean μωi(100) = 10.6239 and standard
deviation is σωi(100) = 2.9755 measured with taking the system performance
though the start-up time into account. Figures 9 and 10 show the cumulative
distribution function (CDF) associated with the number of retrieved objects
also in Figure 9 after the system stabilizes and in Figure 10 with taking the
start-up time into account.

– Single robot performance over short experiments:
Here, we estimate the swarm performance at deadline Di = 2 · 103 in a self-
organized way by using the single robot performance measured within one
time-window by substituting it in Equation (3).

ωi(Di) =

K∑
j=1

N∑
l=1

βil(τj) ⇒ ωi(12 · 103) =
120∑
j=1

30∑
l=1

βil(100) (15)

According to the CLT, the r.v. associated with objects retrieved by the
swarm up to the deadline 12 ·103, is normally distributed with the mean and
the standard deviation as in following:

μωi(12·103) = 120× 30μβij(100)

(16)
σωi(12·103) =

√
120× 30σβij(100)

(17)

This estimation can be performed by the robots themselves and could help
them in making appropriate allocation decisions. The probability of in-
terest in Equation (4) can be calculated by applying the CDF of normal
distribution (9):
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Fig. 7. PDF of the retrieved number
of objects without taking the start-up
time into account
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Fig. 8. PDF of the retrieved number of
objects with taking the start-up time
into account
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Fig. 9. CDF of the retrieved number
of objects without taking the start-up
time into account
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Fig. 10. CDF of the retrieved number
of objects with taking the start-up time
into account

Pr(ωi(2 · 103) � Si) = 1− (
1

2
+

1

2
erf(

(Si − 1) − μωi(2·103)√
2 σωi(2·103)

))

= 1− (
1

2
+

1

2
erf(

(Si − 1)− 120× 30 μβij(100)√
2
√
120× 30 σβij(100)

)) (18)

The swarm performance here is simulated only in the situation of taking
the start-up time into account. Measuring the swarm performance after the
system stabilizes is straightforward as mentioned above. Figure 11 shows
the comparison between the estimated (PDF) of the r.v. associated with the
number of objects retrieved by the 30 robot at Di = 2 · 103 and the empir-
ical one. Figure 12 shows the same comparison but for the cumulative dis-
tribution function(CDF) of both. The reason why the estimation performed
using the individual robot’s contribution is not the same accurate as the one
performed using the swarm contribution, is that, in the case of the swarm
the average performance of N robot is taken into account.
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Fig. 11. PDF of the number of re-
trieved objects estimated based on sin-
gle robot performance
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Fig. 12. CDF of the number of re-
trieved objects estimated based on sin-
gle robot performance

6 Conclusion

In this paper, we presented a probabilistic study of the swarm performance that
can be achieved within long-term deadlines and under the influence of spatial
interferences. Estimating the performance of robots swarms is an important con-
cept especially for tasks where the performance should be planned under specific
constraints like time constraints. In such cases the early estimation of the per-
formance will be obtained at the long-term deadline of the considered task, is of
a significant importance.

The central limit theorem CLT, is a straightforward tool and the core theo-
rem which was investigated in this paper to perform the global performance es-
timation of the swarm. Such a mathematical estimation represents a useful tool to
preserve time and resources in comparison to real-time experiments or computer
simulations. The estimation of the swarm robotic performance over long-term
deadlines using the central limit theoremwas accomplished into two contexts: first
by using the swarmcontributions over short-termexperiments and second in a self-
organized way by using the single robot performance over short experiments.

The accomplishment of the performance estimation over short experiments,
allows for the possibility of launching repair mechanisms at an early stage of
the execution. In addition, this estimation is considered to be useful especially
in cases where the swarm performance and/or the single robot performance are
not following a well-known distribution like the normal distribution. In such
cases, the central limit theorem can be applied efficiently to accomplish swarm
performance estimations.
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Abstract. In this paper we examine several methods for improving the
performance of MLP neural networks by eliminating the influence of
outliers and compare them experimentally on several classification and
regression tasks. The examined method include: pre-training outlier elim-
ination, use of different error measures during network training, replacing
the weighted input sum with weighted median in the neuron input func-
tions and various combinations of them. We show how these methods
influence the network prediction. Based on the experimental results, we
also present a novel hybrid approach improving the network performance.

1 Introduction

An outlier is an example that is numerically distant from the rest of the surround-
ing data. That can be either a point that is close to its neighbors in the input
space, but distant from the output space (different class or much different value
in the case of regression) or that is far from any points as well in the input as
in the output space. Outliers often indicate either of measurement error or some
data points that are so rare that should not be taken into account while building
the data model. Thus we want either to discard them or use approaches that
are robust to outliers. Another problem is that sometimes it cannot be clearly
stated if a given point is an outlier or not and rather some degree of being an
outlier that a crisp decision is preferred. In that case the model does not entirely
disregard such a point, but decreases its influence on the model parameters.

Multilayer perceptron neural networks (MLP) are one of the models that can
be used to represent the data. They are trained by minimizing an error function
on the training set, to make the network map the input data distribution to the
output space variable, which can be either discrete in the case of classification or
continuous in the case of regression, or can represent some structured data. The
performance of the trained network obviously depends not only on the network
architecture and learning algorithms, but on the quality of the training data
as well. A noisy dataset with many outliers does not describe well the desired
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mapping from the input to output space. In this case also the neural network
trained on that data will not implement the proper mapping.

The methods designed to make the network training robust to gross errors
and outlying data points are usually tested on artificially generated datasets
with variable amount of large outliers generated with different models [1–3, 24].
In this article we intend to investigate the effectiveness of such algorithms on
real data without any additional contamination. This is due to the fact that in
real problems we do not know whether the data is contaminated, or reliable,
when the MLP model is built.

In this work we consider two groups of approaches to deal with this problem.
The first group is based on the modification of the neural network parameters,
as the error function or neuron input function. The network training is modified
and the training data is left in its original state. We discuss these approaches in
section 2. The second group of approaches is based on outlier reduction methods.
In this case the data is modified and the network is trained using the standard
mean square error function. This is discussed in section 3. We also present an
algorithm based on joining the aforementioned approaches. Section 4 presents
the experimental comparison of the discussed methods on several classification
and regression tasks and finally the last section concludes this work.

2 Modification of the Network Parameters

2.1 Outlier Dependent Error

The simplest approach to make the MLP training process more robust to outliers
is to replace common MSE (mean squared error) criterion with a function based
on the idea of robust statistical methods. The MSE function is typically used
for supervised neural networks training methods because it is simple and easy
to optimize error measure. However, similarly to the least mean squares method,
it is optimal only for data sets contaminated at most by Gaussian white noise
[9, 11, 19]. This is due to the fact that MSE is strongly influenced by large errors.
In the case of network training, this influence, measured by a derivative with re-
spect to residuals, can be described by a linear function [9, 17]. To overcome the
problem of unpredictable MLP model for training data containing outliers, sev-
eral robust learning algorithms have been proposed. Such algorithms very often
make use of modified error function, derived from robust statistical estimators.
The training data are not filtered, so the robustness to outliers is based only on
reducing the impact of large training residuals, potentially caused by outlying
data points.

The error training function can be modified in many ways: in [17] Liano
proposed a new LMLS (Least Mean Log Squares) error function based on so-
called M-estimators, which should be optimal for the Cauchy distribution but
performs well also for other long-tailed error distributions. Chen and Jain [1]
decided to use the Hampel’s hyperbolic tangent with additional scale estimator
β. The scale estimator helped in determining the range of residuals believed to
be outliers. A similar error performance function combined with the annealing



Improving MLP Neural Network Performance by Noise Reduction 135

scheme to decrease β with the training progress was proposed by Chuang and
Su [2]. A more sophisticated approach, using tau-estimators was described in
[20]. Also quartile-based estimators were applied as the error function in the
LTS (Least Trimmed Squares) algorithm [23] and in [3], where El-Melegy et
al. presented the Simulated Annealing for Least Median of Squares (SA-LMedS)
algorithm. Similar median error function was described in [24]. The error measure
based on robust estimators was also combined with approaches known from
image processing, as random sample consensus algorithm [4–6].

All the aforementioned methods focus mainly on modifying the error function,
in order to decrease the influence that outliers may have on the network training.
In this article we decided to test the most popular robust error measure, namely
LMLS. This modification of the training algorithm is a highly cited technique
[1–3, 6] and this is why we chose to use it. The LMLS error is then defined as:

ELMLS(w) =

n∑
k=1

m∑
i=1

log(1 +
1

2
rki

2(w)), (1)

where rki = (yki(w) − tki) is the error of i-th output for the k-th training set
element, n is the size of the training set and m is the number of network outputs
(see fig. 1-left).

Our experiments were performed also with the mean absolute error (MAE)
function. This well-known error formula can be also derived from robust M-
estimators. As it was demonstrated in [3], the MAE criterion is probably the
most effective of all constant error functions, when applied to training data with
artificially introduced outliers. We define mean absolute error as:

EMAE(w) =

n∑
k=1

m∑
i=1

|rki(w)|. (2)

2.2 Median Input Function

An approach to MLP network training using the median neuron input function
(MIF) was proposed in [22]. In such networks summation of weighted input
signals is replaced with their median. When the summation is replaced by more
robust operation, such as median, the neuron output becomes less sensitive to
the changes in the input (neuron input, or input weights). Hence, the MIF is
not a direct method to make the training process more robust to outliers but it
enables the MLP to build a more general model.

Then we can define the MIF neuron output as:

yout = f(med{wixi}Ni=1), (3)

where f(·) denotes neuron transfer function (e.g. sigmoid or linear), xj are neuron
inputs, wi is the i-th input weight and N denotes input size. However, there exist
several problems concerning practical use of MIF networks. It is clearly evident
that calculating MIF output is computationally more expensive than in the case
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of simple sum. Moreover, the input function given by (3) makes the network error
function non-differentiable, so it cannot be simply trained with gradient-based
methods. So for that purpose in [22] an approximated algorithm, based on the
gradient for a simple sum, was described. This approach can be applied also for
non-differentiable error performance based on the median of residuals [24].

Another problem with a MIF is that when the network is trained on regression
tasks, the model built by the network may not react to single or small changes
in the dataset. For that reason we combine the median input (which provides
the outlier-robust part) with the sum (which provides high sensibility), defining
a new input function as:

yout = f(δmed{wixi}Ni=1 + (1− δ)

N∑
i=1

wixi), (4)

where 0 < δ < 1 determines the median influence on neuron input function.
We experimentally determined that the optimal range of δ for most datasets is
between 0.6 and 0.9. The learning process was not sensible to little changes of δ
within this range, so in the experiments we used δ = 0.75.

3 Outlier Reduction

3.1 Instance Selection

The reasons for reducing the number of instances in the training set include: noise
reduction by elimination outliers, reducing the data set size and sometimes im-
proving generalization by eliminating instances that are too similar to each other,
faster training of the model an a smaller dataset and faster prediction in of the
model, especially in the case of lazy-learning algorithms, as k-NN. Thus the aim
of the instance selection algorithms can be either noise reduction, as in the case
of the Edited Nearest Neighbor algorithm (ENN) [27] or data compression, as
in the case of the Condensed Nearest Neighbor rule (CNN) [10] or both. In this
work we focus on the first area: noise reduction. Although in practical applica-
tions preliminary attribute selection is also beneficial [7] (irrelevant attributes
may produce false positive signals in outlier detection algorithms), we do not
discuss the aspect here for the sake of focusing on the main topic this work.

A large survey including almost 70 different algorithms of instance selection for
classification tasks can be found in [25]. The instance selection issue for regression
tasks is much more complex. In classification tasks only the boundaries between
classes must be determined, while in regression tasks the output value must be
assessed at each point of the input space. Moreover, in classification tasks there
are at most several different classes, while in regression tasks, the output of the
system is continuous, so there are an unlimited number of possible values to
be predicted by the system. The decision about rejection of a given vector in
classification tasks can be made based on a right or wrong classification of the
vector. In regression problems, rather a threshold defining the difference between
the predicted and the actual value should be set. Determining the threshold
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(which is rather a function than a constant value) is an important point. Another
issue is the measure of the quality of the model, which in classification tasks is
very straightforward (classification accuracy), while in regression tasks, it can
be defined in several ways. In practical solutions not always the simple error
definitions as the MSE (mean square error) work best [14], because also the
cost of the error must be taken into account. Depending on a given application,
the cost can be higher in different areas of the output (in a similar way as
cost matrix in classification tasks) and can depend on the error value. Because
of the challenges, there were very few approaches in the literature to instance
selection for regression problems. Moreover, the approaches were verified only on
artificial datasets generated especially for the purpose of testing the algorithms.
Zhang [28] presented a method to select the input vectors while calculating the
output with k-NN. Tolvi [26] presented a genetic algorithm to perform feature
and instance selection for linear regression models. In their works Guillen et al.
[8] discussed the concept of mutual information used for selection of prototypes
in regression problems.

Algorithm 1. regENN algorithm
Require: T

m ← sizeof(T);
for i = 1 . . .m do

Ȳ (xi) =NN((T \ xi),xi);
S ← Model(T,xi)
θ = α · std (Y (XS))
if

∣
∣Y (xi)− Ȳ (xi)

∣
∣ > θ then

T ← T \ xi

end if
end for
P ← T
return P

For the purpose of noise reduction we will use the ENN (Edited Nearest
Neighbor) algorithm [27] and its version for the regression tasks - regENN. The
main idea of the ENN algorithm is to remove a given instance if its class is
different than the majority class of its neighbors. ENN starts with the whole
original training set T. Each instance, which is wrongly classified by its k nearest
neighbors is removed from the dataset, as it is supposed to be an outlier. In
repeated ENN, the process of ENN is iteratively repeated as long as there are
any instances wrongly classified. In all k-NN algorithm, the ENN is repeated for
all k from k = 1 to kmax. In [13] we proposed an extension of several instance
selection algorithms for regression tasks. We shortly describe below the ENN
algorithm for regression tasks - regENN.

To adjust the ENN algorithms to regression tasks the wrong/correct classifi-
cation decision is replaced with a distance measure and a similarity threshold,
to decide if a given vector can be considered as similar to its neighbors. We use
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a weighted k-NN with k = 9, where the weight wi exponentially decreases with
the distance di between the given vector and its i-th neighbor xi. The predicted
output y is given by eq. 1.

y =

∑k
i=1 wiyi∑k
i=1 wi

(5)

where wi = 2−0.2di. We use Euclidean distance measure and a threshold Θ, which
expresses the maximum difference between the output values of two vectors
to consider them similar. Using Θ proportional to the standard deviation of k
nearest neighbors of the vector xi reflects the speed of changes of the output
around xi and allows adjusting the threshold to that local landscape, what, as
the experiments showed, allows for obtaining higher compression of the dataset.
As the regression model to predict the output Y(xi) we use k-NN with k = 9
as the Model(T,xi) (k = 9 usually produced good results). In case of regression
we experimentally evaluated the optimal Θ and we used Θ equal to 5 standard
deviations of the 9 nearest neighbors for RegENN.

3.2 Anomaly Detection

We used the ENN and regENN algorithms to reject the outliers prior to the net-
work training. Here we describe an algorithm based on a k-NN Global Anomaly
Score algorithm (k-NN GAS), which we use to assess the degree to which a
given instance is an outlier prior to the network training and then remain all
the instances in the training set, but differentiate the way they are included in
the training. The k-NN Global Anomaly Score algorithm calculates the anomaly
score based on the k nearest neighbors implementation. The outlier score of an
instance is the average distance between the instance and its k nearest neighbors.
In the experiments we use k = 9 and Euclidean distance measure. The higher
the outlier score the more anomalous the instance is. However, for the purpose
of labeled data, we had to extend this score, including for the calculation the
distance in the input space dx and the distance in the output space dy. In the
case of classification we add one to dy for each neighbor of a different class and
zero for each neighbor of the same class. We define the modified anomaly score
Asc as:

Asc = dy/dx (6)

Then we assume that the higher the anomaly score is, the more likely the
instance is to be an outlier and the less influence it should have on the network
training. We obtain this by dividing the error the network makes during the
training on each instance by a greater value if the instance anomaly score for
the instance is higher (see fig. 1-right):

Error =

{
Error/A2

sc if Asc > αmedian(Asc)

Error/(αmedian(Asc)) otherwise
(7)
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Where α is a parameter. In the experiments we used α = 1 This modification
(considering also distance in the output space) of the k-NN global anomaly score
incorporates the idea of the local density of Local Outlier Probability detection
algorithm (LOOP). LOOP, contrary to k-NN global anomaly score, includes only
the local density of the points in the hyperspace. If a density measured by the
number of points in a hypersphere of a certain radius, where the given point is in
the center of the hypersphere, is much smaller then inside hypersheres centered
upon k-neighbors of that point, then the point is considered an outlier. The
resulting values are scaled to a value range of (0;1). The higher the value the
more anomalous the instance is. A survey of outlier detection methods can be
found in [12].

Fig. 1. Left: The square (A) and the LMLS (B) error function. Right: The square error
function used for non-outliers (A), for a weak outlier (B) and for a strong outlier (C).

4 Experimental Comparison

4.1 Datasets

It is worth noticing that all the considered datasets were not artificially contami-
nated. We did not introduce artificial outliers, testing the algorithms on the real
data. We performed the experiments on eight datasets. First all the datasets were
standardized so that the mean value of each attribute is zero and the standard
deviation is one to make comparison of the results easier. We used four classi-
fication and four regression datasets. Six datasets come from the UCI Machine
Learning Repository [18]: Iris (3 classes, 4 attributes, 150 instances), Diabetes
(2 classes, attr., inst.), Glass (5 classes, attr., inst.), Ionosphere (2 classes, attr.,
inst.), Concrete Compression Strength (regression, 7 attributes, 1030 instances),
Crime and Communities (regression, 7 attr., 320 inst.). Two datasets comes from
a metallurgical industry. The purpose of the SteelC dataset (regression, 14 attr.,
2384 inst.) is to predict the amount of carbon that must be added in the steel-
making process, given various chemical and physical properties of the liquid steel
in the furnace. The purpose of the SteelT dataset (regression, 11 attr., 7401 inst.)
is to predict the actual temperature of the liquid steel given a set of physical



140 M. Kordos and A. Rusiecki

values, as temperature in various points on the surface of the furnace, the en-
ergy delivered to the process and others (directly measuring the temperature
requires some disruptions of the steel-making process making it longer and more
expensive).

4.2 Experimental Setup

We implemented the algorithms in C# and Matlab. The source code and datasets
used in the experiments can be downloaded from [16]. The whole process in
different configurations was run in 10-fold crossvalidation loops. To be able to
compare the results, we always measure and raport in the table the MSE error on
the test sets, no matter which error function was used for the network training.
Also the MLP architecture was constant (the same for each training method) for
a given dataset. We used 5 hidden neurons for iris, diabetes, glass, steelC, and
crime, and 6 hidden neurons for the ionosphere, steelT and concrete.

4.3 Modification of the Network Parameters with Gradient-Based
Learning

In our experiments we decided to apply two general training frameworks:
gradient-based learning for modified network parameters (different error and
neuron input functions), and non-gradient VSS method for the rest of the algo-
rithms. Tested error functions included LMLS and MAE error measures (equa-
tions 1 and 2), used as MLP training criteria. We used also MIF (3), and MedSum
(4) neuron inputs. For the case of MedSum, we assumed equal participation of
both input functions, setting δ = 0.5. The results of such modified networks were
compared to traditional approach: the MSE error function and simple weighted
sum as neuron input.

For the modified error functions we could not use one of the most popular
methods, namely, Levenberg-Marquardt algorithm, which is dedicated to the
MSE. Moreover, as it was mentioned in Section 2.2, the MIF nets cannot be
trained by regular gradient methods, so following [24, 22] we decided to apply
resilient backpropagation (Rprop) algorithm [21].

Analyzing the results obtained for these methods, we cannot definitively de-
cide that there is a single method, which outperforms other approaches. The
standard MSE network is the best between gradient-based methods only for one
dataset (steelC), similarly MIF (ionosphere), whereas MAE, LMLS, and Med-
Sum are the winners for two datasets each. (As mentioned earlier we compared
the MSE on the test sets, no matter which error function was used for network
training.) The performances of the tested approaches differ, depending on the
training data sets. Only pure MIF strategy, because of its discontinuity, often
worsen the results. In general, these algorithms seem to be more efficient, than
outlier reduction methods, for classification tasks, and less accurate for regression
problems.
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4.4 Outlier Reduction with Nongradient-Based Learning

The training algorithm we used to test the outlier reduction-based method was
a non-gradient based VSS (Variable Step Search Algorithm). The idea of the
VSS algorithm is to make advantage of the properties of MLP network error
surface in the weight space, on which the training trajectory is situated, that
it is more likely that each training epoch the trajectory direction will be only
slightly adjusted that totally changed and therefore the VSS algorithm makes
guesses about the optimal modification of each neuron weights in each epoch and
then the guesses are adjusted as needed. Details of the algorithm can be found in
[15]. The VSS algorithm was also used to test the coexistence of outlier reduction
methods and the MedSum function. We used the same network architectures as
for the Rprop training and about 12 training epochs for each dataset. We are
going to join two our programs in one and use only one training method in the
future experiments. However, to obtain a clear comparison between the methods
tested with Rprop and with VSS, the exact number of epochs was adjusted so
that the crossvalidation accuracy on the standard network trained with Rprop
and VSS would be the same.

Looking at the results obtained for these methods, we can observe some regu-
larity. First, the ENN usually did not improve the results with the classification
problems, even more the results were worse. This can be explained by the fact,

Table 1. Experimental results for classification problems - classification accuracy in
10-fold crossvalidation (higher is better)

algorithm iris diabetes glass ionosphere
MSE 0.963±0.038 0.765±0.046 0.670±0.094 0.911±0.051
LMLS 0.971±0.055 0.773±0.044 0.691±0.089 0.899±0.083
MAE 0.951±0.063 0.784±0.052 0.592±0.082 0.828±0.061
MIF 0.940±0.095 0.695±0.061 0.605±0.102 0.950±0.048
MedSum 0.956±0.058 0.760±0.037 0.696±0.104 0.922±0.060
ENN 0.960±0.040 0.765±0.043 0.614±0.066 0.910±0.059
k-NN GAS 0.974±0.045 0.775±0.031 0.674±0.074 0.911±0.029
MedSum + k-NN GAS 0.967±0.032 0.764±0.047 0.684±0.046 0.917±0.053

Table 2. Experimental results for regression problems - MSE in 10-fold crossvalidation
(lower is better)

algorithm steelC steelT concrete crime
MSE 0.031±0.013 0.576±0.111 0.798±0.250 0.343±0.062
LMLS 0.033±0.019 0.551±0.072 0.857±0.296 0.345±0.101
MAE 0.038±0.013 0.560±0.082 0.969±0.358 0.318±0.109
MIF 0.070±0.018 0.844±0.070 0.869±0.267 0.341±0.060
MedSum 0.035±0.015 0.574±0.113 0.794±0.321 0.338±0.080
regENN 0.032±0.010 0.576±0.111 0.778±0.256 0.341±0.067
k-NN GAS 0.031±0.018 0.541±0.097 0.778±0.251 0.341±0.060
MedSum + k-NN GAS 0.028±0.013 0.526±0.092 0.764±0.211 0.336±0.073



142 M. Kordos and A. Rusiecki

that the instances, which were rejected by ENN were in most cases situated close
to the decision boundaries and thus removing them made determining the class
boundaries less precise. It would probably work better with very noisy data, where
it would reject more outliers that vectors situated close to class boundaries. In case
of regression the regENN algorithm can be adjusted with the Θ parameter to re-
ject the optimal number of outliers (if the error increases we increase Θ, till the
error stop increasing), so it does not cause error increase. However it decreased
the error only in two out of four cases. The modified k-NN GAS algorithm adjusts
the error measure individually to each training vector. Because it can be adjusted
with the α parameter it also did not worsen the results, but it improved them in
all but two cases. Joining the modified k-NN GAS algorithm with the MedSum
neuron input function proved to work best. The results were further improved in
six out of eight cases. This can be explained by the fact that when to the summa-
tion in the neuron function a more stable operation, such as median is added, the
neuron output becomes less sensitive to perturbances in the data.

5 Conclusions

We examined several methods of improving the performance of MLP neural net-
works by outlier elimination and compare them experimentally on several classifi-
cation and regression tasks. The examined method included: pre-training outlier
elimination, use of different error measures during network training, replacing
the weighed input sum with weighed median in the neuron input functions and
various combinations of them.

The obtained results are very interesting. There is an additional cost of cal-
culating the median equal to the quicksort algorithm of sorting the arrays of
the dimension of the number of instances in the training set. Especially joining
the two groups of methods in one network training, allowed for the best error
reduction, especially in regression problems. In most cases, modified MLP train-
ing methods outperformed traditional MSE approach, however the choice of the
best algorithm can be merely indicative. Especially for the regression problems
most of the best results were obtained for our novel hybrid algorithm, joining
k-NN GAS with MedSum neuron input. This approach can be considered as
effective tool to improve the MLP performance on real-life problems.
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Abstract. Nowadays, wireless sensor networks are widely used in many
fields of application. This promotes that many authors try to overcome
the most important shortcomings of this type of network. This paper
focuses on how to add relay nodes to previously established static wire-
less sensors networks in order to optimize two important factors: average
energy consumption and average coverage. Since this is an NP-hard opti-
mization problem, three different multiobjective metaheuristics are used;
two of them are well-known genetic algorithms (NSGA-II and SPEA2)
and the third is a multiobjective version of the trajectory algorithm VNS.
All the results obtained are analyzed by means of a widespread statistical
methodology, using both set coverage and hypervolume as multiobjective
quality metrics. We conclude that MO-VNS provides better performance
on average than standards NSGA-II and SPEA2.

Keywords: metaheuristics, optimization, relay node, sensors.

1 Introduction

At present, Wireless Sensor Networks (WSNs) are one of the most important
emerging wireless technologies. We can find examples of its use in a wide range of
fields, such as environmental control, fire detection, precision agriculture, robotic,
home automation, rescue operations, among others [13].

Traditionally, WSNs are composed of a set of sensors that capture information
(temperature, humidity, . . .) of its environment, and a sink node (also called
collector node) that collects all the captured information, being this node the
only connection point of the WSN to the outside. There are some important
features that encourage the use of WSNs, such as the absence of wires and the
use of power autonomous low cost devices. These factors, among others, allow us
to deploy WSNs in environments where the use of other networks would be very
expensive or impossible. Nevertheless, WSNs also have important shortcomings
which have not been solved yet and affect important features.

