
S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 192–206, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Runtime Evolution of Service-Based Multi-tenant SaaS
Applications

Indika Kumara, Jun Han, Alan Colman, and Malinda Kapuruge

Faculty of Information and Communication Technologies
Swinburne University of Technology, Melbourne, Australia

{iweerasinghadewage,jhan,acolman,mkapuruge}@swin.edu.au

Abstract. The Single-Instance Multi-Tenancy (SIMT) model for service deli-
very enables a SaaS provider to achieve economies of scale via the reuse and
runtime sharing of software assets between tenants. However, evolving such an
application at runtime to cope with the changing requirements from its different
stakeholders is challenging. In this paper, we propose an approach to evolving
service-based SIMT SaaS applications that are developed based on Dynamic
Software Product Lines (DSPL) with runtime sharing and variation among te-
nants. We first identify the different kinds of changes to a service-based SaaS
application, and the consequential impacts of those changes. We then discuss
how to realize and manage each change and its resultant impacts in the DSPL.
A software engineer declaratively specifies changes in a script, and realizes the
changes to the runtime model of the DSPL using the script. We demonstrate the
feasibility of our approach with a case study.

Keywords: SaaS, Evolution, Multi-tenancy, SPL, Compositional, Feature.

1 Introduction

The Software as a Service (SaaS) models for service delivery offer software applica-
tions as a utility over the Internet. In particular, the Single-Instance Multi-Tenancy
(SIMT) model hosts different tenants in a single application instance, increasing run-
time sharing and hence reducing operational cost [1]. In this model, the functionality
for all the tenants is integrated into a single application, and the differentiation of the
varied support for tenants is realized at runtime.

After an SIMT application is successfully developed and deployed, its evolution
takes place. During this phase, the application can be modified, for instance, to cope
with a changed need of a tenant or the SaaS provider or a change in a partner service’s
capability. Evolving an SIMT application is a complex problem. Firstly, the applica-
tion should support different classes of changes that can potentially occur during its
lifetime. Secondly, the application needs to enable the identification and control of the
impacts of a change on the application. Finally, a change and its impacts need to be
realized and managed at runtime without disturbing the operations of those tenants
unaffected by the change.

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 193

To date, there is little support for runtime evolution of a multi-tenant SaaS applica-
tion [2-4]. Some efforts have considered such issues as tenant on-boarding [2] and
tenant-specific variations [3, 4]. However, they do not sufficiently support two key
activities of change management [5]: identifying a change and its impacts, and de-
signing and implementing the change and impacts.

In [6], we have proposed to realize a service-based SIMT SaaS application as a
Service-Oriented Dynamic Software Product Line (SO-DSPL) that supports runtime
sharing and variation across tenants/products. Our approach utilizes the DSPL’s capa-
bility to share and differentiate product features, but all achieved at runtime.

In this paper, we discuss the above-mentioned two key activities of change man-
agement (main contributions) for service-based SIMT applications developed using
our product line based model. We first identify the different types of changes to our
SO-DSPL and their potential impacts. Second, we discuss our approach to realizing
each change and managing each change impact. In particular, we support the identifi-
cation of the potential impacts of a change on the products (tenants), and the man-
agement of such impacts without disturbing the operations of the unaffected products.
An initial modification and its consequential impacts can be specified and realized
through the runtime representation of the product line created based on the mod-
els@runtime concept [7]. With a case study that implements common SPL evolution
scenarios, we demonstrate the feasibility of our approach. We analyze the case study
results to assess change impacts and the programming effort for the scripts that speci-
fy changes. We also quantify the time taken to realize such changes at runtime.

In this paper, we start by providing the motivation, background, and overview of
our approach to realizing an SIMT application as an SO-DSPL (Sections 2, 3, and 4).
Section 5 presents our approach to the identification and management of the runtime
changes and their impacts. In Sections 6 and 7, we discuss our prototype implementa-
tion and evaluation results respectively. Section 8 presents related work, and Section
9 concludes the paper while providing directions for future research.

2 Motivating Scenario and General Requirements

To motivate this research, let us consider a business scenario from SwinRoadside, a
company offering roadside assistance to its customers such as Travel Agencies (TA)
and Truck Sellers (TS) by utilizing external partner services such as Garage Chains
(GC) and Towing Companies (TC). SwinRoadside manages both the roadside assis-
tance business and the supporting IT infrastructure, which adopts the SIMT SaaS
model. The customers use their own variants of this roadside assistance service to
serve their users such as travelers and truck buyers. In this IT-enabled business scena-
rio, we can identify three key requirements for SwinRoadside.

(Req1) Runtime Sharing with Variations. To achieve economies of scale, Swi-
nRoadside expects to share the roadside business process and services across its cus-
tomers (tenants). However, these customers have varying needs. For instance, TA1
needs onsite vehicle repair and accommodation, while TS1 prefers repairing at a ga-
rage. SwinRoadside needs to support sharing with variations at runtime.

