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Abstract. In this paper, we describe a process discovery algorithm that
leverages prior knowledge and process execution data to learn a control-
flow model. Most process discovery algorithms are not able to exploit
prior knowledge supplied by a domain expert. Our algorithm incorpo-
rates prior knowledge using ideas from Bayesian statistics. We demon-
strate that our algorithm is able to recover a control-flow model in the
presence of noisy process execution data, and uncertain prior knowledge.

1 Introduction

Process discovery is a research area at the intersection of business process man-
agement and data mining that has as one of its main objectives the development
of algorithms that find novel relationships within, and useful summarizations
of, process execution data. These relationships and summarizations can provide
actionable insight such as the need for process redesign, organizational restruc-
turing, and resource re-allocation. Control-flow discovery is a sub-area of process
discovery concerned with the development of algorithms for learning the depen-
dency structure between activities from process execution data.

In this paper, we consider the problem of learning control-flow models in the
form of Information Control Nets (ICN) from the combination of noisy process
execution logs, and uncertain prior knowledge encoded as augmented ICNs. Most
control-flow discovery algorithms do not incorporate prior domain knowledge.
Prior knowledge from domain experts or a repository of process models from the
same domain can be a valueable resource in the discovery of control-flow models.
This is especially true if there are important process segments that are executed
infrequently. For example, in a banking process, if a transaction involving more
than $100,000 is performed, a separate part of the banking process is executed. If
the underlying control-flow discovery algorithm is designed to handle noise, then
important, infrequent process executions may not get reflected in the discovered
control-flow model. On the other hand, if the control-flow discovery algorithm is
not designed to handle noise, then the discovered control-flow model will incor-
porate important, infrequent process executions, as well as erroneous, infrequent
process executions.

The main contributions of this paper are that we present a control-flow discov-
ery algorithm that uses prior knowledge in the form of an augmented Information
Control Net, and process execution data to automatically discover a control-flow
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model in the form of an Information Control Net. Our control-flow discovery al-
gorithm can deal with noise in the process execution data, and uncertainty in the
prior knowledge using ideas from Bayesian statistics. Additionally, our control-
flow discovery algorithm can deal with cycles and discovers the semantics of
splits and joins.

2 Related Work

The area of process discovery is over fifteen years old. It was first investigated by
Cook and Wolf [I] in the context of software processes. Next, process discovery
was investigated by Agrawal et. al [2] in the context of business processes. The
work of Cook and Wolf, and Agrawal et. al laid a foundation for process discovery.
However, their work does not make use of models that can explicitly represent
the nature of concurrent and decision splits, and synchronous and asynchronous
joins, and does not leverage prior knowledge. The first phase of our algorithm
builds on the algorithm developed by Agrawal et. al [2] by incoporating an
approach to leverage prior knowledge.

In the paper [3], van der Aalst et al. describe the a-algorithm, a process
discovery algorithm that explores the theoretical limits of the WF-Net (a Petri-
net variant) approach to process discovery. It is based on a complete and noise-
free log of process traces. The authors describe some control-flow patterns that
are impossible for the a-algorithm to discover.

The paper by Fahland and van der Aalst [4] proposes an approach to include
prior knowledge in process discovery. Their approach takes as input a poten-
tially noisy process execution log and prior knowledge encoded as a Petri net. It
produces a Petri net that contains the prior knowledge Petri net with additional
sub-models that represent subtraces in the process execution data that did not
fit the prior knowledge Petri net. Their approach assumes that the control-flow
model provided by a domain expert is accurate and that only the addition of
sub-control-flow models to the domain expert supplied control-flow model can be
made. Our approach assumes that there is a level of uncertainty associated with
provided domain knowledge. This leaves room for a domain expert’s control-
flow model to be erroneous. In our approach to process discovery using prior
knowledge, the resulting control-flow model omits erroneous structures in a do-
main expert’s control-flow model if it is not supported by enough evidence in
the process execution data.