WSNs have a clear dependence on the energy consumption because sensors
are powered by batteries to avoid the use of wires: each time a sensor captures
an information packet, this device has to send it to the collector node, which

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 145–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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implies an energy expenditure. In addition, sensors are usually at a distance
greater than one hop from the collector node, which involves a higher energy
cost due to retransmissions, and causes the existence of bottlenecks (sensors
that are subjected to a higher energy cost). With the purpose of avoiding these
bottlenecks, a new device specialized in communication tasks and called router
or relay node was recently added to WSNs, reducing the workload of sensors.

The efficient deployment of a WSN depends on many factors, even more if
we include these new devices. For this reason, the efficient design of a WSN has
been defined as an NP-hard optimization problem by some authors [2] [16]. NP-
hard optimization problems have been tackled in the literature through several
methodologies, e.g heuristics, Evolutionary Computation (EC), and so on.

We find two main lines of research for WSNs. On the one hand works that
study the optimization of traditional WSNs. Using heuristics we may cite the
contributions of Cheng et al.[2](who optimize the energy consumption assigning
different power transmission levels to the sensors) and Cardei et al [1] (who split
WSNs into disjoint set of sensors, deciding which must be active at each time
to increase network lifetime); and using EC Konstantinidis and Yang [6] (who
assign different power transmission levels to the sensors as in [1], but optimizing
coverage and network lifetime). On the other hand, works that optimize WSNs
by adding relay nodes. This line of research appeared later trying to overcome
an important shortcoming: most papers in the previous line use many redundant
sensors to optimize the energy consumption, which implies a higher network cost.
Using heuristics, we can find papers such as Han et al. [5](who maximize the
network lifetime) and Wang et al. [16] (who optimize the energy consumption
using routers with processing limitations); and using EC Perez et al. [14](who
optimize the energy cost and the number of routers used.)

Our work follows the second line of research: we study how to add routers to
previously-established traditional static WSNs (a set of sensors and a collector
node) simultaneously optimizing two important factors: average energy consump-
tion and average coverage; this is the so-called Relay Node Placement Problem
(RNPP). With this goal, we used three different metaheuristics (techniques to
solve very general kind of optimization problems), providing good solutions in
lesser computation times.

In the curse of this paper, the following contributions are presented:

– The RNPP is solved using a multiobjective version of the Variable Neighbor-
hood Search algorithm (MO-VNS) [4], comparing the results obtained with a
previous contribution [9] where two well-known standard genetic algorithms
were used: NSGA-II [3] and SPEA-2 [19].

– We used two multiobjective measures (hypervolume[17] and set coverage[18]),
and a widespread statistical methodology to analyze the results obtained.

– A public free testbed was used [8], which means that this work can be repli-
cated and improved by other authors. In the literature, most papers use
randomly generated data set or non-public ones.

The organization of the rest of the paper is as follows. In Section 2 we give a
formal statement of the RNPP. Algorithms used are described in Section 3 and
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Note: - Coordinates of sensors and collector
are provided by the instance.

- Coordinates of routers are provided
by the optimization process.

Fig. 1. Representation of the network model considered in this work

the simulation results in Section 4. Finally, we expose our conclusions and future
works in Section 5.

2 Relay Node Placement Problem in WSNs

A WSN as we consider in this paper is composed of a 2D-surface of size Dx×Dy

where three kinds of devices are placed: M sensors, N routers and a sink node
(see Figure 1). Sensors capture information from its environment with a sensibil-
ity radius Rs, on regular basis and simultaneously. Each time a sensor capture
an information packet (with K bytes), this device must send it to the sink node
which collects all the information captured, using as routing protocol the mini-
mum distance among devices provided by Dijkstra’s algorithm. Finally, routers
are devices specialized in communication tasks, which only relay all received in-
formation to the collector node. All these devices can communicate among them
with a same communication radius Rc, having collector and routers an unlimited
power supply, and sensors being powered by batteries.

With the purpose of modeling the energy expenditure suffered by the sensors,
a known energy model proposed by A. Konstantinidis et al. was used [6]. This
model simulates packet loss, which is common in wireless environments. In addi-
tion, we suppose a perfect medium access and a perfect synchronization among
devices, which ensures that there will be no collisions among communications.

According to this energy model, the transmission power that a sensor i needs
to reach another device j is defined as

Pi = β · dαi,j i ∈ 1, . . . ,M j ∈ 1, . . . ,M +N + 1, (1)

where β > 0 is the transmission quality parameter, di,j is the distance between
i and j, and α ∈ [2, 4] is the path loss exponent. All the sensors start with
the same energy charge (EIC) in their batteries, which will be decreased over
time due to transmission tasks. Following this definition, the residual energy of
a sensor i at time t is given by the following expression

Ei(t) = Ei(t− 1)− [(ri(t) + 1) · Pi · amp ∗K] i ∈ 1, . . . ,M, (2)
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where amp is the energy consumption per bit of the power amplifier, ri(t) is the
number of incoming packets that i receives at time t, and that the sensor has to
relay to the collector node; and the +1 term is due to i captures an information
packet at this time which must be sent too. As other works consider, the energy
cost due to capturing, processing and reception tasks are considered negligible.

There is an important concept in this problem definition: the network lifetime
(LF ). It is the amount of time units over which a WSN is able to provide enough
information about its environment. A coverage threshold (CV ) is used for this
purpose, i.e at least a certain percentage of the surface must be covered to
consider the information provided is enough. When a sensor battery is exhaust,
the coverage provided by the sensor will not be taking into account, and then
the global coverage could decrease reaching the coverage threshold.

To summarize, the RNPP is defined as an NP-hard multiobjective optimiza-
tion problem given by the size of the 2D-surface (Dx × Dy), the number of
routers (N), the position of the collector node (C), the position of the M sen-
sors, the information packet size (K), the sensibility and communication radius
(Rs and Rc), the coverage threshold (CV ), the initial energy charge (IEC) and
the energy parameters (amp, β and α). The fitness functions are the following:

– Average Energy Consumption (AEC): This is the average power consump-
tion of the sensors over the network lifetime. It is measured in Joules (J).
This function is defined as

f1 = LF−1 ×
LF∑
t=1

M∑
i=1

(
Ei(t− 1)− Ei(t)

sensorsAlive(t)

)
, (3)

where sensorsAlive(t) is the number of sensors with a residual energy greater
than zero at time t, and Ei(t) is given by (2).

– Average Coverage (EC): This is the average coverage provided by the sensors
over the network lifetime. In the literature, we can find two main ways to
obtain the network coverage. On the one hand, some authors say that a
sensor covers a round area of radius Rs, so the global coverage is the union
of each of them. On the other hand, other authors use a binary matrix of
demand points placed on the surface, where a demand point will be active
whether there is some alive sensor at a distance lower than Rs at this time;
finally, activated demand points are counted. In this work, we opted for the
second method; although the first one is a bit more precise, the second one
is less hard to compute. The fitness function is defined as

f2 = LF−1 ×
LF∑
t=1

�Dx�∑
x=1

�Dy�∑
y=1

(
Rx,y(t)

�Dx� × �Dy�

)
, (4)

where R is a matrix of �Dx�×�Dy� cells with a binary demand point placed
in the middle of each cell. Accordingly, Rx,y(t) is the demand point placed
in the cell {x,y} at time t, so the cell size is 1 × 1. A value of zero implies
that the demand point is inactive, and a value of one is the opposite.
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3 Multiobjective Optimization

As we said previously, the RNPP is an NP-hard problem, hence it is necessary
to use non-traditional techniques to solve it in a reasonable computing time.
With this purpose, we decided to use three different metaheuristics, two of them
(NSGA-II and SPEA-2) are genetic algorithms, and the third is a multiobjective
version of the trajectory algorithm VNS. This last algorithm explores the search
space by moving from one neighborhood to another, showing a good performance
in many optimization problems. In this paper, a MO-VNS version which includes
a perturbation mechanism is used, because of we checked that it provided bet-
ter results for this problem definition than the traditional version without this
mechanism. These results are not included due to space limitations.

NSGA-II and SPEA-2 follow a similar scheme. NSGA-II uses two populations
Pt and Qt of equal size PS; the first one saves the parents of generation t, and
the second one saves the offspring of population Pt. Initially, Pt is randomly
generated and Qt is empty, then so long as the stop criterion is not reached, both
populations are combined in a new one Rt. Next all solutions in Rt are evaluated
using crowding and rank measures, selecting the best PS solutions of Rt as the
new Pt+1. Then a new Qt+1 is generated based on Pt+1. For this purpose, and
so long as the new Qt+1 is not filled, a pair of individuals are selected from Pt+1

though binary tournament method. Then, using both crossover and mutation
operators, a new individual is generated and inserted into Qt+1. We considered
as crossover operator the widely used one-point crossover. As mutation operator,
we used a greedy strategy, where the router coordinates are randomly changed
and only changes that provide better solutions are considered.

SPEA-2 uses an auxiliary population Pt where the best solutions are saved
along generations, and a regular population Pt with sizes PS and PS respectively.
Initially, Pt is randomly generated and Pt is empty, then so long as the stop
condition is not reached, the algorithm obtains the fitness values for each solution
in Pt∪Pt. This fitness value is based on the dominance concept and an additional
density measure, so the algorithm calculates the number of individuals that each
individual dominates. Next, according to these fitness values, the best solutions
of Pt∪Pt are inserted into the new Pt+1. Finally, a new Pt+1 is generated through
Pt+1 using crossover and mutation as we discussed for NSGA-II.

MO-VNS is a multiobjective trajectory algorithm that uses neighborhood
structures to perform local searches. The definition of these neighborhood op-
erators is an essential aspect in the algorithm. In this paper, a neighborhood
structure is defined as the maximum value that a router can be displaced from
its initial coordinates during the local search. Accordingly, the set of neighbor-
hood structures Ns is given by the expression

Ns =

{
nsk ∈ R / nsk =

min(Dx, Dy) ∗ k
dv ∗ kmax

}
for k = 1, . . . , kmax, (5)

where kmax is the maximum number of neighborhood structures, dv is the reduc-
tion factor of the surface to delimit the maximum displaced, and min(Dx, Dy)
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Algorithm 1. MO-VNS with perturbation

1: insert a random solution in the emply Pareto Front Pv

2: generate the set of neighborhood structures Ns

3: while not stop condition do
4: while there are some unmarked solution in Pv do
5: a ← randomly pick an unmarked solution from Pv and mark a
6: nsk ← randomly pick a neighborhood structure, k ∈ 1, . . . , kmax, nsk ∈ Ns

7: while k <= kmax do
8: ã ← generate a neighborhood solution of a in nsk

9: insert ã in Pv and update the Pareto Front
10: if ã ∈ Pv then
11: k ← 0 and a ← ã
12: else
13: k ← k + 1
14: end if
15: end while
16: end while
17: perform perturbation in Pv to generate a new base solution
18: reset all the marks of Pv

19: end while

is the minimum value between Dx and Dy. Note that Ns is a sorted set, hence
nsk will be lower than nsk+1

.
As we observe in Algorithm 1, MO-VNS starts with the generation of an initial

solution which is added to the non-dominated solution set Pv that the algorithm
maintains during search (line 1). Randomly, an unmarked solution a ∈ Pv and a
neighborhood structure nsk ∈ Ns are selected to generate a neighboring solution
ã through a local search using a ∈ Pv as base solution, marking a as visited (lines
5-6). This way, for each router Raz ∈ R

2, z ∈ 1, . . . , N of a ∈ Pv, we perform a
random displaced defined by the following expression:

Rãz = Raz +
(nsk

2
− rand(nsk )

)
nsk ∈ Ns, k ∈ 1, . . . , kmax, (6)

where Rãz is the z−th router of the new individual ã and rand(nsk) is a random
number between 0 and nsk . Next, ã is inserted into Pv, updating Pv so that Pv

only contains non-dominated solutions (lines 8-9). If ã ∈ Pv, then the local
search provided a good solution, so ã is chosen as base solution and the search
is repeated again using a value k = 0 (lines 10-11). Otherwise, the neighborhood
structure is increased so long as k reaches the maximum number of structures
kmax (lines 12-13). If all the non-dominated solutions in the current Pv were
explored, the marks will be reset, all individuals are eligible for a reselection,
and a perturbation mechanism is performed trying to avoid local minima (lines
17-18). This mechanism is as follows: for each solution in Pv, a greedy mutation
operator is used as previously discussed for NSGA-II and SPEA2.
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Table 1. Instances used in this paper

Instance Dx×Dy M Rc HO-AEC HO-AC Ref AEC Ref AC

ideal nadir ideal nadir

100x100 15 30 100x100 15 30 0.1091 89.24% 0.02 0.1 100% 60%
100x100 15 60 100x100 15 60 0.1482 86.63% 0.02 0.1 100% 60%
200x200 15 30 200x200 57 30 0.2791 87.10% 0.10 0.30 100% 60%
200x200 15 60 200x200 57 60 0.3871 82.43% 0.10 0.30 100% 60%
300x300 15 30 300x300 128 30 0.4225 76.44% 0.04 0.50 100% 60%

Table 2. Parametric sweep

NSGA-II

Parameter Value Range

Mutation 0.5 0.05,0.1,0.15,. . . ,0.95
Crossover 0.5 0.05,0.1,0.15,. . . ,0.95

SPEA2

Parameter Value Range

Mutation 0.5 0.05,0.1,0.15,. . . ,0.95
Crossover 0.5 0.05,0.1,0.15,. . . ,0.95

MO-VNS

Parameter Value Range

Mutation 0.1 0.05,0.1,0.15,. . . ,0.95
kmax 11 4,5,6,. . . ,14
dv 3 1,2,3,4,5

4 Simulation Results

With the aim of comparing among the metaheuristics discussed previously, some
data sets were used. As none was found that fit this problem definition, a syn-
tectic data set was defined by ourselves in [8]. This data set is composed of three
scenarios where a set of sensors and a collector node are placed (Table 1). In all
cases, the number of sensors used is the minimum value to cover all the surface,
and the collector is placed in the center of the scenario.

As we stated in Section 2, the RNPP is defined by several parameters. In this
work, we take: Rs = 15m and Rc = 15m from [12], Rc = 30m (devices with
higher communication capacities), K = 128KB, CV = 70%, and the energy
parameters β = 1, EIC = 5J , amp = 100pJ/bit/m2 and α = 2 from [7].

The algorithms were used to optimize these instances adding routers. As we
see in Table 3, 16 test cases were defined, where a test case is an instance in
which a fixed number of routers are added. These test cases were defined taking
into account that including routers increases network cost; hence we decided not
to include more than 20% of these devices with respect to the number of sensors.

Before staring the experiments, the algorithms were tuned by means of a
parametric sweep [9]. In Table 2, we show the configurations that provide the best
behavior on average for each algorithm, and the range of values considered. The
population size for NSGA-II and SPEA2 was an habitual value of 100 individuals.
Chromosome definition is shown in Fig. 1.

As the RNPP is a multiobjective problem, we used some mutiobjective met-
rics. On the one hand, the hypervolume was considered. Accordingly, in Table
3 we find both average hypervolume and standard deviation for each algorithm,
test case and stop condition, where higher hypervolumes for 400 000 evalua-
tions are highlighted. Hypervolumes were calculated using the reference points
RefAEC and RefAC listed in Table 1. We performed 31 independent runs for
each combination in order to get statistical conclusions, and at least 30 sam-
ples are necessary. We analyzed the results by means of a widely used statistical
methodology. Firstly, Shapiro−Wilk’s [15] and Kolmogrov−Smirnov−Lilliefors’s
[10] tests were used with the hypotheses: data follow a normal distribution (H0)
or not (H1). P-values lower than 0.05 were obtained for all the cases, so data do
not follow a normal distribution, therefore we must use the median as average
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Table 3. Hypervolume and standard deviation for each algorithm and test case

MO-VNS(Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.90%, 0.0279 42.73%, 0.0214 44.68%, 0.0002 44.69%, 0.0001 44.69%, 0.0000

100x100 15 30(3) 58.28%, 0.0037 58.47%, 0.0006 58.49%, 0.0006 58.52%, 0.0020 58.57%, 0.0016

100x100 15 60(2) 34.46%, 0.0012 34.56%, 0.0002 34.56%, 0.0001 34.57%, 0.0000 34.57%, 0.0000

100x100 15 60(3) 60.74%, 0.0148 61.29%, 0.0104 61.62%, 0.0090 62.28%, 0.0010 62.32%, 0.0008

200x200 15 30(2) 35.44%, 0.0394 37.35%, 0.0325 38.35%, 0.0340 38.86%, 0.0322 41.01%, 0.0010

200x200 15 30(4) 48.64%, 0.0488 50.13%, 0.0445 51.56%, 0.0368 53.61%, 0.0192 54.69%, 0.0114

200x200 15 30(6) 66.48%, 0.0132 67.06%, 0.0130 67.47%, 0.0124 67.70%, 0.0120 67.80%, 0.0119

200x200 15 30(9) 77.99%, 0.0153 78.97%, 0.0160 79.63%, 0.0144 80.16%, 0.0125 80.31%, 0.0145

200x200 15 60(2) 23.43%, 0.0137 24.26%, 0.0063 24.51%, 0.0045 24.80%, 0.0016 24.88%, 0.0004

200x200 15 60(4) 61.83%, 0.0044 61.95%, 0.0049 62.16%, 0.0046 62.27%, 0.0044 62.39%, 0.0044

200x200 15 60(6) 77.06%, 0.0067 77.66%, 0.0056 77.84%, 0.0098 78.06%, 0.0076 78.23%, 0.0074

200x200 15 60(9) 89.93%, 0.0060 90.46%, 0.0103 91.08%, 0.0096 91.37%, 0.0094 91.43%, 0.0095

300x300 15 30(6) 41.09%, 0.0149 41.66%, 0.0156 42.18%, 0.0162 42.42%, 0.0151 42.56%, 0.0151

300x300 15 30(12) 47.31%, 0.0082 47.95%, 0.0057 48.43%, 0.0038 48.73%, 0.0039 48.80%, 0.0038

300x300 15 30(18) 51.04%, 0.0060 51.95%, 0.0098 52.67%, 0.0085 53.05%, 0.0087 53.29%, 0.0083

300x300 15 30(24) 55.94%, 0.0157 57.58%, 0.0162 58.94%, 0.0099 59.26%, 0.0100 59.56%, 0.0088

NSGA-II (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 42.40%, 0.0029 42.45%, 0.0030 42.67%, 0.0002 42.69%, 0.0002 42.69%, 0.0002

100x100 15 30(3) 55.02%, 0.0044 55.37%, 0.0023 55.53%, 0.0027 55.55%, 0.0024 55.66%, 0.0004

100x100 15 60(2) 31.60%, 0.0019 31.80%, 0.0012 31.82%, 0.0014 31.86%, 0.0010 31.94%, 0.0000

100x100 15 60(3) 58.97%, 0.0035 59.25%, 0.0035 59.69%, 0.0019 59.73%, 0.0022 59.91%, 0.0016

200x200 15 30(2) 34.39%, 0.0193 35.39%, 0.0175 36.33%, 0.0152 37.06%, 0.0103 37.42%, 0.0050

200x200 15 30(4) 43.41%, 0.0435 44.46%, 0.0454 46.45%, 0.0509 47.22%, 0.0519 47.48%, 0.0537

200x200 15 30(6) 53.70%, 0.0792 59.27%, 0.0643 64.61%, 0.0087 65.01%, 0.0094 65.26%, 0.0110

200x200 15 30(9) 73.67%, 0.0173 76.16%, 0.0114 77.56%, 0.0117 78.14%, 0.0117 78.47%, 0.0109

200x200 15 60(2) 23.40%, 0.0048 23.92%, 0.0046 23.93%, 0.0037 23.94%, 0.0028 24.00%, 0.0032

200x200 15 60(4) 58.16%, 0.0086 58.72%, 0.0070 59.94%, 0.0056 60.08%, 0.0046 60.15%, 0.0045

200x200 15 60(6) 71.79%, 0.0098 74.11%, 0.0076 75.42%, 0.0093 75.93%, 0.0103 76.37%, 0.0096

200x200 15 60(9) 85.98%, 0.0105 88.38%, 0.0086 90.05%, 0.0074 90.51%, 0.0079 90.94%, 0.0079

300x300 15 30(6) 38.22%, 0.0114 39.41%, 0.0086 40.31%, 0.0094 40.77%, 0.0097 41.11%, 0.0102

300x300 15 30(12) 44.50%, 0.0148 46.39%, 0.0116 47.87%, 0.0105 48.11%, 0.0123 48.71%, 0.0102

300x300 15 30(18) 47.01%, 0.0242 50.02%, 0.0209 52.53%, 0.0184 53.39%, 0.0167 54.10%, 0.0201

300x300 15 30(24) 48.00%, 0.0213 52.52%, 0.0187 56.67%, 0.0363 58.86%, 0.0401 59.99%, 0.0419

SPEA2 (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 42.11%, 0.0036 42.45%, 0.0028 42.65%, 0.0004 42.66%, 0.0002 42.66%, 0.0001

100x100 15 30(3) 53.71%, 0.0085 53.78%, 0.0080 53.94%, 0.0072 54.24%, 0.0067 53.87%, 0.0065

100x100 15 60(2) 31.35%, 0.0027 31.57%, 0.0018 31.78%, 0.0014 31.82%, 0.0012 31.87%, 0.0008

100x100 15 60(3) 57.96%, 0.0068 58.63%, 0.0056 58.97%, 0.0078 58.84%, 0.0072 59.36%, 0.0041

200x200 15 30(2) 34.08%, 0.0139 34.35%, 0.0137 34.72%, 0.0140 34.85%, 0.0113 34.99%, 0.0109

200x200 15 30(4) 44.14%, 0.0328 44.71%, 0.0383 45.31%, 0.0382 45.49%, 0.0385 45.63%, 0.0385

200x200 15 30(6) 57.93%, 0.0139 61.62%, 0.0160 63.22%, 0.0188 63.80%, 0.0164 64.07%, 0.0165

200x200 15 30(9) 70.79%, 0.0075 74.49%, 0.0101 75.63%, 0.0106 75.97%, 0.0118 76.35%, 0.0111

200x200 15 60(2) 22.91%, 0.0036 23.29%, 0.0036 23.65%, 0.0030 23.81%, 0.0024 23.94%, 0.0017

200x200 15 60(4) 57.43%, 0.0074 58.57%, 0.0061 59.30%, 0.0043 59.74%, 0.0051 59.98%, 0.0033

200x200 15 60(6) 71.24%, 0.0067 72.69%, 0.0060 73.59%, 0.0076 74.04%, 0.0087 74.35%, 0.0112

200x200 15 60(9) 84.22%, 0.0050 86.45%, 0.0037 88.19%, 0.0096 89.27%, 0.0102 89.71%, 0.0102

300x300 15 30(6) 39.13%, 0.0109 40.15%, 0.0105 40.89%, 0.0114 41.12%, 0.0118 41.21%, 0.0117

300x300 15 30(12) 45.56%, 0.0145 47.03%, 0.0120 47.99%, 0.0101 48.46%, 0.0070 48.63%, 0.0083

300x300 15 30(18) 48.67%, 0.0135 50.89%, 0.0084 52.11%, 0.0067 52.96%, 0.0092 53.19%, 0.0106

300x300 15 30(24) 52.39%, 0.0277 56.93%, 0.0335 59.44%, 0.0345 60.34%, 0.0340 60.86%, 0.0344
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Table 4. P-values of the Wilcoxon−Mann−Whitney’s test comparing among algo-
rithms using hypervolume metric

MO-VNS vs NSGA-II NSGA-II vs SPEA2

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.5791 0.2518 0.0000 0.0000 0.0000 0.0002 0.1520 0.0027 0.0000 0.0000
100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

100x100 15 60(2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0466 0.0163 0.0000
100x100 15 60(3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

200x200 15 30(2) 0.0765 0.0023 0.0004 0.0003 0.0000 0.2014 0.0034 0.0000 0.0000 0.0000
200x200 15 30(4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.9235 0.7157 0.2138 0.0388 0.0106
200x200 15 30(6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.8080 0.2904 0.0008 0.0017 0.0018
200x200 15 30(9) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

200x200 15 60(2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0045 0.0075 0.0015 0.0009
200x200 15 60(4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0005 0.0001 0.0002 0.0001
200x200 15 60(6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0000 0.0000 0.0000 0.0000
200x200 15 60(9) 0.0000 0.0000 0.0000 0.0002 0.0133 0.0000 0.0000 0.0000 0.0000 0.0000

300x300 15 30(6) 0.0000 0.0000 0.0000 0.0000 0.0001 0.9978 0.9974 0.9669 0.8829 0.6402
300x300 15 30(12) 0.0000 0.0000 0.0114 0.0241 0.5310 0.9926 0.9873 0.7304 0.7715 0.3206
300x300 15 30(18) 0.0000 0.0000 0.4705 0.8303 0.9594 0.9975 0.9116 0.0916 0.1386 0.0215
300x300 15 30(24) 0.0000 0.0000 0.0077 0.2299 0.5913 1.0000 1.0000 0.9993 0.9235 0.7658

MO-VNS vs SPEA2 SUMMARY

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.4151 0.2518 0.0000 0.0000 0.0000 — — MO-VNS MO-VNS MO-VNS
100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

100x100 15 60(2) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
100x100 15 60(3) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 30(2) 0.0686 0.0008 0.0001 0.0001 0.0000 — MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 30(4) 0.0002 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 30(6) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 30(9) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 60(2) 0.0052 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 60(4) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 60(6) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
200x200 15 60(9) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

300x300 15 30(6) 0.0000 0.0001 0.0003 0.0003 0.0002 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS
300x300 15 30(12) 0.0000 0.0004 0.1003 0.0761 0.2946 MO-VNS MO-VNS MO-VNS MO-VNS —
300x300 15 30(18) 0.0000 0.0000 0.0079 0.4967 0.4429 MO-VNS MO-VNS — — NSGA-II
300x300 15 30(24) 0.0000 0.3811 0.8258 0.9235 0.9596 MO-VNS MO-VNS MO-VNS — —

Table 5. Set coverage among algorithms C(A,B) for 400 000 evaluations

A MO-VNS NSGA-II SPEA2

Instance (routers) B NSGA-II SPEA2 MO-VNS SPEA2 MO-VNS NSGA-2

100x100 15 30(2) 100.00% 100.00% 0.00% 96.49% 0.00% 72.97%
100x100 15 30(3) 15.77% 0.63% 5.88% 100.00% 5.88% 50.50%

100x100 15 60(2) 94.80% 99.88% 0.00% 91.87% 0.00% 80.80%
100x100 15 60(3) 100.00% 100.00% 0.00% 74.60% 0.00% 39.80%

200x200 15 30(2) 33.76% 92.60% 0.00% 100.00% 0.00% 20.81%
200x200 15 30(4) 0.00% 82.79% 33.33% 100.00% 0.00% 0.00%
200x200 15 30(6) 100.00% 100.00% 0.00% 100.00% 0.00% 0.00%
200x200 15 30(9) 3.41% 99.83% 0.00% 100.00% 0.00% 0.00%

200x200 15 60(2) 100.00% 90.91% 0.00% 54.55% 0.00% 67.39%
200x200 15 60(4) 100.00% 91.67% 0.00% 0.00% 0.00% 47.06%
200x200 15 60(6) 80.37% 57.14% 0.00% 28.57% 0.00% 41.12%
200x200 15 60(9) 99.21% 100.00% 0.00% 100.00% 0.00% 0.00%

300x300 15 30(6) 100.00% 100.00% 0.00% 0.15% 0.00% 87.05%
300x300 15 30(12) 53.42% 9.51% 50.00% 4.94% 40.00% 92.82%
300x300 15 30(18) 0.00% 11.04% 75.00% 100.00% 62.50% 0.00%
300x300 15 30(24) 0.00% 0.00% 100.00% 0.00% 100.00% 100.00%

Partial average 61.30% 71.00% 16.51% 65.70% 13.02% 43.77%
Average 66.15% 41.11% 28.40%
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Fig. 2. Comparison between the median Pareto fronts obtained from NSGA-II, SPEA-
2 and MO-VNS for 400 000 evaluations

value for the hypervolume. Next, we study whether differences among the aver-
age hypervolumes shown in Table 3 are significant. With this purpose,Wilcoxon-
Mann-Whitney’s test [11] (samples do not follow a normal distribution and are
independent) was used with the following hypothesis: (H0) Mei is worse than
Mej, and (H1) Mei is better than Mej, with i = 1, 2, 3, j = 2, 3, i < j, 1=MO-
VNS, 2=NSGA-II and 3=SPEA2. The P-values obtained are shown in Table 4,
where values greater than 0.05 (differences are not significant) are shaded. Thus,
we can observe that MO-VNS provides the best behavior for experimental in-
stances 100× 100 and 200× 200, but in the most complex scenario the behavior
is not so clear: MO-VNS provides best solutions with 6 routers and NSGA-II
with 18, and in the other cases, differences are not significant.