194 I. Kumara et al.

(Req2) Managing Runtime Changes to the SaaS Application. The requirements of
the tenants, the SaaS provider, and the external services can change over time. For
instance, six months into operation, TA1 needs support for renting a vehicle instead of
accommodation, as travelers prefer continuing their journey. After one year, Swi-
nRoadside decides to enhance repair notification by supporting the direct notification
of a motorist by the garage. The towing company starts to offer accident towing that
SwinRoadside and some of its customers want to utilize. The roadside application
needs to evolve at runtime to respond to or utilize these changes.

(Req3) Managing Change Impacts. A change in the roadside process can affect the
application as well as individual tenants. For example, modifying the towing capabili-
ty to tow a rented vehicle (for TA1) can affect TS1 that uses it to tow a vehicle to a
garage. The roadside application needs to identify and control these impacts.

3 Software Product Lines and Feature Model

An SPL is a family of software systems developed from a common set of core assets
[8]. Compared to an SPL, a dynamic SPL (DSPL) creates and adapts products at run-
time [9]. The realization of a variant-rich application with the SPL approach can yield
significant improvements in business drivers such as time to market, cost, and produc-
tivity. There are two main ways to implement an SPL: annotative approach and
compositional approach [10]. The former embeds the features of the SPL in the ap-
plication code using explicit annotations (e.g., ‘#ifdef’ and ‘#endif’ statements of C
style) or implicit annotations (e.g., hooks or extension points), supporting fine-grained
variability, but reducing flexibility and maintainability [10]. The latter realizes the
features as modular units and creates products by composing these modular units. It
can potentially reduce the aforementioned drawbacks of the annotative approach [10].

A feature model [11] captures the commonality and variability in a product line at
a higher abstraction level. It supports activities such as asset development and product
creation. Figure 1 shows the cardinality-based feature model [12] for the motivating
example. The Composed of relationship arranges features in a hierarchy. For instance,
the features Accommodation and TechAdvice are the children of ExtraServices. The
feature cardinality specifies how many instances of a feature can be included in a
feature configuration or product. The cardinality of an optional feature is [0-1], and
that of a mandatory feature is [1-1]. The cardinality of a feature group specifies how
many features the group can include. For example, the group cardinality ([1-2]) of
ExtraServices implies that at least one of its two children must be selected. The con-
straints define dependencies among features. For instance, the constraint AtGarage
includes Tow indicates that if AtGarage is selected, Tow must also be selected. By
selecting the features respecting these constraints, a feature configuration is created.

Fig. 1. The feature model for the motivating example

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 195

4 Product Line-Based Realization of SIMT SaaS Applications

Design-Time Representation. In [6], we have introduced a service-oriented DSPL
(SO-DSPL) based approach to realizing service-based SIMT SaaS applications that
supports runtime sharing among products/tenants while allowing product/tenant-
specific variations (Req1). This section provides an overview of our DSPL based
approach, which comprises four layers, as shown in Fig. 2(a).

At the bottom is the service asset layer, including all the partner services used by
the product line or SaaS application. The structure layer provides an abstraction over
service assets and their interactions needed to realize the features of the product line.
The roles are abstract representations of service assets (referred as players), making
roles and players loosely coupled. The contracts capture the allowed interactions
between the players playing roles, and make roles loosely coupled. The role-contract
topology, consisting of roles and contracts, models the structure of the product line. A
role defines its responsibility as a set of tasks that encapsulate the capabilities of a
service. A contract consists of a set of interaction terms, defining the allowed interac-
tions between the relevant roles (players). The input and output of a task are defined
based on interaction terms. Messages flow between services via roles and contracts.

Consider the structure layer for the motivating example (see Fig. 2(a)). The role-
contract topology comprises the roles MM, SC, HC, GC, TC and the contracts among
them. The role GC, an abstract garage service, is realized by the service (player) Fa-
stRepair. The role SC represents the Support Center and is realized by the service
24by7. The contract SC_GC defines the expected interactions between the players
24by7 and FastRepair in playing the roles SC and GC. Lines 13-14 in Fig. 3 show the
task tRepair of the role GC. The task’s input (UsingMsg) uses the interaction iOrder-
Repair from SC. Its output (ResultingMsg) refers to the interactions iPayRepair to SC
and iAckRepair to MM (representing the member, i.e., the user or motorist).

