
Verification of Artifact-Centric Systems:
Decidability and Modeling Issues

Dmitry Solomakhin1, Marco Montali1,
Sergio Tessaris1, and Riccardo De Masellis2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{solomakhin,montali,tessaris}@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
demasellis@dis.uniroma1.it

Abstract. Artifact-centric business processes have recently emerged as an ap-
proach in which processes are centred around the evolution of business entities,
called artifacts, giving equal importance to control-flow and data. The recent
Guard-State-Milestone (GSM) framework provides means for specifying busi-
ness artifacts lifecycles in a declarative manner, using constructs that match how
executive-level stakeholders think about their business. However, it turns out that
formal verification of GSM is undecidable even for very simple propositional
temporal properties. We attack this challenging problem by translating GSM into
a well-studied formal framework. We exploit this translation to isolate an interest-
ing class of “state-bounded” GSM models for which verification of sophisticated
temporal properties is decidable. We then introduce some guidelines to turn an
arbitrary GSM model into a state-bounded, verifiable model.

Keywords: artifact-centric systems, guard-stage-milestone, formal verification.

1 Introduction

In the last decade, a plethora of graphical notations (such as BPMN and EPCs) have
been proposed to capture business processes. Independently from the specific notation
at hand, formal verification has been generally considered as a fundamental tool in the
process design phase, supporting the modeler in building correct and trustworthy pro-
cess models [17]. Intuitively, formal verification amounts to check whether possible
executions of the business process model satisfy some desired properties, like generic
correctness criteria (such as deadlock freedom or executability of activities) or domain-
dependent constraints. To enable formal verification and other forms of reasoning sup-
port, business process models are translated into an equivalent formal representation,
which typically relies on variants of Petri nets [1], transition systems [2], or process al-
gebras [19]. Properties are then formalized using temporal logics, using model checking
techniques to actually carry out verification tasks [9].

A common drawback of classical process modeling approaches is being activity-
centric: they mainly focus on the control-flow perspective, lacking the connection be-
tween the process and the data manipulated during its executions. This reflects also
in the corresponding verification techniques, which often abstract away from the data
component. This “data and process engineering divide” affects many contemporary
process-aware information systems, increasing the risk of introducing redundancies and

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 252–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 253

potential errors in the development phase [13,8]. To tackle this problem, the artifact-
centric paradigm has recently emerged as an approach in which processes are guided
by the evolution of business data objects, called artifacts [18,10]. A key aspect of arti-
facts is coupling the representation of data of interest, called information model, with
lifecycle constraints, which specify the acceptable evolutions of the data maintained by
the information model. On the one hand, new modeling notations are being proposed
to tackle artifact-centric processes. A notable example is the Guard-State-Milestone
(GSM) graphical notation [11], which corresponds to way executive-level stakehold-
ers conceptualize their processes [7]. On the other hand, the formal foundations of the
artifact-centric paradigm are being investigated in order to capture the relationship be-
tween processes and data and to support formal verification [12,5,4,3]. Two important
issues arise. First, verification formalisms must go beyond propositional temporal log-
ics, and incorporate first-order formulae to express constraints about the evolution of
data and to query the artifact information models. Second, verification tasks become
undecidable in general.

In this work, we tackle the problem of automated verification of GSM models. First of
all, we show that verifying GSM models is indeed a very challenging issue, being unde-
cidable in general even for simple propositional reachability properties. We then provide
a sound and complete encoding of GSM into Data-Centric Dynamic Systems (DCDSs),
a recently developed formal framework for data- and artifact-centric processes [4]. This
encoding enables the to transfer in the GSM context the decidability and complexity re-
sults recently established for DCDSs with bounded information models (state-bounded
DCDSs). These are DCDSs where the number of tuples does not exceed a given maxi-
mum value. This does not mean that the system must contain an overall bounded amount
of data: along a run, infinitely many data can be encountered and stored into the informa-
tion model, provided that they do not accumulate in the same state. We lift this property
in the context of GSM, and show that verification of state-bounded GSM models is decid-
able for a powerful temporal logic, namely a variant of first-order μ-calculus supporting
a restricted form of quantification [14]. We then isolate an interesting class of GSM mod-
els for which state-boundedness is guaranteed, introducing guidelines that help to make
GSM models state-bounded and, in turn, verifiable.

The rest of the paper is organized as follows. Section 2 gives an overview of GSM
and provides a first undecidability result. Section 3 introduces DCDSs and presents
the GSM-DCDS translation. Section 4 introduces “state-bounded” GSM models and
provides key decidability results. Discussion and conclusion follow.

2 GSM Modeling of Artifact-Centric Systems

The foundational character of artifact-centric business processes is the combination of
static properties; i.e., the data of interest, and dynamic properties of a business process,
i.e., how it evolves. Artifacts, the key business entities of a given domain, are char-
acterized by (i) an information model that captures business-relevant data, and (ii) a
lifecycle model that specifies how the artifact progresses through the business. In this
work, we focus on the Guard-Stage-Milestone (GSM) approach for artifact-centric mod-
eling, recently proposed by IBM [11] and included by the Object Management Group
(OMG) into the new standard for Case Management Model and Notation (CMMN) [22].

254 D. Solomakhin et al.

For the sake of simplicity here we provide a general overview of the GSM methodology
and we refer an interested reader to [6] for more detailed and formal definitions.