On the other hand, the set coverage measure was used. We compare the cov-
erage relation among median fronts from the 31 independent runs previously
carried out for 400 000 evaluations. Observing Table 5, we reach the same con-
clusions as for hypervolume: MO-VNS provides the best results on average, but
in the most complex instances the behavior is different: as the number of routers
increases, quality results seem to get worse. Following this line, Fig. 2 graph-
ically compares among median Pareto fronts obtained in some representatives
test cases. In this figure, we can see the number of solutions obtained and its
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distribution in the objective space. If we compare these solutions with the values
of HO-AEC and HO-AC shown in Table 1 (AEC and AC values of each instance
without using relay nodes), we check as adding routers in traditional WSNs is a
good way to optimize them; for example, in 200× 200 15 60(9) a extreme solu-
tion of the MO-VNS front has a AEC of 0.0585, being its HO-AEC value 0.3871,
i.e the value decreased by up 6.6 times with 9 routers.

5 Conclusions and Future Work

In this paper, we study the efficient network deployment by means of the inclu-
sion of relay nodes to previously-established static traditional WSNs, that is the
so-called Relay Node Placement Problem. With the aim of solving this problem,
three different metaheuristics were used, two of them are genetic algorithms and
the third is a multiobjective version of the trajectory algorithm VNS. We defined
16 tests cases to study the behavior of the algorithms, which we provide in [8].
As this is a multiobjective problem, two well-known multiobjective metrics were
used (set coverage and hypervolume), which allow other authors to compare
their approaches with ours. After analyzing the results by means of a widely
used statistical methodology, we conclude that MO-VNS provides better results
on average than both NSGA-II and SPEA2, in medium and small instances, but
in more complex instances the behavior is different: if the number of routers
used increases, quality results seem to get worse. In addition, we checked as the
inclusion of relay nodes is a good way to optimize these networks.

As future line of research, it would be very interesting to use other metaheuris-
tics with the aim of getting a framework that provides the best results in a wide
range of situations. In addition, it would be useful to increase the number of test
cases as well as the use of real scenarios to validate our hypothesis.
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Abstract. Cache locking have shown during the last years their useful-
ness easing the schedulability analysis of multitasking, preemptive, real-
time systems. Cache locking provides a high degree of predictability while
system performance is maintained at a similar level to that provided by
regular, highly unpredictable, non-locked cache. Cache locking may also
be useful to reduce hardware costs by means of reducing the size of the
cache memory needed to make a real-time system schedulable. This work
shows how full, dynamic cache locking may help to reduce the size of the
cache memory versus a regular cache. This reduction is possible thanks
to a genetic algorithm that selects the set of instructions that have to be
locked in cache to provide the maximum cache size minimization while
keeping the system schedulable.

Keywords: Genetic algorithm, Real-Time Systems, Cache Locking,
schedulability analysis, cost-saving.

1 Introduction

Cache memories are an important advance in computer architecture, providing
significant performance improvements. However, in the area of real-time systems,
the use of cache memories introduces serious problems regarding predictability.
The dynamic and adaptive behaviour of a cache memory reduces the average
access time to main memory, but presents a non-deterministic fetching time
[7]. In multitasking, preemptive, real-time systems, estimating the Worst Case
Response Time (WCRT) of every task in a system populated with a regular
cache becomes a problem with a solution hard to find due to the interference on
the cache contents produced among the tasks.

In recent years, the use of locked caches have appeared as a solution to ease
the schedulability analysis of multitasking, preemptive, real-time systems main-
taining, at the same time, similar performance improvements than systems pop-
ulated with regular cache memories. Several works have been presented to apply
cache locking in real-time systems, both for instructions [3][15][14][1] and data
[16]. In this work, we focus on instruction caches only, because 75% of accesses
to main memory are to fetch instructions [7].
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The paper is organised as follows: section two describes the objective and
the goal of this work. Section three brief introduces the use of cache locking in
multitasking, real-time systems. Section four describes with detail the Genetic
Algorithm that selects the contents to load and lock in cache. Sections five, six
and seven show the setup, the procedures and the results of experiments carried
out. Finally, conclusions are presented in section eight.

2 Rationale

The ability to implement custom processors in FPGAs or ASICs has partly sim-
plified the choice of the processor for a real-time system [11]. With these it is
possible to build a system with its performance tailored to the actual require-
ments, decreasing the cost of the resulting system. What’s more important, the
designer can incorporate those architectural improvements that interest he most.

Although achieving predictability and easing the schedulability analysis is the
main goal and advantage of cache locking, it may help to minimize the cache
size thus saving costs and reducing the power consumption of the system.

The goal of this work is to show that LSM-dynamic use of cache locking may
reduce the cache size needed to make a real-time system schedulable in front of
a regular cache. And this advantage is added to the predictability and easiness
of analysis provided by cache locking.

3 Use of Cache Locking

Cache locking means to keep all or part of cache contents away from replacement
policy, or to allow replacement only in particular scenarios. In brief, the adaptive
behaviour of regular caches is reduced or completely eliminated.

When the entire cache is locked, it is called full locking. If only some parts of
the cache contents are locked, no matter if these parts are cache ways or cache
lines, it is called partial locking. [6]

In multitasking systems, when locked contents remain unchanged for the
whole life of the system, it is called static use or static cache locking.

If locked contents may change in a controlled way, for example in task switch,
it is called dynamic use of cache locking. Some authors prefer to call this multi-
plexed or time-shared cache.

Several previous works in the literature apply cache locking over individual,
isolated tasks in order to improve or accurately estimate the Worst-Case Execu-
tion Time (WCET) of a task. The work developed in this paper deals with mul-
titasking, preemptive, real-time systems that presents a more complex problem,
because includes the WCET estimation together with the WCRT estimation,
dealing with intra-task and inter-task interference related to cache [2][8].

3.1 Full, Dynamic Use of Cache Locking

In here called dynamic use of cache locking every task may use and lock the
cache in full for its own instructions. Replacement of cache contents is allowed,
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but at some moments only. To our best knowledge, the first proposal of dynamic
use of cache locking appears in [3] where cache contents may change only when
a task starts its execution or resumes after a preemption, flushing the cache
contents and reloading it with its own set of selected instructions. This is the
behaviour considered in this work.

WCET estimation for each task in the system is easy, because during the exe-
cution of the task the cache contents is always the same, even after a preemption,
because the first action when a task resumes its execution is to reload the cache
with its own instructions.

Cache Response Time Analysis (CRTA) [2] is here used to estimate the re-
sponse time of tasks, taking into account the time needed to reload the cache
before a task runs or resumes its execution. This time, called cache refill penalty
or cache-related preemption delay is added to the execution time of each task
for each run and for each preemption, giving a safe upper bound of its WCRT.

Reloading cache contents when a task starts or resumes execution may be
accomplished by software or hardware means. By software, the scheduler is over-
loaded with a routine that read from main memory the list of main memory
blocks (instructions) that were off-line selected to load and lock in cache. For
each main memory block, the routine accesses main memory two times: first,
to fetch the address of the block to be loaded, and second, to effectively read
this block and transfer it to the cache memory by means of specific instructions.
Some other constant overload applies, and the total temporal cost to run this
routine is added to CRTA as the cache refill penalty.

Loading instructions by means of software adds an important overhead, so in
[15] a hardware solution is proposed. An extra, dedicated memory is added, called
the Locking State Memory (LSM). Its role is to store the status of every main
memory block, that is, whether it is selected or not to be locked in cache. This
way the LSM provides a mechanism to discriminate which blocks must be loaded
into the cache and hence a way to allow for automatic, on-demand loading of
the selected main memory blocks. In other words, instead of locking the selected
blocks into a locked cache, the same effect can be attained by avoiding loading
into the cache the unselected blocks.

4 Using a Genetic Algorithm to Select Cache Contents

Cache locking intrinsically provides predictability. But other aspects, like perfor-
mance, depend on the set of instructions selected to be locked in cache. Random
selection of these instructions will give predictability and easiness of analysis,
but system performance may be seriously degraded.

Several algorithms [5] have been developed in order to select instructions to
load and lock in cache that improves system performance, or at least, main-
tains the system performance close to a system populated with a regular, non-
predictable cache memory.

In [9] a new version of a genetic algorithm is proposed. The target of this
algorithm is not to improve system performance but to reduce the size of the
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cache memory needed to get an schedulable real-time system. This algorithm is
used on static locking and outperforms previous results [4] where a performance-
targeted algorithm was used.

In this paper the algorithm is adapted to be used on dynamic locking. This
adaptation is done primarily in two points: in the representation of the problem
in order to allow each task to fully utilize the cache, and in the evaluation
of individuals where the CRTA equation corresponding to the dynamic cache
locking using an LSM is used. The GA is executed in the design phase of the
real-time system, so its execution time does not affect nor results in overhead
for the real-time system. Below the main operators of the GA are described.

Problem Representation. A tri-dimensional matrix stores the status of main
memory blocks in order to determine whether they are selected or not to be
loaded and locked into cache. The first index used to access this matrix identifies
to which task the memory block belongs, the second index identifies the set or
cache memory line in which the block is mapped, and the third dimension is used
to store the list of blocks that are mapped to that cache set/line together with
their corresponding status. This rather complex structure allows crossing two
individuals and mutating the resulting individuals guaranteeing that the cache
mapping function will not be violated irrespective of the cache associativity
degree. In fact, the representation is a list (of tasks) of lists (of cache sets/lines)
of lists (of selected blocks for each cache set/line). The last list (selected blocks)
is the responsible of fitting the mapping function. When individuals are created,
the number of selected blocks for each set/line is at most the cache associativity
degree. In crossover, the splitting point is restricted to the second dimension,
avoiding the division of the third dimension of an individual, so the number of
selected blocks remain unchanged and in a valid range. Regarding mutation, it
only unlocks blocks, so it is not possible that the resulting number of selected
blocks will be over the associativity degree.

Initial Population. The initial individuals are created by selecting a pseudo-
random number of blocks to load and lock in cache. These blocks may belong to
any task. Also, initialization creates a single individual with all of the blocks of
every task marked as selected for being loaded and locked in cache memory. The
purpose of including the special individual is to broaden the initial search space
and guarantee that the algorithm starts with at least one schedulable individual.

The fitness function results from the combination of the result of the schedu-
lability test, the number of used cache lines, and the system global utilisation.
This way, the fitness value for an individual is a 3-tuple (S,L, U), where S is
the boolean result from the schedulability test, L is the cache size, measured in
cache lines, the individual needs, and U is the global utilisation of the system.
An individual i with fitness (Si, Li, Ui) is better than individual j with fitness
(Sj , Lj , Uj) if:

i) Si and not(Sj) or

ii) Si and Sj and (Li < Lj) or

iii) Si and Sj and (Li = Lj) and (Ui < Uj)
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That is, and individual is better than other if it is schedulable and the other
one is not, or if it uses a smaller cache (in case both are achedulable), or, in case
of a tie, it presents a lower system utilisation.

As selection policy binary tournament has been chosen. To select a parent
two individuals are pseudo-randomly chosen, their fitness functions compared,
and the better individual is chosen. The same procedure is used to choose the
other parent. Besides this selection, an elitist selection is introduced. Two copies
of the best individual are made, one of the copies is exposed to mutation while
the other one suffers no mutation and is effectively incorporated into the next
generation without any modification.

Single point crossover is used in this algorithm. The single point crossover
is obtained by splitting every parent at a locus given by a pair (task number,
set number) and creating two new individuals by exchanging the parts of the
two parents.

In the mutation process the algorithm pseudo-randomly selects a set of locked
blocks and marks them as unlocked, thus decreasing the number of locked blocks
and therefore, the cache size.

The GA execution finishes when a predetermined number of generations has
been reached. This value and the remaining input parameters are detailed be-
low: Population size: 200 individuals; Termination condition: 5000 generations;
Crossover probability: 100%; Mutation probability: 8%; Runs for each GA exper-
iment to avoid seed effects: 25. The average cache size of these runs is presented
in this work.

The input parameters of the genetic algorithm are: Algebraic expressions for
tasks’ WCET estimation [3]; List of main memory blocks used by each task;
Periods of tasks; Hit and miss times; Cache line / main memory block size;
Cache mapping function.

The output of the GA includes: worst-case execution time and worst-case
response time of each task, the minimum cache size that makes the system
schedulable, and the list of main memory blocks selected to be loaded and locked
in the cache.

It is important to recall that execution time and response time of tasks pro-
vided by the genetic algorithm are not simulated, but estimated by means of
cache-aware analysis methods (CRTA).

5 Experiment Setup

In order to study the ability to reduce the cache size the real-time systems
presented in [9] were used. In this set of systems there are 14 different task sets.
Tasks are artificially created to stress the locking/regular cache scheme. Main
parameters of each task are defined, like its size, the number and size of loops
and their nesting level, number of if-then-else structures and their respective
sizes. These parameters are fixed or randomly selected. Then, a simple software
tool creates the assembly code. This code is MIPSR2000 compatible.
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Table 1 shows the different sets of tasks, the number of tasks per set, the sum
of task sizes, their average size, and the system utilisation when the system runs
on a 4096 lines-size regular cache.

Task periods are manually adjusted to force different number of preemptions
among the tasks and therefore setting the system utilisation in different values,
creating four scenarios. In all four scenarios and for all task sets, task deadlines
are equal to task’s periods and priority is assigned by the Rate Monotonic policy
(the shorter the period the higher the priority).

The tasks in the first scenario have large periods, much longer than their
respective response times, so there are no preemptions among tasks and the
resulting system utilisation is low: around 30% when the system runs on a regular
cache larger than the sum of all tasks sizes, that is, when only compulsory misses
may occur. This scenario is called Low Interference (LI).

The tasks in the second scenario have also large periods, but not very far from
their response times, so some preemptions may occur. System utilisation is this
case is around 60% when system runs on a regular cache larger than the sum of
all tasks sizes, that is, when only compulsory misses may occur. This scenario is
called Low Medium Interference (LMI).

In the third scenario the tasks have periods close to their respective response
times so many preemptions occur, increasing response times and therefore, sys-
tem utilisation. In this case the system utilisation is around 80% when system
runs on a regular cache larger than the sum of all tasks sizes, that is, with com-
pulsory misses only. This scenario is called Medium High Interference (MHI).

Task periods in the fourth scenario are very close to their response times, so
the number of preemptions is large and the system utilisation grows up to 95%
when system runs on a regular cache larger than the sum of all tasks sizes. This
scenario is called High Interference (HI).

Table 1 shows the system utilisation for each set of tasks, and for each con-
figuration of deadlines when the system runs on a regular cache larger than the
system size.

A total of 56 systems = 14 (task sets) x 4 (periods sets) are evaluated under
two architectures: regular caches, and full, dynamic cache locking by means of
hardware LSM.

Using the same task set but different task periods allows assessing the be-
haviour of the architectures and algorithms in front of a wider range of cache
size requirements: as the task interference increases a larger cache is necessary
to keep the system schedulable.

Results for regular caches come from simulation, while results for LSM cache
locking come from estimation of WCET and WCRT by means of CRTA. This
way, actual response time of tasks when using regular caches may be longer,
but never shorter. In the other hand, actual response time of tasks when using
cache locking may be shorter, but never longer, because they are estimated using
conservative approaches. Conventional cache benefit from this situation because
optimistic values are used for regular cache in front of conservative values for
cache locking.
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Table 1. Main parameters of the set of tasks used in experiments, and system utilisa-
tion for each scenario

Task # of Total size Average size LI LMI MHI HI
set tasks (instructions) (instructions) (%) (%) (%) (%)

1 3 2565 855.0 34.8 62.2 78.7 96.1
2 4 3397 849.3 35.0 60.6 78.1 98.4
3 8 1640 205.0 43.9 61.5 79.0 93.1
4 8 1640 205.0 36.3 59.5 82.3 95.7
5 5 2124 424.8 38.0 58.6 76.1 97.5
6 4 3252 813.0 32.0 62.4 76.7 93.9
7 3 3678 1226.0 40.9 57.1 80.5 97.8
8 3 1923 641.0 34.5 61.2 78.0 91.5
9 5 3086 617.2 38.7 58.8 78.9 96.5
10 3 3602 1200.7 35.0 62.0 80.2 93.2
11 4 1904 476.0 32.4 61.7 81.8 95.2
12 3 2378 792.7 36.5 68.7 83.3 96.8
13 5 790 158.0 29.4 59.3 75.9 98.0
14 5 2146 429.2 28.2 60.8 82.5 92.0

Regarding cache characteristics, fetching an instruction from cache takes 1
cycle while fetching an instruction from main memory takes 10 cycles. The only
mapping function considered for cache locking is direct mapping, because this
one is the most restrictive and provides the worst performance for cache locking
[3][13]. The maximum size of the cache is 4096 lines, where each cache line
contains four words, and each word is four bytes long. The instruction size is
four bytes also. A main memory block presents the same size than a cache line.

The system includes a prefetch buffer with the size of one cache-line in order
to get advantage of spatial locality when the processor fetches a main-memory
block not locked in cache.

6 Experiment Procedures

The goal of the experiments carried out is to find the minimum cache size re-
quired to keep the system schedulable. This minimum size depends on the char-
acteristics of the software system (number and size of tasks, periods, deadlines)
and the underlying architecture the system runs on (regular cache or LSM-based
dynamic cache locking).

For regular cache, in order to find the minimum cache size needed to make
the system schedulable, several simulations of the system execution have been
accomplished varying the cache size, starting in 1 line and increasing one by one,
finishing when the cache size is one line larger than the total sum of the sizes
of the system tasks. It would be possible to stop the experiments when system
becomes schedulable but we want to study if there are discontinuities in the size
of the cache that makes the system schedulable. No discontinuities were found.
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Simulations were accomplished using a modified version of SPIM, a MIPSR2000
simulator [12]. Input parameters for simulation are: Code of tasks in assembly;
Periods of tasks; Cache size; Mapping policy (direct, two-way and full associative
were tested, choosing the best result for each system, that is, the smaller cache
size, usually direct mapping); Hit and miss times (1 and 10 cycles); Cache line
/ main memory block size (four four-byte-size instructions).

The output from simulation includes: worst execution time of tasks, worst
response time of tasks, system utilisation, and schedulability test result (yes/no).

For cache locking the minimum cache size is found by a direct search using the
genetic algorithm previously described. The genetic algorithm uses cache-aware
analysis methods to estimate the response time of task and decide if the system
is schedulable for a particular cache size.

The experiment setup and procedures give us a total of 112 experiments (56
systems multiplied by two cache architectures under study).

7 Experiment Results

The first outcome from experiment results is completely unexpected. For 14
experiments, the genetic algorithm considering the LSM architecture is unable
to find a cache size to make the system schedulable. Even using a cache larger
than the sum of the sizes of all the tasks that belong to the system, the genetic
is unable to find a solution. The 14 experiments with no solution belong to the
set of systems with the highest degree of task interference and very high system
utilisation (scenario HI).

But the systems are in fact schedulable because when using a regular cache,
there is a cache size for each system that makes it schedulable. So the problem
is not in the real-time systems.

The reason the GA fails in finding a schedulable-making cache size for the LSM
architecture is because of an excessively conservative approach when estimating
the cache refill penalty.

The proposed CRTA analysis that is embedded in the GA considers that in
every preemption the cache is completely flushed, and when a task resumes its
execution, the full set of instructions selected to lock in cache is reloaded, without
regard about how many of these instructions are useful, that is, will be executed
before the next preemption.

Actually, both for regular and LSM cache, after a preemption, only instruc-
tions that are fetched by the processor between two preemptions may produce a
miss, increasing the cache refill penalty. The instructions executed between two
preemptions may be all of those selected to be locked in cache, or only a small
subset, depending on the task structure and the time between preemptions.

With the conservative analysis the cache refill penalty is well-known, constant,
and safe. But may be excessively larger. And the larger the number of preemp-
tions, the worse the overestimation. This is the reason this problem arise for the
systems with a high degree of interference; tasks suffer a lot of preemptions.

In following results, for the 14 systems where the GA is not able to find a cache
size, we will use a cache with as many lines as the sum of the sizes of all tasks of
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Table 2. Main statistics for LREG - LLSM

Statistic LI LMI MHI HI

Average +123.35 -37.71 -146,5 -951.0
Min -59 -414 -1092,0 -2074
Max +327 +76 +189 -54

Cases<0 2 5 10 14
Cases>0 12 9 4 0

Avg. Reduction 47% -5% -14% -39%
P-value t-test 0.0039 0.387 0,118 0.00059
T-test answer Reject Do not Do not Reject

to null hypothesis reject reject
P-value Wilcoxon test 0.0057 0.66 0,09 0.00109
Wilcoxon test answer Reject Do not Do not Reject
to null hypothesis reject reject

the system, and manually disables the locking mechanism. All instructions will
be loaded in cache when they are fetched by the processor, and they will remain
in cache because of the size of cache makes no conflicts.

Analysis of result is accomplished grouping systems in the four previously de-
scribed scenarios regarding its degree of task interference and value of utilisation
(LI, LMI, MHI and HI). For each one of the four groups, a paired sample analysis
is presented [10].

Table 2 shows the main statistics for LREG (number of cache lines used by
the regular cache) minus LLSM (number of cache lines used by the LSM cache
locking). for the four scenarios. The table also contains the p-value of a t-test
and a Wilcoxon signed-rank test of null hypothesis and the answer to these tests,
using an α = 0.05.

Figure 1 shows the ratio LREG to LLSM for systems grouped in the four
scenarios. The ratio is calculated as (LREG/LLSM)− 1. This figure shows if
the LSM needs a smaller cache than the regular cache and the relative magnitude
of cache saving. Values over 0 means the LSM needs less lines of cache than a
regular cache. In the other hand, values below indicates that regular cache beats
LSM, using a smaller cache to make schedulable a system.

In Figure 1-a) can be clearly observed that the LSM is able to make the
systems schedulable using a smaller cache in most of the cases when the degree
of interference between tasks is low (LI); this is confirmed by the answer of
both tests which rejects the Null Hypothesis, meaning there is a statistically
significant difference in the cache size needed by the LSM and the regular cache.
The cache saving by means of using the LSM is in average of 45%, but in almost
half of the cases the cache size reduction is over 100%.

In Figure 1-b), systems in scenario LMI, can be seen that there are more cases
where the LSM needs a smaller cache, but in the cases where the LSM needs a
bigger cache the cache size is much larger than the cache size needed by regular
use. Attending the statistics in the third column (LMI) of table 2, the average
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Fig. 1. Percentage of reduction of cache using LSM for experiments with periods a)LI,
b)LMI, c)MHI and d)HI (LREG/LLSM) − 1

cache size reduction is about -5%, that is, the LSM needs in average larger
caches than the regular use of cache, but the answer of both tests is that the
Null Hypothesis cannot be rejected; that is, there is no statistically significant
differences between the cache sizes used by the two studied uses of cache.

In Figure 1-c), systems in scenario MHI, a slight bias to negative values can be
appreciated; that is, there are more cases where the LSM needs a larger cache
to make the system schedulable. Attending the statistics shown in the fourth
column (MHI) of table 2, the LSM needs, in average, a 10% larger cache than
the regular use of cache (reduction of -0.09%), but response of Null Hypothesis
tests are do not reject; that is, there is no statistically significant difference
between the cache size used by the two studied uses of cache.

Finally, the figure 1-d) shows the ratio LREG to LLSM for systems with High
Interference, HI, calculated as (LREG/LLSM) − 1. The data in this figure is
very clear: for all cases using a regular cache needs a smaller cache to make the
system schedulable. And in front of LSM, the cache needed by the regular cache
is about 30% smaller in average, and even more than 50% smaller in some cases.
Statistics on the fifth column of table 2 confirms this conclusion, in particular the
tests that reject the Null Hypothesis; that is, there are statistically significant
differences between the regular use of cache and the LSM.

Results of the analysis of the four groups are coherent with the analysis of
overestimation described in the beginning of this section. The larger the number
of preemptions, the larger the overestimation. This way, the larger the interfer-
ence between tasks, the smaller the cache saving by means of LSM dynamic use
of cache locking. For one of the scenarios (LI) the LSM is able to significantly
reduce the size of cache required to make the system schedulable. That is, using
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cache locking by means of a LSM architecture helps the system designer to save
costs and power. In the other extreme, another scenario (HI) shows that the
LSM needs larger caches than the regular use, so its use is not recommended if
the main concern is related to system costs or power consumption. For the two
intermediate scenarios (LMI and MHI) there is a tie, that is, both the LSM and
the regular cache will need the same size of cache to make the system schedula-
ble. So, in general terms and talking about these intermediate scenarios, there is
no significant difference in using a regular cache or a dynamically locked cache,
concerning about system cost and size only.