In the paper [5], Medeiros et. al. introduce a genetic algorithm for process
discovery that takes as input process models represented as Causal Matrices as
an initial population. This initial population can be a set of process models sup-
plied by a domain expert. However, the genetic algorithm approach for process
discovery uses a global score and search procedure, which makes it difficult to
distinguish important, yet infrequent process fragments from noise.
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3 Process Execution Logs

Process execution logs are the process execution data that our control-flow dis-
covery algorithm uses to learn control-flow models. A process instance is an
execution of a process. A process trace or simply trace is a list of events gen-
erated by a process instance. The events in a trace are denoted by the triple,
(P, A, X), where P is unique trace identifier, A is the name of the activity, and
X is the timestampe of the event. A process execution log, denoted by L, is a
multiset of process traces.

The dependencies that exist in a process will be implicitly embedded in the
process execution log it generates. For instance, if activity b is dependent on
activity a in a control-flow model, then, in each trace containing events from
activities a and b, the event generated by a will always appear before that of b,
unless there are measurement or ordering errors in process execution log gener-
ation. By an abuse of notation, we represent activities and events with the same
symbol; this abuse of notation will be clear from the context.

Definition 1 (Precede). Given a trace T containing events a and b, event a
precedes event b in T, denoted by a <7 b, if a occurs before b in T. (The T from
<7 can be dropped when the context is clear)

Definition 2 (Dependent). Let £ = {T1,...,T|z|} be a process execution log.
Activity b is dependent on activity a, denoted by a — b, if event a precedes event
b a statistically significant number of times.

Definition 3 (Independent). Let L be a process execution log. Activity a is
independent of activity b (and vice versa), if it is not the case that a — b, or
b— a.

Definition 4 (Mutually Exclusive). Let L be a process execution log. Activity
a is mutually exclusive of activity b, if a and b are negatively correlated in L
(i.e. they hardly ever appear together in the same process trace).

Given a process execution log, £, we can define a dependency graph, and an
independency graph that represent the dependencies between activities. These
two graphs implicitly represent the structure and semantics of the underlying
control-flow model. The dependency graph represents the structure, and the
independency graph represents the semantics of the splits and joins.

Definition 5. Given a process execution log, L, and a set of unique activities in
L, denoted by A, a directed graph Dy = (Ag, F) is a dependency graph over
L, if for each pair of activities a,b € A, there exists a path a ~ b in D, where
there exists a dependency relationship, a — b, between activities a and b in L.

Definition 6. Given the process execution log, L, and a set of unique activities,
Ar, an undirected graph Uy = (Ag, H) is a independency graph over A, iff
there exists an undirected edge between each pair of activities a and b in Ug
where there exists an independency relationship between a and b in L.
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4 Information Control Nets

The result of control-flow discovery using prior knowledge is an Information
Control Net (ICN). An ICN is an edge-colored, directed graph G = (A4, E, )
used to model the control-flow of a business process, where A is a finite set of
activities, £ C A x A is a set of control-flow links, and § = ;,, U s is a set
of mappings used to represent edge colors. Sets A and E define the structure of
an ICN, while set ¢ defines the semantics of its splits and joins. Let a,b € A be
activities. The predecessors of a are denoted by pred(a) = {b|(b,a) € E)}. The
successors of a are denoted by succ(a) = {b|(a,b) € E)}.

Activities can be classified as simple, split or join. A simple activity has at
most one predecessor, and at most one successor. A split activity has multi-
ple successors, and a join activity has multiple predecessors. It is important to
note that in the ICN model a single activity can be both a split activity and
a join activity. There are two unique activities, s and t, called the starting and
terminating activities, respectively, in every ICN. Starting activity s has no pre-
decessors, and terminating activity ¢ has no successors.

A control-flow link (a, b) is said to be activated if once activity a has finished
executing, activity b is eligible for execution. In some instances, where activity
a is a split activity, activity a must choose a subset of its control-flow links to
activate. If the proper constraints are satisfied, the target activities of activated
control-flow links can be executed. We describe those contraints in Section A1

4.1 ICN Normal Form of §

The ICN Normal form of ¢ is a canonical representation, invented by Ellis in
the paper [6], that enables our edge coloring scheme. The mappings d;,,(a) and
dout(a) partition the sets pred(a) and succ(a), respectively, in such a way that
they describe which activities can execute concurrently and which activities can-
not. Let C be a set of disjoint sets of activities such that d,(a) = C, and let each
C; € C be a set of activities. Additionally, let the cardinality of each C; € C
be s(i), the cardinality of C be ¢, and ¢! be an activity in the set C;. The ICN
normal form of §,(a) is represented by Equation [Il where x can take on either
the value ¢n or out.

