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Abstract. The rapid increase of communications combined with the
deployment of large scale information systems lead to the democratiza-
tion of Service Oriented Architectures (SOA). However, systems based
on these architectures (called SOA systems) evolve rapidly due to the
addition of new functionalities, the modification of execution contexts
and the integration of legacy systems. This evolution may hinder the
maintenance of these systems, and thus increase the cost of their devel-
opment. To ease the evolution and maintenance of SOA systems, they
should satisfy good design quality criteria, possibly expressed using pat-
terns. By patterns, we mean good practices to solve known and common
problems when designing software systems. The goal of this study is to
detect patterns in SOA systems to assess their design and their Qual-
ity of Service (QoS). We propose a three steps approach called SODOP
(Service Oriented Detection Of Patterns), which is based on our previ-
ous work for the detection of antipatterns. As a first step, we define five
SOA patterns extracted from the literature. We specify these patterns
using “rule cards”, which are sets of rules that combine various metrics,
static or dynamic, using a formal grammar. The second step consists in
generating automatically detection algorithms from rule cards. The last
step consists in applying concretely these algorithms to detect patterns
on SOA systems at runtime. We validate SODOP on two SOA systems:
Home-Automation and FraSCAti that contain respectively 13 and 91
services. This validation demonstrates that our proposed approach is
precise and efficient.

Keywords: Service Oriented Architecture, Patterns, Specification and
Detection, Software Quality, Quality of Service (QoS), Design.

1 Introduction

Service Oriented Architecture (SOA) is an architectural style increasingly adopt-
ed because it offers system architects a high level solution to software design.
SOA systems are based upon loosely coupled, autonomous and reusable coarse-
grained components called services [22]. Each service provides a domain specific
behavior, and services can be composed as composite to fulfill high level busi-
ness processes requirements. Various technologies have emerged to implement
this style, among them, Web Services [14] and SCA [6]. Google, Amazon, Mi-
crosoft are well-known businesses that have successfully based their information
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systems on SOA. Software systems evolve rapidly due to the addition of new func-
tionalities and the integration of legacy systems. Well designed systems tend to
reduce maintenance effort and costs in the long term [4I21]. However, designing
such systems becomes far more complex with the increasing use of distributed
and service-based systems. To ease evolution and maintenance, it is important
that systems satisfy good design and Quality of Service (QoS) criteria. These
concerns were first assessed in the object-oriented (OO) world. For instance, the
“Gang of Four” (GoF) [12] proposed several good practices, known as design
patterns, to solve common and recurring design problems. In the SOA context,
various catalogs [7J9I22] have been published in the last few years to provide sim-
ilar good patterns to follow. For example, a Facade, also referred by the same
name in the catalog of OO patterns, correspond to a service that hides complex
implementation details. The implementation is decoupled from the service con-
sumer and therefore can evolve independently. A Router is another typical SOA
pattern [19], which provides an additional layer to service consumers to preclude
strong coupling with business services. However, due to their own structural and
behavioral properties, SOA and OO patterns remain different.

Various interesting approaches have been proposed to assess software systems
quality and efficiency. Many of them focus on automatic design pattern detec-
tion in OO systems [BISIT3ITHITT]. These are either based on static or dynamic
analysis, even sometimes on trace execution mining for architectural style recov-
ery. Thus, they provide a consistent and mature way to assess the quality of OO
systems.

Unfortunately, to our knowledge, no such approach exists in the SOA con-
text; that’s why we are exploring the SOA patterns detection area. The only
closely related work corresponds to our previous work for the detection of SOA
antipatterns, which are bad practices by opposition to SOA patterns, which are
good practices [20]. A domain specific language provided by the Service Oriented
Framework for Analysis (SOFA: http://sofa.uqan.ca) allows system analysts
to describe bad design practices with a high level expressive vocabulary. Each an-
tipattern, derived from the literature, is specified with rule cards, which are sets
of rules that use specific metrics [20]. These can either be static, and thus provide
information about structural properties like cohesion or coupling, or dynamic,
and provide information about response time or number of service invocation.
An automatic generation process converts rule cards into detection algorithms,
that can then be applied on the SOA systems under analysis.