Fig. 2. (a) An overview of the SO-DSPL for the motivating example, (b) part of the organizer

196 I. Kumara et al.

1 ProductDefinition Product1 {
2 CoS "eProduct1Reqd"; CoT "ePaidRepair * ePaidRoomRent * eAckedMM";
3 BehaviorRef bRepairing; BehaviorRef bProvidingAccommodation; ... }
4 Behavior bRepairing {
5 TaskRef GC.tRepair { InitOn "eRepairReqd"; Triggers "eRepaired"; }
6 TaskRef SC.tPayRepair { InitOn "eRepaired"; Triggers "ePaidRepair"; }
7 TaskRef MM.tAckRepair { InitOn "eRepaired"; Triggers "eAckedMM"; } ...}
8 Behavior bProvidingAccommodation { ... }
9 Contract SC_GC { A is SC, B is GC;
10 ITerm iOrderRepair(String:msg) withResponse (String:ack)from AtoB; ITerm iPayRepair(..);..}
11 Contract GC_MM { ITerm iAckRepair(...) ...}
12 Role GC {
13 Task tRepair { UsingMsgs SC_GC.iOrderRepair.Req;
14 ResultingMsgs SC_GC.iPayRepair.Req,GC_MM.iAckRepair.Req; } ...}
15 Role MM { Task tAckRepair{...} ...}, Role SC { Task tPayRepair{...} ... }
16 PlayerBinding gcPlayer "www.fastrepair.com/GCService" is a GC;

Fig. 3. Part of the configuration for the product line depicted in Fig. 2(a)

The behavior layer, consisting of behavior units, encapsulates the control flow and
regulates the message flow between service assets. To provide a feature, a behavior
unit realizes a collaboration among a subset of services by coordinating the tasks of the
roles that these services fulfill. The topology of the collaboration (referred to as local
topology) is defined using references to the tasks of the participating roles. The control
flow is specified as the dependencies between the tasks using their InitOn and Triggers
clauses (pre- and post-conditions) based on events that are generated by interpreting
role-role interactions. For example, consider the behavior unit bRepairing (lines 4-7 in
Fig. 3). It groups and coordinates the tasks of GC.tRepair, SC.tPayRepair, and
MM.tAckRepair. The task GC.tRepair depends on the task that creates the event eRe-
pairReqd. Its completion generates the event eRepaired that triggers (as the precondi-
tions for) the consequent tasks, e.g., SC.tPayRepair and MM.tAckRepair.

At the product layer, a product models a tenant’s product configuration and com-
poses the related behavior units by referring to them (aka, the compositional ap-
proach). Products share behavior units for their commonality and use different beha-
vior units for their variability, i.e., achieving the SIMT model. As depicted in Fig.
2(a), Product1 and Product2 use the behavior unit bRepairing, and one of the behavior
units bTowing and bProvidingAccommodation. A product also defines its start and end
using CoS (Condition of Start) and CoT (Condition of Termination) (line 2 in Fig. 3).

Runtime Representation. The above-mentioned architecture model of the product
line is kept alive at runtime using the models@runtime concept [7]. As such, its ele-
ments can be modified at runtime, e.g., adding roles or contracts. In particular, it has
an organizer role and player (see Fig. 2(a)) through which runtime changes to the
product line can be performed (see Section 5). The organizer role and player are ge-
neric to our approach. Some of their adaptation capabilities that this research uses are
shown as adaptation operations in Fig. 2(b).

5 Runtime Evolution of Product Line-Based SIMT SaaS
Applications

Two of the main activities for software change management are: (1) identifying a
change and its impacts, and (2) designing and implementing the change [5, 13]. In this
paper, we consider these activities at runtime for service-based SIMT SaaS applica-
tions developed using our DSPL based model (Req2 and Req3). Section 5.1 identifies

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 197

the changes to the DSPL and their potential direct impacts. Section 5.2 discusses the
realization and management of the identified changes and impacts in the DSPL.

5.1 Identification of Changes and Impacts

A change request and the current system are key inputs to a change process [5]. In our
approach, external service providers consider changes at the service-level, such as
service addition and removal. The SaaS provider and tenants identify changes at the
feature-level as addition, removal and modification of features. The SaaS provider can
also consider architectural changes, e.g., for the purpose of optimizing the product
line architecture. In general, each layer of the product line can be potentially modified
to realize a change (see Fig. 4).

Service Asset Layer. The changes at the service asset layer include: adding, remov-
ing, replacing, and modifying a service asset, service capability changes, and service
interface changes. The capability changes include adding, removing, and modifying
capabilities and the control relations between them. The interface changes include
adding, removing, and modifying operations and the control relations between them.

A new service asset (to be used) requires a role, a player binding for that role, and
a set of contracts to capture the expected relationships between the new service asset
and the relevant existing service assets in realizing that role. It also introduces new
capabilities. The removal of a used service asset makes the related player binding,
role, and contracts invalid since the player binding refers to a nonexistent service, the
realization of the role is removed, and the contracts represent nonexistent relation-
ships. Moreover, the used capabilities of the deleted service asset are removed. The
replacement of a used or an existing service asset requires updating the related player
binding. Additionally, the mismatch/difference between the new service and the re-
placed one can result in capability and interface changes (see below for their impacts).
A modification to a used service asset can involve capability and interface changes.