So(a) = {{ch, ..., &SNy, e, Y, (1)

In Equation[I] when x = in, activity a can execute if and only if each activity
CZ in exactly one set C; = {c},... c‘:(z)} € C has finished executing and activated
control-flow link (CZ, a). When z = out, activity a can choose only one set C; € C.
Based on this choice, each activity ¢f € C; is enabled to execute when control-
flow link (a,c¥) becomes activated. Activities ¢/ and ¢¥ in the same set C; can
be executed concurrently. Alternatively, given sets C;,C; € d5(a) such that
activities c¥ € C;, cé € Cj, and ¢ # j, it is the case that c;? and ¢} can never be
executed concurrently.
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We now sketch our edge-coloring scheme. Given an activity a such that dyq:(a) =
C={C1,...,Ce},let Egyee(a) = {(a, )b € succ(a)} be the set of control-flow links
to the activities in succ(a) from a. Let each C; € C define a color. Each edge in
Egucc(a) is colored according to the set, C; € C, its target activity belongs to. How-
ever, if a is connected to a join activity j then the color of the (a, j) control-flow link
is determined by E,.cq(;), which is defined analogously to Ey,c.(q)- Additonally, in
ICNs, some activities are observable, while others are hidden. Observable activities
are executed by (human/machine) actors and generate events that are recorded in
process execution data, while hidden activities are not executed by actors and do
not generate events that are recorded. Hidden activities are a convention used to
represent control-flow patterns that cannot be directly represented in ICN normal
form using only observable activities. For purposes of this paper, we substitute edge
color for edge slashes (edges with the same number of slashes are the same color).

Ezample 1. Consider the ICN in Figure[Il Let the hollow circles represent hidden
activities hl and h2. The figure shows that 0py:(a) = {{b,h1}} and d;,(a) =
{{}}. This means that a can be executed at any time, and once it has finished
executing, the control-flow links (a, b) and (a, h1) are activated. Thus, enabling b
and hl to execute concurrently. This figure also shows that d;,(h2) = {{c}, {d}}.
This means h2 can execute when either the control-flow link (¢, h2) is activated as
a result of ¢ finishing execution, or when the control-flow link (d, h2) is activated
as a result of d finishing execution. After h2 executes, the control-flow link (h2, f)
is activated. Note that f cannot execute until the both the (e, f) and (h2, f)
edges are activated.

Fig. 1. An Information Control Net (ICN)

4.2 Augmented ICN

The prior knowledge is specified in an augmented ICN. That prior knowledge can
be from a domain expert, or a repository of control-flow models from the same
domain in which we wish to perform process discovery. An augmented ICN is an
ICN with degrees of belief specified on its edges, and edge colors. The degree of
belief specified on an edge reflects either how strongly a domain expert believes
in the dependency between two activities, or, given a repository of control flow
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Augmented Dependency Graph

Augmented ICN

Fig. 2. An Augmented ICN with Corresponding Augmented Dependency Graph and
Augmented Independency Graph

models from the same domain, the proportion of control flow models that contain
that edge. The degree of belief specified on an edge color signifies the strength of
belief in the concurrency of two activities. Degrees of belief can be represented
by the thickness of an edge (i.e. the thicker the edge the higher the degree of
belief), and the intensity of an edge color (i.e. the more intense the edge color
the higher the degree of belief). The thickness of an edge, as well as the intensity
of an edge color correspond to a probability in the interval (0, 1].

An augmented ICN can be broken down into its components, which are an
augmented dependency graph Dy, and an augmented independency graph Ux.
The augmented dependency graph Dy is a colorless digraph that contains all of
the observable activities in the corresponding augmented ICN, and edge labels
of the degree of belief. The augmented independency graph is an undirected
graph that contains all of the observable activities in the augmented ICN as
vertices. An undirected edge in the augmented independency graph represents a
concurrency relationship between the incident activities.