In this paper, we extend the existing SOFA framework to consider the de-
tection of SOA patterns at runtime. Until now, no automatic approach for the
detection of such patterns has been proposed, making the approach proposed
in this paper original. The proposed approach is called SODOP (Service Ori-
ented Detection Of Patterns) and consists in the following three contributions.
(1) A thorough domain analysis from different catalogs led us to compile and
categorize the best practices in SOA systems and their underlying technologies.
(2) This analysis resulted in the specification of five significant SOA patterns
using rule cards. We selected these five SOA patterns because they represent
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technology-agnostic, common and recurrent good quality practices in the design
and QoS of SOA systems. (3) Specifying the appropriate rule cards required us
to extend SOFA’s existing set of metrics with eight new metrics. We validated
the proposed approach with two SOA systems: Home-Automation, a system that
provides services for domotic tasks, and FraSCAti, an implementation of the Ser-
vice Component Architecture (SCA) standard [24]. We show that our SODOP
approach allows the specification and detection of SOA patterns with high preci-
sion values. More detailed information on our approach and the analyzed systems
can be found through the SOFA website (http://sofa.uqgam.ca/sodop).

Overall, the paper is organized as follows. Section 2 describes related work
in SOA patterns and their automatic detection. Section 3 presents the proposed
approach for the specification and detection of SOA patterns based on metrics.
Section 4 describes experiments and results on the two SOA systems mentioned
above. Finally, Section 5 concludes and presents future work.

2 Related Work

Automatic detection of design patterns has already been highly investigated for
assessing the quality of OO systems. Antoniol et al. proposed one of the first
approach for design pattern recovery in OO programs [3]. The first step of this
approach consists in mapping source code in an intermediate representation with
an abstract object language. In the second step, several static metrics, like the
number of attributes, methods or associations, are then computed on this ab-
stract language. The final pattern recognition process is executed by examining
relations between classes and matching them with GoF design patterns. How-
ever, as in many other work, behavioral patterns were omitted because of the
focus on static analyses.

Tsantalis et al. proposed an interesting way to recover behavioral patterns
through a data-mining process based on execution traces [25]. The process con-
sists in extracting graphs or matrices for each of the following OO concepts:
association, generalization, abstract classes and abstract method invocations.
Based on design patterns definition from the literature, they identify the best
matching results from each matrix and identify candidate patterns. Ka-Yee Ng
et al. gave an alternative solution based on a dynamic pattern recovery pro-
cess [18]. They begin with the specification of scenario diagrams for each design
pattern to consider. Based on execution traces, the system under analysis is then
reverse-engineered based also on a scenario diagram. This program scenario di-
agram is finally assigned to the initial design pattern scenario diagram with an
explanation-based constraint programming to identify potential matches. Wen-
dehals et al. combined static and dynamic approaches to recover both structural
and behavioral patterns. Their dynamic approach is based on transforming ex-
ecution calls between objects to finite automata. A matching process between
these automata and design patterns templates returns the best patterns candi-
dates.

The majority of the community tends to say SOA was first introduced in
1996 by Schulte and Natiz in their Gartner technical report [23]. SOA patterns
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catalogs only appeared starting around 2009 [79I22]. Galster et al. identified
most of the patterns specified in Erl’s SOA Patterns [9] and showed the positive
impacts of patterns on quality attributes [II]. Their approach, manual, con-
sists in specifying quality attributes on each pattern and then identifying them
manually in real service-based systems.

Despite the emerging interest in SOA, the literature is not really consistent
with respect to SOA pattern definition and specification. Indeed, the available
catalogs use different classification, either based on their nature, scope or ob-
jectives. After an in depth review, we identified the available patterns and the
three main categories in which they fall. The first category describes structural
patterns which focus on how services are designed to assess common concerns
like autonomy, reuse, or efficiency. The second category represents integration
and exchange patterns, and describes how service composition and orchestration
are used to answer high level business application needs. This category includes
how services communicate with each other using different messaging capabili-
ties like synchronous or asynchronous exchanges. The last category can be seen
as specific QoS objective patterns such as scalability, performance or security
requirements.

To our knowledge, the only related work investigating design and quality of
service-based systems is from Yousefi et al. [27]. Their recent work proposed
to recover specific features in SOA systems by mining execution traces. By ex-
ecuting specific scenarios provided by a manager, they collect the distributed
execution traces. A bottom-up data mining algorithm analyzes the traces to
build closed frequent item-sets graphs. A filtering and feature recovering process
finally eliminates noises and omnipresent calls. This process allows the extrac-
tion of specific scenario features based on call frequency and utilization. The
obtained results tend to help maintainers by focusing on the most important
service providers to improve the QoS of SOA systems and ease their evolution.

