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Abstract. Scheduling of service requests in Cloud computing has tra-
ditionally focused on the reduction of pre-service wait, generally termed
as waiting time. Under certain conditions such as peak load, however,
it is not always possible to give reasonable response times to all users.
This work explores the fact that different users may have their own levels
of tolerance or patience with response delays. We introduce scheduling
strategies that produce better assignment plans by prioritising requests
from users who expect to receive results earlier and by postponing ser-
vicing jobs from those who are more tolerant to response delays. Our
analytical results show that the behaviour of users’ patience plays a key
role in the evaluation of scheduling techniques, and our computational
evaluation demonstrates that, under peak load, the new algorithms typi-
cally provide better user experience than the traditional FIFO strategy.

1 Introduction

Traditionally, job schedulers do not take into account how users interact with
services. They optimise system metrics, such as resource utilisation and energy
consumption, and user metrics such as response time. However, understanding
interactions between users and a service provider over time allows for custom
optimisations that bring benefits for both parties.

In this article we propose scheduling strategies that take into account users’
expectations regarding response time and their patience when interacting with
Cloud services. Such strategies are relevant mainly to handle peak load condi-
tions without the need to allocate additional resources for the service provider.
Although elasticity is common in a Cloud setting, resources may not be available
quickly enough and their allocation can incur additional costs that may be avoid-
able. The main contributions of this paper are: (i) a Patience-Aware Schedul-
ing (PAS) strategy and an Expectation-Aware Scheduling (EAS) strategy
for Cloud systems; (ii) Analytical comparisons between the EAS strategy and
the traditional First-In, First-Out (FIFO) scheduling strategy; (iii) Evalua-
tion of the proposed strategies and a discussion on when they bring benefits for
users and service providers.
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2 Proposed Scheduling Strategies

This work considers Cloud services that support applications running on mobile
devices and desktops, most of which are highly interactive and iterative. Service
performance over time usually shapes the users’ expectations on how it is likely
to perform in the future. The provider stores information on how its service
responded to user requests and uses this information to gauge her expectations
and patience.

PAS and EAS utilise user expectation to schedule service requests. Both
strategies share the following common goals: (i) minimise the number of users
abandoning the service; (ii) maximise the users’ level of happiness with the
service; and (iii) perform such optimisations without adding new resources to the
service. An incoming job request will be directly assigned if there are available
resources in the service provider. Therefore, choosing among FIFO, PAS, and
EAS becomes more crucial during peak load.

PAS has the goal of serving first users whose patience levels are the lowest
when interacting with the Cloud service. When new requests arrive, the algo-
rithm sorts the tasks in its waiting queue according to the Patience of their
users (in ascending order), and when a new resource is freed, the request posi-
tioned in the head of the waiting list is assigned to it. An adequate estimate
of how the user’s happiness level and the user’s tolerance curves behave is very
important for the evaluation of the proposed strategies. In our implementation
of PAS and in our computational evaluation, we employed the definition of
Brown et al. [0], where patience is given by the ratio of the time a user expects
to wait for results to the time the user actually waits for them.

EAS has the goal of serving first requests from users whose response time
expectations are translated into “soft” deadlines that are positioned earlier in
time. The difference between EAS and traditional deadline-based algorithms
lies in the nature of the “buffer” adding to the minimum response time, as it
changes over time and is related to users’ patience. EAS sorts service requests
in the waiting queue according to their users’ expectation, which is the sum of
arrival time and expected response time, where arrival time is the time at which
the job arrived on the waiting queue and expected response time is the time that
the service provider need to complete the task. EAS, then, schedules the job
with the least expectation when a new resource is freed.

2.1 Analytical Investigation of the EAS Strategy

Let U be the set of users of a service provider. Let T denote the sequence of job
requests being submitted, where each ¢ € T arrives at time a(t) € RT and has
processing time A(t) € R. Task ¢ is submitted by user u(t), who is expecting to
wait an amount of time w(u(t)) € N in addition to A(t), i.e., w(u) denotes u’s
tolerance with response delays. The service provider has a dispatching algorithm
responsible for the assignment of each incoming task to one of its m processors.

Let us denote by s(t) € RT the time at which task ¢ starts to be processed.
The response time for task ¢ is given by r(t) = (s(t)—a(t))+A(t), and e(u(t),t) =
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r(t) — (A(t) + w(u(t))) denotes the amount of time by which the response time
differs from w(t)’s original expectation.

We denote user u’s level of happiness by h(u) € [0,1], a linear scale where
h(u) = 0 and h(u) = 1 indicates that u is absolutely discontent and happy,
respectively. We assume that u stops sending requests as soon as h(u) is below
some critical value c(u) in [0,1]. User u is active if h(u) > c(u). The impact
that e(u, t) has on h(u) is formulated by function i : i x R — R, and the impact
that e(u,t) has on w(u) is described by some function j : U x T x R — R. If we
assume that i(u, e(u,t)) and j(u,t,e(u,t)) are addictive factors, then, after the
computation of some task ¢, the happiness level of user u(¢) will be given by h(u)+
i(u, e(u,t)), while u(t)’s patience level becomes w(u(t)) + j(u(t),t, e(u(t),t)).