In addition to the degree of belief, the experience level of the domain ex-
pert, and/or number of control-flow models in the repository must be taken into
account. The quantity nx represents the number of traces that a domain ex-
pert’s belief is based on or the number of control-flow models in the repository.
This experience level will also help in determining how eager our control-flow
discovery algorithm is to change the structure and semantics of an augmented
ICN. Figure 2 shows an augmented ICN along with its corresponding augmented
dependency graph and augmented independency graph.
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5 Dependency Extraction

We can now state the control-flow discovery with prior knowledge problem. Given
a process execution log £, an augmented dependency graph Dy, and an aug-
mented indenpendency graph Uy, construct an Activity Precedence Graph G,
that encodes the statistically significant activity dependencies in the combination
of L, Di, and Ux. The algorithm we present to solve the control-flow discov-
ery with prior knowledge problem consists of two phases. The first phase, called
Dependency FExtraction, learns activity dependencies and independencies from
the combination of a process execution log and prior knowledge. The output
of the Dependency Extraction phase is a dependency graph D, and a inde-
pendency graph Ug. The second phase, called Split/Join Semantics Discovery,
is concerned with transforming the dependency graph and independency graph
into an ICN. The Split/Join Semantics Discovery phase is described in the 2009
paper by Rembert and Ellis [7], and will not be presented in this paper due to
space concerns.

The Dependency Extraction algorithm computes the pair-wise precedence re-
lationships between activities found in the process execution log. The input to
the Dependency Extraction algorithm is a process execution log £, a user-defined
threshold p, an augmented dependency graph Dy, an augmented independency
graph Uy, and a domain expert’s experience level ny.

The outputs of this algorithm are a dependency graph and an independency
graph that contain the most probable dependency relationships reflected in both
the process execution log and the prior knowledge. The Dependency Extraction
algorithm is depicted in Algorithm [5.1]

Before we proceed with the description of the algorithm, we first characterize
the type of noise we expect to see in process traces. Our characterization is
adapted from Silva et. al. [8]. By an abuse of notation, we let a be a binary
random variable such that a = 1 means that activity a was executed, and a = 0
means that activity a was not executed. Let ar be a binary random variable
such that agp = 1 means that the event corresponding to activity a was recorded
and ar = 0 means that the event was not recorded. We assume the following
type of measurement error. The conditional probability p(ag = lla=1) = w >
0, captures the uncertainty associated with an activity executing in a process
instance, and its corresponding event being recorded in the appropriate process
trace. We assume p(ar = 1|la = 0) = 0, which expresses that an event cannot
be included in a process trace if a corresponding activity was not executed. In
addition to measurement error (activities being executed but not recorded in
a process trace), we consider ordering errors. An ordering error happens in a
process instance when an activity a finishes executing before an activity b has,
but in the corresponding process trace event b is recorded as finishing before
event a has finished. Between each pair of activities, we consider and ordering
error rate of e.
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The DependencyFEztraction algorithm is based on ideas presented by Agrawal
et. al [2]. The first idea that we leverage from Agrawal is the notion of cycle
unrolling in the process execution log. Cycle unrolling entails treating events with
the same label in a process trace as different events. This is done by relabeling
events with an occurence counter. For instance, the first occurence of activity a
is relabeled a1, the second occurence as as, and so on. The process execution log
L with unrolled cycles is denoted by L£*.

Mutually exclusive activities can be difficult to detect if they occur within a
cycle. This is because cycles can enable mutually exclusive activities to appear
in the same process trace. However, we can leverage correlation to determine the
strength of association between activities across process traces. In a cycle un-
rolled process execution log, we can compute the ¢-coefficient between activities
and store the result in the square matrix M? = [¢;;]. The rows and columns of
M? correspond to unique activities in £*, and the value ¢;; corresponds to the
¢-coeflicient of activities indexed by 7 and j. The ¢-coeflicient of activities a and
b is given by Equation

(NabNab) - (NabNab)

(rbab = \/NaNaNbNb ’

(2)

where:

— Ngp is the number of process traces that both activities a and b occurr in,

— N, is the number of traces that don’t contain either a or b,

— N_, is the number of traces that contain a, but not b,

— Ngp is the number of traces that contain b, but not a,

— N, is the number of traces that contain a,

— N, is the number of traces that don’t contain a,

— Ny is the number of traces that contain b, and

— N, is the number of traces that don’t contain b.
If activities are found to be negatively correlated, we assume that they are mu-
tually exclusive. It easy to see that if Ny, = 0 (i.e. activities a and b don’t occur
in any of the same process traces), then Equation Pl will have a negative value.