Finally, Hohpe, in his report SOA Patterns: New Insights or Recycled Knowl-
edge? [10], explained that SOA is more than “a new fancy technology.” It is
really a new programming model that requires specific approaches and there-
fore interests in SOA patterns. Thus, OO software systems cannot be directly
compared to SOA systems because they both have their own structural and be-
havioral properties. Therefore, OO design patterns recovery cannot be directly
applied to SOA pattern detection. This is why our approach aims at providing
a specific technique to recover SOA patterns in an automated manner.

3 Our Approach SODOP

We propose the SODOP approach (Service Oriented Detection Of Patterns) that
aims at the specification and automatic detection of SOA patterns. SODOP is
an extension of a previous approach proposed by Moha et al. [20] called SODA
(Service Oriented Detection for Antipatterns). In the following, for the sake of
clarity, we first describe the SCA standard key concepts and the SODA ap-
proach. Then, we present the SODOP approach and the specification of five
SOA patterns as defined with SODOP.
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3.1 About the Service Component Architecture

Before introducing the SODA and SODOP approaches, it must be stressed that
the following experiments were made with the Service Component Architecture
(SCA) standard. A description of the SCA standard and its vocabulary is thus
useful to better understand how specific metrics are computed. A software appli-
cation built with SCA contains one or many components as shown in Figure [Tl
A component is a logical building block implementing a specific business logic,
which is why we consider a component as a high level SOA service in this paper.
Each component can expose services, which declare methods potentially called
by clients, and references to other services the component depends on. The link
between two components is called a wire. A component could potentially nest
other components and become a composite. This composite can expose nested
components behaviors by promoting their services or references.

it
) Service CormpotiEs

Bl T 28
- Promotion
Wire -
_/

Fig. 1. Key Concepts of the SCA Standard

3.2 Description of the Earlier SODA Approach

SODA proposes a three steps approach for the detection of SOA antipatterns—
an antipattern corresponds to bad design practices, by opposition to patterns.
The first step consists in specifying SOA antipatterns using a Domain Specific
Language (DSL) that defines “rule cards”, which are set of rules matching spe-
cific QoS and structural properties. Figure B shows this DSL’s grammar, in
Backus-Naur Form. A rule describes a metric, a relationship, or a combination
of other rules (line 3) using set operators (line 6). A metric can either be static
(line 11) or dynamic (line 12)—computed at runtime. Examples of static metrics
include number of methods declared (NMD) or number of outgoing references
(NOR). Examples of dynamic metrics include response time (RT) or number
of incoming calls (NIC). A metric can optionally be defined as an arithmetic
combination of other metrics (lines 8 and 9). Each metric can be compared to
one ordinal values (line 7)—a five value Likert scale from very low to very high
(line 12)—or compared to a numeric value (line 8) using common arithmetic
comparators (line 13). A metric value is calculated for each service in the set
to populate one box-plot per metric. Figure [2 describes how ordinal values are
mapped to box-plot intervals.
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Fig. 2. Mapping between ordinal values and box-plot intervals

The second step consists in generating automatically the detection algorithms
corresponding to the rule cards specified. These algorithms were generated with
the EMF [2] meta-model combined with the Acceleo [I] code generation tool. The
third and final step consists in applying these algorithms on real SOA systems
to detect candidate services that match antipattern rule cards. In our case, SCA
joint points were woven on each service so that every call trigger an event. Each
event is caught so that the computation of metrics is done on the called service.

1 rule card ::= RULE CARD: rule card name { (rule)t };

2 rule ::= RULE: rule name { content rule};

3 content rule ::= metric | set operator rule type (rule type)™

4 | RULE CARD: rule card name

5 rule type ::= rule name | rule card name

6 set operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric metric value comparator (metric value | ordi value | num value)

id metric (num operator id metric)’

8 metric value :

9 num operator =+ | = | * | /
10 id metric ;= ANAM | ANIM | ANP | ANPT | COH | NID | NIR | NMD | NOR | NSC | TNP
11 | A|DR|ET | NDC | NIC | NOC | NTMI | POPC | PSC | SR | RT