GSM is a declarative modelling framework that has been designed with the goal of
being executable and at the same time enough high-level to result intuitive to executive-
level stakeholders. The GSM information model uses (possibly nested) attribute/value
pairs to capture the domain of interest. The key elements of a lifecycle model are stages,
milestones and guards (see Example 1). Stages are (hierarchical) clusters of activities
(tasks) intended to update and extend the data of the information model. They are as-
sociated to milestones, business operational objectives to be achieved when the stage
is under execution. Guards control the activation of stages and, like milestones, are de-
scribed in terms of data-aware expressions, called sentries, involving events with associ-
ated data (called payload) and conditions over the artifact information model. Sentries
have the form on e if cond, where e is an event and cond is an (OCL-based, see [16])
condition over data. Both parts are optional, supporting pure event-based or condition-
based sentries. Changes on the artifact state are performed by tasks, which represent
atomic operations. They can be used to update the data of artifact instances (e.g., based
on the payload of an incoming event), or to add/remove (nested) tuples. Crucially, tasks
are used to manage artifacts life cycle. Create-artifact-instance tasks enable the cre-
ation of new artifact instances of a given type. Creation of artifacts is modelled as a
two-way service call, where the returned result is used to create a new tuple for the
artifact instance, to assign a new identifier to it, and to fill it with the result’s payload.
Analogously, tasks may remove existing artifact instances. In the following, we use
model for the intensional level of a specific business process described in GSM, and
instance to denote a GSM model with specific data for its information model.

The execution of a business process may involve several instances of artifact types
described by a GSM model. At any instant, the state of an artifact instance (snapshot) is
stored in its information model, and is fully characterised by: (i) values of attributes in
the data model, (ii) status of its stages (open or closed) and (iii) status of its milestones
(achieved or invalidated). Artifact instances may interact with the external world by
exchanging typed events. In fact, tasks are considered to be performed by an external
agent, and their corresponding execution is captured with two event types: a service call,
whose instances are populated by the data from information model and then sent to the
environment and a service call return, whose instances represent the corresponding
answer from the environment and are used to incorporate the obtained result back into
the artifact information model. The environment can also send unsolicited (one-way)
events, to trigger specific guards or milestones. Additionally, any change of a status
attribute, such as opening a stage or achieving a milestone, triggers an internal event,
which can be further used to govern the artifact lifecycle.

Example 1. Figure 1 shows a simple order management process modeled in GSM. The
process centers around an order artifact, whose information model is characterized by
a set of status attributes (tracking the status of stages and milestones), and by an ex-
tendible set of ordered items, each constituted by a code and a quantity. The order
lifecycle contains three top-level atomic stages (rounded rectangles), respectively used
to manage the manipulation of the order, its payment, and the delivery of a payment
receipt. The order management stage contains a task (rectangle) to add items to the

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 255

add itemon itemRequest
if not Order paid

Item added

execute
payment

on payRequest
if order.items -> exists Order paid

send receipt Receipt sent

...

status attributes items
...

code qty

Fig. 1. GSM model of a simple order management process

order. It opens every time an itemRequest event is received, provided that the order
has not yet been paid. This is represented using a logical condition associated to a
guard (diamond). The stage closes when the task is executed, by achieving an “item
added” milestone (circle). A payment can be executed once a payRequest event is is-
sued, provided that the order contains at least one item (verified by the OCL condition
order.items → exists). As soon as the order is paid, and the corresponding milestone
achieved, the receipt delivery stage is opened. This direct dependency is represented us-
ing a dashed arrow, which is a shortcut for the condition on Order paid, representing
the internal event of achieving the “Order paid” milestone.

2.1 Operational Semantics of GSM

GSM is associated to three well-defined, equivalent execution semantics, which disci-
pline the actual enactment of a GSM model [11]. Among these, the GSM incremental se-
mantics is based on a form of Event-Condition-Action (ECA) rules, called Prerequisite-
Antecedent-Consequent (PAC) rules, and is centered around the notion of GSM Business
steps (B-steps). An artifact instance remains idle until it receives an incoming event
from the environment. It is assumed that such events arrive in a sequence and get pro-
cessed by artifact instances one at a time. A B-step then describes what happens to an
artifact snapshot Σ when a single incoming event e is incorporated into it, i.e., how it
evolves into a new snapshot Σ′ (see Figure 5 in [11]). Σ′ is constructed by building a se-
quence of pre-snapshots Σi, where Σ1 results from incorporating e into Σ by updating
its attributes according to the event payload (i.e., its carried data). Each consequent pre-
snaphot Σi is obtained by applying one of the PAC rules to the previous pre-snapshot
Σi−1. Each of such transitions is called a micro-step. During a micro-step some outgo-
ing events directed to the environment may be generated. When no more PAC rules can
be applied, the last pre-snapshot Σ′ is returned, and the entire set of generated events is
sent to the environment.

Each PAC rule is associated to one or more GSM constructs (e.g. stage, milestone)
and has three components:

– Prerequisite: this component refers to the initial snapshot Σ and determines if a
rule is relevant to the current B-step processing an incoming event e.

– Antecedent: this part refers to the current pre-snapshotΣi and determines whether
the rule is eligible for execution, or executable, at the next micro-step.

– Consequent: this part describes the effect of firing a rule, which can be nondeter-
ministically chosen in order to obtain the next pre-snapshot Σi+1.