Binomial Distribution and Beta Prior. For all the positively correlated
pairs of activities, we compute the likelihood that one activity is dependent
on another with the results stored in a cycle unrolled dependency graph and
a cycle unrolled independency graph. Let D/« be a cycle unrolled dependency
graph and Uz« be a cycle unrolled independency graph, both of which contain
all of the relabeled activities as vertices. The cycle unrolled dependency graph
is a directed graph, and the cycle unrolled independency graph is an undirected
graph, both of which are initially edgeless.

To add directed edges to D~ and undirected edges to Ug~, we leverage the
Binomial distribution and the Beta prior. The binomial distribution is used de-
termine the probability of k successes in N bernoulli trials given a parameter
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1. Let a and b be activities that we wish to discover the dependency relationship
between, N be the total number of traces in the process execution log, N, be
the number of traces that both a and b occur in, and k,<p, (kb<q) be the number
of traces that a precedes b (b precedes a). Additionally, let u be a user-defined
parameter that represents the proportion of times that ¢ must precede b in order
for b to be considered dependent on a; i can be considered an activity precedence
to occurrence ratio. It is important to note that one should set p so that a certain
amount of ordering error can be effectivly handled.
The binomial distribution can be written

Nab _
P(Dab|p) = (k <b)u’““*b(l — pi)Nav—kaw 3)
a
, where
Nab _ Nab! (4)
ka<b (Nab — ka<b)!ka<b! :

The conditional probability p(Dgp|p) is the likelihood of Dy, given u, where
Dy, = {Tp=0 = 1,T¢=b = 0,...,T1‘f[jbb = 1} represents the set of traces that

activities a and b occur together in. The trace-level precedence indicator T, Z-‘“b
takes a value of 1, if a was executed before b, and 0 otherwise. It should be noted
that ka<p = > “” o=

We use the blnomlal distribution in activity dependency discovery by conduct-
ing a binomial test for each pair unique activities in the cycle unrolled process
execution log £*. The null hypothesis of this test is: if p(Dgp|p) is greater than

k

a user-defined significance level, then “=" is not significantly different from ,
b

thus @ — b. The first alternative hypotﬁésis is: if p(Dgp|p) is less than a user-
defined significance level in the top tail of the binomial distribution, then F2<*
is significantly larger than p, therefore it is also the case that a — b. The second
alternative hypothesis is: if P(Dgp|p) is less than a user-defined significance level
in the bottom tail of the binomial distribution, then }X}*” is significantly smaller
than pu, therefore b is not dependent on a. The user-defined significance-level
is typically 0.05 or 0.025 for two-tailed binomial tests. If the null hypothesis is
accepted, or the null hypothesis is rejected and the first alternative hypothesis is
accepted, then a directed (a,b) edge is added to the cycle unrolled dependency
graph Dg-. If it is found that b is not dependent on a and vice-versa, then an
undirected edge (a,b) is added to Ug~.

The approach just described is called the Likelihood Estimate approach. The
Likelihood Estimate approach is based solely on data and does not take into
account the experience and expertise of domain experts when discovering the
dependency between activities. In situations where domain expertise is not avail-
able, or contains gaps, the Likelihood Estimate approach is used. However, since
the Likelihood Estimate approach does not take into account the prior knowl-
edge of a domain expert, we need an approach that does. This can be done using
Bayesian statistics.
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In Bayesian statistics, we can leverage prior knowledge to help with determin-
ing the dependencies between activities. In the Likelihood Estimate approach,
the uncertainty is associated with the data. However, in the Bayesian approach,
the uncertainty is associated with the activity precedence to occurrence ratio p.
So, instead of calculating p(Dgp|pe), we calculate p(p|Dgp), which according to
Bayes’ Theorem is: ( W)

P(Dap|p)p(p
plaeDaa) = Pt . 5)

From Equation Bl we can see that the Bayesian approach leverages the Likeli-
hood Estimate approach. Additionally, since the data is given, p(Dgys) = 1. For
the assesment of p(u), we choose the Beta distribution as a prior because it is
conjugate to the Binomial distribution. The Beta distribution is defined as

p(u) = Beta(p|v, w), (6)
such that r
Beta(ulv,w) = F((f);(ff) (1= e (7)

where the Gamma function is defined as I'(z + 1) = z!. The quantities v and w
are called the hyperparameters of the Beta distribution, and are used to control
its shape.