12 ordi value
13 comparator o

VERY LOW | LOW | MEDIUM | HIGH | VERY HIGH
<|<Ll=12>1>

14  rule cardName, ruleName € string
15 num value € double

Fig. 3. BNF Grammar for Rule Cards

3.3 Description of the SODOP Approach

The SODA approach is flexible and relatively easy to extend for SOA patterns
instead of antipatterns. Indeed, the DSL and the underlying SOFA framework
allow the integration of new metrics required for the specification of patterns.
The approach proposed in this paper, called SODOP, introduces five new pat-
terns, that we identified from the SOA literature. These patterns have been
specified with rule cards by combining existing metrics along with eight newly
defined ones—those are underlined in Figure Bl and are briefly described be-
low. SODOP’s three steps are described in Figure dl and are similar to SODA’s
ones. The DSL grammar has been extended to allow more flexibility in the rule
card specification. We add the possibility of combining two existing metrics with
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numeric operators to avoid the proliferation of new metrics and, thus, to provide
ratios. The pattern rule cards specified in Step 1 are generated automatically into
detection algorithms in Step 2, followed by the concrete detection of patterns on
SOA systems in Step 3. The first specification step is thus manual, whereas the
second and third are automated.

DSL

!

<Manual>

1 rule cards

SOA Patterns described literally >
from the literature Rule Card Specification ¢

<Automatic> 2

Detection Algorithm Generation

<Automatic> 3 |

Services identified <«

as Patterns Pattern Detection

i

SOA system to analyze

A

detection algorithms

Fig. 4. The Three Steps of the SODOP Approach

The following eight new metrics were defined. The Execution Time (ET) rep-
resents the time spent by a service to perform its tasks; it differs from the
response time as it excludes the execution time of nested services. The Number
of Different Clients (NDC) is the number of different consumers, thus multiple
incoming calls from the same consumer are counted only once. By contrast, the
Number of Incoming Calls (NIC) and Number of Outgoing Calls (NOC) refer
to dynamic calls, thus possibly counting several times the same service. The
Delegation Ratio (DR) represents the ratio of incoming calls that are relayed
by a service. The Service Reuse (SR) is a dynamic metric that computes to
what extent a service is reused; it is the ratio between the incoming calls (NIC)
and the total number of calls in the system. The Proportion of Outgoing Path
Change (POPC) computes the proportion of outgoing paths that change for a
given incoming call. In other words, this proportion is zero if the incoming call
and its underlying outgoing calls are always the same. Finally, the Proportion of
Signature Change (PSC) computes the proportion of method signature change
for a pair of incoming/outgoing calls. In other words, this metric represents the
dissimilarity level between an incoming and outgoing method call; it is computed
with the Jaro-Winkler similarity distance between method names [26].

3.4 Basic Service Pattern

When dealing with SOA pattern specification and detection, we want to specify
the best fundamental characteristics every system designer or architect should
take into account. Several principles, some of which are described in SOA Pat-
terns [9], have to be considered for service design. Components reusability (SR)
as well as high cohesion (COH) are common requirements in the design of general



Detection of SOA Patterns 121

systems such as OO systems [5]. The dynamic nature of SOA systems introduces
new non-functional requirements such as high availability (A) or low response
time (RT). These metrics are combined in the rule card shown in Figure [9(a)|for
the specification of this Basic Service pattern.

3.5 Facade Pattern

A Facade, as illustrated in Figure B is used in SOA systems to get a higher
abstraction level between the provider and the consumer layers. Fowler and Erl
describe the pattern respectively as Remote Facade [10], Decoupled Contract or
Service Decomposition [9] and give as example using it to wrap legacy systems.
This pattern is similar to the Facade in OO systems because it hides imple-
mentation details [I2] such as nested compositions and calls. It also provides
loosely coupled relationships with consumer services and let the implementation
evolve independently, without breaking the client contract. Using this pattern,
it is possible to decompose SOA systems following the principle of separation of
concerns. It will thus be easier to reuse the different layers in other systems. A
Facade can be responsible for orchestration, and can describe how composition
of subsequent services can fulfill the client requirements. Given that the Facade
acts as a front layer to several clients, we characterize its response time (RT) as
high. Such a pattern is defined to hide implementation details from many ser-
vices. Thus, its incoming outgoing calling ratio (NIC/NOC) is low because for
one incoming call, the components tends to execute multiple outgoing calls. Fi-
nally, we assume that such a service has a high delegation ratio (DR) because it
does not provide business logic directly but, instead, delegates to other services.
Figure shows the rule card specification for the Facade pattern.