But cache locking adds a precious value to the design process of a real-time
system because they provide predictability and easiness of analysis.

8 Conclusions

This work presents a new application of dynamic cache locking, extending the re-
search from a previous proposal where static cache locking was applied to reduce
the instruction cache size in preemptive, multi-task, real-time systems. Results
from experiments carried out show, first, that for some systems the dynamic
use of cache locking is not suitable due to the overly conservative considerations
that have to be used in the schedulability analysis, so for high interference, high
utilisation systems, regular caches provide better results.

Second, there is a large number of cases where no statistically significant dif-
ference exists, in average, in the cache size needed to make a system schedulable
when using a regular cache or a locked cache. In these cases, and for the same
cache size, cache locking offers, in front of a regular cache, the benefit of high
predictability and simplicity in the schedulability analysis.

Only when the system utilisation is low a LSM-based locked cache allows a no-
table significant cache size minimization maintaining the predictable behaviour
and ease of analysis.

Experiment results also show that for some systems, and under some con-
ditions, there may be important differences in the cache size needed to make
the system schedulable. Future work will study the system characteristics and
conditions that determine the architecture that gets a smaller cache, so recom-
mendations to the system designer can be done.
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9. Mart́ı-Campoy, A., Rodŕıguez-Ballester, F., Tamura Morimitsu, E., Ors, R.: An
algorithm for deciding minimal cache sizes in real-time systems. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO
2011, pp. 1163–1170. ACM, New York (2011),
http://doi.acm.org/10.1145/2001576.2001733

10. McPherson, G.: Applying and Interpreting Statistics. A Comprehensive Guide, 2nd
edn. Springer Texts in Statistics. Springer (2001)

11. Navabi, Z.: Embedded Core Design with FPGAs. McGraw-Hill Professional (2006)
12. Patterson, D., Hennessy, J.: Computer Organization and Design: The Hard-

ware/software Interface. Morgan Kaufmann (1994)
13. Puaut, I., Pais, C.: Scratchpad memories vs locked caches in hard real-time systems:

a quantitative comparison. In: Proceedings of the conference on Design, automation
and test in Europe, DATE 2007, pp. 1484–1489. EDA Consortium, San Jose (2007),
http://dl.acm.org/citation.cfm?id=1266366.1266692

14. Sascha Plazar, J.C.K., Marwedel, P.: Wcet-aware static locking of instruction
caches. In: Proceedings of the 2012 International Symposium on Code Generation
and Optimization, pp. 44–52 (2012)

15. Tamura, E., Busquets-Mataix, J., Campoy, A.M.: Towards predictable, high-
performance memory hierarchies in fixed-priority preemptive multitasking real-
time systems. In: Proceedings of the 15th International Conference on Real-Time
and Network Systems (RTNS-2007), pp. 75–84 (2007)

16. Vera, X., Lisper, B., Xue, J.: Data cache locking for tight timing calculations. ACM
Trans. Embed. Comput. Syst. 7(1), 4:1–4:38 (2007),
http://doi.acm.org/10.1145/1324969.1324973

http://portal.acm.org/citation.cfm?id=1084012.1084148
http://doi.acm.org/10.1145/2228360.2228434
http://doi.acm.org/10.1145/2001576.2001733
http://dl.acm.org/citation.cfm?id=1266366.1266692
http://doi.acm.org/10.1145/1324969.1324973


General Quantum Encryption Scheme

Based on Quantum Memory

Marius Nagy and Naya Nagy

College of Computer Engineering and Science
Prince Mohammad Bin Fahd University

Al Azeziya, Eastern Province
Kingdom of Saudi Arabia

{mnagy,nnagy}@pmu.edu.sa

Abstract. In cryptography, quantum information processing can be
used to do much more than just key distribution. Simple quantum trans-
formations augmented with the ability to store qubits in a quantum
memory are the building blocks of a protocol allowing two parties to
communicate secretly by encoding/decoding the exchanged message di-
rectly through quantum means, without the need to establish a secret
encryption/decryption key first. Consequently, our quantum mechanical
process of securely transmitting a message through a public channel is
simpler, cleaner, faster and computationally more efficient than the two-
step scenario with a quantum distributed classical key. The probability
of catching a potential eavesdropper can be made arbitrarily large by
increasing the length of the signature string attached to the message.

Keywords: quantum gates, quantum memory, measurement, crypto-
graphy, quantum protocol, security, eavesdropping, bit rank.

1 Introduction

Several techniques exist that exploit quantum effects for key distribution [1–4].
Regardless of whether they rely on quantum entanglement or not, all these quan-
tum protocols are used with a single goal: to establish a classical secret key that
is subsequently used to encrypt/decrypt a message using classical cryptographic
algorithms. An important characteristic of the classical secret key is that it is
randomly generated. No quantum key distribution scheme can be used to dis-
tribute a key that is known a priori to any of the communicating parties. This
randomness comes from the implicit randomness associated with the measure-
ment postulate in quantum mechanics.

In this paper, we develop a general quantum protocol for transmitting a clas-
sical message through a quantum channel whithout establishing a secret key
first, but instead using simple unary quantum gates to directly encrypt/decrypt
the message by quantum means. Certainly, at this point, the quantum comput-
ing technology is still in its infancy, but once it will mature, the computational
power required by our protocol is quite limited: the ability to effect relatively
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simple quantum transformations on single qubits. By comparison, the RSA al-
gorithm [8] used to just distribute the secret key needed to encrypt/decrypt the
actual message through classical means is much more computationally intensive.
Adding the fact that establishing and distributing a cryptographic key is no
longer needed in our method, the whole process of securely transmitting a mes-
sage between two communicating parties is greatly simplified and streamlined.

Beside simple quantum gates, our scheme also relies on the use of a quantum
memory capable of storing qubits (described by their quantum states) for a
certain amount of time as detailed in the description of the protocol. Although
building such a quantummemory in practice is a challenging endeavor, important
steps in this direction have been recently reported [5, 10, 6, 9]. Any practical
implementation of a quantum protocol aimed at securing communications has
to find an appropriate physical embodiment for the qubits transmitted over the
quantum channel. The best choice in this respect seems to be photons, whose
polarizations can easily be manipulated and which are, by definition, very fast,
traveling at the speed of light. On the other hand, photons are not well suited for
storage, where solid-state approaches seem to be the most promising technology.

Now, two separate teams, one led by Wolfgang Tittel at the University of Cal-
gary in Alberta, Canada [10] and another led by Nicolas Gisin at the University
of Geneva in Switzerland [5] are reporting advances on the road to make the two
technologies work together. Experimenting with different types of crystals, they
managed to have the quantum state of a photon being captured in solid crystals
through entanglement. Furthermore, scientists at Harvard University have devel-
oped a room-temperature quantum memory that can hold information on the
order of seconds by using the spin on the nucleus of an atom inside a diamond to
physically realize a qubit [6]. But the record on how long a superposition state
can be maintained definitely belongs to a team led by Professor Mike Thewalt
of Simon Fraser University, Canada [9]. Using the spins of atomic nuclei embed-
ded in silicon, the research team were able to create a superposition state which
lasted for 192 seconds (more than three minutes). These advances seem to hint
to the possibility of practical realizations for protocols using quantum memories
(like the one described in this paper) in the near future.

The remainder of the paper is organized as follows. Next section describes
in detail each step of the quantum protocol that can be used to directly en-
crypt/decrypt a classical message. Sections 3 and 4 deal with the analysis of two
common eavesdropping strategies: transparent eavesdropping and opaque eaves-
dropping. Possible variations of the protocol are discussed in Section 5. Finally,
Section 6 presents some conclusions and summarizes the most important results
of the paper.

2 Protocol Description

In order to communicate secretly, the two parties (commonly referred to as Alice
and Bob) are assumed to have access to the following resources:

- a public quantum channel capable of delivering a block of qubits from Alice
to Bob. This could be a fiber-optic cable or even air, depending on the
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particular physical embodiment chosen for a qubit. No particular restrictions
are imposed on the quantum channel. In particular, it is open to any form
of eavesdropping.

- a public classical channel that allows Alice and Bob to communicate with each
other, exchanging classical information. Although this channel is also public
and open to eavesdropping, it is authenticated. This means that Alice has
the certainty of speaking to (communicating with) Bob and Bob has the
certainty of speaking to Alice.

- a quantum memory required by Bob to store the qubits sent by Alice until the
signature is verified and they can be decrypted.

- the ability to perform quantum information processing, namely applying single-
qubit gates like Uθ and Rϕ (see below) and measurements in the normal
computational basis {|0〉, |1〉}. Note that this is not equivalent to the power of
a general quantum computer, since two-qubit gates are required for universal
quantum computation.

The information flow diagram describing the steps of the protocol is given in
Fig. 1. The process starts with Alice choosing an encoding basis for the bitstring
she wants to send to Bob. This bitstring is formed by the actual message to
which a signature bitstring is appended. The signature will allow Alice and Bob
to detect anyone trying to eavesdrop on the transmitted message. This means
that every bit in the plain text block (message and signature) will be converted to
one of the two basis vectors of the quantum basis chosen. An intuitive graphical
representation of an encoding basis is a straight line going through the center of
the Bloch sphere. Such a line is fully specified by two real-valued parameters: the
angle θ between the line and the z axis, and the angle ϕ between the projection
of the line on the equatorial plane and the x axis (see Fig. 2). In some sense, this
encoding method is somewhat similar to anamorphosis, since the actual message
can only be ”seen” when viewed from the proper angle. With the major difference
that attempting to ”read” the message from any angle except the correct one is
equivalent to a quantum measurement that will necessarily alter the message.

Therefore, in order to choose an encoding basis, Alice needs to decide on a pair
(θ, ϕ). For example, the pair (0, 0) specifies the computational basis, described
by the two basis vectors |0〉 and |1〉 aligned along the z axis. Alternatively,
pair (π/2, 0) specifies the Hadamard basis, described by basis vectors H |0〉 =
(1/
√
2)|0〉 + (1/

√
2)|1〉 and H |1〉 = (1/

√
2)|0〉 − (1/

√
2)|1〉, aligned along the x

axis. As a last example, pair (π/2, π/2) specifies an encoding basis whose base
vectors are (1/

√
2)|0〉 + (i/

√
2)|1〉 and (1/

√
2)|0〉 − (i/

√
2)|1〉. Note that these

two vectors are oriented in opposite directions along the y axis (see Fig. 3).
In general, for an arbitrarily chosen encoding basis (θ, ϕ), each 0 bit in the

plaintext is embodied in a qubit with the quantum state

|Ψ0〉 = RϕUθ|0〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉. (1)

Similarly, a qubit in the quantum state
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Fig. 1. Information flow diagram outlining the steps of the communication protocol
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Fig. 2. Encoding basis is a straight line
through the center of the Bloch sphere,
specified by a pair (θ, ϕ)

Fig. 3. Pair (π
2
, π
2
) specifies an encod-

ing basis with base vectors { 1√
2
|0〉 +

i√
2
|1〉, 1√

2
|0〉 − i√

2
|1〉}

|Ψ1〉 = RϕUθ|1〉 = sin
θ

2
|0〉 − eiϕ cos

θ

2
|1〉 (2)

will carry a value of 1. The quantum operations (gates) Uθ and Rϕ are described
by the following matrices:

Uθ =

⎡
⎣ cos θ

2 sin θ
2

sin θ
2 − cos θ

2

⎤
⎦ ; Rϕ =

⎡
⎣1 0

0 eiϕ

⎤
⎦ . (3)

Once the plaintext is properly encoded, Alice will scramble the qubits so
that signature qubits are scattered throughout and interspersed with message
qubits. Consequently, the original ordering of bits in the message and in the
signature (the rank of each bit) will no longer be preserved after the scrambling
process. Whatever the scrambled quantum block is, Alice will send it through the
quantum channel over to Bob, who will store each qubit received in a quantum
memory, in the order they arrive. With this step, the quantum communication
part of the protocol, that is, communication through the quantum channel is
over. In the second phase, all communication between Alice and Bob is carried
out through the public authenticated classical channel.

This second phase starts with Alice disclosing to Bob the exact encoding basis
that she used in order to encrypt the plaintext. With this information Bob is able
to decrypt each qubit (whether belonging to the message or to the signature)
stored in his quantum memory. Next, Alice shares with Bob the position and
value of each bit in the signature string. In this way, they can verify that the
signature string received by Bob matches exactly the one sent by Alice. A perfect
match will be taken as proof that the encoded quantum block was not tampered
with while in transit, or at least not to a significant level. Of course, a potential
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eavesdropper may remain undetected if she is lucky enough not to disturb the
quantum states of the qubits in the signature. But this probability can be made
arbitrarily small by increasing the signature length.

Finally, if the verification step reveals no trace of an eavesdropper, Alice in-
forms Bob about the rank (actual position) of each bit in the message string.
This allows Bob to re-arrange the bits in the proper order and thus recover the
original message.

3 Analysis

In this section we analyze the security of the protocol by investigating the effects
of a possible eavesdropping act on the quantum and classical communication
channels. Since the quantum channel is public, an eavesdropper (conventionally
named Eve) may choose to act on any of the qubits passing by on their way from
Alice to Bob. For concreteness, but without loss of generality, let us analyze the
scenario in which Eve eavesdrops on a qubit encoding the value 0. The other
case, in which a qubit encodes a 1 is perfectly similar.

The quantum state of a qubit embodying a 0 is |Ψ0〉 (see eq. 1). When Eve
intercepts this qubit, she may try to measure it directly in the computational
basis or try to guess what the encoding basis may have been, so that she can
decrypt the qubit before measuring it. Let us denote the encoding basis (the
one chosen by Alice) by (θA, ϕA) and label the basis guessed by Eve (θE , ϕE).
Trying to decrypt the qubit, Eve applies R−ϕE followed by UθE to |Ψ0〉 altering
the qubit state as follows:

UθER−ϕE |Ψ0〉 = UθE (cos
θA
2
|0〉+ ei(ϕA−ϕE) sin

θA
2
|1〉)

= (cos
θE
2

cos
θA
2

+ ei(ϕA−ϕE) sin
θE
2

sin
θA
2
)|0〉

+ (sin
θE
2

cos
θA
2
− ei(ϕA−ϕE) cos

θE
2

sin
θA
2
)|1〉 (4)

Consequently, Eve will now measure a 0 with probability

p0Eve = | cos
θE
2

cos
θA
2

+ ei(ϕA−ϕE) sin
θE
2

sin
θA
2
|2

= cos2
θA − θE

2
− 1

2
sin θE sin θA(1− cosΔϕ) (5)

and a 1 with probability

p1Eve = | sin
θE
2

cos
θA
2
− ei(ϕA−ϕE) cos

θE
2

sin
θA
2
|2

= sin2
θA + θE

2
− 1

2
sin θE sin θA(1 + cosΔϕ) (6)

where Δϕ = ϕA − ϕE .
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Eve is aware that her actions may have modified the state of the qubit, so
before sending it further on to Bob, she will try to undo the consequences of her
eavesdropping by applying UθE followed by RϕE . Therefore, what Bob receives
(from Eve) is a qubit in the state

|Φ0〉 = cos
θE
2
|0〉+ eiϕE sin

θE
2
|1〉 (7)

with probability p0Eve, or in the state

|Φ1〉 = sin
θE
2
|0〉 − eiϕE cos

θE
2
|1〉 (8)

with probability p1Eve.
Assuming that the qubit comes straight from Alice, Bob now applies R−ϕA

and UθA to decode it:

UθAR−ϕA |Φ0〉 = (cos
θA
2

cos
θE
2

+ ei(ϕE−ϕA) sin
θA
2

sin
θE
2
)|0〉

+ (sin
θA
2

cos
θE
2
− ei(ϕE−ϕA) cos

θA
2

sin
θE
2
)|1〉 (9)

UθAR−ϕA |Φ1〉 = (cos
θA
2

sin
θE
2
− ei(ϕE−ϕA) sin

θA
2

cos
θE
2
)|0〉

+ (sin
θA
2

sin
θE
2

+ ei(ϕE−ϕA) cos
θA
2

cos
θE
2
)|1〉 (10)

When measuring UθAR−ϕA |Φ0〉, Bob will obtain 0 with probability p0Eve. Simi-
larly, if the state of the qubit received by Bob is |Φ1〉, he will measure a 0 with
probability p1Eve. Overall, the probability that Bob correctly decodes the qubit
and obtains a 0 is (p0Eve)

2 + (p1Eve)
2. In this case, Eve’s eavesdropping activity

remains undetected. The probability of detection on a single qubit is therefore:

pd,1 = 1− ((p0Eve)
2 + (p1Eve)

2) = 2p0Evep
1
Eve = 2p0Eve(1− p0Eve) (11)

This probability achieves its maximum of 1/2 when p0Eve = p1Eve = 1/2.
This happens when the basis guessed by Eve (θE , ϕE) is ”maximally
non-orthogonal” to the basis (θA, ϕA) chosen by Alice. In BB84 [2] for exam-
ple, this maximum non-orthogonality is realized by choosing horizontal/vertical
together with diagonal polarization. In terms of the Bloch sphere representation,
two bases are ”maximally non-orthogonal” if the two straight lines correspond-
ing to the two bases are perpendicular to each other. On the other hand, the
detection probability is 0, when Eve chooses the same basis as Alice (p0Eve = 1)
or an orthogonal basis in which the roles of the two basis vectors are reversed
(p0Eve = 0).

WhenAlice uses a signature bitstring of lengthn, the probability of detecting the
disruptions caused by eavesdropping on the qubits encoding the signature grows to

pd,n = 1− ((p0Eve)
2 + (p1Eve)

2)n (12)
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Since (p0Eve)
2 + (p1Eve)

2 = 2(p0Eve)
2 − 2p0Eve + 1 ∈ (0, 1], it follows that

lim
n→∞ pd,n = 1, (13)

except for the particular case when Eve correctly guesses the encoding basis
(p0Eve = 1 or p1Eve = 1) and remains undetected (pd,1 = pd,n = 0). Consequently,
the longer the signature string is, the larger the number of qubits that are tested for
eavesdropping and the higher the probability to catch a potential eavesdropper.

4 Opaque Eavesdropping

In the previous section, we have analyzed a rather elaborate scheme for Eve
to hide her presence and make her eavesdropping actions transparent to Alice
and Bob. Even with all those precautions, we have seen that the detection rate
can be pushed as high as desired by increasing the number of bits tested for
eavesdropping in the signature string. In this section, we investigate a more
direct, opaque eavesdropping strategy in which Eve directly measures some or
all of the qubits traveling through the quantum channel from Alice to Bob.

Again, without loss of generality, let us assume Eve intercepts a qubit encoding
a value of 0. Such a qubit is described by quantum state |Ψ0〉 (see eq. 1). Upon
measuring this qubit in the normal computational basis, Eve will observe a 0
with probability p0Eve = cos2 (θ/2) and a 1 with probability p1Eve = sin2 (θ/2),
where θ is one of the two parameters characterizing the encoding basis chosen
by Alice. According to the measurement postulate of quantum mechanics, the
post-measurement state of the qubit must be compatible with the measurement
outcome, so Eve will pass on to Bob a qubit in state |0〉 (with probability p0Eve)
or a qubit in state |1〉 (with probability p1Eve).

During the second phase of the protocol, after Alice has disclosed the encoding
basis, Bob can proceed to decrypt the received qubits. Note that at this time,
although Eve can also eavesdrop on the classical communication channel and thus
gain knowledge of θ and ϕ, the message qubits are no longer in her possession, so
there is nothing else she can do to increase her knowledge about the transmitted
message. By applying R−ϕ and Uθ to the received qubit, Bob will evolve its
quantum state to

UθR−ϕ|0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉 (14)

with probability p0Eve, or to

UθR−ϕ|1〉 = Uθ(e
−iϕ|1〉) = e−iϕ(sin

θ

2
|0〉 − cos

θ

2
|1〉) (15)

with probability p1Eve. A measurement on these quantum states will yield a 0
(correct decoding) with probability

cos4
θ

2
+ sin4

θ

2
= 1− 2 sin2

θ

2
cos2

θ

2
= 1− sin2 θ

2
(16)
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and a 1 (incorrect decoding) with probability 1
2 sin

2 θ. Consequently, the eaves-
dropping detection probability per qubit varies between 0 (realized when θ = 0)
and 1/2 (achieved for θ = π/2). In other words, Eve remains undetected when
the encoding basis coincides with the normal computational basis; on the other
hand, there is a 50% probability of detecting the actions of Eve if the encoding
basis is ”maximally non-orthogonal” to the normal computational basis (like the
Hadamard basis {H |0〉,H |1〉}, for example). Therefore, on average, the detection
probability per qubit tested is given by

1
2

∫ π

0
sin2 θdθ

π
=

∫ π
2

0
sin2 θdθ

π
=

1

4
(17)

As in the more complex scenario discussed before, this probability can be brought
as close to 1 as desired by increasing the number of qubits tested for eavesdrop-
ping (the signature string).

Another interesting question in this analysis is: How much information from
the transmitted message can Eve gain, assuming that she remains undetected?
The condition to remain undetected is essential for Eve. Otherwise, Alice will
not disclose to Bob the rank (correct position) of each qubit in the message
and consequently, the information gain for Eve is null, even if she has correctly
decoded each qubit.

A measure of the information gain is 1−Hbin(p
0
Eve), where Hbin(p

0
Eve) is the

binary entropy associated with the probability of seeing a 0 when measuring a
qubit that encodes a 0. We can express this information gain as a function of
the parameter θ as follows:

1−Hbin(p
0
Eve) = 1 + p0Eve log p

0
Eve + (1− p0Eve) log (1− p0Eve)

= 1 + cos2
θ

2
log cos2

θ

2
+ sin2

θ

2
log sin2

θ

2

= 1 + 2 cos2
θ

2
log cos

θ

2
+ 2 sin2

θ

2
log sin

θ

2
(18)

The graph of this function is depicted in Fig. 4. When Eve performs a direct
measurement in the normal computational basis on a qubit encoding a 0, she
can be certain of the observed value for an encoding angle θ of 0 or π. On the
other extremity, when θ = π

2 , the measurement provides no information gain
whatsoever. From Eve’s point of view, the message bit could still be a 0 or a 1,
with equal probability. On average, the information gain is given by

∫ π

0 (1 + 2 cos2 θ
2 log cos

θ
2 + 2 sin2 θ

2 log sin
θ
2 )dθ

π
≈ 0.44 (19)
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Fig. 4. Information gain as a function of the encoding angle θ

5 Variations

The role of the signature string in this protocol is to ensure (with a certain
probability, which can be made arbitrarily large) its security or, in other words,
the secrecy of the communication between Alice and Bob. To this end, the bits
forming the signature are treated in exactly the same way as the bits composing
the actual message: they are scrambled together and encoded according to a
chosen basis (θ, ϕ). Consequently, when attempting an eavesdropping, Eve has
no knowledge whatsoever if the bit she tampers with is part of the signature or
part of the message. Ideally, she would like to eavesdrop only on the message
bitstring in order to avoid detection and maximize her knowledge on the message
transmitted. Unfortunately for her, the information gain is directly proportional
to the probability of being detected, so Eve has to think twice before deciding
to eavesdrop on a particular qubit.

This property can be used to slightly simplify the protocol such that the bits
in the signature string are not encoded (or equivalently, they are encoded in the
normal computational basis: 0 becomes |0〉 and 1 becomes |1〉). Now Eve can
completely avoid detection by choosing to measure the bypassing qubits directly
in the standard computational basis. In this way, the quantum states of the
signature qubits will not be altered, but the state of any message qubit will be
projected to one of the two eigenvectors of the measurement basis: |0〉 or |1〉.

Consequently, Alice may pick as encoding basis for the message bitstring
the Hadamard basis (π2 , 0), which will maximize Eve’s uncertainty over each
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measurement she performs on the message qubits. Effectively, the outcome of
each such measurement has a 50% probability of being correct, which is not
better than tossing a fair coin. Therefore, we can confidently say that Eve has
zero knowledge about the true value encoded in such a qubit, or equivalently,
the binary entropy of such a qubit is 1.

This variant of the protocol, in which the message bits are encoded using
the Hadamard basis while the bits in the signature are encoded in the normal
computational basis, is reminiscent of BB84 [2] with its two encoding bases:
horizontal/vertical and diagonal that are randomly applied by Alice. Here, as
there, it is the ”maximum non-orthogonality” of the two bases that keeps Eve
in the dark, but this protocol has an important advantage: it can be used to
directly encrypt any message without the need to establish a secret key first.
Still, the classical channel needs to be authenticated, which is usually done with
a small secret key, but it was shown that this requirement is too strong and all
that is actually needed is protected public information [7].

Since the price for avoiding detection is total uncertainty about the trans-
mitted message, Eve is forced to measure at least some of the qubits in the
Hadamard basis, thus exposing herself to detection. The choice for Eve is a dif-
ficult one: either try as much as possible to remain hidden, but then she faces
the prospect of gaining little information (if any at all) about the content of
the message, or aiming at decrypting as much as possible from the transmitted
message, which increases the risk of being caught. And in case of detection, no
information is gained (zero knowledge), because Alice will no longer reveal the
proper order of the bits in the message.

If the first variation discussed is one in which the complexity of the protocol
is decreased, the second one involves an increase in complexity with the purpose
of also decreasing the probability of the worst case. In the original protocol,
the worst case happens when Eve gets so lucky that she guesses precisely the
encoding basis (θ, ϕ) used by Alice. We can think of a variation in which Alice
randomly chooses a pair (θ, ϕ) for every single bit transmitted. This will not
change the average-case analysis, but will definitely make the worst-case much
less probable, since Eve will have to get lucky N times now, where N is the total
number of bits transmitted (message and signature together).

6 Conclusion

In this paper, we have developed a novel quantum protocol that allows two com-
municating parties to exchange classical messages directly, without the need to
establish a secret key prior to the communication. Quantum mechanical prop-
erties have been used before in cryptographic protocols, but only for key dis-
tribution purposes, or more precisely for key enhancement, if authentication is
achieved through a small secret key already distributed to the parties involved.
Our protocol is entanglement-free and uses only unary quantum transforma-
tions, which means that the computational power assumed is less than that of
a universal quantum computer. Consequently, communicating securely through
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public channels can be performed simple, fast and efficient if we resort to quan-
tum mechanics to directly encrypt the transmitted message into a sequence of
qubits.