To incorporate prior knowledge, we take both the augmented dependency
graph and the augmented independency graph and use the edge labels as priors
when trying to determine the dependency relationship between activities. Es-
sentially, the prior knowledge of experts represent virtual occurences of activity
pairs occurring in a particular order. Since ky<, = Ngp — kq<p, then

I'(Ngp +v 4 w)

ka<b+v—1(1 _
F(k:a—<b + U)F(kb—«L + w)

)kb<a+w—1

p(p|Dap) = I ;o (8)

where the hyperparameters v and w are based on the prior degree of belief on
the domain expert.

We now show how to assess the hyperparameters v and w for a pair of ac-
tivities, given an augmeneted dependency graph Dx and an augmented inde-
pendency graph Ux. For activities a and b, let there be a directed (a,b) edge
in the augmented dependency graph Dy. By another abuse of notation, let
a — b be a binary random variable such that p(a — b = 1|Dg,Ux) is the
degree of belief specified on the dependency relationship between activities a
and b. Additionally, let edge (a,b) be based on nx process traces, which, as
described above, captures the level of experience of the domain expert. Given
these assumptions, we set v and w to be: v = p(a — b = 1|Dx,Ux)ni, and
w = p(a — b = 0|Dx, Ux)ni. For activities b and ¢, let there be an undirected
(b,c) edge in an augmented independency graph Ux. In this case, we assess v
and w to be: v =p(a = b=1|Di,Ux) - 0.5 ng, and w = v.

The binomial test is again used to determine activity dependence. The null
hypothesis of this test is: if p(u|Dgp) is greater than a user-defined significance
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ka<p+v

Nap+v+w’
fore a — b. The first alternative hypothesis is: if p(u|Dgp) is less than a user
defined significance level and in the top tail of the distribution, then p is signif-
icantly less than J\fa “b‘fﬁ’w, and @ — b. The second alternative hypotheis is: if
p(p|Dap) is less than a user defined significance level and in the bottom tail of
the distribution, then p is significantly greater than 1\/]'1 “b‘f&j:’w, and b is not de-
pendent on a. If the probability returned from the binomial distribution is above
a user-defined significance-level, then we accept the null hypothesis, otherwise
we reject it and accept the alternative hypothesis. Like the Likelihood Estimate
approach, If the null hypothesis is accepted, or the first alternative hypothesis is
accepted, we add an directed edge (a,b) in the cycle unrolled dependency graph
D/, and if b is not dependent on a, and vice-versa, we add an undirected edge
(a,b) in Ug-.

When constructing Dy~ and Ug+ using prior knowledge Dx and Ug, it is
the case that the relabeled activities in the cycle unrolled process execution
log £* will not match the activities in Dx and Ux. To handle this issue, when
matching activities from the augmented dependency graph and the augmented
independency graph, we ignore the count appended to the activities in £*. For
example, the edge (a,b) in an augmented dependency graph will match the pair
of activities a; and by, as well as the pair as and b7. If b7 is found to be dependent
on ag based on edge (a, b) in the augmented dependency graph and the binomial
test, then edge (a9, b7) is added to Dp-.

level, then there is no significant difference between p and and there-

Re-rolling the Cycle Unrolled Dependency and Independency Graphs.
Our algorithm re-rolls the cycle unrolled dependency and independency graphs.
The first step in this process is to minimize the number of edges in D - without
loosing the appropriate dependency information. This is done by using a heuristic
proposed by Agrawal et. al. [2], which computes the transitive reduction of each
induced subgraph D%, formed over the activity relabeled process trace Tj. For
each Di.., mark all the edges in the transitive reduction. Remove all edges from
D/~ that remains unmarked.