Fig. 5. Facade Pattern Example

3.6 Proxy Pattern

The Proxy pattern, represented in Figure[@] is another well-known design pattern
from OO systems, that adds an additional indirection level between the client
and the invoked service. Its objective differs from a Facade because it can, for
example, add new non-functional behaviors, which can cover security concerns
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Fig. 6. Proxy Pattern Example

such as confidentiality, integrity or logging execution calls for accountability
goals. Different kinds of Prozy patterns exist, such as Service Interceptor [7] or
Service Perimeter Guard [9], and they could all be specified with several distinct
rule cards. Instead, we choose to specify a generic version of this pattern with the
following characteristics. The proportion between incoming and outgoing calls
(NIC/NOC) has to be equal to one because it acts only as a relay. Moreover,
this relay property implies that incoming and outgoing method signatures have
to be the same. The fact that the Proxy pattern generally adds non-functional
requirements to SOA systems also means that it can be involved in several
scenarios. Thus, it has a high service reuse (SR) compared to other services.
Figure shows its underlying rule card.

3.7 Adapter Pattern

The Adapter pattern, shown in Figure[7 is also close to the Adapter as found
in OO systems. Its goal is to adapt the calls between the destination service and
the clients. The integration of legacy systems into a SOA system often requires
adaptations to perform type transformations and preserve the functionality of
the legacy systems. Daigneau gives the example of a Datasource Adapter [7]
pattern as a solution that provides data access to specific different platforms. In
general, the number of incoming and outgoing calls are identical, thus the ratio
(NIC/NOQC) is equal to one. Given the fact this pattern adapts specific client
calls, we can infer a high proportion of signature change (PSC) between incoming
and outgoing calls. This characteristic makes the Adapter differ from the Prozy,
which preserves the method signatures and simply relays calls. Figure(9(d)|shows
the Adapter pattern rule card.

Fig. 7. Adapter Pattern Example

3.8 Router Pattern

The Router pattern, as illustrated in Figure [} is similar to a network router
that forwards packets according to different paths. A SOA Router distributes
incoming calls to various destinations based on different criteria, which can be
either the client identity or the call parameters. Some smart routers either de-
tect paths on dynamic metrics such as availability or previous calls history and
forward calls to the best matching service. The main criterion to consider is a
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Fig. 8. Router Pattern Example

change of outgoing paths for a specific incoming call, so a high proportion in
path changes (POPC) can be significant. It may be interesting to see if some
specific clients use specific paths and then make the correlation with incoming
parameters. Figure shows the Router pattern rule card.

1 RULE CARD: Basic Service {

2 RULE: Basic Service {INTER HighSR
3 HighCOH HighA LowRT};
4 RULE: HighSR {SR > HIGH};
5 RULE: HighCOH {COH > HIGH};
6 RULE: HighA {A > HIGH};
7 RULE: LowRT {RT < LOW};
8}
(a) Basic Service

1 RULE CARD: Facade { 1 RULE CARD: Proxy {
2 RULE: Facade {INTER HighDR 2 RULE: Proxy {INTER EquallOCR
3  LowlOCR HighRT}; 3 HighSR LowPSC};
4 RULE: HighDR {DR > HIGH}; 4 RULE: EquallOCR {NIC/NOC = 1.0};
5 RULE: Low/OCR {NIC/NOC < LOW}; 5 RULE: HighSR {SR > HIGH};
6 RULE: HighRT {RT > HIGH}; 6 RULE: LowPSC {PSC < LOW};
74 74

(b) Facade (C) Proxy
1 RULE CARD: Adapter {
2 RULE: Adapter {INTER EquallOCR
3 HighPSC}; 1 RULE CARD: Router {
4 RULE: EquallOCR {NIC/NOC = 1.0}; 2 RULE: Router {HighPOPC};
5 RULE: HighPSC {PSC > HIGH}; 3 RULE: HighOPC {POPC > HIGH};
6 }; 4}

(d) Adapter (e) Router

Fig. 9. Rule Cards for SOA Patterns

4 Experiments

To show the usefulness of the SODOP approach, we performed some experiments
that consisted in specifying the five SOA patterns presented in the previous sec-
tion and detecting them automatically on two SCA systems, Home-Automation
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and FraSCAti. Home-Automation is a system that provides services for domotic
tasks, whereas FraSCAti is an implementation of the SCA standard. Concretely,
these experiments aim to show the extensibility of the DSL for specifying new
SOA patterns, the accuracy and efficiency of the detection algorithms, and the
overall correctness of the underlying framework. As part of the experiments, two
independent analysts validated results for Home-Automation and the FraSCAti
team validated the results obtained for their framework. This independent vali-
dation enables us to compare the precision and recall of our SODOP approach
and demonstrates the accuracy and efficiency of the rule cards and the related
detection algorithms.