Due to nondeterminism in the choice of the next firing rule, different orderings among
the PAC rules can exist, leading to non-intuitive outcomes. This is avoided in the GSM

256 D. Solomakhin et al.

operational semantics by using an approach reminiscent of stratification in logic pro-
gramming. In particular, the approach (i) exploits implicit dependencies between the
(structure of) PAC rules to fix an ordering on their execution, and (ii) applies the rules
according to such ordering [11]. To guarantee B-step executability, avoiding situations
in which the execution indefinitely loops without reaching a stable state, the GSM in-
cremental semantics implements a so-called toggle-once principle. This guarantees that
a sequence of micro-steps, triggered by an incoming event, is always finite, by ensur-
ing that each status attribute can change its value at most once during a B-step. This
requirement is implemented by an additional condition in the prerequisite part of each
PAC rule, which prevents it from firing twice.

The evolution of a GSM system composed by several artifacts can be described by
defining the initial state (initial snapshot of all artifact instances) and the sequence of
event instances generated by the environment, each of which triggers a particular B-
step, producing a sequence of system snapshots. This perspective intuitively leads to
the representation of a GSM model as an infinite-state transition system, depicting all
possible sequences of snapshots supported by the model. The initial configuration of
the information model represents the initial state of this transition system, and the in-
cremental semantics provides the actual transition relation. The source of infinity relies
in the payload of incoming events, used to populate the information model of artifacts
with fresh values (taken from an infinite/arbitrary domain). Since such events are not un-
der the control of the GSM model, the system must be prepared to process such events
in every possible order, and with every acceptable configuration for the values carried
in the payload. The analogy to transition systems opens the possibility of using a for-
mal language, e.g., a (first-order variant of) temporal logic, to verify whether the GSM
system satisfies certain desired properties and requirements. For example, one could
test generic correctness properties, such as checking whether each milestone can be
achieved (and each stage will be opened) in at least one of the possible systems’ execu-
tion, or that whenever a stage is opened, it will be always possible to eventually achieve
one of its milestones. Furthermore, the modeler could also be interested in verifying
domain-specific properties, such as checking whether for the GSM model in Figure 1 it
is possible to obtain a receipt before the payment is processed.

2.2 Undecidability in GSM

In this section, we show that verifying the infinite-state transition system representing
the execution semantics of a given GSM model is an extremely challenging problem,
undecidable even for a very simple propositional reachability property.

Theorem 1. There exists a GSM model for which verification of a propositional reach-
ability property is undecidable.

Proof. We represent a Turing machine as a GSM artifact, formulating the halting prob-
lem as a verification problem over such artifact. We consider a deterministic, single tape
Turing machine M = 〈Q,Σ, q0, δ, qf , 〉, where Q is a finite set of (internal) states,
Σ = {0, 1, } is the tape alphabet (with the blank symbol), q0 ∈ Q and qf ∈ Q are
the initial and final state, and δ ⊆ Q \ {qf} × Σ ×Q × Σ × {L,R} is a transition re-
lation. We assume, without loss of generality, that δ consists of k right-shift transitions

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 257

Halt
curState == qf

Transition done

...

status attributes curState cellscurCell

curCell = curCell.next;

Head moved

if curCell.next == null

newCell = createCell();
newCell.value = "_";
curCell.next = newCell;
newCell.prev = curCell;
newCell.next = null;

Tape extended

if curCell.next != null

curCell = createCell();
curCell.value = "_";
curState = q0;Initialized if curCell == null

MovedR

. . .

curCell.value = vR1';
curState = qR1';

if curState = qR1

&& curCell.value = vR1

R1 state updated

. . .

curCell.value = vRk';
curState = qRk';

if curState = qRk

&& curCell.value = vRk

Rk state updated

...

value prev next

Transition stage

State update stages

Init stage

Right shift stage

(left transitions) (Left shift stage)
.

Fig. 2. GSM model of a Turing machine

R1, . . . , Rk (those having R as last component), and n left-shift transitions L1, . . . , Ln

(those having L as last component). The idea of the translation into a GSM model is the
following. Beside status attributes, the GSM information model is constituted by: (i) a
curState slot containing the current internal state q ∈ Q; (ii) a curCell slot pointing
to the cell where the head of M is currently located and (iii) a collection of cells rep-
resenting the current state of the tape. Each cell is a complex nested record constituted
by a value v ∈ Σ, and two pointers prev and next used to link the cell to the previous
and next cells. In this way, the tape is modeled as a (double) linked list, which initially
contains a single, blank cell, and which is dynamically extended on demand. To mark
the initial (resp., last) cell of the tape, we assume that its prev (next) cell is null.

On top of this information model, a GSM lifecyle that mimics M is shown in Fig-
ure 2, where, due to space constraints, only the right-shift transitions are depicted (the
left-shift ones are symmetric). The schema consists of two top-level stages: Init, used
to initialize the tape, and Transition, encoding δ. Each transition is decomposed into
two sub-stages: state update and head shift. The state update is modeled by one among
k + n atomic sub-stages, each handling the update that corresponds to one of the tran-
sitions in δ. These stages are mutually exclusive, being M deterministic. Consider for
example a right-shift transition Ri = δ(qRi, vRi, qR

′
i, vR

′
i, R) (the treatment is sim-

ilar for a left-shift transition). The corresponding state update stage opens whenever
the current state is qRi, and the value contained in the cell pointed by the head is vRi