A new service capability (to be used) requires a task to represent it. The removal of
a used capability makes the related task invalid since there is no realization for it. The
modifications to used capabilities (e.g., merging capabilities) can result in the same
types of changes to the relevant tasks. Generally, to use or realize a capability, service

Fig. 4. Changeable elements and their potential direct impact relations

198 I. Kumara et al.

assets need to interact with each other, and thus a capability change can also have
impacts on contracts and interaction terms. A change to a control relation between
used capabilities can affect the dependencies among the corresponding tasks captured
in relevant behavior units. A capability change can also involve an interface change.

An interface change related to an unused capability does not affect the product line.
The impacts of an interface change related to a used capability (unchanged) are un-
wanted by the product line, and thus should be controlled (see Section 5.2). An inter-
face change that alters a used capability has the same impacts of a capability change.

Structure Layer. The changes at the structure layer include adding, removing, and
modifying the role-contract topology and the player bindings. The modifications to a
role-contract topology include adding, removing, and modifying roles and contracts.
Altering a role involves adding, removing, and modifying tasks. Altering a contract
involves adding, removing, and modifying interaction terms. The modifications to a
player binding include updating its endpoint and role reference.

The addition and removal of the role-contract topology implies the initiation and
termination of the system. A new role may need a set of tasks, a player binding, and
the contracts with the other roles that the new role should interact. The removal of a
role deletes its tasks, and makes its contracts and the references to the role in behavior
units and player bindings invalid. A new contract between two roles relates the two
roles, and may require a set of interaction terms to be used by the tasks of the two
roles. A deletion of a contract removes its interaction terms and the association be-
tween the related roles, and makes the references to it by the related tasks invalid.

A new task may use a subset of existing interaction terms, and require the references
to it in the behavior units that need to use it. If an interaction term used in a task is not
shared by other tasks, the removal of the task makes the interaction term isolated. A
deleted task also makes the reference to it in the related behavior units invalid.

A new interaction term may require adding the references to it in the tasks that
need to use it. A deleted interaction term makes the references to it in the related tasks
invalid. Moreover, the changes to interaction terms that alter the events they create
can affect the representations of the dependencies between tasks (InitOn/Triggers of a
task reference). A new incoming interaction of a task may require adding the relevant
events to the InitOn of the related task references. A removed incoming interaction
makes the references to the related events invalid. The similar impacts on the Triggers
of a task reference can occur due to a change to an outgoing interaction of a task.

A new player binding for a role makes the role implemented by a player. A deleted
player binding removes the realization for the corresponding role.

Behavior Layer. The changes at the behavior layer include creating, deleting, and
modifying the feature-based decomposition of the behavior layer. The alterations to
this decomposition involve adding, removing, and modifying behavior units. The
modifications to a behavior unit involve adding, removing, and modifying its task
references. The alterations to a task reference include adding, removing, and updating
its InitOn and Triggers clauses to create and change the dependencies between tasks.

The creation and deletion of the feature-based decomposition of the behavior layer
implies the initiation and termination of the system. A new behavior unit requires the
references to it in the products that need to use it. A deleted behavior unit makes the
references to it in the relevant products invalid. The changes to the task references and

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 199

task dependencies captured in a behavior unit can alter the service collaboration (the
feature implementation) realized by the behavior unit. This in turn can modify the
feature (an end-user experienced functionality/behavior) offered by the behavior unit.

A change to a feature implementation can introduce unintended behaviors to one or
more different features as well as to a subset of the products that use the feature. As
an example for the first case, consider that the feature AtGarage uses the feature Tow
to carry a vehicle to a garage (used by Product2), and the new feature VehicleHire
also needs the feature Tow to tow a rented vehicle (to be used by Product1). Changing
the collaboration related to the feature Tow can affect the feature AtGarage. As an
example for the second case, suppose that Product2 needs a periodic repair notifica-
tion. Modifying the collaboration for the shared feature Repair for this purpose adds
an unwanted behavior to Product1. These effects need to be reduced (see Section 5.2).

Product Layer. The changes at the product layer include: adding, removing, and
modifying products. The modifications to a product involve adding and removing the
references to behavior units, and updating its CoT and CoS. Since the events used in
the CoT and CoS of a product depend on the behavior units that the product uses, the
inclusion and exclusion of a behavior unit in the product as well as the change to a
behavior unit used by the product can affect the CoT and CoS of the product.

5.2 Realization of Changes and Impacts

In this section, we describe how the identified changes and impacts can be realized in
the SO-DSPL, and how the change impacts are managed and realized.

Solutions for Changes. The change primitives supported by the organizer (see Fig. 2
(b)) are used to perform the changes to the runtime model of the product line.