Optimisation Criteria. Let Z denote the closed interval [0, 1] C R. We say that
a vector s € ZU| denotes a service provider’s user happiness state if s, = h(ug)
Vu, € U, 1 < x < U. In order to evaluate and compare different scheduling
strategies, we have to define a cost function ¢ : ZI¥! — R. The definition of a
proper cost function depends on the optimisation criteria one wants to establish.
We will consider two optimisation goals. The first one is the mazimisation of
the overall happiness of users, where service providers should try to reach states
s € ZM of maximal L'-norm. The other criteria consists of the mazimisation of
active users, where service providers try to keep as many active users as possible.
Formally, a state s € ZIY| satisfying this second goal is associated to a vector
s' € ZMl such that s/, = s, if s, > c(uy), s, = 0 otherwise, and ||s’||o is
maximal.

Batch Requests. We consider initially how scheduling strategies affect the user
happiness states when we take into account a single batch of job requests. We
assume here that each user submits a single request, and therefore we do not
investigate variations of w(u). The optimisation criteria in this section will be
the L'-norm of the user happiness state vector. Let us consider the family of
scenarios where each task in 7 consumes time A, and let ¢;,t, € 7 be such that
z+m <y and a(ty) +w(ug) > alty) + w(uy).

If FIFO is employed, the scheduling plan P will have each request ¢ serviced
according to arriving time a(t). In particular, ¢, will be processed before t,
according to P and in different moments in time (i.e., they will not be serviced
in parallel).

For the same sequence T, because a(t;) + w(ug) > a(ty) + w(uy), EAS
would invert the order in which tasks ¢, and ¢, are processed, so let us consider
the plan P’ that is almost equal to P, having only the positions of ¢, and ¢,
exchanged. Because all the tasks consume the same amount of time, it is clear
that we can transform plan P into plan P* that would be generated by EAS if
we apply the same exchange technique sequentially until every pair of requests
is positioned accordingly.

Let s and s’ be the user happiness state vectors of p after the execution
of plans P and P’, respectively, and let f, and f, be the times at which ¢,
and t, have their processing tasks finished according to plan P, respectively
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(i.e., fz < fy). Let us refer to e(t,) and e(t,) as e!(t,) and e'(t,) for FIFO,
respectively, and as e*(¢,) and e?(t,) for EAS, respectively.

Finally, let ¢, : R x R — R be the function parameterized by e(¢;) and e(t,)
denoting the sum of the changes in the happiness levels of users u, and u, after
tasks ¢, and ¢, have been serviced, respectively. It is clear that g, , depends on
the behaviour of 1.

Proposition 1. If g, , is always the same Vx,y € U, is monotonic, and respects
exactly one of the following scenarios, then it is possible to decide if either EAS
or FIFO yields a plan resulting in a user happiness state s with maximal ||s||1:

— fayla,b) > fz4(c,d) whenever |a| + |b] > |c| + |d|; or
— fayla,b) < fz4(c,d) whenever |a| + |b] > |c| + |d|; or
— foy(a,b) = fz,(c,d) whenever |a| + |b] > || + |d|.

Proof. Simple inspection shows that a(ty)+A+w(ug), a(ty)+A+w(uy), fe, and
fy can appear in six different relative ordering schemes (e.g., a, + A+ w(uy) <
ag+A+w(uy) < fy < fyisoneof them. Moreover, one can also see that el (¢, )+
el(ty) = €*(tz) + €*(ty) and that maz(e'(ty), el (ty)) > maz(e(t,),e*(t,)) in
each of these cases. Therefore, we have |e!(t,)] + |e!(t,)] > |e(tz)| + |€2(ty)]-

Based on these observations and on our hypothesis, we have the following
situations:

— if fzy(a,b) > fz.4(c,d) whenever |a| + [b] > |c| + |d|, then c(s)

b s
— if fz y(a,b) < fzy(c,d) whenever |a| + |b] > |c| + |d|, then ¢(s)
— if fz y(a,b) = fz,y(c,d) whenever |a| + |b] > |c| + |d|, then ¢(s)

(s);
(s'); and

(s)-

Therefore, P’ is better than, equal to, or worse than P if f, , has the first, the
second, or the third property, respectively.

Finally, if we assume that f; , is always the same Vz,y in U, the resulting
user happiness state associated to P* is better than, equal to, or worse than P
if f, has the first, the second, or the third property, respectively. O

>c
<c
=c

Other propositions comparing the proposed and FIFO strategies are pre-
sented in the extended version of the paper [7].

3 Ewvaluation

A discrete event simulator was used to evaluate the performance of the schedul-
ing strategies. To model the load of a Cloud service, we crafted three types of
workloads with variable numbers of users over a 24-hour period: normal day,
flat day, and peaky day. More detail on the workloads is given in the extended
version of this work [7].