(this can be extracted from the information model using the query curCell.value). The
incoming arrows from the two parent’s guards ensure that this condition is evaluated
as soon as the parent stage opens, hence, if the condition is true, the state update stage

258 D. Solomakhin et al.

is immediately executed. When the state update stage closes, the achievement of the
corresponding milestone triggers one of the guards of the right shift stage that handles
the head shift. Right shift stage contains two sub-stages: the first one extends the tape
if the head is currently pointing to the last cell, while the second one just performs the
shifting. Whenever a right or left shift stage achieves the corresponding milestone, then
also the parent, transition stage is closed, achieving milestone transition done. This has
the effect of re-opening the transition stage again, so as to evaluate the next transition
to be executed. An alternative way of immediately closing the transition stage occurs
when the current state corresponds to the final state qf . In this case, milestone halt is
achieved, and the execution terminates (no further guards are triggered).

By considering this construction, the halting problem for M can be rephrased as
the following verification problem: given the GSM model encoding M, and starting
from an initial state where the information model is empty, is it possible to reach a
state where the halt milestone is achieved? Since M is deterministic, the B-steps of the
corresponding GSM model give raise to a linear computation, which could eventually
reach the halt milestone or continue indefinitely. Therefore, reaching a state where halt
is achieved can be equivalently formulated using propositional CTL or LTL. ��

3 Translation into Data-Centric Dynamic Systems

Despite having a formally specified operational semantics for GSM models [11], the
verification of different properties of such models (e.g. existence of complete execution,
safety properties) is still an open problem. A promising framework for the formalization
and verification of artifact systems is the one of data-centric dynamic systems (DCDS),
recently presented in [4]. Translating a GSM model into a corresponding DCDS enables
the application of the decidability results and verification techniques discussed in [4] to
the concrete case of GSM. Additionally, such translation will allow to benefit from the
results of the ongoing effort towards execution support for DCDS [20]. First we briefly
introduce DCDS and then we present a translation that faithfully rewrites a GSM model
into a corresponding formal representation in terms of DCDSs.

Formally, a DCDS is a pair S = 〈D,P〉, where D is a data layer and P is a pro-
cess layer over D. The former maintains all the relevant data in the form of a rela-
tional database together with its integrity constraints. In the artifact-centric context, the
database is the union of all artifacts information models. The process layer modifies the
data maintained by D, and it is defined as a tuple P = 〈F ,A, �〉 where:

– F is a finite set of functions representing interfaces to external services, used to
import new, fresh data into the system.

– A is a set of actions of the form α(p1, ..., pn) : {e1, ..., em}, where p1, ..., pn are
input parameters of an action and ei are effects of an action. Each effect specifica-
tion defines how a portion of the next database instance is constructed starting from
the current one and has the form ei = q+i ∧Q−

i � Ei where:
• q+i is a union of conjunctive queries (UCQ) over D, used to instantiate the

effect with values extracted from the current database.
• Q−

i is an arbitrary FO formula that filters away some tuples obtained by q+i .

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 259

• Ei is a set of effects, specified in terms of facts over D that will be asserted in
the next state; these facts can contain variables of Q (which are then replaced
with actual values extracted from the current database) and also service calls,
which are resolved by calling the service with actual input parameters and sub-
stituting them with the obtained result.1.

– � is a declarative process specified in terms of a finite set of Condition-Action (CA)
rules that determine, at any moment, which actions are executable. Technically,
each CA rule has the form Q
→ α, where α is an action and Q is a FO query over
D. Whenever Q has a positive answer over the current database, then α becomes
executable, with actual values for its parameters given by the answer to Q.

Example 2. Consider a fragment of an order management process. Once pending, an order can
be moved to the ready state by executing a prepare action, which incorporates into the system the
destination address of the customer associated to the order. A DCDS could encode the executabil-
ity of the prepare action by means of the following CA rule: order(id, cust)∧ pending(id) �→
PREPARE(id). The rule states that whenever an order identified by id and owned by customer
cust is pending, it is possible to apply action prepare on it. The action can in turn be defined as:

PREPARE(id) : { order(id, cust) ∧ pending(id) � {ready(id), dest(id, addr(cust))}
order(x, y) � {order(x, y)}

order(x, y) ∧ pending(x)∧ x �= id � {pending(x)}
order(x, y) ∧ ready(x) � {ready(x)} }

The first effect states that the order id becomes ready, and its destination is incorporated by calling
a service addr, which mimics the interaction with the customer. The other effects are used to de-
termine which information is kept unaffected in the next state: all orders remain orders, all ready
orders remain ready, and all pending orders remain pending, except the one identified by id.

The execution semantics of a DCDS S is defined by a possibly infinite-state transition
system ΥS , where states are instances of the database schema in D and each transition
corresponds to the application of an executable action inP . Similarly to GSM, where the
source of infinity comes from the fact that incoming events carry an arbitrary payload, in
DCDSs the source of infinity relies in the service calls, which can inject arbitrary fresh
values into the system. Despite the resulting undecidability of arbitrary DCDSs, an inter-
esting class of state-bounded DCDSs has been recently identified [4], for which decid-
ability of verification holds for a sophisticated (first-order) temporal logic called μLP .
Intuitively, state boundedness requires the existence of an overall bound that limits, at
every point in time, the size of the database instance of S (without posing any restriction
on which values can appear in the database). Equivalently, the size of each state con-
tained in ΥS cannot exceed the pre-established bound. Hence, in the following we will
indifferently talk about state-bounded DCDSs or state-bounded transition systems.