Using the operations [add/remove/update][Role/Contract](), the role-contract to-
pology can be altered. The methods [add/remove/update]PlayerBinding() can be used
to realize player binding changes. To change tasks, interaction terms, and their rela-
tions, the operations [add/remove/update][Task/Interaction]() can be used.

The operations [add/remove]Behavior() need to be used to add or remove a beha-
vior unit. By changing the task references of a behavior unit using the methods [add/
remove]TaskRef(), the local topology of a collaboration captured in a behavior unit
can be modified. The control flow can be altered by modifying dependencies among
tasks via changing their InitOn and Triggers using the operation updateTaskRef(). For
example, to ensure a repair notification (MM.tAckRepair) follows a repair payment
(SC.tPayRepair), the InitOn of the taskref MM.tAckRepair in the behavior unit bRe-
pairing (Fig. 3) can be replaced by the Triggers of SC.tPayRepair. Figure 5 shows
this variation with an EPC (event-driven-process chain) diagram [14].

Fig. 5. Changing the control flow via altering task dependences (a) initial, (b) modified

200 I. Kumara et al.

A product can be created and removed using the methods [add/remove]Product().
The operation updateProduct() can be used to alter the CoS and CoT of a product. A
created product can be reconfigured using the operations [add/remove]BehaviorRef().

Solutions for Impacts. The general approach to realize an impact of a change is as
follows. If a change E causes a change F as a direct impact, then to propagate this
impact, the techniques for realizing the change F need to be used (see above). For
example, the removal of a role requires the removal of its contracts since there are
invalid, and the operation removeContract() can be used to propagate this effect. Note
that we assume that the initial change made by a developer is an intended one. Due to
limited space, we do not describe each propagation link using the general approach.

 However, there are two cases that require specific techniques to control the propa-
gation of impacts. First, the service interface changes related to a used capability
(unchanged) should not be propagated to the product line. Such changes include: op-
eration signature changes, and operation granularity (e.g., split) and transition (control
relation) changes. By changing the transformations between role-role interactions and
role-player interactions, the propagation of the operation signature changes can be
avoided. To cope with the operation granularity and transition changes, sub-service
composites that act as adapters need to be created. A sub-composite (an adapter) for
handling the interface changes of the player C of the role B becomes the new player
(the realization) for the role B. In [15], different service composite-based adapters are
presented, and thus we will not further discuss these issues in this paper.

Second, the feature changes that add unwanted behaviors to one or more different
features or to a subset of products need to be controlled. For this purpose, we create
variations of the affected feature implementations (collaborations). Such variations
are captured in the behavior layer by specializing the related behavior units. Note that
a variation in a collaboration may require structural changes, e.g., new tasks. A beha-
vior unit can be specialized to create new child behavior units by adding new ele-
ments or overriding its existing elements. The parent represents common behaviors,
and the children represent variations. For instance, to support towing a rented vehicle,
the behavior unit bTowing can be extended to create bTowingRentedVehicle (Fig. 6).
The task VC.tGetLocation is created (VC - vehicle renting company), and a reference
to it is added to bTowingRentedVehicle. The InitOn of TC.tTow is overridden to en-
sure that the towing starts after VC.tGetLocation gave the destination. Now, Product1
uses bTowingRentedVehicle, while Product2 continues using bTowing (no impact).

Note that, due to limited space, the use of the proposed techniques to solve feature
implementation dependency types that can make products invalid, e.g., operational
dependency [16] and feature interaction [17] is not discussed. To address these issues,
the works in [16, 17] used (class) inheritance and coordination, which we also adopt.

Fig. 6. Extending the collaboration for the feature Tow for the feature VehicleHire

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 201

Realization of Changes and Impacts to the Running Application. Upon receiving
a change request, the software engineer identifies the initial changes to realize the
change request as well as the further impacts of each change. The solutions for the
identified changes and impacts are designed and then specified in a form of a change
script. A unit in such a script is a change command, which comprises a name and a set
of parameters as name-value pairs. For example, addBehavior is a command name,
and bId =”bRentingVehicle“ is a parameter (line 18 in Fig. 7). These change com-
mands are the representations of the change primitives of the organizer at the script-
level. The changes defined in a change script can be applied to the running system
using the operation executeScript() of the organizer role. The organizer creates the
executable change commands (in Java) from a change script, and applies those com-
mands to the runtime model of the system created using the models@runtime concept.

An Example. Bellow, we present the process of designing a change script using an
example: add feature VehicleHire whose implementation creates a new collaboration
among a subset of services to implement the feature VehicleHire for use in Product1.

1. Identifying and defining role-contract topology and service changes: A developer
identifies the differences between the expected topology and the initial one, and
specifies the differences in a change script. For instance, the collaboration for Ve-
hicleHire requires a topology consisting of the roles MM, VC (vehicle renting
company) and SC, and contracts SC_MM, SC_VC and VC_MM. The roles MM
and SC, and contract SC_MM are in the initial system so the required changes
concern the role VC, and contracts SC_VC and VC_MM. The player TomAuto is
required to play role VC. Lines 3, 8, and 15 in Fig. 7 define part of these changes.