4.1 Assumptions

The experiments aim at validating the following three assumptions:

A1l. Extensibility: The proposed extended DSL is flexible enough to define SOA pat-
terns. Through this assumption, we show that although the DSL and the SOFA frame-
work were initially dedicated to the specification and detection of SOA antipatterns,
they are sufficiently extensible to handle SOA patterns thorough the use of metrics.

A2. Accuracy: The services identified as matching our SOA patterns must attain at
least 80% of precision and 100% of recall. We want to guarantee the accuracy and
the efficiency of the rule cards and the related detection algorithms by identifying all
patterns present in the analyzed systems while still avoiding too many false positives
with a high precision value.

A3. Performance: The time needed by the detection algorithms must not impact the
performance of the analyzed system. We want to keep the detection time required by
the SODOP approach and the underlying SOFA framework very low to avoid efficiency
issues in the analyzed system.

4.2 Analyzed Systems

The experiments have been performed on two different SCA systems that are
in conformance with the SOA principles: Home-Automation, composed of 13
services and executed with 7 different scenarios, and FraSCAti, an open-source
implementation of the SCA standard. FraSCAti fully uses SCA service compo-
sition as it includes 13 composite components, themselves encapsulating compo-
nents, for a total of 91 components. The experiment with this system involves
the bootstrap and launch of six SCA applications developed within FraSCAti to
simulate the scenarios.

4.3 Process

The process used for these experiments follows the three steps of the SODOP
approach presented in Section[3 We first specified the rule cards representing the
five SOA patterns described previously. Then, we generated automatically the
detection algorithms in the second step. Finally, we applied them respectively
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on Home-Automation and FraSCAti to detect the SOA patterns specified. We
validated the results by computing the precision—the proportion of true patterns
in the detected patterns— and the recall—the proportion of detected patterns in
all existing patterns. These validations were made through a manual and static
analysis of each service in the systems under analysis. The computations were
performed by two external software engineers to ensure the results were not
biased. An additional feedback was given by the FraSCAti core team itself to
strengthen the results.

4.4 Results

In the following, we first discuss the results obtained on the two SCA systems.
Tables [Il and B] respectively present the detection results on each system. For
each SOA pattern listed in column one, column two describes the services de-
tected as patterns. Columns three, four and five give respectively the value of
metrics involved in the rule card of the pattern, the time required for applying
the detection algorithms and the system execution time. The two last columns
provide the precision and the recall values. The last row gives average values
(detection time, execution time, precision and recall).

Details of the Results on Home-Automation

Four of the five specified SOA patterns were detected on Home-Automation—
the Adapter pattern was not detected. The patientDAO, communication and
knzMock components are detected as Basic Service pattern with a maximal
cohesion (COH > 0.34), high reuse values (SR > 0.10) and very low response
time (RT < 0.25ms). According to the definition of the Basic Service pattern,
these three components thus represent the services in the system that are the
most well designed, as they appear to satisfy common software design principles.
The mediator component is considered both a Facade and a Router. The Facade
represents a service acting as a front layer to clients to hide a complex subsystem.
Indeed, the delegation metric (DR = 1) of the mediator component always acts
as a relay and tends to have six times more outgoing calls for each incoming
one (NIC/NOC = 0.17), thus this traduces its high response time (RT = 2.8ms).
The mediator has also been detected as a Router because of its high dynamic
metric (POPC = 0.5). This value means that the mediator distributes to different
outgoing paths half of its incoming calls. The patientDAO also matches the
Proxy pattern because of its high reuse (SR = 0.24 compared to the median
value of 0.06) and systematic incoming calls relay (NIC = NOC) with the same
method signatures (PSC = 0). We can also observe that the time required for the
detection of each pattern is on average 25ms, whereas the average execution time
on a given set of scenarios is 6.73s. These values demonstrate the low impact of
the pattern detection on the system execution, and thus on the results. Finally,
the validation performed by the two experts lead to a 93.3% precision and 100%
recall, which indicates that all existing patterns in Home-Automation have been
detected, with high precision.