Theorem 2 ([4]). Verification of μLP properties over state-bounded DCDS is decid-
able, and can be reduced to finite-state model checking of propositional μ-calculus.

μLP is a first-order variant of μ-calculus, a rich branching-time temporal logic that sub-
sumes all well-known temporal logics such as PDL, CTL, LTL and CTL* [14]. μLP

1 In [4], two semantics for services are introduced: deterministic and nondeterministic. Here we
always assume nondeterministic services, which is in line with GSM.

260 D. Solomakhin et al.

employs first-order formulae to query data maintained by the DCDS data layer, and sup-
ports a controlled form of first-order quantification across states (within and across runs).

Example 3. μLP can express two variants of a correctness requirement for GSM:
– it is always true that, whenever an artifact id is present in the information model, the corre-

sponding artifact will be destroyed (i.e., the id will disappear) or reach a state where all its
stages are closed;

– it is always true that, whenever an artifact id is present in the information model, the corre-
sponding artifact will persist until a state is reached where all its stages are closed.

3.1 Translating GSM into DCDS

In this section we propose a translation procedure that takes a GSM model and produces
a corresponding faithful representation in terms of DCDSs. This allows us to transfer
the decidability boundaries studied for DCDSs to the GSM context2.

As introduced in Section 2.1, the execution of a GSM instance is described by a
sequence of B-steps. Each B-step consists of an initial micro-step which incorporates
incoming event into current snapshot, a sequence of micro-steps executing all applica-
ble PAC-rules, and finally a micro-step sending a set of generated events at the termi-
nation of the B-step. The translation relies on the incremental semantics: given a GSM
model G, we encode each possible micro-step as a separate condition-action rule in
the process of a corresponding DCDS system S, such that the effect on the data and
process layers of the action coincides with the effect of the corresponding micro-step
in GSM. However, in order to guarantee that the transition system induced by a result-
ing DCDS mimics the one of the GSM model, the translation procedure should also
ensure that all semantic requirements described in Section 2.1 are modeled properly:
(i) “one-message-at-a-time” and “toggle-once” principles, (ii) the finiteness of micro-
steps within a B-step, and (iii) their order imposed by the model. We sustain these
requirements by introducing into the data layer of S a set of auxiliary relations, suitably
recalling them in the CA-rules to reconstruct the desired behaviour.

Restricting S to process only one incoming message at a time is imple-
mented by introducing a blocking mechanism, represented by an auxiliary relation
Rblock(idR, blocked) for each artifact in the system, where idR is the artifact instance
identifier and blocked is a boolean flag. This flag is set to true upon receiving an incom-
ing message, and is then reset to false at the termination of the corresponding B-step,
once the outgoing events accumulated in the B-step are sent the environment. If an arti-
fact instance has blocked = true, no further incoming event will be processed. This is
enforced by checking the flag in the condition of each CA-rule associated to the artifact.

In order to ensure “toggle once” principle and guarantee the finiteness of sequence of
micro-steps triggered by an incoming event, we introduce an eligibility tracking mech-
anism. This mechanism is represented by an auxiliary relation Rexec(idR, x1, ..., xc),
where c is the total number of PAC-rules, and each xi corresponds to a certain PAC-rule
of the GSM model. Each xi encodes whether the corresponding PAC rule is eligible to

2 For the sake of space, we give a general description of the translation and illustrate the techni-
cal development by the example in Figure 4. For a full technical specification of the translation,
we refer the interested reader to a technical report [21].

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 261

Rexec(idR, x) ∧ xk = 0 ∧ exec(k) ∧ Rblock(idR, true) �→ (1)

a
k
exec(idR, a

′
, x) : { (2)

Ratt(idR, a, s,m) ∧ R
Sj
chg(idR, true) � {Ratt(idR, a, s,m)[mj/false]} (3)

Ratt(idR, a, s,m) ∧ R
Sj
chg(idR, true) � {Rmj

chg(idR, false)} (4)

RM
exec(idR, x) ∧ xk = 0 � {RM

exec(idR, x)[xk/1]} (5)

[CopyMessagePools], [CopyRest] } (6)

Fig. 3. CA-rule encoding a milestone invalidation upon stage activation

fire at a given moment in time (i.e., a particular micro-step). The initial setup of the eli-
gibility tracking flags is performed at the beginning of a B-step, based on the evaluation
of the prerequisite condition of each PAC rule. More specifically, when xi = 0, the cor-
responding CA-rule is eligible to apply and has not yet been considered for application.
When instead xi = 1, then either the rule has been fired, or its prerequisite turned out to
be false. This flag-based approach is used to propagate in a compact way information
related to the PAC rules that have been already processed, following a mechanism that
resembles dead path elimination in BPEL. In fact, Rexec is also used to enforce a firing
order of CA-rules that follows the one induced by G. This is achieved as follows. For
each CA-rule Q
→ α corresponding to a given PAC rule r, condition Q is put in con-
junction with a further formula, used to check whether all the PAC rules that precede r
according to the ordering imposed by G have been already processed. Only in this case
r can be considered for execution, consequently applying its effect α to the current arti-
fact snapshot. More specifically, the corresponding CA-rule becomes Q∧exec(r)
→ α,
where exec(r) =

∧
i xi such that i ranges over the indexes of those rules that precede

r. Once all xi flags are switched to 1, the B-step is about to finish: a dedicated CA-
rule is enabled to send the outgoing events to the environment, and the artifact instance
blocked flag is released.