Two important ideas made this result possible: the use of a quantum memory
and bringing the rank (or position) of a bit in the message bitstring into play. The
use of a quantum memory is essential in order to make ”informed” measurements
in the second phase of the protocol, after all the qubits have been received. Yet,
storing qubits is rarely contemplated (if ever) in quantum protocols, perhaps
due to their fragility and ephemeral nature. Nevertheless, experimental quan-
tum physicists are making good progress towards making quantum memories a
practical reality.

Scrambling the qubits encoding the message, on the other hand, guarantees
that no knowledge whatsoever about the content of the message is gained by
a potential eavesdropper, even in the highly unlikely eventuality of correctly
decoding the individual bits in the message. It is our belief that the synergy of
these two ideas working together may open the door for a whole new class of
cryptographic protocols with superior characteristics.

References

1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys-
ical Review Letters 68(21), 3121–3124 (1992)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s
theorem. Physical Review Letters 68(5), 557–559 (1992)

4. Ekert, A.: Quantum cryptography based on Bell’s theorem. Physical Review Let-
ters 67, 661–663 (1991)

5. Gisin, N., et al.: Quantum storage of photonic entanglement in a crystal. Na-
ture 469, 508–511 (2011)

6. Lukin, M., et al.: Room-Temperature Quantum Bit Memory Exceeding One Second.
Science 336, 1283–1286 (2012)

7. Nagy, N., Akl, S.G.: Authenticated quantum key distribution without classical
communication. Parallel Processing Letters, Special Issue on Unconventional Com-
putational Problems 17(3), 323–335 (2007)

8. Rivest, R.L., Shamir, A., Adleman, L.M.: A method of obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

9. Steger, M., Saeedi, K., Thewalt, M.L.W., Morton, J.J.L., Riemann, H., Abrosimov,
N.V., Becker, P., Pohl, H.J.: Quantum Information Storage for over 180s Using
Donor Spins in a Si28 “Semiconductor Vacuum”. Science 336(6086), 1280–1283
(2012)

10. Tittel, W., et al.: Broadband waveguide quantum memory for entangled photons.
Nature 469, 512–515 (2011)



Quantum Secret Communication

without an Encryption Key

Marius Nagy and Naya Nagy

College of Computer Engineering and Science
Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia

{mnagy,nnagy}@pmu.edu.sa

Abstract. Quantum cryptographic methods increase security over clas-
sical methods. To date, quantum algorithms aim to distribute a secret
key to be used afterwards to encrypt messages. The method described
in this paper does not use an encryption key at all. An array of qubits is
transmitted from the source to the destination with the message encoded
in the phase of the qubit. The secrecy of the message derives from the
nonclonability principle. Our algorithm relies on the common assump-
tion that public information can be authenticated. The alforithm shows
an increased detection rate per qubit, 33%, which is higher than the one
commonly used in literature, namely 25%.

Keywords: Quantum Key Distribution, Quantum Cryptography, In-
truder Detection.

1 Introduction

Quantum cryptography has been mainly concerned with quantum key distri-
bution. The two communicating parties, Alice and Bob, undergo a protocol to
distribute a secret key. Alice and Bob aim to reach a consensus on the value of a
secret key. This key is to be used later to encrypt/decrypt a message. Actually,
a large body of literature considers the quantum key distribution problem to be
in fact a key enhancement [5]. Nevertheless, the opposite opinion, which says
that true key distribution can be achieved with quantum means only, also has
its adepts [3]. Key enhancement means that Alice and Bob share already a small
secret key, possibly obtained via a classical protocol, and then develop a large
secret key. Key distribution starts from public information only and develops a
secret key during the protocol.

In this paper, we distance ourselves from the very idea of using a key for
encryption. We develop a protocol that transmits a message secretly by scram-
bling the order of the bits rather than explicitly encrypting the message with a
key. The scrambled message is transmitted via a quantum channel and therefore
consists of quantum bits (qubits) rather than binary bits.

Our protocol comes with all the advantages of quantum cryptography. An
intruder, Eve, listening to the message being transmitted, destroys the super-
position of the qubits and thus can gain knowledge about it only with a low
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probability. Also, the intruder is detected by Alice and Bob with an arbitrarily
high probability.

Additionally, our protocol is equivalent to a one-time-pad [6] protocol. As
we use no key, information about the scrambling of the message is of the same
length as the message itself. Eavesdropping one message provides no gain to the
intruder for any subsequent messages.

Previous quantum key distribution protocols [1] [2] have a detection rate of
25% per checked qubit. We develop an encoding strategy in three complementary
basis that improves the detection rate per qubit to 33%.

The rest of the paper is organized as follows. Section 2 presents the keyless
protocol that securely transmits a message from a source to a destination. It
also analyzes the protocol’s protection to the intruder’s actions. The analysis
is formalized to measure the intruder’s gain of knowledge for different levels of
attack. Section 3 describes an improvement on the detection rate of the intruder
by using an encoding in three complementary bases. Section 4 concludes the
paper.

2 Keyless Quantum Message Transmission

Using Dirac’s notation, a qubit is q = α|0〉+β|1〉. α and β are complex numbers.
Thus, |α|2 is the probability of the qubit to collapse to 0, and |β|2 to 1. Qubits
are said to be in a balanced superposition if the qubit has an equal chance
50% to collapse to 0 or 1. Quantum protocols use a small set of common gates.
Three such gates are used in our protocols: the controlled-NOT (CNOT) gate.
the Hadamard gate, and the phase-shift gate [4]. All these gates have a control
qubit. If the control qubit is |1〉, the primary qubit is transformed according to
the gate’s definition. If the control qubit is |0〉, the primary qubit passes the gate
undisturbed.

In this section, we describe in detail the inner workings of a protocol that
allows two parties, Alice and Bob, to communicate secretly over an insecure,
public quantum channel. The protocol relies on the fact that a quantum chan-
nel cannot be eavesdropped on without disturbing the quantum information
transmitted over the channel. In addition to the quantum channel, the quantum
protocol also requires an authenticated channel for classical communication and
a quantum memory (i.e. the ability to store the states of a certain number of
qubits for a certain amount of time). The main steps of the protocol are:

Phase I: Communication over the Quantum Channel

Step 1: Alice concatenates the two binary strings, one representing the mes-
sage she intends to send over to Bob and the other representing the
signature bitstring that will be used for eavesdropping.

Step 2: For each bit in the concatenated sequence, Alice uses one of the
two bases, or alphabets (chosen randomly) to encode the value of
the respective bit in the quantum state of the resulting qubit.
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Step 3: Alice scrambles the order of the qubits forming the quantum en-
crypted block obtained in step 2, by choosing an arbitrary permu-
tation of the qubits and then sends them over to Bob through the
insecure, public quantum channel.

Step 4: Bob applies the necessary procedures to safely store the qubits re-
ceived from Alice until the second phase of the protocol, when he
will gain knowledge about each qubit’s encoding basis and position
in the original qubit sequence. The position, or index of the qubit
in the original sequence is called the qubit’s rank.

Phase II: Communication over the Classical Channel

Step 1: Alice discloses to Bob which of the qubits transmitted are part of
the signature string and the encoding base of each.

Step 2: Following Alice’s instructions, Bob reconstructs the signature bit-
string.

Step 3: Alice and Bob proceed to verify, bit by bit, whether the signature
bitstring was untampered with, during the transmission.

Step 4: If the discrepancy between Alice and Bob is discovered in the val-
ues of the signature bits, the presence of an eavesdropper is inferred
and the protocol is abandoned.
Otherwise, Alice informs Bob about the correct position (rank) of
each qubit in the original message and the encoding alphabet em-
ployed to obtain each qubit.

Step 5: Bob decodes and re-arranges the qubits he still has in storage in
order to obtain the plain message sent to him by Alice.

Having presented the structure of the protocol, a few clarifications and an
analysis of it are perhaps appropriate at this point. Generally, the length of
the signature bitstring reflects the intended level of security for the transmitted
message. As the analysis below clearly shows, a longer signature bitstring re-
sults in higher chances of detecting a potential eavesdropper. Consequently, the
signature length can be varied according to the importance of the message.

The protocol above is described in general terms, abstracted away from any
particular physical realizations for a qubit. Moreover, any two alphabets, i.e. en-
coding bases, can be used, as long as they are complementary. Complementary
bases means that they correspond to conjugate quantum variables. In this sit-
uation, trying to measure (decode) a qubit using the other basis, and not the
one used for encoding, will maximize the uncertainty over the value of the cor-
responding bit: equal chances to obtain 0 or 1. From a mathematical point of
view, the simplest example to achieve complementarity would probably be the
use of the regular computational basis {|0〉, |1〉} together with the “Hadamard

basis” {H |0〉 = |0〉√
2
+ |1〉√

2
, H |1〉 = |0〉√

2
− |1〉√

2
}. We note in passing that the BB84

protocol [1], which uses photon polarization as qubit embodiment, achieves com-
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Fig. 1. Opaque eavesdropping. Eve wrongly measures in the Hadamard basis a qubit
sent by Alice in the computational basis.

plementarity by choosing randomly between rectilinear polarization {| →〉, | ↑〉}
and diagonal polarization {| ↗〉, | ↖〉} as the two possible encoding bases. In
general, the precise meaning or interpretation of a certain basis depends entirely
on the physical realization chosen for the qubit. To keep our discussion as gen-
eral as possible, while still referring to a concrete pair of complementary bases,
we assume henceforth that the two encoding alphabets are the computational
basis and the Hadamard basis, as specified above. This basically means that
Alice will create a |0〉 qubit for each 0 bit in the message and a |1〉 qubit for
each 1 bit in the message, with a random choice to apply a Hadamard gate on
the resulting qubit. What can Eve, the prototypical eavesdropper do, in order to
elicit as much information as possible about the transmitted message, while the
qubits are in transit from Alice to Bob? The two main possible eavesdropping
strategies are discussed next.

2.1 Opaque Eavesdropping

Opaque eavesdropping refers to Eve’s attempt to gain knowledge about the trans-
mitted message by measuring each qubit passing through the quantum channel
in one of the two possible bases. Eve knows the two bases that Eve has used:
computational and Hadamard. Yet, for any specific qubit, Eve does not know
the basis used, as Alice chooses the basis randomly. If Eve is lucky and chooses
the same basis, she will be able to read the binary value of the qubit and will
leave no trace of her interference. Nevertheless, if Eve chooses the wrong basis,
she gains no knowledge about the binary value of the qubit, and also may disturb
the correct measurement for Bob. There are two cases with similar results. First,
Alice may send the qubit simply in the computational basis, see fig. 1. If Eve
mistakenly applies a Hadamard gate prior to her own measurement, she will get
either 0 or 1 with equal probability, regardless of Alice’s original value. Therefore,
Bob may measure the wrong value with a 50% chance. If this is a qubit that
Alice and Bob check, again they have a 50% chance to catch Eve. Secondly, Alice
may send a qubit in the Hadamard basis. If Eve mistakenly measures the qubit
directly she again produces a qubit on which she may be caught with a chance
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of 50%. Therefore, on each qubit that Eve wrongly disturbs, she is caught 50%
of the times. As she is disturbing half the qubits on average, Eve is caught with
a probability of 25% on each qubit she chooses to observe. Or else, on each qubit
that Eve decides to observe and Bob decides to check, Eve remains undetected
with a probability of 75% = 3

4 .
Suppose, there are n qubits in the signature string. They are observed by

Eve and checked by Bob. Eve remains undetected with a probability of (34 )
n.

Therefore Bob’s detection rate over n qubits is given by the formula rate =
1−

(
3
4

)n
.

Nevertheless, if Eve gets lucky enough to remain undetected, then she will
gain access to the rank and encoding basis of each bit in the message. This
means that she can put the bits in the correct order, but she can only be certain
about their value for half of them, the ones for which she correctly guessed the
encoding basis. For example, if Eve listens to n qubits, she is certain of the value
of n

2 qubits. Thus, her information gain is 50% = 1
2 .

Note that the probability for Eve to remain undetected may be very low; for
example, if the signature string is 25 bits long, Eve remains undetected with a
probability of about 0.075%.

2.2 Translucent Eavesdropping

Alternatively, Eve could try a more insidious eavesdropping strategy, avoiding a
direct measurement on the qubits in transit through the quantum channel. This
can be achieved by making a copy of each qubit or entangling each qubit to
one of her own, before sending the original further on to Bob. Since the two en-
coding bases are complementary, no quantum circuit exists that can accurately
duplicate all four base vectors (no-cloning theorem). For example, the Controlled-
NOT (CNOT) gate acts as a cloning gate for qubits encoded in the computa-
tional basis, but creates as entangled pair 1√

2
(|00〉 ± |11〉) whenever we push a

quantum state like 1√
2
(|0〉 ± |1〉) through it. Consequently, each qubit originally

encoded by Alice in the Hadamard basis, will arrive at Bob entangled with a cor-
responding qubit in Eve’s possession. Now when Bob applies a Hadamard gate
on his half of the entanglement, in order to decode the qubit, he effectively trans-

forms the state of the Bob-Eve ensemble as follows: H ⊗ I
(

1√
2
|00〉+ 1√

2
|11〉

)
=

1
2 (|00〉+ |01〉+ |10〉 − |11〉), and H ⊗ I

(
1√
2
|00〉 − 1√

2
|11〉

)
=

1
2 (|00〉 − |01〉+ |10〉+ |11〉).

When any of the two quantum states above is measured by Bob in the normal
computational basis, the entanglement will collapse to one of the four basis
vectors { |00〉, |01〉, |10〉, |11〉 } and Bob will have a 50% chance to obtain
the correct bit value, the one originally encoded by Alice. Consequently, the
detection rate for translucent eavesdropping is the same as the one derived for
opaque eavesdropping.
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2.3 Lower Levels of Eavesdropping

The above analysis for eavesdropping consequences is based on the assumption
that Eve tampers with all qubits transmitted through the quantum channel.
Here, tampering with a qubit means either measuring or trying to clone it. If
Eve is caught, she gains no knowledge whatsoever about the content of the
message. This happens because whenever Eve is caught in Step 4 of Phase II of
the protocol, see section 2, the protocol is abandoned. Alice does not reveal the
correct order of the qubits and the scrambled message is meaningless both to
Eve and Bob.

Consequently, Eve could settle for a more discrete strategy, according to the
plan that partial information is better than no information at all. If Eve decides
to eavesdrop on a fraction x for the qubits in the quantum encrypted block
transmitted, then the detection rate varies with x and with the signature length
n as follows:rate = 1 −

(
3
4

)x·n
,, where 0 ≤ x ≤ 1 and n is the length of the

signature, for example n = 16 bits long.

Fig. 2. The graph shows the detection rate together with Eve’s information gain. The
Ox axis represents x, the percentage of the signature read by Eve. The Oy axis shows
both the detection rate and the information gain.

In the eventuality that she remains undetected, the percentage of the message
that Eve is certain she has correctly decoded is 50%. Thus the information gain
on a fraction x is x

2 A graph depicting the variation of the detection rate and
information gain for various levels of eavesdropping is presented in fig. 2. The
graph assumes a constant signature length of 16 bits. A longer signature will, of
course, push the detection rates asymptotically closer to the 100% limit.

From Eve’s point of view, probably the most pertinent question is: What is the
optimal level of eavesdropping such that the probability of escaping detection and the
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knowledge gained about the message are both maximized? In order to answer this
question, we need to find the maximum of a benefit function that quantifies both
these quantities. A suitable function is fbenefit : [0, 1] → [0, 1], fbenefit(x) =
x
2

(
3
4

)x·n
.

This function was obtained by multiplying the two quantities, probability of
escaping detection and the fraction of the message correctly decoded, normalized
to the interval [0, 1]. As it can be seen from fig. 3, this function reaches its
maximum for a level of eavesdropping of about 22%, if the signature string
consists of 16 bits. This maximum drops to 14% for a 24-bit signature and to
around 11% for a 32-bit signature. These data suggest that the best strategy
for Eve is to decrease the level of eavesdropping as the size of the signature
increases. However, the length of the signature string is disclosed only during
the second phase of the protocol, so Eve cannot use this information in planning
her eavesdropping strategy.

Fig. 3. The benefit of eavesdropping versus the detection rate

3 Encoding in Three Bases

We have discussed an algorithm that reveals the presence of Eve whenever the
signature test fails. For each bit of the signature, Eve can be detected with
a probability of 25%. This detection rate per qubit is common to all classical
key distribution protocols [1] [2]. We hereby propose an encoding scheme that
improves the detection rate per qubit to 33%. The improved detection rate comes
from encoding each qubit in three complementary bases. While this may seem
to increase the complexity in manipulating each qubit, yet the gates used for
encoding are common and simple.

The three bases used for encoding are the computational basis, the Hadamard
basis, and the phase-shift- Hadamard basis. The phase-shift- Hadamard basis has
two gates applied to a qubit: a Hadamard gate and then a Rπ

2
rotation.

When Alice wants to send a binary digit 0 or 1, she first prepares a qubit in
the computational basis |0〉 or |1〉. Then Alice chooses randomly one of the three
bases to encode her qubit:
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1. The computational basis |0〉 and |1〉.
2. The Hadamard basis, 1√

2
(|0〉+ |1〉 for 0 and 1√

2
(|0〉 − |1〉 for 1.

3. The Rπ
2
-Hadamard basis, 1√

2
(|0〉+ i|1〉 for 0 and 1√

2
(|0〉 − i|1〉 for 1.

If Alice chooses the computational basis, she simply sends the qubit to Bob. If
Alice chooses the Hadamard basis, then Alice applies a Hadamard gate first and
then sends the transformed qubit to Bob. If Alice chooses the Rπ

2
-Hadamard

basis, Alice applies a Hadamard gate then a π
2 phase shift gate, and then sends

the doubly transformed qubit to Bob.

Fig. 4. Encoding of a qubit in three orthogonal bases. The random values of the control
qubits 1 and 2 define the actual encoding basis.

As Alice has three options, the choice can be made by two control bits that
are set on arbitrary values. Fig. 4 shows the quantum circuit that Alice uses to
encode each qubit. The table below shows the encoding basis as given by the
values of the two control bits.

Control 1 Control 2 Encoding Basis

0 0 computational basis
0 1 not used
1 0 Hadamard basis
1 1 phase-shift Hadamard basis

According to the protocol, when Bob receives a qubit from Alice, he waits
to be informed on the classical channel what encoding basis was used. Then he
applies the necessary gates in reverse order: the phase-shift gate first and then
the Hadamard gate.

3.1 What Eve Can Do

The eavesdropper can be supposed to know the mechanism of encryption, while
not knowing the values of the random control bits.

In opaque eavesdropping, Eve will try to measure the qubit intercepted from
Alice and then will further transmit either the measured qubit or a qubit of her
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Fig. 5. Alice encodes her qubit in the phase-shift-Hadamard basis. Eve guesses the
computational basis. Bob catches Eve with a 50% chance.

choice to Bob. Eve guesses one of the three encoding bases and treats the qubit
intercepted from Alice accordingly.

Suppose Eve tries the computational basis. If Alice’s qubit is encoded in the
computational basis, Eve reads the correct value and remains undetected. If
Alice’s qubit is encoded in the Hadamard basis, Eve wrongly pushes Alice’s
qubit through a Hadamard gate and will be detected by Bob in 50% of the cases.
This situation was represented in fig. 1. If Alice’s qubit was encoded in the phase-
shift -Hadamard basis and Eve measures the qubit in the computational basis,
Eve destroys the balanced superposition. As in the previous case, Bob can catch
Eve with a 50% chance. Fig. 5 shows an example of Alice encoding a binary 0
in the phase-shift-Hadamard basis. Bob, by applying the same steps that Alice
did in reverse order will retrieve the initial 0 only 50% of the times. As Alice
encodes a qubit randomly in one of the three bases, and Eve reads the stolen
qubit in the computational basis, Eve will be caught in two situations with a
chance of 50%. This yields an overall probability of 1

3 (
1
2 +

1
2 ) = 33%. This chance

is considerably higher than 25% offered by two bases encoding.
We supposed that Eve decides to measure the intercepted qubit in the com-

putational basis. If Eve chooses to measure in any other of the three bases, a
similar result can be deducted. The detection probability is 33% no matter what
basis Eve chooses.

If eavesdropping is tested on a larger signature, the detection rate increases
sharply with the length of the signature n: rate = 1−

(
2
3

)n
.

Fig. 6 shows a comparison on the detection rate for the case of two encoding
and three encoding bases respectively. The graph shows that for short signa-
tures, the detection rate for three encoding bases is measurably larger, whereas
signatures large than 25 qubits do not benefit from three encoding bases.

Lower Levels of Eavesdropping. Let us study the optimal level of eavesdrop-
ping on the three bases encoding scheme. Under the assumption that Eve is not
caught, Eve gains the value of the qubits that she has luckily measured in the
same basis as Bob. As there are three possible bases, Eve reads correctly 1

3 of
the qubits she intercepts.
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Fig. 6. The graph shows the detection rate versus the signature length for three en-
coding bases. The Ox axis represents the length of the signature string. The Oy axis
shows the probability for Eve to be detected.

Fig. 7. The graph shows the detection rate together with Eve’s information gain. The
Ox axis represents the percentage of the signature read by Eve. The Oy axis shows
both the detection rate and the information gain.
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Suppose Eve does not listen to the entire qubit block, but eavesdrops a fraction
x. Therefore, she will disturb a fraction x of the signature of length n. The
detection rate varies with x according to the following formula rate = 1−

(
2
3

)x·n
.

Also, x affects the information gain, which will be the fraction x
3 of the message.

Fig. 7 represents both the detection rate and the information gain for the three
bases encoding scheme, computed on a signature of 16 bits. The graphs for a
two bases encoding are also shown for comparison in the figure, with a thin line.
It can be seen that the three base protocol improves over the two base protocol,
both in terms of detection rate as well as information gain.

Fig. 8. The benefit of eavesdropping versus the detection rate

In section 2.3, we defined a benefit function that Eve uses to find the opti-
mal level of eavesdropping. For the three bases encoding, the function becomes
fbenefit : [0, 1]→ [0, 1], fbenefit(x) =

x
3

(
2
3

)x·n
.

Fig. 8 shows the graph of this function juxtaposed with the graph for the two
bases encoding defined in section 2.3. By comparison, we see that the optimal
level of eavesdropping is approximately the same, about 22%. Nevertheless, for
a three bases encoding scheme the benefit is considerably lower .

4 Conclusion

We have shown that secret communication does not need an encryption key. The
previous section contains a protocol that transmits a secret message without en-
coding the message with a key. The secrecy of the message ensues from randomly
scrambling the order of the bits in the message. As the bits are sent in random
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order, the scrambled message does not reveal anything about the content of the
message. The correct order of the qubits is revealed publicly after the absence
of an intruder is checked.

The protocol benefits from the capability of detecting an intruder. This is
a major characteristic of all quantum key distribution protocols. The intruder,
Eve, leaves an unmistakable mark on the qubits she read: she changes the in-
tended value of the qubit with a certain probability. Our paper has an improved
detection rate of Eve from 25% to 33% per intercepted qubit. This is achieved by
using three orthogonal encoding bases. Eve’s presence is searched on a signature,
as in all other protocols.

Our paper gives an extensive analysis on what Eve can do: opaque and translu-
cent eavesdropping, and also low levels of eavesdropping. It studies the advan-
tages of Eve and the maximum benefit Eve can get from a certain signature
length.
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Abstract. Assume that Alice, Bob and Carol, each of whom privately
holds a one-bit input, want to learn the value of the majority function
of their inputs without revealing more of their own secret inputs than
is necessary. In this paper, we show that such a secure majority com-
putation can be done with a deck of real cards; specifically, the three
players can learn only the majority of their inputs using eight physical
cards—four black cards and four red cards—with identical backs.

Keywords: Card-based protocols, Card games, Cryptography without
computers, Recreational cryptography, Secure computations.

1 Introduction

Assume that there are three players, Alice, Bob and Carol, who privately hold
one-bit inputs a ∈ {0, 1}, b ∈ {0, 1} and c ∈ {0, 1}, respectively. The private in-
puts could be, for example, their YES/NO answers (held in mind) regarding their
support for some new plan. In such a case, majority voting is often conducted to
find the majority of their answers, and sometimes it is not preferable to reveal all
of the individual inputs. Thus, we assume that Alice, Bob and Carol all want to
learn the value of the majority function maj(a, b, c) of their inputs a, b, c ∈ {0, 1}
without revealing more of their own private inputs than is necessary, i.e., they
wish to know only the value of

maj(a, b, c)
def
=

{
1 if a+ b + c ≥ 2;
0 if a+ b + c ≤ 1.

Note that
maj(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a).

In this paper, we show that such a secure majority computation can be con-
ducted using a deck of ‘real’ cards; specifically, it can be done using eight physical
cards—four black cards ♣ ♣ ♣ ♣ and four red cards ♥ ♥ ♥ ♥—with iden-

tical backs ( ? ). As shown below, our secure majority computation, which is a
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kind of cryptographic task, relies on simple properties of physical cards; we do
not need a conventional computer or communication network system.

This paper starts with a review of card-based cryptographic protocols.

1.1 Card-Based Cryptographic Protocols

Card-based cryptographic protocols enable us to perform secure computations.
The mainstream research on secure computations (e.g. [5,13]) initiated by the
seminal work of Yao [15] usually aims to implement protocols on computers com-
municating with each other via network systems. In contrast, card-based proto-
cols require only a small deck of cards, which is portable, handy and inexpensive,
and furthermore, needs no electricity. Also, it is easy for even non-specialists
to understand why card-based protocols can compute functions properly while
maintaining secrecy. Considering the fact that, even in the digital era, elections
are often conducted with physical paper ballots, we believe that physical imple-
mentations of secure computations are still quite important (e.g. [1,6,10,11]).

We first mention the properties of the cards appearing in this paper. All
cards of the same type ( ♣ or ♥ ) are assumed to be indistinguishable from

one another. We use ? to denote a card lying face down. We also assume that

the backs ? of all cards are identical. To deal with Boolean values, we use the
following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Next, we define a “commitment.” Given a bit x ∈ {0, 1}, a pair of face-down

cards ? ? whose value is equal to x (according to the encoding rule (1) above)
is called a commitment to x and is expressed as

? ?︸ ︷︷ ︸
x

.

Note that swapping the two cards constituting a commitment to a bit x results
in a commitment to negation x̄:

? ?︸ ︷︷ ︸
x

→

⇀↽︷ ︸︸ ︷
? ? → ? ?︸ ︷︷ ︸

x̄

.