For each workload we vary the number of resources used by the Cloud service,
thus allowing for evaluating the system under different stress levels. When using
the system, a user makes a request and waits for its results before making a new

! Recall that a(tz) + A+ w(us) is already defined as greater than a(ty) + A + w(uy).
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Fig. 1. Patience index under different workloads

request, with a think time between receiving results and making another request
uniformly distributed between 0 and 100 seconds. To facilitate the analysis and
comparison among the techniques, the length of jobs is constant (10 seconds).

Previous interactions with the service are used to build a user’s expectation on
how the service should respond, and how quickly a request should be processed.
The model that defines a user’s expectation on the response time of a request uses
two moving averages, (i) an Exponential Weighted Moving Average (EWMA) of
the previous 20 response times, with o = 0.8; and (ii) an average of the past
4 response times, used to eliminate outliers. When a request completes, if the
response time is 30% below the average of the past 4 response times, then the
EWMA is not updated, though the value is considered in future iterations. In
essence, this model states that the user expects the service to behave similar
to previous interactions, with a higher weight to more recent requests. Even
though changes in response time affect the user’s perception of the service, she
disregards large deviations in service quality; unless they become common. As
we believe that in real conditions, users would not correctly average their past
response times (i.e. they may not recall past experiences well) we add a tolerance
of 20% to the estimate of response time provided by the model.
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Fig. 2. Percentage of requests whose patience index tends to 0

Users patience thresholds—i.e. the maximum response time that she consid-
ers acceptable—is randomly selected between 40 seconds and 60 seconds. The
provider tracks how it served previous requests made by a user and users the
same model described above to compute an estimate of what it believes the
user’s expectation to be. 60 seconds is also what the provider considers to be
the maximum acceptable response time that satisfies the service users. However,
for EAS and PAS, if a request’s response is above 60 seconds, the EWMA is
updated with 40 seconds, which may give the user priority the next time she
submits a request. It is a way the scheduler finds to penalise itself for yielding a
response time too far from what it believes the user’s expectation to be.

Figure [II depicts the Patience Indexes (as defined in Section Bl of requests
when below 1.0 for flat, normal, and peaky workloads. The lower the values the
more unhappy the users. We observe that for high and low system load (i.e.
rd—6 and r16-20), all strategies perform similarly, whereas for the other loads
PAS and EAS produce higher Patience Indexes than FIFO. Under high loads,
most requests are completed after the expected response time, thus not allowing
the scheduler to exchange the order of the requests in the waiting queue in
subsequent task submissions. On the other hand, a very light system contains a
short (or empty) waiting queue; hence not having requests to be sorted.
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The impact of the scheduling strategies becomes evident when the system
is almost fully loaded, i.e. when the waiting queue is not empty and there are
requests that can quickly be assigned to resources. In this scenario, requests with
longer response time expectations can give room to tasks from impatient users.
The FIFO strategy does not explore the possibility of modifying the order of
requests considering user patience.

Figure [ presents the percentage of requests that were served considerably
later than the expected response time, that is, when their Patience Index tends
to zero. Such requests represent the stage where users’ level of happiness is
decreasing considerably. The percentage was normalised by the total number
of requests for each resource setting for all strategies. The behaviour of this
metric follows the patience indexes, but it highlights the impact of the proposed
strategies have on users with very low patience levels.

4 Related Work

Commonly used algorithms in resource management include First-In First-Out,
priority-based, deadline-driven, some hybrids using backfilling techniques [18],
among others [5l[10]. Besides priority and deadline, other factors have been con-
sidered, such as fairness [9], energy-consumption [16], and context-awareness [2].
Moreover, utility functions were used to model how the importance of results to
users varies over time [4,[I4] and attention scarcity was leveraged to determine
priority of service requests in the Cloud [I5].

User behaviour has been explored for optimising resource management in the
context of Web caching and page pre-fetching [ILBL8I11]. The goal is to under-
stand how users access web pages, investigate their tolerance level on delays, and
pre-fetch or modify page content to enhance user experience. Techniques in this
area focus mostly on web content and minimising response time of user requests.

Service research has also investigated the impact of delays on users’ behaviour.
For instance, Taylor [17] described the concept of delays and surveyed passengers
affected by delayed flights to test their hypotheses. Brown et al. [6] and Gans et
al. [I2] investigated the impact of service delays in call centres. In behavioural
economics, Kahneman and Tversky [13] introduced prospect theory to model
how people make choices in situations that involve risk or uncertainty.

5 Conclusions

We presented PAS and EAS that use estimates on users’ level of tolerance
or patience to define the order in which resources are assigned to requests. Our
analysis identified that it is not trivial to choose between EAS and FIFO as
the quality of their schedules depends strongly on users’ happiness with a service
and tolerance to delays. Our computational evaluation shows that both PAS
and EAS perform better than FIFO under peak load scenarios, and that PAS
is slightly better than EAS.
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