Example 4. An example of a translation of a GSM PAC-rule (indexed by k) is presented in
Figure 3. For simplicity, multiple parameters are compacted using an “array” notation (e.g.,
x1, . . . , xn is denoted by x). In particular: (1) represents the condition part of a CA-rule, en-
suring the “toggle-once” principle (xk = 0), the compliant firing order (exec(k)) and the “one-
message-at-a-time” principle (Rblock(idR, true)); (2) describes the action signature; (3) is an
effect encoding the invalidation a milestone once the stage has been activated; (4) propagates an
internal event denoting the milestone invalidation, if needed; (5) flags the encoded micro-step cor-
responding to PAC rule k as processed; (6) transports the unaffected data into the next snapshot.

Given a GSM model G with initial snapshot S0, we denote by ΥG its B-step tran-
sition system, i.e., the infinite-state transition system obtained by iteratively applying
the incremental GSM semantics starting from S0 and nondeterministically considering
each possible incoming event. The states of ΥG correspond to stable snapshots of G, and
each transition corresponds to a B-step. We abstract away from the single micro-steps
constituting a B-step, because they represent temporary intermediate states that are not
interesting for verification purposes. Similarly, given the DCDS S obtained from the
translation of G, we denote by ΥS its unblocked-state transition system, obtained by
starting from S0, and iteratively applying nondeterministically the CA-rules of the pro-

262 D. Solomakhin et al.

s0

aux.

...
s1

aux.
event

...

event

s2

aux.

...

(unblocked)

(unblocked)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

ΥSΥG

s0

... s1

event

...

event
s2

...

(stable)

(stable)

acyclic graph of
intermediate steps

acyclic graph of
intermediate steps

s0

s0

aux.

s1

s0

aux.

s2

Fig. 4. Construction of the B-step transition system ΥG and unblocked-state transition system ΥS
for a GSM model G with initial snapshot s0 and the corresponding DCDS S

cess, and the corresponding actions, in all the possible ways. As for states, we only
consider those database instances where all artifact instances are not blocked: these cor-
respond in fact to stable snapshots of G. We then connect two such states provided that
there is a sequence of (intermediate) states that lead from the first to the second one, and
for which at least one artifact instance is blocked; these sequence corresponds in fact to
a series of intermediate-steps evolving the system from a stable state to another stable
state. Finally, we project away all the auxiliary relations introduced by the translation
mechanism, obtaining a filtered version of ΥS , which we denote as ΥS |G . The intuition
about the construction of these two transition systems is given in Figure 4. Notice that
the intermediate micro-steps in the two transition systems can be safely abstracted away
because: (i) thanks to the toggle-once principle, they do not contain any “internal” cy-
cle; (ii) respecting the firing order imposed by G, they all lead to reach the same next
stable/unblocked state. We can then establish the one-to-one correspondence between
these two transition systems in the following theorem (refer to [21] for complete proof):

Theorem 3. Given a GSM model G and its translation into a corresponding DCDS S,
the corresponding B-step transition system ΥG and filtered unblocked-state transition
system ΥS |G are equivalent, i.e., ΥG ≡ ΥS |G .

4 State-Bounded GSM Models

We now take advantage of the key decidability result given in Theorem 2, and study
verifiability of state-bounded GSM models. Observe that state-boundedness is not a
too restrictive condition. It requires each state of the transition system to contain a
bounded number of tuples. However, this does not mean that the system in general is
restricted to a limited amount of data: infinitely many values may be distributed across
the states (i.e. along an execution), provided that they do not accumulate in the same
state. Furthermore, infinitely many executions are supported, reflecting that whenever
an external event updates a slot of the information system maintained by a GSM artifact,
infinitely many successor states in principle exist, each one corresponding to a specific
new value for that slot. To exploit this, we have first to show that the GSM-DCDS
translation preserves state-boundedness, which is in fact the case.

Lemma 1. Given a GSM model G and its DCDS translation S, G is state-bounded if
and only if S is state-bounded.

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 263

Proof. Recall that S contains some auxiliary relations, used to restrict the applicability
of CA-rules in order to enforce the execution assumptions of GSM: (i) the eligibility
tracking table Rexec, (ii) the artifact instance blocking flags Rblock, (iii) the internal
message pools Rmsgk

data , Rsrvp
data, Rmsgq

out , and (iv) the tables of status changes Rmi

chg , Rsj
chg .

(⇐) This is directly obtained by observing that, if ΥS is state-bounded, then also ΥS |G
is state-bounded. From Theorem 3, we know that ΥS |G ≡ ΥG , and therefore ΥG is state-
bounded as well.
(⇒) We have to show that state boundedness of G implies that also all auxiliary relations
present in ΥS are bounded. We discuss each auxiliary relation separately. The artifact
blocking relation Rblock keeps a boolean flag for each artifact instance, so its cardinality
depends on the number of instances in the model. Since the model is state-bounded, the
number of artifact instances is bounded and so is Rblock. The eligibility tracking table
Rexec stores for each artifact instance a boolean vector describing the applicability of
a certain PAC rule. Since the number of instances is bounded and so is the set of PAC
rules, then the relation Rexec is also bounded. Similarly, one can show the boundedness
of Rmi

chg, Rsj
chg due to the fact that the number of stages and milestones is fixed a-priori.