Thus, a secure NOT operation is trivial.
Several card-based protocols have been described in the literature for securely

computing other operations such as AND, XOR and Adder, as listed in Table 1.
There are two types of protocols with regard to output format. The first two
protocols in Table 1 produce their outputs (the value of a∧ b) publicly, whereas
the remaining nine protocols produce their outputs in a committed format, i.e.,
their output is described as a sequence such as

? ?︸ ︷︷ ︸
a∧b

and ? ?︸ ︷︷ ︸
a⊕b

following the encoding rule (1).
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Table 1. Known card-based protocols for secure computation

# of colors # of cards Avg. # of trials

◦ Secure AND in a non-committed format

den Boer [2] 2 5 1

Mizuki-Kumamoto-Sone [7] 2 4 1

◦ Secure AND in a committed format

Crépeau-Kilian [3] 4 10 6

Niemi-Renvall [11] 2 12 2.5

Stiglic [14] 2 8 2

Mizuki-Sone [8] (§2.2) 2 6 1

◦ Secure XOR in a committed format

Crépeau-Kilian [3] 4 14 6

Mizuki-Uchiike-Sone [9] 2 10 2

Mizuki-Sone [8] 2 4 1

◦ Secure Half Adder in a committed format

Mizuki-Asiedu-Sone [6] 2 8 1

◦ Secure Full Adder in a committed format

Mizuki-Asiedu-Sone [6] 2 10 1

In addition to the protocols listed in Table 1, there are copy protocols, one of
which is introduced later, in Section 2.3.

1.2 Our Results

Recall our goal: given three commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

,

we desire to obtain a commitment

? ?︸ ︷︷ ︸
maj(a,b,c)

to the majority. As mentioned in the previous subsection, the card-based pro-
tocol enables us to perform secure computations of NOT, AND and XOR in
a committed format as well as to securely copy commitments. Consequently, it
is well known that any function can be securely computed using some number
of cards. In fact, using the existing protocols (which are described later in Sec-
tion 2), we can construct a trivial protocol for securely computing the majority
function maj(a, b, c), although doing so needs eight additional cards, by using 14
cards in total (including the six cards for the three commitments), as shown in
Section 3.

In contrast, this paper shows that such a secure majority computation can be
done with only two additional cards, namely eight cards in total (as mentioned
before). Our novel protocol is presented in Section 4. This paper concludes in
Section 5 with some discussions and open problems.
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2 Known Protocols

In this section, after explaining a shuffling operation called a “random bisection
cut,” we introduce an existing AND protocol and an existing copy protocol [8] for
our use later (and for the readers to become familiar with card-based protocols).

2.1 Random Bisection Cuts

A random bisection cut was invented in [8]. We demonstrate it by taking six
cards as an example.

1. Assume that there are six cards as follows:

? ? ? ? ? ? .

2. Bisect the deck of cards, and let the two sections be α and β:

? ? ?︸ ︷︷ ︸
α

? ? ?︸ ︷︷ ︸
β

.

3. Shift α and β randomly:

? ? ?︸ ︷︷ ︸
α

shift︷︸︸︷
⇀↽ ? ? ?︸ ︷︷ ︸

β

.

4. After applying such a random shift, the cards are either in their initial state
or in a shifted state, as follows:

? ? ?︸ ︷︷ ︸
α

? ? ?︸ ︷︷ ︸
β

or ? ? ?︸ ︷︷ ︸
β

? ? ?︸ ︷︷ ︸
α

,

each of which occurs with probability of exactly 1/2.

This kind of shuffling is referred to as a random bisection cut denoted by [ · | · ].
Below is the expression of a random bisection cut for six cards:

[
? ? ?

∣∣∣ ? ? ?
]
.

2.2 The Six-Card AND Protocol

Using the random bisection cut, we can construct a six-card AND protocol [8]
that securely computes the function f(a, b) = a ∧ b with a total of six cards:

three ♣ s and three ♥ s.
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Before going into the details of the protocol, we define two operations, get
and shift. Given a pair of bits (x, y), we define

get0(x, y) = x;

get1(x, y) = y;

shift0(x, y) = (x, y);

shift1(x, y) = (y, x).

Thus, get0(x, y) returns the first bit, get1(x, y) returns the second bit, shift0(x, y)
returns the two bits identically, and shift1(x, y) swaps the two bits.

Note that using the operations above, the AND function can be written as

a ∧ b = geta(0, b) = geta(shift0(0, b))

because

a ∧ b =

{
0 if a = 0;
b if a = 1.

Furthermore, since

geta(0, b) = geta⊕1(b, 0) = geta⊕1(shift1(0, b)),

it holds that

a ∧ b = geta⊕r(shiftr(0, b)) (2)

for a random bit r ∈ {0, 1}.
As will be seen soon, the idea behind the AND protocol described below is

based on Eq. (2). Hereafter, for two bits x and y, the notation

? ? ? ?︸ ︷︷ ︸
(x,y)

means

? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
y

.

1. Arrange the six cards as follows:

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
�
������ ���

? ? ? ? ? ? .
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3. Apply a random bisection cut:

[
? ? ?

∣∣∣ ? ? ?
]
.

4. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
������

	
		


? ? ? ? ? ? .

Then, we have

? ?︸ ︷︷ ︸
a⊕r

? ? ? ?︸ ︷︷ ︸
shiftr(0,b)

,

where r is a random bit because of the random bisection cut.

5. Reveal the leftmost two cards to find the value of a⊕ r, that tells us which
commitment of the possible two is desired. (Recall Eq. (2), from which if
a⊕r = 0, then a∧b = get0(shiftr(0, b)) and otherwise a∧b = get1(shiftr(0, b)).)
Therefore, a commitment to a ∧ b is obtained as follows:

♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
a∧b

.

Note that revealing the leftmost commitment to a⊕ r in step 5 does not leak
any information about a because r is random. In addition, the leftmost two
face-up cards are available for another computation.

A six-card OR protocol can be easily constructed in a similar manner [6].

2.3 The Copy Protocol with a Random Bisection Cut

Given a commitment to a bit x, four additional cards are sufficient to make two
copies of the commitment [8].

1. Arrange the four additional cards to the right of the given commitment:

? ?︸ ︷︷ ︸
x

♣ ♥ ♣ ♥ → ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

.

2. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
�
������ ���

	
		


? ? ? ? ? ? .
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3. Apply a random bisection cut:[
? ? ?

∣∣∣ ? ? ?
]
.

4. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
���

�
���

	
		
 ���

? ? ? ? ? ? .

Then, we have

? ?︸ ︷︷ ︸
x⊕r

? ?︸ ︷︷ ︸
r

? ?︸ ︷︷ ︸
r

,

where r is a random bit because of the random bisection cut.
5. Reveal the leftmost two cards. Then, we have

♣ ♥ ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
x

or ♥ ♣ ? ?︸ ︷︷ ︸
x̄

? ?︸ ︷︷ ︸
x̄

.

Remember that a commitment to x is easily obtained from a commitment to
x̄.

3 Straightforward Secure Majority Computations

In this section, by applying the existing protocols (introduced in the previous
section), we show that a three-input secure majority computation can be naively
done with 14 cards. That is, given three commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

together with eight additional cards, we can obtain a commitment

? ?︸ ︷︷ ︸
maj(a,b,c)

to the majority value, as follows.
First, remember that applying the copy protocol mentioned in Section 2.3 to a

commitment along with four additional cards results in two copied commitments
as well as two available cards. Therefore, by applying the copy protocol three
times, one at a time, we can copy the three commitments using eight additional
cards so that we have

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

? ?︸ ︷︷ ︸
c

? ?︸ ︷︷ ︸
a

♣ ♥ .
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Next, since
maj(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a),

we can easily obtain a commitment to maj(a, b, c) by applying the AND proto-
col and the OR protocol mentioned in Section 2.2. (Recall that the AND/OR
protocol needs only two additional cards.)

Thus, a three-input secure majority computation can be straightforwardly
conducted with eight additional cards. Alternatively, using the Full Adder proto-
col [6] (also shown in Table 1) with three input commitments and four additional
cards, we can obtain a commitment to the carry (a ∧ b) ∨ ((a⊕ b) ∧ c), which is
equal to maj(a, b, c). In this paper, we improve the results further, that is, in the
next section, we design a tailor-made protocol for a secure majority computation
that is simple and needs only two additional cards.

4 An Improved Secure Majority Protocol

In this section, we propose an efficient and simple secure majority protocol that
requires six fewer cards than the naive method presented above (and two fewer
cards than the Full Adder protocol [6]).

In Section 4.1, we first introduce the idea behind our new protocol. We then
describe our protocol in Section 4.2.

4.1 The Idea

Given three bits a, b, c ∈ {0, 1}, if a = b, then maj(a, b, c) is equal to a; otherwise,
maj(a, b, c) is determined by c. Therefore, it holds that

maj(a, b, c) = geta⊕b(a, c).

Hence, our protocol first makes the following sequence:

? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
c

.

If we turned over the leftmost two cards, then we could determine the position
of the desired commitment to geta⊕b(a, c), but the value of a⊕ b would also be
leaked. Therefore, our protocol next adds randomization to hide the value of a⊕b,
in a manner similar to how the six-card AND protocol shown in Section 2.2 does:
it produces a sequence

? ?︸ ︷︷ ︸
a⊕b⊕r

? ? ? ?︸ ︷︷ ︸
shiftr(a,c)

where r is a random bit. Based on the equality

maj(a, b, c) = geta⊕b⊕r(shiftr(a, c)),

we can obtain a commitment to maj(a, b, c) by revealing the leftmost two cards.
The full description of our protocol is presented in the next subsection.
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4.2 An Eight-Card Secure Majority Protocol

Given three commitments to bits a, b and c together with two additional cards,
our secure majority protocol proceeds as follows.

1. Arrange the three commitments and the two additional cards as shown be-
low:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ ? ?︸ ︷︷ ︸
c

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
c

.

2. Rearrange their order:

? ? ? ? ? ? ? ?︸ ︷︷ ︸
c

�
������ ���

	
		


? ? ? ? ? ? ? ?︸ ︷︷ ︸
c

.

3. Apply a random bisection cut to the leftmost six cards:[
? ? ?

∣∣∣ ? ? ?
]
? ?︸ ︷︷ ︸

c

.

4. Rearrange the order again:

? ? ? ? ? ? ? ?︸ ︷︷ ︸
c���

�
���

	
		
 ���

? ? ? ? ? ? ? ?︸ ︷︷ ︸
c

.

Then, we have

? ?︸ ︷︷ ︸
a⊕r1

? ?︸ ︷︷ ︸
b⊕r1

? ?︸ ︷︷ ︸
r1

? ?︸ ︷︷ ︸
c

,

where r1 is a random bit because of the random bisection cut.
5. Reveal the leftmost two cards. Then, we have either

(i) ♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
c

or (ii) ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
ā

? ?︸ ︷︷ ︸
c

.

In case (ii), apply the secure NOT operation to each of the commitments to
a⊕ r and ā. Hence, in either case, we have three commitments

? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
c

.

From now on, we are working only on the six face-down cards above.
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6. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
�
������ ���

? ? ? ? ? ? .

7. Apply a random bisection cut:[
? ? ?

∣∣∣ ? ? ?
]
.

8. Rearrange the order again:

? ? ? ? ? ?
������

	
		


? ? ? ? ? ? .

Then, we have

? ?︸ ︷︷ ︸
a⊕b⊕r2

? ? ? ?︸ ︷︷ ︸
shiftr2(a,c)

,

where r2 is a random bit because of the random bisection cut.
9. Reveal the leftmost two cards to find the value of a ⊕ b ⊕ r2. Then, a com-

mitment to maj(a, b, c) is obtained as follows:

♣ ♥ ? ?︸ ︷︷ ︸
maj(a,b,c)

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
maj(a,b,c)

.

5 Conclusion

In this paper, we designed an eight-card three-input secure majority protocol
whose output is in a committed format. Since the naive implementation of a
secure majority computation requires 14 cards, we have succeeded in reducing
the number of required cards by six. Furthermore, our protocol is simple and
easy to understand.

Generally, when a function f can be securely computed with some number
of cards, any function derived from f by (i) negation of variables, (ii) permuta-
tion of variables or (iii) negation of f can also be securely computed with the
same number of cards. Therefore, when focusing on the three-variable symmetric
Boolean functions, it is sufficient to consider the following six representatives of
the “NPN-equivalence [12]” classes:

S3
∅ , S

3
{3}, S

3
{1,2}, S

3
{1,3}, S

3
{2,3}, S

3
{0,2,3}

where S3
X for X ⊆ {0, 1, 2, 3} represents a three-variable symmetric Boolean

function such that

S3
X(a, b, c)

def
=

{
1 if a+ b+ c ∈ X ;
0 otherwise.



Securely Computing the Three-Input Majority Function with Eight Cards 203

Note that S3
{2,3}(a, b, c) = maj(a, b, c). There is nothing to do with S3

∅ = 0. Since

S3
{3}(a, b, c) = a ∧ b ∧ c and S3

{1,3}(a, b, c) = a⊕ b⊕ c, they can be securely com-
puted with eight cards and six cards, respectively. The remaining two functions
S3
{1,2} and S3

{0,2,3} can also be securely computed with eight cards by using the
equations:

S3
{1,2}(a, b, c) = geta⊕b(a⊕ c, 1)

and
S3
{0,2,3}(a, b, c) = geta⊕b⊕c(1, a ∧ c).

Thus, any three-variable symmetric function can be securely computed with
eight cards or less: that is, within two additional cards. An intriguing open
question is whether any four-variable (or larger) symmetric Boolean function
can be securely computed within two additional cards. Furthermore, it is also
interesting to examine the question of whether there exists a “non-committed
format” majority protocol that requires no additional card.

Aside from the practical importance of implementing secure computations, the
research area of card-based protocols along with other physically implemented
cryptographic protocols (e.g. [1,4,10]) can aid professional cryptographers in
providing intuitive explanations to non-specialists about what cryptography is
in general. We believe that such protocols will also be helpful for information
science education in the classroom.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Num-
bers 23700007 and 25289068.
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Abstract. Multimemetic algorithms (MMAs) are memetic algorithms
that explicitly represent and evolve memes (computational representa-
tions of problem solving methods) as a part of solutions. We use an
idealized selecto-Lamarckian model of MMAs in order to analyze the
propagation of memes in spatially structured populations. To this end,
we focus on the use of dynamic self-organized spatial structures, based
on the stimergic communication among solutions, and compare these
with regular static lattices and unstructured (panmictic) populations.
An empirical analysis indicates that these dynamic lattices are capable
of promoting memetic diversity and provide better results in terms of
survival of high-quality memes.

Keywords: Memetic algorithms, spatial structure, self-organization.

1 Introduction

The paradigm of memetic optimization was conceived 25 years ago [14] as a
pragmatic combination of ideas from population-based global search techniques
and trajectory-based local search techniques [9,16,17]. Ideas from cultural evo-
lution or Lamarckian lifetime learning [3] are usually cited in connection with
memetic algorithms (MAs) and –while some times overstressed– they provide a
useful metaphor for framing the functioning of these techniques or for building
actual algorithmic incarnations of MAs. Central to this metaphor is the notion
of meme. Defined four decades ago by Richard Dawkins [4] as an analogy to
biological genes in the context of cultural evolution, memes can be thought of as
units of imitation, i.e., ideas or pieces of knowledge that jump from individual
to individual, proliferating or becoming extinct depending on the benefit they
provide to their hosts and/or the compulsion the latter feel to propagate them.
Quite interestingly, memes also exhibit a high adaptability, being able to change
during the lifetime of the individual, thus evolving separately from the biological
substrate they depend on.

A.-H. Dediu et al. (Eds.): TPNC 2013, LNCS 8273, pp. 205–216, 2013.
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The idea of exploiting the evolution of memes in a computational framework
for optimization was already anticipated in some early works on the topic [15]
and is now a core idea in the concept of memetic computing (MC) [19], which is
defined as “...a paradigm that uses the notion of meme(s) as units of information
encoded in computational representations for the purpose of problem solving”,
see [17]. Such an explicit treatment of memes can be found in multimemetic
algorithms (MMAs) [10,11], in which each solution carries memes indicating
how to perform local optimization on it.

An important issue in MMAs is the way in which memes propagate through
the population. In this sense, note that the dynamics of meme propagation are
more complex than that of their genetic counterparts (the latter being a topic
that has been thoroughly studied, e.g., [2,8,20,21]). The main reason is the fact
that while genes represent solutions whose quality is objectively measurable via
the fitness function, memes are only indirectly evaluated according to the effect
they exert on the solutions they are attached to. Hence, a mismatch between
genes and memes may cause potentially good memes be ignored by the selection
operator, or the other way around, bad memes may proliferate if they are lucky
to attach to good solutions. A first analysis in this direction was done in [18],
in which the previous issues were theoretically established using a simplified
selecto-Lamarckian model of MMAs, whose dynamics was later studied in the
context of panmictic (unstructured) and spatially-structured populations. The
higher diversity and longer takeover times induced by the latter were essential
to allow good memes to express themselves in the population and survive up to
the final stages of evolution. An overview of this model is provided in Sect. 3.

The importance of population structure in this context highlights the need for
analyzing different models for structuring the population. Regular static lattices
with von Neuman topology were considered in [18]. Here, we turn our attention
to non-regular dynamic structures –a brief overview of some of such structures is
provided in Sect. 2. To be precise, we consider the self-organized model proposed
by Fernandes et al. [5]. This model will be deployed on the selecto-Lamarckian
model of MMAs, and the effect it produces on the propagation of memes will be
empirically analyzed in Sect. 4. We will close with conclusions and an outline of
future research directions in Sect. 5.

2 Background

Dynamic population structures have been attracting the interest of the research
community in recent times. For example, Alba and Dorronsoro [1] proposed
a mechanism for adapting dynamically the radius of the neighborhood under
a fixed underlying topology. Then, Whiteacre et al. [22] proposed a dynamic
structure featuring self-organized definition of locality and interaction epistasis
in order to sustain genetic diversity. Also, Laredo et al. [12,13] analyzed EAs
working on peer-to-peer environments whose topology is inherently dynamic and
volatile, showing how these EAs are more scalable and resilient to failures.

A particularly interesting model was defined by Fernandes et al. [5] combining
ideas from swarm intelligence and cellular automata. This model –which can
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be regarded as a cellular automata with short-term memory– uses stimergic
communication and simple rules for movement on a large 2D-lattice, giving rise
to self-organized clusters of particles. A noticeable feature of these clusters is
that they keep evolving and changing shape, thus providing some kind of highly
dynamic order.

This latter model can be naturally deployed on metaheuristics –indeed, highly
promising results have been obtained from its application to particle-swarm-
optimization algorithms [6,7]– since the spatial location of particles (individuals
or solutions) can be used as the basis for defining the population neighborhood
structure to which operations such as selection or recombination are constrained.
The neighborhood relationship is therefore dynamic and self-organized by virtue
of the movement rules, which aim to place particles close to other similar particles
(similarity is here defined in terms of fitness, but any alternative definition could
be used in principle). The resulting dynamics resemble in some sense a mixture
of island-based EAs and cellular EAs, since clusters can be regarded as complex
islands among which information flows via migrating particles or paths thereof.
It is thus of the foremost interest to analyze how memes would propagate in such
an environment, and study whether it constitutes a viable alternative to static
population structures. Subsequent sections are devoted to this.

3 Model Description

As stated in Sect. 1, we consider an idealized model of MMAs which we shall
augment with a self-organized dynamic topology. Thus, let us firstly describe the
underlying model in Sect. 3.1. Subsequently, the extension to dynamic topology
will be described in Sect. 3.2.

3.1 The Selecto-Lamarckian Model

Let us consider an abstract characterization of MMAs consisting of a popu-
lation P = [〈g1,m1〉, · · · , 〈gμ,mμ〉] of μ individuals, which are subject to the
application of evolutionary operators for selection, local search and replacement
as shown in Algorithm 1. Each of the individuals in the population is a tuple
〈gi,mi〉 ∈ D2, for some D ⊂ R. The first component of the tuple –g– represents
the genotype (which for simplicity we shall equate to fitness). As to the second
component –m– it represents a meme or, more precisely, the potential of the
meme, that is, how good solutions can become by using this meme. This poten-
tial is exercised via a monotonic increasing function f : D2 → D which captures
the application of a meme to a gene: an individual 〈g,m〉 becomes 〈f(g,m),m〉
after the application of the meme, where

lim
n→∞ fn(g,m) = m if g < m (1)

f(g,m) = g if g � m (2)

Here fn(g,m) is the n-fold composition of f on its first argument. Thus, the
meme would leave unchanged a solution which is better that the former, and
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Algorithm 1. Selecto-Lamarckian Model

for i ∈ [1 · · ·μ] do
Initialize〈gi,mi〉;

end
while ¬ Converged (P ) do

i ← URand(1, μ) // Pick random location

〈g,m〉 ←Selection(P, S, i);
g′ ← f(g,m) // Local improvement

P ← Replace(P,S, i, 〈g′,m〉);
end

would otherwise improve the latter, reaching its potential in the limit. While
this is a highly idealized description of the action of memes (which in general
will depend on the match between the genotype and the meme on a problem-
specific basis) it constitutes an initial approximation that can be used to study
the generalities of meme propagation.

Interaction among individuals is restricted by a spatial structure given by a
μ× μ Boolean matrix S, where Sij= true if, and only if, the individual in the
i-th location can interact with the individual in the j-th location. Two static
possibilities were considered in [18], namely the panmictic case (i.e., Sij= true

for all i, j) and a square lattice with von Neumann topology (i.e., Sij= true iff
L1(i, j) � r, where L1(·, ·) is the Manhattan distance and r is the neighborhood
radius). Next section considers the use of a dynamic self-organized population
structure.

3.2 Dynamic Self-organized Topology

Let us consider a rectangular grid G of size r × s > μ. Each cell Guv of the
grid is a tuple (ηuv, ζuv), where ηuv ∈ {1, · · · , μ} ∪ {•} and ζuv ∈ (D×N) ∪ {•}.
The value ηuv indicates the index of the individual that occupies position 〈u, v〉
in the grid. If ηuv = • the corresponding position is empty but could still have
some information, namely a mark ζuv (if ζuv = • the position is empty and
devoid of any mark). Such marks are placed by individuals that were occupying
that position in the past and consist of the fitness value ζfuv of the individual
and a time stamp ζtuv that indicates the iteration in which the mark was placed.
All marks have a lifespan of K iterations after being placed, and are deleted
afterwards.

Initially Guv = (•, •) for all 〈u, v〉. Then, individuals are placed in random
positions of the grid (only one individual per cell is allowed at most). These
initial positions define the initial value of the Boolean matrix S as follows: let
ρ : N→ N

2 be a function that returns the position 〈u, v〉 a certain individual is in;
then Sij= true iff L∞(ρ(i), ρ(j)) � r, where L∞(·, ·) is the maximum distance
and r is the neighborhood radius, i.e., the Moore neighborhood of radius r,
following [5].
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Algorithm 2. Individual Movement (i, t, G)

〈u, v〉 ← ρ(i); move←true;

if exists 〈u(i), v(i)〉 ∈ N〈u, v〉 such that ζfuv > gi then

〈u′, v′〉 ← argmin{ζfuv | ζfuv > gi};
else

if exists 〈u(i), v(i)〉 ∈ N〈u, v〉 such that ζfuv < gi then
〈u′, v′〉 ← argmax{ζfuv | ζfuv < gi};

else
if N〈u, v〉 �= ∅ then

Pick 〈u′, v′〉 at random from N〈u, v〉;
else

move ← false;
end

end

end
if move then

ζfuv ← gi; ζ
t
uv ← t; // mark old cell

ηuv = •; ηu′v′ = i; // move to new cell

end

Subsequently –in each iteration, after all individuals have been subject to the
evolutionary operators– each individual moves to an adjacent empty position.
Adjacency is again defined on the basis of the Moore neighborhood of radius r,
so an individual i placed at ρ(i) = 〈u, v〉 can move to an empty position 〈u′, v′〉
for which L∞(〈u, v〉, 〈u′, v′〉) � r. If no empty position is available, the individual
rests at its position. Otherwise, it picks a neighboring empty cell according to the
marks on them. More precisely, let N〈u, v〉 = {〈u(1), v(1)〉, · · · , 〈u(w), v(w)〉} be
the collection of empty neighboring cells and let i be the index of the individual to
move. Then, the new cell is selected as indicated in Algorithm 2, i.e., it attempts
to move to a cell whose mark is as close as possible to its own fitness (first from
above, then from below) or to a random cell if no such mark exists.

Once individuals have moved, matrix S is updated. Fig. 1 shows an example
of how individuals distribute on the grid as iterations go by. Notice how starting
from a random distribution they start to quickly group in clusters and how these
evolve in shape during the run. Next section will empirically analyze how the
use of this dynamic topology influences the propagation of memes.

4 Experimental Analysis

In order to analyze the behavior of our model, we have considered the following
parameterization: selection is done using binary tournament with probability pS
(if the random test is not passed the offspring is a copy of the initial parent);
local search is implemented using the following function
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Fig. 1. Distribution of individuals on the grid (μ = 256, r = s = 32) after a number of
iterations. Gray shades indicate the meme potential (darker is better).

f(g,m) =

{
g if g � m

(g +m)/2 if g < m
(3)

which intuitively provides increasingly smaller improvements on increasingly
better solutions as it typically happens in practice. The function is applied
with probability pLS (if the random test is not passed the offspring is left un-
changed); replacement is done by substituting the parent who lost the tour-
nament by the offspring. Numerically, we consider μ = 256, r = 1, K = 1
and pS = pLS ∈ {1/256, 0.1, 0.5, 1.0}. All individuals are initialized at ran-
dom: memes are drawn from [0,1] and genes from [0,α], where we consider
α ∈ {0.5, 1.0}. The purpose of this parameter α is to tune the relative capacity of
improvement that memes have. Intuitively, larger values of α make it more likely
that a low-potential meme can attach to a high-quality solution, thus implying a
harder survival scenario for high-potential memes. We conduct series of twenty
five runs per configuration. Each run ends when the population has converged
and all memes are equal to two decimal positions.

Let us firstly analyze how diversity is maintained in each of the configurations.
Fig. 2 shows how the number of copies of the dominant meme (i.e., the meme
with the higher number of copies, not necessarily the same one in each moment)
grows until taking over the population. As expected, the panmictic model is the
first to converge whereas models with spatial structure manage to keep diversity
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Fig. 2. Growth curves for different configurations. (Left) α = 0.5. (Right) α = 1.

for a longer time; the dynamic model with low values of pS behaves similarly to
the static von Neumann model, but high values of pS result in slower convergence.
This may seem counter-intuitive but admits an explanation. Notice that reducing
the value of pS can be also regarded as increasing the ratio of self-organization
to evolution (individuals are given more time to move and self-organize between
the actual application of the selection operator). This means on one hand that
they can group together and hence selection is more effective than if done on
isolated individuals on the grid. On the other hand, individuals flow across the
grid and hence can communicate genetic information at a faster pace than on a
static topology.