126 A. Demange, N. Moha, and G. Tremblay

Table 1. SOA Pattern Detection Results on the Home-Automation System

PATTERNNAME DETECTEDSERVICES METRICS DETECTTIME EXECTIME PRECISION RECALL
COH RT SR
" . patientDAO 0.49  0.25ms 0.24 ) [3/2] [2/2]
Basic Service communication 0.34  0.24ms 0.10 80ms 6.82s 66.6% 100%
knzMock 0.38 0.16ms 0.11
Facade mediator NI(;/II\;OC ]131; 2IZT ) 10ms 6.66s [1/1] [1/1]
’ ’ ems 100% 100%
Proxy patientDAO NIO/NOG SR PSE T 13ms 6.74s /1 /1]
’ ’ : 100% 100%
Adapter n/a n/a 10ms 6.76s [0/0] [0/0]
100% 100%
Router mediator P(O)F:c 11ms 6.67s [1/1] [1/1]
- 100% 100%
AVERAGE 25ms 6.73s 93.3%  100%

Details of the Results on FraSCAti

As shown in Table 2] the detection of patterns on FraSCAti returns more results
than Home-Automation, i.e. more components are detected as patterns. This is
partly explained by the size of FraSCAti, which is almost ten times larger than
Home-Automation. Five components have been detected as matching the Basic
Service pattern, because of their very high reusability (SR > 0.1 compared to the
median value of 0.003), high cohesion (COH > 0.48) and mostly very low response
time (RT < 0.7ms). The core framework components, FraSCAti, assembly-factory
and composite-parser, are detected as Fucade as they are main entry points of
the framework that relay every incoming calls (DR = 1). Their incoming outgoing
call ratio (NIC/NOC = 0.46, 0.25 and 0.63) remains low compared to the median
value of 1. They act as a Facade because they have among the highest response
times (respectively 571ms, 181ms and 10ms) mainly due to their massive under-
lying calls. The Prozy pattern is involved in the three following components:
sca-interface, sca-implementation and component-factory. The components have
been identified as Prozy because they represent highly reused (SR > 0.5) relay
services (NIC/NOC = 1) and they include the same method calls (PSC = 0). The
only missing SOA pattern in Home-Automation and discovered in FraSCAti is
the Adapter, seen in the BindingFactory component. It acts as an Adapter be-
cause it relays all its incoming calls (NIC/NOC = 1) and adapts the method
calls to the underlying components (PSC = 1, which indicates a high proportion
of signature change). Unlike in Home-Automation, no Router pattern has been
detected. The average detection time required for our experiments is 97ms on
average for a total time average of 10.9s. As for Home-Automation, the detection
represents only 1% of the total system execution, and thus does not affect its
performance, even with a relatively larger system. We reported those results to
the FraSCAti core team and they confirmed all components detected as pat-
terns. This leads to a precision of 100% for this detection. However, the recall
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Table 2. SOA Pattern Detection Results on the FraSCAti System

PATTERNNAME DETECTEDSERVICES METRICS DETECTTIME EXECTIME PRECISION RECALL
CcOH RT SR
sca-interface 0.48  0.09ms 0.11
Basic Service sca-interface-java 0.50  0.02ms 0.11 241ms 11.34s [5/5] n/a
sca-impl. 0.48  0.67ms 0.05 ’ 100%
sca-impl.-java 0.50  0.59ms 0.04
sca-comp.-service 0.48  0.25ms 0.48
NIC/NOC DR RT
Facade 5 ::fgﬁ;’ Jactory A0 L0 ST g 10.62s 3/3]  [3/16]
- .25 . ms o o,
composite-parser 0.63 1.0  10ms 100% 18.7%
NIC/NOC SR  PSC
Proxy sca-interface Lo o100 65ms 10.72s (3/3]  [3/14]
sca-impl. 1.0 0.05 0.0 100% 21.4%
component-factory 1.0 0.11 0.0 ° =0
Adapter BindingFactory NICI/EIOC F;SDC 57ms 10.96s [1/1] [1/14]
' ' 100% 7.1%
Router n/a n/a 67ms 10.88s [0/0] [0/7]
100% 0.0%
AVERAGE 97ms 10.90s 100%  11.8%

value of 11.8% is low. Our detection algorithms thus failed at detecting all the
existing components involved as patterns in the FraSCAti system.