Let us now analyze internal message pools. By construction, S may contain at most
one tuple in Rmsgk

data and R
srvp
data for each artifact instance. This is enforced by the block-

ing mechanism Rblock, which blocks the artifact instance at the beginning of a B-step
and prevents the instance from injecting further events in internal pools. The outgoing
message pool Rmsgq

out may contain as much tuples per artifact instance as the amount
of atomic stages in the model, which is still bounded. However, neither incoming nor
outgoing messages are accumulated in the internal pool along the B-steps execution,
since the final micro-step of the B-step is designed not to propagate any of the internal
message pools to the next snapshot. Therefore, ΥS is state-bounded. ��

From the combination of Theorems 2 and 3 and Lemma 1, we directly obtain:

Theorem 4. Verification of μLP properties over state-bounded GSM models is decid-
able, and can be reduced to finite-state model checking of propositional μ-calculus.

Obviously, in order to guarantee verifiability of a given GSM model, we need to under-
stand whether it is state-bounded or not. However, state-boundedness is a “semantic”
condition, which is undecidable to check [4]. We mitigate this problem by isolating a
class of GSM models that is guaranteed to be state-bounded. We show however that
even very simple GSM models (such as Fig. 1), are not state-bounded, and thus we
provide some modeling strategies to make any GSM model state-bounded.

GSM Models without Artifact Creation. We investigate the case of GSM models
that do not contain any create-artifact-instance tasks. Without loss of generality, we
assimilate the creation of nested datatypes (such as those created by the “add item” task
in Example 1) to the creation of new artifacts. From the formal point of view, we can in
fact consider each nested datatype as a simple artifact with an empty lifecycle, and its
own information model including a connection to its parent artifact.

Corollary 1. Verification of μLP properties over GSM models without create-artifact-
instance tasks is decidable.

264 D. Solomakhin et al.

status attributes items

∅...

123

status attributes items

...

itemRequest(123,6) code qty

6

...

...

123

status attributes items

...

itemRequest(413,2) code qty

6

...

...

413 2

itemRequest(…,…)

...

...

...

(unbounded number of items)

Fig. 5. Unbounded execution of the GSM model in Fig. 1

Proof. Let G be a GSM model without create-artifact-instance tasks. At each stable
snapshot Σk, G can either process an event representing an incoming one-way message,
or the termination of a task. We claim that the only source of state-unboundedness can be
caused by service calls return related to the termination of create-artifact-instance tasks.
In fact, one-way incoming messages, as well as other service call returns, do not increase
the size of the data stored in the GSM information model, because the payload of such
messages just substitutes the values of the corresponding data attributes, according to the
signature of the message. Similarly, by an inspection of the proof of Lemma 1, we know
that across the micro-steps of a B-step, status attributes are modified but their size does
not change. Furthermore, a bounded number of outgoing events could be accumulated
in the message pools, but this information is then flushed at the end of the B-step, thus
bringing the size of the overall information model back to the same size present at the
beginning of the B-step. Therefore, without create-artifact-instance tasks, the size of
the information model in each stable state is constant, and corresponds to the size of
the initial information model. We can then apply Theorem 4 to get the result. ��
Arbitrary GSM Models. The types of models studied in paragraph above are quite
restrictive, because they forbid the possibility of extending the number of artifacts dur-
ing the execution of the system. On the other hand, as soon as this is allowed, even
very simple GSM models, as the one shown in Fig. 1, may become state unbounded. In
that example, the source of state unboundedness lies in the stage containing the “add
item” task, which could be triggered an unbounded number of times due to continuous
itemRequest incoming events, as pointed out in Fig. 5. This, in turn, is caused by the
fact that the modeler left the GSM model underspecified, without providing any hint
about the maximum number of items that can be included in an order. To overcome
this issue, we require the modeler to supply such information (stating, e.g., that each
order is associated to at most 10 items). Technically, the GSM model under study has
to be parameterized by an arbitrary but finite number Nmax, which denotes the maxi-
mum number of artifact instances that can coexist in the same execution state. We call
this kind of GSM model instance bounded. A possible policy to provide such bound is
to allocate available “slots” for each artifact type of the model, i.e. to specify a maxi-
mum number NAi for each artifact type Ai, then having Nmax =

∑
iNAi . In order

to incorporate the artifact bounds into the execution semantics, we proceed as follows.
First, we pre-populate the initial snapshot of the considered GSM instance with Nmax

blank artifact instances (respecting the relative proportion given by the local maximum
numbers for each artifact type). We refer to one such blank artifact instance as artifact
container. Along the system execution, each container may be: (i) filled with concrete
data carried by an actual artifact instance of the corresponding type, or (ii) flushed to the
initial, blank state. To this end, each artifact container is equipped with an auxiliary flag

Verification of Artifact-Centric Systems: Decidability and Modeling Issues 265

fri, which reflects its current state: fri is false when the container stores a concrete arti-
fact instance, true otherwise. Then, the internal semantics of create-artifact-instance is
changed so as to check the availability of a blank artifact container. In particular, when
the corresponding service call is to be invoked with the new artifact instance data, the
calling artifact instance selects the next available blank artifact container, sets its flag
fri to false, and fills it with the payload of the service call. If all containers are occu-
pied, the calling artifact instance waits until some container is released. Symmetrically
to artifact creation, the deletion procedure for an artifact instance is managed by turning
the corresponding container flag fri to true. Details on the DCDS CA-rules formalizing
creation/deletion of artifact instances according to these principles can be found in [21].