2. Identifying and defining role-role interaction changes: Next, a developer designs
the changes to interaction terms. In our example, we add the interaction terms iOr-
derVehicle and iPayVehicleFare to the contract SC_VC, and the interaction term
iAckVehicleBooking to the contract VC_MM. Lines 9-10 and 12 in Fig. 7 specify
part of these changes.

Fig. 7. Part of the change script for adding the feature VehicleHire

202 I. Kumara et al.

3. Identifying and defining task definition changes: Next, a developer identifies and
designs the changes to the task definitions in the related roles. In our example, we
create the definitions for the tasks VC.tRentVehicle, SC.tPayVehicleFare, and
MM.tAckVehicleBooking. Lines 4-5 in Fig. 7 define part of the task tRentVehicle.

4. Identifying and defining behavior unit changes: In the next step, the changes to the
local topologies, control flow, and behavior layer decomposition are designed. In
our example, the behavior unit bRentingVehicle needs to be created with the refer-
ences to the above-mentioned tasks. Lines 18-20 specify part of these changes.

5. Identifying and defining product changes: Next, a developer reconfigures the af-
fected products. In our example, Product1 needs the feature VehicleHire. Thus, a
reference to the behavior unit bRentingVehicle is added to it (line 23 in Fig. 7).

6 Prototype Implementation

To realize SO-DSPL based SaaS applications in our approach, we adopt and further
improve the ROAD/Serendip framework [18, 19], which supports development and
management of adaptive service orchestrations. In doing so, we treat the SO-DSPL
realization for an SIMT SaaS application as an adaptive service orchestration. We
presented this implementation in [6] in detail. For this work, we have used this proto-
type to analyze the changes and impacts presented in Section 5 and to implement the
proposed solutions. We have also formulated and implemented the change commands
required for this work, which are generic to our approach and independent from a
particular case study.

We provide Eclipse plugins to specify (the change script editor) and perform (the
adaptation tool) changes discussed in Section 5. The former can highlight and detect
errors of the syntax of change commands. The latter allows executing a change script,
shows the status of the execution, and if it fails, the details required to correct and
rerun it. The organizer role is exposed as a Web service to allow providing change
scripts remotely. We adopt the Serendip language to specify the SO-DSPL architec-
ture and the evolutionary changes. Figure 8 shows a screenshot of the adaptation tool,
executing the change script for removing the feature Accommodation. The snippets of
the change script and the logs of the execution of the script are shown.

Fig. 8. A screenshot of the adaptation tool running the script for removing Accommodation

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 203

7 Evaluation

We demonstrate our approach’s feasibility by realizing 10 SPL evolution scenarios
(adapted based on [20, 21]) (Table 1). For each scenario, we create a change script
capturing the difference between the initial system configuration and the expected
configuration after an evolution. A change script is enacted at runtime on the system
with the initial configuration. To validate an evolution, we first analyze logs for all
the expected changes. Second, we compare the responses and logs for requests to the
products after evolution with those of the system having the expected system configu-
ration (manually created). The case study resources are in http://tinyurl.com/d5xlaom.

Change Impact Analysis. We assessed the effectiveness of our support for evolution
by doing a change impact analysis. The complexity of each scenario was intentionally
kept low to make it easier to identify change impacts. Due to limited space, we
present the results for three scenarios related to addition, removal, and modification of
a feature. The results for other scenarios are in the case study resources (see above).

To add the feature BankTransfer (CS3), we create a collaboration consists of the
roles BK (Bank), AF (AccountingFirm), and MM. The last two roles and the contract
between them (AF_MM) are part of the initial system. Two new contracts BK_AF
and BK_MM are created. The tasks and interactions required to implement the bank
transfer functionality are added/modified. A new player for realizing the role BK, and
the player-binding is added. Finally, the behavior unit bPayingByBankTransfer, to
capture this collaboration is created, and the related products are updated to use it.

The removal of the feature BankTransfer (CS6) is realized by deleting the elements
of the collaboration for that feature, which are the same elements introduced in CS3.

Scenario CS10 is implemented by removing the interaction term iNotifyCompletion
from the contract SC_MM, and adding a new contract GC_MM with the same inte-
raction term. Additionally, the tasks GC.tOrderRepair and SC.tAckRepair are updated
to reflect the interaction term changes, and the new task MM.AckRepair is added.
These modifications are confined to the collaboration for the feature Repair.

As per the above analysis, units of change at the feature-level and the service-level
are confined to their explicit representations in the SO-DSPL architecture, i.e., colla-
borations and abstract representations of services, their interactions and the control
flow among them. This is a key requirement to support effective evolution [22].