The next step in our process is to collapses D+ and Uz« such that all of
the activities that were relabelled to unroll cycles are merged into their original
activity in both graphs. For instance, activity as is collapsed into activity a1, and
all of the incoming and outgoing edges of as become incoming and outgoing edges
of a;. This process continues until there are no more activities with an activity
counter label greater than 1. The activity counter label, is then dropped from all
activities. The collapsed versions of D« and Ug+ are D and Ug, respectively.

The final step in cycle re-rolling algorithm is the capture of cycles in D,. We
capture cycles in D, because in the split/join semantics discovery phase of the
LearnICN algorithm activities that are the target of a backegdge are treated
slightly different than other activities. Cycles are captured by discovering and
marking all backegdes in D,. Backedges are discovered using a simple depth-first
search exploration of D, initiated at the unique starting activity s.
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Algorithm 5.1. DependencyFExtraction(L, Dx, Uk, ni, p)

1: £* « UnrollCyclesInLog(L)

2: A* + unique activities in £*

3: M? « ComputeCorrelation(L*)

4: Do« — (A*,0)

51 Upx « (A™,0)

6: for each pair of positively correlated activities a,b € M? do

7 if the pair (a, b) is unmarked then

8: Let Ngp be the number of times that a and b occur in the same process trace

9: v <+ 0

10: w <+ 0

11: if edge (a,b) € Dk then

12: v(—p(a—>b=1|D;c,U)c)~n)c

13: w 4+ pla = b=0|Dx,Ux) - nk

14: else if edge (a,b) € Ux then

15: v < pla = b=1|Dk,Ux) - 0.5 nx

16: w4 v

17: end if

18: if BinomialTest(kg<b + v, Ngp + v + w, u) accepts null hypothesis or first alternate
hypothesis then

19: add directed edge (a,b) to Dy«

20: else if BinomialTest(ky<q + w, Nop + v+ w, p) accepts null hypothesis or first alternate
hypothesis then

21: add directed edge (b, a) to Dy«

22: else

23: add undirected edge (a,b) to Upx, if its not already there

24: end if

25: mark the pair (a,b)

26: end if

27: end for

28: for each process trace T; € L™ do

29: Let D% . be the trace dependence graph for T;

30: Compute the transitive reduction of Dz*

31: Mark the edges in D« that are in the transitive reduction of D% .
32: end for

33: Remove all unmarked edges from Dy

34: Dy < Collapse(Dpx)

35: Uz «+Collapse(Ugx)

36: Mark all backedges in D,

37: Return D., Ur

6 Experiments

We tested the hypothesis that, in the presence of noise, our process discovery
algorithm that leverage prior knowledge learns more accurate APGs than ICN
learning algorithms that do not. We tested our algorithm using the telephone
repair example process execution log from the ProM example [9]. In our exper-
iments, we let the activity occurrence to precedence ratio be y = 0.90, and the
significance level be 0.05 for a two-tailed test. We experimented with two types of
domain knowledge (perfect and imperfect), as well as no domain knowledge. We
consider perfect domain knowledge to have the same structure as the reference
activity precedence graph and certainty of edges and edge colors between (0.9
and 1.0) We created imperfect domain knowledge by removing and adding edges
from the augmented dependency graph and the augmented independency graph.
Additionally, the degree of belief for edges in both graphs is drawn uniformly
from the range (0.5,0.9).
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We tested the three versions of the algorithm at seven different log sizes (200,
400, 600, 800, 1000, 1200, 1400), three different experience levels (100, 200, 400),
and three different measurement error levels (0.95, 0.90, 0.85) and a constant
ordering error level of (0.05). To determine how well the control-flow discovery
algorithm works, we compared the learned dependency graph and independency
graph to the reference dependency graph and reference independency graph. The
reference dependency graph and reference independency graphs were computed
from the reference ICN. The reference ICN is the true control-flow model.