We observe that, following this container-based realization strategy, the information
model of an instance-bounded GSM model has a fixed size, which polinomially de-
pends on the total maximum number Nmax. The new implementation of create-artifact-
instance does not really change the size of the information model, but just suitably
changes its content. Therefore, Corollary 1 directly applies to instance-bounded GSM
models, guaranteeing decidability of their verification. Finally, notice that infinitely
many different artifact instances can be created and manipulated, provided that they
do not accumulate in the same state (exceeding Nmax).

5 Discussion and Related Work

In this work we provided the foundations for the formal verification of the GSM artifact-
centric paradigm. So far, only few works have investigated verification of GSM models.
The closest approach to ours is [6], where state-boundedness is also used as a key prop-
erty towards decidability. The main difference between the two approaches is that de-
cidability of state-bounded GSM models is proven for temporal logics of incomparable
expressive power. In addition to [6], in this work we also study modeling strategies to
make an arbitrary GSM model state-bounded, while they assume that the input model
is guaranteed to be state-bounded. Hence, our strategies could be instrumental to [6] as
well. In [15] another promising technique for the formal verification of GSM models
is presented. However, the current implementation cannot be applied to general GSM
models, because of assumptions over the data types and the fact that only one instance
per artifact type is supported. Furthermore, a propositional branching-time logic is used
for verification, restricting to the status attributes of the artifacts. The results presented in
our paper can be used to generalize this approach towards more complex models (such
as instance-bounded GSM models) and more expressive logics, given, e.g., the fact that
“one-instance artifacts” fall inside the decidable cases we discussed in this paper.

It is worth noting that all the presented decidability results are actually even stronger:
they state that verification can be reduced to standard model checking of propositionalμ-
calculus over finite-state transition systems (thanks to the abstraction techniques studied
in [4]). This opens the possibility of actually implementing the discussed techniques,
by relying on state-of-the-art model checkers. We also inherit from [4] the complexity
boundaries: they state that verification is EXPTIME in the size of the GSM information
model which, in the case of instance-bounded GSM models, means in turn EXPTIME

in the maximum number of artifact instances that can coexist in the same state.

266 D. Solomakhin et al.

References

1. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-Oriented Ap-
proach. Springer (2011)

2. Armando, A., Ponta, S.E.: Model checking of security-sensitive business processes. In:
Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 66–80. Springer, Hei-
delberg (2010)

3. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P., Montali, M.:
Description logic knowledge and action bases. Journal of Artificial Intelligence Research,
651–686 (2013)

4. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proc. of PODS, pp.
163–174. ACM Press (2013)

5. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of KR. AAAI Press (2012)

6. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of gsm-based artifact-centric systems
through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 17–31. Springer, Heidelberg (2012)

7. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered opera-
tional modeling: Lessons from customer engagements. IBM Systems Journal 46(4) (2007)

8. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: A
database theory perspective. In: Proc. of PODS, pp. 1–12. ACM Press (2013)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
10. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3) (2009)
11. Damaggio, E., Hull, R., Vaculin, R.: On the equivalence of incremental and fixpoint seman-

tics for business artifacts with guard-stage-milestone lifecycles. Information Systems (2012)
12. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business

processes. In: Proc. of ICDT, pp. 252–267. ACM Press (2009)
13. Dumas, M.: On the convergence of data and process engineering. In: Eder, J., Bielikova, M.,

Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 19–26. Springer, Heidelberg (2011)
14. Emerson, E.A.: Model checking and the mu-calculus. In: Descriptive Complexity and Finite

Models (1996)
15. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying gsm-based business artifacts. In: Proc.

of ICWS, pp. 25–32. IEEE (2012)
16. Group, T.O.M.: Object constraint language, version 2.0. Tech. Rep. formal/06-05-01, The

Object Management Group (May 2006), http://www.omg.org/spec/OCL/2.0/
17. Morimoto, S.: A survey of formal verification for business process modeling. In: Bubak, M.,

van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102,
pp. 514–522. Springer, Heidelberg (2008)

18. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3) (2003)

19. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow patterns. In: van
der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649,
pp. 153–168. Springer, Heidelberg (2005)

20. Russo, A., Mecella, M., Montali, M., Patrizi, F.: Towards a reference implementation for data
centric dynamic systems. In: Proc. of BPM Workshops (2013)

21. Solomakhin, D., Montali, M., Tessaris, S.: Formalizing guard-stage-milestone meta-models
as data-centric dynamic systems. Tech. Rep. KRDB12-4, KRDB Research Centre, Faculty
of Computer Science, Free University of Bozen-Bolzano (2012)

22. The Object Management Group: Case Management Model and Notation (CMMN), Beta 1
(January 2013), http://www.omg.org/spec/CMMN/1.0/Beta1/

http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/CMMN/1.0/Beta1/

	Verification of Artifact-Centric Systems:
Decidability and Modeling Issues
	1 Introduction
	2 GSM Modeling of Artifact-Centric Systems
	2.1 Operational Semantics of GSM
	2.2 Undecidability in GSM

	3 Translation into Data-Centric Dynamic Systems
	3.1 Translating GSM into DCDS

	4 State-Bounded GSM Models
	5 Discussion and Related Work
	References