Table 1. Change scenarios for the roadside assistance case study

No: Type of Change Example
CS1 Inclusion of a mandatory feature Supporting the reimbursement of costs met by a member
CS2 Inclusion of an optional feature Supporting renting a vehicle as an alternative transport
CS3 Inclusion of an alternative feature Supporting paying by credit card or bank transfer
CS4 Mandatory to optional conversion Allow using towing or expert advice without repairing
CS5 Removal of an optional feature Discontinuing providing accommodations
CS6 Removal of an alternative feature Dropping the bank transfer payment option
CS7 Splitting one feature into two Separating legal assistance from the accident towing
CS8 Merging two features Merging technical advice and vehicle test reports
CS9 Feature implementation changes Extending fuel delivery by using an external service center
CS10 Feature implementation changes Direct notification by a garage instead via a support center

204 I. Kumara et al.

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Lines of Code (LoC)

Runtime Adaptation
Time(Millisecond)

Fig. 9. Runtime adaptation realization time and change script size for change scenarios

Programmer Effort. We have used lines of code (LOC) as the metric to measure the
size of a change script to approximate the effort for developing the change scripts for
the case study (similar to [23]). We ignored blank lines and comments. The length of
a line is approximately 120 characters. Figure 9 shows the sizes of the change scripts.

Runtime Adaptation Realization Time (RART). We have measured the runtime
adaptation realization time (RART) for each scenario. It is the time difference be-
tween the system receiving a script and its being ready for use after changes. The
framework was run on an Intel i5-2400 CPU, 3.10GHz with 3.23 GB of RAM and
Windows XP. As shown in Fig. 9, the RART is within 6-110 milliseconds. We be-
lieve that this is reasonable. In addition, we observed a correlation between the RART
and the size (LoC) of a change script, which approximately corresponds to the num-
ber of atomic adaptation steps included in the script. We also observed that the time
taken for the removal of a feature (CS3) is low compared to its addition (CS6).

8 Related Work

We discuss below the existing research efforts from the perspectives of (D)SPLs and
SaaS applications that consider service-based systems and support runtime changes.

In general, the runtime changes to a product line fall into two categories: adapta-
tion of a product, and evolution of the product line [9]. Most existing works studied
only the first issue [9]. We also considered it in [6] and thus focus on the second
issue in this paper. In a product line, the problem space (e.g., the feature model), the
solution space, and the mapping between them can evolve [20]. Within the scope of
this paper, we consider the solution space for an SO-DSPL. Among the works focused
on the solution space, Morin et al. [7] and Baresi et al. [21] supported modifying a
business process at a set of predefined variation points to create products. They used
SCA (Service Component Architecture) and BPEL (Business Process Execution Lan-
guage) to realize their SO-DSPLs, and AOP (Aspect-Oriented Programming) to real-
ize changes. Bosch and Capilla [24] supported, in a smart home SPL, feature-level
changes by mapping a feature to a device that offers a particular service.

Studies on runtime changes to SaaS applications considered issues such as tenant
on-boarding [2] and tenant-specific variants [3, 4]. Ju et al. [2] proposed a formal
model to assess the cost of tenant on-boarding. In the context of component-based
systems, Truyen et al. [3] proposed the tenant-aware dependency injection to bind
tenant-specific variants to the variation points of the application’ component model.
Moens et al. [4] proposed a feature-model based development of services where a
one-to-one mapping between a feature and a service is used. These services are dep-
loyed in a cloud environment and composed based on the selected features.

 Runtime Evolution of Service-Based Multi-tenant SaaS Applications 205

In analyzing the above works, the studies that allow modifying the product line or

SaaS application at the predefined variation points did not consider the changes to the
base model and its variation points, and the studies that used a compositional ap-
proach assumed a feature as a component service. None of them considers change
impacts on variants. The underlying technologies used (i.e., SCA and BPEL) do not
sufficiently represent the structure and behavior of services or modular service colla-
borations, and thus offer little support to explicitly represent units of change at the
feature-level or the service-level. Moreover, the works in DSPLs usually create physi-
cally separated variants, which do not meet the requirements of the SIMT model.

In comparison with the above approaches (Table 2), we use a compositional tech-
nique to realize the variability by treating collaboration as the unit of composition. A
collaboration provides a better abstraction to modularize a feature compared to a ser-
vice or an arbitrary process fragment [6]. Moreover, we consider the runtime changes
to an SO-DSPL that supports runtime sharing, and the management of the impacts of
those changes. Our product line architecture provides an abstraction over the service
asset space and explicitly represents features as modular units.

9 Conclusions and Future Work

We have addressed the runtime evolution of single-instance multi-tenant SaaS applica-
tions that are realized based on SO-DSPLs and support runtime sharing and tenant-
specific variations. We have identified different types of changes to the SaaS application
and their potential impacts, and proposed techniques to realize those changes and im-
pacts at our SO-DSPL based SaaS applications. In particular, we have presented solu-
tions to control the impacts of a change on tenants (products). A change is realized on
the runtime model of the product line created based on the models@runtime concept.
We have evaluated our approach with a case study and related analysis concerning
change impacts, effort of developing change scripts, and time to realize a runtime
change. The results have shown that our approach is feasible and beneficial.