4.5 Discussion

We now discuss the three assumptions mentioned earlier to show the usefulness
of the SODOP approach.

A1l. Extensibility: The proposed extended DSL is flexible enough to define SOA pat-
terns. This first assumption is positively supported because we show through the ex-
periments that the DSL allows designers to define different kinds of rule cards and add
new metrics that can be either static or dynamic. Indeed, the specification of SOA
patterns required the addition of eight dynamic metrics and the reuse of the 14 ex-
isting ones. In addition to the new metrics, the DSL has been extended with numeric
operators (+,-,%,/) to allow the combination of metrics and, thus, avoid introducing
new metric specifications, keeping the language as simple and flexible as possible.

A2. Accuracy: The services identified as matching our SOA patterns must attain at
least 80% of precision and 100% of recall. The detection results demonstrate the high
precision of the SODOP approach, respectively 93.3% and 100% for Home-Automation
and FraSCAti. The recall for Home-Automation is 100% but the one for FraSCAti is
about 12%. This result is related to the highly dynamic detection of patterns, which is
based on a set of scenarios that do not cover all the system execution paths. In these
experiments with FraSCAti, unlike with Home-Automation, it is quite difficult to reach
100% coverage because of the system size.

A3. Performance: The time needed by the detection algorithms must not impact the
performance of the analyzed system. As shown in Tables [[] and Bl no matter which



128 A. Demange, N. Moha, and G. Tremblay

SOA patterns or how many metrics are computed, the detection time remains low
compared to the execution time and thus does not impact the system under analysis.
As a first analysis, we find the only affecting property is the number of services involved
in the SOA system under analysis, because all the metrics are computed against each
of them. FraSCAti has around eight times more components than Home-Automation,
which explains the proportional time needed to run the metrics computation (around
1% of the execution time). Because the experiments are run locally, the execution time
is also highly dependent on the computer computational power. In these experiments,
an Intel E5345 CPU with 4GB of RAM was used.

4.6 Threats to Validity

Several threats can be considered as counter-measures to the validity of our
study. First, the external reliability, i.e., the repeatability of our experiments,
is guaranteed under the condition that the same computational facilities are
used. This is still guaranteed by the automatic detection algorithms genera-
tion, which will be identical for the same input rule card. We provide the
details of our results as well as the systems analyzed in the SOFA website
(http://sofa.uqam.ca/sodop). The main possible external validity threat may
come from the fact we only focus on two SCA systems. Although they are rep-
resentative of small as well as big systems, SOA technologies often have specific
characteristics, which is why we plan to extend our study in the future. We tried
to minimize the potential construct validity of our approach by providing the
most representative execution scenarios for each system under analysis. However
for FraSCAti, the scenarios were not exhaustive as highlighted by the recall of
11.8%. Because of the size of the system, we will consider it in our next future ex-
periments. The other construct validity potentially questionable may come from
the rule cards subjectivity. Indeed, this depend heavily on the designer specify-
ing them, but we tried as much as possible to remain close and faithful to the
SOA patterns described in the literature. Moreover, although we only defined
five SOA patterns in the form of rule cards, they are representative according to
the literature. Indeed, even if SOA catalogs mainly define patterns for specific
technologies, we tried to specify meaningful technology-agnostic SOA patterns.

5 Conclusion and Future Work

SOA patterns are proven good practices to solve known and common problems
when designing software systems. Indeed, our three steps SODOP approach con-
sists in the specification and detection of SOA patterns to assess the design and
QoS of SOA systems. The first step consists in specifying rule cards—set of rules,
combining static and dynamic metrics—for each pattern. Five patterns were de-
scribed in our study, involving 22 different static and dynamic metrics, including
eight newly defined dynamic metrics. The second step consists in generating au-
tomatically detection algorithms from rule cards, and applying them on SOA
systems in the third step. We validated our approach using two SCA systems,
Home-Automation—a system that provides 13 services for domotic tasks—and
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FraSCAti—a SCA standard implementation that provides 91 components. The
experiments showed that we can obtain high precision and recall values under
the condition that execution scenarios are exhaustive.

Various lines of future work are currently being explored by our research
group. First, we will expand the SODOP approach by specifying more SOA
patterns and applying them on other SOA systems. We also plan to extend
our approach to other SOA technologies, such as Web Services and REST, as
they share many common properties. Our approach remain however applica-
ble to these other technologies to the condition we wrap them in specific SCA
containers.
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