Let us now turn our attention to the effect this slower convergence has on
the survival rates of high-potential memes. Figs. 3–4 provide qualified run time
distributions, indicating the percentage of runs that reach a certain goal (in this
case, the population being dominated by a meme within a certain percentile of
the initial meme distribution) as a function of the number of selection operations
performed. Not surprisingly –and as shown in [18]– instances with α = 0.5 con-
verge to high-quality memes much more often than for α = 1, the reason being
that it is much more difficult for low-potential memes to hitchhike their way to
the final population by attaching to good solutions. Also, models with spatial
structure behave better than the panmictic model in this case due to the fact
that the slower convergence rate buys time for high-potential memes to express
themselves in the population by improving their hosts and hence increase their
survival rates. This is also reflected in the models with dynamic topology, in par-
ticular in those with larger values of pS , which can clearly improve the success
rate of the static von Neumann model. Very high-quality memes can make it to
the final stages of evolution in the dynamic model in contrast with the compara-
tively higher extinction rates such memes exhibit in panmictic populations and
in the static von Neumann lattice.
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Fig. 3. Qualified runtime distributions for α = 1. From top to bottom and left to right:
panmictic population, von Neuman topology, pS = 1/256, pS = 0.1, pS = 0.5 and
pS = 1.0. The X scale corresponds to the number of evaluations to convergence in each
case.
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Fig. 4. Qualified runtime distributions for α = 0.5. From top to bottom and left to
right: panmictic population, von Neuman topology, pS = 1/256, pS = 0.1, pS = 0.5
and pS = 1.0.
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Fig. 5. (Left) Spectrum of the average number of neighbors (pS = 1/256). (Right)
Mean slope of the spectrum. The error bars indicate the standard error of the mean.
In both cases, α = 1.

We have finally conducted a spectral analysis of the evolution of different
properties of the population structure along time. These properties are: (i) the
average number of neighbors each individual has, (ii) the average clustering coef-
ficient of the neighborhood graph (i.e., the average percentage of an individual’s
neighbors that are neighbors themselves), and (iii) the average genotypic dis-
tance among neighbors. For each of these time-dependent magnitudes we have
computed the Fast Fourier Transform, and removed conjugated coefficients to
obtain the frequency spectrum. An example of such a spectrum can be seen in
Fig. 5 (left). As it can be seen, the intensity is proportional to fa for some a < 0.
The value of this parameter indicate a characteristic kind of noise. A value close
to 0 indicates white noise, whereas close to −2 indicates Brownian noise. For
values in-between (in particular close to −1) we obtain pink noise, one of the
signatures of self-organized systems.

Fig. 5 (right) shows the values of a obtained for α = 1 (results for α = 0.5
are qualitatively similar and not shown due to space limitations). In general, the
spectrum slope is closer to pink noise in the number of neighbors. We hypothesize
the different behavior of the distance is due to the fact that increasingly larger
application rates of local search result in a very fast reduction of distances, which
tend to be more homogeneous, and hence the fluctuations look closer to white
noise. As to the clustering coefficient, it follows the same trend as the number
of neighbors although with smaller magnitudes. This might be due to the fact
that the clustering coefficient is a higher-level property than mere neighborhood
(i.e., it is not a property among any two individuals but among two individuals
that are simultaneously neighbors of a third one) and hence the underlying self-
organization is only indirectly shown at this level.
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5 Conclusions

We have analyzed the propagation of memes in a selecto-Lamarckian model of
MMAs endowed with dynamic spatial structure. We have shown that a self-
organized model based on stimergic communication provides very promising re-
sults in comparison to unstructured populations and to populations arranged in
static lattices. By tuning the ratio between self-organization (i.e., moves of in-
dividuals on the underlying grid) and evolutionary operators (i.e., selection and
local search) the convergence of the algorithm can be adjusted to be slower/faster.
For some low rates of application of evolutionary operators, the resulting model
is similar in convergence speed to a static von Neumann lattice, yet still manages
to slightly improve the success rate. The difference is more marked for higher
rates of application of selection/local search, resulting in much better success
rates as indicated by the qualified runtime distributions.

Lines for future research are manifold. Firstly, testing other topologies and
movement policies is important in order to elucidate whether the observed be-
havior is due to the particular stimergic model considered or just emanates from
the dynamism of the topology. In addition, it is worth studying what the behav-
ior of the system is if the neighborhood used for movement is decoupled from
the neighborhood used for evolutionary interaction, actually utilizing different
neighborhoods for either purpose. Last but not least, it is clear that the mod-
els described in this work should be eventually put at work and analyzed in a
full-fledged optimization environment.
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03903 andP10-TIC-6083 (DNEMESIS), byprojectCANUBE(CEI2013-P-14) and
by Universidad de Málaga, Campus de Excelencia Internacional Andalućıa Tech.
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Abstract. Multi-objective optimization problems consist of numerous,
often conflicting, criteria for which any solution existing on the Pareto
front of criterion trade-offs is considered optimal. In this paper we present
a general-purpose algorithm designed for solving multi-objective prob-
lems (MOPS) on graphics processing units (GPUs). Specifically, a purely
asynchronous multi-populous genetic algorithm is introduced. While this
algorithm is designed to maximally utilize consumer grade nVidia GPUs,
it is feasible to implement on any parallel hardware. The GPU’s mas-
sively parallel architecture and low latency memory result in +125 times
speed-up for proposed parametrization relative to single threaded CPU
implementations. The algorithm, NSGA-AD, consistently solves for so-
lution sets of better or equivalent quality to state-of-the-art methods.

Keywords: genetic algorithm, multi-objective optimization, GPU ac-
celeration, parallel computing.

1 Introduction

Graphics Processing Units (GPUs), initially designed for graphics rasterisation,
are increasingly receiving attention in the scientific computing community. This
interest spurs from the massive raw compute capabilities associated with GPU’s
highly parallel architecture. The subsequent advent of general purpose GPU
computing languages such as Compute Unified Device Architecture (CUDA)
[13] and Open Compute Language (OpenCL) [12] have made GPU acceleration
of computationally expensive algorithms an attractive prospect. Both CUDA
and OpenCL are extensions of the C programming language.

The multiple layers of parallelism within genetic algorithms have made them
prime candidates for GPU acceleration in the past. Beyond simply parallelizing
the fitness function for each candidate solution, further efforts also parallelize
selection, recombination and mutation operators [4]. Several categories of the
resulting algorithms include island based [10], distributed [3], and cellular [2].
These algorithms have been designed and tested for various parallel hardware
environments including CPU clusters, FPGAs [11] and GPU clusters [9] with
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applications ranging from shop scheduling [1], biology [15], chemistry [18] and
finance [17].

Despite proposals for parallelizing single-run multi-objective genetic
algorithms [7], most multi-objective implementations either involve highly do-
main specific approaches [16,6] or restricted selection models. In these instances
MOPS are decomposed to multiple scalar optimization problems (SOPs) and
optimized independently [8]. The goal of this paper is to parallelize computa-
tion of the entire Pareto optimal frontier. To this end we propose a cooper-
ative approach in which multiple populations are independently processed to
find predefined subsections of the Pareto front. This is achieved through use of
an innovative decomposition of fitness functions allowing implementation of an
NSGA II variant for multiple asynchronously computed sub-populations. Each
of these sub-populations is a speciating island which maps to a portion of the
Pareto frontier. We call the algorithm nondominated sorting genetic algorithm
asynchronously distributed (NSGA-AD).

In section 2 the GPU memory model is discussed. Following, in section 3
an outline of NSGA II is presented. Section 4 introduces the trade-offs associ-
ated with different GA memory mappings to the GPU. Section 5 combines the
previous information in development of our proposed algorithm which is tested
according to quality and speed in sections 6 and 7 respectively. We end with
conclusions in section 8.

2 GPU Memory Model

General purpose GPU programming remains in its infancy. Given this is the
target hardware for the proposed algorithm we first discuss the internal memory
speeds and limitations of the GPU.

From the CPU, data may be pushed to global, constant and texture memory
banks. The speed of this transaction can be limited by either the graphics card’s
memory bus or the host system’s motherboard PCI-E port. The maximum speeds
of PCI-E versions 1, 2, and 3, are 4, 8, and 16 GB/s respectively.

The paradigm for parallel GPU computing segments operations first into
blocks, and then to threads. As of CUDA 5.0, each block may contain up to
1024 threads which have access to 6 memory types. Global memory or DRAM is
the largest bank with 2GB on the consumer grade nVidia GeForce GTX 660 Ti
used to evaluate GPU applications in this paper. Global memory is located off
chip and resultantly has access latency on the order of 100 times less than on chip
shared and register memory. Shared memory is accessible from any thread in the
same block but is limited to 48KB. Registers, in contrast, have thread scope and
are limited to 63 32-bit registers per thread. For our purposes, local memory can
be thought of as low-speed spillover if register memory is filled. Finally, constant
and texture memory can be ignored for the proposed implementation purposes.
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Fig. 1. GPU Memory Diagram

3 NSGA II

For multi-objective GAs (MOGA) nondominated sorting genetic algorithm II
(NSGA II) is widely considered state-of-the-art [19]. Several key advantages over
other popular MOGAs include, reduced computational complexity, elitism, and
parameterless fitness sharing operator [5]. The algorithm can be outlined as
follows.

1. Random population P0 is created of size N
2. Evaluate Pi for all fitness criteria
3. Sort Pi by nondomination & crowd distance
4. Selection, Recombination, Mutation
5. Resulting population is Qi of size N
6. Ri = append(Pi, Qi)
7. Sort Ri by nondomination & partial rank
8. Pi+1 = first N in Ri

9. Repeat steps 2-8 until exit criteria

where N is the population size.
Nondomination level is assigned such that no individuals on the same level

strictly dominate any other individuals along all fitness axes. In other words, the
first level consists of the population’s best estimate of the Pareto set, and each
subsequent level is the Pareto set of the population excluding all individuals
contained by lower levels.



220 O. Rice, R.E. Smith, and R. Nyman

To maximize the distance among found points on the current population
Pareto front, each level is internally sorted according to the crowding distance
between its nearest neighbors. In this context, crowding distance is computed
by sorting the population first on level, and then on each of the fitness function
values in ascending order. When the currently sorted fitness function is c, and
level is l the crowding distance is found from equation 1.

Dist (i)=
1

2

2∑
c=1

i=max(l) −1∑
i=min(l) +1

Pl,i+1.c− Pl,i−1.c

max (Pl.c) −min(Pl.c)
(1)

where P(l,i).c is the value of fitness function c for the ith individual in level l and

max(Pl.c) is the maximum fitness value for the lth level of population P.
The individuals with the minimum and maximum fitness values for each level

are given an infinite distance. In effect this makes the extremes of each level
most likely to be selected for recombination. Even considering NSGA II’s di-
minished computational complexity relative to NSGA it remains impractical for
large population sizes. As originally proposed NSGA II is also memory inten-
sive. Namely, in order to reduce the time/computational complexity, storage
requirements become O(N2) which can further limit population size in memory
restricted environments.

4 Memory Footprint

In several key areas GPUs are ideally suited to solve genetic algorithms. One pri-
mary advantage is the capability to produce random numbers in register memory.
The CURAND library does exactly this by allowing each thread to seed its own
random number generator, produce, and finally consume random numbers with-
out use of slow-access global memory. This fact, combined with GAs’ heavy re-
liance on random numbers in the selection, recombination, and mutation phases
can lead to significant performance gains.

Beyond random number generation, the primary consideration when discussing
island based, or decomposed GAs, is memory management. The ideal case is to
house all populations in unique blocks of high speed shared memory. This can
prove problematic due to the restrictive storage capacity of 48KB. As seen in fig-
ure 2, 48KB is a severe limitation for most genome types. Note that computation
of the maximum genome length under the heading ‘Max G NoVar’ contains raw
population storage only, while ‘Max G Var’ incorporates 16 bytes per genome
and 32 bytes per population of working variables.

Instances of research which address the memory issue where complex genome
types and large population sizes are required most commonly utilize global mem-
ory for genome storage. Doing so all but eliminates memory considerations, but
access latency suffers dramatically.

In scenarios where fitness functions are sufficiently computationally expensive
it may be possible to partially hide memory access lag [14]. When in combination
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Fig. 2. Genome Memory Limitations

with parallel sorting and nondomination functions, the GPU can be fully utilized
for the majority of genetic algorithm phases.

We propose two technical implementation differences to the usual shared-
memory, island-style model which partially alleviate the restricted genome size.
First, a bitset is used to enable binary values to be stored at single bit resolution.
A side effect when genes are binary is a reduction in memory requests as each
32-bit variable contains 32 genes. For non-binary genome types the bitset can be
manipulated to ensure dense packing of any data type to a specified resolution.
The second difference is the dynamic ‘as-needed’ use of global memory. Given
the knowledge that lowest level and least crowded solutions are most likely to be
selected for recombination, these solutions require the most memory accesses. To
reduce global memory accesses, the frequently retrieved solutions are housed in
shared memory to the maximum extent possible. The remaining less frequently
accessed genomes are allocated in global memory.

5 NSGA-AD

As previously mentioned, the goal of this NSGA II adaptation is to produce an
island-model in which each island or sub-population maps a section of the Pareto
optimal frontier. Scalar approaches to decomposition convert MOPs to multiple
SOPs by providing weight vectors to each sub-population. The sub-populations’
fitness figures are then evaluated by linearly weighting all fitness values for each
individual via the corresponding element of the relevant weight vector. A simple
example is shown in figure 3. Note that the appeal this structure is its ease of
parallelization on a population granularity. Parallelization of NSGA II is not
as straightforward. Applying multiple parallel populations with NSGA II would
cause each population map the entire Pareto frontier as in figure 4.

We suggest decomposing the Pareto front similarly to the scalar decomposition
approach. Instead of passing a single weight vector, the search space is linearly
divided into equal portions by a weight range.
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Fig. 3. Scalar Decomposition of Multi-Objective Search Space

Fig. 4. NSGA II in Multi-Objective Search Space

Fig. 5. Proposed Decomposition of Multi-Objective Search Space
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To enforce each sub-population tracts to its desired section of the search space,
a constraint parameter is introduced. This parameter is such that a solution’s
genome is within its constraint when its host sub-population’s range of weight
vectors yields the highest value of Fitness in the following.

Fitness =
C∑
i=1

(wd,i ∗ cd,i) (2)

where d is the sub-population index and i the index of each fitness criterion.
Each sub-population has a target area of the C dimensional search space which

it is responsible for. This can be seen in figure 5. Once the standard NSGA II
sort is complete, each solution’s fitness values are entered into equation 3 with
each population’s weights. When the solution’s host population weights yield
the highest total fitness value relative to all other weights the solution is said to
be within its target space. If any other set of weights yields a higher total value
then the solution is outside its target space. Explicitly, the constraint parameter
V for each individual in a sub-population is found by:

V =

{
0
∑C

i=1 (wd,i ∗ cd,i) >
∑C

i=1 (wj,i ∗ cj,i)
1 otherwise

(3)

For all sub-populations j where j = d.
The constraint is introduced as selective pressure in each sub-population via

an adjustment to the nondomination sort. Any individual which does not sat-
isfy V==0 is decremented a single nondomination level after the initial sort. It
would be feasible to treat constraints as additional fitness metrics when perform-
ing the NDS. However, this implementation requires a further, computationally
expensive, sort.

6 Performance: Quality

The test problems selected to review performance statistics were drawn from
Zitzlers proposed test problems [20]. From the six suggested problems we select
three for use, ZDT1, ZDT2, and ZDT3.

These three examples were chosen as they each exhibit unique properties
in Pareto frontier shape. ZDT1 (figure 6) has a convex and continuous Pareto
front. ZDT2 (figure 7) is nonconvex and continuous while ZDT3 is convex and
discontinuous (figure 8) 1.

With respect to the quality of produced solutions, we intend only to demon-
strate the proposed algorithm yields equivalent results to NSGA II. For this
purpose evaluation of convergence and diversity metrics are performed accord-
ing to the methodology given in [5] to permit direct comparison of originally
described performance.

1 Pareto front applicable only between x = [0.00000,0.08300], [0.18222,0.25776],
[0.40931,0.45388], [0.61839,0.65251], [0.82333,0.85183]
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Fig. 6. ZDT1 Test Function

Fig. 7. ZDT2 Test Function

Fig. 8. ZDT3 Test Function

Convergence quality is determined by selecting 500 points on the known
Pareto optimal frontier designated by set H. Minimum Euclidean distance from
each individual in the solution set produced by the GA to its nearest counterpart
contained in set H is computed. This metric is designated by Υ .

The second metric of diversity measures the extent to which the solution
set is distributed across the Pareto front. Both distribution within the extreme
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points of the optimal set and Euclidean distance between the extreme values are
considered in accordance with the diversity metric in equation 4.

' =
df + dt +

∑U(0)−1
i=1

∣∣di − d
∣∣

df + dt + dt (U (0)− 1)
(4)

where df and dt represent Euclidean distances between maximally distant solu-
tions in the Pareto set and solved for set respectively.
U(0) is the number of nondominated solutions
d is taken to be the average Euclidean distance between each nondominated so-
lution and its nearest neighbor notated di along the found frontier.

Mean and variance for both metrics were obtained from 10 independent runs
with unique seeds to each threads’ random number generator. Parametrization of
run limits was set to 25,000 function evaluations per population for both NSGA
II and NSGA-AD. Decomposition of the fitness functions in sub-populations of
NSGA-AD was fixed such that each of 16 parallel populations received (1/14)th

of the linearly divided fitness space. Note the marginal overlap resulting from
this division.

It is necessary to incorporate multiple sub-populations when evaluating perfor-
mance statistics because a single-island implementation of NSGA-AD is identical
to the original NSGA II algorithm. The purpose of the quality test is to deter-
mine if dissection of the Pareto front negatively impacts convergence or diversity
of solutions. Figure 9 shows the performance of the binary encoded NSGA II and
binary encoded NSGA-AD algorithms with each set of test functions.

Fig. 9. Performance Metrics

For test problems ZDT1 and ZDT2 the convergence values are lower-bound-
limited by incidental distances to the 500 uniformly selected points on the true
Pareto front. The values are small enough such that the variance between runs
rounds to zero. NSGA-AD demonstrates significantly improved performance rel-
ative to NSGA II on the discontinuous ZDT3 fitness function. This can most
likely be attributed to the increased ability to speciate when mapping indepen-
dent populations to subsets of the frontier. We leave exploration of any potential
quality gains for a future study and focus primarily on computational speed ad-
vantages.
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7 Performance: Speed

Speed performance of the GPU ported NSGA II variant is measured on a
NVIDIA GeForce GTX 660 Ti GPU which contains 1344 computational cores
clocked to 980 MHz. For comparison, the same algorithm is tested on an Intel
Core i7 950 CPU clocked to 3.06 GHz.

Fig. 10. Speedup Results: GPU vs CPU

The speed-ups shown in figure 10 represent the GPU implementation versus
a single threaded CPU implementation. All GPU code was written to allow
perfect scalability from serial execution to parallelism on the order of 1 thread
per solution candidate. Coding for the possibility of serial execution allowed
the C code utilized in the CPU implementation to overlap perfectly with its
equivalent CUDA code for +95% of the program.

A maximum speed up of 129.7 times was obtained using 16 parallel sub-
populations with each sub-population containing 2048 individuals.

8 Conclusions

Through use of a GPU we have demonstrated it is possible to attain posi-
tive speed-ups for multi-objective genetic algorithms with outputs equivalent
to NSGA II. When using the proposed algorithm speed-ups were realized at all
tested population sizes with +8 parallel sub-populations. The speed improvement
in figure 10 can be seen to level off when the number of parallel sub-populations
multiplied by the population size exceeds the number of cores within the GPU.
This occurs when the utilization of GPU resources becomes bottlenecked under
the described implementation. The proposed algorithm was found to perform at
least as well as NSGA II in all test cases along selected quality metrics while
generating a maximum of 129.7 times speed up.



Parallel Multi-Objective Genetic Algorithm 227

References

1. Akhshabi, M., Haddadnia, J., Akhshabi, M.: Solving flow shop scheduling problem
using parallel genetic algorithm. Procedia Technology 1, 351–355 (2012)

2. Alba, E., Dorronsoro, B.: Computing nine new best-so-far solutions for Capacitated
vrp with cellular Genetic Algorithm. Information Processing Letters 98, 225–230
(2006)

3. Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel distributed
genetic algorithms. Future Generation Computer Systems 17, 451–465 (2001)

4. Davies, R., Clarke, T.: Parallel implementation of a genetic algorithm. Control
Engineering 3, 11–19 (1995)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective ge-
netic algorithm:NSGA-II. IEEETransactionsonEvolutionaryComputation 6 (2002)

6. Duran, J.P., Kumar, S.A.: CUDA based multi objective parallel genetic algorithms:
Adapting evolutionary algorithms for document searches (unpublished)

7. Durillo, J., Nebro, A., Luna, F., Alba, E.: A study of master-slave approaches to
parallelize nsga-ii. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, pp. 1–8 (2008)

8. Gustafson, S., Burke, E.K.: The speciating island model: An alternative parallel
evolutionary algorithm. Journal of Parallel and Distributed Computing 66, 1025–
1036 (2006)

9. Jaros, J.: Multi-gpu island-based genetic algorithm for solving the knapsack prob-
lem. World Congress on Computational Intelligence (June 2012)

10. Maeda, Y., Ishita, M., Li, Q.: Fuzzy adaptive search method for parallel genetic
algorithm with island combination process. International Journal of Approximate
Reasoning 41, 59–73 (2006)

11. Moreno-Armendariz, M.A., Cruz-Cortes, N., Duchanoy, C.A., Leon-Javier, A.,
Quintero, R.: Hardware implementation of the elitist compact Genetic Algorithm
using Cellular Automata pseudo-random number generator. Computers and Elec-
trical Engineering (2013)

12. nVidia: OpenCL Programming Guide for the CUDA Architecture (2009),
http://www.nvidia.com/content/cudazone/download/OpenCL/

NVIDIA OpenCL ProgrammingGuide.pdf
13. nVidia: CUDA C Programming Guide (2012),

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
14. Pospichal, P., Jaros, J.: Gpu-based acceleration of the genetic algorithm, gECCO

Competition (2009)
15. Rausch, T., Thomas, A., Camp, N.J., Cannon-Albright, L.A., Facelli, J.C.: A parallel

genetic algorithm to discover patterns in geneticmarkers that indicate predisposition
to multifactorial disease. Computers in Biology and Medicine 28, 826–836 (2008)

16. Solar, M., Parada, V., Urrutia, R.: A parallel genetic algorithm to solve the set-
covering problem. Computers & Operations Research 29, 1221–1235 (2002)

17. StraBburg, J., Gonzalez-Martel, C., Alexandrov, V.: Parallel genetic algorithms
for stock market trading rules. Procedia Computer Science 9, 1306–1313 (2012)

18. Tantar, A., Melab, N., Talbi, E.G., Parent, B., Horvath, D.: A parallel hybrid ge-
netic algorithm for protein structure prediction on the computational grid. Future
Generation Computer Systems 23, 398–409 (2007)

19. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation 1, 32–49 (2011)

20. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/


Evolutionary Scheduling

for Mobile Content Pre-fetching

Omar K. Shoukry and Magda B. Fayek

Cairo University,
Giza, Egypt

eng.oks@gmail.com

Abstract. Recently, an increasing number of mobile users are eagerly
using the cellular network in data applications. In particular, multime-
dia downloads generated by Internet-capable smart phones and other
portable devices (such as tablets) has been widely recognized as the
major source for strains in cellular networks, to a degree where service
quality for all users is significantly impacted. Lately, patterns in both the
content consumption as well as the Wi-Fi access by the users were al-
leged to be available. In this paper we introduce a technique to schedule
the content for prefetching based on mobile usage patterns. This tech-
nique utilizes both a content profile as well as a bandwidth profile to
schedule content for prefetching. Users can then use the cached version
of the content in order to achieve a better user experience and reduce the
peak-to-average ratio in mobile networks, especially during peak hours
of the day. An experiment using real users traces was conducted and the
results after applying the proposed evolutionary scheduling algorithm
show that up to 70% of the user content requests can be fulfilled i.e. the
content was successfully cached before request.

Keywords: Evolutionary algorithms, Genetic algorithms, Content pre-
fetching, Mobile users, Behavioral models, Pattern mining, Traffic of-
floading.

1 Introduction

Recently,an ever increasing demand for the wireless spectrum was witnessed re-
sulting from the exponential growth of mobile data traffic due to the increasing
penetration of smart phones and the adoption of bandwidth intensive multimedia
applications that cater to diverse users’ needs. This trend has been widely recog-
nized as the major cause of cellular networks congestion, forcing leading wireless
operators around the world to consider significant additional investments in the
cellular infrastructure. This trend is also growing in severity with the increasing
number of active smart phone devices, and demand for mobile data will soon
globally outpace an existing network capacity. According to [5], data and voice
services in North America had similar network loads until May 2007. This ratio
has dramatically changed ever since. For instance, it has been reported in March
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2009 that the traffic load of data services became nine-fold that of of voice ser-
vices [10]. This, in turn, gives rise to severe network congestion degrading the
quality of service (QoS) perceived by mobile users.

Handa [5] suggested three alternative approaches to solve the cellular con-
gestion problem: (i) Scaling, (ii) Optimization and (iii) Network offloading. Al-
though, scaling to 4G/LTE networks may help overcome the congestion problem
in the short-term, however this solution remains a temporary measure, at best.
Second, network Optimization may help relieve the congestion problem via effi-
cient resource utilization, yet, only to a certain extent. Moreover, this approach
is faced with serious issues, e.g., isolation of heavy data users, privacy preserva-
tion and policing users’ traffic [8]. Finally, offloading to secondary infrastructure
provides an alternate path to wireless delivery. According to [11], the major-
ity of traffic (63%) generated by smart phones, tablets and feature phones will
transfer onto the fixed network via Wi-Fi by 2015. Since a high percentage of
mobile data consumption occurs while indoors, or in motion, data traffic can be
offloaded onto complementary fixed networks via Wi-Fi.

This paper embraces a fundamentally different approach that is based on the
novel framework of proactive resource allocation pioneered by El Gamal et al.
[4]. The basic idea is to exploit the inherent predictability of user behavior to
pre-fetch content (i.e. before demand) to relief congested networks and enhance
the user experience. There has been ample evidence in the literature pointing
to the predictability of mobile user behavior [2]. In [3], the authors argue that
a large portion of the Internet users have repetitive content access patterns
over time (i.e. days). In addition, mobile users exhibit Wi-Fi access and phone
battery patterns that are repetitive over time. Our prime concern in this paper
is to characterize and leverage those patterns to retrieve content before demand
by intelligent scheduling techniques. This paradigm shift not only enhances the
capacity of the cellular network but also results in an enhanced user experience
by eliminating the delays and low connection rates that often impair the data
connections over the cellular infrastructure.