In future, we plan to extend FeatureIDE (http://fosd.de/fide) to provide direct sup-
port for feature-based evolution, to study change impacts on ongoing transactions, and
to explore the performance variability in a service-based SaaS application.

Acknowledgements. This research was partly supported by the Smart Services Coop-
erative Research Centre (CRC) through the Australian Government’s CRC Program
(Department of Industry, Innovation, Science, Research & Tertiary Education).

Table 2. A summary of the comparative analysis of the related works

Criterion \ Approach [7] [21] [24] [3] [4] we
Req1 Runtime Sharing - - - + - +

Variations + + + + + +
Req2 : Managing Changes ~ ~ ~ - - +
Req3 : Managing Change Impacts - - - - - +
Explicit Representations of Units of Change ~ ~ - - - +

+ Supported

- Not

 Supported

~ Limited

 Support

206 I. Kumara et al.

References

1. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail, MSDN Li-
brary. Microsoft Corporation (2006)

2. Ju, L., Sengupta, B., Roychoudhury, A.: Tenant Onboarding in Evolving Multi-tenant
Software-as-a-Service Systems. In: ICWS, pp. 415–422 (2012)

3. Truyen, E., et al.: Context-oriented programming for customizable SaaS applications. In:
SAC, pp. 418–425 (2012)

4. Moens, H., et al.: Developing and managing customizable Software as a Service using fea-
ture model conversion. In: NOMS, pp. 1295–1302 (2012)

5. Bohner, S.A.: Impact analysis in the software change process: a year 2000 perspective. In:
ICSM, pp. 42–51 (1996)

6. Kumara, I., et al.: Sharing with a Difference: Realizing Service-based SaaS Applications
with Runtime Sharing and Variation in Dynamic Software Product Lines. In: SCC, pp.
567–574 (2013)

7. Morin, B., et al.: Models@ Runtime to Support Dynamic Adaptation. Computer 42, 44–51
(2009)

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Wesley (2003)
9. Bencomo, N., Hallsteinsen, S., Almeida, E.S.: A View of the Dynamic Software Product

Line Landscape. Computer 45, 36–41 (2012)
10. Kastner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: ICSE,

pp. 311–320 (2008)
11. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE Soft-

ware 19, 58–65 (2002)
12. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a

progress report. In: International Workshop on Software Factories, pp. 16–20 (2005)
13. Han, J.: Supporting impact analysis and change propagation in software engineering envi-

ronments. In: STEP, pp. 172–182 (1997)
14. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling using Event-Driven Process

Chains. In: Process-Aware Information Systems, pp. 119–145 (2005)
15. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing Adapters

for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

16. Lee, K., Kang, K.C.: Feature Dependency Analysis for Product Line Component Design.
In: Dannenberg, R.B., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107,
pp. 69–85. Springer, Heidelberg (2004)

17. Weiss, M., Esfandiari, B.: On feature interactions among Web services. In: ICWS, pp. 88–
95 (2004)

18. Colman, A., Han, J.: Using role-based coordination to achieve software adaptability.
Science of Computer Programming 64, 223–245 (2007)

19. Kapuruge, M.K.: Orchestration as organization. PhD Thesis. Swinburne University (2013)
20. Seidl, C., Heidenreich, F., Aßmann, U.: Co-evolution of models and feature mapping in

software product lines. In: SPLC, pp. 76–85 (2012)
21. Baresi, L., Guinea, S., Pasquale, L.: Service-Oriented Dynamic Software Product Lines.

Computer 45, 42–48 (2012)
22. Tarr, P., et al.: N degrees of separation: multi-dimensional separation of concerns. In:

ICSE, pp. 107–119 (1999)
23. Hihn, J., Habib-agahi, H.: Cost estimation of software intensive projects: A survey of cur-

rent practices. In: ICSE, pp. 276–287 (1991)
24. Bosch, J., Capilla, R.: Dynamic Variability in Software-Intensive Embedded System Fami-

lies. Computer 45, 28–35 (2012)

	Runtime Evolution of Service-Based Multi-tenant SaaS
Applications
	1 Introduction
	2 Motivating Scenario and General Requirements
	3 Software Product Lines and Feature Model
	4 Product Line-Based Realization of SIMT SaaS Applications
	5 Runtime Evolution of Product Line-Based SIMT SaaS Applications
	5.1 Identification of Changes and Impacts
	5.2 Realization of Changes and Impacts

	6 Prototype Implementation
	7 Evaluation
	8 Related Work
	9 Conclusions and Future Work
	References