To compare the learned dependency graph with the reference dependency graph,
we computed the edge recall, edge precision, color recall, and color precision. Edge
recall is the number of edges that the learned dependency graph and reference
dependency graph share divided by the number of edges in the reference depen-
dency graph. Edge precision is the number of edges that the learned dependency
graph and reference dependency graph share diveded by the number of edges in the
learned dependency graph. Edge F-measure is a combination of edge precision and
edge recall. Table[[lshows the edge F-measure for the dependency graphs learned
from noisy process execution logs of the telephone repair process with a domain
expert experience level of 200 (i.e. nic = 200). As can be seen from the results
in Table [Il the control-flow discovery approach that leverages imperfect prior
knowledge performs better, in terms of Edge F-measure, than the control-flow
discovery approach that does not use prior knowldge. However, as the log size
increases, this disparity is reduced because evidence provided by the data will
eventually be the main determiner of edge recall and edge precision. Color recall
is the size of the intersection between the edges in the learned independency
graph and reference independency graph divided by the number of edges in the
reference independency graph. Color precision is the number of edges that the
learned independency graph and reference independency graph share diveded
by the number of edges in the learned independency graph. Table [2] shows the
color F-measure for the independency graphs learned from noisy process execu-
tion logs of the telephone repair process with a domain expert experience level
of 200 (i.e. nxg = 200). In Table 2 the color F-measure for Imperfect domain
knowledge is slightly smaller than the color F-measure for no prior knowledge.
This is primarily due to color recall for Imperfect domain knowledge.

Table 1. Edge F-measure of Learned Dependency Graph with € = 0.05 and nx = 200

Measurement Error

0.85 0.9 0.95
NNOHC Imperfect Perfect None Imperfect Perfect None Imperfect Perfect
200 0.744  0.841 0.844 0.778 0.871 0.874 0.870 0.935 0.937
400 0.766  0.846 0.848 0.844  0.904 0.905 0.938 0.980 0.984
600 0.798  0.863 0.867 0.878  0.925 0.927 0.950 0.991 0.993
800 0.831  0.879 0.883 0.900  0.943 0.948 0.950 0.989 0.997
1000 0.827  0.860 0.864 0.902 0.947 0.949 0.952 0.998 1.000
1200 0.821  0.893 0.895 0.915  0.968 0.970 0.952 0.996 1.000

1400 0.854  0.940 0.945 0.925  0.989 0.993 0.952  0.996 1.000
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Table 2. Color F-measure of Learned Dependency Graph with € = 0.05 and nx = 200

Measurement Error

0.85 0.9 0.95
NNone Imperfect Perfect None Imperfect Perfect None Imperfect Perfect
200 0.809 0.974 0.984 0.777 0.961 0.979 0.789  0.947 0.964
400 0.899 0.971 0.984 0.932  0.957 0.973 0.966  0.958 0.966
600 0.917  0.972 0.980 0.947 0.944 0.953 0.984 0.957 0.984
800 0.955  0.958 0.974 0.960 0.942 0.961 0.996 0.982 0.996
1000 0.970  0.963 0.978 0.956  0.949 0.956 0.999 0.987 0.999
1200 0.887  0.947 0.968 0.953  0.945 0.963 0.990 0.999 1.000
1400 0.875  0.949 0.961 0.946 0.970 0.986 0.998 0.977 1.000

The slightly reduced color recall numbers are due to ordering errors in the log
being boosted by reversed edges in the imperfect augmented dependency graph.
However, despite the errors in the imperfect domain knowledge, a more correct
model was found as more process execution data was provided. Additionally,
as can be seen in both the edge F-measure, and the color F-measure, when
there are small data sizes, having some prior knowledge increases the edge F-
measure and color F-measure. This means that portions of the true process that
are executed infrequently can be boosted by the presence of domain knowledge,
therefore those infrequent portions of a process trace won’t be considered noise.
The results of our experiments confirm our hypothesis.

7 Summary and Future Work

In this work, we have presented a process discovery algorithm that leverages prior
knowledge in the form of augmented Information Control Nets. We have shown
that our process discovery algorithm is robust to noise in the process execution
data in the form of measurement errors and ordering errors. Additionally, our pro-
cess discovery algorithm is able to deal with uncertainty and errors in the prior
knowledge it is provided. Through experimentation, we have shown that our ap-
proach is useful when important, infrequent portions of a process need to be dis-
covered. Given enough certainty and experience, our approach will not consider
the infrequency of those executions as noise. ICNs were developed nearly 30 years
ago by Ellis [6]. Since the ICN normal form is nearly identical to the Causal Ma-
trix [5] formalism, for the future, we’d like to explore process discovery with prior
knowledge using Causal Matrices, which can be transformed into Petri nets.
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