Scheduling is a classic problem that has been studied in multiple disciplines [9],
e.g., processor design, queuing theory, and wireless multiple access. Although the
content scheduling problem at hand may be thought of as a classic task schedul-
ing problem, it is inherently multi-objective (delivery rate, content freshness
and resource utilization, among other objectives) and the tasks to be scheduled
are not necessarily available at the beginning of scheduling. Classic schemes fall
short off solving the problem and, hence, calls for novel approaches to address the
aforementioned challenges. Multi-objective meta-heuristics are largely used for
solving such problems [7], namely multi-objective Evolutionary Algorithms (EA).
According to [6], the results obtained have shown that evolutionary algorithms
can be effectively applied to the intrinsically multi-objective scheduling problem
of large scale space network communications scheduling. Multi-objective flow
shop scheduling using Meta-heuristics was discussed by Kumar[7]. The objec-
tive therein was to minimize the tardiness, make span, earliness and the number
of tardy jobs, concurrently. Genetic algorithms and simulated annealing (SA)
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were used to solve this problem, and a hybrid was proposed to provide satis-
factory results [13]. Genetic Algorithm (GA) is an evolutionary search heuristic
that emulates the process of natural selection to solve complex optimization
and search problems. The main challenges of a GA is to find an appropriate ge-
netic representation of the solution domain and selecting an appropriate fitness
function for evaluation [12].

Our contribution in this paper is two-fold. First, introduce a novel architec-
ture for the proactive offloading system and its major building blocks, namely
the loggers, residing on the mobile phone, the behavioral modelers (profilers)
and scheduler, residing on the cloud. Second, the proactive scheduler leverag-
ing the developed stochastic models for the user behavior processes of interest,
namely content consumption, Wi-Fi access and phone battery state. Motivated
by the sheer complexity of the problem, attributed to its combinatorial nature,
we introduce an evolutionary approach that assigns content items to slots with-
out explicitly generating the huge search space of all available solutions to the
muli-objective problem. The rest of this paper is organized as follows. Section 2
overviews the overall system architecture. Afterwards, Section 3 formulates and
solves the proactive scheduling problem via an Evolutionary algorithm. Section
4 conducts a performance evaluation study with the aid of extensive simulations
using real data. Finally, Section 5 concludes the work and point out potential
directions for future research.

2 System Overview

The ultimate objective of the system is to find a schedule for pre-fetching content
items, over the course of a day, before actual user demand. The entire system
hinges on developing trace-based stochastic models (profiles) for the mobile user
behavioral processes of interest, namely content consumption, Wi-Fi and bat-
tery state. Given the profiles, an estimate of the average download data rate is
computed to estimate the success probability SP for content caching at a given
time slot. Using the calculated schedule, user content can be pre-fetched and
made available ahead of demand.

As shown in Fig. 1, the system consists of three major building blocks: (A)
User behavior loggers residing on the mobile side, (B) Trace-based stochastic
profilers modeling the user behavior and (C) Proactive scheduler which retrieves
”predicted” content of interest before demand. The loggers are responsible for
capturing the behavior of the mobile user device and sending them to the cloud.
The logged data, pertaining to the demand side (content consumption) and
resource side (average data rate and battery state), are then used to create
representative users’ profiles. The scheduler leverages the user profiles to build
schedules for content pre-fetching.

2.1 Logging User Behavior

This module reside on the user’s mobile phone with a responsibility of logging the
user Wi-Fi connectivity, the phone battery state and the content usage behavior.
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Mobile Application

Send logo(Wi-Fi, Battery and
Content)

Log Manager Scheduler

Profiler

Database

Server

Save Profiles

Get User profiles

Read Logs

Save Logs

Send Schedule

Fig. 1. System Architecture

The Connectivity/Data Rate Logger Module is responsible for monitoring the
user’s Wi-Fi connectivity state and dynamics. Upon each user entry/exit from a
Wi-Fi network, the mobile operating system will notify the connectivity logger
to append a new log entry including the current connectivity information. The
Wi-Fi connectivity model aims at capturing the visited networks, the residence
time in each network and the available resources (i.e. bandwidth) throughout
each visit. The Battery State Logger Module is responsible for monitoring the
battery and listening to the following battery events: Battery charging, Battery
low and Battery OK. If one of the previous events occurs, the mobile operating
system will notify the battery logger to append a new log entry representing the
current battery state and time in the battery log file. Finally, the Content Usage
Logger Module is responsible for logging the content consumption of the users’
applications traffic.

2.2 Probabilistic User Behavioral Models (Profiles)

We divide the day into a number of time slots with equal intervals (system
parameter). The profiler uses the data from the logs (battery usage, average
data rate and the accessed content) to generate representative histograms, which
constitute the user profile. The three above mentioned processes generally exhibit



232 O.K. Shoukry and M.B. Fayek

correlation among them. Based on intuition, we assume that the battery state
and the available BW processes are correlated. This can be illustrated with
the aid of an example. A user on the go, with limited or no available Wi-Fi
access, will most probably have a Low Battery state while a charging, or a
fully charged battery state, would have higher probability of having a stable
Wi-Fi connectivity. This correlation is the prime motivation for introducing a
joint Wi-Fi and Battery state model. The joint BW-Battery profiler takes input
logs from the Wi-Fi and Battery state to create a representative model for the
correlated connectivity and Battery state of the user. In order to simplify the
model, the content usage process is assumed to be uncorrelated to the bandwidth
and Battery state processes.

The Joint Battery-Download BW Model models the user’s resource availabil-
ity. As illustrated earlier, the battery logger periodically logs the state of the
battery and lists it in terms of the following three states: CHARGING, OK and
LOW . On the other hand, the Wi-Fi model provides a breakdown of the proba-
bility of a certain Wi-Fi BW rate available during each Wi-Fi logging period. We
assume that the available download rate is such that it can be divided into the
following five data rate bins in kbps e.g., 0-20, 20-40, 40-60, 60-80, 80-100. Thus,
the profiler creates histograms for the battery and bandwidth with 15 different
states (3 battery states * 5 data rate states). For each slot, the probability that
the combined state is (”CHARGING and 0-20”, ”OK and 0-20”, ”LOW and 0-
20”,”CHARGING and 20-40”...etc) is computed from the logs. This probability
can be computed as follows:

P (State) =
D(State)

Doverall
(1)
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Fig. 2. The (a) Battery profiling histogram, and (b) Wi-Fi profiling histogram

where a joint state is a (Battery, W-Fi BW) pair, D(State) is the duration
that the given (Battery, BW) pair occurs expressed as number of time slots X ,
and Doverall is the total amount of time. Examples of the battery and Wi-Fi
histogram profiles are shown in Fig. 2.



Evolutionary Scheduling for Mobile Content Pre-fetching 233

The Content Usage Profile models the user’s content demand. The content
usage logger periodically logs the content (application) requests and lists them
in terms of the Application Categories. Afterwards, the content usage profiler
(modeler) generates a histogram profile for a given user. We assume that the slot
has a maximum of ONE request and that we have M applications categories.
Each user accesses M application categories of interest. The content usage logs
are used to determine the M categories accessed by a given user. Generally,
different users may have different values of M , however, M is fixed for a given
user in a single time slot. The content usage profiler computes the probability of
requesting each application category (Content State) within a specific time slot
as:

P (ContentState) =
F (ContentState)

X
(2)

where F (ContentState) is the number of times (frequency) this specific Con-
tent State was requested in the past X similar time slots.

3 Proactive Content Scheduler

Using the generated profiles, the scheduler employs the predictable user behav-
ior, and the capabilities of smart phones to meet the ever-growing demand for
the limited, non-renewable wireless spectrum. This proactive content scheduler
constitutes the center, and most critical, piece of the proposed content delivery
system for mobile users. The resulting schedule delivers content before demand
(intelligent prefetching) that allows off-peak data offloading and a better user
experience regarding content consumption. Intelligent offloading also improves
network resource utilization by offloading across time and/or secondary networks
(Wi-Fi).

3.1 System Model

The scheduling scope is specified as one day as we assume one segment per day
throughout the paper. For any day of the week, a schedule is generated based
on the constructed probabilistic model for that day. ri and bi denote the average
download rate and battery state in slot i, respectively. The system accommodates
M different types of content items (application categories). A day is divided into
a number of slots with fixed duration, denoted, D. Slot duration is the same, and
fixed, throughout constructing the behavioral models and scheduling. A single
day is split into N slots where N = 24∗60

D(mins) . We assume that a single content

item, at maximum, can be retrieved in a single slot. Notice that no content items
are retrieved, in a particular slot, due to the lack of connectivity and/or battery
resources or violation of content freshness constraints. A scheduling policy, i.e.
the slot-content item assignment, for the N slots is modeled by the vector S as
follows

S = [C1
i , C

2
j ....C

N
k ]

where Cn
i represents retrieving content item of type i in slot n and 1 ≤ i, j, k ≤

M .
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3.2 Problem Formulation and Complexity

Our prime objective in this paper is to schedule content item downloads, over
the course of a day, in order to maximize the probability of the user having
the content cached before demand, subject to data rate, battery and content
freshness constraints. Evidently, the optimization problem is combinatorial and,
hence, the optimal scheduler has to examine all |S| = (M + 1)N combinations
where M is the number of application categories of interest and N is the number
of slots per day. This, in turn, gives rise to exponential complexity of the optimal
policy with the number of slots, which makes the optimal prohibitively complex
and practically infeasible. This motivates us to explore the evolutionary proactive
scheduler.

3.3 Evolutionary GA Scheduler

The proposed evolutionary proactive scheduler hinges on two important notions,
namely Reward R and Utility U where the Reward captures the benefit of as-
signing a content item (Application Category) to a given slot and the Utility
captures the ability to retrieve this item in the given slot based on the availabil-
ity of battery and bandwidth resources. The proactive scheduler tries to form a
list of tasks with a maximum total utility. The utility of the schedule is the sum-
mation of all slots utilities, which is the slot Reward R multiplied by the success
probability SP . The Reward for each content item in a specific slot depends on
the probability of requesting this item within successive slots in a window W .
This leads to assigning the content item to a slot based on the highest probabil-
ity of being requested in the next time slots. The success probability of the slot
depends on the bandwidth and battery state profiled in this slot(available re-
source). An evolutionary based algorithm is used to generate different solutions
and select the results with the maximum total utility. Next, we give a detailed
description of the evolutionary proactive scheduler.

First, the scheduling day is divided into a number of slots with constant slot
period (P ). This period is equal to the pre-defined profiling slot length (30 min.
in our current implementation). The algorithm schedules tasks, using one slot
for each task, for caching relevant content before its demand. After defining the
number of slots N with the beginning and end times of each slot, a random
Application Content (AC) is assigned to each slot. Each AC can be one of
the M values (application names). Uniform Crossover is selected for generating
subsequent solutions. Randomly exchanging the AC values of two slots is used as
mutation. The reward R of each slot is calculated and the Utility U is estimated
by multiplying the reward with the success probability. The total schedule fitness
is the summation of utilities of all slots. The Reward R of an AC at a specific
slot (tSlot) is defined as

R(AC, tslot) =

W∑
t=tslot+1

ACProfile[t, AC] (3)
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Algorithm 1. Evolutionary GA Scheduler

READ Content Profiles
READ Battery and Wi-Fi Profiles
i = 0
j = 0
Initialization: Generate Initial random population
while i < N do

CALCULATE Application Content Reward of each slot
UPDATE Content Profile
i = ++

end while
CALCULATE Utility of each slot
Evaluate the fitness of each individual (utility summation) in this population
while j < G do

Selection : Select best fit individuals (highest utility summation)
Evolution: Generate new individuals by applying crossover and mutation
Evaluate the fitness of newly generated individuals
Replace some of the (least fit) individuals from the old population with new (higher
fit) individuals
j = ++

end while

Thus, the R(AC, slot) is determined by summing the profiled values (i.e. prob-
abilities) of the selected AC over all slots following the slot of interest and within
a window size (W ) which constitutes a parameter of the system. The window
size W represents the ”freshness” duration selected before this cached content
becomes obsolete. The whole process is repeated for all slots after modifying the
AC profiles values of each scheduled slot. The AC profiles are modified based
on the scheduled slot selected AC. The AC profile values are decreased within a
window just after the current slot time. This modification reflects the fact that
an AC has been scheduled and would be fresh to use for a given window of time.

The Utility U of a specific slot (tSlot) having a maximum Reward (Max(R))
is given by

U(tslot) = SP (tSlot) ∗Max(R) (4)

The slot utility represents the benefit from caching this AC at this time slot.
The success probability SP is the probability of successfully caching this AC
at this time slot and is defined as the probability of the bandwidth (BW ) and
Battery at slot (tSlot) allocated by content AC matching the BW and battery
profiles.

After generating the first set of solutions (first generation), crossover and
mutation are performed to evolve the current set of solutions. This process is
repeated for number of iterations till a final set of solutions is generated. The
schedule with the highest fitness is selected as the final solution. The fitness
is calculated by summating the utility values of all the slots in the individual.
The individual with the highest utility summation is considered the most fit
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individual. A final modification is done by combining similar requests (same
AC) over consecutive slots. This modification adds the number of items of a
specific AC to the first occurrence of consecutive slots and removes duplicates.
The final schedule may have more than one item to retrieve in a specific time
slot with empty slots to follow.

4 Performance Evaluation

A baseline scheduler is implemented to compare the results with the proposed
scheduler algorithm. Simulated Annealing (SA) was chosen as a stochastic algo-
rithm for creating random schedules. In the scheduling context, a random list
of tasks is generated (assignment of content to time slots). The Utility of the
schedule is calculated as shown before using the same Reward notion. The to-
tal schedule utility is calculated by summating the utility of all assigned slots.
At each iteration a new randomized schedule is generated and selected if it has
a higher total utility value than the previous schedule. This is repeated for G
times (stopping condition). The value G is a fixed value, chosen to accommodate
reasonable results in acceptable computation complexity.

4.1 Performance Results

Table 1 includes the numerical values of the system parameters used in our per-
formance evaluation study. For all shown results, we assume the segment length
is one day. In this section, smart phone traces collected by Rice university Live-
Lab project are utilized [1] [14]. LiveLab is a methodology to measure real-world
smart phone usage and wireless networks with a re-programmable, in-device, log-
ger designed for long-term user studies. LiveLab was deployed for a number of
iPhone 3GS users. This includes 24 Rice University students from February 2010
to February 2011, and 10 Houston Community College students from September
2010 to February 2011. While LiveLab logs a variety of measurements, for the
sake of system evaluation, application usage data, associated Wi-Fi and data
rate, and battery level data were used.

Table 1. System Parameters

Parameter Definition V alue

N Number os Slots 48
M Number of Applications 10
P Slot Period (min) 30
W Window Size (slots) 6
I Number of Items per Slot 1
G Number of generations 1000
L Number of individuals 100
C Crossover Probability 0.7
T Mutation Probability 0.3
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It is worth mentioning that some preprocessing on the data to fit the proposed
system has been performed. For the application data, user application usage
frequency and duration were measured and a set of applications was selected to
work with (CNN, ESPN, YouTube, Facebook, Twitter and LastFM). Focusing
on this set of application categories is due to their popularity and widespread.
For the associated Wi-Fi data, the entries were summarized into a set of Wi-Fi
enter/exit entries. For the battery usage data, both the connectivity data and
battery level data were used to represent the required battery activities (battery
OK, low, and charging).

The GA scheduler and baseline, simulated annealing, SA scheduler, were im-
plemented and tested for 25 users. This set was selected out of the 34 users
available from the LiveLab data due to the availability of sufficient Wi-Fi, bat-
tery and content logs over a sufficient period of time. Data was divided to a
training set of 5 weeks and a testing set. A day was randomly picked from the
available traces as the testing day and the previous 5 weeks were used for building
the user behavioral models.

Table 2. Overall performance of the scheduling algorithm compared to the baseline
scheduler for all users

Performance GA SA
Metric

Hit ratio 53 % ± 19% 28 % ± 17%
Cache Utilization 64 % ± 12% 31% ± 15%
Time in Cache 90.33 mins ± 25 121.58 mins ± 35

Table 2 outlines the performance results for all 25 users. These results show
that an average value of 53% hit ratio can be achieved using the implemented GA
schedule. A maximum of 83% was achievable, which is higher than the baseline
SA algorithm. The average cache utilization was found to be 64% for the GA
and 31% for the SA. The time in cache value was measured to be the average
time difference (in minutes) between the request time and the time of caching.
This indicates how long the item resided in the memory before actually being
consumed by the user. An average of an hour and half is a satisfying result given
that most of the cached items are videos. This value indicates that caching hap-
pens relatively just before consumption and not so soon to keep content as fresh
as possible. The results also show that the proposed GA scheduler outperform
the SA algorithm w.r.t. the average hit ratio by more than 40%, and yields a
higher cache utilization as well as lower time in cache per item.

The proposed scheduling algorithm would intuitively perform better in a re-
source abundant environment due to the Wi-Fi availability and good battery
conditions. To get further insights, users were classified into two main groups:
Resource abundant (RA) users, and resource challenged (RC) users. Based on
this classification, Table 3 outlines the results using the proposed evolutionary
GA scheduler and previously mentioned system parameters.
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Table 3. Results on different user classifications, resource abundant and resource chal-
lenged

Performance Resource Resource
Metric Abundant Challenged

Hit ratio 74 % ± 9 % 42 % ± 7 %
Cache Utilization 90 % ± 4 % 38% ± 11%
Time in Cache 94.13 mins ± 19 72.33 mins ± 24

The results confirm that the proposed scheduler yields a higher hit ratio (ap-
proximately doubled) in an abundant resource environment as opposed to a
resource challenged one. Resource abundant users were selected to be users with
Wi-Fi availability period of 30% or more during the day and a battery ”LOW”
state duration less than 50% during the day. The cache utilization is intuitively
better since more items are cached in a resource abundant environment. The
time in cache, on the other hand, has a relatively lower value in the resource
challenged environment due to the fact that fewer number of items are cached
(i.e. less competition), so the probability of caching it just before consumption
is high.

5 Conclusion

This work addresses the congestion problem affecting the current 3G networks
caused mostly by an increasingly excessive usage of multimedia applications on
smart phones. In this work, a method for pre-fetching content is suggested to
reduce the congestion in 3G networks by intelligent offloading. This technique
depends on the estimation of different user patterns as requested content, net-
work availability and battery conditions. The proposed algorithm outperforms
the baseline simulated annealing by 40%, on the average. In addition, the results
confirm that the proposed scheduler can successfully fulfill the users’ requests
with a high percent (up to 70%) using real-life smart phone traces. This work
can be extended along the following directions. First the slot duration can used
as a variable parameter instead of a fixed one. This would expose different users
to different modeling and scheduling behavior. Second, some data mining tech-
nique can be applied for categorizing users. This categorization would help in
recommending extra content for similar users.
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Sánchez-Pérez, Juan M. 19
Shoukry, Omar K. 228
Smith, Robert E. 217
Sone, Hideaki 193

Vega-Rodŕıguez, Miguel A. 19, 145

Weel, Berend 45


	Preface
	Organization
	Table of Contents
	Invited Talks
	Boosting Interactive Evolution Using HumanComputation Markets
	1 Introduction
	2 Background
	2.1 Interactive Evolution
	2.2 Human Computation
	2.3 Evolving Impressive Artifacts

	3 Approach
	4 Experiments
	4.1 General Experimental Setup
	4.2 Evolving Aesthetic Images with IEC+HCM
	4.3 Experiment 3: Evolving Image Layouts with IEC+HCM

	5 Discussion and Future Work
	6 Conclusion
	References


	Regular Papers
	A New Version of the Multiobjective ArtificialBee Colony Algorithm for Optimizing theLocation Areas Planning in a Realistic Network
	1 Introduction
	2 Related Work
	3 Location Areas Planning Problem
	4 Multiobjective Optimization Paradigm
	4.1 Hypervolume:
	4.2 Set Coverage:
	4.4 Our Multiobjective Artificial Bee Colony Algorithm

	5 Experimental Results
	5.1 Standford University Mobile Activity Traces
	5.2 Comparison with Other Works

	6 Conclusion and Future Work
	References

	Yield Optimization Strategies for (DNA) StagedTile Assembly Systems
	1 Introduction
	2 Background
	3 Modeling of Staged Tile Assembly Systems
	4 Yield Optimization Strategies for sTAM
	5 Case Study: Assembling Size-10 Ribbons
	6 Conclusions, Discussions, and Further Work
	References

	Online Gait Learning for Modular Robotswith Arbitrary Shapes and Sizes
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Experimental Results
	5 Conclusions
	References

	Approach for Recognizing Allophonic Sounds of the Classical Arabic Based on Quran Recitations
	1 Introduction
	2 An In-house Developed Sound Database: Overview
	3 Development of the Recognizer
	3.1 Dictionary of Pronunciation (lexicon) and List of Allophonic Sounds
	3.2 Acoustic Modeling and Features Extraction
	3.3 Training
	3.4 Language Modeling
	3.5 Experimentations

	4 Results Discussion
	5 Conclusions and Future Directions
	References

	Reliable Self-assembly by Self-triggeredActivation of Enveloped DNA Tiles
	1 Introduction and Motivation
	2 Background
	3 ProposedEnveloped Tile Design
	3.1 Enveloped Tile
	3.2 Enveloped Tile Set for the Sierpinski Triangle

	4 Self-assembly Guided by Enveloped Tiles
	5 Performance Analysis
	6 Conclusion and Future Work
	References

	Learning from Uncertain Data Using Possibilistic Artificial Immune Recognition Systems
	1 Introduction
	2 The Artificial Immune Recognition System
	2.1 AIRS2 Algorithm
	2.2 Background Research on AIRS Under Uncertainty

	3 Possibility Theory: An Overview
	3.1 Possibility Distribution
	3.2 Similarity and Dissimilarity Measures in Possibility Theory

	4 The Possibilistic AIRS Method
	4.1 Notations
	4.2 The Possibilistic AIRS Algorithm

	5 Experimental Results
	5.1 The Framework
	5.2 Artificial Uncertainty Creation in the Training Set
	5.3 Evaluation Criteria

	6 Conclusion
	References

	An Efficient Biomechanical Cell Model toSimulate Large Multi-cellular TissueMorphogenesis: Application to Cell SortingSimulation on GPU
	1 Introduction
	2 Related Works
	3 Our Virtual Cell Model
	3.1 Cell Physics

	4 Parallel Implementation of the Virtual Cells
	5 Case Study: Cell Sorting Due to Differential Adhesion
	5.1 Implementation
	5.2 Results and Discussion
	5.3 Performance

	6 Conclusion
	References

	Computational Modelling of the InterruptionalActivities between Transposable Elements
	1 Introduction
	2 Formal Model of TE Fragments and Pruned Sequences
	3 Sequential Interruptions
	4 Recursive Interruptions
	References

	Probabilistic Analysis of Long-Term SwarmPerformance under Spatial Interferences
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Probabilistic Analysis of Swarm Performance under Spatial Interferences
	5 Scenario and Evaluation
	6 Conclusion
	References

	Improving MLP Neural Network Performance by Noise Reduction
	1 Introduction
	2 Modification of the Network Parameters
	2.1 Outlier Dependent Error
	2.2 Median Input Function

	3 Outlier Reduction
	3.1 Instance Selection
	3.2 Anomaly Detection

	4 Experimental Comparison
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Modification of the Network Parameters with Gradient-Based Learning
	4.4 Outlier Reduction with Nongradient-Based Learning

	5 Conclusions
	References

	A Trajectory Algorithm to Solve the Relay NodePlacement Problem in Wireless Sensor Networks
	1 Introduction
	2 Relay Node Placement Problem in WSNs
	3 Multiobjective Optimization
	4 Simulation Results
	5 Conclusions and Future Work
	References

	Using Dynamic, Full Cache Locking and GeneticAlgorithms for Cache Size Minimizationin Multitasking, Preemptive, Real-Time Systems
	1 Introduction
	2 Rationale
	3 Use of Cache Locking
	3.1 Full, Dynamic Use of Cache Locking

	4 Using a Genetic Algorithm to Select Cache Contents
	5 Experiment Setup
	6 Experiment Procedures
	7 Experiment Results
	8 Conclusions
	References

	General Quantum Encryption SchemeBased on Quantum Memory
	1 Introduction
	2 Protocol Description
	3 Analysis
	4 Opaque Eavesdropping
	5 Variations
	6 Conclusion
	References

	Quantum Secret Communicationwithout an Encryption Key
	1 Introduction
	2 Keyless Quantum Message Transmission
	2.1 Opaque Eavesdropping
	2.2 Translucent Eavesdropping
	2.3 Lower Levels of Eavesdropping

	3 Encoding in Three Bases
	3.1 What Eve Can Do

	4 Conclusion
	References

	Securely Computing the Three-Input MajorityFunction with Eight Cards
	1 Introduction
	1.1 Card-Based Cryptographic Protocols
	1.2 Our Results

	2 Known Protocols
	2.1 Random Bisection Cuts
	2.2 The Six-Card AND Protocol
	2.3 The Copy Protocol with a Random Bisection Cut

	3 Straightforward Secure Majority Computations
	4 An Improved Secure Majority Protocol
	4.1 The Idea
	4.2 An Eight-Card Secure Majority Protocol

	5 Conclusion
	References

	An Analysis of a Selecto-Lamarckian Modelof Multimemetic Algorithmswith Dynamic Self-organized Topology
	1 Introduction
	2 Background
	3 ModelDescription
	3.1 The Selecto-Lamarckian Model
	3.2 Dynamic Self-organized Topology

	4 Experimental Analysis
	5 Conclusions
	References

	Parallel Multi-Objective Genetic Algorithm
	1 Introduction
	2 GPU Memory Model
	3 NSGAII
	4 MemoryFootprint
	5 NSGA-AD
	6 Performance: Quality
	7 Performance: Speed
	8 Conclusions
	References

	Evolutionary Schedulingfor Mobile Content Pre-fetching
	1 Introduction
	2 System Overview
	2.1 Logging User Behavior
	2.2 Probabilistic User Behavioral Models (Profiles)

	3 Proactive Content Scheduler
	3.1 System Model
	3.2 Problem Formulation and Complexity
	3.3 Evolutionary GA Scheduler

	4 Performance Evaluation
	4.1 Performance Results

	5 Conclusion
	References


	Author Index



